
Zero Configuration Networking: The

Definitive Guide

By Stuart Cheshire, Daniel H. Steinberg

...

Publisher: O'Reilly

Pub Date: December 2005

ISBN: 0-596-10100-7

Pages: 252

Table of Contents | Index

It used to be that two laptops, sitting side by side, couldn't communicate with each other; they may
as well have been a thousand miles apart. But that was then, before the advent of Zero
Configuration Networking technology. This amazing cross-platform open source technology
automatically connects electronic devices on a network, allowing them to interoperate seamlessly-
without any user configuration. So now you don't have to lift a finger! Needless to say, it has
completely changed the way people connect to devices and programs for printing, file sharing, and
other activities.

Zero Configuration Networking: The Definitive Guide walks you through this groundbreaking
network technology, with a complete description of the protocols and ways to implement network-
aware applications and devices.

Written by two Zero Configuration Networking experts, including one of Apple's own computer
scientists, the book covers more than just file sharing and printing. Zero Configuration Networking
also enables activities such as music and photo sharing and automatic buddy discovery on Instant
Messaging applications. In fact, Zero Configuration Networking can be used for virtually any device
that can be controlled by a computer. And this handy guide has the inside scoop on all of its
capabilities-and how you can easily apply them in your own environment.

For the technically advanced, Zero Configuration Networking: The Definitive Guide examines the
three core technologies that make up Zero Configuration Networking: Link-Local Addressing,
Multicast DNS, and DNS Service Discovery. It also reviews a series of APIs, including C-API, Java
API, CFNetServices, and Cocoa's NSNetServices.

Whether you want to understand how iTunes works, or you want to network a series of laptops and
other devices at your office for maximum efficiency, you'll find all the answers in this authoritative
guide.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Zero Configuration Networking: The

Definitive Guide

By Stuart Cheshire, Daniel H. Steinberg

...

Publisher: O'Reilly

Pub Date: December 2005

ISBN: 0-596-10100-7

Pages: 252

Table of Contents | Index

 Copyright

 Foreword

 Praise for Zero Configuration Networking: The Definitive Guide

 Preface

 Audience for This Book

 The Zeroconf Technology

 The Zeroconf DNS Service Discovery APIs

 Conventions Used in This Book

 Using Code Examples

 Comments and Questions

 Safari Enabled

 Acknowledgments

 Chapter 1. Introduction to Bonjour and Zeroconf

 Section 1.1. Service Discovery with Zeroconf

 Section 1.2. Replacing the AppleTalk Name Binding Protocol

 Section 1.3. Summary

 Chapter 2. IP Addresses Without DHCP

 Section 2.1. Obtaining an IP Address

 Section 2.2. Claiming a Link-Local IP Address

 Section 2.3. Summary

 Chapter 3. Names Without DNS

 Section 3.1. A Brief Tour of DNS

 Section 3.2. The Zeroconf Namespace

 Section 3.3. Multicast DNS

 Section 3.4. Claiming Your Local Name

 Section 3.5. The Structure of the Multicast DNS Message

 Section 3.6. Summary

 Chapter 4. Browsing for Services

 Section 4.1. Zero Configuration Operation

 Section 4.2. Finding Services, Not Devices

 Section 4.3. Knowing the Protocol

 Section 4.4. Building on DNS

 Section 4.5. Late Binding

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 4.6. DNS-SD TXT Records

 Section 4.7. Summary

 Chapter 5. Service Discovery Beyond the Local Link

 Section 5.1. Domain Enumeration

 Section 5.2. Advertising Static Services

 Section 5.3. Wide-Area Preference Settings

 Section 5.4. Dynamic DNS Updates

 Section 5.5. DNS Long-Lived Queries (DNS-LLQ)

 Section 5.6. NAT Port Mapping Protocol (NAT-PMP)

 Section 5.7. Summary

 Chapter 6. Getting Started with Bonjour/Zeroconf

 Section 6.1. Working with Bonjour/Zeroconf

 Section 6.2. The Command-Line Tool

 Section 6.3. Summary

 Chapter 7. Using the C APIs

 Section 7.1. Asynchronous Programming Model

 Section 7.2. Event Handling with a select() Loop

 Section 7.3. Using the DNSServiceDiscovery APIs

 Section 7.4. Event Handling with Cocoa RunLoop or Core Foundation CFRunLoop

 Section 7.5. Event Handling with Microsoft Windows GetMessage() Message Loop

 Section 7.6. Event Handling with Microsoft Windows MFC

 Section 7.7. Event Handling with Independent Threads

 Section 7.8. Summary

 Chapter 8. Using the Java APIs

 Section 8.1. Understanding the APIs

 Section 8.2. Using the APIs

 Section 8.3. An Extended Example: Tic-Tac-Toe

 Chapter 9. Using the CFNetwork and Cocoa APIs

 Section 9.1. Using the CFNetServices API

 Section 9.2. Using the NSNetServices API in Cocoa

 Section 9.3. A Cocoa Bonjour Extended Example

 Chapter 10. Ruby, Python, and Other Languages

 Section 10.1. Ruby

 Section 10.2. Python

 Section 10.3. Embedded Responders

 About the Authors

 Colophon

 Index

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Zero Configuration Networking: The Definitive Guide

by Stuart Cheshire and Daniel H. Steinberg

Copyright © 2006 O'Reilly Media, Inc. All rights reserved. Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Mike Loukides

Production Editor: Matt Hutchinson

Cover Designer: Karen Montgomery

Interior Designer: David Futato

Printing History:

December 2005: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly Media, Inc. Zero Configuration Networking: The Definitive Guide, the image of a turtle dove,
and related trade dress are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of
a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN: 0-596-10100-7

[M]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Foreword
Why can't computers in real life work like they do on Star Trek? I mean, it seems obvious that if
you've got a lot of computing horsepower tied to your building (or your ship, or whatever), and if
you've got all kinds of wireless connectivity (Wi-Fi, Bluetooth, IRDA, and so on), and if you've got a
handheld "data pad" (like an Apple Newton or Nokia 770 or Treo 650), you ought to be able to see
and use and share all of your digital resources. But you can't not without a lot of careful handwork
involving cables and IP addresses and logins and passwords. They don't have to do that stuff on Star
Trekit all just works! Is it just special effects, or are we missing something?

Of course, it's long been possible to get Hollywood-like seamlessness from your collection of gadgets,
as long as all of those gadgets were produced by the same company. Consider Metaphor's desktop
appliance, if you're old enough. It's also possible to "hack together" a pretty decent digital
environment if you have a lot of technical skill, a lot of time on your hands, and a willingness to get
those hands very dirty. Of course, a hand-hewn digital environment won't be very tolerant of change,
nor of guests. Why can't we just buy new gadgets, take them home, plug them in (or not!) and use
them? If electricity worked like communications, your house would be wired for Apple voltage or
Microsoft voltage and you'd need a special step-down transformer if somebody gave you a desk lamp
for Christmas that needed the kind of voltage your house didn't have.

Should we be worried by this? Embarrassed? Amused? Since I drink way too much coffee, this kind of
thing just makes me angry. I understand why and how deliberate incompatibility can be a powerful
tool for competitionlook at Microsoft's "embrace and extend" philosophy or at Apple's closed-loop
control over iTunes/iPod. But that only works for companies with monopoly power or at least market
dominance. What we're getting, though, is a continuous stream of new and incompatible gadgets
from companies who have nothing to gain from incompatibilityyet pursue it anyway! Why?

The answer stems from the difficulty inherent in cooperation. When a company ventures alone,
variables like "time to market" or "steepness of innovation" are controlled internallyproducts are
successful or not based on the company's ability to make and follow plans. Efficiency in operation,
and a proper balance between compactness and grandness of vision, determines the fate of the
venture. However, if a company wants to work cooperatively with other companies to put
"interoperability" or "seamless integration" into a product, then other variables enter into the mix,
variables that are harder to predict or controlfor example, "conflicting visions," "conflicting interests,"
"competitive advantage," or even "efficiency differences." Trying to build a product that's compatible
with competitors' products is much harder than just building a product that works.

Stuart Cheshire discovered this for himself when he began his "zero configuration networking" effort
within the Internet Engineering Task Force (IETF). He found conflicts of vision and interest, and he
was beset by differences in efficiency; ultimately, he was forced to admit that IETF just wasn't
interested in his work. Luckily for all of us, Stuart's employer (Apple) was very interested in his work.
Just as luckily, Stuart and Apple both saw interoperability and seamless integration as the keystones
on which the Zeroconf technology would stand or fall; the technology is (as far as I know)
unencumbered, and Apple's reference implementation is freely available as open source software.

Lo and behold, when I bring up a Linux data pad, laptop, desktop computer, or BSD server, all of my
networked printers and file servers can see and reach one another without my having to configure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

anything. Even my wife's Apple laptop and my kids' Windows PC can play along.

None of the manufacturersnot SuSE, Hewlett Packard, Brother, or even Microsofthad to license
anything from Apple, and yet all of my family's digital gadgets can see one another now, and it's all
because of Zeroconf. I consider it pitiful that IETF did nothing to help this effort, but that's a longer
story best told over beer. We all owe Stuart Cheshire and Apple a debt of gratitude for their tenacious
desire to give to all of us the technology now known as Zeroconf or Bonjour.

Let me close with the story of how Stuart and I met. He had heard that I was a DNS guy and that I'd
had something to do with writing BIND, and, since he'd decided to base his "zero configuration
networking" technology on DNS, he invited me to lunch and told me his plans. Having drank way too
much coffee that day, I told Stuart that he was crazy, that his design was ugly, and that DNS was
the wrong way to do this. I didn't say "and the gods shall surely strike you down," but I was certainly
thinking it. Fortunately for all of us, Stuart just ignored my tirade, put his shoulder to the wheel, and
got on with his work.

La Honda, California, September 2005

Paul Vixie

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Praise for Zero Configuration Networking:
The Definitive Guide

"This book helps Zeroconf meet its promise of pain-free networking by providing hardware and
software developers with the background and guidance they need in order to successfully
include Zeroconf technology in their products."

Yaron Goland, Director of Technology, BEA Systems, Inc., and original network architect of
UPnP

"Ever wonder why it's so hard to get two network devices to talk with each other? It doesn't
have to be! If only everyone used Zeroconf services, network connectivity would be plug and
play. And now, with Stuart Cheshire's wonderful and detailed new book, there's no excuse to
use anything else. It's a must-read for hardware developers, software developers, and anyone
wondering how Appleand othershave built 'it just works' technology into iTunes, iPhoto, and
virtually every printer on the market."

Jim Louderback, Editorial Director, Ziff Davis Internet

"I routinely evaluate diverse network technologies in my job. I've found that for service
advertising and discovery, there is nothing out there that compares to Zeroconfall I had to do to
incorporate it into our SoundBridge Network Music Player was to insert a single c file into my
project and compile it. Zeroconf, however, is not only for devicesevery Windows program I write
that is a network client or offers a network service now uses Zeroconf for advertising and
discovery, making Bonjour an indispensable tool in my bag of tricks. Kudos to Apple and their
team of network scientists!"

Don Woodward, Chief Technology Officer, Roku

"If my PDA is ever going to be as useful as a Star Trek™ Datapad™, it'll be because the Internet
has Zeroconf."

Paul Vixie

"This book is so good that it will shame software authors into making their network-aware apps
easy to use!"

Mike Bell, VP of CPU software, Apple Macintosh Hardware Division

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Preface
Two laptop computers sit less than two feet away from each other. They are so close they are nearly
touchingand yet, until recently, as far as network communication is concerned, they may as well
have been a thousand miles apart. Surely, communicating with a computer in the same room
shouldn't have to be as hard as communicating with one on the other side of the planet? Our modern
l6aptop computers bristle with an astounding array of communications technologiesEthernet, 802.11
wireless, FireWire, USB, Infrared, Bluetooth, and so onyet to move a file between two computers two
feet apart, 99% of computer users still use physical media. They copy the file onto a floppy disk, burn
the file onto a CD, or copy the file onto a USB flash-memory drive. For the 1% who do manage to
move the file using networking, most do so by emailing it from one computer to another, which
sometimes entails the file traveling to another continent and back, just to move two feet. To do that,
the file has to traverse the slow connection to the global Internet and back, at a speed typically a
thousand times slower than local Ethernet. Furthermore, a vast infrastructure of servicesDHCP, DNS,
IP routers, SMTP relays, email servers, etc.all have to be working perfectly for the transfer via email
to succeed. If the DSL line is down, why should that stop two computers sitting next to each other
from communicating?

For computer novices, the situation is puzzling and frustrating. If you can see both computers, why
can't the computers see each other? There are many ways of physically connecting two devices, but
each way often requires its own custom software to do anything useful. If you have two computers
with FireWire (also known as IEEE 1394), you can connect them with a FireWire cable, but...do you
have any software for transferring files via FireWire? Do you know how to use it? You could connect
two computers using the right kind of USB cable, but...would that do anything useful? You could aim
the computer's infrared windows at each other, but...do you have any software for transferring files
via infrared?

When we communicate across the planet, we use TCP/IP, and we don't care whether the physical
connection is Ethernet or 802.11, DSL or cable modem, or a combination of those and other
technologies. Could that give us the inspiration for solving the local communication problem? If we
use TCP/IP, then it doesn't matter what the physical connection is, as long as it can carry IP packets.

The missing link here is that while TCP/IP is certainly powerful enough to solve the local
communication problem, historically it was not easy enough to use, leading to the proliferation of
different physical interfaces mentioned above. It was almost as if computer designers thought that if
only we had enough different kinds of hardware, the problem would be solved. What we really
needed were not more different kinds of hardware, but better software.

Zero Configuration Networking, or, as Apple calls it, "Bonjour," is that better software.

Zeroconf is the little missing link that makes TCP/IP on the local network as easy as USB. When you
plug a Zeroconf camera into your Ethernet hub, it just shows up, as if by magic, in your Zeroconf
web browser. It doesn't matter whether you have a working DHCP server. It doesn't matter whether
you have a working DNS server. It doesn't matter whether you have a working connection to the
Internet. Zeroconf works anyway, even when some or all of that infrastructure is not working. One of
the benefits of FireWire and USB is that they can supply power over the cable, but with the advent of
the IEEE 802.3af ("Power over Ethernet") standard, modern Ethernet hubs can do that too. A

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Zeroconf IP camera is as easy to use as a USB camera, except that because it uses IP, it's not tied to
one particular physical connection technology. You can be sitting on the sofa with your laptop
computer using 802.11 wireless, and the same Zeroconf Ethernet camera shows up in the same web
browser, because even though they use different physical technologies, they speak the common
language of IP. The web browser doesn't care what physical link-layer connection your computer is
using. As long as it carries IP packets, it works.

Finding a TCP/IP printer on the local network is now as easy as using a directly attached USB printer.
On Mac OS X, you just look in the print dialog and see a list of available network printers. Using
Apple's "Bonjour for Windows," you just run the Printer Setup Wizard, and it shows you the same list
of available network printers. If you visit a friend's house, one of your company's other office
locations, or a hotel's business center, you don't need to ask for help finding the printer anymore.
Just look in the print dialog, and there it is.

Returning to our file-transfer example, now that we know we have a working IP network, no matter
what, we have a wealth of IP-based choices. Even the venerable old 1970's File Transfer Protocol
(FTP) can benefit from Zeroconf. On Mac OS X, the built-in FTP server already advertises its presence
using Zeroconf, and every third-party Mac OS X FTP client now uses Zeroconf to browse for FTP
servers, so connecting to an FTP server is now as easy as running your preferred FTP client and
picking the desired server from the Zeroconf list.

Other kinds of data sharing are easily facilitated using Zeroconf. If you want to let other machines
and devices in your house play music from your computer, iTunes can advertise your music collection
using Zeroconf. iPhoto can advertise selected photo albums using Zeroconf so that LCD picture
frames hanging on your walls can display them. iChat can advertise your presence on the local
network using Zeroconf, andwhile we're talking about file transferdropping a file onto a Bonjour iChat
window is a more direct way of getting a file to someone than emailing it via the public Internet.
Finally, if you're collaborating on a document with someone, a multiuser document editor such as
SubEthaEdit (which allows multiple people to simultaneously edit a file) is a much more direct way to
collaborate than transferring the file back and forth all the time.

All of these data-sharing applications were, in principle, possible before Zeroconf. However, the
difficulty of making them work meant that, in practice, people were going to resort to the good old
floppy disk. Furthermore, software like SubEthaEdit simply didn't get written back then, even though,
in theory, there's no reason it couldn't have been. Local TCP/IP networking was like a complicated
machine with no oil. All the right pieces were there, and it looked like it should work, but it took so
much effort to get the wheels to turn that almost no one bothered. For communication on the
worldwide Internetfor the Web and for emailthe pain of TCP/IP was clearly worth it, but for local-area
communication people gravitated toward other solutions that offered the promise of better ease of
use.

Zeroconf is not some huge, complicated piece of software. It's a small collection of simple ideas that
act like the missing lubricant for the TCP/IP machine. Now that people see how easily the wheels
turn, they suddenly begin to see all the useful applications of TCP/IP for short-distance
communication around the home, around the office, and even around the desktop. TCP/IP is not just
for the Internet any more.

Having transformed local-area TCP/IP networking, people realized that Zeroconf's DNS-based Service
Discovery mechanisms could be taken back and applied to the wide-area Internet too. Being able to
simply browse to find the list of printers on the local network was so useful that people wondered
why they couldn't browse to find printers at a specified remote location too, and Wide-Area DNS
Service Discovery was born. When staying in a hotel, Zeroconf allows you to see printers being
offered by that hotel on its local network, and, with Wide-Area DNS Service Discovery, you can also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

see printers at your home or office, should you wish to print on one of those instead.

This book provides an in-depth look at the components of Zeroconf technology and a survey of the
programming APIs that will allow you to Zeroconf-enable your product.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Audience for This Book

This book is written for curious users, for software developers, and for hardware developers. Many of
the screenshots show images taken from Mac OS X, but that's primarily a reflection of the fact that
both the authors primarily use Mac OS X. Don't be misled into thinking this a Macintosh programming
book. The concepts and programming examples given in this book are almost exclusively cross-
platform. The Zeroconf Multicast DNS daemon and APIs are available on Mac OS X, Windows, Linux,
Solaris, FreeBSD, etc. The dns-sd command-line tool is available on all those platforms, as are the
dns_sd.h C programming API, the Java™ API, and the other interfaces for languages like Ruby and
Python. Just one chapter, Chapter 9, covers APIs that are specific to Mac OS X.

For curious users who want to understand the technology used by iChat, iTunes, iPhoto, network
printing, SubEthaEdit, and countless other applications, this book explains the Zeroconf technology.

For software developers making networking applications, this book explains how you can, with very
little effort, make your software a lot easier to use. Going beyond that, this newfound ease-of-use
means that previously infeasible software products now become viable. Imagine iChat's local Bonjour
Window if you had to type in the IP address of each peer you wanted to chat with. It would be
pointless. No one would do it, and there would have been no point even having that feature in the
first place. Compare that with iChat as it is today, where it automatically discovers all the local peers
on the network and displays them in a list. Now it suddenly becomes a lot more interesting, and that
feature becomes worth implementing.

For hardware developers currently making IP-based hardware devices, the message is very similar.
This book explains how you can, with very little effort, make your devices a lot easier to use. This
translates into thinner manuals, lower support costs, and lower return rates. Those effects, in turn,
mean that products that previously would not have been economically viable, because of support
costs and product returns, can now be profitable. It was not so long ago that a networked printer
cost over $1,000. This was not because an Ethernet chip and some IP software cost that much more
than a USB chip. No, it was because of the higher support costs and return rates for these products.
Zeroconf cuts those support costs and return rates, and, these days, Zeroconf-enabled Ethernet
printers are available for about $100. In many cases, what Zeroconf offers is plain and simple:
enhanced functionality. When devices on a network can automatically communicate, advertise, and
discover services for themselves, things become possible that simply wouldn't happen if humans had
to configure everything manually. Sharing idle CPU cycles on the network has long been a popular
idea, yet still, as a percentage of all computer users, very few people make the effort to find out how
to make that work. If, instead, all the user had to do was just click a checkbox saying "Share my idle
CPU cycles," and Zeroconf automatically did the rest, then CPU sharing could become commonplace
instead of remaining a rare novelty.

For hardware developers currently making nonnetworked hardware devices, this book explains how
you can add the benefits of TCP/IP networking to your products without having to sacrifice ease of
use. The marketplace today is full of computer peripherals that connect through serial, USB, FireWire,
or similar technologies, but all of these technologies require the device to be tethered to some host
computer. Devices that connect via Ethernet or 802.11 wireless interfaces can be accessed by any
computer anywhere in the house, but the pain associated with TCP/IP has always been a strong
disincentive. By removing that pain, Zeroconf means it's now practical for many of these serial, USB,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

and FireWire products to migrate to Ethernet or 802.11 wireless interfaces instead.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Zeroconf Technology

At a technical level, Zeroconf is a combination of three technologies. What's more important though
is that at a user-experience level, Zeroconf is about making products that "just work." Setting up a
network device should be as easy as setting up a new table lampyou plug it in, you turn it on, and it
works. It's important to keep that top-level requirement in mind. At the end of the day, the
technologies are the means to the end, not the end in itself. While proper implementation of the
specifications is important, that alone is not enougha worthwhile Zeroconf product is one that
embodies the spirit of Zeroconf, not just the letter of the specifications. With that said, our goal can't
be achieved without the right technologies. For years, people wished that computers and network
devices were easier to use, but wishing it were so did not make it so. Zeroconf is, therefore, about
two things: it's about the top-level goalmaking products that are truly easy to useand it's also about
the supporting technologies that make that possible. The three technologies that make Zeroconf work
are link-local addressing, Multicast DNS, and DNS Service Discovery.

Link-local addressing is described in Chapter 2. To do any IP networking, a computer needs an IP
address, and most computers today normally get one using DHCP. DHCP is a perfectly good protocol,
and link-local addressing is not competing with that. Link-local addressing is better viewed as a safety
net. When DHCP fails or is not available, link-local addressing lets a computer make up an address
for itself, so that it can at least communicate on the local link, even if wider communication is not
possible. In the case of devices with no screen or keyboard that are configured solely over the
network, this is especially important. If they were to get into a state where they lost all ability to
communicate, even on the local network, then there would be no way to communicate with the
device to fix the misconfiguration that's causing the problem.

Multicast DNS is described in Chapter 3. Ensuring that every computer and network device always
has a usable IP address, no matter what, is a good first step, but that alone is not sufficient to
provide a good networking experience. Human users want to refer to computers and devices using
names, not numeric addresses. On the Internet today, devices are named using the Domain Name
System (DNS). DNS is a wonderful system and works really well. Multicast DNS is not competing with
that. Like link-local addressing, Multicast DNS is a safety net, so that when conventional DNS servers
are unavailable, unreachable, misconfigured, or otherwise broken, computers and devices can still
refer to each other by name in a way that's not dependent on the correct operation of outside
infrastructure.

DNS Service Discovery is described in Chapter 4. The two technologies mentioned above get us a
lotnow we can refer to a device by name and communicate with it, even when the rest of the network
is brokenbut we want more. Back in the 1980s and 1990s, in the days of AppleTalk, using an
AppleTalk network printer didn't entail having to ask someone the name of the printer, remember it,
and then type it in correctly without making a mistake. No, those old enough to remember AppleTalk
will remember that you just looked in the Printer Chooser window, saw a list of informative names,
and clicked on the one you wanted to use. We want the same thing on today's IP-based networks.
DNS Service Discovery provides that capability. Because it's built on top of DNS, it works not only
with our new Multicast DNS (for discovering local services) but also with good old-fashioned, wide-
area Unicast DNS (for discovering remote services). Using DNS Service Discovery, the printing
software on your computer can conceptually ask the network questions like the following: "I know
how to generate PostScript and print it over the network using the LPR protocol. Who out there is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

willing and able to accept that?" Each printer on the network that is able to accept print jobs via the
LPR protocol metaphorically raises its hand and says its name, and that list of names is then
presented on the screen for the user to choose from.

Chapter 4 introduces the concepts of DNS Service Discovery and focuses on how it applies to
discovering services on the local link using Multicast DNS. Chapter 5 then shows what's involved in
extending it to the wide-area Internet, using Unicast DNS. There are two facets to this: outward
looking and inward looking. The outward-looking aspect is that when you're away from home or the
office (e.g., sitting in a coffeehouse with your laptop computer), you can still discover services at
your home or the office. The inward-looking aspect is being able to run services on your own
computer and advertise them so they are discoverable and usable by others. For example, you may
want to let work colleagues many miles away view and contribute to a document you're editing; you
may want to let family members in distant cities view your shared photo albums; or you may want,
yourself, to be able to access files on your home computer while you're at work.

Those three technologies are the foundation that Zeroconf provides. What Zeroconf offers you, as a
software writer or hardware designer, is:

The assurance that your software or hardware will always have functional IP networking, no
excuses

The ability to discover what services other devices on the network are offering

The ability to advertise the services your device offers to the network

Zeroconf doesn't dictate how you should write your software or design your protocol. Zeroconf
doesn't dictate whether your protocol should be message- or RPC-oriented, or whether it should be
binary, text, XML, or something else. Because it is agnostic to protocol design details, Zeroconf
provides a foundation that any IP-based protocol can use, from protocols as ancient as FTP and
Telnet to future protocols and products not yet imagined. If you have an existing product that uses
TCP/IP, then adding Zeroconf to it is a trivial programming task that gives a huge improvement in
usability and reliability. More than once, companies have added Zeroconf to their products with as
little as one day's work by one engineer.

Once you understand the ins and outs of the Zeroconf technology, you are going to want to know
how to use it for yourself and how to add it to the software or hardware that you make.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Zeroconf DNS Service Discovery APIs

Unless you're an operating system vendor or a hardware maker, the first two layers of Zeroconf
technologylink-local addressing and Multicast DNSshould be provided for you by operating system
components or add-ins. On Mac OS X, they are built-in. On Windows XP, they are provided by Apple's
"Bonjour for Windows." On Linux and other Unix platforms, this functionality is available using Apple's
Darwin code or a variety of other implementations and is already included in some newer Linux
distributions.

Understanding how link-local addressing and Multicast DNS work is valuable background information,
but when it comes to actual programming, most programmers will interact with Zeroconf through the
DNS Service Discovery APIs in their chosen language.

Chapter 6 introduces the dns-sd command-line tool that lets you experiment with Zeroconf service
advertising and discovery before you actually write your first line of Zeroconf code.

Chapter 7 introduces the C API for advertising and browsing for services. The same C API exists on
Mac OS X, Windows, Linux, and all the supported Unix platforms. In Apple's implementation, all the
other APIs are layered on top of the C API. In much the same way as Java sockets on most platforms
are implemented by making use of the kernel's native sockets support, Java's DNS-SD API is built on
top of the common C API that exists on all supported platforms.

Chapter 8 explains the Java API, which lets you write portable cross-platform programs that will run
on any supported platform that has Java and Zeroconf installed.

Chapter 9 describes two of the Bonjour APIs that are specific to Mac OS X: CFNetServices and
Cocoa's NSNetServices.

Chapter 10 rounds out the review of APIs, outlining the Zeroconf support appearing in some
unexpected languages like Ruby and Python. In fact, the Python support for Zeroconf was built using
a technology called Simplified Wrapper and Interface Generator (SWIG, http://www.swig.org/), so
that single piece of work means Zeroconf service discovery is now accessible from a wide variety of
well-known and lesser-known programming languages, including Tcl, Perl, Scheme, PHP, Objective
Caml, Pike, C#, Allegro Common Lisp, and Modula-3.

http://www.swig.org/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Conventions Used in This Book

The following typographical conventions are used in this book:

Plain text

Indicates menu titles, menu options, menu buttons, and keyboard accelerators (such as Alt and
Ctrl).

Italic

Indicates new terms, URLs, email addresses, filenames, file extensions, pathnames, directories,
and Unix utilities.

Constant width

Indicates commands, options, switches, variables, attributes, keys, functions, types, classes,
namespaces, methods, modules, properties, parameters, values, objects, events, event
handlers, XML tags, HTML tags, macros, the contents of files, or the output from commands.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in
your programs and documentation. You do not need to contact us for permission unless you're
reproducing a significant portion of the code. For example, writing a program that uses several
chunks of code from this book does not require permission. Selling or distributing a CD-ROM of
examples from O'Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount of example
code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: "Zero Configuration Networking: The Definitive Guide, by Stuart
Cheshire and Daniel H. Steinberg. Copyright 2006 O'Reilly Media, Inc., 0-596-10100-7."

If you feel your use of code examples falls outside fair use or the permission given above, feel free to
contact us at permissions@oreilly.com.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information.
You can access this page at:

http://www.oreilly.com/catalog/bonjour

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly Network, see
our web site at:

http://www.oreilly.com

http://www.oreilly.com/catalog/bonjour
http://www.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Safari Enabled

When you see a Safari® Enabled icon on the cover of your favorite technology book,
that means the book is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search
thousands of top tech books, cut and paste code samples, download chapters, and find quick answers
when you need the most accurate, current information. Try it for free at http://safari.oreilly.com.

http://safari.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Acknowledgments

Stuart Cheshire

My thanks go to Dan, my able coauthor, without whom this book would not exist. Thanks also to Mike
Loukides, our editor, for striking the right balance between patience and impatience, without which
this book would never have been finished. Thanks especially to Tim O'Reilly, who saw the promise of
Bonjour/Zeroconf (or Rendezvous, as it was then) from the very start and persuaded me to publish
an O'Reilly book on the subject.

Thanks to all the people who, through their own initiative, enthusiasm, and efforts, helped make
Bonjour a success. Thanks to Kiren Sekar, for his work on the conformance test, the C API, and wide-
area Bonjour; to Marc Krochmal, for immeasurable contributions in countless areas; to Craig
Keithley, for his tireless evangelism efforts; and to Angie Sticher, Vincent Lubet, and Howard Miller,
for their organizational contributions. Thanks to Josh Graessley and Dieter Siegmund, for providing
the necessary kernel support, including IPv4 link-local addressing; to Quinn, for the initial Linux
support; to Roger Pantos, for the mdnsd daemon for Linux and for the Java APIs; to Bob Bradley and
Scott Herscher, for Bonjour for Windows; to Rich Kilmer, for the Ruby APIs; to Thomas Uram, for the
SWIG interface definition file; and to Erik Guttman and Bernard Aboba, my coauthors on RFC 3927,
the IPv4 link-local addressing specification.

Thanks for their various contributions are also owed to: Mike Bell, Richard Blanchard, Leigh
Blankenship, Rob Braun, Joyce Chow, Mike Culbert, Paul Danbold, Moe Gharahgouzloo, David
Harrington, Dave Heller, James Higa, Arthur van Hoff, Joe Holt, Jordan Hubbard, Brian James, Deep
Jawa, Bryan Johns, Rod Lopez, Jim Lovell, Kevin Marks, Rob Newberry, Juliette Noh, Chris Parker,
Eric Peyton, Jeff Robbin, David ("Lefty") Schlesinger, Bud Tribble, Andrew White, James Woodyatt,
and Jeremy Wyld.

Thanks to my wife, Pavni, and daughter, Ishani, for their patience while I worked on the book.

Thanks to Lewin, Marta, Ed, and the rest of the staff of the Progresso coffeeshop on Portobello Road,
for my twice-daily cappuccinos while I worked on the book.

Thanks also to Simon Patience, Bertrand Serlet, and the rest of my Apple management and
colleagues, for giving me this opportunity.

Daniel H. Steinberg

My biggest thanks go to Stuart Cheshire for creating such a nice piece of technology and for
coauthoring this book. I remember seeing the demo of Bonjour (then under a different name) at
Apple's Worldwide Developers Conference. It was immediately compelling. Bonjour was one of those
ideas that was both obvious and groundbreaking. The underlying ideas were solid and the
implementation was impressive. In addition to his contributions as an engineer, he is a careful author
who explains precisely what he means to say in an easily understood manner.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Thanks also to Apple employees: Marc Krochmal, for answering all of my questions and for providing
code samples that illuminated the corners of the technology; Roger Pantos, for his work with the Java
API and his cheerful answers to questions; Bob Bradley, for his help with the examples for the
Windows event loop; and David Gleason, for being such a helpful member of the Apple Developer
Connection.

As always, many thanks to my wife, Kim. No book project would be possible without her help and
support. My daughters, Maggie Rose and Elena, tested the software examples in this book and
showed that Bonjour can be intuitive to a six- and an eight-year-old. As we were preparing to write
this book, I was hired by O'Reilly Media to launch the java.net web site. Thanks to the great team on
the O'Reilly side for making that site, and our onjava.com and dev2dev.com sites, so successful. In
particular, thank you Sarah Kim, Tony Stubblebine, David Lents, Jon Mountjoy, Derrick Story, Miky
Vacik, and Greg Dickerson. Bruce Stewart is the best boss I've ever had. I wish I'd learned earlier in
my career the importance of having such a great manager. I have also worked closely with his boss,
Nancy Abila, and appreciate how she also makes it possible for me to do my best work.

Chris Adamson and I have worked together on the O'Reilly Java web sites during the entire writing of
this book. He has written two books during that time and has supported me during the writing of this
book. Finally, thank you to Mike Loukides, who edited this book with the right amount of pushing and
encouragement.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 1. Introduction to Bonjour and
Zeroconf
You walk in a few minutes late to a meeting and want to know what you've missed. You open your
text editor and your computer automatically discovers a shared document in which one or more
attendees are taking notes. You have a couple of colleagues who are busy in another meeting but are
interested in the topics being discussed in your meeting. You invite your colleagues to view the notes
being taken and to contribute their comments and questions. A presenter announces that anyone
wanting a copy of his slides should let him know. You open your local Instant Messenger application
and see his name in the list of available names, even though you have never met before and he is
not in your buddy list. A moment later, he has placed his presentation in your drop box in your Public
folder, which he has discovered in his network directory.

The meeting comes to an end. Before anyone erases the whiteboard, someone snaps a quick picture
or two and puts it in their photo-sharing library so that anyone interested can download it. You notice
a new entry in your audio software that announces that the person who was recording the session
has already posted it in her shared audio library. Before you save the notes on the session, you
decide to print out a copy to read on the plane ride back. In the print dialog, you discover several
printers and choose the one labeled "Third Floor Meeting Rooms."

This is not a fantastical glimpse of the elusive future. It is a concrete description of what is available
today using Zeroconf. In this chapter, you will get a quick overview of the various components that
make up Zeroconf. In the following four chapters, these details will be fleshed out. The second half of
this chapter examines the Zeroconf design principles that build on two decades of experience with the
AppleTalk Name Binding Protocol.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.1. Service Discovery with Zeroconf

None of the examples that took advantage of Zeroconf began with someone thinking, "You know
what I could really use right now? An IP address." Certainly, it's a

Zeroconf's Many Names

The seeds of Zeroconf were planted in some postings by Stuart Cheshire on the Net-
Thinkers mailing list in 1997. This led to the IETF holding two "Birds of a Feather" (BOF)
sessions at the March and July 1999 IETF meetings on the subject of "Networking in the
Small" (NITS), co-chaired by Stuart Cheshire and Peter Ford.

Out of the NITS BOF meetings, the Zero Configuration Networking (Zeroconf) Working
Group was formed in September 1999.

In May 2002, Apple announced its trademark "Rendezvous" for the Zeroconf
technologies, a little like the way Apple uses its trademark "AirPort" for IEEE 802.11
wireless networking.

Unfortunately for Apple, another company also had a networking product by the name of
"Rendezvous," and in April 2005, Apple announced the new Apple name for the Zeroconf
technologies: "Bonjour." Other third-party products can also carry the Bonjour name and
logo. Apple doesn't charge any money to license the name and logo; the products just
have to pass Apple's Bonjour Conformance Test to verify that they do in fact implement
the specifications properly.

Meanwhile, other open source implementations of the Zeroconf technologies have also
been created, including Howl and Avahi.

The terms "Bonjour" and "Zeroconf" are often used interchangeably, but as a general
rule, this book uses the term "Zeroconf" when referring to the technology in general and
"Bonjour" when referring to it in an Apple-specific context. For example, iChat on Mac OS
X doesn't have a "Zeroconf" window; it has a "Bonjour" window (it says "Bonjour" at the
top of the window).

rare person who takes the time to say, "Now that I have an IP address, I could use a friendly domain
name. I should learn how to set up DNS on my laptop." A typical user of Zeroconf should not be
aware of the infrastructure required. She just wants to use a printer, stream music, exchange
photos, or use some other service.

The architecture of Zeroconf is built around simplicity. It should be as easy for an end user to connect

http://lib.ommolketab.ir
http://lib.ommolketab.ir

to a printer or locate streamed music as it is for him to turn on a light bulb. The simplicity extends to
implementers as well. A vendor of an inexpensive device who desires to use Zeroconf should not find
it hard to implement Zeroconf, even in devices with extremely limited memory capacity.

1.1.1. Service Discovery

To the end user, the most important facet of Zeroconf is the ability to easily browse for available
services. It is worth taking a moment to appreciate the significance of the concepts encapsulated in
that short phrase. Start with these five highlighted words as the prime directive for Zeroconf.

1.1.1.1. Browse for services

With Zeroconf, you browse for services, not for hardware. The reason for this is simple but
important: if you want to print, there is little benefit to discovering hardware that doesn't do printing.
Similarly, there is little benefit to discovering things that are printers but speak only a printing
protocol that your client does not support, since you wouldn't be able to use those printers.
Conversely, suppose that there is a device on the network in a legal office that functions, protocol-
wise, as a printer, but instead of printing on paper, it archives documents as date-stamped PDF files
on recordable CDs. You would want your printing client to discover this service, since it's a service
your printing client can use. Suppose there were an inexpensive USB printer (which doesn't have
Postscript or networking) connected to a desktop computer (which does), with software making
Postscript printing service available to other machines on the network via IPP (Internet Printing
Protocol). You would want your Postscript IPP printing client to discover this service, since it's a
service you can use. What is it that your printing client is discovering, in this case? The USB printer?
The desktop computer? The software? No. The insight here is to realize that what your printing client
is discovering is the aggregate service offered by the computer, the printer, and the software working
in concert, and it is that aggregate service that is being advertised as a logical entity on the network
in its own right. The USB printer could break and be replaced, and the logical service being offered
would remain the same. The desktop computer could break and be replaced, and the logical service
being offered would remain the same. Even the software could be upgraded or replaced, while the
logical Postscript IPP printing service being offered to network clients would remain unchanged. The
important principle here is that when you're looking for services on the network, the relevant
question is not "What are you?" or even "What do you do?" but "Do you speak my language?"

1.1.1.2. Available services

The list that the user gets should be services that are currently available to them. They should be
able to see the list of currently available printers, select one, and use it. As with all such network
protocol designs, there is a trade-off between timeliness of information and network efficiency.
Continuously querying the network to find what services are available gives accurate, up-to-date
information but can impose an unreasonable burden on the network. Querying the network just once
is much more efficient, but the client's information soon gets out of date, necessitating a "refresh"
button in the UI, which then puts the burden on the human user to keep clicking the refresh button
(which puts a burden on the network). Zeroconf solves these problems using a variety of techniques.
For efficiency, clients query the network infrequently, as little as once per hour. To avoid long delays
before new services are discovered, when a service starts up it sends a few multicast announcement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

packets, so clients become aware of the new service even before performing their next scheduled
query. IP Multicast addresses are special destination addresses that cause packets to be delivered to
all interested parties on the local network, rather than just to a single machine. When services go
away, they send multicast "goodbye" packets, so they are promptly removed from all clients' UI lists.
In the event that a service is unceremoniously disconnected without getting a chance to send its
"goodbye" packet, stale data may remain in lists for a while, but even this case is handled by
Zeroconf. When a client attempts to contact a stale service that is no longer present, the failure is
noted, and the service is promptly removed from the list of available services. This prompt removal
occurs not only on the client that directly experienced the failure but also on all the other clients on
the same network link, which passively observe the failure and update their own lists too. Zeroconf
uses these and a variety of other techniques to provide timely, accurate information while keeping
the network traffic to a minimum.

This kind of peer-to-peer, multicast-based protocol is great for small networks because it is very
reliable and requires no dedicated service-discovery infrastructure, but no matter how efficient the
protocol, there will come a network size where it no longer makes sense. In an organization with
thousands of machines, having every single machine multicasting to every other machine all the time
would not be reasonable. Beyond a certain size, every service-discovery protocol has to transition
from using peer-to-peer multicast to some kind of centralized repository to hold service information.
Services and clients communicate with the centralized repository using a wide-area protocol. In
Zeroconf, the centralized repository is one that most companies already havea DNS serverand the
wide-area protocol is the standard DNS protocol with two small extensions, Update Leases and Long-
Lived Queries. Update Leases allow a DNS server to expire server records if the service that created
them crashes, and Long-Lived Queries allow a client to be notified as services come and go, rather
than having to keep polling the server to find out what's new.

1.1.1.3. Easy browsing

Zeroconf would never have been so widely adopted if using it required popping open a terminal
window and typing in obscure commands. Command-line tools are great for developers and network
administrators, but end users will be browsing for services within a context. They are not conscious
that they are requesting a list of services that implement a protocol. For example, when running
iTunes, users simply see a list called "Shared Music." They don't need to be aware that iTunes is
performing a query for Zeroconf service type _daap._tcp to find the list of local servers offering the
Digital Audio Access Protocol (DAAP) service.

Another thing you'll notice is that the names of shared music sources displayed in iTunes don't need
to look like "thing.company.com," all lowercase with no spaces or other punctuation. In the example
at the beginning of this chapter, the printer was named "Third Floor Meeting Rooms," not
"f3mr.company.com." In command-line user interfaces, you want names to be short and quick to
type. In graphical user interfaces, you don't need to type names because you just select them from a
list of choices, so they can be long and descriptive and can contain rich punctuation, accented letters,
and non-roman characters, such as Kanji.

1.1.2. Names and Addresses

Although service discovery is the most visible element of Zeroconf, Zeroconf is more than just that.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Zeroconf is a three-layer foundation for IP networking, with service discovery sitting atop the two
lower layers, addressing and naming.

1.1.2.1. Claiming an IP address

The first requirement for IP networking is an IP address. There are existing mechanisms for IPv4
address allocation, such as using manual configuration or a DHCP server, but when neither of these is
available, Zeroconf-capable devices will use a self-assigned IPv4 link-local address instead. In brief,
the mechanism behind self-assigned addresses is that the device selects an address at random within
a prescribed range, sends some ARP requests, and then, if no answers are received, proceeds to use
that address. Self-assigned IPv4 link-local addresses are discussed in detail in Chapter 2. IPv6 also
has self-assigned link-local addresses, though sadly, at the present timeeven though Mac OS X,
Windows, and Linux all support IPv6most of the low-cost peripherals that they talk to, such as
printers and cameras, don't yet support IPv6.

1.1.2.2. Claiming a name

The second requirement is that the typical usage model for IP networking expects hosts to have
names, not just numerical addresses. Having to remember and type numerical addresses is
cumbersome at best, and when the addresses are being picked randomly, it may not even be
possible. We need a way to associate a stable name with each device, in order to determine what
address it has picked for itself, at this instant. The Internet's existing mechanism for associating
names with addresses is a DNS server, but when no DNS server is available, Zeroconf-capable
devices will use Multicast DNS (mDNS) to achieve substantially the same effect on the local link,
without having to set up and maintain a dedicated DNS server. In brief, the mechanism behind mDNS
names is very similar to self-assigned addresses: the device sends a few mDNS queries for its desired
name, and if no answers are received, the device can then use that name. Multicast DNS naming is
discussed in detail in Chapter 3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.2. Replacing the AppleTalk Name Binding Protocol

At the end of any software engineering effort, the developers have a deep understanding of the
problem they were solving. Imagine how much better the finished product would be if they had time
to start over with the benefit of the experience they have gained. The DNS Service Discovery (DNS-
SD) layer of Zeroconf builds on years of experience with AppleTalk and its Name Binding Protocol
(NBP) and improves on the earlier technology while building an all-IP solution.

Why IP?

Over the last 30 years, many protocols have competed in both the wide-area networking
(WAN) and local-area networking (LAN) arenas. In the WAN arena, it is clear that IP
won, and even in the LAN arena, IP is rapidly gaining ground. When people have
networks within their homes today, using Ethernet or IEEE 802.11 wireless, it is
generally IP that they use most over those networks, rather than other protocols like
AppleTalk or NetBEUI. The last remaining place where non-IP protocols still thrive is in
short-distance links tethered close to the computer, but even these are showing signs of
migrating to IP. USB, FireWire, and Bluetooth all now have ways to carry standard IP
packets in addition to their own various task-specific protocols. To illustrate with just one
example, when using the native file copying protocols, copying files between two
computers using Bluetooth uses different software and a different user interface than
copying over FireWire, which is different than copying over USB, and so on. In contrast,
when using IP over those same physical links, any given software application (e.g., FTP)
works exactly the same way, regardless of whether the underlying hardware is USB,
FireWire, Bluetooth, Ethernet, 802.11, or something else.

What made USB and FireWire attractive compared to IP for short-distance
communication is that they are relatively easy to use and hassle-free. With Zeroconf
bringing the same convenience and ease of use to IP, one of the last remaining
objections to using IP for short-distance communication, as well as wide-area
communication, has been eliminated.

AppleTalk NBP communicated the available services in a way that was logically consistent with an end
user's perspective. Additionally, NBP allowed users to perform an action using a connected device
without needing to know the device's address and without needing to become their own network
administrator. Although DNS-SD is not simply a rewrite of AppleTalk NBP, there are many things that
NBP got right, and DNS-SD brings those properties to IP networking.

1.2.1. Name Services, Not Hardware

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In AppleTalk NBP, the primary named entity is not a piece of hardware or even a piece of software
but a logical service with which you can communicate using a particular specified protocol. There is
little benefit for the average user in being able to locate and connect to a device if she cannot
communicate with it. The implication is that it is most useful to name entities with which you can
communicate. DNS-SD maintains the same philosophy, naming logical services as the primary entity
on the network. Continuing this philosophy further, it is important not only what the service does, in
a human sense, but what network protocol it uses to do it, since there's no use discovering it if your
client can't talk to it. For example, when you use a web browser to view a web site with the URL
www.example.com, you generally do not know or care much which particular device is answering
your request. What you care about is that it speaks Hypertext Transfer Protocol (HTTP), and that the
content it sends you is something your web browser knows how to decode and display, typically
Hyper Text Markup Language (HTML), and that the content relates to the example.com domain.

Suppose you are interested in locating web sites hosted on your local network. Suppose you could
find the IP addresses of all nearby machines. Then what? You could try to contact them with your
web browser using the well-known port 80. But it is certainly possible for a single device to host more
than one web site, listening on different ports. What you really want is a different sort of browser that
could locate all local services that offer HTML over HTTP. Zeroconf's DNS-SD allows these services to
advertise themselves as offering HTML over HTTP and provide their name, IP address, and port
number.

Reaching a Device Versus Using It

In the early days of computers, files saved from one word processor couldn't be read by
another. Merely having access to the file was not enoughto properly interpret it, the
software had to also understand the language used to encode all of its formatting and
other information. Similarly, merely being able to create a TCP connection to a device is
not sufficient to use it. The client and the service need to speak the same language (i.e.,
network protocol) to communicate usefully.

Historically, Internet protocols have assumed so-called "well-known" port numbers. When you look
up the address of www.example.com, the Domain Name System tells your computer the IP address
of the machine to contact but not the TCP port number. The historical solution to this problem is that
your web browser assumes that the desired web server must be listening on TCP port 80. If it's not
(e.g., because two web server processes are running on the same machine and they can't both use
the same TCP port), then blindly assuming TCP port 80 won't work. You have to manually override
the default port, as in http://www.example.com:1234. While that may superficially seem to work, it
has problems. Once you've published that URL, if you change the port number the server is listening
on, the URL will stop working. It's fragile, like publishing a URL with a fixed dotted-decimal IP address
embedded in it instead of a DNS name.

Another problem with "well-known" port numbers is that if every new protocol gets its own reserved
number, we're in danger of running out. You can see the currently assigned port numbers at
http://www.iana.org/assignments/port-numbers. Thousands are already reserved for applications
you will probably never run on your computer.

Zeroconf's DNS-SD solves this problem by using DNS "SRV" records, which tell the client the service's

http://www.example.com:1234
http://www.iana.org/assignments/port-numbers
http://lib.ommolketab.ir
http://lib.ommolketab.ir

port number as well as its IP address, obviating the need for pre-allocated "well-known" port
numbers. Any service can use any available port on your computer and advertise its port to
prospective clients along with its IP address.

1.2.2. Late Binding

AppleTalk NBP has a mechanism for browsing the network for services, but, as its name emphasizes,
it is primarily a Name Binding Protocol. Its primary function is binding human-meaningful names to
computer-meaningful network addresses. A human user will use the browsing capabilities to locate a
service initially, such as selecting a default printer, but every time the name service is used
subsequently, the Name Binding Protocol is used to find out the current network address and port
number for that service. This means that even if the printer address changes, clients will still be able
to connect to it at the new address without disruption.

This late binding of a name to an address is an important feature of a technology intended to replace
AppleTalk. If a service is available on a network that uses DHCP or link-local addressing, there is no
guarantee that the device hosting the service will have a consistent IP address. When ports are
allocated dynamically, there's no guarantee the service will always be running on the same port. Late
binding ensures that the client attempts to connect to the current IP address and port number.

1.2.3. Finding Named Services

Service requests consist of asking for a service of a particular type in a particular domain. This builds
on the AppleTalk convention of using names structured as Name: Type @ Zone. The Zone in AppleTalk
NBP corresponded to some logical grouping based on location ("Third Floor") or organizational
classification ("Sales"). The equivalent concept in DNS is a subdomain, such as sales.example.com or
thirdfloor.example.com. These replacements for zones provide an independent namespace so that
there is no confusion in printers with the same name that are located in different zones.

In AppleTalk NBP, the Type identified the protocol that the service speaks. So, for example, the NBP
Service Type "LaserWriter" denotes a service that speaks PostScript over AppleTalk Printer Access
Protocol over AppleTalk Transaction Protocol over AppleTalk Datagram Delivery Protocol. The
equivalent DNS-SD service type might be _ipp._tcp, which indicates a printer that speaks the
Internet Printer Protocol (IPP) over TCP over IP.

Built to Last

Application-layer protocols come and go. A service discovery protocol is a more
foundational technology and cannot be built on a faddish technology. There are Zeroconf
APIs for a wide range of languages to support programmers using everything from C,
C++, Java, and C# to Perl, PHP, and Ruby. The Zeroconf daemon runs on Mac OS X,
Linux, Windows, and various flavors of Unix. Zeroconf is agnostic to application protocol
design; it can advertise any kind of application protocol, from ancient ones such as
Telnet and FTP to future application protocols not yet imagined.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Name portion should be a user-friendly name. With this approach, the names are both long and
descriptive. The end user will be employing a browser of some sort to select named services from a
list. As they will not have to type the service name every time they want to use a service, the names
should not be cryptic for the sake of making them shorter. So, for example, there could be a service
with the full name 3rd Floor Meeting Rooms._ipp_tcp.examples.com. Notice that the service name
can contain spaces as well as dots, percent signs, and other symbols. The character set is also not
restricted to US-ASCII; users are free to choose names using any legal Unicode characters.

Name Conflict Detection

Without a central network administrator, there is a possibility that two devices may want
to use the same name. Because Zeroconf requires that the devices be self-configuring,
the devices have to be able to sort out the conflict themselves. For example, you may
buy two printers and connect them into the same network. They ship from the factory
with the same name, "CompanyX Printer." When the second one is connected and a
conflict is detected, the second one needs to choose another name, such as "CompanyX
Printer (2)." If the human user prefers to have a more descriptive name, most printers
provide a web-based interface or something similar that allows the user to enter a
descriptive name of his choice to identify the printer. On devices such as laptop
computers, which are designed for human interaction, a dialog is typically shown to
inform the user if a name conflict occurs and to give him the opportunity to select a new
name, if desired.

1.2.4. Ease of Use

When a device is first connected to a network, it must manually or automatically gather information
about the local network. With mobile devices, this happens often enough that it is unreasonable to
require that a human configure the device every time the device joins a new link. For example, where
a site offers one or more DNS domains with services available for browsing, the device should be able
to learn this from the network, rather than requiring it to be manually configured by the human user.

The list of services displayed in the browser should be dynamic. You have seen discovery
mechanisms that use an icon or dialog to indicate that the list of services is being updated. After
some unacceptably long delay, a static list of results is displayed. The only way to refresh this list is
for the user to press a refresh button or for the client application to regularly poll for available
services. In a Zeroconf-based service browser, less than a second elapses from the time that a user
initiates browsing to when she is presented with a list of results. The browser will not burden the
network with frequent polling for available services. The list will update to add or remove services
based on announcements from the services, from non-renewed leases, and from multicast messages
from other devices attempting to use a listed service.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.3. Summary

Zero Configuration NetworkingBonjour, as Apple calls itprovides a three-layer foundation to enable
hardware and software makers to produce great products. Zeroconf doesn't do printing. Zeroconf
doesn't do network music. Zeroconf doesn't do photo sharing or multiuser document editing or
instant messaging. What Zeroconf does is provide the rock-solid foundation so that those great
products can be built without worrying that, from time to time, TCP/IP might fall apart and let them
down.

Chapter 2 describes the first layer of the three-layer foundation: getting an IP address when there's
no working DHCP server. Chapter 3 describes the second layer: being able to refer to hosts by name
when there's no working DNS server. Chapter 4 describes the third layer: discovering what's
available on the network without having to ask the person sitting next to you for help. Chapter 5
extends Chapter 4's local service discovery out to the global Internet. The second half of the book,
Chapters 6 and onward, presents the APIs in various different languages that allow you to use local-
and wide-area service discovery in your hardware and software products.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 2. IP Addresses Without DHCP
Each device on an IP network will need at least one unique IP address. Until you run your own
network, you may not think very hard about how this works. You or someone from the IT staff most
likely configured your computer at work to use a specified IP address or to use the company DHCP
server, but the days when networks existed only at a few large universities and companies are
behind us. Nowadays, there are small networks popping up everywhere. Computers and devices need
to communicate. Your home may have a computer or two, a printer, a scanner, a digital camera, and
a phone. You do not want to learn to be a network administrator just to get these devices to play
nicely together, and there's no reason you should have tojust like there's no reason you should have
to learn to be a car mechanic before you can drive a car.

You will see even more of these small local networks connecting various devices pop up at homes,
coffee shops, or while on a walk. If we are to standardize on IP for communication among devices, it
needs to be easier for them to obtain IP addresses. Suppose you take a bunch of pictures with your
digital camera and wish to print them, save them to your computer, or transfer them to a friend's.
When you cable that digital camera to a printer or a hard drive, or you connect your computer to
your friend's wirelessly, you don't really want to have to depend on a DHCP server being present, and
you don't really want to have to configure each device manually with an IP address. You would like
there to be an automatic configuration of IP addresses that provides each device with a unique
address.

In this chapter, we present three different ways in which a device may obtain an IP address: manual,
DHCP, or self-assigned. As a motivating analogy, imagine that you want to enter a 65,000-seat
auditorium to attend a networking lecture. At the moment, several seats are occupied. There are a
variety of strategies that could be used:

We could require that every student attending the lecture obtain a seat assignment in advance
from an auditorium administrator. Each student arrives at the auditorium with a preprinted
ticket and will refuse to sit in any seat other than his assigned one. If, by mistake, two students
have been assigned to the same seat, then one of two things will happen. The first possibility is
that if either of the two students behaves like Mac OS or Windows, one of the two students will
leave the auditorium and complain to the administrator about the mistake. The administrator is
expected to correct the mistake. The second possibility is that if both of the students behave
like some other operating systems, a violent fistfight will ensue, not stopping until either at least
one participant is dead or the human administrator intervenes and forcibly drags one or the
other combatant (or both) from the auditorium against their will. This is analogous to manual
address assignment. It is heavily dependent on the auditorium administrator never making a
mistake.

We could provide a ticket window. When each student arrives at the auditorium, she goes to the
ticket window and requests a ticket. The ticket seller hands her a ticket for a seat that is
supposed to be (as far as the seller knows) unoccupied. If the student finds some antisocial
person already sitting in her seat, then rather than getting into a fight, she simply returns to the
ticket window and requests a different ticket. This is analogous to using a DHCP server. This has
some advantages over manual assignment but does require that we provide a ticket window

http://lib.ommolketab.ir
http://lib.ommolketab.ir

and staff it.

We could expect the students to find vacant seats for themselves. In this case each student
arrives equipped with some kind of personal random-number generator, and each seat is
equipped with a load sensor that can determine if someone is sitting there. Before entering the
auditorium, each student uses the personal random-number generator to select some seat
number at random. They then enter that number on a keypad outside the auditorium door. If
the seat is occupied, a red light above the keypad illuminates and the student picks another
random number and tries again. If, after a second or two, the red light has not illuminated, the
student enters the auditorium and takes his seat. This is analogous to self-assigned link-local
address assignment.

Analogies between computers and day-to-day life generally should not be taken too literally,
and this one is no exception. In this last analogy, it would seem that a student might have to
try many times before finding a vacant seat. In reality, the density of usage of self-assigned
link-local addresses is intentionally kept very low, for precisely this reason. Even though 65,000
addresses are available, it would be rare to have a single Zeroconf network with more than
1,000 hosts on it. In fact, 10 might be a more typical number, and the network could be as
small as just two devices. Even in the extreme case of 1000 devices on a single Ethernet, still
less than 2% of the available addresses would be in use, so a new device joining the network
would have a 98% chance of finding a free address on the first try. This example is given for
IPv4 link-local addresses, but IPv6 also has link-local addresses, and even more are available.
With IPv6, there are 2118 link-local addresses (RFC 2462), which is more than 1035, so the
chance of an address conflict is tiny.

