
Table of Contents
Acknowledgments . xvii

Introduction . . xix
Who This Book Is For . xix

Finding Your Best Starting Point in This Book . xx

Conventions and Features in This Book .xxi

Conventions .xxi

Other Features . xxii

Prerelease Software . xxii

Hardware and Software Requirements . xxii

Code Samples .xxiii

Installing the Code Samples . .xxiii

Using the Code Samples . .xxiii

Uninstalling the Code Samples . xxix

Find Additional Content Online . xxx

Support for This Book . xxx

Questions and Comments . xxx

Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

Welcome .to .C# . . 3
Beginning Programming with the Visual Studio 2010 Environment 3

Writing Your First Program . 8

Using Namespaces . 14

Creating a Graphical Application . 17

Chapter 1 Quick Reference . 26

Working .with .Variables, .Operators, .and .Expressions 27
Understanding Statements . 27

Using Identifiers . 28

Identifying Keywords . 28

Using Variables . 29

Naming Variables . 30

Declaring Variables . 30

Working with Primitive Data Types . 31

Unassigned Local Variables . 32

Displaying Primitive Data Type Values . 32

Using Arithmetic Operators . 36

Operators and Types . 37

Examining Arithmetic Operators . 38

Controlling Precedence . 41

Using Associativity to Evaluate Expressions . 42

Associativity and the Assignment Operator . 42

Incrementing and Decrementing Variables . 43

Prefix and Postfix . 44

Declaring Implicitly Typed Local Variables . 45

Chapter 2 Quick Reference . 46

Writing .Methods .and .Applying .Scope . 47
Creating Methods . 47

Declaring a Method . 48

Returning Data from a Method . 49

Calling Methods . 51

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Microsoft® Visual C#® 2010
Step by Step

John Sharp

http://lib.ommolketab.ir
http//lib.ommolketab.ir

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2010 by John Sharp

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Control Number: 2009939912

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWT 5 4 3 2 1 0

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further infor mation about
international editions, contact your local Microsoft Corporation office or contact Microsoft Press International directly
at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, Excel, IntelliSense, Internet Explorer, Jscript, MS, MSDN, SQL Server, Visual Basic, Visual
C#, Visual C++, Visual Studio, Win32, Windows, and Windows Vista are either registered trademarks or trademarks of
the Microsoft group of companies. Other product and company names mentioned herein may be the trademarks of their
respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events
depicted herein are fictitious. No association with any real company, organization, product, domain name, e-mail address,
logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will
be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Acquisitions Editor: Ben Ryan
Developmental Editor: Devon Musgrave
Project Editor: Rosemary Caperton
Editorial Production: Waypoint Press, www.waypointpress.com
Technical Reviewer: Per Blomqvist; Technical Review services provided by Content Master, a member of
 CM Group, Ltd.
Cover: Tom Draper Design

Body Part No. X16-81630

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 . . iii

Contents at a Glance

Part I . Introducing .Microsoft .Visual .C# .and .Microsoft .
Visual .Studio .2010

 . 1 Welcome to C# . 3
 . 2 Working with Variables, Operators, and Expressions 27
 . 3 Writing Methods and Applying Scope . 47
 . 4 Using Decision Statements . 73
 . 5 Using Compound Assignment and Iteration Statements 91
 . 6 Managing Errors and Exceptions . 109

Part II . Understanding .the .C# .Language
 . 7 Creating and Managing Classes and Objects 129
 . 8 Understanding Values and References . 151
 . 9 Creating Value Types with Enumerations and Structures 173
 . 10 Using Arrays and Collections . 191
 . 11 Understanding Parameter Arrays . 219
 . 12 Working with Inheritance . 231
 . 13 Creating Interfaces and Defining Abstract Classes 253
 . 14 Using Garbage Collection and Resource Management 279

Part III . Creating .Components
 . 15 Implementing Properties to Access Fields 295
 . 16 Using Indexers . 315
 . 17 Interrupting Program Flow and Handling Events 329
 . 18 Introducing Generics . 353
 . 19 Enumerating Collections . 381
 . 20 Querying In-Memory Data by Using Query Expressions 395
 . 21 Operator Overloading . 419

http://lib.ommolketab.ir
http//lib.ommolketab.ir

iv Contents at a Glance

Part IV .Building .Windows .Presentation .Foundation .
Applications

 . 22 Introducing Windows Presentation Foundation 443
 . 23 Gathering User Input . 477
 . 24 Performing Validation . 509

Part V . Managing .Data
 . 25 Querying Information in a Database . 535
 . 26 Displaying and Editing Data by Using the Entity

Framework and Data Binding . 565

Part VI .Building .Professional .Solutions .with .
Visual .Studio .2010

 . 27 Introducing the Task Parallel Library . 599
 . 28 Performing Parallel Data Access . 649
 . 29 Creating and Using a Web Service . 683

Appendix
 . Interoperating with Dynamic Languages 717

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 . . v

Table of Contents
Acknowledgments . xvii

Introduction .xix

Part I . Introducing .Microsoft .Visual .C# .and .Microsoft .
Visual .Studio .2010

 . 1 Welcome to C# . 3
Beginning Programming with the Visual Studio 2010 Environment 3

Writing Your First Program . 8

Using Namespaces . 14

Creating a Graphical Application . 17

Chapter 1 Quick Reference . 26

 . 2 Working with Variables, Operators, and Expressions 27
Understanding Statements . 27

Using Identifiers . 28

Identifying Keywords . 28

Using Variables . 29

Naming Variables . 30

Declaring Variables . 30

Working with Primitive Data Types . 31

Unassigned Local Variables . 32

Displaying Primitive Data Type Values . 32

Using Arithmetic Operators . 36

Operators and Types . 37

Examining Arithmetic Operators . 38

Controlling Precedence . 41

Using Associativity to Evaluate Expressions . 42

Associativity and the Assignment Operator . 42

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

http://lib.ommolketab.ir
http//lib.ommolketab.ir

vi Table of Contents

Incrementing and Decrementing Variables . 43

Prefix and Postfix . 44

Declaring Implicitly Typed Local Variables . 45

Chapter 2 Quick Reference . 46

 . 3 Writing Methods and Applying Scope . 47
Creating Methods . 47

Declaring a Method . 48

Returning Data from a Method . 49

Calling Methods . 51

Specifying the Method Call Syntax . 51

Applying Scope . 53

Defining Local Scope . 54

Defining Class Scope . 54

Overloading Methods . 55

Writing Methods . 56

Using Optional Parameters and Named Arguments . 64

Defining Optional Parameters . 65

Passing Named Arguments . 66

Resolving Ambiguities with Optional Parameters and
Named Arguments . 66

Chapter 3 Quick Reference . 72

 . 4 Using Decision Statements . 73
Declaring Boolean Variables . 73

Using Boolean Operators . 74

Understanding Equality and Relational Operators 74

Understanding Conditional Logical Operators . 75

Short-Circuiting . 76

Summarizing Operator Precedence and Associativity 76

Using if Statements to Make Decisions . 77

Understanding if Statement Syntax . 77

Using Blocks to Group Statements . 78

Cascading if Statements . 79

Using switch Statements . 84

Understanding switch Statement Syntax . 85

Following the switch Statement Rules . 86

Chapter 4 Quick Reference . 89

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Table of Contents vii

 . 5 Using Compound Assignment and Iteration Statements 91
Using Compound Assignment Operators . 91

Writing while Statements . 92

Writing for Statements . 97

Understanding for Statement Scope . 98

Writing do Statements . 99

Chapter 5 Quick Reference . 108

 . 6 Managing Errors and Exceptions . 109
Coping with Errors . 109

Trying Code and Catching Exceptions . 110

Unhandled Exceptions . 111

Using Multiple catch Handlers . 112

Catching Multiple Exceptions . 113

Using Checked and Unchecked Integer Arithmetic . 118

Writing Checked Statements . 118

Writing Checked Expressions . 119

Throwing Exceptions . 121

Using a finally Block . 124

Chapter 6 Quick Reference . 126

Part II . Understanding .the .C# .Language

 . 7 Creating and Managing Classes and Objects 129
Understanding Classification . 129

The Purpose of Encapsulation . 130

Defining and Using a Class . 130

Controlling Accessibility . 132

Working with Constructors . 133

Overloading Constructors . 134

Understanding static Methods and Data . 142

Creating a Shared Field . 143

Creating a static Field by Using the const Keyword 144

Static Classes . 144

Anonymous Classes . 147

Chapter 7 Quick Reference . 149

http://lib.ommolketab.ir
http//lib.ommolketab.ir

viii Table of Contents

 . 8 Understanding Values and References . 151
Copying Value Type Variables and Classes . 151

Understanding Null Values and Nullable Types . 156

Using Nullable Types . 157

Understanding the Properties of Nullable Types 158

Using ref and out Parameters . 159

Creating ref Parameters . 159

Creating out Parameters . 160

How Computer Memory Is Organized . 162

Using the Stack and the Heap . 164

The System.Object Class . 165

Boxing . 165

Unboxing . 166

Casting Data Safely . 168

The is Operator . 168

The as Operator . 169

Chapter 8 Quick Reference . 171

 . 9 Creating Value Types with Enumerations and Structures 173
Working with Enumerations . 173

Declaring an Enumeration . 173

Using an Enumeration . 174

Choosing Enumeration Literal Values . 175

Choosing an Enumeration’s Underlying Type . 176

Working with Structures . 178

Declaring a Structure . 180

Understanding Structure and Class Differences . 181

Declaring Structure Variables . 182

Understanding Structure Initialization . 183

Copying Structure Variables . 187

Chapter 9 Quick Reference . 190

 . 10 Using Arrays and Collections . 191
What Is an Array? . 191

Declaring Array Variables . 191

Creating an Array Instance . 192

Initializing Array Variables . 193

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Table of Contents ix

Creating an Implicitly Typed Array . 194

Accessing an Individual Array Element . 195

Iterating Through an Array . 195

Copying Arrays . 197

Using Multidimensional Arrays . 198

Using Arrays to Play Cards . 199

What Are Collection Classes? . 206

The ArrayList Collection Class . 208

The Queue Collection Class . 210

The Stack Collection Class . 210

The Hashtable Collection Class . 211

The SortedList Collection Class . 213

Using Collection Initializers . 214

Comparing Arrays and Collections . 214

Using Collection Classes to Play Cards . 214

Chapter 10 Quick Reference . 218

 . 11 Understanding Parameter Arrays . 219
Using Array Arguments . 220

Declaring a params Array . 221

Using params object[] . 223

Using a params Array . 224

Comparing Parameters Arrays and Optional Parameters 226

Chapter 11 Quick Reference . 229

 . 12 Working with Inheritance . 231
What Is Inheritance? . 231

Using Inheritance . 232

Calling Base Class Constructors . 234

Assigning Classes . 235

Declaring new Methods . 237

Declaring Virtual Methods . 238

Declaring override Methods . 239

Understanding protected Access . 242

Understanding Extension Methods . 247

Chapter 12 Quick Reference . 251

http://lib.ommolketab.ir
http//lib.ommolketab.ir

x Table of Contents

 . 13 Creating Interfaces and Defining Abstract Classes 253
Understanding Interfaces . 253

Defining an Interface . 254

Implementing an Interface . 255

Referencing a Class Through Its Interface . 256

Working with Multiple Interfaces . 257

Explicitly Implementing an Interface . 257

Interface Restrictions . 259

Defining and Using Interfaces . 259

Abstract Classes . 269

Abstract Methods . 270

Sealed Classes . 271

Sealed Methods . 271

Implementing and Using an Abstract Class . 272

Chapter 13 Quick Reference . 277

 . 14 Using Garbage Collection and Resource Management 279
The Life and Times of an Object . 279

