
Analyzing Business Data with Excel

By Gerald Knight

...

Publisher: O'Reilly

Pub Date: January 2006

ISBN: 0-596-10073-6

Pages: 262

Table of Contents | Index

As one of the most widely used desktop applications ever created, Excel is familiar to just about
everyone with a computer and a keyboard. Yet most of us don't know the full extent of what Excel
can do, mostly because of its recent growth in power, versatility, and complexity. The truth is that
there are many ways Excel can help make your job easier-beyond calculating sums and averages in
a standard spreadsheet.

Analyzing Business Data with Excel shows you how to solve real-world business problems by taking
Excel's data analysis features to the max. Rather than focusing on individual Excel functions and
features, the book keys directly on the needs of business users. Most of the chapters start with a
business problem or question, and then show you how to create pointed spreadsheets that address
common data analysis issues.

Aimed primarily at experienced Excel users, the book doesn't spend much time on the basics. After
introducing some necessary general tools, it quickly moves into more specific problem areas, such
as the following:

Statistics

Pivot tables

Workload forecasting

Modeling

Measuring quality

Monitoring complex systems

Queuing

Optimizing

Importing data

If you feel as though you're getting shortchanged by your overall application of Excel, Analyzing
Business Data with Excel is just the antidote. It addresses the growing Excel data analysis market
head on. Accountants, managers, analysts, engineers, and supervisors-one and all-will learn how to
turn Excel functionality into actual solutions for the business problems that confront them.

Analyzing Business Data with Excel

By Gerald Knight

...

Publisher: O'Reilly

Pub Date: January 2006

ISBN: 0-596-10073-6

Pages: 262

Table of Contents | Index

 Copyright

 Preface

 Who Should Read This Book

 What's in This Book

 How to Use This Book Effectively

 Sample Code

 Using Code Examples

 We'd Like Your Feedback!

 Safari® Enabled

 Acknowledgments

 Chapter 1. Excel and Statistics

 Section 1.1. Array Formulas

 Section 1.2. Addressing Cells Indirectly

 Section 1.3. Statistical Functions

 Chapter 2. Pivot Tables and Problem Solving

 Section 2.1. Pivot Table Basics

 Section 2.2. Changing the Data

 Section 2.3. Pivot Table Options

 Chapter 3. Workload Forecasting

 Section 3.1. The Procedure

 Section 3.2. Building an Application

 Chapter 4. Modeling

 Section 4.1. Regression

 Section 4.2. Defining the Problem

 Section 4.3. Refining Metrics

 Section 4.4. Analysis

 Section 4.5. Building the Model

 Section 4.6. Analyzing the Results

 Section 4.7. Testing Non-Linear Relationships

 Chapter 5. Measuring Quality

 Section 5.1. Statistical Process Control

 Section 5.2. Running the Application

 Section 5.3. Application Design

 Section 5.4. Customizing the Application

 Chapter 6. Monitoring Complex Systems

 Section 6.1. The Application

 Section 6.2. The Data

 Section 6.3. Settings

 Section 6.4. Workarea

 Section 6.5. Macros

 Chapter 7. Queuing

 Section 7.1. The Data

 Section 7.2. The Application

 Section 7.3. The Logic

 Chapter 8. Custom Queuing Presentation

 Section 8.1. The Application

 Section 8.2. The Data

 Section 8.3. The Logic

 Section 8.4. VBA

 Section 8.5. Extending the Application

 Chapter 9. Optimizing

 Section 9.1. Goal Seek

 Section 9.2. The Solver

 Chapter 10. Importing Data

 Section 10.1. Text Files

 Section 10.2. Databases

 Section 10.3. XML

 Chapter 11. The Trouble with Data

 Section 11.1. Numbers

 Section 11.2. Dates

 Section 11.3. Reports

 Section 11.4. Equivalence

 Chapter 12. Effective Display Techniques

 Section 12.1. Respect the Information and the Audience

 Section 12.2. Large Worksheets

 Section 12.3. Charts

 Section 12.4. Pictures and Other Objects

 Section 12.5. Complexity

 Section 12.6. Repeated Elements

 Section 12.7. Information Density

 Section 12.8. Emphasis and Focus

 About the Author

 Colophon

 Index

Analyzing Business Data with Excel

by Gerald Knight

Copyright © 2006 O'Reilly Media, Inc. All rights reserved. Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Simon St.Laurent

Production Editor: Darren Kelly

Copyeditor: Derek Di Matteo

Proofreader: Carol Marti

Indexer: Lucie Haskins

Cover Designer: Karen Montgomery

Interior Designer: David Futato

Illustrators: Robert Romano, Jessamyn Read, and Lesley Borash

Printing History:

January 2006: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly Media, Inc. Analyzing Business Data with Excel, the image of an otter civet, and related trade
dress are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of
a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN: 0-596-10073-6

[M]

Preface
Excel is everywhere, one of the most widely used desktop applications ever created. Over the years
its power and versatility have grown, and so has its complexity. Today, most Excel users do not know
all the things that it can do. There are plenty of good books that explain functions and features, but
making Excel solve problems is not just a matter of learning new workbook functions or mastering
Visual Basic. The real challenge is to understand what Excel's many features can accomplish, and
especially how you can combine them to make your job easier.

Most of the chapters in this book start with a business problem or question, and then show how Excel
can be used in that situation. Several of the chapters include complete applications that you can use
and modify as you like. Each solution basically shows the reader how I would handle the problem. In
nearly every case, Excel offers many ways to do things so the solutions presented are not the only
option. You could produce solutions that do the same thing as the ones in this book using a different
approach. This is not a manual and it doesn't include every workbook function. The object is to show
the reader what can be done and to explain at least one way to do it.

Who Should Read This Book

This book is written for experienced Excel users. It doesn't spend much time on basics and assumes
the reader already knows how Excel works. If you are starting from scratch or need a comprehensive
manual, you might consider Excel: The Missing Manual, also from O'Reilly.

If you are already comfortable with Excel and would like to see how some of the more advanced
features are used, this is the book for you.

What's in This Book

This book starts with some necessary general tools and then moves into more specific problem areas.

Chapter 1, Excel and Statistics

Covers averages, trends, correlation, distributions, and array formulas.

Chapter 2, Pivot Tables and Problem Solving

Examines pivot table basics and ways to modify data to make it work better with pivot tables.

Chapter 3, Workload Forecasting

Covers the application development process, worksheet organization, and forecasting
techniques. This chapter includes an application that forecasts a typical workload.

Chapter 4, Modeling

Explores regression, problem definition, analysis, model construction, and interpretation of
results.

Chapter 5, Measuring Quality

Works with statistical process control, X and Y charts, and application design. This chapter
includes an application that uses statistical process control to measure quality in an operation.

Chapter 6, Monitoring Complex Systems

Examines data requirements, statistical techniques and logic, application design, and
organization. This chapter includes an application that uses regression to monitor the
relationship between metrics in a complex business process.

Chapter 7, Queuing

Applies formatting, VBA, and logic in an application that measures worker performance in a
queuing operation.

Chapter 8, Custom Queuing Presentation

Continues the discussion of queuing with another application focusing on the status of the
queue.

Chapter 9, Optimizing

Explains how to use Goal Seek and Solver for various kinds of problems.

Chapter 10, Importing Data

Covers importing from text files, databases, and XML.

Chapter 11, The Trouble with Data

Examines common problems with dates, numeric information, dealing with data in report form,
and equivalence problems.

Chapter 12, Effective Display Techniques

Covers display design, color combination, dealing with complexity, and visual considerations.

How to Use This Book Effectively

This book covers most of Excel's advanced features. If you are interested in specific features, this
section will guide you to the information you are looking for:

Feature Chapter

VBA in code modules 3

VBA in a sheet 8

Build a custom function 11

Building an add-on 1

Code to work with text 11

Regression in analysis 4

Regression in an application 6

Using pivot tables 2

Design conventions 3

Goal Seek and Solver 9

Typographical Conventions

The following typographical conventions are used in this book:

Italic

Introduces new terms and indicates URLs, commands, file extensions, filenames, directory or
folder names, and UNC pathnames.

Constant width

Indicates command-line elements, computer output, code examples, methods, variables,
functions, properties, objects, events, statements, procedures, values, loops, and formulas
formatted as equations.

Constant width italic

Indicates placeholders (for which you substitute an actual name) in examples and in registry

keys.

Constant width bold

Indicates user input.

Indicates a tip, suggestion, or general note.

Indicates a warning or caution.

Sample Code

All of the applications for this book are available at http://www.oreilly.com/catalog/analyzingbdwe.
You'll probably want to download them and follow along with the chapters. You can also customize
them to analyze your own business data.

http://www.oreilly.com/catalog/analyzingbdwe

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in
your programs and documentation. You do not need to contact O'Reilly for permission unless you're
reproducing a significant portion of the code. For example, writing a program that uses several
chunks of code from this book does not require permission. Selling or distributing a CD-ROM of
examples from O'Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount of example
code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: Analyzing Business Data with Excel, by Gerald Knight. Copyright
2006 O'Reilly Media, Inc., 0-596-10073-6.

If you feel your use of code examples falls outside fair use or the permission given above, feel free to
contact us at permissions@oreilly.com.

We'd Like Your Feedback!

The information in this book has been tested and verified to the best of our ability, but mistakes and
oversights do occur. Please let us know about errors you may find, as well as your suggestions for
future editions, by writing to:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the U.S. or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

You also can send us messages using email. To be put on our mailing list or to request a catalog,
send email to:

info@oreilly.com

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

For corrections and amplifications to this book, check out O'Reilly Media's online catalog at:

http://www.oreilly.com/catalog/analyzingbdwe

http://www.oreilly.com/catalog/analyzingbdwe

Safari® Enabled

When you see a Safari® Enabled icon on the cover of your favorite technology book, it
means the book is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search
thousands of top technology books, cut and paste code samples, download chapters, and find quick
answers when you need the most accurate, current information. Try it for free at
http://safari.oreilly.com.

http://safari.oreilly.com

Acknowledgments

Thanks to O'Reilly for the opportunity to write the book and to my editor Simon St.Laurent for
guidance and encouragement along the way.

Thanks to Michael Schmalz for suggestions (all good) and for keeping me out of trouble.

And finally to my wife Betty and daughter Helen: thanks for putting up with me during the last few
months. It's safe to come back into the computer room now.

Chapter 1. Excel and Statistics
Several chapters of this book solve common business problems by creating complete applications
using Excel features like VBA, forms, and array formulas . Before we start building applications, we
need to cover some key basics. In this first chapter we look at array formulas and indexed
addresses, two key Excel features used throughout the book. Next we will look at Excel's ability to
handle common statistical calculations. These features will be the building blocks for the later
applications. This is not a statistics textbook and we will not examine all of Excel's 50+ statistical
functions; instead, we will look at the most commonly used functions with particular attention to
those used in other parts of the book.

1.1. Array Formulas

Excel array formulas give you the ability to work on ranges of cells all at once. Suppose we have a list
of numbers, and we want to know the average amount of change from one number to the next. This
situation is illustrated in Figure 1-1.

The normal way to approach a problem like this is to add a new column with an intermediate
calculation. In cell B2 we calculate the difference between A2 and A1. Then we fill this formula down to
cell B10. In cell B12 we simply take the average.

With an array formula we can get the same answer using only one cell. The formula in B15 is:

=AVERAGE(A2:A10-A1:A9)

This makes sense. We want the average of the differences, and that is what the formula is asking for.
However, this returns a value error! The error appears because we need to enter the formula in a
special way that tells Excel the formula applies to the ranges and not to individual cells.

This is done by pressing Ctrl-Shift-Enter, all at the same time while entering the formula. Excel then
displays the formula in brackets, as shown in cell B17:

{=AVERAGE(A2:A10-A1:A9)}

Figure 1-1. Using an array formula

The values returned in cells B12 and B17 are the same. Excel does all of the intermediate calculations
and returns the result.

Array formulas save space on the worksheet; often whole columns of formulas can be eliminated. By
reducing visual complexity, they make things easier to understand, and can speed up sheet
recalculation.

Array formulas can also contain truth values . Excel considers true to be a
binary 1 and false to be a binary 0, and sometimes this can be helpful.

In Figure 1-2 we need to find the average of the odd numbers in the list.

In the non-array approach, we would start by identifying the odd values. If a number divided by two
is not equal to the integer value of itself divided by two, it is odd. The formula in cell B1 is:

=A1/2<>INT(A1/2)

This fills down to B10 and returns a value of true (binary 1) if the number is odd and false (binary 0) if
it is even.

In cell C1, this is the formula:

=B1*A1

If B1 is false, it equals zero and the returned value will be zero. But if the value is true, as it will be if
A1 is odd, it is a one and the returned value will be equal to A1.

In column D we do the same thing, but this time we multiply by one using this formula:

Figure 1-2. Averaging the odd numbers

=B1*1

This is useful because many Excel functions do not recognize binary trUE and FALSE values. This
simple formula converts the binary value into a number that can be used in other calculations.

We could avoid this issue, and the need for the formulas in the D column in
Figure 1-2, by using the COUNTIF function. But it is still important to know how
to get truth values into other calculations.

The formulas in C12 and D12 take the sum of the cells above, and in cell E12 we divide C12 by D12.
Since C12 has the sum of the odd values and D12 has the count, this gives the average.

We can get the same result with this array formula:

{=(SUM((A1:A10/2<>INT(A1:A10/2))*A1:A10))/(SUM((A1:A10/2<>INT(A1:A10/2))*1))}

It does the work of two columns, two sums, and a division function. And, it does it exactly the same

way. The difference is that the formula is built on ranges, not individual cells. All of the same logical
steps are in the array formula.

1.2. Addressing Cells Indirectly

The INDEX, INDIRECT, ADDRESS, and OFFSET functions are used extensively in this book, providing
formulas with much greater flexibility than cell references can provide.

All cells on a worksheet have a unique address (e.g, A1) and Excel lets you refer to any cell by its
address. But what if you don't know what cell you are going to want? This can happen if the address
of the required piece of information changes based on other values on the worksheet.

If there is a list of items you need to be able to select from, the INDEX function will do the job. The list
can be in a column or a row. An example is shown in Figure 1-3.

Figure 1-3. Using the index function

We have a list of seven colors. In cell C4, the formula is:

=INDEX(A1:A7,C2)

The first entry in the formula is the range where the names of the colors are. The number in cell C2
tells the formula which color is required. In this case it is color number five. The fifth color, the one in
cell A5, is Blue. The formula in cell C4 returns a value of Blue as text.

The INDEX function works in most cases but sometimes you may not know the row or column of the
required value. It could be anywhere on the worksheet, or even on another worksheet. Figure 1-4
contains just such an example.

This time the data extends over several columns. The value in cell D3 is 373. D3 is the fourth column
and the third row. The row and column numbers are in cells D12 and D11. The ADDRESS function in cell
D14 uses them to build the address.

If you need an address to include the sheet name, and you will if you are referencing data on a

different sheet, use the version in cell D17. It lets you include the sheet name and builds it into the
returned value.

The address alone does not help much, but the INDIRECT function returns the value corresponding to
an address. In cell D20 the INDIRECT function uses the address built in cell D14 to retrieve the value in
cell D3.

The formula in cell D20 could thus also be written as:

=INDIRECT(ADDRESS(D12,D11))

Although this may seem a little complex, these functions are very useful when referencing data using
both row and column values. It takes a little practice to become proficient with ADDRESS and INDIRECT,
but it's worth it because they provide great flexibility in referencing data in Excel.

Figure 1-4. Working with INDIRECT and ADDRESS

Excel, as usual, offers more than one way to do things. The OFFSET function does the same thing that
the INDIRECT and ADDRESS functions do, using a different approach. The example in Figure 1-5 shows
how the OFFSET function handles the same situation.

Figure 1-5. Using the OFFSET function

INDIRECT uses a text string containing the address of the required cell. OFFSET uses row and column
numbers from a given starting point to locate the cell. In this case the starting point is cell A1 and the
offset is two rows down and three columns to the right. This is the same cell we referenced in Figure
1-4.

In most cases the choice between OFFSET and INDIRECT is a matter of personal preference. INDIRECT
lets you reference a different sheet, making it better for applications that have several worksheets.
The advantage of OFFSET is that it works with numbers rather than a text string. This means it does
not need the ADDRESS function and can be easier to use.

1.3. Statistical Functions

Statistical functions are used to describe data. When working with a list of numbers, we need to be
able to find the average, to understand any trends, and to describe the distribution. In this section
we look at Excel's most commonly used statistical functions .

1.3.1. The Average

The average is the most common measure of the center of a group of numbers, and Excel makes
taking an average easy. The basic approach is shown in Figure 1-6.

Figure 1-6. Taking an average

Five is the average of the numbers from one to nine (in column A, rows 1 through 9). Usually
numbers will be in a column, as in item 1, but it really doesn't make any difference as long as you
know where the numbers are. In item 2 the average formula is looking at a three by three range, and
in item 3 the numbers are mixed with non-numeric information.

Excel ignores cells that do not contain valid numbers, and item 4 uses this behavior to simplify taking
the average of scattered numbers. The AVERAGE function finds the numbers in the range. I don't have
to tell Excel where they are.

1.3.1.1. AVERAGEA

The AVERAGE function is usually convenient, but fails in Figure 1-7.

Figure 1-7. Averaging text as a number

On Wednesday we did not get any orders. The data contains the word "None," but the value is really
zero. In item 1, the AVERAGE function gets the wrong answer because it ignores the cell with "None" in
it. The AVERAGEA function is made for this situation. AVERAGEA works just like AVERAGE, except it
considers non-numeric cells to have a value of zero. In item 1 formula 2, the AVERAGEA function
calculates the average correctly.

AVERAGEA ignores cells that are not used. In item 2, the Orders cell for Wednesday is empty and the
AVERAGEA function does not consider the cell to have a value of zero.

1.3.1.2. DAVERAGE

Excel can also calculate the average of selected items in a list using the DAVERAGE function. Figure 1-8
shows how this function is used.

Figure 1-8. Using DAVERAGE

The range A1:B18 contains sales amounts and regions. This worksheet allows the user to get the
average of a selected region.

First we give the user a way to choose a region. We enter the region names in D7:D10. Then we add a
combo box using the forms tool bar shown in Figure 1-9.

Figure 1-9. Adding a combo box

If the forms tool bar is not visible, go to the View Toolbars menu and check Forms.

We click on the combo box icon and drag it to the sheet. Then we right click on it and select Format
Control. This displays the dialog in Figure 1-10.

Figure 1-10. Formatting the combo box

The Input range tells the combo box what values to display. The region names are in the range
D7:D10, so that is the Input range.

The Cell link is D4. When the user selects one of the four regions, the combo box puts a number in
the Cell link telling which region was selected. The Cell link does not get the region name, only a
number. In Figure 1-8, East is selected. East is the third item in the list of regions, therefore the Cell
link (D4) contains the number three.

We need the name of the selected region, and to get it we use the formula in cell D5 in Figure 1-8:

=INDEX(D7:D10,D4)

The INDEX function returns an item from a range. The range D7:D10 contains our region names. Cell
D4 has the number three. The INDEX function returns the third item in the range, the name "East".

The DAVERAGE function is in cell D15 and has this formula:

=DAVERAGE(A1:B18,B1,D1:D2)

There are three parameters. The first is the range A1:B18, containing all of the data including column
headings. Next is B1. This is the heading of the column we want to average. The formula could have
been entered as:

=DAVERAGE(A1:B18,"Sales Amount",D1:D2)

The third parameter is the criteria range. It consists of a heading and a logical test. The heading tells

the function what column to apply the test to. DAVERAGE takes the average of the rows where the test
is true.

We are only averaging sales amounts for East. The criteria range is D1:D2. The formula in D2 is:

="=" & D5

This uses the result of the combo box selection in cell D5 and builds the text string "=East".

This makes the sheet interactive without using a macro. The DAVERAGE function in cell D15 calculates
the average for the selected region as soon as the user changes the selection.

DAVERAGE is a database function. Database functions allow you to perform common calculations on
worksheet data. But the data has to be set up correctly for them to work. They require headings and
a criteria range. This is fine if you are designing an Excel solution from scratch, but can lead to
complications if you are adding calculations to an existing sheet.

Excel has a wide range of functions, and in most situations there is more than one way to get the
desired result. In this case, I could replace the DAVERAGE function in cell D15 with this formula:

 =SUMIF(A2:A18,D2,B2:B18)/COUNTIF(A2:A18,D2)

It uses the SUMIF and COUNTIF functions to get the same answer, avoiding the formatting
requirements of database functions . There is no best way to do this. It depends on how the sheet is
designed and what you are trying to accomplish.

1.3.1.3. Trimmed average

All numbers are not created equal. In examples, like the ones in this chapter, the numbers are made
up. They can't be wrong because they don't mean anything. In the real world things are different.

Numbers can be recorded incorrectly, unusual events can produce odd values that confuse our view
of the past and make the average inaccurate. These troublesome values are called outliers or
anomalies .

When we use data that might have outliers we can increase the accuracy of calculations by ignoring
the highest and lowest values. This is also sometimes called a filtered average. Excel does this with
the TRIMMEAN function.

In Figure 1-11 you can see how this works.

Figure 1-11. A trimmed average

We want the average number of calls per day handled by a call center. Figure 1-11 has the call count
for the 25 most recent days. But in cell A21 something is wrong. A network problem on that day
incorrectly routed tens of thousands of calls to our call center.

If we just take the average we get 16,265. But that is not good estimate of the real average, since it
includes the problem data. We can get a better estimate by using this formula:

=TRIMMEAN(A2:A26,2/COUNT(A2:A26))

The first entry in the trIMMEAN function is the range of cells to be averaged. The second entry is the
percentage of cells to ignore. In this case I want to eliminate the maximum and the minimum values.
Therefore, I need to set the value to trim only one item at the top and bottom of the distribution.
That is equal to two divided by the number of items.

This is equivalent to this formula:

=(SUM(A2:A100)-(MAX(A2:A100)+MIN(A2:A100)))/(COUNT(A2:A100)-2)

This takes the sum of all the numbers, subtracts the maximum and minimum, and then divides by
two less than the item count.

It would be nice to have a function that just removes the maximum and minimum, and a custom
function can do just that.

First we go to the Tools Macros menu and select Visual Basic Editor. The editor can also be

started by pressing Alt-F11. This code is then entered:

Public Function FAverage(MyRange As Excel.Range) As Double

'Find the sum of the range
FAverage = Application.WorksheetFunction.Sum(MyRange)

'Subtract the maximum value
FAverage = FAverage - Application.WorksheetFunction.Max(MyRange)

'Subtract the minimum value
FAverage = FAverage - Application.WorksheetFunction.Min(MyRange)

'Divide by two less than the count of values in the range
FAverage = FAverage / (Application.WorksheetFunction.Count(MyRange) - 2)

End Function

We do not have to actually code the logic to calculate the sum, maximum, or minimum, because the
application object already knows how to do these things. In effect, we are using normal Excel
functions inside our code. With this code in place, our sheet has a new function called FAverage. Its
only parameter is the range of cells we are working with, and it returns the filtered average.

A custom function is fine for a one-off problem, but you may want to reuse your solution later, or
there may be other Excel users doing a similar job who could use the same function. If this is the
case, an Excel Add-In is an easy way to publish one or more custom functions.

We start with a new blank workbook. We bring up the Visual Basic Editor as before and add the same
code. We save the workbook with the name StatHelper as an Excel Add-In. It will be saved with an
extension of .xla in your Application Data/Microsoft/AddIns folder.

Then exit and restart Excel, and bring up another blank workbook. Go to the Tools Add-Ins menu
and you will see StatHelper on the list of available Add-Ins. Make sure it is checked, and your new
workbook will have the FAverage function.

You can distribute the StatHelp.xla file to others. It needs to be placed in their Application
Data/Microsoft/AddIns folder. You can add additional functions to your XLA file, or even make it a
group project with functions added by other users.

1.3.1.4. Moving average

Tracking changes in the average is an easy way to find trends in data. A moving average is shown in
Figure 1-12.

Figure 1-12. The moving average

In this example we have 65 days of closing prices for a stock. The formula in cell B21 takes the
average of the preceding 20 days. The formula fills down, creating a moving average.

Moving averages are often used in charts to make trends easy to understand.

1.3.2. Changes in the Average

The simplest change is a linear trend. In business this means the value is going up or down by the
same amount each time period (e.g., each month sales are going up by $10,000). The TREND function
can identify the points on the trend line or forecast future values. Figure 1-13 shows how the trEND
function can build a trend line.

Figure 1-13. Finding the trend

In Step 1 are the closing stock prices for 25 days. In column B is a heading for the trend.

In Step 2, we select the range B2:B26 and click on the formula bar. In the formula bar we enter the
following:

=TREND(A2:A26,,)

The trEND function has three parameters. First is the range of the Y values. In this case these are the
stock prices. The next parameter is the range of the X values. When we are working with a value that
is changing over time, like a stock price, these are just the numbers 1,2,3...to the number of values,
25 in this case. This is the default, so we don't have to enter anything except a comma as a place
holder. The third parameter is the X values we want the function to return. Here we also take the
default. This is an array formula and must be entered with Ctrl-Shift-Enter. The result is shown in
Step 3.

The result is a line. Each value in column B goes up by the same amount, in this case by 0.202538. If
we build a chart using the data in columns A and B, it will look like Figure 1-14.

The TREND function can also forecast future values . The next value can be predicted with this
formula:

=TREND(A2:A26,,COUNT(A2:A26)+1)

Figure 1-14. Chart with trend line

The COUNT function returns the number of cells in the range. Adding one tells the trEND function that
we want the next value.

Forecasting the next value is something that we might want to do from time to time, and it would be
convenient if we had a function to do this based only on the range.

We can create a custom function with this code:

Public Function TrendNext(MyRange As Excel.Range) As Variant

'Find the next value from a range using the TREND function
TrendNext = Application.WorksheetFunction.Trend(MyRange, , _
Application.WorksheetFunction.Count(MyRange) + 1)

End Function

Once again, we use the application object to get to Excel's built-in functions. If this code is added to
the StatHelper.xla, the TRendNext function will be ready to use. Figure 1-15 shows an example.

Figure 1-15. Using the TrendNext function

Both formulas return the same value, but TRendNext is specialized and easier to use.

1.3.2.1. Growth

Trends are not always linear. Values can go up or down in ways that cannot be described with a line.
Exponential growth is based on multiplication. In a linear trend each item changes by the same
amount. In growth each item changes by the same ratio. Excel has a GROWTH function that models
exponential growth . It works just like the TREND function but returns different results.

Figure 1-16 demonstrates the difference between the GROWTH and TREND functions.

Figure 1-16. GROWTH and TREND measure different things

Here the values in column A are changing exponentially. We use both the GROWTH and trEND functions
to try to model the values. In the chart it is clear that the GROWTH function does a better job. The
trend line doesn't really explain what the values are doing, and even starts with a negative value.

If we predict the next few values in this series, we will get better results if we use GROWTH.

Column E shows how the trEND function works. It starts with -162.08 and adds 112.45 each time.
This gives the best fitting line possible for the values. In Column F the GROWTH function starts with
23.06 and multiplies by 1.557 each time. This produces the best fitting exponential curve.

In most business situations the trEND function works fine. But GROWTH makes more sense when
working with returns on investments, inflation rates, or other values that change by a percentage
over time.

It is easy to see how the data is behaving in these examples, but in the real world trends are likely to
be subtle and the data less consistent. It is important to understand the data before you choose
which function to use. It is helpful to look at a chart before deciding between GROWTH and TREND.

1.3.3. Distributions

The average number of calls coming into a call center is 12,534 per day. But a day with exactly
12,534 is rare. If we are going to manage this process, we need to know how spread out the data is
and how it is distributed.

Excel offers functions to handle the kinds of distribution most frequently encountered in business.

1.3.3.1. Normal distributions

A normal distribution has a bell shaped curve. Most of the values are near the middle. The tails of the
distribution contain uncommonly high or low values. This is the most common distribution in business
situations.

The simplest measure of a normal distribution is the variance . To calculate the variance, each value
is subtracted from the average and the difference is squared. Then the squared differences are
summed and the sum is divided by one less than the number of values. In Excel all this is done by
the VAR function. Figure 1-17 shows how this works.

We will calculate the variance of the 20 numbers in column N. The formula in cell O1 is:

=(N1-AVERAGE(N$1:N$20))^2

It takes the difference between the value in cell N1 and the average of all 20 cells. This fills down to
row 20.

Cell Q6 contains this formula:

=SUM(O1:O20)/19

Figure 1-17. Calculating the variance

It sums the squared differences and divides by 19 (one less than the number of values).

In cell Q8 we let Excel do the work by using the VAR function and get the same result.

The most commonly used measure of spread is the standard deviation. Standard deviation is just the
square root of the variance, and Excel has the STDEV function to calculate it.

The standard deviation is used in many statistical calculations. Once you have the average and the
standard deviation, Excel has functions that can tell you how a value fits into the distribution. This is
illustrated in Figure 1-18.

We want to know where 46.75 fits in the distribution, and we know the average and standard
deviation. The NORMDIST function gives us the answer. In Figure 1-17 cell Q1 has the average and Q2
has the standard deviation. The formula is:

=NORMDIST(46.75,Q1,Q2,TRUE)

The first entry is the value we want to test (46.75). Next are the average and standard deviation.
Finally, we use the option trUE to get the cumulative probability for 46.75. If we entered FALSE for this
option, the function would return the height of the distribution curve at 46.75.

The NORMDIST function returns a value of 0.9751. This means that 97.51% of the distribution is below
46.75.

The NORMINV function works in the opposite direction. Suppose we need to know what values are in
the top 25% of the distribution. The value we need is the one at the 75% point. For the data in Figure
1-17 this formula will find the answer:

=NORMINV(0.75,Q1,Q2)

Figure 1-18. Using the average and standard deviation

The first entry is the percentage we are looking for. Next are the average and standard deviation.
This function has no TRUE/FALSE option. The formula returns a value of 46. The values 46 and above
are the top 25% of the distribution.

1.3.3.2. Exponential distributions

Our call center gets three calls every ten minutes. The time between calls has a distribution
illustrated in Figure 1-19.

Figure 1-19. Distribution of call times

The curve can start at any point in time. At the instant it begins there is no call, so zero percent of the
calls happen in zero time. Half the time the next call comes in within 3 1/3 minutes. The next call
arrives with 15 minutes nearly all the time. A wait of 16 minutes is possible but almost never occurs.

In this case we are looking at the time interval between events, and this produces an exponential
distribution . Excel lets you calculate probabilities in this distribution with the EXPONDIST function.

Before we can use this function we have to calculate a parameter called Lambda . Lambda is the
inverse of the average time. So, if our call center gets 3 calls every 10 minutes, the average time
between calls is 3.33... minutes. Lambda is 1 divided by 3.33... which equals 0.3. We used minutes to
determine Lambda. Therefore, the results we get from the EXPONDIST function will be in minutes.

Suppose we need to know what percentage of the time the next call will arrive within 4 minutes. The
formula is:

=EXPONDIST(4,0.3,TRUE)

The first entry is 4 because we are interested in the 4 minute interval. Next is Lambda (0.3). The
option TRUE tells the function that we want the cumulative probability. This returns a value of 0.698.
This means that about 70% of the time the next call arrives within 4 minutes.

This distribution looks forward only. It has no memory. This means that even if there has been no call
for the last five minutes, there is still a 70% probability that the next call will arrive in the next 4
minutes. The past does not matter, only the future.

1.3.3.3. Gamma distribution

The gamma distribution is similar to the exponential, but more general. It allows you to calculate the
probability for multiple events.

We get the same result as with EXPONDIST if we use this formula:

=GAMMADIST(4,1,3.3333,TRUE)

There are two differences from the EXPONDIST entries. In this case Lambda is 0.3, but the GAMMADIST
function requires 1/Lambda. The entry is 3.3333. The 1 is the number of occurrences we want. Here
we are interested in the next call, so just one call is involved. If we need to know the probability of
getting three calls in the next four minutes, we would enter the formula like this:

=GAMMADIST(4,3,3.3333,TRUE)

This formula returns a value of 0.1205. There is a 12% chance of getting three calls in the next four
minutes.

The GAMMAINV function lets you go the other way. If we want to be 90% sure that the next call will
arrive in a certain number of minutes, the formula is:

=GAMMAINV(0.9,1,3.333)

The 0.9 is the probability we want, and the number of occurrences is one, and 1 divided by Lambda is
3.333. The result is 7.67. That means that there is a 90% chance that the next call will come in during
the next 7.67 minutes.

1.3.3.4. Binomial distribution

Some things have only two possible outcomes. A coin toss is heads or tails, a collections call is
successful or not, a new account winds up being uncollectible or it doesn't. For this kind of situation,
probability is calculated using a binomial distribution .

If the probability that a collections call will result in a payment is 0.1 and a collector makes 75 calls in a
day, what is the probability that the calls will result in exactly 10 payments?

Excel has a function that answers this question. The formula is:

=BINOMDIST(10,75,0.1,TRUE)

The ten is the number of calls we are looking for. There are 75 calls made, and the probability of
success on each call is 0.1. The option TRUE tells the function that we want the probability.

The formula returns a value of 0.873. There is an 8.73% chance that exactly 10 payments will come
from the 75 calls.

1.3.4. Correlation

Sometimes we need to know if two groups of numbers are related. Correlation is a measure of how
much similarity there is between two groups of numbers. If both groups go up or down by the same
amount at the same time there is a positive correlation . If they change at the same time but in the
opposite direction there is a negative correlation .

Correlation is always a number between one and negative one, and the groups of numbers being
tested must have the same numbers of members. In Excel you can calculate correlation using the
CORREL function. An example is shown in Figure 1-20.

Here we have two groups of numbers. The formula in cell E1 is:

=CORREL(A2:A12,B2:B12)

As the first chart illustrates, the numbers, while not equal, tend to move together. The formula
returns a value of 0.68. This is a fairly strong correlation and confirms what we see in the chart; the
numbers are related. In the bottom chart the numbers are moving at the same time but in the
opposite direction. This suggests a negative correlation, and the formula in cell E21 indeed returns a
value of -0.805.

Figure 1-20. Positive and negative correlation

A correlation near zero indicates that the number groups are not related.

Chapter 2. Pivot Tables and Problem
Solving
Business data analysis is a search for relationships. How does advertising impact sales? Does an
increase in returns mean we have a quality problem? Whether we are looking for problems or
identifying best practices, it all comes down to relationships. Business analysis requires a complex,
multidimensional approach. Businesses capture and store large amounts of data. As companies try to
become more efficient, the job of sifting through this data looking for valuable insight is becoming
more common and important.