As described in Chapter 1, the Zeroconf technique for obtaining a unique IP address is as simple as
practically possible. Choose an IP address and check that no one else has already claimed it. If
someone has, then choose another address. If the address has not yet been claimed, then claim and
defend it. In this chapter, you will look at some of the details glossed over in this simplified
description.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.1. Obtaining an IP Address

There are two components to choosing an IP address for a given network. You need to find a
legitimate address and you need to confirm that you are the only one using this particular address on
this network. A network administrator can manually assign your IP address. In this case, the
administrator is responsible for ensuring the assigned address is available and unique. If there is a
DHCP server configured for your network, you can use it to obtain a unique IP address. Zeroconf
allows you to automatically select an IP address in the absence of a DHCP server or network
administrator.

2.1.1. Manual Assignment

Whatever your platform of choice, there is usually some way to configure your network settings by
hand. Often, there is a GUI that makes it easy for you to enter your IP address, subnet mask , and
gateway/router information. In Mac OS X 10.4, you either select Network after choosing Apple Menu

 System Preferences...or by selecting the Apple Menu Location Network
Preferences...item.

2.1.1.1. Entering an IP address

In the example shown in Figure 2-1, the IP address 192.168.1.123 has been selected. For now, this
discussion is limited to IPv4 addresses. These are 32-bit values that are usually written as four
positive integers, each between 0 and 255, separated by dots. This familiar format is known as
dotted decimal.

Figure 2-1. Assigning an IP address manually

The second number that you enter is the subnet mask. This is also a 32-bit number and is used to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

indicate which portion of the IP address contains information about the network and which portion
contains information about the host. The network information corresponds to those bits that are
turned on in the subnet mask. In the example shown in Figure 2-1, the first 24 bits are on and the
last 8 bits are off. You can also represent the information contained in the IP address and subnet
mask fields together by writing 192.168.1.123/24. The forward slash and the 24 at the end indicate
that the first 24 bits are reserved for the network information, so the remaining 8 bits are for the
host information. The host uses this information to determine how to deliver IP packets. When
sending a packet, the host checks the network number (the first 24 bits, in this example) in the
destination address, and if that exactly matches the network number in its own address, that means
that the destination is on the same subnet and the packet is sent directly to the destination machine.
Otherwise, the destination is not on the same subnet, so the packet is sent to the default gateway for
forwarding on to its eventual destination.

The third number you enter is your local router or gateway. This is the router's address within your
subnet. In other words, within the 256 possible 32-bit addresses that begin with 192.168.1, the
router has host address 1 and the machine currently being configured will have host address 123.
The router also has an IP address on its upstream interface connecting to the rest of the Internet.
Whenever your machine wants to communicate with a host that it can't reach directly (see the
sidebar "Link or Subnet?"), it needs to send the packet to the router, which will forward the packet
on to its eventual destination. A certain kind of router, called a Network Address Translation (NAT)
router, will also rewrite the packet header while forwarding it, to make it appear that all packets
actually originate from its single external IP address. This allows several hosts to appear to share a
single public IP address, but header rewriting is not a perfect technology, and hosts that are stuck
behind a NAT router are limited in the things they can do. Web browsing, email, and a few other
things work, but there are many less well-known IP applications that do not survive header rewriting
and cannot be used by hosts stuck behind a NAT router. Technology to overcome this limitation is
described in Chapter 5, in which we discuss service discovery beyond the local link.

There are other numbers not shown in Figure 2-1 that you may also need to enter. For example, if
you want to resolve URLssuch as http://www.oreilly.comto their corresponding IP addresses, you will
need to have the address of one or more DNS servers. You will learn more about DNS in Chapter 3.

2.1.1.2. Choosing an IP address

If an IP address is to be entered by hand, this address should be obtained from a network
administrator. The administrator will know which subnets have been set up and which IP addresses
are currently available on each. A central authority is responsible for assigning the addresses and
avoiding conflicts. The example shown in Figure 2-1 is fairly typical for a home or otherwise small
network with a single, external (and possibly dynamic) IP address. Some operating systems will
display a message if you try to assign an address that is already in use. Figure 2-2 shows an example
of an address conflict message.

http://www.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Link or Subnet?

Computer networking professionals often use the terms link and subnet interchangeably,
which is not always accurate.

A link is a physical-layer concept. Using Ethernet as an example, when you send an
Ethernet broadcast, all the devices that receive that broadcast are on the same link.

A subnet is a network-layer concept. A subnet is a range of IP addresses that are all
mutually reachable from one another, directly, without going through a router.

In an ideal world, there would be an exact one-to-one correspondence between links and
subnets. However, as new computers are added, sometimes all the available addresses
in a subnet are exhausted. At this stage, the right thing to do might be to enlarge the
subnet, but that would involve changing the subnet mask on all the existing machines,
which could be something of a hassle. Because of this, network administrators will often
just add a second IP subnet to the same Ethernet, so that there are two IP subnets on
the same link. This means that when a computer in subnet A sends a packet to a
computer in subnet B, it could, in principle, send it directly, but it doesn't know that.
When it consults its routing table, it finds that the destination is not in its subnet and
sends the packet to the router for forwarding. The router does know that both subnets
are on the same link, so it turns the packet around and sends it back on the same
Ethernet to its destination. This is obviously inefficient, in terms of both network
bandwidth and utilization of router resources, but it is nonetheless more common than it
should be. One solution to this problem is provided by RFC 3442, "The DHCPv4 Classless
Static Route Option," which allows a DHCP server to tell the clients that they have more
than one subnet that's directly reachable without going through the router, but it may be
many years before RFC 3442 is widely implemented and deployed.

If a link can have more than one subnet, is the converse true? Can a subnet span more
than one link? Generally, the answer is no. When a device wants to send an IP packet to
a destination address on the same subnet, then instead of sending the packet to a router
for forwarding, it broadcasts an IPv4 ARP (or IPv6 Neighbor Discovery) packet asking
"Who has this address?" and waits for the response, then sends the IP packet directly to
the recipient as the payload of a link-layer packet. The prerequisite for this to work is
that both the link-layer broadcast and the subsequent link-layer unicast have to reach
the relevant host, which means that for practical purposes, it has to be on the same
logical link.

In addition to preventing you from accidentally entering an existing address, this also helps a
network administrator identify a device causing a conflict. The hardware information can be used to
lock this device off the network if it is being improperly configured.

In many cases, when you are running a small network, you will be happy to have IP addresses
assigned by DHCP. There are, however, times when you will want to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 2-2. In-use message

manually set an address. The best example of this is a DNS server. Normally, it is best to access
hosts and services by name, using a name server. However, the one service you can't look up by
name is the name server itself, since you can't send it DNS queries to map names to addresses
unless you already know its IP address.

Another example is an old legacy printer. Strange as it may seem today, there was a time when
printer vendors actually sold network printers that didn't have Bonjour/Zeroconf. These printers
usually did include a DHCP client, so they could be configured to get an address from a DHCP server,
but it's not clear why. If you set the printer to use DHCP, you would probably end up being unable to
use it because you wouldn't know what IP address the DHCP server had assigned to it. For this
reason, these printers were more commonly used with a fixed, manually assigned, static IP address.
If you have one of these old pre-Bonjour IP printers, then to print on it you need to tell the computer
what IP address you manually configured into the printer, as shown in Figure 2-3.

Figure 2-3. Manually configuring IP printing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Configuring the printer with a fixed, manually assigned, static IP address means that even after a
power outage, when the printer powers back on, you know it will come back with the same IP
address it had before.

Hardcoding an IP address is labor-intensive and error-prone. If you ever need
to change the address of the printer, every computer has to be updated to use
the printer's new IP address. Using Zeroconf, you can discover what printers
are available on the network, pick one, and then subsequently access it by
name, even if its IP address changes.

2.1.2. Using DHCP

You can obtain an IP address from a Dynamic Host Configuration Protocol (DHCP) server if one exists
on your network. The basic idea is that there is a pool of addresses that can be assigned by the DHCP
server. The server is responsible for allocating the addresses in its pool so that each active requestor
has a unique and valid IP address.

2.1.2.1. DHCP-provided address

A DHCP server can be configured so that you specify the number of addresses available to be served,
as well as the starting address for the block. In Figure 2-4, you see the web-based user interface to a
typical low-host home gateway product that includes a DHCP server. In this case, the home gateway
has been configured to be responsible for the 40 IP addresses beginning with 192.168.1.151.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 2-4. DHCP server configuration

You can view the DHCP clients table to see a snapshot of the IP addresses currently managed by the
DHCP server. Figure 2-5 shows light use by five devices. Note that the DHCP Server IP Address is the
address we saw before for the router. For each device in the table with a name, the name is
displayed.

The hardware address is also displayed in this table, in the column headed "MAC Address." In this
case MAC, is not an abbreviation for Macintosh but rather an acronym standing for Medium Access
Control. The Medium Access Control is the part of the software or firmware responsible for controlling
access to the physical transmission medium. In the case of Ethernet, the MAC address is therefore
the Ethernet

Figure 2-5. DHCP Active IP Table

http://lib.ommolketab.ir
http://lib.ommolketab.ir

address, and with Ethernet being the predominant networking medium in use today, many people
use the terms MAC address and Ethernet address almost interchangeably or the generic term
"hardware address." In the warning message illustrated in Figure 2-2, it is the MAC (or Ethernet)
address that is shown to help identify the device currently occupying the desired address.

The Dynamic Host Configuration Protocol is specified in RFC 2131. Broadly speaking, it can treat
clients in two ways. One way is to treat clients anonymously, handing out available IP addresses on a
first-come, first-served basis to any client that asks for one. This is the easiest and most common
way of using DHCP. A DHCP server can also be configured to hand out a specific IP address and other
per-client specific configuration parameters to clients it has been programmed to know about in
advance. The DHCP server can identify clients by their MAC address or by the Client ID supplied by
the client. Note that there is usually no security associated with thisany impostor can impersonate a
known client simply by putting that client's hardware address and/or Client ID in the DHCP request
packet.

A client requests the use of an IP address for a specific length of time. The client can renew and
extend the lease at any time. If the lease is not renewed before it expires, then the DHCP server
returns that address to the pool of available addresses. RFC 2131 explains how DHCP allocates
addresses to hosts for some period of time:

The basic mechanism for the dynamic allocation of network addresses is simple: a client
requests the use of an address for some period of time. The allocation mechanism (the
collection of DHCP servers) guarantees not to reallocate that address within the requested time
and attempts to return the same network address each time the client requests an address. In
this document, the period over which a network address is allocated to a client is referred to as
a lease. The client may extend its lease with subsequent requests. The client may issue a
message to release the address back to the server when the client no longer needs the address.
The client may ask for a permanent assignment by asking for an infinite lease. Even when
assigning "permanent" addresses, a server may choose to give out lengthy but non-infinite
leases to allow detection of the fact that the client has been retired.

Most DHCP servers allocate addresses sequentially, as can be seen in Figure 2-5, though RFC 2131
allows servers to allocate addresses in any order they choose. When a server has been running for a
while and all addresses have been used at least once, it is common for the server to allocate a new
client whichever address has been unused for the longest time.

Figure 2-6 shows a Macintosh configured to use DHCP. Note the text field for the user to enter the
DHCP Client ID. Most of the time, there's no need to enter anything here. Also note the button Renew
DHCP Lease. There is almost no occasion when clicking this button has any effect. Whenever your
DHCP lease is close to expiring, the computer renews it for you, automatically. Any time your
computer wakes from sleep, it automatically checks that its lease is still valid and gets a new one, if
necessary. Any time you connect an Ethernet cable or join an AirPort network (if the interface is set
to use DHCP), it automatically does everything necessary to get a valid lease for that network. If
there's a working DHCP server on the network, then you'll already have a valid lease; if there isn't,
then clicking the Renew DHCP Lease button won't help. However, Microsoft Windows 98 didn't do
things like this automatically and, instead, made the user click a button. Because Windows had a
button to click, customers insisted that Mac OS X have one too, even though on the Mac it isn't
necessary and doesn't really do anything.

Figure 2-6. Dynamic allocation of an IP address with DHCP

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.1.2.2. DHCP with manual addresses

Another mode that DHCP supports is where the host has a manually configured IP address, but other
networking parameters (subnet mask, router address, DNS server address, etc.) are obtained from
the DHCP server. Most operating systems support this mode, though it is not widely used. Figure 2-7
shows a Macintosh configured to use DHCP with a manual address.

Figure 2-7. Using DHCP with a manual IP address

As before, you are responsible for managing any address that you manually assign. If appropriate,
you should check with a network administrator before handing out an address.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Private IP Addresses

If you run a router at home, the address 192.168.1.1 may be familiar. This is often the
default for the local area network (LAN) IP address for such a device. If you run a
wireless network using Apple's AirPort, the default address is 10.0.0.1. These are popular
choices because these addresses should never be used by any host on the "public"
Internet. These addresses are reserved for private , internal network use. Thousands or
even millions of hosts and devices may all use the IP address 192.168.1.1, but since they
never try to communicate with one another, it doesn't matter that they all have the
same address. Some of the IP addresses listed in RFC 3330 as being reserved for local
private use are:

10.0.0.0 to 10.255.255.255

172.16.0.0 to 172.31.255.255

192.168.0.0 to 192.168.255.255

169.254.0.0 to 169. 254.255.255

This last set of numbers is the range that Zeroconf uses when no DHCP server is
available.

2.1.3. Zeroconf Selection of IP Address

In the case of DHCP or manual selection, there is assumed to be some sort of central authority for
policing the allocation of IP addresses. With DHCP, there is a pool of available addresses, which that
authority is allowed to manage. With manual configuration of IP addresses, it is assumed that the
person performing the assignment is authorized and competent to do so. With Zeroconf, the selection
of addresses is done in a distributed manner. Each device is responsible for choosing its own address
and then verifying that it can use the selected address.

2.1.3.1. Link-local range

In the sidebar "Private IP Addresses," you saw the four ranges of IP addresses that are officially
reserved for use on local networks not connected (or not fully connected) to the worldwide public
Internet. The first three ranges, described in IETF RFC 1918, are known as the private use IP address
ranges, and the fourth, described in RFC 3927, is known as the link-local address range.

You may have had the experience of thinking you have a working connection to the global Internet
when, in fact, you don't. You are configured to use DHCP to obtain an IP address, but what you get is
something like what is pictured in Figure 2-8, an address that starts with 169.254. In the early
1990s, if your computer got no response from the DHCP server, you would fail to get any working
networking at all. Since 1998, though, Macs and Windows machines have at least configured a link-

http://lib.ommolketab.ir
http://lib.ommolketab.ir

local address if they couldn't get anything better. Although this address is no use for global
communication, it is good enough for local communicationsay, to print a document. Perhaps more
importantly, this address is good enough for local communication with a faulty DHCP server, so you
can connect to it with your web browser and correct whatever misconfiguration or other error was
preventing it from handing out IP addresses. Without the ability to do at least local network
communication, you can end up in a Catch-22 situation: you need to connect to your home gateway
to correct its DHCP server configuration error, but you can't because it hasn't assigned you an
address. Automatic self-assigned link-local addresses, which are guaranteed to work even when
everything else has failed, provide the solution to that dilemma.

Figure 2-8. Self-assigned IP address

In fact, not all of the range of 169.254.0.0 to 169.254.255.255 is available for general use today. The
first 256 and last 256 addresses have been reserved for future use and what is left are the 65,024
addresses in the range from 169.254.1.0 to 169.254.254.255. Link-local addressing is not designed
for cases in which you need all 65,000 addresses. If you have 65,000 computers and other network
devices, then you really need a paid (or unpaid) network administrator who knows how to run a
network that large. Link-local addressing is intended for two main scenarios: for tiny ad-hoc local
networks where communication is desired without the overhead of setting up a DHCP server, and to
provide a minimum safety-net level of service on networks where there's supposed to be a DHCP
server but it's failed. Because no central authority is maintaining a list of available addresses, a
device joining the network must handle possible conflicts with all of the existing hosts. Link-local
addressing is primarily intended for networks of 2 devices, 10 devices, or perhaps even 100 devices,
though analysis in RFC 3927 shows that even on a network with over 1,000 devices, it still works
reasonably well:

A host connecting to a link that already has 1,300 hosts, selecting an IPv4 link-local address at
random, has a 98% chance of selecting an unused IPv4 link-local address on the first try. A host
has a 99.96% chance of selecting an unused IPv4 link-local address within two tries. The
probability that it will have to try more than 10 times is about 1 in 1017.

However, just because it works reasonably well for networks with over a thousand devices doesn't
mean that it's recommended to have a network that large without any kind of administration.

2.1.3.2. Choosing a link-local address

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You now know the range of numbers in which you are allowed to choose your address. With possibly
many independent devices choosing their own IP addresses independently, a strategy should be
devised to minimize the number of tries each device will have to make, on average, to obtain a
locally unique address. If you have already been connected to a particular network with a link-local
address, then a good strategy is to try to use that address again. This depends first on the ability to
retain this information while shut down, asleep, or otherwise off the network.

There is, of course, no guarantee that the previously used address will still be available. In situations
where the same devices tend to be present on the same local network and this strategy is adopted
by all devices, the process of obtaining unique IP addresses for all should go quickly and smoothly. As
a human analogy, students in university classes tend to sit in roughly the same location class after
class, even in cases where their seat location is not assigned. If, midway through the term, someone
sits in another student's accustomed place, then that student has to find somewhere else to sit. It's
not a major problemnormally the only effect is that the start of the class could be delayed by a few
seconds while the student selects a new place to sit. In the auditorium example at the beginning of
the chapter, there would be fewer conflicts if attendees agreed that, next time, they would request
the same seats that they occupied at the previous event.

If the previously used address is now found to be in use on this network, then the host chooses a
new one at random. Computers use pseudorandom-number generators, which means that the
numbers they produce seem random but really they are quite deterministic. Because of this, it's
important that the algorithm is chosen so that different machines each start with different initial
values, so they don't proceed through the exact same sequence of pseudorandom numbers,
conflicting with their neighbors on every single try. Deriving the initial value from the computer's
Ethernet address is a good idea, since all computers (are supposed to) have different Ethernet
addresses.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.2. Claiming a Link-Local IP Address

You do not have the right to use the address you have selected until you test that no one else on the
network is already using it. In Figure 2-9, you see the output captured by Ethereal as the machines
foo and dimsumthinking try to build a local network.

Figure 2-9. ARP probes on generating Zeroconf addresses

Each machine first picks an address it thinks it would like to use. The machine dimsumthinking has
chosen 169.254.187.245. It then sends some Address Resolution Protocol (ARP) requests asking for
the MAC address that goes with 169.254.187.245. ARP is the protocol that's used when a computer
wants to talk to another machine on the local network. The computer knows the IP address it wants
to talk to but not the Ethernet/MAC address of the machine with that IP address, so it broadcasts an
ARP request asking for that information. In this case, we're using ARP slightly differently: we're
sending an ARP request for our own address and hoping that we actually don't witness anyone else
respond to that request. If someone answers, that means they already have the address, so we
can't.

Note that, in the Tell section, the address is 0.0.0.0 because dimsumthinking is not yet asserting that
it owns that address. These are ARP probes. After a couple of seconds without receiving any reply,
dimsumthinking concludes that no one is using the address, so it may proceed to use it.
dimsumthinking then sends out a couple of ARP announcements. Ethereal displays these in the "Who
has" format, but in reality they are statements, not questions. The "Tell 169.254.187.245" section is
saying, "I am 169.254.187.245."

Later in the trace, around the 26-second mark, dimsumthinking wants to communicate with foo.local.
It sends an ARP request, saying "Who has 169.254.186.86? Tell 169.254.187.245," and foo replies
with an ARP reply, saying "IP address 169.254.186.86 is at MAC address 00:03:93:ef:c4:8c."

http://lib.ommolketab.ir
http://lib.ommolketab.ir

We cover this process in more depth next.

2.2.1. Probing for Address Availability

Once a host has selected a candidate address, the next task is to check that no other host is either
currently at that address or seeking to occupy that address. The mechanism for exchanging
information about IP addresses and the devices using them is the ARP, which is is described in the
IETF RFC 826. In this section, you will take a quick look at those parts of ARP that are needed for
link-local addressing and see how ARP is used to probe for an available address.

2.2.1.1. Address Resolution Protocol

You saw that each device (normally) has a unique MAC address. A single device may have more than
one IP address and may also have addresses that change over time. When you send an IP packet to
another device on the same Ethernet, you send it directly, in an Ethernet-level packet addressed
directly to the recipient, but Ethernet packets need Ethernet addresses, and you don't yet know the
Ethernet address of the recipient. The ARP protocol exists to solve that problem. You broadcast an
ARP request asking what Ethernet address to use to reach your desired IP address, and the device
that knows the answer sends an ARP reply telling you. The format of an ARP packet is shown in
Figure 2-10. ARP requests and ARP replies use the same packet format; the Opcode field indicates if
it is a request or a response.

Figure 2-10. Probing for address availability

The Sender MAC and IP addresses serve as an assertion: this is my MAC address; this is my current
IP address.

The Target MAC and IP addresses serve as a question: who has this IP address? The Target IP
address is specified, but the Target MAC is always all zeros in an ARP request because the sender
doesn't yet know it.

When you broadcast an ARP request and get an ARP reply back, you store the Sender MAC and IP

http://lib.ommolketab.ir
http://lib.ommolketab.ir

addresses in your ARP cache, so the next time you need to know what MAC address goes with that IP
address, you'll already have that information at hand.

2.2.1.2. How to probe

Because ARP is used to look up IP addresses anyway, it's the natural way to tell if an address is in
use. If the machine foo wishes to probe the address 169.254.186.86, it broadcasts a series of ARP
requests such as the one represented in Figure 2-10. RFC 3927 recommends that the host send three
probe packets spaced one to two seconds apart, though other numbers and intervals could work, too.

As you can see in Figure 2-10, the Sender MAC address information is included in the ARP probe
while the Target Mac address is set to all zeros. The Target IP address contains the dotted decimal of
the address the host is inquiring about while the Sender IP address is all zeros. An ARP request with
all zeros for the Sender IP address is known as an ARP probe. You must not fill out the Sender IP
address with the address you are hoping to claim, because some other device may already have
legitimately claimed it. If you put your desired IP address as the Sender IP, then other hosts on the
network will update their ARP caches and send those packets to you instead of to the legitimate
holder of that IP address.

2.2.1.3. Results of probing

The purpose of the ARP probe is to determine whether or not a device can claim a particular address.
Remember that, for small networks, there is a high probability that a randomly selected address will
not collide with existing addresses. So what could go wrong?

Another host might be trying to claim the same address at the same time. What indicates this is
an ARP probe for the same Target address from a different host. Determining whether or not
this is the case is why it is necessary to include the Sender MAC address in the probe. Suppose,
while probing, you receive an ARP probe for the same Target address. If the Sender MAC
address is different, then someone else wants the same address that you want. If the Sender
MAC address is your own, then there is no conflict. There are various reasons you might see
your own probes. For example, you might have Ethernet and 802.11 wireless active, but
(unknown to you) they are both bridged together, so every time you sent a broadcast on
802.11, you see that same packet arrive milliseconds later on the Ethernet interface.

Another host has already claimed the same address. In this case, the host will receive your ARP
request asking about the specified Target IP address, and it will respond to you with an ARP
reply asserting ownership of that IP address, exactly as specified in RFC 826 way back in 1982.
Receiving any ARP packet (request or response) with your desired IP address specified as the
Sender IP address indicates that someone else is already using that address.

If, after a few ARPs, no conflicting responses have been received, the host has claimed the address
and can proceed to announce this fact. If a conflict is detected, then the host chooses another
address and begins the probing process all over again.

2.2.1.4. When to probe

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Notice that, when you probe, you are asking any device that can receive your message whether the
address you want is available. This implies that any time you are not able to receive such a probe,
you cannot be sure that someone else has not claimed your address. Any time your network interface
becomes active after a period of inactivity, you need to go through the process of trying to claim the
address again.

You certainly have to probe any time your device starts up or is rebooted. If your network interface
does not remain active while your device is asleep, you must probe on waking up. You must also
probe if you bring up an inactive network interface, either by attaching a cable, associating with a
new wireless base station, or by changing your network settings to activate a particular interface.

2.2.2. Announcing

At this point, your host has finished probing and is ready to announce its claim of that IP address.
The announcement is important because, moments before you arrived, some other (now departed)
host may have been using that IP address. Other peers on the network could have that old IP
address/MAC address mapping in their ARP caches, and when they try to communicate with you,
they will send their IP packets (unsuccessfully) to the wrong MAC address. By broadcasting an ARP
announcement, we ensure that all those old stale ARP cache entries are updated to point to your MAC
address instead, since you are now the new legitimate holder of this IP address. You may observe
that the chances are vanishingly small of there having been some other host using the same IP
address just moments before you arrived. This is true, but the purpose of Zeroconf is to provide high
reliability, so we want to make sure that even this rare case is handled correctly. We want a protocol
that works correctly all the time, not just almost all the time.

2.2.2.1. Announcing your address

You have chosen your address and determined that no other device is probing for the same address
or has already claimed it. You have claimed the address and must now broadcast this by sending two
ARP requests two seconds apart. The requests are similar to those shown in Figure 2-11.

Figure 2-11. Claiming a link-local address

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As before, the Sender MAC address is included along with the Target IP address. This time, to
indicate that the address has been claimed, the Sender IP address is set to the value of the claimed
address. The Target MAC address is still set to all zeros, as always for an ARP request, and the Target
IP Address is the same as the Sender IP address. The two effects of sending this ARP announcement
are that any hosts simultaneously probing for this same address will realize they need to choose a
different address, and all the other hosts on this link will update any stale ARP cache entries to reflect
this new information.

2.2.3. Defending Your Address

Devices can join and leave the network and try to claim addresses at any time, so the process of
address conflict detection is ongoing. When a new host joins the network, if its randomly chosen
address happens to be our address, when it sends its ARP probes, our host will answer them,
informing the new host that its desired address is already in use and it should choose another.
There's nothing special about answering ARP probes. An ARP probe is just a certain kind of ARP
request, and hosts are answering ARP requests all the time anyway, as part of the normal process of
IP networking.

2.2.4. Late Conflicts and Misbehaving Peers

As described so far, the process works perfectly well. As long as all the hosts follow the rules, each
will assign itself a unique address.

But what if some hosts don't follow the rules? What if some hosts have software or hardware bugs
that mean they don't perform probing properly? What if two hosts do perform probing properly on
two separate unconnected Ethernet segments (so, at the time, there's no harm in them both
assigning themselves the same address), but then, without either host's knowledge, those two
Ethernet segments are later connected together? What if a human user decides to manually assign a
169.254.x.x address on a device that doesn't implement address conflict detection for manual
addresses? Or does it on a device that does implement address conflict detection for manual
addresses, but the human user, for some reason, has disabled that address conflict detection?

The usual reaction to these issues is just to call them errors, out-of-scope for this protocol. If devices
have bugs, the bugs should be fixed. If a human user is guilty of willful malice, then the human user
should be dealt with. The Zeroconf philosophy goes beyond this typical response, though. Certainly,
these situations should not arise, but if they do, is there anything we can do about them?

The answer is that when a device observes an ARP packet sent out from another machine claiming to
have the same IP address, RFC 3927 specifies that the device may send, at most, a single ARP of its
own, reasserting its claim on that address; if the other machine doesn't back down, then the device
MUST give up its address and select another. Many people recoil against this notion. They feel that if
they claimed the address, fair and square, then it's theirs and they shouldn't have to give it up, and
it's the other machine that should change. The problem is that if both devices are programmed to
behave this way, then neither will select a new address, and they will just continue to fight
indefinitely. Meanwhile, until they get the address conflict resolved, neither device can do any useful
networking.

Two devices fighting over the same IP address is like two people in a half-empty cinema fighting over

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the same seat. They can either sit in different seats and enjoy the film, or they can spend the entire
time continuously punching each other, in which case, neither will get to see any of the film and
they'll disrupt the people around them too.

The analogy of someone trying to make you move to another seat is the way many people think of
the situation, and while it's accurate to an extent, such anthropomorphization of computer situations
often leads people to incorrect conclusions. As a person, if you were sitting in a half-empty cinema
enjoying a film and, halfway through, some thug came and hit you, then quietly moving to another
seat might seem like a weak, cowardly response. The manly thing to do would be to stand your
ground and refuse to move. Computers are not people, though. They have no feelings or ego. A
computer programmed to meekly select a new address is not going to feel bad about it. If, instead,
the computer were programmed to fight forever, then it would do just that. It would fight forever,
without any regard for the consequences or benefits. Two computers programmed to fight forever
over the same IP address would do just that. Neither could do anything to stop the other from trying
to use the address; neither would give up trying to use the address itself. Neither would succeed in
achieving anything except causing disruption on the network. They would just sit there shooting ARP
packets at each other without limit, flooding the network and consuming CPU time on all the other
hosts on the network, until some human intervened to stop them. This is where the human user
would encounter the serious problem: if the only user interface to these devices is via a configuration
page that you view via a web browser, and neither device was able to achieve stable networking,
then that could make it very hard for a human to fix the misconfiguration.

The other mistake that anthropomorphization frequently encourages is the notion that a particular
link-local IP address is something worth fighting over. What people don't realize is that after a few
seconds of address conflict, there's nothing left worth saving. When another host broadcasts an ARP
claiming your IP address, peers on the network update their ARP caches. Subsequent TCP packets go
to the wrong host, which, having no record of that TCP connection, responds with a TCP RESET
packet. After this point, continuing to fight over the address would be futile. The connections are all
gone. It's too late to save them. It's a bad situation and it shouldn't happen, but if some thug does
come and stomp on your IP address, the most productive thing for a computer to do is get a new,
untainted address and get on with life, not waste time fighting over the old, dead one.

The way Zeroconf detects and handles this is by passive observation of the ARP broadcast packets it
receives anyway. Every ARP packet includes the sender's MAC address and (claimed) IP address.
Consider the case of your host, with IP address 169.254.187.245 and MAC address
00:03:93:ef:c4:8c, receiving the ARP packet shown in Figure 2-12. The sender of the ARP packet is
seeking to communicate with IP address 169.254.186.86 and wants to know its MAC address.
However, the sender of the ARP packet is also asserting that it owns IP address 169.254.187.245
(which is yours) with MAC address 00:03:65:15:e4:33 (which is not yours, so you know this probe
didn't originate from your machine). This is a conflict and needs to be handled.

Figure 2-12. Conflicting ARP packet

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RFC 3927 allows a machine to handle a conflict in one of two ways:

It can gracefully back down and let the other host have the address. It picks a new address and
begins the probing process all over again.

If it has open TCP connections that it doesn't want to lose, then it can respond by broadcasting
a single ARP announcement asserting its own ownership of that address. However, if this
doesn't solve the problem, then it must back down and let the other host have the address.
There's nothing to be gained by two hosts getting into a fistfight over an address. When two
hosts think they have the same IP address, any open TCP connections are not likely to survive
for long, so, pretty soon, the thing the hosts were each fighting to preserve will be gone
anyway.

The first option, making an immediate change, ensures that the conflict is resolved as quickly as
possible. The host issuing the conflicting ARP packet will most likely keep its IP address and your host
will make a change. If your host has an active TCP connection, it may prefer the second option, as
that gives it a chance of maintaining its IP address and forcing the other host to change.

If your host decides to defend the IP address, then the ARP announcement it broadcasts is received
by the other host as a conflicting ARP packet. The other host then has the same two options: choose
another address or try to defend the current one. But what if the other host will not yield? Then the
other host sends out its single ARP request defending its address and now your host receives a
second conflicting ARP packet. Now you've received two conflicting ARP packets in a row, in a short
window of time, and the protocol specification leaves your host no choice: it must relinquish that
address and pick another.

Another case mentioned before occurs when two previously separate networks are bridged together.
In this case, neither host is really to blamethe network environment just changed around them. This
is harder to detect because the individual hosts generally do not even know that the bridging has
occurred. One solution that's occasionally suggested is to have all hosts periodically broadcast ARP
packets giving their IP addresses, so that each host can detect when some other host thinks it has
the same IP address. This is not a good idea because it would be a huge, ongoing waste of
bandwidth, even when hosts are otherwise quiet and not communicating, to solve a problem that, in
fact, occurs so rarely that many network protocol designers would be content simply to ignore it. The
more lightweight solution adopted by RFC 3927 is simply to have hosts send ARP replies by broadcast
instead of unicast, so that the hosts all get to see what one another are saying and can passively
observe if another host asserts ownership of the same IP address. Since every unicast ARP reply
would normally be sent in response to a broadcast ARP request, this can be viewed as just a little

http://lib.ommolketab.ir
http://lib.ommolketab.ir

more broadcast traffic at a time when there was broadcast traffic anyway. Periodic announcements
would be additional broadcast traffic at times when there was, in fact, no need for any broadcast
traffic at all.

When considering these issues, it is important to remember three things:

The problems of late conflicts, network topology changes, and buggy or misbehaving hosts are
exceedingly uncommon. AppleTalk had no mechanism to detect these kinds of problems and
was used successfully for two decades. Zeroconf is simply being held to an even higher
standard, where even these obscure situations should be handled gracefully, too.

With 65,000 addresses available, the chance of conflict is small. Even if two large 100-host
networks are joined, there's still a better than 75% chance that not a single host on either
network will suffer a conflict.

Link-local addressing is designed for the case where no alternative is available, or the
alternative has failed. In some sense, even if link-local addressing were to be unreliable or not
work very well in all cases, that is still better than the alternative, which is no functional
networking at all. Often, all that is required is that link-local addressing work long enough for
the network administrator to communicate with the DHCP server to fix it.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.3. Summary

Link-local addressing, like all of Bonjour/Zeroconf, has two important goals: simplicity and reliability.
Simplicity is important because this technology is not only for powerful $1,000 computers; it is for all
manner of emerging ultra-low-cost devices that will use IP networking. Reliability is important
because this technology is not just for today's computer experts. This technology is for use by the
general public, who have neither the knowledge nor the patience to struggle with all manner of
arcane and inexplicable computer failures, and indeed they shouldn't have to. Global communication
on the worldwide Internet is very powerful and very useful, but there are many ways that global
connectivity can fail, so it's beneficial to have an alternative backup technology that can be relied
upon to always work, no matter what. Sometimes, reduced functionalitycommunication only on the
local linkis better than no communication at all.

Consequently, following the goals of simplicity and reliability, the steps for obtaining a link-local
address are designed to be as straightforward and simple as possible. Choose a potential IP address
in a reasonable way. Select from the allowable addresses in the 169.254/16 range. As Zeroconf is
designed for situations in which fewer than 2% of the IP addresses have been assigned, your host will
almost surely obtain an address within the first one or two tries. To increase this likelihood, your best
strategy is to first try to reclaim an address you have previously successfully claimed. You can then
use this address to seed your pseudorandom-number generator. After selecting an address, your
host ARPs three times with the target address in the ARP set to the desired IP address. If there is no
response during a reasonable time period, the address is claimed by sending a further ARP with the
desired IP address entered as both the source and target address in the ARP broadcast. Once an
address is selected and in use, the reliability requirement calls for ongoing vigilance, to handle the
extremely rare (but possible) case where conflicts are not detected until later.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 3. Names Without DNS
In Chapter 2, you saw how Zeroconf allows your device to obtain a locally unique IP address without
a DHCP server or a network administrator. The next step is to obtain a name that can resolve to this
address. The method you use to do that is independent of how you have obtained your IP address;
for example, you may have taken advantage of link-local addressing, been assigned an address using
DHCP, or manually assigned an IP address. If you need a name that is at least locally unique and
there is no DNS server available, the Multicast DNS (mDNS) mechanism will help you obtain one.

This stage may feel unnecessary. After all, why not just use the IP address obtained in the last step
as the device name? IP addresses may change over time, and network location and IP addresses are
not a convenient form for people to remember or recognize devices. In other words, you need to
assign locally unique names and not use the automatically assigned IP addresses for the following
reasons:

The IP address provided may be temporary . If you are communicating with a device at a given
address, it is quite possible that, at a later time, the device may have a different address.
Attempting to contact the device by connecting to its old address will not succeed. Even worse,
that address could be reused by a different device, so when you attempt to connect to it, you
may apparently succeed, except you're not actually communicating with the device you
intended.

With mobile devices and devices connected to many networks, the device cannot expect to keep
the same IP address in every location and on every different network. In a world where IP
addresses are fluid and changeable, having a persistent name that's relatively much more
stable is a big benefit. Of course, names also have to be uniquetwo devices cannot have exactly
the same namebut the space of all possible names is so much larger than the space of possible
IP addresses that coming up with unique names is relatively much easier.

An IP address is not a human-friendly way to locate a device providing a service. When we want
to use a web browser to visit Apple Computer's web page, we type www.apple.com and not a
dotted-decimal IP address. As the world moves to IPv6, this problem becomes even more acute.
An IPv4 address is just four decimal numbers, such as 17.112.152.32, which is just about
possible to remember, if absolutely necessary. An IPv6 address is 32 hexadecimal characters,
which is a different story altogether. Most people don't pick secret passwords that are hard to
remember, not even for their most important financial accounts.

If you need to select a device from a list of available devices, this is easier to do if the list is
presented as text-based names and not a collection of IP addresses. This is similar to the
previous point but is the other direction of recognizing a device, as opposed to requesting that
device.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In this chapter, local refers to devices on the same link. You can think of this in
a geographically local sense. There are also people with whom you interact
every day. If you work remotely, other members of your team are closer to you
in some sense than the person you've never met who is working a couple of
tables over from you at your neighborhood coffee shop. These remote-but-
close devices cannot have a link-local address that carries any meaning. Their
name must also be somehow globally unique and not just locally unique. In
Chapter 5, you will see how Zeroconf's local technologies can be extended for
people and devices that are not on the same link as you. In this chapter, the
discussion is restricted to finding a locally unique name using Multicast DNS.

When it comes to global networking today, nothing beats the global domain name system (DNS).
However, the power of the global DNS doesn't come without a price. Someone has to set up and run
the DNS servers, and the globally unique names have to be assigned, allocated, and managed,
usually with money changing hands. For global communications, it's worth all that effort, but if all you
want to do is print on a network printer across the room, surely there must be an easier way. When
all you need to do is establish names that are valid for the local link, link-local Multicast DNS (mDNS)
provides a simple, no-fuss solution.

Instead of relying on a centralized authority, mDNS allows each machine to answer for itself. When a
client wishes to do a query, instead of sending it to a particular DNS server, the client sends it using
IP Multicast, which means that, a bit like a broadcast, it goes to every interested machine on the local
network. Each device on the network runs a little piece of software that's listening for these multicast
queries, and, when it sees a query for its own name (or other mDNS data it knows), it answers that
query, much as a conventional DNS server would have done. On Mac OS X, this little piece of
software is called mDNSResponder . On Windows, it's mDNSResponder.exe. On Linux and similar
Unix systems, it's usually called mdnsd.

In this chapter, you will see the details of how to claim a locally unique name in much the same way
that you claimed a locally unique IP address. Within a domain intended for this purpose, you choose a
name and ask if anyone is using it. If no one is, then you claim and defend this name on the local
network. If the name is in use, you choose a different name and repeat the process. The goal with
mDNS is to have a system that requires minimal administration and configuration and that works
when DNS is not available. We begin the chapter with a look at how DNS works.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.1. A Brief Tour of DNS

Your mobile telephone number is used to reach your phone while you travel from place to place and
even if you switch providers. When you register an Internet domain name, you can be assured that it
is unique and you can publish it so others can use it to find you. If you later move your host
machine(s) to a different location or IP address, this name that you have advertised will still correctly
direct people to your web site. Some central authority must administer telephone numbers and
domain names if we want to ensure consistency and stability. This section provides a quick overview
of DNS.

3.1.1. The Namespace

Consider a typical URL, such as the one for Apple's Bonjour home page:

http://developer.apple.com/bonjour/

The http identifies the protocol as the hypertext transfer protocol. The developer.apple.com identifies
the machine where the resource can be found, and /bonjour/ identifies the particular resource on
that machine.

A domain name read left to right moves from the specific to the general. So, developer is a node in
the apple.com domain and apple is a node in the com domain. There are other domains at the same
level as com that sit under the root of the domain name space in the same way that bin, dev, and usr
directories sit under the root of a Mac OS X machine. On a Mac OS X or other Unix machine, you
might have a path such as /usr/lib. The leading slash (/) character is used as a separator, and we
also think of the root of a Unix file system as being (/) and navigate to the root by typing cd / in a

terminal window. When you type a filename or pathname in Unix without a leading slash, it's
interpreted relative to your current working directory, whatever that might be. If you're not currently
in the directory you thought you were in, then the filename or pathname might not actually refer to
the file you intended. When you type a filename or pathname with a leading slash, it's an absolute
name, relative to the root of the file system, so there's no ambiguity.

In the same way, a domain name that doesn't end in a final dot (.) is interpreted relative to your
current DNS search list. Suppose you mistype developer.apple.com as devloper.apple.com, and
there's no final dot. Your system will first look up devloper.apple.com. When it finds this does not
exist, it will go through your list of search domains, appending each in turn, trying names like
devloper.apple.com.apple.com., devloper.apple.com.starbucks.com., or
devloper.apple.com.whatever.org., depending on what's in the DNS searchlist your machine received
from the DHCP server. If some joker sets up a real web server called
devloper.apple.com.whatever.org., then you may find you've connected to that instead of the one
you expected. Just like putting a leading slash on a pathname, you can eliminate this ambiguity by
making the domain name absolute (i.e., fully qualified) by adding a . to the end. So,
developer.apple.com. is the fully qualified name.

The root doesn't really have a name. You can think of it as the null character to the right of the

http://developer.apple.com/bonjour/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

trailing . or you can think of it as the final . itself. However you think of this trailing ., a fully qualified
name is complete in itself and DNS search domains will not be appended.

Left-to-Right or Right-to-Left?

With Unix and DOS pathnames, you start with the top-level directory at the left, and
then with each successive pathname component, you further narrow the scope until
you've identified the one specific file you want.

Similarly, with telephone numbers, you start with the country code at the left, then the
area code, then the exchange, then finally the last digits that identify the specific
telephone you're calling.

IP addresses work the same way. When you see any IP address that begins with 17, that
means the address is somewhere at Apple. Successive digits narrow the scope to the
particular building, particular floor, and finally, the specific host being addressed.

Postal addresses are written the opposite way: you begin with the specific person or
street address first and end with the city and country.

In the United States, domain names are written like postal addresses, not telephone
numbers or IP addresses: you start with the specific and end with the general top-level
domain (e.g., com, edu, mil) or country code (e.g., us, uk, fr).

For a long time in England, domain names were written like telephone numbers, starting
with the country code first, so the domain name for Sidney Sussex College Cambridge
was written uk.ac.cam.sid instead of sid.cam.ac.uk. These days, England writes its
domain names with the root on the right, like the rest of the world, though, in an ironic
twist, so-called "reverse-DNS" naming has become popular in all sorts of other areas,
such as Java package names (e.g., com.sun.mail.smtp), so the debate over left-to-right
versus right-to-left continues.

3.1.2. Administration of DNS

DNS is robust because there is no central authority responsible for all of the nodes. From the root,
there are top-level domains that can be viewed as independent sub-trees. The top-level domains that
exist directly below the root in the domain name hierarchy include the following:

arpa, which is used for address-to-name mappings

Generic domains, such as com, edu, gov, net, and org

Geographical domains, which are country codes, such as ca (Canada) and jp (Japan)

Below the top-level domains are second-level domains. For example, apple.com is a second-level

http://lib.ommolketab.ir
http://lib.ommolketab.ir

domain that sits under the top-level com domain. Apple Computer had to register this name and now
they manage it. So, for example, Apple did not have to ask an outside authority for permission to add
the node developer to apple.com. They manage their own domain as a separate zone and cannot
possibly cause a name conflict with a domain outside of their zone. You can think of zones as sub-
trees of the domain name space that are managed independently. The leaves of each sub-tree, such
as developer, often correspond to a specific IP address.

When subdomains are created, they are often managed as separate zones, each responsible for their
own administration. Within a university, the top-level domain may be split into domains for the
different schools or departments. So, for example, the rice.edu domain has a subdomain for the
computer science department, cs.rice.edu. The administrator of rice.edu does not need to be
concerned about how cs.rice.edu is administered. This responsibility has been delegated. A node
named exciton has been added to the cs.rice.edu zone. This information needs to be stored in a
name server for cs.rice.edu so that the name exciton.cs.rice.edu can be resolved.

3.1.3. Resolving Names

When you direct your browser to view www.apple.com, some work needs to go on below the surface
to figure out where to direct your browser. In Figure 3-1, the ethereal application has been used to
packet sniff to see what information is being exchanged. The figure highlights the response received
from the default DNS server that the machine issuing the query is using. The query is www.apple.com:
type A, class inet. For the domain name www.apple.com, a type-A query specifies that the IP
address is requested and class inet specifies the query class is Internet. In principle, a DNS server
could be used to store many other classes of data apart from just Internet-related data, but in
practice, the only DNS class that is in widespread use today is class Internet.

The result of a successful DNS query gives you the DNS resource record associated with the
requested name, type, and class. Often, you'll see a resource record's type and class referred to as
the rrtype and rrclass. The resource data inside a resource record is called its rdata. Usually, the
rdata has a particular structure that's determined by the record type. For example, the rdata for an
IPv4 address record has to

Figure 3-1. DNS query for an IP address

http://lib.ommolketab.ir
http://lib.ommolketab.ir

be exactly four bytes. The rdata for a PTR or CNAME record doesn't have to be a fixed length, but it
does have to be a properly formatted DNS name.

In the response, you can see that www.apple.com is actually the name of a CNAME record, which
tells us that www.apple.com is not the real name of the machine; it's an alias for the real, or
canonical, name. The rdata of the CNAME record gives the canonical name,
www.apple.com.akadns.net. The second part of the answer provides the IP address for the name,
www.apple.com.akadns.net.

You may have noticed that not all of the available information has been displayed in Figure 3-1.
Some of the sections have been collapsed. You can also see some of this information using an
application such as host, nslookup , or dig. The Domain Information Groper, or dig, is a command-
line tool that can be used to run various queries. For example, the query dig developer.apple.com
sends a query for the IP address corresponding to developer.apple.com. You can see the response
from dig in Figure 3-2. It is fairly verbose and includes the answer, as well as a list of the six
authoritative name servers and IP addresses for some of those name servers, so we don't have to
begin our query at root next time. For fun, you can run dig with rice.edu and cs.rice.edu and
compare the answers and the authority sections of the two responses.

You also may want to run nslookup with the command nslookup developer.apple.com. Run the query
more than once and the answer should be something like this.

 Non-authoritative answer
:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Name: developer.apple.com
 Address: 17.254.2.129

The phrase "Non-authoritative answer" indicates that the answer came from a cached value and not
a fresh query to an Apple name server. As in other applications, caching

Figure 3-2. Using dig to resolve a domain name to an IP address

improves performance at the risk of passing on information that is no longer correct. DNS is a
distributed database of domain names and addresses, with caching of information higher up in the
tree, that provides robust and efficient resolution of persistent globally unique names to relatively
long-term globally unique IP addresses.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.2. The Zeroconf Namespace

When you want to run a global web server that's reachable from anywhere on the planet, you need a
globally unique name that's resolvable from anywhere on the planet. However, if you're setting up a
web server that's only used locally, then it would be nice if you didn't have to incur all of that
overhead. Running a web server on Mac OS X is as simple as just clicking one checkbox, so it would
be nice if getting a name for that server were as easy. As shown in Figure 3-3, you check the
Personal Web Sharing checkbox to start up the Apache web server.

The content of the computer's web site is contained in the /Library/Webserver/Documents/ directory.
The index.html file will appear when the browser is pointed at the provided IP address. In addition,
each user can have a personal web site that is accessed using the IP address followed by ~username/.

The pages being served are in this machine under the ~username/Sites directory.

Note that, in the Figure 3-3, the displayed URL contains an embedded IP address. This is not very
memorable, nor user-friendly, and because it's a DHCP-assigned address, it may well be different
tomorrow. What we need is a memorable, stable name in place of this IP address.

Figure 3-3. Starting the Apache Web Server on Mac OS X

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.2.1. The local Domain

In order to distinguish local names from existing domain names, Zeroconf uses .local. as a pseudo-
top-level domain (TLD). Just as IP addresses beginning with 169.254 are deemed special, not globally
unique, and therefore only meaningful on the local link, names under the pseudo-TLD "local" are
similarly deemed special, not globally unique, and only meaningful on the local link. The benefit of
local names is that you don't need an arbiter who hands out names and you don't have to pay money
for them. The drawback of local names is that because there's no arbiter and you didn't pay any
money for your name, you can't claim unique ownership and prevent others from using that same
name if they want. Instead, devices using local names have to follow a set of cooperative rules (i.e.,
protocol) by which they detect if two devices try to use the same name at the same time, and, if this
happens, one of them voluntarily selects a new unique name. You cannot assume, if you see the
name example.local. on a given link, that it has any relationship to an example.local. that you see on
a different link, nor can you assume that it has any relationship to an example.local. you may have
seen before on the same link. Of course, you should pick a name that is personalized to help others
who know you have a chance of finding and identifying you.

The easy changeability of names may seem to some to be a big potential security weaknesswhat if
I'm not really printing on the printer I intended? In reality, however, IP addresses and even Ethernet
hardware addresses can be spoofed. The only sound way to provide assurance of identity is by end-
to-end cryptographic means. For example, when you connect to a host for the first time using the ssh
(secure shell) remote login command, that host's public key is saved for future reference in your
.ssh/known_hosts file. Each subsequent time you connect, the host's identity is verified
cryptographically using the public key you saved, and if you ever inadvertently connect to an
impostor host that doesn't have the correct secret key matching the public key you previously saved,
then ssh will display an error message telling you so and will refuse to complete the connection.

Names in the pseudo-TLD local are always looked up using multicast , but what about other names?
Standard DNS names are normally looked up using unicast queries sent to a normal DNS server.
(Unicast packets are the standard type of packet usually used on the Internet; they go to a single
destination machine, as opposed to broadcast or multicast packets that are delivered to some
collection of machines.) However, when the Internet link is down, or the DNS server is not
responding for some other reason, this leaves all these names unresolvable. You may be trying to
connect to tim.oreilly.com, sitting right next to tim.oreilly.com, but you can't connect because your
Internet link is down and you can't reach the global DNS. (There's an old joke that network
computing means "You can't get your work done because of a problem you don't care about with a
computer you've never heard of in a building you've never been to.") In this situation, a client could
choose to multicast its query locally, so that the two computers can communicate directly, peer-to-
peer, and set up a connection without reliance on the external DNS. Even though the peers cannot
communicate with the global DNS, they would still be using their usual global DNS names to refer to
each other. While it is clearly useful, it also makes spoofing easier. The machine next to you may
claim to be tim.oreilly.com, but how can you be sure? This risk could be mitigated by using
cryptographic techniques like the ones described above used by ssh, but much of today's application
software doesn't implement such strong security measures. In the future, when better security
mechanisms are in place, it may become practical to begin using local mDNS as a fallback mechanism
to look up global DNS names when the global DNS is inaccessible, but for now, it is safest to restrict
mDNS for use with dot-local names.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Names on Intranets

There's no end of names that can be chosen as a TLD for private DNS namespaces. For
example, you could choose .intranet, .internal, .private, .corp, or .home. In "How to
create local DNS names" (http://cr.yp.to/djbdns/dot-local.html), author D.J. Bernstein
recommends using .0 through .9 as safe top-level local names. You should avoid .local.
because it has been used in Mac OS 9 and Mac OS X for a long time to identify a name as
being link-local, and now with Bonjour for Windows and Multicast DNS for Linux, .local
has special meaning on those platforms also.

3.2.2. Choosing a Name

If you are the administrator for a domain such as example.com, you can choose any name for a
device and assign it and register it; e.g., you may choose printer.example.com. However, most of us
don't have the luxury (or burden) of administering our own DNS domain. The impediment is not
merely the financial cost of paying for your own DNS domain, but also the organizational overhead of
getting it properly delegated from its parent domain and the technical burden of running a name
server or getting someone else to do it for you. None of these problems is really that big, and many
computer enthusiasts do run their own domains quite successfully, but the fact remains that the
majority of Internet users have no idea how to do this, or even that the option is available to them.
Also, even if you're the kind of person who can set up a working name server with just half a day's
work, there are many situations where even that level of effort is not justified. There are many
situations where all you need is some temporary communication between a couple of devices, and
you want to do it with just a few seconds of effort, not a few minutes or a few hours. Zeroconf
provides this "system administration for the rest of us."

As shown in Figure 3-4, you can set your computer's "dot-local" hostname by clicking the
Edit...button in the Mac OS X 10.4 Sharing preference pane.

Figure 3-4. Choosing a dot-local hostname for your computer

http://cr.yp.to/djbdns/dot-local.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Once you have made the change shown in Figure 3-4, devices on the local link can refer to your
computer by the name mymac.local. This name can be used anywhere a normal DNS hostname
would be usedsuch as on the command line (for example, ping mymac.local, ssh mymac.local, ftp
mymac.local), in graphical FTP clients, in the Finder's Connect to Server dialog, or in a web browser.

The name mymac.local may not be a particularly good name to use on public local links since it is not
likely to be (or to remain) unique. Your name can be fairly long and descriptive; however, well before
you hit the formal upper limit of 63 characters allowed for a dot-local hostname, you will get to a
length that is difficult to display and for potential users to easily enter. Think of how you currently
react to overly long URLs. A good dot-local hostname is memorable, short, and easy to type, but
unique enough that encounters with others who've picked the same name should be relatively rare.

The Mac OS X 10.4 Sharing preference pane also has a text field labeled Computer Name, which is
actually used to control the default name used for services advertised on your machine. We'll cover
more on this in Chapter 4. Generally speaking, you want your local hostname to be short, because
it's usually entered by typing it, and you want your default service name (i.e., Computer Name) to be
long and descriptive, because advertised services are usually selected from a list of choices by

http://lib.ommolketab.ir
http://lib.ommolketab.ir

clicking with the mouse, never by typing. Because of this, service names can be as rich as you like,
with uppercase, lowercase, spaces, accented characters, and any amount of weird and wonderful
punctuation.

If two computers on the same link try to use the same hostname, one of them will automatically
rename. For example, if both try to use the name mymac.local, one will automatically rename to
mymac-2.local. In Mac OS X 10.3, this change happens silently, and the user is not informed. In Mac
OS X 10.4 and later, the system puts up an alert to inform the user of the name change.

In principle, it's possible for each network interface on your computer to answer to a different name,
or even for a single network interface to answer to a variety of different names. But in practice, this
would be confusing, so Mac OS X uses a single hostname for all its interfaces.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.3. Multicast DNS

Most conferences have a message board somewhere where you can post and retrieve messages. The
key is that there is a well-known place for you to visit to send or read items of interest to an
individual or to a group. The message board is not generally secure and you cannot be assured that
messages have been reliably delivered unless the target of your message replies. Other people can
see the same messages you can see. Often, a friend will stop you in the hall to let you know that
there is a message waiting for you on the message board. The message board is a great mechanism
to announce a so-called "birds of a feather" session where people who share a common interest
convene.

A multicast address is the network world's equivalent of a shared public-notice board. Using a
previously agreed-upon IP Multicast address and port, messages can be delivered that will be
received by all subscribed devices. Devices on a local link can use Multicast DNS to resolve locally
unique hostnames. Every device on the local link listens for queries that are sent to the multicast
address, and when it sees any query for its own name, it answers. In this section, you will see how
the multicast part of mDNS works.

3.3.1. The mDNS Multicast Address

Any DNS query for a name ending in .local is sent to the address 224.0.0.251, which is the IPv4
address that has been reserved for mDNS. For a list of assigned multicast addresses, see the IANA
document "INTERNET MULTICAST ADDRES-SES" at http://www.iana.org/assignments/multicast-
addresses (IPv4) and http://www.iana.org/assignments/ipv6-multicast-addresses (IPv6). The IPv6
mDNS link-local multicast address is FF02::FB. The concepts of Multicast DNS apply equally, whether
the data is sent in IPv4 multicast packets or IPv6 multicast packets.

Because 224.0.0.251 and FF02::FB are in the link-local multicast ranges for IPv4 and IPv6,
respectively, packets sent to these addresses are never forwarded outside the local link nor
forwarded onto the local link from outside. A device can therefore be sure that any link-local
multicast packets it sends remain on the local link, and any link-local multicast packets it receives
must have originated on the local link.

In general, the mDNS-based algorithm for claiming names and handling conflicts replaces a central
authority with cooperating participants. If there are participants on the local link intent on disrupting
this process, then they can do so. In principle, this could be solved by using IPSEC and/or DNSSEC
signatures to identify trusted participants, though, in practice, it has not yet been a problem, and no
current products implement these kinds of protection.

Queries to determine the hostname for a particular link-local IP address ("reverse lookups") can also
be sent to 224.0.0.251. For IPv4, this reverse address mapping is any DNS query for a name ending
in 254.169.in-addr.arpa, and for IPv6, it is a name ending in 0.8.e.f.ip6.arpa.

http://www.iana.org/assignments/multicast-
http://www.iana.org/assignments/ipv6-multicast-addresses
http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.3.2. Multicast DNS Queries

Multicast DNS Queries fall into three categories: one-shot with a single answer, one-shot with
multiple answers, and ongoing .

The first category is a one-shot query. Modifying an existing DNS client to perform one-shot queries
can be trivial. If the name ends in local, then set the destination address to 224.0.0.251, set the
destination port to 5353, and send the UDP packet as usual. When the UDP response comes back,
the DNS client receives it and handles it, as it would any other DNS response. If no response is
received, then the query is retransmitted a few times, just as with a normal Unicast DNS query. The
code doesn't have to be modified to do anything else special because it's using multicastfrom the
code's point of view, it is just talking to a DNS server at a particular address and port number. If all
you want to be able to do is to type http://somename.local/ into a web browser and have it work,
then this level of Multicast DNS functionality is sufficient.

The second category is one-shot queries that accumulate multiple responses. The DNS client still
sends a query to 224.0.0.251, but this time the DNS client is aware that there are queries for which
more than one response is possible, so the DNS client both waits for more than one response and,
when appropriate, retransmits its query. When the DNS client has got enough results or has waited
long enough, it returns the results to the application that initiated the query. Because the DNS client
may retransmit its query more than once, this could cause the same host (or group of hosts) to
respond more than once, which would be a waste of network bandwidth. To prevent this, each
successive query includes a Known Answer list. If a host sees its answer already in the Known
Answer list, then it doesn't have to respond again. Successive queries are also not transmitted at a
constant rate but at an exponentially decaying rate, with the interval between packets doubling each
time.