Writing Destructors . 280

Why Use the Garbage Collector? . 282

How Does the Garbage Collector Work? . 283

Recommendations . 284

Resource Management . 284

Disposal Methods . 285

Exception-Safe Disposal . 285

The using Statement . 286

Calling the Dispose Method from a Destructor . 288

Implementing Exception-Safe Disposal . 289

Chapter 14 Quick Reference . 292

Part III . Creating .Components

 . 15 Implementing Properties to Access Fields 295
Implementing Encapsulation by Using Methods . 296

What Are Properties? . 297

Using Properties . 299

Read-Only Properties . 300

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Table of Contents xi

Write-Only Properties . 300

Property Accessibility . 301

Understanding the Property Restrictions . 302

Declaring Interface Properties . 304

Using Properties in a Windows Application . 305

Generating Automatic Properties . 307

Initializing Objects by Using Properties . 308

Chapter 15 Quick Reference . 313

 . 16 Using Indexers . 315
What Is an Indexer? . 315

An Example That Doesn’t Use Indexers . 315

The Same Example Using Indexers . 317

Understanding Indexer Accessors . 319

Comparing Indexers and Arrays . 320

Indexers in Interfaces . 322

Using Indexers in a Windows Application . 323

Chapter 16 Quick Reference . 328

 . 17 Interrupting Program Flow and Handling Events 329
Declaring and Using Delegates . 329

The Automated Factory Scenario . 330

Implementing the Factory Without Using Delegates 330

Implementing the Factory by Using a Delegate . 331

Using Delegates . 333

Lambda Expressions and Delegates . 338

Creating a Method Adapter . 339

Using a Lambda Expression as an Adapter . 339

The Form of Lambda Expressions . 340

Enabling Notifications with Events . 342

Declaring an Event . 342

Subscribing to an Event . 343

Unsubscribing from an Event . .344

Raising an Event .344

Understanding WPF User Interface Events . 345

Using Events . 346

Chapter 17 Quick Reference . 350

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xii Table of Contents

 . 18 Introducing Generics . 353
The Problem with objects . 353

The Generics Solution . 355

Generics vs . Generalized Classes . 357

Generics and Constraints . 358

Creating a Generic Class . 358

The Theory of Binary Trees . 358

Building a Binary Tree Class by Using Generics . 361

Creating a Generic Method . 370

Defining a Generic Method to Build a Binary Tree 371

Variance and Generic Interfaces . 373

Covariant Interfaces . 375

Contravariant Interfaces . 377

Chapter 18 Quick Reference . 379

 . 19 Enumerating Collections . 381
Enumerating the Elements in a Collection . 381

Manually Implementing an Enumerator . 383

Implementing the IEnumerable Interface . 387

Implementing an Enumerator by Using an Iterator . 389

A Simple Iterator . 389

Defining an Enumerator for the Tree<TItem> Class
by Using an Iterator . 391

Chapter 19 Quick Reference . 394

 . 20 Querying In-Memory Data by Using Query Expressions 395
What Is Language Integrated Query? . 395

Using LINQ in a C# Application . 396

Selecting Data . 398

Filtering Data .400

Ordering, Grouping, and Aggregating Data . 401

Joining Data .404

Using Query Operators . 405

Querying Data in Tree<TItem> Objects . 407

LINQ and Deferred Evaluation . 412

Chapter 20 Quick Reference . 416

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Table of Contents xiii

 . 21 Operator Overloading . 419
Understanding Operators . 419

Operator Constraints . 420

Overloaded Operators . 420

Creating Symmetric Operators . 422

Understanding Compound Assignment Evaluation . 424

Declaring Increment and Decrement Operators . 425

Comparing Operators in Structures and Classes . 426

Defining Operator Pairs . 426

Implementing Operators . 427

Understanding Conversion Operators . 434

Providing Built-in Conversions . 434

Implementing User-Defined Conversion Operators 435

Creating Symmetric Operators, Revisited . 436

Writing Conversion Operators . 437

Chapter 21 Quick Reference . .440

Part IV .Building .Windows .Presentation .Foundation .
Applications

 . 22 Introducing Windows Presentation Foundation 443
Creating a WPF Application . 443

Building the WPF Application .444

Adding Controls to the Form . 458

Using WPF Controls . 458

Changing Properties Dynamically . 466

Handling Events in a WPF Form . 470

Processing Events in Windows Forms . 471

Chapter 22 Quick Reference . 476

 . 23 Gathering User Input . 477
Menu Guidelines and Style . 477

Menus and Menu Events . 478

Creating a Menu . 478

Handling Menu Events . 484

Shortcut Menus . 491

Creating Shortcut Menus . 491

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xiv Table of Contents

Windows Common Dialog Boxes . 495

Using the SaveFileDialog Class . 495

Improving Responsiveness in a WPF Application . 498

Chapter 23 Quick Reference . 508

 . 24 Performing Validation . 509
Validating Data . 509

Strategies for Validating User Input . 509

An Example—Order Tickets for Events . 510

Performing Validation by Using Data Binding . 511

Changing the Point at Which Validation Occurs 527

Chapter 24 Quick Reference . 531

Part V . Managing .Data

 . 25 Querying Information in a Database . 535
Querying a Database by Using ADO .NET . 535

The Northwind Database . 536

Creating the Database . 536

Using ADO .NET to Query Order Information . 538

Querying a Database by Using LINQ to SQL . 549

Defining an Entity Class . 549

Creating and Running a LINQ to SQL Query . 551

Deferred and Immediate Fetching . 553

Joining Tables and Creating Relationships . 554

Deferred and Immediate Fetching Revisited . 558

Defining a Custom DataContext Class . 559

Using LINQ to SQL to Query Order Information 560

Chapter 25 Quick Reference . 564

 . 26 Displaying and Editing Data by Using the Entity
Framework and Data Binding . 565

Using Data Binding with the Entity Framework . 566

Using Data Binding to Modify Data . 583

Updating Existing Data . 583

Handling Conflicting Updates . 584

Adding and Deleting Data . 587

Chapter 26 Quick Reference . 596

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Table of Contents xv

Part VI .Building .Professional .Solutions .with .
Visual .Studio .2010

 . 27 Introducing the Task Parallel Library . 599
Why Perform Multitasking by Using Parallel Processing? 600

The Rise of the Multicore Processor . 601

Implementing Multitasking in a Desktop Application . 602

Tasks, Threads, and the ThreadPool . 603

Creating, Running, and Controlling Tasks . 604

Using the Task Class to Implement Parallelism . 608

Abstracting Tasks by Using the Parallel Class . 617

Returning a Value from a Task . 624

Using Tasks and User Interface Threads Together . 628

Canceling Tasks and Handling Exceptions . 632

The Mechanics of Cooperative Cancellation . 633

Handling Task Exceptions by Using the AggregateException Class 641

Using Continuations with Canceled and Faulted Tasks 645

Chapter 27 Quick Reference . 646

 . 28 Performing Parallel Data Access . 649
Using PLINQ to Parallelize Declarative Data Access . 650

Using PLINQ to Improve Performance While Iterating Through a
Collection . 650

Specifying Options for a PLINQ Query . 655

Canceling a PLINQ Query . 656

Synchronizing Concurrent Imperative Data Access . 656

Locking Data . 659

Synchronization Primitives in the Task Parallel Library 661

Cancellation and the Synchronization Primitives 668

The Concurrent Collection Classes . 668

Using a Concurrent Collection and a Lock to Implement
Thread-Safe Data Access . 670

Chapter 28 Quick Reference . 681

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xvi Table of Contents

 . 29 Creating and Using a Web Service . 683
What Is a Web Service? . 684

The Role of Windows Communication Foundation 684

Web Service Architectures . 684

SOAP Web Services . 685

REST Web Services . 687

Building Web Services . 688

Creating the ProductInformation SOAP Web Service 689

SOAP Web Services, Clients, and Proxies . 697

Consuming the ProductInformation SOAP Web Service 698

Creating the ProductDetails REST Web Service . 704

Consuming the ProductDetails REST Web Service 711

Chapter 29 Quick Reference . 715

Appendix

 . Interoperating with Dynamic Languages 717

Index . 727

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 . . xvii

Acknowledgments
An oft-repeated fable is that the workmen who paint the Forth Railway Bridge, a large
Victorian cantilever structure that spans the Firth of Forth just north of Edinburgh, have a
job for life . According to the myth, it takes them several years to paint it from one end to
the other, and when they have finished they have to start over again . I am not sure whether
this is due to the ferocity of the Scottish weather, or the sensitivity of the paint that is used,
although my daughter insists it is simply that the members of Edinburgh City Council have
yet to decide on a color scheme that they really like for the bridge . I sometimes feel that this
book has similar attributes . No sooner have I completed an edition and seen it published,
then Microsoft announces another cool update for Visual Studio and C#, and my friends at
Microsoft Press contact me and say, “What are your plans for the next edition?” However,
unlike painting the Forth Railway Bridge, working on a new edition of this text is always an
enjoyable task with a lot more scope for inventiveness than trying to work out new ways
to hold a paint brush . There is always something novel to learn and innovative technology
to play with . In this edition, I cover the new features of C# 4 .0 and the .NET Framework 4 .0,
which developers will find invaluable for building applications that can take advantage of the
increasingly powerful hardware now becoming available . Hence, although this work appears
to be a never-ending task, it is always fruitful and pleasurable .

A large part of the enjoyment when working on a project such as this is the opportunity to
collaborate with a highly motivated group of talented people within Microsoft Press, the
developers at Microsoft working on Visual Studio 2010, and the people who review each
chapter and make suggestions for various improvements . I would especially like to single out
Rosemary Caperton and Stephen Sagman who have worked tirelessly to keep the project
on track, to Per Blomqvist who reviewed (and corrected) each chapter, and to Roger LeBlanc
who had the thankless task of copy-editing the manuscript and converting my prose into
English . I must also make special mention of Michael Blome who provided me with early
 access to software and answered the many questions that I had concerning the Task Parallal
Library . Several members of Content Master were kept gainfully employed reviewing and
testing the code for the exercises—thanks Mike Sumsion, Chris Cully, James Millar, and Louisa
Perry . Of course, I must additionally thank Jon Jagger who co-authored the first edition of
this book with me back in 2001 .

Last but by no means least, I must thank my family . My wife Diana is a wonderful source
of inspiration . When writing Chapter 28 on the Task Parallel Library I had a mental block

http://lib.ommolketab.ir
http//lib.ommolketab.ir

and had to ask her how she would explain Barrier methods . She looked at me quizzically,
and gave a reply that although anatomically correct if I was in a doctor’s surgery, indicated
that either I had not phrased the question very carefully or that she had completely mis-
understood what I was asking! James has now grown up and will soon have to learn what
real work entails if he is to keep Diana and myself in the manner to which we would like to
 become accustomed in our dotage . Francesca has also grown up, and seems to have refined
a strategy for getting all she wants without doing anything other than looking at me with
wide, bright eyes, and smiling .

Finally, “Up the Gills!”

—John Sharp

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 . . xix

Introduction
Microsoft Visual C# is a powerful but simple language aimed primarily at developers creating
applications by using the Microsoft .NET Framework . It inherits many of the best features of
C++ and Microsoft Visual Basic, but few of the inconsistencies and anachronisms, resulting
in a cleaner and more logical language . C# 1 .0 made its public debut in 2001 . The advent of
C# 2 .0 with Visual Studio 2005 saw several important new features added to the language,
including Generics, Iterators, and anonymous methods . C# 3 .0 which was released with
Visual Studio 2008, added extension methods, lambda expressions, and most famously of
all, the Language Integrated Query facility, or LINQ . The latest incarnation of the language,
C# 4 .0, provides further enhancements that improve its interoperability with other languages
and technologies . These features include support for named and optional arguments, the
 dynamic type which indicates that the language runtime should implement late binding for
an object, and variance which resolves some issues in the way in which generic interfaces are
defined . C# 4 .0 takes advantage of the latest version of the .NET Framework, also version
4 .0 . There are many additions to the .NET Framework in this release, but arguably the most
significant are the classes and types that constitute the Task Parallel Library (TPL) . Using the
TPL, you can now build highly scalable applications that can take full advantage of multi-core
processors quickly and easily . The support for Web services and Windows Communication
Foundation (WCF) has also been extended; you can now build services that follow the REST
model as well as the more traditional SOAP scheme .

