
Ajax Hacks

By Bruce W. Perry

...

Publisher: O'Reilly

Pub Date: March 2006

Print ISBN-10: 0-596-10169-4

Print ISBN-13: 978-0-59-610169-5

Pages: 438

Table of Contents | Index

Ajax, the popular term for Asynchronous JavaScript and XML, is one of the most important
combinations of technologies for web developers to know these days. With its rich grouping of
technologies, Ajax developers can create interactive web applications with XML-based web services,
using JavaScript in the browser to process the web server response.

Taking complete advantage of Ajax, however, requires something more than your typical "how-to"
book. What it calls for is Ajax Hacks from O'Reilly. This valuable guide provides direct, hands-on
solutions that take the mystery out of Ajax's many capabilities. Each hack represents a clever way
to accomplish a specific task, saving you countless hours of searching for the right answer.

A smart collection of 100 insider tips and tricks, Ajax Hacks covers all of the technology's finer
points. Want to build next-generation web applications today? This book can show you how. Among
the multitude of topics addressed, it shows you techniques for:

Using Ajax with Google Maps and Yahoo Maps

Displaying Weather.com data

Scraping stock quotes

Fetching postal codes

Building web forms with auto-complete functionality

Ajax Hacks also features a number of advanced hacks for accelerated web developers. Discover
how to create huge, maintainable bookmarklets, how to use client-side storage for Ajax
applications, and how to call a built-in Java object from JavaScript using Ajax. The book even
addresses best practices for testing Ajax applications and improving maintenance, performance,
and reliability for JavaScript code.

The latest in O"Reilly's celebrated Hacks series, Ajax Hacks smartly complements other O'Reilly
titles such as Head Rush Ajax and JavaScript: The Definitive Guide.

Ajax Hacks

By Bruce W. Perry

...

Publisher: O'Reilly

Pub Date: March 2006

Print ISBN-10: 0-596-10169-4

Print ISBN-13: 978-0-59-610169-5

Pages: 438

Table of Contents | Index

 Foreword

 credits Credits

 About the Author

 Contributors

 Acknowledgments

 Preface

 Building Single-Page Applications

 Explaining Ajax

 How to Use This Book

 How This Book Is Organized

 Conventions Used in This Book

 Using Code Examples

 Safari Enabled

 How to Contact Us

 Got a Hack?

 Chapter 1. Ajax Basics

 It's Not a Floor Wax

 Handle with Care

 XMLHttpRequest

 Hack 1. Detect Browser Compatibility with the Request Object

 Hack 2. Use the Request Object to POST Data to the Server

 Hack 3. Use Your Own Library for XMLHttpRequest

 Hack 4. Receive Data as XML

 Hack 5. Get Plain Old Strings

 Hack 6. Receive Data as a Number

 Hack 7. Receive Data in JSON Format

 Hack 8. Handle Request Object Errors

 Hack 9. Dig into the HTTP Response

 Hack 10. Generate a Styled Message with a CSS File

 Hack 11. Generate a Styled User Message on the Fly

 Chapter 2. Web Forms

 Hack 12. Submit Text Field or textarea Values to the Server Without a Browser Refresh

 Hack 13. Display Text Field or textarea Values Using Server Data

 Hack 14. Submit Selection-List Values to the Server Without a Round Trip

 Hack 15. Dynamically Generate a New Selection List Using Server Data

 Hack 16. Extend an Existing Selection List

 Hack 17. Submit Checkbox Values to the Server Without a Round Trip

 Hack 18. Dynamically Generate a New Checkbox Group with Server Data

 Hack 19. Populate an Existing Checkbox Group from the Server

 Hack 20. Change Unordered Lists Using an HTTP Response

 Hack 21. Submit Hidden Tag Values to a Server Component

 Chapter 3. Validation

 Hack 22. Validate a Text Field or textarea for Blank Fields

 Hack 23. Validate Email Syntax

 Hack 24. Validate Unique Usernames

 Hack 25. Validate Credit Card Numbers

 Hack 26. Validate Credit Card Security Codes

 Hack 27. Validate a Postal Code

 Chapter 4. Power Hacks for Web Developers

 Hack 28. Get Access to the Google Maps API

 Hack 29. Use the Google Maps API Request Object

 Hack 30. Use Ajax with a Google Maps and Yahoo! Maps Mash-up

 Hack 31. Display a Weather.com XML Data Feed

 Hack 32. Use Ajax with a Yahoo! Maps and GeoURL Mash-up

 Hack 33. Debug Ajax-Generated Tags in Firefox

 Hack 34. Fetch a Postal Code

 Hack 35. Create Large, Maintainable Bookmarklets

 Hack 36. Use Permanent Client-Side Storage for Ajax Applications

 Hack 37. Control Browser History with iframes

 Hack 38. Send Cookie Values to a Server Program

 Hack 39. Use XMLHttpRequest to Scrape an Energy Price from a Web Page

 Hack 40. Send an Email with XMLHttpRequest

 Hack 41. Find the Browser's Locale Information

 Hack 42. Create an RSS Feed Reader

 Chapter 5. Direct Web Remoting (DWR)for Java Jocks

 Hack 43. Integrate DWR into Your Java Web Application

 Hack 44. Use DWR to Populate a Selection List from a Java Array

 Hack 45. Use DWR to Create a Selection List from a Java Map

 Hack 46. Display the Keys/Values from a Java HashMap on a Web Page

 Hack 47. Use DWR to Populate an Ordered List from a Java Array

 Hack 48. Access a Custom Java Object with JavaScript

 Hack 49. Call a Built-in Java Object from JavaScript Using DWR

 Chapter 6. Hack Ajax with the Prototype and Rico Libraries

 Hack 50. Use Prototype's Ajax Tools with Your Application

 Hack 51. Update an HTML Element's Content from the Server

 Hack 52. Create Observers for Web Page Fields

 Hack 53. Use Rico to Update Several Elements with One Ajax Response

 Hack 54. Create a Drag-and-Drop Bookstore

 Chapter 7. Work with Ajax and Ruby on Rails

 Sensible MVC

 Hack 55. Install Ruby on Rails

 Hack 56. Monitor Remote Calls with Rails

 Hack 57. Make Your JavaScript Available to Rails Applications

 Hack 58. Dynamically Generate a Selection List in a Rails Template

 Hack 59. Find Out Whether Ajax Is Calling in the Request

 Hack 60. Dynamically Generate a Selection List Using Database Data

 Hack 61. Periodically Make a Remote Call

 Hack 62. Dynamically View Request Information for XMLHttpRequest

 Chapter 8. Savor the script.aculo.us JavaScript Library

 Hack 63. Integrate script.aculo.us Visual Effects with an Ajax Application

 Hack 64. Create a Login Box That Shrugs Off Invalid Logins

 Hack 65. Create an Auto-Complete Field with script.aculo.us

 Hack 66. Create an In-Place Editor Field

 Hack 67. Create a Web Form That Disappears When Submitted

 Chapter 9. Options and Efficiencies

 Hack 68. Fix the Browser Back Button in Ajax Applications

 Hack 69. Handle Bookmarks and Back Buttons with RSH

 Hack 70. Set a Time Limit for the HTTP Request

 Hack 71. Improve Maintainability, Performance, and Reliability for Large JavaScript Applications

 Hack 72. Obfuscate JavaScript and Ajax Code

 Hack 73. Use a Dynamic script Tag to Make Web Services Requests

 Hack 74. Configure Apache to Deal with Cross-Domain Issues

 Hack 75. Run a Search Engine Inside Your Browser

 Hack 76. Use Declarative Markup Instead of Script via XForms

 Hack 77. Build a Client-Side Cache

 Hack 78. Create an Auto-Complete Field

 Hack 79. Dynamically Display More Information About a Topic

 Hack 80. Use Strings and Arrays to Dynamically Generate HTML

 Index

Foreword
The truth is, I've never built an Ajax application.

Sure, I've worked on Ajax projects. But when it comes to programming, my experience is pretty
limited. I've done some JavaScripting here and there. I know a little Perl, but hardly enough to build
a web application. As a programmer, I'm more of an occasional weekend hobbyist than anything else.

You can imagine how frustrating it is for people to learn this fact when they send me emails asking
for help with their JavaScript. But you can hardly fault them for expecting me to be a technologist.
After all, I wrote an article coining the term "Ajax," and Ajax is all about technology, right?

The funny thing is that I didn't see it that way when I was writing the essay. I didn't think I was
writing for technologists at all. I'm a designer, and I thought I was writing for a design audience. If
you look at some of the other things we've published on adaptivepath.com, you can see that we're
much more likely to be talking about ways to analyze user behavior or make an experience connect
with people than about the latest code libraries or data schemas.

That's one reason some people thought it was a little strange for me to be writing about Ajax at all.
Designers, one way of thinking goes, should leave writing about technology to technologists.

But seeing Ajax as a purely technological phenomenon misses the point. If anything, Ajax is even
more of a sea change for designers than it is for developers. Sure, there are a lot of ways in which
developers need to change their thinking as they make the transition from building traditional web
applications to building Ajax applications. But for those of us who design user experiences, the
change brought about by Ajax is even more profound.

We've gotten pretty good at our jobs in the last 10 years or so. We've started to get a handle on
what the Web does well and what the Web does poorly. And we've developed an arsenal of
conventions to rely on when we design applications: where the logo goes, how a link behaves when it
is clicked, how to communicate that something even can be clicked...

All of that knowledgewell, most of it, anywaygoes out the window with Ajax. We have a wider palette
to work with, but that also means we have more opportunities to make mistakes. And believe me,
we'll make a lot of them. It takes time to get smart, and just as it took us a while to get a handle on
the old static Web, it'll take us some time to get good at creating Ajax experiences as well.

And that's where youand this bookcome in.

One of the most inspiring things about the Web is that anyone can contribute to its development.
Standards bodies and platform vendors are important, of course, but there is no master plan for the
evolution of the Web. The Web goes where its users want it to gobut only when they're ready.
Sometimes that means a great idea doesn't take hold right away, and sometimes that means it only
takes one voice to bring that idea to an audience ready to hear it.

All of us, designers and developers together, are the architects of the Web. Through tools like this
book, we can learn from each other, and we can use our creativity to spur on further innovation. The

choices we make now lay the groundwork for what is to come. At this moment, Ajax is our manifest
destiny, the obvious next chapter in the story of the Web. When this chapter is over, I'll be excited to
see what the next one brings. But for now, let's see what we can do with what we've got.

Now get out there, and get hacking!

Jesse James Garrett
San Francisco, CA
December 2005

Credits

About the Author

Contributors

Acknowledgments

About the Author

Bruce Perry is an independent software developer and writer, and the author of O'Reilly's Java
Servlet & JSP Cookbook. Since 1996, he has developed web applications and databases for various
nonprofits, design and marketing firms, as well as publishers. In his spare time, Perry is an active
age-group triathlete and has cycled extensively in the Swiss Alps. He lives in the Newburyport,
Massachusetts area with his wife Stacy LeBaron, daughter Rachel, and son Scott.

Contributors

Micah Dubinko served as an editor and author of the XForms 1.0 W3C specification, and he
began participating in the XForms effort in September 1999, nine months before the official
Working Group was chartered. Micah received an InfoWorld Innovator award in 2004. He is the
author of O'Reilly's XForms Essentials, available online at http://www.xformsinstitute.com.
Currently, Micah works for Yahoo! in California as a senior research developer.

Curt Hibbs is a senior software developer in St. Louis with more than 30 years' experience in
platforms, languages, and technologies too numerous to list. With a keen (and always
searching) eye for new methods and technologies to make his work easier and more productive,
he has become very active in the Ruby development community.

Brad Neuberg has done extensive work in the open source community, contributing code to
Mozilla, JXTA, the Jakarta Feed Parser, and more. His experience includes developing on Wall
Street with distributed systems, n-tier design, and J2EE. As senior software engineer at Rojo
Networks, Brad focused on next-generation aggregators, the blogosphere, MySQL, Ajax, and
Lucene. Recent work includes consulting for the Internet Archive to create an Ajax book reader;
focusing on Ajax/DHTML open source frameworks, including the Really Simple History library
recently adopted by Google; and working with the Ajax Massive Storage System (AMASS) and
dojo.storage, which allow web applications to permanently and securely store megabytes of
data.

Premshree Pillai is a Technical Yahoo!. He hacks (maintains the Ruby APIs for Yahoo! Web
Services, Flickr, Technorati, etc.), writes ("Ruby Corner," a column for Linux For You), and talks
(at various conferences) about Ruby in his free time. He has previously contributed to O'Reilly's
Python Cookbook and Yahoo! Hacks, and to the ACM's Crossroads.

Mark Pruett is a programmer and writer living in Virginia, where he works for a Fortune 500
energy company. He's the author of two books and numerous articles on programming and
technology. Mark received his master of science degree in computer science from Virginia
Commonwealth University.

Sean Snider is a senior web software engineer for Yahoo! and the Web User Interface Team
manager for Yahoo! Music Unlimited. Sean has been building Ajax applications and rich web
sites for over eight years within the music, video game, and e-commerce industries, for
companies such as Electronic Arts (EA Sports, http://www.easports.com), Musicmatch
(Musicmatch Jukebox, http://www.musicmatch.com), and iVillage.com.

http://www.xformsinstitute.com
http://www.easports.com
http://www.musicmatch.com

Acknowledgments

My family members play the most important role in giving life to a book idea, nurturing its writing,
and making its final publication possible. First, I thank my parents Anne and Robert Perry, who had
the wisdom to settle in Concord, Massachusetts, where books are valued perhaps more than in any
other town in the United States. They promoted reading during my childhood as an activity above
most all others, perhaps second only to getting outside and appreciating the environment and Mother
Nature.

Second, I would like to thank my wife Stacy and children Rachel and Scott, who exhibited great
patience while dealing with the modest crises of publication deadlines, such as the temporary loss of
their husband and father to the inner sanctorum of a home office, or the occasional over-cooking of
the peas as I raced back to my lap top to complete some unfinished paragraph.

I'd like to thank my O'Reilly editor Simon St.Laurent, who tirelessly steered this book to publication
from beginning to end, and offered cogent advice during the entire duration of writing, despite the
challenging time line. This book greatly benefited from the technical reviews initiated by Micah
Dubinko, Shelley Powers, Thinakorn Tabtieng, and Michael Buffington. They demonstrated impressive
versatility in taking both a long view of the book's topic, as well as focusing on numerous fine-grained
details that required corrections or greater exposition.

Preface
Ajax, a term coined in 2005 to describe the combination of a group of popular web technologies, has
been an instant hit in the software world. Instant success can raise many doubts, but it would be a
mistake to view this software model as simply the latest "next big thing" to make a big splash and
then vanish into the ether of the Web.

Why? First of all, Ajax's interweaved technologies, including JavaScript, the Document Object Model
(DOM), and Cascading Style Sheets (CSS), live in the world of the Web, where new information and
technologies hit millions of people in milliseconds. If the technique represents an interesting idea with
practical merit, a good probability exists that developers will at least dip their toes into the
technology's waters, if not immediately add the new tool to their code arsenals. Second, the Ajax
family of techniques are already well known and open source, or free of charge; therefore, few
barriers exist to trying them out for at least a prototype version of new software. Third, a number of
useful, well-known applications are based on Ajax, such as Flickr and Gmail. Fourth, web users are
already accustomed to an Ajax application's desktop-like experience, where the application can make
client/server connections without completely changing the browser page.

There are numerous other reasons why Ajax is here to stay, such as the excellent support for
JavaScript, CSS, and DOM provided by modern browsers such as Firefox, as well as the pros and
cons of using Macromedia Flash for Rich Internet Applications instead.

Building Single-Page Applications

The "single-page application" represented by Ajax, with client/server connections that do not
interrupt the user's experience and dynamically change elements in different web page regions, is
appropriate for numerous uses, such as blogs, learning tools, online newsletters, and small web
portals or communities. Many of these types of sites are already built using Ajax techniques. Ajax can
also improve the user experience in large web-based client/server applications that extend beyond
the single-page model.

The time between the conception of this book and the writing of this preface has seen Ajax morph
into a software platform that dominates headlines on the Web, not to mention the birth of new
acronyms such as Ajaj (Asynchronous JavaScript and JSON) and lingo such as "Ajaxy" (as in an
Ajaxy server connection). Software innovations and human language seem to share the same organic
dynamic.

Explaining Ajax

Ajax Hacks was written by yours truly and seven different contributors, many of whom are among
the innovators, bloggers, and early adopters who helped give Ajax and its open source tools the
boost it enjoys today. They are senior web engineers and developers whose homes stretch from
Bangalore to San Francisco, a scope reflecting the diverse and serendipitous nature by which the
writers found this book and the book discovered its writers. (See the Credits for more details on
these writers.)

Ajax Hacks collects not only dozens of easy-to-grasp, cutting-edge explorations of Ajax technology,
such as Google/Yahoo! mapping mash-ups, drag-and-drop bookstores, and single-page web services
apps, but a large number of hacks that represent practical advice for Ajax developers. Ajax Hacks
also introduces JavaScript newbies and aficionados alike to useful code libraries, including Prototype,
Rico, and script.aculo.us. Chapter 7 focuses on a practical and new web application framework with
excellent Ajax tools including Ruby on Rails.

A number of the contributions are hacks in the original, clever sense of the term, exploring topics
such as using algorithms and Flash objects to simulate a browser history list and store Ajax-related
data offline, configuring Apache to fix the XMLHttpRequest cross-domain restrictions, running a search
engine inside your browser, and mashing up Yahoo! Maps with a location-to-URL service called
GeoURL.

Some of the contributed hacks illustrate cool web controls and embedded scripts, such as a hack that
scripts an auto-complete field from scratch, a hack that creates JavaScript bookmarklets that do not
have size limitations, and another that creates an RSS feed reader for an Ajax application. These are
hacks that push the envelope, just as we approach the cusp of this web model's formulation. At the
same time, web developers can adapt a number of this book's hacks, some of which are distributed
as open source libraries, for their own applications.

How to Use This Book

You can read this book from cover to cover if you like, but for the most part, each hack stands on its
own, so feel free to browse and jump to the different sections that interest you most. If there's a
prerequisite you need to know about, a cross reference will guide you to the right hack. So, feel free
to browse, flipping around to whatever sections interest you most.

How This Book Is Organized

The book is divided into several chapters, organized by subject:

Chapter 1, Ajax Basics

What is Ajax? This chapter begins with a synopsis of the group of well-known technologies that
make up Ajax. The chapter's hacks introduce the XMLHttpRequest JavaScript object and its
properties and methods, then delve into the meat of the matter, such as sending GET and
POST requests, as well as receiving data in plain text, XML, and JSON format. This chapter also
illustrates the dynamic scripting of CSS styles in Ajax applications. Let the users change the
colors and fonts inside the browser page!

Chapter 2, Web Forms

Web forms have certainly changed in the Ajax world. As revealed in this chapter's hacks, it is
typical now to submit form data and to build form widgets such as select lists and checkbox
groups using server data fetched in the background with XMLHttpRequest. Because the page
doesn't have to be completely rebuilt from a server response, the user experiences few
application delays. These hacks show how to submit text from form fields and textareas and
display server values in those fields, without making the user click a submit button. The hacks
also generate various elements, such as select lists and unordered lists, using XMLHttpRequest
and data that is dynamically accessed from a server.

Chapter 3, Validation

Ajax applications can cut down on server hits by validating the format of email addresses,
credit card numbers, zip codes, and other types of data that users enter into web forms before
sending the data. A server component is obviously necessary for final credit card validation in a
real-world application; however, the application may implement a "first layer of defense," as in
these hacks, by validating the formats of text-field values with JavaScript regular expressions.

Chapter 4, Power Hacks for Web Developers

Web developers have never had cooler, easier-to-work-with tools than the Yahoo! and Google
web APIs. This chapter includes a mash-up of Google Maps, Yahoo! Maps, and Yahoo! driving
directions, as well as a software interaction involving Yahoo! Maps and a location-to-URL
service called GeoURL. It also features more prosaic, pragmatic web hacks, such as sending an
email with XMLHttpRequest; viewing, creating, and sending HTTP cookies with client-side script;
fetching a postal code dynamically without altering the web page; as well as discovering and
displaying the browser's locale information.

Chapter 5, Direct Web Remoting (DWR) for Java Jocks

DWR is a nifty toolkit that allows developers to make remote calls to Java server objects from
JavaScript, without any Java applets or plug-ins. DWR uses Ajax requests behind the scenes;
the toolkit's users, however, do not have to deal with XMLHttpRequest programming. These
hacks populate select lists from Java arrays and Maps; call custom Java objects from their
JavaScript proxies or counterparts; and use JavaScript objects to call built-in Java objects. This
chapter is a treat for developers who are immersed in both Java and JavaScript.

Chapter 6, Hack Ajax with the Prototype and Rico Libraries

The hacks in this chapter use Prototype, a cool open source JavaScript library that includes its
own Ajax tools. You'll see how to update DOM elements in a web page with server data using
Prototype's Ajax.Updater object, and how to use the PeriodicalExecuter object to execute
Ajax requests at timed intervals while another "observer" object monitors a text field for
changes (imagine: a user enters data into text fields, and a JavaScript object automatically
sends the data off to persistent server storage whenever the field value changes). Another
hack in this chapter uses the open source library Rico in a Weather.com web services
application. Finally, the chapter's last hack sets up a drag-and-drop bookstore, also using Rico.

Chapter 7, Work with Ajax and Ruby on Rails

Learn Ruby on Rails! Ruby on Rails (RoR) is an efficient and well-designed web application
framework, based on the Model-View-Controller design pattern, that made its debut in 2005.
This chapter begins with a simple hack that helps you get up and running with RoR, then
moves on to several hacks that illustrate RoR's Ajax tools. Each hack is a web application task
written in Ruby; for example, one of the hacks monitors a server connection and displays the
status in the client. RoR bundles Prototype with the framework, then wraps the setup of the
Ajax objects into its own easy-to-learn, embedded script language. Get ready to read a lot of
Ruby code, a treat for those who may be new to this elegant and powerful tool!

Chapter 8, Savor the script.aculo.us JavaScript Library

script.aculo.us is another open source JavaScript library built on Prototype. It offers a broad
menu of useful effects and controls for developers. These hacks create a Mac OS Xstyle login
box that "shakes" in response to invalid logins; an auto-complete field based on a
script.aculo.us object; a control that allows the user to edit textual content in the browser and
then save the changes on a server, without a web page round trip; and, just for fun, a web
form that disappears in a puff of smoke when it's submitted.

Chapter 9, Options and Efficiencies

These hacks provide several tips for real-world Ajax developers. Ironically, several hacks
illustrate how to avoid using XMLHttpRequest to hit the server: you'll see how to run a search
engine inside the browser, cache data with JavaScript, and "fix" the browser back button in an
Ajax application by internally storing and accessing state. These hacks also recommend ways
to combine code libraries to increase download speed, obfuscate or partially obscure JavaScript
code to protect proprietary scripting, set a timer for aborting an Ajax request, as well as
dynamically request data in JavaScript Object Notation (JSON) format using the HTML script

tag.

Conventions Used in This Book

The following is a list of the typographical conventions used in this book:

Italics

Used to indicate URLs, filenames, filename extensions, and directory/folder names, e.g., a path
in the filesystem appears as /Developer/Applications

Constant width

Used to show code examples, the contents of files, console output, as well as the names of
variables, commands, and other code excerpts

Constant width bold

Used to highlight portions of code

Gray type

Used to indicate a cross reference within the text

You should pay special attention to notes set apart from the text with the following icons:

This is a tip, suggestion, or general note. It contains useful supplementary information about the
topic at hand.

This is a warning or note of caution, often indicating that something might
break if you're not careful, possibly quite badly.

The thermometer icons, found next to each hack, indicate the relative complexity of the hack:

Whenever possible, the hacks in this book are not platform-specific, which means you can use them
on Linux, Macintosh, and Windows machines. However, some things are possible only on a particular

platform.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in
your programs and documentation. You do not need to contact us for permission unless you're
reproducing a significant portion of the code. For example, writing a program that uses several
chunks of code from this book does not require permission. Selling or distributing a CD-ROM of
examples from O'Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount of example
code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: "Ajax Hacks by Bruce Perry. Copyright 2006 O'Reilly Media, Inc.,
0-596-10169-4."

If you feel your use of code examples falls outside fair use or the permission given above, feel free to
contact us at permissions@oreilly.com.

Safari Enabled

When you see a Safari® Enabled icon on the cover of your favorite technology book, it means the
book is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search
thousands of top technology books, cut and paste code samples, download chapters, and find quick
answers when you need the most accurate, current information. Try it for free at
http://safari.oreilly.com.

http://safari.oreilly.com

How to Contact Us

We have tested and verified the information in this book to the best of our ability, but you may find
that features have changed (or even that we have made mistakes!). As a reader of this book, you
can help us to improve future editions by sending us your feedback. Please let us know about any
errors, inaccuracies, bugs, misleading or confusing statements, and typos that you find anywhere in
this book.

Please also let us know what we can do to make this book more useful to you. We take your
comments seriously and will try to incorporate reasonable suggestions into future editions. You can
write to us at:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the Unitd States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

To ask technical questions or to comment on the book, send email to:

bookquestions@oreilly.com

The web site for Ajax Hacks lists examples, errata, and plans for future editions. You can find this
page at:

http://www.oreilly.com/catalog/ajaxhks/

For more information about this book and others, see the O'Reilly web site:

http://www.oreilly.com

http://www.oreilly.com/catalog/ajaxhks/
http://www.oreilly.com

Got a Hack?

To explore Hacks books online or to contribute a hack for future titles, visit:

http://hacks.oreilly.com

http://hacks.oreilly.com

Chapter 1. Ajax Basics
Remember when users called the Internet the "world wide wait?" Way back in the Neolithic era of the
Web? With some applications, that aspect of the Web hasn't really changed that much: fill out form,
click button, web page goes away, wait, page refreshes, correct mistake, click, wait, wait... You've
been stuck in this limbo before.

A number of recent web sites, however, such as many of the cool mapping applications that have
evolved of late, require much greater responsiveness in the way they interact with users. The old,
conventional way of handling user interaction is to have the entire page "go away" with every click,
with the new page reappearing in the browser view only when the server's response is finally
complete. However, some new applications require small pieces of the web page to change
instantaneously, without the entire page reloading.

For example, if you have ever used Google Maps, the way you can drag outlying regions into your
view conveys the impression that you have all of the maps stored locally on your computer, for your
effortless manipulation. Imagine how unpopular this application would be if every time you tried to
"drag" the map the page disappeared for a few (long) moments while the browser waited for another
server response. The application would be so sluggish that no one would use it. So what's the magic
that makes this work?

It's Not a Floor Wax

A blend of well-known technologies and a nifty JavaScript tool form the basis of a snappier and more
powerful application model for the Web. If you're afraid of acronym overload, don't worrythis one's
easy. It's called Ajax, which stands for Asynchronous JavaScript and XML.

Ajax is neither a floor wax nor a desert topping (nor, indeed, a lemon-scented cleaning product!). It's
a blend of a number of standard technologies already familiar to developers and designers:

JavaScript, a programming language that adds dynamic scripting to web pages. JavaScript code
can be embedded in a web page to allow the page to implement cool new behaviors with a
technique called client-side scripting. This technique is almost as old as the Web itself.

XMLHttpRequest, a JavaScript object with an application programming interface (API) that can
connect with a server using the HyperText Transfer Protocol (HTTP). A lot of the Ajax magic is
propelled by this piece of code, which all the major browsers (such as Mozilla Firefox, Internet
Explorer 6, Safari 1.3 and 2.0, and Opera 7.6) support. The asynchronous part of Ajax derives
from this object's characteristics.[1]

[1] The XMLHttpRequest object can make an asynchronous request to a server, meaning that once the request has been

initiated, the rest of the JavaScript code does not have to wait for a response to execute. XMLHttpRequest can also make

synchronous requests.

Extensible Markup Language (XML), a language designed to define other languages. The
XMLHttpRequest object can handle the server response in standard XML format as well as plain
text.

HTML and Cascading Style Sheets (CSS), which control what the user sees on a web page. Web
developers can use JavaScript to make dynamic changes to the visual interface by programming
HTML elements and CSS styles.

The Document Object Model (DOM), a model that represents an XML file or web page as a set of
related objects that can be dynamically manipulated, even after the user has downloaded the
page. The web page view is structured as a tree hierarchy made up of a root node, the parent,
and its various branches, or children. Each HTML element is represented by a node or branch,
which is accessible via JavaScript. We show a lot (a lot!) of DOM programming in these hacks.

Extensible Stylesheet Language and Transformation (XSLT), a templating technology for
transforming the display of XML information for a receiving client.

Ajax is far from new, as these are relatively old technologies. Microsoft issued the first
implementation of a JavaScript object that makes HTTP requests, often referred to as the XMLHTTP
object, with Version 5.0 of the Internet Explorer browser (as of this writing, IE is on Version 6, with v7
in a beta release).

The plethora of new web applications that use Ajax, however, suggests that this group of technologies
has morphed into a new web model. "Web 2.0" is next-generation-speak encompassing Ajax, a form

of Rich Internet Application (so called because much of the application's functionality can reside in the
client browser). Examples of these applications are Google Maps, Gmail, a collaboration suite called
Zimbra, an interesting personal search-engine tool called Rollyo (http://www.rollyo.com), and one of
the first interactive web maps, this one of Switzerland (see http://map.search.ch/index.en.html). The
number of Ajax applications is growing very rapidly. You can find a short list on Wikipedia, at
http://en.wikipedia.org/wiki/List_of_websites_using_Ajax.

http://www.rollyo.com
http://map.search.ch/index.en.html
http://en.wikipedia.org/wiki/List_of_websites_using_Ajax

Handle with Care

Of course, Ajax is not for everyone (particularly those dessert topping fans!). Because Ajax
technology can dynamically alter a web page that has already been downloaded, it may interfere with
certain functions near and dear to many users, such as creating bookmarks for browser views. For
example, in the absence of fancy scripting solutions, the dynamic changes you make with DOM in an
existing web page cannot be linked to with a URL that you can send to your friends or save for later.
(Both "Fix the Browser Back Button in Ajax Applications" [Hack #68] and "Handle Bookmarks and
Back Buttons with RSH" [Hack #69] should help shed light on these issues and provide some
hackable solutions.)

A number of the cool Ajax tips described in this book alter the behavior of many familiar web widgets,
such as select lists, textareas, text fields, and radio buttons that submit their own data and talk to
servers behind the scenes. However, bear in mind that Ajax-powered widgets should be first and
foremost usable, and always avoid confusing and irritating web users.

XMLHttpRequest

At the center of many of the hacks in this book is the XMLHttpRequest object, which allows JavaScript
to fetch bits of server data while the user is happily playing with the rest of your application. This
object has its own API, which we will summarize in this introduction.

"Detect Browser Compatibility with the Request Object" [Hack #1] covers setting up the request
object in JavaScript. Once the object is initialized, it has several methods and properties that you can
use in your own hacks.

A common practice among programming types is to call the functions that are
associated with particular JavaScript objects "methods." The XMLHttpRequest
object's methods include open(), send(), and abort().

The following list shows the properties supported by the request objects defined by most of the major
browsers, such as Internet Explorer 5.0 and later, Safari 1.3 and 2.0, Netscape 7, and Opera's latest
releases (such as Opera 8.5). Mozilla Firefox's request object has additional properties and methods
not shared by the request objects of other major browsers,[2] but it also supports all of the following:

[2] The Mozilla Firefox XMLHttpRequest object has onload, onprogress, and onerror properties that are event listener types.

Firefox has also defined addEventListener(), dispatchEvent(), overrideMimeType(), and removeEventListener()

methods. See http://www.xulplanet.com/references/objref/XMLHttpRequest.html for more details on these Firefox request object

members.

onreadystatechange

Callback function; the function assigned to this property is called whenever readyState
changes.

readyState

Number; 0 means uninitialized, open() has not yet been called; 1 means loading, send() has
not been called; 2 means loaded, send() has been called, and headers/status are available; 3
means interactive, responseText holds partial data; 4 means completed.

responseText

string; the plain text of the response.

responseXML

http://www.xulplanet.com/references/objref/XMLHttpRequest.html

DOM Document object; an XML return value.

status

Response status code, such as 200 (Okay) or 404 (Not Found).

statusText

string; the text associated with the HTTP response status.

The methods supported include:

abort()

void; cancels the HTTP request.

getAllResponseHeaders()

string; returns all of the response headers in a preformatted string (see "Dig into the HTTP
Response" [Hack #9]).

getResponseHeader(string header)

string; returns the value of the specified header.

open(string url,string asynch)

void; prepares the HTTP request and specifies whether it is asynchronous or not.

send(string)

void; sends the HTTP request.

setHeader(string header,string value)

void; sets a request header, but you must call open() first!

Hack 1. Detect Browser Compatibility with the Request
Object

Use JavaScript to set up Microsoft's and the Mozilla-based browsers' different request
objects.

Browser compatibility is an important consideration. You have to make sure the "engine" behind
Ajax's server handshake is properly constructed, but you can never predict which browsers your
users will favor.

The programming tool that allows Ajax applications to make HTTP requests to a server is an object
that you can use from within JavaScript code. In the world of Firefox and Netscape (as well as Safari
and Opera), this object is named XMLHttpRequest. However, continuing with the tradition established
by IE 5.0, recent vintages of Internet Explorer implement the software as an ActiveX object named
Microsoft.XMLHTTP or Msxml2.XMLHTTP.

Microsoft.XMLHTTP and Msxml2.XMLHTTP refer to different versions of software
components that are a part of Microsoft XML Core Services (MSXML). Here's
what our contributing IE expert says on this matter:

"If you use Microsoft.XMLHTTP, the ActiveXObject wrapper will try to initialize
the last known good version of the object that has this program (or "prog") ID.
This object, in theory, could be MSXML 1.0, but almost no one these days has
that version because it has been updated via Windows Update, IE 6, or another
means. MSXML 1.0 was very short-lived. If you use MSXML2.XMLHTTP, that
signifies to the wrapper to use at least MSXML 2.0 libraries. Most developers do
not need to use a specific version of MSXML, such as MSXML2.XMLHTTP.4.0 or
MSXML2.XMLHTTP.5.0."

Although Microsoft and the engineers on the Mozilla project have chosen to implement this object
differently, we will refer to the ActiveX and XMLHttpRequest objects simply as "request objects"
throughout this book, because they have very similar functionality.

As a first step in using Ajax, you must check if the user's browser supports either one of the Mozilla-
based or ActiveX-related request objects, and then properly initialize the object.

Using a Function for Checking Compatibility

Wrap the compatibility check inside a JavaScript function, then call this function before you make any
HTTP requests using the object. For example, in Mozilla-based browsers such as Netscape 7.1 and

Firefox 1.5 (as well as in Safari 2.0 and Opera 8.5), the request object is available as a property of
the top-level window object. The reference to this object in JavaScript code is window.XMLHttpRequest.
The compatibility check for these browser types looks like this:

if(window.XMLHttpRequest){
 request = new XMLHttpRequest();
 request.onreadystatechange=handleResponse;
 request.open("GET",theURL,true);
 request.send(null);
}

The JavaScript variable request is to a top-level variable that will refer to the request object.

As an alternative model, the open-source library Prototype uses object-oriented
JavaScript to wrap the request object into its own object, as in the object
Ajax.Request (see Chapter 6).

If the browser supports XMLHttpRequest, then:

if(window.XMLHttpRequest) returns true because the XMLHttpRequest is not null or undefined.1.

The object will be instantiated with the new keyword.2.

Its onreadystatechange event listener (see the section "XMLHttpRequest" earlier in this chapter)
will be defined as a function named handleResponse().

3.

The code calls the request object's open() and send() methods.4.

What about Internet Explorer users?

Microsoft Internet Explorerrelated blogs mentioned, at the time this book went
to publication, that IE 7 would support a native XMLHttpRequest object.

In this case, the window.XMLHttpRequest object will not exist in the browser object model. Therefore,
another branch of the if test is necessary in your code:

else if (window.ActiveXObject){
 request=new ActiveXObject("Microsoft.XMLHTTP");
 if (! request){
 request=new ActiveXObject("Msxml2.XMLHTTP");
 }
 if(request){
 request.onreadystatechange=handleResponse;
 request.open(reqType,url,true);
 request.send(null);

 }
}

This code fragment tests for the existence of the top-level window object ActiveXObject, thus
signaling the use of Internet Explorer. The code then initializes the request using two of a number of
possible ActiveX program IDs (here, Microsoft.XMLHTTP and Msxml2.XMLHTTP).

You can get even more fine-grained when testing for different versions of the IE request object, such
as Msxml2.XMLHTTP.4.0. In the vast majority of cases, however, you will not be designing your
application based on various versions of the MSXML libraries, so the prior code will suffice.

The code then makes one final check for whether the request object has been properly constructed
(if(request){...}).

Given three chances, if the request variable is still null or undefined, your browser is really out of
luck when it comes to using the request object for Ajax!

Here's an example of an entire compatibility check:

/* Wrapper function for constructing a request object.
 Parameters:
 reqType: The HTTP request type, such as GET or POST.
 url: The URL of the server program.
 asynch: Whether to send the request asynchronously or not. */

function httpRequest(reqType,url,asynch){
 //Mozilla-based browsers
 if(window.XMLHttpRequest){
 request = new XMLHttpRequest();
 } else if (window.ActiveXObject){
 request=new ActiveXObject("Msxml2.XMLHTTP");
 if (! request){
 request=new ActiveXObject("Microsoft.XMLHTTP");
 }
 }
 //the request could still be null if neither ActiveXObject
 //initialization succeeded
 if(request){
 initReq(reqType,url,asynch);
 } else {
 alert("Your browser does not permit the use of all "+
 "of this application's features!");
 }
}
/* Initialize a request object that is already constructed */
function initReq(reqType,url,bool){
 /* Specify the function that will handle the HTTP response */
 request.onreadystatechange=handleResponse;
 request.open(reqType,url,bool);
 request.send(null);
}

"Use the Request Object to POST Data to the Server" [Hack #2] shows how to implement a POST
request with XMLHttpRequest.

Hack 2. Use the Request Object to POST Data to the
Server

Step beyond the traditional mechanism of posting your user's form values.

This hack uses the POST HTTP request method to send data, communicating with the server without
disrupting the user's interaction with the application. It then displays the server's response to the
user. The difference between this hack's approach to posting data and the typical form-submission
method is that with Ajax, the page is not altered or refreshed when the application connects with the
server to POST it the data. Thus, the user can continue to interact with the application without
waiting for the interface to be rebuilt in the browser.

Imagine that you have a web portal in which several regions of the page or view provide the user
with a variety of services. If one of these regions involves posting data, the entire application might
have a more responsive feel if the POST request happens in the background. This way, the entire
page (or segments of it) does not have to be refreshed in the browser.

The example web page used in this hack is a simple one. It requests users to enter their first and last
names, gender, and country of origin, and then click a button to POST the data. Figure 1-1 shows
what the web page looks like in a browser window.

Figure 1-1. Please Mister POST man

Here's the code for the HTML page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/1999/REC-html401-19991224/strict.dtd">
<html>
<head>
 <script type="text/javascript" src="/parkerriver/js/hack2.js"></script>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <title>Send a data tidbit</title>
</head>
<body>
<h3>A Few Facts About Yourself...</h3>
<form action="javascript:void%200" onsubmit="sendData();return false">
 <p>First name: <input type="text" name="firstname" size="20"> </p>
 <p>Last name: <input type="text" name="lastname" size="20"> </p>
 <p>Gender: <input type="text" name="gender" size="2"> </p>
 <p>Country of origin: <input type="text" name="country" size="20"> </p>
 <p><button type="submit">Send Data</button></p>
</form>
</body>
</html>

You may be wondering about the weird-looking form
action="javascript:void%200" part. Because we are calling JavaScript functions
when the form is submitted, we do not want to give the action attribute
anything but a JavaScript URL that has no return value, such as
"javascript:void 0". We have to encode the space between void and 0, which
is where the %20 comes in. If JavaScript is disabled in the user's browser,
clicking the submit button on the form has no effect because the action
attribute does not point to a valid URL. In addition, certain HTML validators will
display warnings if you use action="". Another way of writing this code is to
include the function calls as part of the window.onload event handler in the
JavaScript .js file, which is the approach used by most hacks in this book.

The first code element of interest is the script tag, which imports the JavaScript code (in a file
named hack2.js). The form tag's onsubmit attribute specifies a function called sendData(), which in
turn formats the data for a POST request (by calling another function, setQueryString()) and sends
the data to the server. For brevity's sake, we've saved the description of checking for blank fields for
a later hack ("Validate a Text Field or textarea for Blank Fields" [Hack #22]), but web applications
should take this step before they hit the server.

The hack2.js file defines the necessary JavaScript. Here is the setQueryString() function:

function setQueryString(){
 queryString="";
 var frm = document.forms[0];
 var numberElements = frm.elements.length;
 for(var i = 0; i < numberElements; i++) {
 if(i < numberElements-1) {
 queryString += frm.elements[i].name+"="+
 encodeURIComponent(frm.elements[i].value)+"&";
 } else {
 queryString += frm.elements[i].name+"="+
 encodeURIComponent(frm.elements[i].value);
 }

 }
}

This function formats a POST-style string out of all the form's input elements. All the name/value
pairs are separated by an & character, except for the pair representing the last input element in the
form. The entire string might look like:

firstname=Bruce&lastname=Perry&gender=M&country=USA

Now you have a string you can use in a POST HTTP request. Let's look at the JavaScript code that
sends the request. Everything starts with the sendData() function. The code calls this function in the
HTML form tag's onsubmit attribute:

var request;

var queryString; //will hold the POSTed data
function sendData(){
 setQueryString();
 var url="http://www.parkerriver.com/s/sender";
 httpRequest("POST",url,true);
}

/* Initialize a request object that is already constructed.
 Parameters:
 reqType: The HTTP request type, such as GET or POST.
 url: The URL of the server program.
 isAsynch: Whether to send the request asynchronously or not. */
function initReq(reqType,url,isAsynch){
 /* Specify the function that will handle the HTTP response */
 request.onreadystatechange=handleResponse;
 request.open(reqType,url,isAsynch);
 /* Set the Content-Type header for a POST request */
 request.setRequestHeader("Content-Type",
 "application/x-www-form-urlencoded; charset=UTF-8");
 request.send(queryString);
}

/* Wrapper function for constructing a request object.
 Parameters:
 reqType: The HTTP request type, such as GET or POST.
 url: The URL of the server program.
 asynch: Whether to send the request asynchronously or not. */

function httpRequest(reqType,url,asynch){
 //Mozilla-based browsers
 if(window.XMLHttpRequest){
 request = new XMLHttpRequest();
 } else if (window.ActiveXObject){
 request=new ActiveXObject("Msxml2.XMLHTTP");
 if (! request){
 request=new ActiveXObject("Microsoft.XMLHTTP");
 }
 }
 //the request could still be null if neither ActiveXObject
 //initialization succeeded
 if(request){
 initReq(reqType,url,asynch);
 } else {
 alert("Your browser does not permit the use of all "+
 "of this application's features!");
 }
}

The purpose of the httpRequest() function is to check which request object the user's browser is
associated with (see "Detect Browser Compatibility with the Request Object" [Hack #1]). Next, the
code calls initReq(), whose parameters are described in the comment just above the function

definition.

The code request.onreadystatechange=handleResponse; specifies the event-handler function that
deals with the response. We'll look at this function a little later. The code then calls the request
object's open() method, which prepares the object to send the request.

Setting Headers

The code can set any request headers after calling open(). In our case, we have to create a
Content-Type header for a POST request.

Firefox required the additional Content-Type header; Safari 1.3 did not. (We
were using Firefox 1.02 at the time of writing this hack.) It is a good idea to add
the proper header because in most cases the server is expecting it from a
POST request.

Here's the code for adding the header and sending the POST request:

request.setRequestHeader("Content-Type",
 "application/x-www-form-urlencoded; charset=UTF-8");
request.send(queryString);

If you enter the raw queryString value as a parameter, the method call looks like this:

send("firstname=Bruce&lastname=Perry&gender=M&country=USA");

Ogling the Result

Once your application POSTs data, you want to display the result to your users. This is the
responsibility of the handleResponse() function. Remember the code in the initReq() function:

 request.onreadystatechange=handleResponse;

When the request object's readyState property has a value of 4, signifying that the object's
operations are complete, the code checks the HTTP response status for the value 200. This value
indicates that the HTTP request has succeeded. The responseText is then displayed in an alert
window. This is somewhat anticlimactic, but I thought I'd keep this hack's response handling simple,
because so many other hacks do something more complex with it!

Here is the relevant code:

//event handler for XMLHttpRequest
function handleResponse(){
 if(request.readyState == 4){
 if(request.status == 200){

 alert(request.responseText);
 } else {
 alert("A problem occurred with communicating between "+
 "the XMLHttpRequest object and the server program.");
 }
 }//end outer if
}

Figure 1-2 shows what the alert window looks like after the response is received.

Figure 1-2. Alert! Server calling...

The server component returns an XML version of the POSTed data. Each parameter name becomes
an element name, with the parameter value as the element content. This POSTed data is nested
within params tags. The component is a Java servlet. The servlet is not the main focus of this hack,
but here's some code anyway, for the benefit of readers who are curious about what is happening on
the server end:

protected void doPost(HttpServletRequest httpServletRequest,
 HttpServletResponse httpServletResponse) throws
 ServletException, IOException {
 Map reqMap = httpServletRequest.getParameterMap();
 String val=null;
 String tag = null;
 StringBuffer body = new StringBuffer("<params>\\n");
 boolean wellFormed = true;
 Map.Entry me = null;
 for(Iterator iter= reqMap.entrySet().iterator();iter.hasNext();) {
 me=(Map.Entry) iter.next();
 val= ((String[])me.getValue())[0];
 tag = (String) me.getKey();
 if (! XMLUtils.isWellFormedXMLName(tag)){
 wellFormed=false; break;
 }

 body.append("<").append(tag).append(">").
 append(XMLUtils.escapeBodyValue(val)).
 append("</").append(tag).append(">\\n");
 }
 if(wellFormed) {
 body.append("</params>");
 sendXML(httpServletResponse,body.toString());
 } else {
 sendXML(httpServletResponse,"<notWellFormedParams />");
 }
}

The code uses XMLUtils, a Java class from the Jakarta Commons Betwixt open source package, to
check whether the parameter names are well formed, as well as whether the parameter values
contain invalid XML content and thus have to be escaped. If for some reason the component is
POSTed data that contains nonwell-formed parameter names (such as na< >me instead of name), the
servlet returns an empty XML element reporting this condition.

Hack 3. Use Your Own Library for XMLHttpRequest

Break out the code that initializes the request object and sends requests to its own
JavaScript file.

To cleanly separate the concerns of big Ajax applications, create a separate file that manages the
XMLHttpRequest object, then import that file into every web page that needs it. At the very least, this
ensures that any necessary changes regarding how the code sets up the request object have to be
made only in this file, as opposed to every JavaScript file that uses Ajax-style requests.

This hack stores all the request objectrelated code in a file called http_request.js. Any web page that
uses XMLHttpRequest can then import this file in the following way:

<script type="text/javascript" src="js/http_request.js"></script>

Here's the code for the file, including all the comments:

var request = null;
/* Wrapper function for constructing a request object.
 Parameters:
 reqType: The HTTP request type, such as GET or POST.
 url: The URL of the server program.
 asynch: Whether to send the request asynchronously or not.
 respHandle: The name of the function that will handle the response.
 Any fifth parameters, represented as arguments[4], are the data a
 POST request is designed to send. */
function httpRequest(reqType,url,asynch,respHandle){
 //Mozilla-based browsers
 if(window.XMLHttpRequest){
 request = new XMLHttpRequest();
 } else if (window.ActiveXObject){
 request=new ActiveXObject("Msxml2.XMLHTTP");
 if (! request){
 request=new ActiveXObject("Microsoft.XMLHTTP");
 }
 }
 //very unlikely, but we test for a null request
 //if neither ActiveXObject was initialized
 if(request) {
 //if the reqType parameter is POST, then the
 //5th argument to the function is the POSTed data
 if(reqType.toLowerCase() != "post") {
 initReq(reqType,url,asynch,respHandle);

 } else {
 //the POSTed data
 var args = arguments[4];
 if(args != null && args.length > 0){
 initReq(reqType,url,asynch,respHandle,args);
 }
 }
 } else {
 alert("Your browser does not permit the use of all "+
 "of this application's features!");
 }
}
/* Initialize a request object that is already constructed */
function initReq(reqType,url,bool,respHandle){
 try{
 /* Specify the function that will handle the HTTP response */
 request.onreadystatechange=respHandle;
 request.open(reqType,url,bool);
 //if the reqType parameter is POST, then the
 //5th argument to the function is the POSTed data
 if(reqType.toLowerCase() == "post") {
 request.setRequestHeader("Content-Type",
 "application/x-www-form-urlencoded; charset=UTF-8");
 request.send(arguments[4]);
 } else {
 request.send(null);
 }

 } catch (errv) {
 alert(
 "The application cannot contact "+
 "the server at the moment. "+
 "Please try again in a few seconds.\\n"+
 "Error detail: "+errv.message);
 }
}

The applications that use this code call the httpRequest() function with four or five (with POST
requests) parameters. You see lots of examples of calling this function in the other hacks. Here's
another:

var _url = "http://www.parkerriver.com/s/sender";
var _data="first=Bruce&last=Perry&middle=W";
httpRequest("POST",_url,true,handleResponse,_data);

The code comments describe the meaning of each of these parameters. The last parameter
represents the data that accompanies a POST request.

A POST HTTP request includes the POSTed data beneath the request-header
information. A GET request, on the other hand, appends parameter
names/values onto the URL.

If the code is not using POST, the client code uses only the first four parameters. The fourth
parameter can be either the name of a function that is declared in the client code (i.e., a response-
handling function that appears outside of the http_request.js file) or a function literal. The latter
option involves defining a function inside a function call, which is often awkward and difficult to read.
However, it is sensible in situations in which the HTTP response handling is short and simple, as in:

var _url = "http://www.parkerriver.com/s/sender";
//a debugging setup
httpRequest("POST",_url,true,function(){alert(request.responseText);});

httpRequest() initiates the same browser detection and setup of XMLHttpRequest for Internet
Explorer and non-Microsoft browsers as described in "Detect Browser Compatibility with the Request
Object" [Hack #1]. initReq() handles the second step of setting up the request object: specifying
the onreadystatechange event handler and calling the open() and send() methods to make an HTTP
request. The code traps any errors or exceptions thrown by these request method calls using a
try/catch statement. For example, if the code calls open() with a URL specifying a different host
than that used to download the enclosing web page, the try/catch statement catches the error and
pops up an alert window.

Finally, as long as the web page imports http_request.js, the request variable is available to code
external to the imported file; request is, in effect, a global variable.

request is thus reserved as a variable name because local variables that use
the var keyword will supercede (with unintentional consequences) the globally
used request, as in the following example:

function handleResponse(){
 //supercedes the imported request variable
 var request = null;
 try{
 if(request.readyState == 4){
 if(request.status == 200){...

Hack 4. Receive Data as XML

Ajax and server programs provide a DOM Document object that's ready to go.

Many technologies currently exchange data in Extensible Markup Language format, mostly because
XML is a standardized and extensible format widely supported by the software world. Thus, different
parties can use existing, well-known technologies to generate, send, and receive XML, without having
to adapt to the software tools used by the parties with whom they are exchanging the XML data.

An example is a Global Positioning System (GPS) device that can share the data it has recorded
about, say, a hike or a bike ride with a location-aware web application. You just stick the USB cable
attached to the GPS device into a USB computer port, launch software that sends the device data to
the Web, and that's it. The data format is usually an XML language that has been defined already for
GPS software. The web application and the GPS device "speak the same language."

Although this book is not the place for an extensive introduction to XML, you have probably seen
these text files in one form or another. XML is used as a "meta" language that describes and
categorizes specific types of information. XML data starts with an optional XML declaration (e.g., <?
xml version="1.0" encoding="UTF-8"?>), followed by a root element and zero or more child elements.
An example is:

<?xml version="1.0" encoding="UTF-8"?>
<gps>
<gpsMaker>Garmin</gpsMaker>
<gpsDevice>
Forerunner 301
</gpsDevice>
</gps>

Here, gps is the root element, and gpsMaker and gpsDevice are child elements.

Ajax and the request object can receive data as XML, which is very useful for handling web-services
responses that use XML. Once the HTTP request is complete, the request object has a property
named responseXML. This object is a DOM Document object that your Ajax application can use. Here's
an example:

function handleResponse(){
 if(request.readyState == 4){
 if(request.status == 200){
 var doc = request.responseXML;
...
}

In the previous code sample, the doc variable is a DOM Document object, offering a similar API to a
browser's display page. This hack receives XML from a server, then initiates a little DOM
programming with the Document object to pull some information out of the XML.

If you just want to see the raw XML text, use the request.responseText
property instead.

The HTML file for this hack is basically the same as the one used in "Use the Request Object to POST
Data to the Server" [Hack #2], but a div element is added at the end, where the code displays
information about the returned XML. Here's the code for the HTML page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/1999/REC-html401-19991224/strict.dtd">
<html>
<head>
 <script type="text/javascript" src="js/hack3.js"></script>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <title>Receive XML response</title>
</head>
<body>
<h3>A Few Facts About Yourself...</h3>
<form action="javascript:void%200" onsubmit="sendData();return false">
 <p>First name: <input type="text" name="firstname" size="20"> </p>
 <p>Last name: <input type="text" name="lastname" size="20"> </p>
 <p>Gender: <input type="text" name="gender" size="2"> </p>
 <p>Country of origin: <input type="text" name="country" size="20"> </p>
 <p><button type="submit">Send Data</button></p>
 <div id="docDisplay"></div>
</form>
</body>
</html>

Figure 1-3 shows what the page looks like before the user enters any information.

Figure 1-3. All set up to receive XML

The JavaScript code in the hack3.js file POSTs its data to a server application, which sends back a
response in XML format. The field validation step [Hack #22] has been skipped for the sake of
brevity, but web applications using forms should always implement this task.

Like other examples in this chapter, the server program echoes the parameter names and values
back to the client, as in <params><firstname>Bruce</firstname></params>. "Use the Request Object
to POST Data to the Server" [Hack #2] shows some of the code for the server component that puts
together the return value. This technique suits our purpose for showing a simple example of
programming XML in an Ajax application:

var request;
var queryString; //will hold the POSTed data

function sendData(){
 setQueryString();
 var url="http://www.parkerriver.com/s/sender";
 httpRequest("POST",url,true);
}
//event handler for XMLHttpRequest
function handleResponse(){
 if(request.readyState == 4){
 if(request.status == 200){
 var doc = request.responseXML;
 var info = getDocInfo(doc);
 stylizeDiv(info,document.getElementById(""docDisplay""));
 } else {
 alert(""A problem occurred with communicating between ""+

 ""the XMLHttpRequest object and the server program."");
 }
 }//end outer if
}

/* Initialize a request object that is already constructed */
function initReq(reqType,url,bool){
 /* Specify the function that will handle the HTTP response */
 request.onreadystatechange=handleResponse;
 request.open(reqType,url,bool);
 request.setRequestHeader(""Content-Type"",
 ""application/x-www-form-urlencoded; charset=UTF-8"");
 /* Only works in Mozilla-based browsers */
 //request.overrideMimeType(""text/xml"");
 request.send(queryString);
}

/* Wrapper function for constructing a request object.
 Parameters:
 reqType: The HTTP request type, such as GET or POST.
 url: The URL of the server program.
 asynch: Whether to send the request asynchronously or not. */
function httpRequest(reqType,url,asynch){
 //Snipped...See Hack #1
}
function setQueryString(){
 queryString="";
 var frm = document.forms[0];
 var numberElements = frm.elements.length;
 for(var i = 0; i < numberElements; i++) {
 if(i < numberElements-1) {
 queryString += frm.elements[i].name+"="+
 encodeURIComponent(frm.elements[i].value)+"&";
 } else {
 queryString += frm.elements[i].name+"="+
 encodeURIComponent(frm.elements[i].value);
 }
 }
}
/* Provide the div element's content dynamically. We can add
style information to this function if we want to jazz up the div */
function stylizeDiv(bdyTxt,div){
 //reset DIV content
 div.innerHTML="";
 div.style.backgroundColor="yellow";
 div.innerHTML=bdyTxt;
}

/* Get information about an XML document via a DOM Document object */
function getDocInfo(doc){
 var root = doc.documentElement;
 var info = "<h3>Document root element name: <h3 />"+ root.nodeName;

 var nds;
 if(root.hasChildNodes()) {
 nds=root.childNodes;
 info+= "<h4>Root node's child node names/values:<h4/>";
 for (var i = 0; i < nds.length; i++){
 info+= nds[i].nodeName;
 if(nds[i].hasChildNodes()){
 info+= " : \\"+nds[i].firstChild.nodeValue+"\\"
";
 } else {
 info+= " : Empty
";
 }
 }
 }
 return info;
}

Mozilla Firefox can use the request.overrideMimeType() function to force the
interpretation of the response stream as a certain mime type, as in
request.overrideMimeType("text/xml"). Internet Explorer's request object
does not have this function. This function call does not work with Safari 1.3,
either.

After the code POSTs its data and receives a response, it calls a method named getDocInfo(), which
builds a string that displays some information about the XML document and its child or subelements:

var doc = request.responseXML;
var info = getDocInfo(doc);

The geTDocInfo() function gets a reference to the root XML element (var root =
doc.documentElement;); it then builds a string specifying the name of the root element and
information about any of its child nodes or elements, such as the child node name and value. The
code then feeds this information to the stylizeDiv() method. The stylizeDiv() method uses the
div element at the end of the HTML page to dynamically display the gathered information:

function stylizeDiv(bdyTxt,div){
 //reset div content
 div.innerHTML="";
 div.style.backgroundColor="yellow";
 div.innerHTML=bdyTxt;
}

Figure 1-4 shows what the web page looks like after the application receives the XML response.

Figure 1-4. Delving into XML return values

The text nodes that the application shows are newline characters in the
returned XML.

The core DOM API offered by the browser's JavaScript implementation provides developers with a
powerful tool for programming complex XML return values.

Hack 5. Get Plain Old Strings

Manage weather readings, stock quotes, web page scrapings, or similar non-XML data as
plain old strings.

The request object has the perfect property for web applications that do not have to handle server
return values as XML: request.responseText. This hack asks the user to choose a stock symbol, and
the server returns the stock price for display. The code handles the return value as a string.

A variation to this program in the next hack requires the stock prices to be
handled as numbers. These are old prices that a server component stores for
certain stock symbols, not live quotes that you would obtain from a commercial
web service or by HTML scraping. For an example of that mechanism, see "Use
XMLHttpRequest to Scrape a Energy Price from a Web Page" [Hack #39].

First, here is the HTML for the web page. It imports JavaScript code from a file named hack9.js:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/1999/REC-html401-19991224/strict.dtd">
<html>
<head>
 <script type="text/javascript" src="js/hack9.js"></script>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <title>Choose a stock</title>
</head>
<body>
<h3>Stock prices</h3>
<form action="javascript:void%200" onsubmit=
 "getStockPrice(this.stSymbol.value);return false">
 <p>Enter stock symbol: <input type="text" name=
 "stSymbol" size="4"></p>
 <p><button type="submit">Get Stock Price</button></p>
</form>
</body>
</html>

Figure 1-5 shows the web page as displayed in Firefox. The user enters a symbol such as "GRMN"
(case insensitive) and clicks the Get Stock Price button; the JavaScript then fetches the associated
stock price and displays it within a span element to the right of the text field.

Figure 1-5. Instantaneously displaying a stock price

The function that sets the request process in motion is getStockPrice(). This function takes the
value of the text field named stSymbol and returns the associated stock price (it uses the request
object to talk to a server component, which fetches the actual stock price). Here is the JavaScript
code:

var request;
var symbol; //will hold the stock symbol

function getStockPrice(sym){
 symbol=sym;
 if(sym){
 var url="http://localhost:8080/parkerriver/s/stocks?symbol="+sym;
 httpRequest("GET",url,true);
 }
}

//event handler for XMLHttpRequest
function handleResponse(){
 if(request.readyState == 4){
 if(request.status == 200){
 /* Grab the result as a string */
 var stockPrice = request.responseText;
 var info = "«The price is: $"+stockPrice+"»";
 document.getElementById("stPrice").style.fontSize="0.9em";
 document.getElementById("stPrice").style.
 backgroundColor="yellow";
 document.getElementById("stPrice").innerHTML=info;

 } else {
 alert("A problem occurred with communicating between "+
 "the XMLHttpRequest object and the server program.");

 }
 }//end outer if
}

/* See Hack #1 for the httpRequest() code;
it is snipped here for the sake of brevity. */

The function getStockPrice() wraps a call to the function httpRequest(), which is responsible for
setting up the request object. If you have already read through some of this chapter's other hacks,
you will recognize the handleResponse() function as enclosing much of the interesting action.

"Detect Browser Compatibility with the Request Object" [Hack #1] and "Use
Your Own Library for XMLHttpRequest" [Hack #3] explain the httpRequest()
function in more detail.

If the request is complete (i.e., if request.readyState has a value of 4) and the HTTP response status
is 200 (meaning that the request has succeeded), the code grabs the server response as the
request.responseText property value. The code then uses DOM scripting to display the stock price
with some CSS style-related attributes:

document.getElementById("stPrice").style.fontSize="0.9em";
document.getElementById("stPrice").style.backgroundColor="yellow";
document.getElementById("stPrice").innerHTML =info;

The style attributes make the font size a little bit smaller than the user's preferred browser font size
and specify yellow as the background color of the text display. The innerHtml property of the span
element is set to the stock price within double angle brackets.

Hack 6. Receive Data as a Number

Do numerical calculations that depend on the request object's return value as a number.

This hack receives a stock quote as a number, then dynamically displays the total value of a stock
holding based on the number of shares a user enters. If the server does not send a valid number, the
application displays an error message to the user.

The great advantage of Ajax technology is in receiving discrete values rather than entire web pages
from a server. Sometimes, that discrete information has to be used as a number, rather than as a
string (as discussed in the last hack) or some other object. JavaScript is usually pretty smart about
converting values to number types without your intervention, but still, you don't want your application
to multiply an innocent investor's share quantity by undefined or some other weird data the server
returns!

This hack checks that the user has entered a proper number for a "number of shares" value. The code
also checks the server return value to make sure it is numerically valid. It then dynamically displays
the stock price and total value of the shares in the user's browser.

Figure 1-6 shows what the browser form looks like.

Figure 1-6. Discover a total share value

The following code shows the HTML for the web page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/1999/REC-html401-19991224/strict.dtd">

<html>
<head>
 <script type="text/javascript" src="/parkerriver/js/hack4.js">
 </script>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <title>Tally your stocks</title>
</head>
<body>
<h3>Your total Stock Holdings</h3>
<form action="javascript:void%200" onsubmit=
 "getStockPrice(this.stSymbol.value,this.numShares.value);return false">
<p>Enter stock symbol: <input type="text" name="stSymbol" size="4">
 </p>
<p>Enter share amount: <input type="text" name="numShares" size="10"></p>
<p><button type="submit">Get Total Value</button></p>
<div id="msgDisplay"></div>
</form>
</body>
</html>

When the user clicks the Get Total Value button, this action triggers the form element's onsubmit
event. The event handler for this event is the getStockPrice() function. This function takes the stock
symbol and the number of shares as its two parameters. The return false part of the event-handling
code cancels the browser's typical submission of the form values to the URL specified by the form tag's
action attribute.

Number Crunching

Now let's look at the JavaScript code, which the HTML file imports as part of the hack4.js file:

var request;
var symbol; //will hold the stock symbol
var numberOfShares;

function getStockPrice(sym,shs){
 if(sym && shs){
 symbol=sym;
 numberOfShares=shs;
 var url="http://localhost:8080/parkerriver/s/stocks?symbol="+sym;
 httpRequest("GET",url,true);
 }
}
//event handler for XMLHttpRequest
function handleResponse(){
 if(request.readyState == 4){
 alert(request.status);
 if(request.status == 200){
 /* Check if the return value is actually a number.
 If so, multiple by the number of shares and display the result */
 var stockPrice = request.responseText;

 try{
 if(isNaN(stockPrice)) { throw new Error(
 "The returned price is an invalid number.");}
 if(isNaN(numberOfShares)) { throw new Error(
 "The share amount is an invalid number.");}
 var info = "Total stock value: "+ calcTotal(stockPrice);
 displayMsg(document.
 getElementById("msgDisplay"),info,"black");
 document.getElementById("stPrice").style.fontSize="0.9em";
 document.getElementById("stPrice").innerHTML ="price:
 "+stockPrice;
 } catch (err) {
 displayMsg(document.getElementById("msgDisplay"),
 "An error occurred: "+
 err.message,"red");
 }
 } else {
 alert(
 "A problem occurred with communicating between the "+
 "XMLHttpRequest object and the server program.");
 }
 }//end outer if
}

/* See Hack #1 or #2 for the httpRequest() code sample and the associated function
initReq(). They are snipped here for the sake of brevity. */

function calcTotal(price){
 return stripExtraNumbers(numberOfShares * price);
}
/* Strip any characters beyond a scale of four characters
past the decimal point, as in 12.3454678 */
function stripExtraNumbers(num){
 //check if the number's already okay
 //assume a whole number is valid
 var n2 = num.toString();
 if(n2.indexOf(".") == -1) { return num; }
 //if it has numbers after the decimal point,
 //limit the number of digits after the decimal point to 4
 //we use parseFloat if strings are passed into the method
 if(typeof num == "string"){
 num = parseFloat(num).toFixed(4);
 } else {
 num = num.toFixed(4);
 }
 //strip any extra zeros
 return parseFloat(num.toString().replace(/0*$/,""));
}

function displayMsg(div,bdyText,txtColor){
 //reset DIV content
 div.innerHTML="";

 div.style.backgroundColor="yellow";
 div.style.color=txtColor;
 div.innerHTML=bdyText;
}

All the number crunching starts in the call to handleResponse() . First, the code receives the response
as a string , in var stockPrice = request.responseText . The code then tests the validity of the
stockPrice variable using a method that is part of JavaScript's core API: isNaN() . This is the best
way to test whether a string value in JavaScript can represent a valid number. For example,
isNaN("goodbye") returns TRue because "goodbye" cannot be converted to a number. The code also
tests the number of shares value with this function.

If either method returns true , indicating an invalid number value, the code throws an exception. This
is another way of declaring, "We can't use these values; get them out of here!" The web page then
displays an error message to the user.

Exception handling with Ajax is covered in "Handle Request Object Errors" [Hack
#8] .

However, we're not yet finished with our number crunching. The calcTotal() function then multiplies
the share total by the stock price in order to display the total value to the user.

To make sure that the numerical display of the value is friendly enough to the eye (in terms of the U.S.
stock exchange), the stripExtraNumbers() function keeps no more than four characters to the right
of the decimal point.

Even though $10.9876 may look a little weird (stock prices are sometimes
displayed with four or more characters to the right of the decimal point), I
decided to allow this display for the total share value.

DOM-inating

The code uses Document Object Model programming to dynamically display new text and values on
the page, all without having to make new server calls and refresh the entire page. The following bit of
code, within the handleResponse() function, calls the displayMsg() function to show the user the
total share value. The code also dynamically embeds the stock price just to the right of the text field
where the user entered the stock symbol. All the code does here is get a reference to the div element
with id stPrice , make its font-size style property a little smaller than the web user's font setting, and
then set the div 's innerHTML property:

displayMsg(document.getElementById("msgDisplay"),info,"black");
document.getElementById("stPrice").style.fontSize="0.9em";
document.getElementById("stPrice").innerHTML ="price: "+stockPrice;

The displayMsg() function is also simple. It has a parameter that represents the font color, which
allows the code to set the font color "red" for error messages:

function displayMsg(div,bdyText,txtColor){
 //reset DIV content
 div.innerHTML="";
 div.style.backgroundColor="yellow";
 div.style.color=txtColor;
 div.innerHTML=bdyText;
}

Figure 1-7 shows what the page looks like when the user requests a stock value.

Figure 1-7. Tallying your investment

Figure 1-8 shows an example error message, in case the user enters values that cannot be used as
numbers or the server returns invalid values.

Figure 1-8. Having a bad number day

Hack 7. Receive Data in JSON Format

Ajax can receive data in efficient and powerful JavaScript Object Notation.

How would you like to use Ajax and receive data from the server as plain old JavaScript objects?
Well, you can, using a format called JavaScript Object Notation (JSON). This hack takes information
entered by a web user and initiates a server round trip, which returns the data in JSON syntax for the
web page's use.

JSON is simple and straightforward, which is probably why a lot of developers like it. JSON-formatted
data is appropriate for simple objects that are bundles of properties and values. An example is a
server program that pulls product information from a database or cache and returns it to a retail web
page in JSON format. Data in JSON format is represented by:

An opening curly brace ({)

One or more property names, separated from their values by colons, with property/value pairs
separated by commas

A closing curly brace (})

The values of each property in the object can be:

Simple strings, such as "hello"

Arrays, such as [1,2,3,4]

Numbers

The values true, false, or null

Other objects, as in a composition, or an object containing one or more objects

See http://www.json.org for further details.

This is exactly the format of an Object literal in JavaScript. As an example, here is what the
information requested of the user in "Use the Request Object to POST Data to the Server" [Hack #2]
looks like in JSON format:

http://www.json.org

{
firstname:"Bruce",
lastname:"Perry",
gender:"M",
country:"USA"
}

Magic JSON

In this section, we'll use a similar HTML page to the one used in "Use the Request Object to POST
Data to the Server" [Hack #2], and we'll ask the user for the same information; however, this hack
uses JavaScript code and Ajax to handle a JSON return value from the server. Two div elements at
the bottom of the HTML page show the JSON return value from the server and then display the
object's properties and values in a more friendly fashion.

Here's the code for the HTML page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/1999/REC-html401-19991224/strict.dtd">
<html>
<head>
 <script type="text/javascript" src="js/hack5.js"></script>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <title>Receive JSON response</title>
</head>
<body>
<h3>A Few Facts About Yourself...</h3>
<form action="javascript:void%200" onsubmit="sendData();return false">
 <p>First name: <input type="text" name="firstname" size="20"> </p>
 <p>Last name: <input type="text" name="lastname" size="20"> </p>
 <p>Gender: <input type="text" name="gender" size="2"> </p>
 <p>Country of origin: <input type="text" name="country" size="20"> </p>
 <p><button type="submit">Send Data</button></p>
 <div id="json"></div>
 <div id="props"></div>
</form>
</body>
</html>

Figure 1-9 shows what the web page looks like.

Figure 1-9. JSON is calling

The JavaScript code is imported by the script tag and specified by the file hack5.js. The JavaScript
sends the user's entered values to the server; because this was discussed in "Use the Request Object
to POST Data to the Server" [Hack #2] and other hacks, the code is reproduced here but doesn't go
into great detail.

Beware of cross-site scripting (XSS) attacks when evaluating any return values
as JavaScript code in this manner. This is a potential threat for any use of
eval() or the Function-related code discussed in this hack.

As a countermeasure, the client-side JavaScript can filter and inspect the
return value (e.g., by looking at the XMLHttpRequest responseText property) for
the presence of the expected object property names before the code uses
responseText in the eval() function (see
http://www.perl.com/pub/a/2002/02/20/css.html).

Here's the code for this hack. Below, we'll go over the key parts that handle the return value as a
JavaScript object.

var request;
var queryString; //will hold the POSTed data

function sendData(){
 setQueryString();
 url="http://localhost:8080/parkerriver/s/json";
 httpRequest("POST",url,true);
}

http://www.perl.com/pub/a/2002/02/20/css.html

//event handler for XMLHttpRequest
function handleJson(){
 if(request.readyState == 4){
 if(request.status == 200){
 var resp = request.responseText;
 var func = new Function("return "+resp);
 var objt = func();
 var div = document.getElementById("json");
 stylizeDiv(resp,div);
 div = document.getElementById("props");
 div.innerHTML="<h4>In object form...</h4>"+
 "<h5>Properties</h5>firstname= "+
 objt.firstname +"
lastname="+
 objt.lastname+ "
gender="+
 objt.gender+ "
country="+
 objt.country;
 } else {
 alert("A problem occurred with communicating between "+
 "the XMLHttpRequest object and the server program.");
 }
 }//end outer if
}

/* Initialize a request object that is already constructed */
function initReq(reqType,url,bool){
 /* Specify the function that will handle the HTTP response */
 request.onreadystatechange=handleJson;
 request.open(reqType,url,bool);
 request.setRequestHeader("Content-Type",
 "application/x-www-form-urlencoded; charset=UTF-8");
 request.send(queryString);
}

/* Wrapper function for constructing a request object.
 Parameters:
 reqType: The HTTP request type, such as GET or POST.
 url: The URL of the server program.
 asynch: Whether to send the request asynchronously or not. */

function httpRequest(reqType,url,asynch){
 //Snipped... See Hack #1 or #2
}

function setQueryString(){
 queryString="";
 var frm = document.forms[0];
 var numberElements = frm.elements.length;
 for(var i = 0; i < numberElements; i++){
 if(i < numberElements-1){
 queryString += frm.elements[i].name+"="+
 encodeURIComponent(frm.elements[i].value)+"&";

 } else {
 queryString += frm.elements[i].name+"="+
 encodeURIComponent(frm.elements[i].value);
 }
 }
}

function stylizeDiv(bdyTxt,div){
 //reset DIV content
 div.innerHTML=" ";
 div.style.fontSize="1.2em";
 div.style.backgroundColor="yellow";
 div.appendChild(document.createTextNode(bdyTxt));
}

As in this chapter's previous hacks, the initReq() function initializes the request object and sends
an HTTP request to the server.

The event-handling function for when the response is ready is called handleJson(). The response is
a JSON-formatted text string, as opposed to XML or some other text type. As is, JavaScript interprets
this returned text as a string object. Therefore, the code initiates an opening step before the
server's return value is interpreted as a JavaScript object literal. (By the way, in this hack, the server
takes the request parameters and reformats the parameter names and property values into JSON
syntax, prior to sending the reformatted data as its response.)

Special error-handling code is not included here, because these elements
require further explanation and are covered by "Handle Request Object Errors"
[Hack #8].

Within the handleJson() code (highlighted in the previous code sample), the variable resp refers to
the HTTP response text, which JavaScript interprets as a string. The interesting stuff occurs in the
Function constructor:

var func = new Function("return "+resp);

This code creates a new Function object on the fly and stores the Function in a variable named func.
JavaScript coders might note that most functions are predefined and declared in code, or created as
function literals. However, in this case we need to define a function body dynamically using a string,
and the Function constructor provides the perfect tool.

Thanks to this site for guidance on this code usage:
http://www.jibbering.com/2002/4/httprequest.html.

Another method for converting JSON strings that's making its way around the
Web goes like this:

var resp = request.responseText;
var obj = eval("(" + resp + ")");

You do not have to use the parentheses characters when using eval() and an
array, as in:

var resp = request.responseText;
//resp contains something like "[1,2,3,4]"
var arrObject = eval(resp);

The next line creates a function that returns an object literal, representing the server return value.
You then call the function and use the returned object to dynamically display server values on the
web page with DOM programming (all without complex object serialization or a page refresh!):

var objt = func();
var div = document.getElementById("json");
stylizeDiv(resp,div);
div = document.getElementById("props");
div.innerHTML="<h4>In object form...</h4><h5>Properties</h5>firstname= "+
 objt.firstname +"
lastname="+
 objt.lastname+ "
gender="+
 objt.gender+ "
country="+
 objt.country;

A variable named objt stores the object literal. The values are pulled from the object with syntax
such as objt.firstname. Figure 1-10 shows what the web page looks like after it has received a
response.

Figure 1-10. Visualizing JavaScript properties is sweet!

http://www.jibbering.com/2002/4/httprequest.html

On the Server Side

A Java servlet handles requests for this hack. For those interested in the server activity, here is the
doPost() method for this code:

protected void doPost(HttpServletRequest httpServletRequest,
 HttpServletResponse httpServletResponse) throws
 ServletException, IOException {
 Map valMap = httpServletRequest.getParameterMap();
 StringBuffer body = new StringBuffer("{\\n");

 if(valMap != null) {
 String val=null;
 String key = null;

 Map.Entry me = null;
 Set entries = valMap.entrySet();

 int size = entries.size();
 int counter=0;
 for(Iterator iter= entries.iterator();iter.hasNext();) {
 counter++;
 me=(Map.Entry) iter.next();
 val= ((String[])me.getValue())[0];
 key = (String) me.getKey();
 if(counter < size) {
 body.append(key).append(":\\"").append(val).append("\\",\\n");
 } else {
 //remove comma for last entry
 body.append(key).append(":\\"").append(val).append("\\"\\n");
 }
 }

 }
 body.append("}");
 AjaxUtil.sendText(httpServletResponse,body.toString());
}

The AjaxUtil class sends the HTTP response with a Content-Type of text/plain; charset=UTF-8.
Some web sites have discussed using a Content-Type of application/x-json for JSON, but as of this
writing, developers and standards bodies have not yet settled on a standard relating to this matter.