The third category is continuous, ongoing queries. If you want to browse the network to find the list
of available printers, then a query that waits for 10 seconds and then displays the results has two
problems: (a) waiting for 10 seconds before you see the results is far too long, and (b) the moment
you see it, the list is already beginning to get out of date. What you want is a list that appears
instantly, updates immediately whenever a new printer appears, and, ideally, also shows you
promptly whenever a printer goes away. Consider also an instant messenger client like iChat that
shows a list of buddies on the local network. You don't want a snapshot of the list of buddies that
were there when you launched iChat, and you don't want to have to keep clicking a refresh button to
update the list. You simply want a list that's always up to date, from second to second, and you want
a protocol that's smart enough to do this efficiently. By repeating queries, mDNS keeps the list up to
date. By including a Known Answer list, mDNS reduces unnecessary traffic. By using exponential
backoff instead of querying at a constant rate, the traffic rate is further reduced. The interval
between queries can grow up to one hour. So that it doesn't take an hour for you to discover a new
buddy on the network, new clients announce their presence by sending gratuitous responses when
they arrive on the network. Every answer record that's received has a time to live (TTL) that tells the
receiver how long to hold that record in the local cache. When the TTL is close to expiring, the querier
queries for it again, and if no answer is received before the record expires, it is removed from the
cache and disappears from the screen. The combination of these efficiency features and others
results in a system that provides excellent responsiveness at a low packet rate.

For continuous, ongoing queries, responses are sent via multicast, not unicast. It may seem that
multicast responses will lead to an unreasonable increase in traffic on the network. On the contrary,
responses that are sent as multicast allow multiple machines to receive the same information without
having to issue a query themselves. The machines on the network are all listening to queries and

http://somename.local/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

responses addressed to 224.0.0.251. When a machine receives a response to a query, other
machines on the network receive the response too and can add it to their own caches for future use.
If they later need this information, they don't have to issue a query because they already have it.

3.3.2.1. Reducing traffic

There are useful techniques employed to reduce the sending of redundant information. The first is the
Known Answer Suppression, mentioned above. Think of a teacher trying to get additional answers
from a class by saying, "What might you try before you implement the State Pattern? We've already
seen that one solution is nested if statements and another solution is using the case statement." The
idea is that when a Multicast DNS query is sent by a host that already knows some of the answers,
the query must include the known answers in the Answer Section of the DNS message. The TTL of
each known answer is set to indicate how many seconds remain before it expires from the querier's
cache. A Multicast DNS responder does not respond if it sees its answer already in the Known Answer
list with a TTL that's at least half the correct value. A TTL of less than half the original value indicates
that the record may expire from the cache soon, so the responder responds to refresh all the
neighboring caches. Because of this, the querier knows that records with remaining cache lifetime of
less than half their original value needn't be included in the Known Answer list in the first place,
thereby reducing the size of the initial query packet. If there are too many answers to fit in a single
query packet, then the TC (truncated) bit is set in the DNS packet header, and the Known Answer list
continues in the next packet. Information contained in the Known Answer list of the query is only
used to signal information the querier believes to be correct and should not be taken as authoritative
by other devices on the network.

Returning to our classroom example, once one student has been scolded for asking "Is this going to
be on the test?" the other students get the message not to ask this same question. Similarly, if a
host is preparing to transmit a query and it detects a query containing the same question, then it
may not need to send the same question itself. The host that has not yet issued the query needs to
check the Known Answer section to determine that there are not any answers there that this host
would not have added as its own. In other words, if there is no additional information that can be
learned by transmitting the query, then none should be sent.

Back in our classroom example, a student has just answered the teacher's question and all the other
students who were going to give the same answer lower their hands. A similar optimization is used in
mDNS. If a host is preparing a response and sees a response from another host with the same
answer as its own, then it can suppress its own response.

If a host knows that certain of its resource record data has become invalid, it should send a goodbye
packet. This is a gratuitous announcement mDNS response packet with an RR TTL value of 0. A host
receiving this will update its local TTL for this entry to zero, which causes the cache entry to be
deleted. When a service is shutting down cleanly, this goodbye packet causes it to be deleted
immediately from peer caches, instead of lingering while its TTL slowly decrements all the way to 0. If
the service does not shut down cleanly, or the goodbye packet is lost, the caches still converge to
correctness eventuallyit just takes a little longer.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.4. Claiming Your Local Name

This section looks at the dance that results in a device obtaining a locally unique name. The details of
the Multicast DNS Querier and Responder, and other mechanics of where the messages are being
sent and which devices are listening, were covered in the previous section. For now, consider a
device that has an IP address that is now trying to claim a unique name in the .local domain. The
steps and precautions parallel much of what was described in Chapter 2. The sequence is very
similar: first, a name has to be chosen, then the device probes to check for uniqueness , and then it
announces its chosen name.

3.4.1. Probing to Check for Uniqueness

Once a hostname is chosen for a particular device and an IP address has been selected or assigned,
the next step is to create a local Multicast DNS address record that maps the name to the IP address.
DNS Record types are documented in the IETF's RFC 1035 "Domain Names - Implementation and
Specification" (http://www.ietf.org/rfc/rfc1035.txt). DNS Record type A is the IPv4 address record
type.

Having created our tentative address record (also known as an A record), we need to check to see if
someone is already using an address record with that same name. (The name of the A record and
our desired hostname are one and the same.)

We could send an mDNS query for our desired hostname, DNS type A, and see if we get any
responses. However we may also want to create other record types for our hostname, such as host
info (HINFO), so we instead send a query for DNS query type T_ANY, in order to find if there are
records of any type with that name.

DNS Query Type T_ANY

What does DNS query type T_ANY mean? Many assume it's a wildcard search that
returns all matching records, but this is incorrect. The query type is called T_ANY, not
T_ALL. The semantics of the T_ANY query are that if there are any records with that
name, of any type, it will return at least one of them. Sometimes, it may return all
records, but not always. This is particularly true with DNS caches. If a cache has any
records with that name, it is allowed to return just what it has, without checking with the
authoritative server to see if there may be any more records with that same name. This
makes T_ANY queries less useful than they may at first appear.

In Multicast DNS, however, T_ANY queries do, in fact, return all matching records.

http://www.ietf.org/rfc/rfc1035.txt
http://lib.ommolketab.ir
http://lib.ommolketab.ir

If no conflicting Multicast DNS response is received, then a second query is sent 250 ms after the first
and, in the absence of conflicts, a third query is sent 250 ms after that. After waiting an additional
250 ms, or a total of 750 ms for the three queries and corresponding waiting time, if no conflicting
Multicast DNS response has been received, then the host has successfully verified uniqueness and
proceeds to the announcement step. If, at any point in the probing step, a conflicting Multicast DNS
response is received, then the host must select a new name for each of the conflicting records that
need unique names. A device may have a mechanism for selecting another name or it may, if
appropriate, be set up to display an error message to prompt a human user to manually select
another name.

What if two devices probe to verify the same name at exactly the same time? Neither will be able to
answer the other's probe because neither owns the name yet. Certainly, this normally shouldn't
happen very often, but the reliability goals of Zeroconf dictate that even the situations that don't
happen very often still need to be handled correctly.

Multicast DNS solves this race condition by adding the desired new record to the authority section of
the query packet. This usage is analogous to the way DNS UPDATE packets use the authority section
to convey the new data to be added to the server.

When two hosts probing the same name see each other's probes, they consult the authority section
and use the data there as a tiebreaker. This type of conflict is resolved in favor of the record with the
lexicographically later rdata . The determination of lexicographically later is made by first comparing
the record class, then the record type, then a raw comparison of the binary content of the rdata
without regard for meaning or structure. If the record classes differ, then the numerically greater
class is considered lexicographically later. Otherwise, if the record types differ, then the numerically
greater type is considered lexicographically later. If the type and class both match, then the rdata is
compared.

The bytes of the raw rdata are compared in turn, interpreting the bytes as eight-bit unsigned values,
until a byte is found whose value is greater than that of its counterpart (in which case, the rdata
whose byte has the greater value is deemed lexicographically later) or one of the resource records
runs out of rdata (in which case, the resource record that still has remaining data is deemed
lexicographically later). The following is an example of a conflict:

 sctibook.local. A 169.254.99.200
 sctibook.local. A 169.254.200.50

In this case, 169.254.200.50 is lexicographically later (the third byte, with value 200, is greater than
its counterpart with value 99), so it is deemed the winner. The loser is expected to pick a new name
and the winner proceeds as if nothing had happened. If the loser refuses to cooperate, then the
conflict is still detected and resolved eventually; it just takes longer.

The reason the protocol chooses the lexicographically later data as the winner (rather than the
lexicographically earlier) is because of the way some networks (particularly wireless networks) can
delay and repeat old packets. After a name conflict, a host typically responds by appending "-2" to
the end of its name, or incrementing "2" to "3," both of which yield a new name that's
lexicographically later. Situations have been observed when a host, probing for uniqueness of its DNS
"SRV" service records (described in Chapter 4), would see an old packet of its own, from half a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

second ago, come back from the network. If the lexicographically earlier data were to win, then, in
this situation, the host could sometimes conclude that it had lost a tiebreaker with itself (as of half a
second ago)! Declaring the lexicographically later data as the winner means that in these strange and
uncommon situations, a host's current state will tend to win in comparison to its old self. It's a minor
consideration, but given that there's really no other reason to prefer lexicographically earlier or
lexicographically later, this one point tipped the balance in favor of declaring the lexicographically
later data to be the winner.

3.4.2. Announcing

After issuing three queries and waiting 250 ms after each query, if a host has not received a
conflicting Multicast DNS response, it begins the announcing step. In this step, the Multicast DNS
Responder sends a gratuitous Multicast DNS response that contains all of its resource records in the
Answer Section. The purpose of these announcements is (just like ARP announcements) to update
neighboring caches on the network that might still be holding old, stale data. This announcement is
normally sent more than once to guard against packet loss. For records that have been verified
unique, the mDNS cache flush bit of the rrclass is set to 1. This is the most significant bit of the
rrclass, and as the mDNS spec explains:

When a resource record appears in the answer section of the DNS Response with the "cache
flush" bit set, it means, "This is an assertion that this information is the truth and the whole
truth, and anything you may have heard before regarding records of this name/type/class is no
longer valid".

Upon receiving this data, neighboring caches will delete all old records they have with this name and
replace them with the new data.

A host needs to be able to detect conflicts anytime it is operating and advertising mDNS records, not
just during the initial probing phase. Anytime a host sees another host send answer records that
disagree with its own (for example, an address record with the same hostname but a different IP
address), that's a conflict, which needs to be resolved. This is one of the places that the usefulness of
sending replies via multicast instead of unicast is evident. When all the replies are public, you can
quickly see when another host is advertising records that you don't agree with.

When two hosts see each other send conflicting answers, both hosts reset their records back to
probing state. When they then proceed to send their three probe packets, each will see the other's
probes, and the tiebreaking rules will be invoked to determine who has to rename and who does not.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.5. The Structure of the Multicast DNS Message

The Multicast DNS Message format is modeled closely on the Unicast DNS Message format. In fact,
they are so similar that packet-sniffing software such as Sniffer, EtherPeek, and Ethereal can decode
and display mDNS packets using the same decoder as uDNS packets. There are, however, a few
minor differences:

Unicast DNS packets are limited to, at most, 512 bytes. Multicast DNS packets are allowed to be
up to 9,000 bytes, though it's recommended that implementations try to limit themselves to
using packets only as large as the local link can carry without breaking the packet into multiple
IP fragments. Standard Ethernet can carry packets up to 1,500 bytes without fragmentation.
Subtracting 28 bytes for the IP and UDP headers, this leaves up to 1,472 bytes for the DNS
portion of the packet.

Multicast DNS uses UDP port 5353 instead of port 53.

Multicast DNS uses UTF-8, and only UTF-8, to encode resource record names. Unicast DNS, for
a variety of legacy compatibility reasons, has to use arcane encoding for non-roman text, but
Multicast DNS is a new technology not saddled with those limitations, so it has the luxury of
using the much simpler UTF-8 for everything.

Unicast DNS only allows query packets to contain one question each. For efficiency, Multicast
DNS allows clients to pack in as many questions as they wish. They're still treated by the
receiver just the same as if they were separate packetspacking them into a single packet is just
an optional optimization to save network bandwidth.

Multicast DNS "borrows" the top bit of the rrclass field in a resource record. Remember that the
only DNS class in widespread use todayout of the 65,536 possible values for this 16-bit fieldis
the Internet class. By repurposing the top bit, we cut the range of possible class values in half
to 32,768, but that's still a lot when you consider that we're only actually using one today. In
responses, the top bit of the rrclass field is called the cache flush bit and signals the receiver
that this new data should completely replace all old records with the same name, rather than
adding cumulatively to any existing data. In questions, setting the top bit of the rrclass field
signals a request to have the response for that record sent via unicast instead of multicast. This
is something that's occasionally done in situations where it is believed that a unicast response
would be more efficient on the network, but current operational experience seems to indicate
that the actual benefit is very minor, so it's possible that future versions of mDNSResponder
may not use this capability.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.6. Summary

Zeroconf's Multicast DNS, like RFC 3927 link-local addressing, provides a safety net when the
equivalent conventional infrastructure is not present or working. When there's no DHCP server, link-
local addressing gets you an address that's at least good for the local link. When there's no DNS
server, or there is one but you have no way to add your own hostnames to it, Multicast DNS gives
you a way of referring to devices by name that at least works on the local link. This gets us to a
useful level of functionality: even when DHCP and DNS are broken, link-local addressing and Multicast
DNS mean that you can give your devices names, refer to them from other computers using those
names, and establish working TCP connections so that you can do useful networking. Zeroconf
doesn't stop there, though. With the technology described so far, you can do useful networking, but
you need to know the hostname, you need to remember it, and you need to type it in correctly. If
you mistype it, misremember it, or just don't know the name of the printer, you're in trouble.
Wouldn't it be better if you didn't have to know the name of the printer in advance? Wouldn't it be
better if you could just say, "I need to print a document. Is there anything on the network that can
help me with that?" That's Zeroconf's DNS Service Discovery technology, and that's the subject of
the next chapter.

UTF-8

The American Standard Code for Information Interchange (ASCII) has long been the
standard way most computers represent text in their memories and on their disks. Each
letter, digit, and symbol is represented by a different seven-bit binary code. Rather than
write the codes in binary, they are usually written in numerical form, as numbers from 0
to 127. For example, the code for A is 65.

The problem is that while 128 values are enough to represent English uppercase letters,
lowercase letters, digits, and punctuation, they're not enough to represent all the
accented characters used in European languages, and definitely not enough to represent
all the characters used in Japanese, Hebrew, Indian languages, and so on.

A new standard for representing text called the Universal Character Set (UCS), or
Unicode, solves this by having literally millions of possible codes. The problem is that to
work directly with Unicode data, software that manipulates text has to be rewritten,
which takes a long time. Also, Unicode is less efficient than ASCII for English words,
making it slow to gain popularity among many English speakers who don't see much
benefit from having all those extra characters if they're not using them. The word "Hello"
in Unicode can take double or even four times the space to store as the same word
stored using ASCII.

UCS Transformation Format 8 (UTF-8) solves this problem in a simple, elegant way. A
single eight-bit byte in computer memory can hold 256 possible values, from 0 to 255,
but ASCII requires only 128 values, leaving the other 128 unused. The ingenious solution

http://lib.ommolketab.ir
http://lib.ommolketab.ir

is that UTF-8 uses the values 0-127 to represent exactly the same characters as ASCIIso
the word "Hello" stored using UTF-8 and the word "Hello" stored using ASCII are exactly
the same in memory. UTF-8 is a compatible superset of ASCII. So we can declare, by
fiat, as it were, that every single ASCII string stored in memory or on disk anywhere in
the world is actually a UTF-8 string, and not a single line of software has had to change.

The second step is how UTF-8 represents all those additional non-roman characters.
UTF-8 uses those byte values in the range 128-255, unused by ASCII, to represent those
characters. Depending on the character, it may be represented in memory as a
consecutive sequence of two, three, or more bytes in the 128-255 range.

The beauty of this is that almost all software that works with ASCII text can work
without modification with the new UTF-8 text. Of course, if you want to display UTF-8
text on the screen or print it on paper, you need software that knows how to properly
decode UTF-8 and draw the right characters, but most software never needs to do this.
DNS code is concerned with putting data into packets and reading it out, not with what
those characters look like to humans. The little bit of user-interface code responsible for
showing text on the screen has to draw UTF-8 characters correctly, but the rest of the
DNS protocol codethe vast bulk of itcan just pass the data around as raw data,
unconcerned with how that data might eventually be presented to the human user.

UTF-8 is popular in the United States, because it allows non-roman characters to be
represented using multibyte sequences in otherwise standard ASCII files. In some places
outside the USA, where most characters need to be represented using multibyte
sequences, UTF-8 is less popular, and many people prefer to use 16-bit Unicode
characters (UTF-16) directly. Multicast DNS adopts UTF-8 as the best way to maintain
compatibility with existing ASCII names, while at the same time providing the capability
to represent non-roman characters, too.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 4. Browsing for Services
Once you are on a network where you have a working IP address and hostname, you are in a
position to begin doing some useful networking. Your IP address may change over time, particularly if
you are using IPv4 link-local addressing, but your Multicast DNS hostname generally won't. People on
the local network can access services running on your machine using your mDNS hostname
anywhere a conventional hostname would be used, automatically connecting to your current address,
even if your address changed since the last time they connected. People can use your mDNS
hostname on the command line to connect with FTP or SSH commands. If your machine is running a
web server, others can connec[t to it by entering your mDNS hostname into their web browser. Note
that web servers can take many forms apart from the conventional collection of static pages: if you
have a typical network-connected camera with Multicast DNS, you can connect by typing its name
(e.g., netcam.local) into your web browser. This is, of course, a big improvement over having to
know the IP address to type, but in some ways we've merely moved the problem, not solved it.
Instead of having to know what IP address to type, you now have to know what name to type. In the
case of IPv6 addresses, which are 20-40 characters long, a short, memorable hostname is definitely
an improvement, but imagine how much better it would be if you didn't have to know the name at
all, and your web browser could simply instruct the network, "Show me the list of services that I
know how to talk to."

This chapter introduces DNS Service Discovery (DNS-SD), the mechanism in Zeroconf that lets you
discover what services are available on the network without having to know device or service names
in advance via some other means. DNS Service Discovery is accomplished by building on existing
standard DNS queries and resource record types, not by creating a new set of technologies and
hoping they will be adopted over time. Enhancing and extending existing technologies is one of the
things that has helped lead to the quick adoption of DNS-based service discovery.

The first two legs of Zeroconf allow you to fully participate in a local network in the absence of what
we would have traditionally considered the enabling technologies of DHCP and DNS. Obtaining an IP
address is nothing new. At work or at a café offering wireless Internet access, your computer has
likely been assigned an IP address by a DHCP server. The first leg of Zeroconf provides a way to
obtain a link-local IP address without a DHCP server, so that common and necessary step can now be
accomplished in a new situation. In Chapter 3, you saw that however you obtained an IP address, it
was desirable to obtain a locally unique hostname. One alternative is conventional unicast DNS, but
setting up DNS is a lot of work, and all that work really should not be necessary if you just need to
transfer a file or print a one-page document. Multicast DNS is a lightweight alternative that gives you
DNS-like functionality on the local network without all the overhead and effort of conventional unicast
DNS.

Thus far, Zeroconf has not provided anything that you could not, in principle, have obtained through
other means. What Zeroconf has provided are alternative ways of doing the same things, ways that
work when the conventional mechanisms let us down. In addition, at each step, Zeroconf is not
concerned with how you accomplished the previous step. Step one: obtain an IP address by using
DHCP, manual assignment, or self-assigned link-local addressing. Step two: obtain a meaningful
hostname by using Multicast DNS in cases where conventional Unicast DNS is not appropriate. Step
two requires that a device has obtained a working IP address but is not concerned with how. Step

http://lib.ommolketab.ir
http://lib.ommolketab.ir

three: browse for the services that you need. Step three requires the availability of working DNS-like
functionality, but it could be link-local Multicast DNS, global Unicast DNS, or both.

Regardless of whether Multicast DNS or Unicast DNS is being used, new services coming onto the
network announce their presence via Multicast DNS, or they use DNS Dynamic Update to update a
Unicast DNS server with their information; thus, clients looking for services of that type are all
informed that a new instance is now available. When a service goes away gracefully (as opposed to
crashing, having the network cable cut, or suffering a power failure), it sends a Multicast DNS
goodbye packet or uses DNS Dynamic Update to remove its information from the Unicast DNS
server, so that clients can be informed that that particular named service instance is no longer
available.

In this chapter, you will see how Zeroconf's service discovery works. As the DNS-based Service
Discovery Internet-Draft explains, the prime directive for the service discovery protocol is that it
"should be so simple to implement that virtually any device capable of implementing IP should not
have any trouble implementing the service discovery software as well."

The service discovery software has two main responsibilities: enumerating the list of names of
services on the network of a given type and translating from any given name on the list to the IP
address and other information necessary to connect and use it. The service instance names should be
under user control but relatively persistent, so that tomorrow, the same service instance name
logically identifies the same conceptual service being offered, even if the IP address has changed or
the TCP port number the server is listening on has changed. Even if the hardware has been replaced
or the software has been upgraded, clients should still be able to connect to that service using the
same name.

You will notice a recurring theme in this chapter: you are browsing for services, not devices. The
importance of browsing for services instead of devices is a lesson that was learned from the old
AppleTalk Name Binding Protocol, a protocol that enjoyed two decades of success in the marketplace,
and it is an important lesson. The difference between discovering services and discovering devices is
subtle. The concept of a service, as a pure abstract entity in its own right, divorced from whatever
hardware may be providing that service, is a fairly counterintuitive concept. Humans can touch, see,
buy, and sell hardware, so from a human perspective, it seems natural that the computer would also
see the network as a collection of bits of hardware. However, from a computer and network protocol
perspective, the useful question to ask the network is not "What hardware do you have?" but "What
can you do for me?" From a human perspective, the user thinks in terms of finding a printer, but
from a protocol perspective, the software is looking for a network service that it can use to print. The
difference is subtle but important. Discovering hardware is no use if you don't know how to talk to it.
Discovering a service you can use is what's useful, and from a protocol perspective, it doesn't really
matter what kind of hardware is providing that service.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.1. Zero Configuration Operation

Finding services should be as easy as turning on a lamp. If technological devices continue to be
unreasonably hard to set up and use, the market for those devices is going to be stifled because the
buying public simply won't be willing to expend the time and effort it takes to get them to work.

Consider a table lamp. The customer needs to plug the lamp into a live AC outlet, the lamp needs to
have a working bulb properly in place, and the customer needs to locate and operate the switch.
When a customer flicks a switch and the light does not come on, there are not many things that
could have gone wrong. The tech support script is pretty basic: "You say the light doesn't come on.
Did you try the bulb in a different lamp to make sure the bulb is good? Did you try connecting some
other appliance to the outlet to make sure it's providing power? What? I see. You hadn't actually
plugged the lamp into a power outlet? That may be your problem. Sure, I'll hold while you try that.
Works now? Great. No, really it's no problem, your service contract allows you unlimited calls for the
first year you own your lamp." This scenario is comical because, of course, no one has technical
support service contracts for table lamps. We need to arrive at a world where we think of consumer
electronics and networked devices the same way we think of table lamps.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.2. Finding Services, Not Devices

In the world of networked devices, it does you no good to locate a device with which you cannot
communicate. We commonly anthropomorphize devices in ways that are not quite correct. We say
that we "pinged a server," though, in fact, what we pinged was a piece of software on the server that
answers ICMP echo request packets. If you take away that software, it stops answering ping
requests, even though the server is still there and may still be performing other functions perfectly
well.

When designing a service discovery system, it's important to remember that what network software
clients need to discover are software entities with which they can communicate, not pieces of
hardware. The difference between discovering services and discovering hardware may seem small
and subtle, but it makes all the difference in actual use. In a print dialog, you want to see the list of
things you can print to. In iTunes, you want to see the list of music sources you can play. In iPhoto,
you want to see the list of photo albums you can view. In a web browser, you want to see a list of
offered web pages you can view. Any given piece of hardware on the network may offer zero, one, or
more of each of these kinds of resources. What you want to see is the list of resources you can use,
not a list of the hardware where they may or may not reside.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.3. Knowing the Protocol

A visitor staying in Paris wants to know whether she should take her umbrella on her travels around
the city. Standing in the hotel lobby in the morning, she sees a local newspaper, which has the day's
weather forecast, but it is in French. She doesn't read French. Also in the hotel lobby is a copy of an
English newspaper, which she can read, but the English newspaper doesn't include a weather forecast
for Paris. This illustrates one of the challenges of network software. To be useful, a service has to (1)
provide the conceptual service the client wants (e.g., a weather forecast) and (2) provide it using a
language (protocol) the client can speak and understand (e.g., English). Because of this, a Zeroconf
service type name conveys not just the "what" of a service but also the "how." For example, the
Zeroconf service type _ipp encodes both the "what"printingand the "how" via Internet Printing
Protocol.

When an IPP printing client browses for services of type _ipp, it is not looking for printers in a broad,
fuzzy, not-very-precisely defined human sense. It is looking specifically for printers it can talk to. It is
looking specifically for printers that implement IPP, the Internet Printing Protocol. There may be an
old AppleTalk printer nearby, which may be a printer as far as human beings are concerned, but from
the point of view of an IPP printing client that has no way to communicate with an AppleTalk printer,
it may as well not exist. From the point of view of IPP printing client software, it's only useful to
discover things that it can actually use. This is one of the reasons that proliferation of network
protocols is a bad thing. While we may

Why All the Underscores?

DNS-SD service typesi.e., application protocol namesall begin with an underscore.
There's no particular reason for this; it is simply a convention inherited from RFC 2782,
"A DNS RR for specifying the location of services (DNS SRV)." The original motivation
was to avoid accidental conflicts with existing DNS hostnames. Since DNS hostnames are
not supposed to begin with an underscore, requiring all service names to begin with an
underscore was seen as a way to prevent accidental overlap of the namespaces. It's not
really necessary; it's one of those conventions where there's no particularly compelling
reason for it, but there's also no particularly compelling reason to change it either.

embrace the richness of variety in human languages, the same is not so desirable in network
protocols. When there are 10 different ways of doing basically the same thing, there's much
opportunity for incompatibility. The server may offer the conceptual service that the client wants, but
if they have no protocol in common that they both speak, it may as well not exist.

The converse is also true. Finding entities that implement a given protocol is only appropriate when
the semantic service being offered is also appropriate. It is common to borrow an existing protocol
and repurpose it for a new task. This is an entirely sensible and sound engineering practice, but that

http://lib.ommolketab.ir
http://lib.ommolketab.ir

doesn't mean that the new protocol is providing the same semantic service as the old one, even if it
uses the same message formats. For example, the local network music-playing protocol implemented
by iTunes on Macintosh and Windows is built using HTTP GET commands. However, that does not
mean that it is sensible or useful to try to access one of these music servers by connecting to it with
a standard web browser. The data that is being fetched via those HTTP GET commands is compact
binary machine-readable data, not HTML text that a normal web browser could interpret and display
as a page on the screen. If iTunes were to advertise the _http service, that would cause iTunes
servers to show up in conventional web browsers like Safari and Internet Explorer, which is of little
use since an iTunes server offers no pages containing human-readable content. Similarly, if iTunes
were to browse for _http service, it would find generic web servers, such as the embedded web
servers in devices such as printers, which is of little use since printers generally don't have much
music to offer. Consequently, the DNS-SD service advertised (and browsed for) by iTunes is the
Digital Audio Access Protocol, or _daap, which conveys both the "what" of the service (a collection of
music) and also the "how" (read using HTTP GET commands).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.4. Building on DNS

As early as the 1980s, AppleTalk had an effective service discovery mechanism. Many attempts have
been made to replicate that on IP, but none have been a resounding success. Zeroconf took an
unconventional approach to solving this problem. Rather than inventing an entirely new protocol from
scratch, it built on an existing ubiquitous standard, DNS. A scalable service discovery mechanism
needs to work both on small networks, operating peer-to-peer with no infrastructure, and on large
networks, where peer-to-peer multicast would be too inefficient and, instead, service discovery data
needs to be stored at some central aggregation point. As pointed out in the Internet Draft on DNS
Service Discovery, DNS and its related protocols already provide the properties we need:

Service discovery requires a central aggregation server

DNS already has one: it's called a DNS server.

Service discovery requires a service registration protocol

DNS already has one: it's called DNS Dynamic Update.

Service discovery requires a query protocol

DNS already has one: it's called DNS.

Service discovery requires security mechanisms

DNS already has security mechanisms: they're called DNSSEC.

Service discovery requires a multicast mode for ad-hoc networks

Zeroconf environments already require a multicast-based, DNS-like name lookup protocol for
mapping hostnames to addresses, so it makes sense to let one multicast-based protocol do
both jobs.

By building on an existing protocol, many of the deployment and adoption problems are already
solved. Just about every large company already runs a DNS server, so the required hardware and
software is already in place. DNS delegation means that if the network operators don't want to
support service discovery functions on their current DNS server, they can choose to delegate that
responsibility to some other machine. Whether running on the company's main DNS server or
delegated to some other piece of hardware, the DNS technology is familiar and the software well
understood. We don't have some entirely new, unfamiliar piece of software to be installed, learned,
configured, and maintained.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In the remainder of this chapter, you will see how DNS-SD builds on what exists in DNS.

4.4.1. Browsing for Services

The DNS protocol family already defines a record type called SRV for service discovery, specified in
RFC 2782, "A DNS RR for specifying the location of services (DNS SRV)." (The letters "SRV" are not
initials that stand for something; it's just a simple contraction of the word "service.") SRV records
give us a new way of finding services for a given domain. Today, to find the web server for domain
example.com, you would look up the address associated with the pseudo-hostname
www.example.com. The reason we call www.example.com a pseudo-hostname is because www is not
really the name of a host; it is really the name of a service. The user typing www doesn't know or
care what host they're connecting to, what they care about is that the host has web pages on it. This
puts us in the odd situation where some DNS names are hostnames, and others are really service
names, but the distinction is blurred and vague; for any given name, it's not always clear whether it's
intended to be the name of a logical service or the name of a particular piece of hardware. This is
why, in 1996, a new DNS record type was defined, the SRV record. Using the new SRV mechanism,
you would do a DNS query for the SRV record with the name _http._tcp.example.com. This is
explicitly and unambiguously not the name of a piece of hardware. What you're asking for with this
query is HTTP service (i.e., web pages) for the domain example.com.

The _tcp part of the name is there for largely historical reasons. It suggests that the service usually
runs by default over TCP, not UDP, though it is only a loose suggestion, and in retrospect perhaps it
should have been omitted from the specification. However, the inclusion of the transport protocol
label in the SRV record name does give us an accidental benefita DNS server operator can easily
offload all the service-discovery workload from the main server by simply delegating the _tcp and
_udp subdomains to some other machine.

The result of our SRV query tells us the hostname of the machine and the port number of the process
on that machine offering HTTP service for the example.com domain. Some sites might have multiple
servers running for fault tolerance reasons, in which case, we would get multiple SRV records in the
response. The client then picks one of the SRV records at random. It doesn't matter which one, since
all the servers are offering the same pages.

So far, we've described SRV records as specified in RFC 2782. As specified there, SRV records work
for finding a company's main web page but are less useful for other kinds of service. If an employee
wants to print, and there are 50 printers available at the company, then having the printing client
simply pick one at random is not likely to be very useful. What DNS-SD adds to RFC 2782 is the
ability to present a list to the user, so she can choose which printer she wants to use.

There's an old joke that the answer to every problem in computer science is to add one more level of
indirection. In this case, that joke offers us the answer to our problem. Instead of having 50 DNS
SRV records with the name _ipp._tcp.example.com., we have 50 DNS pointer (PTR) records, each
pointing to a differently named SRV record describing that printing service. By performing a PTR
lookup for a name of the form ServiceType.Domain, you get a list of individual named instances of

that service from which the client can choose. This is the key refinement that DNS-SD adds to vanilla
SRV records.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Registering Your Application Protocol Name

This chapter has explained the importance of service types encoding both the semantic
"what" and the syntactic "how" of a given service. Therefore, it is important that two
different applications should not use the same service type name to mean two different
things.

To ensure the uniqueness of service type names, there is a free registry where service
type names are listed: http://www.dns-sd.org/ServiceTypes.html.

If you're implementing a client or a server for an existing network protocol, check this list
to see if it already has a service type name assigned. If not, or if you're implementing a
brand-new protocol of your own invention, follow the instructions to register your new
type and have it added to the list.

Service type names can be up to 14 characters, consisting of lowercase letters (a-z), the
digits 0-9, or the hyphen character (-). In addition, the name cannot begin or end with a
hyphen.

During development, you can experiment with an unregistered service name that is
unlikely to collide with an existing registered service name. When you get ready to
release your product, you should ensure that your name has been registered on or
before your release date. It would be very inconvenient for you if you were to ship your
product and then later find you need to change it because your chosen service type has
been allocated to someone else for some other use. If you don't want to reveal your
secret product plans to competitors, you can request that your registration remain
confidential for some period of time before it appears on the public list.

4.4.2. Service Instance Names

When you perform a PTR lookup for a service type in a domain, you will receive zero or more PTR
records containing service instance names . A service instance name adds a third piece to the name
contained in your PTR lookup. Your lookup sent the name ServiceType.Domain and returned PTR
records that contain service instance names consisting of Instance.ServiceType.Domain. For

example, a query for _ipp._tcp.example.com may return the service instance names
Sales._ipp._tcp.example.com and Bullpen._ipp._tcp.example.com.

The Instance portion of a service instance name is not restricted to US-ASCII characters. Any

Unicode characters may be used, up to a total of 63 bytes of UTF-8 encoded text. Of course, you are
free to name your services how you choose; you can use names containing only US-ASCII if you
wish, but you shouldn't feel compelled to keep names short to make them easy to type. Users select
Zeroconf services by picking from an onscreen list, not by memorizing names and typing them in, so
there's really little benefit in making names terse and easy to type. You can use long names,
including capital letters, spaces, punctuation, and other characters, to make them more descriptive.

You can think of the ServiceType.Domain name structure as being analogous to a directory hierarchy

http://www.dns-sd.org/ServiceTypes.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

containing instance names. So, the example _ipp._tcp.example.com would correspond to the
directory /com/example/_tcp/_ipp, as shown in Figure 4-1.

Figure 4-1. The directory metaphor for service instance names

Inside of this directory, you can imagine aliases or soft links to actual instances of services of the
specific type. If you wanted to select the Bullpen printer, you would double-click on its alias. In the
actual case of a service instance name, when a user selects the service name in a service browser, a
DNS query will be sent for the SRV record with the selected name. In response, the client receives an
SRV record with the host and port information for the service. Notice that this means that a host is
able to allocate its available port numbers dynamically to services that need them, instead of
restricting each service to run on one predetermined, "well-known" port.

In the directory analogy, you see that the most significant part of the Instance.ServiceType.Domain

TRiple is the domain, with the service coming in second. The idea is that within a domain, there may
or may not be services offered. For a given service type within a domain, there may or may not be
instances of that type. The key in this structure is that the instances are the leaves in this tree you
are navigating. In a graphical user interface, typically only the instance portion of the service
instance name is displayed. In principle, the service type and domain of a discovered instance don't
have to match the service type and domain of the PTR query that returned them, but in practice,
they almost always do. Still, it's good programming practice to store the full name, type, and domain
of each discovered service, rather than just storing the name and assuming the other two will
necessarily be the expected values.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.4.3. What You See Is What You Get

One design decision in DNS-SD was that the user-visible name of a service instance is also the
primary identifier for that instance. They are one and the same. If you change the name, it is
conceptually a different instance. If you replace defective hardware with new hardware but continue
to advertise the service using the old name, then it is conceptually the same service being offered.

There are other service discovery systems that don't work like this. In those systems, the primary
identifier for a service is some hidden binary unique ID, like the MAC address of the Ethernet
interface or some other globally unique ID (GUID). These identifiers are long and cryptic and
practically impossible for humans to remember. Because the unique IDs are not intended to be user-
friendly, a user-visible name is also associated with the service, a mere transient ephemeral
attribute, changeable at any time. On paper, this flexibility might sound attractive: you can change
the "name" of a service at any time without really changing its identity. Identity is defined solely by
the unchangeable unique IDs, which are hidden and supposedly never seen by human users. In
practice, once you use a system like that for a while, you find the flexibility is not always the benefit it
seemed. If the name does not define the identity, then two things with different names might actually
be the same service. Two things with apparently the same name might really be different. When
problems occur, as they frequently do with networked devices, the veil is pierced. Users are forced to
start being aware of the supposedly hidden unique IDs in order to diagnose what's really going on
and solve the problem. With DNS-SD, in contrast, there is complete naming transparency. The true
identifiers are not cryptic, secret, and hidden. What you see is what you get.

4.4.4. Flagship Service Types

Normally, the namespaces for different service types are separate. For example, you could have a file
server called Home Office, a printer called Home Office, and an Ethernet-attached security camera
called Home Office, and there's no confusion because they all offer clearly different services.

The difficulty arises when there are several different protocols that offer conceptually similar services.
For example, there are at least four different ways of printing over TCP/IP:

Old-fashioned Unix LPR printing. The data transferred is often, but not necessarily, postscript.
The DNS-SD service type name is _printer._tcp.

Proprietary printer-specific command set, usually sent to TCP port 9100. The DNS-SD service
type name is _pdl-datastream._tcp.

IETF-Standard Internet Printing Protocol. The DNS-SD service type name is _ipp._tcp.

Remote USB port emulation. The DNS-SD service type name is _riousbprint._tcp.

Suppose you have a printing client like Mac OS X's printing client that speaks all four protocols. It
browses for all four DNS-SD service types. Suppose it finds, for each type, a service instance called
Home Office. Should it assume that it has found four different printers that each speak one protocol
or found a single printer that speaks all four and is offering four logical services on the network?

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The DNS-SD convention is that it should assume it has found one single printer that speaks all four
protocols. To make this assumption safe, we want to ensure that, if there actually are four different
printers on the network, they don't pick the same name. Normally, for entities offering the same
service type, Multicast DNS's built-in name conflict detection will ensure that two services can't have
the same name. However, how should DNS-SD know that you can have a file server and a network
security camera with the same name, but you should not have a service of type _pdl-
datastream._tcp along with another service of type _riousbprint._tcp advertising the same name on
the network at the same time? The answer is flagship service types. For each group of protocols that
offer conceptually similar services, one of the protocols, usually the oldest, is nominated as the
flagship of the fleet of protocols. In the case of printing protocols, the flagship protocol is Unix LPR
printing (_printer._tcp). Any device advertising any protocol of the fleet must also advertise the
flagship protocol. If the device speaks the flagship protocol, then it advertises it as a normal service it
offers, and the usual name conflict detection ensures that there aren't two instances of this protocol
with the same name at the same time. If the device does not speak the flagship protocol, then it
advertises a special empty SRV record, where the target hostname is the device's hostname, but the
target port number is zero. This constitutes an assertion that "I claim ownership of this name, but I
don't offer the actual service." This solves the problem of ensuring mutual name uniqueness among a
set of related protocols. The existence of the flagship SRV record means that attempts by other
devices to create other SRV records with the same service name will register a conflict, but the
absence of a PTR record advertising that service means that clients browsing for that particular
service type won't inadvertently discover our non-service and mistake it for a real offered service. In
other words, the device has reserved the name in that particular namespace, preventing others from
accidentally using it, without having to actually offer or advertise a real service of that type.

Flagship protocols are used when there are two or more protocols that perform effectively the same
or similar functions from the user's point of view. From our earlier example, DAAP and HTTP are not
viewed as protocols in the same fleet because, even though they share a common design foundation,
the functions they perform from the user's point of view are most definitely not interchangeable.

The determination of what constitutes a fleet of protocols is not something that the software can do
automatically. That determination is made by the human protocol designers. Typically the way things
evolve is that initially, a first protocol is created (e.g., LPR). At this point there is no fleet, because
there's only one. Later, an improved protocol is invented (e.g., IPP), and because it does roughly the
same thing as the earlier protocol, when the new service is advertised by some new device, the
device also advertises the older protocol as the flagship of the newly created fleet (of two). Devices
advertising only the older protocol don't need to know thisthey just continue to advertise the older
protocol as they always did. As subsequent new protocols are invented that perform roughly the
same function, as long as each one is specified to advertise the same original flagship protocol, then
that original flagship protocol becomes the conceptual rendezvous point of the whole family of
protocols for name conflict detection purposes. Eventually, many years later, it's possible to arrive at
the situation where the original protocol is obsolete and no longer used by anyone at all, but it retains
its role as the non-service that every device registers, to ensure that different devices, advertising
different protocols that perform roughly the same function, conceptually bump into one another if
they try to advertise the same name.

4.4.5. Subtypes of Service Types

The design of Zeroconf was intentionally kept simple, because in network design, simplicity is the
best way to achieve reliability, with products from different vendors all interoperating and working
correctly with one another. For this reason, DNS-SD intentionally does not include a complicated

http://lib.ommolketab.ir
http://lib.ommolketab.ir

query language allowing arbitrarily elaborate queries. What it does include is a very simple filtering
capability, which can be useful for some cases. Subtypes are a useful way to advertise a service when
some clients will want to find all instances of that service type, but others will only be interested in
finding some subset.

Subtypes are best illustrated with an example. Suppose a game developer makes a network game.
The commercial version of the game supports both open games that anyone can join and password-
protected games. The game developer also makes a free version of the game client available, but the
free version can only join open games without a password. In this case, the full version wants to find
all available games on the network it might join, whereas the free version wants to find only open
games without a password, since it can't join password-protected games.

This selectivity can be achieved using subtypes . Suppose the DNS-SD service type for the game is
_mynetgame._tcp. When starting a password-protected game, the service type _mynetgame._tcp is
advertised. When starting an open game, the subtype open is used to convey that this game is open
to all clients. In Apple's Bonjour APIs, subtypes are introduced by placing them after a comma
following the main type, like this: _mynetgame._tcp, open.

When a full client browses for games to join, it simply browses for the main type _mynetgame._tcp
and finds all advertised instances on the network, both open and password-protected. When a
restricted client browses for games and wants to find only open games, it browses for the subtype
_mynetgame._tcp, open and finds only those games that were advertised with this subtype.

When advertising a service, zero, one, or more subtypes may be added as a comma-separated list
after the main type. When browsing for services, at most one subtype may be specified. If a client
wishes to find more than one subtype, it needs to start a separate browsing operation for each one.

In the on-the-wire packet format, subtypes are implemented by registering additional PTR records. In
our example above, an open game is advertised with two PTR records, one with the name
_mynetgame._tcp and another with the name open._sub._mynetgame._tcp. When the full client
browses for _mynetgame._tcp, it finds all games, both open and password-protected. When a
restricted client browses for open._sub._mynetgame._tcp, it finds only those instances that were
advertised with this additional PTR record.

Note that, in both cases, the type of the discovered service remains the same: _mynetgame._tcp.
Subtypes perform a filtering operation so that only a subset of the instances is discovered, but they
don't change the type being discovered.

Whether to use subtypes is a design decision for each protocol. Sometimes, subtypes are
appropriate. Other times, it may be more appropriate to define two entirely separate types, with
clients browsing for one or other or both as appropriate, and servers advertising one or other or both
as appropriate.

To date, few DNS-SD protocols have specified any subtypes, and it remains to be seen how useful
this mechanism will be. The most common use of subtypes so far has been for defining programmatic
mappings from other communication schemes (e.g., Jini, UPnP, and web services) onto DNS-SD, to
allow software written using those programming models to get the benefits of Zeroconf not offered by
those other mechanisms, including pure peer-to-peer discovery that works even when no
infrastructure is present and planet-wide discovery using wide-area DNS Service Discovery.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.5. Late Binding

Sometimes, when a user chooses a service from a list, it is for immediate use.

Other times, a user makes a choice, like picking a default printer, which may be used repeatedly in
the coming hours, days, or weeks. In the latter case, it's important that the client software store the
chosen service name, type, and domain, instead of resolving the named service to an IP address and
storing that. This is because IP addresses and port numbers can change, whereas service names are
the intended stable identifier for a given logical service instance. As long as the client resolves the
service name at printing time, it will be sure to get the current address and port number, even if they
have changed in the time since the service was first discovered.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.6. DNS-SD TXT Records

In many cases, all a client needs to know to contact and use a service are the hostname or IP
address where that service resides and the port number on that host.

There are other cases where more information is required. For example, a print server may advertise
three LPR printers. All three logical printing services are being offered on the same host. All are being
offered via the LPR port. What distinguishes them is the LPR queue name. How does a client, having
discovered an advertised printer, know what LPR queue name to specify when contacting the
machine hosting that service? If it doesn't specify the right LPR queue name, its output may not go to
the right physical printer. The answer is the DNS TXT record. In addition to the SRV record, every
DNS-SD service has a TXT record, optionally containing additional parameters and attributes of
interest to clients. DNS-SD uses the DNS TXT record to store a series of key/value pair attributes in
the form "key=value." The TXT record is a standard DNS record type, but DNS-SD establishes some
conventions about how it is used for DNS-SD service types. Those conventions are described in this
section.

The TXT record should not duplicate information that is stored elsewherefor
example, the host and port number for the servicesince those are obtained
from the SRV record.

4.6.1. Format for DNS TXT Records

Since DNS-SD uses standard DNS TXT records , these records must conform to format rules. In
particular, the data consists of one or more strings , each of which consists of a single length byte
followed by 0-255 bytes of text. An example of such a string is:

 | 0x08 | p | a | p | e | r | = | A | 4 |

In this diagram, the first byte of data is a binary byte with value 8. It is then followed by eight more
bytes of data, each containing the ASCII (or UTF-8) codes for the character indicated. For example,
the second byte contains the value 0x70, the ASCII code for lowercase P; the third byte contains the
value 0x61, the ASCII code for lowercase A. Note that there is no terminating zero at the end of the
string, as there conventionally is with strings in the C programming language.

According to the DNS specification (RFC 1035), a TXT record must contain at least one string. An
empty TXT record with zero strings is not allowed. Because of this, you'll often see DNS-SD services
advertised with a TXT record containing a single empty string (a single zero length byte, followed by
no data).

The total size of a typical DNS-SD TXT record is intended to be small200 bytes or less. If large

http://lib.ommolketab.ir
http://lib.ommolketab.ir

amounts of data need to be transferred, making this part of the client protocol is better than using a
large TXT record.

However, there are some cases in which we are dealing with a legacy protocol like LPR, and we are
not at liberty to change the client protocol. In this case, it is sometimes necessary to use TXT records
of around 400 bytes to provide sufficient information to the client. Keeping the total size under 400
bytes should allow it to fit in a single standard 512-byte DNS message. (This standard DNS message
size is defined in RFC 1035.)

In extreme cases where even 400 bytes is not enough, keeping the size of the TXT record below
1,300 bytes allows it to fit in a single 1,500-byte Ethernet packet. Using TXT records larger than
1,300 bytes becomes much less efficient on the network and is not recommended.

4.6.2. Content of DNS-SD TXT Records

Each component string in a DNS-SD TXT record consists of a key/value pair preceded by a byte
giving the length of the string containing this information. The example given above was:

 | x08 | p | a | p | e | r | = | A | 4 |

In this example, the key is paper, the value is A4, and the length of the string "paper=A4" is eight
bytes, which is given by the initial length byte x08. The key component is interpreted without regard
for case, so paper, Paper, and PAPER are seen as identical. Spaces are significant in keys, so the
strings "Papersize" and "Paper size" are distinct. Note that this means that if you insert a space
before the equals sign, it is interpreted as a trailing space in the key. So paper=A4 and paper =A4 are
distinct key/value pairs. The moral is: don't add unintended spaces.

The key must consist of at least one character, while the value may be absent. The way the
key/value pair is parsed is that everything after the length byte until the first equals sign is the key,
and everything following the first equals sign to the end of the string is the value. This means that a
key cannot contain an equals sign as one of its characters. The key is allowed to contain any
printable US-ASCII character other than = (0x3D). Other UTF-8 values are not permitted in key
names because they complicate things without increasing the expressive power of the protocolkey
names are not intended to be user-visible. They just need to be unique identifierssuch as C variable
namesthat are used by the software.

If the string contains no equals sign, then the entire string is the key, which is interpreted
conceptually as a Boolean attribute; it exists but has no assigned value. In general, for a key that is
used to indicate a Boolean value, if the key is present the Boolean is true, and if the key is absent the
Boolean is false.

A value is made up of any eight-bit binary values. In the case of textual data, UTF-8 encoding is
strongly recommended, but TXT record values don't have to be readable text. If you have some
binary data to store, it is much more efficient to store it as binary data than to convert it to text
using hexadecimal or Base-64 encoding. For example, an IPv4 address is just 4 bytes as binary data
but up to 15 when written as text (e.g., "192.168.108.221").

A string beginning with an equals sign will be ignored, as it would have to be interpreted as a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

key/value pair with an empty key, which is not allowed. If any key appears more than once in a TXT
record, any appearances other than the first are silently ignored.

4.6.3. Interpreting DNS-SD TXT Records

When examining a TXT record for a given named attribute, there are four types of results :

The attribute is not present. For an attribute that takes a Boolean value, this would indicate that
the value of the attribute is false.

The key of an attribute is present but no equals sign or value appears. For an attribute that
takes a Boolean value, this indicates that the value of the attribute is true.

The attribute is present with an empty value (there's an equals sign, but nothing following).

The attribute is present with a non-empty value (there's an equals sign, with one or more bytes
following).

The specification for a given DNS-SD service specifies how these four states are to be interpreted. For
example, for some keys, there may be a natural true/false Boolean interpretation:

Present implies true.

Absent implies false.

For other keys it may be sensible to define other semantics, such as value/no value/unknown.

Clients should ignore unknown keys they find in TXT records. This allows the protocol to be enhanced
over time, adding new keys with new meanings, without breaking compatibility with older clients.

To further support possible changes to the specification of a particular service type, authors are
encouraged to include a version attribute of the form txtvers=xxx. Even if you don't anticipate future

versions of your specification, you may still find in the future that you need to make a correction or
addition to fix a mistake, or to address an unanticipated condition in the use of your service. Version
numbers allow a client to ignore TXT records with versions newer than the highest txtvers number
that the client knows how to interpret. The initial value of txtvers should be 1. Then, at a later time, if
changes have to be made that result in a TXT record that is fundamentally incompatible with older
clients, which they have no hope of reading correctly, then incrementing the txtvers to the next
number signals to those older clients that they shouldn't even bother trying to parse this TXT record
data. Such incompatible changes are best avoided if at all possible, but it is still good to have a
mechanism available so that if incompatible changes are unavoidable, it is at least possible to make
the change safely, without confusing old clients or causing them to behave incorrectly.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.7. Summary

DNS Service Discovery using Multicast DNS provides a simple, efficient, lightweight way to discover
what services of a given type are available to you on the local network. Next, Chapter 5 shows how
DNS Service Discovery using Unicast DNS takes the same elegant, simple concepts and scales
literally to the entire planet, using the existing hierarchy of DNS servers that's already in place and
well understood at just about all large companies, universities, and other similar organizations around
the world.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 5. Service Discovery Beyond the
Local Link
Zeroconf is designed to make it easy for you to discover services that are close to you. The word
close can be ambiguous. You go to your neighborhood coffee shop and the people drinking their
cappuccinos at the next table are physically close to you. You may be able to use a Zeroconf-enabled
chat client, text editor, or audio application to interact with them, to collaborate on a document, or to
listen to their music library. In the preceding three chapters, you have been introduced to the
components of Zeroconf that are designed to allow you to painlessly discover and offer services to
devices that are close to yourswhere close implies proximity in a network sense. Devices on the same
link can use IP to communicate with one another and can present a list of available services in a
user-friendly format.

As you drink your morning coffee, the person at the next table may be just a couple of feet away, but
you may have never met them. They are not what you would describe as close in the sense of
someone who is personally close, they just happen to be near you. There are many people who you
might describe as being personally close: friends, family members, coworkers, and people you
interact with on a regular basis.

If you are a Mac OS X user who uses iChat as your chat client, the differences in these two notions of
close are reflected in the two windows you can use to find people to chat with. The Bonjour window
shows you names of people on your local link who are available to chat. You may never have met
these people and may not know their email addresses or chat usernames. If they have authorized
the Bonjour connection, they just automatically appear in your Bonjour window. All that is required is
that they have advertised a service of type _presence._tcp. Contrast this with your Buddy window.
This only includes people who you have designated as buddies. These people may not be nearby, but
they are people you are most interested in interacting with on a regular basis.

Chapter 4 described how DNS Service Discovery (DNS-SD) allows you to discover and to advertise
services using PTR, SRV, and TXT records. In Chapter 4, we conveniently avoided the question of
whether we were talking about Unicast or Multicast DNS. This was intentional, because it really
doesn't matter. DNS-SD was created to work with both Unicast and Multicast DNS. Multicast DNS is
perfect for small networks because of its zero-configuration nature. Instead of trying to predict where
each query and announcement needs to go, it just sends them all to every peer on the network and
lets the peers sort what they need. Clearly, this can't work on a global scale. If every machine on the
Internet were busy sending packets that were replicated and delivered to every other machine on the
Internet, every machine would be buried under an avalanche of unwanted traffic. Clearly, at a certain
stage, we have to move out of the zero-configuration world and into the world of configuration and
infrastructure. By building DNS-SD on top of Multicast DNS on the local network, that gives us a
natural candidate for what configuration and infrastructure we should use when operating on larger
networks: Unicast DNS. In most respects, the DNS-SD part of the protocol works just the same,
regardless of whether it's running over Multicast DNS or Unicast DNS. The difference is that Multicast
DNS is configuration-free and infrastructure-free, whereas Unicast DNS is more efficient on large
networks but requires some configuration and infrastructure.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

One configuration detail that needs to be worked out when using Unicast DNS is which domain(s) to
use. When you browse on the local network, it's clear that the domain you want is local. When you
browse on the global Internet, there are millions of domains to choose from. How does the computer
know which to use? The answer to that question is Domain Enumeration , covered in this chapter.
This chapter also covers how computers make service information available to other computers that
may be thousands of miles away. It covers how computers get timely updates when that service
information changes. Finally, whenever we talk about global networking in today's world, NAT
(Network Address Translation) rears its ugly head. In the 1970s and 1980s, TCP/IP programmers
never had to worry about NAT. Perhaps in the future, using IPv6, network programmers will again
not have to worry about NAT. But, in today's world, NAT is a problem we can't ignore, and this
chapter explains how wide-area service advertising deals with NAT.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.1. Domain Enumeration

When you browse on the local network, it's clear that the domain you want is local. When you browse
on the Internet, you can ask DNS-SD to browse in any valid DNS domain, like apple.com or
oreilly.com. Whether you get any results will depend on whether the domain is advertising any
services. Clearly, one way to decide which domain(s) to browse is to have the user type them in.
However, the spirit of Zeroconf is zero configuration, so we don't want to make the user start
manually configuring things now. The computer should automatically learn from its environment
about interesting domains to browse. The way DNS-SD does this is with Domain Enumeration
queries. DNS-SD performs five Domain Enumeration queries:

Where are interesting domains to browse for services?

The Domain Enumeration query string for this is b._dns-sd._udp.

Of that list, what is the recommended default domain to browse?

The Domain Enumeration query string for this is db._dns-sd._udp.

Where are recommended places I might want to register to advertise my services?

The Domain Enumeration query string for this is r._dns-sd._udp. (Advertising services may
require authorization and credentials, so just because a given domain is recommended to
people on this network doesn't necessarily mean that you have permission to advertise services
there.)

Of that list, what is the recommended default domain to register services?

The Domain Enumeration query string for this is dr._dns-sd._udp.

For legacy client applications that don't specify any particular domain when browsing for
services, are there any additional domains that we should browse in addition to the usual local
domain?

The Domain Enumeration query string for this is lb._dns-sd._udp.

When your laptop finds itself on a new network, it typically learns certain information from the DHCP
server, including the address it's been assigned, the netmask for that network, the address(es) of
one or more DNS services, and the default DNS search domain recommended for users on that
network.

DNS-SD uses this information to construct its Domain Enumeration queries in two ways: domain- and
address-based .

The first way is a domain-based query. DNS-SD takes each of the five Domain Enumeration query
strings above, appends the default DNS search domain, and does a PTR query. For example, at

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Apple, the DHCP server informs clients that the domain is apple.com, so DNS-SD will do a PTR query
for lb._dns-sd._udp.apple.com. to determine if browse operations done by legacy clients should
browse any other domain in addition to local.

The second way is an address-based query, which allows more fine-grained, location-specific defaults
to be fed to clients based on which network segment they are on. DNS-SD does address-based
queries by taking the client's IP address and performing a logical AND operation with the netmask to
get the base address for the subnet. This address is then reversed in the manner of a normal in-
addr.arpa reverse lookup, and this name is then appended to each of the Domain Enumeration query
strings. For example, if the client's IP address is 192.168.1.2 and the netmask is 255.255.0.0, then
the base address for the subnet is determined to be 192.168.0.0, and DNS-SD will do a PTR query for
lb._dns-sd._udp.0.0.168.192.in-addr.arpa. to determine if there's a recommended legacy browse
domain for that particular network.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.2. Advertising Static Services

If you run your own DNS server, or are friendly with the network administrator who does, then you
can create magical results just by adding a few lines to your DNS zone file to create the right records
to support the domain-based or address-based Domain Enumeration queries. You just need to add a
couple of lines to answer those queries and then add three records for each static service you want to
advertise. At Apple, various interesting web pages are statically advertised, so that they magically
show up in Safari's Bonjour Bookmarks list. For example, the web page of information for new
employees is advertised. You can imagine a scenario that used to happen quite frequently: on a new
employee's third day, she would want to find out some information that's available on the New
Employees page, but she couldn't remember the URL. She'd ask coworkers around her, but they'd all
been at Apple for years and hadn't looked at the New Employees page for a long time, so they
couldn't remember the URL either. Thus, a hunt for the New Employees page would begin. That
scenario doesn't happen anymore. Now, the page appears in Safari's Bonjour Bookmarks list and any
employee, new or old, can find it easily, even if she doesn't remember the URL.