The development environment provided by Microsoft Visual Studio 2010 makes all these
powerful features easy to use, and the many new wizards and enhancements included in
Visual Studio 2010 can greatly improve your productivity as a developer .

Who .This .Book .Is .For
This book assumes that you are a developer who wants to learn the fundamentals of
 programming with C# by using Visual Studio 2010 and the .NET Framework version 4 .0 . In
this book, you will learn the features of the C# language, and then use them to build applica-
tions running on the Microsoft Windows operating system . By the time you complete this
book, you will have a thorough understanding of C# and will have used it to build Windows
Presentation Foundation applications, access Microsoft SQL Server databases by using ADO .
NET and LINQ, build responsive and scalable applications by using the TPL, and create REST
and SOAP Web services by using WCF .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xx Introduction

Finding .Your .Best .Starting .Point .in .This .Book
This book is designed to help you build skills in a number of essential areas . You can use this
book if you are new to programming or if you are switching from another programming lan-
guage such as C, C++, Java, or Visual Basic . Use the following table to find your best starting
point .

If you are Follow these steps

New to object-oriented
programming

 . 1 . . .Install the practice files as described in the next
section, “Installing and Using the Practice Files .”

 . 2 . . . Work through the chapters in Parts I, II, and III
sequentially .

 . 3 . . .Complete Parts IV, V, and VI as your level of
 experience and interest dictates .

Familiar with
 procedural
 programming
 languages such as C,
but new to C#

 . 1 . . .Install the practice files as described in the next
section, “Installing and Using the Practice Files .”
Skim the first five chapters to get an overview of
C# and Visual Studio 2010, and then concentrate
on Chapters 6 through 21 .

 . 2 . . .Complete Parts IV, and V, and VI as your level of
experience and interest dictates .

Migrating from an
 object-oriented
 language such as C++,
or Java

 . 1 . . .Install the practice files as described in the next
section, “Installing and Using the Practice Files .”

 . 2 . . .Skim the first seven chapters to get an overview
of C# and Visual Studio 2010, and then concen-
trate on Chapters 8 through 21 .

 . 3 . . .For information about building Windows
 applications and using a database, read Parts IV
and V .

 . 4 . . .For information about building scalable
 applications and Web services, read Part VI .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Introduction xxi

If you are Follow these steps

Switching from Visual
Basic 6

 . 1 . . .Install the practice files as described in the next
section, “Installing and Using the Practice Files .”

 . 2 . . .Work through the chapters in Parts I, II, and III
sequentially .

 . 3 . . .For information about building Windows
 applications, read Part IV .

 . 4 . . .For information about accessing a database, read
Part V .

 . 5 . . .For information about building scalable
 applications and Web services, read Part VI .

 . 6 . . .Read the Quick Reference sections at the end of
the chapters for information about specific C#
and Visual Studio 2010 constructs .

Referencing the book
after working through
the exercises

 . 1 . . .Use the index or the Table of Contents to find
information about particular subjects .

 . 2 . . .Read the Quick Reference sections at the end of
each chapter to find a brief review of the syntax
and techniques presented in the chapter .

Conventions .and .Features .in .This .Book
This book presents information using conventions designed to make the information read-
able and easy to follow . Before you start, read the following list, which explains conventions
you’ll see throughout the book and points out helpful features that you might want to use .

Conventions
n Each exercise is a series of tasks . Each task is presented as a series of numbered steps

(1, 2, and so on) . A round bullet (•) indicates an exercise that has only one step .

n Notes labeled “tip” provide additional information or alternative methods for
 completing a step successfully .

n Notes labeled “important” alert you to information you need to check before
continuing .

n Text that you type appears in bold .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xxii Introduction

n A plus sign (+) between two key names means that you must press those keys at the
same time . For example, “Press Alt+Tab” means that you hold down the Alt key while
you press the Tab key .

Other Features
n Sidebars throughout the book provide more in-depth information about the exercise .

The sidebars might contain background information, design tips, or features related to
the information being discussed .

n Each chapter ends with a Quick Reference section . The Quick Reference section
 contains quick reminders of how to perform the tasks you learned in the chapter .

Prerelease .Software
This book was written and tested against Visual Studio 2010 Beta 2 . We did review and test
our examples against the final release of the software . However, you might find minor differ-
ences between the production release and the examples, text, and screenshots in this book .

Hardware .and .Software .Requirements
You’ll need the following hardware and software to complete the practice exercises in this
book:

n Microsoft Windows 7 Home Premium, Windows 7 Professional, Windows 7 Enterprise,
or Windows 7 Ultimate . The exercises will also run using Microsoft Windows Vista with
Service Pack 2 or later .

n Microsoft Visual Studio 2010 Standard, Visual Studio 2010 Professional, or Microsoft
Visual C# 2010 Express and Microsoft Visual Web Developer 2010 Express .

n Microsoft SQL Server 2008 Express (this is provided with all editions of Visual Studio
2010, Visual C# 2010 Express, and Visual Web Developer 2010 Express) .

n 1 .6 GHz processor, or faster . Chapters 27 and 28 require a dual-core or better
processor .

n 1 GB for x32 processor, 2 GB for an x64 processor, of available, physical RAM .

n Video (1024 ×768 or higher resolution) monitor with at least 256 colors .

n CD-ROM or DVD-ROM drive .

n Microsoft mouse or compatible pointing device

You will also need to have Administrator access to your computer to configure SQL Server
2008 Express Edition .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Introduction xxiii

Code .Samples
The companion CD inside this book contains the code samples that you’ll use as you perform
the exercises . By using the code samples, you won’t waste time creating files that aren’t rel-
evant to the exercise . The files and the step-by-step instructions in the lessons also let you
learn by doing, which is an easy and effective way to acquire and remember new skills .

Installing the Code Samples
Follow these steps to install the code samples and required software on your computer so
that you can use them with the exercises .

 . 1 . . Remove the companion CD from the package inside this book and insert it into your
CD-ROM drive .

Note  An end user license agreement should open automatically . If this agreement does not
 appear, open My Computer on the desktop or Start menu, double-click the icon for your
CD-ROM drive, and then double-click StartCD .exe .

 . 2 . . Review the end user license agreement . If you accept the terms, select the accept
 option and then click Next .

A menu will appear with options related to the book .

 . 3 . . Click Install .Code .Samples .

 . 4 . . Follow the instructions that appear .

The code samples are installed to the following location on your computer:

Documents\Microsoft Press\Visual CSharp Step By Step

Using the Code Samples
Each chapter in this book explains when and how to use any code samples for that chapter .
When it’s time to use a code sample, the book will list the instructions for how to open the
files .

For those of you who like to know all the details, here’s a list of the code sample Visual Studio
2010 projects and solutions, grouped by the folders where you can find them . In many cases,
the exercises provide starter files and completed versions of the same projects which you can
use as a reference . The completed projects are stored in folders with the suffix “- Complete” .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xxiv Introduction

Project Description

Chapter .1

TextHello This project gets you started . It steps through the creation of
a simple program that displays a text-based greeting .

WPFHello This project displays the greeting in a window by using
Windows Presentation Foundation .

Chapter .2

PrimitiveDataTypes This project demonstrates how to declare variables by using
each of the primitive types, how to assign values to these
variables, and how to display their values in a window .

MathsOperators This program introduces the arithmetic operators (+ – * / %) .

Chapter .3

Methods In this project, you’ll re-examine the code in the previous
project and investigate how it uses methods to structure the
code .

DailyRate This project walks you through writing your own methods,
running the methods, and stepping through the method
calls by using the Visual Studio 2010 debugger .

DailyRate Using Optional
Parameters

This project shows you how to define a method that takes
optional parameters, and call the method by using named
arguments .

Chapter .4

Selection This project shows how to use a cascading if statement
to implement complex logic, such as comparing the
 equivalence of two dates .

SwitchStatement This simple program uses a switch statement to convert
characters into their XML representations .

Chapter .5

WhileStatement This project demonstrates a while statement that reads the
contents of a source file one line at a time and displays each
line in a text box on a form .

DoStatement This project uses a do statement to convert a decimal num-
ber to its octal representation .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Introduction xxv

Project Description

Chapter .6

MathsOperators This project revisits the MathsOperators project from
Chapter 2, “Working with Variables, Operators, and
Expressions,” and shows how various unhandled exceptions
can make the program fail . The try and catch keywords then
make the application more robust so that it no longer fails .

Chapter .7

Classes This project covers the basics of defining your own classes,
complete with public constructors, methods, and private
fields . It also shows how to create class instances by using
the new keyword and how to define static methods and
fields .

Chapter .8

Parameters This program investigates the difference between value
 parameters and reference parameters . It demonstrates how
to use the ref and out keywords .

Chapter .9

StructsAndEnums This project defines a struct type to represent a calendar
date .

Chapter .10

Cards Using Arrays This project shows how to use arrays to model hands of
cards in a card game .

Cards Using Collections This project shows how to restructure the card game
 program to use collections rather than arrays .

Chapter .11

ParamsArrays This project demonstrates how to use the params keyword
to create a single method that can accept any number of int
arguments .

Chapter .12

Vehicles This project creates a simple hierarchy of vehicle classes
by using inheritance . It also demonstrates how to define a
 virtual method .

ExtensionMethod This project shows how to create an extension method for
the int type, providing a method that converts an integer
value from base 10 to a different number base .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xxvi Introduction

Project Description

Chapter .13

Drawing Using Interfaces This project implements part of a graphical drawing pack-
age . The project uses interfaces to define the methods that
drawing shapes expose and implement .

Drawing This project extends the Drawing Using Interfaces project to
factor common functionality for shape objects into abstract
classes .

Chapter .14

UsingStatement This project revisits a small piece of code from Chapter 5,
“Using Compound Assignment and Iteration Statements”
and reveals that it is not exception-safe . It shows you how to
make the code exception-safe with a using statement .

Chapter .15

WindowProperties This project presents a simple Windows application that uses
several properties to display the size of its main window . The
display updates automatically as the user resizes the window .

AutomaticProperties This project shows how to create automatic properties for a
class, and use them to initialize instances of the class .

Chapter .16

Indexers This project uses two indexers: one to look up a person’s
phone number when given a name, and the other to look up
a person’s name when given a phone number .

Chapter .17

Clock Using Delegates This project displays a World clock showing the local time as
well as the times in London, New York, and Tokyo . The appli-
cation uses delegates to start and stop the clock displays .

Clock Using Events This version of the World clock application uses events to
start and stop the clock display .

Chapter .18

BinaryTree This solution shows you how to use Generics to build a type-
safe structure that can contain elements of any type .

BuildTree This project demonstrates how to use Generics to implement
a typesafe method that can take parameters of any type .

BinaryTreeTest This project is a test harness that creates instances of the
Tree type defined in the BinaryTree project .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Introduction xxvii

Project Description

Chapter .19

BinaryTree This project shows you how to implement the generic
IEnumerator<T> interface to create an enumerator for the
generic Tree class .

IteratorBinaryTree This solution uses an Iterator to generate an enumerator for
the generic Tree class .

EnumeratorTest This project is a test harness that tests the enumerator and
iterator for the Tree class .