The AjaxUtil class also sets the HTTP response header Cache-Control to no-cache, which tells the
browser or user agent not to cache the responses:

response.setHeader("Cache-Control", "no-cache");

Hack 8. Handle Request Object Errors

Design your Ajax application to detect any server errors and provide a friendly user
message.

Much of the oomph behind Ajax technology is that it allows JavaScript to connect with a server
program without the user intervening. However, JavaScript developers often have no control over the
server component itself (which could be a web service or other software designed outside their
organizations). Even if your application involves your organization's server component, you cannot
always be sure that the server is behaving normally or even that your users are online at the
moment they trigger your request object. You have to make sure that your application recovers in
the event that the backend program is unavailable.

This hack traps errors and displays a meaningful error message, in the event that the Ajax
application loses server contact.

Problems, Problems...

This hack addresses the following exceptional events, and recommends ways for the application to
recover from them:

The web application or server component you are connecting with is temporarily unavailable.

The server your application is connecting with is down, or its URL has changed unbeknownst to
you.

The server component you connect with has one or more bugs, and it crashes during your
connection (yeech!).

When you call the open() method with the request object, your code uses a different host
address than the address from which the user downloaded the web page. The request object
throws an exception in this case when you try to call its open() method.

You can use this hack's exception-handling code in any application. This hack uses the stock
calculation code from "Receive Data as a Number" [Hack #6]. We'll take a look at the code that
initializes the request object and the exception-handling mechanism in a moment, but first, here's the
HTML file that imports the JavaScript code from hack6.js:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/1999/REC-html401-19991224/strict.dtd">
<html>
<head>

 <script type="text/javascript" src="js/hack6.js"></script>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <title>Tally your stocks</title>
</head>
<body>
<h3>Your total Stock Holdings</h3>
<form action="javascript:void%200" onsubmit=
 "getStockPrice(this.stSymbol.value,this.numShares.value);return false">
 <p>Enter stock symbol: <input type="text" name="stSymbol" size="4">
 </p>
 <p>Enter share amount: <input type="text" name="numShares" size="10"> </p>
 <p><button type="submit">Get Total Value</button></p>
 <div id="msgDisplay"></div>
</form>
</body>
</html>

When users load this file into their browsers, they see the screen shown in Figure 1-11.

Figure 1-11. Request a stock's price

The code we are interested in can trap exceptions involving unavailable applications, backend servers
that are down, backend server bugs, and erroneous URLs. The handleResponse() function is the
event handler for managing the server response, as in request.onreadystatechange=handleResponse.
The following code uses a nested try/catch/finally statement to deal with invalid numbers handled
by the application, as discussed in "Receive Data as a Number" [Hack #6].

function handleResponse(){

 var statusMsg="";
 try{
 if(request.readyState == 4){
 if(request.status == 200){
 /* Check if the return value is actually a number.
 If so, multiple by the number
 of shares and display the result */
 var stockPrice = request.responseText;

 try{
 if(isNaN(stockPrice)) { throw new Error(
 "The returned price is an invalid number.");}
 if(isNaN(numberOfShares)) { throw new Error(
 "The share amount is an invalid number.");}
 var info = "Total stock value: $"+
 calcTotal(stockPrice);
 displayMsg(document.
 getElementById("msgDisplay"),info,"black");
 document.getElementById("stPrice").style.fontSize="0.
 9em";
 document.getElementById("stPrice").innerHTML ="price: "+
 stockPrice;
 } catch (err) {
 displayMsg(document.getElementById("msgDisplay"),
 "An error occurred: "+
 err.message,"red");
 }
 } else {
 //request.status is 503 if the application isn't available;
 //500 if the application has a bug
 alert(
 "A problem occurred with communicating between the "
 "XMLHttpRequest object and the server program. "+
 "Please try again very soon");
 }
 }//end outer if
 } catch (err) {
 alert("It does not appear that the server "+
 "is available for this application. Please "+
 "try again very soon. \\nError: "+err.message);

 }
}

Now, let's take a look at how this code handles the different types of exceptions previously
enumerated.

Floored Server

A try block traps any exceptions thrown within its curly braces ({}). If the code throws an
exception, this mechanism executes the code within the associated catch block. The inner try block,
which is designed to manage exceptions thrown in the event of invalid numeric values, is explained in
"Receive Data as a Number" [Hack #6].

So, what happens if the server host is completely down, even though the URL your application uses is
otherwise correct? In this case, the code's attempt to access the request.status property throws an
exception because the request object never receives the expected response header from the server
and the status property is not associated with any data.

As a result, the code displays the alert window defined in the outer catch block. Figure 1-12 depicts
what the alert window looks like after this type of error.

Figure 1-12. Uh-oh, server down

The code displays a user message, as well as the more techie error message associated with the
exception. You can leave out that part of the message if you desire; it is mainly useful for debugging
purposes.

The err variable in the code is a reference to the JavaScript Error object. The
message property of this object (as in err.message) is the actual error message,
a string generated by the JavaScript engine.

If you do not include this TRy/catch/finally mechanism, the user sees just an alert window
containing the indecipherable error message generated by JavaScript. After dismissing this window
(or leaving the computer in frustration), the user has no way of knowing what state the application is
in.

Backend Application Out to Lunch

Sometimes the application server or host is running okay, but the server component you want to
connect with is out of service. In this case, the value of the request.status property is 503 ("Service
Unavailable"). Because the status property holds a value other than 200, this hack's code executes
the expression contained within the else statement block:

} else {
 //request.status is 503 if the application isn't available;
 // 500 if the application has a bug
 alert(
 "A problem occurred with communicating between the "
 "XMLHttpRequest object and the server program. "+
 "Please try again very soon");
}

In other words, the user sees an alert window explaining the application's status. This alert also
appears if the server component has a bug and crashes. This event typically (such as with the
Tomcat servlet container) results in a 500 response status code ("Internal Server Error"), so
response.status evaluates to 500 instead of 200 ("Okay"). In addition, any 404 response codes
involving a static or dynamic component that the server cannot find at the URL you provided are
captured with this TRy statement.

The try/catch/finally statement is available only with JavaScript engines of JS
Version 1.4 or later. The optional finally statement block follows the catch
block. The code enclosed by finally{...} executes regardless of whether or
not an exception is thrown.

Whoops, Wrong URL

What if the URL that your Ajax application uses in the request.open() method is wrong or has
changed? In this case, the request.open() call throws the exception, so this is where you have to
position your try/catch/finally statement. The code at the top of the next example constructs a
request object [Hack #1]. The following function definition, initReq(), catches the exception just
described:

function httpRequest(reqType,url,asynch){
 //Mozilla-based browsers
 if(window.XMLHttpRequest){
 request = new XMLHttpRequest();
 } else if (window.ActiveXObject){
 request=new ActiveXObject("Msxml2.XMLHTTP");
 if (! request){
 request=new ActiveXObject("Microsoft.XMLHTTP");
 }
 }
 //the request could still be null if neither ActiveXObject
 //initialization succeeded
 if(request){
 initReq(reqType,url,asynch);
 } else {
 alert("Your browser does not permit the use of all "+
 "of this application's features!");
 }
}

/* Initialize a request object that is already constructed */
function initReq(reqType,url,bool){
 try{
 /* Specify the function that will handle the HTTP response */
 request.onreadystatechange=handleResponse;
 request.open(reqType,url,bool);
 request.send(null);
 } catch (err) {

 alert(
 "The application cannot contact the server at the moment."+
 " Please try again in a few seconds.");
 }
}

Another variation of this error is when the URL you use with the request.open() method includes a
different host than the host from which the user downloaded the web page. For example, say the
user downloads the web page from http://www.myorg.com/app, but the URL you use for open() is
http://www.yourorg.com. This type of error is also caught by the code's try/catch/finally
statement.

You can also optionally abort or cancel the request in the catch block with
request.abort(). For more information, see "Set a Time Limit for the HTTP
Request" [Hack #70] and its discussion of setting a timeout for the request and
aborting it in the event that the request is not completed within a certain
period.

http://www.myorg.com/app
http://www.yourorg.com

Hack 9. Dig into the HTTP Response

Display the values of various HTTP response headers in addition to or in lieu of a typical
server return value.

An HTTP response header is descriptive information, laid out by the HTTP 1.1 protocol, that web
servers send requestors along with the actual web page or data. If you have already coded with the
XMLHttpRequest object (discussed at the beginning of this chapter), you know that the request.status
property equates to an HTTP response status code sent from the server. This is an important value to
check before your page does anything cool with the HTTP response.

Status values can include 200 (the request went through okay), 404 (the
requested file or URL path was not found), or 500 (internal server error).

However, you might want to see some of the other response headers associated with the request,
such as the type of web server software associated with the response (the Server response header) or
the content type of the response (the Content-Type header). This hack requests the user to enter a
URL in a text field. When the user tabs out of or clicks outside of the text field, the browser displays
various HTTP response headers. As usual with Ajax, this happens without a page refresh.

This request object method returns only a subset of the available response
headers, including Content-Type , Date , Server , and Content-Length .

Here is the HTML page code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/1999/REC-html401-19991224/strict.dtd">
<html>
<head>
 <script type="text/javascript" src="js/hack7.js"></script>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <title>view response headers</title>
 <link rel="stylesheet" type="text/css" href="/parkerriver/css/hacks.css" />
</head>
<body onload="document.forms[0].url.value=urlFragment">
<h3>Find out the HTTP response headers when you "GET" a Web page</h3>

<form action="javascript:void%200">

 <p>Enter a URL:
 <input type="text" name="url" size="20" onblur="getAllHeaders(this.value)">
 ::press tab when finished editing the
 field::</p>
 <div id="msgDisplay"></div>
</form>
</body>
</html>

Figure 1-13 shows the page in the Safari browser.

Figure 1-13. Scoping the response

The application prefills the text field with a partial URL (e.g., http:// localhost:8080/) for the user to
complete, because the request object cannot send a request to a different host from the host that
uploaded the web page to the user. In other words, the partially completed URL provides a hint to the
user that the application can only send a request to that specified host.

When the user completes the URL and then presses the Tab key or clicks outside the text field, the
text field's onblur event handler is triggered. The event handler is defined as a function named
getAllHeaders() , which passes the URL the user has entered to the request object. The request
object then sends a request to the URL and returns the available response headers to the web page.

The following code is from the hack7.js file that the page imports. After showing this code, I explain the
parts that deal with displaying the server's response headers. "Detect Browser Compatibility with the
Request Object" [Hack #1] explains how to initialize and open an HTTP connection with the request
object, otherwise known as XMLHttpRequest . "Handle Request Object Errors" [Hack #8] explains
trapping any errors with JavaScript's try/catch/finally statement.

var request;
var urlFragment="http://localhost:8080/";

function getAllHeaders(url){
 httpRequest("GET",url,true);
}

//function for XMLHttpRequest onreadystatechange event handler
function handleResponse(){
 try{
 if(request.readyState == 4){
 if(request.status == 200){

 /* All headers received as a single string */
 var headers = request.getAllResponseHeaders();
 var div = document.getElementById("msgDisplay");
 div.className="header";
 div.innerHTML="<pre>"+headers+"</pre>";
 } else {
 //request.status is 503 if the application isn't available;
 //500 if the application has a bug
 alert(request.status);
 alert("A problem occurred with communicating between "+
 "the XMLHttpRequest object and the server program.");
 }
 }//end outer if
 } catch (err) {
 alert("It does not appear that the server is "+
 "available for this application. Please"+
 " try again very soon. \\nError: "+err.message);

 }
}

/* Initialize a request object that is already constructed */
function initReq(reqType,url,bool){
 try{
 /* Specify the function that will handle the HTTP response */
 request.onreadystatechange=handleResponse;
 request.open(reqType,url,bool);
 request.send(null);
 } catch (errv) {
 alert(
 "The application cannot contact the server at the moment. "+
 "Please try again in a few seconds.");
 }
}

/* Wrapper function for constructing a request object.
 Parameters:
 reqType: The HTTP request type, such as GET or POST.
 url: The URL of the server program.
 asynch: Whether to send the request asynchronously or not. */
function httpRequest(reqType,url,asynch){
 //Mozilla-based browsers
 if(window.XMLHttpRequest){
 request = new XMLHttpRequest();
 } else if (window.ActiveXObject){
 request=new ActiveXObject("Msxml2.XMLHTTP");
 if (! request){
 request=new ActiveXObject("Microsoft.XMLHTTP");
 }
 }
 //the request could still be null if neither ActiveXObject
 //initialization succeeded

 if(request){
 initReq(reqType,url,asynch);
 } else {
 alert("Your browser does not permit the use of all "+
 "of this application's features!");
 }
}

The interesting stuff takes place in the handleResponse() function. This function calls the request
object's getAllResponseHeaders() method, which returns (rather awkwardly) all the available
response headers, preformatted into a string . A developer would probably prefer this value to be
returned in JSON format as an associative array , rather than a monolithic string in which extra code
is required to pull out individual header information.

To get one header, you can also use request.getResponseHeader() . An
example would be request.getResponseHeader("Content-Type "); .

The code then gets hold of the div element, where it will display the header values:

if(request.status == 200){
 /* All headers received as a single string */
 var headers = request.getAllResponseHeaders();
 var div = document.getElementById("msgDisplay");
 div.className="header";
 div.innerHTML="<pre>"+headers+"</pre>";
}...

To provide a CSS style for the message display, the code sets the className property of the div to a
class that is already defined in a stylesheet. Here's the stylesheet, which is linked to the web page:

div.header{ border: thin solid black; padding: 10%;
 font-size: 0.9em; background-color: yellow}
span.message { font-size: 0.8em; }

In this manner, the code dynamically connects a div to a certain CSS class, which is defined by a
separate stylesheet. This strategy helps separate DOM programming from presentation decisions.
Finally, the div 's innerHTML property is set to the returned header values. You use the pre tag to
conserve the existing formatting.

You can, alternatively, manipulate the returned string and format the headers in
a different way, using a custom function.

Figure 1-14 shows what the browser displays after the user submits a URL.

Figure 1-14. Separate the headers from the chaff

Hack 10. Generate a Styled Message with a CSS File

Let the users choose predesigned styles for the messages they see.

This hack sends a request to a server, which returns a text message. The user's choices determine
the actual message content and appearance. The HTML for the page includes a select tag listing the
styles the users can choose for the display of the results and a text field containing a partial URL they
can complete and submit to a server.

The information returned relates to the response headers returned by the server [Hack #9].
However, what we are interested in here is this hack's dynamic message generation and style
assignment. Here's the HTML code for the page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/1999/REC-html401-19991224/strict.dtd">
<html>
<head>
 <script type="text/javascript" src="js/hack8.js"></script>
 <script type="text/javascript">
 function setSpan(){
 document.getElementById("instr").onmouseover=function(){
 this.style.backgroundColor='yellow';};
 document.getElementById("instr").onmouseout=function(){
 this.style.backgroundColor='white';};
 }
 </script>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <title>view response headers</title>
 <link rel="stylesheet" type="text/css" href="/parkerriver/css/hacks.css" />
</head>
<body onload="document.forms[0].url.value=urlFragment;setSpan()">
<h3>Find out the HTTP response headers when you "GET" a Web page</h3>
<h4>Choose the style for your message</h4>
<form action="javascript:void%200">
 <p>
 <select name="_style">
 <option label="Loud" value="loud" selected>Loud</option>
 <option label="Fancy" value="fancy">Fancy</option>
 <option label="Cosmopolitan" value="cosmo">Cosmopolitan</option>
 <option label="Plain" value="plain">Plain</option>
 </select>
 </p>
 <p>Enter a URL: <input type="text" name="url" size="20" onblur=
 "getAllHeaders(this.value,this.form._style.value)"> <span id=

 "instr" class="message">«press tab or click outside the field
 when finished editing»</p>
 <div id="msgDisplay"></div>
</form>
</body>
</html>

The purpose of the setSpan() function defined within the web page's script
tags is to give some instructions ("press tab or click outside the field when
finished editing") a yellow background when the user passes the mouse pointer
over them.

Before I describe some of the code elements, you may be interested in how the web page appears in
a browser. Figure 1-15 shows this window.

Figure 1-15. Choose your style

The CSS styles used by this web page derive from a stylesheet file named hacks.css. When the user
chooses a style (say, "Cosmopolitan") from the select list, enters a value in the text field, and then
tabs out of or clicks outside of the field, that user's chosen style is dynamically assigned to the
container that will hold the message (a div element with id msgDisplay).

Here is the hacks.css stylesheet:

div.header{ border: thin solid black; padding: 10%;
 font-size: 0.9em; background-color: yellow; max-width: 80%}

span.message { font-size: 0.8em; }
div { max-width: 80% }

.plain { border: thin solid black; padding: 10%;

 font: Arial, serif font-size: 0.9em; background-color: yellow; }
.fancy { border: thin solid black; padding: 5%;
 font-family: Herculanum, Verdana, serif;
 font-size: 1.2em; text-shadow: 0.2em 0.2em grey; font-style: oblique;
 color: rgb(21,49,110); background-color: rgb(234,197,49)}
.loud { border: thin solid black; padding: 5%; font-family: Impact, serif;
 font-size: 1.4em; text-shadow: 0 0 2.0em black; color: black;
background-color: rgb(181,77,79)}
.cosmo { border: thin solid black; padding: 1%;
 font-family: Papyrus, serif;
 font-size: 0.9em; text-shadow: 0 0 0.5em black; color: aqua;
 background-color: teal}

The stylesheet defines several classes (plain, fancy, loud, and cosmo). A class in a CSS stylesheet
begins with a period (as in .fancy) and defines various style properties, such as the font family and
background color. Using this technique, your CSS experts can define the actual styles in one place,
for use in multiple web pages. Clearly, an experienced designer would have some, ah, differences
with the style-attribute choices here, but please bear with me!

The Ajax-related JavaScript code can assign the predefined styles to page elements based on user
choices. Therefore, the presentation tier of your web application is separated from the application
logic or domain tier.

The onblur event handler for the text field submits the URL value and the style name to a function
named getAllHeaders():

onblur="getAllHeaders(this.value,this.form._style.value)"

The reference this.form._style.value is JavaScript that represents the value of the option chosen
from the select list (the style name). The reference this.value is the text entered by the user in the
text field.

Here is the JavaScript code that the page imports from hacks8.js, with the code that dynamically
assigns the style to the displayed message highlighted:

var request;
var urlFragment="http://localhost:8080/";
var st;

function getAllHeaders(url,styl){
 if(url){
 st=styl;
 httpRequest("GET",url,true);
 }
}

//event handler for XMLHttpRequest
function handleResponse(){
 try{
 if(request.readyState == 4){

 if(request.status == 200){
 /* All headers received as a single string */
 var headers = request.getAllResponseHeaders();
 var div = document.getElementById("msgDisplay");
 div.className= st == "" ? "header" : st;
 div.innerHTML="<pre>"+headers+"</pre>";
 } else {
 //request.status is 503 if the application isn't available;
 //500 if the application has a bug
 alert(request.status);
 alert("A problem occurred with communicating between "+
 "the XMLHttpRequest object and the server program.");
 }
 }//end outer if
 } catch (err) {
 alert("It does not appear that the server is available for "+
 "this application. Please"+
 " try again very soon. \\nError: "+err.message);

 }
}

/* See Hacks #1, #2, and others for definitions of the httpRequest()
 and initReq() functions; snipped here for the sake of brevity. */

Easy as Pie

The getAllHeaders() function sets a top-level st variable to the name of a CSS style class (plain,
fancy, loud, or cosmo). The code then sets the className property of the div that holds the message
in a shockingly simple way, which changes the style assigned to the message:

if(request.status == 200){
 /* All headers received as a single string */
 var headers = request.getAllResponseHeaders();
 var div = document.getElementById("msgDisplay");
 div.className= st == "" ? "header" : st;
 div.innerHTML="<pre>"+headers+"</pre>";
}

If for some reason the choice of class name derived from the web client is the empty string (it
cannot be here because the select tag only contains complete string values), the div element is
assigned a default style class name of header.

This JavaScript could potentially be imported into another client web page, so
you have to include some checks for invalid input values.

The hacks.css stylesheet also defines the header class.

The following figures are examples of the same message assigned different styles by the user. Figure
1-16 shows the result if the user selects the "Cosmopolitan" style.

Figure 1-16. A Cosmopolitan-styled message

Figure 1-17 depicts an alternate style.

Figure 1-17. Alas, a Plain-styled message

Hack 11. Generate a Styled User Message on the Fly

Dynamically define and assign CSS styles to web page content.

JavaScript and DOM programming allow you to define CSS style attributes and apply them to page
elements from scratch. An example of where you may want to implement these methods is a Wiki
page that permits users to develop their own page designs and styles.

In most cases, separating the style definitions from the JavaScript code is the
way to go. Separating application concerns or tiers in this manner allows each
element to evolve independently and makes web development less complex
and more efficient.

This hack, like the one before it, dynamically displays server information based on the user's choice
of style categories. Unlike the previous hack, this one formulates the styles in code, then applies the
chosen style to an HTML element. Here is the code, with the style information highlighted:

var request;
var urlFragment="http://localhost:8080/";
var st;

function getAllHeaders(url,styl){
 if(url){
 st=styl;
 httpRequest("GET",url,true);
 }
}

/* Set one or more CSS style attributes on a DOM element
CSS2Properties Object.
 Parameters:
 stType stands for a style name, as in 'plain,''fancy,''loud,' or 'cosmo'.
 stylObj is the HTML element's style property, as in div.style. */

function setStyle(stType,stylObj){
 switch(stType){
 case 'plain' :
 stylObj.maxWidth="80%";
 stylObj.border="thin solid black";
 stylObj.padding="5%";
 stylObj.textShadow="none";
 stylObj.fontFamily="Arial, serif";

 stylObj.fontSize="0.9em";
 stylObj.backgroundColor="yellow"; break;
 case 'loud' :
 stylObj.maxWidth="80%";
 stylObj.border="thin solid black";
 stylObj.padding="5%";
 stylObj.fontFamily="Impact, serif";
 stylObj.fontSize="1.4em";
 stylObj.textShadow="0 0 2.0em black";
 stylObj.backgroundColor="rgb(181,77,79)"; break;
 case 'fancy' :
 stylObj.maxWidth="80%";
 stylObj.border="thin solid black";
 stylObj.padding="5%";
 stylObj.fontFamily="Herculanum, Verdana, serif";
 stylObj.fontSize="1.2em";
 stylObj.fontStyle="oblique";
 stylObj.textShadow="0.2em 0.2em grey";
 stylObj.color="rgb(21,49,110)";
 stylObj.backgroundColor="rgb(234,197,49)"; break;
 case 'cosmo' :
 stylObj.maxWidth="80%";
 stylObj.border="thin solid black";
 stylObj.padding="1%";
 stylObj.fontFamily="Papyrus, serif";
 stylObj.fontSize="0.9em";
 stylObj.textShadow="0 0 0.5em black";
 stylObj.color="aqua";
 stylObj.backgroundColor="teal"; break;
 default :
 alert('default');

 }
}

//event handler for XMLHttpRequest
function handleResponse(){
 try{
 if(request.readyState == 4){
 if(request.status == 200){
 /* All headers received as a single string */
 var headers = request.getAllResponseHeaders();
 var div = document.getElementById("msgDisplay");
 if(st){
 setStyle(st,div.style);
 } else {
 setStyle("plain",div.style);
 }
 div.innerHTML="<pre>"+headers+"</pre>";
 } else {
 //request.status is 503 if the application isn't available;
 //500 if the application has a bug

 alert(request.status);
 alert("A problem occurred with communicating between "+
 "the XMLHttpRequest object and the server program.");
 }
 }//end outer if
 } catch (err) {
 alert("It does not appear that the server is available for "
 "this application. Please"+
 " try again very soon. \\nError: "+err.message);

 }
}

/* Initialize a request object that is already constructed */
function initReq(reqType,url,bool){
 try{
 /* Specify the function that will handle the HTTP response */
 request.onreadystatechange=handleResponse;
 request.open(reqType,url,bool);
 request.send(null);
 } catch (errv) {

 alert(
 "The application cannot contact the server at the moment. "+
 "Please try again in a few seconds.");
 }
}

/* Wrapper function for constructing a request object.
 Parameters:
 reqType: The HTTP request type such as GET or POST.
 url: The URL of the server program.
 asynch: Whether to send the request asynchronously or not. */
function httpRequest(reqType,url,asynch){
 //Mozilla-based browsers
 if(window.XMLHttpRequest){
 request = new XMLHttpRequest();
 } else if (window.ActiveXObject){
 request=new ActiveXObject("Msxml2.XMLHTTP");
 if (! request){
 request=new ActiveXObject("Microsoft.XMLHTTP");
 }
 }
 //the request could still be null if neither ActiveXObject
 //initialization succeeded
 if(request){
 initReq(reqType,url,asynch);
 } else {
 alert("Your browser does not permit the use of all "+
 "of this application's features!");
 }
}

Nudging Aside the Stylesheet

Each HTML element on a web page has a style property, if its host browser supports CSS
stylesheets. For example, a div element has a property called div.style that allows a JavaScript
writer to set inline style attributes for that div (as in div.style.fontFamily="Arial"). This is how the
setStyle() function works in the prior code. The two function parameters are a style name such as
"Fancy" (chosen from a predefined list) and the style property of a specific div element. The function
then sets the appearance of the HTML div element on the web page.

The information that appears on the page (a bunch of response headers) is derived from the server
using the request object. As in the previous hack, the user completes a URL, then clicks outside the
text field or presses the Tab key, thus firing an onblur event handler that sets the request object and
CSS styling in motion. The HTML for the page is not much different from that in "Generate a Styled
Message with a CSS File" [Hack #10], but it omits the link to a stylesheet. All the styling for this hack
is defined by the imported JavaScript file, hack10.js. Here's the code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/1999/REC-html401-19991224/strict.dtd">
<html>
<head>
 <script type="text/javascript" src="/parkerriver/js/hack10.js"></script>
 <script type="text/javascript">
 function setSpan(){
 document.getElementById("instr").onmouseover=function(){
 this.style.backgroundColor='yellow';};
 document.getElementById("instr").onmouseout=function(){
 this.style.backgroundColor='white';};
 }
 </script>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <title>view response headers</title>
</head>
<body onLoad="document.forms[0].url.value=urlFragment;setSpan()">
<h3>Find out the HTTP response headers when you "GET" a Web page</h3>
<h4>Choose the style for your message</h4>
<form action="javascript:void%200">
 <p>
 <select name="_style">
 <option label="Loud" value="loud" selected>Loud</option>
 <option label="Fancy" value="fancy">Fancy</option>
 <option label="Cosmopolitan" value="cosmo">Cosmopolitan</option>
 <option label="Plain" value="plain">Plain</option>
 </select>
 </p>
 <p>Enter a URL: <input type="text" name="url" size="20" onblur=
 "getAllHeaders(this.value,this.form._style.value)">
 «press tab or
 click outside the field when finished editing»
 </p>

 <div id="msgDisplay"></div>
</form>
</body>
</html>

The getAllHeaders() function, an event handler for onblur, passes in to the application the name of
the style the user has chosen from a select list (such as "cosmo"), as well as the URL of the server
component. The only purpose of the server component is to provide a value for display. We're mainly
interested in dynamically generating styles for any type of server information your applications could
acquire via Ajax and the request object.

The purpose of the setSpan() function defined within the web page's script
tags is to give some instructions ("press tab or click outside the field when
finished editing") a yellow background when the user passes the mouse pointer
over them.

Figure 1-18 shows what the page looks like in a web browser prior to the sending of the HTTP
request.

Figure 1-18. Choose a style for dynamic generation

Figure 1-19 depicts what the page looks like when the user optionally selects a style name, completes
the URL in the text field, and presses Tab.

Figure 1-19. Styled server data

None of these web page changes involves waiting for the server to deliver a new page. The request
object fetches the data from the server in the background, and the client-side JavaScript styles the
displayed information. Voil\x88 , Ajax!

Chapter 2. Web Forms
Hacks 1221

Almost everyone who has used the Web has encountered an HTML form. When users buy books or
DVDs online, or log into discussion lists or other web communities, inevitably they are typing
information into text fields or choosing options in select lists, and then submitting the forms by
clicking a button. The purpose of these forms is to upload user- or client-related data to a server
component, which then implements a task such as logging the user into an application.

Web applications that use Ajax-related techniques, however, can provide a different mechanism for
submitting web-form information. JavaScript code can submit discrete values from only certain
widgets or fields, for instance, without requiring the user to click the classic Submit button. This
application model has transformed the web form into a "rich user interface" similar to a desktop
application, where the code can send data over the network in response to click or blur events
without refreshing the entire web page. The following hacks illustrate how to send selection and text-
field values using XMLHttpRequest, and how to dynamically generate the content of display widgets
from server data.

Hack 12. Submit Text Field or textarea Values to the
Server Without a Browser Refresh

Create a smooth transition between entering information into a textarea or text field and
instantly transferring the data to the server.

Ajax applications can automatically send to a server program the information that the user has
entered into a text field or textarea. The application code waits for the text widget's onblur event to
occur, then uses the request object to send just the data from that field or textarea. In many
applications, this technique is preferable to requiring the user to click a Submit button, then sending
all of the form's values to the server in a big clump. It is also much snappier in terms of the
application's responsiveness. For example, an online quiz or teaching application can fetch and
display the correct answer to a question as soon as the user has moved away from the field, instead
of requiring the user to click a button and refresh the page just to see specific answers. Real-time
language translation is another possible application for this user-interface behavior.

The onblur event is triggered when a web form control such as a text field
loses the keyboard focus, which is typically caused by the user pressing the
Tab key or clicking outside of the field. You can also use the onkeypress,
onkeydown, or onkeyup event handlers to respond to user interaction with a text
widget.

Here is this hack's sequence of events for sending text to the server:

The user tabs into the field or clicks in a textarea.1.

The user types some text.2.

The user then presses Tab or clicks on another part of the page to exit the text field or
textarea.

3.

3.

One issue with intervention-less form sending is that users are not accustomed
to this kind of behavior from web forms. A user might be put off or confused by
web-form controls such as text fields that dynamically submit their own data.
The user interface should make it clear that "something is going to happen"
when the user is finished with the text field, or display a message or progress
indicator when the request object is sending the data. In addition, depending
on the sensitivity of the task, you may want to add another layer of
communication with the user, such as an alert window asking "Are you sure
you want to submit the information?"

This hack includes a text field and a textarea that send HTTP requests with their values when the
user is finished with them. Figure 2-1 shows the web page loaded into a browser window.

Figure 2-1. No buttons need apply

The user types some information into the text field or textarea (the larger data-entry box) and then
exits the control, and the application automatically sends what the user typed to a server component.
Here is the HTML code for this page:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/2000/REC-xhtml1-20000126/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />

 <script type="text/javascript" src="js/hacks_2_1.js"></script>
 <link rel="stylesheet" type="text/css" href="/css/hacks.css" />
 <title>Submit your information</title>
</head>
<body>
<h3>Get stats from textareas and textfields using Ajax</h3>
<form action="javascript:void%200" >
<div id="textf">
Enter a few words for submitting to our server:
<input type="text" name="tfield" id="tfield" size="35" />
</div>
<div id="texta">
Enter a phrase for submitting to our
 server: <textarea name="tarea" rows="20" id="tarea" cols="20">
</textarea>
</div>
</form>
</body>
</html>

Instead of a user clicking a button to send the form information, each text control sets the action in
motion itself.

When the user presses Tab or clicks outside of one of the text widgets, the code specified by the
widget's onblur event handler is executed. The upcoming code sample shows how this event handler
is set up after the browser has finished loading the page.

The script tag in the HTML imports a JavaScript file, hacks_2_1.js. This file contains all the code
necessary for running this hack. The following sample includes all the code for sending a request and
handling the return value (in the handleResponse() function). "Display Text Field or textarea Values
Using Server Data" [Hack #13] explains the related technique of inserting the server's response into
text controls, but that shouldn't prevent you from peeking at handleResponse() if you want! Here's
the relevant JavaScript code:

var formObj = null;
var formObjTyp = "";
var request=null;

//input field's event handlers
window.onload=function(){
 var txtA = document.getElementById("tarea");
 if(txtA != null){
 txtA.onblur=function(){if (this.value) { getInfo(this);}}; }

 var tfd = document.getElementById("tfield");
 if(tfd != null){
 tfd.onblur=function(){if (this.value) { getInfo(this);}}; }
}

function getInfo(obj){
 if (obj == null) { return; }

 formObj=obj;
 formObjTyp =obj.tagName;
 if(formObjTyp == "input" || formObjTyp == "INPUT"){
 formObjTyp = formObjTyp + " "+formObj.type;
 }
 formObjTyp = formObjTyp.toLowerCase();
 var url = "http://www.parkerriver.com/s/webforms?objtype="+
 encodeURIComponent(formObjTyp)+"&val="+ encodeURIComponent(obj.value);
 httpRequest("GET",url,true);
}

//event handler for XMLHttpRequest
function handleResponse(){
 try{
 if(request.readyState == 4){
 if(request.status == 200){
 var resp = request.responseText;
 var func = new Function("return "+resp);
 var objt = func();
 if(formObjTyp == "textarea"){
 if(formObj != null){
 formObj.value = objt.Form_field_type +
 " character count: "+objt.Text_length+
 "\\nWord count: "+
 objt.Word_count+"\\nServer info: "+
 objt.Server_info;
 }
 } else if(formObjTyp == "input text"){
 if(formObj != null){
 formObj.value = objt.Form_field_type +
 " # characters: "+objt.Text_length+
 " Word count: "+objt.Word_count; }
 }
 } else {
 //request.status is 503
 //if the application isn't available;
 //500 if the application has a bug
 alert(
 "A problem occurred with communicating between the "+
 "XMLHttpRequest object and the server program.");
 }
 }//end outer if
 } catch (err) {
 alert("It does not appear that the server is available "+
 "for this application. Please"+
 " try again very soon. \\nError: "+err.message);

 }
}

/* Initialize a request object that is already constructed */
function initReq(reqType,url,bool){

 try{
 /* Specify the function that will handle the
 HTTP response */
 request.onreadystatechange=handleResponse;
 request.open(reqType,url,bool);
 request.send(null);
 } catch (errv) {
 alert(
 "The application cannot contact the server "+
 "at the moment. "+
 "Please try again in a few seconds.");
 }
}
/* Wrapper function for constructing a request object.
 Parameters:
 reqType: The HTTP request type, such as GET or POST.
 url: The URL of the server program.
 asynch: Whether to send the request asynchronously or not. */
function httpRequest(reqType,url,asynch){
 //Mozilla-based browsers
 if(window.XMLHttpRequest){
 request = new XMLHttpRequest();
 } else if (window.ActiveXObject){
 request=new ActiveXObject("Msxml2.XMLHTTP");
 if (! request){
 request=new ActiveXObject("Microsoft.XMLHTTP");
 }
 }
 //the request could still be null if neither ActiveXObject
 //initialization succeeded
 if(request){
 initReq(reqType,url,asynch);
 } else {
 alert("Your browser does not permit the use of all "+
 "of this application's features!");}
}

The code declares two top-level JavaScript variables: formObj and formObjTyp. The former variable
holds the input or textarea object (other functions in the code will need access to it later), and the
latter holds a string representing a form object tag name, such as "INPUT" or "TEXTAREA." This
string is one of the parameters that the server component requires (see the formatted URL that
appears at the end of the next section, "Get the First Serve In").

These variables are simply part of this hack's behavior and, in general, are not
required for sending form values with the request object.

As mentioned previously, the code sets up the text widgets' onblur event handlers when the browser
finishes loading the page. You can accomplish this task in JavaScript by assigning a function to the

window's onload event handler. Using the window.onload code, as follows, is an alternative to calling
the JavaScript functions from within an HTML element's onblur attribute:

window.onload=function(){
 var txtA = document.getElementById("tarea");
 if(txtA != null){
 txtA.onblur=function(){if (this.value) { getInfo(this);}}; }
 var tfd = document.getElementById("tfield");
 if(tfd != null){
 tfd.onblur=function(){if (this.value) { getInfo(this);}}; }
}

These text fields are now hot. Once the user types a value and exits a control, the information
entered is off and running to the server; the user doesn't have to click another button to send it.

Event handlers are simply attributes of an object to which your code can assign
a function or block of code that defines some behavior. So, if you want to
control how a radio button behaves when it's clicked, set up its onclick event
handler. For example:

//Get a reference to a radio button element
//on a web page
var rad = document.getElementById("radio1");
//display a pop-up dialog window when it's clicked
rad.onclick=function(){ alert("I was clicked!");};

Get the First Serve In

The main job of the text-field event handlers is to call the getInfo() function. This function grabs
whatever the user typed into the text widget and sends this value to the server:

function getInfo(obj){
 if (obj == null) { return; }
 formObj=obj;
 formObjTyp =obj.tagName;
 if(formObjTyp == "input" || formObjTyp == "INPUT"){
 formObjTyp = formObjTyp + " "+formObj.type;
 }
 formObjTyp = formObjTyp.toLowerCase();
 var url = "http://www.parkerriver.com/s/webforms?objtype="+
 encodeURIComponent(formObjTyp)+"&val="+
 encodeURIComponent(obj.value);
 httpRequest("GET",url,true);
}

The getInfo() function takes as a parameter an object that represents the text field or textarea.

We pass in references to the input or textarea objects so that the JavaScript code can use them to
handle the server return value.

"Display Text Field or textarea Values Using Server Data" [Hack #13] shows
how to display the server's return value inside these text widgets. Because a
textarea generally holds more information than a text field, the server sends
back more data if the original object was a textarea as opposed to a text field.

The last part of the previous code, httpRequest("GET",url,true), is the function call that actually
sends the user's information to the server.

However, a few things have to occur before the code calls that function, such as putting together a
proper URL (the server's address on the Internet). The server component is expecting a string
describing the kind of form object from which the data derives. In this application, the string is
formulated from the tagName property of the Element object (returning INPUT or TEXTAREA).

The code needs this value to tell the server whether its return value will be
inserted into a text field or a textarea. Again, this is described in "Display Text
Field or textarea Values Using Server Data" [Hack #13].

The code further refines the input object's description by what input subtype it represents (text
input, radio button, etc.). This is accomplished by appending the value of the input object's type
property (text, in this case) to the string input, which creates the final string input text.

In other words, this type property returns "text" only if the object represents an <input type="text"
...> HTML element. Then the string is forced to lowercase and submitted to the server with the
user's content:

formObjTyp =obj.tagName;
if(formObjTyp == "input" || formObjTyp == "INPUT"){
 formObjTyp = formObjTyp + " "+formObj.type;
}
formObjTyp = formObjTyp.toLowerCase();
var url = "http://www.parkerriver.com/s/webforms?objtype="+
 encodeURIComponent(formObjTyp)+"&val="+ encodeURIComponent(val);
httpRequest("GET",url,true);

The global JavaScript function encodeURIComponent() is a method for ensuring that certain
characters, such as spaces, are encoded when they are included in URLs. Otherwise, your program
may send a partial or truncated URL to the server and generate an error. The entire URL might look
like this in a real case:

http://www.parkerriver.com/s/webforms?objtype=input%20text&
val=Hello%20There!

What's Next?

http://www.parkerriver.com/s/webforms?objtype=input%20text&

The httpRequest() function wraps the code that initializes and uses the request object, which works
behind the scenes so that the user doesn't have to manually send the data. "Use the Request Object
to POST Data to the Server" [Hack #2], among others, describes this function in detail.

So what happens to the submitted data next? That depends on your application. The next hack
explores a related but different topic: using JavaScript and Ajax to take an HTTP response and insert
data into an existing text field or textarea.

Users can put tons of information in a large textarea, so in these cases use the POST
method rather than GET with the request object. For example, you can write the
httpRequest() function as httpRequest("POST",url,true), and the request object's
send() method will have the POST querystring as a parameter:

request.send(val=Hello%20there%20and%20a%20lot%20of%20other%20stuff);

Hack 13. Display Text Field or textarea Values Using
Server Data

Have server information magically appear in text boxes without the web page refreshing.

You can have a server component interact with information that the user enters in a text box,
without the jarring effect of the page reconstituting every time the user enters new information. A
typical example is a spell checker or auto-complete field [Hack #78]. Using the request object as an
intermediary, a server component can respond in real time to what the user types.

This hack displays an automatic server response, so that the response appears as if by magic in the
text control, without anything else changing in the web page. The hack is an extension of "Submit
Text Field or textarea Values to the Server Without a Browser Refresh" [Hack #12], which used the
request object to submit textarea or text field values to a server component behind the scenes.

This hack takes the information the user has submitted and displays a character count and word
count in the same field. You can accomplish the same thing with client-side JavaScript, of course, but
just to prove that a server component is doing the work, the hack displays some information about
the server in the textarea.

Figure 2-2 shows the web page after the user has entered some data into the text field.

Figure 2-2. Enter data and elicit a response

Figure 2-3 shows the browser window after the user has entered data in both fields and then clicked
Tab.

Figure 2-3. Real-time data updates

The following code is the HTML for the page. It imports a JavaScript file named hacks_2_1.js, which
contains the code that does most of the work:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/2000/REC-xhtml1-20000126/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <script type="text/javascript" src="js/hacks_2_1.js"></script>
 <link rel="stylesheet" type="text/css" href="/css/hacks.css" />
 <title>Submit your information</title>
</head>
<body>
<h3>Get stats from textareas and textfields using Ajax</h3>
<form action="javascript:void%200" >
<table border="0"><tr>
<td>Enter a few words for submitting to our server:
<input type="text" name="tfield" size="35"/> </td></tr>
<tr><td valign="top">Enter a phrase for submitting to our server:
<textarea name="tarea" rows="20" cols="20">
</textarea></td> </tr>
</table></form>
</body>
</html>

The last hack explained how the code submits the user's information without refreshing the web
page. In other words, after the user has typed in some information and pressed Tab or clicked
outside of the field, just the piece of data that user added to the text field or textarea is sent in an
HTTP request to the server.

An onblur event handler calls the getInfo() function, passing in the text field or textarea object as
a parameter.

The entire code for this behavior appears in "Submit Text Field or textarea Values to the Server
Without a Browser Refresh" [Hack #12], so it's not reproduced in full here. However, I will show the
code for the getInfo() and handleResponse() functions, which do the work of sending the server
component the information it needs and then handling the server's response. First, let's take a look
at the getInfo() function:

function getInfo(obj){
 if (obj == null) { return; }
 formObj=obj;
 formObjTyp =obj.tagName;
 if(formObjTyp == "input" || formObjTyp == "INPUT"){
 formObjTyp = formObjTyp + " "+formObj.type;
 }
 formObjTyp = formObjTyp.toLowerCase();
 var url = "http://www.parkerriver.com/s/webforms?objtype="+
 encodeURIComponent(formObjTyp)+"&val="+
 encodeURIComponent(obj.value);
 httpRequest("GET",url,true);

}

This function passes along to the server component the user's typed-in information as part of the val
parameter. In addition, the obj parameter holds a reference to the text control in which the
information was entered, such as a text field or textarea. The reference is specifically a DOM object,
such as an HTMLInputElement or HTMLTextAreaElement.

You do not have to worry about the DOM object tree at this point (although it is
interesting!). The HTML code for this hack refers to the particular text control
using the this keyword in the onblur event handler. The getInfo() function
can determine exactly what kind of text control the user is interacting witha
text field or a textareaby accessing the object's tagName property. You can
learn more about DOM object programming in David Flanagan's JavaScript:
The Definitive Guide (O'Reilly).

Instant Server Messaging

The server program takes the information typed in by the user and sends back the associated
number of characters and words. To make this response information palatable to our receiving code,
the server returns its information in JavaScript Object Notation (JSON) format [Hack #7]. JSON is
similar to XML in that it structures data to make it easier for software to digest and work with.

Your own program could simply return data in XML format or as a simple
string. Using JSON for the return value is this programmer's personal
preference. It is particularly useful if the server client is composed of JavaScript
code.

This code shows a typical JSON server return value, if the user typed 55 words into a textarea:

{
Form_field_type: "textarea",
Text_length: "385",
Word_count: "55",
Server_info: "Apache Tomcat/5.0.19"
}

This code represents a JavaScript object with four different properties: Form_field_type,
Text_length, Word_count, and Server_info. An explanation of how these properties are used is
provided after the next code sample.

Now the hack takes this information and plugs it back into the textarea. This is the job of the
handleResponse() function:

//event handler for XMLHttpRequest
function handleResponse(){
 try{

 if(request.readyState == 4){
 if(request.status == 200){
 var resp = request.responseText;
 if(resp != null){
 var func = new Function("return "+resp);
 var objt = func();
 if(formObjTyp == "textarea"){
 if(formObj != null){
 formObj.value = objt.Form_field_type +
 " character count: "+objt.Text_length+
 "\\nWord count: "+
 objt.Word_count+"\\nServer info: "+
 objt.Server_info;
 }
 } else if(formObjTyp == "input text"){
 if(formObj != null){
 formObj.value = objt.Form_field_type +
 " # characters: "+objt.Text_length+
 " Word count: "+objt.Word_count; }
 }
 }
 } else {
 //request.status is 503
 //if the application isn't available;
 //500 if the application has a bug
 alert(
 "A problem occurred with communicating "+
 "between the XMLHttpRequest object and "+
 "the server program.");
 }
 }//end outer if
 } catch (err) {
 alert(err.name);
 alert("It does not appear that the server "+
 "is available for this application. Please"+
 " try again very soon. \\nError: "+err.message);
 }
}

This code grabs the response as text. Since the text is already formatted in JSON syntax (as an
object literal in JavaScript), the code uses the special technique described in "Receive Data in JSON
Format" [Hack #7]. A Function constructor returns the text as a JavaScript object. In this case, the
variable objt now refers to the server component's response in an object-centric way, so you can
access the server information with syntax such as objt.Server_info.

The latter code piece accesses the Server_info property of the object referred to by the variable
objt:

var resp = request.responseText;
var func = new Function("return "+resp);
//call the function and return the object to which

//the objt variable now points
var objt = func();

The rest of the code goes about inserting this information back into the textarea using this syntax:

if(formObjTyp == "textarea"){
 if(formObj!= null){
 formObj.value = objt.Form_field_type +
 " character count: "+objt.Text_length+
 "\\nWord count: "+
 objt.Word_count+"\\nServer info: "+
 objt.Server_info;
 }
}

To see what the textarea looks like after the information is placed inside it, refer back to Figure 2-3.

You can access the textarea because a top-level JavaScript variable, formObj, refers to it. One of the
keys to this code is setting the value of a textarea or text field with the "dot property-name" syntax
common to JavaScript, as in formObj.value.

The server program sends more information back to a textarea than it does to
a text field, including line breaks (\\n in JavaScript) because the textarea is a
big box that can hold more text. You cannot include line breaks in a text field,
for instance, because it holds only one line (even if that line can have
numerous characters).

The code formats the value of the textarea by connecting strings to the properties of the object the
server returned, as in " character count: "+objt.Text_length.

Although in a conventional web interface users expect textareas and text fields to be reserved for
their own data entry, this hack demonstrates how to provide direct feedback related to what the user
types into a particular field.

Hack 14. Submit Selection-List Values to the Server
Without a Round Trip

Whisk the user's multiple list choices off to the server without delay.

Many web developers will see the advantage of sending a user's multiple choices in a radio button or
select list directly to a server program using the request object, rather than requiring the user to
click a button and send the entire form. This gives the application greater responsiveness and
increases efficiency by sending discrete values rather than clumps of information.

This hack sends the user's choices of U.S. states to a server program when the keyboard focus is
moved away from the select list. The select element looks like this in the HTML code that underlies
the web page:

<select name="_state" multiple="multiple" size="4">

This is a selection list that allows the user to choose more than one item. When the keyboard focus
moves from the select list (because the user presses the Tab key or clicks elsewhere on the page),
the code defined by the element's onblur event handler executes. (This code is shown in an
upcoming section.) The size=4 part indicates that four state names can be displayed at a time in the
select list. Figure 2-4 shows the page loaded into the Safari browser.

Figure 2-4. Multiple choices for immediate delivery

A JavaScript file named hacks_2_4.js declares all the code this hack needs. Here is the HTML for the
web page, which imports this file:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/2000/REC-xhtml1-20000126/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <script type="text/javascript" src="js/hacks_2_4.js"></script>
 <link rel="stylesheet" type="text/css" href="/css/hacks.css" />
 <title>Alter select lists</title>
</head>
<body>
<h3>Create or Alter a Select List</h3>
<form action="javascript:void%200" >
 <table border="0">
 <tr><td>Choose one or more states: </td><td>
 <select name="_state" multiple="multiple" size="4">
 <option value="al">Alabama</option>
 <option value="ak">Alaska</option>
 <option value="az">Arizona</option>
 <option value="ar">Arkansas</option>
 <option value="ca">California</option>
 <option value="co">Colorado</option>
 <option value="ct">Connecticut</option>
 <option value="de">Delaware</option>

 <option value="dc">District of Columbia</option>
 <option value="fl">Florida</option>
 <option value="ga">Georgia</option>
 <option value="hi">Hawaii</option>
 <!snipped...-->
 </select></td></tr>
 <tr><td><span id="select_info" class=
 "message">The server reports that you have chosen the
 following abbreviated states:
 <tr><td>Choose your list content:</td>
 <td>European countries:
 <input type="radio" name="countryType" id="euro" value="euro" />
 South American countries:
 <input type="radio" name="countryType" id="southam" value="southam" />
 </td></tr>
 <tr><td><div id="newsel"></div></td></tr>
 </table></form>
</body>
</html>

A span element contains a message the user sees after making some choices in the select list. This
message is styled by a CSS rule in the file hacks.css. We'll take a look at the message returned to the
user momentarily, but first let's examine the code that submits the user's choices to a server. The
code is a little complicated at first glance, but stay with it because what it accomplishes is really quite
simple:

function getSelectInfo(selectObj){
 if (selectObj == null) { return; }
 formObj=selectObj;
 formObjTyp =formObj.tagName.toLowerCase();
 var optsArray = formObj.options;
 var selectedArray = new Array();
 var val = "";
 //store selected options in an Array
 for(var i=0,j=0; i < optsArray.length; i++){
 if(optsArray[i].selected) {
 selectedArray[j]=optsArray[i].value;
 j++;
 }

 }
 //create a comma-separated list of each
 //selected option value
 for(var k = 0; k < selectedArray.length; k++){
 if(k !=selectedArray.length-1) { val +=selectedArray[k]+",";}
 else {val +=selectedArray[k]; }
 }
 var url = "http://www.parkerriver.com/s/webforms?objtype="+
 encodeURIComponent(formObjTyp)+"&val="+
 encodeURIComponent(val);
 httpRequest("GET",url,true);

}

The code takes all of the options associated with the select element and determines which of them
the user has selected. These options represent the user's choice(s) of U.S. states. The code takes
each selected option and stores it in a string, separated by commas (if there is more than one
choice), as follows: ma,nh,vt.

This task would be easier if the browser stored the selected values in one convenient place, such as a
value property of the select object, but this isn't the case! You have to grab all the options,
determine which ones were selected, and store those somewhere, such as in a JavaScript array.

A select element contains option elements, as in:

<select name="_states">
<option value="vt">Vermont</option>
...
</select>

In the DOM, the select element is represented by a select object that has an
options property, an array of option objects. You get the value of each option,
which the user sees as words in a list (e.g., "Vermont") using the value
property of an option object. Phewfun to code, but it involves endless objects
and properties!

The server component is expecting an objtype parameter, which in this case equals "select." We are
also sending the string of comma-separated choices, pointed to by the val parameter (we could just
as easily have used spaces, colons, or some other delimiter to separate each choice). Because we are
using JavaScript's global function encodeURIComponent(), each comma is encoded into %2C, since
certain punctuation marks are not allowed in the character strings that are sent to server
components.

encodeURIComponent() is a global function that is designed to encode portions
of a uniform resource indicator (URI), which is a fancy name for the addresses
you enter into a browser's location field to download a web page. This function
encodes punctuation characters that have special purposes in URIs, such as /,
:, @, and ;, as well as space characters, into their hexadecimal equivalents. For
example, a ; character is encoded into %3B. encodeURIComponent() does not
encode ASCII numbers or letters. Use encodeURIComponent() to encode query
strings or path information that your JavaScript code is handling.

Here is an example of a URL sent by the previous JavaScript:

http://www.parkerriver.com/s/webforms?objtype=select&val=ma%2Cvt%2Cny

This URL contains ma, vt, and ny as choices; after the val parameter is decoded, it will read ma,vt,ny.

http://www.parkerriver.com/s/webforms?objtype=select&val=ma%2Cvt%2Cny

Now What Happens?

The server grabs the selected values and redirects them back to the application, with some extra
information. This is where the displayed message comes to the fore. It displays the user's current
choices and some information about the server with which the application is connected. Figure 2-5
shows the web page after the user has made some choices and moved the keyboard focus from the
select list.

Figure 2-5. Instant feedback on list choices

The message changes dynamically without anything else being rebuilt or refreshed on the web page.
It gives the user instant feedback while connected to a server, without any browser round trips. How
does this work? Here is the JavaScript for the handleResponse() function, which deals with the
server return value. I have highlighted only the code that converts the return value into the user
message:

//event handler for XMLHttpRequest
function handleResponse(){
 try{
 if(request.readyState == 4){
 if(request.status == 200){
 if(formObjTyp.length > 0 && formObjTyp == "input"){

 //working with existing radio button
 var resp = request.responseText;
 //return value is an array
 var func = new Function("return "+resp);
 var objt = func();
 var sel = document.createElement("select");
 sel.setAttribute("name","countries");
 createOptions(sel,objt);
 var newsel = document.getElementById("newsel");
 reset(newsel);
 newsel.appendChild(sel);
 } else if(formObjTyp.length > 0 && formObjTyp == "select"){
 var resp = request.responseText;
 //return value is a JSON object literal
 var func = new Function("return "+resp);
 var objt = func();
 var fld = document.getElementById("select_info");
 if(fld != null){
 fld.innerHTML = "The server "+
 objt.Server_info+
 " reports that you have chosen"+
 "
 the following "+
 "abbreviated states: "+
 objt.Selected_options+"";
 }
 }
 } else {
 //request.status is 503
 //if the application isn't available;
 //500 if the application has a bug
 alert(
 "A problem occurred with communicating "+
 "between the XMLHttpRequest object and the "+
 "server program.");
 }
 }//end outer if
 } catch (err) {
 alert("It does not appear that the server "+
 "is available for this application. Please"+
 " try again very soon. \\nError: "+err.message);
 }
}

Hello Again, JSON

The server provides its answer in JSON format [Hack #7] as a string that can easily be converted by
the client-side browser code into a JavaScript object. An example of a server return value, which
some readers may recognize as an object literal, is:

{

Server_info: "Apache Tomcat/5.0.19",
Selected_options: "vt ny nh ma"
}

This code represents an object that has two properties, Server_info and Selected_options. To derive
the property values from the object, you use the "dot" syntax, as in obj.Selected_options. If the obj
variable is set to the prior code's object literal, the latter code line returns "vt ny nh ma". ("Receive
Data in JSON Format" [Hack #7] describes the JavaScript code to use for sending and handling JSON
syntax.)

A Dabble of Server-Side

For those interested in one method of sending JSON-formatted values back to Ajax, here is a Java
method that is used for this hack. This method takes as parameters the property names and values
in a string, and the character, such as a comma, that separates the property names from the
values:

public static String getJsonFormat(String propValues, String delim) {
 if(propValues == null || propValues.length()==0) { return "";}

 StringBuffer structure = new StringBuffer("");
 structure.append("{\\n");
 if (delim == null || delim.length() == 0) { delim = ",";}
 /* We're expecting comma-separated values such as prop1,val1,
 prop2,val2, etc. */
 StringTokenizer toke = new StringTokenizer(propValues,delim);
 int j = 0;
 int c = toke.countTokens();
 for(int i = 1; i <=c; i++) {
 j = i%2;
 if(j != 0) { structure.append(toke.nextToken()).
 append(": "); } //it's a property name
 else { structure.append("\\"").append(toke.nextToken()).
 append("\\""); //it's a property value
 if(i != c){structure.append(",");}
 structure.append("\\n");
 }
 }
 structure.append("}");
 return structure.toString();
}

If the Java servlet calls the method this way:

getJsonFormat("Server_info,Apache Tomcat,Selected_options,ca ma nh ny",",")

the method returns:

{
Server_info: "Apache Tomcat",
Selected_options: "ca ma nh ny"
}

The DOM API

This hack's next step is to store this return value in a variable, so the JavaScript can display its value
to the user:

var func = new Function("return "+resp);
var objt = func();
var fld = document.getElementById("select_info");

"Receive Data in JSON Format" [Hack #7] explains this use of the Function constructor to take
advantage of the JSON format. Here, suffice it to say that the variable objt now contains the
properties/values that interest us.

The variable fld represents the div element we reserved on the HTML page for containing this user
message from the server. getElementById() is a DOM API method for getting a reference to a tag in
HTML code, so the code can change its behavior or alter its appearance:

if(fld != null){
 fld.innerHTML = "The server "+objt.Server_info+
 " reports that you have chosen"+
 "
 the following "+
 "abbreviated states: "+
 objt.Selected_options+"";
}

Easily display the object's information using syntax such as objt.Selected_options. As you saw in
Figure 2-4, the states that the user has chosen and the name of the server software are displayed
dynamically. The message changes automatically as the user makes different selections in the list.
The information is derived from a server rather than just being generated by client-side JavaScript.

Hack 15. Dynamically Generate a New Selection List
Using Server Data

Create a list of choices on a web page that automatically branches into a new selection
list without the entire page being refreshed.

Sometimes a choice in a user interface naturally leads to a subsequent set of choices. An example is
a support page for computer hardware, where one select list has a choice for hardware platform,
such as Apple or HP, which generates (when the user makes a choice) a second list of related
operating systems, and so on. Ajax can shine in these situations where the user interface can
automatically be customized for the browser user, as well as where the content for the select list
must come from a server.

You could set up this page using only dynamic HTML, with JavaScript creating the new select list.
However, the choices for the new list would have to be hardcoded into the JavaScript. Ultimately, this
content for new lists will change, creating an awkward situation in which developers have to
constantly add persistent lists to an existing JavaScript file. Without being able to store these values
in a sensible location such as a database or other persistent store, this application model becomes
unwieldy.

This hack displays two radio buttons on a web page, offering users the choice of displaying either
European countries or South American countries. Either choice results in the display of a new
selection list with different content. Figure 2-6 shows the web page for the hack.

Figure 2-6. Dynamically generate a list widget by selecting a radio button

Here is the HTML code underlying the web page. I removed most of the long select list above the
radio buttons because that code appears in the previous hack:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/2000/REC-xhtml1-20000126/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <script type="text/javascript" src="js/hacks_2_4.js"></script>
 <link rel="stylesheet" type="text/css" href="/css/hacks.css" />
 <title>Alter select lists</title>
</head>
<body>
<h3>Create or Alter a Select List</h3>
<form action="javascript:void%200" >
 <table border="0">
 <tr><td>Choose one or more states: </td>
 <td><select name="_state" multiple="multiple" size="4">
 <option value="al">Alabama</option>
 <!more options... -->
 </select></td></tr>
 <tr><td>
 The server reports that you have chosen the following abbreviated
 states:

 <tr><td>Choose your list content:</td><td>European countries:
 <input type=
 "radio" name="countryType" id="euro" value=

 "euro" /> South American countries:
 <input type="radio" name=
 "countryType" id="southam" value="southam" /></td></tr>
 <tr><td><div id="newsel"></div></td></tr>
 </table>
</form>
</body>
</html>

The purpose of this code is to create a new select list whenever the browser user clicks on a radio
button. With radio buttons on a web page, only one can be selected at a time. If you select a certain
button, the other one(s) are automatically deselected.

Central to this hack is each radio button's onclick event handler. This is an attribute of an HTML
element that points to a JavaScript function. The function's code executes each time the user clicks
on a radio button. In other words, if a button is deselected and the user clicks it, the code calls the
function named generateList().

The code appears in the file that the web page imports, hacks_2_4.js. Here is the code that controls
the response to the user's radio-button clicks:

//input field's event handlers
window.onload=function(){
 var eur = document.getElementById("euro");
 if(eur != null){
 eur.onclick=function(){generateList(this); };}
 var southa = document.getElementById("southam");
 if(southa != null){
 southa.onclick=function(){generateList(this); };}
}

Each onclick event handler points to a function that simply calls generateList(). You will notice that
the this keyword is used as a parameter. That holds a reference to each radio button that is clicked,
so that the function's code can grab the button's value and send the value to a server component.

Presto, New Lists

The generateList() function is defined in a file named hacks_2_4.js. The HTML code for the web
page imports this file using a script element. Here are the highlights of this file, with the emphasis
on the functions used to generate a new list:

var formObj = null;
var formObjTyp = "";
var request=null;

function generateList(obj){
 if (obj == null) { return; }
 if(obj.checked) {
 formObj=obj;

 formObjTyp =formObj.tagName.toLowerCase();
 var url = "http://www.parkerriver.com/s/selectl?countryType="+
 encodeURIComponent(obj.value);
 httpRequest("GET",url,true);
 }
}

//event handler for XMLHttpRequest
function handleResponse(){
 try{
 if(request.readyState == 4){
 if(request.status == 200){
 if(formObjTyp.length > 0 && formObjTyp == "input") {
 if (resp != null){
 //return value is an array
 var objt = eval(resp);
 //create a new select element
 var sel = document.createElement("select");
 sel.setAttribute("name","countries");
 //give the select element some options based
 //on a list of countries from the server
 createOptions(sel,objt);
 //the div element within which the select appears
 var newsel = document.getElementById("newsel");
 reset(newsel);
 newsel.appendChild(sel);
 }
 } else if(formObjTyp.length > 0 && formObjTyp == "select"){
 //code edited out here for the sake of brevity...
 }
 } else {
 //request.status is 503 if the application isn't available;
 //500 if the application has a bug
 alert("A problem occurred with communicating between "+
 "the XMLHttpRequest object and the server program.");
 }
 }//end outer if
 } catch (err) {
 alert("It does not appear that the server is available"+
 " for this application. Please"+
 " try again very soon. \\nError: "+err.message);

 }
}

function createOptions(sel,_options) {
 //_options is an array of strings that represent the values of
 //a select list, as in each option of the list.
 //sel is the select object
 if(_options == null || _options.length==0) { return;}
 var opt = null;
 for(var i = 0; i < _options.length; i++) {

 opt = document.createElement("option");
 opt.appendChild(document.createTextNode(_options[i]));
 sel.appendChild(opt);
 }
}
//remove any existing children from an Element object
function reset(elObject){
 if(elObject != null && elObject.hasChildNodes()){
 for(var i = 0; i < elObject.childNodes.length; i++){
 elObject.removeChild(elObject.firstChild);
 }
 }
}
/* Initialize a request object; code omitted, see Hack #1 or #2. */

When the user clicks on a radio button, the control either indicates a selected state or, if it is already
selected, or deselects the button. The onclick event handler does not differentiate between checked
or unchecked radio buttons; it is designed simply to react when the button has been clicked. Just to
make sure the radio button is selected (even though the button is designed to be selected based on a
click event), the code first checks whether the object was in a checked state before it begins creating
a new select list:

function generateList(obj){
 if (obj == null) { return; }
 if(obj.checked) {
 formObj=obj;
 formObjTyp =formObj.tagName.toLowerCase();
 var url = "http://www.parkerriver.com/s/selectl?countryType="+
 encodeURIComponent(obj.value);
 httpRequest("GET",url,true);
 }
}

Querying the Server

The code queries a server with the value of the checked radio button. Recall that the new select list
contains choices (the words the user sees, such as "United Kingdom") that are stored on the server
side. To determine which set of values to acquire from the serverthe European or South American
countriesyou include in the request URL a parameter named countryType. The value for this
parameter derives from the radio button's value attribute, as in:

<input type="radio" name="countryType" id="southam" value="southam" />

The code sends this information to the server using the request object and the httpRequest()
function. "Use the Request Object to POST Data to the Server" [Hack #2] and "Submit Text Field or
textarea Values to the Server Without a Browser Refresh" [Hack #12] (among others) describe this
function, which wraps the initialization of the request object and the calling of its methods. The URL
the request object uses to connect with the server might look like

http://www.parkerriver.com/s/selectl?countryType=euro.

The code then receives the response and builds the new select list. It pulls the values out of the
response using the familiar handleResponse() function, which shows up in most of the other hacks.
Here are the key lines of JavaScript for this hack:

if(request.readyState == 4){
 if(request.status == 200){
 if (resp != null){
 //return value is a JSON array
 var objt = eval(resp);
 //create a new select element
 var sel = document.createElement("select");
 sel.setAttribute("name","countries");
 //give the select element some options based
 //on a list of countries from the server
 createOptions(sel,objt);
 //the div element within which the select appears
 var newsel = document.getElementById("newsel");
 reset(newsel);
 newsel.appendChild(sel);

The server's return value looks like ["Spain","Germany","Austria"]. The code takes the string
return value and converts it to an array with eval(), as discussed in "Receive Data in JSON Format"
[Hack #7] . The JavaScript then uses the DOM API to create a new select element. It's a good idea
to give the newly generated HTML element a name and a value, in case your application calls for
submitting these values to a server component:

var sel = document.createElement("select");
sel.setAttribute("name","countries");

Using the array of values returned by the server, the createOptions() function populates the select
element with a new option element pointing at each array member. The end result is a new select
element built from scratch that looks like this:

<select name="countries">
 <option>United Kingdom</option>
 ...
</select>

Here is the code for the createOptions() function:

function createOptions(sel,_options) {
 //_options is an array of strings that represent the values of
 //a select list, as in each option of the list.
 //sel is the select object
 if(_options == null || _options.length==0) { return;}
 var opt = null;
 for(var i = 0; i < _options.length; i++) {

http://www.parkerriver.com/s/selectl?countryType=euro

 opt = document.createElement("option");
 opt.appendChild(document.createTextNode(_options[i]));
 sel.appendChild(opt);
 }
}

The _options variable contains all the country names. The code uses the DOM API to create each new
option element, call the element's appendChild() method to add the country name to the option,
and finally call the select element's appendChild() method to add the option to the select list.

The Final Step

We have to figure out which block-level element in the HTML will hold the new select element, rather
than just throwing the select element somewhere within the body tag, willy-nilly. A div element with
the id newsel serves this purpose:

<div id="newsel"></div>

The div element appears beneath the radio buttons on the page, but since it initially does not contain
any visible HTML elements, the user will not be aware of it. The code uses another popular DOM
method, getElementById(), to get a reference to this div, and then appends the select element to
it as a node:

var newsel = document.getElementById("newsel");
reset(newsel);
newsel.appendChild(sel);

To prevent users from continuously clicking the radio buttons and generating a million new lists,
another method named reset() first checks the div for any existing child nodes, which would
represent a previously created select element. The function deletes any existing nodes before the
code adds a new select list inside the div:

function reset(elObject){
 if(elObject != null && elObject.hasChildNodes()){
 for(var i = 0; i < elObject.childNodes.length; i++){
 elObject.removeChild(elObject.firstChild);
 }
 }
}

Figure 2-7 shows the web page after the user has clicked one of the radio buttons. The choice of
South American countries has generated a new select list beginning with Brazil.

Figure 2-7. Choose a radio button to create a new list

Hack 16. Extend an Existing Selection List

Give browser users the option to modify an existing list before making and submitting
their choices.

Imagine that you have a list of U.S. states, as in the select element used in "Submit Selection-List
Values to the Server Without a Round Trip" [Hack #14]. As part of the customer-registration process,
you ask what state your customers live in (for sales-tax purposes, say). However, you want to be
able register customers from other countries too, because your product can now be distributed
overseas. You do not want to include every country on earth in the select list, though, both for geo-
political reasons (countries frequently change, as in the case of the former Yugoslavia) and because
the select list would be too big to fit nicely on the page. Thus, you want your users to be able to
choose (when applicable) a continent, making a selection that adds a subset of select options to the
page. Your application will pass the name of the selected continent to the server program and query
the server for the specific countries associated with that continent.

To begin with, you'll provide a select list of continents. When the user makes a selection, the names
of the countries within that continent are derived from the server and automatically added to an
existing select list, without the page being refreshed. Figure 2-8 shows the web page for this hack,
which is based on the previous hack containing the select list of U.S. states.

Figure 2-8. Add options to a list

The user selects a continent in the top-level select list. This action triggers the onclick event for the
select element. Here is the HTML code for the page:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/2000/REC-xhtml1-20000126/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <script type="text/javascript" src="js/hacks2_6.js"></script>
 <link rel="stylesheet" type="text/css" href="/css/hacks.css" />
 <title>Alter select lists</title>
</head>
<body>
<h3>Add Entries to a Select List</h3>
<form action="javascript:void%200">
 <table border="0">
 <tr><td>Add your country: <select id="cts" name="_continents">
 <option value="southam">South America</option>
 <option value="euro">Europe</option>
 </select></td></tr><tr><td>Choose one or more states: </td>
 <td> <select id="sts" name="_state" multiple="multiple" size="4">
 <option value="al">Alabama</option>
 <option value="ak">Alaska</option>
 <option value="az">Arizona</option>
 <option value="ar">Arkansas</option>
 <option value="ca">California</option>
 <option value="co">Colorado</option>
 <option value="ct">Connecticut</option>
 <option value="de">Delaware</option>
 <option value="dc">District of Columbia</option>
 <option value="fl">Florida</option>
 <option value="ga">Georgia</option>
 <option value="hi">Hawaii</option>
 <!--snipped here...-->
 </select></td></tr>

 </table>
</form>
</body>
</html>

All of the JavaScript appears in the file hacks2_6.js. Here are the contents of this file (omitting the
creation and initialization of the request object, which the first hack in this chapter and several other
hacks show):

var origOptions = null;
var request=null;
/* Set up the onclick event handler for the "countries"
select list */
window.onload=function(){
 var sel = document.getElementById("cts");

 var sel2 = document.getElementById("sts");
 if(sel != null){
 sel.onclick=function(){
 addCountries(this)};
 }
 origOptions = new Array();
 //save the original select list of states so that
 //it can be reconstructed with just the original states
 //and the newly added countries
 for(var i = 0; i < sel2.options.length; i++){
 origOptions[i]=sel2.options[i];
 }
}

function addCountries(obj){
 if (obj == null) { return; }
 var url = "";
 var optsArray = obj.options;
 var val = "";
 for(var i=0; i < optsArray.length; i++){
 if(optsArray[i].selected) {
 val=optsArray[i].value; break;
 }

 }
 url = "http://www.parkerriver.com/s/selectl?countryType="+
 encodeURIComponent(val);
 httpRequest("GET",url,true);

}

//event handler for XMLHttpRequest
function handleResponse(){
 try{
 if(request.readyState == 4){
 if(request.status == 200){
 var resp = request.responseText;
 if(resp != null){
 //return value is an array
 var objt = eval(resp);
 addToSelect(objt);
 }
 } else {
 //request.status is 503 if the application isn't available;
 //500 if the application has a bug
 alert(
 "A problem occurred with communicating between"+
 " the XMLHttpRequest object and the server program.");
 }
 }//end outer if
 } catch (err) {
 alert("It does not appear that the server "+

 "is available for this application. Please"+
 " try again very soon. \\nError: "+err.message);

 }
}
/* Take an array of string values (obj) and add an option
for each of the values to a select list */
function addToSelect(obj){
 //contains the U.S. states
 var _select = document.getElementById("sts");
 var el;
 //first remove all options, because the select could include
 //newly added countries from previous clicks
 while(_select.hasChildNodes()){
 for(var i = 0; i < _select.childNodes.length; i++){
 _select.removeChild(_select.firstChild);
 }
 }
 //now add just the original options: 52 states
 for(var h=0; h < origOptions.length;h++) {
 _select.appendChild(origOptions[h]);
 }
 //obj is an array of new option values
 for(var i=0; i < obj.length;i++) {
 el = document.createElement("option");
 el.appendChild(document.createTextNode(obj[i]));
 _select.insertBefore(el,_select.firstChild);
 }
}

/* Create and initialize a request object; see Hack #1 or #2. */

When the browser first loads the web page, the code defines an onclick event handler for the select
list containing the U.S. states. This event is triggered whenever users click on the select widget,
whether or not they change the value in the list. The event handler calls a function named
addCountries(), passing in as a parameter a reference to the select object that was clicked:

window.onload=function(){
 var sel = document.getElementById("cts");
 var sel2 = document.getElementById("sts");
 if(sel != null){
 sel.onclick=function(){
 addCountries(this)};
 }
 origOptions = new Array();
 //save the original select list of states so that
 //it can be reconstructed with just the original states
 //and the newly added countries
 for(var i = 0; i < sel2.options.length; i++){
 origOptions[i]=sel2.options[i];
 }

}

The code also saves the original contents of the U.S. states list in an Array object. Otherwise, as the
user clicked in the upper select list, the same countries could be added to the second select list over
and over again. Because the origOptions Array variable caches the original list, each time the user
clicks the top-level select list, the bottom select list is rebuilt with the new countries added in front
of the original list of states.

Next up is the addCountries() function. You don't need to show this function again, because what it
accomplishes is fairly simple. The function cycles through the options in the continents select list,
and if an option is checked (i.e., is the selected option), its value is submitted to a Java servlet. The
servlet program returns an array of countries associated with the continent, and the code adds those
countries to the other select list.

My apologies to all those other global citizens who are not represented by these
continent choices. For the sake of brevity, I stopped at Europe and South
America. A "real-world" (pun intended!) application would represent all of the
world's continents, except perhaps Antarctica.

Figure 2-9 shows the web page after the user has chosen South America.

Figure 2-9. Add countries to the select list without a round trip

New Select List or Mirage?

The code receives the return value in as a string that can be converted to a JavaScript array. The

return value takes the form of ["Brazil", "Ecuador",etc.]. It is a string that is evaluated as a
JavaScript array using the eval() function. In the next step, as if by magic, the new countries
appear at the top of the second select list. Here is the responsible addToSelect() function:

function addToSelect(obj){
 //contains the U.S. states
 var _select = document.getElementById("sts");
 var el;
 //first remove all options, because the select could include
 //newly added countries from previous clicks
 while(_select.hasChildNodes()){
 for(var i = 0; i < _select.childNodes.length; i++){
 _select.removeChild(_select.firstChild);
 }
 }
 //now add just the original options: 52 states
 for(var h=0; h < origOptions.length;h++) {
 _select.appendChild(origOptions[h]);
 }
 //obj is an array of new option values
 for(var i=0; i < obj.length;i++) {
 el = document.createElement("option");
 el.appendChild(document.createTextNode(obj[i]));
 _select.insertBefore(el,_select.firstChild);
 }
}

This function involves basic DOM API programming, representing a select list as a parent node of
several option-related child nodes. First, the code clears the select list and repopulates it with the
original states. This is a rule for the application; the user can add new countries on top of the original
list, but the countries won't pile up in the list repetitively. The code then creates a new option
element for each member of the array derived from the server, which is a country name (such as
"Brazil"). Finally, the code uses the Node.insertBefore() method to insert each new option before
the first option in the select list.

The _select.firstChild node keeps changing in the for loop. For example, if
Alabama is at the top of the list, _select.firstChild returns the option node
containing the "Alabama" value. The loop then inserts "Brazil" before
"Alabama," and the option representing Brazil becomes the firstChild node.

Hacking the Hack

Naturally, the next step in this hack is to allow the user to dynamically submit the new country name
from the second select element. "Submit Selection-List Values to the Server Without a Round Trip"
[Hack #14] shows you how to add this behavior to a select list.

Hack 17. Submit Checkbox Values to the Server Without a
Round Trip

Generate immediate interaction with a server program when the browser user clicks a
checkbox.

Checkboxes are those little squares or buttons that allow users to make choices among multiple
options. The conventional setup is for users to check one or more checkboxes as part of a form that
they have to submit later. But what if you want your application to submit only the checkbox values,
rather than the whole form, and have that submission take place when the user clicks the checkbox
and not at some indeterminate time in the future?

This hack represents a poll in which users vote for their favorite team and individual sports. When the
browser user selects any of the checkboxes, this action triggers an event that submits this value to a
server program and then displays the poll results. Figure 2-10 shows what the page looks like in a
browser.