Excel is ideal for this kind of work. It can import data from most databases, it can handle almost any
statistical or formatting problem, and it has a great pivot table feature. Pivot tables were designed for
researching relationships in data. They allow us to try different combinations by dragging and
dropping, making it easy to check a large number of relationships quickly. They create interactive
tables and charts and can quickly filter the data or change point of view.

In this chapter we use pivot tables to analyze a business process. This is an ad hoc activity and the
end product is information, not an application. So, formatting and appearance are not the main
concerns. The real goal is to find specific problems or opportunities.

We work with two kinds of data. First, there are categorical items. These elements separate data into
well-defined groups. If you look at a customer file, one of the fields might be the customer's ZIP
code. It is a number, but it has no real numeric value. Its only purpose is to identify a group or
category of customers.

The second type is scalar items. Scalars have a numeric value, like cost or square feet. They can be
added up or averaged. In pivot tables we use categoricals and scalars differently.

The sample data for this chapter consists of 10,000 rows of data from an order processing operation.
The layout is shown in Figure 2-1.

Figure 2-1. Order data

It takes too long to handle orders, and we want to find specific problem areas. We also want to find
examples of good performance to establish best practices. Pivot tables will provide an excellent tool
for exploring this kind of data.

2.1. Pivot Table Basics

Pivot tables require data to be arranged in columns with headings. We start by selecting the range of
cells or the columns that we want in the pivot table. The pivot table wizard will attempt to find the
range for you, if you select a single cell containing data.

Be careful when letting the wizard find the range. The pivot table wizard will
stop at an empty row. So, if you are not sure all the rows in your range are
used, it is best to select the range you want manually.

Next we click on the Data Pivot Table PivotChart Report menu option. This starts the pivot table
wizard and brings up the dialog in Figure 2-2.

For this example we simply click the Finish button. This accepts all of the defaults, and this is often all
you will need. Several options are available at this point, including linking our pivot table to external
data or making a PivotChart. For now, just click Finish, which brings us to the display in Figure 2-3.

A newly created pivot table has a few parts. Item 1 is a list of data items in the table. We can drag
and drop these items onto the pivot table.

Item 2 is the Pivot Table toolbar. On your system it may show up in a different location. Item 3 is the
area where we drag-and-drop row fields. Our selection in this area establishes the order of the rows
in the finished table.

Item 4 is the data area. Items dragged to this area are summarized by both row and column. Item 5
is the area for column fields. Selections here determine the horizontal arrangement of the table. The
page field area in item 6 is a filtering option, allowing you to add a fourth dimension to the table.

Figure 2-2. The PivotTable Wizard

Figure 2-3. The parts of a pivot table

2.1.1. Populating the Table

We start by looking at the average age of orders by location. First, drag the Office data item into the
row field area. The results are shown in Figure 2-4. Office is a categorical item. The row, column, and
page areas can only use categorical data.

The pivot table is only active when some part of the table is selected. If you select a cell outside the

table the field list disappears and the table features are disabled. You can reactivate the pivot table
by clicking on any part of it.

Figure 2-4. Populating the row field area

Scalar items go in the data area, and the next step is to drag the Order Age data item to that area.
You can use a categorical item in the data area, but this will make most of the calculations unusable.
Excel will try to determine what kind of data you have selected, and it will set a default calculation. In
this example the default is Count. We change the Count to the Average as demonstrated in Figure 2-
5.

Unfortunately, there is no way for the user to change the default, so you will have to do this every
time you move an item to the data area, unless you actually want the default.

2.1.2. Sorting and Filtering

Suppose we want see the locations sorted by average order age. With the interior of the table
selected, I click on the Pivot Table button on the toolbar and select Sort and Top 10 as shown in
Figure 2-6.

This brings up the sort dialog in Figure 2-7.

Here I select a descending sort on Average of Order Age. In this dialog I could also limit the display
to the top few items after the sort. The top ten is the default, but I can select any number of items to
show using the options on the right side of the dialog.

In Figure 2-6 the last city is named (blank). This could be useful if we had some blank city names in
the data. But we don't. To remove the blank entry, I click on the arrow in cell A4 of Figure 2-6. This
displays the dialog in Figure 2-8.

Figure 2-5. Changing from Count to Average

This allows me to control which offices will appear on the table. Here, I have unchecked (blank) to
exclude it. When OK is clicked, the display looks like Figure 2-9.

There is a big difference in performance. Boston handles orders in about 8.6 days on average while
St. Paul takes over 42 days. Some of the difference might be understandable if there is a difference in
the kinds or value of orders between the offices.

2.1.3. Multiple Data Items

Next we check to see if the average order amount is related to average order age. First, I drag Order
Amount from the field list into the data area. This adds Count of Order Amount as a second data
item. To change to the average, I right-click on one of the cells containing data for Count of Order
Amount. In Figure 2-10 I right-clicked on cell B7, bringing up a menu dialog.

Selecting the Field Settings option allows us to select how the data is summarized using the dialog in

Figure 2-5.

By default, Excel puts the new data item under rather than beside the first one. If you want them
side by side, just drag the data item in cell B3 to cell C3 as shown in Figure 2-11.

Figure 2-6. The pivot table menu

Figure 2-7. Sorting the table

This puts the averages next to each other, making it easy to use Excel functions on the data. I check
for linkage between the averages by using the CORREL function as shown in Figure 2-12.

Figure 2-8. Filtering the row fields

Figure 2-9. The sorted offices

A correlation of -0.3 doesn't explain much. There is a tendency for small orders to be worked in less
time. But it cannot account for the differences in performance overall, and we reject the idea that the
average size of orders an office processes causes the difference in aging.

Figure 2-10. Adding a second item to the data area

Figure 2-11. Rearranging the table

2.1.4. Working with Rows and Columns

To check the mix of order types in the offices, start by right-clicking on the average order amount

and selecting Hide from the menu of table options. This removes the item from the table. Then drag
the Order Type item into the column area as shown in Figure 2-13.

Figure 2-12. Checking for a link between the averages

Figure 2-13. Putting data into the column area

This gives a breakdown by both city and order type. The display is too large to fit in the window on
my computer so I used the format menu to show only to two decimal places and auto fit the column
widths. Adjusting column widths in pivot tables is almost a waste of time because the pivot table
feature resets widths when you make changes to the table. This results in the worksheet displayed in
Figure 2-14.

Figure 2-14. A table with both city and order type

This demonstrates the real power of the pivot table tool. In seconds I could change this table to look
at sales employee numbers, or switch from average order age to average order amount.

We can see in row 25 that there is a difference in age by order type. We can also see the
performance differences between the fastest and slowest offices are across the board.

2.1.5. Adding a PivotChart

To highlight the difference between the best and worst performers, I remove all but the two fastest
and two slowest offices using the filtering technique shown in Figure 2-8. This results in Figure 2-15
and lets me create a chart to compare the best and worst side by side.

This creates a pivot chart linked to the pivot table. The pivot chart has the field list and pivot menu.
It also has all the functionality of the pivot table, as shown in Figure 2-16.

I have the same drag and drop capability on the chart as on the table. If I want to switch from Office
to Business Unit, I can drag Office off the chart (it is at the bottom) and replace it with Business Unit.
If I make that change on the chart, it is also made on the table, since they are linked.

Figure 2-15. Adding a PivotChart

Figure 2-16. The pivot chart

Here we see clearly that Memphis and Boston (the best performers) are better than the slower cites
for all the order types. The pivot chart has all the power of a normal Excel chart and I can change the
chart type by right-clicking in the plot area and selecting a different chart type. I changed to a 100%
stacked column chart to look at the order type mix. Then I clicked on the Average of Order Age
button just above the plot area on the left and changed from average to count. The result is shown in
Figure 2-17.

This chart lets us see how the mix of work differs. When we changed from Average to Count, the
pivot table changed automatically. The sort option is enabled on the table so now it is sorting on
Count not Average. This changes the order of the cities on the chart.

Figure 2-17. Comparing the order type mix

2.1.6. Multiple Layers and Pages

Pivot tables and charts can have multiple layers. Suppose I want to see which customers take the
longest for each city. I go to the table and start by taking the filter off City so they all show up on the
table. Then I drag Order Type back to the field list and drag Customer Number to the row area as
shown in Figure 2-18.

It is important to drag Customer Number to the right side of cell A4. If it is dropped on the left side of
A4, Excel tries to arrange cities by customer, which makes no sense. I then use the pivot table menu
and select Sort and Top 10. I fill out the sort options as shown in Figure 2-19.

I indicate a descending sort on Average of Order Age, with only the top 5 items showing. The results
are shown in the table in Figure 2-20.

Next I want to be able to see this information by order type. I drag Order Type to the page area at
the top of the display, as in Figure 2-21.

This creates an interactive display allowing the user to select any Order Type (or all) and see the
results in the table immediately. You could drag Customer Number back to the field area and replace
it with Sales Emp # or Commit Days to create different views of the data.

Figure 2-18. Change to a customer-based approach

Figure 2-19. Sort and Top 10 options

2.1.7. Drilling Down

Pivot tables have a built-in drill down feature. Suppose we need to see the details for one of the rows
in the report from Figure 2-21. The third row for the St. Paul office is customer 160645, and their
average order age is 118 days. To see the detail, I double click on the number 118 as shown in Figure
2-22.

Figure 2-20. The top five customers by city

This adds a new sheet to my workbook containing the orders for this customer. The result is in Figure
2-23. Each time you drill down, you will get a new sheet. So, it is important to delete the new sheet
when you finish using it. Features like these make pivot tables ideal for analysis, but they are also a
great way to present information in cases where users need flexibility and don't mind interacting with
the application.

2.2. Changing the Data

You are not limited to the data you get. Sometimes it is helpful to change the form of a data item.
You cannot create new information, but you can redefine existing data in ways that make it more
useful.

2.2.1. Categorical Information

One of the data items we started with is Action Date. This is categorical information, but there are
too many dates. If I use it as the row or column field I get too many categories. I can make this item
more useful by changing it into a day of the week. We might find orders have different characteristics
based on the day of the week they are received. I return to the data sheet and add a new column
named Weekday, filling it out as shown in Figure 2-24.

Figure 2-21. Using the page field area

Figure 2-22. Drilling down

Figure 2-23. The details

Figure 2-24. Adding a new data item

I then go back to the pivot table, click on the pivot table menu and select PivotTable wizard . Clicking
on the Back button brings up the dialog in Figure 2-25.

Figure 2-25. Changing the data range for a pivot table

Change the data range to DATA!$A:$L to add the new column, then click Finish, and the new data
item appears in the field list.

There are times when you might need to change a scalar item into a categorical. I can convert Order
Amount into a categorical item by adding a column that gives its quartile. The formula is shown in
Figure 2-26.

The QUARTILE function has two parameters. First is a range that contains a list of numbers. Second is
the quartile to be returned. It returns the maximum value of the quartile and the formula in Figure 2-
26 returns the quartile number.

The new column holds a value that tells if the order amount is high or low in four steps. This can be
used to define groups in the data. Using these two new data items, I built the table in Figure 2-27.

The first quartile is made up of orders with the lowest value. Here we see that the lower value orders
are the oldest on average, and this is consistent across all five weekdays.

Figure 2-26. Quartile ranking of a numeric item

Figure 2-27. The table using the new data items

2.2.2. Scalar Information

You can also change a categorical into a scalar. This is most commonly done in modeling but it can be
useful in research. We want to change Order Type into a scalar. We start by creating the table in
Figure 2-28.

We use this table to create a column on the Data sheet. I have named the sheet with the pivot table
PivotSheet. I add the new column to Data using the formula shown in Figure 2-29.

The VLOOKUP function replaces the Order Type with its average age. This column is linked to the pivot
table so I need to copy it and paste special values to convert it to eliminate the formulas. The new
column is added to the pivot table using the wizard. The new field, named S_OrderType, gives us a
way to compare an office to the average performance for all offices with the mix of order types taken
into account. The table in Figure 2-30 demonstrates this.

Figure 2-28. Order Type and average Order Age

Figure 2-29. Order type converted to a scalar value

Here we see St. Louis has an average order age of 30.55. But if St. Louis had average performance
for all order types its average age would be 29.06. So, St. Louis is just a little worse than average.
The best performer is Boston, on row 22. Its average age of 8.65 is far better than the average for its
mix of order types.

This technique allows you to create a standard for comparing different categories, and it gives you a
way to be fair when you set goals or measure performance.

Figure 2-30. Performance by city

2.3. Pivot Table Options

In this chapter I have tried to show how pivot tables and charts can be used to analyze business
problems, but there are many more features and options. In Step 3 of the PivotTable Wizard there is
an Options button. You can launch the wizard by right-clicking anywhere in the pivot table area. The
Options button brings up the dialog shown in Figure 2-31.

This gives you control over the general formatting and layout of the table, and the Data source
options (bottom left) can be helpful if pivot tables are the end product for your users and you don't
want them to have the original data.

Figure 2-31. The options dialog

Chapter 3. Workload Forecasting
Forecasting takes information available in the present and uses it to predict the future . Everyone
forecasts things. We use our knowledge of the past to decide what time to get up in the morning,
how much food to buy at the grocery, and where to go on vacation. In daily life we don't usually
think about how we make these decisions or how we evaluate the outcome of our choices. Business
forecasting is more structured. There are specific techniques to model the relationships between
present information and a future value.

Few forecasts are exactly right. Some error is expectedsome difference between the forecast and the
actual value. In most cases, then, it is not enough to make a forecast. We also need to know how
accurate the forecast will be. This means that the prediction is not an exact value but a range with a
known probability.

This chapter looks at predicting the workload for a typical business process. The example forecasts
the volume of calls coming into a call center, but the techniques can be applied to many other
problems. This type of forecasting uses only the past values of the item being predicted. Future call
volumes are predicted using past call volumes.

This chapter also demonstrates techniques for creating a complete application in Excel. The
application uses a combination of organization, workbook functions, formatting, and a little VBA. At
the end of the chapter we will have a complete Excel application for predicting workload.

Since this is the first application in the book, we will take a detailed look at the entire process,
beginning with the Excel functions and features used to create the application.

The application uses the Excel functions listed in Table 3-1. Most of these functions are discussed as
we encounter them in the application. But the INDEX, INDIRECT, and ADDRESS functions are used in
several of the applications in the rest of this book and have a unique job. Understanding how they
work is critical to understanding this chapter's application, so make sure you have read the
explanations of how they work in Chapter 1.

Table 3-1. Excel functions used in this chapter's example application

INDEX()

INDIRECT()

ADDRESS()

WEEKDAY()

ROW()

MAX()

COL()

SUM()

MIN()

IF()

AVERAGE()

STDEV()

CONFIDENCE()

INT()

ABS()

STANDARDIZE ()

NORMSDIST()

The application will also use the Excel features explained in Table 3-2.

Table 3-2. Excel features used in this chapter's example application

Excel feature Explanation

Formatting
Formatting lets you control the look and feel of the application. It draws
attention to important information, while it keeps supporting item in view.

Named Cells and
Named Ranges

Named cells and ranges create a simple and clear interface between the parts
of the application.

Array Formulas
Array formulas concentrate the logic and avoid the need for multiple columns
for a single calculation.

Charting
Charting allows numbers to be presented as pictures. This focuses attention
on the meaning and conclusions rather than on the numbers themselves.

VBA VBA gives you a way to extend and customize the power of Excel.

3.1. The Procedure

First we look at the calculations. We need to make the best possible prediction, measure the
accuracy, and manage anomalies. Excel provides the tools, but before we start entering formulas we
need to understand the data.

3.1.1. Data

This chapter uses data from a call center. It is a five day a week operation, and the data is simply the
date and number of incoming calls for each day.

The techniques used can be applied to most workload situations. The goal is to predict a periodic
workload that could have an overall trend, and is subject to short-term ups and downs. The accuracy
of predictions will be measured and used to set a prediction range with a known probability.

A workload model needs to handle both expected and unexpected shifts in volume. Holidays are
expected, but December volumes are not a good predictor for January. Real world workloads are
subject to all kinds of unpredictable outside forces. The competition can raise their price, a server can
go down, or a snow storm can shut down part of the country. As a result, workloads can go up or
down with no warning.

The sample data in this chapter comes from an actual call center and is subject to all the uncertainty
of the business environment.

3.1.2. Predictions

Time creates uncertainty. The further into the future we predict, the less accurate we are. This
chapter starts with a weekly prediction. The weekly forecast is adjusted as more information is
available and becomes an adjusted daily forecast. An hourly forecast is also made, and the daily
forecast is adjusted further as actual hourly values are entered.

3.1.2.1. Find the lag

Lag is the number of observations in a cycle. Many business systems run on a weekly cycle. Mondays
look like Mondays; Fridays look like Fridays. If the process runs five days a week, the lag is five. Of
course, everything doesn't run on a weekly cycle. Sometimes it is monthly, hourly, or some exotic
period. In all cases it is critical to know how many observations there are in a cycle, and usually this
is known without examining the data. But if you are not sure, it's best to check.

This example looks at thirty days of call counts for a call center. This is a Monday thru Friday

operation, so we expect it to run on a five day cycle. To find the lag we correlate the daily call counts
with themselves offset by different numbers of days. The offset with the highest correlation is the lag.

To do this we use the CORREL function. This function takes two arguments. They are both ranges and
must have the same number of values. The function gives the correlation between the values in the
ranges. The formula in the correlation column is =CORREL(B$2:B$21,B3:B22), and it is filled down for
ten cells. Notice that the correlation is high only at five and ten. This confirms that the numbers have
a five day cycle. Correlating a list of numbers against itself is called autocorrelation .

The procedure is illustrated in Figure 3-1.

3.1.2.2. Find the average

The easiest prediction is that each day will have the same volume as the same day in the previous
week. But this leads to trouble if last week's call volume was unusual. So, it is better to use a recent
average. But even the average can be skewed by a really odd day, and a filtered average tends to do
the best job. In a filtered average the highest and lowest values are eliminated, and then the
remaining numbers are averaged. This gives a good estimate of the true average value.

This is done in two steps. First, build a table that contains values for one weekday (e.g., a list of just
Monday values). Then take the sum, subtract the maximum and minimum values, and divide by two
less than the number of values.

We use five weeks of data. The first day is Monday 3/2/1998, and there are five Mondays in the list.
In practice, the number of weeks giving the most accurate result varies. A balance is required
between having enough data to get a good estimate and avoiding seasonal shifts. In most business
situations eight weeks works well.

Figure 3-1. Using correlation to find the lag

The INDEX function creates a list of values for one weekday by looking up values in a range. The first
argument is a range of cells containing a list of values. The second argument is a number that tells
which item in the list is wanted. In this case, we need the row numbers of the Mondays. The first
Monday is in row 2, and the first value in the Rows column, cell C2, is 2. The formula in C3 is =C2+5. We
add five because that is lag. This formula fills down to C6. In D2 the formula is =INDEX(B$1:B$26,C2).
This equates to the second item in the list, B1:B26. This formula also fills down. The formula for the
filtered average is =INT((SUM(D2:D6)-(MAX(D2:D6)+MIN(D2:D6)))/3). Five items are being used, but the
highest and lowest are eliminated, so we divide by three. The INT function returns the value as an
integer. We are dealing with calls, therefore it makes sense to work with integers rather than real
numbers. There is no such thing as half a call! In the application, the filtered average is the weekly
prediction. Notice that this technique gives us a prediction that is one week in the future. We
predicted March 8th on March 1st.

Figure 3-2 shows the calculations.

Figure 3-2. Calculating the filtered average

3.1.2.3. Adjust for the trend

Trend is the change in average over time. We might expect sales to go up year over year, or
complaints to go down. But when the focus is on short-term predictions, these trends often do not
mean much. A five percent year-over-year growth rate is less than one tenth of a percent per week.
Business systems are not predictable within a range of a tenth of a percent. Consequently, this kind
of trend adds no value to the forecast. There are other factors at work, however. In any operation
volumes go up and down from week to week. These short-term trends have a significant impact on
accuracy of the forecast.

Understanding the trend is essential to building an accurate forecasting model. We calculate the ratio
of the predictions (filtered average) to the actuals. In Figure 3-3 the errors are not random. The
predictions run low for a few days then high for few days. There is no real trend, just oscillating high
and low periods.

Figure 3-3. Analyzing the errors

This means that accuracy can be increased by adjusting based on the previous day's error. If the
errors showed significant motion in one direction, it would mean a long-term trend is present. This
would require a different approach, such as using a week-over-week growth rate. If the errors have
no pattern, it is best to forget the trend and simply use the filtered average as the prediction. In this
case we will adjust the filtered average by one half of the error ratio for the previous day. This moves
the prediction in the right direction most of the time without overreacting.

Next we calculate the daily adjusted prediction. This value takes the current trend into account and
provides improved accuracy. In Figure 3-4 the formula for the adjusted prediction (in D17) is
=C16*(1+(B16/C16))/2). This formula multiplies C16 by the value (1+B16/C16))/2), in which B16/C16 is
the ratio of the actual and the predicted. But we only want to use half of the ratio. Therefore, the
formula averages the ratio with one plus the ratio divided by two. Note that overall the adjusted
prediction is 10% more accurate than the filtered average.

The formula for the average error for the Adjusted column is {=AVERAGE(ABS(B3:B16-D3:D16))}. This is
an array formula. It creates a vector (a list) of the absolute values of the differences between the
actual and predicted. It returns the average of these values. In effect this is the same as creating a
new column with =ABS(B3-C3) filled down to row 16, and then taking the average. By using the array
formula we get the same answer without adding 14 unnecessary formulas to the worksheet.

Figure 3-4. Making a better prediction

3.1.3. Determine the Confidence Interval

The average number of calls per days is about 14,300. Therefore, an average error of 520 equates to
around 3.5%. This means that the prediction is really a range.

On the Settings worksheet the user can enter a value for Confidence Level. The application will give
the range for the adjusted prediction at that probability. If the confidence level is set at 0.9, the
application will display the prediction and a +/- range. There is a 90% probability that the actual value
will be in that range.

In Figure 3-4, the adjusted prediction for the next day is 14,630. There is a 90% probability that the
actual value will be 14,630 +/- 305. The array formula for this calculation is
={CONFIDENCE(0.1,STDEV(D3:D16-B3:B16),15)}. The CONFIDENCE function returns the confidence interval
. It takes three arguments. The first is the desired confidence level. This is entered as the amount of
expected error, so if you want a confidence level of 0.9 the entry is 1-0.9 or 0.1. Next is the standard
deviation. In this case it is the standard deviation of the difference between the actual and the
adjusted prediction. This is calculated as part of the formula and accounts for this being an array
formula. The last argument is the number of values being used. There are 15 values.

3.1.4. Manage Anomalies

Holidays are a problem, as are any large short-term shifts in volume. Not only are they hard to
predict, but since the techniques used in this chapter depend on the past, unusual days in the past

make accurate prediction difficult. Filtered averaging helps take care of the normal ups and downs.
But there are events that are so large and abnormal that they need to be eliminated from the data.
Every year, the last two weeks of December are apt to be like this.

When an actual value is entered, the application looks at the prediction error and calculates the
probability that the error amount is too great to be part of a normal distribution of errors. This
assumes errors are normally distributed.

In the Figure 3-5, the actual value for 06/17/98 has just been entered. The average error amount
over the last 15 days was 520.98. The error amount for 06/17/98 is 538. To determine the probability
that this value is an anomaly we need the standard deviation of the recent errors. This is calculated
by the array formula {=STDEV(D3:D16-B3:B16)}. Here again, we use an array formula to get the
answer without creating an additional column of calculations. It is in cell D23. The array formula in D24
is ={AVERAGE(D3:D16-B3:B16)}, which gives the average error. This is different from the value in D19,
which is the average error amount, and is based on absolute value.

Next we need to know how many standard deviations from the mean the current error is. The
STANDARDIZE function gives this value. The value B17-C17 is the current error. D24 is the average
calculated above. And, D23 is the standard deviation from above. The formula =ABS(STANDARDIZE(B17-
C17,D24,D23)) in D25 tells how many standard deviations from the mean the current error is.

We need to know what percentage of the distribution is closer to the average than the current error.
This will let us calculate the probability that the current error is too large. Using the value returned by
the STANDARDIZE function, the formula in D26, which is =NORMSDIST(D25), gives the portion of the
distribution between the mean and the value in D23. In the figure, 62% of the population of errors is
less than 0.32 standard deviations from the mean.

A forecast can be high or low; therefore, the distribution of errors has two tails. So, the formula in
D27, which is =(D26-0.5)*2, gives the final answer. We subtract 0.5 because the NORMSDIST function
only considers one tail of the distribution, and multiply by two because the error can occur at either
end of the distribution. In this case, only 24% of errors are expected to be smaller than 538. Today is
normal. The calculations to do this are shown in Figure 3-5.

If the probability of an anomaly is too high, the value for that day cannot be used for predictions. In
the upcoming application, on the Settings worksheet, the user can set a value for Anomaly Detection.
If the probability of an anomaly is higher than this setting, the application substitutes the value for
the same day in the previous week in all calculations.

Figure 3-5. Identifying anomalies

3.2. Building an Application

We now understand how this application will work in theory. But, we need to take the theory and turn it
into a solutionsomething we can give to the user. In this section we will build a complete Excel application
based on the processes described in the last section.

3.2.1. Design

As we develop an application, things can easily get out of control. Therefore, it is important to start with a
plan and some structure. The example has several worksheets, each with its own function.

The Data sheet holds information. It has no formulas. The user is not going to be looking at this sheet, so
there is no formatting. This sheet stores the information that drives the application. When new information
comes in, it goes on the Data sheet. Keeping the data separate has advantages. If the data source
changes, only the interface between the data sheet and the data source needs changing.

All of the logic in the application is on the Workarea sheet. This is the only sheet with workbook functions.

The Display sheet is only concerned with presentation. It is attached to the Workarea sheet by named cells
and ranges. There are no formulas, only formatting and information organization.

The Settings sheet contains application options, and there are two specialized sheets: AccuracyChart
contains a chart and HourlyForecasts contains a table of hourly predictions. These sheets have no formulas
and only hold or display information.

Prediction is the core of the application. But, to make a complete solution there needs to be a structure
around it. What will the user see? How will the user interact with the application? These questions are
answered by design.

3.2.2. List the Requirements

This is important, and should be shared with users. It forces the developer and the user to think through
how the application will be used. In this case there are seven basic requirements:

The system will display a full week of predictions.1.

The adjusted prediction for the next day will be shown.2.

Hourly forecasts will be calculated and displayed.3.

The system will provide a twenty day measure of prediction accuracy.4.

A method for entering hourly call volumes will be provided.5.

The system will detect anomalous situations and react to them appropriately.6.

7.

5.

6.

A way of adding new data and deleting/correcting data in the system will be provided.7.

3.2.3. Consider the Source of Data

The data could come from a variety of sources. It could be in a SQL database, in an XML web service, or it
could simply be keyed in. In the sample application the user will key the actual call volume for the previous
day into the application. A VBA routine will control the process to ensure that the data is sensible and ends
up in the right place. The application will, however, work just as well if the user keys it directly onto the
Data sheet.

Figure 3-6 shows the layout of the Data sheet. The user will only provide the Actual value. The rest of the
data will come from the application itself. There are no formulas on this sheet and formats play no role.
Note that the Anomaly Flag is set for July 3rd.

A VBA routine to delete the last day entered will provide a simple editing scheme. To make the application
use a different data source, only the VBA needs to be changed. We will examine the VBA later.

Figure 3-6. Data sheet's layout

3.2.4. Presentation

The next step is to decide what the user will see. There are three things to consider. First, and at this point
most important, are the information elements. Information is displayed as blocks of related data. The area
that displays the forecasts for each day of the current week is an element. The hourly forecast graph is
another. The contents and layout of the elements will guide the development of the logic on the Workarea
sheet.

The next consideration is the placement of the elements. Related elements should support each other.
Principal elements should be prominently placed. The last thing to consider is the formatting. A simple
color scheme that puts the emphasis on the content is best. Placement and formatting are easy to change.

Figure 3-7 shows the main display, which looks and behaves like the home page of a web site, helping the
user understand how the application works. The web page is an established metaphor and tells the user

what to expect and how to interact with the application. Areas that display information retain an Excel
look. This is another use of an established metaphor. Notice that only the information is displayed as black
on white. Headings and labels use lower contrast. The emphasis is on the information.

The area on the left is set apart by using a different background color . It contains the navigation buttons
and displays summary information. The main section shows the detailed forecasts.

The display is based on black, gray, and white. Colorful displays can cause problems. People are better at
distinguishing the difference between light and dark than between colors. Some color combinations cause
eye strain, and some users will be color vision deficient. If the display is printed, information represented
by color can be lost.

The information shown on this sheet is actually on the Workarea sheet. All the references are to named
cells and ranges. This has several advantages. It makes changing the display sheet easy. Areas on the
sheet can simply be cut and pasted anywhere. It also preserves the application's organization. You know
there is no logic on this sheet, only formatting.

Figure 3-7. Application's main display

Two additional display areas complete the application: a chart showing the accuracy of the predictions
during the last twenty days and a table showing hourly predictions for the whole week. They will not fit on
this sheet. So, two additional sheets are used. As with the Display sheet, they reference information on the
Workarea sheet.

Figure 3-8 shows the accuracy chart.

The hourly forecasts are shown in Figure 3-9 .

3.2.5. Conventions and Names

This application is complex. Using names for important values simplifies formulas and makes the

application easier to understand. It also aids in troubleshooting or enhancing the logic. Another way to
keep things from getting out of hand is following a set of conventions for the Workarea sheet. There are a
few simple rules. Information from the Data sheet is displayed in blue font. Information to be displayed
has a gray background. Information to be stored on the Data sheet has a blue background. Calculation
areas have a border. Calculated values that are used in other calculations or macros are in Column A and
are named.

Figure 3-8. Accuracy chart

Figure 3-9. Hourly forecasts

3.2.6. Named Values and Ranges on Settings

The Settings sheet, shown in Figure 3-10 , contains options that can be changed by the user.

The application uses named cells and ranges to isolate the interfaces between sheets. These name cells
and ranges are defined on the Settings sheet.

Heading (B1)

This is the heading that appears at the top of the Display sheet.

Figure 3-10. The Settings sheet

Lag (B2)

Lag is the number of values per cycle in the data. The sample data uses a five-day week so Lag is 5.
The application is designed to work with any value from 2 to 7.

Work Item (B3)

This is the name of the work item. In the sample data it is Calls, but depending on the work being
done it could be checks, orders, cars, or any unit or work. This value is used in headings and labels.

Confidence Level (B4)

The confidence level determines the probability used to set the range for the adjusted prediction.

Anomaly Detection (B5)

The application calculates the probability that the actual value for the day is an anomaly. This user-
set value is used to decide if the current value should be ignored.

HourlyDist (E2:K12)

This area contains the expected work distribution during the day. It uses an 11-hour workday, but
any number of divisions is possible. For each day of the week, several weeks of hourly data were
used to determine what percentage of the daily calls arrived during each hour. This table contains
that distribution, and is used to generate the hourly forecasts.

Periods (D2:D12)

These are the labels for the items in HourlyDist. In the sample data they are hours taken on the half
hour.

3.2.7. The Named Values on the Workarea Sheet

The first part of the Workarea sheet is shown in Figure 3-11 .

The Workarea sheet contains all the logic. The named values from this sheet are described in Table 3-3 .

Figure 3-11. The Workarea sheet

Table 3-3. Descriptions of the named values from the Workarea sheet

Named
value

Formula Description

Last_Row

(cell A2)
={MAX((ROW(Data!B1:B2000)*(Data!B1:B2000<>"")))}

This is the row number
of the last row used on
the Data sheet. It is an
array formula that
multiplies row numbers
by a truth value (1 or 0)
that is 0 if the cell in that
row is empty. This value
is used to locate the part
of the Data sheet to be
used and to determine
what row to put new
data on.

MyTop

(cell A4)
=Last_Row-56

The calculations require
56 days of data. This
value is one row above
the first row to be used
on the Data sheet. It is
one row above so that a
formula using this value
can be filled down. It
controls the row
numbers of data being
linked between the Data
and Workarea sheets.

DayofWeek

(cell A6)
=WEEKDAY(C56)

Dates from the Data
sheet are in column C.
Since 56 rows are used,
the last day entered will
be in C56. This formula
gives the day of the
week for the last day
entered. The application
displays predictions for
this week and next
week. To do this it has
to be able to find the
row with the first
workday of the week.
DayofWeek is used in
these calculations and
for display.

In the sample data the
work week starts on
Monday. But a
workweek could start on
any day. The application

Named
value

Formula Description

FirstWorkDay

(cell A13)
={MIN(WEEKDAY(C49:C56))}

any day. The application
uses the minimum value
of WEEKDAY over eight
days to determine what
day the workweek starts
on. The value is also
used to find the
beginning of the current
weeks.

StartofWeek

(cell A11)
=56-((DayofWeek-FirstWorkDay))

This is the row where
the current week starts
on the Workarea sheet.
It is used in week-
related formulas.

Interval

(cell A17)

={CONFIDENCE(1-Confidence_Level,STDEV(G37:G56-
D37:D56),20)}

This is the confidence
interval for the adjusted
prediction. It is an array
formula. Column G
contains the adjusted
predictions and column
D the actual values. The
sample size is 20.
Confidence_Level is a
named value on the
Setting sheet. Interval is
a display item.

CurrentHour

(cell A22)
={IF(SUM(T48:T58)<1,0,MAX((T48:T58>0)*ROW(T48:T58)))}

When the user enters
hourly actual call
volumes, they are linked
to the T column on the
Workarea sheet. The
application adjusts the
forecast during the day
as hourly actuals are
entered. CurrentHour
keeps up with the entry
of hourly information. It
points to the last hour
entered.

CurrentRatio

(cell A24)
=IF(CurrentHour=0,1,INDIRECT("U"&A22)/INDIRECT("V"&A22))

This compares the
expected volume to the
volume for today (up to
the current hour). The
ratio tells if the day (so
far) is high or low and
by how much. This value
is used to adjust the
current day's hourly

FirstWorkDay

(cell A13)
={MIN(WEEKDAY(C49:C56))}

any day. The application
uses the minimum value
of WEEKDAY over eight
days to determine what
day the workweek starts
on. The value is also
used to find the
beginning of the current
weeks.

StartofWeek

(cell A11)
=56-((DayofWeek-FirstWorkDay))

This is the row where
the current week starts
on the Workarea sheet.
It is used in week-
related formulas.