Chapter .20

QueryBinaryTree This project shows how to use LINQ queries to retrieve data
from a binary tree object .

Chapter .21

ComplexNumbers This project defines a new type that models complex num-
bers, and implements common operators for this type .

Chapter .22

BellRingers This project is a Windows Presentation Foundation applica-
tion demonstrating how to define styles and use basic WPF
controls .

Chapter .23

BellRingers This project is an extension of the application created in
Chapter 22, “Introducing Windows Presentation Foundation,”
but with drop-down and pop-up menus added to the user
interface .

Chapter .24

OrderTickets This project demonstrates how to implement business rules
for validating user input in a WPF application, using custom-
er order information as an example .

Chapter .25

ReportOrders This project shows how to access a database by using ADO .
NET code . The application retrieves information from the
Orders table in the Northwind database .

LINQOrders This project shows how to use LINQ to SQL to access a data-
base and retrieve information from the Orders table in the
Northwind database .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xxviii Introduction

Project Description

Chapter .26

Suppliers This project demonstrates how to use data binding with a
WPF application to display and format data retrieved from
a database in controls on a WPF form . The application also
enables the user to modify information in the Products table
in the Northwind database .

Chapter .27

GraphDemo This project generates and displays a complex graph on a
WPF form . It uses a single thread to perform the calculations .

GraphDemo Using Tasks This version of the GraphDemo project creates multiple tasks
to perform the calculations for the graph in parallel .

GraphDemo Using Tasks
that Return Results

This is an extended version of the GraphDemo Using Tasks
project that shows how to return data from a task .

GraphDemo Using the
Parallel Class

This version of the GraphDemo project uses the Parallel class
to abstract out the process of creating and managing tasks .

GraphDemo Canceling Tasks This project shows how to implement cancelation to halt
tasks in a controlled manner before they have completed

ParallelLoop This application provides an example showing when you
should not use the Parallel class to create and run tasks .

Chapter .28

CalculatePI This project uses a statistical sampling algorithm to calculate
an approximation for PI . It uses parallel tasks .

PLINQ This project shows some examples of using PLINQ to query
data by using parallel tasks .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Introduction xxix

Project Description

Chapter .29

ProductInformationService This project implements a SOAP Web service built by using
WCF . The Web service exposes a method that returns pricing
information for products from the Northwind database .

ProductDetailsService This projects implements a REST Web service built by using
WCF . The Web service provides a method that returns the
details of a specified product from the Northwind database .

ProductDetailsContracts This project contains the service and data contracts imple-
mented by the ProductDetailsService Web service .

ProductClient This project shows how to create a WPF application that
consumes a Web service . It shows how to invoke the
Web methods in the ProductInformationService and
ProductDetailsService Web services .

Uninstalling the Code Samples
Follow these steps to remove the code samples from your computer .

 . 1 . . In Control .Panel, under Programs, click Uninstall .a .program .

 . 2 . . From the list of currently installed programs, select Microsoft Visual C# 2010 Step By
Step .

 . 3 . . Click Uninstall .

 . 4 . . Follow the instructions that appear to remove the code samples .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xxx Introduction

Find .Additional .Content .Online
As new or updated material becomes available that complements your book, it will be
posted online on the Microsoft Press Online Developer Tools Web site . The type of material
you might find includes updates to book content, articles, links to companion content, errata,
sample chapters, and more . This Web site is available at www .microsoft .com/learning/
books/online/developer, and is updated periodically .

Digital Content for Digital Book Readers: If you bought a digital-only edition of this book, you can
enjoy select content from the print edition’s companion CD.
Visit http://go.microsoft.com/fwlink/?LinkId=184386 to get your downloadable content. This content
is always up-to-date and available to all readers.

Support .for .This .Book
Every effort has been made to ensure the accuracy of this book and the contents of the
companion CD . As corrections or changes are collected, they will be added to a Microsoft
Knowledge Base article .

Microsoft Press provides support for books and companion CDs at the following Web site:

http://www.microsoft.com/learning/support/books/ .

Questions and Comments
If you have comments, questions, or ideas regarding the book or the companion CD, or
questions that are not answered by visiting the sites above, please send them to Microsoft
Press via e-mail to

mspinput@microsoft.com.

Please note that Microsoft software product support is not offered through the
above address .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Microsoft Visual C# 2010 Step by Step

 . . 1

Part I

Introducing Microsoft Visual C#
and Microsoft Visual Studio 2010

In this part:

Welcome to C# . 3

Working with Variables, Operators, and Expressions . 27

Writing Methods and Applying Scope . 47

Using Decision Statements . 73

Using Compound Assignment and Iteration Statements . 91

Managing Errors and Exceptions . 109

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 . . 3

Chapter 1

Welcome to C#
After completing this chapter, you will be able to:

n Use the Microsoft Visual Studio 2010 programming environment .

n Create a C# console application .

n Explain the purpose of namespaces .

n Create a simple graphical C# application .

Microsoft Visual C# is Microsoft’s powerful component-oriented language . C# plays an
 important role in the architecture of the Microsoft .NET Framework, and some people have
compared it to the role that C played in the development of UNIX . If you already know a
language such as C, C++, or Java, you’ll find the syntax of C# reassuringly familiar . If you are
used to programming in other languages, you should soon be able to pick up the syntax and
feel of C#; you just need to learn to put the braces and semicolons in the right place . I hope
this is just the book to help you!

In Part I, you’ll learn the fundamentals of C# . You’ll discover how to declare variables and how
to use arithmetic operators such as the plus sign (+) and minus sign (–) to manipulate the
values in variables . You’ll see how to write methods and pass arguments to methods . You’ll
also learn how to use selection statements such as if and iteration statements such as while .
Finally, you’ll understand how C# uses exceptions to handle errors in a graceful, easy-to-use
manner . These topics form the core of C#, and from this solid foundation, you’ll progress to
more advanced features in Part II through Part VI .

Beginning .Programming .with .the .Visual .Studio .2010 .
Environment

Visual Studio 2010 is a tool-rich programming environment containing the functionality that
you need to create large or small C# projects . You can even construct projects that seam-
lessly combine modules written by using different programming languages such as C++,
Visual Basic, and F# . In the first exercise, you will open the Visual Studio 2010 programming
environment and learn how to create a console application .

Note  A console application is an application that runs in a command prompt window rather
than providing a graphical user interface .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

Create a console application in Visual Studio 2010

n	 If you are using Visual Studio 2010 Standard or Visual Studio 2010 Professional, perform
the following operations to start Visual Studio 2010:

 . 1 . . On the Microsoft Windows task bar, click the Start button, point to All Programs,
and then point to the Microsoft Visual Studio 2010 program group .

 . 2 . . In the Microsoft Visual Studio 2010 program group, click Microsoft Visual Studio
2010 .

Visual Studio 2010 starts, like this:

Note If this is the first time you have run Visual Studio 2010, you might see a dialog box
prompting you to choose your default development environment settings . Visual Studio
2010 can tailor itself according to your preferred development language . The various
dialog boxes and tools in the integrated development environment (IDE) will have their
default selections set for the language you choose . Select Visual C# Development Settings
from the list, and then click the Start Visual Studio button . After a short delay, the Visual
Studio 2010 IDE appears .

n If you are using Visual C# 2010 Express, on the Microsoft Windows task bar, click the
Start button, point to All Programs, and then click Microsoft Visual C# 2010 Express .

Visual C# 2010 Express starts, like this:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 1 Welcome to C# 5

Note If this is the first time you have run Visual C# 2010 Express, you might see a dialog
box prompting you to choose your default development environment settings . Select
Expert Settings from the list, and then click the Start Visual Studio button . After a short
 delay, the Visual C# 2010 IDE appears .

Note To avoid repetition, throughout this book I simply state, “Start Visual Studio” when
you need to open Visual Studio 2010 Standard, Visual Studio 2010 Professional, or Visual
C# 2010 Express . Additionally, unless explicitly stated, all references to Visual Studio 2010
apply to Visual Studio 2010 Standard, Visual Studio 2010 Professional, and Visual C#
 2010 Express .

n If you are using Visual Studio 2010 Standard or Visual Studio 2010 Professional, perform
the following tasks to create a new console application:

 . 1 . . On the File menu, point to New, and then click Project .

 . . The New Project dialog box opens . This dialog box lists the templates that you
can use as a starting point for building an application . The dialog box categorizes
templates according to the programming language you are using and the type
of application .

 . 2 . . In the left pane, under Installed Templates, click Visual C#. In the middle
pane, verify that the combo box at the top of the pane displays the text .NET
Framework 4.0, and then click the Console Application icon . You might need to
scroll the middle pane to see the Console Application icon .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

 . 3 . . In the Location field, if you are using Windows Vista type C:\Users\YourName\
Documents\Microsoft .Press\Visual .CSharp .Step .By .Step\Chapter .1 . If you are
using Windows 7, type C:\Users\YourName\My .Documents\Microsoft .Press\
Visual .CSharp .Step .By .Step\Chapter .1 . Replace the text YourName in these
paths with your Windows user name .

Note To save space throughout the rest of this book, I will simply refer to the path
“C:\Users\YourName\Documents” or “C:\Users\YourName\My Documents” as your
Documents folder .

Tip If the folder you specify does not exist, Visual Studio 2010 creates it for you .

 . 4 . . In the Name field, type TextHello .

 . 5 . . Ensure that the Create directory for solution check box is selected, and then
click OK .

n If you are using Visual C# 2010 Express, perform the following tasks to create a new
console application:

 . 1 . . On the File menu, click New Project .

 . 2 . . In the New Project dialog box, in the middle pane click the Console Application
icon .

 . 3 . . In the Name field, type TextHello .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 1 Welcome to C# 7

 . 4 . . Click OK .

 . . Visual C# 2010 Express saves solutions to the C:\Users\YourName\AppData\Local\
Temporary Projects folder by default . You can specify an alternative location
when you save the solution .

 . 5 . . On the File menu, click Save TextHello As.

 . 6 . . In the Save Project dialog box, in the Location field specify the Microsoft .Press\
Visual .CSharp .Step .By .Step\Chapter .1 folder under your Documents folder .

 . 7. . Click Save .

Visual Studio creates the project using the Console Application template and displays the
starter code for the project, like this:

The menu bar at the top of the screen provides access to the features you’ll use in the pro-
gramming environment . You can use the keyboard or the mouse to access the menus and
commands exactly as you can in all Windows-based programs . The toolbar is located beneath
the menu bar and provides button shortcuts to run the most frequently used commands .

The Code and Text Editor pane occupying the main part of the IDE displays the contents of
source files . In a multifile project, when you edit more than one file, each source file has its
own tab labeled with the name of the source file . You can click the tab to bring the named
source file to the foreground in the Code and Text Editor window . The Solution Explorer pane
(on the right side of the dialog box) displays the names of the files associated with the proj-
ect, among other items . You can also double-click a file name in the Solution Explorer pane to
bring that source file to the foreground in the Code and Text Editor window .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

8 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

Before writing the code, examine the files listed in Solution Explorer, which Visual Studio 2010
has created as part of your project:

n Solution ‘TextHello’ This is the top-level solution file, of which there is one per appli-
cation . If you use Windows Explorer to look at your Documents\Microsoft Press\Visual
CSharp Step By Step\Chapter 1\TextHello folder, you’ll see that the actual name of this
file is TextHello .sln . Each solution file contains references to one or more project files .

n TextHello This is the C# project file . Each project file references one or more files
 containing the source code and other items for the project . All the source code in a sin-
gle project must be written in the same programming language . In Windows Explorer,
this file is actually called TextHello .csproj, and it is stored in the \Microsoft Press\Visual
CSharp Step By Step\Chapter 1\TextHello\TextHello folder under your Documents
folder .

n Properties This is a folder in the TextHello project . If you expand it, you will see that
it contains a file called AssemblyInfo .cs . AssemblyInfo .cs is a special file that you can
use to add attributes to a program, such as the name of the author, the date the pro-
gram was written, and so on . You can specify additional attributes to modify the way in
which the program runs . Learning how to use these attributes is outside the scope of
this book .

n References This is a folder that contains references to compiled code that your ap-
plication can use . When code is compiled, it is converted into an assembly and given a
unique name . Developers use assemblies to package useful bits of code they have writ-
ten so that they can distribute it to other developers who might want to use the code in
their applications . Many of the features that you will be using when writing applications
using this book make use of assemblies provided by Microsoft with Visual Studio 2010 .

n App .config This is the application configuration file . You can specify settings that
your application can use at runtime to modify its behavior, such as the version of the
 .NET Framework to use to run the application . You will learn more about this file in later
chapters in this book .

n Program .cs This is a C# source file and is the one currently displayed in the Code
and Text Editor window when the project is first created . You will write your code for
the console application in this file . It also contains some code that Visual Studio 2010
 provides automatically, which you will examine shortly .