Figure 2-10. Choose your favorite sports

The server program has a database that captures the poll results; the program updates and then
returns those results. This hack uses the XMLHttpRequest object to send the sport choices and handle
the server's response, and it uses DOM programming and CSS to display the poll results. Here is the
HTML code for the page:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/2000/REC-xhtml1-20000126/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <script type="text/javascript" src="js/hacks2_5.js"></script>

 <link rel="stylesheet" type="text/css" href="/css/hacks2_5.css" />
 <title>submit checkbox values</title>
</head>
<body>
<h3>Choose your favorite sports</h3>
<h4>Team sport</h4>
<form id="team" action="javascript:void%200" method="get">
<div id="team_d" class="team">
<input type="checkbox" name="team_sports" id=
"baseball" value="baseball" /> Baseball

<input type="checkbox" name="team_sports" id=
"soccer" value="soccer" /> Soccer

<input type="checkbox" name="team_sports" id=
"football" value="football" /> Football

<input type="checkbox" name="team_sports" id=
"basketball" value="basketball" /> Basketball

<input type="checkbox" name="team_sports" id=
"lacrosse" value="lacrosse" />Lacrosse

<input type="checkbox" name="team_sports" id=
"hockey" value="hockey" /> Hockey

<input type="checkbox" name="team_sports" id=
"tennis" value="tennis" /> Tennis

</div>
</form>
<div id="team_poll" class="poll">

 </div>
<h4>Individual sport</h4>
<form id="ind" action="javascript:void%200" method="get">
<div id="ind_d" class="ind">
<input type="checkbox" name="individual_sports" id=
"cycling" value="cycling" /> Cycling

<input type="checkbox" name="individual_sports" id=
"running" value="running" /> Running

<input type="checkbox" name="individual_sports" id=
"swimming" value="swimming" /> Swimming

<input type="checkbox" name="individual_sports" id=
"nordic_skiing" value="nordic_skiing" />Nordic Skiing

<input type="checkbox" name="individual_sports" id=
"inline_skating" value="inline_skating" />Inline Skating

<input type="checkbox" name="individual_sports" id=
"triathlon" value="triathlon" />Triathlon

<input type="checkbox" name="individual_sports" id=
"track" value="track" />Track

</div>
</form>
<div id="individual_poll" class="poll">

 </div>
</body>
</html>

This page first imports the JavaScript code that performs all of the application's work from a file
named hacks2_5.js. This HTML also imports a stylesheet (hacks2_5.css) to control the page's
appearance and makes the poll results invisible until the user is ready to see them.

The HTML page includes two div elements, each containing a set of checkbox elements that specify
the various team and individual sports. Here is the JavaScript code underlying this hack:

var sportTyp = "";
var request=null;

window.onload=function(){
 var allInputs = document.getElementsByTagName("input");
 if(allInputs != null){
 for(var i = 0; i < allInputs.length;i++) {
 if(allInputs[i].type == "checkbox"){
 allInputs[i].onchange=function(){
 sendSportsInfo(this)};
 }
 }
 }
}

function sendSportsInfo(obj){
 if (obj == null) { return; }
 var url = "";
 var nme = "";
 if(obj.checked) {
 nme = obj.name;
 var sub = nme.substring(0,nme.indexOf("_"));
 sportTyp=sub;
 url = "http://www.parkerriver.com/s/fav_sports?sportType="+nme+
 "&choices="+obj.value;
 httpRequest("GET",url,true);
 }
}

//event handler for XMLHttpRequest
function handleResponse(){
 try{
 if(request.readyState == 4){
 if(request.status == 200){
 var resp = request.responseText;
 if(resp != null){
 //return value is a JSON object
 var func = new Function("return "+resp);
 displayPollResults(func());
 }
 } else {
 //request.status is 503
 //if the application isn't available;
 //500 if the application has a bug

 alert(
 "A problem occurred with communicating between"+
 " the XMLHttpRequest object and the server program.");
 }
 }//end outer if
 } catch (err) {
 alert("It does not appear that the server "+
 "is available for this application. Please"+
 " try again very soon. \\nError: "+err.message);

 }
}

function displayPollResults(obj){
 var div = document.getElementById(sportTyp+"_poll");
 var spans = div.getElementsByTagName("span");
 for(var i = 0; i < spans.length; i++){
 if(spans[i].id.indexOf("title") != -1){
 spans[i].innerHTML = "Here are the latest poll "+
 "results for "+sportTyp+
 " sports"
 } else {
 //use the object and its properties
 var str ="
";
 for(var prop in obj) { str += prop + " : "+obj[prop]+"
";}
 spans[i].innerHTML = str;
 }
 }
 div.style.visibility="visible";
}

I have omitted the code for creating and initializing the request object, such as
the httpRequest() function, since so many of the other hacks have already
included this code. See "Detect Browser Compatibility with the Request Object"
[Hack #1] or "Use Your Own Library for XMLHttpRequest" [Hack #3] if you
need another look!

The first task of this code is to assign a function to execute when the checkbox's state changes (from
unchecked to checked). This is the responsibility of the window.onload event handler, which the
browser calls after the page has been completely loaded:

window.onload=function(){
 var allInputs = document.getElementsByTagName("input");
 if(allInputs != null){
 for(var i = 0; i < allInputs.length;i++) {
 if(allInputs[i].type == "checkbox"){
 allInputs[i].onchange=function(){
 sendSportsInfo(this)};
 }

 }
 }
}

The code first stores an Array of all the page's input elements in an allInputs variable. If the input is
of a checkbox type, as in <input type="checkbox" .../>, its onchange property refers to a function
that calls sendSportsInfo(). The code sets all the checkbox's onchange event handlers at once; it will
not affect any other input elements a page designer adds to the page later.

Using this as a parameter to sendSportsInfo() is a handy mechanism for passing a reference to the
exact input element whose state has changed.

Vote Early and Often

Let's look at the sendSportsInfo() function more closely. This function constructs a URL or web
address to send the user's sports choices to a server program:

function sendSportsInfo(obj){
 if (obj == null) { return; }
 var url = "";
 var nme = "";
 if(obj.checked) {
 formObj=obj;
 nme = obj.name;
 var sub = nme.substring(0,nme.indexOf("_"));
 sportTyp=sub;
 url = "http://www.parkerriver.com/s/fav_sports?sportType="+nme+
 "&choices="+obj.value;
 httpRequest("GET",url,true);
 }
}

Since we used the this keyword as a parameter to sendSportsInfo(), the obj variable refers to an
HTML input element. We are only going to hit the server if the input checkbox is selected, so the
code checks for that state. The name of each input element in the form is set in the HTML to
team_sports or individual_sports, so the code captures the name and the name substring preceding
the "_" character (we need that for the code that displays the poll results).

The code obj.name accesses the name property of an HTMLInputElement, which is
part of the DOM API. This property refers to the name in the HTML element
code, as in <input name="myname".../>.

The URL requires the sport type and the value of the checkbox. A typical URL example looks like
http://www.parkerriver.com/s/fav_sports?sportType= individual_sports&choices=soccer. The
httpRequest() method uses the request object to query the server with these values.

http://www.parkerriver.com/s/fav_sports?sportType= individual_sports&choices=soccer

Poll Vault

The server returns an HTTP response representing the latest poll results, after it stores the user's
vote. The code has designated the handleResponse() function for dealing with the response and
calling another function to display the results:

if(request.readyState == 4){
 if(request.status == 200){
 var resp = request.responseText;
 if(resp != null){
 //return value is a JSON object
 var func = new Function("return "+resp);
 displayPollResults(func());
 }
 }
}

The server returns the result not as XML but in JSON format, a form of plain text that can easily be
converted by JavaScript to an object. This is a useful way of enclosing the results. A typical server
return value looks like:

{
nordic_skiing: "0",
inline_skating: "0",
cycling: "2",
track: "2",
swimming: "0",
triathlon: "0",
running: "3"
}

The code uses the technique described in "Receive Data in JSON Format" [Hack #7] to evaluate this
text as a JavaScript object. The code then calls displayPollResults(), which, as you've probably
figured out, shows the results in the browser. Figure 2-11 shows what the results look like in Safari.

Figure 2-11. Which sports are favored?

The displayPollResults() function uses the DOM to generate a colorful display of the results in the
browser:

function displayPollResults(obj){
 var div = document.getElementById(sportTyp+"_poll");
 var spans = div.getElementsByTagName("span");
 for(var i = 0; i < spans.length; i++){
 if(spans[i].id.indexOf("title") != -1){
 spans[i].
 innerHTML = "Here are the latest "+
 "poll results for "+sportTyp+" sports"

 } else {
 //use the object and its properties
 var str ="
";
 for(var prop in obj) { str += prop + " : "+
 obj[prop]+"
";}
 spans[i].innerHTML = str;
 }
 }
 div.style.visibility="visible";
}

The poll results are displayed inside div elements, which have ids of team_poll or individual_poll.
Each div contains two span elements. The span elements are responsible for the result titles and the
actual data.

At this point, it is helpful to look at the CSS file that specifies various rules for the appearance of our
poll results. The divs and their contents are initially hidden (with the visibility CSS property), until
the user clicks a checkbox:

.p_title {font-size: 1.2em; color: teal }
h3 { margin-left: 5%; font-size: 1.4em; }
h4 { margin-left: 5%; font-size: 1.2em; }
div.poll { margin-left: 5%; visibility: hidden; border: thin solid black;
 padding: 2%; font-family: Arial, serif;
 color: gray; background-color: yellow}

div.team { margin-left: 5%; border: thin solid green; padding: 5%;
 font-family: Arial, serif}

div.ind { margin-left: 5%; border: thin solid green; padding: 5%;
 font-family: Arial, serif }

div { max-width: 50% }

One of the cool aspects of DOM and Ajax mechanisms is that CSS properties are programmable too.
When the page view is ready to show the poll results, the visibility property of the divs that hold
these results is set to visible. This is accomplished with the code div.style.visibility =
"visible".

In the displayPollResults() function, the code sets the innerHTML property for the span elements
responsible for displaying a title about the poll results. In addition, the poll results derived from the
server are stored in a string and displayed in this manner:

var str ="
";
for(var prop in obj) { str += prop + " : "+
 obj[prop]+"
";}
 spans[i].innerHTML = str;

The obj variable is a JavaScript object. The for(property in object) expression then generates a

string that looks like this:

baseball : 2
soccer : 3...

If you keep clicking on checkboxes, you can watch the votes increment without anything else
changing in the browser. This is a useful design for applications that collect discrete feedback from
users and instantaneously display the results.

Hack 18. Dynamically Generate a New Checkbox Group
with Server Data

Let a web page's checkbox content evolve from a user's interaction with an application.

Most web forms are static, meaning the text labels and entry widgets (e.g., textareas, checkboxes,
and radio buttons) are hardcoded into the HTML. Lots of applications, however, can benefit from the
ability to whip together form elements on the fly, based on the user-interface widgets the user is
clicking. The content for the forms, if necessary, can even be derived from a server, such as
questions for various types of quizzes and polls.

"Dynamically Generate a New Selection List Using Server Data" [Hack #15] showed how to do this
with a select list widget, so why don't we auto-generate a bunch of checkboxes?

This hack gives users a choice of "Team Sports" or "Individual Sports" in two radio buttons and then,
when they click either button, grabs the sports categories from a server component and creates a
new group of checkboxes.

Choose Your Activity

Figure 2-12 shows our barebones web page to begin with, before the DOM magic starts.

Figure 2-12. Let the web form evolve

What follows is the HTML for the form. The dynamic behavior for this page is all contained in the
JavaScript file hacks2_7.js. The two radio buttons that the users can click to get things going are
represented by the two input elements, and the newly generated checkboxes appear within the div
element with the id checks:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/2000/REC-xhtml1-20000126/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <script type="text/javascript" src="js/hacks2_7.js"></script>
 <title>Dynamic checkboxes</title>
</head>
<body>
<h3>Voting on Favorite Sports</h3>
<h4>Pick a sports category</h4>
<form action="javascript:void%200">
 <table border="0">
 <tr><td>
 Team Sports:
 <input type="radio" name="_sports" value="team" />
 </td></tr>
 <tr><td> Individual Sports:
 <input type="radio" name="_sports" value="individual" />
 </td></tr>
 </table>
 <hr />
 <div id="checks"></div>
</form>
</body>
</html>

When the user clicks a checkbox, the page instantly displays either of two different sets of new
checkboxes, representing either individual sports or team sports. The actual lists of sports that make
up the checkboxes are arrays of strings that the server returns. They obviously could be hard-coded
into the JavaScript to prevent a network hit, but the approach discussed in this hack is useful if the
checkbox widgets represent values that change frequently and/or must be derived from persistent
storage on the server (think product information, or complex multiple-choice questions in a
questionnaire).

Figure 2-13 shows the web page after the user has clicked a radio button. This action submits only
the value associated with the radio button that the user clicked, not the entire form.

Figure 2-13. Widgets spawning other widgets

Okay, Where's the Code?

The JavaScript contained in the file hacks2_7.js is reproduced below. I've omitted the code that
creates and initializes the request object, which you can review in "Detect Browser Compatibility with
the Request Object" [Hack #1] and several other earlier hacks. The first thing you may notice in the
code is that it assigns a function to handle the radio buttons' onclick event handlers. The user

triggers these events by clicking either radio button.

An event handler such as onclick or onchange is an attribute of an HTML
element that can be assigned to the code that is executed whenever the user
clicks that element on the page, for example.

This assignment begins in the window's onload event handler. This event takes place when the
browser has finished loading all the elements in the HTML page:

var sportType="";
var request=null;
window.onload=function(){
 var rads = document.getElementsByTagName("input");
 if(rads != null) {
 for(var i = 0; i < rads.length; i++) {
 if(rads[i].type=="radio"){ rads[i].onclick=function(){
 getSports(this)};}

 }
 }
}

function getSports(obj){
 if (obj == null) { return; }
 var url = "";
 var val = "";
 if(obj.checked) {
 val=obj.value;
 sportType=val;
 url = "http://www.parkerriver.com/s/fav_sports"+
 "?sportType="+encodeURIComponent(val)+"&col=y";
 httpRequest("GET",url,true);
 }
}

//event handler for XMLHttpRequest
function handleResponse(){
 try{
 if(request.readyState == 4){
 if(request.status == 200){
 var resp = request.responseText;
 if(resp != null){
 //return value is an array
 var objt = eval(resp);
 createChecks(objt);
 }
 } else {
 //request.status is 503
 //if the application isn't available;
 //500 if the application has a bug

 alert(
 "A problem occurred with communicating between"+
 " the XMLHttpRequest object and the server program.");
 }
 }//end outer if
 } catch (err) {
 alert("It does not appear that the server "+
 "is available for this application. Please"+
 " try again very soon. \\nError: "+err.message);

 }
}

function createChecks(obj){
 var _div = document.getElementById("checks");
 var el;
 //first remove all existing checkboxes
 while(_div.hasChildNodes()){
 for(var i = 0; i < _div.childNodes.length; i++){
 _div.removeChild(_div.firstChild);
 }
 }
 //obj is an array of new sports names
 for(var i=0; i < obj.length;i++) {
 el = document.createElement("input");
 el.setAttribute("type","checkbox");
 el.setAttribute("name",sportType);
 el.setAttribute("value",obj[i]);
 _div.appendChild(el);
 _div.appendChild(document.createTextNode(obj[i]));
 _div.appendChild(document.createElement("br"));
 }
}
/* httpRequest() and related code omitted for the sake of brevity;
see Hack #1 or #2. */

The first stage in generating the checkboxes is to send the request that fetches the values for each
widget. When the user clicks a radio button, the code calls getSports(). This function formats a URL
based on the value it receives from the checkbox, then sends a request to a server component for a
list of related sports.

Array Return Value

The response comes back from the server in a string formatted as a JavaScript array. A response
might look like:

["football","soccer","tennis", etc.]

You get the response from the request object's responseText property and then convert the response
to a JavaScript array using the eval() global function. Phew, that was a mouthful!

Make sure that production applications handling return values with eval()
protect against any cross-site scripting (XSS) attacks. See the following URL:
http://en.wikipedia.org/wiki/Cross-site_scripting.

Once the code has this array of values from the server, it passes the array along to createChecks().
This function uses the DOM API to create the checkboxes. It creates one checkbox for each value in
the array (a checkbox for tennis, another for soccer, and so on). Here is the code for this function:

function createChecks(obj){
 var _div = document.getElementById("checks");
 var el;
 //first remove all existing checkboxes
 while(_div.hasChildNodes()){
 for(var i = 0; i < _div.childNodes.length; i++){
 _div.removeChild(_div.firstChild);
 }
 }
 //obj is an array of new sports names
 for(var i=0; i < obj.length;i++) {
 el = document.createElement("input");
 el.setAttribute("type","checkbox");
 el.setAttribute("name",sportType);
 el.setAttribute("value",obj[i]);
 _div.appendChild(el);
 _div.appendChild(document.createTextNode(obj[i]));
 _div.appendChild(document.createElement("br"));
 }

The function gets a reference to the div element on the HTML page that will enclose the checkboxes.
The code then removes any existing checkboxes, because if it didn't, the user could keep clicking the
radio buttons and generate several duplicate checkboxes appended on the end of the web page (an
outcome you want to avoid). Finally, the code creates a new input element for each sport, so that
each of these widgets looks like:

<input type="checkbox" name=
"team_sports" value="baseball" /> baseball

As soon as this function finishes executing, the checkboxes appear on the web page without any
visible refresh. Like magic!

Hacking the Hack

Naturally, you want the user to select one or more of these generated checkboxes for some purpose.

http://en.wikipedia.org/wiki/Cross-site_scripting

Maybe to generate another subset of widgets or checkboxes? Or to send the values from the new
checkboxes, when the user clicks them, to a server component? You can adapt the code from
"Submit Checkbox Values to the Server Without a Round Trip" [Hack #17] to accomplish the latter
task, as well as create onclick event handlers for the new checkboxes (as in this hack) to give them
some behavior.

Hack 19. Populate an Existing Checkbox Group from the
Server

Dynamically add widgets to an existing group of checkboxes.

This hack deals with another type of adaptive web form, where a group of widgets can change based
on the preferences of the user that accesses the web page. In "Submit Checkbox Values to the
Server Without a Round Trip" [Hack #17], the code submitted a clicked checkbox value right away to
a server program. This hack allows users to add new choices to the same bunch of checkboxes before
they choose among those widgets. The web page has a select list including the choices Team or
Individual. It shows two groups of checkboxes representing team sports and individual sports.
Choosing either Team or Individual from the first pop-up menu or select list expands the existing
checkboxes for the selected group by getting new content from a server. Choosing one value from
the second pop-up menu restores the original checkboxes for either the Team or Individual list.

Figure 2-14 shows the web page before the user makes a choice.

Figure 2-14. Expand the offerings

Figure 2-15 depicts the same page after the user chooses Team from the pop-up menu at the top of
the page, thus expanding the choices of team sports.

Figure 2-15. Team offerings expanded

How Does It Work?

We are assuming that the content for the new checkboxes must come from the server, because it
changes often and/or derives from the organization's database. Otherwise, an application like this
can just include a JavaScript array of new content and never touch the server program. When the
user makes a choice from the first pop-up menu or select list, this action sends the choice of Team
or Individual to a server program. The code uses the request object to connect with the server the

Ajax way.

The server replies with an array of titles for new checkboxes. Flipping the choices in the select list
launches an onclick event handler in the JavaScript code, which the upcoming code sample shows.

I won't take up space with the HTML code, because the page is almost exactly the same as the one in
"Submit Checkbox Values to the Server Without a Round Trip" [Hack #17]. The page uses a script
tag to import all its Ajax-related JavaScript in a file named hacks2_8.js. You can read through the
code comments right now to get a feel for what the code does.

Generally, a single-line JavaScript comment begins with // while a multiline
comment is bracketed by /* */. You can, of course, have lots of consecutive
//-style comments if you prefer to comment that way.

Here is the relevant JavaScript code:

var sportTyp = "";
var checksArray = null;
var request=null;

window.onload=function(){
 //the 'expanding checkboxes' select pop-up
 var sel = document.getElementById("expand");
 //bind onclick event handler to a function
 if(sel != null){
 sel.onclick=function(){
 getMoreChoices(this)};
 }
 //the 'restoring checkboxes' select pop-up
 var selr = document.getElementById("restore");
 //bind onclick event handler to the function
 if(selr != null){
 selr.onclick=function(){
 restore(this)};
 }
 //Place all existing checkbox elements in two arrays
 //for restoring the original checkbox lists
 checksArray = new Object();
 checksArray.team = new Array();
 checksArray.individual = new Array();
 var ckArr = document.getElementsByTagName("input");
 populateArray(ckArr,"team");
 populateArray(ckArr,"individual");
}

function populateArray(arr,typ) {
 var inc = 0;
 for(var i = 0; i < arr.length; i++){
 if(arr[i].type == "checkbox") {
 if(arr[i].name.indexOf(typ) != -1) {

 checksArray[typ][inc] = arr[i];
 inc++;
 }
 }
 }
}

//Return the number of input checkbox elements contained
//by a div element
function getCheckboxesLength(_sportTyp){
 var div = document.getElementById(_sportTyp+"_d");
 var len=0;
 for(var i =0; i < div.childNodes.length; i++){
 if(div.childNodes[i].nodeName == "INPUT" ||
 div.childNodes[i].nodeName == "input"){
 len++;
 }
 }
 return len;
}
/* Use the request object to fetch an array of
titles for new checkboxes.
The obj parameter represents a select element; get the
value of this element, then hit the server with this value
to request the new titles, but only if the
checkbox hasn't already been expanded */
function getMoreChoices(obj){
 if (obj == null) { return; }
 var url = "";
 var optsArray = obj.options;
 var val = "";
 for(var i=0; i < optsArray.length; i++){
 if(optsArray[i].selected) {
 val=optsArray[i].value; break;
 }
 }
 sportTyp=val;
 //determine whether the checkboxes have already been expanded
 if(checksArray[sportTyp].length < getCheckboxesLength(sportTyp)) {
 return;
 }
 url = "http://www.parkerriver.com/s/expand?expType="+val;
 httpRequest("GET",url,true);
}
/* Add new checkboxes to either of the original checkbox lists.
Only add the new checkboxes if the list hasn't been expanded yet.
Just return from this function and don't hit the network
if the list has already been expanded.
 Parameter:
 obj: An array of new titles, like ["Field Hockey","Rugby"] */
function addToChecks(obj){
 //div element that contains the checkboxes

 var div = document.getElementById(sportTyp+"_d");
 var el = null;
 //now add the new checkboxes derived from the server
 for(var h = 0; h < obj.length; h++){
 el = document.createElement("input");
 el.type="checkbox";
 el.name=sportTyp+"_sports";
 el.value=obj[h];
 div.appendChild(el);
 div.appendChild(document.createTextNode(obj[h]));
 div.appendChild(document.createElement("br"));
 }
}
//restore the original list of checkboxes, using
//the checksArray object containing the
//original checkboxes
function restore(_sel) {
 var val;
 var opts = _sel.options;
 for (var i = 0; i < opts.length; i++){
 if(opts[i].selected) { val=opts[i].value; break;}
 }
 //only restore if the checkboxes have
 //already been expanded
 if(checksArray[sportTyp].length < getCheckboxesLength(sportTyp)) {
 var _div = document.getElementById(val+"_d");
 if(_div != null) {
 //rebuild the list of original checkboxes
 _div.innerHTML="";
 var tmpArr = checksArray[val];
 for(var j = 0; j < tmpArr.length; j++){
 _div.appendChild(tmpArr[j]);
 _div.appendChild(document.createTextNode(tmpArr[j].value));
 _div.appendChild(document.createElement("br"));
 }
 }
 }
}
//event handler for XMLHttpRequest
function handleResponse(){
 try{
 if(request.readyState == 4){
 if(request.status == 200){
 var resp = request.responseText;
 if(resp != null){
 //return value is an array
 addToChecks(eval(resp));
 }
 } else {

/* Create and initialize a request object; not included.
See Hack #1 or #2. */

Most of the code is involved with capturing and restoring the checkboxes's original state, and the
comments contained in the latter code sample should make it clear what this code is accomplishing.
This code is included to prevent the same set of new checkboxes from being appended to the list
multiple times if the user chooses the same value repeatedly from the pop-up list.

The code checks whether the list has already been expanded, by comparing the number of
checkboxes in the cached array with number in the existing checkbox group. If the existing group has
more checkboxes than the original group, the list has already been expanded. If the user tries to
expand the list twice, the second click is ignored, thus sparing the network from a needless hit.

Ajax Requests

getMoreChoices() makes a server request using the request object to acquire titles for new
checkboxes. (See "Detect Browser Compatibility with the Request Object" [Hack #1] or "Submit Text
Field or textarea Values to the Server Without a Browser Refresh" [Hack #12] if you have not been
introduced to the request object.) The first select list's onclick event handler, which is set up when
the browser window first loads the web page (window.onload), launches this function, passing in a
reference to the select element.

The select element in our page can only have the values Team or Individual. The code appends the
value (Team or Individual) onto the end of the URL reflecting the server program. Finally, the
httpRequest() function sets up and launches the request:

function getMoreChoices(obj){
 if (obj == null) { return; }
 var url = "";
 var optsArray = obj.options;
 var val = "";
 for(var i=0; i < optsArray.length; i++){
 if(optsArray[i].selected) {
 val=optsArray[i].value; break;
 }
 }
 sportTyp=val;
 //determine whether the checkboxes have already been expanded
 if(checksArray[sportTyp].length < getCheckboxesLength(sportTyp)) {
 return;
 }
 url = "http://www.parkerriver.com/s/expand?expType="+val;
 httpRequest("GET",url,true);
}

Here Comes an Array

The server sends back the HTTP response as a string that can be converted to a JavaScript array:

if(request.readyState == 4){

 if(request.status == 200){
 var resp = request.responseText;
 if(resp != null){
 //return value is an array
 addToChecks(eval(resp));
 }
 } else {...}

The return value represented by the variable resp is a string, such as ["Field Hockey","Rugby"].
The code passes this string to the eval() global function, which returns a JavaScript array. The
addToChecks() function then creates new checkboxes from this array:

function addToChecks(obj){
 //div element that contains the checkboxes
 var div = document.getElementById(sportTyp+"_d");
 var el = null;
 //now add the new checkboxes derived from the server
 for(var h = 0; h < obj.length; h++){
 el = document.createElement("input");
 el.type="checkbox";
 el.name=sportTyp+"_sports";
 el.value=obj[h];
 div.appendChild(el);
 div.appendChild(document.createTextNode(obj[h]));
 div.appendChild(document.createElement("br"));
 }
}

This function uses the DOM API to create new input elements and add them to the end of the div
element containing the checkboxes. The user sees the checkbox list grow, but nothing else changes
on the page. Nifty!

You may want to take a look at the restore() function, which takes an
expanded checkbox list and restores it to its original content, without any
network hits.

Hack 20. Change Unordered Lists Using an HTTP
Response

Change static unordered lists based on content derived from a server.

One of the most common tags found on web pages is the unordered list (ul) tag, which browsers
usually render as a list of bullets accompanied by labels. This hack allows the web page user to
change an unordered list by adding items to it. The content for the items derives from a server
program. This hack is very similar to the previous one, in which the user was able to add items to
two lists of checkboxes. The main difference is that this hack deals with unordered lists, which are
designed to display information rather than to provide a selection widget (such as a list of
checkboxes).

Go ahead and skip this hack if you are not interested in playing with unordered
lists because the code is a revised version of the previous hack.

Figure 2-16 shows this hack's web page before the user chooses to expand either of two lists. The
lists involve team sports and individual sports. When the user chooses an expansion option from the
pop-up list at the top of the page, the indicated list grows by a few items without anything else on
the page changing. As in the last hack, each list can be restored to its original contents by choosing
the appropriate option from the second pop-up list. The speed with which the lists grow and shrink is
quite impressive, particularly considering that the "growth" content comes from a server.

Figure 2-16. Watch the list grow and shrink

Figure 2-17 shows the web page after the user has expanded the team sports category.

Figure 2-17. Expanding the menu of team sports

Here's the code for the web page:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/2000/REC-xhtml1-20000126/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <script type="text/javascript" src="js/http_request.js"></script>
 <script type="text/javascript" src="js/hacks2_9.js"></script>
 <title>View our sports offerings</title>
</head>
<body>

<h3>Expand Your Sports Categories</h3>
<h4>Expand Sport Choices</h4>
<form action="javascript:void%200">
 <div id="exp">
 Expand the choices for:
 <select name="_expand" id="expand">
 <option value="individual">Individual</option>
 <option value="team">Team</option>
 </select>
 </div>
</form>
<h4>Restore Original Sport Choices</h4>
<form action="javascript:void%200">
 <div id="rest">
 Restore the choices for:
 <select name="_restore" id="restore">
 <option value="individual">Individual</option>
 <option value="team">Team</option>
 </select>
 </div>
</form>
<h4>Team sport</h4>
 <ul id="team_u">
 Baseball
 Soccer
 Football
 Basketball
 Lacrosse
 Hockey
 Tennis

<h4>Individual sport</h4>
 <ul id="individual_u">
 Cycling
 Running
 Swimming
 Nordic Skiing
 Inline Skating
 Triathlon
 Track

</body>
</html>

The key to this code is giving the ul tags their own id values. The JavaScript code can then access
the tags, as shown in the following example:

var ul = document.getElementById(sportTyp+"_u");

The ul elements contain the list items; therefore, the code increases the number of items in each

list by appending child nodes or elements to the ul elements and restores the lists to their original
states by removing those child elements. Of course, in this hack, the content for the new list items
derives from a server. As a result, the code first must use the request object to fetch the new values.

The web page imports two JavaScript files, http_request.js and hacks2_9.js. The first file creates and
sets up the XMLHttpRequest object. (See "Use Your Own Library for XMLHttpRequest" [Hack #3] for a
description of a JavaScript file that manages the request object.) hacks2_9.js contains the code that
grows and restores the unordered lists:

var sportTyp = "";
var itemsArray = null;
//define Object for caching li items
//this is a workaround for IE 6, which
//doesn't save the li element's text node
//or label when you cache it
function CachedLiItem(liElement,liLabel){
 //an li element object
 this.liElement=liElement;
 //a string representing the li text node or label
 this.liLabel=liLabel;
}
window.onload=function(){
 var sel = document.getElementById("expand");
 //bind onclick event handler to a function
 if(sel != null){
 sel.onclick=function(){
 getMoreChoices(this)};
 }
 var selr = document.getElementById("restore");
 //bind onclick event handler to a function
 if(selr != null){
 selr.onclick=function(){
 restore(this)};
 }
 //place all existing bullet items in two arrays
 //for restoring later
 itemsArray = new Object();
 itemsArray.team = new Array();
 itemsArray.individual = new Array();
 var bulletArr = document.getElementsByTagName("li");
 populateArray(bulletArr,"team");
 populateArray(bulletArr,"individual");
}

//create Arrays of CachedLiItem objects for
//restoring the unordered lists later
function populateArray(arr,typ) {
 var inc = 0;
 var el = null;
 var liObj=null;
 for(var i = 0; i < arr.length; i++){
 el = arr[i].parentNode;

 if(el.id.indexOf(typ) != -1) {
 liObj=new CachedLiItem(arr[i],arr[i].childNodes[0].nodeValue);
 itemsArray[typ][inc] = liObj;
 inc++;
 }
 }
}
//return the number of li elements contained
//by a ul element
function getULoptionsLength(_sportTyp){
 var ul = document.getElementById(_sportTyp+"_u");
 var len=0;
 for(var i =0; i < ul.childNodes.length; i++){
 if(ul.childNodes[i].nodeName == "LI" ||
 ul.childNodes[i].nodeName == "li"){
 len++;
 }
 }
 return len;
}
function getMoreChoices(obj){
 if (obj == null) { return; }
 var url = "";
 var optsArray = obj.options;
 var val = "";
 for(var i=0; i < optsArray.length; i++){
 if(optsArray[i].selected) {
 val=optsArray[i].value; break;
 }
 }
 sportTyp=val;
 //determine whether the bullets have already been expanded
 if(itemsArray[sportTyp].length < getULoptionsLength(sportTyp)) {
 return;
 }
 url = "http://www.parkerriver.com/s/expand?expType="+val;
 httpRequest("GET",url,true,handleResponse);
}
function addToBullets(obj){
 //ul element that contains the bullet items
 var ul = document.getElementById(sportTyp+"_u");
 var el = null;
 //now add the new items derived from the server
 for(var h = 0; h < obj.length; h++){
 el = document.createElement("li");
 el.appendChild(document.createTextNode(obj[h]));
 ul.appendChild(el);
 }
}

function restore(_sel) {
 var val;

 var opts = _sel.options;

 for (var i = 0; i < opts.length; i++){
 if(opts[i].selected) { val=opts[i].value; break;}
 }
 sportTyp=val;
 //only restore the lists if the bullets have
 //already been expanded
 if(itemsArray[sportTyp].length < getULoptionsLength(sportTyp)) {
 var ul = document.getElementById(val+"_u");
 if(ul != null) {
 //rebuild the list of original bullets
 ul.innerHTML="";
 var tmpArr = itemsArray[val];
 var tmpLiElement = null;
 for(var j = 0; j < tmpArr.length; j++){
 tmpLiElement=tmpArr[j].liElement;
 //workaround for IE6
 if(tmpLiElement.hasChildNodes()){tmpLiElement.
 removeChild(tmpLiElement.firstChild);}
 tmpLiElement.appendChild(document.
 createTextNode(tmpArr[j].liLabel))
 ul.appendChild(tmpLiElement);
 }
 }
 }
}
//event handler for XMLHttpRequest
function handleResponse(){
 try{
 if(request.readyState == 4){
 if(request.status == 200){
 var resp = request.responseText;
 if(resp != null){
 //return value is an array
 addToBullets(eval(resp));
 }
 } else {
 //snipped for the sake of brevity
 }
 }//end outer if
 } catch (err) {
 alert("It does not appear that the server "+
 "is available for this application. Please"+
 " try again very soon. \\nError: "+err.message);

 }
}

The populateArray() and getMoreChoices() functions are almost exactly the same as in the
previous hack's code, so I won't take up space here explaining them in detail. The former function

caches the original unordered list in an array, so that it can be restored later. getMoreChoices() hits
the server for more sport types using the request object, but only if the unordered list has not yet
been expanded.

Next, the code gets the server's return value so that the code can grow either the team sport list or
the individual sport list:

var resp = request.responseText;
if(resp != null){
 //return value is an array
 addToBullets(eval(resp));
}

The return value is a string in array syntax, as in ["Field Hockey","Rugby"]. The code uses the
eval() global function to convert the string to a JavaScript array. It then passes this array to
addToBullets():

function addToBullets(obj){
 //ul element that contains the bullet items
 var ul = document.getElementById(sportTyp+"_u");
 var el = null;
 //now add the new items derived from the server
 for(var h = 0; h < obj.length; h++){
 el = document.createElement("li");
 el.appendChild(document.createTextNode(obj[h]));
 ul.appendChild(el);
 }
}

This function initiates some DOM programming to create new list items and append them as
children of a ul tag. The existing ul tag has an id like team_u. The code uses
document.getElementById(sportTyp+"_u") to get a reference to the ul tag, then appends a new li
element to the ul for each value in the array.

restore() comes into play if the user wants to restore the original lists:

//only restore the lists if the bullets have
//already been expanded
 if(itemsArray[sportTyp].length < getULoptionsLength(sportTyp)) {
 var ul = document.getElementById(val+"_u");
 if(ul != null) {
 //rebuild the list of original bullets
 ul.innerHTML="";
 var tmpArr = itemsArray[val];
 var tmpLiElement = null;
 for(var j = 0; j < tmpArr.length; j++){
 tmpLiElement=tmpArr[j].liElement;
 //workaround for IE6
 if(tmpLiElement.hasChildNodes()){tmpLiElement.
 removeChild(tmpLiElement.firstChild);}

 tmpLiElement.appendChild(document.
 createTextNode(tmpArr[j].liLabel))
 ul.appendChild(tmpLiElement);
 }

This code uses a cache of original list items to rebuild the restored unordered list. When the web page
loads, the code uses a simple JavaScript object to represent each li element:

function CachedLiItem(liElement,liLabel){
 //an li element object
 this.liElement=liElement;
 //a string representing the li text node or label
 this.liLabel=liLabel;
}

The object has two properties: the li element itself, and the string that specifies its label (the text
that you see next to the bullet). When you cache an li element in an array, for instance, Internet
Explorer 6 will not save the li element's internal text node, so we use this workaround object. The
code empties the ul element first by setting its innerHTML property to the empty string. Then the
code uses appendChild() from the DOM API to embed the original list items within this ul parent
element.

Parting Shots

Your application never has to hit the network if it has a well-defined list of items that can just be
hard-coded into the client-side JavaScript as arrays. But if the task calls for expanding web lists from
server databases, and this persistent information changes often, this hack's approach can come
through for the developers.

Hack 21. Submit Hidden Tag Values to a Server
Component

Send the values of hidden form fields to the server whenever you want.

The use of hidden form fields to connect one request from the same user to another may be less
compelling these days, as newer approaches (such as cookies and sessions) have evolved. However,
your application might have other reasons for using an <input type="hidden"> element.

A hidden field contains a value that users do not see, unless they peek at the
page's source code. It can be used to send the server some extra identifying
information along with the rest of the form input.

Unless the server specifies with various HTTP response headers that a web page shouldn't be cached,
the browser will cache, or keep a local copy of, each page a user requests. The purpose of this
caching strategy is to improve performance and prevent unnecessary network requests for the same
page if it hasn't changed. But what if you want to track the number of times a user opens up a page,
even if the page derives from that user's client-side cache. This hack sends a server component the
value of a hidden input field whenever the page is loaded into a browser, letting it know when the
page is loaded from the cache as well as when it is downloaded from the server.

You could use such a strategy for web user testing within an application.
However, you would probably bombard a network with many wasteful requests
if you included this feature in a production application. In addition, any kind of
automated submission of this nature could raise privacy issues with web users
or violate online privacy policies. This type of web-application behavior should
be checked against user expectations and site policies before it is ever used in
a production site.

Dynamo

The HTML for the web page in this hack is minimal, but it includes a hefty hidden value tucked inside
of it. The value of the hidden field is dynamically generated when the browser loads the page. Here's
the code:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/2000/REC-xhtml1-20000126/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>
 <script type="text/javascript" src="js/http_request.js"></script>
 <script type="text/javascript" src="js/hacks2_11.js"></script>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <title>hidden hacks</title>
</head>
<body>
<h3>Delving into some navigator properties</h3>
<div id="content">
These include: navigator.appName, navigator.platform,
navigator.language, and navigator.userAgent.
</div>
<form action="javascript:void%200">
 <script type="text/javascript" src="js/innerInput.js"></script>
</form>
</body>
</html>

When the page is loaded into the browser, the JavaScript file innerInput.js dynamically creates a
hidden input tag and populates that tag with useful information, such as the name of the page, when
it was accessed, the computing platform of the user, the default language for the browser, as well as
the User Agent string associated with the user's browser. Code can access most of these properties
via the navigator client-side object in JavaScript. For example, accessing navigator.platform returns
MacPPC for my computer; navigator.userAgent provides the content of the User Agent request
header from my browser.

Now the hidden tag has a lot of meaningful information for its value attribute. inner_input.js
contains:

var delim = ":::";
document.write(
 "<input type=\\"hidden\\" id=\\"hid\\" name=\\"data\\" value=\\""+
 location.pathname+delim+new Date()+
 delim+navigator.appName+delim+navigator.platform+
 delim+navigator.language+delim+navigator.userAgent+"\\" />");

The document.write() method can dynamically write part of the page as the browser loads the
HTML. The code creates a hidden tag with the id hid. The user does not see the value of this tag, but
the value is available to JavaScript code. The values of the various properties (navigator.userAgent,
etc.) are separated by the characters :::. For example:

/ajaxhacks/ajax_hack2_11.html:::
Thu Oct 27 2005 10:37:15 GMT-0400:::
Netscape:::MacPPC:::en:::Mozilla/5.0 (Macintosh; U;
PPC Mac OS X; en) AppleWebKit/412.6
(KHTML, like Gecko) Safari/412.2

Notifying Home

Now we want to send this information to a server, so it can be logged. For this task, the application
requires more JavaScript. The page imports (with script tags) two more JavaScript files.
http_request.js (see "Use Your Own Library for XMLHttpRequest" [Hack #3]) sets up the request
object to talk with the server. hacks2_11.js contains the code that accesses the input tag's value and
sets up a request to POST it to the server as soon as the browser loads the page:

window.onload=function(){
 var hid = document.getElementById("hid");
 var val = "navprops="+encodeURIComponent(hid.value);
 url = "http://www.parkerriver.com/s/hid";
 httpRequest("POST",url,true, handleResponse,val);
}
//event handler for XMLHttpRequest
function handleResponse(){
 try{
 if(request.readyState == 4){
 if(request.status == 200){
 //commented out now: alert(
 //"Request went through okay...");
 } else {
 //request.status is 503
 //if the application isn't available;
 //500 if the application has a bug
 alert(
 "A problem occurred with communicating between"+
 " the XMLHttpRequest object and "+
 "the server program.");
 }
 }//end outer if
 } catch (err) {
 alert("It does not appear that the server "+
 "is available for this application. Please"+
 " try again very soon. \\nError: "+err.message);

 }
}

The code gets the value of the input element and encodes the value's characters so that they can be
properly transferred over the network. The code then sends a POST request because of the volume of
this server message.

A GET request appends the parameters to the end of the URL, whereas a POST
request sends the parameter data as a block of characters following the
request headers.

The httpRequest() function is a wrapper around the code that sets up an XMLHttpRequest object and
sends the message.

The httpRequest() function does a browser compatibility check [Hack #1]. This function also checks

for any data that is designed to be posted. This data will appear as the fifth parameter to the
function.

JavaScript allows code to define a function, and client code may then pass
variable arguments to the function. These parameters can be accessed within
the defined function as part of an arguments array, which every JavaScript
function has built in. Therefore, arguments[4] represents the fifth parameter
passed into a function (the array is zero-based).

http_request.js uses the request object's setRequestHeader() function to convey to the server
component the content type of the sent data:

request.setRequestHeader("Content-Type",
 "application/x-www-form-urlencoded; charset=UTF-8");

The HTTP POST request will not succeed with Firefox, for instance, unless you include this request
header (see "Use the Request Object to POST Data to the Server" [Hack #2] for details).

Logging

The server component can log the posted data, or do whatever the application calls for. Here is an
example log entry after a couple of requests with Firefox and Safari (with some of the logged text
removed and/or edited for readability):

/ajaxhacks/ajax_hack2_11.html:::
Thu Oct 27 2005 10:37:15 GMT-0400:::
Netscape:::MacPPC:::en:::
Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en) AppleWebKit/412.6
(KHTML, like Gecko) Safari/412.2

/ajaxhacks/ajax_hack2_11.html:::
Thu Oct 27 2005 10:49:24 GMT-0400 (EDT):::
Netscape:::MacPPC:::en-US:::Mozilla/5.0 (Macintosh; U;
PPC Mac OS X Mach-O; en-US; rv:1.7.12)
Gecko/20050915 Firefox/1.0.7

You can see that the name of the file is included, followed by the date and time when it was
requested, then some browser-specific data such as the default locale (en-US, or U.S. English) and
the value of the User Agent request header.

In JavaScript, the User Agent header data is accessed from the
navigator.userAgent property.

Chapter 3. Validation
Hacks 2227

Validating the data that users provide in web forms is an important step in exchanging information
with them. Web applications should not hit the network with blank form information or fields that
contain nonnumeric characters where numbers (such as a credit card number or ZIP Code) are
required. To prevent this, JavaScript provides an option to implement client-side validation: a form
can self-check before the code connects with the server and submits the data. The client represents
the first layer of validation an application can implement. A second layer of validation on the server is
critically important, for example, when the data involves financial or other private information, or if
JavaScript is disabled in the user's browser. Server-side validation is required to ensure that the
application handles valid data. The following hacks demonstrate validation techniques for blank text
controls, email addresses, credit card numbers, and U.S. ZIP Codes.

Hack 22. Validate a Text Field or textarea for Blank Fields

Spare the network an unnecessary hit if the user leaves any required form fields blank.

No web developers want their Ajax applications to hit the network with requests if the users leave
necessary text fields blank. Thus, checking that input elements of type text and the large boxes
called textareas in HTML contain values is one of the most common forms of validation.

This hack shows the code for checking if a text control is blank. The inline way of doing this is by
assigning a check for the field's value in the text field's event handler:

<input type="text" name="firstname" id="tfield" onblur=
"if (this.value) {doSomething();}" />

or in the textarea's event handler:

<textarea name="tarea" rows="20" id="question" cols="20" onblur=
"if (this.value) {doSomething();}">

The JavaScript phrase if (this.value) {...} returns false if the user leaves a field blank, so the
function call doSomething() will never occur. JavaScript evaluates a blank web-form text field as the
empty string or "", which evaluates to false when it's used in the context of a programming test.
The this keyword is a nice generic way of referring to the form field that contains the event handler
attribute. For example, onblur. this.value returns the text field's value, which in our case is the
empty string.

onblur captures the event involving the transfer of keyboard focus away from a
form field. For example, users trigger onblur event handlers when they type in
a text field and then click in another form field or press the Tab key.

If you use the onchange event handler, the browser calls the onchange-related
function only if the field's value changes. In other words, the change event will
not capture an instance if the user leaves the text field blank.

Separating the Logic from the View

Probably a better way of going about your event-handling tasks is to separate the logic of your code
from the HTML or template text that comprises the application's visual aspects. The JavaScript goes
into an external file that the HTML page imports with a script tag. Inside the external file, the code

binds a field's various event handlers to a function or the code that represents your application's
behavior.

Let's take the following web page, myapp.html, which includes the following HTML in its header:

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <script type="text/javascript" src="js/hacks_method.js"></script>
 <title>Cool Ajax application</title>
</head>

The file hacks_method.js is located in a directory js, which is in the same directory as the HTML file.
The HTML file contains the same textarea and text field as mentioned earlier, except these fields no
longer have an onblur attribute. The JavaScript file includes this code:

window.onload=function(){
 var txtA = document.getElementById("tarea");
 if(txtA != null){
 txtA.onblur=function(){
 if (this.value) { doSomething();}
 };
 }
 var tfd = document.getElementById("tfield");
 /* An alternative:
 if(tfd != null && txtA != null){tfd.onblur = txtA.onblur; }
 */
 if(tfd != null){
 tfd.onblur=function(){
 if (this.value) { doSomething();}
 };
 }
}

window.onload involves the binding of the load event to your blank-field checks. load occurs when
the browser has completed loading the web page, so when that happens, all the stuff after
window.onload= follows.

The getElementById() method returns a reference to an HTML element, such as the textarea
reference stored in txtA. The code then binds the textarea's onblur event handler to a function,
which checks for blank field values before it calls doSomething(). The code initiates the same
behavior for the text field referred to by the variable tfd.

If the web designers leave out the text fields with the id tarea or tfield,
nothing will happen because the getElementById() method returns null, and
the code includes a check for that occurrence.

Another way to bind an event handler to a function is to declare the function somewhere and then

use the function name:

window.onload=function(){
 var txtA = document.getElementById("tarea");
 txtA.onblur=doSomething;//no parens...
}
function doSomething(){ //... }

When the code binds an event handler to a previously defined function, leave
the parentheses off the function name.

Programmers often consider placing the definition of the blank-field checks and other coding stuff in
an external file to be a better way of organizing any but the most trivial web applications.

Hack 23. Validate Email Syntax

Check email syntax on the client side before the server component takes over.

Many web sites ask their users to register their email addresses as usernames. This hack makes sure
the syntax of the entered email address is valid, before the server component finds out whether the
email address has already been used as a user identifier. "Validate Unique Usernames" [Hack #24]
takes care of the second step of this task.

The server component that receives the email address should always
implement its own validation step, in order to deal with, for example, the
disabling of JavaScript in the user's browser or a direct connection with the
server by a hacker.

The Longest Wait

When registering with a web site, users typically type in an email address, make up a password, click
Submit, and then often experience a long wait staring at the browser as the page is slowly
reconstructed (if they're lucky). To add insult to injury, even though email addresses are supposed to
be unique, sometimes the address is rejectedpeople often try to register at a site more than once
with the same email address (guilty as charged!), forgetting that they've already visited. Therefore,
the application often has to check both the email syntax and whether the identifier is already being
used.

Ajax techniques can validate the email address on the client side and initiate a trip to the server
behind the scenes to find out whether it is already in use, without disrupting the current view of the
page. "Validate Unique Usernames" [Hack #24] ensures the uniqueness of the username. Both hacks
share the same code base, a mix of JavaScript and other Ajax techniques.

Checking Out the Email Syntax

Web sites often use email addresses as usernames because they are guaranteed to be unique, as
long as they are valid. In addition, the organizations can use the email addresses to communicate
with their users later. You do not have to initiate a server round trip just to validate an email
address, however. This task can be initiated in the client, which cancels the submission of the
username to the server if the email syntax is invalid.

What criteria can you use for validation? A fairly dry technical document, RFC 2822 is a commonly
accepted guideline from 2001 that organizations can use to validate email addresses. Let's look at an

example email address to briefly summarize the typical syntax: hackreader@oreilly.com. Here,
hackreader is the local part of the address, which typically identifies the user. This is followed by the
commercial at sign (@), which precedes the Internet domain. Internet domains are those often well-
known addresses of computer locations that handle in-transit emails; google.com and yahoo.com
come to mind.

All of this is common knowledge. However, you may not know that RFC 2822 specifies that the local
part cannot contain spaces (unless it's quoted, which is rare, as in "bruce perry"@gmail.com). The
local part also cannot contain various special characters, such as the following: () < > , ' @ : ; \\ [].
Maybe if someone tries to create an email address that looks like <(([[))>@yoursite.com you should
reject it outright, rather than give points for originality!

The local part can and often does contain period characters, as in bruce.perry@google.com, but the
periods have to be preceded and followed by alphanumeric characters (i.e., you cannot use an email
address such as bruce.@google.com). The domain can contain more than one period, as in
bruce@lists.myorg.net, but it cannot begin or end with a period (as in bruce@.lists.myorg.net).
Finally, the guidelines permit but discourage a domain literal, as in bruce@[192.168.0.1]. These are
the criteria you can check for in your validation code.

Looking at the Code

First, take a look at the page that imports the JavaScript code:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/2000/REC-xhtml1-20000126/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<script type="text/javascript" src="js/http_request.js"></script>
<script type="text/javascript" src="js/email.js"></script>
<meta http-equiv="content-type" content="text/html; charset=utf-8">
<title>Enter email</title>
</head>
<body>
<form action="javascript:void%200">
<div id="message"></div>
Enter email: <input type="text" name="email" size="25">

<button type="submit" name="submit" value="Send">Send</button>
</form>
</body>
</html>

Figure 3-1 shows a simple web page with a text field for entering an email address and a Send
button.

Figure 3-1. Enter your email address, please

The user types an email address into the text field and then clicks the Send button. This action does
not send the email address to a server component yet, though. First, the code has to validate the
syntax. The HTML code for the page imports two JavaScript files with the script tag. email.js is
responsible for a thorough email-syntax check. http_request.js sends the email address to a server
component as a username, but you can find this bit of Ajax in "Validate Unique Usernames" [Hack
#24].

Figure 3-2 shows what the browser window looks like if the user types in an invalid email address.
The page dynamically prints out a red message summarizing what appears to be wrong with the
entered email address.

If, on the other hand, the email address is okay, the application sends it to a server component to
determine if the address has already been used as a username. Here is the code from email.js:

var user,domain, regex, _match;

window.onload=function(){
 document.forms[0].onsubmit=function() {
 checkAddress(this.email.value);
 return false;
 };
};
/* Define an Email constructor */
function Email(e){
 this.emailAddr=e;
 this.message="";
 this.valid=false;
}

function validate(){
 //do a basic check for null, zero-length string, ".", "@",
 //and the absence of spaces
 if (this.emailAddr == null || this.emailAddr.length == 0 ||
 this.emailAddr.indexOf(".") == -1 ||
 this.emailAddr.indexOf("@") == -1 ||
 this.emailAddr.indexOf(" ") != -1){
 this.message="Make sure the email address does " +
 "not contain any spaces "+
 "and is otherwise valid (e.g., contains the \\"commercial at\\" @ sign).";
 this.valid=false;

 return;
 }

 /* The local part cannot begin or end with a "."
 Regular expression specifies: the group of characters before the @
 symbol must be made up of at least two word characters, followed by zero
 or one period char, followed by at least 2 word characters. */
 regex=/(^\\w{2,}\\.?\\w{2,})@/;
 _match = regex.exec(this.emailAddr);

 if (_match){
 user=RegExp.$1;
 //alert("user: "+user);
 } else {
 this.message="Make sure the user name is more than two characters, "+
 "does not begin or end with a period (.), or is not otherwise "+
 "invalid!";
 this.valid=false;
 return;
 }
 //get the domain after the @ char
 //first take care of domain literals like @[19.25.0.1], however rare
 regex=/@(\\[\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}.\\d{1,3}\\])$/;
 _match = regex.exec(this.emailAddr);

 if(_match){
 domain=RegExp.$1;
 this.valid=true;
 } else {
/* The @ character followed by at least two chars that are not a period (.),
followed by a period, followed by zero or one instances of two or more
characters ending with a period, followed by two-three chars that are
not periods */
 regex=/@(\\w{2,}\\.(\\w{2,}\\.)?[a-zA-Z]{2,3})$/;
 _match = regex.exec(this.emailAddr);
 if(_match){
 domain=RegExp.$1;
 //alert("domain: "+domain);
 } else {
 this.message="The domain portion of the email had less than 2
 chars "+
 "or was otherwise invalid!";
 this.valid=false;
 return;
 }
 }//end domain check
 this.valid=true;

}

//make validate() an instance method of the Email object
Email.prototype.validate=validate;

function eMsg(msg,sColor){
 var div = document.getElementById("message");
 div.style.color=sColor;
 div.style.fontSize="0.9em";
 //remove old messages
 if(div.hasChildNodes()){
 div.removeChild(div.firstChild);
 }
 div.appendChild(document.createTextNode(msg));

}
//a pull-it-all-together function
function checkAddress(val){
 var eml = new Email(val);
 var url;
 eml.validate();
 if (! eml.valid) {eMsg(eml.message,"red")};
 if(eml.valid)
 {
 //www.parkerriver.com
 url="http://www.parkerriver.com/s/checker?email="+
 encodeURIComponent(val);
 httpRequest("GET",url,true,handleResponse);
 }
}
//event handler for XMLHttpRequest
//see Hack #24
function handleResponse(){
 //snipped...
}

First, the code sets up the handling for the user's click on the Send button. window.onload specifies
an event handler that is called when the browser completes the loading of the web page:

window.onload=function(){
 document.forms[0].onsubmit=function() {
 checkAddress(this.email.value);
 return false;
 };
};

The reason the code uses window.onload is that for the code to control form-related behavior, the
form tag has to be able to be referenced from JavaScriptthat is, fully loaded into the browser.

Event handlers are designed to assign functions or blocks of code that specify
the application's behavior (i.e., "Take this action when this happens in the
browser."). For example, the onsubmit event handler indicates which function
should be called when the user submits the form.

The previous code also sets up the form element's onsubmit event handler, a function that calls
checkAddress(). The onsubmit event handler intercepts the form submission because you want to
validate what the user entered into the text field before the application does anything else.
checkAddress() takes as a parameter the address that the user typed (if anything).

Checking Email at the Door

Let's take a closer look at the checkAddress() function:

function checkAddress(val){
 var eml = new Email(val);
 var url;
 eml.validate();
 if (! eml.valid) {eMsg(eml.message,"red")};
 if(eml.valid)
 {
 url="http://www.parkerriver.com/s/checker?email="+
 encodeURIComponent(val);
 httpRequest("GET",url,true,handleResponse);
 }
}

This function creates a new Email object, validates the user's email address, and, if it's valid, submits
it to a server component. You may be wondering, what the heck is an Email object? An Email object
is a code template you can use over and over again every time you want to check the syntax of an
email address. In fact, if you write a lot of JavaScript that handles email addresses, you'd likely break
this code off into its own file (say, emailObject.js) so that it isn't tangled up with hundreds of lines of
additional complex code in future applications. Here is the Email object definition:

/* Define an Email constructor */
function Email(e){
 this.emailAddr=e;
 this.message="";
 this.valid=false;
}

An Email object is constructed using a JavaScript function definition that takes the email address as
the one function parameter, stored here as e.

This is a special kind of function that is called a constructor in object-oriented
parlance, because it is used to construct an object.

An Email object has three properties: an email address (emailAddr), a message, and a boolean or

true/false property named valid. When you use the new keyword in JavaScript to create a new Email
object, as follows, the emailAddr property is set to the passed-in email address (stored in e):

var email = new Email("brucew@yahoo.com");

The message is initialized to the empty string because new Email objects do not have any special
messages associated with them. The validity of the email address, somewhat pessimistically, is
initialized as false. The this keyword refers to the instance of Email that the browser creates in
memory when the code generates a new Email object. To look at this in a different way, a bicycle
company might create a mold for new bicycle helmets. Conceptually, the mold is like our Email
constructor. When the company makes new helmets, these helmets are instances of the mold or
template that was developed for them.

On to Validation

An Email object validates the email address it is passed, which in our application takes place when
the user clicks the Send button. The checkAddress() function contains code such as eml.validate()
and if(eml.valid), indicating that our application validates individual email addresses and checks
their valid properties. This happens because the code defines a validate() function and then
signals that the Email object owns or is linked with that function.

Using code such as Email.prototype.validate=validate; is a special way in
JavaScript to specify that you've defined this function, validate(), and that
every new Email object has its own validate() method. Using object-oriented
techniques is not mandated, but it makes the code a little more tidy, concise,
readable, and potentially reusable.

Now let's examine the validation code, which contains a few regular expressions for checking email
syntax. The code, included in the prior code sample for email.js, is fairly complex, but the embedded
comments are designed to help you along the way in figuring out what the code accomplishes. In
order, here are the rules for our validation logic (partly based on RFC 2822 and partly on our own
criteria for proper email syntax):

If the email address is the empty string, if the emailAddr property value is null, or if the email
address does not contain an @ character or any periods at all, it is rejected. No surprises there.

1.

The code then uses a regular expression to grab the local part of the email, which is the
username, or the chunk of characters preceding the @. This regular expression checks for at
least two "word characters" (the \\w predefined character class; i.e., [azAZ_09]), followed by
zero or one period characters, followed by at least two word characters.

2.

The code then grabs all characters after the @ and checks whether the character string
represents either a domain literal (however rare that is) or a typical domain syntax. The rule for
the latter syntax is expressed as "the @ character followed by at least two word characters,
followed by a period, followed by zero or one instances of at least two characters ending with a
period, followed by two to three characters that fall into the character class [azAZ]."

3.

JavaScript's built-in RegExp object's exec() method returns an array if it finds a match, or null
otherwise. The RegExp.$1 part contains the first group of parenthesized matched characters after
exec() is calledin this case, the local part/username before the @ character.

You can try different email addresses with the validation code and look at the returned values for
debugging purposes.

The User Message

If users include illegal characters, type in otherwise invalid addresses, or leave the text field blank,
they are greeted with a message like the one shown in Figure 3-2.

Figure 3-2. Communicating with the user

The following code inside validate() creates another such message if the email address does not
include a domain (the part after the @) that matches the regular expression:

/* The @ character followed by at least two chars that are not a period (.),
followed by a period, followed by zero or one instances of at least two
characters ending with a period, followed by two-three chars that are
not periods */
regex=/@(\\w{2,}\\.(\\w{2,}\\.)?[a-zA-Z]{2,3})$/;
_match = regex.exec(this.emailAddr);
if(_match){
 domain=RegExp.$1;
} else {
 this.message="The domain portion of the email had less than 2 chars "+
 "or was otherwise invalid!";
 this.valid=false;
 return;
}

Notice that the code also sets the Email object's valid property to false. checkAddress() then
checks the valid property before the email address heads off to the server (we'll look at that part in
"Validate Email Syntax" [Hack #23]):

//inside checkAddress()...
eml.validate();
if (! eml.valid) {eMsg(eml.message,"red")};
if(eml.valid)
{
 url="http://www.parkerriver.com/s/checker?email="+
 encodeURIComponent(val);
 httpRequest("GET",url,true,handleResponse);
}

The eMsg() function generates the message. eMsg() uses a little DOM, a little dynamic CSS
programming, and some JavaScript:

function eMsg(msg,sColor){
 var div = document.getElementById("message");
 div.style.color=sColor;
 div.style.fontSize="0.9em";
 //remove old messages
 if(div.hasChildNodes()){
 div.removeChild(div.firstChild);
 }
 div.appendChild(document.createTextNode(msg));

}

The parameters to this function are the text message and the color of the text. The application uses
red for error messages and blue for notifications about usernames (this is discussed in the next
hack). The code dynamically generates the message inside a div that the HTML reserves for that
purpose:

var div = document.getElementById("message");

On Deck

As the user attempts to enter an email address with valid syntax, the page itself doesn't change; only
the message shows different content. During the syntax validation step, the application responds
rapidly because the work is done on the client side, and the server component does not participate
(although a server role does come into play when the email address is valid).

Although we have not gone into very much detail about what's happening on the server end, the
server component keeps a database of unique usernames for its web application. Once this hack
gives the green light on the syntax, the application sends the email address to the server, which
checks to see whether that address is already in its database. "Validate Email Syntax" [Hack #23]

dives into this related functionality.

Hack 24. Validate Unique Usernames

Ensure that an email address used as a username is unique but do not submit anything
else on the page.

The email-address validation performed in "Validate Email Syntax" [Hack #23] allows you to safely
send the email address off to the server-side program, where it will be checked against an existing
database to see if it has already been used. This hack does that checking.

Figure 3-2 in "Validate Email Syntax" [Hack #23] shows what the web page looks like when the user
types an entry that breaks our validity check. If the user enters an address with valid syntax, that
address is sent to the server component. Depending on whether it passes the server-side check, the
user then sees a message conveying either that the specified username has already been taken or
that they have provided a unique email address, and it has been saved (Figure 3-3). "But all email
addresses are unique," you might declare. That's true, but web users often try to register more than
once at the same sitewho remembers all the tedious details about registering at the countless web
sites we typically use? If you try to register twice with the same email address, the application
responds that your username is already taken.

Figure 3-3. Unique name passes muster

If the email address is just one element on a lengthy registration form, a non-Ajax web application
will submit all the form values at once when a user registers, and often painstakingly reconstruct the
page just to instruct the user to try again. This hack submits only the email address and does not
evaluate or refresh other page elements.

How It Works

Here is the HTML code, which "Validate a Text Field or textarea for Blank Fields" [Hack #22] also
uses:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/2000/REC-xhtml1-20000126/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<script type="text/javascript" src="js/http_request.js"></script>
<script type="text/javascript" src="js/email.js"></script>
<meta http-equiv="content-type" content="text/html; charset=utf-8">
<title>Enter email</title>
</head>
<body>
<form action="javascript:void%200">
<div id="message"></div>
Enter email: <input type="text" name="email" size="25">

<button type="submit" name="submit" value="Send">Send</button>
</form>
</body>
</html>

The JavaScript in email.js sends the validated email address to the server, which checks an existing
database of usernames and responds with a "1" if the address is already in use (details on email
validation were provided in "Validate Email Syntax" [Hack #23]). The simple XML response output
looks like <is_used>1</is_used>. Here is the code from the checkAddress() function, contained in
http_request.js, that sends the validated email address:

if(eml.valid)
{
 url="http://www.parkerriver.com/s/checker?email="+
 encodeURIComponent(val);
 httpRequest("GET",url,true,handleResponse);
}

The code uses XMLHttpRequest to send the email address to the server component. The httpRequest(
) function wraps the creation and initialization of the request object. httpRequest() takes as
parameters:

The type of request, as in GET or POST

The URL or server web address

A Boolean indicating whether the request is asynchronous or not

The name of a function or a function literal that handles the server response

The Server Handshake

The server then returns some XML indicating whether it has found the username or not. Here's the
code for handleResponse(), which appears in email.js:

//event handler for XMLHttpRequest
function handleResponse(){
 var usedTag, answer,xmlReturnVal;
 if(request.readyState == 4){
 if(request.status == 200){
 //implement Document object in DOM
 xmlReturnVal = request.responseXML;
 usedTag = xmlReturnVal.getElementsByTagName("is_used")[0];
 //the data will be 0 or 1
 answer= usedTag.childNodes[0].data;
 if(answer==true){
 eMsg("This user name is not available. Kindly try again.",
 "red"); }
 else { eMsg("Your new user name has been saved.","blue"); }
 } else {
 alert("A problem occurred with communicating between the "+
 "XMLHttpRequest object and the server program.");
 }
 }//end outer if
}

handleResponse() gets the XML by accessing the responseXML property of XMLHttpRequest. The code
calls the DOM Document method getEle-mentsByTagName(), which returns a nodeList (just like an
array) of nodes that have the specified tag name. The tag name is is_used, as in
<is_used>0</is_used>. Since the return value is an array structure, the code gets the first and only
array member using [0]:

xmlReturnVal.getElementsByTagName("is_used")[0];

The code then accesses the text contained by the is_used tag and generates a user message.
"Validate Email Syntax" [Hack #23] shows the eMsg() code.

For Those Server Hackers...

The code for the server-side component, which is a Java servlet that mimics a database, is shown
below. It uses a Map type, a kind of Hashtable object, to contain the stored usernames; however, a
full-fledged production application would use middleware to connect with a database and check on
usernames.

A production application would also use a server component to implement a
second layer of email validation, before it interacted with any stored email
addresses. The server would also implement security measures to prevent any
tampering with or mining of the email database.

Here is the server-side code:

public class EmailChecker extends HttpServlet{
 //pretend this is the database!
 private static List USERS;
 static{
 USERS=Collections.synchronizedList(new ArrayList());
 USERS.add("bruceperry@gmail.com");
 USERS.add("johnjsmith@gmail.com");
 USERS.add("teddyroosevelt@gmail.com");
 USERS.add("janejsmith@gmail.com");

 }
 protected void doGet(HttpServletRequest httpServletRequest,
 HttpServletResponse httpServletResponse) throws
 ServletException, IOException {
 String email=null;
 email = httpServletRequest.getParameter("email");
 //we make this an int, because JavaScript converts
 //a valid String such as "false" to true
 int bool = 0;
 if(email != null){

 if(USERS.contains(email)){
 bool=1;
 } else {
 USERS.add(email); }
 } else {
 //throw ServletException signaling a null or
 //absent parameter
 }
 sendXML(httpServletResponse,bool);

 }

 protected void doPost(HttpServletRequest httpServletRequest,
 HttpServletResponse httpServletResponse) throws
 ServletException, IOException {
 doGet(httpServletRequest, httpServletResponse);
 }

 private void sendXML(HttpServletResponse response,
 int emailUsed) throws IOException {
 response.setContentType("text/xml; charset=UTF-8");
 String content = "<?xml version=\\"1.0\\" encoding=\\"UTF-8\\"?>"+

 "<is_used>"+emailUsed+"</is_used>";
 response.getWriter().write(content);
 }
}

The server component can also check the email address's validity, as mentioned in the Note above
the code, using another component designed for this purpose.

Hack 25. Validate Credit Card Numbers

Validate credit card numbers without submitting and refreshing the entire web page.

Entering a credit card number on a web page has become commonplace. This hack verifies the
entered credit card number, then submits it to the server component only if the number is valid.
Nothing else changes on the page except for a user message, which notifies the user of any error
conditions or that the credit card has passed muster and has been sent to the server to be
processed. (Although we won't discuss them here, as in "Validate Email Syntax" [Hack #23], the
server component then implements its own credit card validation routines.)

The server connection will likely be initiated over Secure Sockets Layer (SSL), such as with the
HTTPS protocol, and be involved with an e-commerce component that further verifies the purchase
information with a merchant bank. This hack, however, just verifies the number, generates a
message, and makes an HTTP request using Ajax techniques.

Figure 3-4 shows what the web page looks like.

Figure 3-4. Enter a credit card number for verification

This is the web page code. It imports two JavaScript files, http_request.js and cc.js:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/2000/REC-xhtml1-20000126/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <script type="text/javascript" src="js/http_request.js"></script>
 <script type="text/javascript" src="js/cc.js"></script>
 <meta http-equiv="content-type" content="text/html; charset=iso-8859-1" />
 <title>Enter credit card number</title>
</head>
<body>
<h3>Please enter your payment information</h3>
<div id="message"></div>
<p>
 [Name and billing address appear here]
</p>
<p>
 Credit card type:
</p>
<form action="javascript:void%200">
 <p>
 <select name="cctype">
 <option value="Choose one...">Choose one...</option>
 <option value="Mastercard">Mastercard</option>
 <option value="Visa">Visa</option>

 <option value="American Express">American Express</option>
 <option value="Discover">Discover</option>
 </select>
 </p>
 <p>
 Credit card number (#### #### #### #### or no spaces):
 <input type="text" name="cc" size="16" maxlength="19" />
 </p>
 <p>Expiration date:
 <select name="exp_month">
 <option>January</option>
 <option>February</option>
 <option>March</option>
 <!etc...-->
 </select>
 <select name="exp_year">
 <option>2005</option>
 <option>2006</option>
 <option>2007</option>
 <!etc...-->
 </select>
 </p>
 <p>
 Card Security code:
 <input type="text" name="scode" size="4" maxlength="4" />
</p>
 <p>
 <button type="submit" name="submit" value="Submit">Submit</button>
 </p>
</form>
</body>
</html>

The user chooses a credit card type (e.g., "Mastercard"); enters the card number, expiration date,
and card security code (CSC); and clicks the Submit button. However, instead of having the page
dissolve and the values depart immediately for the server, the application verifies a few conditions
first. The JavaScript makes sure that the fields are not blank and contain the required minimum
number of characters (such as three for the CSC), and then it verifies the card number using the
Luhn formula or algorithm.

The Luhn forumla is a well-known algorithm used to verify ID numbers like
credit card numbers. See http://en.wikipedia.org/wiki/Luhn_formula for details.

If one of these checks fails, the hack displays an error message in red. Figure 3-5 shows one of these
messages.

http://en.wikipedia.org/wiki/Luhn_formula

Figure 3-5. Time to reenter the credit card number

If the credit card number is verified and everything else has been correctly entered, the hack uses
XMLHttpRequest to send this information to a server.

We are not strictly making a secure connection in this hack, but a real
application would not send any purchase information unencrypted over a
network. In addition, it is worth mentioning a second time that the main job of
validating a credit card rests with the processing server component(s).

A message in blue notifies the user that the organization is processing the credit card.

Verifying the Card Number

cc.js contains the code for responding to the user's button click, as well as for verifying the
information and generating a user message. http_request.js (see "Use Your Own Library for
XMLHttpRequest" [Hack #3]) creates and calls the methods of XMLHttpRequest. Here is the code
contained in cc.js:

var finalCnumber;

window.onload=function(){
 document.forms[0].onsubmit=function(){
 verify(this.cc.value,this.scode.value,this.cctype.value,
 this.exp_month.value+" "+this.exp_year.value);
 return false;
 };
}

//credit card number, security code, credit card type, and expiration date
function verify(ccard,secure_code,cctype,ccexp){
 if(secure_code.length < 3) {
 eMsg("Please enter a valid value for the security code.","red");
 return;}
 if(cctype=="Choose one...") {
 eMsg("Please enter a valid value for the credit card type.","red");
 return;}
 if (! clientsideVerify(ccard)) {
 eMsg("Please enter a valid value for the credit card.","red");}
 else{
 eMsg("Please wait while we process the credit card.","blue");
 ccard=remDashSpace(ccard);
 url="http://www.parkerriver.com/s/verify?cc="+
 encodeURIComponent(ccard)+"&scode="+
 encodeURIComponent(secure_code)+"&type="+
 encodeURIComponent(cctype)+"&exp="+
 encodeURIComponent(ccexp);
 httpRequest("GET",url,true,handleCheck);
 }
}
/* Check whether the credit card entry is null, is not lengthy enough,
or contains any letters. Remove any dashes or spaces from the entry,
then run the Luhn algorithm on the resulting number. */
function clientsideVerify(ccVal){
 if(ccVal == null || ccVal.length < 13 ||
 ccVal.search(/[a-zA-Z]+/) != -1){ return false; }
 ccVal=remDashSpace(ccVal);
 return (applyLuhn(ccVal) % 10) == 0;

}
//http://en.wikipedia.org/wiki/Luhn_formula
function applyLuhn(cc){
 //reverse the String
 var rev = reverse(cc);
 //get array of character Strings
 var revArr = rev.split("");
 var total = 0;
 var tmp = 0;
 //add up the numbers
 for(var i = 0; i < revArr.length; i++){
 if((i % 2) > 0){

 tmp = revArr[i]*2;
 tmp= (tmp < 9 ? tmp : (tmp - 9));
 total += tmp;
 } else {
 total += Number(revArr[i]);
 }
 }//end for
 return total;
}
//event handler for XMLHttpRequest
function handleCheck(){
 var sTag,answer,xmlReturnVal;
 if(request.readyState == 4){
 if(request.status == 200){
 //implement Document object in DOM
 xmlReturnVal = request.responseXML;
 sTag = xmlReturnVal.getElementsByTagName("cc_status")[0];
 answer= sTag.childNodes[0].data;
 if(answer=="okay"){
 eMsg("Your purchase information has"+
 " been submtted to our online store.","blue"); }
 else {
 eMsg("There was a problem with processing "+
 "the credit card.","red"); }
 } else {
 alert("A problem occurred with communicating "+
 "between the XMLHttpRequest object and the server program.
 ");
 }
 }//end outer if
}
/* Utility functions:
reverse a string. */
function reverse(str){

 var sArray = str.split("");
 var newS="";
 for(var i = sArray.length-1; i >= 0; i--){
 newS += sArray[i];
 }
 return newS;
}
//generate a styled message
function eMsg(msg,sColor){
 var div = document.getElementById("message");
 div.style.color=sColor;
 div.style.fontSize="0.9em";
 //remove old messages
 if(div.hasChildNodes()){
 div.removeChild(div.firstChild);
 }
 div.appendChild(document.createTextNode(msg));

}
//remove dashes or spaces
function remDashSpace(_number){
 number = _number.replace(/-/g,"");
 number = _number.replace(/ /g,"");
 return _number;
}

There is a lot of functionality to absorb here, so first we will discuss the button click. When the
browser completes loading the web page, this event is captured by the code window.onload. This
event handler is a sensible place to set up other event handlers, because the browser is guaranteed
to have finished loading any other HTML tags that might be used by these handlers. Next, the code
sets up an event handler for when the user submits the form:

document.forms[0].onsubmit=function(){
 verify(this.cc.value,this.scode.value,this.cctype.value,
 this.exp_month.value+" "+this.exp_year.value);
 return false;
};

The form's onsubmit event handler points to a function that calls verify(), then returns false,
which effectively cancels the browser's form submission. We are using the request object to send the
form values only after verifying that the submissions are valid. Let's look at the verify() function:

function verify(ccard,secure_code,cctype,ccexp){
 if(secure_code.length < 3) {
 eMsg("Please enter a valid value for the security code.","red");
 return;}
 if(cctype=="Choose one...") {
 eMsg("Please enter a valid value for the credit card type.","red");
 return;}
 if (! clientsideVerify(ccard)) {
 eMsg("Please enter a valid value for the credit card.","red");}
 else {
 eMsg("Please wait while we process the credit card.","blue");
 ccard=remDashSpace(ccard);
 url="http://www.parkerriver.com/s/verify?cc="+
 encodeURIComponent(ccard)+"&scode="+
 encodeURIComponent(secure_code)+"&type="+
 encodeURIComponent(cctype)+"&exp="+
 encodeURIComponent(ccexp);
 httpRequest("GET",url,true,handleCheck);
 }
}

This function includes a number of common-sense checks before it validates the credit card number
using another function, clientsideVerify(). If the latter function returns true, the code builds a
URL for the server component and then uses XMLHttpRequest to send the card information.

The httpRequest() function is responsible for setting up XMLHttpRequest and connecting with the
server. Again, this function takes four parameters:

The type of request, as in GET or POST

The URL or server web address

A Boolean indicating whether the request is asynchronous or not

The name of a function or a function literal that handles the server response

The function name should be passed in without the following parentheses, as in
handleCheck. It can also be a function literal, as in

httpRequest("GET",url,true,function(){ //...});

The httpRequest() code appears in the file http_request.js (see "Use Your Own Library for
XMLHttpRequest" [Hack #3]).