Any organization can easily advertise services this way. A hotel offering network access in its rooms
can just add a few lines to their DNS server and have the hotel's web page magically show up in
clients' web browser's list of discovered pages. An airport offering 802.11 wireless service can have
airport information pages and flight departure times magically appear in passengers' web browsers. A
school or university can advertise pages of information relevant to students and visitors. An ISP can
advertise pages of information relevant to its customers. A café or coffee shop can advertise pages
with menus and price lists.

Example 5-1 shows a very simple example of the lines to add to a DNS zone file to answer Domain
Enumeration queries and advertise a single web page in that domain.

Example 5-1. Statically advertising a web page

; Invite clients to browse this domain ("@" means "this domain")
b._dns-sd._udp PTR @
lb._dns-sd._udp PTR @

; Advertise our web page ("www.<this domain>" in this example)
_http._tcp PTR Our\ Web\ Page._http._tcp
Our\ Web\ Page._http._tcp SRV 0 0 80 www
 TXT path=/

For more information on setting up your own DNS server, see DNS and BIND by Paul Albitz and
Cricket Liu (O'Reilly).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.3. Wide-Area Preference Settings

As provided by Apple in Mac OS X 10.4 Tiger and in Bonjour for Windows 1.0, Wide-Area service
discovery is a behind-the-scenes technology. The APIs are there for developers to use, but until
developers start using those APIs or DNS administrators start advertising the automatic legacy
browse domains described above, end users will see no difference. However, if you look in Apple's
Darwin open source repository, you'll find source code for user-interface control panels for Mac OS X
and for Windows, to allow developers (and adventurous end users) to experiment with the
technology. Also, at time of writing, precompiled binaries of those control panels are available with
instructions at http://www.dns-sd.org/ClientSetup.html. These control panels allow you to set
system-wide defaults that will cause standard, unmodified Zeroconf applications to browse for and/or
register network services in wide-area domains, rather than only on the local link.

Figure 5-1 shows the Bonjour Preference Pane as it appears when installed on Mac OS X.

Figure 5-1. Bonjour Preference Pane for Mac OS X

Figure 5-2 shows the Bonjour Control Panel as it appears when installed on Microsoft Windows.

http://www.dns-sd.org/ClientSetup.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

On both Windows and Macintosh, the Bonjour Control Panel has three tabs: Hostname, Registration,
and Browsing.

Figure 5-2. Bonjour Control Panel for Windows

5.3.1. Hostname

If you have a Dynamic DNS hostname assigned to you by your DNS server admin, who ensures that
everyone's hostname is unique, (or if you run your own DNS server with Dynamic Update), you can
enter it here and click Apply. The hostname must be fully qualified, so don't enter a hostname like
steve, enter a hostname like steve.bonjour.example.com. The yellow dot will turn green to confirm a
successful registration with the DNS server, or red if a permanent error occurs, such as trying to
update a name that you're not authorized to update. If the dot remains yellow, that indicates lack of
network connectivity; for example, your Ethernet cable may not be plugged in. Connect the cable or
otherwise establish connectivity, and the dot should turn green or red as appropriate. Note that
hostname registrations will not work if your computer is behind a NAT gateway, unless that NAT
gateway supports a NAT port mapping protocol. If you have an Apple AirPort Extreme or AirPort
Express base station, you can turn on NAT-PMP, described below, using the AirPort Admin Utility.
Certain NAT gateways that support the UPnP Home Gateway Protocol may also work.

If the DNS server requires credentials to authenticate secure updates, click Password...and enter the
key name and key data given to you by the DNS operator. The key name is most often the name of
your DNS domain, for example, bonjour.example.com. The key data or "password" is most often a
random-looking string of charactersfor example, CnMMp/xdDomQZ4TelKIHeQ==.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.3.2. Registration

If you'd like to advertise services on your machine that are discoverable anywhere on the Internet
(or anywhere behind your firewall), click the checkbox and enter an appropriate DNS domain in the
Registration panel. DNS-SD-advertised services such as Personal File Sharing, Personal Web Sharing,
Remote Login, FTP Sharing, SubEthaEdit shared documents, iPhoto sharing, etc., will be visible from
anywhere in the world. As with Dynamic DNS hostnames, if your computer is behind a NAT gateway,
wide-area service registrations will only work if the NAT gateway supports NAT-PMP or the UPnP
Home Gateway Protocol.

Just like your hostname registration, the DNS server for your DNS-SD domains may require you to
enter a key name and password before it will accept service registrations. Simply click
Password...and enter the key name and key data given to you by the DNS server operator.

5.3.3. Browsing

If you don't want to advertise services on your machine but do want to discover services advertised
by others, enter a default browse domain in the Browsing panel.

For fun, try this on Mac OS X 10.4 Tiger or the equivalent steps on Windows using the Bonjour plug-
in for Internet Explorer:

Open a Safari window.1.

Press Cmd-Opt-B to bring up the bookmarks list.2.

Click on the Bonjour icon.3.

Now, with the Safari window still visible, go to the Bonjour Preference Page in System
Preferences.

4.

Click + and enter dns-sd.org as a browse domain.5.

Click Apply and watch a bunch of new stuff instantly appear in the Safari Bonjour Bookmarks
list.

6.

Uncheck dns-sd.org and click Apply again, and the new stuff instantly vanishes.7.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.4. Dynamic DNS Updates

Think back to the days before mobile phones. If you wanted to remain in contact while you traveled
around, you had to leave detailed directions on how you could be reached. Someone might say, "I
have a 10 o'clock meeting with Stan, so you can call me over on the main campus between 9 and 11
at xxx-xxxx. Then, I have lunch with Betty, so you can call me at Sushi Sally's from around noon to 1
at yyy-yyyy. Then, I need to head in to the city. I should be at Dana's around 3, so call me at zzz-
zzzz if you need me." Now you just say, "I'll be running around all day, just call me on my mobile."
One number follows you around all day, one number that can be used to access the device you carry
all day long as you move from one local cell area to another. The person trying to reach you does not
need to be aware of your physical location.

Consider the same fun-packed day, but this time you are taking your laptop with you from place to
place. If, at each location, you are able to connect to the Internet, then, in the absence of firewalls,
you can check your email and use instant messaging with your usual group of friends. For email, you
are logging in to a mail server somewhere and initiating a request that conveys your current location.
No one sending you email has to track where you are. They sent the mail to an address that is
handled by a mail server, and you connect to that same server to download your mail. Similarly, with
the chat program, you log in to a server at a well-known DNS name or address to announce your
availability and to determine which of your other friends are currently available. No one needs to
know the physical location of your laptop. While these solutions work, they are heavyweight and
awkward. People don't need to know your location to send you email, but you need to keep polling
the mail server to find out if new mail has arrived. The mail server can't tell you when mail arrives if
it doesn't know where you are or how to reach you. Instant messaging gives the illusion of direct
peer-to-peer communication but requires some organization to run the big "server in the sky" that's
actually the intermediary for all communication. The need for a big, expensive server in the sky can
be a serious impediment to the creation of new network applications and new uses for the Internet.

Dynamic DNS Update provides part of the answer to this problem. By having a fixed DNS name and
using Dynamic DNS Update to update your DNS address record every time your IP address changes,
people can now find your current IP address at any time by looking up the current DNS address
record for your fixed DNS name.

Wide-area DNS-SD builds on standard Secure DNS Dynamic Update as defined in RFC 2136 "Dynamic
Updates in the Domain Name System (DNS UPDATE)" (http://www.ietf.org/rfc/rfc2136.txt) and RFC
3007 "Secure Domain Name System (DNS) Dynamic Update" (http://www.ietf.org/rfc/rfc3007.txt).

The abstract for RFC 3007 explained the need for Dynamic DNS Update as follows.

The Domain Name System was originally designed to support queries of a statically configured
database. While the data was expected to change, the frequency of those changes was
expected to be fairly low, and all updates were made as external edits to a zone's Master File.

Using this specification of the UPDATE opcode, it is possible to add or delete RRs or RRsets from
a specified zone.

http://www.ietf.org/rfc/rfc2136.txt
http://www.ietf.org/rfc/rfc3007.txt
http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.4.1. Dynamic DNS Update Leases (DNS-UL)

Secure DNS Dynamic Update provides almost all the solution we need, but not quite. It allows a client
to create and update records on a DNS server but makes no provision for garbage-collecting stale
records. When your laptop arrives on a new network, it can create or update its address records, but
what happens if your laptop crashes, or runs out of battery power, or you unceremoniously
disconnect its Ethernet cable or shut off the wireless interface without giving it a chance to delete the
address record? The IP address you got from the DHCP server has a lease time associated with it,
and if the laptop fails to renew the lease, when the time expires the DHCP server will reclaim that
address. RFC 2136 provides no such lease time on DNS record creation. Once created, a DNS record
remains valid until someone comes along and decides to delete it.

Dynamic DNS Update Leases (see http://files.dns-sd.org/draft-sekar-dns-ul.txt) remedies this
omission.

5.4.1.1. Changes to the message format

The requests and responses for DNS-UL use the same format as those described in RFC 2136 for
Dynamic DNS Update, with the addition of a single OPT-RR as the last record in the Additionals
section. The new EDNS0 Option Code, UPDATE-LEASE, has been assigned the number 2. The
advantages of using an OPT-RR to encode the update lease are that (1) minimal modifications to a
name server's frontend are required and (2) servers that do not implement this extension will
automatically return NOTIMPL.

The fixed part of the OPT-RR is described in RFC 2671 (http://www.ietf.org/rfc/rfc2671.txt), and is
shown in Table 5-1.

Table 5-1. The fixed part of the OPT-RR

Field name Field type Description

NAME Domain name Empty (root domain)

TYPE u_int16_t OPT

CLASS u_int16_t Sender's UDP payload size

TTL u_int32_t Extended RCODE and flags

RDLEN u_int16_t Describes RDATA

RDATA Octet stream {attribute, value} pairs

The variable part of the data is contained in the RDATA and consists of one or more sets of the three
fields OPTION-CODE, OPTION-LENGTH, and OPTION-DATA. In the DNS-UL requests and responses, there
will be one set of these fields, and the OPTION-CODE will have the value UPDATE-LEASE (i.e., 2), the
OPTION-LENGTH will indicate the size in octets of the OPTION-DATA (i.e., 4), and the OPTION-DATA will

http://files.dns-sd.org/draft-sekar-dns-ul.txt
http://www.ietf.org/rfc/rfc2671.txt
http://lib.ommolketab.ir
http://lib.ommolketab.ir

have desired lease (request) or granted lease (response), in seconds.

In the request, the value of the lease is a signed 32-bit number with the requested lease life in
seconds. This value must be chosen to balance between the desire to have accurate information and
the need to not burden the network or the server. The current recommended minimum lease is 1,800
seconds, which is 30 minutes. In the response, the value of the lease is the time granted by the
server. This value is not restricted to be less than or equal to the value requested and could also be
greater.

5.4.1.2. Refresh messages

In order to keep resource records from being deleted by the server, clients should send a refresh
message when 75% of the current lease has elapsed. If the client uses UDP and does not receive a
response from the server within two seconds, the client can either retry with TCP or continue to retry
with UDP, doubling the length of time between successive attempts. If, for any reason, the lease of a
resource record expires without being refreshed, the server must not respond to queries with this
record and is allowed to delete the record from its database.

Refresh messages are nearly identical to those used for DNS-UL requests. The change is that the
resource records to be refreshed are contained in the Update section and in the Prerequisites section
as an "RRSet exists (value dependent)" pre-requisite. The requested and granted lease times do not
need to be the same as in the original request. If a client has sent more than one update to a single
server, the client may coalesce the refresh messages into a single message. The client can include all
existing updates to the server as long as at least one of the included resource records has elapsed at
least 75% of its original lease.

A server sends an acknowledgment to a valid refresh request. This response is identical to the
previously described DNS-UL response and contains the new lease of those records being refreshed.
If no records in the refresh request have completed 75% of their leases, the updates are not
refreshed and the response will contain the smallest remaining lease of all the records in the refresh
message.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.5. DNS Long-Lived Queries (DNS-LLQ)

Software development teams that are collocated experience synergies that are harder to replicate in
teams working remotely. You may be working in one area of the code and overhear two people
discussing another area of the code that you have quite a lot of experience with. You can easily jump
in and join the conversation. There are also benefits of working remotely. Once you take the time for
commuting, the time taken on incidental conversation with colleagues, and the time spent trying to
block out the noise of others working, you find many more hours in the day to get work done. How,
in this setting, do you make yourself available to exchange ideas with your colleagues? Email, Net
meetings, instant messaging, and IRC chat rooms all contribute to the virtual work environmentbut it
is not the same as being there.

The same synergies exist for DNS-SD in a Multicast DNS environment. When you're on the local
network, you hear announcements when new services arrive. You hear goodbye packets with
services go away. If a service goes away without sending its goodbye packet, and later, another
client attempts (unsuccessfully) to contact it, you hear that too. What we want to do is provide
similar timeliness for remote clients that may be far removed from the local network.

A standard DNS query gives you the answer that's true at that moment in time. If you want to find
out later what's changed, you have to do another query. Querying very frequently puts a large load
on the network and on the DNS server. Querying only occasionally imposes lower load, but your
information may become out of date. When using polling, there is no good answer.

Instead of polling, DNS-SD extends DNS to support long-lived queries (LLQ). In addition to asking a
question of the server, it uses an EDNS0 extension to say, in effect, "...and tell me in the future if the
answer to this question changes." DNS long-lived queries are described at http://files.dns-
sd.org/draft-sekar-dns-llq.txt.

5.5.1. LLQ Message Format

LLQ messages extend the standard DNS message format described in RFC 1035
(http://www.ietf.org/rfc/rfc1035.txt) with a new OPT-RR and RDATA format, similar to the way that
Dynamic DNS Update was extended as described earlier. This time, the RDATA triples are of the form
OPTION-CODE, OPTION-LENGTH, and LLQ-Metadata. The OPTION-CODE is filled with the value of the EDNS0
Option Code for LLQ, which is 1.

The LLQ-Metadata consists of a VERSION field used to identify the version of the LLQ protocol
implemented and an LLQ Opcode field that consists of one of the following codes: LLQ-SETUP (1), LLQ-
Refresh (2), or LLQ-EVENT (3). The ERROR field is next and contains one of the following error codes:
NO-ERROR (0), SERV-FULL (1), STATIC (2), FORMAT-ERR (3), NO-SUCH-LLQ (4), BAD-VERS (5), and UNKNOWN-
ERR (6). The remaining two fields are LLQ-ID, which is a unique identifier for a particular LLQ, and
LEASE-LIFE, which indicates how long the LLQ will remain in effect.

http://files.dns-
http://www.ietf.org/rfc/rfc1035.txt
http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.5.2. LLQ Setup Four-way Handshake

The setup of long-lived queries is a four-way handshake consisting of the following steps.

5.5.2.1. Step 1: initial request

The initial request is sent by the client to the server. The format for this request is an extension of a
standard DNS query using an OPT-RR containing LLQ metadata in its Additionals section. The RDATA
triple consists of an OPTION-CODE, OPTION-LENGTH, and LLQ-Metadata. This triple may appear one or
more times. Values should be as follows:

The OPTION-CODE should be set to LLQ (1).

The LLQ-Metadata section consists of fields for the LLQ-OPCODE, ERROR, LLQ-ID, and LEASE-LIFE.

In an initial setup request, the LLQ-OPCODE is set to LLQ-SETUP and the LLQ-ID is set to 0.

In requests the ERROR field should be set to NOERROR and the LEASE-LIFE should contain the
desired life of the LLQ request in seconds.

5.5.2.2. Step 2: challenge

In response to an LLQ setup request, a server will send a setup challenge to the requestor. The
reason for the challenge is to prevent abuse of the LLQ feature by rogue machines that might
otherwise use spoof source addresses to set up LLQs on behalf of some other unsuspecting machine.
The challenge packet contains a large number selected at random by the DNS server. A legitimate
client setting up an LLQ receives the challenge and answers it correctly. An impostor generating fake
packets with spoof source addresses will not receive the challenge packet and will be unable to fake a
correct response to the challenge it never received.

This challenge is a DNS Response, with the DNS message ID matching that of the request and with
all questions contained in the request present in the questions section of the response. The challenge
contains one OPT-RR with an LLQ metadata section for each LLQ request, which will indicate the
success or failure of each request.

The LLQ-Metadata section consists of a field VERSION, which indicates the version of the LLQ protocol
implemented in the server, and an LLQ-OPCODE field with value LLQ-SETUP. The remaining fields are
ERROR, LLQ-ID, and LEASE-LIFE. Possible values for the ERROR-CODE include the following:

NO-ERROR

FORMAT-ERR, which indicates the LLQ was improperly formatted

SERV-FULL, which indicates the server is overloaded by the number of LLQs being managed or
by the rate at which the requests are being received

STATIC, which indicates the data for this name and type is not expected to change frequently, so
the server does not consider LLQ the appropriate mechanism for this service

http://lib.ommolketab.ir
http://lib.ommolketab.ir

BAD-VERS, which indicates the protocol version in the client request is not supported on the
server

UNKOWN-ERR

On error, LLQ-ID is set to 0.

On success, a large random number generated by the server that is unique for the requested name,
type, and class is created and stored as the LLQ-ID. The LEASE-LIFE is set to the actual life of the LLQ
in seconds. This value may be less than, equal to, or greater than the LLQ requested.

In the case of a SERV-FULL error, the LEASE-LIFE is used for a different purpose. It is set to the time
in seconds after which the client may retry the LLQ Setup. For all other errors, the LEASE-LIFE is set
to 0.

5.5.2.3. Step 3: challenge response

The client has been listening for a response to the original setup request. If no response was
received, then up to three requests are transmitted with two seconds between the first two and four
seconds between the second and third. Another eight seconds after transmitting the third request,
the server should be assumed to be down or unreachable and the client should begin the process
again no more than once per hour.

When the client receives a successful setup challenge, it sends a challenge response, which is a DNS
request with questions from the request and challenge, and a single OPT-RR in the Additionals section
with the RDATA that echoes the random LLQ-ID and granted LEASE-LIFE for each set of fields in the
order that the questions were issued.

If the client receives a challenge with an error, it responds as follows:

For a STATIC error, the client honors the resource record TTLs in the response and does not poll
the server.

In the case of a SERV-FULL error, the client may retry the LLQ Setup Request after an interval
equal to that contained in the LEASE-LIFE field.

If there is another type of error or the server is determined not to support LLQ, the client may
resort to polling the server not more than once every 30 minutes for a given query.

5.5.2.4. Step 4: ACK and answers

The final step of the handshake is the acknowledgment that the server sends when it receives a
successful challenge response. A successful challenge response is one in which the LLQ-ID and LEASE-
LIFE echoed by the client match the values issued by the server. The server sends a DNS response
containing all available answers to the questions contained in the original setup request, additional
resource records for those answers in the Additionals section, and, finally, an OPT-RR with the RDATA
format as follows:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

An OPTION-CODE with value LLQ, followed by an OPTION-LENGTH field.

The LLQ-Metadata portion is the now familiar VERSION and LLQ-OPCODE, which is set to LLQ-SETUP.

The ERROR field should be set to NO-ERROR.

The LLQ-ID is the originally granted long identification number.

The LEASE-LIFE is the remaining life of LLQ in seconds.

The reason for the challenge/response precaution at steps 3 and 4 is to prevent a kind of network
attack called a byte-multiplication attack. Suppose you were a mischievous individual with a desire to
cause trouble for bigcompany.com. You might decide to try to flood their network with traffic. You
send nonsense data to their web server as fast as you can over your DSL line at home, but you find
two things: your DSL line is so slow compared to their connection that they don't even notice you,
and when they do notice you, they can easily trace the packet stream back to the source, and you go
to jail. Imagine how much better your attack could be if you could convince other machines, with
much fatter network pipes, to flood the victim's machine on your behalf. This is the essence of a
byte-multiplication attack. You send request packets to well-connected machines, using the IP
address of your intended victim as the fake source address in your packets, so that all the replies go
to the victim's machine instead of yours. If a reply packet is 100 times bigger than the request
packet, then 1 Mbps of requests can generate 100 Mbps of responses directed at the victim's
machine. The challenge/response phase prevents DNS LLQ from being abused in this way. Before it
begins sending answers, the DNS server sends the challenge to the target machine, requesting
positive confirmation that it truly requested that stream of answer packets. Because the challenge
packet is about the same size as the initial request packet, this phase of the protocol itself can't be
used to mount a very effective byte-multiplication attackit only multiplies the attack size by one!
Given that existing conventional DNS queries can already be crafted to result in a multiplier ratio
larger than this, this means that DNS LLQ doesn't add any new byte-multiplication potential to the
DNS protocol.

5.5.3. Refreshes and Expiration

In order to extend the LLQ beyond the granted LEASE-LIFE, the client sends a Refresh request when
80% of its lease life has elapsed. This request is identical to the LLQ Challenge Response, with the
exception that the LLQ-OPCODE is set to LLQ-REFRESH instead of LLQ-SETUP. The client should coalesce
refresh methods for all LLQs established with a given server as long as one of them has elapsed at
least 80% of its LEASE-LIFE. If including all of the LLQs causes the message to no longer fit in a single
packet, the client should include all that will fit, preferring those closest to expiration . The requested
LEASE-LIFE for a single LLQ should equal the original granted LEASE-LIFE. For multiple LLQs, the
client should request the same LEASE-LIFE for all of them as the one granted for the soonest to
expire.

The server responds to an LLQ refresh message with a response similar to the ACK described in step
4 above with the LLQ-OPCODE set to LLQ-REFRESH. If the client attempts to refresh an expired or
nonexistent LLQ, the server returns an ERROR value of NO-SUCH-LLQ. If the client fails to extend the
LLQ beyond the granted LEASE-LIFE, or if the client terminates a lease by sending a request with
LEASE-LIFE equal to 0, the lease expires.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.5.4. Event Responses

Once the LLQ has been successfully set up, the server delivers change notifications to the client.
There are two kinds of change notification that can occur and require action:

Add Events

These occur when a new resource record appears that answers an LLQ. Often, these are the
result of a dynamic DNS update. This added record is sent in the Answer section of the event to
the client.

Remove Events

These occur when a resource record becomes invalid. The deleted resource record is sent in the
Answer section of the event to the client, with the TTL of the resource record set to -1 to
indicate the record has been removed.

The format of the OPT-RR RDATA begins with the OPTION-CODE with value LLQ and the OPTION-LENGTH
field. The VERSION is the version of the LLQ protocol implemented in the server, and the LLQ-OPCODE is
set to LLQ-EVENT. The ERROR field has value 0, the LLQ-ID is as above, and the LEASE-LIFE is set to 0.

Upon receiving a change notification from the server, the client sends an acknowledgment back to
the server. This acknowledgment is a DNS response echoing the OPT-RR contained in the change
notification, with the message ID of the notification echoed in the message header.

5.5.5. Identifying Whether the Local DNS Cache Supports LLQ

A client can first try to issue its LLQ request to the local DNS caching server, just like normal DNS
queries. However, most DNS caches today don't implement LLQ and will return a NOTIMPL or FORMERR
error.

In this case, the client should contact the authoritative server directly to issue its LLQ request. The
client first uses an SOA query to determine the zone and authoritative server responsible for the
name it's querying. It then does an SRV query for the name _dns-llq._udp.zone to find the target

host and port number where LLQ service is offered for this zone. Usually, it will be the same host as
the master DNS server but on a port number other than the normal DNS port 53. If the client
receives an NXDOMAIN response to its SRV query, the client concludes that the zone does not support
LLQs and instead resorts to low-rate polling to keep its data reasonably up to date.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.6. NAT Port Mapping Protocol (NAT-PMP)

The politics and economics of Internet access have made Internet addresses a rationed resource.
Originally, Internet Service Providers (ISPs) sought to charge customers varying amounts depending
on how many computers, printers, and other network devices they had. The logic was that anyone
who had more than one computer, or owned a network printer, must be a business, and therefore
should be charged a lot more for the exact same speed of network connectivity. Customers,
naturally, were not enthusiastic about the idea of paying a printer tax to their ISP. NAT was invented
and allowed customers to have any number of computers and other devices appear to their ISP as
just a single device with a single IP address. ISPs countered by checking that the Ethernet address of
the visible device matched the Ethernet address of the single computer the customer had signed up
for. NAT vendors countered by adding configuration options to allow customers to set their NAT
gateway to present a spoof Ethernet address matching the one the ISP was looking for. Around this
time, the ISPs gave up the arms race, leaving us with today's situation: most people get just a single
IP address from their ISP, and if they want to use more than one computer, they have to use NAT to
share that one IP address.

One thing that NAT vendors initially were not keen to point out is that NAT's address sharing only half
workedit worked for outgoing connections but not for incoming ones. However, since at the time all
that most Internet users knew about was the Web and email, they never noticed. Later, when
security problems on the Internet became rife, some smart marketing people did what smart
marketing people dothey recast NAT's deficiency as a feature. It was good, they said, that NAT didn't
work for incoming connections, because that protected you from all the bad people out there.
(Similar to how a telephone that was unable to receive incoming calls would protect you from
receiving telemarketing calls.)

This is the world we find ourselves in today. What makes this a little sad is that the Internet is
capable of much more than just the Web and email, but the prevalence of NAT makes many of those
new uses difficult or impossible. Expert users may know how to set up manual port mappings for
inbound connections, but the other 99% of users don't. If you want to make a new product that
communicates peer-to-peer or otherwise receives inbound connections, then requiring your
customers to set up manual port mappings is a recipe for bankruptcy. iChat AV on the Macintosh, for
example, has to go to great lengths and perform fancy tricks to get peer-to-peer audio and video to
work without manual port mappings and requires a special server on the public Internet to facilitate
this; even then, it still doesn't work with all NAT gateways.

NAT Port Mapping Protocol (NAT-PMP) allows client software that needs inbound port mappings to
request them, and, furthermore, if the client crashes or is disconnected or otherwise goes away,
those port mappings are automatically tidied up. Of course, existing software that doesn't need or
want inbound port mappings doesn't request them and doesn't get them.

NAT-PMP is described at http://files.dns-sd.org/draft-cheshire-nat-pmp.txt.

5.6.1. Network Address Translation

http://files.dns-sd.org/draft-cheshire-nat-pmp.txt
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The success of web browsing, email, and instant messaging is due, in large part, to the extent to
which the end user has been shielded from the underlying protocols. When casual users click on a link
in a web browser, they probably do not stop to consider that they have just issued a request and that
the server responding to that request must know where to send the response. They almost certainly
don't consider how this works when they have a private IP address, and all the packets are being
modified by the NAT gateway before being sent out to the rest of the Internet.

Figure 5-3 shows the configuration page for a typical NAT gateway. Its real public Internet IP address
is 69.3.204.77, but on the local network it uses the private address 192.168.1.1. The public IP
address 69.3.204.77 is globally uniqueat any moment in time, only one computer on the Internet on
the entire planet has that address. On the other hand, at any moment in time, there are thousands,
maybe millions, of devices all thinking they have the IP address 192.168.1.1.

Figure 5-3. LAN and WAN settings for a NAT gateway

A computer on the local area network (LAN) connected to this NAT gateway may have an IP address
such as 192.168.1.151. As with the address 192.168.1.1, there are probably thousands of computers
around the world using the address 192.168.1.151 on their own LANs. If you or I were to send a
packet addressed to 192.168.1.151, it would certainly not arrive at any machine outside of the LAN
we were currently connected to.

When computer 192.168.1.151 sends out an outgoing TCP request to some machine on the Internet,
the NAT gateway rewrites the source address in the packet from private address 192.168.1.151 to
public address 69.3.204.77 (which is the IP address of the NAT gateway in this example). So that it
can make sense of the replies that come back, it also rewrites the port number to a unique one that
it's not already using. Now, the outgoing packet has a globally meaningful source address, and when
the machine on the Internet replies, the replies will successfully make it back to the NAT gateway.
When the NAT gateway gets the reply, it looks up the destination port number in its table to see
which LAN client this packet belongs to. It then rewrites the destination address and port number
back to what the local client is expecting, corrects the packet checksum, and forwards it on.

The reason this works is because when a local client contacts an external server, it sends out an

http://lib.ommolketab.ir
http://lib.ommolketab.ir

outgoing TCP connection request. The NAT gateway gets to see that outgoing TCP packet, and from
the data in the packet header, the NAT gateway can glean the information it needs to make an entry
in its mapping table.

In contrast, when a local machine listens for incoming connections, it is a passive operation. It
doesn't generate any packets or otherwise cause any activity that could allow the NAT gateway to
work out what it was required to do. Even supposing the NAT gateway was able somehow to make
the required mapping, external clients still couldn't connect to that service without knowing the
correct public IP address and port number to use.

Accordingly, we have two problems to solve. The local machine has to inform the NAT gateway of its
desire to receive incoming connections, and then, having made a port mapping, it has to place that
information somewhere external clients can get at it, so that they know which address and port
number they should use to access the service.

The public place to store the service information, you should not be surprised to hear, is the global
DNS system, using DNS-UL. The public address is stored in an address record, and the port number
is stored in an SRV record describing the service.

5.6.2. Obtaining the Public Address

Before the local machine can perform a Secure DNS Dynamic Update to update its address record to
give the NAT's public IP address, it first has to find out what that address is. It does this bysimply
enoughasking the NAT gateway. The local machine sends a UDP request packet to port 5351 of its
default gateway address. This protocol is only designed for the usual case where the NAT gateway is
the one-and-only gateway on a small, single-subnet home network. The UDP packet contains two
bytes of data. The first byte is the protocol version (currently 0) and the second byte is the opcode.
Opcode 0 requests the public IP address.

Every packet used in the NAT Port Mapping Protocol starts with an eight-bit version followed by an
eight-bit operation code. Opcodes 0-127 are used for client requests and opcodes 128-255 are used
for the respective corresponding responses from the gateway. Responses also always contain two
additional fields: a 16-bit result code in network byte order with success represented by a response
code of 0, and a "seconds since reboot" field. Clients use the "seconds since reboot" field to detect if
the gateway crashes, is power-cycled, or otherwise restarted. If this happens, your typical NAT
gateway will completely forget any mappings it may have created (yet another of the many
shortcomings of NAT gateways), so this is a valuable hint to tell clients that they should reissue all
their mapping requests to recreate their mappings.

If, after 250 ms, the client has not received a response from the gateway device, it should reissue its
request. In the absence of a response, this process is repeated, with the interval doubling each time
until either a response is received or two minutes have passed. If two minutes passes without a
response, then the client can conclude that this gateway does not support NAT port mapping
protocol.

The first byte of the response is again 0 for the version and, this time, the second byte is 128, the
response code corresponding to request code 0. The next two bytes contain the result code and the
final four bytes contain the public IP address. The possible result codes are:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

0

Success

1

Unsupported Version

2

Not Authorized/Refused (supported but disabled)

3

Network Failure

4

Out of resources (e.g., no more mappings currently available)

5

Unsupported opcode

If the result code is nonzero, the value stored in the public IP address field is undefined and must be
disregarded by the client. In the future, other error codes may be added; any unknown nonzero
result must be treated by the client as a permanent error.

NAT gateways often obtain their public IP address through DHCP or some other method that does not
guarantee it will remain the same. If the public IP address changes, local machines will need to know
to update their DNS records to show the new address. To let them know this, when its public IP
address changes, the NAT gateway alerts devices on the local network by sending a series of
gratuitous opcode 128 response packets to the all-hosts link-local multicast address 224.0.0.1 on
port 5351, giving the new public IP address. This notification is sent 10 times, with an interval
between the first two notifications of 250 ms and, as before, the interval between subsequent
notifications doubling.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

NAT-PMP is only designed for the common simple case of a single NAT gateway
serving a small, single-subnet home network.

NAT-PMP is not intended to solve the problems of:

Nested NAT (NAT behind another NAT).

A NAT gateway serving a large multi-subnet routed private network,
where the NAT gateway may not be the local default gateway for all hosts,
and where all-hosts link-local multicast announcements from the NAT
gateway may not reach all hosts.

A NAT offering to receive inbound connections on more than one IP
address at once. When a NAT has more than one public IP address, one
must be selected as the single designated address for receiving and
forwarding inbound connections.

Transport traffic other than UDP- or TCP-based protocols.

5.6.3. Creating and Destroying a Mapping

Once the client has determined its public IP address, the next step is to request a public port number
at this public address, to be used to receive inbound connection requests. The client initiates a
request for a mapping by sending a UDP request packet to port 5351 on the default gateway, with
the following format:

The first field is an eight-bit version code, currently set to 0.

The second field is an eight-bit opcode that is set to 1 if the client is requesting a map to a UDP
port and set to 2 if the client is requesting a map to a TCP port. A NAT device that implements
this protocol must be able to create TCP-only and UDP-only port mappings. If a device can only
create these port mappings in pairs, it should not implement this protocol.

The third field is a 16-bit reserved field that must be set to 0.

The fourth field is 16 bits and contains the number of the private port that the device currently
uses for the service.

The fifth field is 16 bits and is used for the number of the requested public port that will be
mapped to the private port. Often, this requested port is the same value as the private port. If
there is no preference, then this field should be set to 0.

The sixth field is 32 bits and contains the requested lifetime in seconds. The recommended
value for this field is 3,600 seconds (one hour).

As before, the client sends the request and waits for a response. If no response is received within 250
ms, the request is sent again. The client repeats this process with the interval between attempts
doubling each time until either a response is received or until two minutes after the first request was

http://lib.ommolketab.ir
http://lib.ommolketab.ir

sent. If no response is received in two minutes, an error message should be logged and the client
should stop issuing requests.

Scope and Applicability

The assumption is that this protocol will be used on small networks such as you might
find in a home, small office, or coffee shop. The key is that there is a single logical link
and that the default gateway is also the NAT translator for the network. This is used to
ensure that stale mappings issued by the NAT translator do not persist when DHCP
leases have expired. The NAT Port Mapping Protocol is explicitly not designed for more
complicated networks.

NAT is a solution for extending the use of the limited number of IPv4 addresses. Any
client using NAT Port Mapping should also implement IPv6 support as a preferred long-
term solution. As IPv6 is more widely deployed, devices that need to use NAT for a public
IPv4 address may have a public IPv6 address. Preference should be given to the IPv6
address, when available.

The response from the NAT device looks very similar to the request sent by the client behind the
NAT.

The first field is the eight-bit version code that is still set to 0.

The second field is an eight-bit opcode that should be 128 greater than the opcode sent by the
client. In other words, the value should be 129 for a UDP port and 130 for a TCP port.

The third field is a 16-bit result code. As before, success is indicated by a 0 in this field. The
values of the result code are listed in the preceding section.

The fourth field repeats the private port sent in the request.

The fifth field is 16 bits and contains the number of the mapped port. This is the value that the
service will use together with the public IP address to advertise the service. If no public ports
are available then the result code of 4 will indicate a lack of resources.

The sixth field is 13 bits and is used to convey the actual lifetime of the mapping. This value is
allowed to be equal to or less than the value requested by the client. It is not recommended
that a lease be granted that is greater than that requested by the client.

The client should begin trying to renew the mapping halfway through the actual lifetime. The renewal
packet is identical to the initial request packet, except that the fifth field, which contains the
requested public port, is set to the actual port number that was allocated, rather than the port
number the client may have originally requested (if different). Making the renewal packet identical to
a request packet has a couple of useful properties. If the NAT gateway response to the first request
packet is lost, then the client's retransmission of the request packet looks, to the NAT gateway, just
like a renewal and is handled correctly. Conversely, if the NAT gateway crashes or is rebooted, then
the client's renewal packet looks, to the NAT gateway, just like a brand new request. Since the client

http://lib.ommolketab.ir
http://lib.ommolketab.ir

is requesting the same previously assigned public port number, the NAT gateway ends up re-creating
the lost mapping. This makes the protocol self-healing in the face of packet loss and gateway
reboots.

If a client is unsuccessful in renewing a mapping before its lifetime expires, then the mapping is
deleted.

If a client's DHCP lease times out, the gateway device should also delete any mappings
belonging to that client. Stale mappings pointing to a private IP address could potentially direct
traffic to a new device that is assigned that IP address by the DHCP server. Since the NAT
gateway and DHCP server are normally the same box, this is often easy to do.

A client can request explicit deletion of a mapping by sending a request to the NAT device
identical to the initial request, except that the requested lifetime in seconds is set to 0.

If the request to destroy a mapping is unsuccessful, the result code in the response is not zero. One
example might be that the client attempts to delete a permanent port mapping manually configured
by the human operator. In this case, the response code is 2 to indicate the request is not authorized.

If a mapping is successfully destroyed, the response packet has a result code of 0, contains the
private and public ports of the destroyed mapping, and has a lifetime of 0. In the event that a NAT
device receives a request to destroy a mapping that does not exist, it issues a response as if an
actual mapping were successfully destroyed. This also is to guard against packet loss. For example,
suppose the NAT gateway receives a mapping deletion request and successfully deletes the mapping,
but the response packet is lost. When the client retransmits its request, not knowing the mapping
was actually successfully deleted already, the NAT gateway needs to send it a "no error" successful
response to assure it that the mapping was, as it requested, successfully deleted.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.7. Summary

Chapter 4 showed how DNS Service Discovery using Multicast DNS provides a simple, efficient,
lightweight way to discover what services of a given type are available to you on the local network.
DNS-SD using Unicast DNS takes the same elegant simple concepts and scales literally to the entire
planet, using the existing hierarchy of DNS servers that's already in place and well understood at just
about all large companies, universities, and other similar organizations around the world.

Dynamic DNS Update Leases provide for automatic garbage collection of stale records. DNS Long-
Lived Queries give clients timely notification of information they're interested in. NAT Port Mapping
Protocol lets clients behind NAT gateways receive incoming connections. Put these three technologies
together with wide-area DNS Service Discovery, and computers at home behind NAT gateways can
begin to function like computers connected to the "real" Internet.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 6. Getting Started with
Bonjour/Zeroconf
The previous chapters presented an overview of how the Zeroconf infrastructure works. The
remainder of the book contains information on creating Zeroconf applications in a variety of settings.
This chapter introduces the dns-sd command-line test tool, which lets you, the human user, perform
common DNS-SD operations such as advertising services, browsing, and resolving. The dns-sd tool is
not something you'd ever use in a shipping product, and it's not intended to be used from shell
scripts; it's provided as a testing, development, and troubleshooting tool. It serves three main
purposes.

First, if you're a developer toying with the idea of adding Zeroconf to your product, the dns-sd tool
allows you to experiment with "what if" scenarios, without writing a single line of code. If your
product is a network camera that already supports RTSP and RTP video streaming, then the dns-sd
tool lets you create a proxy advertisement for that camera, so that you can make it appear in the
Open URL...menu in QuickTime Player 7, so you can get a feel for how the user experience could be
for end users if the product had native Zeroconf support. When making a project proposal to
management, being able to show a demo like this, interoperating with existing real-world software, is
very compelling.

Second, when you're ready to add Zeroconf to your product, the source code for the dns-sd tool
(available from the Darwin open source repository) provides useful sample code to cut and paste into
your application. The source code is approximately 700 lines of C, and it's basically a big switch
statement with one case for each of the common DNS-SD operations. After prototyping by running
the dns-sd tool with the appropriate command-line option for the operation your application needs to
do, you can then find that particular case in the switch statement and copy that chunk of example
code into your application.

Third, after you've added Zeroconf to your product, if you're troubleshooting problems, the dns-sd
tool can provide a useful independent verification of whether your software is working correctly. If
your product is one that advertises a service, then you can use dns-sd -B to verify that the service
appears. If your product is one that browses for services, then you can use dns-sd -R to create
advertisements and verify that they appear in your application when you run the command and then
disappear when you stop it with Ctrl-C. If your product is one that browses for services, but it's not
discovering what you think it should, you can use dns-sd -B for independent verification. If dns-sd -B
shows the service but your application doesn't, then that suggests a bug in your application. If
neither sees the service, that suggests a problem elsewhere.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.1. Working with Bonjour/Zeroconf

Before getting started, you will need to ensure that you have Bonjour/Zeroconf and the SDK installed
on your machine. This section also contains a brief discussion of the different tasks involved in writing
and running a Zeroconf application.

6.1.1. Installing Bonjour

A useful page to bookmark is the Apple Developer Connection page for Bonjour,
http://developer.apple.com/bonjour/. This page contains links to software, documentation, sample
code, and other useful resources.

6.1.1.1. Macintosh

Bonjour has been part of Mac OS X since the 10.2 Jaguar release. The portable, cross-platform
"dns_sd.h" API was added in the 10.3 Panther release. The Java API was added in Panther Version
10.3.9 and is also available in 10.4 Tiger and later. The command-line tool described in this chapter is
available in 10.4 and later and can be invoked from a terminal window using the command dns-sd. If
you're running 10.3.x, you can use the substantially similar mDNS command, or you can build the
dns-sd utility for yourself from the Darwin open source code and place it in /usr/bin. The developer
tools for Mac OS X include the C, Carbon, Cocoa, and Java APIs for DNS-SD.

6.1.1.2. Windows

If your Windows machine didn't come from the manufacturer with Bonjour already installed, you can
install it yourself. You can determine whether Bonjour is installed by running Internet Explorer and
verifying whether the three-lobed, orange and gray Bonjour icon appears in the toolbar. If it does
not, you can obtain the Bonjour for Windows installer from http://www.apple.com/bonjour/. If you're
planning to write Bonjour software on Windows, you should also download the Bonjour SDK for
Windows, containing header files, libraries, and sample code, from
http://developer.apple.com/bonjour/.

6.1.1.3. Linux/Unix

Some Linux distributions already include some variant of Zeroconf. You can also download Apple's
Darwin open source code for the mdnsd daemon, providing Multicast DNS and DNS Service Discovery
(but not link-local addressing, which is a lower-level OS function), and build and install it yourself.

http://developer.apple.com/bonjour/
http://www.apple.com/bonjour/
http://developer.apple.com/bonjour/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

This daemon will run on Linux, FreeBSD, NetBSD, OpenBSD, Solaris, and other POSIX-compatible
platforms.

6.1.1.4. Other platforms

The Darwin open source repository for mDNSResponder also includes code for other platforms, such
as Windows Mobile and the VxWorks embedded operating system used in specialized network devices
such as printers and network cameras. On a simple, dedicated, single-function device, instead of
having the mdnsd daemon running in the background serving multiple local clients, you would
typically just run a single monolithic executable, mDNSResponderPosix, which directly advertises the
services that the device provides. This code is licensed under the Apple Public Source License, and
many hardware vendors include it in their products.

6.1.2. Understanding Zeroconf

When creating a Zeroconf-enabled application, it is important to understand what Zeroconf does and
does not do. As an analogy, consider a GUI application for guessing a number between 1 and 100.
The user enters a guess and is told whether the guess is correct, too high, or too low. The number of
guesses is incremented and the user can guess again. The interface might look something like that
shown in Figure 6-1.

Figure 6-1. Interface for the guessing game

It helps to separate the code into three pieces.

The GUI code

The developer does not have to write the code for a button, window, or text area. These are
part of whatever framework is being used.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The hooks in and out of the GUI code

The developer has to customize the button to display the appropriate text. The developer also
has to provide a hook between the button and something that handles the button being
pressed. The developer has to provide some hook to the text area so that the application can
retrieve its contents.

The application logic

The developer must decide what action is taken when a button is pressed and provide the
implementation for the method that was wired up in the previous step. This implementation
has little to do with the GUI itself.

There is an analogous separation in a Zeroconf application. In this case, it is important and helpful to
think of the code in the following three pieces:

The provided Zeroconf infrastructure

This is the functionality that was described in Chapters 1-5. An application developer does not
need to write the code to choose and claim an IP address in the local link.

The hooks in and out of the Zeroconf infrastructure

The developer needs to announce services, browse for available services, resolve discovered
services, and so on, using the language-specific APIs described in the chapters that follow.
Throughout these APIs, the application specifies the DNS-SD name identifying the protocol
and/or service in question. This is the code that serves as a bridge between the application and
the underlying Zeroconf network infrastructure.

The application logic

DNS-SD might advertise a service of a given name and type available at a given host and port,
but the developer providing the service must write the application logic that starts with a
connection to the port and determines what is done with incoming data, what actions will be
taken, and what data will be sent back. In other words, DNS-SD helps your client discover your
server, but it doesn't implement your client or server application logic for you.

The strength and power of Zeroconf is that it performs a specific task and no more. The only design
constraint imposed by DNS-SD is that it is for advertising services that run over IP; aside from that,
you are free to design your protocol however you see fit. It can be text-based or binary. It can
encode data by using XDR, ASN.1, XML, or any other encoding method. It can be client-server or
peer-to-peer. It can be RPC- or message-oriented. DNS-SD can advertise and discover IP protocols
as ancient as FTP, Telnet, and LPR printing; protocols as recent as iChat, SubEthaEdit, and AirTunes;
and future protocols not yet conceived.

The remainder of this chapter explores how to use the dns-sd command-line tool to experiment with
DNS-SD yourself.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.2. The Command-Line Tool

The dns-sd tool can be run with a number of command-line options that allow you to specify the task the
tool should perform. Figure 6-2 shows the available options.

Figure 6-2. Options for the command-line tool

The first two options , -E and -F , return a list of the domains recommended for registering and browsing
services, respectively. Normally, on your home network, the only domain you're likely to see is local .
However, if your network administrator has created the Domain Enumeration records described in
Chapter 5 , then you may also see other recommended domains. These recommended domains are not
an exhaustive list. You are free to browse any domain you wish and to register services in any domain for
which you have the proper credentials. The domain enumeration functions are simply provided so that
software can present a useful list of recommended defaults to users, instead of the users always having
to know the domains in advance and manually type them in. The goal of Zeroconf software is zero
configuration networking; DNS-SD lets the user discover services, so it should likewise let the user
discover the domains where those services can be discovered.

The third option, -B , browses for all instances of a given type in a specified domain. Having discovered a
list of service instances, you may then want to know more about one of them, and this is done by
resolving it with the -L (lookup) option.

The fifth option, -R , allows you to register (advertise) a service. If you have some service running on
your machine that is not yet Zeroconf-enabled, you can manually advertise on its behalf using the -R
option. You should use this option responsibly. You can easily create a service advertisement for a service
that doesn't really exist, which is fine for testing but could be very confusing for other users on your
network.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The sixth option, -P , lets you create a proxy advertisement for a service running on some other machine.

The seventh option, -Q , is for testing arbitrary queries for any DNS name, resource record type, and
resource record class, not necessarily DNS-SD names and record types.

The remaining options are specialized automated testing routines that most developers should never
need to use. They're used by developers working on the Darwin open source project, for testing and
verifying changes to the mDNSResponder daemon code itself.

6.2.1. Browsing

There is a bit of a chicken-and-egg decision of whether to start by presenting browsing for services or
registering services. If no services are registered, there is nothing to browse for. On the other hand,
without a browser present, it is difficult to confirm that a service has been registered. Fortunately, today
there are many existing applications and devices that advertise services with DNS-SD, so we'll start by
browsing to discover some of those services.

The general form for the browse command is:

 dns-sd -B <Type> <Domain>

Type should be of the form discussed in Chapter 4 . In other words, an application protocol name

followed by either ._tcp or ._udp . To browse for advertised web pages suitable for viewing in a web
browser, enter _http._tcp for Type . This is exactly what Safari does to discover the list of advertised

web pages, and you should see the same list that Safari displays. If you have a reasonably modern
network printer, network camera, or even a TiVo on your network, you should see it appear in the list. If
you have a Mac with Personal Web Sharing turned on and the user's web page content modified from the
out-of-the-box default, you should see that too appear as an advertised page.

Omitting the Domain argument or giving the empty string means to use the default domain, which usually

means just local , unless you are on a network that is advertising a legacy browse domain (see Chapter 5
).

For another example, if there are one or more Macintosh or Windows machines on your local link sharing
music via iTunes, you can browse for them. If you are using either operating system, you can share
music yourself by starting iTunes and configuring Sharing from the preferences window, as shown in
Figure 6-3 .

The protocol iTunes uses to share music is the Digital Audio Access Protocol (DAAP) . Browse to discover
instances of this service type using the command:

 dns-sd -B _daap._tcp

Depending on what is currently running, the results should look something like this:

% dns-sd -B _daap._tcp
Browsing for _daap._tcp

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Timestamp A/R Flags if Domain Service Type Instance Name
11:31:40.084 Add 2 5 local. _daap._tcp. Martian NetDrive Music
11:32:07.105 Add 2 5 local. _daap._tcp. Dim Sum Music
11:32:56.211 Add 2 5 local. _daap._tcp. Mu Shu's Music
11:33:13.785 Add 2 5 local. _daap._tcp. Session Casts
11:33:40.186 Rmv 0 5 local. _daap._tcp. Mu Shu's Music

You can browse for other service types, such as _ftp._tcp , _telnet._tcp , and _ssh._tcp . You can find
the list of registered service types at http://www.dns-sd.org/ServiceTypes.html .

Figure 6-3. Sharing music with iTunes

Remember that this is still part of the "interface with Zeroconf" part of the process. DNS-SD will discover
the service for you, but to use it you still need a client that implements that protocol.

6.2.2. Registering (Advertising) a Service

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Here is the template for the service registration command:

 dns-sd -R <Name> <Type> <Domain> <Port> [<TXT>...]

Name is the user-friendly name of the service instance, such as "Dan's music." You can also just use the

empty string "" for the name, and the registration will automatically use the system-wide default name,
as set in Sharing Preferences on Mac OS X.

Type is the service type, just as with browsing.

Domain can be local , or any other domain where you have the credentials and authority to perform

Dynamic DNS updates. If the Dynamic DNS server for that domain requires cryptographic authentication,
then your cryptographic credentials need to be stored in the Mac OS X System Keychain (or equivalent on
other platforms) for the mDNSResponder daemon to access them. As with browsing, the domain
parameter can be the empty string, meaning "pick a sensible default for me," which is usually local unless
you've used the Bonjour Preference Pane or similar tool to set a default registration domain.

Port is used to specify the TCP or UDP port number where the service can be reached. After the port

number, you can give optional key/value pairs that are stored in the service's TXT record and delivered to
clients when they resolve the service. This section contains several examples of registering services.

If clients seem unable to connect to a service, check your firewall settings. You can
have a service correctly listening on a port, advertise it with DNS-SD, and discover
it with clients, but all that will be in vain if the firewall then blocks all the incoming
connection requests. This is, after all, the purpose of a firewallto prevent services
running on your machine from receiving inbound connection requests directed to
them. If you want services running on your machine to be able to receive inbound
connection requests, you need to either turn off the firewall or at least add a rule
allowing inbound connections to that specific port number.

Returning to our iTunes music example introduced in the previous section, we can now register a "fake"
DAAP service that iTunes will discover and display in its sidebar list. Of course, if there is no real DAAP
service running at the address you specify, there will be nothing there for iTunes to actually connect to,
but the purpose of this example is to demonstrate how you can use the dns-sd tool to test your
application's browsing code, possibly before you've even implemented the server part of the protocol.
Register an instance named Mu Shu's Music like this:

 % dns-sd -R "Mu Shu's Music" _daap._tcp "" 9904
 Registering Service Mu Shu's Music._daap._tcp port 9904
 Got a reply for Mu Shu's Music._daap._tcp.local.: Name now registered and active

Because the name of the service instance contained spaces, the string "Mu Shu's Music" is enclosed in
double quotes. When you enter:

 dns-sd -R "Mu Shu's Music" _daap._tcp local 9904

http://lib.ommolketab.ir
http://lib.ommolketab.ir

you will immediately see the second line indicating that the request to register the service has been
initiated. There will be a short pause while the system probes the network to ensure that your chosen
name is not already in use, and then you will see the confirmation that the name is registered and active.
This is typical of the way in which you will programmatically work with the DNS-SD APIs as well. You will
send a request and wait for a callback. The APIs in each language have been implemented so as not to
lock the application while it waits for a response.

If you have iTunes installed and have configured the preferences to view shared music, Mu Shu's Music
will now appear in your Shared Music folder. (See Figure 6-4 .)

Of course, as there's no real service there, attempts to connect will fail and display an error message like
the one shown in Figure 6-5 .

You can also confirm that Mu Shu's Music has been successfully registered without using iTunes, by
opening a second terminal window and browsing for services of type _daap._tcp using the command:

 dns-sd -B _daap._tcp

Figure 6-4. Registered music appears in iTunes

Figure 6-5. Error when no implementation is present

http://lib.ommolketab.ir
http://lib.ommolketab.ir

One of the entries should include a timestamp, Add , and the text Mu Shu's Music . Terminate the process
that you used to register Mu Shu's Music by selecting that window and pressing Ctrl-C. Your browser
window should now display a line with a timestamp, Rmv (meaning remove), and the text Mu Shu's Music
. Start up the process again and the service instance should once again appear in the browser list as
having been added.

Using the dns-sd command in this way, you can, with just a single one-line command, create
advertisements for (possibly nonexistent) services that will be discovered and show up in your
application's browsing user interface. This can be a great debugging aid while developing Zeroconf
applications, because with minimal effort, you can get quick feedback on the effects of your actions.

You should use care when creating fake service advertisements. Doing it on your
own private closed network for testing is one thing, but doing it on a network with
other users is likely to make you unpopular. The novelty of seeing fake services
that don't really work wears off very quickly.

As a second example, suppose you are hosting a wiki on your computer. A wiki is a web site in which
every web page is editable by anyone with access. Users can add and modify pages using a standard web
browser. You could define and register a new protocol named wiki , but the existing HTTP protocol
already supports wikis and requires nothing out of the ordinary to display and modify pages. Wikis come
in many flavors and are implemented in Perl, Python, Java, Smalltalk, and many other languages. None
of this matters to end users who will be exclusively interacting with the wiki using a web browser.
Accordingly, the right protocol type to advertise is _http._tcp . This protocol type says, "This resource is
an HTML page, fetched via HTTP, suitable for viewing in a conventional web browser." Since a wiki page
fits that description, _http._tcp is the right service type to advertise.

Start up your wiki. This example uses the FitNesse wiki available at http://www.fitnesse.org . To start
this particular wiki running on port 9097, type the following command in the directory that contains the
wiki code:

 sh run.sh -p 9097

Now, anyone can connect to the wiki if they know the name of the host on which it is running or the IP
address, as well as the port that has been selected, but even in a small group of people, publicizing this

http://lib.ommolketab.ir
http://lib.ommolketab.ir

information can be a hassle. You can tell people, but they forget. You can email the information, but
emails get deleted or filed away in folders. You can write it on a Post-It note and stick it on the wall, but
that rapidly becomes an untidy mess. DNS-SD lets you advertise it so that a descriptive name appears
right in the user's web browser. Since the FitNesse wiki does not yet advertise itself via DNS-SD, you can
manually advertise on its behalf using the dns-sd command:

 dns-sd -R "Bonjour Wiki

" _http._tcp "" 9097

Anyone using a Zeroconf-enabled web browser will now see a link to "Bonjour Wiki" appear in their server
list. This is especially helpful in settings where you cannot be certain that the machine hosting the wiki
will necessarily retain the same IP address, for example, because it is using DHCP. Collaborators can just
discover the wiki by name and be connected, as shown in Figure 6-6 .

Figure 6-6. Advertising a web server as a DNS-SD service of type _http._tcp

Figure 6-6 shows that when a user selects "Bonjour Wiki" from the drop-down list, it is resolved to the
domain hargau.local. along with the registered port number 9097. This name resolution is the topic of the
next section.

There are some limitations to advertising on behalf of the FitNesse wiki server using the dns-sd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

command. For instance, we have two processes running instead of one, and we have to take care to
make sure that when the server is running, the dns-sd command is running, and when the server is
stopped, the dns-sd command is stopped too. It is much better, in the long term, if the DNS-SD
registration call is integrated into the FitNesse wiki server itself. What the dns-sd command gives us is
the ability, with just a simple one-line command, to evaluate the user experience of seeing the server
automatically appear in the web browser and then to evaluate, based on that, whether it's worth taking
the next step and doing the work to integrate the registration code into the software in question.

6.2.3. Resolving

Browsing gives you the name of nearby services of a specified service type, but before you can attempt
to connect to a service, you need to know at least the address and port number to connect to. You may
also want to know the hostname and other miscellaneous attributes that are stored in the service's TXT
record. Every time you connect to a service in Safari's Bonjour list, Safari is resolving the service and
then connecting to it. Using the command line, the general form of the command is this:

 dns-sd -L <Name> <Type> <Domain>

Name , Type , and Domain are the same name, type, and domain as discovered in the browsing step. Note

that you should not necessarily assume that the discovered type and domain will be the type and domain
you originally browsed for. Usually they will be, but not always. For example, it's possible in certain cases
to browse one domain (e.g., local) and discover advertisements for services that exist in another domain
(e.g., apple.com .). By taking care to store the name, type, and domain reported in the browse result,
and passing all three back to the resolve call, you can ensure that your application will work correctly in
these cases.

We can resolve an instance of HTTP service in the "local" domain called "Bonjour Wiki" using the following
command:

 dns-sd -L "Bonjour Wiki" _http._tcp local

The response looks like this:

 13:17:52.498 Bonjour\032Wiki._http._tcp.local. can be reached at HarGau.local.:9097

Because this is a text-oriented command-line interface, spaces are escaped as \032 , following the
standard DNS escaping convention. In a GUI, escaping is not needed and all punctuation characters and
spaces are displayed just as themselves, the way they should be.

If you resolve an iTunes music service, in addition to the name, service type, host, and port on which the
service is running, the TXT record is also returned:

 % dns-sd -L "Dim Sum Music" _daap._tcp local
 Lookup Dim Sum Music._daap._tcp.local
 11:43:11.063 Dim\032Sum\032Music._daap._tcp.local. can be reached at

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 SuiMai.local.:3689
 TXT \0x09txtvers=1\0x0EVersion=196608\0x13iTSh Version=131073\0x17M...