Writing .Your .First .Program
The Program .cs file defines a class called Program that contains a method called Main . All
methods must be defined inside a class . You will learn more about classes in Chapter 7,
“Creating and Managing Classes and Objects .” The Main method is special—it designates
the program’s entry point . It must be a static method . (You will look at methods in detail in
Chapter 3, “Writing Methods and Applying Scope,” and Chapter 7 describes static methods .)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 1 Welcome to C# 9

Important C# is a case-sensitive language . You must spell Main with a capital M .

In the following exercises, you write the code to display the message “Hello World” in
the console; you build and run your Hello World console application; and you learn how
namespaces are used to partition code elements .

Write the code by using Microsoft IntelliSense

 . 1 . . In the Code and Text Editor window displaying the Program .cs file, place the cursor in
the Main method immediately after the opening brace, {, and then press Enter to cre-
ate a new line . On the new line, type the word Console, which is the name of a built-
in class . As you type the letter C at the start of the word Console, an IntelliSense list
appears . This list contains all of the C# keywords and data types that are valid in this
context . You can either continue typing or scroll through the list and double-click the
Console item with the mouse . Alternatively, after you have typed Con, the IntelliSense
list automatically homes in on the Console item and you can press the Tab or Enter key
to select it .

Main should look like this:

static void Main(string[] args)
{
 Console
}

Note Console is a built-in class that contains the methods for displaying messages on the
screen and getting input from the keyboard .

 . 2 . . Type a period immediately after Console . Another IntelliSense list appears, displaying
the methods, properties, and fields of the Console class .

 . 3 . . Scroll down through the list, select WriteLine, and then press Enter . Alternatively, you
can continue typing the characters W, r, i, t, e, L until WriteLine is selected, and then
press Enter .

The IntelliSense list closes, and the word WriteLine is added to the source file . Main
should now look like this:

static void Main(string[] args)
{
 Console.WriteLine
}

 . 4 . . Type an opening parenthesis, (. Another IntelliSense tip appears .

This tip displays the parameters that the WriteLine method can take . In fact, WriteLine is
an overloaded method, meaning that the Console class contains more than one method

http://lib.ommolketab.ir
http//lib.ommolketab.ir

10 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

named WriteLine—it actually provides 19 different versions of this method . Each ver-
sion of the WriteLine method can be used to output different types of data . (Chapter 3
describes overloaded methods in more detail .) Main should now look like this:

static void Main(string[] args)
{
 Console.WriteLine(
}

Tip You can click the up and down arrows in the tip to scroll through the different
 overloads of WriteLine .

 . 5 . . Type a closing parenthesis,) followed by a semicolon, ; .

Main should now look like this:

static void Main(string[] args)
{
 Console.WriteLine();
}

 . 6 . . Move the cursor, and type the string “Hello .World”, including the quotation marks,
between the left and right parentheses following the WriteLine method .

Main should now look like this:

static void Main(string[] args)
{
 Console.WriteLine("Hello World");
}

Tip Get into the habit of typing matched character pairs, such as (and) and { and },
 before filling in their contents . It’s easy to forget the closing character if you wait until after
you’ve entered the contents .

IntelliSense .Icons
When you type a period after the name of a class, IntelliSense displays the name of
 every member of that class . To the left of each member name is an icon that depicts
the type of member . Common icons and their types include the following:

Icon Meaning

method (discussed in Chapter 3)

property (discussed in Chapter 15, “Implementing Properties to Access Fields”)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 1 Welcome to C# 11

Icon Meaning

class (discussed in Chapter 7)

struct (discussed in Chapter 9, “Creating Value Types with Enumerations and
Structures”)

enum (discussed in Chapter 9)

interface (discussed in Chapter 13, “Creating Interfaces and Defining Abstract
Classes”)

delegate (discussed in Chapter 17, “Interrupting Program Flow and Handling
Events”)

extension method (discussed in Chapter 12, “Working with Inheritance”)

You will also see other IntelliSense icons appear as you type code in different contexts .

Note You will frequently see lines of code containing two forward slashes followed by ordinary
text . These are comments . They are ignored by the compiler but are very useful for developers
because they help document what a program is actually doing . For example:

Console.ReadLine(); // Wait for the user to press the Enter key

The compiler skips all text from the two slashes to the end of the line . You can also add multiline
comments that start with a forward slash followed by an asterisk (/*) . The compiler skips every-
thing until it finds an asterisk followed by a forward slash sequence (*/), which could be many
lines lower down . You are actively encouraged to document your code with as many meaningful
comments as necessary .

Build and run the console application

 . 1 . . On the Build menu, click Build Solution .

This action compiles the C# code, resulting in a program that you can run . The Output
window appears below the Code and Text Editor window .

Tip If the Output window does not appear, on the View menu, click Output to display it .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

12 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

In the Output window, you should see messages similar to the following indicating how
the program is being compiled:

------ Build started: Project: TextHello, Configuration: Debug x86 ----
CopyFilesToOutputDirectory:
 TextHello -> C:\Users\John\My Documents\Microsoft Press\Visual CSharp Step By Step\
Chapter 1\TextHello\TextHello\bin\Debug\TextHello.exe
========== Build: 1 succeeded or up-to-date, 0 failed, 0 skipped ========

If you have made some mistakes, they will appear in the Error List window . The fol-
lowing image shows what happens if you forget to type the closing quotation marks
after the text Hello World in the WriteLine statement . Notice that a single mistake can
 sometimes cause multiple compiler errors .

Tip You can double-click an item in the Error List window, and the cursor will be placed
on the line that caused the error . You should also notice that Visual Studio displays a wavy
red line under any lines of code that will not compile when you enter them .

If you have followed the previous instructions carefully, there should be no errors or
warnings, and the program should build successfully .

Tip There is no need to save the file explicitly before building because the Build Solution
command automatically saves the file .

An asterisk after the file name in the tab above the Code and Text Editor window indicates
that the file has been changed since it was last saved .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 1 Welcome to C# 13

 . 2 . . On the Debug menu, click Start Without Debugging .

A command window opens, and the program runs . The message “Hello World”
 appears, and then the program waits for you to press any key, as shown in the
 following graphic:

Note The prompt “Press any key to continue . . .” is generated by Visual Studio; you did
not write any code to do this . If you run the program by using the Start Debugging com-
mand on the Debug menu, the application runs, but the command window closes immedi-
ately without waiting for you to press a key .

 . 3 . . Ensure that the command window displaying the program’s output has the focus, and
then press Enter .

The command window closes, and you return to the Visual Studio 2010 programming
environment .

 . 4 . . In Solution Explorer, click the TextHello project (not the solution), and then click the
Show All Files toolbar button on the Solution Explorer toolbar—this is the leftmost
 button on the toolbar in the Solution Explorer window .

Show All Files

Entries named bin and obj appear above the Program .cs file . These entries correspond
directly to folders named bin and obj in the project folder (Microsoft Press\Visual
CSharp Step By Step\Chapter 1\TextHello\TextHello) . Visual Studio creates these fold-
ers when you build your application, and they contain the executable version of the
 program together with some other files used to build and debug the application .

 . 5 . . In Solution Explorer, expand the bin entry .

Another folder named Debug appears .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

14 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

Note You might also see a folder called Release .

 . 6 . . In Solution Explorer, expand the Debug folder .

Four more items appear, named TextHello .exe, TextHello .pdb, TextHello .vshost .exe, and
TextHello .vshost .exe .manifest .

The file TextHello .exe is the compiled program, and it is this file that runs when you
click Start Without Debugging on the Debug menu . The other files contain information
that is used by Visual Studio 2010 if you run your program in Debug mode (when you
click Start Debugging on the Debug menu) .

Using .Namespaces
The example you have seen so far is a very small program . However, small programs can
soon grow into much bigger programs . As a program grows, two issues arise . First, it is
 harder to understand and maintain big programs than it is to understand and maintain
smaller programs . Second, more code usually means more names, more methods, and more
classes . As the number of names increases, so does the likelihood of the project build failing
because two or more names clash (especially when a program also uses third-party libraries
written by developers who have also used a variety of names) .

In the past, programmers tried to solve the name-clashing problem by prefixing names with
some sort of qualifier (or set of qualifiers) . This solution is not a good one because it’s not
scalable; names become longer, and you spend less time writing software and more time
typing (there is a difference) and reading and rereading incomprehensibly long names .

Namespaces help solve this problem by creating a named container for other identifiers, such
as classes . Two classes with the same name will not be confused with each other if they live in
different namespaces . You can create a class named Greeting inside the namespace named
TextHello, like this:

namespace TextHello
{
 class Greeting
 {
 ...
 }
}

You can then refer to the Greeting class as TextHello.Greeting in your programs . If another
developer also creates a Greeting class in a different namespace, such as NewNamespace, and
installs it on your computer, your programs will still work as expected because they are using
the TextHello.Greeting class . If you want to refer to the other developer’s Greeting class, you
must specify it as NewNamespace.Greeting .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 1 Welcome to C# 15

It is good practice to define all your classes in namespaces, and the Visual Studio 2010
 environment follows this recommendation by using the name of your project as the top-level
namespace . The .NET Framework class library also adheres to this recommendation; every
class in the .NET Framework lives inside a namespace . For example, the Console class lives
 inside the System namespace . This means that its full name is actually System.Console .

Of course, if you had to write the full name of a class every time you used it, the situation
would be no better than prefixing qualifiers or even just naming the class with some globally
unique name such SystemConsole and not bothering with a namespace . Fortunately, you
can solve this problem with a using directive in your programs . If you return to the TextHello
program in Visual Studio 2010 and look at the file Program .cs in the Code and Text Editor
window, you will notice the following statements at the top of the file:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

A using statement brings a namespace into scope . In subsequent code in the same file, you
no longer have to explicitly qualify objects with the namespace to which they belong . The
four namespaces shown contain classes that are used so often that Visual Studio 2010 au-
tomatically adds these using statements every time you create a new project . You can add
 further using directives to the top of a source file .

The following exercise demonstrates the concept of namespaces in more depth .

Try longhand names

 . 1 . . In the Code and Text Editor window displaying the Program .cs file, comment out the
first using directive at the top of the file, like this:

//using System;

 . 2 . . On the Build menu, click Build Solution .

The build fails, and the Error List window displays the following error message:

The name ’Console’ does not exist in the current context.

 . 3 . . In the Error List window, double-click the error message .

The identifier that caused the error is highlighted in the Program .cs source file .

 . 4 . . In the Code and Text Editor window, edit the Main method to use the fully qualified
name System.Console .