Shooting the Luhn

The clientsideVerify() function verifies that the credit card number is at least 13 characters long
and does not contain any letters. If the credit card number passes these checks, the code removes
any spaces or dashes from the string and calls a function that uses the Luhn formula:

function clientsideVerify(ccVal){
 if(ccVal == null || ccVal.length < 13 ||
 ccVal.search(/[a-zA-Z]+/) != -1){ return false; }
 ccVal=remDashSpace(ccVal);
 return (applyLuhn(ccVal) % 10) == 0;

}

Here is the code for the applyLuhn() function:

function applyLuhn(cc){
 //reverse the String
 var rev = reverse(cc);
 //get array of character Strings
 var revArr = rev.split("");
 var total = 0;
 var tmp = 0;
 //add up the numbers
 for(var i = 0; i < revArr.length; i++){
 if((i % 2) > 0){
 tmp = revArr[i]*2;

 tmp= (tmp < 9 ? tmp : (tmp - 9));
 total += tmp;
 } else {
 total += Number(revArr[i]);
 }
 }//end for
 return total;
}

Information on the Luhn formula or algorithm is easily found on the Web, so we will not take up a lot
of space describing it here.

This function takes a string of numbers, applies the formula to the numbers, and returns the sum to
clientsideVerify(). If the total can be evenly divided by 10, the credit card number is valid. Here is
the piece of code from clientsideVerify() that makes this determination:

return (applyLuhn(ccVal) % 10) == 0;//returns true or false

The server component returns a bit of XML indicating success or failure, mimicking the processing of
a purchase order (as in <cc_status>okay</cc_status>). The handleResponse() function generates a
user message from this return value:

xmlReturnVal = request.responseXML;
sTag = xmlReturnVal.getElementsByTagName("cc_status")[0];
answer= sTag.childNodes[0].data;
if(answer=="okay"){
 eMsg("Your purchase information has"+
 " been submtted to our online store.","blue"); }

The eMsg() function is responsible for generating a styled user message in red, in the event of an
error in handling the purchase information, or in blue otherwise. However, the entire process takes
place backstage; the web page never refreshes, and only small parts of the user interface change as
the user interacts with the application.

Hack 26. Validate Credit Card Security Codes

Make sure the security code is entered correctly in your Ajax credit card application.

The card security code, or CSC, is the three- or four-digit number that is printed on the back of a
credit card, along with the card number (see http://en.wikipedia.org/wiki/Card_Security_Code). The
CSC is designed to augment the authentication of the credit card user. In addition to the card
number, many online stores that take credit cards also request that the user provide the CSC
associated with the card. This act in itself, however, puts in jeopardy the secure identity of the CSC,
so this authentication technique is far from airtight.

The only entity that can validate a CSC is the merchant bank that has the responsibility for
processing the credit card. There isn't a special formula like the Luhn algorithm to validate it (it's only
three or four numbers long, anyway!). However, this hack verifies that the user has entered the CSC
correctly, using the following criteria:

The field contains only numbers.

If the credit card type is Mastercard, Visa, or Discover, the field has exactly three numbers.

If the credit card type is American Express, the field has exactly four numbers.

Figure 3-6 shows a web page that requests a CSC and other information (you may recognize it from
"Validate Credit Card Numbers" [Hack #25]).

Figure 3-6. Validate card security codes

http://en.wikipedia.org/wiki/Card_Security_Code

This hack sets up the CSC validation so that when the user types in the text field and then clicks
outside of the field or presses the Tab key, JavaScript code ensures that the criteria described earlier
are met before continuing with the rest of the application. Here is the HTML for the web page:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/2000/REC-xhtml1-20000126/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <script type="text/javascript" src="js/http_request.js"></script>
 <script type="text/javascript" src="js/cc.js"></script>
 <meta http-equiv="content-type" content="text/html; charset=iso-8859-1" />
 <title>Enter credit card number</title>
</head>
<body>
<h3>Please enter your payment information</h3>
<div id="message"></div>
<p>
 [Name and billing address appear here]
</p>
<p>
 Credit card type:
</p>
<form action="javascript:void%200">
 <p>
 <select name="cctype" id="cctype">

 <option value="Choose one...">Choose one...</option>
 <option value="Mastercard">Mastercard</option>
 <option value="Visa">Visa</option>
 <option value="American Express">American Express</option>
 <option value="Discover">Discover</option>
 </select>
 </p>
 <p>
 Credit card number (#### #### #### #### or no spaces):
 <input type="text" name="cc" size="16" maxlength="19" />
 </p>
 <p>Expiration date:
 <select name="exp_month" id="exp_month">
 <option>January</option>
 <option>February</option>
 <option>March</option>
 <option>April</option>
 <option>May</option>
 <option>June</option>
 <option>July</option>
 <option>August</option>
 <option>September</option>
 <option>October</option>
 <option>November</option>
 <option>December</option>
 </select>
 <select name="exp_year" id="exp_year">
 <option>2005</option>
 <option>2006</option>
 <option>2007</option>
 <option>2008</option>
 <option>2009</option>
 <option>2010</option>
 </select>
 </p>
 <p>
 Card Security code:
 <input type="text" name="scode" id="csc" size="4" maxlength="4" />
 </p>
 <p>
 <button type="submit" name="submit" id="submit" value=
 "Submit">Submit</button>
 </p>
</form>
</body>
</html>

The web page imports a JavaScript file called cc.js. Here is the code in cc.js that handles the CSC text
field:

var csc = document.getElementById("csc");

 if(csc != null) {
 csc.onblur=function(){
 var typ = document.getElementById("cctype");
 if(typ != null){
 if(csc.value.indexOf("Choose") == -1 &&
 ! checkCSC(typ.value, csc.value.
 replace(/\\s/,""))) {
 eMsg("Please enter a valid value for the security code.
 ","red");
 csc.focus();
 document.getElementById("submit").disabled=true;
 } else {
 clearMsg();
 document.getElementById("submit").disabled=false;

 }
 }
 };
 }

The variable csc refers to the text field where the user is supposed to enter the CSC. The code sets
the field's onblur event handler to a function that checks the security code value. The function then
generates a user message and disables the Submit button if the value is invalid. You want to disable
this button because the application should prevent the running of the form's onsubmit event handler
until the security code text field contains a valid value.

checkCSC() validates the CSC field using regular expressions:

function checkCSC(cardTyp,fldValue){
 var re = null;
 if(cardTyp != null){
 if(cardTyp == "American Express"){
 re = /^\\d{4}$/;
 return re.test(fldValue);
 //Mastercard, Visa, Discover
 } else {
 re = /^\\d{3}$/;
 return re.test(fldValue);

 }
 }

}

If the card is American Express, the regular expression looks for a string containing four digits. The
RegExp object's test() method returns true if its string parameter returns a match:

re = /^\\d{4}$/;
return re.test(fldValue);

Similarly, the code checks the value associated with the three other major credit card types for a
string containing three digits. A false return value from this method indicates an invalid value; in
this case, the user will see a red message and a disabled Submit button, as in Figure 3-7.

Figure 3-7. The security code text field checks itself

You should trim the value in the security code text field, because if the user
inadvertently types a space and three numbers (and is using, say, Mastercard)
the regular expression will not find a match, because the searched string will be
" 123" instead of "123". The user, who will see the correct number in the field,
will be irritated. You can use the string method replace(/\\s/,""), which
replaces any space characters in the string with the empty string.

When the application has finished checking the card security code, the user can click the Submit
button. Then an onsubmit event handler will verify the credit card number, as in the previous hack,
before sending a valid number to a server component to process the purchase order.

Hack 27. Validate a Postal Code

Implement a client-side format validation for a ZIP Code.

This hack checks what the user has entered in a text field and makes sure that the value represents
the proper format for a U.S. ZIP Code. We'll only look at the basics of validating a ZIP Code here. If
you want to take it beyond just validating the format of a ZIP, you can use the code in "Fetch a
Postal Code" [Hack #34], in the next chapter, as a secondary step to determine if the ZIP Code is
actually the correct one for the specified city and state.

Figure 3-8 shows what this hack's web page looks like. It is a subset of the typical form that asks for
the user's address information.

Figure 3-8. Enter the correct ZIP Code

The user enters zero to five digits in the text field (this hack tests only the first five digits of a ZIP
Code), then presses Tab or clicks outside of the field. The application's code then automatically
validates what the user typed.

The code makes sure that the user entered five digits, and only five digits, into the field. The web
page imports a JavaScript file named hacks3_7.js, which contains the following code:

window.onload=function(){
 var zip = document.getElementById("zip5");
 var cit = document.getElementById("city");
 zip.onblur=function(){

 if(this.value && cit.value) {chkZipcode(zip.value);}
 //validate actual zip code:
 // httpRequest("GET","http://www.parkerriver.com/s/zip?city="+
 // encodeURIComponent(cit)+"&state="+
 // encodeURIComponent(_st),
 // true,handleResponse);
 };
};

function chkZipcode(zipVal){
 var re = /^\\d{5}$/;
 if(! re.test(zipVal)) {
 document.getElementById("message").
 innerHTML="Please enter a valid zip code.";
 }
}

function handleResponse(){
 var xmlReturnVal;
 try{
 if(request.readyState == 4){
 if(request.status == 200){
 xmlReturnVal=request.responseXML;
 if(xmlReturnVal != null) {
 //validate entered zip code against this value
 }
 } else {
 //request.status is 503
 //if the application isn't available;
 //500 if the application has a bug
 alert(
 "A problem occurred with communicating between"+
 " the XMLHttpRequest object and the server program.
 ");
 }
 }//end outer if
 } catch (err) {
 alert("It does not appear that the server "+
 "is available for this application. Please"+
 " try again very soon. \\nError: "+err.message);

 }
}

The window.onload event handler, triggered when the browser finishes loading the web page, sets up
the behavior for the application. Within the window.onload event handler is an onblur event handler
for the ZIP Code text field. This event handler is triggered when the user presses Tab or clicks outside
of the ZIP Code field. The code verifies that the user has typed values into the city and ZIP Code text
fields (if(cit.value && zip.value)), and, if so, validates the format of the ZIP Code value using
chkZipcode().

This function uses a regular expression that represents a phrase made up of five numbers. The code
tests the entered ZIP Code value against this regular expression to determine if the ZIP Code's
format is correct.

A regular expression represents a template for testing strings of characters.
The regular expression used here looks for a line of text made up of just five
numbers (the ^ means "beginning of the line," and $ is a special symbol for
"end of the line"). \\d is a predefined character class for a digit [09].

If the format is not correct, the code generates a user message. The web page code includes a div
element with an id of message to contain these notifications:

var re = /^\\d{5}$/;
if(! re.test(zipVal)) {
 document.getElementById("message").
 innerHTML="Please enter a valid zip code.";
}

Hacking the Hack

If you want to ensure that the five numbers represent a real ZIP Code, you can use the code in
"Fetch a Postal Code" [Hack #34] to request a postal code for a certain city and state. That hack
requests the ZIP from a web service; your code can then compare this value with the value entered
by the user.

Some cities have multiple ZIP Codes, and "Fetch a Postal Code" [Hack #34]
returns only the first ZIP Code found for a city/state combination. Therefore,
this method is not a foolproof way of validating every ZIP Code value. You
could alter the server component that connects with the web service to return
all ZIP Codes found for a specified city, but this method would still require more
user interaction to narrow down the choices to one ZIP Code.

Chapter 4. Power Hacks for Web
Developers
Hacks 2842

Web development these days increasingly involves making connections with cool and useful web
APIs, such as Google Maps, Yahoo! Maps, and Weather.com. The first five hacks in this chapter cover
some uses of these APIs; "Use Ajax with a Yahoo! Maps and GeoURL Mash-up" [Hack #32] integrates
data from the GeoURL service. The growth of Ajax techniques also makes it necessary to take some
applications off-line (for example, when moving from the terminal to an airliner with a laptop), and
thus requires persistent storage of data on the client side. To this end, this chapter includes a hack
describing the new open source client storage tool called AMASS. It also delves into the typical tasks
that inhabit a web developer's calendar, such as adding email capabilities to Ajax applications,
accessing and creating HTTP cookies, debugging the DOM objects in Ajax software, and finding out
the browser's locale information. Finally, this chapter's last hack creates an "Ajaxy" RSS feed reader.
(RSSReally Simple Syndication, in one of its flavorsis an XML file format that plays an important role
at a number of news- and issue-oriented web sites.)

Hack 28. Get Access to the Google Maps API

Create applications that combine Google Maps and your own server components.

For map lovers and developers, perhaps the only thing cooler than Google Maps is the Google Maps API.
The API allows developers to invent new Ajax-style applications with Google Maps. It is made up of
JavaScript objects and methods that let you control the appearance of maps on web pages, add controls
to them, and create new clickable behaviors.

To use the API, you have to first obtain a developer's key from Google. This is very easy. Simply go to
http://www.google.com/apis/maps/ , specify the web site that will use Google Maps (such as
http://www.parkerriver.com), and click on a form button, and Google generates a key for you. This is a
long bunch of alphanumeric characters, such as:

CDROAAAANJd_PEMs2vnU_f04htHhZhSa_9HZXsWbc66iRLah8f17kmN8QRSryZ54UMgeX7XabY zm82xuubmjRb

Google Objects

You specify the key in your web page when your script tag imports Google's JavaScript library for Google
Maps. Here is what the top part of an HTML page looks like when enabling the Google Maps API, including
the key specification:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<script src="http://maps.google.com/maps?file=api&v=1&key=ABQIAAAANJd_
PEMs2vnU_f0RhwHhZhSa_9HZXsWbc66iRLah8f17kmN8QRSryZ54UMgeX8GjfYzm82xuubmjRw"
type="text/javascript"></script>

The result of importing this script with a proper key is that your own JavaScript code can now access the
objects that are part of the Google Maps API. These include the following:

GMap , an object that allows you to embed a digital map with zooming controls inside of a block-type
HTML element, such as a div

GMarker , an icon that points to a specific place on the map

GPolyline , which can overlay shapes onto a map

GPoint , representing a map coordinate

http://www.google.com/apis/maps/
http://www.parkerriver.com

GXmlHttp , a "wrapper object" for our familiar XMLHttpRequest object

All these objects except for GPolyline are used in the next two hacks. In addition, the API includes GXml
and GXslt objects for parsing XML and using XSLT technology.

As mentioned in Chapter 1 , XSLT is a templating language for transforming the
information embedded in XML files.

The API also includes a general-purpose function, GBrowserIsCompatible() , which returns TRue if the
user's browser supports Google Maps. As of November 2005, according to the Google documentation,
Google Maps supported recent versions of Firefox/Mozilla, IE 5.5+, and Safari 1.2+, and "sort of"
supported Opera. It did not support IE 5.0.

"Use the Google Maps API Request Object" [Hack #29] and "Use Ajax with a Google Maps and Yahoo!
Maps Mash-up" [Hack #30] show how to use the Google Maps API. Visit the above-mentioned URL to
obtain an API key, take a look at the developer's documentation at
http://www.google.com/apis/maps/documentation/ , and start cracking!

http://www.google.com/apis/maps/documentation/

Hack 29. Use the Google Maps API Request Object

The Google Maps API comes with its own request object for making HTTP requests from
JavaScript code.

This hack initially displays a Google Map based on a user's preferences. These include the
latitude/longitude at which the map should be centered, and the zoom level or magnification of the
map when it is first displayed on the web page. An application typically obtains user-specific
properties by reading a cookie, a small piece of data saved on a user's hard drive, or having a user
sign in. This hack skips this opening step in order to focus on the gist of the hack's technology:
obtaining user preferences from a server component to control a Google Map display.

"Send Cookie Values to a Server Program" [Hack #38] discusses reading
cookies in an Ajax application.

Personal Googling

This hack displays a 500-by-300-pixel U.S. map on a web page, which also shows the user's
preferred coordinates for centering the map and preferred zoom level (a two-digit number from the
highest zoom level of 1 to around 18). A zoom level of 18, for instance, shows the continents and
oceans, whereas a zoom level of 1 displays a town's streets.

As mentioned previously, when the user requests this web page, the application can either obtain the
user's username from a previously generated cookie, or ask the user to sign in and fetch the
preferences from a database. However, we are not going to show that step (even though it is
important in a real-world application) because we surmise that the reader is more interested in the
API's Ajax-related objects and the map-display code.

Here is the HTML for the hack:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xmlns:v=
"urn:schemas-microsoft-com:vml">
<head>
<script src="http://maps.google.com/maps?file=api&v=1&key=ABQIAAAANJd_
PEMs2vnU_f0RhwHhZhQ6pfwiB1eVXKVVHswEcdvw4p5NixS195EO7O7VmH483DMz0QiZbIlbIf"
type="text/javascript"></script>
<script src="js/hacks4_1a.js" type="text/javascript"></script>
<title>View Map</title>

</head>
<body>
<h3>Your Google Map</h3>
<div id="map" style="width: 500px; height: 300px"></div>
<h4>Your specifications</h4>
<form action="javascript:void%200">
<p>
Latitude: <input type="text" name="_latitude" size="20" maxlength="20" />
</p>
<p>
Longitude: <input type="text" name="_longitude" size="20" maxlength="20" />
</p>
<p>
Zoom level: <input type="text" name="_zoomLevel" size="2" maxlength="2" />
</p>
</form>
</body>
</html>

This code imports the Google API library with the first script tag. This tag allows the application to
use Google Maps API objects such as GMap and GXmlHttp (which represents the request object). The
script src attribute includes the developer key, as described in "Get Access to the Google Maps API"
[Hack #28]. Another script tag imports into the page a hacks4_1a.js JavaScript code file, which
contains the custom code for our application.

Google Maps requires a separate developer key for every URL directory
containing Google Mapsrelated web pages. For example, I have a developer
key that covers every web page in the http://www.parkerriver.com/ajaxhacks/
directory. It is extremely easy to generate a developer key at
http://www.google.com/apis/maps/signup.html.

The map itself is displayed within a div tag that has an id of map. When the browser loads the page,
the code first checks the compatibility of the browser using a Google global function,
GBrowserIsCompatible(). If this function returns TRue, the application calls a function named
googleAjax(). The window.onload event handler and googleAjax() appear inside the hacks4_1a.js
file. googleAjax() queries a server for the user's specific preferences of a user by passing along the
username ("bwperry," in this case). The application then uses the properties fetched by googleAjax(
) to display and zoom in on a map. Here is the code from hacks4_1a.js:

var map = null;
window.onload = function(){
 if(GBrowserIsCompatible()){
 googleAjax('http://www.parkerriver.com/s/gmap?user=bwperry');
 } else { alert('Your browser is not compatible with Google Maps!');}
};
function createMap(lat,lng,zoomLevel){
 map = new GMap(document.getElementById("map"));
 GEvent.addListener(map, 'click', function(overlay, point) {
 document.forms[0]._longitude.value=point.x;

http://www.parkerriver.com/ajaxhacks/
http://www.google.com/apis/maps/signup.html

 document.forms[0]._latitude.value=point.y;
 map.addOverlay(new GMarker(point));

 });
 map.addControl(new GLargeMapControl());
 map.addControl(new GMapTypeControl());
 if(lat != null && lat.length != 0 && lng != null && lng.
 length != 0 && zoomLevel != null && zoomLevel.length != 0){
 map.centerAndZoom(new GPoint(lng, lat), zoomLevel);
 } else {
 //center on roughly middle of USA
 map.centerAndZoom(new GPoint(-97.20703, 40.580584), 14);
 }
}

function googleAjax(url){

 var request = GXmlHttp.create();
 request.open("GET", url, true);
 request.onreadystatechange = function() {
 if (request.readyState == 4) {
 if (request.status == 200) {
 var resp = request.responseXML;
 var rootNode = resp.documentElement;
 var zoom = rootNode.getElementsByTagName("zoomLevel")[0];
 var latLng = rootNode.
 getElementsByTagName("centerCoords")[0];
 var coordArr = latLng.firstChild.nodeValue.split(" ");
 var zoomLevel=zoom.firstChild.nodeValue;
 createMap(coordArr[0],coordArr[1],zoomLevel);
 alert(coordArr[0]+" "+coordArr[1]+" "+zoomLevel);
 document.forms[0]._latitude.value=coordArr[0];
 document.forms[0]._longitude.value=coordArr[1];
 document.forms[0]._zoomLevel.value=zoomLevel;
 } else {
 alert(
 "The application had a problem communicating with "+
 "the server. Please try again.");
 }//inner if
 }//outer if
 }//end function
 request.send(null);

}

It will probably help you visualize the application's purpose if I show you the map inside a browser
window, before digging into the code. The page loads the map and displays the user's preferred
coordinates and zoom level in text fields beneath it. Figure 4-1 shows the page displayed in a
browser.

Figure 4-1. Google Map centered on MA with zoom level 10

Map Objects

Take a gander at the googleAjax() function and its creation of an object that makes HTTP requests:

function googleAjax(url){
 var request = GXmlHttp.create();
 request.open("GET", url, true);

 request.onreadystatechange = function() {
 if (request.readyState == 4) {
 if (request.status == 200) {
 var resp = request.responseXML;
 var rootNode = resp.documentElement;
 var zoom = rootNode.getElementsByTagName("zoomLevel")[0];
 var latLng = rootNode.
 getElementsByTagName("centerCoords")[0];
 var coordArr = latLng.firstChild.nodeValue.split(" ");
 var zoomLevel=zoom.firstChild.nodeValue;
 createMap(coordArr[0],coordArr[1],zoomLevel);
 document.forms[0]._latitude.value=coordArr[0];
 document.forms[0]._longitude.value=coordArr[1];
 document.forms[0]._zoomLevel.value=zoomLevel;
 } else {
 alert(
 "The application had a problem communicating with "+
 "the server. Please try again.");
 }//inner if
 }//outer if
 }//end function
 request.send(null);
}

Remember all the code that created a request object in "Detect Browser Compatibility with the
Request Object" [Hack #1] and "Use Your Own Library for XMLHttpRequest" [Hack #3]? All that's
necessary with the Google Maps API is var request = GXmlHttp.create(). You then call the open()
and send() methods and point to a function that will be your onreadystatechange event handler, just
as you would with a request object that you created with your own code.

The onreadystatechange event handler specifies a JavaScript function that the
code uses to handle an HTTP response. In Ajax, the request object queries a
server, which typically sends back a response. You can have the event handler
refer to a function literal (as in this code) or to the name of a function (without
the () characters) that you have defined elsewhere in the code (see "Detect
Browser Compatibility with the Request Object" [Hack #1]).

This code fetches an XML document from the server that contains the user's map preferences:

var resp = request.responseXML;

The returned XML data might look like this:

<mapSetup>
<centerCoords>42.057450220246 -71.64184570312</centerCoords>
<zoomLevel>10</zoomLevel>
</mapSetup>

Remember that you are getting this XML information from the server. The data is specific to each
user and can be stored in a database. This information represents the user's preferred latitude and
longitude for the center point of the map, as well as the preferred zoom level.

In Google Maps, latitude is measured in the range 90 degrees north of the
equator to 90 degrees south of the equator. Longitude is measured in a range
of 180 degrees east of the Greenwich Meridian to 180 degrees west of the
Greenwich Meridian.

The code then uses Document Object Model programming to pull the text values out of the XML
document and use them for map display:

var rootNode = resp.documentElement;
var zoom = rootNode.getElementsByTagName("zoomLevel")[0];
var latLng = rootNode.getElementsByTagName("centerCoords")[0];
var coordArr = latLng.firstChild.nodeValue.split(" ");
var zoomLevel = zoom.firstChild.nodeValue;
createMap(coordArr[0],coordArr[1],zoomLevel);
document.forms[0]._latitude.value=coordArr[0];
document.forms[0]._longitude.value=coordArr[1];
document.forms[0]._zoomLevel.value=zoomLevel;

The root node is the top-level XML element, such as mapSetup. The DOM Document object has a
documentElement property that returns a reference to this element. The code then stores references
to the elements that hold the data on the coordinates for the center point of the map and the zoom
level in variables named latlng and zoom, respectively.

How do you get the values of elements using DOM? The latlng variable, for instance, is of a Node
type. The Node has a property named firstChild, which (phew!) returns the text node contained by
the XML element. The code gets the text value of this Node using the Node's nodeValue property.

The centerCoords element contains both latitude and longitude values, separated by a space
character. Thus, calling the string split() method returns an array that contains the latitude as
the first array member and the longitude as the second member.

You can redesign the server component to return the latitude and longitude in
separate XML elements.

Creating Your Own Map

The createMap() function uses Google Maps objects to generate a map for the web page. The code
calls this function with the user's preferred latitude, longitude, and zoom level as parameters, as in:

createMap(coordArr[0],coordArr[1],zoomLevel)

The first two parameters are array members, which is why the code uses, for
example, the coordArr[0] syntax.

Unlike in other Ajax libraries, when using the Google Maps API, the developer does not have to deal
with the basics of XMLHttpRequest. However, if your application requires more control over the
request object, you can initiate a setup like the one described in [Hack #3], which imports its own
JavaScript file that handles HTTP requests.

Hack 30. Use Ajax with a Google Maps and Yahoo! Maps
Mash-up

Use Google Maps in a web application with Yahoo! Maps and driving directions.

Both Google and Yahoo! provide developers with power tools for manipulating maps within their own
web applications. "Get Access to the Google Maps API" [Hack #28] introduced readers to the Google
Maps API; Yahoo! in turn provides the Yahoo! Maps API, which includes a specific API for Ajax
developers (see http://developer.yahoo.net/maps/ajax/index.html).

Yahoo! Maps is very easy to get started with; just acquire an application ID from the above URL, then
begin embedding Yahoo! Maps and controls inside your web pages. You have to include the
application ID in the URL that embeds a map inside your web page, which you'll learn how to do in
the upcoming hack description.

This hack uses both the Yahoo! Maps and Google Maps APIs. Combining two technologies in a web
application is sometimes referred to as a mash-up, an expression that derives partly from the music
industry. This way we can view a Google Map on the left side of the screen, perhaps in satellite view,
and the same geographical region in a Yahoo! Map on the screen's right side. The mash-up also
allows the user to click on a destination on a Google Map and access Yahoo's driving directions.

How It Works

This hack first sets up a Google Map on a web page using the Google Maps API. The application asks
the user to click on the map to specify a map coordinate, and optionally, type in an origin address for
driving directions. Users can zoom in on different map coordinates and areas prior to clicking a
destination point.

The destination is specified in terms of latitude and longitude. A little balloon icon pops up on the
Google Map wherever the mouse is clicked. When the user clicks the Yahoo! Map button, a Yahoo!
Map appears on the screen's right side, centered on the specified latitude and longitude. The user can
then optionally put the Google Map into satellite view, while manipulating the Yahoo! Map with its
sophisticated controls.

To obtain driving directions, the user can enter an origin address in the left side text fields and then
click the Yahoo! Directions button. The application uses the indicated latitude/longitude coordinates to
scrape the driving directions off of a Yahoo! HTTP response. The hack then replaces the Yahoo! Map
with the step-by-step driving directions.

Figure 4-2 shows what the application looks like in a web browser before the user clicks the Yahoo!
Map button.

http://developer.yahoo.net/maps/ajax/index.html

Figure 4-2. Choose your destination

The HTML page divides the application into two regions using div tags and CSS styles. The Google
Map sits on the left side. Figure 4-3 shows the mash-up after the user clicks on the Google Map to
specify a coordinate, then clicks the Yahoo! Map button. The Yahoo! Map is shown on the right side of
the screen.

Figure 4-3. Google and Yahoo!, duking it out

Figure 4-4 shows the application when the user has changed to satellite mode in the Google Map and
zoomed out a bit in the Yahoo! Map.

Figure 4-4. Changing to satellite mode

If the user requests driving directions, they appear in the right part of the screen, as in Figure 4-5.

Figure 4-5. Marrying Google Maps and Yahoo! directions

Google Maps provides latitude/longitude coordinates for anywhere on earth,
but Yahoo!'s driving directions cannot presently provide directions between
places that are separated by bodies of water such as oceans or bays. If you
click on an island in a Google Map, for example, you will get the
latitude/longitude point. However, the directions will be blank because Yahoo!
driving directions, as of this writing, do not connect mainland origins with island
destinations.

Fall Harvest

A good chunk of the work for the driving-directions mechanism is done by the server component,
which harvests the directions from a Yahoo! page. Specifically, the Google request object sends along
a Yahoo!-related URL that includes the user's chosen latitude and longitude coordinates. The server
component then:

Makes a request to Yahoo! using the URL1.

Receives all the code for the Yahoo! page2.

3.

1.

2.

Scrapes the driving directions from the page3.

Sends just this chunk of data back to the application, which displays the directions in the right
frame

4.

This chunk of data in the response is a div element containing a numbered list of driving directions,
as in:

Take a right on Main Street and go 1.2 miles.1.

Go on the highway for another 680 miles....2.

HTML

Let's look at some of the HTML code for the page that's loaded into the mash-up user's browser. I'll
just show the top part of the HTML code that sets this application in motion:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <style type="text/css">
 .cont { float: left; height: 500px;
 width: 500px; }
 .instructions { font-size: 0.8em; }
 .label { font-size: 0.9em;}
 </style>
 <script src=
 "http://maps.google.com/maps?file=api&v=1&key=ABQIAAAANJd_PEMs2vnU_
 f0RhwHhZhSkdb7FxCoFqdzTrRB9tjTtDcnrVRSo66iNyUFvtz5XXXXXXXXXXX"
 type="text/javascript"></script>
 <script src="/ajaxhacks/js/http_request.js" type=
 "text/javascript"></script>
 <script src="/ajaxhacks/js/hacks4_1_b.js" type=
 "text/javascript"></script>
 <script type="text/javascript" src=
 "http://api.maps.yahoo.com/ajaxymap?v=2.0&appid=YRXXXXXXXXXXX"></script>
 <title>Map Mash-Up</title>
</head>
<body>
<h3>Use Google Maps and Yahoo! Maps</h3>
<div id="gmap_container" class="cont">
<div id="map" style="width: 500px; height: 300px"></div>
...

The first script tag imports the Google Maps objects that we can use as official Google hackers.
These are JavaScript objects such as GMap that allow the code to add and control maps on a web

page. The src attribute of the script tag includes the long, involved URL for importing Google's
special code, as well as the developer-specific key [Hack #28]. (The XXXs have been added because
we shouldn't publish the exact keys we are using.)

The JavaScript code appears in the file hacks4_1_b.js. script tags import that code, which you'll see
in an upcoming section, as well as the code that uses XMLHttpRequest [Hack #3]. Finally, the HTML
code imports the Yahoo! Mapsrelated code with another script tag. This code base is necessary for
web pages that embed Yahoo! Maps. The URL for this purpose includes an appid parameter
specifying your own application ID for Yahoo! Maps:

<script type="text/javascript" src=
"http://api.maps.yahoo.com/ajaxymap?v=2.0&appid=YRXXXXXXXXXXX"></script>

Google and Yahoo!, Toe to Toe

Here is the JavaScript code in the hacks4_1_b.js file. The createMap() function does not need
further explanation because we discussed it in the last hack. Let's focus on the code that embeds a
Yahoo! Map and provides driving directions:

var map = null;
window.onload=function(){
 createMap();
 document.getElementById("submit").onclick=function(){
 getDirections(document.forms[0]._street.value,
 document.forms[0]._city.value,
 document.forms[0]._state.value,
 document.forms[0]._dname.value,
 document.forms[0]._latitude.value,
 document.forms[0]._longitude.value);
 };
 document.getElementById("rem_bubbles").onclick=function(){
 clearOverlays();
 };

 document.getElementById("yah_maps").onclick=function(){
 createYMap();
 };
};
function createYMap(){
 writeMap(document.forms[0]._latitude.value,
 document.forms[0]._longitude.value);
}
function createMap(){
 map = new GMap(document.getElementById("map"));
 GEvent.addListener(map, 'click', function(overlay, point) {
 document.forms[0]._longitude.value=point.x;
 document.forms[0]._latitude.value=point.y;
 map.addOverlay(new GMarker(point));

 });

 map.addControl(new GLargeMapControl());
 map.addControl(new GMapTypeControl());
 //center on roughly middle of USA
 map.centerAndZoom(new GPoint(-97.20703, 40.580584), 14);
}
function clearOverlays(){
 if(map != null){
 map.clearOverlays();
 }
}

function getDirections(street,city,state,
 destName,lat,lng){

 var _str = encodeURIComponent(street);
 var _cit = encodeURIComponent(city);
 var url = "http://www.parkerriver.com/s/dd?"+_str+"&tlt="+
 lat+"&tln="+lng+"&csz="+
 _cit+"%2C"+state+"&country=us&tname="+destName;
 httpRequest("GET",url,true,handleResponse);
}

//event handler for XMLHttpRequest
function handleResponse(){
 try{
 if(request.readyState == 4){
 if(request.status == 200){
 var _dirs = request.responseText;
 var targDiv = document.getElementById("ymap_container");
 targDiv.innerHTML=_dirs+
 '<p><form><button type=\\"button\\" onclick=\\
 "window.print()\\">Print Directions</button></form></p>';
 } else {
 //request.status is not 200; ommitted for brevity
 }
 }//end outer if
 } catch (err) {
 //ommitted for brevity

 }
}

function writeMap(lat,lng){
 var _point = new YGeoPoint(parseInt(lat), parseInt(lng));
 var _map = new YMap(document.getElementById('ymap_container'));
 _map.drawZoomAndCenter(_point, 8);
 _map.addPanControl();
 _map.addZoomLong();
 document.getElementById('yah_maps').disabled=true;
}

A good place to start explaining this program is with the writeMap() function. This code shows how
easy it is to embed a Yahoo! Map. The code passes the latitude and longitude coordinates into the
constructor for a YGeoPoint object (an object provided by Yahoo! Maps). The code then creates a
YMap object, specifying the div element that will contain the Yahoo! Map. The next three method calls
center the map on the specified coordinates at a certain zoom level (here, 8 in a range of 1 to 16),
then add a couple of Yahoo! controls to the map.

The last bit of code disables the Yahoo! Map button, because one embedded map is enough; after
loading the map, the user can manipulate it to show any other location.

Driving Directions

The code also contains a function for displaying driving directions:

function getDirections(street,city,state,
 destName,lat,lng){

 var _str = encodeURIComponent(street);
 var _cit = encodeURIComponent(city);
 var url = "http://www.parkerriver.com/s/dd?"+_str+"&tlt="+
 lat+"&tln="+lng+"&csz="+
 _cit+"%2C"+state+"&country=us&tname="+destName;
 httpRequest("GET",url,true);
}

This function is launched when the user clicks the Yahoo! Directions button. (See Figure 4-5 for a
view of what this screen and button look like.) The function takes the street, city, and state where
the user wants to start the trip, as well as the latitude, longitude, and (optionally) the preferred name
for the destination, then sends this information to the server component that actually talks to the
Yahoo! application.

The function uses the global JavaScript encodeURIComponent() function to make sure that the street
and city, which may encompass more than one word (as in "New Orleans"), are properly encoded for
an Internet address. In encoding phrases for URLs, New Orleans becomes New%20Orleans, for
example.

How Do I Get to Latitude...?

I won't go into great detail about how the server component is programmed, except to say that the
address of the component is a Java servlet at http://www.parkerriver.com/s/dd/. The servlet sends
an HTTP request to the Yahoo! component, then sifts through the return value for the chunk of HTML
representing driving directions. The servlet then sends these directions back to our Ajax application.

Developers can use their API of choice to harvest information from web pages.
The servlet in this hack uses APIs from the Java software development kit
(SDK), including javax.swing.text.html.parser.ParserDelegator and
javax.swing.text.html.HTMLEditorKit.ParserCallback.

http://www.parkerriver.com/s/dd/

geTDirections() appends a querystring to the end of the URL following a question mark (?). An
example URL is:

http://www.parkerriver.com/s/dd?1%20Main%20St.&tlt=43.96119 0638920&tln=-
70.13671875&csz=Smithtown%2CNE&country= us&tname=Main

In other words, the parameters in the querystring represent the origin address and the
latitude/longitude of the destination. The server component attaches the Yahoo! application URL
(http://api.maps.yahoo.com/dd_result?newaddr=) to the querystring. The servlet then sends an
HTTP request to this address, asking Yahoo! for driving directions. This is how the servlet obtains the
driving directions for a particular address and map coordinate.

What's Next?

The request object enters the request/response cycle in the way described in "Use Your Own Library
for XMLHttpRequest" [Hack #3], using the simple XMLHttpRequest library http_request.js specifies.

The server component scrapes just the chunk of Yahoo!'s response that we plan to usethe driving
directions that appear within a div elementand returns this to our JavaScript code. Here's the
method that handles the response:

//event handler for XMLHttpRequest
function handleResponse(){
 try{
 if(request.readyState == 4){
 if(request.status == 200){
 var _dirs = request.responseText;
 var targDiv = document.getElementById("ymap_container");
 targDiv.innerHTML=_dirs+
 '<p><form><button type=\\"button\\" onclick=\\
 "window.print()\\">Print Directions</button></form></p>';
//continued...

The request object returns the div element, itself containing a subset of HTML, in its responseText
property. The code then adds this div dynamically to the right side of the browser screen, adding a
little code at the end to allow the user to print out the directions.

That's all there is to it! The user can print out the directions by clicking the Print Directions button.
The script in handleResponse() writes out the code for this button, which just calls window.print():

<button type=\\"button\\" onclick=\\"window.print()\\">

In the spirit of mash-ups, this hack makes the case that two map APIs are better than one.

http://www.parkerriver.com/s/dd?1%20Main%20St.&tlt=43.96119 0638920&tln=-
http://api.maps.yahoo.com/dd_result?newaddr=

Hack 31. Display a Weather.com XML Data Feed

Display weather information on a web page and search a different location without a page
submission.

This hack displays detailed weather information for a location, and allows the user to search another
U.S. location for its temperature, humidity, and other weather-related data. The web page displays
the new weather report without a complete page refresh. The information is derived from The
Weather Channel Interactive, Inc. (http://www.weather.com).

Prepping

To use the Weather Channel's XML data feed in a hack, you have to sign up at Weather.com and
download the software development kit. The SDK contains some logos and a couple of PDF guides
explaining the requirements for usage of the data. If you want to implement this data feed, the
signup begins at http://www.weather.com/services/xmloap.html (the URL is not a typo!).

This hack sends the name of a U.S. city and state to a Weather.com URL that implements a web
service. As part of the usage requirements, a registered developer must send along a partner ID and
license ID as parameters in the URL. Weather.com responds with an XML file containing detailed
weather information for the specified location.

Figure 4-6 shows what the page looks like in Firefox 1.5.

Figure 4-6. Weather for our default location

http://www.weather.com
http://www.weather.com/services/xmloap.html

Weather.com requires developers to display their logo and link back to their
site.

When the browser loads the web page, the weather report for a default location is loaded into it. The
user can then enter a city name, select a state, and then request the weather data for a new
location. Here are highlights of the web page, which imports a couple of JavaScript libraries:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/2000/REC-xhtml1-20000126/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <script type="text/javascript" src="js/http_request.js" />
 <script type="text/javascript" src="js/hacks_4_4.js" />
 <link rel="stylesheet" type="text/css" href="/css/hacks.css" />
 <title>Get Your Local Weather</title>
</head>
<body>
<div id="top_level">

</div>

<h3>Your weather today: </h3>
<div id="d_weather">

</div>

<h4>New Location</h4>
<div id="_location">
 <form action="javascript:void%200" >
 <table border="0"><tr>
 <td>City/Town: <input type="text" name=
 "_city" size="15" maxlength="15" /></td></tr>
 <tr><td>State: <select name="_state">
 <option value="al">Alabama</option>
 <option value="ak">Alaska</option>
 <option value="az">Arizona</option>
 <option value="ar">Arkansas</option>
 <option value="ca">California</option>
 <!-- SNIPPED -->
 </select></td></tr>
 <tr><td><button type="button" id="getWeather" name=
 "go" value="Go">Get Weather</button> </td></tr>
 <!SNIPPED -->
</html>

Two div elements contain the weather data that you load in from an XML file. The bottom of the page
contains a form for entering in the new location and requesting more weather info. The real guts of

the application are represented by the JavaScript in hacks_4_4.js. http_request.js "Use Your Own
Library for XMLHttpRequest" [Hack #3] handles the XMLHttpRequest object.

Here's the code in hacks_4_4.js. A window.onload event handler gets things going once the browser
has finished loading the XHTML code:

var defaultLocationId="USMA0279";
var partId="101xxxxxxx";
var licId="67f74axxxxxxxxxx";
var _host="www.parkerriver.com"
//city and state of location user searched for
var _cit = "";
var _stat = "";
window.onload = function(){
 document.getElementById("getWeather").onclick=function(){
 getNewLocation();
 }
 getWeather(defaultLocationId);
}
/* Get the weather XML data for a certain location */
function getWeather(locationId){
 if (locationId == null || locationId.length=="") { return; }

 var url = "http://"+_host+"/s/weathxml/weatherSearch?&locId="+
 locationId+"&cc=*&dayf=2&prod=xoap&par="+
 partId+"&key="+licId;
 httpRequest("GET",url,true,handleResponse);
}

function getNewLocation(){
 var val = document.forms[0]._city.value;
 if(val.length != 0){
 _cit = val;
 } else {
 //we need at least a city to do a search
 return;
 }
 var sval = document.forms[0]._state.value;
 if(sval.length != 0){
 _stat = sval;
 getLocation(_cit+","+_stat);
 } else {
 getLocation(_cit); //We can do a search with only a city name
 }
}
/* The parameter can be a city alone or a city,state combo
as in Boston,MA */
function getLocation(_lcity){
 if (_lcity == null || _lcity.length=="") {alert("returning"); return; }
 //server component URL; the component connects with Weather.com
 var url = "http://"+_host+"/s/weathxml/addressSearch?city="+_lcity;
 httpRequest("GET",url,true,handleResponse);

}

//event handler for XMLHttpRequest
function handleResponse(){
 try{
 if(request.readyState == 4){
 if(request.status == 200){
 var _xml = request.responseXML;
 if(_xml != null){
 var _root = _xml.documentElement;
 switch(_root.tagName){
 case "weather":
 displayWeather(_root); break;
 case "search":
 handleSearchResult(_root); break;
 case "error" :
 alert("Your weather or location search "+
 "generated an error. "+
 "Please try again."); break;
 default: alert("Your search generated an "+
 "unspecified problem. "+
 "Please try again.");
 }
 } else {
 alert("The server returned a null value "+
 "for the XML. Please try again in a few seconds.");
 }

 } else {
 //See Hack #3...
 }
 }//end outer if
 } catch (err) {
 //See Hack #3...

 }
}
/* Display the weather based on XML data derived from
the Weather.com API */
function displayWeather(rootElement){
 if(rootElement != null){
 var loc= rootElement.getElementsByTagName("loc")[0];
 setupToplevel(loc);
 var dayf = rootElement.getElementsByTagName("dayf")[0];
 setupWeather(dayf);
 }
}

function handleSearchResult(rootEl){
 var locArray = rootEl.getElementsByTagName("loc");
 var elVal = null;

 for(var i = 0; i < locArray.length; i++){
 elVal = locArray[i].firstChild.nodeValue;
 //if a state was specified in the search, include in
 //the search here
 if(_stat.length != 0){
 if (elVal == _cit+", "+_stat.toUpperCase()) {
 getWeather(locArray[i].getAttribute("id")); }
 } else {
 alert("No state in search.");
 //just return the first result if no state is provided
 getWeather(locArray[i].getAttribute("id"));
 break;
 }
 }

}
/* Pull data from the XML and plug it into the proper span
tag in the XHTML */

function setupToplevel(_element){
 if(_element != null){
 setupElement(_element.getElementsByTagName("dnam")[0],
 document.getElementById("city_state"),"Location");
 setupElement(_element.getElementsByTagName("tm")[0],
 document.getElementById("time"),"Time");
 setupElement(_element.getElementsByTagName("lat")[0],
 document.getElementById("lat"),"Lat");
 setupElement(_element.getElementsByTagName("lon")[0],
 document.getElementById("lng"),"Long");
 setupElement(_element.getElementsByTagName("sunr")[0],
 document.getElementById("sunrise"),"Sunrise");
 setupElement(_element.getElementsByTagName("suns")[0],
 document.getElementById("sunset"),"Sunset");
 }
}

function setupElement(_node,_span,txtMsg) {
 if(arguments.length == 3){
 _span.innerHTML= txtMsg+": "+_node.firstChild.nodeValue;
 } else {
 _span.innerHTML= _node.firstChild.nodeValue;
 }
}
//embed the weather image
function setupImgElement(_node,_imgElement) {
 _imgElement.src="http://"+_host+"/ajaxhacks/img/"+
 _node.firstChild.nodeValue+".png";
}

function setupWeather(_element){
 if(_element != null){
 var parts = _element.getElementsByTagName("part");

 /* Contains sub-elements describing day/night weather */
 var dpart = null;
 setupElement(_element.getElementsByTagName("lsup")[0],
 document.getElementById("date"));
 setupElement(_element.getElementsByTagName("hi")[0],
 document.getElementById("high"),"high temp");
 setupElement(_element.getElementsByTagName("low")[0],
 document.getElementById("low"),"low temp");
 for(var i = 0; i < parts.length; i++) {
 if(parts[i].getAttribute("p") == "d") { dpart=parts[i];}
 }
 setupImgElement(dpart.getElementsByTagName("icon")[0],
 document.getElementById("w_icon"));
 setupElement(dpart.getElementsByTagName("ppcp")[0],
 document.getElementById("precip"),"precipitation (% chance)");
 setupElement(dpart.getElementsByTagName("hmid")[0],
 document.getElementById("humid"),"humidity (%)");
 setupElement(dpart.getElementsByTagName("t")[0],
 document.getElementById("desc"));
 var _wind = dpart.getElementsByTagName("wind")[0];
 setupElement(_wind.getElementsByTagName("s")[0],
 document.getElementById("spd_wind"),"wind speed");
 setupElement(_wind.getElementsByTagName("t")[0],
 document.getElementById("dir_wind"),"wind direction");
 }

}

Most of this code involves pulling the content out of the returned XML and displaying it on the web
page. Two functions request weather data for a location and search for a "location ID" associated
with a city/state combination, such as Oakland, CA. To access this weather XML feed, the requestor
has to provide a location ID in the URL, representing a city or city/state combination. If the user
provides a city and/or state for weather information, our application has to request the location ID
first (we already know the location ID for our default location), then use this ID to fetch its weather
data:

/* Get the weather XML data for a certain location */
function getWeather(locationId){
 if (locationId == null || locationId.length=="") { return; }

 var url = "http://"+_host+"/s/weathxml/weatherSearch?&locId="+
 locationId+"&cc=*&dayf=2&prod=xoap&par="+
 partId+"&key="+licId;
 httpRequest("GET",url,true,handleResponse);
}

function getNewLocation(){
 var val = document.forms[0]._city.value;
 if(val.length != 0){
 _cit = val;
 } else {

 //we need at least a city to do a search
 return;
 }
 var sval = document.forms[0]._state.value;
 if(sval.length != 0){
 _stat = sval;
 getLocation(_cit+","+_stat);
 } else {
 getLocation(_cit); //we can do a search with only a city name
 }
}
/* The parameter can be a city alone or a city,state combo
as in Boston,MA */
function getLocation(_lcity){
 if (_lcity == null || _lcity.length=="") {alert("returning"); return; }
 //server component URL; the component connects with Weather.com
 var url = "http://"+_host+"/s/weathxml/addressSearch?city="+_lcity;
 httpRequest("GET",url,true,handleResponse);

}

The URL points to a server component you use to connect with Weather.com's web service.

Using XMLHttpRequest, you cannot connect directly to a web site that is
different than the one from which you downloaded the Ajax application.
Therefore, developers must use a server component or intermediary to connect
with other services. This intermediary can be written in the language of your
choice, such as Java Servlets, PHP, Ruby, or ASP.NET.

This hack uses a Java servlet that implements a different Weather.com request based on the path
info of the request that the servlet receives. The path info comprises the characters in a URL
following the path to the server component, but preceding the querystring, as in addressSearch in the
following URL:

http://www.parkerriver.com/s/weathxml/addressSearch?city=Boston,MA

The servlet, if its handshake with Weather.com is successful, grabs and returns to our application a
pretty big XML file representing the weather information. Here is an example of the XML returned
from Weather.com:

<!-- top-level: time. lat-long,sunrise, sunset-->
<loc id="30066">
 <dnam>Marietta, GA (30066)</dnam>
 <tm>10:40 AM</tm>
 <lat>34.04</lat>
 <lon>-84.51</lon>
 <sunr>7:02 AM</sunr>
 <suns>6:37 PM</suns> <zone>-5</zone>
</loc>

http://www.parkerriver.com/s/weathxml/addressSearch?city=Boston,MA

<!-- daily forecast: -->
<dayf>
 <lsup>3/5/03 9:50 AM EST</lsup>
 <day d="0" t="Wednesday" dt="Mar 5">
 <hi>64</hi>
 <low>54</low>
 <sunr>7:02 AM</sunr>
 <suns>6:37 PM</suns>
 <part p="d">
 <icon>26</icon>
 <t>Sprinkles</t>
 <wind>
 <s>10</s>
 <gust>N/A</gust>
 <d>0</d>
 <t>W</t>
 </wind>
 <ppcp>20</ppcp>
 <hmid>77</hmid>
 </part>
 <part p="n">
 <icon>47</icon>
 <t>Scattered T-Storms</t>
 <wind>
 <s>13</s>
 <d>0</d>
 <t>SW</t>
 </wind>
 <ppcp>60</ppcp>
 <hmid>77</hmid>
 </part>
 </day>
</dayf>

This is the type of XML content that the servlet returns to your application when you already know
the location ID for a certain city and state. The XML even includes an icon element so that your page
can display a Weather.com image representing the weather conditions.

Hack 32. Use Ajax with a Yahoo! Maps and GeoURL Mash-
up

Display the location of a cluster of bloggers on a Yahoo! Map.

This hack describes the GeoURL Yahoo! mapping application. You can access this mash-up of the
GeoURL service and Yahoo! Maps at http://www.premshree.org/geourlmap.htm. This application
uses the Yahoo! Maps API and data from GeoURL (http://geourl.org). When given a weblog address
(http://jeremy.zawodny.com/blog/, for example), this hack displays a map of the weblogger's
neighborsbloggers who are geographically close to the blogger associated with the URL. It asks for a
URL, then uses the Ajax request object to connect with GeoURL and download some necessary XML
data for sending along to the Yahoo! Maps site.

Registering sites with GeoURL involves adding tags to web pages that associate
longitude/latitude coordinates with URLs. An example set of HTML tags for this
purpose is:

<meta name="ICBM" content="XXX.XXXXX, XXX.XXXXX">
<meta name="DC.title" content="THE NAME OF YOUR SITE">

Figure 4-7 shows what the GeoURL Yahoo! mapping application looks like in a browser.

Figure 4-7. Geographical mash-up

http://www.premshree.org/geourlmap.htm
http://geourl.org
http://jeremy.zawodny.com/blog/

When you enter a weblog address that is stored at GeoURL, the application displays a map with icons
indicating the locations of nearby bloggers or mapped URLs. Figure 4-8 shows one of these maps.

Figure 4-8. Finding adjacent geo-mapped locations

How It Works

The GeoURL service maps weblog addresses, as well as other kinds of URLs, to geographical
latitude/longitude locations. The service can also plot neighboring or clustered locations of URLs.

Geographical locations can be plotted for any URLs with web page source code
that contains tags indicating longitude/latitude coordinates.

The GeoURL service provides an RSS feed in XML format that can specify a weblogger's neighbors,
and the Yahoo! Maps API accepts latitude/longitude values so that it can display markers in a map.
Therefore, these two web services are all we need for this application.

To generate the map, we need to pass a chunk of XML data originating from GeoURL to the Yahoo!
Maps API. A typical application for this purpose involves an HTTP request to a server-side script,
which in turn makes HTTP requests to the GeoURL service, constructs the required XML, and then
sends the XML in a request to the Yahoo! Maps web service.

Mashed-up Requests

However, do we really need to make a traditional server-side call to construct the XML, and have the
user experience a complete page rebuild? We can avoid a page refresh by using Ajax and the request
object! To this end, simply add a DIV element to the web page (to give the user feedback about
sending the requests and map loading). Here's a snapshot of the code for the web page:

<H1>GeoURL Yahoo! Mapping</H1>
<FORM METHOD="POST" ACTION=
"http://api.maps.yahoo.com/Maps/V1/AnnotatedMaps" onSubmit=
"loadMapData(); return false;">
<INPUT TYPE="TEXT" NAME="url" size="30" />
<INPUT TYPE="HIDDEN" NAME="appid" value="geourlmap" />
<INPUT TYPE="HIDDEN" NAME="xmlsrc" value="" />
<INPUT TYPE="SUBMIT" VALUE="Map!" />

<DIV ID="load" STYLE="display: none"></DIV>
</FORM>

When the user clicks the Map! button, the application calls the loadMapData() function, which sends
the user's entered URL to a server component. The component fetches the GeoURL XML data and
returns it to our application. The JavaScript in our application then receives the XML response and
submits it to the Yahoo! Maps URL, http://api.maps.yahoo.com/Maps/V1/AnnotatedMaps/.

Here is the mash-up application's code, which the web page includes in a script tag:

<SCRIPT LANGUAGE="JavaScript">
 function getXmlHttpObject(){
 if (window.XMLHttpRequest)
 return new XMLHttpRequest();
 else if (window.ActiveXObject)
 return new ActiveXObject("Microsoft.XMLHTTP");
 else {
 alert("XMLHttpRequest not supported!");
 return null;
 }
 }

 function handleHttpResponse() {
 if (http.readyState == 4) {
 document.getElementById('load').
 innerHTML += ' [done]
Generating map...';
 results = http.responseText;
 if (!results.match('rss')) {
 document.getElementById('load').
 innerHTML = '[ERROR] This URL is probably '+
 'not listed at GeoURL.';
 } else {
 document.forms[0].xmlsrc.value = results;
 document.forms[0].submit();

http://api.maps.yahoo.com/Maps/V1/AnnotatedMaps/

 }
 }
 }

 function loadMapData() {
 resetLoadDiv();
 showLoadDiv();
 var url = document.forms[0].url.value;
 var post_url = '/cgi-bin/geourlmap.cgi'
 post_data = 'url=' + url;
 http.open("POST", post_url);
 http.setRequestHeader('Content-Type',
 'application/x-www-form-urlencoded; charset=UTF-8');
 http.send(post_data);
 http.onreadystatechange = handleHttpResponse;
 return false;
 }

 function resetLoadDiv() {
 document.getElementById('load').
 innerHTML = 'Loading map data ...';
 }

 function showLoadDiv() {
 document.getElementById('load').
 style.display = 'block';
 }

var http = getXmlHttpObject();
</SCRIPT>

Anyone who wants their site included in a mash-up like this can add their URL to the GeoURL service.
Simply go to http://geourl.org/add.html and follow the instructions!

Premshree Pillai

http://geourl.org/add.html

Hack 33. Debug Ajax-Generated Tags in Firefox

Look at the new tags in a tree structure using Firefox's DOM Inspector.

View Page Source has always been a popular (if primitive) programmer tool for inspecting a web
page's code, but the HTML generated by this menu command will not show the newly generated
widgets that your Ajax applications might produce. It shows only the original HTML source code.
Firefox, however, includes a DOM Inspector tool that shows these newly generated tags in a detailed
hierarchical tree-type widget. Let's look at the web page
http://www.parkerriver.com/ajaxhacks/ajax_hack2_5.html.

The page, from "Submit Checkbox Values to the Server Without a Round Trip" [Hack #17], shows
two sets of checkboxes representing team sports and individual sports. The application asks users to
participate in a poll, choosing their favorite sports by checking the appropriate checkboxes. It then
gets the latest results of the poll from a server program and displays them on the page. The
checkboxes exist in the HTML source code; however, the text that eventually displays the poll results
is dynamically generated on the page, without any visual submission or page refresh. To view the
relevant code using Firefox, choose the menu command Tools DOM Inspector. Figure 4-9 shows
the Inspector window that pops up.

Figure 4-9. DOM Inspector view in Firefox

http://www.parkerriver.com/ajaxhacks/ajax_hack2_5.html

The left side of the window shows the entire hierarchical structure of the page's Document Object
Model, with all the parent and child tags available for inspectionsimply click the little triangle widget
next to a tag's name, then select an element or Node. These are the DOM nodes for the entire web
page.

Viewing the HTML page as a tree structure beginning from the top-level or root element, html, the
nodes are the tree branches. Nodes contain parent nodes and child nodes, such as the body element
containing p or div elements. In the DOM, Node objects represent the web page nodes.

Click on an individual Node, such as the DIV tag in Figure 4-7, and the right side of the DOM Inspector
shows all the Node object's properties and methods.

The pop-up menu at the top-right of the Inspector window includes the view
"Object - Javascript Object," which specifically indicates the properties and
methods for the selected Node.

The provided information is highly valuable for programmers who write dynamic HTML (DHTML),
which involves altering web pages on the fly. Despite all of this "DOM speak," believe me, this is
heaven for a web developer who is working on a page with Ajax techniques!

Inspecting Dynamic Creations

What if your page does not display as expected, and you want to look at the underlying code to see
what's going on? View Page Source just shows the page's original HTML or XML. However, open
up a new Inspector window, and you can look at the new structure that your DOM programming
created, as shown in Figure 4-10.

Figure 4-10. Voil\x88 , JavaScript-generated nodes

Choosing the Firefox menu command Tools DOM Inspector will open up a
new Inspector window alongside any existing ones.

Figure 4-10 shows that an existing span element has new content in the form of BR tags and text
nodes. If you click on a text node in the Inspector, the right side of the Inspector window shows the
value of the node. This information can be invaluable for DOM programmers who are encountering a
lot of text nodes, for example, that are empty strings. These empty nodes sprinkled throughout a
page often pose difficulties for any code that iterates through the document nodes looking for specific
nodes or structures.

The DOM Inspector is a great tool for debugging Ajax applications, not to mention a handy way to
examine the DOM structure of any web page and to learn about the available object properties and
methods.

Hack 34. Fetch a Postal Code

Type in a city and choose a state name; this hack quickly generates the U.S. postal code.

This hack asks the user for the name of a city and state, then generates the associated postal code in
a text field (using a web service accessible at http://www.webservicex.net/uszip.asmx?
op=GetInfoByState). Nothing else about the web page changes. Cool, and useful, too. How many
people remember postal codes other than their own?

The hack gets the city and state values, then uses the request object to fetch the ZIP Code from a
server-side component, which interacts with the web service. The server-side component pulls the
ZIP Code out of an XML file it gets from the service and sends the code to our Ajax application.

We started out using the U.S. Postal Service's Web Tools API, which likely
contains the most up-to-date ZIP Codes, as well as the four-digit codes that
extend some of the five-digit codes. However, the USPS was very restrictive in
terms of allowing us to write about the use of its web tools in our hacksfairly
bureaucratic and not very cooperativeso we were not able to use a full
implementation of its ZIP Code service for this hack.

Figure 4-11 shows what the page looks like in the browser.

Figure 4-11. Automatically get a ZIP Code

When the user chooses a state from the pop-up list, the application code sends the city and state to

http://www.webservicex.net/uszip.asmx?

the server component, but only if the city field contains content (the user could leave it empty by
mistake). Here is what the web page's code looks like:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/2000/REC-xhtml1-20000126/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <script type="text/javascript" src="js/http_request.js"></script>
 <script type="text/javascript" src="js/hacks3_6b.js"></script>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <title>Postal Code Search</title>
</head>
<body>
<h3>Please enter the city and state</h3>
<form action="javascript:void%200" method="get">
<p>
City: <input type="text" id="city" size="20" maxlength="20" />
State: <select id="sts">
 <option value="al">Alabama</option>
 <option value="ak">Alaska</option>
 <option value="az">Arizona</option>
 <option value="ar">Arkansas</option>
 <option value="ca">California</option>
 <option value="co">Colorado</option>
 <!etc. -->
 </select>
</p><p>
Zip code: <input type="text" id="zip5" size="5" maxlength="5" />
</p>
<div id="message"></div>
</form>
</body>
</html>

The web page imports two JavaScript files, http_request.js and hacks3_6b.js. http_request.js (see
"Use Your Own Library for XMLHttpRequest" [Hack #3]) is responsible for setting up and using
XMLHttpRequest. This file contains the httpRequest() function that hacks3_6b.js uses. The code in
hacks3_6b.js handles the user's clicks on the pop-up list, sends a request with the city and state
values, and then displays the returned ZIP Code in the zip5 text field. Here is the code in
hacks3_6b.js:

window.onload=function(){
 var sts = document.getElementById("sts");
 sts.onclick=function(){
 var cit = document.getElementById("city");
 //Only make a request if the city text field
 //has a value
 if(cit.value) {getZipcode(cit.value,sts.value.toUpperCase());}

 };
};

function getZipcode(_ct,_st){
 if(_ct.length > 0 && _st.length > 0){
 httpRequest("GET","http://www.parkerriver.com/s/zip?city="+
 encodeURIComponent(_ct)+"&state="+
 encodeURIComponent(_st),
 true,handleResponse);
 } else {
 document.getElementById("zip5").value="";
 }
}

function handleResponse(){
 var xmlReturnVal;
 try{
 if(request.readyState == 4){
 if(request.status == 200){
 xmlReturnVal=request.responseXML;
 if(xmlReturnVal != null) {
 var zip5=xmlReturnVal.getElementsByTagName("zip")[0];
 if(zip5 && zip5.childNodes.length > 0) {
 document.getElementById("zip5").
 value=zip5.childNodes[0].data;
 }
 }
 } else {
 //request.status is 503
 //if the application isn't available;
 //500 if the application has a bug
 alert(
 "A problem occurred with communicating between"+
 " the XMLHttpRequest object and the server program.");
 }
 }//end outer if
 } catch (err) {
 alert("It does not appear that the server "+
 "is available for this application. Please"+
 " try again very soon. \\nError: "+err.message);

 }
}

You've probably encountered this window.onload event handler in other hacks. It's an "event handler
that sets up another event handler." When the browser completes loading the web page,
window.onload specifies what happens when the user makes a selection from the pop-up list
displaying the U.S. states:

window.onload=function(){
 var sts = document.getElementById("sts");
 sts.onclick=function(){
 var cit = document.getElementById("city");

 //Only make a request if the city text field
 //has a value
 if(cit.value) {getZipcode(cit.value,sts.value.toUpperCase());}

 };
};

The code gets the value of the city text field and the U.S. states pop-up, then calls getZipCode().
This function puts together the URL that will connects this application to the server component. The
code then calls the httpRequest() function to fetch the ZIP Code:

httpRequest("GET","http://localhost:8080/parkerriver/s/zip?city="+
encodeURIComponent(_ct)+"&state="+
encodeURIComponent(_st),
true,handleResponse);

Again, httpRequest() is defined in http_request.js.

Server, Take Over

The server component has to connect with the web service, which sends back a large XML file
containing all the ZIP Codes for a specific state. You have to use your own server intermediary
because of the XMLHttpRequest restriction on connecting with a host that is different from the host
from which the user downloaded the web page.

This particular web service, which is generously made available to our code,
does not have an operation that returns just a ZIP Code in response to a city
and state name. Therefore, you have to take this extra step to glean the ZIP
Code from the XML file.

The web service returns an XML file that looks like this:

<NewDataSet>
 <Table>
 <CITY>Abington</CITY>
 <STATE>MA</STATE>
 <ZIP>02351</ZIP>
 <AREA_CODE>781</AREA_CODE>
 <TIME_ZONE>E</TIME_ZONE>
 </Table>
 <Table>
 <CITY>Accord</CITY>
 <STATE>MA</STATE>
 <ZIP>02018</ZIP>
 <AREA_CODE>781</AREA_CODE>
 <TIME_ZONE>E</TIME_ZONE>

 </Table>
...
</NewDataSet>

The server component uses the Simple API for XML (SAX) to parse this return value. When the Java
component finds the city name the user provided, it pulls out the associated ZIP Code and sends it to
our Ajax application in the form <zip>02351</zip>. The handleResponse() function then makes sure
this value is placed in the ZIP Coderelated text field. It all happens quite fast, considering the
complexity involved!

Here is a snippet from handleResponse():

if(request.status == 200){
 xmlReturnVal=request.responseXML;
 if(xmlReturnVal != null) {
 var zip5=xmlReturnVal.getElementsByTagName("zip")[0];
 if(zip5 && zip5.childNodes.length > 0) {
 document.getElementById("zip5").
 value=zip5.childNodes[0].data;
 }
 }

A property of the request object called responseXML stores the returned ZIP Code, which is
encapsulated in a <zip> tag. The code xmlReturnVal.getElementsByTagName("zip")[0] returns the tag
holding the ZIP Code. The last line of the code sample then stores the ZIP Code in the text field with
id zip5.

The Servlet

As mentioned earlier, the application cannot connect directly with the web service using
XMLHttpRequest because our web page has a different host than the web service's host. As a final
step, let's look at the Java servlet that acts as the intermediary between the web service and the
Ajax code. It sifts through all the ZIP Codes for a certain state and returns the first ZIP Code it finds
that is associated with the specified city (this is a potential flaw in the application, as some cities can
have multiple ZIP Codes):

package com.parkerriver;

import java.net.*;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import javax.xml.parsers.*;
import org.apache.log4j.*;
import org.xml.sax.helpers.DefaultHandler;
import org.xml.sax.*;

public class ZipServlet2 extends HttpServlet {

 private Logger log = null;
 private String zipCode = null;

 public String getZipCode() {
 return zipCode;
 }

 public void setZipCode(String zipCode) {
 this.zipCode = zipCode;
 }

 private static String wsUrl=
 "http://www.webservicex.net/uszip.asmx/GetInfoByState?USState=";

 public void init() throws ServletException {
 log = Logger.getLogger(ZipServlet2.class);
 }

 protected void doGet(HttpServletRequest httpServletRequest,
 HttpServletResponse httpServletResponse) throws
 ServletException, IOException {
 String stte = httpServletRequest.getParameter("state");
 String _city = httpServletRequest.getParameter("city");
 String resp = null;
 if(stte != null && _city != null){
 URL usps = new URL(wsUrl+stte);
 HttpURLConnection usp = (HttpURLConnection) usps.
 openConnection();
 usp.setRequestMethod("GET");
 usp.setDoInput(true);
 usp.connect();

 BufferedReader in = new BufferedReader(
 new InputStreamReader(
 usp.getInputStream()));
 StringBuffer buf = new StringBuffer("");
 String inputLine;
 while ((inputLine = in.readLine()) != null) {
 buf.append(inputLine); }
 in.close();
 resp = buf.toString();
 try {
 getZipSax(resp,_city);
 resp="<zip>"+this.getZipCode()+"</zip>";
 } catch (ParserConfigurationException e) {
 e.printStackTrace();
 }
 } else {
 resp="<error />";
 }
 httpServletResponse.setContentType("text/xml; charset=UTF-8");
 //Convey to the user agent or browser that it should

 //not cache the responses
 httpServletResponse.setHeader("Cache-Control", "no-cache");
 httpServletResponse.getWriter().write(resp);
 }

 protected void doPost(HttpServletRequest httpServletRequest,
 HttpServletResponse httpServletResponse) throws
 ServletException, IOException {
 doGet(httpServletRequest, httpServletResponse);
 }
/* Parse the XML file of zip codes using our own DefaultHandler. Give
the ContentHandler the name of the city the user provided. */
 private void getZipSax(String zipXML,String _city)
 throws ParserConfigurationException, IOException {
 try {
 SAXParser parser = SAXParserFactory.
 newInstance().newSAXParser();
 parser.parse(new InputSource(new StringReader(zipXML)),
 new MyHandler(_city));
 } catch (SAXException sxe) {
 log.info("Caught SAXException: "+sxe.getMessage());
 }

 }
 /* A SAX ContentHandler that parses an XML file; it sets the
 parent class's zipCode property when it finds the correct zip
 code in the XML, then throws a SAXException to halt the parsing. */
 class MyHandler extends DefaultHandler{
 private String city;
 private boolean foundCityFlag,foundCityVal,foundZipFlag;
 public MyHandler() {
 super();
 }
 public MyHandler(String _city) {
 this();
 this.city=_city;
 }
 public void startElement(String string, String string1,
 String string2,
 Attributes attributes) throws SAXException {
 if(string2.equalsIgnoreCase("city")){
 foundCityFlag=true;
 }
 if(foundCityVal){
 if(string2.equalsIgnoreCase("zip")){
 foundZipFlag=true;
 }
 }
 }

 public void characters(char[] chars, int i,
 int i1) throws SAXException {

 if(foundCityFlag){
 if(new String(chars,i,i1).equalsIgnoreCase(city)){
 foundCityVal=true;
 } else {
 foundCityFlag=false;
 }
 }
 if(foundZipFlag){
 setZipCode(new String(chars,i,i1));
 throw new SAXException("We found the zip code.");
 }
 }

 }
}

The SAX technique uses a callback objectin this case, a class called MyHandlerto look for city tags
that contain the user's specified city. The MyHandler object implements an interface that is part of the
SAX API called ContentHandler. A ContentHandler lets the programmer decide what should happen as
the parser sifts through the XML stream at different stages: when the handler finds the beginning of
an XML element, the content of an element, the end of an element, and so on.

If the ContentHandler finds a city tag whose content matches the user's chosen city, it looks for an
associated zip tag and grabs the value of that tag. It then throws a SAXExceptionthe Java way of
signaling that the XML parsing can stopbecause the code has found the ZIP Code value.

See http://www.saxproject.org for more information on SAX.

This is a nifty way to display ZIP Codes to the user because they generally appear in the text field
very quickly, without the page refreshing or changing in any other way. The user just has to correctly
spell the city, choose a state in the pop-up, and presto, there's the ZIP Code.

http://www.saxproject.org

Hack 35. Create Large, Maintainable Bookmarklets

Create easy-to-maintain bookmarklets of arbitrary size.

A bookmarklet is a special piece of JavaScript code that can be dragged into a user's Links toolbar
and later clicked on to implement cross-site behavior. Bookmarklets have size limitations, which differ
based on browser and platform, since they must fit into a certain number of characters. They can
also be difficult to maintain for more sophisticated scripts, since every line of JavaScript code has to
be jammed into one line.

This hack presents a mechanism to create arbitrarily sized bookmarklets, where most of the code
resides outside of the bookmarklet link. It has been tested in IE 6 and Firefox.

Bookmarklet Code

Let's begin by viewing the full bookmarklet source code:

<p>Drag the following link to your toolbar to
install this bookmarklet:</p>
<a href=
"javascript:function loadScript(scriptURL) { var scriptElem =
document.createElement('SCRIPT'); scriptElem.setAttribute('language',
'JavaScript'); scriptElem.setAttribute(
'src', scriptURL); document.body.appendChild(scriptElem); }
loadScript('helloworld.js');">Say Hello World

The essential idea in this code is that we dynamically insert a new script element into the DOM
through our bookmarklet. Here is the code within the bookmarklet URL, formatted to be more
readable:

function loadScript(scriptURL) {
 var scriptElem = document.createElement('SCRIPT');
 scriptElem.setAttribute('language', 'JavaScript');
 scriptElem.setAttribute('src', scriptURL);
 document.body.appendChild(scriptElem);
}
loadScript('http://216.203.40.101/projects/tutorials/'
 + 'creating_huge_bookmarklets/helloworld.js');

The previous code sample created a new script element and set it to the new URL. We then append

the new script block to the document. The script we append, helloworld.js, is very simple:

alert("Hello World!");

When this script is loaded, the "Hello World!" message appears immediately.

The loadScript() function definition and function call are rolled into a single JavaScript URL to turn
it into a bookmarklet.

You can enter the script yourself by dragging the link to your toolbar. Then navigate to another site
and click the bookmarklet link. You will see the message "Hello World!" appear, loaded from an
external script.

The external script loaded through the bookmarklet can come from a different domain than the web
site itself, opening the door to sophisticated bookmarklets that aggregate data from different web
sites. See http://www.bookmarklets.com for some of the interesting work people have done with
bookmarklets.

Brad Neuberg

http://www.bookmarklets.com

Hack 36. Use Permanent Client-Side Storage for Ajax
Applications

Use an open source framework that allows applications to store large amounts of data
persistently on the client side.

This hack describes the Ajax Massive Storage System (AMASS). AMASS is an open source library that
uses a hidden Flash applet to allow JavaScript Ajax applications to store an arbitrary amount of
sophisticated information on the client side. This information is permanent and persistent; if the user
closes the browser or navigates away from the web site, the information is still present and can be
retrieved later by the web page. Information stored by web pages is private and locked to a single
domain, so other web sites cannot access this information.

AMASS makes it possible to store an arbitrary amount of sophisticated data, past the 4K limit of
cookies or the 64K limit of Internet Explorer's proprietary client-side storage system.

See the site http://codinginparadise.org/weblog/2005/08/ajax-internet-
explorer-has-native.html for details on Internet Explorer's 64K storage system.

An AMASS-enabled web site can store up to 100K of data without user permission. Above that limit,
the web site must prompt users for permission to store the requested amount of information. The
AMASS system informs the client-side application whether the storage request was allowed or
denied. In tests, AMASS has been able to store up to 10 MB of user data with good performance.

AMASS works on Internet Explorer 6+ and Gecko-based browsers such as Firefox. Users must have
Version 6+ of the Flash plug-in installed to use AMASS, but according to Macromedia's statistics
(http://www.macromedia.com/software/player_census/flashplayer/), Flash 6+ is already installed on
95% of machines.

The latest release of AMASS can be found at http://codinginparadise.org/projects/storage/latest.zip;
at the time of publication the latest release of AMASS was Version 0.02 and was in alpha
development. AMASS is under a BSD license.

Using AMASS

Working with AMASS is simple. The AMASS framework creates the abstraction of a permanent hash
table that persists even after the user has left the page or closed the browser.

The first step in working with AMASS is to load the AMASS script:

http://codinginparadise.org/weblog/2005/08/ajax-internet-
http://www.macromedia.com/software/player_census/flashplayer/
http://codinginparadise.org/projects/storage/latest.zip

<!-- Load the Permanent Storage framework -->
<script src="storage.js"></script>

In order to use AMASS, you must wait for its internal machinery to finish loading. To find out when
this happens, add a listener:

storage.onLoad(initialize);
function initialize() {
}

Once AMASS is loaded, you can begin to work with it by using its hash table methods, such as put(
), get(), and hasKey():

var keyName = "message";
var keyValue = new Object();
keyValue.message = "hello world";
keyValue.testArray = ["test1", "test2", "test3"];
keyValue.testObject = {someProperty: "someValue"};

if (storage.hasKey(keyName) == false) {
 storage.put(keyName, keyValue, statusHandler);
}
else {
 var results = storage.get(keyName);
}

The AMASS framework makes it possible to serialize entire JavaScript objects into the storage
system, such as the keyValue object we serialized earlier. Note that DOM nodes and browser objects
such as the XMLHttpRequest object will not be serialized.

As mentioned earlier, applications can store up to 100K of data without user permission. After this, a
pop-up is generated by the underlying Flash system that prompts the user for permission. The
AMASS framework knows when the pop-up appears, generating a div and bringing the Flash file to
the forefront of the application. Figure 4-12 shows the application centering the pop-up on the
screen.

Figure 4-12. Asking permission to store large data amounts

Users can either approve or deny a storage request, so you must create your application so that it's
ready if its storage request is denied. The put() method takes as its third argument a status handler
that informs your code whether the storage request was successful or not. In the following code,
statusHandler() is a callback function that receives the outcome of whether the request succeeded
or failed:

function statusHandler(status) {
 if (status == Storage.SUCCESS) {
 var results = storage.get(keyName);
 alert("Results from statusHandler="+results);
 }
 else if (status == Storage.PENDING) {
 alert("Results pending approval of storage space from user");
 }
 else if (status == Storage.FAILED) {
 alert("Storage request denied");
 }
};

status can be one of three values: Storage.SUCCESS, Storage.PENDING, or Storage.FAILED. If the pop-
up appears, you will get a callback of Storage.PENDING. Later, if the user approves the request, you
will receive Storage.SUCCESS; if the request is denied, you will receive Storage.FAILED. Upon
approving the request, users can also indicate whether they give permission to future requests to
automatically store information without the application popping up the permission dialog again.

How AMASS Works Internally

Internally, AMASS uses a hidden Flash file and Flash's SharedObject functionality to permanently
store the information. AMASS scripts the Flash applet using the Flash plug-in's ActiveX methods on
Internet Explorer and its LiveConnect methods on Firefox. AMASS then uses the Flash SharedObject's
callbacks to detect when the request storage dialog is on the screen and pass these back to the
JavaScript application.

Brad Neuberg

Hack 37. Control Browser History with iframes

Learn the black art of iframes and browser history.