Interval

(cell A17)

={CONFIDENCE(1-Confidence_Level,STDEV(G37:G56-
D37:D56),20)}

This is the confidence
interval for the adjusted
prediction. It is an array
formula. Column G
contains the adjusted
predictions and column
D the actual values. The
sample size is 20.
Confidence_Level is a
named value on the
Setting sheet. Interval is
a display item.

CurrentHour

(cell A22)
={IF(SUM(T48:T58)<1,0,MAX((T48:T58>0)*ROW(T48:T58)))}

When the user enters
hourly actual call
volumes, they are linked
to the T column on the
Workarea sheet. The
application adjusts the
forecast during the day
as hourly actuals are
entered. CurrentHour
keeps up with the entry
of hourly information. It
points to the last hour
entered.

CurrentRatio

(cell A24)
=IF(CurrentHour=0,1,INDIRECT("U"&A22)/INDIRECT("V"&A22))

This compares the
expected volume to the
volume for today (up to
the current hour). The
ratio tells if the day (so
far) is high or low and
by how much. This value
is used to adjust the
current day's hourly

Named
value

Formula Description
current day's hourly
forecasts.

Prediction

(cell I9)
=INT((SUM(I1:I8)-(MAX(I1:I8)+MIN(I1:I8)))/6)

This is the weekly
prediction, the filtered
average. It is based on
the calculation area
above it (I1:I8), which
contains the actual
values for the current
day of the week for the
last eight weeks. This
value is copied to the D
column on the Data
sheet when new data is
entered.

Anomaly

(cell L43)
=IF(L42>=Anomaly_Detection,1,0)

This is the anomaly flag
for the current actual
value. It is the result of
the calculation area
above it (L38:L42).
Anomaly_Detection is a
user-set value on the
Settings sheet. This
value is copied to the A
column on the Data
sheet.

Adjusted
Prediction

(cell G57)

=IF(F56=0,"",F57*((1+(E56/F56))/2))

This is the adjusted
prediction for the
current day. The weekly
prediction for this day
(F57) is multiplied by
half the error ratio for
the previous day. This
value is copied to the E
column on the Data
sheet.

3.2.8. Named Ranges on Workarea

In this section we look at the named ranges on Workarea. Each area manages a set of data and
calculations for one piece of the logic. They also arrange the data to fit the needs of the display sheet.

This part of Workarea is shown in Figure 3-12 .

Figure 3-12. Thisweek and Nextweek

current day's hourly
forecasts.

Prediction

(cell I9)
=INT((SUM(I1:I8)-(MAX(I1:I8)+MIN(I1:I8)))/6)

This is the weekly
prediction, the filtered
average. It is based on
the calculation area
above it (I1:I8), which
contains the actual
values for the current
day of the week for the
last eight weeks. This
value is copied to the D
column on the Data
sheet when new data is
entered.

Anomaly

(cell L43)
=IF(L42>=Anomaly_Detection,1,0)

This is the anomaly flag
for the current actual
value. It is the result of
the calculation area
above it (L38:L42).
Anomaly_Detection is a
user-set value on the
Settings sheet. This
value is copied to the A
column on the Data
sheet.

Adjusted
Prediction

(cell G57)

=IF(F56=0,"",F57*((1+(E56/F56))/2))

This is the adjusted
prediction for the
current day. The weekly
prediction for this day
(F57) is multiplied by
half the error ratio for
the previous day. This
value is copied to the E
column on the Data
sheet.

3.2.8. Named Ranges on Workarea

In this section we look at the named ranges on Workarea. Each area manages a set of data and
calculations for one piece of the logic. They also arrange the data to fit the needs of the display sheet.

This part of Workarea is shown in Figure 3-12 .

Figure 3-12. Thisweek and Nextweek

ThisWeek (M3:Q9)

This area contains the day of the week, date, weekly prediction, adjusted prediction, and actual
value for each day of the current week. The calculation area in column L is a set of flags that tell
which days are in use. The basic formula in this area is =IF(L3=1,INDIRECT("workarea!C" &
StartofWeek + ROW(A1)-1),"") . A reference to a cell is built inside the INDIRECT function. It starts as
a literal specifying the Workarea sheet's column C. It uses StartofWeek and a row number to get the
correct row. This formula fills down. Data is pulled from columns C, F, G, and D. The formula in
column M, =IF(L3=1,TEXT(WEEKDAY(N3),"dddd"),"") , returns the name of the day of the week. The
WEEKDAY function returns a number, and the TEXT function translates the number into the day of the
week.

NextWeek (N15:O21)

This area contains the dates and weekly predictions for next week. It uses the same basic technique
as ThisWeek. The formula is =IF(L3=1,INDIRECT("workarea!C" & Lag + StartofWeek + ROW(A1)-1),"")
. The only difference is that Lag is added to StartofWeek .

HourlyNextWeek (Z20:AG31)

These are the hourly forecasts for the whole week. This area is displayed on the Hourly sheet. The
calculation area to the left links to the HourlyDist area on Settings. The values in S20:Y20 are the
weekly predictions for each of the seven days of the current week. To get the hourly forecast, the
prediction for the day is multiplied by the distribution value for each hour of the day.

Figure 3-13 contains the HourlyNextWeek part of the Workarea sheet.

Figure 3-13. HourlyNextWeek

Hours (R48:S58)

Times and hourly predictions for the current day are in this range. This works like HourlyNextWeek,
but it is only for the current day. So, it has to find the right column in Settings. The formula is
=INDIRECT("Settings!" & ADDRESS(ROW(A2),DayofWeek+4)) . Here the Settings sheet is the target, but
both the row and column are calculated. The ADDRESS function inside of an INDIRECT provides the
flexibility to read from any row or column. 4 is added to DayofWeek because the hourly distribution
value starts in the fifth column of Settings.

AdjustedHourly (W48:W58)

This area contains the adjusted hourly forecast for the current day. It works with Hours to build the
hourly area on the Display sheet. As the user enters actual hourly values, they appear in column T.
Column U keeps a running total for the day and column V does the same for the predicted hourly
values. CurrentRatio contains the total volume entered so far divided by the expected volume for the
same hours. The hourly forecasts are adjusted by multiplying them by CurrentRatio.

Figure 3-14 shows the part of Workarea that deals with the hourly calculations.

Weekly (H60:H63)

The values in this area give the average weekly prediction error and error percentage over the last
20 days. It also contains the average number of daily calls during that period.

Figure 3-14. Hours and AdjustedHourly

NextDay (H67:H75)

This is summary information about the current day. It gives the adjusted forecast, the confidence
interval, the probability of anomaly, and the most recent adjusted forecast based on the hourly
actual values.

Adjusted (J60:J61)

This is the 20 day average error and error percent for the adjusted forecast.

The part of Workarea that handles the error calculations is shown in Figure 3-15 .

Figure 3-15. Areas and Links on Workarea

3.2.9. Other Important Links on Workarea

(C37:D56) & (F37:G56)

These ranges link to the chart on the AccuracyChart sheet, and link back to the Data sheet.

(T48:T85)

This area links to H7:H17 on the Display sheet. This is where the user enters the actual hourly
values. This information feeds the calculations that adjust the hourly forecasts as the day
progresses.

3.2.10. Linking to the Data

We now know what the Workarea sheet has to do. It is time to build the logic. The first step is to link the
Workarea to the data on the Data sheet. To handle all the possible lags and days of the week, the
INDIRECT function is used. The calculations use eight weeks of history and there can be up to seven
workdays in a week. So, 56 days of history must be available.

The Last_Row named cell on the Workarea sheet contains the row number of the last row used on the Data
sheet. The application needs to start 55 rows above the last row. MyTop contains the starting row number.
The data starts in cell B1. The formula is =INDIRECT("Data!A" & MyTop + ROW(A1)) . It references column A
on the Data sheet. Note that MyTop points to the cell one row above the first one needed. This allows the
formula to be copied down. Row(A1) is added to MyTop . Row(A1) is one, but as the formula copies down A1
becomes A2 , A3 , etc. This gives the correct row for each value. The cells in columns C and D work the
same way. The three columns are filled down to row 56.

Column E masks anomalies. If the anomaly flag is set in column B, the actual value for that day is ignored,
and the value from the previous week is substituted. The formula is =IF(B1=0,D1,INDIRECT("Data!C" &
(MyTop + ROW(A1)-Lag))) . This also fills down to row 56. This is the value used in the prediction calculation.

Predictions from the last 20 days are used for several calculations and for a chart. So, we need to bring
them onto Workarea. The weekly predictions are in the range F37:F63 and the adjusted predictions are in
G37:G56. These cells use the same formula as in columns B, C, and D, but reference a different column on
the Data sheet. The weekly predictions in column F fill down to 63 because we are predicting a week into
the future.

These formulas keep Workarea linked to the Data sheet. When new information is added to the Data
sheet, Workarea automatically updates, and all of the values are ready to use.

3.2.11. Visual Basic

This application uses Visual Basic for Applications (VBA). VBA is a powerful tool and is easily over-used. In
general, it is best to do as much as possible on the workbook and only use VBA for things that Excel
cannot do. The code is in Module One (the default module for a spreadsheet) and can be viewed using the
Visual Basic Editor. To reach the editor, select Tools Macro Visual Basic Editor. You can also launch
the editor by pressing Alt-F11.

VBA is not necessary for the application to work. The most complex VBA operation is adding a new day's
data, and that can be done manually by going to the bottom of the Data sheet and typing the values in. In
this application VBA is used for three things.

First, for navigation, there are buttons on the sheets that move the user between sheets and ensure the
view is set to the top left corner. This works like the sheet tabs, but gives flexibility in securing the
application and helps make the application a complete package. Navigation code looks like this.

Sub AccuracyChart()

'*******************
' Navigation
' This macro takes the user to

' the AccuracyChart worksheet and selects
' cell A1.
'*******************

Sheets("AccuracyChart").Select
Range("A1").Select
End Sub

This code only does two things. It selects the sheet and then it selects cell A1.

Next, this macro adds a new day to the Data sheet. This can easily be modified to use an automated data
source such as an SQL database. The variable NewActual could be populated by any method. This may look
like a fairly involved routine, but actually it merely moves data around. All the calculations are done by
Excel.

Sub AddDay()

'***
' This routine allows the user to
' enter the actual for the next day.
' The entry is checked and if it
' is valid the new data is moved to the
' Data sheet.
'**

Dim myItem As String
Dim myDate As Date
Dim NewActual As Variant
Dim NextRow As Integer
Dim Anomaly As Double
Dim Prediction As Integer
Dim AdjustedPrediction As Integer
Dim TheLag As Integer

myItem = Range("Item").Value ' Read the item from Settings
myDate = Range("workarea!c57").Value ' Get the next date

' Use an input box to allow the user to enter the next actual
NewActual = InputBox("Please enter the number of " & LCase(myItem) & _
" for " & myDate & ".", "Enter Actual", 0)

' If cancel or no entry quit
If NewActual = "0" Or NewActual = "" Then Exit Sub
If Not IsNumeric(NewActual) Then ' Is the value a number?
 MsgBox ("The Actual must be a number.") ' If not put up a message
 Exit Sub ' and quit
End If
If Val(NewActual) < 0 Then ' Is the value less than zero?
 MsgBox ("The Actual cannot be negative.")

 Exit Sub
End If

' Is the value not an integer?
If Val(NewActual) <> Int(Val(NewActual)) Then
 MsgBox ("The Actual must be an integer.")
 Exit Sub
End If
NextRow = Range("Last_row").Value + 1 ' Get the row number of the next
 ' row on the Data sheet
Range("data!b" & NextRow).Value = myDate ' put the new date on the sheet
Range("data!c" & NextRow).Value = NewActual ' put the new actual on the sheet
TheLag = Range("Lag").Value ' get the lag from Settings

' Prediction will update when the new actual is put on the Data sheet
Prediction = Range("Prediction").Value

' Anomaly will also update automatically
Anomaly = Range("Anomaly").Value

' The anomaly goes on the Data sheet next
' since it is used as part of the calculation
' of the adjusted forecast
Range("data!a" & NextRow).Value = Anomaly

' get the adjusted forecast
AdjustedPrediction = Range("AdjustedPrediction").Value

' The weekly prediction goes one lag down from the current day
Range("data!d" & NextRow + TheLag).Value = Prediction

' the adjusted prediction is put on the next row
Range("data!e" & NextRow + 1).Value = AdjustedPrediction

' clear the area where the hourly actuals are entered
Range("h7:h17").ClearContents
Range("a1").Select ' select A1
End Sub
The last macro allows the user to delete the data for the last day entered. This provides
a simple editing capability. All this does is find the cells populated when the last day
was entered then selects and clears them.
Sub DeleteDay()

'***
' This sub deletes the last day. All that is
' necessary is to remove the last entry from
' the Data sheet.
'**

Dim LastRow As Integer
Dim TheLag As Integer

LastRow = Range("Last_row").Value ' First we need to know where the
 ' last row is. The number of the
 ' last row used on the data sheet
 ' is in a named cell on the workarea
 ' sheet. This statement stores the
 ' row number in a variable called
 ' LastRow
Sheets("data").Select ' All of the data to be deleted is on the
 ' the data sheet. So we start by selecting
 ' that sheet.
' The data is in columns A-E. We need only build a reference to
' the cells and clear the contents.
' For columns A,B, and C the data
' to be deleted is in LastRow. So,
' we can clear them at the same time.
Range("data!a" & LastRow & ":c" & LastRow).ClearContents
TheLag = Range("Lag") ' To determine the row of the last
 ' weekly prediction we need to know the
 ' lag. Lag is a named cell on the Settings
 ' sheet.

' This section deletes the last weekly
' prediction. It is one Lag below the
' LastRow.
Range("data!d" & LastRow + TheLag).ClearContents

' The last adjusted prediction is one
' row below LastRow
Range("data!e" & LastRow + 1).ClearContents
Sheets("display").Select ' Return to the Display sheet
Range("h7:h17").ClearContents ' clear the area where the
 ' hourly actuals are entered.
Range("a1").Select
End Sub

With Workarea and the VBA complete, it is time to build the application's user interface.

3.2.12. Formatting

Formatting in this application uses mainly backgrounds and borders. However, there is some conditional
formatting on the Display sheet. In the ranges G23:J28 and M23:M28, the number of rows that will contain
data varies with the number of workdays in the week. Therefore, a conditional format is set to include
those cells in the display if they are used and to gray them out if they are not.

The hourly sheet is just patterns and borders, as shown in Figure 3-16 .

Figure 3-16. Hourly Sheet

This sheet may be over-formatted, but it shows how metaphor can imply function and guide user
expectations.

3.2.13. Running the Application

The application was written using Excel 2002. It uses no third party software. There are some formatting
issues if it is run in Excel 95, but all the logic works even in that older version of the software.

Start by opening the application to the Display sheet. In the Next Day area on the left, the value for
Current Adjusted is 11,024. That is the adjusted prediction for the current day. The hourly forecasts for the
first three hours are 390, 835, and 1,129. Suppose that the actual call counts for those hours are 500,
1,000, and 1,300. In Figure 3-17 , in item 1 those volumes have been entered as the actuals for those
hours. In item 2, the Hourly Chart is now showing that the day is higher than the forecast. If the first three
hours are higher than expected, in this case about 19% higher, we would expect the rest of the day to be
high as well. The Current Adjusted has increased to 13,106. In the Hourly Forecasts area the adjusted
hourly forecasts have also been increased.

The main display is described in Figure 3-17 .

Figure 3-17. Using the Display Sheet

The current day is Friday 9/7/1998. That is the day in the Next Day area on the left. In the This Week area
the full current week is shown. Item 3 points to the current day. The Forecast and Adjusted cells are filled
in because they are predictions. Actual is blank since this is the day that is now working. In item 4, the
Forecast for next Friday is not filled in. This is because we are predicting a week out and cannot predict
next Friday until the Actual for this Friday is entered.

Use the Hour Forecast button to view the hourly predictions for the current week. The Accuracy Graph
button displays a chart showing the weekly predictions, the adjusted predictions, and the actual values for
the last 20 days.

The sample data ends on 8/6/98. The next week of call volumes is:

10,864
14,711
14,977
13,255
11,972

Click the NewDay button and enter 10,864, the value for the next day. The display will update
automatically. This is illustrated in Figure 3-18 .

Figure 3-18. The Next Day

Monday 8/10/1998 is now the working day, and all the viewing areas are reset to the beginning of the
week. The Delete Day button will remove the last entered day from the application. So if you mistyped
10,864 or just want to go back to Friday, press Delete Day.

The application is just an Excel workbook, so when new data is entered it is
important to save changes just as you would with any Excel project.

3.2.14. Customizing the Application

To use the application with your data, the Data sheet should be cleared, and 56 days of dates and actual
volumes should be pasted into columns B and C starting in row 2. Row 1 contains headings. Change the
Settings sheet for the heading, item, lag, and sensitivity as needed. It will take one more full cycle of data
for all the features to populate. It is easiest to enter this week using the AddDay macro, but the values can
be typed directly into the Data sheet.

The application is self-contained, and needs no other software except Excel. Later in the book we look at
more advanced prediction techniques that could be incorporated into this project by changing the
Workarea sheet. It is possible to enhance the application in many ways:

A staffing model could be built by adding a new worksheet and some new logic on Workarea. A new
entry for units of work per day can be added to Settings and used to calculate required staff.

The AddDay macro could be enhanced to update the HourlyDist range on Settings. This would keep
the expected hourly work distribution current.

The Accuracy Chart could be replaced with a Pivot Chart, allowing prediction accuracy to be analyzed
in more detail.

The Display sheet can be reformatted and information elements can be moved by Cut and Paste.

Changing the information elements themselves is more complex and requires changes to the
Workarea.

The key to successfully modifying the application is to follow the conventions. Keep the logic on Workarea.
If you need to introduce a new data item put it on the Data sheet. New parameters go on Settings. Be
sure to name everything you use.

Chapter 4. Modeling
In the last chapter we used the past to predict the future. This works well for simple situations, but
things are often more complicated. Most things depend on other things. Forecasting stock prices,
credit scoring, predicting the weather, and designing a direct mail campaign all depend on
independent data that influences the thing being predicted. If you want to predict tomorrow's
weather in Chicago, you have to consider today's weather further west. They are connected.

In this chapter we look at using Excel to model a complex situation. We consider selecting
independent data items and preparing them for use. It is not always easy to decide what value to
predict, so we examine this process. Finally, we go through the steps and techniques needed to build
a working model.

4.1. Regression

For more complex kinds of problems, a technique called regression is used. Excel has a regression
tool from Tools Data Analysis Regression. If Data Analysis is not showing up on the Tools
menu, select Add-Ins and check Analysis ToolPak.

The first example predicts a stock price. We have 223 days of technical data for a stock including the
opening price, the high, the low, the closing price, and the volume for each day. We predict
tomorrow's closing price using this information.

We build a model using regression. But we will need a way to know if our model is any good. So, we
start by making a simple prediction. Then we can compare the accuracy of our model to the simple
prediction. If our model is not more accurate than the simple prediction, it does not add any value
and we might as well just use the simple prediction. For the simple prediction, we assume the closing
stock price tomorrow will be the same as today's closing price. Figure 4-1 shows the setup.

The array formula in cell I7 gives the average error amount for the prediction. On average we are off
by about $0.46 everyday. But we have six pieces of information about the stock, not just the closing
price, so next we make the prediction using all six.

Figure 4-1. A simple prediction

We assume all six metrics add some value to the prediction. Each metric is multiplied by a weight,

and then they are added up. An additional value, called the intercept, is added to the sum to get the
final prediction. Figure 4-2 below shows how the problem is set up in Excel.

Figure 4-2. Setup for a regression model

The formula in F3 multiplies the opening price in column A by the weight in cell F1. We start in row 3
because that is where we started in the calculations in Figure 4-1. This way we can compare the
accuracy of the regression to the simpler method for exactly the same days. This formula fills right to
column J, and down to the end of the data at row 224.

In cell K3, the weighted metrics are summed with the intercept. The value in K3 is the prediction. The
weights are all 1, the intercept is 0, and the average error is a little on the high side. Next we set the
weights and intercept using Excel's regression tool. When Regression is clicked on the Data Analysis
sub-menu, the dialog in Figure 4-3 is displayed.

Figure 4-3. Regression dialog

The Input Y Range is the value we want to predict. Here it is the next day's closing stock price from
Figure 4-2. The Input X Range contains the metrics used to make the prediction. The Output Range is
selected as the output option and cell M10 is entered. This means that the Regression tool will put its
output in a cell range starting at M10, as shown by the results in Figure 4-4.

In the Regression results, item 1, R Square, tells us the model has predictive ability. This value is
always between 0 and 1. The higher the value the better, and 0.97666 is about as good as it gets.
Item 2 is the intercept. Item 3 is the weight for the first metric, Opening Price. The other weights are
below in the same column.

Item 4, P value, tells us how much importance each of the metrics has in the model. With this item,
low values are good. The P Value for the first metric, Opening Price, is over 0.8. This is too high and
suggests Opening Price is not adding much value to the prediction. So, it makes sense that the weight
for opening prices is small, 0.048. The best metric is variable 4, the Closing Price. It has a P value of
0.000002 and has the highest weight.

Figure 4-4. Regression results

Next we use Copy and Paste Special (Transpose) to move the weights to the model, and copy and
paste the intercept. This results in Figure 4-5.

Figure 4-5. Regression Model

The average error is $0.448 per day. This is just a little better than the $0.46 average error for the
simple prediction, because the regression model is using more information. The six metrics working
together do a better job.

But are these the best metrics? We have more past information and could consider how many days in
a row the stock has been up or down, where the price is with respect to the 50 day moving average,
or any number of other things. Selecting good metrics is critical.

Regression assumes the relationships are linear . What if they aren't? Are we sure that tomorrow's
closing price is the best thing to predict? Perhaps it is better to predict how much the stock price will
change or whether it will move more than 2%. Some things are easier to predict, some metrics work
better in a model. To make a good model you have to make good choices.

Understanding how to use regression is just the beginning. To go further, we'll use a different but
analogous example.

4.2. Defining the Problem

We start with a question. Can we predict the results of a dog race? The first challenge is to figure out
what the question means. We could predict which dog is most likely to win, or finish in the top two or
three positions. We could predict the first and second dogs in a race. But predicting which dog will win
may not be the point. The real issue is probably money. If we are looking at dog races, we want to
know which bets are most likely to be profitable, so we need to predict how much a dog will pay
along with its chances of winning.

We can build a model to predict this, but how will we know if the model is any good? In this case it's
easy. If we can make a profit using the model, then it is good; otherwise, it is useless. If we build a
credit scoring model, we have the same problem. It is not enough to identify accounts that are most
risky. As a group these accounts may still be profitable, and a model would need to consider the
impact to the bottom line, not just the level of risk. The same problem occurs when modeling stock
prices. What do we really need to know? If we are trading options, we don't need to know the future
price of the stock. All we need is the probability that it will trade above or below a price in a given
period of time.

There is another important consideration here. Some things are easier to model than others. For
example, if we try to build a model that predicts which dog will win in a race, we are trying to identify
one winner out of eight dogs. When we look at the data there will be seven times more losers than
winners. This makes modeling difficult. It is easier to get a good result when there is an even mix of
outcomes in the data.

Next we consider the data used to build the model. What data is available? In most business
situations there will be historical data. If we are modeling collections calls to increase dollars collected
per call, we will need data on past collections calls and their outcomes. For stocks there is plenty of
historical data available. With dog races, the data is on the racing form.

Which metrics are best at predicting the value we are interested in? Since we are looking at dog
racing, presumably we want to know if a dog is in the habit of winning races. The racing form tells us
how many races each dog has been in and how many first, second, and third places the dog has
achieved.

It also has detailed information about each dog's last six races. From this information we take the
number of first places the dog has out of the last six races and the fastest speed the dog has run in
the last six races.

Perhaps starting position makes a difference. The dog in the first position starts on the inside and
that could be an advantage. And what about experience? If a dog has run more races maybe they
will have a better chance.

Racing forms are available on the Internet at several betting and track web sites. The report
extracting macro explained in Chapter 9 was used to extract data from racing forms for 6,204 races.
Each race has eight dogs so there are 52,032 rows of data, one for each dog.

Most of the data items come straight from the form, but in two cases some logic is involved. First is

running speed. On the racing form the running time for each of the dog's last six races is given. But
not all races are the same length. The distance for each race is given, so we could divide the distance
by the time to get running speed. But converting race distances (as they appear on the form) into
yards is difficult. There is an easier way.

We convert the running time to a ratio by dividing the dog's time by the average time for all dogs
running that distance. The technique is shown in Figure 4-6.

We have a list of distances and average times taken from historical data in columns A and B of Figure
4-6. For each dog's last six races we have the distance and the time. We use the LOOKUP function to
find the average time for a race of that distance and then divide the dog's time by the average time.
In Figure 4-6, the dog has run a 550 yard race about 1% faster than average. This technique
eliminates the need to understand data like the distance given as RP. It is probably a race course
name, but knowing that still doesn't give us the distance in yards. Converting the times to ratios
makes the actual distance unimportant.

This works for much more than dog races. If you are modeling a direct mail campaign, you might
have response rates by ZIP code from previous mailings. This is good information but there are
thousands of ZIP codes and, since ZIP codes have no numeric meaning, they cannot be used directly
in a model. You can, however, substitute ratios for the ZIP codes and use the ratios in the model.
This technique can convert most categorical items into metrics that can be used in a model.

Figure 4-6. Substituting a ratio

In our example, the ratios for the dog's six previous races are calculated and the lowest ratio (best
time) is kept. We don't use an average because we are interested in how fast the dog can run under
ideal conditions. The second calculated item is the number of first places the dog has scored out of

the last six races. This is a number from zero to six.

The rest of the data comes straight from the racing form and is shown in Figure 4-7.

The race number in column A is just a number to keep the races separate. Next is the dog number,
which is also the position number. Dog 1 starts on the inside next to the rail. Dog 8, on the outside,
has the longest distance to run. Column C, Races, is the number of races the dog has run. A big
number here means the dog is older and more experienced. Column D, Wins, is the total number of
times the dog has come in first. Column E, WinCnt, is the number of races out of the last six the dog
has won; this is a measure of how well the dog has done recently.

There are inconsistencies in this data. On row 28 in Figure 4-7 the data tells us the dog has won two
out of its six most recent races, but Races for this dog is 0, meaning it has never been in a race.
Modeling requires large amounts of data. In this example we have over 50,000 rows and before we
are done we will wish we had more. Inconsistencies in data are a common problem. In this case
some of the information, probably recorded by hand, is simply wrong. Our options are to eliminate
suspicious rows or to use them. It is a judgment call, and in this case we will use what we have.

The BestSpeed column is the lowest ratio for the dog in its last six races. PlacePay is the amount the
dog paid as a place bet. A place bet pays if the dog comes in first or second, so there are two paid
amounts in each race. In the first race a $2.00 bet on dog 3 paid $3.80 and on dog 8 it paid $7.20.

Figure 4-7. Historical racing data

The problem is now defined: to predict the amount that a place bet will pay using the available data.
Our model is a success if it results in an average payout above $2.00.

4.3. Refining Metrics

BestSpeed tells us how fast a dog can run, but not how that speed compares to the speeds of the
other dogs in a race. There are eight dogs in each race and one is the fastest. We need a way to rank
the dogs in each race by speed. We start by sorting the data by Race and BestSpeed, as in Figure 4-
8.

We insert a column between BestSpeed and PlacePay and label it SpeedRank. For the first race we
enter the numbers 18. Then in cell G9 we enter the formula =G2, and fill this formula down to the
bottom of the data, as in the Figure 4-9. Next, Copy and Paste Special (Values) on the G column.

Figure 4-8. Sort each race by BestSpeed

We also need a ranking by how often the dogs win. For this we use the Races and Wins columns. We
create a new column called WinRatio. The value is Wins divided by Races for each dog. If a dog has
no races, we set this value to zero since we cannot divide by zero. We then sort by Races and
WinRatio and build a WinRank column just as we built SpeedRank. The setup is shown in Figure 4-10.

Once the WinRank column is filled down and columns H and I are copied and pasted as values, the
data is ready to use.

4.4. Analysis

We still do not know if the metrics can predict the payout. We hope the data can make the prediction,
but we need more information about the relationships in the data. The Pivot Table tool makes it easy
to explore these relationships. We select all rows for columns B thru J. Then we select PivotTable and
PivotChart Report from the Data menu. The PivotTable dialog opens up, and we select Pivot Chart
Report as in Figure 4-11.

Figure 4-9. Adding the SpeedRank column

Figure 4-10. Adding the WinRank column

After Finish is clicked, the Pivot Chart is displayed. We are interested in the relationships between the
payout and the other metrics. So, we drag PlacePay to the Data area in the center of the chart,
labeled as Item 1 in Figure 4-12. By default the count of the data item, PlacePay, is displayed. We
change to average by double-clicking on the Count of PlacePay button and selecting Average (Item
3). Next we drag Dog to the Category area at the bottom (Item 2).

Figure 4-11. Setting up a Pivot Chart

Figure 4-12. Configuring the Pivot Chart

This results in the chart in Figure 4-13, showing how post position relates to payout. On average, the
dog in position 1 pays more. So, if you bet dogs running in position 1, you will lose less money. The
minimum bet is $2.00, thus there is a profit if the average of PlacePay is more than $2.00.

Figure 4-13. Post position and Payout

We use this chart to check the relationship between our metrics and the payout to find ones with the
greatest predictive power. The metric Dog is dragged back to the list of metrics and the other metrics
are dragged to the category box one by one. Races, Wins, and BestSpeed look odd because they
have a large number of possible values. The metric that gives the best result is WinCnt, the number
of wins out of the last six races.

In Figure 4-14, which displays WinCnt, there are two important pieces of information. First, there is a
definite increase for values five and six. And second, this metric comes closest to making a profit. The
bar for WinCnt five is above $1.90. Of all the metrics WinCnt is the most predictive and powerful. But
it still cannot make a profitable betting decision.

WinCnt is our best metric. But how well does it predict the payout when combined with other metrics?
To check, we change the chart. We drag Dog to the series area on the right side of the chart as
shown in Item 1 of Figure 4-15. Then we right-click on the data region (Item 2), and select Chart
Type from the dialog. We select Surface chart as shown.

Figure 4-14. WinCnt and Payout

Figure 4-15. Setting up the surface chart

The result is Figure 4-16, and we see two regions of profitability; i.e., two areas where the average
payout is over $2.00. The fact that there are two areas suggests that either we do not have enough

data to get a good representation or the relationship between WinCnt, Dog, and PlacePay is complex.
Either way, we now know a profitable model can be built if we can figure out how to do it.

Figure 4-16. WinCnt and Dog have two profitable regions

Checking the other metrics with WinCnt we find two more, SpeedRank and Winrank, with profitable
regions, as shown in Figure 4-17.

Figure 4-17. More profitable territory

Before we start building a model, we need to make the problem as simple as possible. Regression is a
good tool but it needs all the help it can get. In all the charts in Figures 4-16 and 4-17, the profitable
areas have a WinCnt of four or higher. In Figure 4-15 we see that WinCnt is the best predictor. We
can simplify the problem by only looking at dogs that have a WinCnt of four or higher. This group is
the closest to profitable to start with, and we already know that by combining it with other metrics it
is possible to make a profit.

We eliminate the rows that have a WinCnt less than four by using a filter. First, we build the criteria
for the filtering operation. In Figure 4-18 the criteria is in cell range K1:K2. It is simply the column
heading of the column to be filtered and the condition that we want (i.e., greater than 3). Next we
select Data Filter Advanced Filter and the dialog box in Figure 4-18 is displayed. Since we
are eliminating tens of thousands of rows, we use the "Copy to another location" option. The List
range is the range of cells that contain the data we are looking at. The Criteria range points to the
criteria in K1:K2. "Copy to" is the location that the filtered data will be in. After OK is clicked, a copy of
columns A-J will be in columns M-V. The data in M-V will only have rows with a WinCnt of four or
more. We then delete columns A-L and are left with the data we want. Earlier we saw an
inconsistency between Races and WinCnt, and now Races is out of the model.

Figure 4-18. Filtering the Data

This leaves us with 710 rows. We are looking at results for the place bet, so in the general population
25% of the dogs would win. There are eight dogs in a race and two will win the place bet, since the
place bet covers both first and second. The filtered population, dogs that have won at least four of
their last six races, wins the place bet 47% of the time. This means that about half of the rows in the
filtered data have a payout. This is important because regression works best when there is a good
mix of values in the data. The average payout for the general population is $1.67, but for the filtered
group it is $1.78.

4.5. Building the Model

We need to limit the number of metrics. If we use too many, the model will over-train. If this
happens, the model will be overly influenced by unusual or isolated data. There might be one or two
dogs that win with a very high payout. Two out of seven hundred doesn't mean much. But regression
is not a magic formula, and it is not guaranteed to find the relationships in the data. It is just a
mathematical technique that draws a bunch of lines based on the best fit to the data. With too much
flexibility it will, in effect, memorize the data rather than learn how to solve the problem.

To guard against this we test the results. The data is separated into two groups. One group is used to
build the model and the other is used for testing. If we get good results when we build the model but
worse results when we test, the model is over-trained and useless.

We have 710 data items. We will use 449 to build the model and the remaining 261 will be reserved
for testing. We have already used WinCnt to limit the data. We now build a worksheet with just the
columns needed for the model. We know that Dog (running position), SpeedRank, and WinRank are
the metrics to use. But there is a problem with Dog. In Figure 4-16 we see that Dog produces two
distinct profitable regions. This seems to mean that the middle positions are less profitable than one,
two, seven, and eight. Since we know that this situation exists, we should make a change in the Dog
metric. Figure 4-19 shows the resulting sheet.

Figure 4-19. Model data

We insert a new column named Dog-4 containing the absolute value of the difference between the
dog's running position and 4.

We need to be sure the rows are assigned to the model and test groups randomly. Therefore, we add

a new column called Random and fill it with random numbers. Next we sort the data on Random. This
will ensure that each row has the same chance of being assigned to the model group or the test
group. After sorting on the Random column, it is deleted.

We start the model like we did the stock example in Figure 4-2. The resulting sheet is shown in
Figure 4-20.

Figure 4-20. Regression setup

The calculations in columns F-I could be handled in a single column using the SUMPRODUCT function, or
even reduced to a single cell using an array formula. But, keeping the calculations separate makes
this process easier to understand. We have 710 rows of data but in the Input Ranges we only use
rows 2450. The Y Range is PlacePay in column E. The regression output is shown in Figure 4-21.