Main should look like this:

static void Main(string[] args)
{
 System.Console.WriteLine("Hello World");
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

16 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

Note When you type System, the names of all the items in the System namespace are
displayed by IntelliSense .

 . 5 . . On the Build menu, click Build Solution .

The build should succeed this time . If it doesn’t, make sure that Main is exactly as it
 appears in the preceding code, and then try building again .

 . 6 . . Run the application to make sure it still works by clicking Start Without Debugging on
the Debug menu .

Namespaces .and .Assemblies
A using statement simply brings the items in a namespace into scope and frees you
from having to fully qualify the names of classes in your code . Classes are compiled into
assemblies . An assembly is a file that usually has the .dll file name extension, although
strictly speaking, executable programs with the .exe file name extension are also
assemblies .

An assembly can contain many classes . The classes that the .NET Framework class li-
brary comprises, such as System.Console, are provided in assemblies that are installed
on your computer together with Visual Studio . You will find that the .NET Framework
class library contains many thousands of classes . If they were all held in the same as-
sembly, the assembly would be huge and difficult to maintain . (If Microsoft updated a
single method in a single class, it would have to distribute the entire class library to all
developers!)

For this reason, the .NET Framework class library is split into a number of assemblies,
partitioned by the functional area to which the classes they contain relate . For ex-
ample, there is a “core” assembly that contains all the common classes, such as System.
Console, and there are further assemblies that contain classes for manipulating da-
tabases, accessing Web services, building graphical user interfaces, and so on . If you
want to make use of a class in an assembly, you must add to your project a reference to
that assembly . You can then add using statements to your code that bring the items in
namespaces in that assembly into scope .

You should note that there is not necessarily a 1:1 equivalence between an assembly
and a namespace; a single assembly can contain classes for multiple namespaces, and a
single namespace can span multiple assemblies . This all sounds very confusing at first,
but you will soon get used to it .

When you use Visual Studio to create an application, the template you select auto-
matically includes references to the appropriate assemblies . For example, in Solution

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 1 Welcome to C# 17

Explorer for the TextHello project, expand the References folder . You will see that a
Console application automatically includes references to assemblies called Microsoft.
CSharp, System, System.Core, System.Data, System.Data.DataExtensions, System.Xml,
and System.Xml.Linq . You can add references for additional assemblies to a project by
right-clicking the References folder and clicking Add Reference—you will perform this
task in later exercises .

Creating .a .Graphical .Application
So far, you have used Visual Studio 2010 to create and run a basic Console application . The
Visual Studio 2010 programming environment also contains everything you need to create
graphical Windows-based applications . You can design the forms-based user interface of
a Windows application interactively . Visual Studio 2010 then generates the program state-
ments to implement the user interface you’ve designed .

Visual Studio 2010 provides you with two views of a graphical application: the design view
and the code view . You use the Code and Text Editor window to modify and maintain the
code and logic for a graphical application, and you use the Design View window to lay out
your user interface . You can switch between the two views whenever you want .

In the following set of exercises, you’ll learn how to create a graphical application by using
Visual Studio 2010 . This program will display a simple form containing a text box where you
can enter your name and a button that displays a personalized greeting in a message box
when you click the button .

Note  Visual Studio 2010 provides two templates for building graphical applications—the
Windows Forms Application template and the WPF Application template . Windows Forms
is a technology that first appeared with the .NET Framework version 1 .0 . WPF, or Windows
Presentation Foundation, is an enhanced technology that first appeared with the .NET Framework
version 3 .0 . It provides many additional features and capabilities over Windows Forms, and you
should consider using it in preference to Windows Forms for all new development .

Create a graphical application in Visual Studio 2010

n If you are using Visual Studio 2010 Standard or Visual Studio 2010 Professional, perform
the following operations to create a new graphical application:

 . 1 . . On the File menu, point to New, and then click Project .

The New Project dialog box opens .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

18 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

 . 2 . . In the left pane, under Installed Templates, click Visual C# .

 . 3 . . In the middle pane, click the WPF Application icon .

 . 4 . . Ensure that the Location field refers to the \Microsoft Press\Visual CSharp Step By
Step\Chapter 1 folder under your Documents folder .

 . 5 . . In the Name field, type WPFHello .

 . 6 . . In the Solution field, ensure that Create new solution is selected .

This action creates a new solution for holding the project . The alternative, Add to
Solution, adds the project to the TextHello solution .

 . 7 . . Click OK .

n If you are using Visual C# 2010 Express, perform the following tasks to create a new
graphical application:

 . 1 . . On the File menu, click New Project .

 . 2 . . If the New Project message box appears, click Save to save your changes to
the TextHello project . In the Save Project dialog box, verify that the Location
field is set to Microsoft Press\Visual CSharp Step By Step\Chapter 1 under your
Documents folder, and then click Save .

 . 3 . . In the New Project dialog box, click the WPF Application icon .

 . 4 . . In the Name field, type WPFHello .

 . 5 . . Click OK .

Visual Studio 2010 closes your current application and creates the new WPF application .
It displays an empty WPF form in the Design View window, together with another win-
dow containing an XAML description of the form, as shown in the following graphic:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 1 Welcome to C# 19

Tip Close the Output and Error List windows to provide more space for displaying the
Design View window .

XAML stands for Extensible Application Markup Language and is an XML-like language used
by WPF applications to define the layout of a form and its contents . If you have knowledge of
XML, XAML should look familiar . You can actually define a WPF form completely by writing
an XAML description if you don’t like using the Design View window of Visual Studio or if you
don’t have access to Visual Studio; Microsoft provides a XAML editor called XAMLPad that is
installed with the Windows Software Development Kit (SDK) .

In the following exercise, you use the Design View window to add three controls to the
Windows form and examine some of the C# code automatically generated by Visual Studio
2010 to implement these controls .

Create the user interface

 . 1 . . Click the Toolbox tab that appears to the left of the form in the Design View window .

The Toolbox appears, partially obscuring the form, and displays the various compo-
nents and controls that you can place on a Windows form . Expand the Common WPF
Controls section . This section displays a list of controls that are used by most WPF ap-
plications . The All Controls section displays a more extensive list of controls .

 . 2 . . In the Common WPF Controls section, click Label, and then drag the label control onto
the visible part of the form .

A label control is added to the form (you will move it to its correct location in a
 moment), and the Toolbox disappears from view .

Tip If you want the Toolbox to remain visible but not to hide any part of the form, click
the Auto Hide button to the right in the Toolbox title bar . (It looks like a pin .) The Toolbox
appears permanently on the left side of the Visual Studio 2010 window, and the Design
View window shrinks to accommodate it . (You might lose a lot of space if you have a
 low-resolution screen .) Clicking the Auto Hide button once more causes the Toolbox to
disappear again .

 . 3 . . The label control on the form is probably not exactly where you want it . You can click
and drag the controls you have added to a form to reposition them . Using this tech-
nique, move the label control so that it is positioned toward the upper left corner of
the form . (The exact placement is not critical for this application .)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

20 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

Note The XAML description of the form in the lower pane now includes the label control,
together with properties such as its location on the form, governed by the Margin prop-
erty . The Margin property consists of four numbers indicating the distance of each edge
of the label from the edges of the form . If you move the control around the form, the
value of the Margin property changes . If the form is resized, the controls anchored to the
form’s edges that move are resized to preserve their margin values . You can prevent this
by setting the Margin values to zero . You learn more about the Margin and also the Height
and Width properties of WPF controls in Chapter 22, “Introducing Windows Presentation
Foundation .”

 . 4 . . On the View menu, click Properties Window .

If it was not already displayed, the Properties window appears on the lower right side
of the screen, under Solution Explorer . You can specify the properties of controls by us-
ing the XAML pane under the Design View window . However, the Properties window
provides a more convenient way for you to modify the properties for items on a form,
as well as other items in a project . It is context sensitive in that it displays the proper-
ties for the currently selected item . If you click the title bar of the form displayed in the
Design View window, you can see that the Properties window displays the properties for
the form itself . If you click the label control, the window displays the properties for the
label instead . If you click anywhere else on the form, the Properties window displays the
properties for a mysterious item called a grid . A grid acts as a container for items on a
WPF form, and you can use the grid, among other things, to indicate how items on the
form should be aligned and grouped together .

 . 5 . . Click the label control on the form . In the Properties window, locate the FontSize
 property . Change the FontSize property to 20, and then in the Design View window
click the title bar of the form .

The size of the text in the label changes .

 . 6 . . In the XAML pane below the Design View window, examine the text that defines the
label control . If you scroll to the end of the line, you should see the text FontSize=“20” .
Any changes that you make by using the Properties window are automatically reflected
in the XAML definitions and vice versa .

Overtype the value of the FontSize property in the XAML pane, and change it back to
12 . The size of the text in the label in the Design View window changes back .

 . 7 . . In the XAML pane, examine the other properties of the label control .

The properties that are listed in the XAML pane are only the ones that do not have
default values . If you modify any property values by using the Properties Window, they
appear as part of the label definition in the XAML pane .

 . 8 . . Change the value of the Content property from Label to Please .enter .your .name .

Notice that the text displayed in the label on the form changes, although the label is
too small to display it correctly .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 1 Welcome to C# 21

 . 9 . . In the Design View window, click the label control . Place the mouse over the right edge
of the label control . It should change into a double-headed arrow to indicate that you
can use the mouse to resize the control . Click the mouse and drag the right edge of the
label control further to the right, until you can see the complete text for the label .

 . 10 . . Click the form in the Design View window, and then display the Toolbox again .

 . 11 . . In the Toolbox, click and drag the TextBox control onto the form . Move the text box
control so that it is directly underneath the label control .

Tip When you drag a control on a form, alignment indicators appear automatically when
the control becomes aligned vertically or horizontally with other controls . This gives you a
quick visual cue for making sure that controls are lined up neatly .

 . 12 . . While the text box control is selected, in the Properties window, change the value of the
Name property displayed at the top of the window to userName .

Note You will learn more about naming conventions for controls and variables in
Chapter 2, “Working with Variables, Operators, and Expressions .”

 . 13 . . Display the Toolbox again, and then click and drag a Button control onto the form .
Place the button control to the right of the text box control on the form so that the
bottom of the button is aligned horizontally with the bottom of the text box .

 . 14 . . Using the Properties window, change the Name property of the button control to ok .
And change the Content property from Button to OK . Verify that the caption of the
button control on the form changes .

 . 15 . . Click the title bar of the MainWindow .xaml form in the Design View window . In the
Properties window, change the Title property to Hello .

 . 16 . . In the Design View window, notice that a resize handle (a small square) appears on the
lower right corner of the form when it is selected . Move the mouse pointer over the
resize handle . When the pointer changes to a diagonal double-headed arrow, click and
drag the pointer to resize the form . Stop dragging and release the mouse button when
the spacing around the controls is roughly equal .

Important Click the title bar of the form and not the outline of the grid inside the form
before resizing it . If you select the grid, you will modify the layout of the controls on the
form but not the size of the form itself .

The form should now look similar to the following figure .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

22 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

 . 17 . . On the Build menu, click Build Solution, and verify that the project builds successfully .

 . 18 . . On the Debug menu, click Start Without Debugging .

The application should run and display your form . You can type your name in the text
box and click OK, but nothing happens yet . You need to add some code to process the
Click event for the OK button, which is what you will do next .

 . 19 . . Click the Close button (the X in the upper-right corner of the form) to close the form
and return to Visual Studio .

You have managed to create a graphical application without writing a single line of C# code .
It does not do much yet (you will have to write some code soon), but Visual Studio actually
generates a lot of code for you that handles routine tasks that all graphical applications must
perform, such as starting up and displaying a form . Before adding your own code to the
 application, it helps to have an understanding of what Visual Studio has generated for you .