An iframe is an internal frame that can point to and load an arbitrary URL within your HTML page.
Here is an example small iframe showing Google:

<iframe src="http://www.google.com" style=
 "width: 320px; height: 300px;">
</iframe>

Your browser history is the list of pages you have visited. When you press the back and forward
buttons in your browser, you are jumping through your browser history.

Sometimes, for various reasons, programmers want to control what is placed into the browser's
history. Think of this as a primitive mechanism that can be used in more elaborate Ajax and DHTML
hacks; it's a building block useful in all kinds of crazy Ajax kung-fu. It's good to know about tricks
such as this one when you're confronted with Ajax design issues or when you stumble across very
strange bugs that might be caused by the different kinds of iframe we will discuss here.

There are two kinds of iframe. The first kind are located right within your HTML and are loaded in the
page:

<html>
<body>
<iframe id="testFrame"
 src="http://www.google.com">
</iframe>
</body>
</html>

Code can also create iframes dynamically, through the DOM and JavaScript, after the page is finished
loading:

<html>
<head>
<script language="JavaScript">
function initialize() {
 var testFrame = document.createElement("IFRAME");
 testFrame.id = "testFrame";
 testFrame.src = "http://www.google.com";
 document.body.appendChild(testFrame);

}
</script>
</head>

<body onload="initialize()">
</body>
</html>

Okay, so there are two kinds of iframe. Who cares? Well, it turns out these two kinds of iframe have
completely different behaviors when it comes to history in different browsers!

Browser Lowdown

Here's the lowdown for each kind of browser:

In Firefox, if the iframe is inside the HTML and was loaded in the page, any location changes to
it are stored in the browser's history. If the iframe was written into the DOM through JavaScript
after the page finished loading, no location changes are stored in the browser's history.

In Internet Explorer, location changes are stored in the browser's history for both kinds of
iframe.

In Safari, location changes are not stored in the browser's history for either kind of iframe.

You can see this for yourself in the demos discussed in the next section.

Browser Demos

Two demos have been provided to illustrate how Firefox and Internet Explorer handle the different
kinds of iframe. In both demos, we dynamically change the iframe's location between four different
web sites.

In the first demo, viewable at
http://codinginparadise.org/projects/tutorials/tale_of_two_iframes/static_iframe.html, we are dealing
with an iframe that is in the HTML on page load. In this case, you will find that all of these sites are in
the browser's history in both Firefox and IE. Press the back and forward buttons when the pop-up
saying "Finished" appears, and you will see the iframe's contents change between each site.

In the second demo, viewable at
http://codinginparadise.org/projects/tutorials/tale_of_two_iframes/dynamic_iframe.html, we are
dealing with a dynamically created iframe. Here, you will find that only the initial page load is in the
browser's history in Firefox, while all sites are in the history in IE.

One small footnote is that if you have a static iframe that is loaded in the HTML, and that iframe has
a src value initially (as in <iframe src="http://www.google.com"></iframe>, this initial value is not
placed in the browser's history. In this case, only successive changes to that static iframe are placed
in the history.

http://codinginparadise.org/projects/tutorials/tale_of_two_iframes/static_iframe.html
http://codinginparadise.org/projects/tutorials/tale_of_two_iframes/dynamic_iframe.html

You can use the special behavior of these two kinds of iframe for some real trickery. First, make
them invisible using CSS. You can then decide whether you want something to enter the history or
not, choosing the appropriate kind of iframe. If you are working with a DHTML application that uses
iframes for remote communication (detailed at
http://developer.apple.com/internet/webcontent/iframe.html) instead of XMLHttpRequest, for old
browser compatibility, knowing the difference between these two kinds of iframe can be very useful,
because you can choose whether remote iframe communication is placed in the browser's history or
not.

For a discussion of how you can use iframes to make the browser back button
work normally with Ajax applications, check out "Fix the Browser Back Button
in Ajax Applications" [Hack #68].

Brad Neuberg

http://developer.apple.com/internet/webcontent/iframe.html

Hack 38. Send Cookie Values to a Server Program

Create cookies within the web application and send cookie values to a server without
refreshing the page.

A cookie is a small piece of data that a web application can store on a user's machine. A web site can
set one or more cookies using a Set-Cookie header in the server response. The number of cookies
that a server can set and their individual sizes are restricted based on the standards used by the first
browser makers, such as Netscape.

A web server may set no more than 20 cookies for one browser, and each
cookie's size is limited to 4K. (Very few cookies reach that size.) If you want to
view the cookies in your Firefox installation, go to Preferences Privacy
Cookies View Cookies. Most browsers, including Firefox, allow the user to
remove cookies.

If Google or Yahoo!, for instance, has set a cookie on your machine, that business's web applications
will be able to read the cookie name and value the next time you go to its site. For example, Google
may set a unique ID on your machine so that it can identify you and display your preferential news
headlines when you visit the Google News site. The upcoming sections will explain how code sets the
accessibility of the information the cookies store.

Bake Your Own Cookie

This hack allows a user to enter the name and value of a cookie. The application then uses this
information to generate a new cookie. Figure 4-13 shows the interactions that take place in this hack
between the browser and the server.

Figure 4-13. Creating, viewing, and posting cookie data

The simplest cookie comprises a name and value, as in mycookie=uniqueADDAA. Most cookies are set
by the server using a short string of data that includes the web server path that is linked to the
cookie, as well as the date on which the cookie expires and can be deleted by the web server:

mycookie=uniqueADDAA; expires=Thu, 01 Dec 2005 20:35:16 GMT;
path=/ajaxhacks; domain=parkerriver.com

In this hack, the user also has the option to view existing cookies by clicking a button, as well as to
send the existing cookie collection, including their own cookies, to a server component.

Figure 4-14 shows the web page for this application.

Figure 4-14. Fire up your own cookie

Here's what the underlying HTML looks likenothing earth shattering here. The script tags import the
JavaScript that does the application's work, including initializing and using XMLHttpRequest. The HTML
includes a span element for displaying a user message after the application creates a cookie:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/2000/REC-xhtml1-20000126/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <script type="text/javascript" src="js/hacks4_10.js"></script>
 <script type="text/javascript" src="js/http_request.js"></script>
 <link rel="stylesheet" type="text/css" href="/css/hacks.css" />

 <title>Cookie Factory</title>
</head>
<body>
<h3>Bake Your Own Cookie</h3>
<form action="javascript:void%200">
<p>
Cookie Name: <input type="text" id="ck_nm" name=
 "ck_name" size="20" maxlength="20" />
</p>
<p>
Cookie Value: <input type="text" id="ck_val" name=
 "ck_value" size="20" maxlength="20" />
</p>
<p>

</p>
<p>
<button id="ckCreate" type="button">Create cookie</button>
</p>
<p>
<button id="ckView" type="button">View cookies</button>
</p>
<p>
<button id="ckSend" type="button">Send cookies</button>
</p>
</form>
</body>
</html>

When the user types a cookie name and value into the text fields and clicks the "Create cookie"
button, the application generates a new cookie with a default path, domain, and expiration attribute
(see the upcoming explanation). Figure 4-15 shows the browser after the user has created a new
cookie.

Figure 4-15. A user-generated cookie

Figure 4-16 shows the view resulting from clicking the "View cookies" button, which shows the
cookies that are accessible from responses originating from a certain domain (e.g.,
www.parkerriver.com). You can see that the cookie added in Figure 4-15 was identified by this
cookie-reading servlet.

Figure 4-16. Reading all cookies

JavaScript

By now you are probably interested in the hacks4-10.js code, which provides the Ajax-related
functionality for this application. "Use Your Own Library for XMLHttpRequest" [Hack #3] describes
http_request.js, which sets up and uses XMLHttpRequest. Here's the code from hacks4-10.js:

var _host="www.parkerriver.com";
var _fpath="";
var _path="/";
//Cookie object definition
function MyCookie(name,val,domain,path) {
 this.name=name;
 this.value=val;
 this.domain=domain;
 this.path=path;
 //The cookie lives for three days by default
 var dtsec=new Date();
 dtsec.setSeconds(dtsec.getSeconds()+(60*60*24*3));
 this.expires=dtsec.toGMTString();
 this.toString=function(){
 return this.name+"="+this.value+"; expires="+this.expires+
 "; path="+this.path+"; domain="+this.domain;
 }
}//End of Cookie object definition
//This event handler is called when the web page
//is first loaded.
window.onload=function(){
 var b1 = document.getElementById("ckCreate");
 var b2 = document.getElementById("ckView");
 var b3 = document.getElementById("ckSend");
 var _url="";
 if(b1 && b2 && b3){
 b1.onclick=function(){
 //The new Cookie's name/value
 var nm = document.getElementById("ck_nm");
 var v=document.getElementById("ck_val");
 try{
 if(nm && nm.value && v && v.value){
 var cook=new MyCookie(encodeURIComponent(nm.value),
 v.value,_host,_path);
 //Add the cookie to the current cookie collection
 document.cookie=cook.toString();
 //Display a user message
 showMsg(document.getElementById("msg"),
 "Cookie creation was successful.");
 }
 } catch(errv) {
 alert("Sorry, but we failed to create a cookie because "+
 "of this error: "+errv.message);
 }

 }
 //Display the cookies visible from a specific host
 b2.onclick=function(){

 location.href="http://"+_host+_fpath+"/s/ckreader";
 }
 //POST all available cookies to a server component
 b3.onclick=function(){
 _url="http://"+_host+_fpath+"/s/ckserv";
 httpRequest("POST",_url,true,function(){},
 "allCookies="+encodeURIComponent(document.cookie));
 }
 }
 //Create initial cookie when the application starts up
 _url="http://"+_host+_fpath+"/s/ckserv";
 httpRequest("GET",_url,true,handleInit);
}
function showMsg(_id,txt){
 if(_id && txt){_id.innerHTML=txt;}
}
//Response handler that XMLHttpRequest will use;
//see Hack #3
function handleInit(){
 try{
 if(request.readyState == 4){
 if(request.status == 200){
 var resp = request.responseXML;
 if(resp != null){
 var outcome=resp.getElementsByTagName("outcome")[0];
 var msg = document.getElementById("msg");
 if(outcome != null){
 if(outcome.childNodes[0].nodeValue != "success") {
 showMsg(msg,
 "Initial Cookie creation was not successful.");
 }
 }
 }
 } else {
 //request.status is 503
 // if the application isn't available;
 //500 if the application has a bug
 alert(
 "A problem occurred with communicating between "+
 "the XMLHttpRequest object and the server program.");
 }
 }//end outer if
 } catch (err) {
 alert("It does not appear that the server "+
 "is available for this application. Please"+
 " try again very soon. \\nError: "+err.message);

 }
}

The Cookie Object

This code defines a MyCookie object, then uses that object to create the new cookie for the user. This
is a small example of object-oriented JavaScript. The code declares a constructor function that sets
the typical properties of a cookie:

//Cookie object definition
function MyCookie(name,val,domain,path) {
 this.name=name;
 this.value=val;
 this.domain=domain;
 this.path=path;
 //The cookie lives for three days by default
 var dtsec=new Date();
 dtsec.setSeconds(dtsec.getSeconds()+(60*60*24*3));
 this.expires=dtsec.toGMTString();
 this.toString=function(){
 return this.name+"="+this.value+"; expires="+this.expires+
 "; path="+this.path+"; domain="+this.domain;
 }
}

These properties include:

The cookie name

The cookie value

The domain connected to the cookie, as in www.parkerriver.com

Only subsequent requests that involve the same domain will include this
cookie. In other words, the browser will include a Cookie request header that
includes any cookie name/value pairs associated with this domain and path.

The path, which further differentiates whether an HTTP request will include a particular cookie in
its Cookie header

The expires property, a date string in Greenwich mean time (GMT) format specifying when the
cookie will expire and thereafter be unavailable on this browser

Here's the code can create the cookier:

var new_cookie = new MyCookie("mycookie","myvalue","www.parkerriver.com",
"/ajaxhacks")

The object generates a default expiry date of three days in the future, but code can change that

later. For example:

var ndate=new Date();
//1 year from now
ndate.setSeconds(ndate.getSeconds()+(60*60*24*365));
new_cookie.expires= ndate.toGMTString();
document.cookie=new_cookie.toString();

The MyCookie object's toString() method conveniently generates a string that represents the
cookie, and allows it to be set using client-side JavaScript. The previous code sample shows how this
is done using the document.cookie property.

Oddly, setting document.cookie to a properly formatted cookie string has the
effect of adding a new cookie to the browser's existing collection for that
domain. If the code then displays the value of document.cookie, it shows not
only the new cookie, but all other existing cookies as well, put together in one
string.

Figure 4-17 shows an alert box displaying the value of the MyCookie object's toString() method.

Figure 4-17. A new cookie's string value

Another task initiated by this application is to send the values of all current cookies in a POST HTTP
request. As mentioned in the earlier note, the values of all the cookies are available lumped together
in a string returned by the document.cookie property. This string can easily be POSTed to an
application, which can do whatever it wants with these cookie values, using the following code:

_url="http://www.parkerriver.com/s/ckserv";
httpRequest("POST",_url,true,function(){},
 "allcookies="+encodeURIComponent(document.cookie));

This call of httpRequest() assumes that the application does not yet have any plans for a return
value; consequently, it passes an empty function literal value to the function.

Hack 39. Use XMLHttpRequest to Scrape an Energy Price
from a Web Page

Allow the user to choose an energy fuel type and generate the current price without
refreshing the page.

The Web includes lots of different places for getting the latest energy prices, such as for a barrel of
crude oil or the average cost of U.S. residential propane. These web sources usually involve loading
into the browser a particular business-oriented page over and over again (such as from cnnfn.com)
or visiting multiple web sites in search of various prices. This hack offers an alternative: it
automatically grabs an energy price based on the user's choice in a select list element. The hack
doesn't involve any page rebuilding, so the feature can be built into a broader application for handling
energy prices.

Getting in a Scrape

The source of the energy price is a public-domain site managed by the U.S. Energy Information
Agency (U.S. EIA). You can also use a commercial web service to access instantaneous energy prices,
which avoids having to scrape or harvest the price from the HTMLa better solution from an
application-design standpoint but not free of charge. The EIA site suits our purpose, however,
because it illustrates how to the access multiple data pieces from third-party sources, then displays of
the data value without rebuilding the entire page. The sequence for this hack's behavior goes like
this:

The user chooses a fuel type in the select list.1.

This choice triggers the select's onchange event handler.2.

The event handler uses XMLHttpRequest to send a request to a Java JSP page.3.

The JSP uses a predefined component to scrape the energy price from the U.S. EIA page, then
sends the price as text back to the web page.

4.

The web page shows a "Fetching energy price..." message, then displays the latest price in a
colorful font.

5.

Figure 4-18 shows the hack's web page.

Figure 4-18. Fetching a live energy price

When the user makes a select-list choice, Figure 4-19 shows what the result looks like.

Figure 4-19. Checking out the price

The JavaScript code the page uses is rather simple:

window.onload=function(){
 var _url=
 "http://www.parkerriver.com/energy.jsp?priceTyp=";
 if($("fuelType")){
 $("fuelType").onchange=function(){
 try{
 showQuote($("msg"),
 "Fetching energy price...");
 httpRequest("GET",_url+$F("fuelType"),
 true,handlePrice);
 } catch(errv) {
 alert("Sorry, but we failed to get the energy price "+
 "because "+
 "of this error: "+errv.message);
 }

 };
 }

}
function showQuote(_id,txt){

 if(_id && txt){_id.innerHTML=txt;}
}
function handlePrice(){
 try{
 if(request.readyState == 4){
 if(request.status == 200){
 var resp = request.responseText;
 if(resp != null && resp.length > 0){
 showQuote($("msg"),
 "The requested price is: "+resp);
 } else {
 showQuote($("msg"),
 "The price is not available at this time.");
 }
 } else {
 //request.status is 503 if the application
 // isn't available;
 //500 if the application has a bug
 alert(
 "A problem occurred with communicating between"+
 " the XMLHttpRequest object and the server program.");
 }
 }//end outer if
 } catch (err) {
 alert("It does not appear that the server "+
 "is available for this application. Please"+
 " try again very soon. \\nError: "+err.message);

 }
}

window.onload sets up the onchange event handler for our lone select element containing the choices
of fuel types. onchange points to a function that the browser will call each time the user chooses a
different option in the select list. The hack then takes the fuel choice and sends it to the JavaServer
Pages component using the request object.

See "Use Your Own Library for XMLHttpRequest" [Hack #3] for an explanation
of the http_request.js library this hack uses for handling XMLHttpRequest.

The JavaScript uses a couple of handy shortcuts from the Prototype library (see Chapter 6). The
select element's id value is "fuelType", as in <select id="fuelType"/>. $("fuelType") is the
equivalent of document.getEle-mentById("fuelType"), and $F("fuelType") provides the current value
of the select element.

The hack finally inserts the return value, an energy price that the EIA refreshes about once per week,
inside a span element on the web page. This final step occurs inside handlePrice(), which is the
readystate handler for the request object.

var resp = request.responseText;
if(resp != null && resp.length > 0){
 showQuote($("msg"),
 "The latest price is: "+resp);}

For Java Jocks

In case you're interested in the "scraping" code, here's the OilpriceCallback Java class that fetches
a crude-oil price:

package com.eeviewpoint;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.URL;
import javax.swing.text.html.HTMLEditorKit.ParserCallback;
import javax.swing.text.MutableAttributeSet;
import javax.swing.text.html.parser.ParserDelegator;
import javax.swing.text.html.HTML;

public class OilpriceCallback extends ParserCallback
 implements Scraper{
 private boolean crudeOilCrumb=false;
 private boolean foundCurrPrice=false;
 private String urlSource=
 "http://tonto.eia.doe.gov/dnav/pet/pet_pri_fut_s1_d.htm";
 private String result = "";

 public String getUrlSource() {
 return urlSource;
 }

 public void setUrlSource(String urlSource) {
 this.urlSource = urlSource;
 }

 public String getResult() {
 return result;
 }

 public void setResult(String result) {
 this.result = result;
 }

 public void handleText(char[] chars, int i) {
 String str = new String(chars);
 if(str.indexOf("Crude Oil") != -1){
 crudeOilCrumb=true;
 }

 if(this.crudeOilCrumb && this.foundCurrPrice &&
 getResult().length() == 0){
 setResult(str.trim());
 }
 }

 public void handleStartTag(HTML.Tag tag,
 MutableAttributeSet mutableAttributeSet, int i) {
 if((crudeOilCrumb) && tag == javax.swing.
 text.html.HTML.Tag.TD){
 String val = (String) mutableAttributeSet.
 getAttribute(HTML.Attribute.CLASS);
 if(val != null && val.equalsIgnoreCase("Current")){
 foundCurrPrice=true;
 }
 }
 }

 public String toString() {
 return getResult();
 }
}

A class named EnergyHarvester contains a list (in an object called scraperMap) of various callback
classes (such as OilpriceCallback) that scrape prices for the different fuel types. Here is the code
from EnergyHarvester for returning the requested price.

public String getNugget() throws ClassNotFoundException,
 IllegalAccessException, InstantiationException, IOException {
 String nm = ((String)scraperMap.get(priceType));
 ParserCallback callback = (ParserCallback) Class.forName(nm).
 newInstance();
 URL eia = new URL(((Scraper) callback).getUrlSource());
 BufferedReader webPagestream = new BufferedReader(
 new InputStreamReader(eia.
 openStream()));
 super.parse(webPagestream,callback,true);
 return callback.toString();
}

Here's the JSP component our web page calls. The code uses an instance of EnergyHarvester, which
in turn uses different implementations of the HTML-parsing code to fetch the various energy prices.

<%@taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>
<% response.addHeader("Content-Type","text/plain");
 response.addHeader("Cache-Control","no-cache"); %>
<jsp:useBean id="parser" class="com.eeviewpoint.EnergyHarvester"/>
<jsp:setProperty name="parser" property=
 "priceType" value="${param.priceTyp}"/>
<c:out value="${parser.nugget}"/>

Hack 40. Send an Email with XMLHttpRequest

Allow the user to enter the email properties in text fields and then send an email without
a page round trip.

This hack not only sends an email without a page round trip, but also validates the syntax of the
entered email addresses and provides useful messages in the event of invalid entries. Figure 4-20
shows what the hack's web page looks like in the Safari browser.

Figure 4-20. An email application without round trips

It looks pretty basic, but a lot happens behind the scenes. A server component awaits a request to
receive the data and send it as an email. The web page itself imports three JavaScript libraries:

<script type="text/javascript" src="js/email_lib.js"></script>
<script type="text/javascript" src="js/hacks4_12.js"></script>
<script type="text/javascript" src="js/http_request.js"></script>

email_lib.js contains a bit of object-oriented JavaScript that is designed to validate an email address
[Hack #23] and provide a useful message in the event of any invalid syntax. http_request.js (see
"Use Your Own Library for XMLHttpRequest" [Hack #3]) initializes XMLHttpRequest and uses it to send
the email information. hacks4_12.js contains this Ajax application's code, which is reproduced in the
next section.

Figure 4-21 shows a message that is dynamically generated when the user enters an address with
improper syntax in either of the first two text fields.

Figure 4-21. Responding to an email typo

In this case, the user left a couple of letters off of the email suffix (the domain) in the second field.
Our email-syntax checker in email_lib.js ensures that, among other things, email addresses end with
a period followed by two to three characters. (For more validation rules, check out [Hack #23].)

If the user's entries are valid, the Java servlet responds with an <outcome>true</outcome> message
so that the application can notify the user that the email is on its way, as in Figure 4-22.

Figure 4-22. All systems go for emailing

How It Works

First we'll look at the code in hacks4_12.js, which uses elements of the other two imported libraries
to check the email address syntax and then send the email, all without a page rebuild. Then we'll look
at the Java servlet that receives the email data. Here is the page's underlying code:

var queryString="";
window.onload=function(){
 var _url="http://www.parkerriver.com/s/em";
 var b1 = document.getElementById("b1");
 if(b1){
 b1.onclick=function(){
 //clear any existing messages
 clearMsg(document.getElementById("err"),"");
 clearMsg(document.getElementById("msg"),"");
 var isValidEmail=validate(document.getElementById("sender").
 value,
 document.getElementById("receiver").value);
 if(isValidEmail){
 try{
 showMsg(document.getElementById("msg"),
 "Sending email...");
 setQueryString();
 httpRequest("POST",_url,true,
 handleResponse,queryString);
 } catch(errv) {
 alert("Sorry, but we failed to send the email because "+

 "of this error: "+errv.message);
 }
 }

 }; //end function
 }

}
//Validate however many email addresses have been
//passed in as arguments using the Arguments array.
//Break and return false if one of them is invalid
function validate(em1) {
 var bool = false;
 var eml = null;
 for(var i = 0; i < arguments.length; i++) {
 eml = new Email(arguments[i]);
 eml.validate();
 bool=eml.valid;
 if(! bool) { showMsg(document.getElementById("err"),
 eml.message);break;}
 }
 return bool;
}
function showMsg(_id,txt){
 if(_id && txt){_id.innerHTML=txt;}
}
function clearMsg(_id){
 if(_id){_id.innerHTML="";}
}
function handleResponse(){
 try{
 if(request.readyState == 4){
 if(request.status == 200){
 var resp = request.responseXML;
 if(resp != null){
 var outc=resp.getElementsByTagName("outcome")[0];
 if(outc.childNodes[0].nodeValue == "true") {
 showMsg(document.getElementById("msg"),
 "Your email is on its way!");
 } else {
 showMsg(document.getElementById("msg"),
 "The email could not be sent at this time.");
 }
 } else {
 showMsg(document.getElementById("msg"),
 "The email could not be sent at this time.");
 }
 } else {
 //snipped...
 }
 }//end outer if
 } catch (err) {

 alert("It does not appear that the server "+
 "is available for this application. Please"+
 " try again very soon. \\nError: "+err.message);

 }
}
function setQueryString(){
 queryString="";
 var frm = document.forms[0];
 var numberElements = frm.elements.length;
 for(var i = 0; i < numberElements; i++) {
 if(i < numberElements-1) {
 queryString += frm.elements[i].name+"="+
 encodeURIComponent(frm.elements[i].value)+"&";
 } else {
 queryString += frm.elements[i].name+"="+
 encodeURIComponent(frm.elements[i].value);
 }

 }
}

When the browser loads the web page, it sets up the Send Email button's onclick event handler.

window.onload is triggered when the browser completes loading the web page.
This is a good place in the code to set up the event-handling attributes, such as
onclick, for the other tags on the page. window.onload is an alternative to
using event handlers as tag attributes embedded in the HTML.

When the user clicks this button, the application validates the syntax of the values entered into the
email address text fields. If the values represent valid email addresses, setQueryString() assembles
a querystring of all the email information suitable for sending in a POST request:

b1.onclick=function(){
 //clear any existing messages
 clearMsg(document.getElementById("err"),"");
 clearMsg(document.getElementById("msg"),"");
 var isValidEmail=validate(document.getElementById("sender").
 value,
 document.getElementById("receiver").value);
 if(isValidEmail){
 try {
 showMsg(document.getElementById("msg"),"Sending email...");
 setQueryString();
 httpRequest("POST",_url,true,handleResponse,queryString);
 } catch(errv) {
 alert("Sorry, but we failed to send the email because "+
 "of this error: "+errv.message);
 }

 }

}; //end function

Here is a sample of a querystring from this application encoded for transferal over the Web:

//encodeURIComponent() function converts '@' to '%40'
fromAddr=brucewperry%40gmail.com&toAddr=brucewperry%40gmail.com&subj=
hello&emessage=hello%20there!

Finally, httpRequest() sends the POST request to our server component, which ultimately sends the
email. See "Use Your Own Library for XMLHttpRequest" [Hack #3] for an explanation of this method.

Server Snippet

What does our server component look like? Here is a snippet from the Java servlet class that sends
the email:

package com.parkerriver;

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.IOException;

public class NewEmailServlet extends HttpServlet{
 protected void doGet(HttpServletRequest httpServletRequest,
 HttpServletResponse httpServletResponse) throws
 ServletException, IOException {
 doPost(httpServletRequest,httpServletResponse);
 }

 protected void doPost(HttpServletRequest httpServletRequest,
 HttpServletResponse httpServletResponse) throws
 ServletException, IOException {
 String fromAddr = httpServletRequest.getParameter("fromAddr");
 String toAddr = httpServletRequest.getParameter("toAddr");
 String eMsg = httpServletRequest.getParameter("emessage");
 String subj = httpServletRequest.getParameter("subj");
 boolean outcome = false;
 if(check(fromAddr) && check(toAddr) && check(eMsg)){
 EmailBean bean = new EmailBean();
 bean.setFrom(fromAddr);
 bean.setTo(toAddr);
 bean.setSubject(subj);
 bean.setContent(eMsg);
 outcome = bean.sendMessage();
 }
 AjaxUtil.sendXML(httpServletResponse,"<outcome>"+

 outcome+"</outcome>");

 }
 private boolean check(String content) {
 if(content != null && content.length() > 0) {return true;}
 return false;
 }
}

This servlet uses an EmailBean object with various setter or "mutater" methods that build an email.
EmailBean has a sendMessage() method that sends the email and returns true if everything goes
okay (in Java terms, if the method call does not result in a thrown exception). The servlet returns
this value to the Ajax application as a bit of XML in an outcome element.

The EmailBean class uses default values for the SMTP server address and
authentication (username/password) attributes, which are almost always
required when a server component automates email sending.

Hack 41. Find the Browser's Locale Information

Use XMLHttpRequest to find out more specific locale information about a user.

When a user requests a web page, the browser typically sends along some extra data as part of a
request header that indicates the user's preferred language. This information is the value of the
Accept-Language request headerfor example, en_us for the English language as spoken in the United
States, or ko_kr for Korean as spoken in South Korea.

In JavaScript, you can use the navigator.language (or, for Internet Explorer,
navigator.userLanguage) property value to pick up this internationalization data. This hack grabs this
information for display to the user, then gives the user the option of displaying a more specific
translation of the [language code]_[country code] term, as in English_United States.

This hack uses the following sources:
http://www.unicode.org/unicode/onlinedat/languages.html for the language
codes, and http://www.iso.org/iso/en/prods-services/iso3166ma/02iso-3166-
code-lists/index.html for country codes.

Figure 4-23 shows the hack in the Safari browser.

Figure 4-23. An English language preference

http://www.unicode.org/unicode/onlinedat/languages.html
http://www.iso.org/iso/en/prods-services/iso3166ma/02iso-3166-

When a user loads the page into the browser, it displays the value of that user's language preference
in the form [two-letter language code] or [two-letter language code]_[two-letter country
code]. The user then clicks the "Define preference" button, and a translation of the code(s) appears,
without a page refresh. XMLHttpRequest provides a country and/or language code to a server
component, which checks the sources referenced in the previous note and returns a translation of the
code or codes (e.g., Korean instead of ko).

I found that changing my language preferences in the browser (from, say,
en_us to es_es) did not cause the value of navigator.language or
navigator.userLanguage to change. This property value appears to be a rather
static value associated with the browser. To get around this, applications can
use a server component that reads the Accept-Language request header
directly. Accept-Language typically contains a list of any language codes that
the user has set in the browser.

Here is a subset of the web page code for this hack:

<head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <script type="text/javascript" src="js/hacks4_13.js"></script>
 <script type="text/javascript" src="js/http_request.js"></script>
 <link rel="stylesheet" type="text/css" href="/css/hacks.css" />
 <title>Where do you come from?</title>
</head>
<body>
<h3>Welcome</h3>
<p>
 Your language preferences have been identified as:

</p>
<form action="javascript:void%200">
 <p>
 <button id="b1" type="button">Define preference</button>
 </p>
</form>
<p>

</p>

hacks4_13.js contains the JavaScript for this hack. The request object is powered by http_request.js
(see "Use Your Own Library for XMLHttpRequest" [Hack #3]).

The Interpreter

Here is the code in hacks4_13.js. It reads the navigator.language/navigator.userLanguage value

and, after parsing the value, sends it to a server component:

var lgn="";
window.onload=function(){
 if(navigator.language) {
 lgn=navigator.language;
 } else if(navigator.userLanguage) {
 lgn=navigator.userLanguage;
 }
 if(lgn.length >= 2){
 displayLanguage(lgn);
 } else {
 showMsg(document.getElementById("msg"),
 "Sorry, no language information is available "+
 "from your browser.");
 }
 var b1 = document.getElementById("b1");
 if(b1) {
 //Extract the language and country codes
 //The value may be a language code only
 //as in "es" for Spanish
 b1.onclick=function(){
 var lg = lgn.substring(0,2);
 var ct = lgn.length > 2 ? lgn.substring(3) : "";
 var _url="http://www.parkerriver.com/s/lang?lang="+
 lg+"&country="+ct;
 httpRequest("GET",_url,true,handleResponse);
 }
 }
}
function showMsg(_id,txt){
 if(_id && txt){_id.innerHTML=txt;}
}
function clearMsg(_id){
 if(_id){_id.innerHTML="";}
}
function displayLanguage(_code){
 showMsg(document.getElementById("_country"),
 ""+_code+"");
}
function handleResponse(){
 try{
 if(request.readyState == 4){
 if(request.status == 200){
 var resp = request.responseXML;
 //Pull out the content of the country
 //and language elements and display them
 //to the user
 if(resp != null){
 var intl=resp.getElementsByTagName("intl")[0];
 var c= intl.getElementsByTagName("country")[0];
 var l= intl.getElementsByTagName("language")[0];

 var lval="";
 var cval="";

 if(l.hasChildNodes()){lval=l.childNodes[0].nodeValue;}
 if(c.hasChildNodes()){cval=c.childNodes[0].nodeValue;}

 if(lval && cval) {
 showMsg(document.getElementById("msg"),
 ""+lval+
 "_"+cval+"");
 } else if (lval && ! cval) {
 showMsg(document.getElementById("msg"),
 ""+lval+"");
 } else if (! lval && cval){
 showMsg(document.getElementById("msg"),
 ""+cval+"");
 }
 } else {
 showMsg(document.
 getElementById("msg"),
 "The language info could not be accessed "+
 "at this time.");
 }
 } else {
 //snipped...See Hack #3
}

When the application uses the request object to connect with the server component, the component
sends back some XML. Here is a sample XML return value:

<intl>
<country>KOREA, REPUBLIC OF</country>
<language>Korean</language>
</intl>

The handleResponse() function acquires the XML with var resp = request.responseXML. The function
then parses the XML, displaying these values to the user.

Hacking the Hack

As mentioned earlier, a most likely improved iteration of this hack would use a server component to
read the Accept-Language header directly, rather than depend on the navigator.language property
in JavaScript. For example, you can use a JavaServer Pages (JSP) file that reads the Accept-
Language header, then uses the embedded Ajax code to display the translation as done here.

Hack 42. Create an RSS Feed Reader

Grab and display XML-based RSS news feeds.

Really Simple Syndication (RSS) is an XML-based format for publishing news, blog entries, and other
fast-changing information. Thousands of web sites now provide RSS news feeds as an alternative to
visiting the actual sites in a browser. An RSS feed reader lets you subscribe to various feeds. The
reader periodically (usually not more than once per half hour) grabs the latest RSS file from each
subscribed site, then lets you view those feeds. Some RSS feed readers are built into browsers
(Firefox), others are integrated into mail clients (Opera), and others are entirely web-based.

Because RSS feeds are simply XML files, they're easy for an Ajax application to digest. This hack will
show you how to read an RSS feed from your server, parse the XML data, and format it for the
browser.

Handling RSS feeds is not limited to standalone feed readers. You may want to incorporate RSS data
into other applications, such as web portals. RSS feeds are now used for a variety of data beyond just
news. For example, the U.S. National Weather Service has weather forecasts and warnings available
as RSS feeds (go to http://www.weather.gov/data/current_obs/ for a listing of available weather
feeds).

The following abridged RSS file illustrates the basic structure of an RSS feed:

<?xml version='1.0' encoding='utf-8'?>

<rss version='2.0'
xmlns:dc='http://purl.org/dc/elements/1.1/'
xmlns:itunes='http://www.itunes.com/dtds/podcast-1.0.dtd'>

<channel>
<title>O'Reilly Media, Inc. New Books</title>
<link>http://www.oreilly.com/</link>
<description>O'Reilly's New Books</description>
<copyright>Copyright 2005, O'Reilly Media, Inc.</copyright>
<itunes:author>O'Reilly Media, Inc.</itunes:author>
<itunes:category text='Technology' />
<itunes:explicit>no</itunes:explicit>
<language>en-US</language>
<docs>http://blogs.law.harvard.edu/tech/rss</docs>

<item>
 <title>C in a Nutshell</title>
 <link>http://www.oreilly.com/catalog/cinanut</link>
 <description><![CDATA[Covering the C programming language and C

http://www.weather.gov/data/current_obs/

 runtime library, this book. . .]]>
 </description>
 <author>webmaster@oreillynet.com (Tony Crawford, Peter Prinz)</author>
 <dc:date>2005-12-16T22:51:09-08:00</dc:date>
</item>

<item>
 <title>Run Your Own Web Server Using Linux & Apache</title>
 <link>http://www.oreilly.com/catalog/0975240226</link>
 <description><![CDATA[Learn to install Linux and Apache 2.0 on a
 home or office computer for testing and development, and . . .]]>
 </description>
 <author>webmaster@oreillynet.com (Tony Steidler-Dennison)</author>
 <dc:date>2005-12-15T22:52:17-08:00</dc:date>
</item>

</channel>
</rss>

Most RSS feeds contain a single channel element. In RSS files for news and blogs, the channel usually
contains multiple items (one for each article).

The RSS files our Ajax application reads must reside on the same server, or
within the same domain, as our application itself. For security reasons, most
browsers don't let an application from one domain grab data from another
domain. This makes browsing safer but limits functionality a bit.

A Simple RSS Reader

For our RSS reader, let's assume you've set up some mechanism to grab fresh RSS files periodically
and store them on your server. This can be as simple as setting up a crontab entry on your Linux
server:

0/30 * * * * wget q O /var/www/html/feeds/oreilly_new_titles.rss.xml \\
 http://www.oreillynet.com/pub/feed/29?format=rss2

Figure 4-24 shows the simple user interface of our RSS reader: a pull-down list to select the RSS
feed, and a checkbox to let users select more details for each article displayed.

Figure 4-24. A simple RSS feed reader

Select a news feed, and the matching RSS file is grabbed from the server. The RSS reader extracts
information from the file and builds the HTML for the web page, as shown in Figure 4-25.

Figure 4-25. Displaying RSS feed content

Our RSS feed reader is contained in the files rss.html and rss_parse.js (and the ubiquitous JavaScript
file xhr.js, which provides a browser-neutral XMLHttpRequest object). The first file, shown here,
defines the web page itself:

<HTML>
<HEAD>
<TITLE>O'Reilly RSS Reader</TITLE>

<script language="javascript" src="xhr.js"></script>
<script language="javascript" src="rss_parse.js"></script>

</HEAD>

<BODY>
O'Reilly RSS Reader<p>
<form id="frmRSSParse">

<select id="lbFeeds" onChange="get_rss_feed();">
 <option value="">SELECT A FEED</option>
 <option value="oreilly_news_articles.rss.xml">
 O'Reilly News and Articles
 </option>
 <option value="oreilly_new_titles.rss.xml">
 O'Reilly New Titles
 </option>
 <option value="oreillynet_articles_blogs.rss.xml">
 O'Reilly Network Articles and Weblogs
 </option>
</select>

<input id="cbDetails"
 type=checkbox
 onClick='format_rss_data ("content", last_xml_response);'
>
show details
</form>

<div id="content">

</div>

</BODY>

</HTML>

The web page references rss_parse.js, which defines the three JavaScript functions needed to
implement the RSS reader.

How It Works

A handler is attached to the listbox's onChange event. When the user selects an item from the list, the
get_rss_feed() JavaScript function is called:

<select id="lbFeeds" onChange="get_rss_feed();">

This function grabs the URL of the selected RSS file from the listbox and passes it to the
get_xml_file() function. The second function does the work of retrieving the XML file from the
server. This code shows these functions:

function get_xml_file (url) {
 var httpreq = getHTTPObject();

 //Precondition: must have a URL
 if (url == "") return;

 httpreq.open("GET", url, true);

 httpreq.onreadystatechange = function () {
 if (httpreq.readyState == 4) {
 var content = document.getElementById("content");
 content.innerHTML = "Parsing XML...
";

 last_xml_response = httpreq.responseXML;
 format_rss_data ("content", last_xml_response);
 }
 }

 var content = document.getElementById("content");
 content.innerHTML = "Retrieving XML...
";
 httpreq.send (null);
}

function get_rss_feed () {

 //Get selected RSS feed
 var lbFeeds = document.getElementById("lbFeeds");
 if (lbFeeds.value != "") {
 get_xml_file (lbFeeds.value);
 }

}

The Document object has its own methods for loading an XML file, using the
createDocument and load methods. However, let's use XMLHttpRequest in our
example because this is more "Ajaxy." Either technique works fine, and both
can be made to work (with a little effort) in most of the popular browsers.

The retrieved XML file is stored as a Document object. We pass this object to our third and final
function, format_rss_data(). This is where the Document object is examined and we pull out the
items we need. Each news snippet is enclosed in an item element. For our RSS reader, we want to
extract three pieces of information from each item: the title, the link to the full article, and a brief
description of the article. Here's how it works:

function format_rss_data (divname, response) {
 var html = "";
 var doc = response.documentElement;
 var items = doc.getElementsByTagName('item');

 for (var i=0; i < items.length; i++) {

 var title = items[i].getElementsByTagName('title')[0];
 var link = items[i].getElementsByTagName('link')[0];

 html += "<a href='"
 + link.firstChild.data
 + "'>"
 + title.firstChild.data
 + "
";

 var cbDetails = document.getElementById("cbDetails");
 if (cbDetails.checked) {
 var desc = items[i].getElementsByTagName('description')[0];
 html += ""
 + desc.firstChild.data
 + "<p>";
 }
 }

 var target_div = document.getElementById(divname);
 target_div.innerHTML = html;
}

The format_rss_data() function uses a for loop to iterate over each item element in the RSS
Document object. Using the getElementsByTagName() method, extract the title, link, and description
information, and build the HTML displayed on the web page.

Now save the most recent Document object in the last_xml_response variable. If the user checks (or
unchecks) the "show details" checkbox, you can reformat the current RSS data with another call to
format_rss_data(), and without another request to the server. Figure 4-26 shows the page with
"show details" unchecked. In this view, the descriptions are hidden, and the user is presented with a
simple list of article links.

Figure 4-26. The RSS reader with descriptions hidden

Hacking the Hack

This hack doesn't display all the information for each articleauthor and date information is omitted,
and no general channel information is displayed. If you want to use this hack as a generic way to
include feed information in web pages, you need to expand format_rss_data() to (at least) display
the channel title.

Having the RSS feeds hardcoded into the listbox isn't very flexible, either. You can maintain a list of
RSS feeds on your server (as an XML file, perhaps), but even this may be unwieldy if you monitor
hundreds of feeds. You might consider using a "categories" listbox that populates the "feeds" listbox
instead.

Mark Pruett

Chapter 5. Direct Web Remoting (DWR)for
Java Jocks
Hacks 4349

What if you want to work with Ajax without having to deal with programming the XMLHttpRequest
object? An open source toolkit called Direct Web Remoting (DWR) provides a software layer built on
top of this object, completely insulating web page developers from directly programming the request
object. DWR also allows Java developers to create Java classes, then use the server-side Java objects
from within JavaScript client code (thus the moniker "Web Remoting").

One advantage of DWR is that you can forget about the boilerplate code we have used in other hacks
to get the XMLHTTP and XMLHttpRequest objects working. This framework also includes easy
techniques for populating web page widgets with server data, while largely removing the required
knowledge of Document Object Model programming. The one caveat to using DWR is that you must
use a Java-based server-side solution, because DWR works with Java servlets and objects behind the
scenes.

DWR provides a neat mapping between Java objects and JavaScript code. In other words, you can
set up the logic for your application using Java objects on the server, then call those objects'
methods with JavaScript code when need be. This is called remoting your objects, or making remote
Java method calls with JavaScript objects that are bound to the Java objects on the server. This
chapter's first hack explains the process for setting up DWR and integrating it into a web application.

Hack 43. Integrate DWR into Your Java Web Application

Design your Ajax application around a JavaScript framework bound to Java objects on the
server.

The Direct Web Remoting code comes in the form of an archived or zipped Java Archive (JAR) file,
dwr.jar. The download address is http://www.getahead.ltd.uk/dwr/download.html.

The top-level web page for this open source software is
http://www.getahead.ltd.uk/dwr/. Check out the license details for more
information while you are visiting this page.

To get started with DWR, you must first set it up in your server-side web application. Place the
dwr.jar file in the /WEB-INF/lib directory of your Java web application on the server, then restart or
reload the application.

For those not familiar with Java web applications, they all have a top-level
directory named WEB-INF. Inside WEB-INF are XML configuration files, the
main one being web.xml. WEB-INF also contains a directory named lib, which
encloses code libraries or JAR files that the application depends on, such as
database drivers and helper classes. The dwr.jar file goes in this lib directory.

Configuring the Application

To get DWR going with your JavaScript, you have to declare in web.xml a Java servlet that DWR
uses. Here is the chunk of code that you have to add to web.xml. If web.xml already includes
registered servlets, nest this newly declared servlet in with the existing ones (the same goes for the
servlet-mapping element):

<servlet>
 <servlet-name>dwr-invoker</servlet-name>
 <servlet-class>uk.ltd.getahead.dwr.DWRServlet</servlet-class>
 <init-param>
 <param-name>debug</param-name>
 <param-value>true</param-value>
 </init-param>
</servlet>

<servlet-mapping>

http://www.getahead.ltd.uk/dwr/download.html
http://www.getahead.ltd.uk/dwr/

 <servlet-name>dwr-invoker</servlet-name>
 <url-pattern>/dwr/*</url-pattern>
</servlet-mapping>

You may have to restart the Java web application for the servlet container to
create a new instance of this DWR-related servlet.

You also have to create a simple XML file declaring the Java classes that you want to use from your
client-side JavaScript code. Don't worry, I'll show you how to use the JavaScript objects that are
bound to Java classes shortly! The file is named dwr.xml. Place this XML file in /WEB-INF/:

<dwr>
 <allow>
 <create creator="new" javascript="JsDate">
 <param name="class" value="java.util.Date"/>
 </create>
 <create creator="new" javascript="JsBikeBean">
 <param name="class" value="com.parkerriver.BikeBean"/>
 </create>
 </allow>
</dwr>

This XML states that the client-side JavaScript can use two Java classes remotely. The JavaScript
objects that bind the client-side code remotely to the Java classes are named JsDate and JsBikeBean.
As part of the server-side preparations, you must have already developed the Java class
com.parkerriver.BikeBean and installed it in your application. java.util.Date is part of the Java
software development kit; it's not your own custom class. Date is already available as part of the
Java virtual machine your server component is using.

The BikeBean class file is typically stored in /WEB-INF/classes, as in /WEB-
INF/classes/com/parkerriver/BikeBean.class.

This XML file binds the two JavaScript names to the Date and BikeBean objects, so that these objects
are available to use in your client-side JavaScript. This means that JavaScript code can call all the
public methods of these Java objects. But how is the JavaScript in the local web page connected to
the remote Java instances running on the server? Figure 5-1 shows in general terms the path a
JavaScript method call takes in DWR's form of web remoting.

Figure 5-1. Calling a Java method remotely

The web page that will use DWR contains these script tags, which connect the JavaScript code via
the DWR servlet to the server code:

<script type="text/javascript" src=
 "/[name of web app]/dwr/interface/JsBean.js">
</script>
<script type="text/javascript" src=
 "/[name of web app]/dwr/interface/JsDate.js">
</script>
<script type="text/javascript" src=
 "/[name of web app]/dwr/engine.js"></script>
<script type="text/javascript" src=
 "/[name of web app]/dwr/util.js"></script>

Think back to the simple XML file that we just added to the web application. The first two script tags
reference the JavaScript names we bound to the Java classes that we want to remote: JsBikeBean
and JsDate. The XML file configured certain Java classes to be used with these names in JavaScript
code. Remember the dwr.jar file that we installed in the web application? It contains two JavaScript
libraries, engine.js and util.js. The first of these files is required to use DWR; the second is optional
and contains a bunch of DWR functions that the client-side code can use.

The URL that the script tag uses, such as /parkerriver/dwr/interface/JsBean.js, connects to the
special DWR servlet that we enabled. The servlet in turn makes available to our code the public
methods of the Java classes that we configured in XML. The next few hacks will use these classes and
functions.

Hack 44. Use DWR to Populate a Selection List from a
Java Array

Remotely get an array return value from a Java object and use the data to populate a
selection list.

Sounds awesome, huh? You can take existing Java objects that have methods returning Java arrays,
and use those return values to populate a select list on a web page. Figure 5-2 shows the web page
that we will use in the next few hacks. The page lists some bike manufacturers in a pop-up widget, a
few product codes associated with those companies, and then some date/time values. This hack fills
the first pop-up or select list with its values when the browser loads the page.

Figure 5-2. Dynamically fill a select list with server values

The page imports several JavaScript files using script tags. The first four files allow the application to
use DWR; the last one contains the code for our application. Here is the underlying web page code:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/2000/REC-xhtml1-20000126/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <script type="text/javascript" src=
 "/parkerriver/ajaxhacks/js/hacks5_1.js"></script>
 <script type="text/javascript" src=
 "/parkerriver/dwr/interface/JsBikeBean.js"></script>
 <script type="text/javascript" src=
 "/parkerriver/dwr/interface/JsDate.js"></script>
 <script type="text/javascript" src=
 "/parkerriver/dwr/engine.js"></script>
 <script type="text/javascript" src=
 "/parkerriver/dwr/util.js"></script>
 <title>Bike Information</title>
</head>
<body>

<h3>Our list of Bike Designers</h3>
<form action="javascript:void%200">
 <p>
 Bikes: <select id="bikes"></select>
 </p>
 <p>
 <button type="button" name="selection" value="Select">Select</button>
 </p>
</form>
<h3>Product codes</h3>
<div id="prodCodes"></div>
<h4>The time now</h4>
<div id="showDates"></div>
</body>
</html>

To use one of these bound JavaScript objects in your code, you have to set up the server component
in the way the previous hack described, then use a script tag with the following syntax:

<script type="text/javascript" src=
 "/[name-of-your-web-app]/dwr/interface/JsBikeBean.js"></script>

Substitute [name-of-your-web-app] with the name of your web application, or context root in Java
web parlance.

In addition, every Ajax application using DWR has to import the engine.js library, using similar
syntax:

<script type="text/javascript" src=
 "/[name-of-your-web-app]/dwr/engine.js"></script>

util.js is optional, but it contains a lot of useful JavaScript functions (a few of which the upcoming
hacks use).

Getting an Array from the Server

This hack's code populates the select list using a Java array value it receives from a server
component. The component is a Java servlet that this chapter's first hack installed, and the array
source is an instance of a Java object we have running on the server. The array derives from the
BikeBean class's getDesignerInfo() method. This method returns all the keys, such as "Trek" or
"Cannondale," contained in a HashMap (a Java object that represents a hash table or associative
array) named bikeInfo. Here is the code for the BikeBean class:

package com.parkerriver;

import java.util.Map;
import java.util.HashMap;

import java.util.Collections;

public class BikeBean {
 private static Map BIKE_INFO;
 static {
 BIKE_INFO = Collections.synchronizedMap(new HashMap());
 BIKE_INFO.put("Trek","0001");
 BIKE_INFO.put("Orbea","0002");
 BIKE_INFO.put("Guru","0003");
 BIKE_INFO.put("Giant","0004");
 BIKE_INFO.put("Look","0005");
 BIKE_INFO.put("Specialized","0006");
 BIKE_INFO.put("Cannondale","0007");
 }
 public String[] getDesignerInfo(){
 return (String[])BIKE_INFO.keySet().toArray(new String[]{});
 }

 public static Map getBikeInfo() {
 return BIKE_INFO;
 }
}

This BikeBean object is loaded into and stored in the server's memory (specifically, inside the Java
Virtual Machine that the server is using). How does the JavaScript code running inside a distant
user's browser get access to the Java object's methods? The XML configuration that this chapter's
first hack explained bound a JavaScript name (JsBikeBean) to the BikeBean object. The DWR servlet
and the engine.js file that the web page imports handle the intermediate magic that connects the
browser code to the server code. Here is the JavaScript code in hacks5_1.js that gives the select list
its values:

window.onload=function(){
 setupSelect();
 setupMap();
 setupDates();};

function setupSelect(){
 JsBikeBean.getDesignerInfo(populate);
}
function populate(list){
 DWRUtil.removeAllOptions("bikes");
 DWRUtil.addOptions("bikes", list);
}
/* CODE SNIPPED FOR:
setupMap();
setupDates();
*/

When the browser finishes loading the web page, the window.onload code calls three different
functions. This hack deals with setupSelect(); upcoming hacks feature the other two functions.

setupSelect() remotely calls (via JsBikeBean) the getdesignerInfo() method. This method returns
an array of strings that represent the names of some bike manufacturers. These names will end up
as the labels for a select list (see Figure 5-2).

The DWR servlet returns Java values in JSON format, so a HashMap in Java is
returned as:

{ "Trek":"0001","Specialized":"0005",...}

DWR uses a \xd4 callback design pattern as one of the options for initiating its remote calls. When
the code calls Java methods from JavaScript, an additional parameter representing a callback
function is added at the end of the method's parameter list (or is the only parameter, for methods
that are not defined in Java as having any parameters).

The only parameter to getdesignerInfo() is the name of a function that will handle the Java
method's return value (an array). The callback function's name is populate(), and its parameter is
the returned array, here represented by the list variable. This code can also pass in a function
literal instead of a function name to geTDesignerInfo(), as in:

JsBikeBean.getDesignerInfo(
 function(list){
 DWRUtil.removeAllOptions("bikes");
 DWRUtil.addOptions("bikes", list);
 }
);

The code is in essence saying, "I'm calling this Java method remotely, and here is the JavaScript
function that will handle the return value."

You can also call DWR remote methods using a different syntax involving
options to specify a timeout period and an error handler:

JsBikeBean.getDesignerInfo({
 callback: function(list){
 DWRUtil.removeAllOptions("bikes");
 DWRUtil.addOptions("bikes", list);
 },
 timeout:5000,
 errorHandler:myErrHandler
});

Eccentric Utility

The rest of the code takes this array of bike-maker names and dynamically fills a select list with
them, using a couple of DWR's utility functions. The web page made these functions available by
importing util.js using a script tag, as this hack explained earlier.

DWRUtil.removeAllOptions() takes the id of a select list as a parameter, then removes all the
options (a logical first step before you change the options in the list). The web page's select list looks
like:

<select id="bikes"></select>

DWRUtil.addOptions(), on the other hand, takes the id of a select list as its first parameter and an
array as its second parameter. The array members then become the options or labels in the select
list. You might recall that the list variable contains the array returned by the Java method to which
our JavaScript code is bound. Again, our code looks like:

DWRUtil.addOptions("bikes", list);

If you are a Java web developer, this is cool stuff. The next hack populates a select list from a Java
Map type such as java.util.HashMap.

Hack 45. Use DWR to Create a Selection List from a Java
Map

Create a selection list with the Map keys as option values and the Map values as the
option content.

This hack creates a pop-up selection list on a web page from a Java Map. The list is made up of a
select tag with one or more nested option tags. Each option can have a value attribute, which is
what the web application sends to the server instead of the content of the option. For example, the
application sends uk or fr in the following cases, not United Kingdom or France:

<select>
 <option value="uk">United Kingdom</option>
 <option value="fr">France</option>
</select>

This hack uses DWR to generate the pop-up from a Java Map, using Map keys as the values of the
option value attributes. The hack uses the same web page as that depicted in Figure 5-2, but it
generates the select element in a slightly different manner. Here are the important parts of the web
page's underlying HTML code, including the script tags that import various JavaScript libraries and
the select tag itself:

<head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <script type="text/javascript" src=
 "/parkerriver/ajaxhacks/js/hacks5_3.js"></script>
 <script type="text/javascript" src=
 "/parkerriver/dwr/interface/JsBikeBean.js"></script>
 <script type="text/javascript" src=
 "/parkerriver/dwr/engine.js"></script>
 <script type="text/javascript" src="/parkerriver/dwr/util.js"></script>
 <title>Bike Information</title>
</head>
<!snipped... -->
<p>
 Bikes: <select id="bikes"></select>
</p>

engine.js is a required JavaScript code library for web pages that use the DWR framework.
JsBikeBean.js enables our code to make remote calls to BikeBean.java. Importing util.js is optional; I
do it here because we're using one of its functions.

Code Ahead

Here is the code in hacks5_3.js for making a remote Java call and loading up the select list:

window.onload=function(){ JsBikeBean.getBikeInfo(populate);};

function populate(map){
 DWRUtil.removeAllOptions("bikes");
 addOptionValues("bikes", map);
}
function addOptionValues(_id,_map){
 var sel = document.getElementById(_id);
 var opt = null;
 if(sel != null){
 for(var prop in _map) {
 opt=document.createElement("option");
 opt.setAttribute("value",_map[prop]);
 opt.appendChild(document.createTextNode(prop));
 sel.appendChild(opt);
 }
 }
}

Ponder window.onload, which points to the function that the browser's JavaScript runtime calls when
the web page is finished loading. This code makes the remote Java method call, passing the return
value to a function named populate():

JsBikeBean.getBikeInfo(populate);

populate() in turn removes any existing options from the select element and then creates new
option elements by calling addOptionValues(). The latter function uses Document Object Model
programming to create new option elements and add them to the existing select element. The _map
variable refers to the JavaScript object to which the server component's return value was converted.

In the for/in loop, prop represents the names of each of the original Map keys, and _map[prop]
returns the values of these elements. In the code, _map is a JavaScript object, as in:

{"Trek":"0006"}

Using the syntax _map["Trek"] returns that property value, as in 0006.

The options that this code creates look like <option value="0006">Trek</option>. As described earlier
in this hack, when the user makes a selection from the pop-up list, the browser sends the value of
that option's value attribute (here, 0006) to the server.

This hack represents a handy technique for converting hash table values running as Java objects to
select options. "Display the Keys/Values from a Java HashMap on a Web Page" [Hack #46] shows

the keys and values from a Java Map type as text on a web page.

Hack 46. Display the Keys/Values from a Java HashMap
on a Web Page

Connect to a Java object running on the server and use JavaScript to display a HashMap's
contents on a web page.

This hack takes a java.util.HashMap containing the names of bike manufacturers keyed to their
product codes and displays this information on a web page. The earlier hacks in this chapter
introduced the reader to this web page, which Figure 5-2 shows.

A java.util.HashMap in Java is a hash table structure that contains keys
pointing to values. Its JavaScript representation could look like {firstname:
"Bruce", lastname:"Perry"}.

The place on the web page where we want to display these values looks like this in the HTML code:

<h3>Product codes</h3>
<div id="prodCodes"></div>

This code represents a subheading and a div element with the id prodCodes. When the web page
loads, the code asks the server component for the contents of a Java HashMap. The code displays the
Map keys followed by "::" then the Map values, as in "Specialized :: 0006," with a little styling added to
boot. The server component and web page are set up and configured just as in "Integrate DWR into
Your Java Web Application" [Hack #43]. To refresh your memory, here are the script tags that the
web page uses, so that the application can use DWR and hacks5_1.js, which contains our own
JavaScript:

<script type="text/javascript"
 src="/parkerriver/ajaxhacks/js/hacks5_1.js"></script>
<script type="text/javascript" src="/parkerriver/dwr/interface/JsBikeBean.js">
 </script>
<script type="text/javascript" src="/parkerriver/dwr/interface/JsDate.js"></script>
<script type="text/javascript" src="/parkerriver/dwr/engine.js"></script>
<script type="text/javascript" src="/parkerriver/dwr/util.js"></script>

The code from hacks5_1.js calls a JsBikeBean method to display the converted HashMap's values
inside the div element. Here is the Java code to which the bound JavaScript object JsBikeBean has
access:

private static Map BIKE_INFO;
 static {
 BIKE_INFO = Collections.synchronizedMap(new HashMap());
 BIKE_INFO.put("Trek","0001");
 BIKE_INFO.put("Orbea","0002");
 BIKE_INFO.put("Guru","0003");
 BIKE_INFO.put("Giant","0004");
 BIKE_INFO.put("Look","0005");
 BIKE_INFO.put("Specialized","0006");
 BIKE_INFO.put("Cannondale","0007");
 }

 public static Map getBikeInfo() {
 return BIKE_INFO;
 }

The getBikeInfo() method simply returns the Map with all these values.

A comprehensive real-world application might return a Map derived from an
underlying database. Also, Map is the interface implemented by HashMap, so a
HashMap is also a Map type in Java.

Traveling at the speed of light from the server to the browser code, here is the web page's underlying
JavaScript:

//This method is called by the window.onload event handler
function setupMap(){
 JsBikeBean.getBikeInfo(setProdCodes);
}
//"jsHashmap" is the JS object representation of a HashMap
function setProdCodes(jsHashmap){
 var div = document.getElementById("prodCodes");
 //remove old messages
 div.innerHTML="";
 div.style.color="purple";
 div.style.fontSize="0.9em";
 var tmpText;
 for(var prop in jsHashmap) {
 tmpText = prop + " :: "+ jsHashmap[prop];
 div.appendChild(document.createTextNode(tmpText));
 div.appendChild(document.createElement("br"));
 }
}

getBikeInfo() returns the HashMap value and passes it as the parameter to the setProdCodes()
function:

JsBean.getBikeInfo(setProdCodes);

...
function setProdCodes(jsHashmap){...}

setProdCodes() represents the callback mechanism that DWR uses to exchange data between the
server's return values and the web page's code.

The JavaScript code passes a callback function name as a parameter to the
Java method. Make sure to leave out the parentheses when calling DWR-
related methods in this manner. In other words, don't use:

JsBean.getBikeInfo(setProdCodes());

The HashMap values that originated on the server manifest as the callback function's parameter. The
jsHashmap parameter in setProdCodes(jsHashmap) contains the bike-maker names as keys and the
product codes as values. The code gets a reference to the div within which this information will be
displayed, then specifies the font size and color of the text:

div.style.color="purple";
div.style.fontSize="0.9em";

The DWR framework does a lot of useful work for a script and an Ajax developer. The framework
returns the hash table value in JSON format [Hack #7] as a JavaScript object.

The DWR framework returns a Java HashMap, for example, as:

{"Trek":"0001","Specialized":"0005",...}

As a result, the code can easily display the keys and values of the object using a for/in loop:

for(var prop in jsHashmap) {
 tmpText = prop + " :: "+ jsHashmap[prop];
 div.appendChild(document.createTextNode(tmpText));
 div.appendChild(document.createElement("br"));
}

The code writes the bike-maker names and product codes by displaying the key and value followed
by a line break (br) tag:

/* i.e., jsHashmap["Trek"]returns "0001" */
tmpText = prop + " :: "+ jsHashmap[prop];
div.appendChild(document.createTextNode(tmpText));

div.appendChild(document.createElement("br"));

tmpText contains the line of text that the web page displays, as in "Trek :: 0001." During each
iteration of the for/in loop, the code writes out a separate line representing a different bike company
and product code.

"Use DWR to Populate an Ordered List from a Java Array" [Hack #47] dynamically generates an
ordered or unordered list from Java values on the server.

Hack 47. Use DWR to Populate an Ordered List from a
Java Array

Use a framework to dynamically populate a web page widget from values derived from a
Java object.

This hack automatically (you might say automagically) generates an ordered or unordered list using
server content, such as a list of high-end bike makers. A typical list on a web page is hardcoded into
the web page's HTML code. It looks like a series of bullets or numbers, each accompanied by a label.
These list types are fine for content that never (or hardly ever) changes. However, some lists must
be dynamically generated from a server object, based on persistent information such as that
contained in a database. For example, think of a bike shop that is constantly adding new products to
its online store, and/or changing product attributes.

A dynamically generated list is necessary only for persistent information that is
updated frequently.

The web page code in this hack derives its content by calling a Java method via Direct Web
Remoting, which is designed to bind JavaScript objects to Java objects running on the server.
"Integrate DWR into Your Java Web Application" [Hack #43] sets up and configures the Java
application on the server end, which is the first step to running this hack.

This hack generates an ordered list on the same web page other hacks in this chapter have used.
This is an ol element that contains a numbered list of bike makers. We include the option to generate
an unordered list (a ul element) containing bullets to the left of the labels. When the web page loads,
its underlying code automatically fetches an array of bike-maker names from a server and generates
the list. Figure 5-3 shows what the web page looks like.

Figure 5-3. A list of bike makers

The web page imports all of the necessary JavaScript files with script tags, and includes the list
within a div tag with id orlist:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/2000/REC-xhtml1-20000126/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <script type="text/javascript" src=
 "/parkerriver/ajaxhacks/js/hacks5_1.js"></script>
 <script type="text/javascript" src=
 "/parkerriver/dwr/interface/JsBikeBean.js"></script>
 <script type="text/javascript" src=
 "/parkerriver/dwr/interface/JsDate.js"></script>
 <script type="text/javascript" src=
 "/parkerriver/dwr/engine.js"></script>
 <script type="text/javascript" src=
 "/parkerriver/dwr/util.js"></script>
 <title>Bike Information</title>
</head>
<body>
<!SNIPPED -->
<p><input id="hid" type="hidden" value="ordered" /></p>
<!SNIPPED -->
<div id="orlist"></div>
<!-- ... -->
</body>
</html>

hacks5_1.js includes our custom code, which I'll show in a moment. All the other imported JavaScript

files are DWR-related. engine.js is required if your code is using the DWR framework; util.js is an
optional library of utility functions, one of which is used in this hack. JsBikeBean is a JavaScript class
that is bound to a Java object.

Here is the hacks5_1.js code:

window.onload=function(){ callSetups()};

function callSetups(){
 setupSelect();
 setupMap();
 setupList(document.getElementById("hid").value);
 setupDates();
}
function setupList(typ){
 JsBikeBean.getDesignerInfo(function(list) {
 var div = document.getElementById("orlist");
 var el = null;
 if(div != null){
 //remove any existing lists
 div.innerHTML="";
 if(typ.indexOf("un") == -1) {
 //create an ordered list
 el=document.createElement("ol");
 } else {
 //create an unordered list
 el=document.createElement("ul");
 }
 el.setAttribute("id","servlist");
 div.appendChild(el);
 //create li elements from server information
 DWRUtil.addOptions("servlist", list);
 }
 });
}
//Rest of code snipped...

One salient aspect is that the code does not require either XMLHttpRequest or our custom library for
using the request object, http_request.js (see "Use Your Own Library for XMLHttpRequest" [Hack
#3]). The DWR framework takes care of its remote binding between JavaScript and Java.

An event handler linked to window.onload calls a setupList() function. setupList() has a string
specifying "ordered" or "unordered" as a parameter. The code gets this value from a hidden element
on the web page, so that a web page designer or author can specify the type of list. Inside
setupList(), the code calls the Java method getdesignerInfo(), via its client-side proxy
JsBikeBean. This method returns an array of bike-maker names.

The way DWR works when remotely calling Java methods is that a parameter representing a function
for handling the Java return value is added to the method call, as in:

JsBikeBean.callFoo(function(returnValue){//handle callFoo return value})

This approach, used in the web page code, handles the return value with a function literal. You can,
alternatively, use JsBikeBean.callFoo(myFunc) and then define myFunc(returnVal) somewhere. In
this case, the framework passes the Java method return value to this handler function as its
parameter.

In our code, the function literal that handles the getDesignerInfo() return value looks like this:

function(list) {
 var div = document.getElementById("orlist");
 var el = null;
 if(div != null){
 //remove any existing lists
 div.innerHTML="";
 /* The function literal has access to the
 type parameter of the outer function; typ
 can be "ordered" or "unordered" */
 if(typ.indexOf("un") == -1) {
 //create an ordered list
 el=document.createElement("ol");
 } else {
 //create an unordered list
 el=document.createElement("ul");
 }
 el.setAttribute("id","servlist");
 div.appendChild(el);
 //create li elements from server information
 DWRUtil.addOptions("servlist", list);
 }
}

list is the array returned from the server, which looks like ["value1","value2"]. First the code
determines whether to create an ordered or unordered list. The code then appends the new element
with id servlist as a child within an existing div element. Finally, the function uses a DWR utility
function to generate the new list:

DWRUtil.addOptions("servlist", list);

Figure 5-4 shows what the browser looks like after generating an unordered list.

Figure 5-4. Creating an unordered list from remote Java

The content at the bottom of Figure 5-4 relates to calling a built-in Java object
using DWR. "Call a Built-in Java Object from JavaScript Using DWR" [Hack #49]
covers this mechanism.

The addOptions() function takes the id of the list as the first argument, and the array of values as
the second. If the code has to remove existing options from a list first, one option is to use
DWRUtil.removeOptions("servlist").

Hack 48. Access a Custom Java Object with JavaScript

Receive a serialized Java object via Ajax, then use that object with JavaScript.

The programming model for a number of Java applications involves generating JavaBeans that
represent data. A JavaBean is an object representation of a concrete thing like a bicycle, with its
wheels, pedals, seat, chain rings, and other components as object properties. The purpose of a
JavaBean is to represent these concrete entities for a software program that accomplishes a set of
practical tasks involving the entity data type, such as an e-commerce site that sells bikes. Therefore,
it is natural that some Ajax applications will receive data from a server component in the form of
JavaBeans.

This hack uses the DWR framework to access a JavaScript representation of a Java object from the
server. The hack then displays the object on a web page.

The Big Set-up

To use DWR with Ajax, you have to set it up on the server first. "Integrate DWR into Your Java Web
Application" [Hack #43] describes this process in detail, so I won't repeat it here, except to show this
hack's XML configuration file. On the server end, this file must be stored in /WEB-INF/. The file gives
DWR its instructions for creating an instance of the Java class that your application calls remotely
from JavaScript:

<dwr>
 <allow>
 <create creator="new" javascript="JsBikeJavaBean">
 <param name="class" value="com.parkerriver.BikeJavaBean"/>
 </create>
 </allow>
</dwr>

As specified in this configuration file, the JavaScript name your code uses for the remote method call
is JsBikeJavaBean. Figure 5-5 shows the web page when it's first requested. The underlying code
requests a serialized version of the BikeJavaBean object when the web page is first loaded. It then
displays this object as a string in an alert window.

Figure 5-5. Voilà, a serialized Java object

Here is the code for the BikeJavaBean class, for which JsBikeJavaBean is remoted:

package com.parkerriver;

import java.util.Map;
import java.util.HashMap;
import org.json.JSONObject;

public class BikeJavaBean {
 private Map bikeInfo;

 public BikeJavaBean(Map bikeInfo) {
 this.bikeInfo = bikeInfo;
 }

 public BikeJavaBean() {
 bikeInfo = Collections.synchronizedMap(new HashMap());
 bikeInfo.put("Trek","0001");
 bikeInfo.put("Orbea","0002");
 bikeInfo.put("Guru","0003");
 bikeInfo.put("Giant","0004");
 bikeInfo.put("Look","0005");
 bikeInfo.put("Specialized","0006");
 bikeInfo.put("Cannondale","0007");
 }

 public String[] getbikeMakers(){
 return (String[])bikeInfo.keySet().
 toArray(new String[]{});
 }

 public Map getBikeInfo() {
 return bikeInfo;
 }

 public String toJSON(){
 /* There are different ways to serialize a Java object
 using a JSONObject constructor; here we are constructing
 a JSONObject using the Java object's HashMap */
 JSONObject jo = new JSONObject(getBikeInfo());
 return jo.toString(4);
 }
}

This is an object that contains a hash table structure involving the names of bike makers keyed to
some imaginary product codes. Our JavaScript object named JsBikeJavaBean (check out the earlier
configuration) is bound to this Java object. Pay special attention to the toJSON() method. This is the
method that our Ajax code will call to access a serialized version of the JavaBean.

The code uses a JSONObject type, which derives from the Java API for JavaScript Object Notation.
The Java API for JSON offers Java classes that make it easier to return JSON-formatted values to
Ajax applications [Hack #7]. We have bundled this API and related classes in with the rest of our
server-side Java classes.

The purpose of returning JSON-formatted values to Ajax is that they can easily be converted to
JavaScript objects, which often makes it easier for Ajax to work with the data (see
http:///www.json.org).

The bean's code creates a JSONObject by passing into the JSONObject's constructor the bean's
HashMap of bike-maker data. This code essentially wraps the bean's data inside this special object:

JSONObject jo = new JSONObject(getBikeInfo());
return jo.toString(4);

The code then calls the JSONObject's toString() method, which returns the string version of the
bike-maker names and product codes that show up in the browser alert window.

In the programming world, representing an instance of an object in a different
format while preserving its internal state or property values is sometimes called
marshalling. So, in this case, we're marshalling a Java object into JSON format.
Going the other waysay, from XML back into a Java objectis called
unmarshalling.

Here is the HTML code for the web page. As usual, the key parts of this page are the script tags that
import the necessary JavaScript libraries:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/2000/REC-xhtml1-20000126/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <script type="text/javascript" src=
 "/parkerriver/ajaxhacks/js/hacks5_5.js"></script>
 <script type="text/javascript" src=

http:///www.json.org

 "/parkerriver/dwr/interface/JsBikeJavaBean.js"></script>
 <script type="text/javascript" src=
 "/parkerriver/dwr/engine.js"></script>
 <script type="text/javascript" src=
 "/parkerriver/dwr/util.js"></script>
 <title>Bike Information</title>
</head>
<body>
<h3>Our list of Bike Designers</h3>
<div id="bean"></div>
</body>
</html>

The two highlighted script tags import the JavaScript libraries that are required to use DWR:
JsBikeJavaBean.js, which in our case binds a JavaScript object of that name to the JavaBean running
on the server; and engine.js, which is the framework code. hacks5_5.js represents the code for this
hack, and util.js is an optional library that contains several useful functions.

When the user dismisses the alert window, the web page's code uses the returned JavaBean object
(in JSON format) to display the object's data on the page. Figure 5-6 shows this page.

Figure 5-6. Displaying a serialized JavaBean

You are probably curious by now what the code in hacks5_5.js does. How does the web page code

display the JavaBean information that the server component returns? How does the web page make
the request in the first place? Let's take a look:

window.onload=function(){
 JsBikeJavaBean.toJSON(function(javaStr){
 alert(javaStr);
 var div = document.getElementById("bean");
 //remove old content
 div.innerHTML="";
 //convert the return value to a Java object
 var javaObj = new Function("return "+javaStr)();
 var innerHt="<p>Property names and product codes:</p>";

 for(var propName in javaObj) {
 innerHt += "<p>";
 innerHt += "";
 innerHt += propName;
 innerHt += " : ";
 innerHt += javaObj[propName];
 innerHt += "</p>";
 }
 div.innerHTML=innerHt;
 });
};

The framework takes care of making the HTTP request, so the code does not contain any references
to XMLHttpRequest or the httpRequest() function you have seen in other hacks. The
JsBikeJavaBean.toJSON() function is a remote method call that returns the serialized (or JSONized)
JavaBean. DWR uses the callback mechanism, in which the argument to the remote method is a
function that handles the server's return value. That function, in turn, has the return value as its lone
argument. Our code uses a function literal, in which the entire function definition is passed in to the
remote method call.

First, an alert window shows the returned string. The code then converts the JSON-formatted
string into a JavaScript object using a special technique.

"Receive Data in JSON Format" [Hack #7] describes this technique, a line of
code that makes JavaScript interpret the JSON-formatted string as an object.

In the code, the variable javaObj now represents a plain old JavaScript object that the code easily
explores with a for/in loop. This loop builds a string, which displays the object's values inside a div
element:

for(var propName in javaObj) {
 innerHt += "<p>";
 innerHt += "";
 innerHt += propName;
 innerHt += " : ";

 innerHt += javaObj[propName];
 innerHt += "</p>";
}
div.innerHTML=innerHt;

Hacks like this can easily integrate existing JavaBeans that various server components might use.
Using the Java API for JSON is just a matter of downloading and compiling the source code for
objects such as JSONObject and JSONArray, which you can find at
http://www.crockford.com/JSON/java/.

http://www.crockford.com/JSON/java/

Hack 49. Call a Built-in Java Object from JavaScript Using
DWR

Extend your code's reach by calling built-in Java objects remotely.

What if you had to read a file like a log on a server from a JavaScript object on the client browser?
You might want to use the java.io.FileReader class on the server. (This class is part of the Java 2
Standard Editiona fancy way of saying that FileReader is built into Java but not JavaScript.) The
DWR framework allows you to easily call standard Java methods from your JavaScript. This hack
displays some date information on a web page. The data derives from remote method calls using the
java.util.Date object.

JavaScript has a robust Date object and several associated methods, which you
would use in most real-world applications that display dates on a web page. It's
still nice to know, from at least a hack writer's perspective, that a great variety
of standard Java objects and their methods are available from JavaScript. At
the very least, you can adapt these techniques to several other similar
situations.

The code in this hack displays the current date and time, and compares this data to the Greenwich
mean time (GMT) date and time. Figure 5-4 in "Use DWR to Populate an Ordered List from a Java
Array" [Hack #47] shows what the Date information looks like on a web page.

Setting up this code involves a little server configuration, as this chapter's first hack explained. (If
you're still setting up DWR on the server, check back to "Integrate DWR into Your Java Web
Application" [Hack #43] for a summary of the required steps.) Here is the configuration file to place
on the server:

<dwr>
 <allow>
 <create creator="new" javascript="JsDate">
 <param name="class" value="java.util.Date"/>
 </create>
 </allow>
</dwr>

This XML file binds the JavaScript name JsDate to a corresponding Java Date object. In a Java web
application, this XML file belongs in /WEB-INF. Make sure dwr.jar is also in /WEB-INF/lib.

The next step on the client side is to import all of the necessary JavaScript libraries into the web page

that is calling the Java object remotely:

<head>
 <script type="text/javascript" src=
 "/parkerriver/ajaxhacks/js/hacks5_1.js"></script>
 <script type="text/javascript" src=
 "/parkerriver/dwr/interface/JsDate.js"></script>
 <script type="text/javascript" src=
 "/parkerriver/dwr/engine.js"></script>
 <script type="text/javascript" src=
 "/parkerriver/dwr/util.js"></script>
 <title>Bike Information</title>
</head>

The first imported script, hacks5_1.js, includes the code for our application. The second (highlighted)
script tag involves the JsDate object, which DWR binds to the java.util.Date object. We can use
this JavaScript object to call public methods on the Java Date object. The next two imported libraries,
engine.js and util.js, represent a required library for using DWR and an optional utilities library,
respectively.