Figure 4-21. Regression output

In Item 1, the overall performance of the model is low. In general, the metrics are not great at
predicting the payout. But R Square measures the model's performance across all 449 rows. We are
interested in setting a threshold that divides the dogs into two groups, and only one group has to be
profitable. The model can do this without a complete understanding of the relationships. A high value
for R Square would be better, but this may be good enough.

The P-values in Item 2 for Dog-4 are encouraging.

Item 3 gives the weights and intercept. We copy and paste them into the model resulting in Figure 4-
22. The values in column I are the scores. A high value in column I means our model predicts that
the dog is more likely to be a profitable bet.

Is it? We find out by testing. We need to know if there is a score above which we can bet profitably.
We used 449 rows to set the weights, so there are 449 scores to consider. Perhaps the top half is
profitable.

To make testing easy, we start by creating logic to analyze the model's performance.

4.6. Analyzing the Results

To see if the model is working, we rank the dogs by their scores and only consider half of them, the
ones with the highest scores. The mid-point is not likely to be the best threshold, and we will want to
experiment with different splits. So, the sheet shown in Figure 4-23 is set up to allow different
percentages to be tested.

The number 50 is entered in cell L1. This indicates that we are going to test a 50% split. In cell L2, we
calculate how many of the 449 model dogs are in the top half. The formula is =INT(450*(L1/100)). The
result is 225.

Figure 4-22. Model with scores

Figure 4-23. Test setup

The threshold for this test is the 225th highest score. The formula in L3 is =LARGE(I2:I450,L2). This
gives the value we need. With these formulas in place we can easily test any percentage. If we enter
15 in cell L1, the value in L3 gives us the value to test the top 15%.

In the range L6:L12 are details of the model's performance for the top 449 rows. The first formula is
=COUNTIF(I2:I450,">=" & L3). This counts the number of scores equal to or greater than the
threshold. It tells how many bets we make if we bet the top half of the scores.

In column J, the formula =IF(I2>=L$3,E2,0) gives the payout for each dog. If the dog's score is less
than the threshold, it is not bet and the payout is zero. To get the total payout for the model group,
we use the formula =SUM(J2:J450) in cell L7.

We get the average payout by dividing L7 by L6. In this case it is $1.87 in cell L8. The number of
wining bets is calculated in cell L9 using =COUNTIF(J2:J450,">0"). The win rate, the percentage of bets
that win, is in L10. The formula is =L9/L6.

We also want to know the average amount of a winning payout. We get it with =L7/L9 in L11. Finally,
the formula =(L8-2)*L6 in cell L12 gives the total profit or loss for the 449 model dogs. We subtract 2
because the bet is $2.00 and we are interested in the profit.

The same details for the test group are in the range L15:L21. We can now compare the performance
of the model group and the test group. If they are not similar, the model may be over-trained.

To test the effectiveness of the model we need to see how it compares to the whole population. In
cells L24:L30 we calculate the same details for all dogs. The formulas in this area are a little different
because we do not consider the threshold in this area. Here we want to see what would happen if we
just bet all the dogs.

In Figure 4-24 we consider the results.

In Item 1 the average payout for all dogs is $1.75, but for the top 50% scores the results are better.
The model group paid out $1.87 and for the test group it was $1.91. This is good news for two
reasons. It suggests that the model is working and that it is not over-trained.

Item 2 shows that the percentage of wins is a bit lower for the dogs in the top 50%. This is probably

because the model is finding the dogs with higher payouts. Item 3 shows this clearly. The average
amount paid for a winner is $3.74 overall, but for the top scoring dogs it is above $4.00.

The model works, but is not profitable at 50%. The next step is to find a profitable threshold.

We started with tens of thousands of rows, but now we are down to a modest amount of information.
We know the model is capable of making good predictions and there is no evidence of over-training.
We need to know how the model's performance changes as we change the threshold.

We test this by changing the value in cell L1. Starting with 50 and working down to 5 in steps of 5, we
build Figure 4-25.

Item 1 is the threshold being tested. The Profit/Loss amounts for both groups are added together
(Item 2), building an area to populate a chart. We add the amount together because the groups are
small. At the 5% threshold there are only three wins in the test group.

Figure 4-24. Results at 50%

Figure 4-25. Finding the threshold

In Item 3 we can see the overall shape of the curve. The profit tops out at about 25%, and that is
probably the best threshold for the model.

4.7. Testing Non-Linear Relationships

Regression assumes that the relationships in the data are linear. This is usually a safe assumption,
but sometimes you can get a more accurate model if you allow for non-linear relationships . We can
use the solver to test the potential value of using non-linear terms in the model.

We start by inserting a row at the top of the worksheet, setting it up as shown in Figure 4-26.

Figure 4-26. Setup to test non-linear relationships

This is a classification problem . We are dividing the population of dogs into two groups. As long as
we can set a good threshold, we do not care how well the model predicts the exact value.

This means the intercept is not adding any value. The model will do just as well without it because we
are only interested the correlation between the score and the payout. If we substitute a zero for the
intercept in cell I2, the performance of the model does not change.

The results in Figure 4-26 are exactly the same as in Figure 4-23. Only the threshold is different. In
row one of columns F, G, and H we enter 1. We change the formula in F3 from =B3*F$1 to
=(B3^F$1)*F$2), and fill this new formula across to column H and down to row 712.

At the top of the L column we add the formula =CORREL(I3:I451,E3:E451) to measure the correlation
between the scores in column I and the payouts in column E. The value is 0.103. This means the
scores are positively correlated with the payouts, but the correlation is not especially strong.

We want to see if changing the values in F1:H1 can increase the correlation. For this we use the
Solver, which is on the Tools menu. If the Solver does not appear as one of the items on the Tools
menu, it may be necessary to select Add-Ins and make sure the Solver Add-In is checked.

The Solver dialog is filled out as shown in Figure 4-27.

Figure 4-27. The Solver dialog

The target cell is L1. This is the cell with the correlation formula and is the value we want to improve.
Equal to Max is selected because we want the highest value possible for correlation.

The By Changing Cells field is set to the range F1:H2. This means Solver is allowed to change the
values in this range to get the maximum possible value in L1.

In Figure 4-28 the results are compared to the best results for the non-linear model.

Figure 4-28. Comparing results

In Item 1 the correlation is increased from 0.103 to 0.1976. This is a significant increase and could
mean the model will now do a better job. In Item 2 the Profit for the model group has gone up from
$22.20 to $31.80. That is great, but the test group in Item 3 tells a different story. In the test group
the profit of $6.80 has turned into a loss of $3.40. This suggests that the additional flexibility of the
non-linear terms has caused the model to over-train.

In this case the linear model is the right one to use.

Chapter 5. Measuring Quality
In the last two chapters we looked at measuring quantity. Now we turn to quality. Sampling and
statistical analysis have been used to measure quality in manufacturing since the 1920s. Years ago it
relied on small samples and simple calculations, but today we can do more. With modern technology
we can look at thousands of pieces of work and the complexity of calculations is no longer an issue.

In this chapter we use Statistical Process Control techniques to build an application to measure
quality. We will go through the techniques and calculations, and then use them to build an
application. We will also look at the data requirements for this kind of project.

In earlier projects we used VBA to make the application interact with the user, but Excel can interact
without VBA. This project uses controls to bring the application to life. Controls are easy to use and
we will include four of them in the project.

The basic problem is always the same. We start with data that contains the answer to a question. We
find the answer and give it to the user.

This chapter uses the following Excel functions and features, shown in Tables 5-1 and 5-2.

Table 5-1. Excel functions used in this chapter

INDEX()

INDIRECT()

ADDRESS()

INT()

ROW()

MAX()

STDEV()

SUM()

IF()

AVERAGE()

LN()

EXP()

The INDEX, INDIRECT, and ADDRESS functions are vital to understanding the application, and they are
explained in Chapter 1.

Table 5-2. Excel features used in this chapter

Controls

Named Cells

Named Ranges

Array Formulas
Charting

5.1. Statistical Process Control

This chapter's example is a check processing operation. The number of checks varies by day of the
week as does the amount of money deposited. These are measures of quantity and can be forecasted
and monitored using techniques in Chapter 3. But quality is as important as quantity. If something is
going wrong in the operation (e.g., if payments are being misapplied, or check numbers are being
recorded incorrectly), we need to know.

5.1.1. Choosing Metrics

When monitoring a manufacturing process we can measure the diameter of a bolt, the weight of a
bottle of shampoo, or the percent of electrical components failing a test. These are things that do not
vary by day of the week, and a significant change in any of them can mean trouble. In our check
processing operation we need to use metrics that behave this way.

First, we consider potential problem areas. Checks received for payment need to be processed
quickly, so we measure the average age of the checks. Customers are supposed to send a remittance
slip with their check, and we will measure the percentage of payments received that contain only a
check and the average number of pages of remittance information per check. Money is important, so
we measure both the average check amount and the average amount per remittance page. Finally,
we need to monitor the accuracy of our data capture process. For this we look at the percentage of
checks that have a valid invoice number, the average number of digits in the check number, and the
average number of digits in the check amount.

If any of these metrics shows a significant change we need to find the reason. Avoiding metrics based
on volume or day of the week keeps the focus on quality.

This concept can be applied to almost any operation. In a call center you might look at average talk
time, percentage of calls abandoned, and percentage of calls transferred. In an invoicing area it could
be average value, average lines, and product mix.

5.1.2. X and S Charts

The process, like forecasting, is simply predicting what each metric should be, knowing how accurate
the prediction is, and using this to set control limits for each metric. The prediction is the recent
average. We don't consider lag since these metrics are not cyclic. We don't correct for the trend. If
there is a trend, we want to know. We are looking for trends.

We use two kinds of metrics. First is the average. In the example we look at the average number of
pages per check. Second is the standard deviation. For some metrics we need to know if the amount
of variation is changing. With number of pages per check, the average could be steady, yet we could
be getting more really high and low page counts.

Results are displayed on a chart like the one in Figure 5-1.

Figure 5-1. Statistical Process Control chart

Charts dealing with averages are called X charts . Those dealing with standard deviation are called S
charts . Years ago there were also charts that looked at the range (the difference between the
highest and lowest measurement). They were called R charts , and were used because the
calculations are simpler. Finding standard deviations by hand for hours every day is not as much fun
as you might think.

Today the distinction between X and S charts doesn't mean much. The terminology evolved before
PCs and Excel. Statistical Process Control was a complex and labor intensive proposition. The metrics
had to be manually collected and the calculations done by hand. Today you can probably collect all
your metrics from automated sources and Excel takes care of the calculations.

The control limits are usually set three standard deviations from the average. This means that 99.7
percent of the time the metric will be within the control limits if there is not a problem. This also
means that three times in every thousand tests there is a false positive.

Of course, you don't have to use three standard deviations. Three is commonly used because it gives
good results and because that's what everyone else uses. But you can use a different number. The
number of standard deviations used to set the control limits is called the sigma . It is a trade off. A
low sigma is good at detecting problems, but it is also good at producing false positives. A high sigma
means less work tracking down false alarms but a better chance of missing something important.

We assume the metrics are normally distributed. In the real world few things really are, but it is
easier to assume that they are normal than it is to figure out what is actually going on. There are
times, however, when a different distribution gives better results.

The application will let the user choose to use either a normal or log normal distribution . In a log
normal distribution, the measures are skewed to the high end of the range. Using a log normal
distribution to set the limits makes the application more sensitive to drops in the metric. It improves
detection of skipped digit problems. This can be helpful in monitoring keying or OCR operations, for
example.

5.2. Running the Application

The main display of the application is shown in Figure 5-2.

Figure 5-2. Application Main Display

The application has only four options. First, the sample data contains 11 metrics. Use the combo box
control (Item 1) to select the one you want. The chart and data area in the upper left update
automatically.

All the dates and values for the selected metric appear in the scroll area. Use the scroll bar (Item 2)
to move the data up or down.

The application is set to a sigma of three. The control limits are set at three standard deviations from
the average. If you want to change the sigma, use the spinner control (Item 3).

Finally, if you want the control limits to be set using a log normal distribution, use the radio buttons
(Item 4).

If the metric is out of control limits, it will be flagged as shown by Item 1 in Figure 5-3. The metric is
the standard deviation of the number of digits in the check amount. The current value for this metric
is 1.63. That is above the upper control limit of 1.54. The chart (Item 2) shows the metric is outside
the control limits.

Figure 5-3. Main display with out of control item

What does it mean? The dollar amount of a check is a number. Here we are measuring the number of
digits in the amounts of all the checks processed today. The high standard deviation tells us there is
an unexpectedly high amount of variation in the metric today. We need to look at the information
capture process for this metric. Perhaps a data entry person is skipping digits or an OCR process is
having a problem. We are probably getting the check amount wrong some of the time. We can either
look into it now, or wait until the monthly close and see if the CFO asks about it.

5.3. Application Design

The application contains three worksheets. A sheet named Data holds the data. It has no formulas
and no real formatting. It is just a place for the information. All the calculations are done on the
Workarea sheet. It references the Data sheet, does all of the calculations, and builds named display
ranges. The Display sheet uses the named ranges on Workarea, formatting, and a chart to present
the results to the user. This sheet also uses controls to allow the user to interact with the application.

5.3.1. The Data Sheet

The Data sheet is shown in Figure 5-4.

Figure 5-4. The Data sheet

Headings are in row one. Dates go in column A and the metrics fill out the columns to the right. The
sample application will handle up to 25 metrics and up to 1,000 days of data. These limits are
arbitrary and can easily be increased.

Changing the data is also simple. The new data must be arranged the same way, with headings and
dates. Just select and clear the entire sheet. Don't delete the columns, just clear them. Then paste
your data onto the sheet starting in cell A1. The formulas on Workarea do the rest. Everything
updates automatically.

5.3.2. The Workarea Sheet

All the logic and calculations are on the Workarea sheet. A few conventions are used to make this
sheet easier to understand. Some ranges on this sheet are linked to the Data sheet, and they are in
blue font. Named ranges used on the Display sheet have a grey background. Ranges that are used
together, but not named, have a border. An example is the cells used to populate the chart. All the
intermediate calculations are in column A and the results are named. Values set by controls on the
Display sheet are bold and in red font.

The layout of Workarea is shown in Figure 5-5.

Item 1 is the range that populates the chart on the Display sheet. The first two columns reference the
Data sheet. Item 2 is a named range called DisplayData. This data appears in the upper-left part of
the Display sheet. Item 3 is also a named range. It is called ScrollArea and feeds the scrolling area on
Display.

Item 4 is a range that references the column headings in row 1 of the Data sheet. It appears in the
combo box on Display and allows the user to select a metric. The combo box sets the value in cell A9.
The number in cell A9 is the row of the item selected. In Figure 5-5 the value is 1. This means the first
item, Average Check Amount, has been selected.

Figure 5-5. Layout of Workarea

If the user changes the sigma, the spinner control sets the value in cell A19 (Item 5). The option
boxes handle changes in the distribution. The option boxes both link to cell A31 (Item 6). When the
first option box is checked, A31's value is 1; if the second is checked, the value is 2.

Item 7, cell A41, is set by the scroll bar control. The value is set to a number from 0 to 100, indicating
how far down the scroll bar is.

The calculations are in column A. The named cells show their name above them. For example, cell A2
is named LastRow, so the cell A1 contains the name LastRow.

5.3.3. The Controls on the Display Sheet

The Display sheet contains four controls. The combo-box control lets the user select an item from a
list. Controls are on the Forms toolbar . (To display the Forms toolbar, select View Toolbars.)
Then check Forms.

To use a combo box, we need a list of items to select from. In the example in Figure 5-6, we start by
clicking on the combo box on the toolbar (Item 1).

Figure 5-6. Setting up a combo box

We then draw the box on the worksheet (Item 2). Use the mouse to select the location. Hold the left
mouse button down and drag the mouse to indicate the size box you want. When you release the
mouse button, the combo box will be there.

Right-click on the combo box and select Format Control. The Format Object box in Figure 5-6 will
display. Enter the cell range to be displayed in the Input range box (Item 3). In Figure 5-6 the user
will select a day of the week. The names of the days are in the range A1:A7.

Item 4 is the Cell link. When the user selects an item from the list, the combo box will put a number in
this cell. The number tells which item was selected.

Figure 5-7 shows how the combo box works. When the user clicks on the box, the list is displayed. In
this case Tuesday has been selected. The number 3 in cell A10 tells us the user selected the third
item.

Figure 5-7. Using the combo box

Figure 5-8 shows how the scrollbar is set up. Item 1 is the scrollbar control on the Forms toolbar. You
drag and drop the control on the worksheet. In Figure 5-8 the link cell is A10. Item 2 shows how the
link is set and how it works. The scrollbar is halfway down and the value in A10 is 50. In the Format
Control window, the Minimum value is 0 and the Maximum is 100, so halfway is 50.

The spinner control (Item 1) in Figure 5-9 is set up like the scrollbar. They just look different. The
option box (Item 2) is similar. In the project there are two option boxes, and they link to the same
cell. The value in the linked cell tells which option box is selected. Excel keeps up with how many
option boxes there are and only allows one of them to be selected at a time.

There are also group boxes (Item 3) on the Display sheet. They don't do anything in this application,
and here they are just for looks. They are generally used to group radio button controls , and handle
the logic that allows only one radio button to be checked.

5.3.4. Linking the Workarea Sheet to the Data Sheet

The Data sheet contains a lot of information, but we only use a small part of it at any given time. The
user selects the column using the selector on the display sheet. The area of interest is the last 20
rows in that column. We know that the dates are in column A of Data, and we need the last 20 rows.

Figure 5-10 shows how we reference the data. LastRow, cell A2, keeps up with the last row on Data
that is used. It is an array formula that multiplies the row numbers times a list of truth values (0 or 1)
that are 1 for the rows that contain information. The row numbers of empty rows are multiplied by 0,
so they become 0. The Maximum is the highest row that has anything in it.

Figure 5-8. Setting up and using a scrollbar

Figure 5-9. Other controls

We do not just want the last row, but the last 20 rows. The first row that we will use is 20 rows above
LastRow. So, FirstRow, in cell A5, is equal to LastRow-20. These calculations on Workarea are shown
in Figure 5-10.

The dates are in column C, but what about the metric? The combo box sets a value in cell A9 telling us
which metric was chosen. But on the Data sheet the first column, column A, is for dates, so we have
to add one to the value in A9. This gives us SelectedItem in cell A8. It is the column number of the
metric we need.

The dates are referenced in column C using the INDEX function. The range is the first 1,000 rows of
column A on the Data sheet. The formula in C2 uses FirstRow + ROW(A1) to reference the correct item
in the range. =ROW(A1) has a value of 1. As this formula fills down, the A1 becomes A2, A3, and so on.

FirstRow is deliberately set to one row above the first cell so the formula will fill down.

Figure 5-10. Connecting to the Data sheet

For the metrics we use the INDIRECT function because it allows us to reference both row and column.
The formula in D2 uses ADDRESS to build the reference and INDIRECT to get the value. The parameters
for the ADDRESS function are row and column number. The row number is calculated just like the
INDEX formula in column C. The column number is SelectedItem.

5.3.4.1. Calculations on the Workarea Sheet

The next part of Workarea is shown in Figure 5-11.

We use the numbers in the range D2:D20 to set the control limits. The value in D21 is the current
value, the one we are checking. Therefore, we do not use it to set the limits.

The formula in A12 returns the standard deviation of the range. In A15 we get the average.

Cell A19 is set by the spinner control and can be from 0 to 12 in increments of 1. We are going to let
the user select a sigma in the range 0 to 6 in increments of one half. The formula in A18 divides the
set value by 2 and returns the sigma used in the calculations.

Cell D21 contains the current value. The named value Average is the average of the last 19 days.
CurrentVariance is the difference between D21 and Average. This part of Workarea is in Figure 5-12.

The named values Upper and Lower are the control limits. In Figure 5-12 cell A28 (named Flagged)
checks the current value of cell D21. If the value is higher than Upper or Lower then the value is set to
1. This indicates the current value is out of the control limits.

Figure 5-11. Calculations on Workarea

The calculation of Upper depends on the distribution selection. If it is normal, the named value
Distribution is 1. In that case Upper is =Average + (Sigma * StandardDeviation), which is the named
value NUpper. Otherwise it is based on the log normal distribution. The named value LNUpper has the
value. A similar technique is used for Lower. It is either based on the Average, Sigma, and Standard
Deviation, NLower, or it uses the log normal calculation LNLower.

The scrolling area on Display is controlled by the value ScrollStart. It is the row number of the first
row of Data shown in the scrolling area. When the user moves the scrollbar, a value from 0 to 100 is
set in cell A41. This value tells how far down the scrollbar is. The formula in cell A42 uses this value to
decide what row on Data should be the first of the 15 rows of the scroll area.

The scrolling calculations work from the bottom up, so it is possible to get a row number that is less
than 1. That would cause an error, and the formula in cell A40 takes the maximum of the value in A42
and 1. 1 is subtracted from the answer to simplify the formulas in Scrollarea.

Cell A51 contains an array formula that calculates the standard deviation based on the log of the
values in D2:D20 and multiplies the answer by sigma. This value is added to the log of the average to
obtain log normal upper limit in A47 (LNUpper). The EXP function is applied to the result turning it back
into a value for the chart. If the value in A51 is an error, there are values in the range D2:D20 that
are not positive real numbers and the Log cannot be taken. If this is the case and log normal
distribution is selected, an error message is built in cell A45 (ErrorFlag). In an error condition, the
normal distribution limit is used.

Figure 5-12. More calculations on Workarea

The calculations in A50 (LNLower) are for the lower log normal limit. They are the same as A47
except the value in A51 is subtracted from the average.

The named values NUpper and NLower are in cells A54 and A57. They are the upper and lower
control limits based on a normal distribution.

Isolating the calculations keeps the application simple. There are several things going on with the
control limits, but each part of Workarea only does one thing. It is important to break multi-step
processes down to basic elements. If you can understand how each step works, you can build the
entire process.

5.3.5. The Display Sheet

The most complex part of the Display sheet is the scroll.

5.3.5.1. The scroll

Figure 5-13 shows how the scroll area works. The data is on the Data sheet. The dates (Item 1) are
always in column A. The metric to be displayed is in one of the other columns. Since the dates are in
A, the formula in item 3 can use the INDEX function. ScrollStart tells which row to start with, and
adding =ROW(A1) makes it possible to fill the formula down. The metric in item 2 is the one to be
displayed. The column is identified by SelectedItem and the row by ScrollStart in the formula shown in
item 4. This range is named ScrollArea.

On the Display sheet, the scroll (Item 5) contains the array formula {=ScrollArea}. The scroll is
formatted using patterns and borders. The scrollbar is linked to cell A41 (Item 6) on Workarea,
completing the connection.

Figure 5-13. Building the scroll

5.3.5.2. Other parts of the Display sheet

The chart area is completed using named values shown in Figure 5-14.

Figure 5-14. Completing the chart area

Columns E, F, and G are used to draw lines on the chart showing the control limits and the mean.
Using this range, a line chart is inserted on Display. The other piece of the Display sheet is the area
shown in Figure 5-15.

Figure 5-15. Data display area

This links to the named range DisplayData on the Workarea sheet. Displayarea, C25:D32, uses
named values to arrange the data for Display. The array formula for Display is {=DisplayData}.

5.4. Customizing the Application

The design of the application makes it easy to change. Using separate worksheets to isolate the data,
the logic, and the display means that they can be modified without disturbing each other. First we will
rearrange the Display sheet.

5.4.1. Changing the Display Sheet

Rearranging the elements on the Display sheet is just a matter of dragging the controls and chart to
new locations. The areas that reference named ranges can be cut and pasted without interfering with
their formulas. By using these techniques and changing patterns and borders, the Display sheet can
be rearranged to look like Figure 5-16 in a couple of minutes.

Figure 5-16. A new Display sheet

5.4.2. Adding Logic

In Statistical Process Control, it is considered significant if the metric being measured has been on
the same side of the average for three consecutive days. This could mean that a trend has started. A
serious problem can start slowly. So, we want to be alerted if the last three days were higher or
lower than average even if we are still within the control limits.

We start on the Workarea sheet, as in Figure 5-17.

Figure 5-17. Adding new Logic to Workarea

The last three days are in rows 19 through 21 in column D. In cell H19 we enter
=IF(D19>G19,1,(IF(D19<G19,-1,0))). This is a nested IF function that returns 1 if the metric is above
average, -1 if it is below, or 0 if it is equal to the average. The formula is filled down to cell H21. If the
sum of H19:H21 is 3 or -3, the metric has been on the same side of the average for three days in a
row. In cell A60 another nested IF function builds the alert. A result of blank is returned if there is no
alert. This cell is named Alert.

On the Display sheet in M8, just above the upper-right corner of the chart, the formula =Alert is
entered. The cell is formatted bold and red. If there is no alert, the value is blank so the user sees
nothing.

5.4.3. Adding a Macro

The way the application works, the user selects and checks each metric separately. It would be better
if the application cycled through all of the metrics and only stopped on ones that are flagged as out of
limits. The following VBA code will do the job.

Sub FindProblem()
'*****************************
' Macro to cycle through all
' of the metrics stopping
' if any are out of limits.

' The macro starts at the

' current position in the
' list of metrics.

' If no out of limits
' condition is found
' the macro returns to
' the first metric
' and diplays a message.
'*******************************

' Range A9 is linked to the combo box on
' the display sheet. We start by adding
' one to this cell to advance one metric
' in the list.
Range("Workarea!A9").Value = Range("Workarea!A9").Value + 1

' We now setup a loop to continue checking
' metrics until a flagged item is found or
' all of the metrics have been checked.

' NameofItem contains the name of the metric being
' checked. If it is equal to zero the end of
' the list has been reached
While Range("Flagged").Value = 0 And Range("NameofItem").Value <> 0
 ' In the loop one is added to the
 ' value in A9 advancing through the list.
 Range("Workarea!A9").Value = Range("Workarea!A9").Value + 1
Wend

' The loop has ended so we have either found
' a flagged item or we are at the end.
' If we are at the end we need to take action
' so we check.

' If NameofItem is zero we are at the end.
If Range("NameofItem").Value = 0 Then
 ' Return to the first item in the list.
 Range("Workarea!A9").Value = 1
 ' Put up a message box.
 MsgBox ("No alerts found.")
End If

End Sub

To add the code to the application, select Tools Macro Macros. You can also get to this dialog
by pressing Alt-F8. Type in the macro name FindProblem and click the Create button.

Next, type or paste in the code. After the code has been entered go back to the Macros dialog box
and with FindProblem highlighted, click on Options... This will bring up a dialog box allowing you
select a short cut key to run the macro. Enter a lowercase "e" as the shortcut key.

The macro can now be run by pressing Ctrl-e.

Chapter 6. Monitoring Complex Systems
Chapter 5 looked at Statistical Process Control. These techniques were developed before modern
computers, so limiting the complexity of the calculations was an important consideration. This,
however, imposes limits on power and flexibility. Business processes are often dependent on the day
of the week and the traditional Statistical Process Control approach ignores this, reducing the
accuracy and sensitivity of the process.

Business processes interrelate in complex ways, and these relationships need to be monitored along
with the metrics themselves. If a day has an unusual amount of activity, it is important to know if the
relationships in the data are normal. If you have a large amount of activity because a competitor has
a problem, you don't want all your metrics to flag because they are high. But you do need to know if
the product mix is normal or the percentage of items returned has changed.

Today we are not restricted to simple calculations that can be done by hand. Excel allows us to take
on all the complexity and monitor the whole process. In this chapter we look at ways to monitor a
complex business process using Excel. We also build a reusable application based on these
techniques.

For each item to be monitored, we build a regression model using the last week's value for the item
and current values for three other principal data items. The model will be built using enough history
to give a good estimate of its accuracy. The current value of each item will be predicted and the
accuracy of the prediction will be used to calculate the probability that the item is an anomaly. The
basic approach is like the one used in Chapter 5, in which the average served as the prediction. Here
we use a more complex and accurate prediction method, explained in the Workarea section.

The application discussed in this chapter uses no other files or components. You can replace the data
used in the example without changing the application. It uses the Excel functions and features listed
in Tables 6-1 and 6-2, respectively.

Table 6-1. Excel functions used in this chapter's application

INDEX()

INDIRECT()

ADDRESS()

NORMINV ()

ROW()

MAX()

COL()

SUM()

LINEST() ()

IF()

AVERAGE()

STDEV()

NORMDIST()

LEN()

ABS()

Table 6-2. Excel features used in this chapter's application

Formatting

Named Cells

Named Ranges

Array Formulas

Charting

VBA

Form controls

6.1. The Application

The application follows the same design principles we have been using. The sample data is based on a
transportation operation. It includes 40 daily metrics looking at both operations and billing, with 242
days of data. The main display is shown in Figure 6-1.

Figure 6-1. The application's main display

This display shows the monitoring status for the current item and allows the user to control the data
item being monitored, the date, and the confidence level. It also allows the user to view three
reports.

Item 1 contains a combo box that lets the user select an item to be monitored. There are also buttons
allowing the user to cycle through the items one by one. Item 2 provides the same functions for date.
In Item 3 there are buttons to view reports on three other displays. The spinner control in Item 4
allows the user to change the confidence level . This level sets the sensitivity of the application; in
Figure 6-1 it is set to 97%. This means that items will flag if the difference between the prediction and
the actual value is so great that it would only occur by chance 4% of the time.

The actual values for the last 20 days are shown in the chart along with the control limits in Item 5. If
the current value is between the control limit markers, it is inside the confidence level.

The System Status button (Item 3) brings up the sheet shown in Figure 6-2.

Figure 6-2. The system status sheet

The application is designed to be reusable. The Data sheet can be repopulated with different data as
long as there are headings, there are dates in column A, and the values are numeric. The application
uses up to 1,000 rows or days of information. The Settings sheet contains information about how the
data is to be handled. The display in Figure 6-2 shows the dates and how many usable rows and
columns there are. It takes 35 days of history for the application to work and the maximum lag is 7. It
has a heading row, so the first 43 rows need to be there but are not usable.

This display also shows the lag and independent items for the regression calculations.

The Anomaly Report button checks all the items for the current day and builds a report with an entry
for each item out of the control limits. An example of this report is in Figure 6-3.

Figure 6-3. The Anomaly Report

The sensitivity is set to 96%. So, seven items for this day have an error (difference between actual
and predicted) so great that it would only occur by chance 4% of the time.

For each item the report presents the name, the predicted value, the actual value, the error amount,
the error in standard deviations, and the probability. In the case of CREDIT TO SHIPPER, there is
virtually no chance that an error of 116,736 could be caused by chance alone.

The Predictions button brings up a chart showing predictions and actual values for the last 20 days as
in Figure 6-4.

Figure 6-4. The Predictions chart

This chart shows the accuracy of the predictions. Most items are predictable and in general the
accuracy is high. This technique's advantage is its accuracy. More accurate predictions allow more
sensitive monitoring.

6.2. The Data

The data is on the Data sheet. As always, the sheet has no formulas. Its only job is to hold the data.
The top left part of the sheet is shown in Figure 6-5.

Figure 6-5. The Data sheet

This sheet uses 41 columns and 243 rows. If you want to put new data on this sheet, it is important
not to delete any of the existing rows or columns. This would interfere with calculations elsewhere in
the application. Just select the whole sheet and clear the contents. Then paste your new data on the
Data sheet starting in cell A1.

6.3. Settings

The Settings sheet contains processing options for the application. If you are using new data, you will
need to change the settings. The Settings sheet is shown in Figure 6-6.

6.3.1. Independent Columns

There are three independent columns, indicated by column labels in the range A2:A4. The regression
model in the application uses these three columns from the Data sheet. It is important to select items
that are central to the process being monitored but they must not be highly correlated with each
other. In this case, I am using columns O, AC, and AF. These are CASH TRANSACTIONS, REGULAR
STOP PICKUP, and TRANSPORTATION CHARGES - TOTAL. One deals with money, one with the
operation, and one with billing. They are all high level metrics, but they come from different parts of
the process. These cells on the Settings sheet are named ind1, ind2, and ind3.

6.3.2. The Alternate

But what happens when we predict one of the independent items? If we predict CASH
TRANSACTIONS and it is in the model as an independent variable, our prediction will be as useless as
it is accurate. This is where the alternate comes in.

When one of the independent variables is being predicted, the alternate takes its place in the model.
The alternate item, WEIGHT - TOTAL, is in column AJ. This value is named Alt.

Figure 6-6. The Settings sheet

6.3.3. The Lag

The lag is the number of days in a week of data. In the example we are looking at a five days per
week operation, so the lag is 5. The lag can be as high as 7, and naturally it is named Lag.

6.3.4. The Out of Limits Message

The named value outmessage is the message displayed when an item is out of the control limits. It
appears on the main display under the chart.

The other values on the sheet should not be changed manually. They are set by controls or macros.
They are the current sensitivity, and the row and columns settings.

6.3.5. The Current Column

The current column is calculated as in Figure 6-7.

The value in B7 is 1. It is set by a combo-box control on the main display and by the macros that run
on the Next Item and Previous Item buttons. Here the 1 means the first column is selected. But
column A contains dates, so the first usable column is B. We want the letter B because we use it in
the indirect functions on the Workarea sheet.

Figure 6-7. The current column calculation

The address function in C7 adds 1 to skip the dates, then converts the number to an address. The MID
function in A7 strips the letter B out of the address. This formula will work with two letter columns, like
AB, as well. The final value in A7 is named CurCol and is used in other formulas.

6.3.6. The Current Row

The current row calculation is in Figure 6-8.

Figure 6-8. The current row calculation

Here things are simpler because we want the row number, not a letter. The value in cell B16 is set by
a combo box or a macro when the user changes the current date. The formula in A16 adjusts the
value to skip the first 35 rows plus 7 additional rows to allow for the lag. This is the historical data the
model needs to monitor the 43rd day. The value is named CurRow and is used in other formulas.

6.3.7. The Sensitivity

Figure 6-9 contains the calculation for sensitivity.

Figure 6-9. Calculating the sensitivity

The spinner control on the Display sheet sets the value in cell B10. The control changes the value by 1
each time it is clicked, and is constrained to a maximum value of 99. The calculations need a number
between 0 and 1, therefore the value is divided by 100 in cell A11.

6.4. Workarea

All the logic is on the Workarea sheet . It is organized into functional areas using the same
conventions as the other applications in the book. The overall layout is shown in Figure 6-10.