The key/value pairs in this example show that txtvers=1 , Version=196608 , and iTSh Version=131073 .
When one copy of iTunes connects to another, these values let it determine, before it even attempts to
open the TCP connection, if the other speaks a compatible version of DAAP.

The TXT record keys in Apple's iChat application are a little more self-explanatory. The service type for
iChat AV's Bonjour advertisements is _presence._tcp . We can simulate an iChat Bonjour advertisement
for someone named "Sam Jones" with status "away," as shown here:

 % dns-sd -R "Sam Jones" _presence._tcp "" 9092 txtvers=1 status=dnd
 Registering Service Sam Jones._presence._tcp port 9092
 txtvers=1
 status=dnd
 Got a reply for Sam Jones._presence._tcp.local.: Name now registered and active

In addition to passing in the service name, type, domain, and port, we have provided two key/value pairs
that are stored in the service's TXT record. Here, txtvers has been set to 1 and status has been set to
dnd (do not disturb). Similarly, we can simulate an iChat Bonjour advertisement for someone named
"Jack Smith" with status "available," like this:

 % dns-sd -R "Jack Smith" _presence._tcp "" 9093 txtvers=1 status=avail
 Registering Service Jack Smith._presence._tcp port 9093
 txtvers=1
 status=avail
 Got a reply for Jack Smith._presence._tcp.local.: Name now registered and active

You can use the command-line tool to look up Jack Smith:

 % dns-sd -L "Jack Smith" _presence._tcp local
 Lookup Jack Smith._presence._tcp.local
 12:01:07.062 Jack\032Smith._presence._tcp.local. can be reached at
 HarGau.local.:9093
 TXT \0x09txtvers=1\0x0Cstatus=avail

Note that when you register a service, you pass the key/value as individual command-line arguments,
and the tool builds the correct TXT record for you in the proper DNS TXT record format, with each
component prefixed with a length byte. When you resolve a service with dns-sd -L , you see the TXT
record in its raw form, with the length byte before each component key/value pair. In this case, you see
that the length of the string "txtvers=1" is 9 characters and the length of the string "status=avail" is 12
characters (0x0C in hexadecimal).

Now that we've created our two simulated iChat Bonjour advertisements, we can see what iChat itself
makes of them, as shown in Figure 6-7 . Jack Smith is shown as available (green circle) and Sam Jones is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

shown as busy (red square).

Figure 6-7. iChat's browser for local chat service

6.2.4. Proxying

Suppose you'd like to quickly and easily simulate the user experience customers might get with your
product if it advertised with DNS-SD, but your product is a hardware device, not a piece of software
running on a general-purpose Mac, Linux, or Windows computer. This is where the -P option comes into
play. This allows your general-purpose Mac, Linux, or Windows computer to advertise a service that's
actually being offered by some other piece of hardware . The proxy advertising command takes this
general form:

 dns-sd -P <Name> <Type> <Domain> <Port> <Host> <IP> [<TXT>...]

Name , Type , Domain , Port , and TXT are just the same as when advertising with the -R option.

The two new options are IP , the address of the device, and Host , a name for it. Generally speaking, any

old name (usually a dot-local name) will do, as long as it is unique. Obviously, you wouldn't ship a
product this way, because to use the proxy advertising command you need to know the device's address,
and the whole point of Zeroconf is that you shouldn't have to know or care what a device's address is.
Nonetheless, this can be an easy way to do a quick demo if you need to convince management why the
product should use Zeroconf. Usually, the hardest part of doing this demo is finding the device's IP
address to advertise, which sort of makes the point of why you want it to use Zeroconf!

There are some interesting tricks you can play with proxy advertising. For example, the service for which
you create a proxy advertisement doesn't even need to be on your local network. You can set up a local
proxy for a distant web site somewhere out on the Internet: use the host command to discover the IP
address of the public web site. Now, advertise this by registering a service of type _http._tcp with a
name of your choosing. The host is a locally unique name that will be set to resolve to the given IP
address. In the example shown here, the www.apple.com web page is advertised as a service called

http://lib.ommolketab.ir
http://lib.ommolketab.ir

"apple," running on a target host called apple.local , which resolves to 17.254.3.183.

 % host apple.com
 apple.com has address 17.254.3.183
 % dns-sd -P apple _http._tcp "" 80 apple.local 17.254.3.183
 Registering Service apple._http._tcplocal host apple.local port 80
 Got a reply for apple._http._tcp.local.: Name now registered and active
 Got a reply for apple.local: Name now registered and active

Now "apple" will show up in your Bonjour menu in the Safari web browser, as shown in Figure 6-8 . You
can also reach the same IP address by entering the URL apple.local in the web browser. In either case,
the request will be resolved to the IP address and the browser will show the contents associated with
www.apple.com .

Figure 6-8. The proxy service appears in the Bonjour list

6.2.5. Monitoring

The remaining command-line options test some of the more arcane areas of DNS-SD functionality, such
as the little-known event-notification functionality. For example, if a client wants to be informed of
changes in server state, it can initiate a query for the service's TXT record, leave the query running
indefinitely, and then the client is notified every time the server's TXT record changes. iChat uses this
capability to provide timely updates to Bonjour buddies availability, status messages, and icons, without
having to resort to polling to keep this information up to date.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can witness this by using dns-sd -B _presence._tcp to find the list of iChat users advertised on the
network, and then use dns-sd -Q to monitor one of them, like this:

 dns-sd -Q cheshire@chesh7._presence._tcp.local txt

Every time the status for that user changes, you'll see a new TXT record result reported.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.3. Summary

The dns-sd command is not something you'd use in a real product, but it's a great way of
experimenting with the technology, a great way of prototyping and simulating potential user
experience in just a few minutes, and a useful test tool if your application isn't working quite right
and you need a quick and easy diagnostic tool to help you find out why.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 7. Using the C APIs
In Chapter 6, you experimented with advertising, browsing for, and looking up Zeroconf services
from the command line. In this chapter, you will learn how to perform those same operations
programmatically, using the C APIs. The remaining chapters in the book address other APIs and
languages. In each of the APIs, the general concepts are the sameyou perform one of the basic DNS-
SD operations and then receive results asynchronously. In C, this means you initiate a DNS-SD
action such as browsing and provide the address of a callback function. When there is a response, the
callback function is called and the appropriate information is passed to it. By the end of this chapter,
you could write your own version of the dns-sd command-line tool.

If you skipped the preceding chapter, you may want to go back and read it, since the dns-sd
command-line tool is a good learning tool for exploring the concepts, and it's a good debugging aid if
your code is not working as expected. If you are creating a program that registers a service, then
you can browse with the command-line tool to verify that the service is being advertised. As you run
and quit your growing application during development, you can leave the command-line browser
running in a terminal window to confirm when you have successfully registered your service.
Similarly, if you are building an application that needs to browse for services of a particular type, and
you don't have any real instances of that service handy, then you can use the command-line tool to
register pretend instances for your application to discover.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.1. Asynchronous Programming Model

Before diving into the details of Zeroconf programming, there's one important high-level issue to
understandDNS-SD operations are asynchronous. That means that when you initiate some DNS-SD
operation, the results of that operation may happen immediately, half a second later, a minute later,
or even days later. Consider one real-world example, iTunes. When you run iTunes, it browses for
other music sources on the local network. If you launch iTunes at home, there may be no other
music sources, so nothing appears. A few days later, a friend may come to visit with a laptop offering
shared iTunes music. Your friend connects his laptop to your network and, instantly, he appears in
your iTunes list. That browse operation initiated by iTunes several days ago has just yielded its first
result!

To create a good user experience, it's essential to understand and embrace this asynchronous
programming philosophy. We've all seen, at some time or another, bad user interfaces where you get
to watch some cute animation for 15 seconds while the computer "searches" the network, and then it
stops "searching" and shows you what it's found. If the thing you're looking for isn't there, you have
to try to fix what's wrong, then click some refresh button and watch the cute animation for another
15 seconds before you find out whether it worked this time.

For the programmer, there's no right answer for a fixed search time . If you set the search time too
short, you risk giving up before all devices have responded, particularly on slow or busy networks. If
you set the search time too long, you frustrate the user. A 15-second wait may be tolerable just
once, but when the user is trying to troubleshoot a problem and she has to suffer that 15-second
wait over and over and over, she gets very frustrated. DNS-SD solves this dilemma by simply not
having a fixed search time. DNS-SD operations run for an indeterminate length of time, until you stop
them. Results are delivered as they come, not all at the end after some fixed timeout. You can expect
the first browsing results to show up in as little as a few milliseconds. Slower devices may take a
second or two to respond. Devices not yet connected to the network will, of course, only show up
once they are connected, which could be hours, days, or weeks later.

Don't be tempted to make a Zeroconf application that starts a browse operation, lets it run for some
fixed time, and then stops it and presents the results to the user. Zeroconf applications don't work
this way, and yours will look crude and amateurish if you make this mistake. In particular, you should
never have a Refresh button in Zeroconf UIas long as a DNS-SD browsing list is on the screen, it
should be fresh all the time, so the user never needs to refresh it. DNS-SD uses a range of
techniques to make long-lived operations efficient on the network. Writing code that once a minute
does a DNS-SD browse for five seconds to see what's there and then stops it would actually be a lot
less efficient on the network than just leaving a browse operation running continuously.

To support this asynchronous programming philosophy, DNS-SD needs a way to deliver these
asynchronous events to your application as they happen. There is no one universal mechanism for
delivering asynchronous events that's common among all programming languages, programming
models, and operating systems. Some programming models are built around a single main event loop
that receives an event notification, handles it, receives another event notification, handles it, and so
on. Other programmers prefer to write multithreaded code, where each thread blocks and waits for a
particular event of interest. Still other models use concepts like signal handlers or interrupt routines,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

where, when an event happens, the main thread is interrupted and suspended wherever it happens
to be, the event handler routine is run, and then, afterward, control returns to the main thread.

Rather than try to dictate a particular programming model to use, the DNS-SD C API instead provides
the necessary primitives so you can integrate its event delivery into whatever event-handling model
you've chosen for your program. If you're using a main event loop, there are two things you need to
do: you need to tell your main event loop to pay attention to DNS-SD event sources and, when one
of those events happens, you need to ask DNS-SD what to do about it.

In this chapter, you'll see how to use DNS-SD C API with the various commonly used main event loop
models: the Unix select() call, the Cocoa RunLoop, the Core Foundation CFRunLoop, and the
Microsoft Windows GetMessage() Message Loop. You'll also see how to use DNS-SD C API by
creating a separate independent thread for each active DNS-SD operation, if that's your preferred
way of working.

We'll start by showing how to do each of the common DNS-SD operations using a Unix select()
loop and then, later in the chapter, cover just the differences when using other event-handling
models.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.2. Event Handling with a select() Loop

It is important to understand the structure for working with the socket-based DNSServiceDiscovery
APIs . First, you call a function that might, for example, initiate browsing for a service or register a
service. Along with the other parameters, you pass in the address of an uninitialized DNSServiceRef
(which the call initializes) and also pass in the address of the function that should be called back
when interesting events happen.

You then call DNSServiceRefSockFD(), passing in the newly initialized DNSServiceRef, to extract the
file descriptor for the Unix Domain Socket connection to the mdnsd daemon running in the
background, and add this file descriptor to your select() loop. When the mdnsd daemon sends a
message over the Unix Domain Socket connection to your process, your select() call will wake up,
indicating that there is data waiting to be read on the file descriptor. You then call
DNSServiceProcessResult(); the DNS-SD code decodes the message and calls the appropriate
callback function you previously specified when starting the operation.

This section covers the three functions used to access sockets and to perform the callback:
DNSServiceRefSockFD(), DNSServiceProcessResult(), and DNSServiceRef-Deallocate(). A listing of
the DNSServiceDiscovery Error Codes is also provided.

7.2.1. Event Callbacks

The use of asynchronous callbacks is essential for DNS-SD. Recall from your experience with the
command-line tool that there was often a delay in discovering or registering services. You don't want
to block the application while waiting for a reply to the function call. In addition, there may be more
than one reply to a particular query. If you are browsing for services of a given type, there may be
multiple instances of that type of service on the local network. Finally, you may wish to leave a
service browser running so that you can track service instances as they come and go on the network.

The skeleton code in Example 7-1 provides an overview of the process. (As you will see later in this
chapter, you follow each call to a core DNSServiceDiscovery function, such as DNSServiceBrowse(),
with some code that enables the asynchronous callback.)

Example 7-1. Skeleton of select() loop

void HandleEvents(DNSServiceRef serviceRef)
 {
 int dns_sd_fd = DNSServiceRefSockFD(serviceRef);
 // . . .
 while (!stopNow)
 {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 FD_ZERO(&readfds);
 FD_SET(dns_sd_fd, &readfds);
 // . . .
 tv.tv_sec = timeOut;
 tv.tv_usec = 0;
 int result = select(nfds, &readfds, (fd_set*)NULL, (fd_set*)NULL, &tv);
 if (result > 0)
 {
 // . . .
 if (FD_ISSET(dns_sd_fd, &readfds))
 err = DNSServiceProcessResult(serviceRef);
 if (err) stopNow = 1;
 }
 }
 }

You can see the basic structure in the HandleEvents() example function shown in Example 7-1.
First, you pass the initialized service discovery reference to DNSService-RefSockFD(), to get the file
descriptor for the Unix Domain Socket that's being used to communicate with the mdnsd daemon
running in the background. The file descriptor is added to the set of file descriptors the process is
watching. After the select() call returns, if the bit is set to indicate that the DNSServiceDiscovery
file descriptor has data available for reading, then you call DNSServiceProcessResult(), which reads
the message from the file descriptor, decodes it, and calls the appropriate callback function.

Note that a real networking program would probably be watching more file descriptors than just the
DNS-SD one(s) and may also have time-based operations it's performing, too.

Example 7-2 shows a complete working example of a simple single-purpose HandleEvents()
function. It runs until the user presses Ctrl-C to terminate the program, or one of the callback
functions sets the stopNow variable. (If you're adding DNS-SD functionality to an existing select()-
based application, you'd probably add the DNS-SD file descriptors to your existing select() loop
rather than changing your existing code to use the example select() loop shown here.)

Example 7-2. HandleEvents using select()

#include <dns_sd.h>
#include <stdio.h> // For stdout, stderr
#include <string.h> // For strlen(), strcpy(), bzero()
#include <errno.h> // For errno, EINTR
#include <time.h>

#ifdef _WIN32
#include <process.h>
typedef int pid_t;
#define getpid _getpid
#define strcasecmp _stricmp
#define snprintf _snprintf
#else

http://lib.ommolketab.ir
http://lib.ommolketab.ir

#include <sys/time.h> // For struct timeval
#include <unistd.h> // For getopt() and optind
#include <arpa/inet.h> // For inet_addr()
#endif

// Note: the select() implementation on Windows (Winsock2)
//fails with any timeout much larger than this
#define LONG_TIME 100000000

static volatile int stopNow = 0;
static volatile int timeOut = LONG_TIME;

void
HandleEvents(DNSServiceRef serviceRef)
 {
 int dns_sd_fd = DNSServiceRefSockFD(serviceRef);
 int nfds = dns_sd_fd + 1;
 fd_set readfds;
 struct timeval tv;
 int result;

 while (!stopNow)
 {
 FD_ZERO(&readfds);
 FD_SET(dns_sd_fd, &readfds);
 tv.tv_sec = timeOut;
 tv.tv_usec = 0;

 result = select(nfds, &readfds, (fd_set*)NULL, (fd_set*)NULL, &tv);
 if (result > 0)
 {
 DNSServiceErrorType err = kDNSServiceErr_NoError;
 if (FD_ISSET(dns_sd_fd, &readfds))
 err = DNSServiceProcessResult(serviceRef);
 if (err) stopNow = 1;
 }
 else
 {
 printf("select() returned %d errno %d %s\n",
 result, errno, strerror(errno));
 if (errno != EINTR) stopNow = 1;
 }
 }
 }

7.2.2. Accessing the Underlying Unix Domain Sockets

Your code interacts only indirectly with the Unix Domain Socket connection . DNSServiceRefSockFD()
lets you get the raw file descriptor so you can add it to the set of file descriptors your select() loop

http://lib.ommolketab.ir
http://lib.ommolketab.ir

is watching. When data arrives on this socket, you call DNSServiceProcessResult() to let the DNS-
SD code decode the message and call your callback function. When you've finished what you're doing
(say the user closes the browsing window), you call DNSServiceRefDeallocate() to stop the
operation, close the Unix Domain Socket connection to the daemon, and free the resources and
memory used to perform the operation.

7.2.2.1. DNSServiceRefSockFD()

In Example 7-2, the DNSServiceRefSockFD() function was called like this:

int dns_sd_fd = DNSServiceRefSockFD(serviceRef);

dns_sd_fd is given the value returned by DNSServiceRefSockFD(). This value is the underlying file
descriptor of the service discovery reference specified by serviceRef. The signature of
DNSServiceRefSockFD() is:

int DNSServiceRefSockFD (DNSServiceRef serviceRef);

7.2.2.2. DNSServiceProcessResult()

The function DNSServiceProcessResult() is used to call the appropriate callback function when there
is a response from the mdnsd daemon running in the background. Its signature is deceptively simple:

DNSServiceErrorType DNSServiceProcessResult(DNSServiceRef serviceRef);

For proper use, start by referring again to Example 7-2, where a call to DNSServiceProcessResult()
was made like this:

result = select(nfds, &readfds, (fd_set*)NULL, (fd_set*)NULL, &tv);
if (result > 0)
 {
 DNSServiceErrorType err = kDNSServiceErr_NoError;
 if (FD_ISSET(dns_sd_fd, &readfds))
 err = DNSServiceProcessResult(serviceRef);
 if (err) stopNow = 1;
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

One important thing to note in this small snippet is that you only want to call
DNSServiceProcessResult() if select(), or some similar system call, tells you data is ready. If you
call DNSServiceProcessResult() when there is no data waiting to be read, it will block and wait until
there is.

7.2.2.3. DNS Service Discovery error codes

Table 7-1 contains a listing of the possible error codes that arise when calling functions in the
DNSServiceDiscovery APIs. Some errors, like kDNSServiceErr_BadParam, may be returned as an
immediate result if you pass invalid parameters to a function. Others, like
kDNSServiceErr_NameConflict, may be passed asynchronously to your callback function if an error
condition occurs later.

The DNSServiceDiscovery error names are all of the form kDNSServiceErr_NoErr,
kDNSServiceErr_Unknown, and so on. In Table 7-1, the initial kDNSServiceErr_ part of each error name
is omitted.

Table 7-1. Error codes

Error:
kDNSServiceErr_...

Code Description

NoErr 0 No error

Unknown -65537 Unexpected error condition (should not happen)

NoSuchName -65538 Given name does not exist

NoMemory -65539
Out of memory (should not happen, except on devices with very
limited memory)

BadParam -65540 Parameter contains invalid data

BadReference -65541 Reference being passed is invalid

BadState -65542 Internal error (should not happen)

BadFlags -65543 Invalid values for flags

Unsupported -65544 Operation not supported

NotInitialized -65545 Reference not initialized

AlreadyRegistered -65547 Attempt to register a service that is registered

NameConflict -65548 Attempt to register a service with an already used name

Invalid -65549
Certain invalid parameter data, such as domain name more than
255 bytes long

Incompatible -65551

Client library incompatible with daemon (should never happen,
unless installed daemon and client library are not the same
version)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Error:
kDNSServiceErr_...

Code Description

BadInterfaceIndex -65552 Specified interface does not exist

7.2.2.4. DNSServiceRefDeallocate()

In Example 7-2, the DNSServiceRef was created elsewhere and passed into the HandleEvents routine.
You get a DNSServiceRef when you call one of the core DNSService functions:

DNSServiceRegister()

DNSServiceBrowse()

DNSServiceResolve()

DNSServiceEnumerateDomains()

DNSServiceCreateConnection()

DNSServiceQueryRecord()

When this reference is no longer needed, it should be deallocated using :

void DNSServiceRefDeallocate(DNSServiceRef serviceRef);

When you call DNSServiceRefDeallocate(), the associated operation is stopped, the application's
connection with the mdnsd daemon is terminated, the connecting socket is closed, and the memory
associated with the reference is released. Before calling DNSServiceRefDeallocate(), make sure
you've removed the socket from your select() loop, or you'll have a select() loop with a dead
socket in it, which can cause confusing results, especially in multithreaded programs.

BadInterfaceIndex -65552 Specified interface does not exist

7.2.2.4. DNSServiceRefDeallocate()

In Example 7-2, the DNSServiceRef was created elsewhere and passed into the HandleEvents routine.
You get a DNSServiceRef when you call one of the core DNSService functions:

DNSServiceRegister()

DNSServiceBrowse()

DNSServiceResolve()

DNSServiceEnumerateDomains()

DNSServiceCreateConnection()

DNSServiceQueryRecord()

When this reference is no longer needed, it should be deallocated using :

void DNSServiceRefDeallocate(DNSServiceRef serviceRef);

When you call DNSServiceRefDeallocate(), the associated operation is stopped, the application's
connection with the mdnsd daemon is terminated, the connecting socket is closed, and the memory
associated with the reference is released. Before calling DNSServiceRefDeallocate(), make sure
you've removed the socket from your select() loop, or you'll have a select() loop with a dead
socket in it, which can cause confusing results, especially in multithreaded programs.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.3. Using the DNSServiceDiscovery APIs

This section covers browsing for services, resolving services, registering services, and some of the
less common operations, such as enumerating domains. In each case, there are three basic tasks to
be performed: you initiate the operation, add the event source to your event loop, and provide the
associated callback function. In the case of browsing, you call DNSServiceBrowse(). In the examples
that use the code shown in Example 7-2, you will next call HandleEvents() and pass in the now
initialized service discovery reference. Finally, you will implement a callback function, which will be
called when the mdnsd daemon has a relevant reply. The form of the callback function is specified.
So, for example, when browsing for services, the callback function must have the same signature as
specified by the typedef DNSServiceBrowseReply(). The number and type of the parameters passed
to the callback function will be as indicated in the typedef. The process and the description of the
parameters will quickly become familiar. After we finish describing browsing in detail, any repeated
information will be summarized or omitted when describing resolving services, registering services,
and enumerating domains.

7.3.1. Browsing for Services

To browse for available services, you need to call the DNSServiceBrowse() function and specify the
type of service you are searching for and the domain in which to search. You also pass in the address
of your callback function and the address of an uninitialized DNSServiceRef. After the
DNSServiceBrowse() call has started the operation and initialized the DNSServiceRef, you can extract
the underlying file descriptor to add it to your select() loop. Each time the mdnsd daemon
responds, your select() loop will wake up, you call DNSServiceProcessResult(), and that calls your
callback function for you. This section provides details for the DNSServiceBrowse() and
DNSServiceBrowseReply() functions, along with a table listing possible flag values and an example of
how you might browse for a specific type of service.

7.3.1.1. DNSServiceBrowse()

You initiate browsing for a service by calling DNSServiceBrowse():

DNSServiceRef DNSServiceBrowse(
 DNSServiceRef *sdRef,
 DNSServiceFlags flags,
 uinte32_t interfaceIndex,
 const char *regtype,
 const char *domain,
 DNSServiceBrowseReply callBack,
 void *context);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The first parameter is the address of your uninitialized service discovery reference.

The flags parameter is used for specifying optional settings that apply to some of the
DNSServiceDiscovery routines. Currently, no optional settings are defined for the DNSServiceBrowse(
) call, so you should pass zero for this parameter.

Normally, applications pass 0 for interfaceIndex, and DNS-SD browses on all available interfaces.
However, should you wish to restrict browsing to one specific interface, such as Ethernet or wireless,
you can specify that interface by giving its interface index, as used in the if_nametoindex() family of
functions. You can see each interface's index value by using the ifconfig command and looking for the
IPv6 scopeid values. Interface indexes are typically small integers. For example, on Mac OS X
machines, the Ethernet interface is often index 4, and AirPort is often index 5. The other novel value
you can pass for this parameter is kDNSServiceInterfaceIndexLocalOnly. This restricts DNS-SD to
only finding other services that were registered on the same machine (though the service itself is not
necessarily running on the same machine, because there can be proxies for services running on other
machines). The applications that currently use this option are certain parallel processing products
that have two versions at different pricesthe single machine version and the network version. If the
customer has only paid for the single machine version, the application only wants to find instances of
the server process that are registered on the same machine, so it uses
kDNSServiceInterfaceIndexLocalOnly.

The regtype is the same service type as entered when using the command-line tool in Chapter 6. It is
the protocol followed by either ._tcp or by ._udp. For example, the regtype might have the value
_http._tcp. The valid service names can be found at http://www.dns-sd.org/ServiceTypes.html.

The domain variable can have a specific value, such as local, or it can be NULL to indicate that the
system should choose the appropriate list of domains to search. Generally, that list of domains to
search will always include local, plus any additional unicast domains added explicitly by the user,
plus any "legacy browse" domains automatically learned from the network.

The callBack is the address of your callback function to be called when an instance of the specified
service is found. Details on the callback function are contained in the next section. The callback
function is also called in the event of asynchronous errors.

The context parameter is also passed to the callback function. This allows you to write a single
callback function, which is used by several different browse operations, because the context
parameter allows you to tell which particular DNSServiceBrowse() operation this event pertains to.
Typically, the context parameter will be the address of some structure or object holding your state
pertaining to that operation. C may not be an object-oriented language, but the context parameter
here has an equivalent role to the "self" variable in an object-oriented language. You are free to use
any value you wish for the context parameter, including NULL, and it will be passed unchanged to
your callback function.

7.3.1.2. DNSServiceBrowseReply()

The callback function passed in as a parameter for the DNSServiceBrowse() function will have the
following form:

http://www.dns-sd.org/ServiceTypes.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

void MyBrowseReply
 (
 DNSServiceRef sdRef,
 DNSServiceFlags flags,
 uint32_t interfaceIndex,
 DNSServiceErrorType errorCode,
 const char *serviceName,
 const char *regtype,
 const char *replyDomain,
 void *context
);

The most interesting parameters here are errorCode, serviceName, regtype, and replyDomain. If
errorCode is nonzero, then an error has occurred, as listed in Table 7-1. If errorCode is zero
(kDNSServiceErr_NoError), then serviceName, regtype, and replyDomain tell you the name, type, and
domain for the newly discovered (or removed) service.

The sdRef is the DNSServiceRef of the operation to which this callback relates. If you have multiple
browse operations running at once, being handled by the same callback function, the callback
function can use the sdRef, or the context parameter, to help it locate whatever private internal state
is necessary for it to make sense of the result.

The flags parameter tells the callback function two interesting things. First, if the
kDNSServiceFlagsAdd bit is set, then a new service has been discovered. If this bit is not set, then the
named service, previously discovered, has gone away and should be removed from your onscreen
display. Second, if the kDNSServiceFlagsMoreComing bit is set, the callback function should not bother
updating its UI and repainting the screen right away, because more results are coming immediately
after this one. Suppose you discover 100 service instances on the networkadding each one to the
onscreen list individually and redrawing the window for every one will make a slow and flickery
display. If, instead, you wait until all 100 are in your list in memory before updating the screen, then
the entire service list appears virtually instantaneously, fully formed on the screen, instead of building
up one line at a time.

Note that if the kDNSServiceFlagsMoreComing bit is not set, that does not mean that there are no
more answers coming ever. What it means is that there are no more answers coming right now, so
you should go ahead and update the screen display and perform any other relevant processing you
may have deferred. Even after you get a callback with the kDNSServiceFlagsMoreComing bit not set,
you could easily get another one just a millisecond later giving data newly discovered from the
network, and, in fact, you should expect this to happen quite frequently. Don't make the mistake of
canceling your browse operation because you got a callback with the kDNSServiceFlagsMoreComing bit
not set, and you thought that meant that was the last answer you'd ever get.

The interfaceIndex tells you on which interface the service was discovered, particularly useful if you
passed 0 for the interfaceIndex when calling DNSServiceBrowse(). Note that if your machine has
both Ethernet and wireless, and there's some other machine connected via both Ethernet and
wireless, then you will discover that machine's services twice, once via the Ethernet interface and
once via the wireless interface. If one interface is turned off or disconnected, then you'll get remove
events for only the service(s) discovered on the interface that went away. You therefore need to keep
track of the interface indexes along with the name, type, and domain of each discovered service, so
that when you receive remove events, you know which one to remove. If you're particularly

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ambitious, you could also make your UI display include an icon indicating on which interface each
service was discovered.

7.3.1.3. DNSServiceDiscovery flags

Table 7-2 contains a list of flags that are currently available to be used in the DNSServiceDiscovery
APIs. The flags follow the format kDNSServiceFlagsxxx, where xxx represents one of the flags listed in

the table. For the sake of brevity in the table, the kDNSServiceFlags portion is not written.

Table 7-2. DNSServiceDiscovery flags

Name
kDNSServiceFlags...

Value Description

MoreComing 1
Don't update UI; the callback will be called immediately with more
results. If this bit is not set, it's time to update your UI now.

Add 2
Add service, domain, or record to list. If this bit is not set, then
remove the service, domain, or record.

Default 4 Enumerated domain is default domain.

NoAutoRename 8 Prevents auto-renaming in case of name conflict.

Shared 16 Allows multiple records with same full domain name.

Unique 32 Specifies resource record name must be unique on the network.

BrowseDomains 64 Domains recommended for browsing are to be enumerated.

RegistrationDomains 128 Domains recommended for registration are to be enumerated.

LongLivedQuery 256
When using DNSServiceQueryRecord with unicast names, tells
daemon to set up long-lived query with the server.

7.3.1.4. Browsing example

The example will have two functions. You will start browsing using the function MyDNSServiceBrowse(
). In it, you declare a DNSServiceErrorType and DNSServiceRef variables. You then call
DNSServiceBrowse() and specify that you are browsing for services of type _http._tcp on the local
network and pass in the function named MyBrowseCallBack as the callback function. Pass the service
discovery reference to the HandleEvents() function in Example 7-2. If there is an error reported,
then use DNSServiceRefDeallocate() to clean up. In summary, MyDNSServiceBrowse() has the
following outline:

static DNSServiceErrorType MyDNSServiceBrowse()
 {
 DNSServiceErrorType error;
 DNSServiceRef serviceRef;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 error = DNSServiceBrowse(&serviceRef, /* parameters as described above */);
 if (!error)
 {
 HandleEvents(serviceRef);
 DNSServiceRefDeallocate(serviceRef);
 }
 return error;
 }

The second function is the callback function MyBrowseCallBack(). If no error is reported, the flags
are checked to see if the kDNSServiceFlagsMoreComing and kDNSServiceFlagsAdd flags are set. In this
example code, a message is then printed to the screen that indicates whether the service is being
added or removed, along with the service's name, type, and domain. If the
kDNSServiceFlagsMoreComing flag is not set, then standard out is flushed to ensure that the
information appears promptly on the user's screen. Both functions, along with main(), are in
Example 7-3.

Example 7-3. DNSServiceBrowse example

#include <dns_sd.h>
#include <stdio.h> // For stdout, stderr
#include <string.h> // For strlen(), strcpy(), bzero()

extern void HandleEvents(DNSServiceRef);

static void
MyBrowseCallBack(DNSServiceRef service,
 DNSServiceFlags flags,
 uint32_t interfaceIndex,
 DNSServiceErrorType errorCode,
 const char * name,
 const char * type,
 const char * domain,
 void * context)
 {
 #pragma unused(context)
 if (errorCode != kDNSServiceErr_NoError)
 fprintf(stderr, "MyBrowseCallBack returned %d\n", errorCode);
 else
 {
 char *addString = (flags & kDNSServiceFlagsAdd) ? "ADD" : "REMOVE";
 char *moreString = (flags & kDNSServiceFlagsMoreComing) ? "MORE" : " ";
 printf("%-7s%-5s %d%s.%s%s\n",
 addString, moreString, interfaceIndex, name, type, domain);
 }
 if (!(flags & kDNSServiceFlagsMoreComing)) fflush(stdout);
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

static DNSServiceErrorType
MyDNSServiceBrowse()
 {
 DNSServiceErrorType error;
 DNSServiceRef serviceRef;

 error = DNSServiceBrowse(&serviceRef,
 0, // no flags
 0, // all network interfaces
 "_http._tcp", // service type
 "", // default domains
 MyBrowseCallBack, // call back function
 NULL); // no context
 if (error == kDNSServiceErr_NoError)
 {
 HandleEvents(serviceRef); // Add service to runloop to get callbacks
 DNSServiceRefDeallocate(serviceRef);
 }

 return error;
 }

int main (int argc, const char * argv[])
 {
 DNSServiceErrorType error = MyDNSServiceBrowse();
 if (error) fprintf(stderr, "DNSServiceDiscovery returned %d\n", error);
 return 0;
 }

Save the code in Example 7-3 as MyDNSSDBrowser.c and the code in Example 7-2 as
DNSServiceCallbackSelect.c, then compile and run them. If there are no services of type _http._tcp
running on your local network, you can always follow the instructions in Chapter 6 to register a
pretend one using the command-line tool. You can also use the example included in the section
"Registering a Service," later in this chapter.

7.3.2. Resolving a Service

The pattern for resolving is identical to that for browsing. To resolve, you call DNSServiceResolve()
and then add the event source to your select() loop. When a result or results become available,
your callback function will be called. This section details both functions and provides an example of
resolving a registered service to determine its host and port.

7.3.2.1. DNSServiceResolve

To resolve a service, call DNSServiceResolve():

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DNSServiceErrorType DNSServiceResolve(
 DNSServiceRef *sdRef,
 DNSServiceFlags flags,
 uint32_t interfaceIndex,
 const char *name,
 const char *regtype,
 const char *domain,
 DNSServiceResolveReply callBack,
 void *context);

Pass name, regtype, and domain exactly as you received them in the DNSServiceBrowse() callback. If
you are resolving a service that you discovered in a still-active browse call, then pass the discovered
interfaceIndex to ensure that you resolve it on the specific interface on which is was discovered. If
you are resolving a service that you discovered some time ago (perhaps saving its name, regtype, and
domain in a preference file on disk), then you should set interfaceIndex to zero, because that service
may now be available via a different interface. For example, the user could have originally discovered
the service via Ethernet but now wants to use that same service via wireless.

When the daemon has the service information for you, it will call your callback function.

7.3.2.2. DNSServiceResolveReply

Your DNSServiceResolve() callback function needs to have the following form:

void MyDNSServiceResolveReply
 (
 DNSServiceRef sdRef,
 DNSServiceFlags flags,
 uint32_t interfaceIndex,
 DNSServiceErrorType errorCode,
 const char *fullname,
 const char *hosttarget,
 uint16_t port,
 uint16_t txtLen,
 const char *txtRecord,
 void *context
);

As before, errorCode tells you if the operation was successful, and sdRef and context are provided to
help your callback easily locate any state it needs. If you resolved without specifying a particular
interface, then interfaceIndex tells you on which interface the answer was found.

The parameters hosttarget and port tell you where the service can be reached, today. Note that this
can change over time. A given named service can be moved to a different machine. This is why it is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

important to store only the name, type, and domain in preference files on disk and resolve on
demand when needed. If you store the hostname, port number, or even worse, the IP address, these
could all be out of date when the user comes to access the service at a later date. The port is given in
network byte order, exactly as needed for use in the sin_port field of a struct sockaddr_in you'd
pass to connect().

The fullname parameter gives you the fully qualified DNS name for the service, with all necessary
escaping of dots, spaces, backslashes, and nonprinting characters, making the name safe to pass to
DNSServiceQueryRecord() or the standard Unix function res_query(). Most applications will never
need to use this, but the fullname parameter is provided as a convenience for those that do. One
example is iChat, which stores the user's picture as another DNS record with the same name as the
service (SRV) record. Providing the properly escaped, fully qualified DNS name makes it easy for
iChat to retrieve the image record using either res_query() or DNSServiceQueryRecord().

The txtLen and txtrecord parameters give you additional optional information about the service, if
present. The data is presented in raw DNS TXT record format. To help you decode this format, the
dns_sd.h header file provides helper functions TXTRecordContainsKey() and TXtrecordGetValuePtr(
), available in Mac OS X 10.4 and, later, Bonjour for Windows, Bonjour for Linux, etc.

int DNSSD_API TXTRecordContainsKey(uint16_t txtLen, const void *txtRecord,
 const char *key);

const void * DNSSD_API TXTRecordGetValuePtr(uint16_t txtLen, const void *txtRecord,
 const char *key, uint8_t *valueLen);

TXtrecordContainsKey() returns a Boolean true/false result indicating whether the named key
appears in the text record.

TXtrecordGetValuePtr() returns a pointer to the value data for the named key. If the returned
pointer is NULL, the named key did not appear in the text record or appeared with no = to indicate an
associated value. If the returned pointer is non-NULL, then the named key appeared with an =. The
valueLen indicates the length of the value data, which may be zero in the case of an empty value
(i.e., "key=").

7.3.2.3. Resolution example

In Example 7-4, the service with the name Not a real page of type _http._tcp is resolved using
DNSServiceResolve(). When MyResolveCallBack() is called, if there has been no error, then the
name of the service being resolved is displayed along with the hostname and port number.

Example 7-4. DNSServiceResolve Example

#include <dns_sd.h>
#include <stdio.h> // For stdout, stderr
#include <string.h> // For strlen(), strcpy(), bzero()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

extern void HandleEvents(DNSServiceRef);

static void
MyResolveCallBack(DNSServiceRef serviceRef,
 DNSServiceFlags flags,
 uint32_t interface,
 DNSServiceErrorType errorCode,
 const char *fullname,
 const char *hosttarget,
 uint16_t port,
 uint16_t txtLen,
 const char *txtRecord,
 void *context)
 {
 #pragma unused(flags)
 #pragma unused(fullname)

 if (errorCode != kDNSServiceErr_NoError)
 fprintf(stderr, "MyResolveCallBack returned %d\n", errorCode);
 else
 printf("RESOLVE: %s is at %s:%d\n", fullname, hosttarget, ntohs(port));
 if (!(flags & kDNSServiceFlagsMoreComing)) fflush(stdout);
 }

static DNSServiceErrorType
MyDNSServiceResolve()
 {
 DNSServiceErrorType error;
 DNSServiceRef serviceRef;

 error = DNSServiceResolve(&serviceRef,
 0, // no flags
 0, // all network interfaces
 "Not a real page", //name
 "_http._tcp", // service type
 "local", //domain
 MyResolveCallBack,
 NULL); // no context

 if (error == kDNSServiceErr_NoError)
 {
 HandleEvents(serviceRef); // Add service to runloop to get callbacks
 DNSServiceRefDeallocate(serviceRef);
 }
 return error;
 }

int
main (int argc, const char * argv[])
 {
 DNSServiceErrorType error = MyDNSServiceResolve();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 fprintf(stderr, "DNSServiceDiscovery returned %d\n", error);
 //if function returns print error
 return 0;
 }

Run this example by compiling it and running it with DNSServiceCallbackSelect.c. If you have a real
_http._tcp service available, you can substitute its name in place of Not a real page. Alternatively,
you can follow the instructions in Chapter 6 to register a pretend _http._tcp service called Not a
real page using the command-line tool, or you can proceed to the example in the section
"Registering a Service" to write code to register your own pretend service with that name.

When you successfully resolve, you should see something like this:

RESOLVE: Not\032a\032real\032page._http._tcp.local is at SuiMai.local.:9092

Notice how the spaces in the fully qualified DNS name are replaced with \032 as part of the escaping
process to make the name safe to use with Unix routines such as res_query().

7.3.3. Registering a Service

To register a service, you call the DNSServiceRegister() function and specify the name and the type
of the service you are registering, as well as details about the interface, host, domain, and port. As
with browsing, you pass in the address of the callback function, a context pointer, and an uninitialized
DNSServiceRef, and then add the event source to your select() loop. Each time the mdnsd daemon
responds, you call DNSServiceProcessResult and the callback function will be invoked. This section
provides details for the DNSServiceRegister() and DNSServiceRegisterReply() functions, along
with details of how to add, update, or remove a resource record using DNSServiceAddRecord(),
DNSServiceUpdateRecord(), and DNSServiceRemoveRecord(). The section concludes with an example
of how you might register a service.

7.3.3.1. DNSServiceRegister

To register a service, call the DNSServiceRegister() function:

DNSServiceErrorType DNSServiceRegister(
 DNSServiceRef *sdRef,
 DNSServiceFlags flags,
 uint32_t interfaceIndex,
 const char *name,
 const char *regtype,
 const char *domain,
 const char *host,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 uint16_t port,
 uint16_t txtLen,
 const void *txtRecord,
 DNSServiceRegisterReply callBack,
 void *context);

The parameters should seem familiar from the discussion of resolving services using
DNSServiceResolve(). The difference is that now, instead of learning the host, port, and DNS TXT
record data, you're providing it.

The interfaceIndex parameter allows you to advertise your service on only one specific interface, if
desired. Most applications use zero for interfaceIndex. The other novel value you can pass for this
parameter is kDNSServiceInterfaceIndexLocalOnly, which means that your service will not actually
be advertised on the network but only made visible to other browsing clients on the same machine.
One use of this is for background processes that provide a web-based user interface for configuration
but (perhaps for security reasons) only allow configuration from the local machine, not remotely over
the network. By advertising their service using kDNSServiceInterfaceIndexLocalOnly, their
configuration page will appear in the Bonjour list in web browsers running on the local machine only,
not on other machines on the network.

The name parameter is optional. If you pass NULL or an empty string, a system-wide default name is
used for your service. For many services, when there is only usually one instance of that service on a
given machine, using a system-wide default name is a sensible choice. Whether you specify an
explicit name or use the system-wide default, Multicast DNS will ensure that it is unique on the local
network. For example, if you advertise an HTTP server with the name "Web Server" and there is
already a different HTTP service on the network with the same name, then yours will be automatically
renamed to "Web Server (2)." If there's already a "Web Server (2)," then yours will be automatically
renamed to "Web Server (3)," and so on. If you don't want this auto-rename behavior, then use the
flag kDNSServiceFlagsNoAutoRename, and instead of renaming automatically, DNS-SD will call your
callback function with a kDNSServiceErr_NameConflict error result so you can pick a new name for
yourself. When this happens, your service registration will have been terminated. You will need to
remove it from your select() loop, destroy the DNSServiceRef using DNSServiceRefDeallocate(),
and then try again with a new name.

The domain parameter is optional. If you pass NULL or an empty string, it means "pick a sensible
default for me," which is what most applications do. Usually the sensible default will be local,
possibly plus one wide-area domain as selected by the user.

The hostname parameter is optional. If you pass NULL or an empty string, it means the current host,
which is what most applications do. You only need to specify a hostname when creating proxy
registrations for services running on some other machine.

The port number is in network byte order. If you're using a fixed port number, then this is exactly as
you would have used in the sin_port field of your struct sockaddr_in in your bind() call. If you're
using a dynamic port number, this is exactly as you would have received it in the sin_port field of
your struct sockaddr_in in your getsockname() call.

Some service types have extra data stored in the TXT record. For example, with HTTP services, the
path to the page in question can be stored in the TXT record, e.g., path=/index.html. You need to
provide a pointer to a properly formatted DNS TXT record. To help in the creation of properly
formatted DNS TXT records, you can use the TXtrecordCreate() family of helper functions from the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

dns_sd.h header file, available in Mac OS X 10.4 and, later, Bonjour for Windows, Bonjour for Linux,
etc.

7.3.3.2. DNSServiceRegisterReply

The following is the prototype for the callback function used when registering a service:

void MyRegisterReply
 (
 DNSServiceRef sdRef,
 DNSServiceFlags flags,
 DNSServiceErrorType errorCode,
 const char *name,
 const char *regtype,
 const char *domain,
 void *context
);

The parameters are similar to those for DNSServiceBrowseReply(). Of particular interest is the name
parameter. When auto-renaming is in effect, the name parameter tells you what name Multicast DNS
finally picked for you. In some kinds of application, knowing your own name is important. For
example, iChat kind of acts as both a client and a server on the same machine. When the client side
of iChat browses, it finds all service instances, including its own. By knowing its own name, it can
filter itself out of the list it presents to the user.

7.3.3.3. DNSServiceAddRecord

Having registered a service, DNSServiceAddRecord() lets you add additional records with the same
name as the service (SRV) record. This is rare, and most applications never need to do this. One
example of an application that uses this is iChat. iChat uses this to add a separate record containing
the user's picture. When you add a record using DNSServiceAddRecord(), you get a DNSRecordRef,
which you can subsequently use in DNSServiceUpdateRecord() to update the record's data and in
DNSServiceRemoveRecord() to remove the record from the service registration.

Here is the signature of DNSServiceAddRecord():

int DNSServiceAddRecord(
 DNSServiceRef sdRef,
 DNSRecordRef *RecordRef,
 DNSServiceFlags *flags,
 uint16_t rrtype,
 uint16_t rdlen,
 const void *rdata,
 uint32_t ttl

http://lib.ommolketab.ir
http://lib.ommolketab.ir

);

The sdRef parameter specifies the service you're adding the record to, and the specified DNSRecordRef
is initialized as a result of this call.

The last four parameters are used to describe the record being added. The rrtype is the numerical
value of the resource record type. The list of these numbers can be found at
http://www.iana.org/assignments/dns-parameters and in the dns_sd.h header file. The rdlen is the
length in bytes of rdata, which is (in theory) up to 64 KB of opaque binary data that is to be stored in
the resource record being added. In practice, 100 bytes or 200 bytes is a reasonable size, and
anything above 1,000 bytes can be inefficient on the network. Finally, ttl is a 32-bit signed value
indicating the record's requested time to live in seconds.

7.3.3.4. DNSServiceUpdateRecord

Use DNSServiceUpdateRecord() to request an update to a DNS record.

DNSServiceErrorType DNSServiceUpdateRecord(
DNSServiceRef sdRef,
DNSRecordRef RecordRef,
DNSServiceFlags flags,
uint16_t rdlen,
const void *rdata,
uint32_t ttl
);

RecordRef identifies the record to be updated. Either it is a DNSRecordRef created by
DNSServiceAddRecord(), DNSServiceRegisterRecord(), or NULL, which means "Update the service's
primary TXT record." Most services never update their TXT records. Again, the exception is iChat,
which uses its TXT record to show the user's available/idle/away state, and consequently updates it
all the time.

The rdlen, rdata, and ttl have the same meanings that were described for DNSServiceAddRecord().

7.3.3.5. DNSServiceRemoveRecord

To request the removal of a resource record from a service's registration information, call
DNSServiceRemoveRecord().

DNSServiceErrorType DNSServiceRemoveRecord(
DNSServiceRef sdRef,
DNSRecordRef RecordRef,

http://www.iana.org/assignments/dns-parameters
http://lib.ommolketab.ir
http://lib.ommolketab.ir

DNSServiceFlags flags
);

7.3.3.6. Registration example

The registration example shown in Example 7-5 is similar to the browse example shown in Example
7-3. The function MyDNSServiceRegister() has roughly the same format as MyDNSServiceBrowse().
The callback function, MyRegisterCallBack(), reports that the service has been registered if no
errors are reported and reports the errors if any exist. Here is the entire listing.

Example 7-5. DNSServiceRegister example

#include <dns_sd.h>
#include <stdio.h> // For stdout, stderr
#include <string.h> // For strlen(), strcpy(), bzero()

extern void HandleEvents(DNSServiceRef);

static void
MyRegisterCallBack(DNSServiceRef service,
 DNSServiceFlags flags,
 DNSServiceErrorType errorCode,
 const char * name,
 const char * type,
 const char * domain,
 void * context)
 {
 #pragma unused(flags)
 #pragma unused(context)

 if (errorCode != kDNSServiceErr_NoError)
 fprintf(stderr, "MyRegisterCallBack returned %d\n", errorCode);
 else
 printf("%-15s %s.%s%s\n","REGISTER", name, type, domain);
 }

static DNSServiceErrorType MyDNSServiceRegister()
 {
 DNSServiceErrorType error;
 DNSServiceRef serviceRef;

 error = DNSServiceRegister(&serviceRef,
 0, // no flags
 0, // all network interfaces
 "Not a real page", // name
 "_http._tcp", // service type
 "", // register in default domain(s)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 NULL, // use default host name
 htons(9092), // port number
 0, // length of TXT record
 NULL, // no TXT record
 MyRegisterCallBack, // call back function
 NULL); // no context

 if (error == kDNSServiceErr_NoError)
 {
 HandleEvents(serviceRef);
 DNSServiceRefDeallocate(serviceRef);
 }

 return error;
 }

int main (int argc, const char * argv[])
 {
 DNSServiceErrorType error = MyDNSServiceRegister();
 fprintf(stderr, "DNSServiceDiscovery returned %d\n", error);
 return 0;
 }

Save the code in Example 7-5 as MyDNSSDRegistrar.c and compile it and run it along with
DNSServiceCallbackSelect.c. Note that the port number for this service has been hardcoded to 9092.
When you run this example, you should see the following message:

REGISTER Not a real page._http._tcp.local.

You can verify that this service has been registered using the dns-sd command-line tool or by
running the previous example of browsing. You should see this message:

ADD Not a real page._http._tcp.local.

7.3.4. Enumerating Domains

To date, most of the use of DNS-SD has been for link-local multicast discovery. It is natural that this
is the area that would get the most interest, because this was the area of IP most desperately in
need of improvement.

However, as link-local DNS-SD becomes mature, people begin to look outward to wide-area service
discovery. When you begin to browse domains other than local, the question arises, "How does the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

machine know which domains to browse?" Forcing the user to configure this manually would not be in
keeping with the spirit of Zero Configuration Networking. DNS-SD has mechanisms to learn this
information from the local network, and the domain enumeration functions allow applications to
access this information to present a good user interface. As with the other DNS-SD APIs, these
interfaces are asynchronous and ongoing until cancelled, because information from the network can
change at any time.

When an application wants to enable browsing in multiple domains, it asks for the list of
recommended browsing domains. It should not automatically browse every domain it finds, because
that would be extremely expensive on the network. Instead, it should present the list of domains to
the user so he can pick. One domain will be delivered with the kDNSServiceFlagsDefault flag set, and
that domain should be highlighted by default in the browser. It's the network equivalent of the "you
are here" marker on a map. The list is purely advisory; users should still be allowed to manually
enter additional domains to browse if they wish.

When an application wants to register its service in domains other than just local, it can ask for the
list of recommended registration domains. As before, an application should not automatically register
in every domain it finds. The list is intended to be shown to the user, so the user may pick one
domain from the list. Also as before, the list is advisory, meaning users should be allowed to
manually enter a different domain to register in if they wish. Most applications will not need to
enumerate registration domains, because they will simply use the user's configured system-wide
default by passing NULL for the domain when registering.

To enumerate domains, you need to call DNSServiceEnumerateDomain() and use a callback function
built on the template provided by DNSServiceDomainEnumReply to collect the information. If the
network administrator has not created the domain enumeration records described in Chapter 5, the
only result you will get is local.

In this section, the signatures for DNSServiceEnumerateDomain() and DNSServiceDo-mainEnumReply(
) are provided along with an example of using this part of the API.

7.3.4.1. DNSServiceEnumerateDomain

Begin searching for recommended browsing or registration domains using
DNSServiceEnumerateDomain():

DNSServiceErrorType DNSServiceEnumerateDomains(
 DNSServiceRef *sdRef,
 DNSServiceFlags flags,
 uint32_t interfaceIndex,
 DNSServiceDomainEnumReply callBack,
 void *context);

Set the flag either using kDNSServiceFlagsBrowseDomains to return the domains recommended for
browsing or using kDNSServicesFlagsRegistrationDomains to return the domains recommended for
registering services. The sdRef is an uninitialized service discovery reference that will be initialized
when DNSServiceEnumerateDomain() is called. The remaining variables are as they were for

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DNSServiceBrowse() and DNSServiceRegister().

7.3.4.2. DNSServiceDomainEnumReply

The callback function for enumerating domains must be modeled on DNSServiceDo-mainEnumReply().

void MyDNSServiceDomainEnumReply
 (
 DNSServiceRef sdRef,
 DNSServiceFlags flags,
 uint32_t interfaceIndex,
 DNSServiceErrorType errorCode,
 const char *replyDomain,
 void *context
);

The variables have been described previously for DNSServiceRegisterReply() and
DNSServiceBrowseReply(). Consult Table 7-2 for the flags that can be passed in. As before,
kDNSServiceFlagsMoreComing indicates that you should wait to update your UI, as the callback
function will be called again immediately. If kDNSServiceFlagsAdd is set, then the domain pointed to
should be added to the list of domains, and if kDNSServiceFlagsAdd is not present, then the domain
pointed to should be removed from the list. The kDNSServiceFlagsDefault flag is set if the domain is
the domain that should be selected by default.

7.3.4.3. Enumeration example

The enumeration example shown in Example 7-6 follows the same pattern as the previous examples.
The call to DNSServiceEnumerateDomains() passes in the flag for browse domains. In the callback
function, the discovered domains are displayed, along with an indication of whether there are
kDNSServiceFlagsMoreComing and with a field showing whether the domain is being added or removed
from the list and whether it is a default domain.

Example 7-6. DNSServiceEnumerateDomains() example

#include <dns_sd.h>
#include <stdio.h> // For stdout, stderr
#include <string.h> // For strlen(), strcpy(), bzero()

extern void HandleEvents(DNSServiceRef);

static void
MyEnumerateBrowseDomainsCallBack(DNSServiceRef sdRef,
 DNSServiceFlags flags,
 uint32_t interface,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 DNSServiceErrorType errorCode,
 const char *replyDomain,
 void *context)
 {
 #pragma unused(context)

 if (errorCode != kDNSServiceErr_NoError)
 fprintf(stderr, "EnumerateDomainsCallBack returned %d\n", errorCode);
 else
 {
 char *moreString = (flags & kDNSServiceFlagsMoreComing) ? "MORE" : "";
 char *addString = "REMOVE";
 if (flags & kDNSServiceFlagsAdd)
 addString = (flags & kDNSServiceFlagsDefault) ? "DEFAULT" : "ADD";
 printf("%-8s%-5s%s\n", addString, moreString, replyDomain);
 }

 if (!(flags & kDNSServiceFlagsMoreComing)) fflush(stdout);
 }

static DNSServiceErrorType
MyDNSServiceEnumerateBrowse()
 {
 DNSServiceErrorType error;
 DNSServiceRef serviceRef;

 error = DNSServiceEnumerateDomains(
 &serviceRef,
 kDNSServiceFlagsBrowseDomains, // browse domains
 0, // all network interfaces
 MyEnumerateBrowseDomainsCallBack, //callback function
 NULL); // no context

 if (error == kDNSServiceErr_NoError)
 {
 HandleEvents(serviceRef); // Add service to runloop to get callbacks
 DNSServiceRefDeallocate(serviceRef);
 }
 return error;
 }

int
main (int argc, const char * argv[])
 {
 DNSServiceErrorType error = MyDNSServiceEnumerateBrowse();
 if (error) fprintf(stderr, "DNSServiceDiscovery returned %d\n", error);
 return 0;
 }

You can run this example by compiling it and running it with DNSServiceCallback-Select.c. As
mentioned before, if your network administrator has not created any domain enumeration records,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the only result you will get is local.

ADD local.

7.3.5. Other Operations

This section outlines some of the other lesser-used functions from dns_sd.h.

DNSServiceCreateConnection() and DNSServiceRegisterRecord() are used by applications that
need to create a large number of records. A single DNSServiceRef is created using
DNSServiceCreateConnection(), and then multiple records are registered on that single connection.

DNSServiceQueryRecord() allows the client to query for any arbitrary DNS record, with any name,
type, or class, unicast or multicast. It is, in many ways, similar to the standard Unix res_query()
function, except that it operates asynchronously with a callback function.

DNSServiceReconfirmRecord() is used for cache management. Multicast DNS caches data for
efficiency, but anytime data is cached, it can become out of date. If a client believes that data is out
of date, it can call DNSServiceReconfirmRecord() to provide a hint to the cache management
algorithm. For example, suppose a client gets a host's address record using DNSServiceQueryRecord(
), but the host does not respond. If the client calls DNSServiceReconfirmRecord(), then Multicast
DNS will requery for the record, and if no response is received, then the record will be deleted from
the cache. In addition, any SRV records referencing that target host will automatically be considered
potentially suspect and will, in turn, be reconfirmed. If the SRV records are not confirmed, then they
too will be deleted from the cache, and any PTR records referencing the now-departed SRV records
will also be considered potentially suspect. After a short time, if these records are not confirmed, they
will also be deleted from the cache. The end result of this is that services being advertised from the
departed host will disappear from browsing lists soon, instead of waiting a full hour for the record's
TTL to expire. This call is highly specialized, and most applications will never have to use it, because
in normal cases cache reconfirmation is handled automatically. In normal cases, if a host crashes,
then the DNSServiceQueryRecord() call to look up its IP address will fail, and that will automatically
kick off the chain of reconfirmations that purges the stale SRV and PTR records, too.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.4. Event Handling with Cocoa RunLoop or Core
Foundation CFRunLoop

So far in this chapter, you have used the select() loop to receive the asynchronous event
notifications central to DNS-SD. In this last section, you will see alternative event delivery solutions.
First, without any changes to the code presented in Examples 7-3 through 7-6, you can swap out the
cross-platform code presented in Example 7-2 for a Mac OS X specific run loop that uses Core
Foundation classes. Second, you will see how to alter the code to take advantage of the Windows-
specific event loop.

If you're writing a Cocoa or Core Foundation application, you'll probably be using a Cocoa RunLoop or
Core Foundation CFRunLoop (which are actually the same thing under the covers). You'll want to add a
Cocoa- or Core Foundation-compatible event-generating object to your RunLoop. To do that, you
extract the Unix Domain Socket from the DNSServiceRef, construct a CFSocket from that, and then
construct a CFRunLoopSourceRef from that. The rough outline is shown in Example 7-7.