In Solution Explorer, expand the MainWindow .xaml node . The file MainWindow .xaml .cs
 appears . Double-click the file MainWindow .xaml .cs . The code for the form is displayed in the
Code and Text Editor window . It looks like this:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 1 Welcome to C# 23

using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;

namespace WPFHello
{
 /// <summary>
 /// Interaction logic for MainWindow.xaml
 /// </summary>

 public partial class MainWindow : Window
 {

 public MainWindow()
 {
 InitializeComponent();
 }

 }
}

In addition to a good number of using statements bringing into scope some namespaces
that most WPF applications use, the file contains the definition of a class called MainWindow
but not much else . There is a little bit of code for the MainWindow class known as a con-
structor that calls a method called InitializeComponent, but that is all . (A constructor is a
special method with the same name as the class . It is executed when an instance of the class
is created and can contain code to initialize the instance . You will learn about constructors
in Chapter 7 .) In fact, the application contains a lot more code, but most of it is generated
automatically based on the XAML description of the form, and it is hidden from you . This
hidden code performs operations such as creating and displaying the form, and creating and
positioning the various controls on the form .

The purpose of the code that you can see in this class is so that you can add your own
 methods to handle the logic for your application, such as determining what happens when
the user clicks the OK button .

Tip You can also display the C# code file for a WPF form by right-clicking anywhere in the
Design View window and then clicking View Code .

At this point, you might be wondering where the Main method is and how the form gets
 displayed when the application runs; remember that Main defines the point at which the
program starts . In Solution Explorer, you should notice another source file called App .xaml .
If you double-click this file, the XAML description of this item appears . One property in the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

24 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

XAML code is called StartupUri, and it refers to the MainWindow .xaml file as shown in bold in
the following code example:

<Application x:Class="WPFHello.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com.winfx/2006/xaml"
 StartupUri="MainWindow.xaml">
 <Application.Resources>

 </Application.Resources>
</Application>

If you click the Design tab at the bottom of the XAML pane, the Design View window for App .
xaml appears and displays the text “Intentionally left blank . The document root element is
not supported by the visual designer” . This occurs because you cannot use the Design View
window to modify the App .xaml file . Click the XAML tab to return to the XAML pane .

If you expand the App .xaml node in Solution Explorer, you will see that there is also an
Application .xaml .cs file . If you double-click this file, you will find it contains the following
code:

using System;
using System.Collections.Generic;
using System.Configuration;
using System.Data;
using System.Linq;
using System.Windows;

namespace WPFHello
{
 /// <summary>
 /// Interaction logic for App.xaml
 /// </summary>

 public partial class App : Application
 {
 }
}

Once again, there are a number of using statements but not a lot else, not even a Main
method . In fact, Main is there, but it is also hidden . The code for Main is generated based on
the settings in the App .xaml file; in particular, Main will create and display the form specified
by the StartupUri property . If you want to display a different form, you edit the App .xaml file .

The time has come to write some code for yourself!

Write the code for the OK button

 . 1 . . Click the MainWindow.xaml tab above the Code and Text Editor window to display
MainWindow in the Design View window .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 1 Welcome to C# 25

 . 2 . . Double-click the OK button on the form .

The MainWindow .xaml .cs file appears in the Code and Text Editor window, but a new
method has been added called ok_Click . Visual Studio automatically generates code to
call this method whenever the user clicks the OK button . This is an example of an event .
You will learn much more about how events work as you progress through this book .

 . 3 . . Add the following code shown in bold to the ok_Click method:

void ok_Click(object sender, RoutedEventArgs e)
{
 MessageBox.Show("Hello " + userName.Text);
}

This is the code that will run when the user clicks the OK button . Do not worry too
much about the syntax of this code just yet (just make sure you copy it exactly as
shown) because you will learn all about methods in Chapter 3 . The interesting part is
the MessageBox.Show statement . This statement displays a message box containing
the text “Hello” with whatever name the user typed into the username text box on the
 appended form .

 . 4 . . Click the MainWindow.xaml tab above the Code and Text Editor window to display
MainWindow in the Design View window again .

 . 5 . . In the lower pane displaying the XAML description of the form, examine the Button
 element, but be careful not to change anything . Notice that it contains an element
called Click that refers to the ok_Click method:

<Button Height="23" … Click="ok_Click" />

 . 6 . . On the Debug menu, click Start Without Debugging .

 . 7 . . When the form appears, type your name in the text box and then click OK . A message
box appears, welcoming you by name:

 . 8 . . Click OK in the message box .

The message box closes .

 . 9 . . Close the form .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

26 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

In this chapter, you have seen how to use Visual Studio 2010 to create, build, and run applica-
tions . You have created a console application that displays its output in a console window,
and you have created a WPF application with a simple graphical user interface .

n If you want to continue to the next chapter

Keep Visual Studio 2010 running, and turn to Chapter 2 .

n If you want to exit Visual Studio 2010 now

On the File menu, click Exit . If you see a Save dialog box, click Yes and save the project .

Chapter .1 .Quick .Reference

To Do this

Create a new console application
using Visual Studio 2010 Standard
or Professional

On the File menu, point to New, and then click Project to open
the New Project dialog box . In the left pane, under Installed
Templates, click Visual C# . In the middle pane, click Console
Application . Specify a directory for the project files in the
Location box . Type a name for the project . Click OK .

Create a new console application
using Visual C# 2010 Express

On the File menu, click New Project to open the New Project
dialog box . For the template, select Console Application .
Choose a name for the project . Click OK .

Create a new graphical application
using Visual Studio 2010 Standard
or Professional

On the File menu, point to New, and then click Project to open
the New Project dialog box . In the left pane, under Installed
Templates, click Visual C# . In the middle pane, click WPF
Application . Specify a directory for the project files in the
Location box . Type a name for the project . Click OK .

Create a new graphical application
using Visual C# 2010 Express

On the File menu, click New Project to open the New Project
dialog box . For the template, select WPF Application . Choose a
name for the project . Click OK .

Build the application On the Build menu, click Build Solution .

Run the application On the Debug menu, click Start Without Debugging .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 . . 27

Chapter 2

Working with Variables, Operators,
and Expressions

After completing this chapter, you will be able to:

n Understand statements, identifiers, and keywords .

n Use variables to store information .

n Work with primitive data types .

n Use arithmetic operators such as the plus sign (+) and the minus sign (–) .

n Increment and decrement variables .

In Chapter 1, “Welcome to C#,” you learned how to use the Microsoft Visual Studio 2010
programming environment to build and run a Console program and a Windows Presentation
Foundation (WPF) application . This chapter introduces you to the elements of Microsoft
Visual C# syntax and semantics, including statements, keywords, and identifiers . You’ll study
the primitive types that are built into the C# language and the characteristics of the values
that each type holds . You’ll also see how to declare and use local variables (variables that ex-
ist only in a method or other small section of code), learn about the arithmetic operators that
C# provides, find out how to use operators to manipulate values, and learn how to control
expressions containing two or more operators .

Understanding .Statements
A statement is a command that performs an action . You combine statements to create
methods . You’ll learn more about methods in Chapter 3, “Writing Methods and Applying
Scope,” but for now, think of a method as a named sequence of statements . Main, which was
introduced in the previous chapter, is an example of a method . Statements in C# follow a
well-defined set of rules describing their format and construction . These rules are collectively
known as syntax . (In contrast, the specification of what statements do is collectively known as
semantics .) One of the simplest and most important C# syntax rules states that you must ter-
minate all statements with a semicolon . For example, without its terminating semicolon, the
following statement won’t compile:

Console.WriteLine("Hello World");

http://lib.ommolketab.ir
http//lib.ommolketab.ir

28 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

Tip C# is a “free format” language, which means that white space, such as a space character or a
newline, is not significant except as a separator . In other words, you are free to lay out your state-
ments in any style you choose . However, you should adopt a simple, consistent layout style and
keep to it to make your programs easier to read and understand .

The trick to programming well in any language is learning the syntax and semantics of the
language and then using the language in a natural and idiomatic way . This approach makes
your programs more easily maintainable . In the chapters throughout this book, you’ll see
 examples of the most important C# statements .

Using .Identifiers
Identifiers are the names you use to identify the elements in your programs, such as
namespaces, classes, methods, and variables . (You will learn about variables shortly .) In C#,
you must adhere to the following syntax rules when choosing identifiers:

n You can use only letters (uppercase and lowercase), digits, and underscore characters .

n An identifier must start with a letter or an underscore .

For example, result, _score, footballTeam, and plan9 are all valid identifiers, whereas result%,
footballTeam$, and 9plan are not .

Important C# is a case-sensitive language: footballTeam and FootballTeam are not the same
identifier .

Identifying Keywords
The C# language reserves 77 identifiers for its own use, and you cannot reuse these identi-
fiers for your own purposes . These identifiers are called keywords, and each has a particular
meaning . Examples of keywords are class, namespace, and using . You’ll learn the meaning of
most of the C# keywords as you proceed through this book . The keywords are listed in the
following table .

abstract do in protected true

as double int public try

base else interface readonly typeof

bool enum internal ref uint

break event is return ulong

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 2 Working with Variables, Operators, and Expressions 29

byte explicit lock sbyte unchecked

case extern long sealed unsafe

catch false namespace short ushort

char finally new sizeof using

checked fixed null stackalloc virtual

class float object static void

const for operator string volatile

continue foreach out struct while

decimal goto override switch

default if params this

delegate implicit private throw

Tip In the Visual Studio 2010 Code and Text Editor window, keywords are colored blue when you
type them .

C# also uses the following identifiers . These identifiers are not reserved by C#, which means
that you can use these names as identifiers for your own methods, variables, and classes, but
you should really avoid doing so if at all possible .

dynamic join set

from let value

get orderby var

group partial where

into select yield

Using .Variables
A variable is a storage location that holds a value . You can think of a variable as a box in the
computer’s memory holding temporary information . You must give each variable in a pro-
gram an unambiguous name that uniquely identifies it in the context in which it is used . You
use a variable’s name to refer to the value it holds . For example, if you want to store the value
of the cost of an item in a store, you might create a variable simply called cost and store the
item’s cost in this variable . Later on, if you refer to the cost variable, the value retrieved will be
the item’s cost that you stored there earlier .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

30 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

Naming Variables
You should adopt a naming convention for variables that helps you avoid confusion
concerning the variables you have defined . The following list contains some general
recommendations:

n Don’t start an identifier with an underscore .

n Don’t create identifiers that differ only by case . For example, do not create one variable
named myVariable and another named MyVariable for use at the same time because it
is too easy to get them confused .

Note Using identifiers that differ only by case can limit the ability to reuse classes in ap-
plications developed using other languages that are not case sensitive, such as Microsoft
Visual Basic .

n Start the name with a lowercase letter .

n In a multiword identifier, start the second and each subsequent word with an upper-
case letter . (This is called camelCase notation .)

n Don’t use Hungarian notation . (Microsoft Visual C++ developers reading this book are
probably familiar with Hungarian notation . If you don’t know what Hungarian notation
is, don’t worry about it!)

Important You should treat the first two of these recommendations as compulsory
because they relate to Common Language Specification (CLS) compliance . If you want to
write programs that can interoperate with other languages, such as Microsoft Visual Basic,
you must comply with these recommendations .

For example, score, footballTeam, _score, and FootballTeam are all valid variable names, but
only the first two are recommended .

Declaring Variables
Variables hold values . C# has many different types of values that it can store and process—
integers, floating-point numbers, and strings of characters, to name three . When you declare
a variable, you must specify the type of data it will hold .

You declare the type and name of a variable in a declaration statement . For example, the
 following statement declares that the variable named age holds int (integer) values . As
 always, the statement must be terminated with a semicolon .

int age;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 2 Working with Variables, Operators, and Expressions 31

The variable type int is the name of one of the primitive C# types, integer, which is a whole
number . (You’ll learn about several primitive data types later in this chapter .)