Figure 6-10. The organization of the Workarea sheet

Item 1 in Column A contains named values used in other formulas. The area in Item 2 is used to hold
the needed values from the Data sheet, based on the current settings. These values change when
either the selected item or date changes.

Item 3 contains the regression model. The coefficients and intercept are at the top and are
recalculated every time the data in Item 2 changes.

Item 4 uses the results of the regression calculations to set the control limits.

The data in Item 5 is used to populate the combo box that allows the user to select an item. The
combo-box control requires a column as its input range. These values are headings on the Data sheet
and are in a row. This area transposes them into a column.

Item 6 is a display area. It is used for the main display sheet and contains general information about
the current item and date.

Item 7 is also a display area and is used by the system status report.

The first area (Item 1), used for named values, is detailed in Figure 6-11.

Figure 6-11. The section of Workarea indicated by Item 1

6.4.1. LastRow

The value in cell A2 is named LastRow. It keeps up with how many rows are used on the Data sheet.
It is necessary to have a formula to calculate this because the number of rows could change if new
data is put on the sheet. The formula is:

{=MAX((DATA!A1:A1000) * ROW(DATA!A1:A1000))}

This array formula is covered in Chapter 3. As written, it only considers rows 11000. Since each row
contains one day's data, this means the application can hold over two years of information. The
formula can be changed to look at 5,000 rows by changing A1000 to A5000 in the formula. It has to
be changed in both places and reentered using Crtl-Shift-Enter.

6.4.2. Columns Used

These values tell the model which column to use as independent variables . These formulas are
necessary because they decide if the alternate needs to be used. The basic formula is:

=IF(Ind1=CurCol,Alt,Ind1)

CurCol is a named value containing the column of the item being monitored. Here it is being tested
against the first independent (Ind1). If they are equal the alternate value (Alt) is substituted. This
formula is used for all three independents. The results in the range A5:A7 are named UsedInd1,
UsedInd2, and UsedInd3.

6.4.3. LastColumn

The next value is LastColumn. It is the same as LastRow, except it looks at which columns are used.

6.4.4. StartRow

The model requires 35 days of data. Therefore, we need to pull data starting 36 days before the
selected date, allowing one additional row for the headings. The named value StartRow in cell A13
keeps up with this value.

6.4.5. IsOut

The value IsOut in cell A16 is always 0 or 1. A 1 means the current item is out of the control limits.
The formula is:

=IF(H37<J37,1,(IF(H37>I37,1,0)))

H37 is the current actual value. J37 is the lower control limit and I37 is the upper control limit.
Message in A19 is used on the Display sheet as shown in Figure 6-12.

Figure 6-12. The message

On the Display sheet, cell E28 contains this formula:

=Message

The font for this cell is formatted red and bold. The message is blank if the item is inside the control
limits and is set to outmessage if the item is outside the limits.

6.4.6. The Data Area

The next part of the Workarea sheet manages the link to the Data sheet, and is shown in Figure 6-
13.

Figure 6-13. The section of Workarea indicated by Item 2

This is a holding area for data. It uses the settings to determine what data is needed and builds an
area for the regression model to use. The last two columns of this area are used by the chart on the
Display sheet.

The formula in C3 is:

=TEXT(INDIRECT("Data!A"& ROW(A2)+StartRow),"mm/dd/yy")

Column A on the Data sheet contains the dates. The data starts in row two, as there are headings.
The formula uses the named value StartRow to determine what row to start with. The formula fills
down to C37. The dates are not used in the regression model, but they appear on the charts and in
the displays. Excel's chart feature will fill in any skipped dates, and in this case we do not want that
to happen. In the sample data we only have five days each week, so we don't need the other two
days on the chart. The TEXT function is used to convert the date to a text string. This keeps Excel
from seeing these as dates.

Columns D, E, and F are similar. They contain the independent variables . The basic formula in D3 is:

=INDIRECT("data!" & UsedInd1 & ROW(A2)+StartRow)

Here we do not know the column in advance. It is determined by the named value UsedInd1. Cells E3
and F3 are the same but reference UsedInd2 and UsedInd3. These also fill down to row 37.

Columns G and H both contain the current data item. Column G is offset by one lag and is used in the
regression calculations. Column H is not offset and is the dependent or Y variable. The formulas for
these rows are:

=INDIRECT("data!" & CurCol & StartRow+ROW(A2)-Lag)
=INDIRECT("data!" & CurCol & ROW(A2)+StartRow)

The heading in cell H2 uses the same formula except the heading is always in row 1. So, the formula
is:

=INDIRECT("data!" & CurCol & ROW(A1))

Columns I and J are used to put the control limits on the chart. These appear as small tick marks at
the right end of the plot area, as shown in Figure 6-14.

Figure 6-14. The chart shows the control limits

All the cells in these columns except the last row have a value of -1. The vertical axis of the chart is
formatted with a minimum value of 0, as shown in Figure 6-15.

This keeps all the values except the last row off the chart. The values in row 37 are the control limits.
Cell I37 has this formula:

=Q37+T12

Cell Q37 is the current prediction and T12 has the allowable error. So, this is the upper control limit. In
cell J37 the formula is:

=MAX(Q37-T12,0)

This sets the lower limit. In some cases the limit would be a negative number, and for this kind of data
that is not sensible. Therefore, we use a formula that will return a value of 0 if the limit comes out
negative.

On the chart both of these items are formatted with no line, as shown in Figure 6-16.

Figure 6-15. Formatting the vertical axis

Figure 6-16. Formatting the control limits series on the chart

This makes the control limits appear as markers at the end of the chart.

6.4.7. The Regression Area

The regression area is shown in Figure 6-17.

Figure 6-17. The regression area

The coefficients and intercept are in row 2 and are calculated using this formula:

{=LINEST(H3:H36,D3:G36,TRUE,FALSE)}

It is entered as an array formula in the range M2:Q2. The first parameter is the dependent or Y
range. In this case it is the actual values in column H. We do not include row 37 because that is the
day being checked. We run the regression using only days in the past.

The range D3:G36 contains the independent variables we looked at earlier. The third parameter
(TRUE) tells the LINEST function not to force the intercept to be 0. The final parameter tells LINEST not
to return the regression statistics. We are not doing analysis here. We just want the answer.

In cell M3 the formula is:

=M$2*G3

This fills down but not to the right. Inconveniently, the LINEST function returns the coefficients in
reverse order. So, the formulas have to be entered separately for each column. Column N has:

=N$2*F3

And so on. Finally in column Q we add the intercept with this formula:

=SUM(M3:P3,Q$2)

This is the predicted value.

The day being monitored is in row 37, and we need to know how accurate the prediction is. The
formula in cell R37 is:

=ABS(Q37-H37)

We use the absolute value because we need to know how much error there is, not the error itself.
This results in a one-tailed distribution, which is easy to handle with Excel's statistical functions.

The results of the regression are used to set the control limits. This is done in the area shown in
Figure 6-18.

Figure 6-18. The control limits

The actual values are in column H and the predictions are in Q. The array formula in cell T3 returns

the average of the absolute values of the differences between the predicted and the actual. Once
again, we do not use row 37 because it is the current day. We use an array formula for this because
otherwise we would need another column with absolute error for the model.

In cell T6 we do the same thing in calculating the standard deviations of the errors.

These values are used in cell T12 to determine how much error is allowed for row 37. We know the
mean and standard deviations of the errors, and we assume they are normally distributed. We know
how much error we are willing to accept. Given these parameters, the NORMDIST function returns the
value that is our limit. This is the amount of error that will cause an item to be flagged as an
anomaly.

If an item is flagged, we need to know how far out it is. This is not just the size of the error. Very few
predictions will be exactly right, and some error is expected. But relatively large errors should be
rare. If we set the application's sensitivity to 0.99, we will be alerted when there is only a 1% chance
that an item's error would occur as part of the past population of errors.

The formula in cell A15 calculates what percentage of errors is less than the error for the item being
tested. If the formula returns a value of 0.98, then 98% of errors are less than the one for the item
being tested.

6.4.8. The Combo Box Data Area

Column W of the Workarea sheet contains the names of the data items as shown in Figure 6-19.

Figure 6-19. The item names

These are the headings from the Data sheet. The combo box control cannot use the headings directly
because they are not in a column. The formula in cell W1 is:

=IF(INDEX(Data!B$1:IV$1,1,ROW(A1))=0,"",INDEX(Data!B$1:IV$1,1,ROW(A1)))

It fills down to cell W255. This formula contains an IF function because the index function returns a
value of zero if the referenced cell is empty. This would cause the combo box to display a long list of
zeros after the last item name. The IF function returns a blank (=" ") if the referenced cell is empty,
causing the combo box to display a blank for the unused columns.

6.4.9. The Main Display Area

There are two display areas on the Workarea sheet. Figure 6-20 has the first.

Figure 6-20. The display area

This area is named Display. The main display uses it for the information above the chart. All the
values come from the Workarea sheet itself. The references are shown in the figure. The Display
sheet references this range with an array formula applied to an area with the same number of rows
and columns, as demonstrated in Figure 6-21.

Figure 6-21. The display sheet references an area on the Workarea sheet

As in all the applications, this keeps the logic out of the display and allows the Display sheet to be
concerned only with presentation issues.

The system status report is set up the same way, but some of its values come from the Data sheet.
The formulas in its range on Workarea are shown in Figure 6-22.

Figure 6-22. Building the system status report

The earliest date that the application can test is in the 44th row because the model requires 43 days
of history. The latest date is the last used cell in column A on the Data sheet. Figure 6-23 shows the
range named "Stats," which contains this information, and its relationship with the systems status
report.

Figure 6-23. The relationship between the Workarea and the system
status report

Again, the main point is keeping the logic and the presentation separate.

6.5. Macros

Visual Basic does not play a big part in this application. It is used for navigation, managing the item
and date selections, and creating the anomaly report. All the code is in a code module and is run by
buttons on various sheets.

These two macros control the items selection.

Sub NextItem()
If Range("settings!b7").Value >= Range("LastColumn").Value - 1 Then
 Range("settings!b7").Value = 1
Else
 Range("settings!b7").Value = Range("settings!b7").Value + 1
End If
End Sub

Sub PreviousItem()
If Range("settings!b7").Value <= 1 Then
 Range("settings!b7").Value = Range("LastColumn").Value - 1
Else
 Range("settings!b7").Value = Range("settings!b7").Value - 1
End If
End Sub

A number representing the current item selection is in cell settings!B7. If this number changes so
does the selected item. The number can have any value from 1 to LastColumn - 1. Remember, the
first column is used for the dates.

The NextItem subroutine checks to see if the current selection is the last column. If so, it sets the
selection to the first column, otherwise it adds one to the number in B7 to select the next column.

The PreviousItem subroutine works the same way except it moves in the other direction.

A number representing the selected row/date is in cell settings!B16. There are two similar macros
that control the date selection. This is the code:

Sub NextDay()
If Range("settings!b16").Value >= Range("LastRow").Value - 25 Then
 Range("settings!b16").Value = 1
Else
 Range("settings!b16").Value = Range("settings!b16").Value + 1
End If

End Sub

Sub PreviousDay()
If Range("settings!b16").Value <= 1 Then
 Range("settings!b16").Value = Range("LastRow").Value - 25
Else
 Range("settings!b16").Value = Range("settings!b16").Value - 1
End If
End Sub

The only difference is that we need to start with the date that is 35 days before the selected date to
include the historical data the model needs.

These selections can also be changed using the combo box controls , so the macros are designed to
match the results from the controls. The date selection macro changes the value in cell settings!B16.
The combo box that allows the user to select a date is formatted as shown in Figure 6-24.

Figure 6-24. Formatting the combo box

The link cell is settings!B16. The combo boxes and the macros do the same thing but give the user
different options.

This is the macro that produces the anomaly report:

Sub RunDay()
Dim oldcol, Outline, x As Integer

' We are going to run through all the items. At the
' end we want to return to the item that was selected.
' So we need to save the current column number
oldcol = Range("settings!b7").Value

' The next step is to clear all information
' that is on the report sheet.
' Go to the Report sheet
Sheets("Report").Select

' Clear the data area. Rows above 4 are headings.
' There cannot be more than 255 items since there
' are only 255 columns in a worksheet.
' We clear rather than delete
' because this preserves all
' the formatting.
Range("a4:f259").ClearContents

' Put the sensitivity heading in cell B1
Range("B1").Value = "SENSITIVITY = " & Trim(Str((Range("sen").Value * 100))) & "%"

'Outline is a line counter. It starts at 3
' because we add 1 to it each time we
' add a line to the report and this
' way it will start with row 4.
Outline = 3

' Now we are ready to check each item for the
' current day. We change the item by changing the
' value in cell settings!B7.
' Here we set up a loop to check each item

For x = 1 To Range("LastColumn").Value - 1 ' Minus 1 because the first column
 ' has the dates
 ' Change the item setting
 Range("settings!b7").Value = x

 ' When B7 changes the entire application recalculates
 ' If the item is out of the control limits, the named value
 ' isout will be a 1.

 ' Test isout to see if it is 1
 If Range("isout").Value = 1 Then
 ' If it is add 1 to the line counter
 Outline = Outline + 1

 ' Now we fill in columns A-F on row Outline with
 ' the report information

 ' The name of the item
 Range("report!A" & Outline).Value = Range("workarea!h2").Value

 ' The predicted value
 Range("report!B" & Outline).Value = Range("workarea!q37").Value

 ' The actual value
 Range("report!C" & Outline).Value = Range("workarea!h37").Value

 ' The error (predicted - actual)
 Range("report!D" & Outline).Value = Range("workarea!q37").Value - Range
("workarea!h37").Value

 ' The number of standard deviations the error represents
 ' workarea!T6 is the standard deviation or errors
 Range("report!E" & Outline).Value = Range("report!D" & Outline).Value /
Range("workarea!t6").Value

 ' The percentage of error amount that would be less than the
 ' current error in a normal distribution. Effectively this is
 ' the probability that today's values for the item being tested
 ' is an anomaly
 Range("report!f" & Outline).Value = Range("workarea!t15").Value
 End If
Next x ' End the loop

' Select the top left cell of the report sheet
Range("A1").Select

' Reselect the original item
Range("settings!b7").Value = oldcol
End Sub

This subroutine stays on the report sheet, so it is not necessary to turn off screen updating.

The rest of the code is pure navigation, like this macro:

Sub GoDisplay()
Sheets("Display").Select
End Sub

This is run by all of the Back buttons and returns the user to the main display.

Chapter 7. Queuing
Work is frequently done in queues. Processes that were once based on paper are now handled as
images with every step recorded. The flow of work from step to step is controlled by systems that
establish priority and direct work to the appropriate area. Queuing applications accumulate large
amounts of data that can be used to answer important questions about the operation.

This chapter is about organizing information. There aren't many calculations. This is not a statistical
or forecasting problem. The challenge is extracting the important information and presenting it. We
start with several thousand rows of data and a specific area of interest. Each row in the data contains
information about an item in a work queue. The area of interest is the performance of the agents
doing the work.

Our task is to build an application showing how the individual agents are performing. The emphasis is
on extracting the right pieces of information and presenting them in a way that is easy to use and
understand.

The application uses the Excel functions listed in Table 7-1.

Table 7-1. Excel functions used in this chapter's application

INDEX()

INDIRECT()

ADDRESS()

MATCH()

ROW()

MAX()

MIN()

SUM()

IF()

AVERAGE()

ISERROR()

LOOKUP()

COUNTIF()

HOUR()

VALUE()

INT()

The INDEX, INDIRECT, and ADDRESS functions are vital to understanding the application, and they are
explained in Chapter 1.

Table 7-2 lists the Excel features used in the application.

Table 7-2. The Excel features used in this chapter's application

Controls

Named Cells

Named Ranges

Array Formulas

Charting

Cell Formatting

Visual Basic

7.1. The Data

The data for this chapter's example, shown in Figure 7-1, come from a typical work queue.

Figure 7-1. Sample queue data

This is the Data sheet from the application. Column A contains the employee number of the agent
who processed the item. The date and time the work was assigned to the agent is in column B.

The reference in column C is optional. The agent can enter a reference number if they want to be
able to retrieve their work later. We are tracking how often the number is entered to see how its use
relates to productivity and accuracy.

Column D has the date and time the work was completed, and column E the value of the item.

The Data sheet contains no formulas or significant formatting. In production, it could be linked to a
query and could be refreshed with a single command.

There are 4,457 rows of data, one for each item worked on 2/19/2004. The data is sorted by the
agent and assigned_date columns, and contains a complete picture of the day's work. It tells how
much work each agent did, how long it took, when they started and stopped, and how many breaks
they took. But arranged as one big list it is hard to understand. It is our job to build a tool that
extracts the meaning from the data and presents it in a way that is easy to understand.

The agent names are in a separate data source and will be matched to the agent employee numbers
on the Data sheet. This data is on the Workarea sheet and is described in the section "The Logic."

7.2. The Application

There are three display sheets, a Data sheet, and a Workarea sheet. The application uses the Data
sheet to build the displays. If the Data sheet is updated all of the other sheets will update
automatically. The display sheets contain no logic. They link to the information on Workarea using
named ranges. The look and feel is based on patterns and borders.

The main display is named Totals and is shown in Figure 7-2.

Figure 7-2. The Totals sheet

This sheet has the look and feel of a web page. Our users regularly work with web pages. So, we
make our application easy to understand by using the web page metaphor.

Item 1 is a general heading and appears on all of the display sheets. Item 2 is a simple bitmap
created with Paint. It is drawn and copied in Paint, then pasted on the sheet using Paste Special
Bitmap. It appears on all of the display screens, increasing their common appearance.

Item 3 is a list of the agents, showing their daily metrics. Average time per item is the average time it
takes an agent to complete a work item in hours, minutes, seconds (hh:mm:ss). Item 4 gives the
work group totals for the day. The headings in this area are also buttons that control the sort order.
If the user clicks on the heading Items Worked, the area will sort by that item.

Item 5 contains navigation buttons. These buttons run simple macros that move the user between
the display sheets. The sheet tabs do the same thing but there are a couple of reasons to include the
buttons. First, there are sheets in the application that are not intended for display. The buttons keep
users where they should be without actually hiding the data and Workarea sheets. Second, buttons
are part of the web page metaphor. The user already knows what they do and how to use them.

Clicking the agent detail button causes the Detail sheet in Figure 7-3 to display.

Figure 7-3. The agent detail sheet

The agent detail sheet follows the look and feel of the application and focuses on a single agent. Item
1 displays the daily totals for the agent. Item 2 is a listbox that allows the user to select an agent to
view. As soon as a name is clicked, all headings and displays change to that agent. There is no
macro; everything is based on Excel functions and controls.

Item 3 is a chart that shows how many items the agent worked during each hour of the day. Each
agent is expected to complete 150 items per day. The workday has seven hours, so therefore the
expected work rate is about 21 items per hour. The red line in the chart shows the hourly standard of
21 items.

This is an example of extracting information from the data. All of the times are on the Data sheet,
but with this chart the manager can see what is going on without looking at thousands of rows.

Clicking the agent timeline button takes the user to the Timeline sheet in Figure 7-4.

Figure 7-4. The Timeline sheet

The Timeline sheet shows each item the agent processed. Item 1 displays this information. The work
time for each item is calculated along with the total time from one item to another.

The "Time to next" column shows the amount of time from the start of one item to the next. If this
time is more than ten minutes, the row is flagged as in Item 2 using conditional formatting . With the
"Time to next" area selected, we click Format Conditional Formatting. The dialog is filled out as
shown in Figure 7-5.

We want to change the format to bold red if the time from one item to the next is more than 10
minutes. In Excel a date and time is really a number. The integer part tells the date and the decimal
part is the time. We are working with minutes and there are 60 minutes in each of the 24 hours in a
day. That is 1440 minutes. That means that there are 144 ten-minute periods in a day. So, ten
minutes is 1/144 or 0.006944 of a day. That is why we use 0.006944 in the dialog.

Figure 7-5. Adding a conditional format

7.3. The Logic

The application is designed simply. All the logic is on the Workarea sheet. It uses the usual conventions. The first
section of this sheet is shown in Figure 7-6 .

Figure 7-6. The first section of the Workarea sheet

The application needs to be flexible. For 2/19/2004 we have 4457 rows, but the next day could be any number. So,
we need to know how much data is on the Data sheet. To find the bottom row of the worksheet, we use this formula
in cell A2:

{=MAX((Data!A1:Data!A10000<>"") * ROW(A1:A10000))}

There are other ways to do this, but this formula lets us work with the column we need and keeps the calculation on
the worksheet. This is an array formula and is entered by pressing Ctrl-Shift-Enter simultaneously. It looks at the
rows from 1 to 10,000 and works by building two lists of values. The first list (Data!A1:Data!A10000<>"") is just 10,000
zeros or ones. The value is 1 for cells in the range that contain data and 0 for those that are empty.

The second list (ROW(A1:A10000) is the numbers from 1 to 10,000. The lists are multiplied together. Row numbers with
data are multiplied by 1, while empty row numbers are multiplied by 0. The formula takes the maximum value from
the products, which is the row number of the last row used.

The result of this formula is named NumberOfRows . This is a powerful formula and can be modified to find the last

column used or the last row containing a specific value.

We will refer to column A (agent) on the Data sheet several times. To save keying, we build a reference to the range
that contains the data. Cell A17, named MyRange , contains this formula:

="data!a2:a" & NumberOfRows

We can use MyRange in other formulas, such as the one in A5:

{=SUM((INDIRECT(MyRange)<>INDIRECT("Data!A3:A" & NumberOfRows + 1))*1)}

We need to know how many agents are working. This is not the same every day, so it needs to be calculated. Again
we use an array formula. We know the Data sheet is sorted by agent, and we count the times the agent changes. The
formula builds a list of zeros and ones. It is 1 only for cells that are not equal to the cell on the next row.

We use indirect functions because we do not know how many rows there will be. The second INDIRECT points to a
range that is one row lower than MyRange .

The time it takes to work an item is the completed time minus the assigned time. In cell A8 the formula is:

{=AVERAGE(INDIRECT("Data!D2:D"&NumberOfRows)-INDIRECT("Data!B2:B"&NumberOfRows))}

The completed times are in column D of the Data sheet and the assigned times are in column B. This array formula
takes the average of the work times. The result is named AverageWorkTime . We also want to know the total value of
work done, so in cell A11 the formula is:

=SUM(INDIRECT("data!e2:e"&NumberOfRows)

The work standard in cell A14 is entered as a number and can be changed as needed.

The range A21:B27 is named DailyTotals . It is a display area and appears on the Totals sheet, Figure 7-2 , as Item
4. It is referenced as an array formula. The range B8:C14 on the Totals sheet contains the formula:

{=DailyTotals}

Figure 7-7. Agent names

The Data sheet only has employee numbers, and we want to display the names as well. The table of employee
numbers and names is in columns E and F of Workarea, as shown in Figure 7-7 .

On the Totals sheet information is summarized by agent. The next part of Workarea contains the logic. The Data
sheet is sorted by agent and assigned_date , making it easier to arrange the information by agent. This area is shown
in Figure 7-8 .

Figure 7-8. More Workarea

The first step is to determine the range of rows for each agent. This is done in columns H and I. The formula in
column I finds the last row for each agent. It contains this formula:

=MATCH(J2,INDIRECT(MyRange),1)+1

Cell J2 contains the agent number. MyRange is a named value equal to data!a2:a4458 . Option one in the match
function returns the row with the largest value less than or equal to J2. We add 1 because MyRange starts in row two.

This formula fills down for 50 rows. If more than 50 agents could be working, additional rows can be used.

Cell H2 contains the number 2. The first row number of the first agent is always 2. Cell H3 is set to one more than cell
I2, since the first row for each agent is one more than the last row for the agent above. This formula also fills down.

The first cell in the agent column (J2) is set equal to cell data!a2 , since that is the first agent number. The formula in
cell J3 is:

=IF(ISERROR(INDEX(INDIRECT(MyRange),I2+1)),"",INDEX(INDIRECT(MyRange),I2+1))

This formula uses an INDEX function on MyRange . It points to the row after the last row for the agent above. The
application will handle up to 50 agents but not all 50 are used in this example. After the last agent the INDEX function
will generate an error. The IsError function is used to set the cells that are not used to blank.

Column K contains the agent name. The formula is:

=IF(J2="","",LOOKUP(J2,Agent,Name))

The IF function checks to be sure the current row is used. If it is, the LOOKUP function finds the value J2 in the range
named Agent . It returns the value from the range Name .

The items worked in column L is based on the number of rows and is calculated with this formula:

=IF(J2="","",(I2-H2)+1)

The start and end times are on the first and last rows for the agent. For the start time we use the assigned_date
(column B) since that is when the agents got their first piece of work for the day. For the end time we use
completed_date (column D). The formulas are:

=IF(J2="","",INDIRECT("data!B" & Workarea!H2))
=IF(K2="","",INDIRECT("data!D" & Workarea!I2))

Average time per item is calculated using:

{=IF(J2="","",AVERAGE(INDIRECT("data!d" & H2 & ":d" & I2)-INDIRECT("data!b" & H2 & ":b" & I2)))}

This takes the average of the difference between the completed and assigned times for the agent. It is an array
formula. The values H2 and I2 in the INDIRECT functions are the starting and ending rows for the agent.

To get the percent of items referenced we count the number of cells in column C that are not empty and divide by the
number of rows for the agent. The formula is:

=IF(J2="","",(COUNTIF(INDIRECT("data!c" & H2 & ":c" & I2),">0"))/L2)

This gives us a display area for the Totals sheet. But we are giving the user the ability to sort this information. This is
complicated because all the information is linked and we cannot use Excel's sort tool directly.

7.3.1. Using a Tag Sort on Linked Information

We use a tag sort to get around this problem. A tag sort uses pointers to control the display order of the rows. We
use the sort tool to sort the tags rather than the data. The tag sort area is shown in Figure 7-9 .

Figure 7-9. The tag sort area of the Workarea sheet

Column R contains row numbers. These are just the numbers from 1 to 50 and correspond to the row numbers in the
range J2:P51. These row numbers control the order of the same information in the range U2:AA51.

The formula in cell U2 is:

=INDEX(J$2:J$51,$R2)

This formula points to column J. The rows in the range are locked with $. The index is in R2 and its column is locked.
This formula is filled right and down for the whole range U2:AA51.

As a result, columns U:AA look exactly like columns J:P. But if the order of the numbers in column R changes, the
order of the rows in U:AA will also change. The range U1:AA51 is named AgentList and is displayed on the Totals
sheet using the array formula:

{=AgentList}

When the user clicks on one of the headings, the tag sort is performed. It is a two step procedure. Sorting by Items
Worked, the tag sort area is shown in Figure 7-10 .

Figure 7-10. Tag sort on Items Worked

In Item 1 the information in column W (Items Worked) is copied and pasted (Paste Special Values) into column S.

Next, in Item 2, columns R and S are sorted ascending on column S.

Item 3 shows the result, in which the first agent (Helen Brown) is now on the 22nd row of the AgentList range. The
Totals sheet only sees this range, so the display is now sorted.

This is done with two macros. The first contains only one line. If the user clicks on Items Worked, the sort needs to
be on column W. A macro named Sortw runs, passing the value w to a function named Sortit . Here is the code:

Sub Sortw()
R_code = Sortit("w")
End Sub

Sortit is a custom function written for this application. It can sort AgentList for any column. It gets the column as a
passed value. This is the Sortit macro:

Function Sortit(MyCol As String)

 Dim ToSort As String

 'Turn off screen updating so the user will not
 'see all of the steps
 Application.ScreenUpdating = False

 'MyCol contains the column to be sorted. It is a value from U to AA
 'depending on which column the user selected.
 'MyRange holds the range of cells to be sorted. Agentsworking
 'is a named value on workarea and contains the number of
 'agents working. We add one to include the heading.
 MyRange = MyCol & "1:" & MyCol & Range("agentsworking").Value + 1

 'The sort is performed on the workarea sheet
 Sheets("Workarea").Select

 'Copy the cell range to be sorted
 Range(MyRange).Copy

 'Move to the S column
 Range("S1").Select

 'Perform a PasteSpecial Values
 Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _
 :=False, Transpose:=False

 'ToSort holds the range to be sorted.
 ToSort = "r1:s" & Range("agentsworking").Value + 1

 'Select the sort range
 Range(ToSort).Select

 'Perform the sort
 Selection.Sort Key1:=Range("S2"), Order1:=xlAscending, Header:=xlGuess, _
 OrderCustom:=1, MatchCase:=False, Orientation:=xlTopToBottom, _
 DataOption1:=xlSortNormal

 'Return to the Totals sheet
 Sheets("Totals").Select

 'Turn screen updating back on
 Application.ScreenUpdating = True
End Function

The Sortw macro runs when the user clicks on the Items Worked heading on the Totals sheet.

7.3.2. Invisible Rectangles

This happens because there is a rectangle object over the heading. The setup is shown in Figure 7-11 .

If the drawing toolbar is not visible, you need to go to the View Toolbars menu and check Drawing. A rectangle is
drawn over the heading. Then right-click on the rectangle and select Format AutoShape. The dialog in Figure 7-12 will
display.

The rectangle has no fill and no line making it invisible. Next we assign the Sortw macro to the rectangle. We right-

click again and select Assign Macro. This brings up the dialog in Figure 7-13 .

The rectangle is invisible but still responds to the click event.

Figure 7-11. Adding a rectangle

There is a separate macro (Sortu , Sortv , etc) for each column and a separate rectangle for each heading.

7.3.3. The Agent Detail Area

On the Detail sheet the user can select an agent. When this happens, Workarea needs to calculate metrics for the
agent, populate the chart, and build the timeline.

Totals for the selected agent are calculated in the range shown in Figure 7-14 .

Cell A40, named AgentRow , is linked to the listbox on the Detail sheet. The value tells which agent the user selected.
The value in cell A42 gives the starting row for the agent. This is the row on the Data sheet that starts this agent's
information. This value is in the H column at the row given by AgentRow . The cell is named AgentStartRow and the
formula is:

=INDEX(H2:H51,AgentRow)

AgentEndRow works the same, getting its value from column I with the formula:

=INDEX(I2:I51,AgentRow)

Figure 7-12. Making the rectangle invisible

Figure 7-13. Assigning the macro

The number of items worked is the number of rows. The formula in cell A46 is:

=AgentEndRow-AgentStartRow

Figure 7-14. Agent totals on the Workarea sheet

This returns a value one less that the number of rows because the first row is not zero. This situation comes up all the
time when working with cell ranges. We need this value for more than one thing. For building ranges this is fine, but
when we display the number of items worked we will add 1 to the value.

The ranges for the assigned_date and completed_date are used in other calculations. So, to simplify things we will
build the ranges and name them. The formulas are:

="c59:c" & 59+AgentItemsWorked
="e59:e" & 59+AgentItemsWorked

AgentName , cell A52, is from column K and uses this formula:

=INDEX(K2:K51,AgentRow)

The chart heading is just text and uses AgentName . The cell (A54) is not named because names cannot be used in
chart headings. The formula is:

="Hourly items worked for " & AgentName

AgentEmpNumber is extracted from the J column with this formula:

=INDEX(J2:J51,AgentRow)

The range D38:E44 is named AgentDetail . It is displayed on the Detail sheet as an array. The relationship is shown in
Figure 7-15 .

Using this technique keeps the display and the logic separate.

Figure 7-15. Using an array formula to display a named range

7.3.4. The Chart Area

The chart on the Detail sheet is populated using the range J58:M82. This range is not named, and is shown in Figure
7-16 .

The numbers in column J are the hours of the day. The same hours are displayed using a time format in column K.
The numbers in column J are used by the array formula in column L:

{=SUM((HOUR(INDIRECT(AgentAssignedRange))=J59)*1)}

The formula checks the range containing the assigned dates and counts the number that are in each hour. It fills
down for all the hours.

Column M is the standard. Each day an agent is expected to work 150 items. This is in the cell named WorkStandard
(A14). A workday has seven hours. So, column M contains the integer value of 150/7. It is the number of items an
agent must work each hour to meet the goal.

The range K58:M82 is selected and the chart is added by selecting Insert Chart from the menu. This is a Line -
Column chart found on the Custom Types list, as shown in Figure 7-17 .

The chart is placed on the Detail sheet using the dialog in Figure 7-18 .

Figure 7-16. The chart on the Detail sheet uses this area

It results in the chart shown in Figure 7-19 . This is the basic chart for the application. It can be positioned and sized
by dragging. It will be further customized on the Detail sheet.

The first step is to remove the markers on the standard line and change the color and weight of the line. We start by
right-clicking on the standard line (Item 1 in Figure 7-19). We select Format Data Series and the dialog in Figure 7-20
displays.

We click on the Patterns tab and set the options as shown in Figure 7-20 . The bars showing the hourly counts need to
be changed to blue. The process is the same as for the standard line. We right-click on the count bar (Item 2 in Figure
7-19) and change the Patterns tab.

Next, we change the alignment on the X axis . The times are displayed diagonally and are hard to read. So, right-click
on the axis (Item 3 in Figure 7-19) and select the Alignment tab. The orientation is set as shown in Figure 7-21 .

Finally we link the chart title to cell A54 on Workarea, but the chart tool won't let us do this directly. So, we start by
adding a simple title that can be edited. With the chart selected, we select Chart Chart Options from the menu.
This displays the dialog shown in Figure 7-22 .

Figure 7-17. Inserting the chart

Figure 7-18. Putting the chart on the Detail sheet

We enter a title of XXX to make it easy to edit. After the title is on the chart, we right-click on it. Then the formula is
entered in the formula bar, as shown in Figure 7-23 .

This links the title to the Workarea sheet and when the user selects a new agent the title will change along with the
chart.

Figure 7-19. The basic chart ready to be customized

Figure 7-20. Formatting the standard line

7.3.5. The Timeline

The last area in the Workarea sheet is the display range for the timeline. We are allowing for 500 items for an agent in
one day. In this application that will be enough, but if more are needed it is simple to fill the formulas down further and

increase the size of the named range. Figure 7-24 shows the range.

Figure 7-21. Setting the alignment

Figure 7-22. Adding a chart title

Column A contains row numbers on the Data sheet. They give the location of the agent's data. It is not part of the
display and is used to map the agent's rows on the Data sheet to this part of the Workarea sheet. The first cell (A59)
is set equal to the named value AgentStartRow . Cell A60 contains this formula:

=IF(A59<AgentEndRow,A59+1,"")

Figure 7-23. Customizing the chart title

Figure 7-24. The display area for the Timeline sheet

This formula fills down and gives us the row numbers of the data we need.