Example 7-7. Skeleton of CFRunLoop

typedef struct MyDNSServiceState
 {
 DNSServiceRef service;
 CFSocketRef socket;
 CFRunLoopSourceRef source;
 } MyDNSServiceState;

void
HandleEvents(DNSServiceRef serviceRef)
 {
 // . . .
 // Access the underlying Unix domain socket and create a CFSocket
 sock = DNSServiceRefSockFD(ref->service);
 ref->socket = CFSocketCreateWithNative(NULL, sock,
 kCFSocketReadCallBack, MySocketCallBack, &context);
 // . . .
 // Create a CFRunLoopSource from the CFSocket, add to run loop and start.
 ref->source = CFSocketCreateRunLoopSource(NULL, ref->socket, 0);
 CFRunLoopAddSource(CFRunLoopGetCurrent(), ref->source, kCFRunLoopCommonModes);

 // . . .

 CFRunLoopRun();
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DNSServiceRefSockFD() extracts the Unix Domain Socket from the DNSServiceRef.

CFSocketCreateWithNative() makes a CFSocket from a native Unix socket.

CFSocketCreateRunLoopSource() makes a CFRunLoopSource from the CFSocket.

Once added to the RunLoop, MySocketCallBack() will be called every time there is data waiting to be
read. You can use a single MySocketCallBack() routine for all of your DNS-SD operations. All it has
to do is call DNSServiceProcessResult() on the right DNSServiceRef, and DNS-SD will do the rest to
invoke the right callbacks.

static void
MySocketCallBack(CFSocketRef s, CFSocketCallBackType type,
 CFDataRef address, const void * data, void * info)
 {
 //. . . cast the context info to initialize ref
 MyDNSServiceState * ref = (MyDNSServiceState *)info;
 //...use the service discovery reference for callback
 err = DNSServiceProcessResult(ref->service);
 // handle error . . .
 }

Example 7-8 shows the full listing with all of the details.

Example 7-8. Core Foundation RunLoop example

// Simple example of how to handle DNSServiceDiscovery events using a CFRunLoop

#include <dns_sd.h>
#include <CoreFoundation/CoreFoundation.h>

// Structure to hold CFRunLoop-related state

typedef struct MyDNSServiceState
 {
 DNSServiceRef service; // Active DNSServiceDiscovery operation
 CFSocketRef cfsocket; // CFSocket for this operation
 CFRunLoopSourceRef source; // RunLoopSource for this CFSocket
 } MyDNSServiceState;

// Remove a DNSServiceDiscovery operation from a CFRunLoop's
// set of active event sources

http://lib.ommolketab.ir
http://lib.ommolketab.ir

static void DNSServiceRemoveSource(CFRunLoopRef rl, MyDNSServiceState *ref)
 {
 assert(rl != NULL);
 assert(ref != NULL);

 // Remove the CFRunLoopSource from the current run loop.
 CFRunLoopRemoveSource(rl, ref->source, kCFRunLoopCommonModes);
 CFRelease(ref->source);

 // Invalidate the CFSocket.
 CFSocketInvalidate(ref->cfsocket);
 CFRelease(ref->cfsocket);

 // Workaround to give time to CFSocket's select() thread
 // so it can remove the socket from its FD set before we
 // close the socket by calling DNSServiceRefDeallocate.
 usleep(1000);

 // Terminate the connection with the daemon, which cancels the operation.
 DNSServiceRefDeallocate(ref->service);
 free(ref);
 }

// Helper function: When CFRunLoop indicates an interesting event,
// this function calls DNSServiceProcessResult() to handle it

static void MySocketCallBack(CFSocketRef s, CFSocketCallBackType type,
 CFDataRef address, const void *data, void *info)
 {
 #pragma unused(s)
 #pragma unused(type)
 #pragma unused(address)
 #pragma unused(data)

 DNSServiceErrorType err;
 MyDNSServiceState *ref = (MyDNSServiceState *)info;
 assert(ref != NULL);

 // Read a reply from the daemon, which will call the appropriate callback.
 err= DNSServiceProcessResult(ref->service);
 if (err != kDNSServiceErr_NoError)
 {
 fprintf(stderr, "DNSServiceProcessResult returned %d\n", err);
 // Terminate the discovery operation and release everything.
 DNSServiceRemoveSource(CFRunLoopGetCurrent(), ref);
 }
 }

// Add a DNSServiceDiscovery operation to a CFRunLoop's
// set of active event sources

http://lib.ommolketab.ir
http://lib.ommolketab.ir

static void DNSServiceAddSource(CFRunLoopRef rl, MyDNSServiceState *ref)
 {
 CFSocketContext context = { 0, ref, NULL, NULL, NULL };
 CFSocketNativeHandle sock = DNSServiceRefSockFD(ref->service);
 assert(sock != -1);

 // Create a CFSocket from the underlying Unix Domain socket.
 ref->cfsocket = CFSocketCreateWithNative(NULL, sock,
 kCFSocketReadCallBack, MySocketCallBack, &context);

 // Prevent CFSocketInvalidate from closing DNSServiceRef's socket.
 CFOptionFlags f = CFSocketGetSocketFlags(ref->cfsocket);
 CFSocketSetSocketFlags(ref->cfsocket, f & ~kCFSocketCloseOnInvalidate);

 // Create a CFRunLoopSource from the CFSocket.
 ref->source = CFSocketCreateRunLoopSource(NULL, ref->cfsocket, 0);

 // Add the CFRunLoopSource to the current run loop.
 CFRunLoopAddSource(rl, ref->source, kCFRunLoopCommonModes);
 }

// Simple example: Here we just add a single DNSServiceDiscovery event source,
// and then call CFRunLoopRun() to handle the events. In a program that already
// has a main RunLoop, you'd just keep that as is, and use DNSServiceAddSource/
// DNSServiceRemoveSource to add and remove event sources from that RunLoop.

void HandleEvents(DNSServiceRef serviceRef)
 {
 MyDNSServiceState ref = { serviceRef };
 DNSServiceAddSource(CFRunLoopGetCurrent(), &ref);

 CFRunLoopRun();
 }

Save this as DNSServiceCallbackCF.c. Compile and run this with any of the files from Examples 7-3 to
7-6 in place of DNSServiceCallbackSelect.c. The results should be the same as before.

Note that because a Cocoa RunLoop and a Core Foundation CFRunLoop are actually the same thing
(Cocoa and Core Foundation just provide their own APIs to access the same underlying object), the
code shown above can also be used in an Objective-C program. It may not look much like Objective-
C (no square brackets all over the place), but that's no problem. The Objective-C compiler also fully
supports standard C, and the code will compile and do exactly what you need.

DNSServiceDiscovery's context parameter helps us interface with Objective-C's object-oriented
paradigm. When calling one of the DNSServiceDiscovery API routines, pass in the address of your C-
style callback function and, for the context parameter, pass a reference to the object (usually self)
that you want to handle the events, like this:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DNSServiceBrowse(&ref, 0, 0, srvtype, "", BrowseReplyFn, self);

Then, in your C-style callback function, you recover the object context by writing something like
MyObjectType *self = (MyObjectType *)context, as shown here:

void BrowseReplyFn(DNSServiceRef sdRef, DNSServiceFlags flags,
 uint32_t interfaceIndex, DNSServiceErrorType errorCode,
 const char *serviceName, const char *regtype, const char *replyDomain,
 void *context)
 {
 MyObjectType *self = (MyObjectType *)context;
 [self doThis];
 [self doThat];
 [self addName: [NSString stringWithUTF8String:serviceName]];
 //... and so on
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.5. Event Handling with Microsoft Windows GetMessage(
) Message Loop

There are some differences in working with the Windows event loop. In this example, you will
configure and create a window that is not displayed in the application. This gives you a template for
developing GUI-based Zeroconf applications for Windows. The Zeroconf events are processed as
messages to this window. Here is the outline of the HandleEvents() function for Windows:

void HandleEvents(DNSServiceRef inServiceRef)
 {
 //... Configure and create a window that is not shown but that
 // is used to process DNS-SD events as messages to the window.

 wind = CreateWindow(wcex.lpszClassName, wcex.lpszClassName, 0,
 CW_USEDEFAULT, 0, CW_USEDEFAULT, 0, NULL,
 NULL, instance, NULL);

 // ... Associate the DNS-SD browser with our window

 err = WSAAsyncSelect((SOCKET) DNSServiceRefSockFD(gServiceRef), wind,
 DNSSD_EVENT, FD_READ | FD_CLOSE);

 assert(err == kDNSServiceErr_NoError);

 // DNS-SD events are dispatched while in this loop.

 while(GetMessage(&msg, NULL, 0, 0))
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }

 // Clean up.

 WSAAsyncSelect((SOCKET) DNSServiceRefSockFD(gServiceRef), wind,
 DNSSD_EVENT, 0);
 }

When a window event is received, it is processed in the callback function WndProc(). If the event is a
DNS-SD event, it is passed on to DNSServiceProcessResult() as before. Here is the sketch of
WndProc():

http://lib.ommolketab.ir
http://lib.ommolketab.ir

static LRESULT CALLBACK WndProc(HWND inWindow, UINT inMsg,
 WPARAM inWParam, LPARAM inLParam)
 {
 LRESULT result;
 switch(inMsg)
 {
 case DNSSD_EVENT:
 DNSServiceProcessResult(gServiceRef);
 result = 0;
 break; //...
 }
 return(result);
 }

All of the details are provided in the code listing in Example 7-9.

Example 7-9. Windows event loop example

#include "stdafx.h"
#include <assert.h>
#include <stdio.h>
#include <dns_sd.h>

// Constants

#define DNSSD_EVENT (WM_USER + 0x100)
 // Message sent to Window when a DNS-SD event occurs.
// Prototypes

void HandleEvents(DNSServiceRef inServiceRef);

static LRESULT CALLBACK WndProc(HWND inWindow,
 UINT inMsg,
 WPARAM inWParam,
 LPARAM inLParam);

static void DNSSD_API
 BrowserCallBack(DNSServiceRef inServiceRef,
 DNSServiceFlags inFlags,
 uint32_t inIFI,
 DNSServiceErrorType inError,
 const char * inName,
 const char * inType,
 const char * inDomain,
 void * inContext);

// Globals

http://lib.ommolketab.ir
http://lib.ommolketab.ir

static DNSServiceRef gServiceRef = NULL;

// Main entry point for application.

void HandleEvents(DNSServiceRef inServiceRef)

 {
 HINSTANCE instance;
 WNDCLASSEX wcex;
 HWND wind;
 MSG msg;
 int err;

 gServiceRef = inServiceRef;

 // Create the window. This window won't actually be shown,
 // but it demonstrates how to use DNS-SD with Windows GUI
 // applications by having DNS-SD events processed as messages
 // to a Window.

 instance = GetModuleHandle(NULL);
 assert(instance);

 wcex.cbSize = sizeof(wcex);
 wcex.style = 0;
 wcex.lpfnWndProc = (WNDPROC) WndProc;
 wcex.cbClsExtra = 0;
 wcex.cbWndExtra = 0;
 wcex.hInstance = instance;
 wcex.hIcon = NULL;
 wcex.hCursor = NULL;
 wcex.hbrBackground = NULL;
 wcex.lpszMenuName = NULL;
 wcex.lpszClassName = TEXT("ZeroconfExample");
 wcex.hIconSm = NULL;
 RegisterClassEx(&wcex);

 wind = CreateWindow(wcex.lpszClassName, wcex.lpszClassName, 0,
 CW_USEDEFAULT, 0, CW_USEDEFAULT, 0, NULL,
 NULL, instance, NULL);

 assert(wind);

 // Associate the DNS-SD browser with our window
 // using the WSAAsyncSelect mechanism. Whenever something
 // related to the DNS-SD browser occurs, our private Windows message
 // will be sent to our window so we can give DNS-SD a
 // chance to process it. This allows DNS-SD to avoid using a
 // secondary thread (and all the issues with synchronization that
 // would introduce), but still process everything asynchronously.
 // This also simplifies app code because DNS-SD will only run when we

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // explicitly call it.

 err = WSAAsyncSelect((SOCKET) DNSServiceRefSockFD(gServiceRef), wind,
 DNSSD_EVENT, FD_READ | FD_CLOSE);

 assert(err == kDNSServiceErr_NoError);

 // Main event loop for the application. All DNS-SD events are
 // dispatched while in this loop.

 while(GetMessage(&msg, NULL, 0, 0))
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }

 // Clean up. This is not strictly necessary since the normal
 // process cleanup will close DNS-SD socket(s) and release memory,
 // but it's here to demonstrate how to do it.

 WSAAsyncSelect((SOCKET) DNSServiceRefSockFD(gServiceRef), wind,
 DNSSD_EVENT, 0);
 }

// Callback for the Window. DNS-SD events are delivered here.

static LRESULT CALLBACK WndProc(HWND inWindow, UINT inMsg,
 WPARAM inWParam, LPARAM inLParam)
 {
 LRESULT result;

 switch(inMsg)
 {
 case DNSSD_EVENT:

 // Process the DNS-SD event. All DNS-SD callbacks occur from
 // within this function.

 if (DNSServiceProcessResult(gServiceRef) != kDNSServiceErr_NoError)
 result = -1;
 else
 result = 0;
 break;

 default:
 result = DefWindowProc(inWindow, inMsg, inWParam, inLParam);
 break;
 }

 return(result);
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.6. Event Handling with Microsoft Windows MFC

If you're programming using the Microsoft Windows MFC (Microsoft Foundation Classes) programming
model, then you don't need your own event loop. You just declare the messages that your window
accepts, and, as events happen, MFC sends the appropriate message to your window object. Example 7-10
shows an outline of what you need to do to integrate (in this example) DNS-SD browsing into an MFC
application.

Example 7-10. Windows MFC example

#include "stdafx.h"
#include <dns_sd.h>
#include <winsock2.h>

#define WM_PRIVATE_SERVICE_EVENT (WM_USER + 0x100)

class MyWindow
:
 public CWnd
{
public:

 MyWindow();
 virtual ~MyWindow(void);

protected:

 // General

 afx_msg int OnCreate(LPCREATESTRUCT inCreateStruct);
 afx_msg void OnDestroy(void);
 afx_msg LONG OnServiceEvent(WPARAM inWParam, LPARAM inLParam);

 // Browsing

 static void DNSSD_API
 BrowseReply(
 DNSServiceRef inRef,
 DNSServiceFlags inFlags,
 uint32_t inInterfaceIndex,
 DNSServiceErrorType inErrorCode,
 const char * inName,
 const char * inType,
 const char * inDomain,
 void * inContext);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 DECLARE_MESSAGE_MAP()

private:

 DNSServiceRef m_serviceRef;
};

BEGIN_MESSAGE_MAP(MyWindow, CWnd)
 ON_WM_CREATE()
 ON_WM_DESTROY()
 ON_MESSAGE(WM_PRIVATE_SERVICE_EVENT, OnServiceEvent)
END_MESSAGE_MAP()

int
MyWindow::OnCreate(LPCREATESTRUCT inCreateStruct)
 {
 DNSServiceErrorType err;

 err = CWnd::OnCreate(inCreateStruct);

 if (err)
 goto exit;

 err = DNSServiceBrowse(&m_serviceRef, 0, 0, "_http._tcp", NULL, BrowseReply, this);

 if (err)
 goto exit;

 err = WSAAsyncSelect((SOCKET) DNSServiceRefSockFD(m_serviceRef), m_hWnd,
 WM_PRIVATE_SERVICE_EVENT, FD_READ|FD_CLOSE);

exit:

 if (err)
 {
 if (m_serviceRef)
 {
 DNSServiceRefDeallocate(m_serviceRef);
 m_serviceRef = NULL;
 }
 }

 return(err);
 }

void MyWindow::OnDestroy(void)
 {
 // ...

 if (m_serviceRef)
 {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 WSAAsyncSelect((SOCKET) DNSServiceRefSockFD(m_serviceRef), m_hWnd, 0, 0);
 DNSServiceRefDeallocate(m_serviceRef);
 }

 // ...
 }

LONG MyWindow::OnServiceEvent(WPARAM inWParam, LPARAM inLParam)
 {
 SOCKET sock = (SOCKET) inWParam;
 DNSServiceErrorType err;

 if (WSAGETSELECTERROR(inLParam) && !(HIWORD(inLParam)))
 goto exit;

 ASSERT((SOCKET) DNSServiceRefSockFD(m_serviceRef) == sock);
 err = DNSServiceProcessResult(m_serviceRef);
 ASSERT(!err);

exit:

 return (0);
 }

void DNSSD_API MyWindow::BrowseReply(
 DNSServiceRef inRef,
 DNSServiceFlags inFlags,
 uint32_t inInterfaceIndex,
 DNSServiceErrorType inErrorCode,
 const char * inName,
 const char * inType,
 const char * inDomain,
 void * inContext)
 {
 MyWindow * self = reinterpret_cast<MyWindow*>(inContext);
 ASSERT(self);

 // ...
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.7. Event Handling with Independent Threads

DNS-SD also accommodates programmers who prefer to use multiple threads rather than a single
thread and an event loop. Because the DNSServiceProcessResult() blocks if no data is available, you
can simply create a thread and have it spin calling DNSServiceProcessResult(). When no data is
available, the thread will sleep. When data arrives, the thread will wake up, handle it, and then go
back to sleep again. Example 7-11 shows how to set up event handling using independent threads .

Example 7-11. Event handling with independent threads

void ThreadProc(DNSServiceRef ref)
 {
 while (DNSServiceProcessResult(ref) == kDNSServiceErr_NoError)
 continue;
 }

This has the advantage that your callback routines will get executed "by magic," without you having
to take any special action aside from creating the thread and starting it running in the first place. Of
course, magic comes at a price. When callback routines get executed by magic, you no longer have
control over exactly when they will run and what else might be happening at the same time. As with
all multithreaded code, you need to take good care to use the proper locking to avoid race conditions
and crashes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.8. Summary

This chapter introduced the lowest level, cross-platform, C-programming API for Zeroconf's DNS
Service Discovery. It also introduced the important DNS-SD concepts of asynchronous event handling
and continuous live updating, which apply no matter which language or API you choose to use. The
following chapters present other APIs and languages. In some, callbacks are scheduled preemptively
using threads, and you need to take care to write thread-safe code. In others, callbacks are
scheduled cooperatively out of a main event loop, and you don't have to worry about thread safety,
reentry, and race conditions, but in your callback functions and methods you need to be careful to
avoid doing time-consuming operations. If your callback function or method does anything that
blocks for a long period of time, you'll cause your application's whole user interface to lock up while it
waits for your callback to finish what it's doing.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 8. Using the Java APIs
Starting in Mac OS X 10.3.9, new APIs enable Java software to advertise and discover services on the
network using Zeroconf's DNS Service Discovery. The same Java DNS-SD APIs are also available in
Bonjour for Windows, Bonjour for Linux, Solaris, *BSD, etc., enabling Java software to make use of
Zeroconf's DNS Service Discovery across a wide range of platforms, not just on Mac OS X. In this
chapter, you will take a quick look through the APIs, see short examples of how to register, browse
for, add TXT records to, and resolve services, and finally see a complete example of using Java DNS-
SD in a tic-tac-toe game.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.1. Understanding the APIs

The com.apple.dnssd package exposes an abstract factory class, DNSSD, used to create the various
types of DNSSDService objects, two classes used to manipulate DNS records, a collection of interfaces
that are implemented as appropriate by client code to receive callback messages, and an exception:

Factory Class :

DNSSD

References to ongoing asynchronous operations :

DNSSDService

DNSSDRegistration

DNS Record Classes:

DNSRecord

TXtrecord

Callback Interface Classes , implemented by client:

BaseListener

RegisterListener

BrowseListener

ResolveListener

DomainListener

QueryListener

DNSSD Error Exception:

DNSSDException

The pattern for using the APIs will most often consist of calling a static method from the DNSSD factory
class, passing in an instance of a class that implements the appropriate interface to receive callback
messages. For example, when calling DNSSD.browse() to initiate a browsing operation, the client

http://lib.ommolketab.ir
http://lib.ommolketab.ir

must supply an object that implements the BrowseListener interface.

As with all the different flavors of DNS-SD API, the Java APIs are asynchronousyou start an operation
and get callback messages when interesting events happenand to make effective use of the API, it is
helpful to understand the mechanism by which those callback messages are delivered. Recall that in
the C API, since there is no single event-handling model universally adopted by all C programs, the
API returns a socket file descriptor to the client, so that the client can integrate it into the client's
chosen event-handling model, such as a select() loop or similar. In contrast, when using the Mac
OS X Cocoa APIs, it is assumed that the client will be using a Cocoa RunLoop, so ongoing
asynchronous operations are automatically added to the current RunLoop, and events are
automatically delivered sequentially to the client, as with other RunLoop events.

Unlike C (and its standard libraries), Java was designed from the start with full support for
multithreaded code, so just as it is reasonable to assume that Cocoa programs use a RunLoop, it is
reasonable to assume that Java programs can take advantage of threads. For this reason, Java
clients get a benefit not present in the C API: Java clients don't need to take any special scheduling
action to receive the events generated by the DNS-SD APIs. As soon as an asynchronous operation is
initiated, the listener object will immediately begin receiving events, delivered "by magic," as it were,
on a different thread automatically created for this purpose. Of course, all magic comes at some cost,
and the cost is that the client code needs to be thread-safe. The moment a client thread calls
DNSSD.browse(), the listener object may start receiving events, running on another thread, even
before the DNSSD.browse() call has returned to the caller. For this reason, even though the
DNSSDService object is returned as the result of the DNSSD.browse() call, it is also passed as the first
parameter in listener object methods, so that those methods can get reliable access to that value if
they need it (for example, to stop the operation once they've received the result they need). Don't
make the mistake of writing client code that calls DNSSD.browse() and places the result into some
global or class variable, and then writing listener object methods that make use of the value in that
variable. Frequently, the listener object methods will be invoked so quickly that they will be running
before the main thread has done its assignment, resulting in the listener object methods accessing
the value of the variable before it has been set.

Another issue to be aware of is that some other Java APIs have multithreading restrictions. For
example, if you're writing Swing/AWT GUI code, it's important to remember that Swing components
can be accessed by only one thread at a time. Generally, this thread is the event-dispatching thread.
If you don't heed this warning, and you make Swing calls from other threads, then your program will
be unreliable and is likely to fail randomly in mysterious ways. Since the typical purpose of a
BrowseListener object is to update the user interface in response to services coming and going on
the network, and since BrowseListener events are delivered asynchronously as they happen, on their
own thread, this presents a small dilemma. How can a BrowseListener method legally perform
Swing/AWT user interface operations? The solution is that the BrowseListener should use
SwingUtilities.invokeAndWait to cause the event to be handled synchronously on the AWT event
dispatching thread, where it can safely make user interface calls. The tic-tac-toe programming
example at the end of this chapter demonstrates how to do this. There is also some sample code in
the Clients/Java folder of Apple's Darwin mDNSResponder project. That code defines helper classes
with names like SwingBrowseListener, which act as intermediaries between the raw DNS-SD events,
delivered on their own background threads, and your own listener routines, which need to run on the
AWT event-dispatching thread if they're going to make user interface calls. These helper objects
receive the raw DNS-SD events on your behalf and then schedule your listener method to be
executed on the AWT event-dispatching thread. Similar techniques can be used to accommodate
other packages that have their own multithreading restrictions.

In this section, you will survey the com.apple.dnssd package.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.1.1. The DNSSD Class

The factory class com.apple.dnssd.DNSSD is the workhorse of the Java DNS-SD API. You never
instantiate objects of this class but instead call one of these public static methods:

static DNSSDRegistration register(java.lang.String serviceName, java.lang.String

regType, int port, com.apple.dnssd.RegisterListener listener)

static DNSSDRegistration register(int flags, int ifIndex, java.lang.String serviceName,

java.lang.String regType, java.lang.String domain, java.lang.String host, int port,

com.apple.dnssd.TXTRecord txtRecord, com.apple.dnssd.Register-Listener listener)

static DNSSDService browse(java.lang.String regType, com.apple.dnssd.Browse-Listener

listener)

static DNSSDService browse(int flags, int ifIndex, java.lang.String regType,

java.lang.String domain, com.apple.dnssd.BrowseListener listener)

static DNSSDService resolve(int flags, int ifIndex, java.lang.String serviceName,

java.lang.String regType, java.lang.String domain, com.apple.dnssd.ResolveListener

listener)

By now, with knowledge of the dns-sd command-line tool and the C API, the register/browse/resolve
operations should be quite familiar. One difference to be aware of is that, whereas the
DNSServiceDiscovery C API follows the established Berkeley Sockets convention that port numbers
are always given in network byte order, the standard Java networking APIs use port numbers in host
integer byte order, and the DNSServiceDiscovery Java API adheres to that established Java
convention. Another difference you will notice is that the Java API has two register methods and two
browse methods. Whereas the C API always requires you to pass the full set of parameters for any
given call (passing zero or NULL to indicate default values), the Java API makes use of method
overloading to provide variants. If you don't want to limit browsing to a particular interface, you're
happy to let the system pick the domain(s) to browse, and you don't need to specify any special
flags, then you can just leave out those parameters completely and use the simpler version of the
browse() method.

static DNSSDService enumerateDomains(int flags, int ifIndex,

com.apple.dnssd.DomainListener listener)

static DNSSDService queryRecord(int flags, int ifIndex, java.lang.String serviceName,

int rrtype, int rrclass, com.apple.dnssd.QueryListener listener)

static void reconfirmRecord(int flags, int ifIndex, java.lang.String fullName, int

rrtype, int rrclass, byte[] rdata)

These three methods provide access to some of the more specialized DNS-SD functionality:
enumerating the list of wide-area domains recommended for this network, querying for a specific
individual named DNS Resource Record Set (RRSet), and signaling to the daemon that you believe a
particular DNS Resource Record in its cache may be stale and out of date. The way they work is
exactly equivalent to their counterparts in the C API.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As a simple example, you can browse for a service of type _example._tcp from the command line
using:

dns-sd -B _example._tcp

In a Java program, you can accomplish the same task using a call to DNSSD.browse, as shown in the
example below, where myBrowseListener is an instance of a class that implements the
BrowseListener interface:

DNSSDService b = DNSSD.browse("_example._tcp", myBrowseListener);

The result of the DNSSD.browse() call is a reference to the newly created DNSSDService object, which
you need to keep so that you can call b.stop() when it's time to stop the ongoing operation. If you
never call b.stop(), then the asynchronous operation you've initiated will run forever, consuming
network bandwidth, memory, and CPU time until your program eventually exits! Typically, a program
would call DNSSD.browse() when a user brings up a window to browse the network, and call b.stop(
) when the user closes that window.

It is common for the object making the DNSSD.browse call to implement the BrowseListener interface
itself, in which case, you would substitute this in place of myBrowseListener.

In addition to the classes detailed above, the DNSSD class contains the following utility methods:

constructFullName(java.lang.String serviceName, java.lang.String regType,

java.lang.String domain)

getIfIndexForName(java.lang.String ifName)

getNameForIfIndex(int ifIndex)

DNS-SD uses structured service names, containing an instance name, a service type, and a domain.
In the on-the-wire format used in DNS packets, the three components are concatenated into a single,
fully qualified DNS name. If you need to mix and match the service-oriented DNS-SD APIs with
conventional low-level DNS APIs, you'll need to know the right fully qualified DNS name to use for a
particular service. The constructFullName() call builds the correct fully qualified DNS name from
DNS-SD's serviceName, regtype, and domain. The name is also properly escaped according to the
standard DNS conventions; for example, if the instance name contains a dot (.), then it will appear
as (\.) in the escaped DNS name, as required by the standard DNS APIs.

On machines with multiple physical interfaces, DNS-SD allows you to optionally restrict registering,
browsing, and resolving to a single physical interface. To do this, you pass an interface index value
when making the API calls. Because Java has historically not provided APIs for working with interface
indexes, the Java DNS-SD API provides a couple of helper functions, getIfIndexForName() and
getNameForIfIndex(), which convert from an interface name to its index value, and vice versa.

The DNSSD class also includes constants (of type public final static int) that are used in various

http://lib.ommolketab.ir
http://lib.ommolketab.ir

places by the API. For example, when you register a service, if a different service of that type already
exists with the same name, Multicast DNS will normally pick a new unique name for you
automatically. If, instead, you would like the service registration to simply fail and signal an error so
that you can write your own code to select a new name, then you would pass the flag value
NO_AUTO_RENAME when calling DNSSD.register().

8.1.2. The Listener Interfaces

With most DNS-SD operations, you don't want to block and wait for a response. You will generally
issue a request and pass in a handle to an object that implements the appropriate listener interface.
This listener will then be called when interesting events occur, such as discovery of an instance of the
service type you're looking for.

8.1.2.1. BaseListener

All of the interfaces in the com.apple.dnssd package extend BaseListener. As a result, every listener
must implement the operationFailed method:

operationFailed(com.apple.dnssd.DNSSDService service, int errorCode)

If an asynchronous operation encounters a failure condition, then the listener's operationFailed()
method is called. These kinds of failures are rare. For example, one contrived way you could
deliberately cause the operationFailed() method to be called would be to start a DNS-SD operation
and then kill the background daemon with a Unix kill -9 command. Currently, under normal
circumstances, the only asynchronous failure that applications may reasonably need to expect are
name conflicts for service registrations. If a program registers a service using the NO_AUTO_RENAME
flag, and the computer subsequently joins a network where a service of the same type with that
name already exists, then the program will get informed via an operationFailed() callback that it's
service registration had to be cancelled, and if it wants to continue advertising, then it should pick a
new name and try again. (If the program didn't specify NO_AUTO_RENAME, then its service registration
will be automatically renamed on its behalf, and it will be notified of the new name via a
serviceRegistered callback instead.)

Each asynchronous operation (e.g., register, browse, resolve) has its corresponding Listener interface
(e.g., RegisterListener, BrowseListener, ResolveListener).

8.1.3. DNSSDException

The DNSSDException class is used to report DNS-SD error conditions. This exception generally
indicates a programming error and is not expected to occur during normal program operation. (The
only exceptional condition a program should be prepared to deal with during normal operation are
name conflicts for advertised services, and those events are reported asynchronously via
operationFailed or serviceRegistered callbacks.)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Just as with all Java exceptions, your exception handler can use getMessage() to get a string
describing the nature of the error, and it can use printStackTrace() to show you where the error
occurred. If you want to find the actual error code from the daemon, you can use the DNSSDException
class's getErrorCode() method. Table 8-1 shows error codes returned by the mdnsd daemon.

Table 8-1. Error codes returned by the Java DNS-SD API

Error Code

NO_ERROR 0

UNKNOWN -65537

NO_SUCH_NAME -65538

NO_MEMORY -65539

BAD_PARAM -65540

BAD_REFERENCE -65541

BAD_STATE -65542

BAD_FLAGS -65543

UNSUPPORTED -65544

NOT_INITIALIZED -65545

ALREADY_REGISTERED -65547

NAME_CONFLICT -65548

INVALID -65549

INCOMPATIBLE -65551

BAD_INTERFACE_INDEX -65552

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.2. Using the APIs

In this section, you will see quick examples of performing specific tasks using the Java APIs . You will
begin by registering a service and verifying that it is being advertised correctly by using the dns-sd
command-line tool. Next, you will browse using Java code to discover the service you just registered,
and resolve the service to get the target host and port number. The final example in this section
revisits registering a service, but this time with attached attributes, stored in the service's TXT
record.

8.2.1. Registering a Service

There are two steps you must take to register a service:

Call DNSSD.register() using one of the two available signatures.1.

Provide a class that implements the RegisterListener interface.2.

8.2.1.1. The DNSSD.register() call

The first step can be as simple as a single line of code:

DNSSDRegistration r = DNSSD.register("Moët & Chandon", "_example._tcp", 9099, this);

This advertises a service of type _example._tcp, which is listening on port 9099, with the instance
name Moët & Chandon. Remember that instance names are not restricted like conventional DNS
hostnames. Service instance names can contain uppercase, lowercase, spaces, punctuation, accented
characters, and even non-roman characters like Kanji.

The return value from calling DNSSD.register() is a DNSSDRegistration object. DNSSDRegistration
extends DNSSDService, so you can use the stop() method when it is time to stop advertising the
service.

You can also add additional records to a registered service, and you can get a reference to the
service's primary TXT record if you need to update that record to contain new data:

DNSRecord addRecord(int flags, int rrType, byte[] rData, int ttl)
DNSRecord getTXTRecord()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Most applications don't need to use the calls, but one well-known example that does is iChat, which
adds the user's image icon as an additional record and updates the service's TXT record each time
the user's status message changes.

The register() method might throw a DNSSDException, which must be caught. In our example
program, the only reason you'd get an exception would be if you had an illegal parameter because of
a typing mistake, say, "_txp" where it should say "_tcp." Using printStackTrace() in your exception
handler can help you track down and debug this kind of mistake.

Before you compile this code, you first need to make sure that the calling object (this) implements
the required RegisterListener interface.

8.2.1.2. The RegisterListener

To fulfill the requirement for a RegisterListener, you could create a whole new class especially for
this purpose, but usually that is not necessary. Usually, the object responsible for registering a
service is also the natural place to handle events pertaining to that registration, so all you have to do
is add serviceRegistered() and operationFailed() methods to that class and declare that it now
implements the RegisterListener interface.

In this current example, name conflicts should be handled automatically for us because we don't use
NO_AUTO_RENAME, so we don't expect the operationFailed() method to be called at all. If it is called,
it just prints a message to the standard error output to help us debug the code and find out what
went wrong.

The serviceRegistered() method in our example will print a message to standard output displaying
the advertised service's name, type, and domain. Note that the service's name may not be the name
we asked for, if that name is already in use. Indeed, many programs don't specify a name at all, just
passing in an empty string for the name and letting DNS-SD automatically use the system-wide
default name, handling name conflicts as necessary.

public void serviceRegistered(DNSSDRegistration registration, int flags,
 String serviceName, String regType, String domain)
 {
 System.out.println("Registered Name : " + serviceName);
 System.out.println(" Type : " + regType);
 System.out.println(" Domain: " + domain);
 }

It's important to understand that in the dynamic world of networking, success at one moment in time
is not a guarantee of continued future success in perpetuity. The serviceRegistered callback
indicates that, at this moment, the service is being advertised on the network under the indicated
name. Over the lifetime of a long-running program, the program should expect that it is quite
possible that the name may change, and the serviceRegistered() method may be called again with

http://lib.ommolketab.ir
http://lib.ommolketab.ir

new data. After the initial probing and announcement of the chosen unique service name, that name
may subsequently change as a result of both internal and external factors.

The internal factor is explicit user action. If you registered your service using an empty string for the
name so that your service uses the system-wide default name, and the user subsequently decides to
change the system-wide default name, then she doesn't need to quit and relaunch your server for it
to get the new name. The name is updated live, and you will get a new serviceRegistered()
callback telling you the new name.

The external factor that may cause your service name to change is connecting to a new network. If
the user starts your server on his laptop when it's not connected to any network, and then (perhaps
hours or days later) connects to a network where your chosen name is already in use, one of two
things will happen. If you specified NO_AUTO_RENAME, then your operationFailed method will be called.
If you did not specify NO_AUTO_RENAME, then Multicast DNS will automatically select a new unique
name for you and notify you with a new serviceRegistered callback.

The importance of the instance name provided in the serviceRegistered() callback depends on
what kind of program you're writing. For a background process like an FTP server with no user
interface, the program itself may not care at all what name is being advertised, as long as users can
find it and connect. For a server program with a user interface, it may want to find out its advertised
name simply for cosmetic reasons, to display it in a status window.

The kind of program for which the reported instance name is most interesting is the kind that's both
a client and a server. For example, iChat advertises its presence on the network using Bonjour and,
at the same time, browses to find other iChat instances on the network. One of the instances it
discovers will be itself, but naturally iChat wants its Bonjour window to show only other users on the
network, not itself. By comparing discovered instances against its own name as reported in the
serviceRegistered() callback, iChat can tell when it has discovered itself on the network and filter
that particular discovered entity from the list displayed in its Bonjour window.

Some developers have asked why DNS-SD doesn't do this filtering automatically. The problem is that
the definition of self is slippery. Does self mean the same machine? Same user ID? Same process?
Same thread? Automatically preventing discovery of all services on the same machine would be
wrong. Some background processes use a web-based configuration interface, which they advertise
with DNS-SD. If DNS-SD couldn't discover services on the same machine, these local background
processes wouldn't show up in Safari on that machine. This would create the nonsensical situation
where you could configure the process from any machine on the network except the one where the
process is actually running! Another problem scenario is multiuser Unix machines, which can have
more than one user logged on at a time. If DNS-SD couldn't discover services on the same machine,
two users logged onto the same Unix machine from different X Window terminals would be effectively
invisible to each other. Preventing discovery of services that happen to be running with the same
user ID causes a similar set of inadvertent problems.

Automatically filtering discovery of services advertised from the same Unix process ID also doesn't
necessarily give the results you might want. Sometimes the entity doing the browsing and the entity
doing the advertising aren't the same process, even though they are conceptually related. For
example, in Mac OS X Printer Sharing, the UI code showing the list of network printers doesn't want
to show local printers that are being shared on the network by this machine, but the code displaying
the print dialog user interface is not the same Unix process as the background process advertising
those printers. In this case, automatic filtering based on Unix process IDs would fail to provide the
desired result.

Ultimately, the only way to meet the needs of all applications is to report the names of advertised

http://lib.ommolketab.ir
http://lib.ommolketab.ir

services in the serviceRegistered() callback and let applications that require some kind of self-
filtering implement that filtering, in the way that makes sense for that particular application.

For the most part, though, most applications don't need any kind of self-filtering. If you find yourself
thinking that you don't want to discover entities on the same machine, the question to ask is, "Why?"
Usually, the answer will be that there's a different way to discover and communicate with entities on
the same machine. If that's the case, the question to ask is, "Why?" Why have two different ways of
doing the same thing, one for local entities and a different one for remote entities? Sometimes there
are valid performance arguments for making local entities a special case, but in most cases, it is just
a historical design accident. In most cases, instead of having two different mechanisms for doing
roughly the same thing, each with their own bugs, features, and idiosyncrasies, it is smarter to have
one mechanismbuilt on IPand concentrate on making that IP-based mechanism fully featured,
reliable, and efficient.

8.2.1.3. Complete TestRegister program listing

Example 8-1 shows a complete listing, which you can compile with javac, to advertise a named
service using DNS-SD. This program uses new ServerSocket(0); to get a unique port number
assigned by the system so that it can advertise it via DNS-SD, but it does not include code to actually
provide any real service on this port. In this example, the program just waits for 30 seconds doing
nothing, then calls b.stop() and exits.

Example 8-1. Java program to advertise a named service using DNS-SD

import java.net.*;
import com.apple.dnssd.*;

class TestRegister implements RegisterListener
 {
 // Display error message on failure
 public void operationFailed(DNSSDService service, int errorCode)
 {
 System.out.println("Registration failed " + errorCode);
 }

 // Display registered name on success
 public void serviceRegistered(DNSSDRegistration registration, int flags,
 String serviceName, String regType, String domain)
 {
 System.out.println("Registered Name : " + serviceName);
 System.out.println(" Type : " + regType);
 System.out.println(" Domain: " + domain);
 }

 // Do the registration
 public TestRegister(String name, int port)
 throws DNSSDException, InterruptedException

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 {
 System.out.println("Registration Starting");
 System.out.println("Requested Name: " + name);
 System.out.println(" Port: " + port);
 DNSSDRegistration r = DNSSD.register(name, "_example._tcp", port, this);
 Thread.sleep(30000); // Wait thirty seconds, then exit
 System.out.println("Registration Stopping");
 r.stop();
 }

 public static void main(String[] args)
 {
 if (args.length > 1)
 {
 System.out.println("Usage: java TestRegister name");
 System.exit(-1);
 }
 else
 {
 try
 {
 // If name specified, use it, else use default name
 String name = (args.length > 0) ? args[0] : null;
 // Let system allocate us an available port to listen on
 ServerSocket s = new ServerSocket(0);
 new TestRegister(name, s.getLocalPort());
 }
 catch(Exception e)
 {
 e.printStackTrace();
 System.exit(-1);
 }
 }
 }
 }

8.2.1.4. Testing the registration program

The easiest way to verify that the program successfully registers a service is to start up dns-sd and
start browsing for services of type _example._tcp using the command:

% dns-sd -B _example._tcp
Browsing for _example._tcp

Open a separate terminal window and compile TestRegister.java:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

% javac TestRegister.java

Now you can run the TestRegister program by executing:

% java TestRegister "My Chosen Name"
Registration Starting
Requested Name: My Chosen Name
 Port: 51619

After a one-second pause, when it has confirmed that the name is indeed unique, it also prints:

Registered Name : My Chosen Name
 Type : _example._tcp.
 Domain: local.

In the first terminal window, where you are running dns-sd, you will now see that "My Chosen Name"
appears. After 30 seconds, the program will display "Registration Stopping" and exit, and in the dns-
sd window you should see a remove event as the named service goes away.

With our TestRegister program, we can also demonstrate name conflict detection and automatic
renaming. Run the TestRegister program again in the second terminal window and, while it is still
running, quickly open a third terminal window and run the same command again:

% java TestRegister "My Chosen Name"
Registration Starting
Requested Name: My Chosen Name
 Port: 51625
Registered Name : My Chosen Name (2)
 Type : _example._tcp.
 Domain: local.

This time you'll see that, because the name "My Chosen Name" was already in use for a different
advertised service, the second instance was automatically renamed to "My Chosen Name (2)."

One detail worth noting here is that a conflict is detected because we have two different instances of
our program running, listening on different ports. Two different instances of a service can't use the
same name; when browsing, the user would see only one service instance instead of two, and one or
the other service would be rendered inaccessible. However, if instead of having two different
instances on different ports, we had just one service instance running, listening on one port, and we
simply registered that service twice with the exact same parameterssame name, same type, same

http://lib.ommolketab.ir
http://lib.ommolketab.ir

host, and same portthen no conflict would be reported. Registering the same service twice is
arguably a programming error, but it's not a conflict because the two registrations are in complete
agreement. The API permits duplicate registrations like this to allow for proxy servers where
(perhaps for fault-tolerance reasons) a given service may be deliberately advertised by multiple
proxies.

This simple example highlighted the code you need to write to register an instance of a service in a
Java application. What you have done is advertised that a named service of a particular type is
available on this machine at the specified port. You have not set up the code to listen on that port or
to react when your service is contacted. The section "An Extended Example: Tic-Tac-Toe" at the end
of this chapter will take you through this additional step.

8.2.2. Browsing for Services

Browsing to discover our advertised service using the dns-sd tool is very easy, and doing so using
Java code is barely any harder. To browse, you need to perform two steps similar to those you just
used to register your service:

Call DNSSD.browse() using one of the two available signatures.

Provide a class that implements the BrowseListener interface.

As with the DNSSD.register() example, it is common for the object initiating the browse operation to
be the one that wants to receive the results, so it implements the BrowseListener interface itself and
specifies itself (this) as the listener object in the DNSSD.browse() call.

To function as a BrowseListener, a class must implement operationFailed(), serviceFound(), and
serviceLost(). Under normal circumstances, the operation-Failed() method will never be
invoked. In our example program, the serviceFound() and serviceLost() methods just print out
information to show the events they receive, very much like the output of dns-sd.

public void serviceFound(DNSSDService browser, int flags, int ifIndex,
 String name, String regType, String domain)
 {
 System.out.println("Add flags:" + flags + ", ifIndex:" + ifIndex +
 ", Name:" + name + ", Type:" + regType + ", Domain:" + domain);
 }

Whenever a new instance of a service is discovered, serviceFound() will be called and will write a
line to standard out beginning with the word "Add," followed by the name, type, and domain.

The serviceLost() method takes the exact same parameter list as serviceFound(). The only
difference in our example program is that instead of printing "Add" it prints "Rmv" (which stands for
remove).

Example 8-2 shows a complete listing, which you can compile with javac, to browse for services using
DNS-SD. In this example, the program just runs for 30 seconds, displaying add and remove events

http://lib.ommolketab.ir
http://lib.ommolketab.ir

as they arrive, and then calls b.stop() and exits. Of course, in a real program, you wouldn't use a
fixed timeout like 30 seconds. You'd start the browse operation running when the user brings up a
browsing window, and stop it when they close the browsing window.

Example 8-2. Java program to browse for services using DNS-SD

import com.apple.dnssd.*;

class TestBrowse implements BrowseListener
 {
 // Display error message on failure
 public void operationFailed(DNSSDService service, int errorCode)
 {
 System.out.println("Browse failed " + errorCode);
 System.exit(-1);
 }

 // Display services we discover
 public void serviceFound(DNSSDService browser, int flags, int ifIndex,
 String name, String regType, String domain)
 {
 System.out.println("Add flags:" + flags + ", ifIndex:" + ifIndex +
 ", Name:" + name + ", Type:" + regType + ", Domain:" + domain);
 }

 // Print a line when services go away
 public void serviceLost(DNSSDService browser, int flags, int ifIndex,
 String name, String regType, String domain)
 {
 System.out.println("Rmv flags:" + flags + ", ifIndex:" + ifIndex +
 ", Name:" + name + ", Type:" + regType + ", Domain:" + domain);
 }

 public TestBrowse() throws DNSSDException, InterruptedException
 {
 System.out.println("TestBrowse Starting");
 DNSSDService b = DNSSD.browse("_example._tcp", this);
 System.out.println("TestBrowse Running");
 Thread.sleep(30000);
 System.out.println("TestBrowse Stopping");
 b.stop();
 }

 public static void main(String[] args)
 {
 try { new TestBrowse(); }
 catch(Exception e)
 {
 e.printStackTrace();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 System.exit(-1);
 }
 }
 }

After you've compiled the TestBrowse program, we'll demonstrate it using our TestRegister program.
Open three terminal windows. In the first, run java TestRegister "My Chosen Name." In the second,
run that same command a second time. In the third window, a second or two later, run java
TestBrowse:

% java TestBrowse
TestBrowse Starting
Add flags:3 ifIndex:5 Name:My Chosen Name Type:_example._tcp. Domain:local.
Add flags:2 ifIndex:5 Name:My Chosen Name (2) Type:_example._tcp. Domain:local.
TestBrowse Running
Rmv flags:0 ifIndex:5 Name:My Chosen Name Type:_example._tcp. Domain:local.
Rmv flags:0 ifIndex:5 Name:My Chosen Name (2) Type:_example._tcp. Domain:local.
TestBrowse Stopping

You'll see that TestBrowse finds our two service instances, "My Chosen Name" and "My Chosen Name
(2)."

Another thing to notice is that, even though TestBrowse prints out "TestBrowse Running" on the very
next line of the program after the DNSSD.browse() call, the services are discovered so fast that
they're printed even before that line gets to execute.

Each TestRegister process exits 30 seconds after it was started, and we see the "Rmv" line printed
for each service as it goes away. Finally, after running for 30 seconds itself, TestBrowse calls b.stop(
) and exits.

You can now advertise a named service and discover a list of named services. The third step, to
actually use a service, is to resolve its name to its current address and port number.

8.2.3. Resolving a Service

With the dns-sd command-line tool, we use dns-sd -L to resolve a named service. DNS-SD
deliberately separates browsing from resolving. When you browse, you get a list of names, not IP
addresses. This is because, when using link-local addresses or DHCP, IP addresses can change from
day to day. When using dynamically allocated ports and NAT gateways, TCP port numbers for a given
service can change from day to day, too. A program that stores a service's IP address and port
number in a preference file on disk may well find that tomorrow that address and port number no
longer work. What remains stable for a given service instance is its name, and the Java DNS-SD API
provides the DNSSD.resolve() call to translateat time of usefrom service instance name to the
correct target host and port number for that service at that moment.

Resolving follows the same pattern as registering and browsing: first call DNSSD.resolve() and then

http://lib.ommolketab.ir
http://lib.ommolketab.ir

provide a class that implements the ResolveListener interface. To function as a ResolveListener, a
class must implement operationFailed() and serviceResolved(). Under normal circumstances,
the operationFailed() method will never be invoked.

Our serviceResolved() example just prints out the information it's given. When you register a
service using the dns-sd tool, you can specify a list of "key=value" attributes, which are stored in the
service's DNS TXT record. Our serviceResolved() method prints out those, too:

for (int i = 0; i < txtRecord.size(); i++)
 {
 String key = txtRecord.getKey(i);
 String value = txtRecord.getValueAsString(i);
 if (key.length() > 0) System.out.println("\t" + key + "=" + value);
 }

This example, for illustrative purposes, iterates through the whole TXT record, printing out every key
it finds. In a real program, you would write code to retrieve just the specific named keys that you
care about, using txTRecord.contains("key") when you just want to know if a given key is present,
and txTRecord.getValue("key") or txtrecord.getValueAsString("key") to retrieve the value
associated with a given named key.

Example 8-3 shows a complete listing, which you can compile with javac, to resolve a named service
using DNS-SD. In the case of a multi-homed host, you may receive more than one successful resolve
event (e.g., if the same named service is reachable via both Ethernet and wireless). In this example,
the program just runs for five seconds, displaying resolve events as they arrive, and then calls
r.stop() and exits. Ideally, in a real program, instead of using a fixed timeout, you'd present some
indication to the user that the program was attempting to connect and let the user decide how long
to wait before clicking the Cancel button to give up.

Example 8-3. Java program to resolve a named DNS-SD service

import com.apple.dnssd.*;

class TestResolve implements ResolveListener
 {
 // Display error message on failure
 public void operationFailed(DNSSDService service, int errorCode)
 {
 System.out.println("Resolve failed " + errorCode);
 System.exit(-1);
 }

 // Display information when service is resolved
 public void serviceResolved(DNSSDService resolver, int flags, int ifIndex,
 String fullName, String hostName, int port, TXTRecord txtRecord)
 {
 System.out.println("Service Resolved: " + hostName + ":" + port);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 System.out.println("Flags: " + flags +
 ", ifIndex: " + ifIndex + ", FQDN: " + fullName);

 for (int i = 0; i < txtRecord.size(); i++)
 {
 String key = txtRecord.getKey(i);
 String value = txtRecord.getValueAsString(i);
 if (key.length() > 0) System.out.println("\t" + key + "=" + value);
 }
 }

 public TestResolve(String name, String domain)
 throws DNSSDException, InterruptedException
 {
 System.out.println("TestResolve Starting");
 DNSSDService r = DNSSD.resolve(0, DNSSD.ALL_INTERFACES,
 name, "_example._tcp", domain, this);
 System.out.println("TestResolve Running");
 Thread.sleep(5000);
 System.out.println("TestResolve Stopping");
 r.stop();
 }

 public static void main(String[] args)
 {
 if (args.length != 2)
 {
 System.out.println("Usage: java TestResolve name domain");
 System.exit(-1);
 }
 else
 {
 try
 {
 new TestResolve(args[0], args[1]);
 }
 catch(Exception e)
 {
 e.printStackTrace();
 System.exit(-1);
 }
 }
 }
 }

After you've compiled TestResolve, we'll test it by registering a fake service using the dns-sd
command:

% dns-sd -R "My Chosen Name" _example._tcp local 123 key=val anotherkey=anotherval

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Now you can use your TestResolve program to look up that service:

% java TestResolve "My Chosen Name" local
TestResolve Starting
Service Resolved: mymac.local.:123
Flags: 0, ifIndex: 5, FQDN: My\032Chosen\032Name._example._tcp.local.
 key=val
 anotherkey=anotherval
TestResolve Running
TestResolve Stopping

As with the browsing example, it's common for the resolve to succeed so quickly that the program
gets the result before it's even had time to print out its "TestResolve Running" line. The reason DNS-
SD operations are asynchronous is not because they usually take a long time, but because
occasionally they might, particularly when there's some kind of network problem; and it is precisely
at those timeswhen struggling with other problemsthat the user will be least forgiving toward your
program if it decides to lock up and become unresponsive.

You'll see that TestResolve finds our registered service on this host, listening (we pretend) on port
123, with two TXT record attributes, key=val and anotherkey=anotherval.

Now that you know not only how to register, browse, and resolve, but also how to access named
attributes in the TXT record, it's time to revisit our registration example and add a TXT record full of
attributes to it.

8.2.4. Registering a Service with DNS TXT Record Attributes

To register a service with DNS TXT record attributes, we first need to create the TXT record:

TXTRecord txtRecord = new TXTRecord();
txtRecord.set("txtvers", "1");
txtRecord.set("status", "ready");
txtRecord.set("difficulty", "medium");

By convention, the first key in a TXT record should be a txtvers key, indicating the version that a
client needs to have implemented in order to usefully understand the following keys in this TXT
record. After the initial txtvers key, the rest of the keys are up to your protocol-creating imagination.

In this example, all the values we set are textual strings, but (despite the name) DNS TXT records
are perfectly capable of holding raw binary data, too. If you have some binary data you wish to
attach as an attribute, you can do so directly using the alternate form of the TXtrecord.set()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

method, which takes a raw byte array as the value:

TXTRecord.set(java.lang.String key, byte[] value)

You can store any binary data you wish, so you shouldn't feel compelled to use something like
hexadecimal characters or Base-64 encoding to turn binary data into text before you store it as a
key/value attribute. The only constraint is that key/value attributes are intended for storing small
amounts of additional information about a service. The length of the key name, plus the length of the
value data, cannot add up to more than 254 bytesyet another reason not to double the size of your
binary data by needlessly turning it into hexadecimal text.

As your program evolves over time, you may define new key names with new meanings. If you're
careful, you can generally write code to be forward- and backward-compatible. If a client tries to
fetch a given named key from a TXT record and finds it missing, it can conclude that it is talking to an
older server that predates the invention of that key, and most of the time, it's possible to write a
client to take the right steps to work with that older server. If a client communicates with a newer
server that defines new key names that were invented after the client was written, the client will
generally ignore those new keysthe client only calls getValue() for key names it knows about, and
the rest simply go unnoticed. However, if you find in the future that you have no choice but to make
a change to your TXT record keys that is so drastic that compatibility is simply not going to be
possible, you should specify that these new TXT records have a new version number in their txtvers
key. This way, as long as you had the foresight to write your first clients so they check the txtvers
key and display an error message if it does not contain a version number they understand (i.e., 1 in
the first clients), this can help make the upgrade transition to the newer version of the protocol
easier. Instead of simply failing mysteriously, the client can at least tell the user that she should
upgrade to a newer version. Most protocol designers hope they never have to make a change so
drastic that it breaks compatibility, but should you find yourself in this situation, the txtvers key can
help make the transition go a little more smoothly.

To register a service with TXT record attributes, you need to use the longer version of
DNSSD.register() with the additional parameters:

DNSSDRegistration r = DNSSD.register(0, DNSSD.ALL_INTERFACES,
 name, "_example._tcp", null, // Name, type, and domain
 null, port, // Target host and port
 txtRecord, this); // TXT record and listener object

If you compare this new usage of register() with the one presented in the section "Registering a
Service," you will note that there are several extra parameters, and that most of them have the
value zero or NULL to signify that DNS-SD should use sensible default values.

Example 8-4 shows a complete listing for registering a service with added TXT record attributes. The
change compared to Example 8-1 is indicated by the comment, "New code to register with TXT record
begins here." In this example, as in Example 8-1, the program just waits for 30 seconds doing
nothing, then calls b.stop() and exits.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 8-4. Java program to advertise a service with TXT record
attributes

import java.net.*;
import com.apple.dnssd.*;

class TestRegisterWithAttributes implements RegisterListener
 {
 // Display error message on failure
 public void operationFailed(DNSSDService service, int errorCode)
 {
 System.out.println("Registration failed " + errorCode);
 }

 // Display registered name on success
 public void serviceRegistered(DNSSDRegistration registration, int flags,
 String serviceName, String regType, String domain)
 {
 System.out.println("Registered Name : " + serviceName);
 System.out.println(" Type : " + regType);
 System.out.println(" Domain: " + domain);
 }

 // Do the registration
 public TestRegisterWithAttributes(String name, int port)
 throws DNSSDException, InterruptedException
 {
 System.out.println("Registration Starting");
 System.out.println("Requested Name: " + name);
 System.out.println(" Port: " + port);

 // New code to register with TXT record begins here
 TXTRecord txtRecord = new TXTRecord();
 txtRecord.set("txtvers", "1");
 txtRecord.set("status", "ready");
 txtRecord.set("difficulty", "medium");
 DNSSDRegistration r = DNSSD.register(0, DNSSD.ALL_INTERFACES,
 name, "_example._tcp", null, // Name, type, and domain
 null, port, // Target host and port
 txtRecord, this); // TXT record and listener object
 // New code to register with TXT record ends

 Thread.sleep(30000); // Wait thirty seconds, then exit
 System.out.println("Registration Stopping");
 r.stop();
 }

 public static void main(String[] args)
 {
 if (args.length > 1)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 {
 System.out.println("Usage: java TestRegisterWithAttributes name");
 System.exit(-1);
 }
 else
 {
 try
 {
 // If name specified, use it, else use default name
 String name = (args.length > 0) ? args[0] : null;
 // Let system allocate us an available port to listen on
 ServerSocket s = new ServerSocket(0);
 new TestRegisterWithAttributes(name, s.getLocalPort());
 }
 catch(Exception e)
 {
 e.printStackTrace();
 System.exit(-1);
 }
 }
 }
 }

After you've compiled TestRegisterWithAttributes, we'll demonstrate it using our TestBrowse
program. In one terminal window, run:

% java TestBrowse

While that's still running, in another terminal window, run:

% java TestRegisterWithAttributes "My Chosen Name"

In the TestBrowse window, you should see the service added. Now, while TestRegisterWithAttributes
is still running, run TestResolve in a third terminal window:

% java TestResolve "My Chosen Name" local
TestResolve Starting
Service Resolved: mymac.local.:52658
Flags: 0, ifIndex: 5, FQDN: My\032Chosen\032Name._example._tcp.local.
 txtvers=1
 status=ready
 difficulty=medium
TestResolve Running

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TestResolve Stopping

8.2.5. Adding, Updating, and Removing Additional Records

A standard DNS-SD service is described by two DNS records: an SRV record, giving target host and
port number, and a TXT record, containing zero or more key/value attributes. For almost all
applications, advertising a service with these two records is all that's needed. However, there are
certain applicationsiChat being the prime examplethat have extra requirements. For the benefit of
applications like this, DNS-SD provides some additional specialized APIs to add, update, and remove
additional records.