The hack's web page includes an h3 subheading tag and a div for containing the Date information:

<h4>The time now</h4>
<div id="showDates"></div>

Here is the code for remotely calling the Date object:

window.onload=function(){setupDates();};

function setupDates(){
 var div = document.getElementById("showDates");
 //remove old messages
 div.innerHTML="";
 //define callback function for displaying a local date
 JsDate.toLocaleString(function(dateString){
 div.appendChild(document.createTextNode(
 "Your local date: "+dateString));
 div.appendChild(document.createElement("br"));
 });
 //define callback function for displaying
 //Greenwich Mean Time
 JsDate.toGMTString(
 function(dateString){
 div.appendChild(document.createTextNode(
 "Greenwich Mean Time date: "+
 dateString));
 div.appendChild(document.createElement("br"));});

 JsDate.getTimezoneOffset(
 function(dateString){

 div.appendChild(document.createTextNode(
 "The difference between your time and GMT (in minutes): "+
 dateString));
 });
}

This code displays the date information as part of the window.onload event handler, which the
browser's JavaScript implementation calls when the browser finishes loading the web page.
setupDates() then displays different elements of the current time by calling three Java Date
methods remotely:

toLocaleString() generates a current time and date string, as in Nov 21, 2005 7:58:16 AM.

toGMTString() displays the same kind of string, but in Greenwich mean time.

getTimezoneOffset() displays the number, in minutes, representing the difference between the
user's current local time and GMT. For example, my local time in Massachusetts is 300 minutes,
or 5 hours, behind GMT.

The code uses the JsDate object to remotely call these Java methods. As part of the DWR
mechanism, the lone parameter for these method calls is a function that handles the Java return
values (in these cases, various date/time strings). For example, here is the function that handles the
toLocaleString() return value:

function(dateString){
 div.appendChild(document.createTextNode(
 "Your local date: "+dateString));
 div.appendChild(document.createElement("br"));
}

The dateString parameter represents the actual string returned by remotely calling
java.util.Date.toLocaleString(). The div tag our page uses for displaying this information creates
a new text node representing this string followed by a line break (br) tag.

For information on all the different options for making Java remote method
calls from JavaScript, see the DWR page at
http://www.getahead.ltd.uk/dwr/browser/intro/.

After initially loading the web page, the user can refresh the page, and the date/time strings will
change to reflect the current time (local and GMT).

You could hack the hack by including a Refresh button with an onclick event
handler that updates the date information without refreshing the entire page.

http://www.getahead.ltd.uk/dwr/browser/intro/

Chapter 6. Hack Ajax with the Prototype
and Rico Libraries
Hacks 5054

Prototype is a well-known open source library of JavaScript extensions that gives developers power
tools to use with their Ajax applications. The library provides an alternative to developing and testing
your own XMLHttpRequest library [Hack #3].

The upcoming hacks show how to use major Prototype objects and extensions, such as Ajax.Request,
Ajax.Updater, Class.create(), Object.extend(), PeriodicalExecuter, and a number of extensions
that (at the very least) help reduce typing for JavaScript developers. Prototype includes a lot more
functionality than can be shown in this chapter (such as a powerful Enumeration object and a number
of extensions to JavaScript's string methods); therefore, I recommend that you download the library
and explore its various tools.

Rico is an open source JavaScript library that builds on Prototype. Rico includes built-in Ajax
capabilities and objects that allow developers to add cool special effects and drag-and-drop
capabilities to their applications. Rico "originated as work done in Sabre Airline Solutions to create a
suite of rich Internet components, behaviors, and effects," according to its web site
(http://www.openrico.org).

Prototype is distributed under an MIT-style license, and Rico uses an Apache 2.0 license.

http://www.openrico.org

Hack 50. Use Prototype's Ajax Tools with Your
Application

Use an open source software library to handle XMLHttpRequest.

This hack uses the Prototype library's Ajax.Request object to communicate with a backend server,
rather than our own. The first step in implementing this hack is to download Prototype from
http://prototype.conio.net. (This step may not be necessary; certain frameworks, such as Ruby on
Rails, come bundled with the Prototype library.)

Now import the library via a script tag in the web page:

<script src="js/prototype.js" type="text/javascript"></script>
<script src="js/mylib.js" type="text/javascript"></script>

The second imported file, mylib.js, contains some custom code the hack will use. Let's put both files
in an application directory called js.

This hack requests that the user enter some information in a text field. Then, when the user clicks
outside the field or presses Tab, the application connects with a server component using Prototype's
Ajax.Request object. The hack then displays the server response in the textarea beneath the entry
field as soon as the server returns the call. Figure 6-1 shows what the web page looks like in the
Safari browser.

Figure 6-1. Responding to user interaction with Prototype

http://prototype.conio.net

Figure 6-2 shows what it looks like when the user enters a name in the text field, then clicks
somewhere else on the page. The textarea beneath the text field shows the server name, the posted
data, the version of Prototype we are using, and the value of the X-Requested-With request header.

Prototype includes this header with Ajax requests, which is a nice feature for
when the server component checks whether a request originates from
XMLHttpRequest [Hack #59]. Beware, though, because a determined hacker
can easily include an X-Requested-With header in order to impersonate this
type of request.

Figure 6-2. Connecting to the server using Ajax.Request

Here is the code in mylib.js. It uses various Prototype extensions, including the Ajax.Request object:

window.onload=function(){
 if($("name_info")) {
 $("name_info").onblur=function(){
 if($F("name_info")){
 _url="http://localhost:8080/hacks/proto";
 showInfo(_url);
 }
 }
 }
};
function showInfo(go_url){
 if($("display_area") && go_url){
 var xmlHttp= new Ajax.Request(go_url, {method: "post",
 parameters: Form.serialize(document.forms[0]),
 onComplete:function(){
 if(xmlHttp.responseIsFailure()) {
 var sts = xmlHttp.transport.status ? xmlHttp.
 transport.status : "undefined";

 $("display_area").value=
 "XMlHttpRequest returned response status "+sts;
 document.getElementById("msg").innerHTML=
 "HTTP response and server information; "+
 "response status="+
 xmlHttp.transport.status;
 } else {
 $("display_area").value=xmlHttp.transport.responseText;
 document.getElementById("msg").innerHTML=
 "HTTP response and server information; "+
 "response status="+
 xmlHttp.transport.status;
 }
 }});
 }
}

The code uses window.onload to set up the web page's interactive behavior. The text field's onblur
event handler executes when the keyboard focus enters and then exits the field (when the user
presses Tab or clicks somewhere else on the page).

$("name_info") is a handy Prototype shortcut for
document.getElementById('name_info'). $F("name_info") is another shortcut
for accessing a text field's or another kind of element's value. Its parameter is
either the element's id or an existing element reference, as in:

var n = $("name_info");
//displays the value of the 'name_info' text field
alert($F(n));

The code then uses a Prototype shortcut to determine if the text field has a value. If it does, the code
calls show_info(). $F("name_info") returns the value of the text field, whose id attribute is
name_info.

The URL that the code passes show_info() is the address of our server component. The return value
from this component ends up in the textarea. But how is the URL sent in the first place? We'll look at
that next.

Request Object to Go

Prototype contains an object called Ajax.Request. The code creates this object with the new
JavaScript keyword, then considers the job almost finished. You do not have to deal with the
XMLHttpRequest nuances, except for creating a callback to handle the server response:

var xmlHttp = new Ajax.Request(go_url, {method: "post",

 parameters: Form.serialize(document.forms[0]),
 onComplete:function(){
 if(xmlHttp.responseIsFailure()) {
 var sts = xmlHttp.transport.status ? xmlHttp.
 transport.status : "undefined";
 $("display_area").value=
 "XMlHttpRequest returned response status "+sts;
 document.getElementById("msg").innerHTML=
 "HTTP response and server information; response status="+
 xmlHttp.transport.status;
 } else {
 $("display_area").value=xmlHttp.transport.responseText;
 document.getElementById("msg").innerHTML=
 "HTTP response and server information; response status="+
 xmlHttp.transport.status;
 }
}});

You can also use the syntax function(request){...} (notice that request is the
first callback parameter). For example:

onComplete:function(request){
 $("display_area").value=request.responseText;

The first parameter, go_url, is a variable pointing to the server component location. This seems to
work best with a relative URL format, as in /hacks/pack_ajax, without the protocol and host
information. The method: "post" part is a reminder to hack writers and readers of what kind of HTTP
request the code sends; POST is the default, and this explicit parameter is not actually necessary if
the code is not using GET.

The hack passes the parameters to the POST request using a Prototype method. The following line:

parameters: Form.serialize(document.forms[0])

generates a chunk of data formatted for posting to a server, based on the form elements' current
values (as in name_info=Bruce%20Perry&display_area=&ag=20-29).

The onComplete callback parameters place the response text into the textarea with the code:

onComplete:function(){
 $("display_area").value=xmlHttp.transport.responseText;

The transport property of Ajax.Request returns the underlying XMLHttpRequest object, from which
the code derives the server response in a textual format.

You can get the HTTP status code of the response with
xmlHttp.transport.status.

The code also calls an Ajax.Request method called responseIsFailure() to determine if the request
resulted in a response error. This bit of prototype.js code illustrates what the method is doing:

responseIsSuccess: function() {
 return this.transport.status == undefined
 || this.transport.status == 0
 || (this.transport.status >= 200 && this.transport.status < 300);
},

responseIsFailure: function() {
 return !this.responseIsSuccess();
}

Hack 51. Update an HTML Element's Content from the
Server

Use Prototype's Ajax.Updater object to easily update web page content with server
information.

Prototype comes with its own object that uses a few lines of code to update a subset of a web page
with server data. This hack presents the user with the web page that Figure 6-1 shows, plus a new
Go Updater! button. It is similar to "Use Prototype's Ajax Tools with Your Application" [Hack #50],
except that it uses a different type of Prototype Ajax object to update an HTML element's content in
the web page.

When the user clicks the Go Updater! button, the code uses the Ajax.Updater object to specify that
the textarea should be updated with the text from the server response. Figure 6-3 shows what the
web page looks like after the user clicks the button.

Figure 6-3. Updated content with little programming

The first order of business for this hack is to make sure that the web page imports the prototype.js
library, which you can download from http://prototype.conio.net. Place this file in a common directory
for JavaScript, then use a script tag to import the file into the web page:

<script src="/javascripts/prototype.js" type="text/javascript"></script>
<script src="/javascripts/mylib.js" type="text/javascript"></script>

The second imported library, mylib.js, is where the hack uses the objects and extensions from the
Prototype package.

Here's the web page code that shows the various user interface controls that this hack depends on,
including the Go Updater! button and the textarea that receives server data:

<html>
<head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <script src="/javascripts/prototype.js" type="text/javascript"></script>

http://prototype.conio.net

 <script src="/javascripts/mylib.js" type="text/javascript"></script>
 <title>Using Prototype Ajax</title>
</head>
<body>
<h3>Please enter your name</h3>
<form action="javascript:void%200" method="get">
<p>
Your first & last name: <input type="text" name="name_info" id=
"name_info" size="20" maxlength="25" value="anonymous user">
</p>
<p>
Age group: <select name="ag" id="ag">
<!options part snipped...-->
</select>
</p>
<p>

</p>
<button type="button" id="but1" name="but1">Go Updater!</button>
<p>
<textarea name="display_area" id="display_area" rows="30" cols="30">
</textarea>
</p>
</form>
</body>
</html>

The purpose of the hack is to automatically fill the textarea with backend data at the user's urging,
using just a handful of code lines:

window.onload=function(){
 if($("but1")) {
 $("but1").onclick=function(){
 if($F("name_info")){
 _url="http://localhost:8080/hacks/proto";
 showUpInfo(_url);
 }
 }
 }
};
function showUpInfo(go_url){
 if($("display_area") && go_url){
 var xmlHttp= new Ajax.Updater("display_area",go_url, {
 parameters:Form.serialize(document.forms[0]),
 onComplete:function(request){
 if(xmlHttp.responseIsFailure()) {
 var sts = xmlHttp.transport.status ? xmlHttp.
 transport.status : "undefined";
 $("display_area").value=
 "XMlHttpRequest returned response status "+sts;
 document.getElementById("msg").innerHTML=

 "HTTP response and server information; "+
 "response status="+
 request.status;
 } else {
 $("display_area").value=request.responseText;
 document.getElementById("msg").innerHTML=
 "Server information fetched with Ajax.Updater:"+
 "status="+request.status;
 }
 }
 });
 }
}

When the browser loads the web page (window.onload), the button's onclick event handler points to
the showUpInfo() function. This is the techie way of explaining that when the web page loads, the
JavaScript will define the button's behavior. This behavior includes checking whether the button with
id but1 actually exists (a web page designer could have mistakenly left it out).

The code uses two Prototype extensions: $("but1") is a shortcut for
document.getElementById("but1"), and $F("name_info") returns the value of a
form element with the specified id.

On the Server Side

showUpInfo() creates a new Ajax.Updater object, passes some information into its constructor, and
that's it: the request is on its way. The code didn't have to fuss with XMlHttpRequest because this
object was wrapped and tucked away in the prototype.js file. The Ajax.Updater object is different
from Ajax.Request, which the previous hack deals with, because its first parameter is the id of the
page element that is updated with server data. In this case, the code passes in the id of the
textarea.

Now let's look at what's happening at the server end. This application is running on Ruby on Rails.
The URL http://localhost:8080/hacks/proto (the second parameter inside of Ajax.Updater) posts the
web page's data to an action called proto.

Chapter 7 summarizes Ruby on Rails and describes what an action is.

Here is how the action is defined in Ruby code:

def proto
 if @request.xml_http_request?()
 #en is a hash type in Ruby
 #en["SERVER_SOFTWARE"]returns the vlaue of the

http://localhost:8080/hacks/proto

 #SERVER_SOFTWARE environment variable
 en=@request.env()
 str="Server: "
 str+=en["SERVER_SOFTWARE"].to_s+"\\n"
 str+="Query string: "+en["QUERY_STRING"].to_s+"\\n"
 str+="Raw post data: "+en["RAW_POST_DATA"].to_s+"\\n"
 str+="Prototype version: "+en["HTTP_X_PROTOTYPE_VERSION"].to_s+"\\n"
 str+="X_REQUESTED_WITH header: "+
 en["HTTP_X_REQUESTED_WITH"].to_s +"\\n\\n"
 render :text => str
 end
end

This is a method that gathers environment variable information related to the request, then sends it
back to the requester. An action in Ruby on Rails assumes the same role as a servlet or JSP in Java
(see "Dynamically View Request Information for XMLHttpRequest" [Hack #62]). The proto action is
designed to send this information only if the request originates from XMLHttpRequest, as discussed in
"Find Out Whether Ajax Is Calling in the Request" [Hack #59]. It does not make sense to make this
action available to a typical browser request because its return value is meant only for fine-grained
web page updates.

Prototype requests using Ajax include a request header, X_Requested_With,
with the value XMLHttpRequest.

Checking for Errors

The code displays an error message if the HTTP response involves status codes such as 404 (Not
Found), 500 (Server Error), or 503 (Service Unavailable):

onComplete:function(request){
 if(xmlHttp.responseIsFailure()) {
 var sts = xmlHttp.transport.status ? xmlHttp.
 transport.status : "undefined";
 $("display_area").value=
 "XMlHttpRequest returned response status "+sts;
 document.getElementById("msg").innerHTML=
 "HTTP response and server information; response status="+
 request.status;
 } else {//...continued

Hack 52. Create Observers for Web Page Fields

Launch code that monitors changes in a web page field.

This hack sets up a textarea to receive a steady supply of timestamps from a server. The web page
displays these dates one after another, every 10 seconds. Nothing else changes on the web page as
the responses come in, because a Prototype object makes the requests in the background without
disrupting the user's view of the page.

Another piece of code monitors that textarea at a slightly longer interval. If the code detects a
change in the textarea's value, it displays a message that acts as a kind of log on the screen. To stop
the monitoringa good idea before getting up from the computer and embarking on a world tourthe
user can press the Pause Monitor button. Figure 6-4 shows what this hack's web page looks like in
Firefox 1.5.

Figure 6-4. Observing Ajax responses from code

The hack automates the entire sequence of updating a field's value from a server and using an object
to monitor and report on a field, without any page refreshes. However, it does not really matter how
the field's value is changing; it could be a scientist periodically entering the readings from her
instruments. The nice aspect is that we have a continuous monitor that can report changing
information on a live basis without refreshing or resubmitting the whole web page.

How It Works

Here is the web page code, which is a view template within Ruby on Rails (see Chapter 7):

<html>
<head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <script src="/javascripts/prototype.js" type="text/javascript"></script>
 <script src="/javascripts/mylib.js" type="text/javascript"></script>
 <title>Observe a text field</title>
</head>
<body>
<h3>Trackable and observable data</h3>
<form action="javascript:void%200">
<p>
Updated Time from server:
 <textarea style="border: thin solid black;" name="time_info" id=
"time_info" rows="15" cols="25">
</textarea>
</p>
<p>

</p>
<h4>Data Log</h4>
<p><button id="pause">Pause Monitor</button></p>
<p>
<textarea name="display_area" id="display_area" style=
"border: thin solid black;" rows="15" cols="25">
</textarea>
</p>
</form>
</body>
</html>

The code imports the prototype.js file, in order to use its Ajax capabilities, and mylib.js, which
contains the custom code for our hack. When the browser loads the web page, this action creates a
Prototype object that then makes backend requests to a server and displaying the return value in the
time_info textarea. Every 10 seconds, another object observes this textarea for any changes to its
value. If it detects a change, the observer displays a message in the display_area textarea.

Here is the hack's mylib.js code:

window.onload=function(){
 if($("pause")){
 $("pause").onclick=function(){
 if(executer){
 executer.currentlyExecuting=true;
 }
 };
 }

 var _uurl='/hacks/increment';
 var executer;
 var counter=0;
 if($("time_info") && $("display_area")) {
 executer=new PeriodicalExecuter(function() {
 new Ajax.Updater('time_info',_uurl,
 {insertion: function(obj,txt){$("time_info").
 value+= txt + "\\n"},
 onComplete: function(request){$("msg").style.
 color="green"; counter++;
 $("msg").innerHTML="Update #"+
 counter+"; request status="+
 request.status}})}, 10);
 new Form.Element.Observer("time_info",15,function(){
 $("display_area").
 value+=("Change detected on: "+new Date() + "\\n\\n");
 });
 }

};

First, the code defines the onclick event handler for the Pause Monitor button. The button interacts
with the Prototype Form.Element.Observer object to induce it to stop observing.

The Form.Element.Observer object has a currentlyExecuting property, a
boolean. If you set this property to true, the Observer stops monitoring.

What's a Prototype Object?

Prototype objects are objects that Prototype defines in prototype.js. This hack uses a
PeriodicalExecuter, which, as its name suggests, repeatedly executes the function or code that you
pass into its constructor. The hack specifies the interval in seconds as the second parameter.

The new Ajax.Updater part represents the code that the hack periodically executes. Recall that the
Ajax.Updater object was introducted in the previous hack. This object removes the necessity for
developers to explicitly program XMLHttpRequest when they want to send Ajax-style requests to a
backend server. The Ajax.Updater object updates an HTML element with id time_info with data from
the relative URL /hacks/increment. It automatically takes the server response and updates the
specified field by inserting the new content before any existing content.

When the request processing has reached a stage called "complete" (onComplete), a callback function
updates a text message with the sequential number of the request and the response status code.

The $("msg") syntax represents a Prototype shortcut for
document.getElementById('msg'). The $("msg").style part dynamically
changes the visual style of an element (see "Generate a Styled User Message
on the Fly" [Hack #11]).

Passive Observer

The Observer object uses Prototype's Form.Element.Observer. The object parameters represent the
id of the form field that the object observes, the interval in seconds, and a callback function that
executes if the field's value has changed. Here, the code adds a date string to a textarea:

new Form.Element.Observer("time_info",15,function(){
 $("display_area").value+=("Change detected on: "+new Date() + "\\n\\n");
});

"Use Prototype's Ajax Tools with Your Application" [Hack #50] shows an example of the code that
handles any request errors involving the Ajax.Updater object. As with the other objects this chapter
discusses, the prototype.js library makes it very easy to add advanced JavaScript code such as
Observer objects to your Ajax applications.

Hack 53. Use Rico to Update Several Elements with One
Ajax Response

Use the Rico library to automatically update several weather-related web page elements
with one Ajax request.

This hack uses Rico to make a single Ajax request that can update several weather-related page
elements at once without refreshing the page. It grabs the weather information for four U.S. cities
from the Weather.com web service.

Using Rico requires the hack to import the rico.js and prototype.js libraries upon which Rico is built
(see "Use Prototype's Ajax Tools with Your Application" [Hack #50]). The custom code for the hack
resides in multiple.js. Here are the script tags for the HTML page:

<script src="js/prototype.js" type="text/javascript"></script>
<script src="js/rico.js" type="text/javascript"></script>
<script src="js/multiple.js" type="text/javascript"></script>

The hack shows the weather information in several regions of the page.

The weather icons derive from the Weather.com SDK [Hack #31].

When the user clicks the Update Weather! button, the code makes an Ajax connection using the
Rico.AjaxEngine object, which is included in the Rico library. Figure 6-5 shows what the page looks
like in Firefox 1.5.

Figure 6-5. Updating weather information

Our own JavaScript in multiple.js uses only a few lines of AjaxEngine code to implement an
XMLHttpRequest object and update the content of four elements on the page. You do have to craft the
format of the server's response to Rico, but we'll get to that code in a moment.

The code that sets up the Update Weather! button's behavior is found in our JavaScript file for this
page:

window.onload=function(){
 if($("w_update")){
 $("w_update").onclick=function(){
 updateWeather();
 }
 }
};

function updateWeather(){
 ajaxEngine.registerRequest("multiple", "/parkerriver/s/wdisp");
 ajaxEngine.registerAjaxElement("boston");
 ajaxEngine.registerAjaxElement("boulder");
 ajaxEngine.registerAjaxElement("portland");
 ajaxEngine.registerAjaxElement("seattle");
 ajaxEngine.sendRequest("multiple","");
}

ajaxEngine is a variable that refers to the Rico.AjaxEngine object. This variable is automatically
available from rico.js and does not have to be instantiated by the hack's code. The Rico.AjaxEngine

object is the object that does all the request-related work for the hack and uses XMLHttpRequest
beneath the surface. To implement the multiple-update task of this hack, the code must call this
object's registerRequest() method, specifying the name you are giving the URL to the server
component (here, "multiple"), as well as the actual URL.

Specifying the relative URL (i.e., without a protocol or host) seems to work fine
for this method.

The engine also has to know about the page elements or nodes that it will update. Thus, the code
calls registerAjaxElement() with the id of each span element that is updated from the server.
Finally, the code calls sendRequest() with the registered name of the URL and any parameters (this
code does not include any parameters). Here is the part of the web page that this request updates:

<div id="east" style="float: left">
Boston, MA

Portland, OR

</div>
<div style="float: left"> </div>
<div id="west" style="float: left">
Boulder, CO

Seattle, WA

</div>

The Rico.AjaxEngine object then updates the entire contents of each of the highlighted spans.

Ajax Convention

Rico uses a response convention to implement this task. With this hack, a typical response
(formatted for printing in this book) looks like:

<?xml version="1.0" encoding="UTF-8"?>
<ajax-response>
<response type="element" id="seattle">

high :: 48; low :: 44
1/4/06 6:08 AM PST

</response>
<response type="element" id="portland">

high :: 48; low :: 42
1/4/06 5:04 AM PST
</response>
<response type="element" id="boston">

high :: 34; low :: 31
1/4/06 9:06 AM EST
</response>
<response type="element" id="boulder">

high :: 50; low :: 28
1/4/06 7:08 AM MST
</response>
</ajax-response>

The response is in XML format. It must have a root element of ajax-response, which itself can have
any number of response child elements. This is how Rico manages to do multiple updates and more
with one request.

Make sure that the response has a Content-Type of application/xml or
text/xml.

The response element looks like:

<response type="element" id="seattle">

The id references the id that we "registered" with the Rico.AjaxEngine object. This is how Rico
knows where all the returned HTML goes. Pretty straightforward, eh?

On the Server End

This hack has to initiate a certain amount of heavy lifting on the server end, in terms of fetching the
weather data from Weather.com and then sending the formatted XML back to our Ajax application.
Because XMLHttpRequest cannot connect with a different host from the host from which the user
downloads the web page, the hack uses a server intermediary to talk to Weather.com and send the
XML back to the web page. We use a Java servlet called WeatherManager.java and the JDOM API
(see http://www.jdom.org) to make an HTTP connection with Weather.com. Weather.com returns
weather data for the four cities specified in the response elements in XML format (see "Display a
Weather.com XML Data Feed" [Hack #31]).

A Java servlet called WeatherDisplay.java then accesses an array of four HashMap objects from
WeatherManager, each containing the latest available high and low temperatures, a date/time string,

http://www.jdom.org

as well as associated image icons for the U.S. cities. With this information in hand, the servlet builds
the required ajax-response element using a buffer of character data. The servlet then sends the
response using a Content-Type of text/xml. Here's the servlet code; AjaxUtil is our own utility class:

public class WeatherDisplay extends HttpServlet {
 protected void doGet(HttpServletRequest httpServletRequest,
 HttpServletResponse httpServletResponse) throws
 ServletException, IOException {
 StringBuffer buf = new StringBuffer("<ajax-response>");
 try {
 Map[] map = WeatherManager.getAllWeather();
 for(int i = 0; i < map.length; i++) {
 buf.append(getRicoResponse(map[i],i));
 }
 } catch (JDOMException e) {
 throw new ServletException(e);
 }
 buf.append("</ajax-response>");
 AjaxUtil.sendXML(httpServletResponse,buf.toString());
 }

 protected void doPost(HttpServletRequest httpServletRequest,
 HttpServletResponse httpServletResponse) throws
 ServletException, IOException {
 doGet(httpServletRequest, httpServletResponse);
 }

 private String getRicoResponse(Map map,int counter) {
 StringBuffer buf = new StringBuffer(
 "<response type=\\"element\\" id=\\"");
 buf.append((String)map.get("id")).append("\\">\\n");
 buf.append("<img src=\\"/parkerriver/ajaxhacks/img/").
 append((String)map.get("img"));
 buf.append(".png\\"/>");
 buf.append(" <span id=\\"rng_").append((String)map.get("id")).
 append("\\" class=\\"therm\\">high :: ");
 buf.append((String)map.get("hi")).append("; low :: ").
 append((String)map.get("low"));
 buf.append("\\n");
 buf.append("<span id=\\"dt").append(counter).
 append("\\" style=\\"visibility: hidden\\">").
 append((String)map.get("date"));
 buf.append("\\n</response>");
 return buf.toString();
 }
}

Hacking the Hack

The response XML also includes the date and time associated with the weather data:

1/4/06 9:06 AM EST

This data can be used in another iteration of the application to display more information to the user
or to reduce server hits by updating the weather only if the current data display is a specified number
of hours old.

Hack 54. Create a Drag-and-Drop Bookstore

Set up a book shelf from which users can drag books into a basket, with their choices
logged on a server.

This hack allows the user to drag an image of a book from one area of the page into another region
of the view called the "basket." The book is then processed as though it was being purchased, and a
small message appears from the server. The application sends the book information as an Ajax-style
request, and the rest of the view does not change as this transaction takes place. The hack uses the
Rico library's drag-and-drop functionality. This open source JavaScript library makes it fairly easy to
designate some regions of the page as "drop zones" and other page elements as "draggable." Rico
takes care of the underlying graphical programming, which is a real win for the developer.

Figure 6-6 shows what the hack looks like in the Mac OS X version of Firefox 1.5.

Figure 6-6. Tasteful book selection

When the user selects a book from the book shelf and drags it into the basket, the page sends the
book information to the server, and a reply message appears. Figure 6-7 shows what happens when

you drag the Google Maps Hacks book into the basket.

Figure 6-7. The checkout commences on Google Maps Hacks

Here's the code for the web page:

<html>
<head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <script src="js/prototype.js" type="text/javascript"></script>
 <script src="js/rico.js" type="text/javascript"></script>
 <script src="js/mydraggable.js" type="text/javascript"></script>
 <script src="js/talkdrop.js" type="text/javascript"></script>
 <style type="text/css">
 @import "/parkerriver/stylesheets/hacks.css";
 </style>
 <title>Add books to the Basket</title>
</head>
<body>
<div id="shelf" class="shelf" style="background-color: #6198C4">
<div id="title" class="title">Book Shelf</div>
<div id="b1" class="book_con"><img src=
 "img/books/0596100949_xs.gif" id="Beyond Java" alt="Beyond Java"/></div>
<div id="b2" class="book_con"><img src=
 "img/books/0596101422_xs.gif" id="Java Enterprise" alt="Java Enterprise"/></div>

<div id="b3" class="book_con"><img src=
 "img/books/0596101651_xs.gif" id="Greasemonkey Hacks" alt="Greasemonkey Hacks"/>
</div>
<div id="b4" class="book_con"><img src=
 "img/books/0596101899_xs.gif" id="Skype Hacks" alt="Skype Hacks"/></div>
<div id="b5" class="book_con"><img src=
 "img/books/jsvltjspckbk.s.gif" id="Java JSP Cookbook" alt=
 "Java JSP Cookbook"/></div>
<div id="b6" class="book_con"><img src=
 "img/books/googlemapshks.s.gif" id="Google Maps Hacks" alt=
 "Google Maps Hacks"/></div>
</div>
<div style="float: left;"> </div>
<div id="basket" class="basket" style="background-color: #ffD800">
<div id="shelftitle" class="title">Basket</div>
</div>
<div style="clear: both;"> </div>
<div id="outcome" class="msg" style=
 "clear: both; font-size: 1.2em; color: green "></div>
</body>
</html>

The page imports four JavaScript files, beginning with prototype.js and rico.js. The Rico library
depends on Prototype, as discussed in "Use Prototype's Ajax Tools with Your Application" [Hack #50].
The third imported file, mydraggable.js, is a JavaScript file that encapsulates an object definition.
This object defines a page control or widget that can be dragged. I'll show and explain that one in a
moment. Finally, talkdrop.js contains the JavaScript that uses the object defined in mydraggable.js.

The regions of the page comprising the book shelf and basket are div elements that are styled using
a stylesheet in /parkerriver/stylesheets/hacks.css. Here is the key part of this stylesheet:

msg {font-size: 0.8em;
 margin-bottom: 0.5em;
 margin-left: 0.5em;}
div.title { font-family: Times, Verdana,Arial;
 font-size: 1.4em; color: purple;
 vertical-align: top;
 margin-top: 0.5em;
 margin-left: 0.5em;}
div.shelf { width: 320px;
 height: 320px;
 border: solid medium;
 float: left;}
div.basket { width: 320px;
 height: 320px;
 border: solid medium;
 float: left;}
div.book_con { float: left;
 padding: 0.2em 0.2em;}

Draggables and Drop Zones

Now it's time to look at the code for this hack. When the web page is loaded, the code designates the
div elements that contain books as draggable and the div elements that represent the shelf and
basket as drop zones. The new MyDraggable sections refer to objects defined in mydraggable.js:

window.onload=function(){
 dndMgr.registerDraggable(new MyDraggable('b1','firstbook'));
 dndMgr.registerDraggable(new MyDraggable('b2','book2'));
 dndMgr.registerDraggable(new MyDraggable('b3','book3'));
 dndMgr.registerDraggable(new MyDraggable('b4','book4'));
 dndMgr.registerDraggable(new MyDraggable('b5','book5'));
 dndMgr.registerDraggable(new MyDraggable('b6','book6'));
 dndMgr.registerDropZone(new Rico.Dropzone('basket'));
 dndMgr.registerDropZone(new Rico.Dropzone('shelf'));
};

The emphasized code is all that is necessary to designate an element as a drop zone. Of course, the
objects themselves have to be registered as draggable, or there will be nothing to drop into these hot
zones. If you just want to get started with basic drag-and-drop functionality, this code will suffice:

dndMgr.registerDraggable(new Rico.Draggable('firstbook','b1'));

The dndMgr object doing the registering in this design pattern has already been instantiated for you
by the Rico package. The first parameter to the Rico.Draggable constructor is a name that the code
gives the object; the second is the element's id attribute value on the web page.

The parameters are switched in the MyDraggable constructor; the id of the div
is first, and the name is second:

new MyDraggable('b6','book6');

Our hack, however, is designed to do a little bit more than just allow users to drag objects on the
page to new locations. The hack wants to identify the objects only when they are dropped into the
"basket" drop zone, then make an Ajax connection to communicate the identities of these objects to
the server. Therefore, this hack extends Rico.Draggable so that the object can implement these
other tasks.

This object is derived from instructions and code explained on the demo page
found at http://www.openrico.org/rico/demos.page?
demo=rico_drag_and_drop_custom_draggable.

To extend the Rico object, the code uses a popular function of the Prototype library called

http://www.openrico.org/rico/demos.page?

Class.create(). If the code creates a JavaScript object using this method, the new object has an
initialize() method that gets called when the object is created (this feature is not built into
JavaScript itself). Prototype also includes an oft-used extension called Object.extend() that, in this
case, adds the newly declared functions to Rico.Draggable's existing methods:

var MyDraggable = Class.create();
MyDraggable.prototype = (new Rico.Draggable()).extend({

 initialize: function(htmlElement, name) {
 this.type = 'MyDraggable';
 this.htmlElement = $(htmlElement);
 this.originZone = "not defined";
 },
 //return the parentNode id, or an alternative if
 //the parentNode does not have a valid id
 getContainer: function() {
 var el = this.htmlElement;
 if(el.parentNode) {
 if(el.parentNode.id){
 return el.parentNode.id;
 } else {
 return "no_id_"+el.parentNode.nodeName;
 }
 } else {
 return this.name+"_no_supported_parentNode";
 }
 },
 //store the origin of the drag as in "shelf"
 //We'll only make an Ajax request if the origin
 //is "shelf"
 startDrag: function() {
 this.originZone=this.getContainer();
 },
 //We'll only make an Ajax request if the origin
 //is "shelf" and the drop zone is "basket"
 endDrag: function() {
 if(this.originZone == "shelf" &&
 this.getContainer() == "basket"){
 var bk=this.htmlElement.childNodes[0].id;
 new Ajax.Request("/parkerriver/s/checkout", {method: "get",
 parameters: "book="+bk,
 onComplete:function(request){
 $("outcome").innerHTML=request.responseText;}});

 }
 }

});

The methods are callback functions; in other words, the Rico library calls these methods at different
stages of the object's drag behavior. The request trigger is when an object is dragged from the shelf

to the basket and then dropped there. Watch what happens when you drag a book to the basket but
do not drop it: an animation occurs (the zone darkens and shifts a bit), but the code does not send a
request.

This application does not work in the Safari browser. According to its web page,
Rico does not yet fully support Safari.

The code uses Prototype's Ajax.Request object, which makes it very easy to put together an Ajax-
style request (see "Use Prototype's Ajax Tools with Your Application" [Hack #50]). Ajax.Request
makes an asynchronous request by default.

Grabbing the Book Titles

How does the code get the book title to pass along to the server? The draggable objects are div tags
containing the book's image. This code gets the book's title:

var bk=this.htmlElement.childNodes[0].id;
//we could also use this, if it is supported in the
//major browsers
var bk=this.htmlElement.childNodes[0].alt;

this.htmlElement refers to the div element; its first (and only) child node is the image. The code
then gets the value of the image's id, such as Google Maps Hacks.

Hacking Draggables

There's room to enrich the behavior of this hack. Just because the user drags a book into the basket
does not mean that the user wants to check out right away. We could have other drop zones, such as
"Wish List" or "Final Checkout," each doing something unique when the book is dropped into it.
Obviously, if this code went beyond a fun hack, the server component would do a lot more than send
simple response messages.

Chapter 7. Work with Ajax and Ruby on
Rails
Hacks 5562

If you haven't yet worked with Ruby on Rails (RoR), you're in for a great treat. Ruby on Rails is a
web development framework that makes it very easy to create database-driven web applications. (A
framework is a software structure that provides developers with scripts, packages, and objects with
which they can build their own applications.) Ruby on Rails uses the programming language Ruby,
including an embedded version of Ruby for HTML or XML templates that is similar to JavaServer
Pages (JSP) or PHP. Rails is the name of the framework (or set of packages, such as the
ActionController class) that programmers use to develop web applications with this toolkit.

The first edition of a Ruby programming book can be found here:
http://www.ruby-doc.org/docs/ProgrammingRuby/. You can find another Ruby
tutorial at http://www.math.umd.edu/~dcarrera/ruby/0.3/.

Ruby on Rails can run on the Apache web server and another open source server called lighttpd; it
also has a handy built-in web server, WEBrick, which we will use in this chapter. Ruby on Rails only
found its way into the general development community in the summer of 2004. However, its ease of
use, elegant design, and numerous built-in featuressuch as Ajax and virtually automated object-
relational mapping (ORM) with many popular databaseshave impressed the software developer
crowd. Prototyping a functional database-driven web application using RoR is faster and more
efficient than using other frameworks or doing it from scratch.

http://www.ruby-doc.org/docs/ProgrammingRuby/
http://www.math.umd.edu/~dcarrera/ruby/0.3/

Sensible MVC

Except to make a point about Ruby's high-level design as a Model-View-Controller (MVC)
architecture, it's impossible to do this framework justice in a short introduction.

MVC is a design pattern that separates the three components of an application into different software
modules or units of code. The purpose of this division is to allow the components to evolve
independently, to decouple software objects that have different roles, and to ensure that changes to
one module do not inadvertently affect other modules. The model represents the application's data or
state, such as database information; the view is what the user sees, as in a web page or user
interface (UI); and the controller is the part of the application that responds to the user's interaction
(for example, handling keyboard events and deciding which view to display).

RoR explicitly uses MVC in the design of its runtime code and directory structure. This is reflected in
its subframeworks: Active Record, which handles the model, and Action Pack, which comprises the
Action Controller and Action View pieces. (According to the RoR documentation, these two are
bundled together because of their "heavy interdependence.")

The hacks in this chapter attempt to summarize the pertinent aspects of RoR's tools and structure.
However, RoR is a complex beast. The best thing to do is to install it on a development or prototype
machine and give it a ride.

Hack 55. Install Ruby on Rails

Install a cool web application framework that wraps the creation and use of
XMLHttpRequest.

This hack installs Ruby on Rails on Windows; it includes information and pointers for installing RoR on
Mac OS X and Linux.

You can install Ruby on Rails on Mac OS X Tiger (10.4.x) by following this
detailed tutorial: http://www.maczealots.com/tutorials/ruby-on-rails/. In
addition, you can install an all-in-one bundle for Mac OS X, including the
lighttpd web server, the SQLite database, and RubyGems ("a packaging system
for Ruby that makes it simple to deploy gems, or small applications," according
to the aforementioned tutorial), from http://locomotive.sourceforge.net. The
Ruby programming language itself comes built into Tiger; you can find out the
version of Ruby on your system by opening up a Terminal window and typing
ruby v. For information on installing Ruby on Rails on the Linux flavor called
Fedora, see http://www.digitalmediaminute.com/howto/fc4rails/.

To develop a beginning Rails web application, install the following software:

Ruby (1.8.2 is the required minimum version for using RoR)

The Rails framework

Your database of choice, such as SQLite3 or MySQL

Step 1: Installing Ruby

Installing Ruby couldn't be any simpler:

Download the latest One-Click Ruby Installer for Windows from
http://rubyforge.org/projects/rubyinstaller. As of this writing, the latest version is ruby182-
15.exe.

1.

Double-click on the downloaded executable, and follow the installation instructions. Unless you
have some special needs, just press Enter to accept all the defaults.

2.

http://www.maczealots.com/tutorials/ruby-on-rails/
http://locomotive.sourceforge.net
http://www.digitalmediaminute.com/howto/fc4rails/
http://rubyforge.org/projects/rubyinstaller

2.

Another one-stop solution for installing Ruby on Rails on Windows is Instant
Rails, available at http://instantrails.rubyforge.org/wiki/wiki.pl?Instant_Rails. It
includes Ruby, Rails, Apache, and MySQL, "all preconfigured and ready to run."
This is designed for Windows, but there are plans to create packages for Linux,
Mac OS X, and BSD.

Step 2: Installing Rails

Now you can use the RubyGems package manager to download and install Rails 0.9.4 (the version
covered by this hack):

Open a command window and run the command:

 gem install rails --remote.

1.

RubyGems will also install all of the other libraries that Rails depends on. You'll be asked if you
want to install each dependency. Answer "y" (yes) to each question.

2.

Figure 7-1 shows what the installation procedure looks like in the command window.

Figure 7-1. Installing Rails through RubyGems

http://instantrails.rubyforge.org/wiki/wiki.pl?Instant_Rails

Finally, you'll need to install a database server, if you haven't already. Rails supports many different
databases, including PostgreSQL, SQL Server, DB2, and Oracle. MySQL is a popular database used
with Ruby on Rails, and it can easily be installed on Windows, Mac OS X, and Linux systems.

You can download installers for MySQL 5.0 Community Edition for Windows,
Mac OS X, and Linux from this site:
http://dev.mysql.com/downloads/mysql/5.0.html.

Creating an Empty Rails Web Application

Rails is both a runtime web-application framework and a set of helper scripts that automate many of
the things you do when developing a web application. In this hack, we will use one such helper script
to create the entire directory structure and the initial set of files to start a "cookbook" application:

Open a command window and navigate to where you want to create this cookbook web1.

2.

http://dev.mysql.com/downloads/mysql/5.0.html

application. I used c:\\rails.
1.

Run the command rails cookbook.2.

This creates a cookbook subdirectory containing a complete directory tree of folders and files for an
empty Rails application.

Testing the Empty Web Application

A Rails web application can run under virtually any web server, but the most convenient way to
develop a Rails web application is to use the built-in WEBrick web server. Let's start this web server
and then browse to our cookbook application. In your open command window, move into the
cookbook directory. Run the command ruby script/server to start the server. You should see
something like Figure 7-2.

Figure 7-2. Starting the WEBrick server

Leave the command window open and the web server running; we'll use them as we proceed. Now
open your browser, and browse to http://127.0.0.1:3000/ or http://localhost:3000/. You should see
the page shown in Figure 7-3.

Unless you're following along by installing Rails, these links probably won't work
for you. Don't panic127.0.0.1 is a special address reserved for the local
machine.

Figure 7-3. Forthwith, Ruby on Rails

http://127.0.0.1:3000/
http://localhost:3000/

A Rails Application Directory Structure

RoR tries very hard to minimize the number of decisions you have to make and to eliminate
unnecessary work. When you used the RoR helper script to create your empty application, it created
the entire directory structure for the application (see Figure 7-4). Rails knows where to find things it
needs within this structure, so you don't have to tell it. Remember, no configuration files!

Figure 7-4. Where Rails puts stuff

Here's a quick rundown of how to use these directories:

The controllers subdirectory is where Rails looks to find controller classes. A controller handles a
web request from the user.

The views subdirectory holds the display templates to fill in with data from our application,
convert to HTML, and return to the user's browser.

The models subdirectory holds the classes that model and wrap the data stored in our
application's database. In most frameworks, this part of the application can grow pretty messy,
tedious, verbose, and error-prone. Rails makes it dead simple!

The helpers subdirectory holds any helper classes that assist the model, view, and controller
classes. This helps to keep the model, view, and controller code small, focused, and uncluttered.

Here's a typical configuration file (# characters comment out lines) for MySQL used with RoR is:

#MySQL (default setup). Versions 4.1 and 5.0 are recommended.
#
#Get the fast C bindings:
gem install mysql
(on OS X: gem install mysql -- --include=/usr/local/lib)
#And be sure to use new-style password hashing:
http://dev.mysql.com/doc/refman/5.0/en/old-client.html
development:
 adapter: mysql
 database: Energy
 username: root
 password:
 #socket: /path/to/your/mysql.sock

 #Connect on a TCP socket. If omitted, the adapter will connect on the
 #domain socket given by the socket instead.

 host: localhost
 port: 3306

Here are two other commonly used RoR commands you can use to automate
the generation of application files. The first:

ruby script/generate model cookbook

generates the application's model objects for database table interaction (if the
database table was named cookbook). The second:

ruby script/generate controller hacks

generates a controller object for the web application path named hacks.

Curt Hibbs

Hack 56. Monitor Remote Calls with Rails

Display the status of your XMLHttpRequest remote calls in a Ruby on Rails application.

When debugging applications, it is handy to see the status of your remote request as the response
handling unfolds. This hack displays the request status in a Ruby on Rails view before it displays the
return value. The user sees the status message without a page refresh or rebuild. Developers do not
have to explicitly deal with XMLHttpRequest at all, because the hack uses a method that is part of the
RoR framework to implement the remote calls.

See the "XMLHttpRequest" section at the beginning of Chapter 1 for an
explanation of the various stages of an XMLHttpRequest request: uninitialized,
loading, loaded, interactive, and completed.

Like the other hacks in this chapter, this one runs within a Ruby on Rails application. Figure 7-5
shows what the hack looks like in the Safari browser.

Figure 7-5. Gentlemen, start your monitors

When the user clicks the Start Monitor button, the application sends a request to a server
component, called an action in Rails parlance. This action returns some content to update a div in the
web page, without refreshing the page itself. As Figure 7-6 depicts, the page shows the request
status at each of its stages, in real time as it's happening.

Figure 7-6. Display the request's status in real time

The code for the Rails template associated with this action is shown below. It's very similar to the
code for an HTML page, but the template has an .rhtml suffix, as in monitor.rhtml. This view name is
mapped to the URL the user enters in the browser: http://localhost:3000/hacks/monitor.

When you start up Ruby on Rails (using the ruby script/server command),
WEBrick binds to port 3000 by default. You can change the port number via the
command line. For example:

ruby script/server p 8000

Here's the template code:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/2000/REC-xhtml1-20000126/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <%= javascript_include_tag :defaults %>
 <title>Monitor Ajax calls</title>
</head>
<body>
<%= form_remote_tag(:update => "complete",:url => { :action => :zero_update },
:position => "top", :success => "$('success').innerHTML='Success; request

http://localhost:3000/hacks/monitor

status='+request.status",
:loading => "$('loading').innerHTML='Loading...'",
:loaded => "$('loaded').innerHTML='Loaded; request status='+request.status",
:interactive => "$('inter').innerHTML='Interactive; request status=
'+request.status", :failure => "$('failure').innerHTML='Failure; request
status='+request.status") %>
<h3>Monitor Your Ajax Calls with Rails</h3>
<div id="loading" style="font-size: 1.2em"></div>
<div id="loaded" style="font-size: 1.2em"></div>
<div id="inter" style="font-size: 1.2em"></div>
<div id="success" style="font-size: 1.2em; color: green"></div>
<div id="failure" style="font-size: 1.2em; color: red"></div>
<div id="complete" style="font-size: 1.2em; color: green" ></div>
<p>
<%= submit_tag "Start Monitor" %>
</p>
<%= end_form_tag %>
</body>
</html>

The RoR views use embedded Ruby script tags (<%...%>), similar to the tags used in JSP or PHP
applications. One of these tags contains a Rails method, form_remote_tag(). This method takes care
of all the XMLHttpRequest initializing and sending for you, so you can focus on the behavior you want
your applications to initiate.

The parameters for form_remote_tag() are fairly dense, but they accomplish an awful lot beneath
the surface. First, the :update parameter specifies the id of the page element (a div, in this case)
that the action will update with the request's return value. Next, the :url parameter points to the
name of the action that will handle the request (here, zero_update):

:url => { :action => :zero_update }

In Rails method calls, the code has to use the syntax :url as opposed to url.
That's easy to forget, but if you do, the method will not be successfully called.
Ruby refers to these types of references, which represent variable names
rather than evaluating to variable values, as Symbol objects. See
http://www.ruby-doc.org/docs/ProgrammingRuby/.

This is similar to other mapping mechanisms used by web development APIs such as Java Servlets
(see the further explanation below). The rest of the method parameters specify the JavaScript code
that the application should execute at each stage of the request's processing:

:success => "$('success').innerHTML='Success; request status='+request.status",
:loading => "$('loading').innerHTML='Loading...'",
:loaded => "$('loaded').innerHTML='Loaded; request status='+request.status",
:interactive=>"$('inter').innerHTML='Interactive; request status='+request.status",
:failure => "$('failure').innerHTML='Failure; request status='+request.status"

http://www.ruby-doc.org/docs/ProgrammingRuby/

For example, when the request object's readystate property equals loaded (it's actually a numerical
value of 2; see Chapter 1), this part of our parameter specifies what will happen with the application:

:loaded => "$('loaded').innerHTML='Loaded; request status='+request.status"

The code will get a reference to an HTML element with an id of loaded. The code does so using a
shortcut included in the prototype.js package, which this page imports: $('loaded'). This JavaScript
code is the equivalent of document.getElementById('loaded'), but it sure is easier to type! With the
reference to that Element object, the code sets its innerHTML property to Loaded; request status=
plus the status code returned by the HTTP response.

If All Else Fails

What if the request fails? Figure 7-7 shows what the displayed message looks like when you add code
to the server component to raise a response error.

Figure 7-7. Displaying a response status signifying failure

The return value is a bit of HTML announcing a problem, along with an HTTP response status code of
500.

The XMLHttpRequest object connects with a server component, or action, named zero_update. As

described in "Install Ruby on Rails" [Hack #55], Rails explicitly uses a MVC architecture in the way
that it sets up the directories for your web application. If your RoR URL is
http://localhost:3000/hacks/monitor, the controller component is in the controllers directory at the
following path: <app-root>/hacks/controllers/hacks_controller.rb. Let's take a look inside
hacks_controller.rb for the definition of the zero_update action.

Controller objects are written in Ruby code. To generate an action, all you have to do is define a
method inside the controller class (literally, a class that extends ActionController, which is part of
the Rails API) with the action's name:

class HacksController < ApplicationController
 def index
 #defined in index.rhtml
 end

 def zero_update
 render :text => "Ajax return value..."
 end
#rest of class...
end

Complicated, huh? All the zero_update action does is return the specified text in the HTTP response
using the Rails method render().

The code can also use the syntax render(:text => "Ajax return value...") to
call this method, which takes a hash Ruby type as a parameter.

The request object handles the response behind the scenes, placing its content within the div with id
complete. However, all the developer is responsible for is calling the method: you do not have to
touch the request object or its response handlers. It's useful to have a look at the source code that
Rails returns when the user requests the monitor.rhtml template:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/2000/REC-xhtml1-20000126/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <script src="/javascripts/prototype.js" type="text/javascript"></script>
 <script src="/javascripts/effects.js" type="text/javascript"></script>
 <script src="/javascripts/dragdrop.js" type="text/javascript"></script>
 <script src="/javascripts/controls.js" type="text/javascript"></script>
 <script src="/javascripts/application.js" type="text/javascript"></script>
 <title>Monitor Ajax calls</title>
</head>
<body>
<form action="/hacks/zero_update" method="post"
onsubmit="new Ajax.Updater('complete', '/hacks/zero_update',
{asynchronous:true, evalScripts:true, insertion:Insertion.Top,

http://localhost:3000/hacks/monitor

onFailure:function(request){$('failure').innerHTML='Failure; request
status='+request.status},
onInteractive:function(request){$('inter').innerHTML='Interactive;
request status='+request.status},
onLoaded:function(request){$('loaded').innerHTML='Loaded; request
status='+request.status},
onLoading:function(request){$('loading').innerHTML='Loading...'},
onSuccess:function(request){$('success').innerHTML='Success; request
status='+request.status}, parameters:Form.serialize(this)}); return false;">
<h3>Monitor Your Ajax Calls with Rails</h3>
<div id="loading" style="font-size: 1.2em"></div>
<div id="loaded" style="font-size: 1.2em"></div>
<div id="inter" style="font-size: 1.2em"></div>
<div id="success" style="font-size: 1.2em; color: green"></div>
<div id="failure" style="font-size: 1.2em; color: red"></div>
<div id="complete" style="font-size: 1.2em; color: green"
onclick="clearIt($('complete'))"></div>
<p>
<input name="commit" type="submit" value="Start Monitor" />
</p>
</form>
</body>
</html>

Notice all the script tags embedded in the HTML source. This was made possible by the <%=
javascript_include_tag :defaults %> embedded method (see "Make Your JavaScript Available to
Rails Applications" [Hack #57] for details on that one).

The server has to issue a separate GET request for each of these JavaScript
files, so if you only need the prototype.js file, for instance, use <%=
javascript_include_tag "prototype.js" %> instead of <%=
javascript_include_tag :defaults %>. The effects.js, dragdrop.js, and
controls.js files derive from the script.aculo.us library (see Chapter 8).

The imported JavaScript files include prototype.js, and the Prototype library just happens to include
the Ajax.Updater JavaScript object that wraps the initializing and use of XMLHttpRequest. (See
Chapter 6 for more details on this package.) So there you have itthe form_remote_tag() method
represents a wrapper enclosing another wrapper, which handles the request object automatically.

Hack 57. Make Your JavaScript Available to Rails
Applications

Call custom JavaScript functions in Rails templates without including long script tags.

Even though Ruby on Rails takes care of a lot of the JavaScript-related functionality in Ajax
applications with its own methods, you still may want to have access to your own JavaScript
functions. This is particularly true if you come to Ruby on Rails with a JavaScript background. This
hack uses the RoR setup to call a JavaScript function that does not come with Ruby on Rails or its
included packages. Here's the drill.

Figure 7-8 shows a typical Rails web directory setup, with the contents of the public directory
revealed. This directory includes a subdirectory named javascripts, which in turn contains a file called
application.js, into which you can write or cut and paste your function. RoR creates the application.js
file for you when it auto-generates the core directories and files for a web application.

Figure 7-8. application.js in the javascripts directory

Now, back up a bit to a template you are using. The monitor.rhtml template referred to in the last

hack includes this embedded method call:

<%= javascript_include_tag :defaults %>

The code includes the defaults parameter with javascript_include_tag(), which automatically
generates the script tag importing application.js, along with a bunch of other Prototype- and
script.aculo.us-related imports (see Chapters 6 and 8, respectively, for discussions of the Prototype
and script.aculo.us libraries). As a result, the JavaScript in application.js is available for code in the
template to call. For example, monitor.rhtml includes this code:

<div id="complete" style=
"font-size: 1.2em; color: green" onclick="clearIt($('complete'))"></div>

clearIt() is defined in application.js. It sets the innerHTML property of the element referenced by its
parameter to the empty string "":

function clearIt(elId){
 if(elId != null){
 elId.innerHTML="";
 }
}

Using javascript_include_tag() involves a single step for importing application.js and any other
necessary packages (such as Prototype), but you are certainly free to place your own JavaScript file
in the javascripts directory and then include a script tag to import it in the Rails template:

<script src="/javascripts/myfunctions.js" type="text/javascript"></script>

You can use javascript_include_tag() with different parameters to import individual JavaScript
files, as in these two examples:

javascript_include_tag "/javascripts/myfunctions.js","/scripts/morefuncs.js"
#As long as the scripts directory is located in
#the Rails <web-app-root>/public directory

Hack 58. Dynamically Generate a Selection List in a Rails
Template

Generate a selection list from server-side data using Ajax and Ruby on Rails.

This hack creates a select element from server-side data using a Ruby on Rails application. Unlike
the typical manner in which a web widget is generated in a web page, the user chooses the content
for the pop-up, and then the pop-up appears out of the blue, without anything else on the page
changing. The selections that the user sees in the pop-up derive from a server-side component; they
are not just hard-coded JavaScript or HTML that is part of the web page.

This hack has the same behavior as some of our earlier hacks, but the path our code takes to
produce its effects is quite different. A Rails application wraps all of the XMLHttpRequest mechanics
behind its own methods. Figure 7-9 shows what the web page looks like. The user reaches this page
by typing http://localhost:3000/hacks/ into a web browser's location field.

We're using the WEBrick server that comes with Ruby on Rails.

Figure 7-9. Cop your own pop-up

The user chooses either Team or Individual from the pop-up and clicks the Show Sports button, and

http://localhost:3000/hacks/

another select list (whose values are determined by the user's choice in the first list) appears just
above the button.

In a Rails application, a controller component takes charge of the views that the web user sees. The
controller component is located inside the <web-app-root>/app/controllers directory. Using
http://localhost:3000/hacks/ as an example, the framework looks in <web-app-
root>/app/controllers/hacks_controller.rb for an action or method named index that generates the
response. Actions start out as Ruby methods within a controller object (a class, in object-oriented
terms) defined in this file.

The entire path on my Mac OS X machine is
~/Rails/Energy/app/controllers/hacks_controller.rb. Energy is the top-level
directory of the web application.

Let's take a look at hacks_controller.rb for the index() method:

class HacksController < ApplicationController
 def index
 end
#rest of class definition...
end

Nothing happening there; it's an empty method definition. In this case, Rails looks for a template
named index.rhtml in the app/views/hacks directory.

One of the intuitive aspects of the Rails framework is that the framework maps
URL path information, such as the hacks part of http://localhost:3000/hacks,
to directories of the same name in sensible locations, such as views.

index.rhtml provides the template for our hack:

<html>
<head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <%= javascript_include_tag :defaults %>
 <title>Ajax Rails & Select lists</title>
</head>
<body>
<%= form_remote_tag(:update => "sel_con",:url => { :action => :create_select },
:position => "top",:success => "$('sel_con').innerHTML=''") %>
<p>
Please select a sports category:
</p>
<p>
<%= select_tag "categories",
"<option>Team</option><option>Individual</option>" %>
</p>

http://localhost:3000/hacks/
http://localhost:3000/hacks

<div id="sel_con"></div>
<p>
<%= submit_tag "Show Sports" %>
</p>
<%= end_form_tag %>
</body>
</html>

This template calls the form_remote_tag() method to update the div positioned beneath the form
tag. This method wraps all of the Ajax- and request objectrelated functionality, updating the div with
server data and positioning any more information on top of or before any existing div content (as
specified by the :position => "top" parameter). In other words, when the user clicks the Show
Sports button, an XMLHttpRequest object is created, and its send() method sends a request to a
Rails action named create_select. This action is defined as a Ruby method in the hacks_controller.rb
file we peeked at before.

The create_select action renders the HTTP response, which specifies the tags and content of a new
pop-up or select list. Figure 7-10 shows the result of clicking the Show Sports button.

Figure 7-10. Voil\x88 , up pops a select list

How is that response rendered, anyway? Let's look at that part of the controller object:

class HacksController < ApplicationController
 def index
 end

 def create_select

 indArr=["Nordic Skiing", "Inline Skating","Tennis",
 "Triathlon","Road Racing","Figure Skating","Weight Lifting",
 "Speed Skating","Snowboarding"];
 teamArr=["Soccer","Basketball","Football","Hockey",
 "Baseball","Lacrosse"];
 str="";

 if params[:categories].index('Team') != nil
 render :partial => "options",
 :locals => { :sports => teamArr,:sptype => "team"}
 elsif params[:categories].index('Individual') != nil
 render :partial => "options",
 :locals => { :sports => indArr, :sptype => "individual" }
 else
 str="<select id='individual' name='individual'>
 <option>unknown</option></select>";
 render :text => str;
 end

 #end method
 end
 #end class definition
end

This controller object stores two Ruby arrays in the variables indArr and teamArr (these values could
alternatively be generated from a database). Remember the web page's existing select list that
gives the user a choice of Team or Individual? This is a select element with the name categories. The
browser submits this value as a form parameter to the Rails action. The code uses the syntax
params[:categories] to get this parameter's value. Then things get interesting, in a Rails kind of
way. The server still has to provide an HTTP response to the Ajax request object.

The action uses the RoR render() method to send the HTML for a select list back to our application,
with the array values as the select list contents:

render :partial => "options",
:locals => { :sports => teamArr,:sptype => "team"}

render() specifies in its first parameter a partial named options. In Rails lingo, a partial is just a
template that contains a chunk of content that can be used over and over againfor example, one or a
few HTML tags. Using the Rails naming convention, the partial (really a text file) is placed in the
app/views/hacks directory with its name preceded by an underscore, as in _options.rhtml. So, in
plain English, the method call declares, "Render the response as the _options partial content, and
hand the partial two local variables, :sports and :sptype."

Don't forget the : before the variable names!

A Little Partial Pizzazz

The partial needs the array values to build the select list; these are stored in the teamArr variable.
Rails uses its built-in naming convention for partials (the underscore requirement) to find the
correct content and render it as the response. Let's look at the partial _options.rhtml file:

<select id="<%= sptype %>" name="<%= sptype %>">
<% sports.each do |sport| %>
<option><%= sport %></option>
<% end %>
</select>

A little embedded Ruby code gives the select element its id and name. The embedded code then
iterates through the array (passed into the partial by the render() method) and creates an option
element for each array member, as in <option>hockey</option>. Although a little server-side Ruby
code was involved, the code did not have to touch the request object or deal with fetching or
massaging the return value.

Cleanup Code

The only bit of trickery involved is making sure that the application does not append one new select
list after another inside the div as the user clicks the button. We want all the existing selects in that
div to be replaced by any new ones. Therefore, we include a little cleanup code that empties the div
before it's updated with a new select list:

<%= form_remote_tag(:update => "sel_con",:url => { :action => :create_select },
:position => "top",success => "$('sel_con').innerHTML=''") %>

success sequentially precedes the complete stage, so this code sets the div's content to the empty
string before the new select list appears.

To handle any request failures, such as a downed web server, add this code
from a prior hack as a form_remote_tag() parameter:

#$('failure') is Prototype's shortcut for
#document.getElementById('failure')
:failure => "$('failure').innerHTML='Failure;
request status='+request.status"

Hack 59. Find Out Whether Ajax Is Calling in the Request

Discover whether XMLHttpRequest or a URL in a browser is requesting an action.

One of the issues with defining simple actions in Ruby on Rails is that once an action that responds
with a fine-grained value (such as a string or small HTML chunk) is defined, users can make direct
requests for that little value in their browsers. But chances are, those values were designed only for
XMLHttpRequest objects.

For example, "Periodically Make a Remote Call" [Hack #61] uses the request object to periodically
get a string representing the current date. It calls an action named increment, which looks like this
in the controller object:

def increment
 tz=TimeZone.create("TZ",-60*60*5)
 render :text => tz.now().to_s
 end
end

You don't want the users to be able to call this action directly in their browsers, as in
http://localhost:3000/hacks/increment, because it is designed only for calling by Ajax behind the
scenes.

Are You XMLHttpRequest?

Thankfully, the Rails API has a method that can detect whether a request involves XMLHttpRequest or
not. Here's how we can change our action in the controller:

def increment
 tz=TimeZone.create("TZ",-60*60*5)
 if @request.xml_http_request?()
 render :text => tz.now().to_s
 end
end

This action renders the specified text only if the request originates from XMLHttpRequest. @request is
an instance variable that is available inside the ActionController class. Its xml_http_request?()
method returns true if the request includes an X-Requested-With header containing the value
XMLHttpRequest.

http://localhost:3000/hacks/increment

The Prototype package will include this header with those types of requests.

If the if condition returns false in the code sample, the controller object displays a view with the
action name increment. In other words, it looks for <web-app-root>/views/hacks/increment.rhtml. If
this view is not available, Rails raises an exception along the lines of "template increment.rhtml
missing."

If you use Ajax a lot with Rails, you will find that a number of actions are defined solely for Ajax-
related requests. This technique is a handy way to ensure that requests that don't originate from the
request object are rejected.

Hack 60. Dynamically Generate a Selection List Using
Database Data

Create a select element using database data in a Rails web application.

This hack generates a select element with options that have values and content derived from live
database data. The cool twist is that the user initiates the creation of the element, and the select list
appears loaded with database data without any page refreshes or rebuilds. This hack is a snap to
build with Ruby on Rails, which automatically provides the developer with objects that are directly
mapped to database tables.

This hack assumes that the user is interacting with a web server that uses RoR components. It uses
the built-in WEBrick server to handle the HTTP requests and responses.

Tracking Energy Use

This hack is an energy-monitoring tool that allows the user to track the kilowatts usage of a system.
It generates a web page that asks the user to choose a year, and then pulls monthly kilowatts-usage
data from a database and displays the month options in a new select element. The select list
appears on the page without any perceptible page rebuild in the browser.

When the user chooses a month, the page immediately displays the kilowatts used that month in a
text field beneath the newly created select list. Figure 7-11 shows the web page before the user
clicks the Show Months button.

Figure 7-11. Use Ajax to generate tags with database content

When the user clicks the Show Months button, the application sends a request to the RoR server,
which responds with content for updating the web page. The content is a new select element
containing MySQL database data and a text field, as Figure 7-12 shows.

Figure 7-12. Display monthly kilowatt usage from a database

When the user selects a month from the select list, the data for that month appears in the text field.

Let's see how the code is put together. Here is the view that RoR uses to output the page, located at
<web-app-root>/app/views/kilowatt/dbselect.rhtml:

<html>

<head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <%= javascript_include_tag "prototype.js" %>
 <title>Ajax Rails & DB Select list</title>
</head>
<body>
<%= form_remote_tag(:update => "db_div",:url => { :action => :db_element },
:position => "top",:success => "$('db_div').innerHTML=''") %>
<h3>Choose a year for energy usage totals:</h3>
<p>
<%= select_tag "year","<option>2005</option><option>2006</option>
<option>2007</option>" %>
</p>
<div id="db_div"></div>
<p>
<%= submit_tag "Show Months" %>
</p>
<%= end_form_tag %>
</body>
</html>

The page requires the Prototype JavaScript package to initiate its dynamic Ajax-driven update. See
for an explanation of prototype.js. javascript_include_tag() is an RoR API method you can use in
embedded scripts to make it easier to output script tags. form_remote_tag() creates a form
element that uses XMLHttpRequest to update an HTML element on the page. The form submits its
request to a server-side component (in Rails parlance, an action) called db_element. Let's take a look
at db_element.

class KilowattController < ApplicationController
 scaffold :kilowatt

 def db_element
 @kwatts = Kilowatt.find_all
 render :partial => "options"
 end

end

db_element is just a method defined in Ruby. In the Rails framework, controller objects, well, control
the processing of requests. KilowattController is a class that handles requests involving <web-app-
root>/kilowatt-type URLs. All the related actions are defined in this controller object. First, the
method creates an instance variable, @kwatts, which contains the data for all the rows of a database
table. The Kilowatt.find_all part is a model object that calls a find_all() method, which queries
the database table kilowatts for its rows.

Ruby on Rails uses an object-relational mapping mechanism that allows
application code written in Ruby to create, update, and delete database data.
Ruby on Rails is already well known for automating much of this development
process.

Next, db_element calls render(), which renders the response (the select element and text field)
using a chunk of a template called a partial. The partial's name is options, and it is located at
<web-app-root>app/views/kilowatt/_options.rhtml (Ruby on Rails knows where to find it). The
partial has access to the @kwatts variable mentioned above. Here it is:

<select id="dbselect" name="dbselect" onchange=
"$('monthly_total').value=this.value">
<% @kwatts.each do |kilowatt| %>
<option value="<%=kilowatt.kwatts%>">Kilowatts for :: <%=kilowatt.kdate%>
</option>
<% end %>
</select>
<p>
<input type="text" id="monthly_total" size="10" maxlength="10">
</p>

The template generates an option element for each database table row. The values for two of the
table columns are used: kilowatt.kwatts is a number reflecting the kilowatts used, and
kilowatt.kdate is a date string. Here's an example option in the output:

<option value="2200">Kilowatts for :: 11-07-2005</option>

The server sends the output of this partial as the HTTP response.

Good Form

The form element looks like this in the web page's underlying source code:

<form action="/kilowatt/db_element" method="post"
onsubmit="new Ajax.Updater('db_div', '/kilowatt/db_element',
{asynchronous:true, evalScripts:true, insertion:Insertion.Top,
onSuccess:function(request){$('db_div').innerHTML=''},
parameters:Form.serialize(this)});
return false;">

Like "Periodically Make a Remote Call" [Hack #61], this code uses the Ajax.Updater object from the
prototype.js package (see Chapter 6). While this object is interesting, the RoR developer deals only
with the form_remote_tag() method. The framework does a lot of the work for you.

Hack 61. Periodically Make a Remote Call

Make an HTTP request at a specified interval and update the web page with the response.

This hack updates a web page with new data every five seconds, without ever refreshing or rebuilding the page. The behavior is automatic
and does not involve the user taking any action. The conventional way of initiating this behavior is to use a "client pull" page involving a
Refresh response header set to a specified interval, but even this strategy involves requesting and rebuilding the entire page each time the
refresh takes place.

See Chapter 18 of Bruce Perry's Java Servlet and JSP Cookbook (O'Reilly) for an example.

From the users' perspective, it may also be a little weird for the browser to suddenly "go on automatic" without them touching the keyboard,
with the page going blank temporarily and the delays involved in the redisplaying of images and other embedded items. This hack updates
only the content in a single div , with nothing else changing on the page and no page rebuild.

No Fooling Around

As this is a Ruby on Rails application, all of the handling of the request object and its return values is taken care of for the developer. Figure
7-13 shows what the application's view looks like in the Safari browser. The user requests the URL http://localhost:3000/hacks/interval . In
a Rails application, this causes the calling of an action named interval , or a view template located at <web-app-
root>/app/views/hacks/interval.rhtml .

Figure 7-13. Display new data periodically

This page monitors the Ajax request the same way as "Monitor Remote Calls with Rails" [Hack #56] , but the displayed date is refreshed
every five seconds in a very subtle manner. All this was accomplished by calling one built-in Rails method in the view, as well as four lines of
server-side code. You don't have to fool around with initializing the request object and writing functions to handle its return values!

Here is the code for the view interval.rhtml , which shows the method the application uses, periodically_call_remote() :

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/2000/REC-xhtml1-20000126/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <%= javascript_include_tag :defaults %>
 <title>Periodic Ajax calls</title>
</head>
<body>
<%= periodically_call_remote(:update => "complete",:frequency => 5,
:url => { :action => :increment },
:position => "top",
:success => "$('complete').innerHTML='';$('success').innerHTML='Success;
request status='+request.status",
:loading => "$('loading').innerHTML='Loading...'",
:loaded => "$('loaded').innerHTML='Loaded; request status='+request.status",
:interactive => "$('inter').innerHTML=
 'Interactive; request status='+request.status",
:failure => "$('failure').innerHTML='Failure; request status='+request.status") %>
<h3>Periodically calling Ajax</h3>
<div id="loading" style="font-size: 1.2em"></div>
<div id="loaded" style="font-size: 1.2em"></div>
<div id="inter" style="font-size: 1.2em"></div>
<div id="success" style="font-size: 1.2em; color: green"></div>
<div id="failure" style="font-size: 1.2em; color: red"></div>
<div id="complete" style="font-size: 1.2em; color: green"></div>
</body>
</html>

The <%= javascript_include_tag :defaults %> part ensures that the view imports the script tags that the application requires to use the
JavaScript-based Ajax mechanism (see "Make Your JavaScript Available to Rails Applications" [Hack #57]). You'll see these tags a little
later.

Here are the first few parameters to periodically_call_remote() :

periodically_call_remote(:update => "complete",:frequency => 5,
:url => { :action => :increment }

These parameters:

Specify the id of the HTML element (or div with id complete , in this case) that the request object will update.

Specify the frequency or interval in seconds for sending requests (five seconds).

Point to a Ruby on Rails action (increment) that will generate the response.

The entire parameter to periodically_call_remote() is a Ruby hash type, which is a lot like a JavaScript object literal. You can
also call this method in the following manner:

<% _hash = {:update => "complete",:frequency => 5, :url => { :action => :increment },
:position => "top",
:success => "$('complete').innerHTML='';$('success').innerHTML='Success; request status='+request.status",
:loading => "$('loading').innerHTML='Loading...'",
:loaded => "$('loaded').innerHTML='Loaded; request status='+request.status",
:interactive => "$('inter').innerHTML='Interactive; request status='+request.status",
:failure => "$('failure').innerHTML='Failure; request status='+request.status"} %>

<%= periodically_call_remote(_hash) %>

Where's All the Action?

The increment action is the server-side component or code that provides the HTTP response to these periodic requests. In Rails, an action
can be created as a Ruby method inside of the controller object. The method name is the name of the action. Our action, defined here,
simply updates the current date:

class HacksController < ApplicationController

 def increment
 tz=TimeZone.create("TZ",-60*60*5)
 render :text => tz.now().to_s
 end
#rest of Controller code
end

The increment() method creates a TimeZone object, which is included in the RoR API. This TimeZone is set for a five-hour negative offset
from Greenwich mean time, which lines it up with Eastern standard time (EST). The object's now() method returns the current time in a
formatted string , as Figure 7-13 shows. The code then uses RoR's render() method, which sends the date string as an HTTP response.
The Ajax application calls this bit of code every five seconds, so the date string represents a date and time five seconds later than the
previous one.

That's a lot of requests to hit the server with from one client! The requests will stop once another web page
replaces this one in the browser, or the browser tab containing this page is closed. You can also provide a button
or internal behavior to stop the periodical execution, as discussed in "Create Observers for Web Page Fields" [Hack
#52] .

Shrink-Wrapped

If you ventured through some of the earlier hacks in this chapter, you've probably already encountered the discussion about how these Ajax
methods wrap objects that are made available by the Prototype package. Using View View Source from the Safari browser menu, you
can see what the generated code for this page looks like. Here are the tags that import the JavaScript files:

<script src="/javascripts/prototype.js" type="text/javascript"></script>
<script src="/javascripts/effects.js" type="text/javascript"></script>
<script src="/javascripts/dragdrop.js" type="text/javascript"></script>
<script src="/javascripts/controls.js" type="text/javascript"></script>
<script src="/javascripts/application.js" type="text/javascript"></script>

Rails views are templates; the embedded method calls are replaced by the generated HTML code, which the web server sends back to the
browser in response to a request for an RoR view.

Make sure that you import only the JavaScript files the page needs, because a separate GET request is required
for each one.

The Rails application replaces the periodically_call_remote() code with the following:

<script type="text/javascript">
//<![CDATA[
new PeriodicalExecuter(function() {new Ajax.Updater ('complete',
'/hacks/increment', {asynchronous:true, evalScripts:true,
insertion:Insertion.Top,
onFailure:function(request){$('failure').innerHTML='Failure; request
status='+request.status},
onInteractive:function(request){$('inter').innerHTML='Interactive;
request status='+request.status},
onLoaded:function(request){$('loaded').innerHTML='Loaded; request
status='+request.status},
onLoading:function(request){$('loading').innerHTML='Loading...'},
onSuccess:function(request){$('complete').innerHTML='';$('success').innerHTML=
'Success; request status='+request.status}})}, 5)
//]]>
</script>

This is a script tag that encloses some JavaScript. The script creates a PeriodicalExecuter and an Ajax.Updater object from the Prototype
package (see). The PeriodicalExecuter takes as parameters to its constructor a callback function and the number of seconds to lapse
before it executes again. The Ajax.Updater takes care of the Ajax- and request objectrelated work for us. Depending on how the developer
likes to code, the Ajax magic is virtually shrink-wrapped!

Hack 62. Dynamically View Request Information for
XMLHttpRequest

Display the values of environment variables when you make an Ajax request.

It can be useful to know what environment variables are available along with requests made with
XMLHttpRequest. In this context, environment variables contain information about the server
environment that is associated with a request involving XMLHttpRequest, such as the server name,
the querystring, the raw POST data, and the values of various HTTP request headers. (For more on
environment variables, see http://en.wikipedia.org/wiki/Environment_variable.) Even if you don't
need all this information, it's still cool that you can get a look at it, and Ruby on Rails makes this
easy.

This hack displays a textarea on a web page. When the web page launches XMLHttpRequest in
response to a button click, the textarea immediately fills up with the environment variable
information, without a page rebuild. Figure 7-14 shows the page after the user has clicked the Go
Ajax! button. The textarea shows a bunch of useful information, including an HTTP_X_REQUESTED_WITH
variable indicating that this was an Ajax-related request.

Figure 7-14. Environment variables accompanying XMLHttpRequest

http://en.wikipedia.org/wiki/Environment_variable

How Does It Work?

The page, or view, is simple enough. It's just a Rails template that includes some embedded Ruby
code:

<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <%= javascript_include_tag "prototype.js" %>
 <title>Have a look at request headers</title>
</head>
<body>
<p>
[Lots of cool UI stuff in the body of the application...]
</p>
<form action="javascript:void%200">
<p>

<%= submit_to_remote("submit","Go Ajax!",:update => "env",
:url => { :action => :show_env},:position => "top",
:failure => "$('env').innerHTML='XML request failed...'")%>
</p>
<h3>Request Environment Information</h3>
<p>
<%= text_area_tag "env", nil, :size => "40x20" %>
</p>
</form>
</body>
</html>

The view imports the Prototype JavaScript package in prototype.js, which is required to use the Ajax-
related Rails methods. The submit_to_remote() method is part of the RoR API. It creates a submit
button that makes a remote request using XMLHttpRequest. When the user clicks the button, this
mechanism submits the request to an action called show_env. Then, when the HTTP response arrives
from the action, the application updates the element (the textarea with an id of env.)