Columns C, D, E, and H all use the same basic formula. Cell C59 contains:

=IF($A59="","",INDIRECT("data!" & ADDRESS($A59,COLUMN(B1))))

The IF function checks to see if we have reached the end of the agent's data, and if so it returns a blank. The ADDRESS
function takes a row and column and returns an address. In this case ADDRESS($A59,COLUMN(B1)) is equivalent to
ADDRESS(222,2) and returns a value of B222 . We combine this with the sheet name (Data is the sheet we are

referencing) and use the resulting reference in an INDIRECT function. This returns the first assigned_date for the
agent. This formula fills down and across, covering columns C, D, E, and H.

Work time and "Time to next" are calculated as in other parts of the application by using these formulas:

=IF(A59="","",E59-C59)
=IF(A60="","",C60-C59)

On the Timeline sheet this area is referenced by the name TimeLine .

7.3.6. Navigation

The navigation buttons are from the Forms toolbar. They are formatted to use a font color that matches the color
scheme of the application and they are each assigned a macro. There are three macros, one for each display sheet.
They each have only one line, and this is the code:

Sub go_detail()
Sheets("detail").Select
End Sub

Sub go_totals()
Sheets("totals").Select
End Sub

Sub go_timeline()
Sheets("timeline").Select
End Sub

This code provides simple navigation. The user clicks the button and the destination sheet is selected.

Chapter 8. Custom Queuing Presentation
The data in a queuing system can be used for many purposes. In the last chapter we used the data
to manage employees. In this chapter we use the same kind of data to monitor the amount and
status of work in the queue. Once again, this is mainly a presentation problem. There are not a lot of
statistics or calculations. We simply use formatting and charts to tell managers how the work is
progressing.

The application in this chapter uses metaphors and some VBA to create an easily understood
interactive view of the work process.

8.1. The Application

The application in this chapter provides an example, not an easily reusable application. Much of the
design depends on the data, and an application like this is easier to build from scratch than to
customize. The design and concepts, however, are reusable and the application can serve as a
starting point for custom development.

The application operates on data from a workflow with five queues. The work arrives as images. They
could be incoming faxes or scanned paper documents. The first queue feeds a fully automated
process that attempts to handle the work via optical character recognition (OCR).

The work starts in a queue named OCR, and if the OCR process is successful then the work is
complete and leaves the system. If the OCR process it is unsuccessful, the document is routed to a
manual queue named MAN. Any document that can only be partially processed and requires research
is routed to the partially processed queue named PAR.

For documents that require extensive research there is a separate queue named EXT. Finally, in
some cases the work results in a refund. Refunds also have their own queue named REF.

Documents are in one of three statuses:

Documents in status 1 have not been processed in their current queue and are ready to be
assigned to an agent.

Documents in status 2 are being worked now. Sometimes a document cannot be completed
without additional information. The customer may need to be contacted, or a document
obtained from another department. An agent can put a document on hold in these cases.

Documents in status 3 are on hold.

Once a document is complete it leaves the queuing system, and might be used by an application like
the one in Chapter 7.

The main display in Figure 8-1 shows these queues as one continuous workflow.

Figure 8-1. The application's main display

The display is basically a flow diagram of the operation. The design elements are charts containing
information about each queue, and the flow is represented by arrows. This metaphor is easily
understood and can be used for almost any multi-step process.

Figure 8-2 shows one of the charts in detail.

This is a standard bar chart created with Excel's chart tool. It shows the EXT queue, and there are 88
unprocessed documents represented by the red bar, Item 1.

Item 2 is the smaller green bar and it represents documents currently being worked on. The yellow
bar, Item 3, is the documents on hold. These have been assigned to an agent but cannot be
completed without additional information. The chart's information is updated periodically and it is
helpful to know how things are changing. The gray bars behind the colored bars, Item 4, show where
each bar was at the previous update.

Figure 8-2. Chart detail

So, we can see there are now 88 items in the queue and that the queue has grown since the previous
update.

The colored bars were formatted separately using the Format Data Point dialog box . The color of the
red bar is set as shown in Figure 8-3.

Figure 8-3. Setting the color of the red bar

I selected red for the area and black for a thin border. The shadowing effect was created using the
Fill Effects button, which brings up the dialog shown in Figure 8-4.

Figure 8-4. Add a fill effect

The gray bars were formatted together using the Format Data Series dialog box . The color is set to
light gray with a darker gray border. This dialog's Options tab, shown in Figure 8-5, allowed me to
offset the bars by choosing an Overlap setting of 75%.

This puts the gray bars partly behind the colored ones. The chart was finished by deleting the
horizontal and vertical axis, removing grid lines, and filling the chart area with the same background
color as the sheet.

There is a macro associated with each chart, allowing the charts to function as buttons. Clicking on
the PAR queue chart brings up the display in Figure 8-6.

This is a report showing each item in the partially processed queue with summary information at the
top. This report is rebuilt each time a chart is clicked. The original work document is an image file and
its name is in the file column. If the user selects a row by clicking on a row number, the document on
that row is displayed.

Figure 8-5. Offsetting the gray bars

Figure 8-6. Detail report for the partially processed documents queue

8.2. The Data

As with all applications in this book, the data is on a worksheet named Data. There are no formulas
or meaningful formatting on this sheet. The Data sheet is shown in Figure 8-7.

Figure 8-7. The Data sheet

Column A contains the queue name. Here we see part of the extended research queue (EXT). Column
B has the status. The date and time that the document entered the queue are in column C. The date
and time the document was assigned to an agent are in column D. Column E has the value of the
item being worked on. The employee number of the agent assigned to the document is in Column F.
The name of the file containing the document image is in column G.

This application is only an example. It is not connected to a data source and cannot update. In a
production situation the Data sheet would be re-populated frequently, perhaps once an hour. Each
time the update runs, the entire data sheet is copied to a sheet named OldData, which is used to
draw the gray bars on the charts.

8.3. The Logic

All of the calculations are done on the Workarea sheet shown in Figure 8-8.

Figure 8-8. Workarea

The values in column A are used in other calculations and are named. The names are in bold font and
are above the value. The summary area in cells B22:E26 is built using the Report sheet. This makes
the calculations simpler because the Report sheet only contains one queue at a time. Cell A2 is named
LastRow and contains the array formula:

{=MAX((Report!A1:A5000<>"")*ROW(Report!A1:A5000))}

This keeps up with the row number of the last row used on the Report sheet. It is only looking at the
first 5,000 rows of the Report sheet, but that is enough for this application. We are going to build
references to some of the columns on Report and this lets us set the range correctly.

The formula in A4 is:

="Report!b8:b" & LastRow

It returns the range of cells in column B, containing status, on the Report sheet. It starts at row 8
because that is where the data starts. Cells A6 and A8 are similar but reference different ranges on
the Report sheet.

There are two calculation areas that populate the charts, and one named display area for the
summary at the top of the detail report (Figure 8-6).

The calculation areas for the charts are in Figure 8-9.

Figure 8-9. Building the chart area

The names of the queues are in row 2 and the statuses are in column B. They are just typed in, but in
a production application they could link to a settings sheet allowing the user to change the queue
names and status numbers without modifying Workarea.

We need the counts for each queue and status. If we had only one criterion, queue or status, we
would use the COUNTIF function. But here we have two logical tests to perform, so we use the array
formula in cell C3:

{=SUM((Data!A1:A5000=C$2)*(Data!$B$1:$B$5000=$B3)*1)}

The first part builds a list of zeros and ones, testing the values in column A of the Data sheet against
the value in cell C2 (which is OCR). So this value will be 1 for rows containing items in the OCR queue.
The second test checks column B on the Data sheet against the value in B3. It looks for items with a
status of 1.

These lists are multiplied together and by 1, because we count one for each row that has the right
queue and status. The whole thing is inside a sum function that adds up the ones, giving us the value

we need.

The formula is built to be filled across and down to cell G5. In the lower area (B12:G15) we do the
same thing for the OldData sheet with this formula:

=SUM((OldData!A1:A5000=C$12)*(OldData!$B$1:$B$5000=$B13)*1)

The logic is the same. Only the sheet name and row numbers for the criteria values are different.

If more queues or statuses are required, these areas could become bigger. Each new queue would
add a column and a new chart on the display sheet. Each new status adds a row and a new bar on
the charts. The charts would have to be added and the display adjusted manually.

The area at the bottom of Workarea is shown in Figure 8-10. It uses the named values in column A to
calculate summary totals for the report.

Cell C24 contains this formula:

=COUNTIF(INDIRECT(BRange),A11)

Figure 8-10. The Summary calculation area

This formula counts the number of rows on the Report sheet that have a 1 (status 1) in column B. It
uses the name value BRange in cell A3 for its range and the value in cell A11, which is =1, for its
criteria.

This formula fills down to C26, but the criteria references have to be changed to A14 and A17 in cells
C25 and C26.

The formula in cell D24 finds the oldest date/time for status 1 in the report. The formula is:

=DMIN(INDIRECT(BHeadingRange),Report!C7,Criteria1)

We use the named value BHeadingRange because the DMIN function requires the heading. This range
starts one row higher than BRange in order to include headings.

Report!C7 contains "Create Date/Time". The data for an application like this comes from a computer.

If there is a change in the column heading our application will fail if we hardcode the column name in
the formula. Putting the name here and using it later as a reference makes the application more
stable.

This function uses the named range Criteria1 for its criteria and fills down, but the Criteria
references need to be changed to Critieria2 and Criteria3.

The formula in E24 returns the total value of all items in this queue and status. The formula is:

=SUMIF(INDIRECT(BRange),A11,INDIRECT(ERange))

This is similar to the formula in C24 but uses SUMIF and the ERange, since column E contains the value.

This area is named ReportTotals and is referenced by an array formula on the Report sheet, thus
keeping all calculations on the Workarea sheet.

8.4. VBA

Formatting is the most important feature of this application but it also uses VBA to interact with the
user. When the user clicks on one of the charts, a small macro assigned to the chart runs. This is the
code assigned to the OCR chart:

Public Sub OCR_click()
Call GetData("OCR")
End Sub

To add this code to the project, click on Tools Macro Visual Basic Editor or press Alt-F11 to
launch the editor. Use the Insert Module menu to insert a module to hold the code. The code for
each chart and the Getdata macro can then be entered.

All this first macro does is run another macro named GeTData, passing in the name of the queue
associated with this chart. Using a separate macro to do the work eliminates the need to duplicate
the code for all the charts. There is a separate macro for each chart and they all consist of one line of
code passing the name of the selected queue to the GeTData macro. Here is the Getdata macro:

Public Sub GetData(MyType as String)

Dim WritePoint As Integer
Dim ReadPoint As Integer
Dim ToGet As String

' This macro reads all the rows on the data sheet and copies the
' ones with the selected queue type to the Report sheet.
' The selected queue type is in MyType which is passed by the
' calling code.

' Turn off screen updating - This keeps the user from seeing all of the
' screen changes.
Application.ScreenUpdating = False

' Excel will try to recalculate every time we change value. We will be
' moving a large number of rows and this will cause a lot of unnecessary
' recalculation and will slow down the process. Turning calculations off will
' speed things up.
Application.Calculation = xlManual

' First we need to get rid of any old data on the Report sheet.

Sheets("Report").Select ' Select the Report sheet
Range("A8:J5000").ClearContents ' Clear the cells that might contain old data

WritePoint = 7 ' WritePoint is the next row to be used on the Report
 ' We need to skip the first seven rows because of the
 ' summary and headings

ReadNext: ' This is a named location in the program and lets
 ' us set up a loop to check all of the rows on
 ' the Data sheet

ReadPoint = ReadPoint + 1 ' ReadPoint is the row number of the next row to
 ' check on the Date sheet. The value starts
 ' at zero by default so each time we go
 ' through the loop we add one.

If Range("data!a" & ReadPoint).Value <> "" Then ' If column A of the current row is
 ' empty we are at the end of the data.

 If Range("data!a" & ReadPoint).Value = MyType Then ' Check to see if the
 ' current row is in the
 ' selected queue.

 ' At this point we know the current row has data we want
 ' on the Report sheet.
 WritePoint = WritePoint + 1 ' Add one to the WritePoint

 ToGet = ReadPoint & ":" & ReadPoint ' Build a reference to the
 ' entire row

 Sheets("Data").Select ' Go to the data sheet

 Rows(ToGet).Copy ' Copy the current row - toget contains
 ' the reference

 Sheets("Report").Select ' Go back to the Report sheet

 toput = "A" & WritePoint ' Build a reference to the A column of
 ' the current row

 Range(toput).Select ' Select the cell

 ' Paste the row onto the Report sheet
 Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _
 :=False, Transpose:=False
 End If

 GoTo ReadNext ' Go back and check the next row on the data sheet

End If

' At this point the macro is done

Application.ScreenUpdating = True ' Turn screen updating back on
Application.Calculation = xlAutomatic ' Set calculations back to automatic
Range("A1").Select ' select the upper left cell
End Sub

We want to let the user see the source documents for the work. There are two problems with this.
First, there is nothing to click on, no button or chart. So, we have to make the sheet respond to a
click on itself. Second, we don't know what kind of document we will be working with. In this case it is
an image, perhaps a TIFF or BMP. But, in a real world situation it could be a text file, a WAV file, or
even an Excel workbook. We need a way to show it to the user without even knowing what it is.

Making that work requires some code. The report worksheet is an object, and like any object it has
events. We need to assign a macro to an event on the Report sheet so that when the user selects a
row we can show them the document. We start in the Visual Basic editor, but instead of working in a
code module, we click on the Report sheet as shown in Figure 8-11.

Figure 8-11. Adding code to a worksheet

Clicking on the sheet (Item 1) brings up the code window for the sheet. By default we are in
Declarations. We need to access the worksheet's events, so we select Worksheet from the drop-
down box indicated in Item 2. This displays the code window in Figure 8-12.

Figure 8-12. Inside the worksheet's code

The worksheet's events are now available in the box in the upper-right part of the window. We can
launch code with any of them. For this application we are interested in the
Worksheet_SelectionChange event. This event fires every time the user selects a cell, range, row, or
column on the sheet. Select SelectionChange in the box to create an empty macro in the code
window and enter the following code in it:

Private Sub Worksheet_SelectionChange(ByVal Target As Range)

Dim MyPath As String
Dim MyFile As String
Dim q As Double

' The user has selected something on the Report sheet. We need to know
' if the selection is a row containing data. If the selection is an
' entire row the count of cells selected will be 256 and the column
' selected will be one.

' We know that rows 17 contain the summary and heading. If the user
' selected one of those rows we do nothing.

' This if statement checks to be sure that 256 cells were selected, that
' the selection is column one, and that the row selected is greater
' than seven.
If Target.Count = 256 And Target.Column = 1 And Target.Row > 7 Then

 ' We still need to be sure that the row selected
 ' contains data.
 If Range("a" & Target.Row).Value <> "" Then

 ' This is not how it would be done in production.
 ' In this example the files are in the same folder
 ' as the worksheet. So, we use the same path. But
 ' in the real world this would probably be a path
 ' on a local network or perhaps a path contained
 ' in the data.
 MyPath = ActiveWorkbook.Path & "/"

 ' This is the file name from the data.
 MyFile = Range("g" & Target.Row).Value

 ' Here we create a batch file that can be run by MS-DOS.
 Open MyPath & "ExampleShell.bat" For Output As 1

 ' The start command
 will associate the file type
 ' with the appropriate application.
 Print #1, "Start " & MyPath & MyFile

 Close 1

 ' The shell command
 executes the batch file.
 q = Shell(MyPath & "ExampleShell.bat", 1)
 End If
End If
End Sub

This code displays a file, but the file can only be viewed using a program. The registry knows what
program to use based on the file type, as indicated by the extension at the end of the file name. For
example if you open a file with a .xls extension it will be displayed using Excel.

The start command in MS-DOS associates a file with the correct program and brings it up in a new
window. We can execute a start command by putting it in a batch file, a file with a .bat extension.
The shell command executes the batch file and the desired file is displayed.

If you are working with several users they may not all use the same program to view a TIFF.
Different systems use different viewers. This technique eliminates the need for the application to
know what program to run and where to find it.

8.5. Extending the Application

This is a simple version of an application that I have used in several projects. It is most likely to be
part of a larger effort including the application in Chapter 7. The data on completed items is the input
to the Chapter 7 application. Keeping the data available after an item is complete also allows you to
add more functions to this chapter's application.

Sometimes it is helpful to make the arrows on the Display sheet clickable (like the charts). A report
and chart can be displayed showing how many work items have moved through that arrow during a
given period of time, giving a more complete picture of the operation. It is also possible to change
the thickness of the arrows to indicate the relative amount of work moving in different parts of the
workflow.

The data from finished work items could also be used to populate an application like the one in
Chapter 6. This could let managers know if there is a change in the work process.

The important point is that the same data can be used to answer different questions.

Chapter 9. Optimizing
You make decisions all the time. You decide where to go for lunch or what kind of car to buy, and you
hope for the best possible outcome. In these situations defining "best possible outcome" can be
difficult, and there is no way to be sure things will work out for the best. In business there are times
when the best possible outcome can be defined and measured. If we know the costs and potential
gain and we know what outcome we want, Excel has tools that can find the best decision.

Sometimes you are only deciding one thing. You may be setting the price of a product or deciding
how many employees will be needed to do a job. In cases where only one value is being set, Excel's
Goal Seek tool can find the value that gives the desired outcome. In order to use Goal Seek you have
to model the situation, building in the costs and benefits. You also have to define the desired
outcome. In this chapter, we learn to use Goal Seek both as a one-time problem solver and as a way
to add power to a macro.

Not all problems can be solved with one value. Excel's Solver tool is designed to handle problems with
multiple variables. As with Goal Seek, you must first model the problem. Solver problems are more
complex, since they involve more options. This chapter demonstrates ways to build Solver solutions.
At the end of the chapter we build a macro that uses the Solver to handle a typical business problem.

9.1. Goal Seek

I need $100,000. The bad news is that I only have $65,000. The good news is that I don't need the
$100,000 until 60 months from now. So, I will put the $65,000 in the bank at 3.5% interest, and each
month I will pay an amount into the account that will make it worth $100,000 after 60 months.

How much do I have to put in each month? The money in the account is earning interest, so the
solution is not obvious. First, I build the worksheet in Figure 9-1.

Figure 9-1. Future value worksheet

This models the problem. The interest rate is 3.5%. Present value is the amount I put in the account
to start. It is negative because I am putting money in. The payment is zero for now. The number of
monthly payments is 60.

The formula in cell B8 calculates the future value of the account. The formula is:

=FV(B4/12,B7,B6,B5)

The 3.5% interest rate is per year. The FV function requires the interest per payment period (month
in this case), therefore we divide by 12. The rest of the parameters, number of payments, payment
amount, and starting value are values on the sheet.

This function returns a value of $77,411.28. This is how much the account will be worth if I make no
monthly payment and rely totally on interest.

With the model built, we go to Tools Goal Seek and fill out the dialog as shown in Figure 9-2.

Figure 9-2. Using the Goal Seek tool

"Set cell" is the target cell. I want this cell to have a value of 100,000, so that's what I enter in the "To
value" text box. "By changing cell" is the cell Goal Seek is allowed to change in order to reach the
target value.

Click OK and Goal Seek finds the answer shown in Figure 9-3.

Figure 9-3. Goal Seek finds the payment amount

The payment in B6 is now -$345.04 and the End value is $100,000. So, it is going to cost me $345.04
for 60 months.

Goal Seek makes it easy to try different scenarios. If I can only afford a monthly payment of $275
how many more months will it take to get to $100,000?

The problem is set up in Figure 9-4.

Figure 9-4. Changing the problem

Here the payment is set at $275. Goal Seek has the same target cell and value, but is now allowed to
change the number of payments in cell B7.

The result is in Figure 9-5.

It will take 68 months to reach the Goal with a $275 payment. (Actually, I will still be a few dollars
short since it takes a little over 68 payments.)

Figure 9-5. The months needed to reach the Goal

9.1.1. Setting a Price

Goal Seek can set the selling price of a product. Our customer wants to buy 1,200 units of a product
we make. If we get the order, our fixed cost will be $1,500. Our variable cost is $52 per item. We

want to set a price that gives a 20% profit.

We start by building the model in Figure 9-6.

Figure 9-6. The pricing model

The selling price is zero for now, since Goal Seek will set it later. Total cost is the fixed cost plus the
number of units multiplied by the variable cost.

Goal Seek is used as in Figure 9-7.

Our desired rate of return is fixed at 20% profit, so cell B7 is set to the target value of 1.2. Goal Seek
is allowed to change the selling price in cell B3. The results are in Figure 9-8.

Our selling price is $63.90.

Figure 9-7. Goal Seek and the pricing model

Figure 9-8. Results for the pricing model

9.1.2. A Quadratic Equation

We can see a couple of Goal Seek's weaknesses when we use it to solve this quadratic equation:

Y = X2 - .5X - 3

The problem is modeled in Figure 9-9.

The formula in cell B2 is the Excel equivalent of the equations, and it fills down to cell B8. The chart
shows the relationship between X and Y. There are two solutions. They are the points where Y is
zero. In the chart they are represented by the points where the Y plot crosses the x-axis. Figure 9-10
shows how the problem is set up.

The formula in column B is copied and pasted into cell B10. Cell A10 starts at 0. Goal Seek sets B10 to
0 by changing A10. The result is in Figure 9-11.

Goal Seek is not a perfectionist. It gets close and then quits. The real solution is, of course, -1.5. And
there are two solutions to this equation. What about the other one? Goal Seek just finds a solution. If
there are two or more possibilities it will not let you know.

Figure 9-9. A quadratic equation

Figure 9-10. Setting up the quadratic problem

Which solution you get depends on what value you start with. In this case we started with 0 and -1.5
was the closest. If we had started with a value of 5, Goal Seek would have found the other solution,
which is 2.

9.1.3. A Matrix Problem

The previous examples were simple, but Goal Seek can solve complex problems as well.

Suppose we work for a pharmaceutical company that makes a medication used by 1,000,000 people.
We have a competitor that makes a similar medicine, and we each have half the market. It is easy
for a customer to change medicines, and each month we keep 96% of our customers. The other 4%
change to our competitor. But our competitor has the same problem, and each month they only keep
89% of their customers. We get the other 11%.

Figure 9-11. Goal Seek has found a solution

Today we have 50% of the market. If this situation continues for several months, our market share
will stabilize at a new level. We need to figure out what our new market share will be.

Again we start by building a model, as shown in Figure 9-12.

Cells B2 and B3 contain the customer retention rates for our company and the competition. The
matrix in Item 1 is based on these rates. In B5 and B6 are retention and loss rates or our company.
In C5 and C6 are the same for the competition, but the order is reversed.

The vector in Item 2 represents the final market share. We start this at 1 to 1, as we do not know the
ratio yet. This is the problem that Goal Seek will solve.

The matrix and vector are multiplied together using the MMULT function, which is an array formula
that returns the product.

The ending ratio is a vector that does not change when multiplied by the matrix. So if the vector (cells
B8 and C9) is equal to the product of the matrix and the vector (cells B11 and B12), then we have
solved the problem. The test value is 0 when the problem is solved.

The rest of the sheet breaks down the customer population and calculates our ending market share.

We are not going to cover the theory behind the matrix calculation in this example. It uses an
eigenvector , which is a value encountered in linear equations .

With the model built, we use Goal Seek to solve the problem as shown in Figure 9-13.

Figure 9-12. Modeling the problem

Here we want Goal Seek to set the test value in cell B14 to zero by changing B8. Only the top cell in
the vector needs to change since we are looking for a ratio. Any ratio can be expressed as X/1.

The solution is in Figure 9-14.

The ending ratio will be 2.75 to 1, and our market share will increase from 50% to 73.33%.

9.1.4. Using Goal Seek in a Macro

Goal Seek can become part of an application. Suppose we need to calculate market share at different
retention rates. We can add a macro to the worksheet that runs Goal Seek automatically.

When Goal Seek runs from a macro it does not display the ending dialog, so it requires no user
interaction.

Figure 9-13. Using Goal Seek to solve the market share problem

Figure 9-14. The solution to the market share problem

To add code to the sheet we go the Visual Basic Editor either by clicking Tools Macro Visual
Basic Editor or by pressing Alt-F11.

Once the editor is running, the options shown in Figure 9-15 are selected.

Figure 9-15. Adding code to a worksheet

Most VB code is in a module, but in this case we put the code inside the worksheet. In Item 1 we
select the sheet containing the market share problem.

In Item 2 we select the worksheet itself. This exposes the worksheet's events, and in Item 3 we
select the Change event.

This puts an empty change event macro in the worksheet. A change event fires every time the user
changes the contents of a cell on the worksheet. The following code is added to the change event
macro:

Private Sub Worksheet_Change(ByVal Target As Range)

If Target.Column = 2 And Target.Row < 3 Then
 Range("B14").GoalSeek Goal:=0, ChangingCell:=Range("B8")
End If

End Sub

Excel passes a range object called Target to the macro. It contains information about the changed
cell including column and row properties. The range object has an Address property, but since we are
interested in two cells we use Column and Row to decide if the changed cell is B1 or B2. If it is, we run
Goal Seek. If not, we don't.

The statement that runs Goal Seek answers the questions the Goal Seek dialog asks. We are still
asking for cell B14 to be changed to zero by changing B8.

With this code in place the worksheet will update every time either retention rate changes.

9.2. The Solver

Goal Seek has some limitations. It does not have a way to keep results reasonable. You could get a
solution that includes spending a negative amount of time on a project or sending half a person to St
Louis. And sometimes one value is not enough.

For more complicated problems we use the Solver. The Solver is on the Tools menu . If it is not
there, go to Add-Ins (also on the Tools menu) and be sure it is checked.

The biggest difference from Goal Seek is the Solver's ability to find more than one value.

9.2.1. Finding Two Values at Once

I can buy three apples and two oranges for $2.75. I can buy one apple and four oranges for $2.50.
What are the unit prices of apples and oranges?

The model for this problem is in Figure 9-16.

Figure 9-16. The model for the two price problem

This sheet allows the costs and quantities to be changed. There is only one formula and it returns a
zero when the prices of apples and oranges meet the requirements.

We now activate the Solver by selecting Tools Solver, and set the problem up as in Figure 9-17.

Figure 9-17. Using the Solver on the two price problem

This problem is solved similarly to using Goal Seek. We have a target cell and a target value. The
difference is that we can tell Solver to change both prices at once. The result is shown in Figure 9-18.

Figure 9-18. The solution to the two price problem

Apples cost $0.60 and oranges $0.48.

9.2.2. Regression with the Solver

The Solver also lets you try different combinations easily. Suppose we need to build a model that
predicts billable minutes on a network. We have several metrics that could be used to predict this
value, but we don't know which ones give the best results. We could handle this as a typical
regression problem, but we can also use the Solver to quickly try different combinations.

The data available is shown in Figure 9-19.

Figure 9-19. The data for the billable minutes problem

Column A contains the value we want to predict. We can use any combination of the other data items.
There are 242 rows of data on the sheet.

A calculation area is in columns G-M of the same sheet. It is set up as in Figure 9-20.

Figure 9-20. The calculation area for the billable minutes problem

We are going to predict billable minutes by multiplying some or all of the metrics by a weight. Then
we sum the products along with an intercept value, just like a normal regression problem.

The formula in G2 multiplies the first value in column B (Europe) by the weight in G1. This formula fills
across to column K and down to row 243.

In L2 the products on row two are summed with the value in L1. This gives the prediction for the row.
This is an estimate of the value in A2. This formula fills down to row 243.

The array formula in cell M2 is the objective function. It is the average difference between the
predictions in column L and the actual values in column A. We use the ABS (absolute value) function
because all error is equally bad, high or low.

With the calculation area built, we use the Solver to set the weights as in Figure 9-21.

Figure 9-21. Using the Solver on the billable minutes problem

The target cell is M2, our objective function. In this case we are not setting the target sell to a specific

value. We just want the average error as low as possible, so we select minimum instead of specifying
a value.

The Solver is allowed to change the weights and the intercept in the range G1:L1. The Solver comes
up with the results shown in Figure 9-22.

The weights and intercept are set and the average error is 313,573. The weights in G1 and K1 are
high. This means the model is depending heavily on these values. The weight in H1, in contrast, is
low, so low that it is probably doing nothing useful. The Solver lets us test this premise easily. I set
the weight in H1 to zero and re-run the Solver with the settings shown in Figure 9-23.

Everything is the same except the By Changing Cells box now contains G1,I1:L1. It skips cell H1. We
re-run the Solver and get the result in Figure 9-24.

Figure 9-22. The results for the billable minutes problem

Figure 9-23. Eliminating one of the metrics

Figure 9-24. The new results

Column H and its supporting data in column C are no longer part of the model. Setting their weight to
zero eliminates them. With less information, however, the model is doing a slightly better job. The
average error is now 313,566. Using this technique we can quickly test any combination of metrics.
You get the best results in this kind of problem if you can eliminate unnecessary metrics. They
confuse the process and tend to make predictions less accurate.

9.2.3. A Problem with Constraints

Constraints are rules. They let you set conditions the Solver has to meet while finding a solution.
They are common in business situations that have several possible courses of action.

A mixture problem is a classic example. We make oat bread mix. Our main ingredients are flour,
oars, and raisins. We have 150 lbs of flour, 80 lbs of raisins, and 90 lbs of oats. We make two
varieties of mix. Our standard oat bread mix contains no more than 30% flour and at least 30%

raisins, while oat bread lite mix has up to 50% flour and at least 20% raisins. We sell standard for
$3.49 a pound and lite for $2.99 a pound. We can sell the flour for $1.50 a pound and the raisins for
$1.75 a pound.

We want to make as much money as possible. How much of each product should we make? Or
should we sell some of the ingredients?

The model for this problem is shown in Figure 9-25.

Figure 9-25. The model for the mixture problem

For now all of the weights are zero. The Solver will adjust them later. In cell B7 the SUMPRODUCT
function multiplies the selling prices times the pounds used for each possible use, and sums the
products. This gives the total revenue and is the objective function.

Cells B8 and B9 simply add up the pounds of the ingredients in each selling possibility. Cells B12 to B14
contain total use constraints. The Solver needs to know how much of each ingredient is available.
These cells keep up with the total flour, raisins, and oats used. Cells B15 to B18 contain rules. The
upper limit for flour in the lite mix is 50%. So flour cannot be more than 50% of the weight of this
product. The total weight is the sum of the weights of all three ingredients. This, then, is the rule:

Flour <= .5 x (Flour + Raisins + Oats)

This form will not work with the Solver. We have to express one side of the equation as a number.
Therefore, multiply the .5 through the right side::

Flour <= .5Flour + .5Raisins + .5Oats)

Next we subtract Flour from both sides, resulting in:

0 <= -.5Flour + .5Raisins + .5Oats)

The weight of flour used in the lite mix is in cell D4, raisins in E4, and oats in F4. The Excel version of
the equation is:

0 <= (-.5*D4) + (.5 * E4) + (.5 * F4)

The entry in cell B15 is:

=(-.5*D4) + (.5 * E4) + (.5 * F4)

We tell the Solver this value must be less than or equal to zero.

The other rules (in cells B16 - B18) work the same way.

There will also have to be a constraint on each cell in the range B4:I4. These are the pounds used and
we need to tell the Solver that these values cannot be negative.

Now we are ready to use the Solver. We start as in Figure 9-26.

Figure 9-26. The Solver in the mixture problem

The setup starts like the other problems. The objective is to maximize the target cell (B7) by
changing cells B4:I4. Next, we enter the constraints by clicking the Add button. This displays the
dialog shown in Figure 9-27.

Figure 9-27. Adding the constraints

The first constraint is on the total pounds of flour used in cell B12. This must be less than or equal to
150 lbs, since that's all we have. We click the Add button rather than OK to go on to the next
constraint and make all the entries in Table 9-1.

Table 9-1. Constraints for the mixture problem

B12 <= 150

B13 <= 80

B14 <= 90

B15 <= 0

B16 <= 0

B17 <= 0

B18 <= 0

B4 >= 0

C4 >= 0

D4 >= 0

E4 >= 0

F4 >= 0

G4 >= 0

H4 >= 0

I4 >= 0

When the last constraint is entered we press OK, bringing up the Solver display. Next we click the
Options button, which displays the dialog in Figure 9-28.

Figure 9-28. The options dialog

This is a linear problem. The objective function is the sum of products. Nothing is raised to a power,
and there are no IF functions or other nonlinear calculations. So, we check Assume Linear Model. This
lets the Solver run a little faster on this problem, but it is not required. If you are not sure about a
model, it is best to leave this alone. We also click on Save Model. We entered a lot of constraints and
we want them saved. The Save Model dialog will ask for a place to put the model. I entered K1 and
then closed the Options dialog. This brings the main Solver dialog back. Then I clicked Solve,
resulting in Figure 9-29.

Figure 9-29. Solver results for the mixture problem

The model is in cells K1:K18, and I can reload it from the options dialog if I need to. The Solver has set
the values in cells B4:I4 to a combination that results in revenue of $981.80. We will use all of the
ingredients, making 270 pounds of lite mix and 50 pounds of standard.

The mixture for the lite product is: flour 135 lbs, raisins 65 lbs, and oats 70 lbs. The standard mixture
is: flour 15 lbs, raisins 15 lbs, and oats 20 lbs.

9.2.4. Zero/One Problem

You can tell the Solver what kind of answer you want. Some problems can only be answered by an
integer. You cannot schedule half of an airplane on a route, even if it would save money. Sometimes
the answer needs to be yes or no, and this is called a zero/one problem .

We are making a weekly schedule for a salesman who has seven customers. All the sales calls
require travel and the customers are different distances away. Travel costs $0.90 per mile. Travel
speed is 50 miles per hour, and we can only schedule 40 hours of travel time per week. We know how
much each customer will spend if the salesman calls on them. We need to come up with the schedule
that will make the most money.

This is a zero/one problem because for each customer it is a yes or no question. We model the
problem as in Figure 9-30.

Figure 9-30. The model for the zero/one problem

The hours for the potential calls are calculated based on half the travel speed because it is a round
trip. Call cost is just the miles multiplied by the cost per mile.

Cells F3:F9 are all 0. This means no sales calls are scheduled yet. When a call is scheduled, the 0 in
that row is changed to 1. These are the cells the Solver will be allowed to change.

The values in the range H3:J9 are the sales potential, cost, and hours all multiplied by the yes/no
value for the row. So, if the call is not scheduled they are 0. The profit is the sum of the sales minus
the costs for the scheduled calls. This is the objective function for the problem. The Solver setup
starts as shown in Figure 9-31.