DNS-SD allows applications to add additional DNS records to an existing service registration using
DNSSDRegistration's addRecord method. iChat attaches a small JPEG image to each advertised
service, containing the user's icon or picture, and because this is too large to fit in a TXT record
attribute, iChat attaches it as an additional record. Adding records like this is something that should
not be done indiscriminately because of the cost in increased network traffic, but in the case of iChat,
it is the most appropriate way to communicate a user's icon to all the other iChat clients on the local
network.

Calling addRecord() returns a DNSRecord object, which supports two operations, update() and
remove(). If you need to change the data in the record (as iChat does when the user changes the
icon), then you can use update() to provide new data to replace the old data in the record.

When adding a record, you need to specify the DNS type of the record. The original DNS types are
listed in RFC 1035, and newer types are given in later RFCs. For example, the SRV record type (type
33) is specified in RFC 2782. You can also find the list of currently defined DNS types at
http://www.iana.org/assignments/dns-parameters. On many systems, you can also find the defined
types listed in one of the C header files, such as /usr/include/nameser.h or /usr/include/dns_sd.h.
The current IANA list of DNS types is shown in Table 8-2.

Table 8-2. DNS resource record types

TYPE Value Meaning Reference

A 1 A host address RFC1035

NS 2 An authoritative name server RFC1035

MD 3 A mail destination (OBSOLETE; use MX) RFC1035

MF 4 A mail forwarder (OBSOLETE; use MX) RFC1035

CNAME 5 The canonical name for an alias RFC1035

SOA 6 Marks the start of a zone of authority RFC1035

MB 7 A mailbox domain name (EXPERIMENTAL) RFC1035

MG 8 A mail group member (EXPERIMENTAL) RFC1035

http://www.iana.org/assignments/dns-parameters
http://lib.ommolketab.ir
http://lib.ommolketab.ir

TYPE Value Meaning Reference

MR 9 A mail rename domain name (EXPERIMENTAL) RFC1035

NULL 10 A null RR (EXPERIMENTAL) RFC1035

WKS 11 A well-known service description RFC1035

PTR 12 A domain name pointer RFC1035

HINFO 13 Host information RFC1035

MINFO 14 Mailbox or mail list information RFC1035

MX 15 Mail exchange RFC1035

TXT 16 Text strings RFC1035

RP 17 For Responsible Person RFC1183

AFSDB 18 For AFS Data Base location RFC1183

X25 19 For X.25 PSDN address RFC1183

ISDN 20 For ISDN address RFC1183

RT 21 For Route Through RFC1183

NSAP 22 For NSAP address, NSAP style A record RFC1706

NSAP-PTR 23

SIG 24 For security signature RFC2535 RFC3755 RFC4034

KEY 25 For security key RFC2535 RFC3755 RFC4034

PX 26 X.400 mail mapping information RFC2163

GPOS 27 Geographical Position RFC1712

AAAA 28 IP6 Address Thomson

LOC 29 Location Information Vixie

NXT 30 Next Domain (OBSOLETE) RFC2535, RFC3755

EID 31 Endpoint Identifier Patton

NIMLOC 32 Nimrod Locator Patton

SRV 33 Server Selection RFC2782

ATMA 34 ATM Address Dobrowski

NAPTR 35 Naming Authority Pointer RFC2168, RFC2915

KX 36 Key Exchanger RFC2230

CERT 37 CERT RFC2538

A6 38 A6 RFC2874

DNAME 39 DNAME RFC2672

SINK 40 SINK Eastlake

OPT 41 OPT RFC2671

MR 9 A mail rename domain name (EXPERIMENTAL) RFC1035

NULL 10 A null RR (EXPERIMENTAL) RFC1035

WKS 11 A well-known service description RFC1035

PTR 12 A domain name pointer RFC1035

HINFO 13 Host information RFC1035

MINFO 14 Mailbox or mail list information RFC1035

MX 15 Mail exchange RFC1035

TXT 16 Text strings RFC1035

RP 17 For Responsible Person RFC1183

AFSDB 18 For AFS Data Base location RFC1183

X25 19 For X.25 PSDN address RFC1183

ISDN 20 For ISDN address RFC1183

RT 21 For Route Through RFC1183

NSAP 22 For NSAP address, NSAP style A record RFC1706

NSAP-PTR 23

SIG 24 For security signature RFC2535 RFC3755 RFC4034

KEY 25 For security key RFC2535 RFC3755 RFC4034

PX 26 X.400 mail mapping information RFC2163

GPOS 27 Geographical Position RFC1712

AAAA 28 IP6 Address Thomson

LOC 29 Location Information Vixie

NXT 30 Next Domain (OBSOLETE) RFC2535, RFC3755

EID 31 Endpoint Identifier Patton

NIMLOC 32 Nimrod Locator Patton

SRV 33 Server Selection RFC2782

ATMA 34 ATM Address Dobrowski

NAPTR 35 Naming Authority Pointer RFC2168, RFC2915

KX 36 Key Exchanger RFC2230

CERT 37 CERT RFC2538

A6 38 A6 RFC2874

DNAME 39 DNAME RFC2672

SINK 40 SINK Eastlake

OPT 41 OPT RFC2671

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TYPE Value Meaning Reference

APL 42 APL RFC3123

DS 43 Delegation Signer RFC3658

SSHFP 44 SSH Key Fingerprint RFC-ietf-secsh-dns-05.txt

IPSECKEY 45 IPSECKEY RFC4025

RRSIG 46 RRSIG RFC3755

NSEC 47 NSEC RFC3755

DNSKEY 48 DNSKEY RFC3755

UINFO 100 IANA-Reserved

UID 101 IANA-Reserved

GID 102 IANA-Reserved

UNSPEC 103 IANA-Reserved

TKEY 249 Transaction Key RFC2930

TSIG 250 Transaction Signature RFC2845

IXFR 251 Incremental transfer RFC1995

AXFR 252 Transfer of an entire zone RFC1035

MAILB 253 Mailbox-related RRs (MB, MG, or MR) RFC1035

MAILA 254 Mail agent RRs (OBSOLETE; see MX) RFC1035

ANY 255 A request for any record(s) RFC1035

When adding or updating records, it is your responsibility to make sure that the byte array data you
provide is properly formatted for the DNS record type in question. You can specify the DNS time to
live (TTL), though for most applications, it's most sensible to simply pass zero and let DNS-SD use its
default TTL.

On the receiving side, to read records other than the standard SRV and TXT pair (which are retrieved
using the resolve call), clients use DNSSD's queryRecord() method, providing a QueryListener object
to receive the asynchronous results. A QueryListener object needs to implement the queryAnswered(
) method:

queryAnswered(DNSSDService query, int flags, int ifIndex,
 String fullName, int rrtype, int rrclass, byte[] rdata, int ttl)

Whenever an answer becomes available, the queryAnswered() method is called. Due to a quirk of
the API, the queryAnswered() method is also called if a previously valid answer expires. You can tell
if the answer is coming or going by checking bit 1 (value 2) of the flags field (the
kDNSServiceFlagsAdd flag of the C API). If (flags & 2) is nonzero, then a new answer is being
added; if zero, then a previous answer is being removed.

APL 42 APL RFC3123

DS 43 Delegation Signer RFC3658

SSHFP 44 SSH Key Fingerprint RFC-ietf-secsh-dns-05.txt

IPSECKEY 45 IPSECKEY RFC4025

RRSIG 46 RRSIG RFC3755

NSEC 47 NSEC RFC3755

DNSKEY 48 DNSKEY RFC3755

UINFO 100 IANA-Reserved

UID 101 IANA-Reserved

GID 102 IANA-Reserved

UNSPEC 103 IANA-Reserved

TKEY 249 Transaction Key RFC2930

TSIG 250 Transaction Signature RFC2845

IXFR 251 Incremental transfer RFC1995

AXFR 252 Transfer of an entire zone RFC1035

MAILB 253 Mailbox-related RRs (MB, MG, or MR) RFC1035

MAILA 254 Mail agent RRs (OBSOLETE; see MX) RFC1035

ANY 255 A request for any record(s) RFC1035

When adding or updating records, it is your responsibility to make sure that the byte array data you
provide is properly formatted for the DNS record type in question. You can specify the DNS time to
live (TTL), though for most applications, it's most sensible to simply pass zero and let DNS-SD use its
default TTL.

On the receiving side, to read records other than the standard SRV and TXT pair (which are retrieved
using the resolve call), clients use DNSSD's queryRecord() method, providing a QueryListener object
to receive the asynchronous results. A QueryListener object needs to implement the queryAnswered(
) method:

queryAnswered(DNSSDService query, int flags, int ifIndex,
 String fullName, int rrtype, int rrclass, byte[] rdata, int ttl)

Whenever an answer becomes available, the queryAnswered() method is called. Due to a quirk of
the API, the queryAnswered() method is also called if a previously valid answer expires. You can tell
if the answer is coming or going by checking bit 1 (value 2) of the flags field (the
kDNSServiceFlagsAdd flag of the C API). If (flags & 2) is nonzero, then a new answer is being
added; if zero, then a previous answer is being removed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The queryAnswered() method is given the raw bytes of the DNS resource record; it is the
responsibility of the queryAnswered() method to know how to interpret the DNS record type it
requested.

There is another style of update that iChat performs. Your status message is stored as a key/value
attribute in the service's TXT record, and whenever you update your status message, iChat doesn't
de-register its service and register a new one; instead, it just updates the TXT record to contain the
new data. To perform this kind of update, you don't need to add another TXT record to the service.
All services implicitly have a TXT record, even if you didn't specify one. If you don't specify a TXT
record when registering a service, then the service automatically gets an empty TXT record
containing no key/value attributes. (Strictly speaking, to comply with the DNS rules for the format of
DNS TXT records, the service gets a TXT record containing a single empty string.)

Before you can use the update method to provide new data, you need an object upon which to invoke
that method. To get the object representing the service's standard TXT record, upon which to
perform updates, the Java DNS-SD API provides the DNSSDRegistration.getTXTRecord() method.
The update method requires you to provide properly formatted DNS TXT record data, and this is
where the TXtrecord's getrawBytes() method comes in handy:

DNSRecord record = registration.getTXTRecord();
byte rawbytes[] = txtRecord.getRawBytes();
record.update(0, rawbytes, 0);

As with other DNS-SD methods, passing zero for the flags and zero for the record TTL causes
sensible default values to be used.

Example 8-5 shows a complete listing that you can compile with javac, which first registers a service
with the default empty TXT record, then at ten-second intervals updates the TXT record to say
status=ready, status=steady, and finally, status=go. The change compared to Example 8-1 is
indicated by the comment, "New code to update TXT record begins here."

Example 8-5. Java program to advertise a service and update its TXT
record

import java.net.*;
import com.apple.dnssd.*;

class TestRegisterWithUpdates implements RegisterListener
 {
 // Display error message on failure
 public void operationFailed(DNSSDService service, int errorCode)
 {
 System.out.println("Registration failed " + errorCode);
 }

 // Display registered name on success
 public void serviceRegistered(DNSSDRegistration registration, int flags,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 String serviceName, String regType, String domain)
 {
 System.out.println("Registered Name : " + serviceName);
 System.out.println(" Type : " + regType);
 System.out.println(" Domain: " + domain);
 }

 // Do the registration
 public TestRegisterWithUpdates(String name, int port)
 throws DNSSDException, InterruptedException
 {
 System.out.println("Registration Starting");
 System.out.println("Requested Name: " + name);
 System.out.println(" Port: " + port);

 DNSSDRegistration r = DNSSD.register(name, "_example._tcp", port, this);

 // New code to update TXT record begins here

 TXTRecord txtRecord = new TXTRecord();
 txtRecord.set("txtvers", "1");

 Thread.sleep(10000); // Wait ten seconds before updating TXT record
 txtRecord.set("status", "Ready");
 System.out.println("Ready");
 r.getTXTRecord().update(0, txtRecord.getRawBytes(), 0);

 Thread.sleep(5000);
 txtRecord.set("status", "Steady");
 System.out.println("Steady");
 r.getTXTRecord().update(0, txtRecord.getRawBytes(), 0);

 Thread.sleep(5000);
 txtRecord.set("status", "Go");
 System.out.println("Go");
 r.getTXTRecord().update(0, txtRecord.getRawBytes(), 0);

 // New code to update TXT record ends

 Thread.sleep(30000); // Wait thirty seconds, then exit
 System.out.println("Registration Stopping");
 r.stop();
 }

 public static void main(String[] args)
 {
 if (args.length > 1)
 {
 System.out.println("Usage: java TestRegisterWithUpdates name");
 System.exit(-1);
 }
 else

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 {
 try
 {
 // If name specified, use it, else use default name
 String name = (args.length > 0) ? args[0] : null;
 // Let system allocate us an available port to listen on
 ServerSocket s = new ServerSocket(0);
 new TestRegisterWithUpdates(name, s.getLocalPort());
 }
 catch (Exception e)
 {
 e.printStackTrace();
 System.exit(-1);
 }
 }
 }
 }

Example 8-6 shows a complete listing that you can compile with javac, which resolves the named
service and then begins monitoring its TXT record for changes. The change compared to Example 8-1
is indicated by the comment, "New code to update TXT record begins here."

Example 8-6. Java program to monitor a TXT record for changes

import com.apple.dnssd.*;

class TestResolveWithMonitoring implements ResolveListener, QueryListener
 {
 private DNSSDService monitorQ = null;

 // Display error message on failure
 public void operationFailed(DNSSDService service, int errorCode)
 {
 System.out.println("Resolve failed " + errorCode);
 System.exit(-1);
 }

 public void queryAnswered(DNSSDService query, int flags, int ifIndex,
 String fullName, int rrtype, int rrclass, byte[] rdata, int ttl)
 {
 if ((flags & 2) != 0)
 {
 boolean blankPrinted = false;
 TXTRecord txtRecord = new TXTRecord(rdata);
 for (int i = 0; i < txtRecord.size(); i++)
 {
 String key = txtRecord.getKey(i);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 String value = txtRecord.getValueAsString(i);
 if (key.length() > 0)
 {
 if (!blankPrinted)
 {
 blankPrinted = true;
 System.out.println();
 }
 System.out.println("\t" + key + "=" + value);
 }
 }
 }
 }

 // Display information when service is resolved
 public void serviceResolved(DNSSDService resolver, int flags, int ifIndex,
 String fullName, String hostName, int port, TXTRecord txtRecord)
 {
 System.out.println("Service Resolved: " + hostName + ":" + port);
 System.out.println("Flags: " + flags +
 ", ifIndex: " + ifIndex + ", FQDN: " + fullName);

 // Now that we've got a resolve result,
 // start monitoring the TXT record and stop the resolve call.
 try { monitorQ = DNSSD.queryRecord(0, ifIndex, fullName, 16, 1, this); }
 catch (Exception e) { e.printStackTrace(); System.exit(-1); }
 resolver.stop();
 Thread.sleep(1);
 }

 public TestResolveWithMonitoring(String name, String domain)
 throws DNSSDException, InterruptedException
 {
 System.out.println("TestResolveWithMonitoring Starting");
 DNSSDService r = DNSSD.resolve(0, DNSSD.ALL_INTERFACES,
 name, "_example._tcp", domain, this);
 System.out.println("TestResolveWithMonitoring Running");
 Thread.sleep(30000);
 System.out.println("TestResolveWithMonitoring Stopping");
 if (monitorQ == null) r.stop();
 else monitorQ.stop();
 try { Thread.sleep(1); }
 catch (Exception e) { e.printStackTrace(); System.exit(-1); }
 }

 public static void main(String[] args)
 {
 if (args.length != 2)
 {
 System.out.println("Usage: java TestResolveWithMonitoring name dom");
 System.exit(-1);
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 else
 {
 try
 {
 new TestResolveWithMonitoring(args[0], args[1]);
 }
 catch (Exception e)
 {
 e.printStackTrace();
 System.exit(-1);
 }
 }
 }
 }

After you've compiled TestRegisterWithUpdates and TestResolveWithMonitoring, we can test them.
In one terminal window, run:

% java TestRegisterWithUpdates "My Chosen Name"

While that's still running, in another terminal window, run TestResolveWithMonitoring:

% java TestResolveWithMonitoring "My Chosen Name" local
TestResolveWithMonitoring Starting
Service Resolved: mymac.local.:54444
Flags: 0, ifIndex: 5, FQDN: My\032Chosen\032Name._example._tcp.local.
TestResolveWithMonitoring Running

 txtvers=1
 status=Ready

 txtvers=1
 status=Steady

 txtvers=1
 status=Go
TestResolveWithMonitoring Stopping

First, the TestResolveWithMonitoring client resolves the name. After it's discovered the target host
and port, it starts a query for the TXT record and stops the resolve. Now, each time the TXT record is
updated, the queryAnswered method gets called with the new data.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In the first version of the Java DNS-SD API there was a bug that if you stopped
one DNS-SD operation and then immediately started another, the new
operation could begin reusing the same underlying file descriptor before the
background thread had finished cleaning up. To avoid running into this bug
there are a couple of precautions you can take:

Use a THRead.sleep(1); after stopping any operation, to allow the
background thread to run and do its necessary cleanup.

If you have a sequence of code that starts and stops DNS-SD operations,
particularly in a listener callback method, write your code to start all the
new operations first, before it begins stopping old operations. That way
the kernel won't be tempted to reuse the same file descriptors, because at
the point that you start each new operation, the old operations haven't
been stopped yet, so the file descriptors are still in use and aren't eligible
to be recycled.

Now that we've built some toy one-page programs to demonstrate the concepts, it's time to write a
real program that actually does something.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.3. An Extended Example: Tic-Tac-Toe

Tic-tac-toe is a game ordinarily played on paper by two people sitting near each other. The board is a
three-by-three grid and usually one player marks squares using X's and the other using O's. The
players alternate marking the squares, trying to end up with three of their marked squares in a line
(i.e., across, down, or diagonally).

In the Zeroconf version, players register service instances of type _tic-tac-toe-ex._tcp and browse
for other players. The game program has two main classes, TicTacToe and GameBoard.

Class TicTacToe browses for other players and displays the list of what it finds. It also opens a
listening socket, advertises it with DNS-SD, and then fires off an independent background thread to
sit and wait for incoming connections.

Class GameBoard can get instantiated in two ways. If the user clicks on one of the discovered players
in the list, then we make a new GameBoard, and start a DNSSD.resolve() running for the named
service. When the newly created GameBoard object receives the serviceResolved() callback, it
connects to the specified host and port and begins playing the game, listing for messages received
over the network from the peer, and sending messages to the peer every time the user clicks in a
square. The other way a GameBoard can get instantiated is on the receiving end of a connection
request. If another user clicks on us in their list, then our TicTacToe background thread will receive
an incoming connection request. In this case it also makes a new GameBoard object, but in this case
no resolve-and-connect is needed, because the TCP connection is already open. A player can have
any number of active games, connected to different opponents, at once.

Figure 8-1 shows the TicTacToe class's browser window showing the list of discovered opponents on
the network.

Figure 8-1. Window displaying available opponents

Figure 8-2 shows a GameBoard window for a game in progress with a player called "Mike."

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 8-2. TicTacToe game board

Note that the purpose of this example is to demonstrate the Zeroconf-related aspects of writing a
Java program. As a result, this example does not try to implement the rules of tic-tac-toe; for
example, it does not enforce that the players are supposed to take turns clicking squares.

Each time you run the program, it asks the system for a new unallocated TCP port to listen on and
then advertises that port number to its peers using DNS-SD. One of the benefits of DNS-SD is that,
because it advertises port numbers as well as hostnames and addresses, programs are no longer
restricted to using fixed, hard-coded port numbers. This means you can write a program and it can
use any available port when run, instead of your having to apply to IANA to get a new well-known
port number reserved for every program you write. There are only 65,535 possible TCP port
numbers, and they'll run out quickly if every person in the world gets one reserved for every program
they write. In addition, even if you get a well-known port number reserved, you get only one, so that
doesn't help when you want to run two copies of your program on the same machine. You'll see that,
with the TicTacToe program, you can run as many copies as you like on the same machine, which
can be very helpful when testing, especially if you're working on your laptop computer on an airplane
and don't have a whole network of machines available.

Most Unix systems allocate dynamic TCP port numbers starting at 49152 and working upward. If you
have some kind of personal firewall running on your machine, ensure that it is configured to allow
incoming connections to high-numbered ports (49152-65535). Otherwise, the firewall will do exactly
what it is supposed to do: prevent your networking program from receiving any incoming connection
requests. Most firewall programs don't give you any feedback to tell you when they've silently
discarded an incoming connection request, so this can be quite frustrating to debug if your program
is failing and you don't realize that the personal firewall is the cause. The TicTacToe program window
title shows the port number it's listening on, so that you can cross-check with your firewall settings
and verify that your personal firewall is allowing the necessary packets through.

Our TicTacToe program calls DNSSD.register without specifying an instance name, so it automatically
gets the system default. When it gets the serviceRegistered callback, it updates the window title to
show its advertised name. You can try some experiments to see how Multicast DNS name conflict
detection works. If you run a second copy of the TicTacToe program on the same machine, you'll see
the second copy gets the same name with "(2)" appended. If you plug your Ethernet cable into a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

network where your name is already being advertised by another TicTacToe program, you'll see your
window title update to show a new name. You can also change the system default name while the
TicTacToe program is running, and you'll see that it gets informed of the new name and updates its
windows. On Mac OS X, you set the system default name by setting the "Computer Name" in the
Sharing Preferences.

The TicTacToe program also pays attention to its own advertised name in order to exclude itself from
the list of discovered games on the network.

Example 8-7 shows the source code for TicTacToe.java, and Example 8-8 shows the source code for
GameBoard.java. You can compile them both directly on the command line by typing javac
TicTacToe.java and then run the program by typing java TicTacToe, or you can use the Makefile
shown in Example 8-9. The Makefile builds the classes, placing them in a subdirectory called classes,
then makes a Java jar file from the classes, and finally runs the resulting jar file with java -jar
TicTacToe.jar.

Example 8-7. TicTacToe.java

import java.util.HashMap;
import java.nio.*;
import java.nio.channels.*;
import java.net.InetSocketAddress;
import javax.swing.*;
import javax.swing.event.*;
import com.apple.dnssd.*;

// Our TicTacToe object does the following:
// 1. It's a JFrame window. It's a DNSSD BrowseListener so it
// gets add and remove events to tell it what to show in the window,
// and a ListSelectionListener so it knows what the user clicked.
// 2. It listens for incoming connections. It opens a listening TCP
// socket and advertises the listening TCP socket with DNS-SD.
// It's our RegisterListener, so that it knows our advertised name:
// - To display it in the window title bar
// - To exclude it from the list of discovered peers on the network

// To safely call Swing routines to update the user interface,
// we have to call them from the Swing event-dispatching thread.
// To do this, we make little Runnable objects where necessary
// and pass them to SwingUtilities.invokeAndWait(). This makes
// their run() method execute on event-dispatching thread where
// it can safely make the calls it needs. For more details, see:
// <http://java.sun.com/docs/books/tutorial/uiswing/misc/threads.html>

public class TicTacToe extends JFrame implements Runnable,
 RegisterListener, BrowseListener, ListSelectionListener
 {
 public static void main(String[] args)
 {
 Runnable runOnSwingThread = new Runnable()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 { public void run() { new TicTacToe(); } };
 try { SwingUtilities.invokeAndWait(runOnSwingThread); }
 catch (Exception e) { e.printStackTrace(); }
 }

 public static final String ServiceType = "_tic-tac-toe-ex._tcp";
 public String myName;
 public HashMap activeGames;
 private DefaultListModel gameList;
 private JList players;
 private ServerSocketChannel listentingChannel;
 private int listentingPort;

 // NOTE: Because a TicTacToe is a JFrame, the caller MUST be running
 // on the event-dispatching thread before trying to create one.
 public TicTacToe()
 {
 super("Tic-Tac-Toe");
 try
 {
 // 1. Make the browsing window, and start browsing
 activeGames = new HashMap();
 gameList = new DefaultListModel();
 players = new JList(gameList);
 players.addListSelectionListener(this);
 getContentPane().add(new JScrollPane(players));
 setSize(200, 300);
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setVisible(true);
 DNSSD.browse(ServiceType, this);

 // 2. Make listening socket and advertise it
 listentingChannel = ServerSocketChannel.open();
 listentingChannel.socket().bind(new InetSocketAddress(0));
 listentingPort = listentingChannel.socket().getLocalPort();
 setTitle(listentingPort + " registering");
 DNSSD.register(null, ServiceType, listentingPort, this);

 // 3. If we sit here and hog the event-dispatching thread
 // the whole UI will freeze up, so instead we create a new
 // background thread to receive incoming connection requests.
 new Thread(this).start();
 }
 catch (Exception e) { e.printStackTrace(); }
 }

 public void operationFailed(DNSSDService service, int errorCode)
 {
 System.out.println("DNS-SD operation failed " + errorCode);
 System.exit(-1);
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // If our name changes while we're running, we update window title.
 // In the event that we're registering in multiple domains (Wide-Area
 // DNS-SD) we'll use the local (mDNS) name for display purposes.
 public void serviceRegistered(DNSSDRegistration sd, int flags,
 String serviceName, String regType, String domain)
 {
 if (!domain.equalsIgnoreCase("local.")) return;
 myName = serviceName;
 Runnable r = new Runnable()
 { public void run() { setTitle(listentingPort + " " + myName); } };
 try { SwingUtilities.invokeAndWait(r); }
 catch (Exception e) { e.printStackTrace(); }
 }

 // Our serviceFound and serviceLost callbacks just make Adder and
 // Remover objects that safely run on the event-dispatching thread
 // so they can modify the user interface
 public void serviceFound(DNSSDService browser, int flags, int ind,
 String name, String type, String domain)
 {
 if (name.equals(myName)) return; // Don't add ourselves to the list
 DiscoveredInstance x = new DiscoveredInstance(ind, name, domain);
 try { SwingUtilities.invokeAndWait(new Adder(x)); }
 catch (Exception e) { e.printStackTrace(); }
 }

 public void serviceLost(DNSSDService browser, int flags, int ind,
 String name, String regType, String domain)
 {
 DiscoveredInstance x = new DiscoveredInstance(ind, name, domain);
 try { SwingUtilities.invokeAndWait(new Remover(x)); }
 catch (Exception e) { e.printStackTrace(); }
 }

 // The Adder and Remover classes update the list of discovered instances
 private class Adder implements Runnable
 {
 private DiscoveredInstance add;
 public Adder(DiscoveredInstance a) { add = a; }
 public void run() { gameList.addElement(add); }
 }

 private class Remover implements Runnable
 {
 private DiscoveredInstance rmv;
 public Remover(DiscoveredInstance r) { rmv = r; }
 public void run()
 {
 String name = rmv.toString();
 for (int i = 0; i < gameList.size(); i++)
 {
 if (gameList.getElementAt(i).toString().equals(name))

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 { gameList.removeElementAt(i); return; }
 }
 }
 }

 // When the user clicks in our list, if we already have a
 // GameBoard we bring it to the front, otherwise we make
 // a new GameBoard and initiate a new outgoing connection.
 public void valueChanged(ListSelectionEvent event)
 {
 int selected = players.getSelectedIndex();
 if (selected != -1)
 {
 DiscoveredInstance x =
 (DiscoveredInstance)players.getSelectedValue();
 GameBoard game = (GameBoard)activeGames.get(x.toString());
 if (game != null) game.toFront();
 else x.resolve(new GameBoard(this, x.toString(), null));
 }
 }

 // When we receive an incoming connection, GameReceiver reads the
 // peer name from the connection and then makes a new GameBoard for it.
 private class GameReceiver implements Runnable
 {
 private SocketChannel sc;
 public GameReceiver(SocketChannel s) { sc = s; }
 public void run()
 {
 try
 {
 ByteBuffer buffer = ByteBuffer.allocate(4 + 128);
 CharBuffer charBuffer = buffer.asCharBuffer();
 sc.read(buffer);
 int length = buffer.getInt(0);
 char[] c = new char[length];
 charBuffer.position(2);
 charBuffer.get(c, 0, length);
 String serviceName = new String(c);
 GameBoard game = new GameBoard(TicTacToe.this, serviceName, sc);
 }
 catch (Exception e) { e.printStackTrace(); }
 }
 }

 // Our run() method just sits and waits for incoming connections
 // and hands each one off to a new thread to handle it.
 public void run()
 {
 try
 {
 while (true)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 {
 SocketChannel sc = listentingChannel.accept();
 if (sc != null) new Thread(new GameReceiver(sc)).start();
 }
 }
 catch (Exception e) { e.printStackTrace(); }
 }

 // Our inner class DiscoveredInstance has two special properties
 // It has a custom toString() method to display discovered
 // instances the way we want them to appear, and a resolve()
 // method, which asks it to resolve the named service it represents
 // and pass the result to the specified ResolveListener
 public class DiscoveredInstance
 {
 private int ind;
 private String name, domain;

 public DiscoveredInstance(int i, String n, String d)
 { ind = i; name = n; domain = d; }

 public String toString()
 {
 String i = DNSSD.getNameForIfIndex(ind);
 return(i + " " + name + " (" + domain + ")");
 }

 public void resolve(ResolveListener x)
 {
 try { DNSSD.resolve(0, ind, name, ServiceType, domain, x); }
 catch (DNSSDException e) { e.printStackTrace(); }
 }
 }
 }

Example 8-8. GameBoard.java

import java.nio.*;
import java.nio.channels.SocketChannel;
import java.net.InetSocketAddress;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import com.apple.dnssd.*;

public class GameBoard extends JFrame implements ResolveListener, Runnable
 {
 private TicTacToe tictactoe;
 private String name, host;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 private int port;
 SocketChannel channel;

 // If we're passed in a SocketChannel, it means we received an
 // incoming connection, so we should start receiving clicks from it.
 // If channel is null, it means our user initiated an outgoing connection,
 // so we'll get a serviceResolved callback to tell us when to proceed.
 public GameBoard(TicTacToe t, String n, SocketChannel c)
 {
 super(n);
 tictactoe = t;
 name = n;
 channel = c;
 tictactoe.activeGames.put(n, this);
 getContentPane().setLayout(new GridLayout(3,3,6,6));
 getContentPane().setBackground(Color.BLACK);
 for (int i = 0; i<9; i++) getContentPane().add(new SquareGUI(this, i));
 setSize(200,200);
 setVisible(true);
 if (channel != null) new Thread(this).start();
 }

 public void operationFailed(DNSSDService service, int errorCode)
 {
 System.out.println("DNS-SD operation failed " + errorCode);
 System.exit(-1);
 }

 // When serviceResolved is called, we send our name to the other end
 // and then fire off our thread to start receiving the opponent's clicks.
 public void serviceResolved(DNSSDService resolver, int flags, int ifIndex,
 String fullName, String theHost, int thePort, TXTRecord txtRecord)
 {
 host = theHost;
 port = thePort;
 ByteBuffer buffer = ByteBuffer.allocate(4 + 128);
 CharBuffer charBuffer = buffer.asCharBuffer();
 buffer.putInt(0, tictactoe.myName.length());
 charBuffer.position(2);
 charBuffer.put(tictactoe.myName);
 try
 {
 InetSocketAddress socketAddress = new InetSocketAddress(host, port);
 channel = SocketChannel.open(socketAddress);
 channel.write(buffer);
 new Thread(this).start();
 }
 catch (Exception e) { e.printStackTrace(); }

 resolver.stop();
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // The GameBoard's run() method just sits in a loop receiving
 // clicks from the opponent and marking the indicated squares.
 public void run()
 {
 try
 {
 while (true)
 {
 ByteBuffer buffer = ByteBuffer.allocate(4);
 channel.read(buffer);
 int n = buffer.getInt(0);
 if (n >= 0 && n < 9)
 {
 try { SwingUtilities.invokeAndWait(new SquareMarker(n)); }
 catch (Exception e) { e.printStackTrace(); }
 }
 }
 }
 catch (Exception e) { } // Connection reset by peer!
 }

 // When we get a message from the opponent, we make a SquareMarker
 // object and run it on the event-dispatching thread so it can
 // safely do Swing calls to update the user interface
 class SquareMarker implements Runnable
 {
 private int num;
 public SquareMarker(int n) { num = n; }
 public void run()
 {
 SquareGUI s = (SquareGUI)getContentPane().getComponent(num);
 s.setText("<html><h1>O</h1></html>");
 s.setEnabled(false);
 }
 }

 // Each GameBoard contains nine JButtons displayed in a 3x3 grid
 class SquareGUI extends JButton implements ActionListener
 {
 private int num;
 public SquareGUI(GameBoard b, int n) { num = n; addActionListener(this); }
 public void actionPerformed(ActionEvent event)
 {
 // Mark our square with an X
 setText("<html><h1>X</h1></html>");
 setEnabled(false);
 // And tell the other end to mark the square too
 ByteBuffer buffer = ByteBuffer.allocate(4);
 buffer.putInt(0, num);
 try { channel.write(buffer); }
 catch (Exception e) { e.printStackTrace(); }
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 }

Example 8-9. Makefile to build Tic-Tac-Toe example

run: TicTacToe.jar
 java -jar TicTacToe.jar &

clean:
 rm -rf classes TicTacToe.jar

TicTacToe.jar: classes/TicTacToe.class
 @echo "Main-Class: TicTacToe" > Main-Class.txt
 jar cmf Main-Class.txt TicTacToe.jar -C classes .
 @rm Main-Class.txt

Building TicTacToe.class causes javac automatically
to find and build other necessary classes too
classes/TicTacToe.class: TicTacToe.java GameBoard.java
 mkdir -p classes
 javac -encoding UTF8 -d classes TicTacToe.java

You have now seen how to implement a basic service in Java and advertise it using DNS-SD. The
TicTacToe application registers and browses for services of type _tic-tac-toe-ex._tcp. You have
resolved services and provided the underlying plumbing to send and receive messages. The
remainder of the code managed the GUI elements.

With just a few lines of code, you can add DNS-SD advertising and browsing to your own Java
programs.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 9. Using the CFNetwork and Cocoa
APIs
In the previous three chapters, you have learned about techniques and APIs that work on multiple
platforms. In Chapter 6, we covered the general concepts and the dns-sd command-line tool, which
apply to all the supported platforms. In Chapter 7 we covered the DNSServiceDiscovery C API, which
is available on all the supported platforms. In Chapter 8, you saw the Java API, which lets you write a
Java program that will run on any supported platform with Java installed.

If you're writing a program in C that's built around a Core Foundation CFRunLoop as its central event-
handling mechanism, or a program in Objective-C that's built around a Cocoa RunLoop as its central
event-handling mechanism, you have two options. The first option is that you can use the standard C
DNSServiceDiscovery API and add those active operations as event sources to your RunLoop, as
shown in the Core Foundation and Cocoa examples toward the end of Chapter 7. If you're
comfortable mixing standard C in with your Core Foundation-style or Cocoa-style programming, this
is fine. However, if you prefer to stick to a single programming style, then you have a second option:
Apple has provided additional wrapper APIs that follow the Core Foundation and Cocoa idioms.

In this chapter, you will look at how to perform the basic DNS-SD operations of registering a service,
browsing for services, and resolving a service using these Mac OS X-specific APIs, which Apple has
provided for the benefit of Core Foundation and Cocoa programmers. As always, the key to creating a
good Zeroconf application is in understanding and correctly implementing asynchronous calls. When
programming using the CFNetServices API, you pass in a reference to the callback function, much as
you did in Chapter 7 with the plain C API. When programming using the Cocoa NSNetServices API,
you specify a delegate object that will be notified of interesting events, much as you did in Chapter 8
with the Java API. Just as in the Java API, the delegate or event listener object is usually self.
Although the exact mechanisms are different, you use them in analogous ways. If you have not
already done so, you will find it helpful to read the section "Asynchronous Programming Model" in
Chapter 7 before working with either the CFNetServices or the Cocoa NSNetServices APIs.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.1. Using the CFNetServices API

You will access Bonjour functionality in CFNetwork using instances of CFNetService and CFNetServiceBrowser
objects. There are nearly 40 functions in the API for working with Network Services objects, with descriptive
names that convey their purpose. For example, CFNetServiceCreate and CFNetServiceRegister are used
respectively to create an instance of CFNetService and then use it to register a particular service. Rather than
repeat the details provided in the API documentation for each function, this section provides a summary and a
quick example for how you use the CFNetServices API to register, browse, and resolve.

CFNetServices is a component of the CFNetwork framework, and, despite the "CF" prefix, these frameworks
actually live within the CoreServices umbrella framework, not the Core Foundation umbrella framework. When
creating a new project in Xcode, if you want to use the CFNetServices API, you can either use the "new
CoreServices tool" project template or you can manually add the CoreServices framework to your project.
CoreServices implicitly includes all of Core Foundation, so you don't need to add both.

9.1.1. Advertising a Service in CFNetServices

To publish a service using the CFNetServices API, you need to create and register a CFNetService . In the code
in Example 9-1 (shown later), you create a service like this:

registeredService = CFNetServiceCreate(kCFAllocatorDefault,
 CFSTR(""), // Domain
 CFSTR("_example._tcp"), // Type
 CFSTR("CF Example"), // Name
 thePort); // Port number in host byte order

More generally, you call the function CFNetServiceCreate() and pass in the CFAllocator to use when
allocating memory for the service you are creating. In the example, we use kCFAllocatorDefault . You also
pass in a CFStringRef for the domain. Although you cannot pass in NULL , you can and should pass in the
empty string unless there is a particular domain on which you want to register the service. You also pass in
CFStringRef instances representing the type and name of the service. In this example, they are
_example._tcp and CF Example , respectively. Finally, you pass in a UInt32 giving the port number in host byte
order. Since the port you get from a sockaddr structure is an opaque identifier in network byte order, this
means you have to swap it to host byte order before passing it to CFNetServiceCreate() . When testing your
code on a PowerPC machine, it's easy to get this wrong and not notice, because on a PowerPC, network byte
order is the same as host byte order, so the distinction is a purely abstract one. If you have a bug, you will
probably discover it when you compile your code for Intel, where network byte order and host byte order are
different.

Another common mistake is to get the byte order wrong at both ends of the connection. Suppose you have a
service listening on port 123. If you forget to convert the sockaddr 's sin_port to host byte order before
calling CFNetServiceCreate() , then when you compile your code for Intel, you'll actually be advertising port
31488. If the client at the resolving end also gets the byte order backward, then it will swap 31488 back to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

123 and successfully connect, and everything will appear to be working correctly. It's only when a PowerPC
client tries to resolve and connect to a service on Intel, an Intel client tries to resolve and connect to a service
on PowerPC, or you try to interoperate with someone else's client or service that doesn't have your byte order
bug, that you'll discover problems. The easiest way to find these problems is using the dns-sd tool. After you
compile your program for Intel, run it on an Intel-based machine and use dns-sd -L to verify that you're really
advertising the port number you intend, not the byte-swap of the port number. This kind of byte order
mismatch problem is not specific to advertising services using the DNS-SD APIsit can happen any time you're
passing 16-bit or larger integer values on the wire between machines.

Once you have a CFNetServiceRef returned by CFNetServiceCreate() , you then call CFNetServiceSetClient(
) to associate a callback function, which is used to report errors that may arise. In the MyRegisterCallBack()
function below, you would put in any code needed to handle and report errors and follow it with a call to
CFNetServiceCancel() to cancel the registration of the service instance. You will usually want the service to
run asynchronously and should schedule the CFNetService on a run loop using
CFNetServiceScheduleWithRunLoop() .

The CFNetServiceRegister() routine only calls your callback if an error occurs. If you also want to receive a
callback on success too (so you can find out what name was registered), you need to use the newer
CFNetServiceRegisterWithOptions() call, which is available on Mac OS X 10.4 and later (or you can use the
lower-level DNSServiceDiscovery C API, if your product needs to be able to run on 10.3).

The steps described above are used to create and configure a CFNetService . Registration is accomplished with
a call to the function CFNetServiceRegister() . All of this is shown in Example 9-1 .

Example 9-1. Publishing a service with CFNetServices

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

#include <CoreServices/CoreServices.h>

CFNetServiceRef gRegisteredService;

static void MyCancelRegistration(void)
 {
 CFNetServiceUnscheduleFromRunLoop(gRegisteredService,
 CFRunLoopGetCurrent(), kCFRunLoopCommonModes);
 CFNetServiceSetClient(gRegisteredService, NULL, NULL);
 CFRelease(gRegisteredService);
 gRegisteredService = NULL;
 }

static void MyRegisterCallBack(CFNetServiceRef theService, CFStreamError* error, void* info)
 {
 if (error->domain == kCFStreamErrorDomainNetServices)
 {
 switch(error->error)
 {
 case kCFNetServicesErrorCollision:
 MyCancelRegistration();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 fprintf(stderr, "kCFNetServicesErrorCollision occurred\n");
 break;
 default:
 MyCancelRegistration();
 fprintf(stderr, "MyRegisterCallBack (domain = %d, error = %ld)\n",
 error->domain, error->error);
 break;
 }
 }
 }

static Boolean MyRegisterService(u_short thePort)
 {
 CFNetServiceClientContext context = { 0, NULL, NULL, NULL, NULL };
 CFStreamError error;
 Boolean result;

 printf("MyRegisterService advertising service on port %d\n", htons(thePort));

 gRegisteredService = CFNetServiceCreate(kCFAllocatorDefault,
 CFSTR(""), CFSTR("_example._tcp"), CFSTR("CF Example"), // Domain, type, name
 thePort);
 assert(gRegisteredService != NULL);

 CFNetServiceSetClient(gRegisteredService, MyRegisterCallBack, &context);

 CFNetServiceScheduleWithRunLoop(gRegisteredService,
 CFRunLoopGetCurrent(), kCFRunLoopCommonModes);

 result = CFNetServiceRegister(gRegisteredService, &error);
 if (result == false) //clean up
 {
 MyCancelRegistration();
 fprintf(stderr, "CFNetServiceRegister returned (domain = %d, error = %ld)\n",
 error.domain, error.error);
 }
 return result;
 }

int main(int argc, char* argv[])
 {
 CFSocketRef s = CFSocketCreate(kCFAllocatorDefault,
 PF_INET, SOCK_STREAM, IPPROTO_TCP,
 kCFSocketNoCallBack, NULL, NULL);
 struct sockaddr_in sa = { sizeof(sa), AF_INET };
 CFDataRef addr = CFDataCreateWithBytesNoCopy(kCFAllocatorDefault,
 (const UInt8*)&sa, sizeof(sa), kCFAllocatorNull);
 CFSocketSetAddress(s, addr);
 CFRelease(addr);
 addr = CFSocketCopyAddress(s);
 memmove(&sa, CFDataGetBytePtr(addr), sizeof(sa));
 CFRelease(addr);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 MyRegisterService(ntohs(sa.sin_port));

 CFRunLoopRun();
 return 0;
 }

This code can easily be built in Xcode by selecting File New Project... and choosing the option to make a
new CoreServices Tool (near the bottom of the list of options). Open main.c , paste in Example 9-1 's source
code, and click the button to build and run the project. Your program should now be publishing a service of
type _example._tcp with name CF Example . You should be able to discover your registered service using the
code listed in Example 9-2 , or by running dns-sd -B _example._tcp .

9.1.2. Browsing in CFNetServices

To browse for DNS-SD services, you will need to create a CFNetServiceBrowser . A CFNetServiceBrowserRef is
returned by a call to the function CFNetServiceBrowserCre-ate() . As was the case when programming with
the socket-based DNSServiceDiscovery C API, one of the parameters you will need to pass into this function is
the callback function. In Example 9-2 , the callback function is the MyBrowseCallBack() function.

Example 9-2. Browsing for services using CFNetServices

#include <CoreServices/CoreServices.h>

CFNetServiceBrowserRef gBrowserService;
CFMutableDictionaryRef gServiceDictionary;

typedef struct
 {
 int refCount;
 char name[64];
 char type[24];
 char domain[1005];
 } MyService;

CFStringRef MyCreateDictionaryKey(CFNetServiceRef service)
 {
 return CFStringCreateWithFormat(kCFAllocatorDefault, 0, CFSTR("%@.%@%@"),
 CFNetServiceGetName(service),
 CFNetServiceGetType(service),
 CFNetServiceGetDomain(service));
 }

static void MyAddService(CFNetServiceRef service, CFOptionFlags flags)
 {
 CFStringRef dictKey = MyCreateDictionaryKey(service);
 MyService *s;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // We need to do reference counting of each service because if the computer
 // has two network interfaces set up, like Ethernet and AirPort, you may
 // get notified about the same service twice, once from each interface.
 // You probably don't want both items to be shown to the user.
 // On Mac OS X 10.4 and later, the CFNetServices code does this reference
 // counting for you, so you'll get at most one "add" event for a given
 // name/type/domain, but if your code is also going to run on Mac OS X
 // 10.3, you'll want to implement the reference counting as shown here.

 if (CFDictionaryGetValueIfPresent(gServiceDictionary, dictKey, (const void **)&s)
 == false)
 {
 s = malloc(sizeof(MyService));
 assert(s != NULL);
 s->refCount = 0;
 CFStringGetCString(CFNetServiceGetName (service), s->name, sizeof(s->name),
 kCFStringEncodingUTF8);
 CFStringGetCString(CFNetServiceGetType (service), s->type, sizeof(s->type),
 kCFStringEncodingUTF8);
 CFStringGetCString(CFNetServiceGetDomain(service), s->domain, sizeof(s->domain),
 kCFStringEncodingUTF8);
 CFDictionarySetValue(gServiceDictionary, dictKey, (const void **)s);
 printf("ADD %s.%s%s\n", s->name, s->type, s->domain);
 }

 s->refCount++;
 CFRelease(dictKey);
 }

static void MyRemoveService(CFNetServiceRef service, CFOptionFlags flags)
 {
 CFStringRef dictKey = MyCreateDictionaryKey(service);
 MyService *s;

 if (CFDictionaryGetValueIfPresent(gServiceDictionary, dictKey, (const void **)&s))
 {
 s->refCount--;
 if (s->refCount == 0)
 {
 CFDictionaryRemoveValue(gServiceDictionary, dictKey);
 printf("RMV %s.%s%s\n", s->name, s->type, s->domain);
 free(s);
 }
 }

 CFRelease(dictKey);
 }

static void MyBrowseCallBack(CFNetServiceBrowserRef theService,
 CFOptionFlags flags, CFTypeRef service, CFStreamError* err, void* info)
 {
 if (err->error)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 fprintf(stderr, "MyBrowseCallBack %d,%ld\n", err->domain, err->error);
 else if (flags & kCFNetServiceFlagRemove)
 MyRemoveService((CFNetServiceRef)service, flags);
 else
 MyAddService((CFNetServiceRef)service, flags);
 }

static Boolean MyBrowseService()
 {
 CFNetServiceClientContext context = { 0, NULL, NULL, NULL, NULL };
 CFStreamError error;
 Boolean result;

 gServiceDictionary = CFDictionaryCreateMutable(kCFAllocatorDefault,
 0, &kCFCopyStringDictionaryKeyCallBacks, NULL);
 assert(gServiceDictionary != NULL);

 gBrowserService = CFNetServiceBrowserCreate(kCFAllocatorDefault,
 MyBrowseCallBack, &context);
 assert(gBrowserService != NULL);

 CFNetServiceBrowserScheduleWithRunLoop(gBrowserService,
 CFRunLoopGetCurrent(), kCFRunLoopCommonModes);

 result = CFNetServiceBrowserSearchForServices(gBrowserService,
 CFSTR(""), CFSTR("_example._tcp"), &error);

 if (result == false) //clean up
 {
 CFNetServiceBrowserUnscheduleFromRunLoop(gBrowserService,
 CFRunLoopGetCurrent(), kCFRunLoopCommonModes);
 CFRelease(gBrowserService);
 gBrowserService = NULL;
 fprintf(stderr, "CFNetServiceBrowserSearchForServices returned %d, %ld)\n",
 error.domain, error.error);
 }

 return result;
 }

int main(int argc, char* argv[])
 {
 MyBrowseService();
 CFRunLoopRun();
 return 0;
 }

For the most part, you will want to perform your searches asynchronously so that your application is not
blocked while the search is in progress. You use the returned CFNetServiceBrowser in the asynchronous mode
by calling the function CFNetSer-viceBrowserScheduleWithRunLoop() . Without making this call before

http://lib.ommolketab.ir
http://lib.ommolketab.ir

searching for domains and services, you will be searching in the synchronous mode and the functions used to
search will block until there are search results. The callback function is called when there are search results,
but in the synchronous mode you need to stop the search by calling CFNetServiceBrowserStopSearch() from
a separate thread.

After starting the browser in asynchronous mode, you search for domains using
CFNetServiceBrowserSearchForDomains() and for services using CFNetServiceBrows-erSearchForServices()
. Be sure to perform the appropriate cleanup of resources. So, for example, if either of these functions returns
false, you should call CFNetService-BrowserUnScheduleFromRunLoop() and release the memory for the
CFNetServiceBrowserRef .

Example 9-2 shows how you can search for services of type _example._tcp . The MyBrowseService() function
follows the steps outlined for browsing for services. The callback function MyBrowseCallBack() uses the
functions CFNetServiceGetName() , CFNetServiceGetType() , and CFNetServiceGetDomain() to retrieve the
name, type, and domain of the discovered service.

To run the code given in Example 9-2 , run Xcode, select File New Project... and then choose
CoreServices Tool. Open main.c , paste in the source code in Example 9-2 , and click the button to build and
run the project. Your program should now be browsing for services of type _example._tcp . To test it, use the
code given in Example 9-1 to advertise a service, or else use dns-sd :

dns-sd -R "CF Example" _example._tcp "" 123

Your browser should discover the advertised service and print out:

ADD CF Example._example._tcp.local.

Kill off the command-line process and your browser should report:

RMV CF Example._example._tcp.local.

You'll see that this code adds discovered services to a dictionary. If it discovers a service already in its
dictionary, then instead of showing it twice, it just increments a reference count. The reason for this is that if
your machine has more than one active interface, you may discover the same service via both interfaces. The
CFNetServices API doesn't indicate upon which interface a service was discovered, so although you can't show
this information to the user, you can use reference counting to avoid showing the same thing twice. If you
want to be able to display the interface index, name, or icon to the user, you can do that using the lower-level
DNSServiceDiscovery C API.

You'll also see that this code allows up to 1,005 bytes for a domain name. This is the maximum possible
length that a legal domain name can be after escaping non-printable characters using the normal DNS
escaping rules. Newer versions of the /usr/include/dns_sd.h header file define a constant
kDNSServiceMaxDomainName for this value.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.1.3. Resolving in CFNetServices

To resolve a service, first create a CFNetService object that contains the name, type, and domain of the
service you wish to resolve. Unlike registering and browsing, this time you do need to give a specific domain.
In a real program, you'd be resolving a service you discovered as a result of browsing, so you'd use the name,
type, and domain for the service you learned in your browse callback.

Use CFNetServiceSetClient() to assign the callback function and use CFNetService-ScheduleWithRunLoop()
to perform the resolution asynchronously. Pass in the reference to the service to be resolved to the function
CFNetServiceResolve() . When the answer(s) are available, the MyResolveCallBack() function is called.

Note that you are very likely to receive IPv6 addresses as well as IPv4 addresses in your callback function.
There's no need to be afraid of IPv6 addresses or to take special steps to filter them out. Just pass the
sockaddr structure unchanged to the connect() system call (or equivalent) and you'll get back a working TCP
connection to that address and port, just as with IPv4.

After you've got the information in the callback(s) and used that information to establish a successful TCP
connection, remember to cancel your resolve call. If you don't, it will continue to transmit queries on the
network, trying to find alternate IP addresses for the target without realizing that you've already succeeded in
connecting to it.

The entire process of resolving a service is shown in Example 9-3 .

Example 9-3. Resolving a service with CFNetServices

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

#include <CoreServices/CoreServices.h>

static void MyResolveCallBack(CFNetServiceRef service, CFStreamError* error, void* info)
 {
 int count;
 CFArrayRef addresses = CFNetServiceGetAddressing(service);

 assert(addresses != NULL);
 assert(CFArrayGetCount(addresses) > 0);

 // May get more than one reply
 for (count = 0; count < CFArrayGetCount(addresses); count++)
 {
 char addr[256];
 struct sockaddr_in *sa = (struct sockaddr_in *)
 CFDataGetBytePtr(CFArrayGetValueAtIndex(addresses, count));
 // inet_ntop will correctly display both IPv4 and IPv6 addresses
 if (inet_ntop(sa->sin_family, &sa->sin_addr, addr, sizeof(addr)))
 printf("%s:%d \n", addr, ntohs(sa->sin_port));
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

static void MyResolveService()
 {
 CFNetServiceClientContext context = { 0, NULL, NULL, NULL, NULL };
 CFStreamError error;

 CFNetServiceRef serviceBeingResolved = CFNetServiceCreate(kCFAllocatorDefault,
 CFSTR("local."), CFSTR("_example._tcp"), CFSTR("CF Example"), 0);
 assert(serviceBeingResolved != NULL);

 CFNetServiceSetClient(serviceBeingResolved, MyResolveCallBack, &context);
 CFNetServiceScheduleWithRunLoop(serviceBeingResolved,
 CFRunLoopGetCurrent(), kCFRunLoopCommonModes);

 if (CFNetServiceResolve(serviceBeingResolved, &error) == false)
 { // Something went wrong so lets clean up.
 CFNetServiceUnscheduleFromRunLoop(serviceBeingResolved,
 CFRunLoopGetCurrent(), kCFRunLoopCommonModes);
 CFNetServiceSetClient(serviceBeingResolved, NULL, NULL);
 CFRelease(serviceBeingResolved);
 serviceBeingResolved = NULL;
 fprintf(stderr, "CFNetServiceResolve returned %d, %ld\n",
 error.domain, error.error);
 }
 }

int main(int argc, char* argv[])
 {
 MyResolveService();
 CFRunLoopRun();
 return 0;
 }

Just as with the other examples, make a new CoreServices Tool, paste in the code, and then compile and run
it.

Now advertise a service called CF Example of type _example._tcp :

dns-sd -R "CF Example" _example._tcp "" 123

As you do, you'll see that your resolve call succeeds and prints out the list of possible addresses for this
service. It may appear that CFNetServices is giving you duplicate addresses. In fact, what's happening is that
each time CFNetServices gets new results for you, it will call you back again, giving the entire array of
addresses, including both the old ones you've seen before and the new ones you haven't. For this reason, you
may see the same addresses multiple times as the array grows bigger and bigger with each callback.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

There's no guarantee that all the addresses you see will be reachable. Also, some may offer faster
performance than otherse.g., an address on Gigabit Ethernet is likely to give a lot faster connection than an
address on AirPort. In an ideal program, you'd attempt connections to all of the possible addresses
simultaneously to see which one succeeds fastest, and then as soon as one succeeds, cancel the other
outstanding attempts.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.2. Using the NSNetServices API in Cocoa

Objective-C and Cocoa programming are a good fit for the asynchronous DNS-SD programming model.
The notion of delegates makes it easy to set up asynchronous calls. All of the Cocoa Bonjour
functionality is implemented in the classes NSNetService and NSNetServiceBrowser . When you initiate
browsing, for example, you pass in a handle to an object that will act as the delegate. The appropriate
delegate methods are called on this object to report on relevant activity that results from browsing.
This is very similar to the listener interfaces in Java. As in Java, it's usual for the object making the
NSNetServices call to specify self as the delegate to receive event notifications. One difference,
though, is that in Java it is mandatory for the listener object to implement all of the methods required
by the interface definition, and the Java compiler enforces this. In Objective-C, there's no compile-time
check that the delegate object implements the required methods. If you accidentally specify the wrong
object as the delegate, the compiler won't warn you that it implements none of the relevant methods.
If you specify the right object as the delegate, but when implementing the required methods you
mistype one of the method names, the compiler won't complain about that either. Your program won't
crash; it just won't work as expected. This is a deliberate feature of the Objective-C languageif you
choose not to implement a particular method, then calls to that method automatically become non-
operationsbut it does mean you have to be careful.

9.2.1. Advertising a Service in Cocoa

To publish a service, you will create an instance of an NSNetService and pass in the information about
the domain, service type, service name, and port with initWithDomain:type:name:port: . You next set
the delegate for the NSNetService . Finally, you call the publish method. This process looks something
like this:

NSNetService *service = [[NSNetService alloc] initWithDomain:@""
 type:@"_example._tcp."
 name:@"sample"
 port:thePort];
 [service setDelegate:self];
 [service publish];

There are four delegate methods, which you can implement as you see fit. The netServiceDidPublish:
method is new in Mac OS X 10.4.

netServiceWillPublish:
netServiceDidPublish:
netService:didNotPublish:
netServiceDidStop:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 9-4 shows a simple example of publishing a service using the Cocoa API.

Example 9-4. Publishing a service in Cocoa

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

#import <Foundation/Foundation.h>

@interface MyPublisher : NSObject
 {
 NSNetService *service;
 }
@end

@implementation MyPublisher

- (void)publishService:(UInt16)thePort
 {
 service = [[NSNetService alloc]
 initWithDomain:@"" type:@"_example._tcp." name:@"Cocoa Example" port:thePort];
 [service setDelegate:self];
 [service publish];
 }

- (void)netServiceWillPublish:(NSNetService *)s
 {
 NSLog(@"WillPublish: %@.%@%@\n", [s name], [s type], [s domain]);
 }

- (void)netServiceDidPublish:(NSNetService *)s
 {
 NSLog(@"DidPublish: %@.%@%@\n", [s name], [s type], [s domain]);
 }

- (void)netService:(NSNetService *)s didNotPublish:(NSDictionary *)errorDict
 {
 NSLog(@"didNotPublish: %@.%@%@\n", [s name], [s type], [s domain]);
 }

@end

int main(int argc, char *argv[])
 {
 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

 // Get a new listening socket...
 int s = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP);
 struct sockaddr_in sa = { sizeof(sa), AF_INET };

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 int size = sizeof(sa);
 bind(s, (struct sockaddr *)&sa, sizeof(sa));
 getsockname(s, (struct sockaddr *)&sa, &size);

 // ... and advertise it
 [[[MyPublisher alloc]init] publishService: ntohs(sa.sin_port)];

 [[NSRunLoop currentRunLoop] run];
 [pool release];
 return 0;
 }

This code can easily be built in Xcode by selecting File New Project... and then choosing
Foundation Tool (near the bottom of the list of options). Open main.m , paste in the source code, and
click the button to build and run the project. Your program should now be publishing a service of type
_example._tcp with name Cocoa Example . You should be able to discover your registered service using
the code listed in Example 9-5 , or by running the command dns-sd -B _example._tcp .