Here is how the action generates the environment variable data for the textarea. Remember that a
Rails action can be defined as a simple Ruby method inside the controller class:

class HacksController < ApplicationController
 def index
 end

 def show_env
 if @request.xml_http_request?()
 @headers["Content-Type"] = "text/plain; charset=UTF-8"
 str="";
 @request.env().each do |key,value|
 str+=key.to_s + "==" + value.to_s+"\\n\\n"
 end
 render :text => str
 end
 end
end #end class

First, show_env checks whether the request actually involves XMLHttpRequest (see "Find Out Whether
Ajax Is Calling in the Request" [Hack #59]). The action then uses the instance variable @request.env(
) method to iterate through each of the environment variables and store their values. The code then
renders this string as the response.

The response text ends up plunked inside the textarea. An important ease-of-use factor with this
hack is that you never had to set up or deal at all with the innards of XMLHttpRequest; the Rails
method submit_to_remote() takes care of that. Sweet!

Hacking the Hack

If the user clicks the Go Ajax! button more than once, the textarea's chunk of data is submitted in
the request and ends up as a giant lump inside the RAW_POST_DATA environment variable. To avoid this
problem, you can use code to clear the textarea's contents first each time the button is clicked:

$('the_textarea').innerHTML="";

Chapter 8. Savor the script.aculo.us
JavaScript Library
Hacks 6367

Your web-application development efforts can substantially benefit from open source JavaScript
libraries, if only because they save you time that would otherwise be spent reinventing the wheel.
Chapter 6 used the Ajax tools of the powerful Prototype library. The hacks in this chapter use
practical controls such as Mac OS Xstyle login boxes and auto-complete email fields deriving from
script.aculo.us, an open source JavaScript library that Thomas Fuchs, a software architect in Vienna,
Austria, has made available under an MIT-style license (see http://script.aculo.us). The library
includes an impressive variety of special effects such as shakes, fades, and pulsations, as well as
custom controls such as draggables, droppables, and auto-completing input fields.

script.aculo.us is built upon Prototype's Ajax objects. Version 1.5 of script.aculo.us, for example,
depends on Prototype v1.4. Thus, to use script.aculo.us's collection of widget controls and special
effects, you must import prototype.js along with scriptaculous.js. Simply use script tags in your web
pages to include these two files; scriptaculous.js itself then loads its associated dependent code files,
such as controls.js and effects.js.

script.aculo.us includes dozens of effects and tools. The following hacks will help you get started with
this versatile library.

http://script.aculo.us

Hack 63. Integrate script.aculo.us Visual Effects with an
Ajax Application

Include an impressive array of special effects with your Ajax application.

script.aculo.us includes a variety of special effects and custom controls developers can use to enliven
their Ajax applications or just to give them the advanced capabilities users have come to expect from
desktop applications. It also has some built-in Ajax features that use Prototype, the library that must
accompany script.aculo.us in order to use its widget controls and special effects.

Setting Up

The first step in using script.aculo.us is to download the library from
http://script.aculo.us/downloads. This site makes the library available as an archive (currently
scriptaculous-js-1.5.1.tar.gz), which contains various JavaScript files that you have to add to
whichever web application directory you have designated for JavaScripts. The files are: builder.js,
controls.js, dragdrop.js, effects.js, scriptaculous.js, and slider.js. (A file called unittest.js, useful if you
want to run unit tests on your code, is also included.) The main JavaScript directory for this hack,
which is built on the Tomcat web container, is /parkerriver/ajaxhacks/js, so that's where I put all of
these files. script.aculo.us depends on prototype.js, so make sure this library is included in the
directory as well (see "Use Prototype's Ajax Tools with Your Application" [Hack #50]).

Next, you must make sure that the script.aculo.us library is properly loaded. A simple hack like this
one will also work when the web page is loaded into the browser from the filesystem.

While your designated directory for JavaScript files has to contain the various script.aculo.us-
dependent files, your web page only has to include prototype.js and scriptaculous.js (which loads all
of its dependencies itself). This hack's web page also imports efflib_2.js, which is the JavaScript file
that contains our application code. Here's what the head section of the web page should look like:

<html lang="en">
<head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <script src="js/prototype.js" type="text/javascript"></script>
 <script src="js/scriptaculous.js" type="text/javascript"></script>
 <script src="js/efflib_2.js" type="text/javascript"></script>
 <style type="text/css">
 @import "/stylesheets/hacks.css";
 </style>
 <title>Toggle a control</title>
</head>

http://script.aculo.us/downloads.

With the setup complete, let's take a look at how easy it is to include a useful control or effect with
your Ajax application.

Toggling and Switching

Some applications need to be able to show or hide a control or page region, depending on what the
user wants to do with the application. For example, this hack contains a textarea that shows instant
messages, similar to an emailer that auto-fetches emails. The application enables users to show or
hide the textarea (in other words, to get it out of the way when they are not examining their
messages).

The hack uses the toggle effect of Prototype and the SwitchOff effect of script.aculo.us.

Figure 8-1 shows the section of the web page that contains a viewport for instant messages.

Figure 8-1. Embed script.aculo.us controls in a view

When the user clicks the Toggle button, the textarea or view port disappears, and the two buttons
move up the page to take its place. Clicking the "Switch off" button elicits a more interesting
animationthat of a TV screen of the older cathode-ray tube vintage switching offas the textarea
disappears. Again, the two buttons move up to inhabit the region where the view port used to be.
Clicking the Toggle button again restores the viewport.

So, how does this work? Here's all the code that's necessary:

window.onload=function(){
 if($("msg_screen") && $("toggle") && $("switchoff")){
 $("toggle").onclick=function(){
 Element.toggle($("msg_screen"));
 };

 $("switchoff").onclick=function(){
 Effect.SwitchOff("msg_screen"));
 };
 }
};

The onclick event handlers of each button are set to call Element.toggle() and Effect.SwitchOff(
). toggle() takes the toggled element as a parameter; the code uses the Prototype shortcut
$("msg_screen"). Effect.SwitchOff takes the switched-off element's id as a parameter.

The code also checks that each of these elements, including the textarea,
exists on the web page before it assigns behaviors.

Hacking the Hack

You can make the code feed the message screen with new server messages using Prototype's
Ajax.Updater object, perhaps in conjunction with the PeriodicalExecuter (see "Create Observers for
Web Page Fields" [Hack #52]).

Hack 64. Create a Login Box That Shrugs Off Invalid
Logins

Use script.aculo.us to create a login control that shakes like a Mac OS X control if the login
is invalid.

This hack sets up script.aculo.us with a web page, as explained in "Integrate script.aculo.us Visual
Effects with an Ajax Application" [Hack #63], and then implements a text entry box that shakes if the
user types in an invalid entry. If you've ever tried to log into Mac OS X with an incorrect username,
you'll recognize this behavior. If the user enters a valid value in the text box, the hack makes an Ajax
request, submitting the value to a server. The server's response to the request is displayed beneath
the login button; this message automatically fades away in 10 seconds.

Whenever you implement a login-type widget, make sure that the application is
designed to prevent any outsiders from mining your systems for valid
usernames.

Here is the web page code for the hack, with script tags that import the required JavaScript files:

<html>
<head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <script src="/javascripts/prototype.js" type="text/javascript"></script>
 <script src="/javascripts/scriptaculous.js" type=
 "text/javascript"></script>
 <script src="/javascripts/efflib.js" type="text/javascript"></script>
 <style type="text/css">
 @import "/stylesheets/hacks.css";
 </style>
 <title>Use script.aculo.us</title>
</head>
<body>
<div id="entry_box" class="box">
Enter your login name:
<form action="javascript:void%200" method="get">
<input id="login_nm" type="text" size="25" maxlength="30" class=
"txtbox">

 <button class="ajbut" id="gobut">login</button>
 <div id="answer" class="answer" style="display:none;"></div>
</form>
</div>

</body>
</html>

Figure 8-2 shows what this web application looks like in Firefox 1.5.

Figure 8-2. Don't get shaken down

Users are invited to type their login names in the text field, and then click the "login" button to
submit them. If the name entered is less than six characters long or contains any numbers, the box
"shakes" or moves back and forth quickly, like a Mac OS X login field when a user enters an invalid
name. If the login name passes muster, the application sends an Ajax request with the login name to
a server, which returns the server name and the login name it received. This message is displayed
beneath the login button, as Figure 8-3 shows.

Figure 8-3. A good name fades away

This message remains for 10 seconds, then elegantly fades away. Now let's see how we did that.
Here's the efflib.js code:

window.onload=function(){
 if($("login_nm") && $("gobut")){
 $("gobut").onclick=function(){
 if((! $F("login_nm")) || ($F("login_nm").length < 6) ||
 $F("login_nm").match(/\\d+/g)){
 $("login_nm").value="";

 Effect.Shake('entry_box');
 } else {
 Svar xmlHttp= new Ajax.Request("/hacks/shake_resp",
 {method: "get",
 parameters: "login_nm="+$F("login_nm"),
 onComplete:function(request){
 $("answer").innerHTML=request.responseText;
 Effect.Appear("answer");
 var vrl=window.setInterval(function(){
 Effect.Fade("answer");
 window.clearInterval(vrl);
 },10*1000);
 }});

 }
 }
 }
};

Whole Lotta Shakin'

When the user clicks the login button, the code validates the text field, using a Prototype shortcut for
getting the value of a form element ($F("login_nm")).

To use this shortcut, pass the id of the HTML element (nm_info, in the following
example) to $F():

<input type="text" id="nm_info" size="25" />

If the validation fails, the code implements the shake behavior in this way:

Effect.Shake('entry_box');

The parameter to the Shake method is the id of the div that does the shakin' and bakin'.

If the validation succeeds, the code initiates an Ajax-style request with Prototype's Ajax.Request
object. This request sets the stage for a couple of additional script.aculo.us effects:

Effect.Appear("answer");
var vrl=window.setInterval(function(){
Effect.Fade("answer");
window.clearInterval(vrl);
},10*1000);

Effect.Appear() makes an element visible if the code initially sets its display CSS property to none:

<div id="answer" class="answer" style="display:none;"></div>

Just pass in the id of the element you want to reveal as a parameter. One sort of hackish way to
make the visible element fade away again on a timer is illustrated in the prior code snippet. I used
the window.setInterval() method to wait 10 seconds and then call Effect.Fade("answer"). The
code then clears that interval immediately, so it calls Effect.Fade() only once. This generates the
effect where the server message appears beneath the login button for 10 seconds, then fades away.

Serve It Up

The server-side code is fairly trivial in the Ruby on Rails (RoR) framework:

class HacksController < ApplicationController

 def shake_resp
 if @request.xml_http_request?()
 render :text => "Server--> "+
 @request.env()["SERVER_SOFTWARE"].to_s+
 " responds to login "+params[:login_nm].to_s
 end
 end

This code checks if the request originates from XMLHttpRequest, then it sends back some text
specifying the name of the server software and the request parameter value (see "Find Out Whether
Ajax Is Calling in the Request" [Hack #59]).

You can find more information on the Effect.Shake API at
http://wiki.script.aculo.us/scriptaculous/show/Effect.Shake.

http://wiki.script.aculo.us/scriptaculous/show/Effect.Shake

Hack 65. Create an Auto-Complete Field with
script.aculo.us

Implement your own auto-complete field using script.aculo.us effects.

An increasingly common control for Ajax applications is a text field that "senses" the user typing.
When the user types one or more letters, the application immediately checks the field value with a
cached or server database. If there are any matches, these are displayed in a drop-down box
beneath the text field. This behavior is usually referred to as auto-completion .

This hack requests the user to start typing in an email address. The typed characters are compared
behind the scenes to a server-side data store, and if any matches are found, a drop-down box
populated with those values appears (as in Google's Gmail). Figure 8-4 shows this effect, which is
simple to implement using script.aculo.us .

Figure 8-4. Your own version of Gmail

script.aculo.us uses the Ajax.Request object of the Prototype library. See
"Integrate script.aculo.us Visual Effects with an Ajax Application" [Hack #63] for
a description of Prototype and this object.

When the user selects one of these displayed email addresses, it becomes the value of the text field.

To implement this hack, the developer must import the prototype.js and scriptaculous.js libraries, as
in the following web page code:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/2000/REC-xhtml1-20000126/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <script src="/javascripts/prototype.js" type="text/javascript"></script>
 <script src="/javascripts/scriptaculous.js" type="text/javascript"></script>
 <script src="/javascripts/auto_com.js" type="text/javascript"></script>
 <style type="text/css">
 @import "http://localhost:8080/stylesheets/hacks.css";
 </style>
 <title>auto-complete field</title>
</head>
<body>
<h3>Enter Your Email Contact Name</h3>
<div><form action="javascript:void%200">
<input type="text" id="ac" size="25" />
<div id="ac_choices" style=
 "background-color: #9EB5F2; font-size: 0.8em; border: solid thin;">
p</div>
</form></div>
</body>
</html>

The imported auto_com.js file contains this hack's custom code, which uses a script.aculo.us object to
implement the fancy control. Here is the code for that file:

window.onload=function(){
 new Ajax.Autocompleter("ac", "ac_choices",
 "/hacks/a_complete", {paramName: "chars", minChars: 2});
}

This code creates an Ajax.Autocompleter object when the browser finishes loading the web page.
Ajax.Autocompleter is a built-in script.aculo.us object defined in controls.js . (Recall from "Integrate
script.aculo.us Visual Effects with an Ajax Application" [Hack #63] that as long as your web page
imports the JavaScript library scriptaculous.js , it loads its various dependencies, such as effects.js
and controls.js , itself.

The Ajax.Autocompleter parameters are:

The id of the text field that implements auto-completion (this can also be implemented as a
textarea ; see the upcoming API information)

The id of the div element, for instance, that will contain the drop-down list of matching text

The URL of the server component that receives this control's Ajax request

A set of optional parameters in JavaScript object literal format

The code's parameters specify that the name of the variable containing what the user has typed so
far is chars . An Ajax request is sent when the user has typed a minimum of two characters. In other

words, once the user has typed two characters in the text field, the auto-completer sends those
characters to the server component in a request parameter named chars .

There are several other parameters that developers can use with the
Ajax.Autocompleter object. For details, see the API description at
http://wiki.script.aculo.us/scriptaculous/show/Ajax.Autocompleter .

On the Server Side

The server component has to check the value of the sent parameter and then send the auto-
completer some data in the response. The response has to be in the format of an HTML unordered
list. First, here is the server-side code that receives the request at the URI /hacks/a_complete . This
component or action is implemented with Ruby on Rails (discussed in Chapter 7):

def a_complete
 #This data typically derives from a database
 #Call a method returning an array of email contacts
 #associated with a particular user
 @emails = ["boston@city.com","bruceperg@yahoo.com",
 "brucew@parkerriver.com",
 "bradpitt@comcast.net","brycegill@google.com",
 "billythorton@ycomcast.net", "bruceperry@comcast.net",
 "christophe@comcast.net"]
 #The chars request parameter holds the
 #characters that the user has typed in so far
 chars = params[:chars].to_s
 #Regular expression matching a string beginning with
 #the characters the user typed in, followed by
 #zero or more characters
 re = /^#{chars}.*$/
 @mtch = []
 for email in @emails
 if re.match(email) != nil
 @mtch.push(email)
 end
 end
 @mtch = @mtch.sort
 #Pass the array of matched emails on to the template
 render :partial => "auto_ul"
end

The comments (preceded by #) describe what's going on in the Ruby method a_complete() . We
skipped the step of pulling dozens of email addresses out of a database for a user, and began with an
array of email addresses that would be the typical return value of the database interaction. The code
uses a regular expression to match the beginning of each email address with the characters that the
user has entered. The code then stores the matching addresses in an array , and passes this array to
a template that forms the basis of the server's return value.

http://wiki.script.aculo.us/scriptaculous/show/Ajax.Autocompleter

The render :partial => "auto_ul" part is the RoR method that processes the template with the
matched email addresses. (Recall that in Rails parlance, the template file is called a partial .) Here is
what it looks like:

<ul class="people">
<% @mtch.each do |_word| %>
<li class="person"><%=_word%>
<% end %>

The @mtch variable contains all the matched addresses. This Ruby code is designed to build and return
an unordered list, which the Ajax.AutoCompleter object expects as a return value. This value is a ul
tag with nested li tags, each specifying an email address. The drop-down that appears when the
user types is styled in a way that removes the bullets from the ul /li tags (list-style-type: none)
and highlights the selected email address in white against a blue background:

<!--div holding the drop-down filled with email addresses -->
<div id="ac_choices" style=
 "background-color: #9EB5F2; font-size: 0.8em; border: solid thin;">

Here are the relevant rules in the hacks.css stylesheet that determines the display of the drop-down
box:

ul.people li.selected { background-color: #ffffff; }
li.person { list-style-type: none; }

"Create an Auto-Complete Field" [Hack #78] discusses an alternate usage and
implementation of auto-complete fields.

Hack 66. Create an In-Place Editor Field

Allow users to edit text right in the web application, without experiencing any page
refreshes or rebuilds.

You might have used a wiki beforeit's a web page whose users can edit its content. script.aculo.us 's
Ajax.InPlaceEditor is an object that makes it very easy to specify any text on a web page as editable;
it uses Ajax requests to handle any changed values. This hack's web page displays a quote from the
old patriot Thomas Paine, but it allows the devilish user to edit the word "souls." Using the
Ajax.InPlaceEditor object, the server component can look at the new value and decide whether to
keep it. The user interacts with a text control; the code handles the server-related activity as Ajax
requests in the background.

Figure 8-5 shows what the web application looks like.

Figure 8-5. Alter that quote!

It may be deemed blasphemous, but the user can now edit the word "souls." The application quietly
submits the new word using XMLHttpRequest .

Only the quote as displayed in the user's browser is changed, not the backend
page (unless this is part of the server-side process).

When the user passes the mouse pointer over the word "souls," this word is highlighted in yellow. If the
user clicks on it, it turns into a text control, as Figure 8-6 shows. We have changed the word to
"wrists."

Figure 8-6. Rewriting history

When the user clicks the "ok" button, an Ajax request sends the field's value to the server
automatically. If the user clicks "cancel," the control vanishes and the code does not send a request.
Figure 8-7 shows the final result after entering "wrists" and clicking "ok." Our server component just
returns the changed value as is, but obviously it could do a lot more (for example, check for and reject
offensive terms).

Figure 8-7. Trying times for typists

Now let's look at the rather pithy web page code and JavaScript. Here is the view that the web page
loads. I made sure to include the prototype.js and scriptaculous.js files in script tags:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/2000/REC-xhtml1-20000126/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <script src="/javascripts/prototype.js" type="text/javascript"></script>
 <script src="/javascripts/scriptaculous.js" type="text/javascript"></script>
 <script src="/javascripts/auto_inp.js" type="text/javascript"></script>
 <style type="text/css">
 @import "http://localhost:8000/stylesheets/hacks.css";
 </style>
 <title>In-Place Editor field</title>
</head>
<body>
<h3 class="quoter">Editable Quote</h3>
 <pre class="quoter">
 “These are the times that try men's
 souls. The summer soldier
 and the sunshine patriot may,
 in this crisis, shrink from the service of his country;
 but he that stands it now deserves
 the love and thanks of man and woman.”
 </pre>
<p id="author" class="quoter">
 --Thomas Paine
</p>
</body>
</html>

Our code initially encountered a JavaScript error that necessitated upgrading
from scriptaculous.js Version 1.5_rc5 to 1.5.0. This solved the problem.
scriptaculous.js v1.5.0 requires Prototype v1.4 or greater.

The code surrounds the editable text with a span tag and gives the tag an id . Here's the code from
the imported auto_inp.js file, which creates the Ajax.InPlaceEditor object:

window.onload=function(){
 var inp = new Ajax.InPlaceEditor("ed", "/hacks/in_place",
 {formId: "value"});
}

This code specifies the id of the editable element (ed), the relative URL for the server component
where the Ajax request will be sent, and a formId option specifying the name of the variable containing
the editing result. In other words, the querystring for the Ajax request when the user clicks "ok" could
be value=wrists .

There are many other options that the code can use. See the API description at
http://wiki.script.aculo.us/scriptaculous/show/Ajax.InPlaceEditor .

In addition, when the user clicks "ok" to change the edited value, by default the word "saving..."
appears temporarily in the editable space during the server interaction. You can style the appearance
of this word by including the following class name in your CSS file:

.inplaceeditor-saving{font-family: Times,Verdana;font-size: 0.8em; color: black; }

The .inplaceeditor-saving CSS class is the default name for the class that script.aculo.us will use to
style the saving-related word. You can use a different word by including this option in the constructor
(here, it's been replaced it with "waiting"):

var inp = new Ajax.InPlaceEditor("ed", "/hacks/in_place",
 {formId: "value", savingText: "waiting"});

http://wiki.script.aculo.us/scriptaculous/show/Ajax.InPlaceEditor

Hack 67. Create a Web Form That Disappears When
Submitted

Create a web form whose fields pulsate if the user has not filled them out; the form then
scrams when the user submits it.

This hack creates a form that displays special effects. If a field is left blank when the user submits the
form values, the field pulsates or flashes six times and displays a message. Once the user submits
the completed form, the form pauses ever so briefly and then flees the page, leaving the server
return value behind.

We'll look at the code that generates the effects in a moment, but first, here's the relevant part of
the HTML for the page:

<head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <script src="/javascripts/prototype.js" type="text/javascript"></script>
 <script src="/javascripts/scriptaculous.js" type=
 "text/javascript"></script>
 <script src="/javascripts/disform.js" type="text/javascript"></script>
 <title>form effects</title>
</head>
<body>
<h3>Please Fill out the Form</h3>
<div id="allform">
<form action="javascript:void%200">
<p>
<label for="tfield">Please enter your full name:</label>
 <input id="tfield" type="text" name="fname" size="25" maxlength="25" />
</p>
<p>
<label for="email">Email address:</label>
 <input id="email" type="text" name="email" size="25" maxlength="25" />
</p>
<p>
<button id="but1">Submit</button>
</p>
</form>
</div>

The text fields labeled tfield and email are the potentially throbbing form elements. The div with id
allform is the space containing the content that disappears when the code sends an Ajax request.

Here is the code in disform.js, which uses a couple of script.aculo.us and Prototype objects:

window.onload=function(){
 if($("tfield") && $("but1")){
 $("but1").onclick=function(){
 var _inputs = document.getElementsByTagName("input");
 var bool=true;
 for(var i = 0; i < _inputs.length;i++) {
 if (_inputs[i].type && _inputs[i].
 type.toLowerCase() == "text" &&
 ! _inputs[i].value) {
 Effect.Pulsate(_inputs[i].id);
 _inputs[i].value="[Please enter a value]";
 bool=false;
 }
 }

 if(bool){
 Effect.Puff("allform");
 new Ajax.Updater("msg","/hacks/proto",
 {insertion:Insertion.Top,
 parameters: Form.serialize(document.forms[0]),
 onComplete: function(request){
 if ((! request.status) ||
 (request.status > 400)) {
 $("msg").innerHTML="The server may be unavailable "+
 "for a moment; please try again soon.";
 }
 }});
 }
 };
 }//end outer if
};

When the user clicks the button on the form, the code iterates through each text field, determining
whether the user has left any of them blank. If so, the code uses the script.aculo.us method
Effect.Pulsate(), passing in the id of the offending text field and making it flash. If everything is
okay, Effect.Puff() causes the div and its child elements to vanish, leaving the server message in
its place. The Puff effect is similar to the way the Roadrunner leaves Wile E. Coyote in its wake in the
old cartoon.

The code uses the Ajax.Updater object from the Prototype library (see Chapter
6).

You have to make sure to import both the prototype.js and scriptaculous.js files into your web page
to use these effects.

For more details on the Effect.Pulsate API, see
http://wiki.script.aculo.us/scriptaculous/show/Effect.Pulsate.

http://wiki.script.aculo.us/scriptaculous/show/Effect.Pulsate

Chapter 9. Options and Efficiencies
Hacks 6880

Chapter 4's discussion about Ajax's effect on the browser back button may seem like ancient history
to you Ajax mavens. To refresh your memory, a single-page Ajax application has a self-contained
navigation model; everything takes place in one web page, with client/server connections occurring
using XMLHttpRequest. A user who clicks the browser's back button when the Ajax view changes in
order to return to the previous Ajax view is instead returned to the page that preceded the Ajax
application in that tab or window. This is a confusing outcome for fans of the browser forward and
back buttons. The first two hacks in this chapter provide, well, hackish solutions to that conundrum.

In this chapter, you'll also find several hacks that use optional or alternative models to get their jobs
done. These include a hack that uses declarative markup in XForms format instead of JavaScript to
implement its tasks, another that sets up a search engine inside the browser, and a third that uses
client-side JavaScript to cache the user's data. The common theme in these hacks is design
simplification and the reduction of server hits whenever possible.

This chapter includes some practical applications that are almost "too pragmatic to be hacks." One
hack includes techniques for reducing the size of and obfuscating[1] JavaScript code. Another uses
strings and arrays in script code to dynamically generate content. Still another uses Apache server
configuration to deal with Ajax's restrictions on cross-domain requests.

[1] This term refers to reformatting the code so that the JavaScript is very difficult to read for anyone who tries to reverse-engineer

it, but the running program is not affected.

Hack 68. Fix the Browser Back Button in Ajax
Applications

Make the browser back button work the way web users expect it to in Ajax applications.

Some Ajax applications change the behavior of the browser back button in a way that is unacceptable
to users who are big fans of the back and forward buttons. For example, if you use the back button
while reading your Google mail messages, you might be greeted by a blank white page that displays
the text "Loading..." without anything else happening (Gmail solves this problem by providing its own
"Back to Inbox" navigation control within the Gmail application).

What is the usual role of a browser back button? The back button jumps you back through your
browser's page history. In typical web applications, when the user clicks on a hyperlink, the data is
updated by building a whole new page. A new page represents a new browser history entry.

When the user hits the back button, the browser typically either returns the
cached version of the previous page or, if HTTP response headers have marked
the page as not cacheable, requests a new version.

But Ajax applications don't create new pages. Rather, they update content within an existing page.
And therein lies the problem: when users press the back button they jump back to the previously
loaded pageand often out of the Ajax application.

How can you tell the browser to add a new entry to the browser history in an Ajax application? It
depends on the browser.

The DOM window object has a property, location, that lets you set the URL to display on the user's
screen. However, this normally means the user jumps to a new page, which doesn't help us. Is there
any way to change the location URL without causing a page reload? It turns out there is.

You've seen URLs that look like this: http://www.example.xyz/frobnitz#xyz. The hash mark (#) is
called a fragment identifier (or, more commonly, an anchor hash). The characters that appear after
the hash point to a marker inside the current document. (You'd see the target of the above link
written as .)

In the Firefox and Opera browsers, if you change the fragment identifier (hash) of window.location in
JavaScript, a new history entry is created. When you hit the back button, the history pulls the
previous page from the browser cache. This works in Internet Explorer, tooalmost. Internet Explorer
adds a history entry but doesn't cache the page data, so when the user presses the back button the
data on the page doesn't change. So, scratch window.location.

http://www.example.xyz/frobnitz#xyz

What else updates the browser's history? Changing the contents of an iframe adds a history entry,
and it works across the major browsers (this hack, however, doesn't work with Safari 2.0). That's
the approach we'll use in this hack.

"Control Browser History with iframes" [Hack #37] revealed that there are two
kinds of iframe: those that are located within the page's HTML and loaded with
the page, and those that are loaded dynamically (via the DOM or JavaScript)
after the page is finished loading. This hack deals with the former.

This hack is contained in a single JavaScript file, bbfix.js, so it's easy to plug into existing projects.
Ideally, you should be able to drop this file into an existing Ajax application and, with minimal fuss,
get a working back button.

Macromedia Flash programmers use variations of this iframe hack to overcome
similar back button problems with Flash.

Before looking inside this hack, let's look at how it's used within a program.

A Very Simple Ajax Program

This simple Ajax program, uptime.html, includes a form holding a single button. Press the button,
and a JavaScript function fires off an XMLHttpRequest request for the web server's uptime value. The
value is displayed on the page. Press the button again, and the uptime value is updated.

On a Linux server, the uptime value is stored as a floating-point value. It
represents the number of seconds the server has been up and running.

Here's the web page code:

<HEAD>
<TITLE>Ajax Back Button Hack</TITLE>

<script language="javascript" src="/bbfix/xhr.js"></script>
<script language="javascript" src="/bbfix/bbfix.js"></script>
<script language="javascript" type="text/javascript">

function onClick_btnGetUptime () {

 var httpreq = getHTTPObject();
 httpreq.open("POST", "/cgi-bin/bbfix/uptime.cgi", true);

 httpreq.onreadystatechange = function () {

 if (httpreq.readyState == 4) {
 //Update the uptime results.
 var content = document.getElementById("divUptime");
 content.innerHTML = httpreq.responseText;

 //Store the new contents in the cache.
 bb_save_state ();
 }
 }

 //Opera needs "", not null, as a send()
 //parameter, else it fails.

 httpreq.send ("");
}

</script>

</HEAD>

<BODY onload="bb_init('divBody', true);">

<div id="divBody">

Ajax Back Button Hack
<div id="divUptime">
</div>

<form id="frm1">
<input
 type="button"
 id="btnGetUptime"
 value="Get Uptime"
 onClick="onClick_btnGetUptime();"
>
</form>

</div>

<!-- Invisible IFRAME required by bb_fix module: -->
<iframe
 name="bbFrame1"
 id="bbFrame1"
 width="0" height="0"
 style="visibility: hidden; inline: none;"
>
</iframe>

<!-- bbfix.js inserts debugging info here, if enabled: -->
<div id="divBBDebug">
</div>
</BODY>

</HTML>

Using bbfix.js requires just five steps:

Include the bbfix.js code in your web page, using a script tag.1.

Call the bb_init() function in the page's onLoad event handler.2.

Specify a div tag encompassing the section of the page that will change when the back button
is pressed.

3.

Specify an iframe tag called bbFrame1, used by the bbfix.js module.4.

Include the bb_save_state() function in your code where needed.5.

An optional sixth step, adding a div tag called divBBDebug, can be included.
This div tag displays useful information about the inner workings of bbfix.js.

Inside the Hack

This hack works by detecting when the back button is pressed, and then rolling back the web page to
a previous state. Within your Ajax app, you determine these "rollback" points by calling
bb_save_state().

Figure 9-1 shows what the web page looks like after the user clicks the Get Uptime button three
times. Each button press gets a new uptime value from the server. The number always increases
(such is the nature of time).

Figure 9-1. The web page after three updates

The bb_save_state() function stores a portion of the current web page into a JavaScript array. A
global variable keeps track of the current index into that array. After saving the current state, the
function then updates the contents of the hidden iframe bbFrame1. Updating the iframe is the hackish
code piece that later lets us know when the back button has been pressed. The hidden iframe is
updated by calling a very simple server-side script called count.cgi.[2] The sole function of this server
script is to store the current array index. For array index 4, it will place this into the iframe:

[2] Using hidden iframes is a technique that predates the existence of XMLHttpRequest. A hidden iframe can be used to retrieve

data from a server without a page refresh. Though not as elegant a solution as using XMLHttpRequest, in this application it has a

big advantage: in all the major browsers (Safari 2.0 cannot run this hack correctly, however), changes to the iframe contents

cause changes to the browser history.

<HTML>
<HEAD>
</HEAD>
<BODY onload='parent.bb_done_loading();'>
<div id="divFrameCount">4</div>
</BODY>
</HTML>

The debugging information at the bottom of the page in Figure 9-1 shows that the cache has been
updated via bb_save_state() four times (the initial state of the page is stored in the first cache
entry).

The code calls the bb_init() function once, when the Ajax page is first loaded. Its most important
job is to start up an interval timer. This timer fires off once a second, calling the function
bb_check_state(). This function detects if the back button has been pressed.

When the back button is pressed, the browser automatically rolls back the contents of the iframe to
its previous state. The browser caches this state in its browser history. (If all browser versions
consistently stored the rest of the page as well, there'd be no need for this hack.) When the interval
timer fires, bb_check_state() looks at the index value stored in the iframe's tag. If it's changed, you
know the back button has been pressed. You can use the contents of our own cache array to update
the Ajax page.

Figure 9-2 shows uptime.html after the back button was pressed. Notice that the time is earlier than
in Figure 9-1, proof that this data came from our cache, not the server. The debugging information at
the bottom of the page bears this out. An iframe change was detected by bb_check_state(), and
the divBody tag was updated with the cached content.

Figure 9-2. The page after the user has pressed the back button

Here is the code from bbfix.js that makes this work:

var bb_count = 0;
var bb_curr_idx = "";
var bb_cache = new Array;
var bb_debug = false;
var bb_iframe_script = "/cgi-bin/bbfix/count.cgi";
var bb_iframe_loaded = false;
var bb_target_div = "";

//If debug is enabled via bb_init(), then
//we append some data to the divTrail
//element.

function bb_debug_update (str) {
 if (bb_debug) {
 var divBBDebug = document.getElementById("divBBDebug");
 divBBDebug.innerHTML = divBBDebug.innerHTML + "
" + str;
 }
}

//Run from the interval timer (once a second),
//this function reads a cache index value
//stored in the DIV element of the child IFRAME.
//

//If this extracted cache index differs from the
//current cache index, then the back button was
//pressed. In this case, we pull the corresponding
//data from the cache and update the page.

function bb_check_state () {

 if (bb_iframe_loaded == false) {
 return;
 }

 var doc = window.frames['bbFrame1'].document;
 var new_idx = doc.getElementById('divFrameCount').innerHTML;

 if (new_idx != bb_curr_idx) {

 var debug_msg = "IFRAME changed. Was "
 + bb_curr_idx
 + ", now "
 + new_idx;

 //Pull a previous state from the cache (if it exists).

 if (bb_cache[new_idx]) {
 var divBody = document.getElementById("divBody");
 divBody.innerHTML = bb_cache[new_idx];

 debug_msg += " [pulled "
 + new_idx
 + " from cache]";
 }
 bb_curr_idx = new_idx;

 bb_debug_update (debug_msg);
 }
}

//Called by child IFRAME.

function bb_done_loading () {
 bb_iframe_loaded = true;
}

//Update the hidden IFRAME.

function bb_loadframe () {
 var bbFrame1 = document.getElementById("bbFrame1");
 bb_iframe_loaded = false;
 bbFrame1.src = bb_iframe_script + "?" + bb_count;
}

//When requested, save the current state

//in a cache.

function bb_save_state () {
 //Store the new contents in the cache.
 var div_to_cache = document.getElementById(bb_target_div);
 bb_count++;
 bb_cache[bb_count] = div_to_cache.innerHTML;

 bb_debug_update ("Added " + bb_count + " to cache");

 //Load the new page into the IFRAME.
 bb_loadframe ();

 bb_curr_idx = bb_count;
}

//Load the hidden IFRAME and start an interval timer.

function bb_init (div_name, debug_val) {
 bb_target_div = div_name;
 bb_debug = debug_val;

 bb_loadframe ();
 window.setInterval ('bb_check_state()', 1000);
 bb_save_state ();
}

Hacking the Hack

Using a server-side script to update the contents of the hidden iframe may seem kludgy. We can
read and write values into the iframe with JavaScript and thereby avoid the need for the count.cgi
script, but unfortunately, some versions of Firefox (through at least 1.0.7) set the domain of the
iframe to null after the back button is pressed, and then refuse to let the parent page access the
iframe contents.

As one kludge often leads to another, you may have also noticed that the server script calls a
function in its onLoad event handler:

<BODY onload='parent.bb_done_loading();'>

While count.cgi is very simple, it does take some small amount of time to run. If the iframe hasn't
yet updated when the next bb_check_state() timer is called, the function may become confused.
You can avoid this by having the iframe let its parent know explicitly when loading is completed.

Hidden iframes are not the only approach to fixing the back button. As noted earlier, changing
window.location works for some browsers, and for those browsers it's a simpler solution. You might
even find a way to make it work with Internet Explorer as well.

Mark Pruett

Hack 69. Handle Bookmarks and Back Buttons with RSH

Use an open source JavaScript library that brings bookmarking and back button support
to Ajax applications.

This hack introduces the Really Simple History (RSH) library, an open source framework that provides
bookmarking and back-button solutions for Ajax, and shows several working examples. It uses a
hidden HTML form to initiate a large transient session cache of client-side information; this cache is
robust against navigation to and away from the page. Second, a combination of hyperlink anchors
and hidden iframes [Hack #68] can intercept and record browser history events, tying into the back
and forward buttons. Both techniques are wrapped with a simple JavaScript library to ease
development.

The Problem

Bookmarks and the back button work great for traditional multipage web applications. As users surf
web sites, their browsers' location bars update with new URLs that can be pasted into emails or
bookmarked for later use. The back and forward buttons also function correctly and shuffle users
between the pages they have visited.

Ajax applications are unusual, however, in that they are sophisticated programs that live within a
single web page. Browsers were not built for such beasts: they are trapped in the past, when web
applications involved pulling in completely fresh pages on every mouse click.

In Ajax applications such as Gmail, the URL in the browser's location bar stays exactly the same as
users select functions and change the application's state. Creating bookmarks for specific application
views is impossible. Further, if users press their back buttons to "undo" previous actions, they will
find to their surprise that the web pages they were looking at disappear, to be replaced with the last-
visited (and completely different) pages.

The Solution

The Really Simple History framework solves these issues, bringing bookmarking and control over the
back and forward buttons to Ajax applications. RSH is currently in beta and works with Firefox 1.0+,
Netscape 7+, and Internet Explorer 6+; Safari is not currently supported (for an explanation, see the
weblog entry "Coding in Paradise: Safari: No DHTML History Possible" at the following:
http://codinginparadise.org/weblog/2005/09/safari-no-dhtml-history-possible.html).

Several Ajax frameworks currently exist to help with bookmarking and history issues; all of these
frameworks, however, suffer from several important bugs due to their implementations (see "Coding
in Paradise: Ajax History Libraries" http://codinginparadise.org/weblog/2005/09/ajax-history-

http://codinginparadise.org/weblog/2005/09/safari-no-dhtml-history-possible.html
http://codinginparadise.org/weblog/2005/09/ajax-history-

libraries.html for details). Further, many Ajax history frameworks are monolithically bundled into
larger libraries, such as Backbase (http://www.backbase.com) and the Dojo Toolkit
(http://www.dojotoolkit.org). These frameworks introduce significantly different programming models
for Ajax applications, forcing developers to adopt entirely new approaches to gain history
functionality.

In contrast, RSH is a simple module that can be bundled with existing Ajax systems. Further, the
Really Simple History library uses techniques to avoid the bugs that affect other history frameworks.

History Abstraction

The RSH framework consists of two JavaScript classes, named DhtmlHistory and HistoryStorage.

The DhtmlHistory class provides a history abstraction for Ajax applications. Ajax pages add() history
events to the browser, specifying new locations and associated history data. The DhtmlHistory class
updates the browser's current URL using an anchor hash, such as #new-location, and associates
history data with this new URL. Ajax applications register themselves as history listeners, and as the
user navigates with the back and forward buttons, history events are fired that provide the browser's
new location and any history data that was persisted with an add() call.

The second class, named HistoryStorage, allows developers to store an arbitrary amount of saved
history data. In normal pages, when a user navigates to a new web site the browser unloads and
clears out all application and JavaScript state on the web page; if the user returns using the back
button, all data is lost. The HistoryStorage class solves this problem through an API containing
simple hash table methods such as put(), get(), and hasKey(). These methods allow developers
to store an arbitrary amount of data after the user has left a web page; when the user returns using
the back button, the data can be accessed through the HistoryStorage class. You internally achieve
this using a hidden form field, taking advantage of the fact that browsers auto-save the values in
form fields even after a user has left the web page.

Example 1: Basic History

Let's jump right in with a simple example.

First, any page that wishes to use the Really Simple History framework must include the
dhtmlHistory.js script:

<!-- Load the Really Simple History framework -->
<script type="text/javascript"
 src="../../framework/dhtmlHistory.js">
</script>

DHTML History applications must also include a special file named blank.html in the same directory as
the Ajax web page; this file is bundled with the RSH framework, available at
http://codinginparadise.org/projects/dhtml_history/latest.zip, and is needed by IE. As a side note,
RSH uses a hidden iframe to track and add history changes in Internet Explorer. This iframe requires
that you point to a real location for the functionality to work correctly; hence blank.html.

http://www.backbase.com
http://www.dojotoolkit.org
http://codinginparadise.org/projects/dhtml_history/latest.zip

The RSH framework creates a global object named dhtmlHistory that is the entry point for
manipulating the browser's history. The first step in working with dhtmlHistory is to initialize the
object after the page has finished loading:

window.onload = initialize;
function initialize() {
 //initialize the DHTML History
 //framework
 dhtmlHistory.initialize();

dhtmlHistory is the global variable name; DhtmlHistory is the object name.

Next, you can use the dhtmlHistory.addListener() method to subscribe to history change events:

window.onload = initialize;
function initialize() {
 //initialize the DHTML History
 //framework
 dhtmlHistory.initialize();

 //subscribe to DHTML history change
 //events
 dhtmlHistory.addListener(historyChange);

This method takes a single JavaScript callback function that receives two arguments when a DHTML
history change event occurs: the new location of the page and any optional history data that might
be associated with this event.

The historyChange() method is straightforward. It consists of a function that receives the
newLocation after a user has navigated to a new location, as well as any optional historyData that
was associated with the event:

/* Our callback to receive history change
events. */
function historyChange(newLocation,
 historyData) {
 debug("A history change has occurred: "
 + "newLocation="+newLocation
 + ", historyData="+historyData,
 true);
}

The debug() method used above is a utility function defined in the example's source file, which is
bundled with the full example download for this hack at the following:
http://www.onjava.com/onjava/2005/10/26/examples/downloads/examples.zip. debug() simply

http://www.onjava.com/onjava/2005/10/26/examples/downloads/examples.zip

prints a message into the web page; the second Boolean argument, TRue in the code above, controls
whether all pre-existing messages are cleared before the new debug message is printed.

As described earlier, you can add history events using the add() method. Adding a history event
involves specifying a new location for the history change, such as edit:SomePage, as well as
providing an optional historyData value that is stored with this event.

Browsers allow JavaScript to change the URL in the location bar only by
appending an anchor to the end of the current location; for example, if I was at
http://codinginparadise.org/test.html, the JavaScript could append
#someAnchor to the end of the URL in the location bar, resulting in
http://codinginparadise.org/test.html#someAnchor. We use this capability in
the RSH library to save bookmarkable state; the edit:SomePage location above
is what is added to the end of the URL:
http://codinginparadise.org/test.html#edit:SomePage.

Here's the code:

window.onload = initialize;
function initialize() {
 //initialize the DHTML History
 //framework
 dhtmlHistory.initialize();

 //subscribe to DHTML history change
 //events
 dhtmlHistory.addListener(historyChange);

 //if this is the first time we have
 //loaded the page...
 if (dhtmlHistory.isFirstLoad()) {
 debug("Adding values to browser "
 + "history", false);
 //start adding history
 dhtmlHistory.add("helloworld",
 "Hello World Data");
 dhtmlHistory.add("foobar", 33);
 dhtmlHistory.add("boobah", true);

 var complexObject = new Object();
 complexObject.value1 =
 "This is the first value";
 complexObject.value2 =
 "This is the second data";
 complexObject.value3 = new Array();
 complexObject.value3[0] = "array 1";
 complexObject.value3[1] = "array 2";

 dhtmlHistory.add("complexObject",
 complexObject);

http://codinginparadise.org/test.html
http://codinginparadise.org/test.html#someAnchor
http://codinginparadise.org/test.html#edit:SomePage

Immediately after add() is called, the new location is shown to the user in the browser's location bar
as an anchor value. For example, after calling dhtmlHistory.add("helloworld", "Hello World Data")
for an Ajax web page that lives at http://codinginparadise.org/my_ajax_app, the user sees the
following in the browser's location bar: http://codinginparadise.org/my_ajax_app#helloworld.

The user can then bookmark this page; if the bookmark is used later, your Ajax application can read
the #helloworld value and use it to initialize the web page, based on the meaning the application
attributes to the hash-marked value. Location values after the hash are URL encoded and decoded
transparently by the RSH framework.

historyData is useful for saving more complicated state with an Ajax location change than what can
easily fit on the end of a URL. It is an optional value that can be any JavaScript type, such as a
number, string, or object. One example use of historyData is to save all of the text in a rich text
editor, for example, if the user navigates away from the page. When the user navigates back to this
location, the browser returns the object to the history change listener.

Developers can provide a full JavaScript object for historyData, with nested objects and arrays
representing complex state; whatever JavaScript Object Notation allows is allowed in the history
data, including simple data types and the null type. References to DOM objects and scriptable
browser objects such as XMLHttpRequest, however, are not saved. Note that historyData is not
persisted with bookmarks and disappears if the browser is closed, if the browser's cache is cleared, or
if the user erases the browser's history.

The last step in working with dhtmlHistory is using the isFirstLoad() method. In some browsers, if
you navigate to a web page, jump to a different page, and then press the back button to return to
the initial site, the first page completely reloads and fires an onload event. This can create havoc with
code that wants to initialize the page in a certain way the first time it loads, but not on subsequent
reloads. The isFirstLoad() method makes it possible to differentiate between the very first time a
web page is loaded versus a false load event fired if the user navigates back to a saved web page in
the browser's history.

In the following example code, we want to add history events only the first time a page loads. If the
user presses the back button to return to the page after browsing to a different site, we do not want
to re-add all the history events:

window.onload = initialize;

function initialize() {
 //initialize the DHTML History
 //framework
 dhtmlHistory.initialize();

 //subscribe to DHTML history change
 //events
 dhtmlHistory.addListener(historyChange);

 //if this is the first time we have
 //loaded the page...
 if (dhtmlHistory.isFirstLoad()) {
 debug("Adding values to browser "
 + "history", false);

http://codinginparadise.org/my_ajax_app
http://codinginparadise.org/my_ajax_app#helloworld

 //start adding history
 dhtmlHistory.add("helloworld",
 "Hello World Data");
 dhtmlHistory.add("foobar", 33);
 dhtmlHistory.add("boobah", true);

 var complexObject = new Object();
 complexObject.value1 =
 "This is the first value";
 complexObject.value2 =
 "This is the second data";
 complexObject.value3 = new Array();
 complexObject.value3[0] = "array 1";
 complexObject.value3[1] = "array 2";

 dhtmlHistory.add("complexObject",
 complexObject);

Let's move on to using the historyStorage class. Like dhtmlHistory, historyStorage exposes its
functionality through a single global object named historyStorage. This object has several methods
that simulate a hash table, such as put(keyName, keyValue), get(keyName), and hasKey(keyName).
Key names must be strings, while key values can be sophisticated JavaScript objects or even
strings filled with XML. In our example source code, we put() simple XML into historyStorage the
first time the page is loaded:

window.onload = initialize;

function initialize() {
 //initialize the DHTML History
 //framework
 dhtmlHistory.initialize();

 //subscribe to DHTML history change
 //events
 dhtmlHistory.addListener(historyChange);

 //if this is the first time we have
 //loaded the page...
 if (dhtmlHistory.isFirstLoad()) {
 debug("Adding values to browser "
 + "history", false);
 //start adding history
 dhtmlHistory.add("helloworld",
 "Hello World Data");
 dhtmlHistory.add("foobar", 33);
 dhtmlHistory.add("boobah", true);

 var complexObject = new Object();
 complexObject.value1 =
 "This is the first value";
 complexObject.value2 =

 "This is the second data";
 complexObject.value3 = new Array();
 complexObject.value3[0] = "array 1";
 complexObject.value3[1] = "array 2";

 dhtmlHistory.add("complexObject",
 complexObject);

 //cache some values in the history
 //storage
 debug("Storing key 'fakeXML' into "
 + "history storage", false);
 var fakeXML =
 '<?xml version="1.0" '
 + 'encoding="ISO-8859-1"?>'
 + '<foobar>'
 + '<foo-entry/>'
 + '</foobar>';
 historyStorage.put("fakeXML", fakeXML);
 }

Afterwards, if the user navigates away from the page and then returns via the back button, we can
extract our stored value using the get() method or check for its existence using hasKey():

window.onload = initialize;

function initialize() {
 //initialize the DHTML History
 //framework
 dhtmlHistory.initialize();

 //subscribe to DHTML history change
 //events
 dhtmlHistory.addListener(historyChange);

 //if this is the first time we have
 //loaded the page...
 if (dhtmlHistory.isFirstLoad()) {
 debug("Adding values to browser "
 + "history", false);
 //start adding history
 dhtmlHistory.add("helloworld",
 "Hello World Data");
 dhtmlHistory.add("foobar", 33);
 dhtmlHistory.add("boobah", true);

 var complexObject = new Object();
 complexObject.value1 =
 "This is the first value";
 complexObject.value2 =
 "This is the second data";

 complexObject.value3 = new Array();
 complexObject.value3[0] = "array 1";
 complexObject.value3[1] = "array 2";

 dhtmlHistory.add("complexObject",
 complexObject);

 //cache some values in the history
 //storage
 debug("Storing key 'fakeXML' into "
 + "history storage", false);
 var fakeXML =
 '<?xml version="1.0" '
 + 'encoding="ISO-8859-1"?>'
 + '<foobar>'
 + '<foo-entry/>'
 + '</foobar>';
 historyStorage.put("fakeXML", fakeXML);
 }

 //retrieve our values from the history
 //storage
 var savedXML =
 historyStorage.get("fakeXML");
 savedXML = prettyPrintXml(savedXML);
 var hasKey =
 historyStorage.hasKey("fakeXML");
 var message =
 "historyStorage.hasKey('fakeXML')="
 + hasKey + "
"
 + "historyStorage.get('fakeXML')=
"
 + savedXML;
 debug(message, false);
}

prettyPrintXml() is a utility method defined in the full example source code, available at
http://www.onjava.com/onjava/2005/10/26/examples/downloads/examples.zip; this function
prepares the simple XML to be displayed to the web page for debugging.

Note that data is persisted only in terms of this page's history; if the browser is closed, or if the user
opens a new window and types in the Ajax application's address again, this history data is not
available to the new web page. History data is persisted only in terms of the back and forward
buttons and disappears when the user closes the browser or clears the cache.

Example 2: O'Reilly Mail

Our second example is a simple fake Ajax email application named O'Reilly Mail, similar to Gmail.
O'Reilly Mail illustrates how to control the browser's history using the dhtmlHistory class and how to
cache history data using the historyStorage object.

http://www.onjava.com/onjava/2005/10/26/examples/downloads/examples.zip

The O'Reilly Mail user interface has two pieces. On the left side of the page is a menu with different
email folders and options, such as Inbox, Drafts, and so on. When a user selects a menu item, such
as Inbox, we update the right side of the page is updated with this menu item's contents. In a real
application, we would remotely fetch and display the selected mailbox's contents; in O'Reilly Mail,
however, we simply display the option that was selected.

O'Reilly Mail uses the Really Simple History framework to add menu changes to the browser's history
and update the location bar, allowing users to bookmark different views in the application and to
jump to previous menu changes using the browser's back and forward buttons.

We'll add one special menu option, Address Book, to illustrate how historyStorage might be used.
The address book is a JavaScript array of contact names and email addresses. In a real application,
we would fetch this data from a remote server. In O'Reilly Mail, however, we create this array locally,
add a few names and email addresses, and then store it into the historyStorage object. If the user
leaves the web page and then returns, the O'Reilly Mail application retrieves the address book from
the cache rather than having to contact the remote server again.

The address book is stored and retrieved in our initialize() method:

/* Our function that initializes when the page
is finished loading. */
function initialize() {
 //initialize the DHTML History framework
 dhtmlHistory.initialize();

 //add ourselves as a DHTML History listener
 dhtmlHistory.addListener(handleHistoryChange);

 //if we haven't retrieved the address book
 //yet, grab it and then cache it into our
 //history storage
 if (window.addressBook == undefined) {
 //Store the address book as a global
 //object.
 //In a real application we would remotely
 //fetch this from a server in the
 //background.
 window.addressBook =
 ["Brad Neuberg 'bkn3@columbia.edu'",
 "John Doe 'johndoe@example.com'",
 "Deanna Neuberg 'mom@mom.com'"];

 //cache the address book so it exists
 //even if the user leaves the page and
 //then returns with the back button
 historyStorage.put("addressBook",
 addressBook);
 } else {
 //fetch the cached address book from
 //the history storage
 window.addressBook =
 historyStorage.get("addressBook");

 }

The code to handle history changes is also straightforward. The following source calls
handleHistoryChange() when the user presses the back or forward button. We take the newLocation
and use it to update our user interface to the correct state, using a utility method O'Reilly Mail
defines named displayLocation:

/* Handles history change events. */
function handleHistoryChange(newLocation,
 historyData) {
 //if there is no location then display
 //the default, which is the inbox
 if (newLocation == "") {
 newLocation = "section:inbox";
 }

 //extract the section to display from
 //the location change; newLocation will
 //begin with the word "section:"
 newLocation =
 newLocation.replace(/section\\:/, "");

 //update the browser to respond to this
 //DHTML history change
 displayLocation(newLocation, historyData);
}

/* Displays the given location in the
right-hand-side content area. */
function displayLocation(newLocation,
 sectionData) {
 //get the menu element that was selected
 var selectedElement =
 document.getElementById(newLocation);

 //clear out the old selected menu item
 var menu = document.getElementById("menu");
 for (var i = 0; i < menu.childNodes.length;
 i++) {
 var currentElement = menu.childNodes[i];
 //see if this is a DOM Element node
 if (currentElement.nodeType == 1) {
 //clear any class name
 currentElement.className = "";
 }
 }

 //cause the new selected menu item to
 //appear differently in the UI
 selectedElement.className = "selected";

 //display the new section in the right-hand
 //side of the screen; determine what
 //our sectionData is

 //display the address book differently by
 //using our local address data we cached
 //earlier
 if (newLocation == "addressbook") {
 //format and display the address book
 sectionData = "<p>Your addressbook:</p>";
 sectionData += "";

 //fetch the address book from the cache
 //if we don't have it yet
 if (window.addressBook == undefined) {
 window.addressBook =
 historyStorage.get("addressBook");
 }

 //format the address book for display
 for (var i = 0;
 i < window.addressBook.length;
 i++) {
 sectionData += ""
 + window.addressBook[i]
 + "";
 }

 sectionData += "";
 }

 //If there is no sectionData, then
 //remotely retrieve it; in this example
 //we use fake data for everything but the
 //address book
 if (sectionData == null) {
 //in a real application we would remotely
 //fetch this section's content
 sectionData = "<p>This is section: "
 + selectedElement.innerHTML + "</p>";
 }

 //update the content's title and main text
 var contentTitle =
 document.getElementById("content-title");
 var contentValue =
 document.getElementById("content-value");
 contentTitle.innerHTML =
 selectedElement.innerHTML;
 contentValue.innerHTML = sectionData;
}

Resources

You can download all the sample code for this hack from
http://www.onjava.com/onjava/2005/10/26/examples/downloads/examples.zip, and you can
download the RSH framework from http://codinginparadise.org/projects/dhtml_history/latest.zip.

Also, you can follow new developments in the RSH library at the framework author's web site,
http://codinginparadise.org.

Brad Neuberg

http://www.onjava.com/onjava/2005/10/26/examples/downloads/examples.zip
http://codinginparadise.org/projects/dhtml_history/latest.zip
http://codinginparadise.org

Hack 70. Set a Time Limit for the HTTP Request

Display a helpful message after a specified period of time if the XMLHttpRequest request
has not succeeded.

The XMLHttpRequest object opens up a whole new bevy of exceptions that JavaScript programs can
raise, having to do with the failure to connect successfully with the server. Why might this occur?
Network latency might be the problem, or there might be something wrong with the server. You have
no idea how fast your users' connections are, and the server-side program itself may be bogged
down handling numerous simultaneous requests, or broken altogether. At any rate, as a developer,
you want some control over how long your users wait for your application to respond. As we all know,
chances are they won't be willing to wait very longa delay of much more than a few seconds is often
considered unacceptable.

This hack waits 10 seconds for the server to respond before it displays a friendly message to the
user.

Make it 5 seconds or less if you prefer, or 60. The maximum tolerable wait
depends on the nature of your application, the results of your user testing, and
other factors. For example, a customer from the general public might expect a
more peppy application and be less willing to wait than an intranet user who is
highly dependent on and invested in the application.

The hack uses the JavaScript method of the top-level window object named setTimeout().

Thanks to Joshua Gitlin and his article at
http://www.xml.com/pub/a/2005/05/11/ajax-error.html for hints on this
technique.

You can use window object methods without qualifying them with the window object. In other words,
using setTimeout() alone works as well as using window.setTimeout().

setTimeout() takes a function name or literal as the first argument, then the number of milliseconds
(1,000 per second) to wait before calling the method. It returns a numerical value that can be used to
cancel the function call. I'll show you that in a moment; in the meantime, here is the code for
http_request.js, which encapsulates the initialization and use of XMLHttpRequest. (See "Use Your Own
Library for XMLHttpRequest" [Hack #3] for a comprehensive explanation.) Here is the the code,
retrofitted to include setTimeout() and a new function, timesUp():

var request = null;

http://www.xml.com/pub/a/2005/05/11/ajax-error.html

var timeoutId;
/* Wrapper function for constructing a request object.
 Parameters:
 reqType: The HTTP request type, such as GET or POST.
 url: The URL of the server program.
 asynch: Whether to send the request asynchronously or not.
 respHandle: The name of the function that will handle the response.
 Any fifth parameters represented as arguments[4] are the data a
 POST request is designed to send. */
function httpRequest(reqType,url,asynch,respHandle){
 //Mozilla-based browsers
 if(window.XMLHttpRequest){
 request = new XMLHttpRequest();
 } else if (window.ActiveXObject){
 request=new ActiveXObject("Msxml2.XMLHTTP");
 if (! request){
 request=new ActiveXObject("Microsoft.XMLHTTP");
 }
 }
 //We test for a null request
 //if neither ActiveXObject was initialized
 if(request) {
 //If the reqType parameter is POST, then the
 //5th argument to the function is the POSTed data
 if(reqType.toLowerCase() != "post") {
 initReq(reqType,url,asynch,respHandle);
 } else {
 //the POSTed data
 var args = arguments[4];
 if(args != null && args.length > 0){
 initReq(reqType,url,asynch,respHandle,args);
 }
 }
 } else {
 alert("Your browser does not permit the use of all "+
 "of this application's features!");
 }
}
/* Initialize a request object that is already constructed */
function initReq(reqType,url,bool,respHandle){
 try{
 /* Specify the function that will handle the HTTP response */
 request.onreadystatechange=respHandle;
 request.open(reqType,url,bool);
 timeoutId = setTimeout(timesUp,10000);
 //If the reqType parameter is POST, then the
 //5th argument to the function is the POSTed data
 if(reqType.toLowerCase() == "post") {
 request.setRequestHeader("Content-Type",
 "application/x-www-form-urlencoded; charset=UTF-8");
 request.send(arguments[4]);
 } else {

 request.send(null);
 }

 } catch (errv) {
 alert(
 "The application cannot contact "+
 "the server at the moment. "+
 "Please try again in a few seconds.\\n"+
 "Error detail: "+errv.message);
 }
}
function timesUp(){
//see below...

The request.open() method prepares the XMLHttpRequest object for making an HTTP connection.
Then the code calls setTimeout() just before the request is sent. Here's the rest of the code:

/* Event handler for XMLHttpRequest; this function
is not a part of http_request.js, but would be defined
in another code file that is using http_request.js, as in
httpRequest("GET",url,true,handleReq); */
function handleReq(){
 if(request.readyState == 4){
 //timeoutId is declared in http_request.js
 //but can be referenced as a global var here
 clearTimeout(timeoutId);
 if(request.status == 200){
 //do cool stuff...
 }
 }//end outer if
}
function timesUp(){
 request.abort();
 alert("A problem occurred with communicating with "+
 "the server program. Please make sure you are connected "+
 "to the Internet and try again in a few moments.");
}

Recall that setTimeout() calls the timesUp() function in 10 seconds. If 10 seconds pass without
request.readyState == 4 returning true (meaning that the HTTP request is complete), which clears
the timeout, timesUp() aborts the request and displays an alert window to the user. This action
stops the request; the user will have to restart the interaction with the application to launch another
request.

If you want to make the timeout three seconds instead, for example, the setup
code looks like:

timeoutId = setTimeout(timesUp,3000);

If the HTTP request completes its network journey without a hitch, the code calls clearTimeout()
with the aforementioned timeoutId as its parameter. This action cancels the call to timesUp() just in
time, allowing the application to go on its merry way doing its intended job.

Hack 71. Improve Maintainability, Performance, and
Reliability for Large JavaScript Applications

Discover options for improving the maintainability, performance, and reliability of Ajax
applications that have a large amount of JavaScript code.

Most Ajax applications contain far more JavaScript than typical web pages. The total amount of
JavaScript in an Ajax app can easily exceed three or four hundred kilobytes, segmented across many
separate files. Making sure these files are easy to maintain while also ensuring that they download
quickly is very important. In addition, some browsers have bugs that manifest when new releases of
JavaScript files are pushed out, hindering the reliability of large-scale JavaScript applications.

This hack presents techniques for compressing JavaScript files without sacrificing readable,
maintainable code; improving page load times when dealing with many JavaScript files; and
increasing the reliability of pushing out new versions of your JavaScript applications to web browsers.

It explains three techniques:

Merging all JavaScript files into a single file

Running your JavaScript through a compression tool

Solving JavaScript caching issues

bash shell commands are used to implement these techniques. These bash shell commands are meant
to be run as part of a large-scale JavaScript application's build process, before pushing the code to a
production or development server. In your own application, you could choose to use other build tools
to implement these techniques, such as Ant , Make , or Rake .

If you are on Windows and wish to use the bash shell commands in this hack, download the free,
open source Cygwin package from http://www.cygwin.com . Having Cygwin installed on Windows is
an absolute must for serious Ajax and web development.

Merging All JavaScript Files into a Single File

A typical, large-scale Ajax application incorporates many separate JavaScript files. Some files will be
third-party frameworks and libraries that ease development, while others will be portions of the
application that have been segmented into different files to ease development and maintenance. Due
to network latency, in many Ajax applications a significant amount of time can be required for the
browser to fetch all of these JavaScript files.

One way to minimize page load times is to simply concatenate all of the individual JavaScript files into

a single JavaScript file before pushing your application to production. This has been found to have a
drastic effect on the startup performance of many Ajax applications.

To merge a series of JavaScript files into a single file named all.js , for example, you can run the
following bash shell commands:

cat script1.js \\
 script2.js \\
 script3.js \\
 > all.js

cat is a shell command for creating, viewing, and concatenating files.

You should typically not use a wildcard when merging your JavaScript files because the ordering of
the merged files will be unknown. Most JavaScript files have dependencies and must usually be
loaded in a certain order. For example, if your application is using the Prototype or Dojo Toolkit
frameworks, you should merge those together first:

cat dojo.js \\
 prototype.js \\
 myScript.js
all.js

Once you have merged the files, in your main application's HTML page, simply load the all.js file:

<!-- Our merged JavaScript -->
<script src="all.js"></script>

If you keep a commented-out code block that loads each individual file separately, you can simply
uncomment this while commenting out the all.js script load to ease debugging if errors arise:

<!-- Our merged JavaScript -->
<!-- <script src="all.js"></script> -->

<!-- Individual JavaScript files; useful for debugging. -->
<script src="dojo.js"></script>
<script src="prototype.js"></script>
<script src="myScript.js"></script>

When you are finished debugging, uncomment the all.js script load and recomment the loading of the
individual files:

<!-- Our merged JavaScript -->
<script src="all.js"></script>

<!-- Individual JavaScript files; useful for debugging. -->
<!--
<script src="dojo.js"></script>
<script src="prototype.js"></script>
<script src="myScript.js"></script>
-->

Make sure that the last line of each file has an extra carriage return, or the
merged JavaScript files may overlap in ways that can cause errors.

Running Your JavaScript Through a Compression Tool

Traditionally, programmers have been faced with two options when designing JavaScript-heavy
DHTML applications: they can either write extremely terse code with no comments, in order to
minimize the size of their files; or they can choose to segment their JavaScript across several files,
with descriptive method names and ample source comments.

In the past, programmers had to make a decision between small JavaScript file sizes and improved
ease of maintenance and readability of the code. Most programmers chose smaller file sizes, leading
to nightmare code that was unreadable and difficult to scale to larger applications.

This hack removes the need to compromise: you can write your application with descriptive source
comments and fully object-oriented methods, and an open source JavaScript compression tool from
the Dojo Toolkit (http://www.dojotoolkit.org) will strip out all comments and fully compress your
code.

The Dojo Toolkit has created a full open source JavaScript compression tool based on the Mozilla
Foundation's Rhino JavaScript parser. Commercial companies can use this compression tool freely.
Full documentation on the Dojo compressor is available at
http://www.dojotoolkit.org/docs/compressor_system.html .

To use the Dojo compressor in your own system, first download and install the Java JDK 1.4+ on the
machine you will use for compression (if necessary). Next, download the compression tool from
http://www.dojotoolkit.org/svn/dojo/trunk/buildscripts/lib/custom_rhino.jar , and save it to your
hard disk. Once you have merged your JavaScript files, as described earlier in the section "Merging All
JavaScript Files into a Single File ," run the following command:

java -jar custom_rhino.jar -c all.js > all_compress.js 2>&1
mv all_compress.js all.js

If you look at the all.js file, you will see that the file size has been considerably reduced.

The Dojo Toolkit and the JavaScript compressor are currently in beta, and the generated compressed
code can cause an error in some rare cases, such as when using JavaScript closures combined with
certain styles of object-oriented JavaScript programming. If you find that you are getting JavaScript
errors after compressing your JavaScript, go into the original premerged, precompressed source code

http://www.dojotoolkit.org/docs/compressor_system.html
http://www.dojotoolkit.org/svn/dojo/trunk/buildscripts/lib/custom_rhino.jar

and slightly rewrite the line of code on which you received the error. This usually fixes the problem.

Solving JavaScript Caching Issues

The final major technique for improving large-scale JavaScript applications concerns caching. Internet
Explorer currently has a serious bug in which cached versions of JavaScript files are used even if the
server has newer versions. If the HTML page references JavaScript functions that are not included in
the older files in the cache, users will see Internet Explorer's script error dialog and experience a
broken application.

In the past, this bug was often encountered when rapid iterations of an Ajax application were pushed
out, forcing users to know either how to manually clear the browser cache or to press Ctrl and click
the Refresh icon to force the browser to grab the file from the server. Neither method is user-friendly
or reliable enough.

The secret to solving the caching bug in Internet Explorer is to trick the browser into encoding a
version into the filename:

<script src="all.js?version=1"></script>

Internet Explorer will "see" the filename of this JavaScript file as all.js?version=1 . If you then
created a new version of all.js , you could simply increment the version number:

<script src="all.js?version=2"></script>

To Internet Explorer, these are two different JavaScript files. The version parameter doesn't affect
the JavaScript file's execution, but it tricks the caching system into correctly loading any newer
versions of affected JavaScript files.

Hand-editing these values can get tedious quickly. One possible workaround is to introduce a token
into your HTML (or JSP, PHP, etc.) files that holds the current version. In the following code, the
token version= is used, starting with an initial version of 1:

<script language="JavaScript" src="./scripts/all.js?version=1"></script>

<!-- Uncomment when debugging -->
<!--
<script language="JavaScript" src="./scripts/script1.js?version=1"></script>
<script language="JavaScript" src="./scripts/script2.js?version=1"></script>
-->

You then create a bash shell script that can load our HTML, JSP, and other files, grab the current
value after version= and increment its value, and then rewrite it into the files:

export HTML_FILE=$SRC/sample.html
Any file that wishes to use this must have the following magic
token, version=######, that we read in, increment,
and then write back out. Internet Explorer incorrectly
caches JavaScript files even if they have changed,

causing versioning issues when new ones are pushed out;
this solves this problem.

read in the current version
oldVersion=\Qgrep -o \\version=[0-9]* $HTML_FILE | tail -n 1 |
sed "s/version=//"\Q

increment the value
newVersion=$((oldVersion + 1))

write the new version back out into the file
sed "s/version=$oldVersion/version=$newVersion/" $HTML_FILE >
$HTML_FILE.new

mv $HTML_FILE.new $HTML_FILE

Your files will now always increment when you push out a new version of the JavaScript file, solving
the caching issues in Internet Explorer.

This technique can be implemented in other ways, such as using an application-
scope JavaServer Pages variable that is dynamically written into your JSPs,
rather than using bash shell scripts.

All Together

These three techniques are normally used together during the build phase of a project, so putting
them into a single shell script makes sense. The following bash shell script can achieve all three
together:

#!/bin/bash

Performance booster for page load time; we bring all of the JavaScripts into
one file, which prevents having to fetch each JavaScript file individually,
which can be the number one impact on page load performance for Ajax apps.
Then, we compress the final JavaScript file to reduce its size.
We also use a technique to solve Internet Explorer's JavaScript cache bugs.
#
@author, Brad Neuberg, bkn3@columbia.edu
This script is under a BSD license and is freely usable

export SRC=./demo/compress
export SCRIPTS=$SRC/scripts
export HTML_FILE=$SRC/sample.html

rm -fr dist
mkdir dist

Any file that wishes to use this must have the following magic

token, version=######, that we read in, increment, and then
write back out. Internet Explorer incorrectly caches JavaScript
files even if they have changed, causing versioning issues when
new ones are pushed out; this solves this problem.

read in the current version
oldVersion=\Qgrep -o \\version=[0-9]* $HTML_FILE | tail -n 1 | sed "s/version=//"\Q

increment the value
newVersion=$((oldVersion + 1))

write the new version back out into the file
sed "s/version=$oldVersion/version=$newVersion/" $HTML_FILE > $HTML_FILE.new

mv $HTML_FILE.new $HTML_FILE

concatenate all code into one file
cat $SCRIPTS/script1.js \\
 $SCRIPTS/script2.js \\
 > dist/all.js

now compress it
java -jar bin/compress.jar -c dist/all.js > dist/all_compress.js 2>&1

install it
cp dist/all_compress.js $SCRIPTS/all.js

clean up
rm -fr dist

You have to tailor this script for your own application. Change the SRC variable to point to the
directory where you keep all of your application's source files, change SCRIPTS to point to the
directory in SRC in which you hold your JavaScript, and change HTML_FILE to point to the HTML file
that loads your JavaScript. You must also edit the section that merges the JavaScript files so that
your JavaScript files are loaded in the correct order.

Brad Neuberg

Hack 72. Obfuscate JavaScript and Ajax Code

Use a free application to obfuscate or hide Ajax source code.

Some companies or developers do not want to expose their JavaScript source code for anyone to cut,
paste, and reuse. They want to make the code more difficult, if not exactly impossible, to reverse
engineer. As we all know, it is very easy to look at the JavaScript source code for a web page by
choosing the View View Source (in Safari) or View Page Source (in Firefox) command from the
browser menu, or by requesting the URL for any .js file that the page imports.

However, development teams generally do not want to give away code that represents a big
investment or a cool new proprietary technology. To this end, free-of-charge and commercial
software is available to make the source code very difficult to read, but still work for your application
in the browser. These programs are called code obfuscators.

Software is also available for altering the code to make its download footprint
smaller. This hack focuses on obfuscation, which effectively reduces the byte-
size of the downloaded code as well. Many code obfuscators provide this
feature.

Go to a search engine such as Google, and type in "JavaScript obfuscators," and you'll get a load of
links for this kind of software. The software used in this hack, JavaScript Chaos Edition (JCE), is
available from a company in Stockholm, Sweden named Syntropy Development. This hack uses a
free version of Syntropy's commercial product, which is a Java program distributed as a Java Archive
(JAR) file. You can download it from http://www.syntropy.se/?ct=downloads.

JCE is very easy to use. Simply launch the JAR file by typing java -jar jce.jar at a command-line
prompt. This command generates a GUI application, which Figure 9-3 shows.

Figure 9-3. The JCE obfuscator GUI

http://www.syntropy.se/?ct=downloads

Take the JavaScript or HTML that you want to obfuscate (this hack obfuscates only the JavaScript),
and paste it into the main window. Then click the Next button to display another screen that lets you
choose which functions and variables to obfuscate. Figure 9-4 shows this screen.

Figure 9-4. Scrambled code and home fries

"Obfuscation" in this program means that the functions will be given truncated, nonsensical names,
such as vH. You can choose to obfuscate all the functions and variables, to remove comments and/or
linefeeds, and to use short identifiers. You then paste the altered code into a new file for your HTML
to import.

If any HTML element attributes contain JavaScript function calls (as in
onsubmit="myfunc(obj)", you have to ensure that the attributes use the new
obfuscated function names. You'll have to make these changes in the HTML
source code by hand, if you are just using this tool to obfuscate the imported
JavaScript file.

The result is meaningless function and variable names mushed together into one giant line. The
altered code by no means represents a heavy-duty security measure like encryption; it just
generates code that is somewhat harder to crack and analyze for its functionality. At the very least, a
large, nontrivial JavaScript program that has been obfuscated poses a major headache to pick apart.

Another problem that can arise from obfuscation is that sometimes the
obfuscator changes the name of an object property inside your JavaScript
code, such as the XMLHttpRequest object's onreadystatechange event handler.
In this case, you have to hunt through the altered code to make the change
back to the correct name, or the XMLHttpRequest object will not function
properly.

Another limitation (rather than a problem) with obfuscation is that you cannot alter the URLs that are
targeted by the XMLHttpRequest object. You have to rely on server-side security strategies to protect
these URLs from unauthorized use.

Here is some JavaScript code for dynamic message generation. The actual code function does not
matter here; we're just showing the before and after effects of obfuscation. Here's the "before" code:

var request,timeoutId;
function eMsg(msg,sColor){
 var div = document.getElementById("message");
 div.style.color=sColor;
 div.style.fontSize="0.9em";
 //remove old messages
 div.innerHTML="";
 div.appendChild(document.createTextNode(msg));

}
function checkIt(val){

 if (val.length < 3) {eMsg(
 "Please enter a valid value for the user name","red")
 }
 else{

 url="http://10.0.1.2:8080/parkerriver/s/checker?email=
 "+encodeURIComponent(val);
 httpRequest("GET",url);
 }
}
function httpRequest(reqType,url){
 //Mozilla-based browsers
 if(window.XMLHttpRequest){
 request = new XMLHttpRequest();
 request.onreadystatechange=handleCheck;
 request.open(reqType,url,true);
 timeoutId = setTimeout(timesUp,10000);
 request.send(null);

 }
 //for Internet Explorer
 else if (window.ActiveXObject){
 request=new ActiveXObject("Microsoft.XMLHTTP");
 if(request){
 request.onreadystatechange=handleCheck;
 request.open(reqType,url,true);
 timeoutId = setTimeout(timesUp,10000);
 request.send(null);
 }
 }
}
//event handler for XMLHttpRequest
function handleCheck(){
 var usedTag,msg, answer,xmlReturnVal;
 if(request.readyState == 4){
 clearTimeout(timeoutId);
 if(request.status == 200){
 //Implement Document object in DOM
 //last 15-20 code lines snipped for brevity...

And here's the code after scrambling it with the obfuscator:

<!-- This script has been obfuscated with Syntropy's JCE - Javascript
Chaos Engine which can be downloaded at http://www.syntropy.se. JCE is
free to use if this comment is not removed. -->

var dk,DS;function pv(Sg,IF){var Ug =
document.getElementById("message");Ug.style.color=IF;Ug.style.fontSize=
"0.9em";Ug.innerHTML="";Ug.appendChild(document.createTextNode(Sg));}
function jA(vX){if (vX.length < 3) {pv(;"Please enter a valid value
for the user name","red")}else{hp="http:;"+encodeURIComponent(vX);
eo("GET",hp);}}function eo(vh,hp){if(window.XMLHttpRequest){dk =
new XMLHttpRequest();dk.lg=PS;dk.open(vh,hp,true);DS = setTimeout(eR,10000);
dk.send(null);}else if (window.ActiveXObject){dk=new ActiveXObject
("Microsoft.XMLHTTP");if(dk){dk.lg=PS;dk.open(vh,hp,true);DS =
setTimeout(eR,10000);dk.send(null);}}}function PS(){var Yj,Sg,

wL,oY;if(dk.readyState == 4){clearTimeout(DS);if(dk.status == 200){oY =
dk.responseXML;Yj = oY.getElementsByTagName(;"is_used")[0];wL=
Yj.childNodes[0].data;if(wL==true){ pv(;"The user name you have chosen
is not available. "+"Kindly try again. ","red"); }else { pv("Your new user
name has been saved.","blue"); }} else {alert("A problem occurred with
communicating between "+"the XMLHttpRequest object and the server
program.");}}}function eR(){dk.abort();alert("A problem occurred with
communicating with "+"the server program.");}

As you can see, the resulting code is not eye-friendly and has no comments. Figuring out what a
small program like this one is doing certainly won't be impossible, but the effort involved may put off
less determined viewers. If the client-side JavaScript is much larger than this example and has
dependencies on several files of obfuscated code, the reverse-engineering strain is much greater.