The target cell H3 is to be set to a maximum value by changing the values in cells F3:F9.

Figure 9-31. The Solver setup for the salesman problem

Next we enter the constraints. There is only one rule. Hours cannot be more than 40. We click Add
and enter the rule as in Figure 9-32.

Figure 9-32. Adding the hours rule

Cell J11 contains the total hours for the scheduled calls, and its value must be less than or equal to 40.

We also need to enter a constraint for each cell in the range F3:F9. These are yes/no values and can
only be 0 or 1. These constraints are entered as shown in Figure 9-33.

When "bin" is selected in the drop-down list, the constraint is entered. If we wanted an integer value
we would select "int."

After the constraints are added we save the model. We do this as before, by going to the Options
dialog and clicking Save Model. The address for the model is N1.

Figure 9-33. Adding a zero/one constraint

We return to the Solver dialog and click on Solve. The Solver returns results shown in Figure 9-34.

Figure 9-34. Solver results for the zero/one problem

Our most profitable schedule is to call on customers three and four. This results in a 34.48 hour travel
week and a profit of $3824.20.

9.2.5. Running the Solver with a Macro

If this problem needs to be solved every week, it would be helpful to build a macro to run the Solver.
Start by going to the Visual Basic Editor, either by way of the Tools Macro Visual Basic Editor
menu or by pressing Alt-F11. Then enter the following code:

Sub RunTheSolver()
 SolverLoad LoadArea:="N1:N11"
 SolverSolve UserFinish:=True
End Sub

The macro is named RunTheSolver. We made things easy by saving the model on the worksheet. We
don't have to tell the Solver what to do, just where the model is. The model is saved in the range
N1:N11, which is the parameter for the SolverLoad statement.

The SolverSolve statement uses the UserFinish:=True option. This prevents the end dialog from
displaying when the Solver finishes, making the process completely automatic.

We return to the worksheet, and add a button from the Forms toolbar as shown in Figure 9-35.

Figure 9-35. Adding a button

If this toolbar is not visible, go to the View Toolbars and be sure the Forms toolbar is checked.
Drag and draw a button and the Assign Macro dialog will display. Click on the RunTheSolver macro.
The button will still be selected and you can highlight the button and change its caption to "Solve".

Suppose the assumptions have changed. With the rising price of gas we are now paying $1.75 per
mile. To help offset this cost increase we are now assuming a travel speed of 60 miles per hour
instead of 50.

We change the Cost per mile and Travel Speed in cells B12 and B13 and click our Solve button,
resulting in the display in Figure 9-36.

Figure 9-36. Running the Solver with a macro

There are no dialogs. The new schedule just appears. With the new assumptions we now schedule
three customers (numbers 2, 3 and 6) instead of two, and the profit goes up slightly.

9.2.6. Common Problems with the Solver

Solver problems are often complex and sometimes the Solver will fail. In most cases you can fix the
problem if you understand what's wrong.

The Solver changes values on the sheet while trying to find the best solution. If these values can
cause an error in a calculation anywhere on the sheet, you may get the message in Figure 9-37.

Figure 9-37. A calculation error with the Solver

This could mean the Solver has tried a value of zero that is used in a formula as a divisor. This will
cause a divide by zero error . Another possibility is the Solver has tried a negative number for a value
that cannot be negative.

If you get this error, review your calculations. It may be necessary to change the model or the Solver
options.

Another possible problem is shown in Figure 9-38.

Figure 9-38. The Solver fails to find an answer

In this case the problem is just too hard and the Solver can't find the answer. If this happens rewrite
the objective function. That lets the Solver try a different approach.

In a problem like the regression model in Figure 9-20, you may get this error if there are a large
number of columns. The objective function in that problem is:

{=AVERAGE(ABS(A2:A243-L2:L243))}

This formula calculates the average error and is what we want to minimize. Another way of looking at
the problem would be to maximize the correlation between the actuals and the predicted with this
formula:

=CORREL(A2:A243,L2:L243)

If the first formula is in cell A1 and the second is in cell A2 you can combine these two approaches with
this:

{=(1- A2) * A1

This is a more complicated function and it adds no value in theory. But it gives the Solver a different
approach to the problem and often works in this situation.

Another error is shown in Figure 9-39.

Figure 9-39. An impossible problem

Here we have mutually exclusive constraints. In the problem modeled in Figure 9-25, if I enter a new
constraint telling the Solver that cell B4 must be greater than 200, I will get this error. This new
constraint tells the Solver that the solution must include the sale of 200 lbs of flour while other
constraints tell it that there are only 150 lbs of flour available.

This is impossible and there is no solution that meets all the constraints. If you get this error, go back
and review the constraints. One has been entered wrong, the problem has not been modeled
correctly, or it is just impossible to do what you are trying to do.

Another common, but less serious, situation occurs when the Solver reaches its time or iteration
limit. The iteration limit dialog is shown in Figure 9-40.

The Solver looks for a solution by making small changes in the cells. If a change improves the
solution, the Solver makes another small change in that direction. Each cycle of changes is called an
iteration. The maximum number of iterations allowed is set on the Options dialog shown in Figure 9-
28. If you get this error or the similar Max Time error dialog, it means the problem is difficult and it is
taking the Solver a long time to find a solution. Usually you can just click continue, but if it keeps
happening you may need to adjust the model.

Figure 9-40. The iteration limit

9.2.7. Applications

The Solver and Goal Seek can be used in Excel applications. None of the applications in the book do
this, but you can include either of these tools on a Workarea sheet. The macros in this chapter show
how to run the tools. You would have to decide how and when to trigger the macros. They could be
run from a button or tied to a change on a worksheet as we did in this chapter, or perhaps run when
the workbook opens.

Chapter 10. Importing Data
Data is the raw material for everything Excel does, and the first step in any job is getting the data
onto a worksheet. Excel can import data from almost any kind of data source, and in this chapter we
look at the most common data import situations with Excel.

The applications in this book start with the data already on a worksheet called Data. This chapter will
demonstrate ways to build a backend process to capture the data and update the Data sheet in the
applications.

10.1. Text Files

Text files are the simplest kind of data to import. These files are common and can come from any
kind of system. In some cases older mainframe systems have produced a file for years and an Excel
application uses the file as input. When the time comes to rewrite the mainframe application it is not
difficult for a modern server to create the same file. It is common to find an old data-sharing
relationship based on text files even with today's technology. The advantages of this data-sharing
scheme are simplicity, size, and stability. Excel understands two kinds of text files.

10.1.1. Fixed Length Files

In a fixed length file, every record or row has the same number of characters. Each data element,
such as a name or phone number, has a fixed number of characters. If a name field is set up with a
length of 25 characters and a name comes in that is too long, the extra characters are lost. If the
name is less than 25 characters long, blanks are inserted to make up the difference. This kind of data
storage is typical of older systems and dates from the era of punch cards and accounting machines.
You are not likely to see a new process being built with this kind of file, but there are plenty of older
systems that still use them.

In this chapter our sample data is stock prices. The data includes stock symbol, date, open, high,
low, close, and volume. A fixed length version of this data is in a file named ch10_FixedLen.txt and is
located on my C drive in the My Documents folder.

To import the file, I select Data Import External Data Import Data, then navigate to and
select the file. If the filename does not show up in the dialog, I need to be sure the .txt file type is
selected as shown in Figure 10-1.

Figure 10-1. Selecting the text file type

Once the file is selected, the text import wizard starts and the dialog in Figure 10-2 is displayed.

This is a fixed length file and the Fixed Width option is selected. If I wanted to skip rows at the top of
the file containing heading information, I could indicate the row number to start the import at. The
display area at the bottom shows the contents of the file. It is easy to see that the file is fixed length.
Clicking Next brings up the dialog in Figure 10-3.

In this step the data is mapped by position. Excel tries to map the file for you and in most cases it will
be correct. The lines and arrows can be moved around and changed manually, allowing you to map
the file anyway you like. Once the mappings are correct, clicking the Next button brings up Step 3 as
in Figure 10-4.

Figure 10-2. Text import - Step 1

Figure 10-3. Text import - Step 2

Here you can select a data type (general, text, or date) for each data item if necessary. In most

cases Excel will get it right and you won't have to do anything. You can also tell Excel not to import
some of the data items. Select the data items one by one by clicking on the data or heading in the
Data preview area. The Advanced button displays the dialog shown in Figure 10-5.

Figure 10-4. Text import - Step 3

Figure 10-5. Controlling the display of numeric data

This dialog gives you control over how numeric information is handled. It defaults to the normal

convention for numbers, but allows you to specify a non-traditional numeric format if needed. When
all the settings are right, click on Finish (shown in Figure 10-4), and the dialog in Figure 10-6 is
displayed.

Here we set the cell to receive the import. In this case we are putting the data on the active sheet,
but there is an option to create a new sheet to hold the data.

Figure 10-6. Finishing the text import

Excel's data import tool is flexible and makes working with most text files easy. But, its real power is
in the Properties option on this dialog. Clicking the Properties button reveals Figure 10-7.

Figure 10-7. The Properties dialog

The options allow you to control how data is put on the sheet and what happens to the older data
that is already there. If you are importing data for analysis or a one-time job, these options may not
help much. But if you are building an application that needs to be updated periodically, these features
can make the job easier. The application in Chapter 8 monitors a queue. Its data is a snapshot taken
at a point in time. As work progresses through the day it needs to refresh its data to stay current.
Building the logic to do this is complex, and in Chapter 8 we didn't consider that problem.

Suppose the data for the application is exported by another system as a text file every 10 minutes.
We would want the application to import new data every time it is started and every 10 minutes while
it is open.

The settings in Figure 10-7 let you do exactly that. In the Refresh section I tell Excel to refresh the
data every ten minutes and to refresh on file open. The refresh remembers all the settings in the
import and handles resetting the sheet automatically. The application is designed with a data sheet
that holds all the data and does nothing else. This makes it easy to control the flow of new data into
the application using the import properties.

How cool is that? I don't have to write any code; I don't have to change anything in the application. I
just set up the import and refresh options on the data sheet and it's done.

All of the applications in this book use a data sheet like the one in Chapter 8, and all of them could be
linked to text files using this technique.

10.1.2. Delimited Files

Delimited files are like fixed length files except the data items are separated by a special character.
The most common choices for the special character are comma and tab, but any character can be
used.

Delimited files are more modern than fixed length, and are more likely to come from a PC or server
than a mainframe. They take up less space and are easier to handle in VBA.

Some text files use a text qualifier to mark the beginning of string data. But files coming from older
systems often do not use this convention, and for these files the delimiter can be a problem.

It is critical to select a character that absolutely cannot turn up in the data. If it does, the delimiter
occurs too many times on a line and the import process loses track of where it is in the data. The rest
of the file will be imported out of place. Comma delimited files that contain names and addresses are
susceptible to this problem. If there is any doubt, it is best to use a really unusual character as the
delimiter, like | or `.

The import process is the same for delimited files except for Step 2, in which instead of mapping the
file you specify the delimiter as shown in Figure 10-8.

Figure 10-8. Telling Excel what delimiter to use

Here I am importing a delimited version of the same stock file. The delimiter is a comma, but the
dialog lets me select any character. The rest of the process is the same, including the ability to

control data refresh with the properties dialog.

10.2. Databases

The data for an Excel project can come from a database. In newer systems, both client server and
web-based, SQL databases are the most common data storage tool. The data for any of the
applications in the book could come from such a database. Excel can import data from databases and
allows you to filter and sort the data during the import process.

To import data from a database start by selecting Data Import External Data New Database
Query. This brings up the dialog in Figure 10-9.

This dialog lets me choose a data source to import from. I have an Access database containing the
same stock data we have been using. The database is named ch10.mdb.

Since it is an Access Database, I could click on the MS Access Database choice. But I can also set it
up as a New Data Source. This option allows you to import from other kinds of databases such as
Sybase, Oracle, SQL Server, and many others.

Clicking OK with New Data Source selected moves us to Figure 10-10.

I named the new data source Stocks. In the future, Stocks will appear as an option in the Choose
Data Source dialog (Figure 10-9). In the driver selection box I choose Access. If you want to import
from a different kind of database you would tell Excel what kind it is here. There is a list of the
available drivers. If the PC you are working on has never connected to a database like the one you
are going to use, you may need to load the driver.

Figure 10-9. Importing from a database

Figure 10-10. Establishing a new data source

The next dialog, Figure 10-11, allows you to tell Excel where the database is.

If the database is on a server, you use this dialog to tell Excel what server to look on. In cases where
the data is available on a network or local drive, as in this case, you click Select. This brings up a
dialog allowing you to navigate to the database, as shown in Figure 10-12.

Once the database is selected, the dialog in Figure 10-13 appears.

Figure 10-11. Locating the database

Figure 10-12. Selecting the database

In this step we select the columns to include in the import. I selected all of them, but you can select
only the ones you want. This also lets you control the order that they are imported in.

The dialog in Figure 10-14 provides a way to filter the data.

The text file imports did not have a way to filter the stock data, but here it is easy to do. If I want to
limit the import to stocks with symbols starting with the letter C, I click on the Symbol in the "Column
to filter" listbox. Then I fill the dialog out as shown in Figure 10-15.

You can link conditions with and/or, and you can use any mixture of columns. The next dialog is
shown in Figure 10-16.

Figure 10-13. Selecting the columns

Figure 10-14. The filter data dialog

Here I am telling Excel to sort the data by Date. The Finish page of the dialog comes up next, as in
Figure 10-17.

Clicking Finish with the "Return Data to Microsoft Excel" option checked brings us to the final dialog in
Figure 10-18.

This is just like Figure 10-6. You specify a location for the data and can modifiy other options by
clicking the Properties button. As with importing from a text file, you can control data refresh and
other properties. So, if the application in Chapter 8 was getting its data from a database, I could build
the import once and set the refresh to run every 10 minutes and at open. I would not need to write a
macro or change anything in the application.

Figure 10-15. Filtering the data

Figure 10-16. The sort dialog

10.2.1. Linking Tables

Sometimes databases are more complicated, and the information may be in more than one table.
Chapter 7's application had data for items in a queue. Each item's information included an employee
number but not an employee name. The names were in a separate list on the Workarea sheet.

Figure 10-17. Finishing the query

Figure 10-18. Putting the data on the worksheet

I have an Access database with two tables based on the data from that application. One table
contains the items in the queue and is called Items. The other table is called Agents and contains the
agent employee number and name.

We can get Excel to link the tables during the data import. This eliminates some of the complexity of
the application. The data source is set up as before, but when we get to the Choose Columns dialog
in Figure 10-19 we have more choices.

I start in the Items table and select all the columns. This can be done quickly by selecting the table
name, Items, and clicking the arrow button. Next I click on the Agents table and select the Name
column by either double-clicking or using the right arrow button. This is shown in Figure 10-20.

The employee number column is named EmpNum in both tables, and it is the primary key in the
Agents table. Therefore, Excel will link the tables automatically. We can see the linkage if we go to
Microsoft Query. When the finish dialog comes up, select "View data or edit query in Microsoft Query"
and Figure 10-21 displays.

Figure 10-19. Choosing items from two tables

Figure 10-20. Add the Name column

The link between the tables is on the column named EmpNum. It is represented by a line between
the tables. If the names are different, the link will not happen automatically. In this display you can
establish the link manually by clicking on the column name in one table then connecting it by
dragging and dropping it on the correct column in the other table.

Figure 10-21. Microsoft Query

You can set criteria, which are the same as filters, on this display and even convert the query into its
equivalent SQL statement. But the nice thing about this process is that you do not have to deal with
SQL directly. Excel and Query take care of that for you.

From the File menu select "Return data to Microsoft Excel". This brings up the dialog in Figure 10-18,
where you can select the cell to receive the data and get to the Properties dialog.

10.3. XML

Extensible Markup Language (XML) is another potential data source. It is basically a set of rules for
storing data and information about the data. It can include formatting or relationship rules, and XML
can even describe an entire Excel document. You are more likely to get XML data from Internet-
based applications, but it can come from any type of system and is growing in popularity.

XML handling was enhanced in the professional version of Excel 2003. But older versions can import
some XML files. Remember, Excel is limited to a two-dimensional view of information. XML is not. If
the XML data is too complex to be represented as rows and columns Excel will have trouble with it.

I have created an XML file with the stock data used in the previous examples. The first few lines of
the file look like this:

<?xml version="1.0"?>
<Stocks>
<Stock>
<Symbol>CEC</Symbol>
<Date>10/03/2001</Date>
<Open>32.55</Open>
<High>35.5</High>
<Low>32.53</Low>
<Close>34.5</Close>
<Volume>3809</Volume>
</Stock>
<Stock>
<Symbol>CEC</Symbol>
<Date>11/01/2001</Date>
<Open>38.65</Open>
<High>38.95</High>
<Low>38</Low>
<Close>38.54</Close>
<Volume>1221</Volume>
</Stock>

An XML file includes descriptive information called tags. This makes XML files larger and a little less
efficient to handle. The advantage with XML is that the data is fully described; there are no questions
about delimiters or mapping. XML was developed to make information sharing between applications
easy.

There are several ways to get XML data into Excel, but the easiest to use is the import found on the
Data XML menu. This allows you to navigate to the XML file you want to import. When you
double-click on the file, the dialog in Figure 10-22 appears.

Figure 10-22. Create a schema

XML files can have a data description and handling instructions called a schema. This file doesn't have
one and Excel is telling us that it will create one to use with the file. You may want to disable this
dialog by checking the "do not show this message" box.

Next you see Figure 10-23.

Unfortunately, the Import dialog doesn't give you a way to schedule a refresh on the data, but there
is a refresh XML data function on the XML submenu. A scheduled refresh can be built in VBA using
the application object's ontime event. It takes several pieces of code to get this to work. I imported
my XML data into cell A1 on a sheet named XML. This code will update the data every five minutes:

Public Sub XMLRefresh()

Dim MySheet as String

Figure 10-23. Completing the import

' Turn off screen updating so the user will not
' see all the jumping around.

Application.ScreenUpdating = False

' Save the name of the active sheet. At the end of
' the update we will go back to this sheet.
MySheet = ActiveSheet.Name

' Go to the XML sheet. This is where
' the XML data is.
Sheets("XML").Select

' Select the cell we imported the data into.
Range("a1").Select

' Refresh the data.
ActiveWorkbook.XmlMaps("Stocks_Map").DataBinding.Refresh

' Establish a time five minutes in the future.
' We need to know this time in the sub that
' ends the process. So, RunTime is setup as a
' Public variable
RunTime = Now + TimeSerial(0, 5, 0)

' Schedule this macro to run in five minutes.
Application.OnTime RunTime, "XMLRefresh"

' Go back to the sheet we started on.
Sheets(MySheet).Select

' Turn screen updating back on.
Application.ScreenUpdating = True
End Sub

The variable RunTime needs to be available to another sub so it is declared as public in the declaration
sections at the top of the module, as follows:

Public RunTime

These two small subs are added to the workbook:

Private Sub Workbook_Open()
XMLRefresh
End Sub

Private Sub Workbook_BeforeClose(Cancel As Boolean)
On Error Resume Next
Application.OnTime RunTime, "XMLRefresh", Schedule:=False

End Sub

The first one runs when the workbook opens. It runs the refresh which in turn reschedules itself. The
ontime event will be there as long as Excel is running. So, if I close the workbook, five minutes later it
will reopen and run the refresh. Therefore, I need a way to stop the process when the workbook
closes. That is what the second sub does.

The import puts the data on a worksheet, and it can be used to feed data to an application or just
populate a sheet for ad hoc analysis.

The result is shown in Figure 10-24.

Figure 10-24. Imported XML data

Excel automatically puts the data in a list. The list feature includes a button by each heading that
allows you to sort or filter the data. There are also totaling features available on the Data List
menu. This menu also has a "Convert to Range" option allowing you to turn the list feature off if you
don't want to use it.

You can also open an XML document in Excel. The data opens in a separate workbook and the format
is less than ideal. But it works, and copying and rearranging the data is not difficult.

To use this approach, start with the File Open menu. Navigate to the XML file you want and
when you double-click on it, the dialog in Figure 10-25 appears.

Figure 10-25. Open an XML document

The three choices let you control how the data will be handled. If you open the documents as an XML
list, you get the same result as the import except the data will be in a separate workbook. The read-
only workbook option returns data that looks like Figure 10-26.

Figure 10-26. Read-only XML data

If you are not using Excel 2003 Professional or higher, this is your only option without using VBA. All
the data is there, but the headings include some XML tag information, the columns are arranged
alphabetically, and there are extra #agg columns added. The #agg columns are intended to make
duplicate data in columns easier to understand.

It is less than ideal, but you can build an application using this data, and it can be copied and
rearranged without much trouble.

The third option, the XML task pane, brings up the dialog in Figure 10-27.

This allows you to select which columns you want and to control the order. Once you select your
columns, you populate the sheet using Data XML Refresh XML Data, as shown in Figure 10-
28.

The result is a list in a new workbook containing your data.

Figure 10-27. The XML task pane

Figure 10-28. Putting data on the sheet.

Chapter 11. The Trouble with Data
When data is imported into Excel it brings its history with it. Mainframes store numbers and dates in
ways that are awkward for Excel. Text and report files can contain almost anything. Excel uses
numbers, dates, and text in the normal Windows format. This is great if you are importing from a
Windows data source, but when data comes from other systems there can be problems. Each piece
of data coming into Excel must be a number, a date, or text and Excel decides which it is. Too often
Excel gets it wrong. Cleaning up imported data is one of the most common and most complex
problems in Excel, and a task that must be completed for analysis to work reliably.

In this chapter we look at common problems with imported data. Excel has features that handle
some of these situations. In more complex or unusual situations, Visual Basic for Applications (VBA)
provides additional power.

11.1. Numbers

When is a number not a number? When it's text, of course. Numbers imported from a mainframe, a
text file, or lifted from a report often end up as text in Excel. If math functions do not work on a
column of imported numbers, some or all of them were imported as text.

Often the VALUE function will fix the problem. The VALUE function attempts to convert the contents of
a cell to a number. The value is returned if it is successful, and if not, a #VALUE! error is set.

In the example in Figure 11-1 the data is from a mainframe and the invoice amounts have been
imported as text. Cell B2 contains the formula =VALUE(A2). This formula is filled down to B16. Cells A18
and B18 contain =SUM(A2:A16) and =SUM(B2:B16). The formula in A18 does not work because Excel
does not know these are numbers. In column B the VALUE function has converted the text to numbers
and the SUM function in B18 works properly.

Figure 11-1. Numbers as text

Sometimes the problem is more complicated. In the next example some of the values are negative.
Our data source uses CR (Credit) to indicate the number is negative. Excel cannot handle this, so the
VALUE function will not help.

A custom function solves the problem. In this case the VALUE function has been replaced with the
custom function CleanNumber, which takes two arguments. The first is the text containing the
number. The second is the marker that tells when the number is negative. Figure 11-2 shows how it
is used.

CleanNumber uses the TextVersion string to build a second string containing only the valid numeric
characters. It then converts the second string to a numeric value. In this example the function is
entered as =CleanNumber(A11,"CR"). Here is the code for CleanNumber:

Function CleanNumber(TextVersion As String, NegMarker As String) As Double
'**
' This Function will eliminate all non-numeric
' characters from the string TextVersion and
' will return the value of the numeric part of
' the string. If the string NegMarker is
' present in TextVersion the value will be
' returned as negative.
'***

Dim NegValue, x As Integer
Dim OneByte, cleanText As String

'First we check for the NegMarker

If InStr(TextVersion, NegMarker) > 0 Then ' If NegMarker is found in TextVersion
 NegValue = -1 ' Set NegValue to -1
Else ' If NegMarker is not found
 NegValue = 1 ' Set NegValue to 1
End If

' Next we loop through TextVersion and check each character to see
' if it is numeric. Only the numbers are kept.

For x = 1 To Len(TextVersion) ' Loop for the length of TextVersion
 OneByte = Mid(TextVersion, x, 1) ' The character in TextVersion we
 ' are looking at now
 If IsNumeric(OneByte) Then ' If it is numeric
 CleanText = CleanText & OneByte ' put it on the end of CleanText
 End If
Next x

' CleanText now contains the value but still as a string.
' It can now be converted to a number. It is multiplied by
' NegValue so that negative values will be returned correctly.

CleanNumber = Val(CleanText) * NegValue
End Function

Figure 11-2. Numbers as text in non-standard format

You can add this function to your Excel project by selecting Tools Macro Visual Basic Editor.
You can also launch the editor by pressing Alt-F11. Just type or paste the code into the editor and the
CleanNumber function is ready to use.

The first line in the code starts with the word Function. This means the code can be used on the
workbook. Once this code in loaded into a project, the CleanNumber function works just like any other
workbook function. Not all macros are functions. If the first word was Sub instead of Function it
would be necessary to run the macro each time it is needed.

Sometimes even CleanNumber is not enough, though. Consider the example in Figure 11-3.

Figure 11-3. Complex numeric data as text

Here there is an account code in front of the invoice amount. The account code occupies four
characters at the beginning of each number. The CleanNumber function will return the wrong value if
used alone. The answer is to combine CleanNumber with the RIGHT workbook function. The formula in
B2 is =CleanNumber(RIGHT (A2,LEN(A2)-4),"CR"). We want to skip the first four characters. The RIGHT
function returns the right portion of the string starting at any position. In this case RIGHT starts at
position LEN(A2)-4. This value is four less than the length of A2, and the function will return all but the
first four characters. RIGHT function works inside the CleanNumber function.

If the unwanted characters were at the end of the string, the LEFT function would be used. The MID
function would also work and is the best choice if the important information is in the middle of the
string.

If you are dealing with this kind of problem, it is worth the effort to learn the LEFT, MID, and RIGHT
functions. Using them with VALUE or CleanNumber is a powerful tool for cleaning up dirty data.

Figure 11-4 shows how these functions work. The string in cell A1 is broken up into three parts using
LEFT, RIGHT, and MID. In all three, the first parameter is the source string. In the LEFT and RIGHT
functions the second parameter specifies the number of characters to be taken. The MID function has
three parameters giving the source string, starting position, and number of characters.

Figure 11-4. LEFT, MID, and RIGHT

11.2. Dates

Dates also cause problems. Excel understands dates and has a number of tools for working with and
displaying them. But when dates are imported, Excel may not recognize them. When this happens
they are stored as text strings . If a date will not format as a date or if functions like DAY or MONTH do
not work, the date was imported as text. The DATEVALUE function will solve the problem much of the
time. All of the text strings can be converted to a Windows date by DATEVALUE (see Table 11-1).

Table 11-1. Date formats handled by DATEVALUE

7/4/2004

January 24, 2004

Nov 12, 2001

2004-04-15

15 December 1999

07-04-04

15 Dec 1999

At times, however, more logic is needed. If the date is in an unusual order, such as 25-03-2001 (DD-
MM-YYYY), DATEVALUE will return a #VALUE! error. The LEFT, RIGHT, and MID functions can correct this
kind of problem.

Julian date is a feature of some older systems. The general form is YYYYDDD. The year is in the usual
four digit form (e.g., 2004), but the day is a three digit number indicating the day of the year.
September 8, 2003 is the 251st day of 2003 and would appear as 2003251. The DATEVALUE function
used with RIGHT and LEFT can convert a Julian date to a format that Excel can use.

If cell A1 contains the Julian date 2003251, the formula =DATEVALUE("12/31/" & LEFT(H1,4)-
1)+RIGHT(H1,3) will return the Windows date. This works by building a date for the last day of the
previous year, then adding the required number of days to it. DATEVALUE converts a date string, such
as 12/31/2002, to a Windows date. The formula uses "12/31/" & LEFT(A1,4)-1 to build the string.
LEFT(A1,4) is 2003. Then RIGHT(A1,3), which is 251, is added to it.

11.3. Reports

Sometimes it is necessary to get data from a report. Data in reports can have any format and can be
located anywhere. Some lines on the report will have no useful data and need to be skipped. This
problem can often be solved with VBA. No one macro works in every case, but in this section we look
at a general purpose macro for extracting data from reports . This macro uses settings that can be
changed to handle many report formats.

Consider the sample report in Figure 11-5. It is part of a larger report giving statistics for batters and
pitchers from various major league baseball teams. Suppose we need an Excel worksheet with the
team name in column A, the batter name in column B, batting average (BA) in C, At bats (AB) in D,
and runs batted in (RBI) in E. We are not extracting data about pitchers so we skip those lines.

We need to identify the lines containing information we want. Start by viewing the report in Notepad
and inserting lines to make counting positions easy. The inserted lines are marked off in five
character sections with a number indicating the tens. In this example two copies of this line have
been inserted, as shown in Figure 11-6.

Using these lines as a guide, it is easy to see that the string TEAM starting in position 1 tells us to
expect the name of the team starting in position 6 of the same line. Note that lines with batter
information have a period in position 14. The data we want from those lines are in the positions shown
in Table 11-2.

Figure 11-5. Baseball stats report

Figure 11-6. Inserting Position Counting Lines

Table 11-2. The data positions

Data item Starting column Length

Batter Name 1 13

Batting Average 14 4

At Bats 35 3

Run Batted In 60 3

We need to save a row when a line with a period on position 14 has been processed. Lines that do not
have a period in position 14 or the word TEAM in position 1 have no data we are interested in and are
ignored.

The following code will read the report and build a file that can be imported or copied and pasted into
Excel. The way it behaves is determined by settings that can be changed for other reports. This
macro is not a function and must be explicitly run from the Tools Macro Macros menu.

Sub ReportExtract()
'**
' This is a general purpose macro for extracting
' data from reports.
' ***

' These collections are storage areas for the information
' the macro will use to extract and hold the data.
Dim FindString As New Collection
Dim FindLocation As New Collection
Dim ItemStart As New Collection
Dim ItemLength As New Collection
Dim ItemString As New Collection

Dim InputFile, OutputFile, WriteFlag, ShellFlag, Del As String
Dim InLine, OutLine, MyString, StrItemNum As String
Dim ItemNum, FlagLocation, x As Integer
Dim RetCode As Variant

On Error GoTo Err_Rtn ' If something goes wrong the macro will jump to Err_Rtn.

' InputFile contains the name and full path of the report file
InputFile = "C:\FolderName\ReportFile.txt"

' OutputFile is the name and path of the file that will be
' created with the extracted information. Data from this
' file can be transferred into Excel via copy paste or
' by importing the file.
OutputFile = "C:\FolderName\DataFile.txt"

' The macro needs to know when to write a line to
' the Output file. In this example a line is
' written when the current line in the input file contains
' a period in position 14.
WriteFlag = "."
FlagLocation = 14

' Del is the delimiter that will seperate the data items.
' A comma allows us to create a csv file as the output.
' This kind of file can be opened by Excel. If any of the
' data could contain a comma a different delimiter must be

' used.
Del = ","

' If you want the macro to automatically open the Output file
' set this value to Y.
ShellFlag = "Y"

' In this section each data item to be extracted is described.
' The FindString entry is the identifying string for the line
' that contains the data.

' FindLocation gives the position in that line that the FindString
' is at. So, the first entry below the line is identified by TEAM
' starting in postion 1.

' ItemStart and ItemLength give the start position and length of the
' data item to be extracted.
' There can be any number of these.

' Data item one
FindString.Add Item:="TEAM ", key:="1"
FindLocation.Add Item:=1, key:="1"
ItemStart.Add Item:=6, key:="1"
ItemLength.Add Item:=50, key:="1"

' Data item two
FindString.Add Item:=".", key:="2"
FindLocation.Add Item:=14, key:="2"
ItemStart.Add Item:=1, key:="2"
ItemLength.Add Item:=13, key:="2"

' Data item three
FindString.Add Item:=".", key:="3"
FindLocation.Add Item:=14, key:="3"
ItemStart.Add Item:=14, key:="3"
ItemLength.Add Item:=4, key:="3"

' Data item four
FindString.Add Item:=".", key:="4"
FindLocation.Add Item:=14, key:="4"
ItemStart.Add Item:=35, key:="4"
ItemLength.Add Item:=3, key:="4"

' Data item five
FindString.Add Item:=".", key:="5"
FindLocation.Add Item:=14, key:="5"
ItemStart.Add Item:=60, key:="5"
ItemLength.Add Item:=3, key:="5"

' After the last item is setup the next item in
' the FindString collection is set to end of job
FindString.Add Item:="end of job", key:="6"

' That ends the setting for the macro

' Open the files
Open InputFile For Input As 1
Open OutputFile For Output As 2

' Start a reading loop for the input file
While Not EOF(1)
 Line Input #1, InLine ' Read a line from the input file

 ItemNum = 1 ' Start looking for items with item number one
 StrItemNum = Trim(Str(ItemNum))
 ' This loop checks for each data item and each data item found
 ' on the current line is stored in ItemString().
 While FindString(StrItemNum) <> "end of job"
 If Mid(InLine, FindLocation(StrItemNum), Len(FindString(StrItemNum))) = _
 FindString(StrItemNum) Then
 On Error Resume Next
 ItemString.Remove (StrItemNum)
 On Error GoTo Err_Rtn
 ItemString.Add Item:=Trim(Mid(InLine, ItemStart(StrItemNum), _
 ItemLength(StrItemNum))), key:=StrItemNum
 End If
 ItemNum = ItemNum + 1
 StrItemNum = Trim(Str(ItemNum))
 Wend

 ' All of the data on the line has now been extracted
 ' Next we check for the WriteFlag.
 If Mid(InLine, FlagLocation, Len(WriteFlag)) = WriteFlag Then
 ' If the WriteFlag is on the current line
 ' We build the output line by putting all of the data items
 ' together separated by Del (the delimiter).
 For x = 1 To ItemNum - 1
 MyString = ""
 On Error Resume Next
 MyString = ItemString(Trim(Str(x)))
 On Error GoTo Err_Rtn
 OutLine = OutLine & MyString & Del

 Next x
 Print #2, Left(OutLine, Len(OutLine) - 1) ' Print the line skipping the
 ' last delimiter
 OutLine = "" ' Clear out the Outline so it will be ready for the
 ' next write.
 End If

Wend
Close ' Close all files
If ShellFlag = "Y" Then ' If the ShellFlag is set to "Y"

 If Right(OutputFile, 4) = ".csv" Then ' If the output file is a CSV file

 Workbooks.Open Filename:=OutputFile ' Open the workbook
 Else
 RetCode = Shell("notepad.exe " & OutputFile, 1) ' or shell it in notepad
 End If
End If

GoTo TheEnd ' Jump to the TheEnd

' If an error has occurred this code will run.
Err_Rtn:
MsgBox (Error) ' Display the error.
Close ' If any files are open close them.
Resume TheEnd ' Continue to TheEnd.