Example 9-5. Browsing for services in Cocoa

#import <Foundation/Foundation.h>

@interface MyBrowser : NSObject
 {
 NSNetServiceBrowser *serviceBrowser;
 }
- (void)browseForServices;

@end

@implementation MyBrowser

- (void)browseForServices
 {
 serviceBrowser = [[NSNetServiceBrowser alloc] init];
 [serviceBrowser setDelegate:self];
 [serviceBrowser searchForServicesOfType:@"_example._tcp." inDomain:@""];
 }

- (void)netServiceBrowserWillSearch:(NSNetServiceBrowser *)aNetServiceBrowser
 {
 NSLog(@"Starting to search . . .\n");
 }

- (void)netServiceBrowser:(NSNetServiceBrowser *)aNetServiceBrowser
 didFindService:(NSNetService *)s moreComing:(BOOL)moreComing
 {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 NSLog(@"Add %@.%@%@\n", [s name], [s type], [s domain]);
 }

- (void)netServiceBrowser:(NSNetServiceBrowser *)aNetServiceBrowser
 didRemoveService:(NSNetService *)s moreComing:(BOOL)moreComing
 {
 NSLog(@"Rmv %@.%@%@\n", [s name], [s type], [s domain]);
 }

@end

int main(int argc, char *argv[])
 {
 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
 [[[MyBrowser alloc]init] browseForServices];
 [[NSRunLoop currentRunLoop] run];
 [pool release];
 return 0;
 }

9.2.2. Browsing in Cocoa

To begin browsing in Cocoa, you first instantiate NSNetServiceBrowser and assign a delegate to the
object with the method setDelegate: . You can then begin browsing by calling the method
searchForSevicesOfType: inDomain: , like this:

serviceBrowser = [[NSNetServiceBrowser alloc] init];
[serviceBrowser setDelegate:self];
[serviceBrowser searchForServicesOfType:@"_example._tcp." inDomain:@""];

Because you have set the delegate to self , you also implement the delegate methods for browsing in
the same class. You can track the lifecycle of the search and react to services that have been added or
removed using the following methods:

netServiceBrowserWillSearch:
netServiceBrowserDidStopSearch:
netServiceBrowser:didNotSearch:
netServiceBrowser:didFindService:moreComing:
netServiceBrowser:didRemoveService:moreComing:

You need to decide whether or not you are interested in each of these events and write the code that
performs the actions you want. As a trivial example, you may wish to report on services that have
been discovered. Here is a possible implementation of netServiceBrowser:didFindService:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

moreComing:

- (void)netServiceBrowser:(NSNetServiceBrowser *)aNetServiceBrowser
 didFindService:(NSNetService *)s moreComing:(BOOL)moreComing
 {
 NSLog(@"Add %@.%@%@\n", [s name], [s type], [s domain]);
 }

A message is printed listing the name, type, and domain of the discovered service. In Example 9-5 ,
you see that other delegate methods are implemented as well.

To run the code given in Example 9-5 , run Xcode, select File New Project..., and then choose
Foundation Tool. Open main.m , paste in the source code, and click the button to build and run the
project. Your program should now be browsing for services of type _example._tcp . To test it, use the
code in Example 9-4 to advertise a service, or use the command dns-sd -R "Cocoa Example"
_example._tcp "" 123 .

Your browser should discover the advertised service and print out:

Add Cocoa Example._example._tcp.local.

Kill off the command-line process and your browser should report:

Rmv Cocoa Example._example._tcp.local.

9.2.3. Resolving in Cocoa

To resolve a DNS-SD service, you begin by creating an NSNetService instance using alloc() and
initWithDomain:type:name: or by using a service discovered using NSNetServiceBrowser , as shown
when browsing for services in Example 9-5 . If you start a resolve running on an NSNetService object
handed to you in your didFindService: delegate method, you must be sure to retain it first, or when
your didFindService: delegate method returns, the object will be disposed and your program will
crash.

Remember that, unlike registering and browsing, to resolve you do need to specify a domain. To work
asynchronously, you next have to assign a delegate that is used for the callback methods. Finally, you
begin to resolve the service by calling resolve . Here's a simple example of how you might resolve a
service:

NSNetService *service = [[NSNetService alloc] initWithDomain:@"local."
 type:@"_example._tcp."
 name:@"sample"];
[service setDelegate:self];

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[service resolve];

The delegate methods for resolving services are:

netServiceDidResolveAddress:
netService:didNotResolve:

Example 9-6 shows a simple example of how you might resolve the service named Cocoa Example of
type _example._tcp .

Example 9-6. Resolving a service in Cocoa

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

#import <Foundation/Foundation.h>

@interface MyResolver : NSObject
 {
 NSNetService *service;
 }
@end

@implementation MyResolver

- (void)resolveService
 {
 service = [[NSNetService alloc]
 initWithDomain:@"local." type:@"_example._tcp." name:@"Cocoa Example"];
 [service setDelegate:self];
 [service resolve];
 }

- (void)netServiceWillResolve:(NSNetService *)sender
 {
 NSLog(@"netServiceWillResolve: %@.%@%@\n",
 [sender name], [sender type], [sender domain]);
 }

- (void)netServiceDidResolveAddress:(NSNetService *)s
 {
 NSLog(@"DidResolve: %@.%@%@\n", [s name], [s type], [s domain]);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // May get more than one reply
 NSArray *addresses = [s addresses];
 int count;
 for (count = 0; count < [addresses count]; count++)
 {
 char addr[256];
 struct sockaddr_in *sa = (struct sockaddr_in *)
 [[addresses objectAtIndex:count] bytes];
 if (inet_ntop(sa->sin_family, &sa->sin_addr, addr, sizeof(addr)))
 NSLog(@"DidResolve: %s:%d \n", addr, ntohs(sa->sin_port));
 }
 }

- (void)netService:(NSNetService *)sender didNotResolve:(NSDictionary *)errorDict
 {
 NSLog(@"didNotResolve: %@.%@%@\n",
 [sender name], [sender type], [sender domain]);
 }

@end

int main(int argc, char *argv[])
 {
 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
 [[[MyResolver alloc]init] resolveService];
 [[NSRunLoop currentRunLoop] run];
 [pool release];
 return 0;
 }

Just as with the other examples, make a new Foundation Tool, paste in the code, and then compile and
run it.

Now advertise a service called Cocoa Example of type _example._tcp :

dns-sd -R "Cocoa Example" _example._tcp "" 123

As you do, you'll see that your resolve call succeeds and prints out the list of possible addresses for this
service. From this point on, you're no longer using the Cocoa NSNetService API. The Cocoa API has
done its job. It has resolved the named service to its address(es) and port number. Connecting to the
service and using it are done using any of the many networking APIs already available.

There's no guarantee that all the addresses you see will be reachable. Also, some may offer faster
performance than otherse.g., an address on Gigabit Ethernet is likely to give a lot faster connection
than an address on AirPort. In an ideal program, you'd attempt connections to all of the possible
addresses simultaneously to see which one succeeds fastest, and then as soon as one succeeds, cancel
the other outstanding attempts.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you're writing an application that only needs to run on Mac OS X 10.4 or later, then there's a new
resolveWithTimeout: method you can use that will give up and return an error after the specified
interval has elapsed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.3. A Cocoa Bonjour Extended Example

Let's use the Cocoa NSNetService API to create a simple application. When the example is complete, you will
start up the application and see the window shown in Figure 9-1 .

Figure 9-1. Startup screen for Bonjour Mood Ring

This is one of the rare examples of an application where there is no actual application protocol. The entire
functionality of the application consists of browsing to discover peers on the network and monitoring their
TXT record status. All communication happens as a result of updates to the TXT record status, and,
consequently, there is no application-layer protocol.

Because TXT record updates have a cost on the network, the mdnsd daemon limits how rapidly a program
may update its TXT records in order to help limit the bad impact buggy application software could have on
the network. In Mac OS X 10.4, the TXT record may be updated up to 10 times per minute. If you drag the
slider around rapidly and exceed this rate, you'll see messages appear in system.log saying "Excessive
update rate...delaying announcement." Your new mood will be announced eventually, but before sending out

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the packet, the mdnsd daemon will sit and wait a few seconds to see if you're going to move the slider again.
After you've decided what your new mood will be and not changed your mind for a few seconds, the mdnsd
daemon will then send out the packet to notify your peers on the local network.

Note that this example application uses some of the newer utility functions, such as NSNetService
dataFromTXTRecordDictionary: and NSNetService startMonitoring , introduced in Mac OS X 10.4. It won't
work on Mac OS X 10.3.x.

Press the Start Service button and a progress indicator will start to spin until your service is registered. Then
the Start Service button will be replaced by a rounded text box containing your full name, with the
background color matching your mood. A slider bar also appears, allowing you to change your mood. A list of
yours and other discovered services is provided at the bottom of the window, with each name displayed in a
text color that matches their mood, as shown in Figure 9-2 .

Figure 9-2. Bonjour Mood Ring with service running

The application is built on two classes. MoodBeacon advertises the service and is responsible for updating the
TXT record when there is a change to the slider position. MoodBrowser discovers other services and is
responsible for updating the UI to reflect the current slider setting of other services.

This program is based on an example Ken Arnold demonstrated as a Jini-based application at MacHack 2003,
and it is presented with his permission. The noteworthy difference is that with Jini, someone somewhere on
the network needs to be running a network service called the "Jini Lookup Service." Clients discover the local

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Jini Lookup Service by sending a UDP packet to the IP multicast address 224.0.1.85 on port 4160 and waiting
for a response. The clients then register their presence with that Jini Lookup Service and query the Jini
Lookup Service to find the list of other peers that have registered. For Jini to work, that vital piece of network
infrastructure needs to be present and working. In contrast, the Bonjour version needs no infrastructure. For
two Bonjour Mood Ring programs to communicate over Ethernet, the only network infrastructure you need is
a length of Ethernet cable with a plug at each end. If you use 802.11 wireless, you don't even need the
cable. Work is being done to marry the benefits of Jini with the server-less nature of Zeroconf, by defining a
mapping from Jini interface specifications to DNS-SD service subtypes. A Jini client can then just perform a
DNS-SD browsing query for the specific DNS-SD service subtype that corresponds to the Jini interface
specification it's looking for and discover a list of Jini services on the network that implement that desired
interface.

9.3.1. Creating the GUI

If this is your first Cocoa application, the description below may go a little fast for you. You may want to
consult the book Learning Cocoa (O'Reilly). The key is that with Cocoa applications, there is a strong
separation of the View from the Model and Control layers. The result is that there is a lot less actual code in
the resulting application than what you might be used to from other languages. You create the view using
the application Interface Builder. You create this in two parts: you design the GUI using graphical tools and
you create a skeleton outline of the classes that will interact with the GUI.

To begin, double-click on MainMenu.nib to open it in Interface Builder. You should see a window. Select the
menu item Tools Show Info to open up the inspector window. You can change the size of the window
and text in the title bar of the window and set various other attributes. You can also add other components
to the window and configure them. Figure 9-3 gives you an idea of what the final window should look like.

Figure 9-3. GUI for the BonjourMoods application

http://lib.ommolketab.ir
http://lib.ommolketab.ir

At the top, you can see an NSButton labeled Start Service, which is initially visible. In the same location is a
rounded NSTextField and to the right an NSProgressIndicator , both of which are initially invisible. Below is
an NSSlider with five markers with values from 0 to 4. The discovered services will be listed in an
NSTableView titled Moody Friends.

Create two classes to implement the service. The MoodBeacon class will be used to advertise a service and the
MoodBrowser class will be used to discover other services of the same type. In the class view, you will add
actions and outlets to your classes. Actions correspond to methods you will create in your class to respond to
user input. For example, when the user clicks on the Start Service button, you would like to publish the
service. You create an action in the MoodBeacon class named publishService and create an instance of the
MoodBeacon . All that remains is for you to implement this method when you are editing the source code.
Outlets correspond to variables in your source code that are handles to the GUI object. For example, if you
are going to make the Start Service button invisible, you need an outlet in order to refer back to it.

MoodBeacon has five outlets: groupMood (an NSTextField), happinessSlider (an NSSlider),
progressIndicator (an NSProgressIndicator), serviceStarter (an NSButton), and userName (an
NSTextField). MoodBeacon also has two actions: publishService: and updateMood: . On the other hand,
MoodBrowser has no actions and only one outlet, friendView (an NSTableView). The data source and delegate
for the NSTableView is the MoodBrowser instance associated with the view. Complete the GUI by using
Interface Builder to wire the appropriate GUI component to the corresponding outlet or action and save your
work.

9.3.2. The Generated MoodBeacon and MoodBrowser Header Files

The work you did above in Interface Builder created header files for the two classes. Example 9-7 shows the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

header file for MoodBeacon . Note the five outlets you created and wired up, followed by the signatures for the
two methods you specified as actions.

Example 9-7. MoodBeacon.h

/* MoodBeacon */

#import <Cocoa/Cocoa.h>

@interface MoodBeacon : NSObject
{
 IBOutlet NSSlider *happinessSlider;
 IBOutlet NSProgressIndicator *progressIndicator;
 IBOutlet NSButton *serviceStarter;
 IBOutlet NSTextField *userName;
}
- (IBAction)publishService:(id)sender;
- (IBAction)updateMood:(NSSlider *)sender;
@end

The header file for MoodBrowser is shown in Example 9-8 and contains the outlet corresponding to the
NSTableView named friendView . You will also need to add the two NSMutableArray objects friendsList and
moodsList as well as the NSNetServiceBrowser object serviceBrowser .

Example 9-8. MoodBrowser.h

/* MoodBrowser */

#import <Cocoa/Cocoa.h>

@interface MoodBrowser : NSObject
{
 IBOutlet NSTableView *friendView;
 NSMutableArray * friendsList;
 NSNetServiceBrowser * serviceBrowser;
 NSMutableArray * moodsList;
}
@end

9.3.3. Advertising the Service with MoodBeacon

The MoodBeacon class can respond to two actions: publishService: and updateMood: . As you saw above,
when the user presses the Start Service button, the publishService: method is called. The first action taken
in the publishService: method is to allocate and initialize an NSNetService object of type _moodring._tcp

http://lib.ommolketab.ir
http://lib.ommolketab.ir

with name equal to the user's full name, as returned by a call to the method NSFullUserName() . The
MoodBeacon object is then registered as the delegate, the service is published, and the updateMood: method is
called.

Before discussing the updateMood: method, let's look at how to use the delegate methods to communicate
progress to the end user. When the netServiceWillPublish: method is called, the NSProgressIndicator
begins to spin to indicate that an action is being taken by the system. Here is all that is required to
accomplish this:

- (void)netServiceWillPublish:(NSNetService *)sender
{
 [progressIndicator startAnimation:self];
}

Similarly, when the method netServiceDidPublish: is called, the NSProgressIndicator stops spinning and
the NSButton appears to be replaced with a text area containing the username. The slider with which the user
can set his happiness level also appears. If, instead, the didNotPublish: method is called, an error is
reported to the user.

The updateMood: method takes the value of the NSSlider , updates the TXT record for the service, and sets
the background color of the NSTextField . To update the TXT record, first create an NSDictionary of entries
with keys given by the NSString s @"txtvers" and @"mood" . The value corresponding to txtvers is 1 and the
value corresponding to mood is the string value of the NSSlider . The method setTXTRecordData:
dataFromTXTRecordDictionary: is called to update the TXT record. Example 9-9 shows the complete listing
for MoodBeacon.m .

Example 9-9. MoodBeacon.m

#import "MoodBeacon.h"

@implementation MoodBeacon
NSNetService * service;

- (void)netServiceWillPublish:(NSNetService *)sender
{
 [progressIndicator startAnimation:self];
}
- (void)netServiceDidPublish:(NSNetService *)sender
{
 [progressIndicator stopAnimation:self];
 [userName setEnabled:YES];
 [serviceStarter setHidden:YES];
 [userName setHidden:NO];
 [happinessSlider setHidden:NO];
 [userName setStringValue:[sender name]];
}

- (void)netService:(NSNetService *)sender didNotPublish:(NSDictionary *)errorDict

http://lib.ommolketab.ir
http://lib.ommolketab.ir

{
 [userName setStringValue:@"Error: did not publish"];
}

- (IBAction)publishService:(id)sender
{
 // Get us a unique listening socket number to advertise
 int s = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP);
 struct sockaddr_in sa = { sizeof(sa), AF_INET };
 int size = sizeof(sa);
 bind(s, (struct sockaddr *)&sa, sizeof(sa));
 getsockname(s, (struct sockaddr *)&sa, &size);

 service = [[NSNetService alloc] initWithDomain:@""
 type:@"_moodring._tcp."
 name:NSFullUserName()
 port:ntohs(sa.sin_port)];
 if ([[serviceStarter title] isEqualToString:@"Start Service"])
 {
 [service setDelegate:self];
 [service publish];
 [self updateMood:happinessSlider];
 }
}
- (IBAction)updateMood:(NSSlider *)sender
{
 NSMutableDictionary * moodDictionary = [NSMutableDictionary dictionaryWithCapacity:2];
 NSString * txtversKey = @"txtvers";
 NSString * moodKey = @"mood";

 NSString * txtversValue = @"1";
 NSString * moodValue = [sender stringValue];
 [moodDictionary setObject:txtversValue forKey:txtversKey];
 [moodDictionary setObject:moodValue forKey:moodKey];
 [service setTXTRecordData:[NSNetService dataFromTXTRecordDictionary:moodDictionary]];
 float currentValue = [sender floatValue]/4;
 [userName setBackgroundColor:[NSColor colorWithCalibratedRed:3.3 * (1- currentValue)
 green:2.0 * (currentValue)
 blue:0.0 alpha:1.0]];
}

@end

The MoodBeacon class is used to announce the availability of the new service and the current state of the
mood of the person who the service represents. The next section will detail the actions performed by services
receiving messages from MoodBeacon objects.

9.3.4. Finding and Using the Service with MoodBrowser

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As you saw in the MoodBrowser.h code listing in Example 9-8 , the MoodBrowser class has two NSArrayList
objects: friendsList and moodsList . When a service is discovered, the following callback method is called:

- (void)netServiceBrowser:(NSNetServiceBrowser *)aNetServiceBrowser
 didFindService:(NSNetService *)aNetService
 moreComing:(BOOL)moreComing
{
 [friendsList addObject:aNetService];
 [moodsList addObject:[NSColor blackColor]];
 [aNetService setDelegate:self];
 [aNetService startMonitoring];
 if(!moreComing)
 [friendView reloadData];
}

The discovered service is added to friendsList and initially the color assigned to represent the mood of this
service is black. Similarly, when a service is removed, the corresponding entry is removed from both
friendsList and moodsList .

The view is only reloaded once there are no more services coming. This makes the program run a lot faster
on a network where there are lots of other MoodRing participants. Instead of updating the window a hundred
times, it adds a large batch of participants to friendsList , and only when there are no more results waiting
to be handled does it update the window.

For active services, the MoodBrowser object listens for changes to the TXT record. If there is a change, then
the appropriate entry in moodsList is updated and the text color of the name of the corresponding entry in
friendsList is changed to reflect the updated mood:

- (void)netService:(NSNetService *)sender didUpdateTXTRecordData:(NSData *)data
{
 NSString * temp = [[NSString alloc] initWithData:data encoding:NSUTF8StringEncoding];
 float currentValue = [[temp substringFromIndex:[temp length]-1] floatValue]/4;
 [moodsList replaceObjectAtIndex:[friendsList indexOfObject:sender]
 withObject:[NSColor colorWithCalibratedRed:3.3 * (1- currentValue)
 green:2.0 * (currentValue)
 blue:0.0 alpha:1.0]];
 [friendView reloadData];
}

Example 9-10 shows the complete listing of MoodBrowser.m .

Example 9-10. MoodBrowser.m

#import "MoodBrowser.h"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

@implementation MoodBrowser

- (void) setUpServiceBrowser
{
 serviceBrowser = [[NSNetServiceBrowser alloc] init];
 [serviceBrowser setDelegate:self];
 [serviceBrowser searchForServicesOfType:@"_moodring._tcp."
 inDomain:@""];
}

- (id) init
{
 self = [super init];
 friendsList = [[NSMutableArray alloc] init];
 moodsList = [[NSMutableArray alloc] init];
 [self setUpServiceBrowser];
 return self;
}

- (void) dealloc
{
 [friendsList release];
 [super dealloc];
}

- (int) numberOfRowsInTableView:(NSTableView *)tableView
{
 return [friendsList count];
}

- (id)tableView:(NSTableView *)aTableView
 objectValueForTableColumn:(NSTableColumn *)aTableColumn
 row:(int)rowIndex
{
 return [[friendsList objectAtIndex:rowIndex] name];
}

- (void)netServiceBrowser:(NSNetServiceBrowser *)aNetServiceBrowser
 didFindService:(NSNetService *)aNetService
 moreComing:(BOOL)moreComing
{
 [friendsList addObject:aNetService];
 [moodsList addObject:[NSColor blackColor]];
 [aNetService setDelegate:self];
 [aNetService startMonitoring];
 if(!moreComing)
 [friendView reloadData];
}

- (void)netServiceBrowser:(NSNetServiceBrowser *)aNetServiceBrowser
 didRemoveService:(NSNetService *)aNetService

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 moreComing:(BOOL)moreComing
{
 [moodsList removeObjectAtIndex:[friendsList indexOfObject:aNetService]];
 [friendsList removeObject:aNetService];
 [aNetService stopMonitoring];
 if(!moreComing)
 [friendView reloadData];
}

- (void)tableView:(NSTableView *)inTableView
 willDisplayCell:(id)inCell
 forTableColumn:(NSTableColumn *)inTableColumn
 row:(int)inRow
{
 [inCell setTextColor:[moodsList objectAtIndex:inRow]];
 }

- (void)netService:(NSNetService *)sender didUpdateTXTRecordData:(NSData *)data
{
 NSString * temp = [[NSString alloc] initWithData:data encoding:NSUTF8StringEncoding];
 float currentValue = [[temp substringFromIndex:[temp length]-1] floatValue]/4;
 [moodsList replaceObjectAtIndex:[friendsList indexOfObject:sender]
 withObject:[NSColor colorWithCalibratedRed:3.3 * (1- currentValue)
 green:2.0 * (currentValue)
 blue:0.0 alpha:1.0]];
 [friendView reloadData];
}
@end

In this simple example, you saw how to publish and discover services. You also saw how to update and
respond to updates of TXT records. This example shows you how you might Bonjour-enable your own Cocoa
projects.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 10. Ruby, Python, and Other
Languages
The preceding chapters covered the DNS Service Discovery programming APIs developed primarily
by Apple's engineers, which include both cross-platform and Mac-specific APIs. The cross-platform C
and Java APIs are available on Macintosh, Microsoft Windows, Linux, FreeBSD, Solaris, and other
Unix variants. The Mac-specific Core Foundation API and Cocoa API are available for programmers
writing software designed solely for Mac OS X.

Those are just the tip of the iceberg. There exist a range of open source projects (e.g., ones that
implement higher-level DNS Service Discovery API layers built on top of the C DNSServiceDiscovery
API foundation provided by Apple), some of which complement Apple's work, and some of which
overlap or even compete with it. This is made possible by the careful separation of the background
daemon and the client library in Apple's own implementation of Multicast DNS and DNS Service
Discovery.

The first component is a background daemon, which runs in its own address space and implements
all the protocol logic, timing, packet sending and reception, record caching, and similar functionality.
The second component is the client library, which client applications link with, in the application's
address space, in order to communicate with the background daemon. Apple's background daemon is
licensed under the Apple Public Source License 2.0, an FSF-approved open source license. Apple's
client library is licensed under an even more liberal three-clause BSD-style license, which allows it to
be used in just about anything, from the most secretive proprietary products to the most resolutely
open projects using open source licenses such as the GNU Public License (GPL).

This separation into two components offers benefits both technical and legal. The technical benefit is
that all the client programs on a machine get the efficiency benefit of sharing a common protocol
engine and a common record cache. Also, if a client advertising a service crashes, the daemon
detects that and sends the goodbye packet to de-register the advertised service. From a legal
standpoint, this separation allows greater freedom for everyone involved. The background daemon is
separated from its programming interface, so other independent implementations of the background
daemonwith different characteristics and licensing termsare possible. Meanwhile, the client library,
the interface a client program uses to communicate with the daemon, doesn't have to change.
Commercial software vendors can link with Apple's client library without the fear of "tainting"
sometimes associated with linking GPL libraries, and, at the same time, authors working on GPL
programs can also safely link with Apple's client library without fear that they might be violating the
strict terms of the GPL.

Similarly, programmers can create their own layers built on top of the C client API, with the freedom
to license them as they choose, while users are free to mix and match components as best meets
their needs. The key to this flexibility is that as long as all the client layers build on top of the
common C APIwith its BSD-style licensethen all a programmer needs to do to create an alternative
daemon implementation is to create a background daemon offering that standard C API, and all of
the higher-level client programs and API layers can work with it without change.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In this chapter, we cover two of those higher-level third-party DNS Service Discovery API layers built
on top of the C DNSServiceDiscovery API foundation. The first is a language binding for the Ruby
programming language. The second is a more general-purpose interface specification written for the
Simplified Wrapper and Interface Generator (SWIG), which is used to generate interfaces
automatically for a range of languages. That range of languages includes Java and Ruby, which might
make you wonder why there are also specific APIs for those languages. The answer is that SWIG
does a fairly mechanical translation of the C interface into other languages, yielding an interface with
the same basic operating model. For example, just as calls in the C interface hand you back a file
descriptor, which you add to your event loop, the SWIG-derived interfaces do the same. In contrast,
the specific APIs for Java and Ruby both take advantage of those languages' inherent multithreading
support to provide callbacks that are invoked automagically on some other thread. We explore the
SWIG interfaces from the perspective of the Python programming language, which doesn't have its
own handcrafted API at this time.

Finally, this chapter wraps up with a brief mention of the mDNSEmbeddedAPI.h interface, used by
hardware devices that don't really need the benefits of an independent mdnsd background process
and instead use a monolithic piece of software dedicated to advertising the services of that device,
using the core Multicast DNS functions directly.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.1. Ruby

At publication time, the current version of the Ruby DNS Service Discovery (DNS-SD) interface is
0.6.0. If you use RubyGems to install and manage your Ruby libraries, then you can install Ruby
DNS-SD by typing:

sudo gem install dndsd

If you don't use RubyGems, you can get Ruby DNS-SD by downloading the dnssd-0_6_0.tar.gz file
from http://rubyforge.org/projects/dnssd/ and running the three commands shown in the README
file:

ruby setup.rb config
ruby setup.rb setup
ruby setup.rb install

In future versions of OS X and other operating systems, it may come preinstalled by default. You can
tell if it's already preinstalled with the following command:

ruby -e "require 'dnssd'"

If there's no error message, then you have the Ruby dnssd package already installed. If it prints "No
such file to load...," you will need to install it. Once you have the Ruby DNS-SD API installed, you can
experiment with registering, browsing, and resolving from a Ruby program.

10.1.1. Registering a Service in Ruby

The Ruby code to advertise a service is just a few lines:

require 'dnssd'
registration = DNSSD.register("", "_http._tcp", nil, 8080) do |register_reply|
 puts "Registration result: #{register_reply.inspect}"
end
puts "Registration started"
sleep 30

http://rubyforge.org/projects/dnssd/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

registration.stop
puts "Registration stopped"

This code:

Tells the Ruby language interpreter that it requires the dnssd package

Registers a pretend service of type _http._tcp using the computer's default service name

Prints out the advertised name when the service is successfully registered

Waits for 30 seconds, then stops the registration and exits

If you save this file as register.rb and run it, you should see something like this:

% ruby register.rb
Registration started
Registration result: #<DNSSD::RegisterReply Stuart\032Cheshire's\032PowerBook\
032G4._http._tcp.local.>
Registration stopping

If you're new to Ruby, some explanation is called for. Ruby supports code blocks as first-class
entities, much like integers or strings in other languages. The block of code from do to end is not
equivalent to a similar block of code enclosed within curly braces in C. In C, lines of code in a routine
execute more or less sequentially. The body of an if or for statement enclosed within curly braces
may be executed zero, one, or more times, but it's always executed before the lines that appear later
in the routine. In Ruby , the block of code from do to end is actually a parameter passed to the
DNSSD.register() routine. It doesn't execute at all until DNSSD.register() decides it's time to
execute it, asynchronously, on an automatically created background thread. If you save the program
above as register.rb and then run it by typing ruby register.rb, you'll see that it prints the
"Registration started" message before the "Registration result..." message.

Following the "do" keyword, you'll see an identifier enclosed between a pair of vertical bar symbols
(the same character as the Unix "pipe" symbol), which names the parameter that is passed to the
code block when it executes, rather like the parameter list enclosed in parentheses when you declare
a C function.

In some ways, a Ruby code block is somewhat similar to passing a function pointer in a C
programthere's some code to execute and a parameter that's passed to that codebut there's one
important difference. A Ruby code block is what computer scientists call a closure. It's not just the
code but also its environment. Similar to the way the body of an if or for statement may access
local variables declared in the enclosing function, the Ruby code block passed to DNSSD.register()
may access local variables declared in the enclosing function, even though the code block might not
even get to execute until after the function that created it has exited. The Ruby interpreter knows
that there's a code block that has access to those local variables and makes sure that they continue
to remain valid even after the function that declared them has exited.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you want to register a service with TXT record attributes, Ruby DNS-SD supports that too. The full
signature of the DNSSD.register() function is as shown here:

DNSSD.register(name, type, domain, port,
 text_record=nil, flags=0, interface=DNSSD::InterfaceAny) {|reply| block }

Ruby supports automatic default values for unspecified parameters. In this example, we didn't specify
anything for text_record, flags or interface, so they automatically got the default values nil, 0,
and DNSSD::InterfaceAny. If you want to register a service with TXT record attributes, you just need
to pass a hash (key/value) or a string in the proper format for the text_record parameter.

10.1.2. Browsing for Services in Ruby

The general structure of the Ruby code to browse for services follows the same outline as the code to
register a service:

require 'dnssd'
browser = DNSSD.browse('_http._tcp') do |browse_reply|
 if (browse_reply.flags.to_i & DNSSD::Flags::Add) != 0
 puts "Add: #{browse_reply.inspect}"
 else
 puts "Rmv: #{browse_reply.inspect}"
 end
end
puts "Browsing started"
sleep 30
browser.stop
puts "Browsing stopped"

If you save this file as browse.rb and run it, you should see something like this:

% ruby browse.rb
Browsing started
Add: #<DNSSD:: BrowseReply Stuart\032Cheshire's\032PowerBook\032G4._
http._tcp.local. interface:lo0>
Browsing stopping

10.1.3. Resolving a Service in Ruby

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When you've browsed to discover available services, and the user has picked one, the next step is to
resolve the named service to its target host and port number:

require 'dnssd'
name = ARGV.shift
puts "Resolving: #{name}"
resolver = DNSSD.resolve(name, "_http._tcp", "local") do |resolve_reply|
 puts "Resolve result: #{resolve_reply.inspect}"
end
puts "Resolver started"
sleep 30
resolver.stop
puts "Resolver stopped"

If you save this file as resolve.rb and run it, you should see something like this:

% ruby resolve.rb "Stuart Cheshire's PowerBook G4"
Resolving: Stuart Cheshire's PowerBook G4
Resolver started
Resolve result: #<DNSSD::ResolveReply Stuart\032Cheshire's\032PowerBook\032G4.
_http._tcp.local. interface:en0 target:chesh7.local.:123>
Resolver stopped

In a real program, you'd take the resolve results you get and use them to initiate connections, and as
soon as one succeeds, you'd then cancel the ongoing resolve operation.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.2. Python

Python programmers can access DNS-SD functionality via the SWIG interface definition created by
Tom Uram, Argonne National Laboratory. At time of writing, you can get it from
http://www.mcs.anl.gov/fl/research/accessgrid/bonjour-py/bonjour-py.html or from the link on the
DNS-SD web site http://www.dns-sd.org/. All of these examples are included in the bonjour-py
package, along with a more involved example: a graphical service browser built using the wxPython
GUI toolkit. To build the Python interfaces using SWIG, you'll need to have SWIG installed; you can
get that from http://sourceforge.net/projects/swig/.

10.2.1. Registering a Service in Python

The Python code to advertise a service is a little longer than the Ruby code, but it's still quite simple:

import sys
import time
import select
import socket
import bonjour

Callback for service registration

def RegisterCallback(sdRef, flags, errorCode, name, regtype, domain, context):
 print "Service registered:", name, regtype, domain

if len(sys.argv) < 4:
 print "Usage: register.py servicename regtype port"
 sys.exit(1)

servicename = sys.argv[1]
regtype = sys.argv[2]
port = int(sys.argv[3])

Allocate a service discovery reference and register the specified service
flags = 0
interfaceIndex = 0
domain = ''
host = ''
txtLen = 0
txtRecord = ''
userdata = None
serviceRef = bonjour.AllocateDNSServiceRef()

http://www.mcs.anl.gov/fl/research/accessgrid/bonjour-py/bonjour-py.html
http://www.dns-sd.org/
http://sourceforge.net/projects/swig/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

ret = bonjour.pyDNSServiceRegister(serviceRef,
 flags,
 interfaceIndex,
 servicename,
 regtype,
 domain,
 host,
 port,
 txtLen,
 txtRecord,
 RegisterCallback,
 userdata)

if ret != bonjour.kDNSServiceErr_NoError:
 print "error %d returned; exiting" % ret
 sys.exit(ret)

Get the socket and loop
fd = bonjour.DNSServiceRefSockFD(serviceRef)
while 1:
 ret = select.select([fd], [], [])
 ret = bonjour.DNSServiceProcessResult(serviceRef)

Deallocate the service discovery ref
bonjour.DNSServiceRefDeallocate(serviceRef)

This code:

Defines the callback function to be invoked when the registration succeeds

Calls bonjour.pyDNSServiceRegister to register the service

Accesses the serviceRef's file descriptor, adding it to a select() set and calling
bonjour.DNSServiceProcessResult() each time data arrives on that socket

If you save this file as register.py and run it, you should see something like this:

% python register.py "" _http._tcp 123
Service registered: Stuart Cheshire's PowerBook G4 _http._tcp. local.

In this case, we're just using an empty string name to advertise the service using the system default
name, but as with the other APIs, if you want something else you can specify an explicit name
instead.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.2.2. Browsing for Services in Python

It should be little surprise by now to see that the outline of the browsing code looks a lot like the
service registration code:

import sys
import select
import bonjour

Callback for service browsing
def BrowseCallback(sdRef, flags, interfaceIndex,
 errorCode, serviceName, regtype, replyDomain, userdata):
 if flags & bonjour.kDNSServiceFlagsAdd:
 print "Service added: ", serviceName, regtype, replyDomain, interfaceIndex
 else:
 print "Service removed: ", serviceName, regtype, replyDomain, interfaceIndex

if len(sys.argv) < 2:
 print "Usage: browse.py regtype"
 sys.exit(1)

regtype = sys.argv[1]

Allocate a service discovery ref and browse for the specified service type
flags = 0
interfaceIndex = 0
domain = ''
userdata = None
serviceRef = bonjour.AllocateDNSServiceRef()
ret = bonjour.pyDNSServiceBrowse(serviceRef,
 flags,
 interfaceIndex,
 regtype,
 domain,
 BrowseCallback,
 userdata)

if ret != bonjour.kDNSServiceErr_NoError:
 print "ret = %d; exiting" % ret
 sys.exit(1)

Get socket descriptor and loop
fd = bonjour.DNSServiceRefSockFD(serviceRef)
while 1:
 ret = select.select([fd], [], [])
 ret = bonjour.DNSServiceProcessResult(serviceRef)

Deallocate the service discovery ref
bonjour.DNSServiceRefDeallocate(serviceRef)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This code:

Defines the callback function to be invoked when results are found

Calls bonjour.pyDNSServiceBrowse to start the browse operation running

Accesses the serviceRef's file descriptor, adding it to a select() set and calling
bonjour.DNSServiceProcessResult() each time data arrives on that socket

If you save this file as browse.py and run it, you should see something like this:

% python browse.py _http._tcp
Service added: Stuart Cheshire's PowerBook G4 _http._tcp. local. 4

This browse operation will run indefinitely, reporting as services come and go, until you press Ctrl-C
to stop it.

10.2.3. Resolving a Service in Python

When you've browsed to discover available services, and the user has picked one, the next step is to
resolve the named service to its target host and port number:

iimport sys
import select
import bonjour

Callback for service resolving
def ResolveCallback(sdRef, flags, interfaceIndex,
 errorCode, fullname, hosttarget,
 port, txtLen, txtRecord, userdata):
 print "Service:", fullname
 print "is at", hosttarget, ":", port

if len(sys.argv) < 4:
 print "Usage: resolve.py serviceName serviceType serviceDomain"
 sys.exit(1)

serviceName = sys.argv[1]
serviceType = sys.argv[2]
serviceDomain = sys.argv[3]

Allocate a service discovery ref and resolve the named service
flags = 0
interfaceIndex = 0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

userdata = None
serviceRef = bonjour.AllocateDNSServiceRef()
ret = bonjour.pyDNSServiceResolve(serviceRef,
 flags,
 interfaceIndex,
 serviceName,
 serviceType,
 serviceDomain,
 ResolveCallback,
 userdata);

if ret != bonjour.kDNSServiceErr_NoError:
 print "ret = %d; exiting" % ret
 sys.exit(1)

Get socket descriptor and loop
fd = bonjour.DNSServiceRefSockFD(serviceRef)
while 1:
 ret = select.select([fd], [], [])
 ret = bonjour.DNSServiceProcessResult(serviceRef)

Deallocate the service discovery ref
bonjour.DNSServiceRefDeallocate(serviceRef)

If you save this file as resolve.py and run it, you should see something like this:

% python resolve.py "Stuart Cheshire's PowerBook G4" _http._tcp. local.
Service: Stuart\032Cheshire's\032PowerBook\032G4._http._tcp.local.
is at chesh7.local. : 123

In a real program, you'd take the resolve results you get and use them to initiate connections, and as
soon as one succeeds, you'd then cancel the ongoing resolve operation.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.3. Embedded Responders

On most general-purpose computers, there may be several different services advertising their
presence via DNS-SD and several different clients browsing or resolving. On such computers, it
makes sense to have a single shared daemon that all the clients and servers talk to.

However, if you're making a very simple single-purpose hardware device, then another API choice is
available. If your device offers one and only one service or a small known set of services, and it offers
those services from the moment it's powered on and boots up to the moment it's powered down,
then you can save a bit of memory by dispensing with the background daemon and just having a
single monolithic process that advertises your service(s). To write such a monolithic DNS-SD
advertising process, you use the source code from Apple's Darwin mDNSResponder project, adding
some code of your own to advertise the appropriate service(s). That code of yours interfaces directly
with the core Multicast DNS functions defined in the mDNSEmbeddedAPI.h file. The mDNSResponder
project's mDNSPosix folder contains some example code showing how to do this. For example,
Responder.c builds a binary called mDNSResponderPosix, a single monolithic process that advertises
one or more services.

If you're building a hardware device with very limited memory, then one of the benefits of using the
raw mDNSEmbeddedAPI.h API is that it's malloc-free. That means that there is never a case where
the code can suffer intermittent failures because the mDNSCore implementation calls malloc(), and
sometimes malloc() returns NULL because memory is so limited that no more is available. Instead,
all the memory needs are precisely known in advance, and for each mDNSCore call, the caller is
responsible for passing in a pointer to the storage that will be used in the execution of that call, in the
form of a C structure defining that required storage. That storage can be a global variable, a local
stack variable, a member of another enclosing structure, or allocated any other way the caller
chooses. It can even be allocated via malloc() if the caller wishes, but the important point is that
the decision about how to allocate that memory is in the hands of the caller. Because of this, all the
mDNSCore calls (when called with correct parameters) are guaranteed to succeed, with no errors like
"out of memory," "no more resources," or something similar. In the simple case of a device
advertising a few known services, the easiest thing to do is just to declare each advertised service
structure as a global variable, and then you know with certainty that there can't be any runtime
failures because of memory shortage. At compile time, you know whether it's going to work, because
you either have enough space for your declared globals or you don't. There's no runtime uncertainty.

This malloc-free operation is ideal for devices that need to have precisely known fixed memory
requirements, with absolutely no uncertainty or runtime variation, but that certainty comes at a cost
of more difficult programming. Generally, if your device has enough memory and runs a conventional
general-purpose operating system like Linux, then using the standard mdnsd background daemon is
the best choice. However, if that choice doesn't fit your product, then embedding mDNSCore and
calling it directly with your own code may be attractive. If you do choose that route, you won't be
alone. Most of today's Zeroconf hardware devices, such as printers and network cameras, do exactly
that.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

About the Authors

Stuart Cheshire is currently a senior scientist with Apple Computer, specializing in Internet
protocols. He's published papers in the areas of wireless and networking and Mobile IP, and
previously worked on IBM Token Ring with Madge Networks in the U.K. Stuart received B.A. and M.A.
degrees from Sidney Sussex College, Cambridge, U.K., and M.S. and Ph.D. degrees from Stanford
University.

Daniel H. Steinberg is the editor of ONJava and java.net for the O'Reilly Network. He's been
working with Java on the Mac since it first appeared, but also enjoys coding in ObjC and other
languages. Daniel is a longtime technical writer, trainer, and developer with Dim Sum Thinking, Inc.
and recently coauthored the book Extreme Software Engineering: A Hands-on Approach (Prentice
Hall).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing
personality and life into potentially dry subjects.

The animal on the cover of Zero Configuration Networking: The Definitive Guide is a turtle dove.
Originally from the arid woodlands of Africa, turtle doves were once domesticated birds, but escapees
from aviaries have resulted in a wide distribution over many areas, including southern Africa, eastern
Asia, Europe, and North America. Today, these doves are a migratory species that tend to live in
clusters in savannas and grasslands. They are also still bred in captivity and often used for scientific
experiments. Currently, the turle dove population is in steady decline due to hunting and constant
changes in farming practices, which deplete its food supply of weeds and shoots.

The turtle dove is brownish, slightly darker than other doves, and can be recognized by striped
feathers on its neck. Its wedge-shaped tail has distinctive white borders that are highly visible when
the bird takes flight. It has a black bill and red rims around the eyes.

Males and females both incubate a clutch of eggs. In captivity, female doves group together and take
turns caring for their clutches. However, one female eventually adopts the chicks and nourishes them
with regurgitated "dove milk."

The bird's name has nothing to do with actual turtles. The arrival of turtle doves in northern Europe
at the end of each April is accompanied by a deep, cat-like purring song that sounds like "trrrr, trrrr,"
hence the bird's Latin name, turtur.

Matt Hutchinson was the production editor, and Derek DiMatteo was the copyeditor for Zero
Configuration Networking: The Definitive Guide. Chris Downey proofread the book. Adam Witwer and
Claire Cloutier provided quality control. Johnna Dinse wrote the index.

Karen Montgomery designed the cover of this book, based on a series design by Edie Freedman. The
cover image is a 19th-century engraving from The Riverside Natural History, Volume IV. Karen
Montgomery produced the cover layout with Adobe InDesign CS using Adobe's ITC Garamond font.

David Futato designed the interior layout. This book was converted by Keith Fahlgren from Microsoft
Word to Adobe FrameMaker 5.5.6. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont's TheSans Mono Condensed. The illustrations that appear
in the book were produced by Robert Romano, Jessamyn Read, and Lesley Borash using Macromedia
FreeHand MX and Adobe Photoshop CS. The tip and warning icons were drawn by Christopher Bing.
This colophon was written by Matt Hutchinson.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [W] [Z]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [W] [Z]

Address Resolution Protocol (ARP)

address-based queries, Domain Enumeration

addresses

 availability, probing for

 defending

 mDNS

administration, DNS

advertising services

 CFNetServices API

 Cocoa 2nd

 static services

announcements

AppleTalk NBP

 late binding

 service naming

application logic

application protocols, name registration

ARP (Address Resolution Protocol)

asynchronous callbacks, enabling

asynchronous operations, Java APIs

asynchronous programming model

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [W] [Z]

b._dns-sd._udp query string (Domain Enumeration)

BaseListener interface

binding

 AppleTalk NBP

 late binding

Bonjour

 installation

 Linux/Unix

 Macintosh

 Windows

Bonjour Wiki

BrowseListener interface

browsing

 dns-sd tool

 ease of

 wide-area Bonjour preferences

browsing for services

 CFNetServices

 Cocoa 2nd

 Java APIs

 Python

 Ruby

byte multiplication attack

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [W] [Z]

C APIs

 introduction

cache, LLQ support

Callback Interface Classes, Java APIs

callbacks, enabling

CFNetServiceBrowser

CFNetServiceCreate() function

CFNetServiceRegister() function

CFNetServices API

 advertising services

 browsing for services

 service resolution

CFNetServiceScheduleWithRunLoop() function

CFNetServiceSetClient() function

CFNetwork APIs

CFRunLoop (Core Foundation), event handling

claiming IP addresses, announcing

CNAME records, rdata

Cocoa

 advertising services 2nd

 APIs

 browsing for services 2nd

 event handling

 example

 GUI creation

 header file generation

 NSNetServices API

 service resolution

conflicts, IP addresses

Control Panel

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [W] [Z]

DAAP (Digital Audio Access Protocol)

db._dns-sd._udp query (Domain Enumeration)

DHCP (Dynamic Host Configuration Protocol)

 IP addresses and

 manual

DHCP servers, MAC addresses

dig (Domain Information Groper)

Digital Audio Access Protocol (DAAP)

DNS

 administration

 building on

 cache, LLQ support

 DNS-LLQ

 Dynamic DNS Update

 DNS-UL

 mDNS

 resource records

 T_ANY query

DNS TXT records

 adding

 removing

 results

 service registration and

 updates

DNS-LLQ (DNS Long-Lived Queries)

 DNS cache support

 event responses

 expiration

 message format

 refreshes

 setup

DNS-SD (DNS Service Discovery), xvii 2nd

 browsing for services

 error codes

 TXT records

 content

 format

dns-sd tool

 browsing

 introduction

 monitoring

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 options

 proxying

 service registration

 source code

DNS-UL (Dynamic DNS Update Leases)

 message format

 refresh messages

DNSSD class

DNSSD.browse() function

DNSSD.register() function

DNSSDException class

DNSServiceAddRecord() function

DNSServiceBrowse() function

DNSServiceBrowseReply() function

DNSServiceCreateConnection() function

DNSServiceDiscovery APIs

 browsing for services

 domain enumeration

 error codes

 service registration

 service resolution

 using

DNSServiceDiscovery C API

DNSServiceDiscovery flags

DNSServiceDomainEnumReply() function

DNSServiceEnumerateDomain() function

DNSServiceProcessResult() function

 Unix Domain Socket connection

DNSServiceQueryRecord() function

DNSServiceReconfirmRecord() function

DNSServiceRefDeallocate() function

 Unix Domain Socket connection

DNSServiceRefSockFD() function

 Unix Domain Socket connection

DNSServiceRegister() function

DNSServiceRegisterRecord() function

DNSServiceRegisterReply() function

DNSServiceRemoveRecord() function

DNSServiceResolve() function

DNSServiceResolveReply() function

DNSServiceUpdateRecord() function

Domain Enumeration

 b._dns-sd._udp query

 db._dns-sd._udp query

 dr._dns-sd._udp query

 lb._dns-sd._udp query

 queries

 address-based

 domain-based

 r._dns-sd._udp query

Domain Information Groper (dig)

domain names, dot

http://lib.ommolketab.ir
http://lib.ommolketab.ir

domain-based queries, Domain Enumeration

domains

 enumeration, DNSServiceDiscovery APIs

 local

 name selection

dotted decimal format

dr._dns-sd._udp query (Domain Enumeration)

Dynamic DNS Update

 DNS-UL

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [W] [Z]

embedded responders

error codes, DNSServiceDiscovery

Ethernet addresses

event callbacks

event handling

 CFRunLoop

 Cocoa and

 Core Foundation

 GetMessage()

 independent threads

 MFC

 RunLoop

 select() loop and

event responses, DNS-LLQ

examples

 Cocoa extended example

 Tic-Tac-Toe extended example

expiration, DNS-LLQ

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [W] [Z]

Factory Class Java APIs

flags, DNSServiceDiscovery

flagship protocols

flagship service types

four-way handshake of DNS-LLQ setup

functions

 CFNetServiceCreate()

 CFNetServiceRegister()

 CFNetServiceScheduleWithRunLoop()

 CFNetServiceSetClient()

 DNSSD.browse()

 DNSSD.register()

 DNSServiceAddRecord()

 DNSServiceBrowse()

 DNSServiceBrowseReply()

 DNSServiceCreateConnection()

 DNSServiceDomainEnumReply()

 DNSServiceEnumerateDomain()

 DNSServiceProcessResult()

 DNSServiceQueryRecord()

 DNSServiceReconfirmRecord()

 DNSServiceRefDeallocate()

 DNSServiceRefSockFD()

 DNSServiceRegister()

 DNSServiceRegisterRecord()

 DNSServiceRegisterReply()

 DNSServiceRemoveRecord()

 DNSServiceResolve()

 DNSServiceResolveReply()

 DNSServiceUpdateRecord()

 select()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [W] [Z]

GetMessage(), event handling and

global networking

GPL (GNU Public License)

GUI code

GUIs, Cocoa

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [W] [Z]

hardware

 addresses

 naming

header files, Cocoa

HINFO (host info)

hostnames

 wide-area Bonjour preferences

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [W] [Z]

infrastructure

installing Bonjour

 Linux/Unix

 Macintosh

 Windows

interfaces

 BrowseListener

 listener

IP addresses

 announcing claim

 availability, probing for

 conflicts, late

 defending

 DHCP

 provided

 servers and

 direction

 dotted decimal format

 link-local range, claming

 manual assignment

 mDNS and

 temporary

 private

 public, NAT

 selecting, link-local range

 subnet mask

IP Multicast, DNS and

IPP printing client, _ipp service type

_ipp service type

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [W] [Z]

Java APIs

 asynchronous operations

 browsing for services

 Callback Interface Classes

 DNSSD class

 DNSSDException class

 DNSServiceDiscovery C

 Factory Class

 listener interfaces

 service registration

 service resolution

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [W] [Z]

key/value pairs, TXT records

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [W] [Z]

late binding

lb._dns-sd._udp query (Domain Enumeration)

lexicographically later rdata

link-local address range

 claiming IP address

links, subnets and

Linux, Bonjour installation

listener interfaces

 BrowseListener

 Java APIs

 RegisterListener interface

local domain

local, definition

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [W] [Z]

MAC addresses

Macintosh, Bonjour installation

manually assigning IP addresses

mappings

 creating

 destroying

mDNS

 address

 IP addresses

 temporary

 IP Multicast and

 message structure

 queries

 one-shot

 ongoing

 small networks and

 traffic reduction

mDNSResponder

message format

 DNS-LLQ

 DNS-UL

MFC (Microsoft Foundation Classes), event handling

monitoring, dns-sd tool

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [W] [Z]

name resolution

named services

names

 service instance names

 uniqueness

 visibility

namespaces

 Zeroconf

NAT (Network Address Translation)

 overview

 public IP address

NAT gateway

NAT-PMP (NAT port mapping protocol)

Non-authoritative answer

nslookup

NSNetServices API

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [W] [Z]

one-shot query (mDNS)

 with multiple responses

ongiong queries (mDNS)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [W] [Z]

port mapping, NAP-PMP

Preference Pane

preferences, wide-area service discovery

 browsing

 hostname

 registration

_presence._tcp service type

private IP addresses

probing for address availability

protocols

 application protocol name registration

 flagship protocols

 NAT-PMP

 service discovery and

proxies, dns-sd tool

pseudo-TLD

 local

 multicast

PTR records, rdata

Python

 browsing for services

 service registration

 service resolution

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [W] [Z]

queries

 Domain Enumeration

 mDNS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [W] [Z]

r._dns-sd._udp query (Domain Enumeration)

rdata, lexicographically later

refresh messages, DNS-UL

refreshes, DNS-LLQ

registering services 2nd

 DNS TXT record attributes and

 Java APIs

 Python

 Ruby

 testing program

 wide-area service discovery preferences

RegisterListener interface

resolving services

 CFNetServices

 Cocoa

 Java APIs

 Python

 Ruby

resource records (DNS)

rrclass, resource records

rrtype, resource records

Ruby

 browsing for services

 service registration

 service resolution

RunLoop (Cocoa) event handling

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [W] [Z]

search time

secure shell (ssh)

select() function

select() loop, event handling and

service design, protocols and

service discovery

 available services

 DNS-SD and

 DNS-ServiceDiscovery

 APIs

 error codes

 error codes

 hostnames

 IP addresses

 service instance names

 services versus devices

 SRV record type

service instances, name visibility

service registration 2nd

 DNS TXT record attributes and

 Python

 Ruby

service resolution

 CFNetServices

 Cocoa

 Java APIs and

 Python

 Ruby

service types

 flagship

 subtypes

serviceRegistered() method

services

 advertising

 CFNetServices API

 Cocoa 2nd

 available services

 browsing for

 CFNetServices

 Cocoa 2nd

 DNSServiceDiscovery APIs

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ease of

 introduction

 Java APIs

 Python

 Ruby

 conceptual

 late binding

 named

 registering

 Java APIs and

 testing program

 resolving

 DNSServiceDiscovery APIs

 static, advertising

source code, dns-sd tool

SRV record type

 query results

ssh (secure shell)

static services, advertising

strings in TXT recurds

subnet mask

subnets, links and

subtypes of service types

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [W] [Z]

T_ANY query

TextRegister, complete listing

threads, event handling

Tic-Tac-Toe example

TTL (time to live)

TXT records, DNS-SD

 adding

 content

 format

 removing

 results

 service registration and

 strings

 updates

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [W] [Z]

uniqueness of names

Unix Domain Socket

 connection

 DNSServiceProcessResult()

 DNSServiceRefDeallocate()

 DNSServiceRefSockFD()

 file descriptor, extraction

Unix, Bonjour installation

updates, Dynamic DNS Update

 DNS-UL

URLs in namespaces

UTF-8, mDNS and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [W] [Z]

wide-area service discovery

 preferences

 browsing

 hostname

 registration

Wiki

Windows

 Bonjour installation

 event handling, GetMessage()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [W] [Z]

Zeroconf

 namespaces

http://lib.ommolketab.ir
http://lib.ommolketab.ir

	Zero Configuration Networking: The Definitive Guide
	Table of Contents
	Copyright
	Foreword
	Praise for Zero Configuration Networking: The Definitive Guide
	Preface
	Audience for This Book
	The Zeroconf Technology
	The Zeroconf DNS Service Discovery APIs
	Conventions Used in This Book
	Using Code Examples
	Comments and Questions
	Safari Enabled
	Acknowledgments

	Chapter 1. Introduction to Bonjour and Zeroconf
	Section 1.1. Service Discovery with Zeroconf
	Section 1.2. Replacing the AppleTalk Name Binding Protocol
	Section 1.3. Summary

	Chapter 2. IP Addresses Without DHCP
	Section 2.1. Obtaining an IP Address
	Section 2.2. Claiming a Link-Local IP Address
	Section 2.3. Summary

	Chapter 3. Names Without DNS
	Section 3.1. A Brief Tour of DNS
	Section 3.2. The Zeroconf Namespace
	Section 3.3. Multicast DNS
	Section 3.4. Claiming Your Local Name
	Section 3.5. The Structure of the Multicast DNS Message
	Section 3.6. Summary

	Chapter 4. Browsing for Services
	Section 4.1. Zero Configuration Operation
	Section 4.2. Finding Services, Not Devices
	Section 4.3. Knowing the Protocol
	Section 4.4. Building on DNS
	Section 4.5. Late Binding
	Section 4.6. DNS-SD TXT Records
	Section 4.7. Summary

	Chapter 5. Service Discovery Beyond the Local Link
	Section 5.1. Domain Enumeration
	Section 5.2. Advertising Static Services
	Section 5.3. Wide-Area Preference Settings
	Section 5.4. Dynamic DNS Updates
	Section 5.5. DNS Long-Lived Queries (DNS-LLQ)
	Section 5.6. NAT Port Mapping Protocol (NAT-PMP)
	Section 5.7. Summary

	Chapter 6. Getting Started with Bonjour/Zeroconf
	Section 6.1. Working with Bonjour/Zeroconf
	Section 6.2. The Command-Line Tool
	Section 6.3. Summary

	Chapter 7. Using the C APIs
	Section 7.1. Asynchronous Programming Model
	Section 7.2. Event Handling with a select() Loop
	Section 7.3. Using the DNSServiceDiscovery APIs
	Section 7.4. Event Handling with Cocoa RunLoop or Core Foundation CFRunLoop
	Section 7.5. Event Handling with Microsoft Windows GetMessage() Message Loop
	Section 7.6. Event Handling with Microsoft Windows MFC
	Section 7.7. Event Handling with Independent Threads
	Section 7.8. Summary

	Chapter 8. Using the Java APIs
	Section 8.1. Understanding the APIs
	Section 8.2. Using the APIs
	Section 8.3. An Extended Example: Tic-Tac-Toe

	Chapter 9. Using the CFNetwork and Cocoa APIs
	Section 9.1. Using the CFNetServices API
	Section 9.2. Using the NSNetServices API in Cocoa
	Section 9.3. A Cocoa Bonjour Extended Example

	Chapter 10. Ruby, Python, and Other Languages
	Section 10.1. Ruby
	Section 10.2. Python
	Section 10.3. Embedded Responders

	About the Authors
	Colophon
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	W
	Z