The resulting code, without line breaks and comments and with shorter function
names, is smaller (in this short example's case, by about 600 bytes), so it will
also be faster to download.

Try out more than one obfuscator (even a commercial one) by Googling, for instance, and see which
one works best for you.

Hack 73. Use a Dynamic script Tag to Make Web Services
Requests

Use a dynamic script tag and a special JSON-related JavaScript class for easy, XML-less
web services.

Making requests to third-party web services from an Ajax application is a pain, but new web services
that offer the option of returning results in JSON format [Hack #7] instead of XML can provide
significant relief. In fact, if you make web services requests using the dynamic script tag
approachand the web service lets you specify a JavaScript callback functionyou can have unfettered
access to the web service in a seamless, cross-domain, cross-browser fashion.

Here is what you need to try out this dynamic script tag request:

My JSONscriptRequest class

Access to a web service that returns JSON-formatted results and lets you specify a callback
function

To create the JSONscriptRequest class, I distilled a lot of existing information, and then adapted it to
the second requirement above. Until recently, finding a web service that met that requirement was,
well, darn near impossible, unless you wrote one yourself. Fortunately, Yahoo! has recently begun to
offer the option on many of its REST-ish web services. Notably, Yahoo!'s many search-related web
services, as well as its geocoding, map image, and traffic web services, now can return JSON values
wrapped in a callback function.

Using the Geocoding Web Service

Compared to using the XMLHttpRequest object and a proxy, this stuff is easy. The JSONscriptRequest
class does the messy work of creating the script tag; this tag dynamically makes the actual web
service request. For a quick example, I'll do some geocoding, turning a zip codein this case,
94107into a latitude/longitude pair, using Yahoo!'s Geocoding web service:

<html>
<body>
//Include the JSONscriptRequest class
<script type="text/javascript" src="jsr_class.js"></script>
<script type="text/javascript">

//Define the callback function
function getGeo(jsonData) {

 alert('Latitude = ' + jsonData.ResultSet.Result[0].Latitude +
 ' Longitude = ' + jsonData.ResultSet.Result[0].Longitude);
 bObj.removeScriptTag();
}

//The web service call
var req = 'http://api.local.yahoo.com/MapsService/V1/geocode?appid=YahooDemo
 &output=json&callback=getGeo&location=94107';
//Create a new request object
bObj = new JSONscriptRequest(req);
//Build the dynamic script tag
bObj.buildScriptTag();
//Add the script tag to the page
bObj.addScriptTag();
</script>

</body>
</html>

Running this application makes a request to Yahoo!'s Geocoding web service and yields the alert box
shown in Figure 9-5. The alert box displays the latitude and longitude of the zip code 94107.

Figure 9-5. A coordinate from Yahoo's Geocoding web service

The web service requestthe req variable in the previous scriptspecifies that the web service should
return JSON-encoded data (output=json) and that the data should be wrapped in a callback function
named getGeo() (callback=getGeo). You can cut and paste the URL in the code into your browser to
see the output of the web service. The output looks like this:

getGeo({"ResultSet":{"Result":[{"precision":"zip","Latitude":"37.7668"
,"Longitude":"-122.3959","Address":"","City":"SAN
FRANCISCO","State":"CA","Zip":"94107","Country":"US"}]}});

That is a valid JavaScript statement, so it can be the target of a script tag that returns JavaScript
(raw JSON data, without the callback function, is not a valid JavaScript statement, so it will fail to
load if it is the target of a script tag). For comparison, look at the XML version of the output of this

call (formatted for the book):

<?xml version="1.0" encoding="UTF-8"?>
<ResultSet xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns=
"urn:yahoo:maps" xsi:schemaLocation=
"urn:yahoo:maps http://api.local.yahoo.com/MapsService/V1/GeocodeResponse.xsd">
<Result precision="zip"><Latitude>37.7668</Latitude>
<Longitude>-122.3959</Longitude><Address></Address>
<City>SAN FRANCISCO</City><State>CA</State><Zip>94107</Zip>
<Country>US</Country></Result>
</ResultSet>

The buildScriptTag method of the JSONscriptRequest object builds a script tag that looks like this:

<script src="getGeo({"ResultSet":{"Result":[{"precision":"zip",
"Latitude":"37.7668","Longitude":"-122.3959","Address":"","City":"SAN
FRANCISCO","State":"CA","Zip":"94107","Country":"US"}]}});"
 type="text/javascript">

To actually execute the web service request, the script tag has to be added to the page. The
addScriptTag method attaches the script tag to the HTML page that is already loaded in your
browser window. That action causes the getGeo() function to be called and the JSON-encoded data
to be passed to that function. Now comes the magic part of the script; it's a side effect of using
JSON-encoded data instead of XML. When a string of JSON-encoded data is used as an argument to a
JavaScript function, the JavaScript interpreter automatically turns the JSON return value into a
JavaScript object. Essentially, the parsing step is done automatically, and you can reference the data
immediately:

alert('Latitude = ' + jsonData.ResultSet.Result[0].Latitude +
 ' Longitude = ' + jsonData.ResultSet.Result[0].Longitude);

Pros and Cons

The HTML script tag is the last frontier of unfettered access for browser-based applications.
Depending on your viewpoint, it is either a gaping security hole, or a tool to make rich clients even
richer. Its most common use, though, is by Internet advertisers who use it to pull their colorful ads
into your web pages.

For the average Ajax or Ajaj (Asynchronous JavaScript and JSON) developer, the dynamic script tag
approach can make life easier in certain scenarios. The XMLHttpRequest object, however, is still a
more reliable, flexible, and secure request mechanism (see Table 9-1).

Table XMLHttpRequest compared to the dynamic script tag

 XmlHttpRequest Dynamic script tag

Cross-browser compatible? No Yes

Cross-domain browser
security enforced?

Yes No

Can receive HTTP status
codes?

Yes
No (fails on any HTTP status
other than 200)

Supports HTTP GET and
POST?

Yes No (GET only)

Can send/receive HTTP
headers?

Yes No

Can receive XML? Yes
Yes (but only embedded in a
JavaScript statement)

Can receive JSON? Yes
Yes (but only embedded in a
JavaScript statement)

Offers synchronous and
asynchronous calls?

Yes No (asynchronous only)

The script tag's main advantages are that it is not bound by the web browser's cross-domain
security restrictions and that it runs identically on more web browsers than XMLHttpRequest. Further,
if your web service happens to offer JSON output and a callback function, you can nimbly access web
services from within your JavaScript applications without having to parse the returned data.

XMLHttpRequest is available in all the latest browsers, but IE's implementation is somewhat different
from that of the other major browsers and requires a compatibility layer (such as Sarissa) to make it
work across all browsers. XMLHttpRequest can receive raw JSON data as well as XML, plain text, and
HTMLin fact, it handles any non-binary data easily. It also can send and receive individual HTTP
headers, can do both HTTP GETs and POSTs, and supports both synchronous and asynchronous calls.
In short, if there's a problem with your web services request, such as invalid XML or a server error,
XMLHttpRequest gives programmers tools to handle the situation.

In contrast, the script tag offers few of XMLHttpRequest's capabilities. The most notable downside is
that it cannot handle errors gracefully. If the web service returns an invalid JavaScript statement to
the script tag, a JavaScript error is generated. If the web service returns invalid JSON data wrapped
inside a callback function, a JavaScript error is returned when the invalid JSON data is passed to the
callback function. Also, if your web service returns an HTTP return code other than 200 (successful),
the script tag will silently fail.

To be fair, script tag requests don't actually work exactly the same way across all browsers. The
event handlinghow you wait for the tag to loadis a bit different. Technically, dynamically generated
script tags load asynchronously, but there is no reliable, cross-platform way to wait for a script tag
to load. Microsoft's IE uses one method described here, while the HTML 4.0 specification suggests the
onload event handler (although it doesn't seem to work across all browsers).

The security issues surrounding the script tag cannot be ignored, either. Malicious scripts
downloaded into your browser run with the same authority as other scripts in your page, so a
villainous script can steal your cookies or misuse any authorization that you may have with a server.
These villainous scripts can more easily send and receive stolen data using the script tag. For this
reason, applications using the dynamic script tag approach need to be carefully vetted.

With all of these drawbacks, it is unlikely that programmers will flock to implement or reimplement
web services requests using script tags. Still, it's a useful technique for scripting applications where
noncritical data needs to be retrieved from third-party sources easily.

Resources

The JSONscriptRequest class: http://www.xml.com/2005/12/21/examples/jsr_class.zip; Yahoo! Web
Services; Geocoding API: http://developer.yahoo.net/maps/rest/V1/geocode.html.

Jason Levitt

http://www.xml.com/2005/12/21/examples/jsr_class.zip
http://developer.yahoo.net/maps/rest/V1/geocode.html

Hack 74. Configure Apache to Deal with Cross-Domain
Issues

Configure the Apache web server so that an Apache module provides a solution to the
Ajax domain restriction.

As you probably know by now, XMLHttpRequest does not work automatically across domains. For
example, when you download a web page, you cannot make a request using the request object to a
domain that is different from that web page's domain. Fortunately, there's a simple solution to this
restrictionthe Apache web server's mod_rewrite. "This module uses a rule-based rewriting engine
(based on a regular-expression parser) to rewrite requested URLs on the fly," according to online
Apache documentation (see http://httpd.apache.org/docs/1.3/mod/mod_rewrite.html).

Cross-Domain Blockade

Before we get into a description of this solution, let's examine an example set of functions that would
typically form your XMLHttpRequest workhorse:

function getXmlHttpObject(){
 if (window.XMLHttpRequest)
 return new XMLHttpRequest();
 else if (window.ActiveXObject)
 return new ActiveXObject("Microsoft.XMLHTTP");
 else {
 alert("XMLHttpRequest not supported!");
 return null;
 }
}

function handleHttpResponse() {
 if (http.readyState == 4) {
 results = http.responseText;
 alert(results);
 }
}

function doSomeStuff() {
 var post_arg1 = document.my_form.post_arg1.value;
 var post_arg2 = document.my_form.post_arg2.value;
 var post_url = 'http://yahoo.com/form_do'
 post_data = 'post_arg1=' + post_arg1 + '&post_arg2=' + post_arg2;

http://httpd.apache.org/docs/1.3/mod/mod_rewrite.html

 http.open("POST", post_url);
 http.setRequestHeader('Content-Type',
 'application/x-www-form-urlencoded; charset=UTF-8');
 http.send(post_data);
 http.onreadystatechange = handleHttpResponse;
 return false;
}

var http = getXmlHttpObject();

The last of the three functions that you see is the one that would be called on to perform the HTTP
request.

Now, assume that this script is within an HTML file whose URL is, say, http://premshree.org/form.
Some event handler (onBlur, onClick, onSubmit, etc.) in the form triggers doSomeStuff(), which in
turn makes an XMLHttpRequest request to form_do, that resides on another domain (yahoo.com).

Notice the mismatch between the domains of the HTML file containing the form and the JavaScript
and the file that does the action (http://yahoo.com/form_do). That domain mismatch is the source of
the problem.

Cross-Domain XMLHttpRequest Works... Kinda

IE and the Mozilla-based browsers handle cross-domain requests differently. You can do cross-
domain requests in IE; however, this involves changing the browser's default security settings, or
adding certain hosts to your "trusted hosts" list. From
http://msdn.microsoft.com/msdnmag/issues/02/06/web/:

Since there is no way to specify which pages trust other pages to access their data, Internet Explorer
simply says that if two pages are not in the same domain, they cannot communicate. More precisely,
Zone Manager (found on the security tab in Internet Settings) does allow the user to say that a page
may access another page, but as you point out, most people leave it set on prompt. You can suggest
users add the page to the trusted site zone, or merely say Yes to the dialog box...

Mozilla, on the other hand, has the concept of signed scripts (see
http://www.mozilla.org/projects/security/components/signed-scripts.html). In a Mozilla-based
browser, you need to enable one or more of the UniversalBrowser privileges, depending on the
different domains involved in the cross-domain request. For example, if you're accessing a remote
host from your local filesystemthat is, accessing http:// files from file://you need to enable the
UniversalBrowserRead privilege.

The reality of the situation is that cross-domain XMLHttpRequest requests don't work as well as you
would want them to in the browsers you deeply care about (unless, of course, you're insane enough
to compel unsuspecting, naive users to deal with things like signed scripts and trusted hosts).

Is There a Solution?

Yes, thanks to some mod_rewrite magic. All you need is the RewriteRule directive.

http://premshree.org/form
http://yahoo.com/form_do
http://msdn.microsoft.com/msdnmag/issues/02/06/web/
http://www.mozilla.org/projects/security/components/signed-scripts.html

The configuration changes need to be made to the Apache configuration file (typically httpd.conf).
Here are the steps involved:

Configure Apache with proxy enabled:

./configure --enable-proxy

1.

Make sure RewriteEngine is enabled:

RewriteEngine on

2.

Add the following rule:

RewriteRule ^/form_do$ http://yahoo.com/form_do [P]

The P flag that you see there indicates a pass-through proxy.

3.

See http://www.google.com/search?q=pass-through+proxying.

Now, instead of requesting http://yahoo.com/form_do, use the URL /form_do in the JavaScript code.
The request code looks like this:

var post_url = '/form_do';

That's ityou're done! Many thanks to Gopal and http://t3.dotgnu.info for a lot of the information
described in this hack.

Premshree Pillai

http://www.google.com/search?q=pass-through+proxying
http://yahoo.com/form_do
http://t3.dotgnu.info

Hack 75. Run a Search Engine Inside Your Browser

Use many of the techniques of web search engines inside your browser.

In many cases, adopting Ajax techniques means tying a web application more tightly to the server;
however, as this hack shows, that's not always the case. Using data stored in JSON format [Hack
#7], it's possible to include all the required data through an ordinary script tag. Once the initial page
is loaded, no further network access is required.

In fact, some purists might argue that since no special server interaction takes place, the techniques
shown here shouldn't be considered part of Ajax. Nevertheless, a self-contained web application has
many potential uses, from CD-ROM documentation to situations where the user might go offline at
times.

The application we'll look at here demonstrates web search capabilities, using many of the same
techniques employed by major search engines, but on a smaller scale. The material searched is my
2003 O'Reilly book, XForms Essentials, which was ideal because the amount of data needed by the
searcher is small enough to easily fit into browser memory, and the text is available under an open
content license favorable for the purposes of an online demo.

As with many different kinds of searches, the key is an appropriately constructed index.

Indexing 101

An inverted index, in its most basic form, is a simple data structure that maps terms to specific
locations. For example, at the end of this book, you'll find an index containing a list of common terms
used in the book, and for each term you'll find a list of page numbers where discussion of that topic
occurs. The terms themselves are in alphabetical order, so readers can quickly find the terms they
seek and go to the appropriate pages. (If you wanted to find, say, information in this book on the
topic of JSON, you could either methodically page through the entire book, or turn to the index for a
list of pages where it's discussed.)

In this hack, the index maps from individual words to a list of up to some 200 small documents in
which those words occur, based on the version of the text at
http://www.xformsinstitute.com/essentials/browse/. It turns out that an ordinary JavaScript object,
acting as an associative array, is the perfect data structure for a simple index; it is designed to
perform rapid lookups based on a given key.

Prior to a new page appearing in the search results, online search engines devote a significant
amount of their resources to retrieving web pages and creating a suitable index. Similarly, this hack
performs preprocessing to create the necessary index. For the heavy lifting of generating such an
index, I used an excellent resource: David Mertz's public-domain Gnosis Utilities for Python, found at
http://www.gnosis.cx/download/ and described in the article at http://www-

http://www.xformsinstitute.com/essentials/browse/
http://www.gnosis.cx/download/
http://www-

128.ibm.com/developerworks/library/l-pyind.html. Once the library code has constructed the index,
a small fragment of Python writes out the data structure as a pair of object literals, a fragment of
which is as follows (line breaks added for readability):

var jswords={'NFORMS':[18,45],'LATEX':[18,7],
'MODIFICATIONS':[10,11,18,6,7], 'EVERYONE':[18,78,5,6],
'OCCURRENCE':[18,26],'SUPPOSED':[18,50,21], LENGTHS':[40,72,18,21],
'APPEARANCE':[69,7,45,49,18,21,23,24,26,60,29,63]
...
var jsfiles=['unused','apa.php','apas02.php','apas03.php','apas04.php',
...

A few things of note in this code:

All the words are normalized to uppercase, indicating a case-insensitive search mode.

Instead of spelling out the full name of each result file over and over, file references are given
as an offset into a separate array of filenames.

Further, to keep index size down, common stopwords such as "and," "the," and "a" are omitted from
the index.

From this short fragment, it's obvious that "NForms" appears twice (in the 18th and 45th files),
"LaTeX" appears twice (in the 18th and 7th files), and so on.

Putting It Together

Given the JavaScript index in a file named xfi.js, a small bit of additional script is needed to
implement the query engine. Instead of a submit button, the code sets a timer of 250 milliseconds.
When the time expires, it checks whether the value in the query control has changed and, if so,
provides an immediate update:

<html>
<head>
 <title>Full-text search of XForms Essentials (beta)</title>

 <script type="text/javascript" src="xfi.js"></script>
 <script type="text/javascript">
 var lastq = "";
 var delay = 250;

 function requery() {
 if (!jswords || !jsfiles) return; //still loading
 var currentq = document.query.q.value;
 if (currentq == lastq)
 return;

 var results = localfind(currentq.split(" "))
 lastq = currentq;

 updateResults(results);
 }

 //This function is adapted from David Mertz's public domain
 //Gnosis Utils for Python with some extra gymnastics since
 //jsfiles uses the more compact js array instead of object/dicts
 function localfind(wordlist) {
 var entries = {};
 var hits = {}
 for (var idx=0; idx < jsfiles.length; idx++) {
 hits[idx] = jsfiles[idx]; //copy of the fileids index
 }
 for (var idx in wordlist) {
 var word = wordlist[idx]
 word = word.toUpperCase()
 if (!jswords[word]) return {} //nothing for this one word
 (fail)
 var entry = {}
 //For each word, get index
 //of matching files
 for (var idx=0; idx < jswords[word].length; idx++) {
 entry[jswords[word][idx]] = "hit";
 }

 //eliminate hits for every non-match
 for (var fileid in hits) {
 if (!entry[fileid]) {
 delete hits[fileid];
 }
 }
 }
 return hits;
 }

 function updateResults(results) {
 var upd_loc = document.getElementById("results");
 var url_base = "http://xformsinstitute.com/essentials/browse/";
 //remove previous results, if any
 while (upd_loc.hasChildNodes()) {
 upd_loc.removeChild(upd_loc.childNodes[0]);
 }
 var newh1 = document.createElement("h1");
 newh1.appendChild(document.createTextNode("results:"));
 upd_loc.appendChild(newh1);
 for (var fileid in results) {
 var hit = jsfiles[fileid];
 var newp = document.createElement("p");
 newp.appendChild(makeHyperlink(url_base + hit, hit));
 upd_loc.appendChild(newp);
 }
 }

 function makeHyperlink(url, text, title) {
 var aelem = document.createElement("a");
 if (title) aelem.setAttribute("title", title);
 if (url) aelem.setAttribute("href", url);
 aelem.appendChild(document.createTextNode(text))
 return aelem;
 }

setInterval(requery, delay);</script>
</head>
<body>
<p>Just type here, and watch the results magically appear. (JavaScript
required, but other than initially loading the document, no network access
is required)</p> <p>Currently, only whole-word matching is implemented.
Multiple words are ANDed together.</p>
<form name="query" action="no_submit" method="POST"> <input type="text"
name="q" autocomplete="off"/> </form> <div id="results"> </div>
<p><a href="http://dubinko.info/blog/2004/12.html#perm2004-12-
26_localindex">technical details</p> </body>
</html>

The function localfind() does the actual lookup, taking into account one additional wrinkle: the
query might contain more than one keyword. In that case, the list of hits for each keyword needs to
be combined. The code treats this as a Boolean AND, so only documents containing all the keywords
get returnedthat is, the intersection of the lists gets computed.

The functions updateResults() and makeHyperlilnk() use standard DOM manipulation to show the
results directly, as simple unstyled hyperlinks, sidestepping the round trip normally associated with a
search engine request.

To operate the search engine, just open the document, found online at
http://www.xformsinstitute.com/essentials/xfi.html, in a browser, and enter some terms in the text
control. The results appear immediately in the page, providing hyperlinks to full-text sections of the
book. Despite all the work going on behind the scenes, the queries return results nearly instantly.

Hacking the Hack

In modifying the code for your own purposes, you might want to experiment with different values for
the timerthe delay variable in the JavaScriptthat periodically checks whether to rerun the query. Also
take note of the url_base variable, which sets the common part of the URL for each result.

The search engine could be enhanced in a number of ways. Perhaps the most obvious would be to
include the ability to search for exact phrases, typically indicated via quotation marks in web search
engine queries. To do so would require a more sophisticated index structure that keeps track of not
only what document each word occurs in, but also where in the document it occurs.

Another enhancement would be to add stemming, so, for instance, a search for "appear" would find
pages containing "appear," "appears," "appearance," and "appearing." Doing so also would involve
using a slightly more sophisticated data structure for the index.

http://www.xformsinstitute.com/essentials/xfi.html

Finally, since not every browser supports JavaScript or has it enabled, this hack could be modified to
include a submit button to perform a normal, server-based query. When JavaScript is enabled, the
button can be hidden, performing instant lookups as described above.

Resources

You can find more information on inverted indexes at http://en.wikipedia.org/wiki/Inverted_index.

For additional discussion of the Gnosis Utilities from David Mertz's Text Processing in Python
(Addison-Wesley), check out http://www.gnosis.cx/TPiP/.

Micah Dubinko

http://en.wikipedia.org/wiki/Inverted_index
http://www.gnosis.cx/TPiP/

Hack 76. Use Declarative Markup Instead of Script via
XForms

When scripting gets too burdensome, capture a web application's intent in markup.

JavaScript code tends to get complex in deployed Ajax applications. The essential problem is that
encoding the intent of a web application requires a large amount of procedural script, often with
branches for different levels of browser support. For example, if your intent is to dynamically add a
section to the page to capture additional user input, the script gets bogged down in low-level details
of Document Object Model manipulation and the like. A cleaner approach uses higher-level markup to
capture the intent, leaving the interpretation of that intent to the client.

The World Wide Web Consortium (W3C)the same folks who brought us HTML and XMLconsidered the
things most commonly done by script, and agreed upon declarative ways to accomplish the same
things. The result, called XForms, quite simply provides a vocabulary for authors to specify what they
want to happen, instead of the usual approach of spelling out every tiny detail. Such a higher-level
approach has additional benefits:

Nonbrowser devicessuch as phones and Interactive Voice Response systemscan easily work off
the same design.

Web search engines have an easier time processing markup than interpreting script.

It's possible to interpret the markup on a server, allowing deployment across many different
browsers.

XForms is especially adept at handling XML data.

Consuming and Producing XML

The last bullet above bears further discussion. In many situations that call for Ajax, the most
convenient format for data is XML. (Other times, it's notsee "Receive Data in JSON Format" [Hack
#7] for a discussion of JSON, an alternate format.) XForms is designed to work from a piece of XML
instance data, which provides initial data values from the outside world, keeps track of any user
changes, and can submit the data back out. Instance data makes for a convenient "scratch pad"
within which to store temporary client-side state.

Here's an example that maintains a syndication feed for a podcast. I recently asked a podcaster to
show me how he updates his feed, and he proceeded to use a copy of Windows Notepad and FTP.
Manual editing, however, is error-prone, due to the intricacies of how the RSS format, iTunes
extensions, and XML namespaces all combine (to the chagrin of podcasters everywhere).

See http://en.wikipedia.org/wiki/RSS_%28file_format%29 for more details on
RSS.

An automatic fill-in-the-blanks solution, which opens the RSS, allows changes, and then writes the
changes back, provides a better experience for both the content producer and the consumers.

For this hack, I'm using an XForms engine called FormFaces, implemented entirely in JavaScript. In
accord with good design principles, it uses an HTTP GET to obtain the initial XML and an HTTP PUT to
write it back. Because many servers don't yet work well with PUT, I included a simple PHP script to
process the request:

<?php
/* put.php */

/* PUT data comes in on the stdin stream */
$putdata = fopen("php://stdin", "r");

$fp = fopen("results.xml", "w");

while ($data = fread($putdata, 1024))
 fwrite($fp, $data);

fclose($fp);
fclose($putdata);
?>

The prior PHP script captures the PUT data and writes it to a file named results.xml in the same
directory. For actual deployment, more sophisticated security arrangements is desirable.

Normally, this hack would modify an existing RSS file, but what about for someone just starting out?
The usual approach in this situation is to produce a skeleton XML file that contains all the structure of
the desired output format, populated with dummy values. Here's an example of that for podcast
XML:

<!-- rss.xml -->
<rss xmlns:itunes="http://www.itunes.com/DTDs/Podcast-1.0.dtd" version="2.0">
<channel>
<title>Podcast title here</title>
<link>http://</link>
<description>Description here</description>
<language>en-us</language>
<copyright>Copyright notice here</copyright>
<itunes:image>http://</itunes:image>
<itunes:link rel="image" type="image/jpeg" href="http://">Description
</itunes:link>
<itunes:owner>
<itunes:name>Name here</itunes:name> </itunes:owner>
<itunes:author>Name here</itunes:author>

http://en.wikipedia.org/wiki/RSS_%28file_format%29

<managingEditor>Contact info here</managingEditor>
<generator>Powered by XForms</generator> <category>Audio Blog</category>

<itunes:explicit>clean</itunes:explicit>
<itunes:subtitle>Show Subtitle here</itunes:subtitle>
<itunes:summary>Show Summary here</itunes:summary>
<itunes:category text="Audio Blogs" />
<lastBuildDate>Sun, 1 Jan 2006 10:00:00 PST</lastBuildDate>
<pubDate>Sun, 1 Jan 2006 10:00:00 PST</pubDate>
<item> <title>Item Title here</title>
<description>Item Description here</description>
<pubDate>Sun, 1 Jan 2006 10:00:00 PST</pubDate>
<enclosure url="http://" length="1" type="audio/mpeg" />
<itunes:duration>1:00</itunes:duration>
<itunes:author>Author here</itunes:author> </item>
</channel>
</rss>

Given XML structured like that in the prior code sample, XForms markup can then create a complete
environment in which to view and edit the file. A few aspects about the structure, though, need to be
accounted for. For one, data repetition is rampant in the format, especially in the case where a single
person is running the entire podcast. Our solution should not make us enter identical data over and
over again. Secondly, note that the item block toward the end will repeat as many times as there are
syndicated shows. As the number of shows grows, both the user interface and the resulting RSS need
to grow.

The next code sample shows the complete HTML file, which should be placed in the same directory as
the files listed earlier. It also includes a reference to the FormFaces script, available from
http://www.formfaces.com. Other than the implementation script, no JavaScript is needed for this
example. In more complicated situations, some script might need to be combined with XForms, but
even so, the result will generally be shorter and more straightforward than with other approaches.
Here's the HTML:

<!-- editrss.html -->
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
 xmlns:xf="http://www.w3.org/2002/xforms"
 xmlns:ev="http://www.w3.org/2001/xml-events"
 xmlns:itunes="http://www.itunes.com/DTDs/Podcast-1.0.dtd">
<head>
 <title>Edit iTunes RSS</title>
 <link rel="stylesheet" type="text/css" href="xforms.css" />
 <script type="text/javascript" src="formfaces.js"></script>
<xf:model>
 <xf:instance src="rss.xml"/>
 <xf:submission id="s1" action="put.php" method="put" replace="none"/>
</xf:model>
</head>
<body>
<h2>Overall Info</h2>
<xf:group ref="channel">

http://www.formfaces.com

 <xf:input ref="title"><xf:label>Title</xf:label></xf:input>
 <xf:input ref="description"><xf:label>Description</xf:label></xf:input>
 <xf:input ref="itunes:subtitle"><xf:label>Subtitle</xf:label></xf:input>

 <xf:input ref="itunes:author"><xf:label>Author</xf:label></xf:input>
 <xf:input ref="copyright"><xf:label>Copyright</xf:label></xf:input>
 <xf:input ref="managingEditor"><xf:label>Contact</xf:label></xf:input>
</xf:group>

<xf:trigger> <xf:label>Submit</xf:label>
 <xf:send submission="s1" ev:event="DOMActivate"/>
</xf:trigger>
<hr/> <h2>Shows</h2>
<xf:trigger> <xf:label>Add Show</xf:label>
 <xf:action ev:event="DOMActivate">
 <xf:insert nodeset="channel/item" at="1" position="before"/>
 <xf:setvalue ref="channel/item[1]/itunes:author" value=
 "../../itunes:author"/>
 </xf:action>
</xf:trigger>
<xf:trigger> <xf:label>Remove Highlighted Show</xf:label>
 <xf:delete ev:event="DOMActivate" nodeset="channel/item" at=
 "index('items')"/>
</xf:trigger>

<xf:repeat nodeset="channel/item" id="items">
<xf:input ref="title">
 <xf:label>Title</xf:label>
</xf:input>
 <xf:input ref="description"><xf:label>Description</xf:label></xf:input>
 <xf:input ref="pubDate"><xf:label>Date</xf:label></xf:input>

 <xf:input ref="enclosure/@url"><xf:label>MP3 URL</xf:label></xf:input>
 <xf:input ref="enclosure/@length"><xf:label>Length</xf:label></xf:input>
 <xf:input ref="itunes:duration"><xf:label>Duration</xf:label></xf:input>
<hr/> </xf:repeat>
</body>
</html>

Figure 9-6 shows a screenshot of this application in action. After loading the page and editing the
data, clicking the submit button PUTs the data back on the server.

Figure 9-6. Updating RSS content with XForms

Some things to note about the code:

XForms markup here appears in a different XML namespace, to ensure that the elements are
uniquely distinguishable.

The short xf:model section provides the URL for both incoming and outgoing XML.

The ref attributes on the group and input elements are simple locators into the instance data.
Full XPath syntax is available, as expressions like enclosure/@url show.

The xf:repeat element provides the needed repeating structure.

The value for itunes:author inside item is copied from the place where that piece of information
is already specified. XForms includes a full spreadsheet-like system for resolving
interdependencies on data relationships like these.

Note the elements named xf:trigger, which appear as buttons in most browsers. Even down to
the names of controls, XForms enforces a high-level view of an application that is not based on
a particular user-interface design.

Unlike conventional forms, XForms does not force a page churn during submission. This allows
data to smoothly flow into the page, without worrying about details of XMLHttpRequest scripting.

As this example shows, XForms markup was not designed for terseness, but rather for
comprehension. Even folks with no prior XForms experience should be able to look at an example like
this and figure out what's going on. Of course, beyond what this short example shows, XForms has
many more capabilities and conveniences. You can find out more about XForms in my book XForms
Essentials, published by O'Reilly and available online under an open content license at
http://www.xformsinstitute.com.

Hacking the Hack

This simple example edits only a few of the needed parts of a fully functioning syndication feed.
Following the format established here, filling in the rest of the details is straightforward.

Besides FormFaces, other XForms engines have been written in JavaScript, not to mention Flash,
Java, C++, and other languages. A good starting point for further XForms research is the article "Top
10 XForms Engines" at http://www.xml.com/pub/a/2005/02/09/xforms.html.

Micah Dubinko

http://www.xformsinstitute.com
http://www.xml.com/pub/a/2005/02/09/xforms.html

Hack 77. Build a Client-Side Cache

Cut server traffic and improve performance by saving previously retrieved data.

Browsers know how to cache entire web pages. Often, when requesting a web page that you've
recently visited, your browser saves time by grabbing the page from a local cache stored either in
memory or on your hard drive.

However, Ajax applications often change only parts of a web page. The browser doesn't cache this
data, but your Ajax application can.

A good client-side cache needs to make it easy to store new data, and simple to find and retrieve it
later. An associative array is the simplest JavaScript structure to provide both easy storage and
retrieval.

An associative array (often called a hash or hash table) is like a normal array, with one important
difference: a normal array is indexed by integers, whereas an associative array can be indexed by
arbitrary text strings. These text indexes are called hash keys .

For example, a normal array may have an assignment like this:

Arr[5] = "some text";

while an associative array can have assignments like this:

Arr["Charles Dickens"] = "Tale of Two Cities";

Luckily for you, JavaScript allows you to index arrays in either form.

When you talk to a server with XMLHttpRequest , you provide two pieces of information: the URL of
the server script, and any parameters the script needs. Combining these makes an excellent array
index. Whenever you retrieve data from the server for your Ajax application, you can save that data
in an associative array using the URL and parameters as a key. The next time the user makes a
request for the same URL, with the same parameters, you check for a matching entry in your array.
If it's there, use the data you already have, rather than bothering the server again.

In the onreadystatechange function, you can save the data like this:

cache[url + parameters] = httpreq.responseText;

Later, before making another request to the server, check if a hash key is already defined in the
cache array:

if (cache[url + parameters]) {
 response = cache[url + parameters];
else {
 //Not cached, so call server
 ...
}

Building a Better Cache

There's one problem with this approach. While the Ajax program is running in the browser, each new,
distinct request gets another entry in the cache array. For some applications, the JavaScript array
can get quite large, eating up memory on the client machine.

The solution is to modify the hack to limit the size of the array. You can just start deleting elements
in the array once it's reached some arbitrary size, but how do you decide which elements to delete?
One approach is to use a Least Recently Used (LRU) algorithm. We'll keep our cache in an ordered list
(see Figure 9-7), where the top of the list contains the oldest element (the one used least recently),
and the bottom of the list contains our freshest, newest data.

Figure 9-7. The LRU algorithm as a linked list

We'll still use an associative array, but we'll add some code to make it act like a linked list (also called
a " queue"). A linked list is a set of data objects in which each element contains not just its data but
also a pointer to the next data object in the list.

To show the LRU-based cache in action, let's look at the HTML code for the web page for a simple
Ajax application that displays facts about planets in the solar system:

<HTML>

<HEAD>
<TITLE>Client-side Cache Test</TITLE>

<style>
 body,table,select { font-size: 12px; }
</style>

<script language="javascript" src="/cache_hack/xhr.js"></script>
<script language="javascript" src="/cache_hack/limited_cache.js"></script>
<script language="javascript" type="text/javascript">

function get_data () {

 var lbPlanets = document.getElementById("lbPlanets");

 async_cmd ("/cgi-bin/cache/planets.cgi?",
 "p=" + lbPlanets.value,
 "divAnswer");

}

</script>

</HEAD>

<BODY>
<center>
Client-side Content Caching<p>

<table style="border: 1px solid gray;" cellpadding="5" cellspacing="0" width="95%">

<tr>
 <td width="35%" bgcolor="#f0f0f0" valign="top">
 <form id="frmMain">
 Select a planet:
 <select id="lbPlanets" onChange="get_data();">
 <option value="mercury">Mercury</option>
 <option value="venus">Venus</option>
 <option value="earth">Earth</option>
 <option value="mars">Mars</option>
 <option value="jupiter">Jupiter</option>
 <option value="saturn">Saturn</option>
 <option value="uranus">Uranus</option>
 <option value="neptune">Neptune</option>
 <option value="pluto">Pluto</option>
 </select>
 </form>

 <div id="divAnswer">

 </div>
 </td>

 <td width="65%" bgcolor="#c0c0c0" valign="top">
 Cache Contents (oldest first):<p>
 <div id="divCacheContents">
 Cache is empty
 </div>
 </td>
</tr>

</table>

</center>
</BODY>

</HTML>

This creates the initial web page shown in Figure 9-8 .

Figure 9-8. A client-side cache example

When a planet is selected from the pull-down select box, the JavaScript function get_data() is
triggered. This function calls the function async_cmd() , defined in the JavaScript file limited_cache.js
, shown here:

var cache = new Array;

var top_key = null;
var prev_key = null;
var curr_cache_size = 0;

var MAX_CACHE_SIZE = 5;

//--
// Display the contents of the client-side cache in a
// DIV tag
//--
function show_cache_info (answer_from) {
 var divCache = document.getElementById("divCacheContents");
 divCache.innerHTML = "";
 var curr_key = top_key;
 while (curr_key != null) {
 divCache.innerHTML = divCache.innerHTML
 + "KEY: " + curr_key
 + " VALUE: " + cache[curr_key].value
 + "
";
 curr_key = cache[curr_key].next;
 }

 divCache.innerHTML = divCache.innerHTML
 + "<p>Last answer retrieved from: "
 + answer_from + "";
}

//--
// Asynchronous (non-blocking) server query
//--
function async_cmd (url, parms, divname) {
 var httpreq = getHTTPObject();

 var divAnswer = document.getElementById(divname);

 //Precondition: must have a URL
 if (url == "") return;

 var cache_key = url + parms;

 //If this is a cacheable request, then first
 //check if a response already exists for it

 if (cache[cache_key]) {
 divAnswer.innerHTML = "Answer: " +
 cache[cache_key].value + "";

 //Linked-list maintenance
 if (cache_key != prev_key) {
 var curr_key = top_key;

 if (cache_key != top_key) {
 //Find linked-list node preceding the
 //cache[cache_key] node
 while (cache[curr_key].next != cache_key) {
 curr_key = cache[curr_key].next;
 }
 }
 else {
 top_key = cache[top_key].next;
 }
 //Point preceding node to point to which
 //cache[cache_key] currently points
 cache[curr_key].next = cache[cache_key].next;

 //Move cache[cache_key] to the end of our
 //linked list
 cache[prev_key].next = cache_key;
 cache[cache_key].next = null;
 prev_key = cache_key;
 }
 show_cache_info ("client-side cache");
 }
 else {
 //Send request to server
 httpreq.open("POST", url, true);

 //--
 // Response function

 //--
 httpreq.onreadystatechange = function () {
 if (httpreq.readyState == 4) {
 var response = httpreq.responseText;

 if (curr_cache_size >= MAX_CACHE_SIZE) {
 //Remove oldest item from cache
 var oldest = top_key;
 top_key = cache[oldest].next;
 delete cache[oldest];

 }
 else {
 curr_cache_size++;
 }

 //Linked-list maintenance
 if (top_key == null) {
 top_key = cache_key;
 }
 if (prev_key != null) {
 cache[prev_key].next = cache_key;
 }

 //Add answer we just retrieved into cache
 cache[cache_key] = { value:response, next:null };
 prev_key = cache_key;

 //Display answer in DIV tag
 divAnswer.innerHTML = "Answer: " + response + "";

 show_cache_info ("server");
 }
 }
 httpreq.send (parms);
 }
}

The async_cmd() function expects three parameters. The first two, url and parm , are the URL and
parameters that make the XMLHttpRequest call. As the function name implies, the server call is
asynchronous. When the server reply is received, the reponseText is copied into the HTML div tag
specified by the third parameter, divname .

The async_cmd() function also contains all the code for storing and retrieving data from the client-
side cache. You don't need to know anything about how the cache works (or even that it exists) to
use the function.

The Cache in Action

In the example program, a user selects a planet from the pull-down list, triggering the JavaScript

function get_data() , which in turn calls the function aync_cmd() . The job of this function is to
request information from the server and use it to update a div tag. But before it bothers the server,
it first builds a cache keyan index into the cache arrayby combining the URL and parameters. The
program then checks the cache for a matching entry:

var cache_key = url + parms;

if (cache[cache_key]) {
 divAnswer.innerHTML = "Answer: " + cache[cache_key].value + "";

If a match is found, you use the data from the cache to update the page.

The cache value in the previous code is referenced as cache[cache_key].value .
To turn the cache array into a linked list, you have to give each array element
two properties. The first, value , holds the cached data. The second, called next
, is a pointer to the index of the next item in the linked list.

When no match is found, we have to contact the server as usual, but after the data's been retrieved,
we need to insert it into our cache. We're using our array to simulate a linked list, and we must also
be careful to keep the list in LRU order and to make sure the list doesn't grow too big. The size of the
cache is controlled by the variable MAX_CACHE_SIZE , which in our example is set to 5 . In practice, the
size of the cache depends on the needs of the application.

Our example program includes a function, show_cache_info() , that displays the contents of the
cache on the right side of the web page. This display is refreshed every time a new planet is selected.
Figure 9-9 shows the application after the five outermost planets have been selected (starting with
Pluto and moving inward).

Figure 9-9. After five selections, the cache is now full

The oldest (least recent) item in our cache is Pluto, and the newest item is Jupiter. Because five items
have been selected, there's no more room in the cache. When the next planet, Mars, is selected, our
aync_cmd() function needs to do some cache rearranging. The results are shown in Figure 9-10 ;
Pluto, the oldest entry in the cache, is deleted to make room for Mars.

Figure 9-10. Pluto gets deleted to make room for Mars

Up to now, we've only rearranged the contents of the cache. Now let's see what happens when we
select Saturn, an item inside the cache. The results are shown in Figure 9-11 .

Figure 9-11. Saturn gets pulled from the cache

Saturn has moved from third position in the cache to the bottom, maintaining the list in Least
Recently Used order. Using the cache also saves a trip to the server, which makes our application
more responsive.

Hacking the Hack

If you want a cache size larger than five (and who doesn't?), you might consider adding a function to
set the initial cache size. You can call it from your Ajax page's onLoad event handler.

In the async_cmd() function, when we're pulling a value from our cache, we need to find the list
element that precedes our target one. We're moving the target element to the end of the list, and we
need to splice the list back together. Our code to find the preceding element looks like this:

while (cache[curr_key].next != cache_key) {
 curr_key = cache[curr_key].next;
}

The code is simple, but it's woefully inefficient. Performance may suffer if the cache is very large. To
remedy this problem, consider rewriting the cache as a doubly linked list. In a doubly linked list, each
element points not just to the next element, but to the previous one as well.

There are cases in which you don't want to cache server data on the client. If you're receiving data
that changes over time (for example, the current temperature in Denver), you'll always want to get
this data from the server. Consider adding a parameter to async_cmd() to disable caching in these
special cases.

Mark Pruett

Hack 78. Create an Auto-Complete Field

Give the user helpful suggestions by changing the contents of a text box as they type.

Web surfers can always use a little help. Google took advantage of this fact when it created Google
Suggest (http://www.google.com/webhp?complete= 1&hl=en), a simple Ajax variation on its
massively popular search page. When the user types in a search term, Google Suggest displays a list
of search suggestions beneath the text box. What many people don't notice is that the text in the
text box is also alteredthe top entry from the list is automatically entered. Figure 9-12 shows this
behavior in action: I've only typed the letters "javas" into the text box, but Google Suggest has
added the end of the word, "cript," for me.

Figure 9-12. Google makes suggestions

This hack will show how to modify text in a text box as the user types, using suggestions received
from the web server.

Of course, the list of possible suggestions depends entirely on the needs of your application. "Create
an Auto-Complete Field with script.aculo.us" [Hack #65] discussed how to implement an auto-

http://www.google.com/webhp?complete= 1&hl=en

completion field for email addresses (using script.aculo.us effects). For this hack, I wrote a tiny
server script that scans a list of dictionary words on the server and returns the first match.

Many Linux and Unix servers have a text file called words that contains a list of
words (one per line) used by spelling and password checkers. It's usually
located at /usr/dict/words or /usr/share/dict/words.

My little server receives a single parameter, var. This contains the letters the user has typed thus far.
The server finds a match and sends back the remaining portion of the word. So, like in the previous
Google example, if I type in "javas" and the server matches on the word "javascript," it sends back
the remaining part of the word: "cript."

To make things easy on the client side, we'll have a single function, autocomplete(), that's hooked
into a text box's onKeyup event. It gets called every time the user presses a key:

<input type="text"

 id="txtAuto" name="txtAuto"

 onkeyup="autocomplete (this,event);"
/>

The autocomplete() function, shown in the upcoming code sample, first checks that the most recent
keystroke is an alphanumeric character. It thensends the current value of the text box to the server.
The server responds with the remaining portion of the matching word:

var url = "/cgi-bin/autocomplete/suggest.cgi?";

function autocomplete (sender, ev) {

 //Only process alphanumeric keystrokes
 if ((ev.keyCode >= 48 && ev.keyCode <= 57)
 || (ev.keyCode >= 65 && ev.keyCode <= 90)) {

 //Prepare a server request
 var httpreq = getHTTPObject();
 var parms = "val=" + sender.value;
 httpreq.open("GET", url + parms, true);

 //Response function
 httpreq.onreadystatechange = function () {
 if (httpreq.readyState == 4) {
 var suggestion = httpreq.responseText;
 var txtAuto = document.getElementById ('txtAuto');

 if ((suggestion) && (txtAuto.value == original_text)) {
 //Firefox and Opera
 if (document.getSelection) {
 var initial_len = txtAuto.value.length;
 txtAuto.value += suggestion;
 txtAuto.selectionStart = initial_len;

 txtAuto.selectionEnd = txtAuto.value.length;
 }
 //Internet Explorer
 else if (document.selection) {
 var sel = document.selection.createRange ();
 sel.text = suggestion;
 sel.move ("character", -suggestion.length);
 sel.findText (suggestion);
 sel.select ();
 }
 }
 }
 }
 httpreq.send (null);
 }
}

At this point, we need to work around the quirks of different browsers. Microsoft's Internet Explorer
uses different methods for handling text selected in a listbox than browsers such as Firefox and
Opera. The goal is the same in all browsers: we need to graft the end of the word (grabbed from the
server) onto the beginning of the word (that the user typed). But we also must select that new text.

Why? A user who is typing and not paying close attention to what's on the screen may not notice that
we just added several characters to the text. That's bad, especially if our suggestion is wrong. By
selecting (highlighting) the text we've added, we allow the user to obliterate our suggestion on the
next keystroke. For example, say the user wants to type "intense." After the user has entered the
first three letters, the program suggests the word "intact" in Figure 9-13.

Figure 9-13. A not quite intact word

But the last half of the word, "act" is selected, so when the user enters the next letter, "e," that letter
replaces the selected text. The server now sends back a match for the first four letters, "inte," as
shown in Figure 9-14.

Figure 9-14. Auto-selection in action

If this still isn't quite what the user wants, she can continue to type without worrying that the
program will capriciously alter the entered text.

Hacking the Hack

This hack works best if the server can keep up with the user's typing. Make sure your server script is
as fast as possible. You may get better performance by sending several potential matches to the
server and caching the ones you don't yet need. When the user enters "a," for example, you can
retrieve all the words that start with "a" and store them in a JavaScript array. Then, when the user
types the next letter, you'll already have those matches ready.

Mark Pruett

Hack 79. Dynamically Display More Information About a
Topic

Use a simple technique to let users manage their own screen real estate.

You've got too much information to display, and not enough room on the screen. What do you do?
You can cram it all on the page and let the user scroll down through your content. You can make two
pages and force the user to navigate between them. Or you can let the user dynamically choose
which sections of your page to display.

Figure 9-15 shows a simple web page with two content sections: Quote of the Day and Weather
Forecast. By themselves, they don't take up much room, but add another dozen sections to the page
and you're on the road to information overload.

Figure 9-15. Two content sections, eating up page real estate

The two page sections are built with HTML tables. The following code sample shows the Quote of the
Day table. The Weather Forecast table has an identical structure:

<table border=0 width="35%" cellpadding="3">

<tr>
 <td bgcolor="404080" onclick="toggle_visible('divQOTD');">

 Quote of the Day

 </td>
</tr>
<tr>
 <td bgcolor="#E0E0E0">
 <div id="divQOTD">
 "Outside of a dog, a book is man's best friend.
 Inside of a dog it's too dark to read."
 -- Groucho Marx

 </div>
 </td>
</tr>
</table>

The table has two rows: the top row displays the title, and the bottom row contains the quotation.
The quote is surrounded by a div tag named divQOTD. You'll also notice that we've hooked a callback
to the top row's onClick event. When the user clicks the mouse on the Quote of the Day title, the
toggle_visible() function makes the content within the div tag disappear, as in Figure 9-16. If the
content is already hidden, clicking the title makes it reappear.

Figure 9-16. Hiding the Quote of the Day

The toggle_visible() function simply modifies a couple of the style attributes of any Document
object element. You pass the element as a parameter, and toggle_visible() checks to see if it's
currently visible. If it is, the element is rendered invisible. If the element is already invisible, it
reappears:

function toggle_visible (elName) {

 var el = document.getElementById (elName);
 var isVisible = (el.style.visibility == "hidden") ? true : false;

 el.style.visibility = isVisible ? "visible" : "hidden";
 el.style.display = isVisible ? "inline" : "none";
}

Figure 9-17 shows the page with both content boxes invisible. You can use the function to make any
page element disappear. You can even attach it to the body tag's onClick event and make the entire
page disappear, if so inspired.

Figure 9-17. Both content boxes rendered invisible

The only bit of trickery in the function is when you set the el.style.display attribute. You might
think that setting the el.style.visibility attribute would be sufficient to render the element
invisible, but alas, no. Setting visibility to hidden makes the text disappear, but the browser still
reserves space for it. Setting the display attribute to none (instead of the normal inline) lets the
browser take back the space it occupied and adjust other page elements accordingly.

Hacking the Hack

The toggle_visible() function isn't limited to tiny sections of the page. You can use it to make large
sections appear or disappear, too. A variation of this function might receive a Boolean parameter that
sets the visibility. This technique can allow the user to toggle between radically different views of your
page without a page refresh or a trip back to the server.

Mark Pruett

Hack 80. Use Strings and Arrays to Dynamically Generate
HTML

Speed up the dynamic writing of HTML tables and CSS styles.

DOM programming in the latest versions of modern browsers, despite their compatibility differences,
is a powerful technique for generating new content in the client. However, the large client-side
programs that dynamically write HTML tables, for instance, from persistently stored data, can gain
performance benefits by using core or "raw" JavaScript objects instead of the DOM. This hack uses
JavaScript strings and arrays to dynamically generate an HTML table for a browser view; it shows a
code sample for this approach and the DOM-based technique as a basis for comparison.

The hack also describes a technique for dynamically setting Cascading Style Sheet (CSS) styles that
helps increase the performance of JavaScript code that alters the appearance of an HTML element.

Writing a Table

In many situations, such as dynamically writing an HTML table, minimizing your code's use of the
web page's DOM objects can increase your program's performance. Following are two different
examples of building an HTML table. The first one emphasizes DOM scripting, and the second uses
JavaScript arrays and strings. The first approach looks like this:

function buildTable(nRows, nCols) {
 var idx = 0, idx2 = 0;
 var oTable = document.createElement("TABLE");
 var oTBody = document.createElement("TBODY");
 var oTRow = null;
 var oTCol = null;

 for (idx; idx < nRows; idx++) {
 oTRow = document.createElement("TR");
 for (idx2 = 0; idx2 < nCols; idx2++) {
 oTCol = document.createElement("TD");
 oTCol.innerText = nRow + ", " + nCol;
 oTCol.style.fontSize = "12px";
 oTCol.style.fontWeight = 700;
 oTCol.style.fontFamily = "tahoma";
 oTRow.appendChild(oTCol);
 };
 oTBody.appendChild(oTRow);
 };

 oTable.appendChild(oTBody);
 document.body.appendChild(oTable);
};

And here's the second approach:

function buildTable(nRows, nCols) {
 var idx = 0, idx2 = 0;
 var bufferHTML = new Array();
 var bufferCount = 0;
 bufferHTML[bufferCount++] = "<table><tbody>";

 for (idx; idx < nRows; idx++) {
 bufferHTML[bufferCount++] = "<tr>";
 for (idx2 = 0; idx2 < nCols; idx2++) {
 bufferHTML[bufferCount++] =
 "<td style='font-size:12px;font-family:"+
 "tahoma;font-weight:700'>";
 bufferHTML[bufferCount++] = nRow;
 bufferHTML[bufferCount++] = ", ";
 bufferHTML[bufferCount++] = nCol;
 bufferHTML[bufferCount++] = "</td>";
 };

 bufferHTML[bufferCount++] = "</tr>";
 };

 bufferHTML[bufferCount++] = "</tbody></table>";
 document.body.innerHTML += bufferHTML.join("");
};

Using arrays and strings to write HTML dynamically into the page is, relatively, faster than using the
DOM APIs.

Running a test program that times the two code pieces indicates that the DOM
table-writing example took roughly twice as many milliseconds to run as the
second code sample (about 1000 ms, compared with 500).

Performance Matters

In the second code sample, the code accesses the DOM with one code line, rather than with several
method calls as in the first example:

document.body.innerHTML += bufferHTML.join("");

In addition, the code uses an Array object to store all the various pieces of the HTML string. This

strategy avoids using unnecessary CPU cycles to continually concatenate new pieces of text to the
string (similar to a java.lang.StringBuffer object in the Java language).

There are times when using only strings to build HTML is not an option; the code has to make a
DOM call to create or change the content of a particular element. The following code samples
illustrate two more examples of how this can be done.

Here is one example that changes a web page element dynamically. The function changes the
appearance of an element by accessing the element's style property, thus altering its visual aspects
(such as the size and color of the font):

function changeElementContents(sID) {
 var oEl = document.getElementById(sID);
 oEl.style.fontWeight = 700;
 oEl.style.fontFace = "Arial";
 oEl.style.fontSize = "20px";
 oEl.style.backgroundColor = "red";
 oEl.style.color = "white";
 oEl.innerHTML = "Hello World, Contents Changed";
 oEl.noWrap = true;
};

The second version of this task minimizes the number of times the code accesses DOM APIs by
reducing the number of .style references:

function changeElementContents(sID) {
 var oEl = document.getElementById(sID);

 with (oEl) {
 style.cssText=
 "font-weight:700;font-face:Arial;font-size:20px;"+
 "background-color:red;color:white;";
 innerHTML = "Hello World, Contents Changed";
 noWrap = true;
 };
};

In addition, the style.cssText property allows the code to change all CSS style properties in one
shot, rather than altering them piece by piece. Similar optimization strategies may improve the
performance of large programs that include a lot of DOM scripting.

Even though a number of tutorials and blogs do not recommend using with,
the with statement can provide a small increase in performance if used
correctly. However, developers should be wary about putting any other code
inside a with block unless it strictly deals with setting the values of existing
object properties.

Sean Snider

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

(hash mark)

@ (at sign)

^ (caret)

\\

 \\

 (colons, doubled)

/* */ (comment characters, JavaScript)

$ (dollar sign)

// (forward slashes)

<%=javascript_include_tag \\

 defaults %> embedded tag

<%...%> (Ruby script tags)

{ } (curly braces)

 exception trapping and

 JSON notation and

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

a_complete() method

abort() method

Accept-Language request headers

actions 2nd 3rd

 create_select

 increment

 show_env

 zero_update action

ActiveX program IDs for Microsoft request objects

add() function

addOptions() function

addOptionValues() function

addToBullets() function

addToChecks() function

Ajax

 back-button and

 bookmarking libraries

 history libraries

 maintenance and performance, enhancement

 tag debugging with Firefox

 web page data, caching

Ajax (Asynchronous JavaScript and XML) 2nd

 included technologies

 limitations

 uses

Ajax Massive Storage System [See AMASS]

Ajax.Autocompleter object

Ajax.InPlaceEditor object

Ajax.Request object

 go_url parameter

Ajax.Updater object 2nd

ajaxEngine variable

Ajaxy

allInputs variable

AMASS (Ajax Massive Storage System)

 requirements

anchor hash

Apache, configuration for cross-domain issues

application ID, Yahoo Maps API

application maintenance

 bash shell script

 caching issues

 JavaScript file compression

 JavaScript files, merging

application.js

applyLuhn() function

associative arrays

async_cmd() function 2nd

auto-complete fields

auto-completion

auto_com.js

auto_inp.js

autocomplete fields

 script.aculo.us, using

autocomplete() function

aync_cmd() function

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

back-button, fixing in Ajax applications

 iframes and bbfix.js, with

 RSH, using

Backbase

bb_save_state() function

bbfix.js 2nd

BikeBean class

BikeJavaBean class

blank.html

bookmarklets

bookmarks, fixing in Ajax applications

browsers

 back-button and Ajax

 fixing

 compatibility detection

 if/then testing

 cross-domain request handling

 filling forms without refreshes

 history, controlling with iframes

 locale information, finding

 search engines, running inside

 server data, display without refreshes

 text handling quirks

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

cache\\

caching issues for large applications

calcTotal() function

callback design pattern

card security code (CSC)

cc.js 2nd 3rd

centerCoords element

checkAddress() function 2nd

checkboxes

 dynamic generation from server data

 immediate submission of values to the server

 population of checkboxes from server data

checkCSC() function

chkZipcode() function

client-side caching

client-side storage for Ajax applications

client-side validation

clientsideVerify() function 2nd

code examples

code obfuscation

 HTML element attributes and

 object property names and

comment characters, JavaScript

ContentHandler interface

context root

controller 2nd

controllers

Cookie object

cookies 2nd

 document.cookie property

 MyCookie object

 toString() method

 properties

count.cgi

 run-time

country codes

create_select action

createChecks() function

createMap() function

credit card security code validation

 spaces, removing from form fields

credit card validation

cross-site scripting (XSS) attacks

CSC (card security code)

CSS (Cascading Style Sheets)

 JavaScript code and

 styled messages, generating with

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

data validation [See validation]

data, receiving

 as JavaScript objects (JSON)

 server-side processing

 as numbers

 calculation

 display via DOM

 as strings

 as XML

db_element method

dbselect.rhtml

debug() method

debugging Ajax-generated tags in Firefox

declarative markup, using in place of JavaScript

dhtmlHistory and DhtmlHistory objects

DhtmlHistory class

dhtmlHistory.addListener() method

dhtmlHistory.js

Direct Web Remoting [See DWR]

disform.js

displayMsg() function

displayPollResults() function

div element 2nd

document.cookie property

document.getElementById() function

document.write() method

Dojo Toolkit

DOM (Document Object Model)

 Document objects

 dynamic display of script results

 elements, getting values of

 getElementById() API method

 window object

DOM Inspector tool in Firefox

domain literals

dot property-name syntax

drag-and-drop bookstore

DWR (Direct Web Remoting)

 built-in Java objects, calling from JavaScript

 callback design pattern

 code, download address

 custom Java objects, accessing with JavaScript

 engine.js library

 integrating into a Java web applicaton

 Java and JavaScript mapping

 populating ordered lists from Java arrays

 function literal

 selection lists, creating from Java maps

 selection lists, populating from a Java array

 array value, getting from the server

 server setup and configuration

 web page display of keys/values from Java HashMap

 JavaScript code

 WEB-INF directory

dwr.jar

DWRUtil.removeAllOptions() function

dynamic information display

dynamic script tags

 Yahoo! Geocoding web service

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Effect.Appear() function

Effect.Puff() method

Effect.Pulsate() method

efflib.js

email syntax, validation of

 special characters

 usernames

 server handshake

email, sending via XMLHttpRequest

 EmailBean object

 sendMessage() method

email.js 2nd

EmailBean object

eMsg() function

encodeURIComponent() function 2nd

energy prices, scraping from web pages

 EnergyHarvester class

 handlePrice() function

 JavaScript code

 OilpriceCallback Java class

energy-monitoring tool

EnergyHarvester class

engine.js library

environment variables

event handlers 2nd 3rd

 binding to functions

Extensible Markup Language [See XML]

Extensible Stylesheet Language and Transformation [See XSLT]

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Firefox

 Ajax-generated tags, debugging

 DOM Inspector tool

 iframe domain setting

 iframes and

Flash and AMASS 2nd

form element, onsubmit event handler

Form.Element.Observer object

form_remote_tag() method 2nd

format_rss_data() function

FormFaces

FormFaces XForms engine

formObj and formObj.value variables

formObj and formObjTyp variables

fragment identifier

framework

Fuchs, Thomas

Function constructor

function literal 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

GBrowserIsCompatible() function 2nd

GeoURL service

GeoURL Yahoo! mash-up

GET requests 2nd

get_data() function

get_rss_feed() function

get_xml_file() function

getAllHeaders() function 2nd 3rd 4th

getAllResponseHeaders() method 2nd

getBikeInfo() function

getDesignerInfo() function 2nd

getDirection() function

getDocInfo() function

getElementById() method 2nd

getElementsByTagName() method

getInfo() function 2nd

getJsonFormat() method

getMoreChoices() function 2nd

getResponseHeader() method

getStockPrice() function 2nd

getTimezoneOffset() method

getZipCode() function

Gnosis Utilities for Python

Go Updater! button

Google Maps API 2nd

 developer's key

 requirements

 DOM programming

 driving directions with Yahoo! Maps

 HTML code

 Google API library

 latitide and longitude measures

 objects

 request object

 src attribute

googleAjax() function 2nd

GPS devices, XML data sharing

GXmlHttp

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

hack10.js file

hack2.js file

hack3.js file

hack4.js

hack5.js

hack6.js

hack7.js file

hack9.js

hacks.css 2nd

 drop-down box rules

hacks2_11.js

hacks2_5.js

hacks2_7.js

hacks2_8.js

hacks2_9.js

hacks3_6b.js

hacks3_7.js

hacks4-10.js

hacks4_12.js

hacks4_13.js

hacks4_1_b.js

hacks4_1a.js

hacks5_1.js 2nd 3rd

hacks5_1.js,

hacks5_3.js

hacks5_5.js

hacks8.js file

hacks_2_1.js file 2nd

hacks_2_4.js file

hacks_4_4.js

hacks_controller.rb

hacks_method.js

handleJson() function

handlePrice() function

handleResponse() function 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

hash keys

helloworld.js

helpers

hidden elements

hidden tag

historyChange() method

historyData

HistoryStorage class

historyStorage class

HTML

 content, updating from the server

 error checking

 Go Updater! button

 dynamic generation from strings and arrays

 separation of code from

HTMLInputElement

HTTP

 PUT and GET

HTTP response

 response headers

 unordered lists, modification with

http_request.js 2nd 3rd

httpd.conf

httpRequest() function 2nd 3rd 4th 5th 6th 7th

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

iframes

 back-button, fixing

 types

increment action

increment() method

index() method

index.rhtml

initialize() method

initReq() function 2nd

inline text control validation

innerInput.js

.inplaceeditor-saving CSS class

input elements, validation

installating RoR (Ruby on Rails)

instance data

instances

Instant Rails

Internet domains

Internet Explorer

 client-side Ajax storage

 iframes and

Internet Explorer caching bug

interval.rhtml

inverted index

is_used tag

isFirstLoad() method

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

java.io.FileReader class

java.util.HashMap

JavaBeans

JavaScript

 caching issues, solving

 code, separation from HTML

 commenting characters

 compressing files

 cross-site scripting (XSS) attacks and

 CSS and

 FormFaces XForms engine

 large applications, maintenance

 merging files

 methods

 script.aculo.us library [See script.aculo.us]

JavaScript obfuscators

JavaScript Object Notation [See JSON]

javascript_include_tag() function 2nd

JCE (JavaScript Chaos Edition)

JDOM API

JsBikeBean.js

JsBikeJavaBean

JsBikeJavaBean.toJSON() function

JsDate and JsBikeBean objects

JSON (JavaScript Object Notation) 2nd

 JSONObject type

 server-side processing

 third-party web services request results

JSONObject JSONArray source code

JSONscriptRequest class

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

language codes

latlng variable

Least Recently Used (LRU) algorithm

limited_cache.js

linked lists

loadScript() function

localfind() function

LRU (Least Recently Used) algorithm

Luhn algorithm

 applyLuhn() function

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Mac OS X Tiger, RoR installation on

makeHyperlink() function

map objects

marshalling

mash-ups

 Google and Yahoo! Maps APIs

 HTML code

 Yahoo! Maps and GeoURL

Mertz, David

methods

Microsoft.XMLHTTP

Model-View-Controller architecture (MVC)

models 2nd

monitor.rhtml 2nd 3rd

Mozilla Firefox XMLHttpRequest object

Msxml2.XMLHTTP

multiple.js

MVC (Model-View-Control) architecture

MyCookie object

mydraggable.js 2nd

mylib.js 2nd 3rd

MySQL, RoR configuration for use with

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

navigator client-side objects

navigator.language property

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

O'Reilly Mail application

obfuscation

 HTML element attributes and

 object property names and

 of JavaScript and Ajax code

obj.name

object literal

objt variable

OilpriceCallback Java class

onblur event 2nd 3rd

onblur event handler

One-Click Ruby Installer

onload event handler

onreadystatechange 2nd 3rd 4th

onsubmit event handler

open() method

options.rhtml

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

partial _options.rhtml

partials

path info

PeriodicalExecuter

periodically_call_remote() method

populate() function

populateArray() function 2nd

POST HTTP request

POST requests

postal code validaiton

postal codes, fetching

 callback object

 Java servlet for

 SAX (Simple API for XML) component 2nd

prettyPrintXml() method

Prototype

 \\$("msg") syntax

 Ajax.Request object

 go_url parameter

 download URL

 Form.Element.Observer object

 HTML content, updating from the server

 error checking

 monitoring changes in web page fields

 Prototype library

 Prototype objects

 request headers

 script.aculo.us library [See script.aculo.us]

prototype.js

 library importation

prototype.js library

PUT

put() method

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

queues

Quote of the Day table

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Rails

readyState property

Really Simple History [See RSH]

remoting

render \\

 partial => "auto_ul"

render() method 2nd

request objects

 ActiveX program IDs

 custom libraries for using

 Google Maps API

 POST of data to servers

 ogling results

 setting headers

 properties and methods

 request object errors, handling

 floored servers

 problems, causes of

 unavailable services

 wrong URL

 strings, data reception as

 XMLHttpRequest object [See XMLHttpRequest object]

request variable (JavaScript)

request.overrideMimeType() function

request.status property 2nd

resp variable

response code handling 2nd

response headers

responseIsFailure() function

responseText property

responseXML property

restore() function

RewriteRule directive

RFC 2822

Rich Internet Applications

Rico

 drag-and-drop bookstore

 necessary libraries

 update of multiple elements with an Ajax request

 Java servlets

Rico.AjaxEngine object

Rollyo

RoR (Ruby on Rails)

 <%...%> script tags

 a_complete() method

 actions [See actions]

 application.js

 calling JavaScript applications

 configuration file for use with MySQL

 controller

 distinguishing calls by XMLHttpRequest from URL calls

 dynamic viewing of XMLHttpRequest request information

 increment action

 installation

 One-Click Ruby Installer

 making periodic remote calls

 method calls

 MVC architecture

 partials

 remote calls, monitoring

 render() method 2nd

 selection lists, dynamic generation using database data

 show_env action

 supported databases

 template code 2nd 3rd 4th

 templates for dynamic selection list generation

 TimeZone object

 views

 web application directory structure

 web applications, creating

 zero_update action

RSH (Really Simple History)

 compatible browsers

RSS (Really Simple Syndication) feed reader

 format_rss_data() function

 get_rss_feed() function

 get_xml_file() function

rss.html

rss_parse.js

Ruby

Ruby on Rails [See RoR]

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Safari and iframes

scraping

script tags

 web services requests using

script.aculo.us

 auto-complete fields

 download web site

 in-place editor fields

 included script files

 Prototype and

 shaking login box on invalid logins

 visual effects

 web forms that disappear on submission

scriptaculous.js

 library importation

 versions

search engines, running inside your browser

select element

selection lists

 creating from Java maps with DWR

 dynamic generation from database data using RoR

 dynamic generation from server data

 enabling user modification option

 immediate submission to server

 populating from Java arrays using DWR

 array values, getting from the server

 RoR templates for dynamic generation of

send() method

sendData() function

sendMessage() method

sendSportsInfo() function

server errors, handling

 floored servers

 problems, causes of

 unavailable services

 wrong URL

Set-Cookie headers

setHeader() method

setProdCodes() function

setQueryString() function

setRequestHeader() function

setSpan() function 2nd

setStyle() function

setTimeout() method

setupDates() function

setupList() function

setupSelect() function

show_cache_info() function

show_env acton

showUpInfo() function

single-page applications

spaces, removing from form fields

spell checkers

status property

statusHandler() function

statusText property

stock holding value script

stock price collecting script

string split() method

stripExtraNumbers() function

style property

styled messages

 CSS files, generating with

stylizeDiv() method

submit_to_remote() method

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

talkdrop.js

technologies used in Ajax

textarea

 instant messaging hack using

 server data, display without browser refreshes

 validation

 value submissions without browser refreshes

timesUp() function

TimeZone object

toggle effect

toggle() function

toggle_visible() function

 el.style.display attribute

toGMTString() method

toJSON() method

toLocaleString() method

toString() method

try blocks

try/catch/finally statement

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

ul tag

ul tags

UniversalBrowser privileges

unmarshalling

unordered lists, modification with HTTP response

updateResults() function

uptime.html 2nd

user names, validation of

 server handshake

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

validation

 blank fields, checking for

 client-side validation

 credit card numbers

 credit card security codes

 spaces, removing from form fields

 email syntax

 inline

 postal codes

 user names

 server handshake

verify() function

view

views 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

W3C (World Wide Web Consortium)

Weather Forecast table

weather.com

 XML file of weather information

web APIs

web development

 AMASS [See AMASS]

 bookmarklets

 browser history, controlling with iframes

 cookies

 Google Maps API [See Google Maps API]

 mash-ups [See mash-ups]

 postal codes, fetching

 weather.com XML data feed, displaying

 pathinfo

web forms

 checkboxes [See checkboxes]

 data entry without browser refreshes

 hidden tag values, submission to a server

 logging submitted values

 server data, display without browser refreshes

 tracking page openings

 unordered lists, modification with HTTP response

web page fields, monitoring changes in

web page updates without refreshes

web server uptime value

web services requests with dynamic script tags

web.xml

WEBrick

window object

window.location hash

window.onload

 event handler specification

window.onload event

 checkboxes, changes in state

window.onload event handler 2nd

window.XMLHttpRequest

Windows, RoR installation on

words file

writeMap() function

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

xf\\

 repeat element

xfi.js

XForms

 FormFaces engine

 XML and

XML (Extensible Markup Language) 2nd

 reception of data as

XML instance data

xml_http_request?() method

XMLHttpRequest 2nd 3rd [See also request objects]

 asynchronous requests

 browser compatibilty detection

 browser locale information, discovering

 calls, distinguishing from RoR URL calls

 custom libraries for using

 email, sending with

 EmailBean object

 sendMessage() method

 energy prices, scraping from web pages

 Mozilla Firefox implementation

 setting a time limit for

 use across domains with Apache

XMLUtils Java class

XSLT (Extensible Stylesheet Language and Transformation)

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Yahoo! Maps API

 application ID

 mash-up with GeoURL

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

zip code validation

zoom level

zoom variable

	Ajax Hacks
	Table of Contents
	Foreword
	credits Credits
	About the Author
	Contributors
	Acknowledgments

	Preface
	Building Single-Page Applications
	Explaining Ajax
	How to Use This Book
	How This Book Is Organized
	Conventions Used in This Book
	Using Code Examples
	Safari Enabled
	How to Contact Us
	Got a Hack?

	Chapter 1. Ajax Basics
	It's Not a Floor Wax
	Handle with Care
	XMLHttpRequest
	Hack 1. Detect Browser Compatibility with the Request Object
	Hack 2. Use the Request Object to POST Data to the Server
	Hack 3. Use Your Own Library for XMLHttpRequest
	Hack 4. Receive Data as XML
	Hack 5. Get Plain Old Strings
	Hack 6. Receive Data as a Number
	Hack 7. Receive Data in JSON Format
	Hack 8. Handle Request Object Errors
	Hack 9. Dig into the HTTP Response
	Hack 10. Generate a Styled Message with a CSS File
	Hack 11. Generate a Styled User Message on the Fly

	Chapter 2. Web Forms
	Hack 12. Submit Text Field or textarea Values to the Server Without a Browser Refresh
	Hack 13. Display Text Field or textarea Values Using Server Data
	Hack 14. Submit Selection-List Values to the Server Without a Round Trip
	Hack 15. Dynamically Generate a New Selection List Using Server Data
	Hack 16. Extend an Existing Selection List
	Hack 17. Submit Checkbox Values to the Server Without a Round Trip
	Hack 18. Dynamically Generate a New Checkbox Group with Server Data
	Hack 19. Populate an Existing Checkbox Group from the Server
	Hack 20. Change Unordered Lists Using an HTTP Response
	Hack 21. Submit Hidden Tag Values to a Server Component

	Chapter 3. Validation
	Hack 22. Validate a Text Field or textarea for Blank Fields
	Hack 23. Validate Email Syntax
	Hack 24. Validate Unique Usernames
	Hack 25. Validate Credit Card Numbers
	Hack 26. Validate Credit Card Security Codes
	Hack 27. Validate a Postal Code

	Chapter 4. Power Hacks for Web Developers
	Hack 28. Get Access to the Google Maps API
	Hack 29. Use the Google Maps API Request Object
	Hack 30. Use Ajax with a Google Maps and Yahoo! Maps Mash-up
	Hack 31. Display a Weather.com XML Data Feed
	Hack 32. Use Ajax with a Yahoo! Maps and GeoURL Mash-up
	Hack 33. Debug Ajax-Generated Tags in Firefox
	Hack 34. Fetch a Postal Code
	Hack 35. Create Large, Maintainable Bookmarklets
	Hack 36. Use Permanent Client-Side Storage for Ajax Applications
	Hack 37. Control Browser History with iframes
	Hack 38. Send Cookie Values to a Server Program
	Hack 39. Use XMLHttpRequest to Scrape an Energy Price from a Web Page
	Hack 40. Send an Email with XMLHttpRequest
	Hack 41. Find the Browser's Locale Information
	Hack 42. Create an RSS Feed Reader

	Chapter 5. Direct Web Remoting (DWR)for Java Jocks
	Hack 43. Integrate DWR into Your Java Web Application
	Hack 44. Use DWR to Populate a Selection List from a Java Array
	Hack 45. Use DWR to Create a Selection List from a Java Map
	Hack 46. Display the Keys/Values from a Java HashMap on a Web Page
	Hack 47. Use DWR to Populate an Ordered List from a Java Array
	Hack 48. Access a Custom Java Object with JavaScript
	Hack 49. Call a Built-in Java Object from JavaScript Using DWR

	Chapter 6. Hack Ajax with the Prototype and Rico Libraries
	Hack 50. Use Prototype's Ajax Tools with Your Application
	Hack 51. Update an HTML Element's Content from the Server
	Hack 52. Create Observers for Web Page Fields
	Hack 53. Use Rico to Update Several Elements with One Ajax Response
	Hack 54. Create a Drag-and-Drop Bookstore

	Chapter 7. Work with Ajax and Ruby on Rails
	Sensible MVC
	Hack 55. Install Ruby on Rails
	Hack 56. Monitor Remote Calls with Rails
	Hack 57. Make Your JavaScript Available to Rails Applications
	Hack 58. Dynamically Generate a Selection List in a Rails Template
	Hack 59. Find Out Whether Ajax Is Calling in the Request
	Hack 60. Dynamically Generate a Selection List Using Database Data
	Hack 61. Periodically Make a Remote Call
	Hack 62. Dynamically View Request Information for XMLHttpRequest

	Chapter 8. Savor the script.aculo.us JavaScript Library
	Hack 63. Integrate script.aculo.us Visual Effects with an Ajax Application
	Hack 64. Create a Login Box That Shrugs Off Invalid Logins
	Hack 65. Create an Auto-Complete Field with script.aculo.us
	Hack 66. Create an In-Place Editor Field
	Hack 67. Create a Web Form That Disappears When Submitted

	Chapter 9. Options and Efficiencies
	Hack 68. Fix the Browser Back Button in Ajax Applications
	Hack 69. Handle Bookmarks and Back Buttons with RSH
	Hack 70. Set a Time Limit for the HTTP Request
	Hack 71. Improve Maintainability, Performance, and Reliability for Large JavaScript Applications
	Hack 72. Obfuscate JavaScript and Ajax Code
	Hack 73. Use a Dynamic script Tag to Make Web Services Requests
	Hack 74. Configure Apache to Deal with Cross-Domain Issues
	Hack 75. Run a Search Engine Inside Your Browser
	Hack 76. Use Declarative Markup Instead of Script via XForms
	Hack 77. Build a Client-Side Cache
	Hack 78. Create an Auto-Complete Field
	Hack 79. Dynamically Display More Information About a Topic
	Hack 80. Use Strings and Arrays to Dynamically Generate HTML

	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