TheEnd:

End Sub

This macro uses collections to store the extraction parameters. This could also be done using arrays.
Arrays are easier to code, but they have to be dimensioned with a set number of members. Using
collections avoids this problem, but there are limited functions with collections and error trapping has
to be handled carefully.

Sometimes it is necessary to extract data from the same report periodically; e.g., a monthly sales
report. Once the macro is updated with the setting for that report, the macro can be re-saved with a
different name. It is important to remember the macro will only be available if the workbook
containing it is open. If several versions of this code are required, it might be a good idea to create a
workbook just for extracting data from reports.

11.4. Equivalence

My name is Gerald Knight. Gerald D Knight is also my name. They are not equal, but since they both
mean me, they are equivalent. This happens with the names of people and businesses, with
addresses, and with common words like state names or days of the week. When data is entered by
hand or comes from more than one computer system, equivalence problems can make it impossible
to use.

There is a solution. When you use a spellchecking program, one of the features is word suggestion .
If the program does not recognize the word you typed, it suggests similar words. So the spellcheck
program knows how to measure the similarity between two strings of characters. It measures
equivalence.

We define equivalence as the percentage of characters from one string that occur in another string in
the same order. And we can build a custom Function that does the same thing in Excel.

The details of the algorithm are beyond the scope of this book. Basically, it builds a matrix with one
string across the top and the other down the left side. The code counts places in the matrix where
the letters for both words are the same. It works its way through the strings backwards, and keeps
up with the number of matches as it goes. Here is the code:

Public Function Str_Comp(st1 As String, st2 As String) As Double

Dim MtchTbl(100, 100)
Dim MyMax, ThisMax As Double
Dim i, j, ii, jj As Integer

' Remove leading and trailing spaces and
' set to proper case
st1 = Trim(Application.WorksheetFunction.Proper(st1))
st2 = Trim(Application.WorksheetFunction.Proper(st2))

' mymax will be the number of letters in st1 that
' occur in st2 in the same order
MyMax = 0

For i = Len(st1) To 1 Step -1
 For j = Len(st2) To 1 Step -1
 If Mid(st1, i, 1) = Mid(st2, j, 1) Then
 ThisMax = 0
 For ii = i + 1 To Len(st1)
 For jj = j + 1 To Len(st2)
 If MtchTbl(ii, jj) > ThisMax Then
 ThisMax = MtchTbl(ii, jj)
 End If

 Next jj
 Next ii
 MtchTbl(i, j) = ThisMax + 1
 If ThisMax + 1 > MyMax Then
 MyMax = ThisMax + 1
 End If
 End If
 Next j
Next i

' divide mymax by the length of st1
' to get the percentage match
Str_Comp = MyMax / Len(st1)
End Function

This is a function so it can be used on the spreadsheet. The arguments are both strings. The function
returns the percentage of characters in the first string that occur in the second string in the same
order.

The formula =Str_Comp("afce","abcdefghi") returns a value of 0.75. There are four characters in
"afce" and three of them (a, c, and e) are in the second string in the same order. The letter f is in
both strings but not in the same order. The Str_Comp function processes string in proper case. So it
considers the first character of a word to be uppercase and the others to be lowercase.

Figure 11-7 shows how this function is used. The entry in A1 has to be a month, but the data was
entered by hand so we cannot be sure what will actually be in the cell. In the range E1:E12 are the
correct names of the months. The entry in A1 has to be equivalent to one of these. The formula in F1
is =Str_Comp(A$1,E1). This is filled down to F12. The values in F1:F12 are the equivalence scores
between A1 and each of the months.

Figure 11-7. Working with the Str_Comp function

In this example the match with November is 100%. This is because all of the characters in A1 occur in
November in the same order. The formula in cell B4 is =MAX(F1:F12). This is the value of the best
match we got. Cell B5 is =MATCH(B4,F1:F12,0). This tells us which item in the range F1:F12 contains
the maximum value. In this case it is 11 because the maximum value (1) is in row 11. Cell B6 checks
to be sure the maximum value only occurs once in F1:F12. If the maximum value is in the range
more than once, we cannot decide which month is indicated since we have a tie. The formula is
=COUNTIF(F1:F12,"=" & B4). We only have a good answer if this value is 1.

Cell B1 has the final answer. It contains =IF(B6=1,INDEX(E1:E12,B5),"Unknown"). If the value in B6 is 1,
this formula retrieves the name of the month from the range E1:E12. If B6 is not 1, Unknown is
displayed.

This technique can be used to clean up manually keyed data or data coming from an OCR operation.
It can help when sets of data from different systems are to be merged, such as two customer files.
Variations in addresses and names can be resolved.

Equivalence problems can involve large amounts of data. Merging data from different systems can
result in thousands of possible matches. The Str_Comp function can be used inside other macros to
read and match large files.

Chapter 12. Effective Display Techniques
A computer screen is a small two-dimensional space. The concepts and information displayed in this
space are complex and multi-dimensional. It takes planning and careful design to produce a display
that represents the information completely and is still easy to understand.

Each application exists for a reason. The display provides information used to manage an operation,
identify problems, or plan for improvements. The quality of decisions made by the application's users
depends on the quality of the display.

A person can only focus on a small amount of information at one time, and a display can easily
overwhelm the viewer. A critical piece of information can vanish in a pile of numbers, or an important
conclusion can be overlooked in a disorganized presentation. It is not enough to simply show the user
the data; to be useful, an application must answer the user's questions.

Excel is good with numbers. Numeric information doesn't take up much space in the system, is easy
to manipulate, and can be formatted any way you like. It is also difficult to understand. An effective
display must highlight the important relationships in the data, and explain what those relationships
mean.

A good display is easy to use and understand. If it takes a lot of effort to learn to use or understand
an application, some users won't bother.

12.1. Respect the Information and the Audience

Making information understandable does not mean leaving out complexity . Important issues are
complex by nature and it is important to tell the whole story. Users can understand complex
relationships and statistical conclusions if the design is clear and focuses on the important points. If
you over-simplify or leave out key supporting information, the user is excluded. This reduces the
application to an opinion instead of a reasoned argument.

It is not enough for an application to just give an answer. You have to provide enough background
and supporting material to justify your conclusions. If your application deals with important matters
then both the information and the users are important too.

12.2. Large Worksheets

You are reading a book. The information in the book is chopped up and presented one page at a
time. Imagine what this book would be like if it were printed on one big sheet of paperthe whole book
on a single page. It would not work well for a book, and it doesn't work for spreadsheets either.

It is easier to page then it is to scroll. With paging you go to the right place; with scrolling you look
for the right place. Even if the project is large, like a budget or staffing model, it can be broken down
into several small easily viewed sheets.

Scrolling and split screens work, but they are inefficient and in most cases it is best to present
information in screen-size pieces, like the pages of a book.

12.3. Charts

A chart is often the best way to present the meaning in a table of related numbers. Trends and
relationships stand out in a chart. Numbers are abstract, but in a well-designed chart conclusions are
obvious.

Excel's Chart tool gives you the ability to represent data with up to three dimensions easily. Pivot
charts or combining charts with controls can make your display interact with users and allow you to
handle more than three dimensions.

There are a lot of chart styles to choose from in Excel, and this can lead to confusion. In general it is
best to use the simplest representation that captures the meaning in the data. Just because a feature
or chart element is available does not mean you have to use it. In most cases a simple line chart is
the best choice. In Figure 12-1 the same information is displayed on two charts.

In the top chart I used several of Excel's charting options to create a complex and messy view of a
simple list of numbers. All of the meaning is in the bottom chart. If a feature does not serve a
purpose in the chart, it is best to leave it out.

When presenting two-dimensional data, charts with depth or contour can be confusing. This kind of
chart can become incomprehensible if printed. A plain surface chart has as much meaning and is
easier to understand.

The more complex the data the more important it is to make the visuals simple. For example: I want
to show how trading volume and day of the week relate to the probability that a certain stock will go
up or down. First, I assemble the data in Figure 12-2.

Figure 12-1. Two views of the same information

Figure 12-2. Stock performance by day of week and volume

I used Excel's QUARTILE function to assign each trading day to a volume quartile. In the table, the
columns tell which quartile the day's trading volume falls in. The volumes in quartile one (Q1) are
relatively low, while quartile four's volumes are the highest.

The values in the table are the number of trading days that were up (close was higher than previous
day's close) divided by the total number of days for that day of week and quartile. The Wednesday Q1
number is 0.48. This means that 48% of Wednesdays in Q1 were up days.

Just looking at the data you can see that something of interest is going on. But a chart explains it
better. Figure 12-3 shows the data on a 3-D column chart.

Figure 12-3. 3-D column chart

This is better than looking at the numbers, but is still not clear. The columns for Q3 and Q4 are largely
hidden, and it takes a real effort to find the meaning. The plain surface chart in Figure 12-4 does a
better job.

Figure 12-4. Surface chart of the same information

Can you see it now? Q2 has the best performance, especially on Mondays and Wednesdays. This
chart is a better way to show the meaning in the data because it is simple and gets right to the point.

It respects the limitation of a two-dimensional display and uses shade for the third dimension. The 3-D
column chart tries to show all three dimensions using perspective and becomes a work of art instead
of a communication tool.

12.4. Pictures and Other Objects

Charts are not the only graphic possibilities with Excel. Bitmaps produced with Paint can be added to
a worksheet and can even function as buttons if needed. Figure 12-5 is a visual representation of a
photo printing process drawn with Paint.

Figure 12-5. Photo printing process

The images were drawn individually in Paint. Figure 12-6 is the camera bitmap.

Figure 12-6. Camera bitmap

Images like this can be drawn quickly and it only took a few minutes to draw the whole process. Each
picture was cut and pasted onto the worksheet where it was formatted with no line or fill.

Pictures are not the only thing you can paste into Excel. You can insert objects for many kinds of
information.

I have a sound file named test.wav in my C:\My Music folder, and I want to add it to my worksheet. I
start by clicking on Insert Object. The dialog in Figure 12-7 is displayed.

I click the "Create from File" tab, bringing up Figure 12-8.

Here I select Browse and navigate to the C:\My Music folder. Then I click on test.wav, inserting it
onto the sheet. The result is a Sound Recorder Document object named object 1, as shown in Figure
12-9.

Figure 12-7. Inserting an object

Figure 12-8. Specifying the file

I can play the sound manually by double-clicking on the object, or I could put the following code into
a module using the Visual Basic Editor.

Sub PlayTheSound()

 ActiveSheet.Shapes("Object 1").Select
 Selection.Verb Verb:=xlPrimary

End Sub

Figure 12-9. A Sound Recorder Object

I can run this code from a button or tie it to an event, such as opening the workbook or selecting the
sheet.

This could just as easily be a video clip or even the address of a web page. In most cases, Excel will

already know how to handle the file you select based on the file type, and the code to activate the
object is the same.

Excel can do far more than just display columns of numbers. You can include almost any kind of
resource needed to make your display effective.

12.5. Complexity

The relationships in data are often hard to understand. In Figure 12-2 the day of the week and
trading volume seem to be related to changes in the stock price. We can see this in the chart, but
that does not mean we know what the relationship is. Sometimes statistical tools like regression can
explain what is going on but often all you can do is show what is happening.

You can represent anything with Excel as long as you can break it down into understandable pieces.
A person can only deal with a limited amount of information at a time, and a display should work with
this limitation, not ignore it.

Pivot tables and pivot charts are a good choice when a single view of the data is not sufficient. In
some cases, pivot table and charts can be the whole user interface for an application.

You can use controls, like list boxes , to allow users to navigate the options and dimensions. The
applications in the book use this approach. It gives you more control than a pivot table over both the
final appearance and the user interaction.

Excel makes it easy to change the way information is presented and there is no reason the
presentation has to stay the same throughout the life of the project.

In a budgeting application, management might have a specific format for the finished budget. The
final format may not be convenient during the budget building process, and you might simplify the
process by working on the budget in a different format. You can break information up, build in
balancing calculations, and work on the data in any format that makes it easy to handle. Later, after
all the changes are in and everything is agreed to, Excel is good at moving information around and
reformatting it to create the required finished product.

12.6. Repeated Elements

A small information-rich graphic tells a story better than numbers. Repeating this kind of graphic can
handle dimensional complexity .

Figure 12-10 comes from the application in Chapter 8. In it, the same chart is used to represent all of
the queues at two points in time. Once the user understands one chart they automatically understand
the whole display.

Figure 12-10. Using repeated items

This graphic approach offers a top down way to represent the queue dimension and also serves as a
menu for more detailed analysis.

Having all the charts visible at the same time makes comparison easy. In contrast, the summary
area from Chapter 8 shown at the top of Figure 12-11 is isolated.

Figure 12-11. Awkward placement of summary information

The user has to return to the main display to change queue and there is no way to see two queues at
the same time.

12.7. Information Density

Space is limited and it is critical to get as much information per square inch as possible. The charts in
Figure 12-10 give a complete picture of each queue in one chart.

We did the same thing in Chapter 7 on the main display shown in Figure 12-12.

Figure 12-12. A chart can do two things at once

In the chart, two related pieces of information are combined allowing the hourly production to be
compared to the standard.

Formatting and white space are important, but they are not content. Chapter 3's hourly sheet, shown
again in Figure 12-13, shows some of the danger of over-formatting.

This approach can distract from the message. If the user notices the formatting before noticing the
content, something is wrong. In this case it is not a big problem, but it is important to keep style in a
supporting role.

12.7.1. Support and Grouping

Position related items in a way that emphasizes their common meaning. This allows them to support
each other and saves space. In the display in Figure 12-12, the list box and the chart that it controls
are placed next to each other.

They are sized to match and the space between them is very small. This helps the user see how they
are related and makes the application easier to use.

The same concept is applied in the display in Figure 12-14.

Figure 12-13. Over-formatting can distract the viewer

Figure 12-14. The placement of related items

In this display from Chapter 3, the relationship between the hourly forecasts and the chart are
obvious. Lower, the day of week labels do double duty because related information is placed on the
same row.

12.8. Emphasis and Focus

Position, size, and contrast guide the user's attention. The most important items should be toward
the middle, larger, and with higher contrast. Supporting items in list form are placed along the left
margin. Related information can be at the top or bottom.

These are not hard and fast rules but they make sense. It is a design that people already understand
if they use the Web. It evolved as a common design in web pages because it works.

Figure 12-15 shows an application main display.

Figure 12-15. Putting the emphasis on the most important item

The real message is the chart and it is the largest item on the display.

If the user only looks at the display for five seconds what will they see? Perhaps all they need to
know is if further addition is required. Place the most important answers prominently in the display.

12.8.1. Metaphor

Everyone understands a report, a flow diagram, or a web page. If you stick with an approach that
your users already know your application will be easier to use.

It is best to avoid a new and different approach unless you are sure that its meaning is clear.

In Chapter 8's application I put a summary at the top of a report sheet (see Figure 12-11). This is a
little unusual. You normally expect to see totals at the bottom, and this placement, while reasonable,
has to be explained. In this case it might be better to put the summary on a different sheet.

12.8.2. Fonts

If the user notices the font, you are using the wrong one. Pick one that is easy to read and stick with
it. You can create all the separation and emphasis you will ever need without changing font.

We recognize common words by shape as well as letters. In Figure 12-16 there are two buttons with
the same caption.

Figure 12-16. Two buttons with the same message

The words and the message are common, and the shape of the words helps make the button on the
left easier to read. Using all-caps hides the shape of the words and increases the chance that the
user will misunderstand the message or overlook something.

12.8.3. Colors

Color can add interest and make an application more understandable. But it can also confuse, cause
eye strain, and distract. When content is based on color alone it can disappear when a screen is
printed, and some users will have trouble distinguishing between colors. In most cases a simple
black, white, and gray scheme works fine.

The visible spectrum runs from red to violet and the color in the middle is green. Since green is in the
middle of the visible range, it is the easiest color to see. This makes green a safe background color. If
fine details are displayed using colors far apart in the spectrum it can be impossible for the eye to
focus on both at the same time. Placing red and violet details close together is a good way to give
users a headache.

You can increase the visibility of your display and reduce the risk of eye strain by using a light green
background. The color scheme of old-fashioned green bar reports was based on this, and it still
works.

The eye is better at seeing differences in light and dark than in color. So, no matter what color
combination you use, keep the contrast between background and content high.

12.8.4. Background Interaction

Sometimes the background can compete with content on a display. In Figure 12-17 the background
interacts with the circles, and creates a triangle.

This is just an optical trick, but it shows how the relationship between the content and the
background can confuse things.

Figure 12-17. An example of background interaction

Contrast between content and background is good, but high contrast between the non-content parts
of a display can be a problem. In Figure 12-18 we see two versions of a daily menu.

Figure 12-18. Daily menu in two formats

The format on the left is simple and easy to read. The contrast between the white background and
the black letters could not be more effective.

On the right things are not so good. Black and white are both used as background colors. The
contrast within the background is the same as the contrast between letters and the background. This
is confusing to the eye. In this case, contrast reverses direction. It starts by going light to dark then

fakes the viewer out by going dark to light.

Even in button design it is better to keep contrast moving in one direction. In Figure 12-19 the menu
is reformatted as buttons.

Even though the contrast in the buttons is lower, it is still easier to read.

Another example is the obscuring box shown in Figure 12-20.

Background space can make a big difference. Boxes reverse contrast, but allowing enough
background space inside the box eliminates the problem. In the top box the lack of background space
inside the box brings the box and the text into conflict. The reverse in contrast confuses the eyes and
is difficult to read.

The lower box has enough space to keep the relationships clear.

Figure 12-19. Daily menu as buttons

Figure 12-20. Hiding text in a box

Reversing the direction of contrast can be effective in headings or to distinguish between areas in a
display. But it does not work with content items being viewed together in small spaces.

About the Author

Gerald Knight has nearly 30 years of experience in the computer industry as a developer, teacher,
and consultant. For more than 20 years, he was a project leader and system architect working on
imaging and revenue control systems at FedEx. He has specialized in Excel development for the last
10 years. Now retired, he consults and occasionally writes in Memphis, Tennessee.

Colophon

The animal on the cover of Analyzing Business Data with Excel is the endangered Cynogale bennettii,
more commonly known as the otter civet. These animals live in peninsular Malaysia, southern
Thailand, Indonesia, and Vietnam. Despite the fact that they can be found across a vast geographic
range, otter civets are scarce. They are nocturnal and are rarely found in the wild. Scientists believe
their population has declined recently by at least 50 percent for a number of reasons, including the
loss of their natural habitat to human development and water pollution.

Otter civets live on land, but are never too far from the water. They spend much of their time on the
outskirts of streams and rivers and near swampy wetlands. Their feet are wide and webbed, and
while they swim, flaps cover their ears and nostrils. However, their short tails lack special muscular
power, and the webbing between their toes is only partially developed, so they are slow swimmers
and cannot turn very quickly in the water. Surprisingly, they are very skilled climbers.

Their diet consists mostly of fish, frogs, mollusks, and crayfish. Birds and small mammals are other
favored targets because they stop often at the edges of rivers and streams for a drink of water. Much
like crocodiles and alligators, otter civets skim the surface of the water, with only their eyes and
nostrils exposed, hunting for prey.

Otter civets resemble sea otters. Their fur is agoutiin other words, pale at the roots and much darker
toward the tipsand the long gray hairs scattered throughout their coats give their fur a frosted look.
Their appearance is also distinguished by their several long, white whiskers.

The cover image is from Lydekker's Royal History. The cover font is Adobe ITC Garamond. The text
font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is LucasFont's
TheSans Mono Condensed.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [V] [W] [X] [Z]

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [V] [W] [X] [Z]

, (comma)

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [V] [W] [X] [Z]

ABS function 2nd 3rd 4th

Access databases 2nd

ADDRESS function 2nd 3rd 4th

Address property (range)

#agg columns

alignment, X axis

analysis, modeling and 2nd

anomalies 2nd

Application Data/Microsoft/AddIns folder

applications

 considering data sources

 conventions and names

 customizing 2nd

 designing example 2nd 3rd

 display techniques 2nd 3rd 4th

 formatting example

 importing data for

 linking to data 2nd

 listing requirements

 measuring quality 2nd

 monitoring complex systems

 named ranges 2nd 3rd

 named values 2nd

 presentation 2nd

 queuing example 2nd 3rd

 running example

 Solver and Goal Seek tools

 Visual Basic

array formulas

 functionality

 measuring quality 2nd 3rd 4th

 monitoring complex systems 2nd 3rd 4th

 overview

 queuing example

 workload forecasting

arrays, extracting report data

Assign Macro dialog box

autocorrelation

average

 changes in

 control limits and 2nd

 filtered 2nd 3rd 4th

 finding

 moving

 statistical functions

 trimmed

 X charts and 2nd

average error

 regression model 2nd 3rd 4th 5th

 workload forecasting 2nd 3rd 4th

AVERAGE function

 depicted

 optimizing example

 queuing example 2nd

 workload forecasting 2nd

AVERAGEA function 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [V] [W] [X] [Z]

background color

background interaction

bar charts

.bat file extension

binomial distribution

bitmaps

business processes 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [V] [W] [X] [Z]

categorical items

 analysis of

 changing data

 changing to scalar items

 populating pivot tables

cells

 addressing indirectly

 change events and

 named 2nd

 Solver tool changes

change event

Chart tool

charts

 application design

 bar

 display techniques 2nd

 functionality

 moving averages in

 queuing example

 X and S charts

Choose Columns dialog box

classification problem

client/server structure

color 2nd

columns

 #agg

 linking tables

 monitoring complex systems 2nd 3rd

 pivot tables and 2nd

 queuing example

 regression model errors

 XML data and

combo box controls 2nd 3rd 4th 5th

comma (,)

conditional formatting

CONFIDENCE function 2nd

confidence interval

confidence level

constraints, Solver tool

contrast

control limits

 measuring quality 2nd 3rd

 monitoring complex systems 2nd 3rd 4th 5th

 standard deviations and

controls

 display techniques and 2nd

 measuring quality

 queuing example

converting Julian dates

CORREL function

 finding lag

 functionality 2nd

 modeling

 optimizing example

COUNT function

COUNTIF function

 DAVERAGE function and

 equivalence example

 modeling 2nd

 queuing example 2nd

 truth values and

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [V] [W] [X] [Z]

data

 equivalence

 extracting from reports

 forecasting procedure

 importing databases

 importing dates 2nd

 importing numbers

 importing text files

 importing XML

 information density

 linking to

 modeling and 2nd

 pivot tables and 2nd 3rd

 refreshing 2nd 3rd 4th

data import tool

data sources

 application building and

 databases as

 text files as

 XML as

data types

database functions

databases, importing

dates, importing 2nd

DATEVALUE function 2nd

DAVERAGE function

DAY function

delimited files

design, application 2nd 3rd

display techniques

 applications and 2nd

 charts

 complexity 2nd 3rd 4th

 emphasis and focus

 information density

 large worksheets

 objects

 repeated elements

 respecting audience 2nd

 respecting information 2nd

distributions 2nd 3rd

divide by zero error

DMIN function

drag and drop operations 2nd

drilling down

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [V] [W] [X] [Z]

eigenvector

empty rows

equivalence, data

error handling 2nd 3rd

events

 display techniques and

 exposing

 objects and

EXP function

EXPONDIST function

exponential distribution 2nd

exponential growth 2nd

Extensible Markup Language (XML)

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [V] [W] [X] [Z]

files

 associating with programs

 delimited

 display techniques and

 fixed length

filtered average 2nd 3rd 4th

filtering

 building criteria for

 imported data

 pivot tables 2nd

fixed length files

fonts

forecasting

 building applications

 example procedure

 future values 2nd

Format Data Point dialog box

Format Data Series dialog box

Format Object dialog box

formatting

 applications

 combo boxes

 conditional

 importing files and

 purpose

 queuing example

 Workarea sheet 2nd

 XML and

Forms toolbar 2nd

functions

 custom equivalence

 database

 macros and 2nd

future values 2nd

FV function

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [V] [W] [X] [Z]

gamma distribution 2nd

GAMMADIST function

GAMMAINV function

Goal Seek tool

 applications and

 functionality

 goal seeking problem

 macros and

 matrix problem

 quadratic equations

 setting prices

graphics 2nd

grouping controls

GROWTH function 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [V] [W] [X] [Z]

headings

 DMIN function and

 importing files and

 invisible rectangles and 2nd

 measuring quality example

 monitoring complex systems 2nd 3rd 4th 5th

 queuing example

 tag sort and

HOUR function

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [V] [W] [X] [Z]

IF function

 equivalence example

 measuring quality

 modeling

 monitoring complex systems 2nd 3rd

 queuing example 2nd

 workload forecasting

images 2nd

Import dialog box

importing

 data equivalence and

 data from reports

 databases

 dates

 numbers

 text files

 XML

independent variables 2nd 3rd

INDEX function

 addressing cells indirectly 2nd

 date example

 DAVERAGE function and

 equivalence example

 functionality

 measuring quality

 monitoring complex systems

 queuing example 2nd 3rd

INDIRECT function

 ADDRESS function and

 addressing cells indirectly

 measuring quality

 monitoring complex systems

 queuing example 2nd 3rd 4th 5th 6th

 workload forecasting 2nd 3rd

INT function 2nd 3rd

integers

intercept

invisible rectangles 2nd

ISERROR function

iteration constraints

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [V] [W] [X] [Z]

Julian date

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [V] [W] [X] [Z]

lag 2nd 3rd

Lambda 2nd

LARGE function

layers, pivot tables and charts

LEFT function 2nd 3rd

linear equations

linear trends

LINEST function

linking

 named ranges and

 pivot charts 2nd

 tables

 to data

 Workarea sheet and 2nd

list boxes 2nd

list feature

log normal distribution

logic 2nd 3rd

LOOKUP function

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [V] [W] [X] [Z]

macros

 adding to applications 2nd

 extracting report data

 functions and 2nd

 Goal Seek tool and

 queuing example 2nd 3rd

 regression model example

 Solver tool and 2nd

mapping

market share

MATCH function 2nd

matrix problems 2nd

MAX function

 equivalence example

 monitoring complex systems 2nd

 queuing example 2nd

 workload forecasting 2nd

metrics

 limiting

 measuring quality

 monitoring complex systems

 queuing example

 refining 2nd

 regression example 2nd

 statistical process control

Microsoft Access 2nd

Microsoft Query 2nd

MID function 2nd 3rd 4th

MIN function 2nd

MMULT function

modeling

 analysis and

 analyzing results

 building model

 problem definition

 refining metrics 2nd

 regression

 testing relationships

monitoring complex systems

 application example

 data example

 macros

 settings example

 Workarea sheet

MONTH function

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [V] [W] [X] [Z]

named cells 2nd

named ranges

 functionality

 linking via

 measuring quality 2nd 3rd

 Worksheet area

named values

names, application

navigation

 display techniques and

 queuing example 2nd

 VBA and

negative correlation

non-linear relationships

normal distribution 2nd

NORMDIST function 2nd

NORMINV function

NORMSDIST function

Notepad

numbers

 display techniques 2nd

 importing

 importing files and

 negative

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [V] [W] [X] [Z]

objects

 display techniques

 events and

observations, lag and

OCR (optical character recognition) 2nd

OFFSET function 2nd 3rd

optimizing

 Goal Seek tool

 Solver tool

Options dialog box 2nd

outliers

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [V] [W] [X] [Z]

pictures 2nd

pivot charts

 adding 2nd

 analysis example

 display techniques 2nd

 linking 2nd

 multiple layers and pages

pivot tables

 analysis example

 changing data

 display techniques

 drilling down

 filtering 2nd

 linking pivot charts 2nd

 multiple data items

 multiple layers and pages

 options

 overview

 populating 2nd

 rows and columns 2nd

 sorting 2nd

PivotTable wizard 2nd 3rd

pointers, tag sort and

positive correlation

predictions

 forecasting procedure

 monitoring complex systems

 regression example

 trends and

prices, setting product

probabilities 2nd 3rd

problem definition

problem solving

 calculating market share

 equivalence

 extracting report data

 finding multiple values

 goal seeking

 importing dates 2nd

 importing numbers

 matrix problems

 mixture problem

 quadratic equations

 regression problems

 setting prices

 Solver tool and

 zero/one problem

processes, business 2nd

products, setting prices

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [V] [W] [X] [Z]

quadratic equations 2nd

quality

 application design

 customizing applications

 running applications 2nd

 statistical process control

QUARTILE function 2nd

queuing

 application example 2nd 3rd

 application logic 2nd

 data and 2nd 3rd

 VBA example

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [V] [W] [X] [Z]

R charts

radio button controls

rates of return

ratios, expressing

rectangles, invisible 2nd

refreshing data 2nd 3rd 4th

regression

 application example

 assumptions of

 building models

 data example

 display techniques and

 errors in models

 limitations

 macros

 overview

 settings example

 Solver tool and

 Workarea sheet

relationships

 analysis and

 display techniques 2nd

 linear

 non-linear

 XML rules

repeated elements

reports, extracting data

RIGHT function 2nd 3rd

ROW function

 measuring quality 2nd

 monitoring complex systems 2nd

 queuing example 2nd

 workload forecasting

rows

 drilling down

 empty

 pivot tables and 2nd

 queuing example

 XML data and

rules

 Solver tool and

 XML and

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [V] [W] [X] [Z]

S charts

Save Model dialog box

scalar items

 analysis of

 changing data

 changing to categorical items

 populating pivot tables

schemas

scrollbar control

 display techniques

 measuring quality 2nd

shell command

sigma 2nd

Solver dialog box

Solver tool

 applications and

 common problems

 finding multiple values

 functionality

 macros and 2nd

 mixture problem

 regression problem

 zero/one problem

sorting

 pivot tables 2nd

 tag sorts

spellchecking programs

spinner control 2nd 3rd 4th

SQL databases

standard deviation

 CONFIDENCE function

 control limits and

 defined

 managing anomalies

 measuring quality

 monitoring complex systems

 S charts and

 STANDARDIZE function

 statistical process control

STANDARDIZE function

start command

statistical functions

 averages

 correlation

 distributions

statistical process control

 application design

 customizing applications

 measuring quality 2nd

 overview

statistics

 addressing cells indirectly

 array formulas

 averages

 correlation

 distributions

STDEV function 2nd 3rd 4th

storage, fixed length files

SUM function

 importing numbers and

 modeling

 monitoring complex systems

 queuing example 2nd 3rd

 workload forecasting 2nd

SUMIF function 2nd

SUMPRODUCT function 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [V] [W] [X] [Z]

tab character

tables

 display techniques

 linking

tag sorts

tags, XML

testing

 model results

 non-linear relationships

text files, importing

TEXT function

text import wizard

text strings 2nd

time constraints

Tools menu

TREND function

trends

 adjusting for

 display techniques

 linear

 moving averages and

TRIMMEAN function

truth values 2nd

.txt file extension

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [V] [W] [X] [Z]

VALUE function 2nd 3rd

#VALUE! error 2nd

values

 display techniques

 finding multiple

 future 2nd

 named

 Solver tool and

 truth 2nd

VAR function

variables, independent 2nd 3rd

variance 2nd

VBA (Visual Basic for Applications)

 building applications

 delimited files and

 functionality

 queuing example

 reports and

vectors 2nd

Visual Basic Editor

 adding code via 2nd

 starting 2nd

 viewing code

VLOOKUP function

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [V] [W] [X] [Z]

WEEKDAY function 2nd 3rd

weights

word suggestion

Workarea sheet

 links on 2nd

 measuring quality 2nd

 named ranges on

 named values on

 regression model example

workbooks

 macro availability and

 opening XML data in

worksheets

 display techniques

 drilling down and

 exposing events

 look-and-feel of web pages

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [V] [W] [X] [Z]

X axis

X charts

.xla file extension

.xls file extension

XML (Extensible Markup Language)

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [V] [W] [X] [Z]

zero, divide by

zero/one problem

	Analyzing Business Data with Excel
	Table of Contents
	Copyright
	Preface
	Who Should Read This Book
	What's in This Book
	How to Use This Book Effectively
	Sample Code
	Using Code Examples
	We'd Like Your Feedback!
	Safari® Enabled
	Acknowledgments

	Chapter 1. Excel and Statistics
	Section 1.1. Array Formulas
	Section 1.2. Addressing Cells Indirectly
	Section 1.3. Statistical Functions

	Chapter 2. Pivot Tables and Problem Solving
	Section 2.1. Pivot Table Basics
	Section 2.2. Changing the Data
	Section 2.3. Pivot Table Options

	Chapter 3. Workload Forecasting
	Section 3.1. The Procedure
	Section 3.2. Building an Application

	Chapter 4. Modeling
	Section 4.1. Regression
	Section 4.2. Defining the Problem
	Section 4.3. Refining Metrics
	Section 4.4. Analysis
	Section 4.5. Building the Model
	Section 4.6. Analyzing the Results
	Section 4.7. Testing Non-Linear Relationships

	Chapter 5. Measuring Quality
	Section 5.1. Statistical Process Control
	Section 5.2. Running the Application
	Section 5.3. Application Design
	Section 5.4. Customizing the Application

	Chapter 6. Monitoring Complex Systems
	Section 6.1. The Application
	Section 6.2. The Data
	Section 6.3. Settings
	Section 6.4. Workarea
	Section 6.5. Macros

	Chapter 7. Queuing
	Section 7.1. The Data
	Section 7.2. The Application
	Section 7.3. The Logic

	Chapter 8. Custom Queuing Presentation
	Section 8.1. The Application
	Section 8.2. The Data
	Section 8.3. The Logic
	Section 8.4. VBA
	Section 8.5. Extending the Application

	Chapter 9. Optimizing
	Section 9.1. Goal Seek
	Section 9.2. The Solver

	Chapter 10. Importing Data
	Section 10.1. Text Files
	Section 10.2. Databases
	Section 10.3. XML

	Chapter 11. The Trouble with Data
	Section 11.1. Numbers
	Section 11.2. Dates
	Section 11.3. Reports
	Section 11.4. Equivalence

	Chapter 12. Effective Display Techniques
	Section 12.1. Respect the Information and the Audience
	Section 12.2. Large Worksheets
	Section 12.3. Charts
	Section 12.4. Pictures and Other Objects
	Section 12.5. Complexity
	Section 12.6. Repeated Elements
	Section 12.7. Information Density
	Section 12.8. Emphasis and Focus

	About the Author
	Colophon
	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	V
	W
	X
	Z