Note Microsoft Visual Basic programmers should note that C# does not allow implicit variable
declarations . You must explicitly declare all variables before you use them .

After you’ve declared your variable, you can assign it a value . The following statement assigns
age the value 42 . Again, you’ll see that the semicolon is required .

age = 42;

The equal sign (=) is the assignment operator, which assigns the value on its right to the vari-
able on its left . After this assignment, the age variable can be used in your code to refer to
the value it holds . The next statement writes the value of the age variable, 42, to the console:

Console.WriteLine(age);

Tip If you leave the mouse pointer over a variable in the Visual Studio 2010 Code and Text Editor
window, a ScreenTip appears, telling you the type of the variable .

Working .with .Primitive .Data .Types
C# has a number of built-in types called primitive data types . The following table lists the
most commonly used primitive data types in C# and the range of values that you can store in
each .

Data type Description Size (bits) Range Sample usage

int Whole numbers 32 –231 through
231 – 1

int count;
count = 42;

long Whole numbers (bigger
range)

64 –263 through
263 – 1

long wait;
wait = 42L;

float Floating-point numbers 32 ±1 .5 × 1045 through
±3 .4 × 1038

float away;
away = 0.42F;

double Double-precision (more
accurate) floating-point
numbers

64 ±5 .0 × 10−324 through
±1 .7 × 10308

double trouble;
trouble = 0.42;

decimal Monetary values 128 28 significant figures decimal coin;
coin = 0.42M;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

32 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

Data type Description Size (bits) Range Sample usage

string Sequence of characters 16 bits per
character

Not applicable string vest;
vest = "fortytwo";

char Single character 16 0 through 216 – 1 char grill;
grill = 'x';

bool Boolean 8 True or false bool teeth;
teeth = false;

Unassigned Local Variables
When you declare a variable, it contains a random value until you assign a value to it . This
behavior was a rich source of bugs in C and C++ programs that created a variable and ac-
cidentally used it as a source of information before giving it a value . C# does not allow you to
use an unassigned variable . You must assign a value to a variable before you can use it; oth-
erwise, your program might not compile . This requirement is called the Definite Assignment
Rule . For example, the following statements generate a compile-time error because age is
unassigned:

int age;
Console.WriteLine(age); // compile-time error

Displaying Primitive Data Type Values
In the following exercise, you use a C# program named PrimitiveDataTypes to demonstrate
how several primitive data types work .

Display primitive data type values

 . 1 . . Start Visual Studio 2010 if it is not already running .

 . 2 . . If you are using Visual Studio 2010 Standard or Visual Studio 2010 Professional, on the
File menu, point to Open, and then click Project/Solution .

If you are using Visual C# 2010 Express, on the File menu, click Open Project .

The Open Project dialog box appears .

 . 3 . . Move to the \Microsoft Press\Visual CSharp Step By Step\Chapter 2\PrimitiveDataTypes
folder in your Documents folder . Select the PrimitiveDataTypes solution file, and then
click Open .

The solution loads, and Solution Explorer displays the PrimitiveDataTypes project .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 2 Working with Variables, Operators, and Expressions 33

Note Solution file names have the .sln suffix, such as PrimitiveDataTypes .sln . A solution
can contain one or more projects . Project files have the .csproj suffix . If you open a project
rather than a solution, Visual Studio 2010 automatically creates a new solution file for it .
If you build the solution, Visual Studio 2010 automatically saves any new or updated files,
so you will be prompted to provide a name and location for the new solution file .

 . 4 . . On the Debug menu, click Start Without Debugging .

You might see some warnings in Visual Studio . You can safely ignore them . (You will
correct them in the next exercise .) The following application window appears:

 . 5 . . In the Choose a data type list, click the string type .

The value “forty two” appears in the Sample value box .

 . 6 . . Click the int type in the list .

The value “to do” appears in the Sample value box, indicating that the statements to
display an int value still need to be written .

 . 7 . . Click each data type in the list . Confirm that the code for the double and bool types is
not yet implemented .

 . 8 . . Click Quit to close the window and stop the program .

Control returns to the Visual Studio 2010 programming environment .

Use primitive data types in code

 . 1 . . In Solution Explorer, double-click MainWindow.xaml .

The WPF form for the application appears in the Design View window .

 . 2 . . Right-click anywhere in the Design View window displaying the MainWindow .xaml
form, and then click View Code .

The Code and Text Editor window opens, displaying the MainWindow .xaml .cs file .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

34 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

Note Remember that you can also use Solution Explorer to access the code; click
the plus sign, +, to the left of the MainWindow .xaml file, and then double-click
MainWindow.xaml.cs .

 . 3 . . In the Code and Text Editor window, find the showFloatValue method .

Tip To locate an item in your project, on the Edit menu, point to Find and Replace, and
then click Quick Find . A dialog box opens, asking what you want to search for . Type the
name of the item you’re looking for, and then click Find Next . By default, the search is not
case sensitive . If you want to perform a case-sensitive search, click the plus button, +, next
to the Find Options label to display additional options, and select the Match Case check
box . If you have time, you can experiment with the other options as well .

You can also press Ctrl+F (press the Control key, and then press F) to display the Quick Find
dialog box rather than using the Edit menu . Similarly, you can press Ctrl+H to display the
Quick Replace dialog box .

As an alternative to using the Quick Find functionality, you also locate the methods in
a class by using the class members drop-down list box above the Code and Text Editor
 window, on the right . The class members drop-down list box displays all the methods
in the class, together with the variables and other items that the class contains . (You
will learn more about these items in later chapters .) In the drop-down list box, click
 showFloatValue(), and the cursor will move directly to the showFloatValue method in
the class .

The showFloatValue method runs when you click the float type in the list box . This
method contains the following three statements:

float variable;
variable=0.42F;
value.Text = "0.42F";

The first statement declares a variable named variable of type float .

The second statement assigns variable the value 0 .42F . (The F is a type suffix specifying
that 0 .42 should be treated as a float value . If you forget the F, the value 0 .42 is treated
as a double and your program will not compile, because you cannot assign a value of
one type to a variable of a different type without writing additional code—C# is very
strict in this respect .)

The third statement displays the value of this variable in the value text box on the
form . This statement requires a little bit of your attention . The way in which you display
an item in a text box is to set its Text property . Notice that you access the property
of an object by using the same “dot” notation that you saw for running a method .
(Remember Console.WriteLine from Chapter 1?) The data that you put in the Text prop-
erty must be a string (a sequence of characters enclosed in double quotation marks)
and not a number . If you try to assign a number to the Text property, your program

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 2 Working with Variables, Operators, and Expressions 35

will not compile . In this program, the statement simply displays the text “0 .42F” in the
text box . In a real-world application, you add statements that convert the value of the
variable variable into a string and then put this into the Text property, but you need
to know a little bit more about C# and the Microsoft .NET Framework before you can
do that . (Chapter 11, “Understanding Parameter Arrays,” and Chapter 21, “Operator
Overloading,” cover data type conversions .)

 . 4 . . In the Code and Text Editor window, locate the showIntValue method . It looks like this:

private void showIntValue()
{
 value.Text = "to do";
}

The showIntValue method is called when you click the int type in the list box .

 . 5 . . Type the following two statements at the start of the showIntValue method, on a new
line after the opening brace, as shown in bold type in the following code:

private void showIntValue()
{
 int variable;
 variable = 42;
 value.Text = "to do";
}

 . 6 . . In the original statement in this method, change the string “to do” to “42” .

The method should now look exactly like this:

private void showIntValue()
{
 int variable;
 variable = 42;
 value.Text = "42";
}

Note If you have previous programming experience, you might be tempted to change
the third statement to

value.Text = variable;

This looks like it should display the value of variable in the value text box on the form .
However, C# performs strict type checking; text boxes can display only string values, and
variable is an int, so this statement will not compile . You will see some simple techniques
for converting between numeric and string values later in this chapter .

 . 7 . . On the Debug menu, click Start Without Debugging .

The form appears again .

 . 8 . . Select the int type in the Choose a data type list . Confirm that the value 42 is displayed
in the Sample value text box .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

36 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

 . 9 . . Click Quit to close the window and return to Visual Studio .

 . 10 . . In the Code and Text Editor window, find the showDoubleValue method .

 . 11 . . Edit the showDoubleValue method exactly as shown in bold type in the following code:

private void showDoubleValue()
{
 double variable;
 variable = 0.42;
 value.Text = "0.42";
}

 . 12 . . In the Code and Text Editor window, locate the showBoolValue method .

 . 13 . . Edit the showBoolValue method exactly as follows:

private void showBoolValue()
{
 bool variable;
 variable = false;
 value.Text = "false";
}

 . 14 . . On the Debug menu, click Start Without Debugging .

 . 15 . . In the Choose a data type list, select the int, double, and bool types . In each case, verify
that the correct value is displayed in the Sample value text box .

 . 16 . . Click Quit to stop the program .

Using .Arithmetic .Operators
C# supports the regular arithmetic operations you learned in your childhood: the plus sign
(+) for addition, the minus sign (–) for subtraction, the asterisk (*) for multiplication, and the
forward slash (/) for division . The symbols +, –, *, and / are called operators because they
“operate” on values to create new values . In the following example, the variable moneyPaid-
ToConsultant ends up holding the product of 750 (the daily rate) and 20 (the number of days
the consultant was employed):

long moneyPaidToConsultant;
moneyPaidToConsultant = 750 * 20;

Note The values that an operator operates on are called operands . In the expression 750 * 20,
the * is the operator, and 750 and 20 are the operands .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 2 Working with Variables, Operators, and Expressions 37

Operators and Types
Not all operators are applicable to all data types . The operators that you can use on a value
depend on the value’s type . For example, you can use all the arithmetic operators on values
of type char, int, long, float, double, or decimal . However, with the exception of the plus oper-
ator, +, you can’t use the arithmetic operators on values of type string or bool . So the follow-
ing statement is not allowed, because the string type does not support the minus operator
(thus, subtracting one string from another would be meaningless):

// compile-time error
Console.WriteLine("Gillingham" – "Forest Green Rovers");

You can use the + operator to concatenate string values . You need to be careful because this
can have results you might not expect . For example, the following statement writes "431" (not
"44") to the console:

Console.WriteLine("43" + "1");

Tip The .NET Framework provides a method called Int32.Parse that you can use to convert
a string value to an integer if you need to perform arithmetic computations on values held
as strings .

You should also be aware that the type of the result of an arithmetic operation depends on
the type of the operands used . For example, the value of the expression 5 .0/2 .0 is 2 .5; the
type of both operands is double, so the type of the result is also double . (In C#, literal num-
bers with decimal points are always double, not float, to maintain as much accuracy as pos-
sible .) However, the value of the expression 5/2 is 2 . In this case, the type of both operands
is int, so the type of the result is also int . C# always rounds values down in circumstances like
this . The situation gets a little more complicated if you mix the types of the operands . For
example, the expression 5/2 .0 consists of an int and a double . The C# compiler detects the
mismatch and generates code that converts the int into a double before performing the op-
eration . The result of the operation is therefore a double (2 .5) . However, although this works,
it is considered poor practice to mix types in this way .

C# also supports one less-familiar arithmetic operator: the remainder, or modulus, operator,
which is represented by the percent sign (%) . The result of x % y is the remainder after divid-
ing x by y . For example, 9 % 2 is 1 because 9 divided by 2 is 4, remainder 1 .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

38 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

Numeric .Types .and .Infinite .Values
There are one or two other features of numbers in C# that you should be aware of .
For example, the result of dividing any number by zero is infinity, which is outside the
range of the int, long, and decimal types; consequently, evaluating an expression such
as 5/0 results in an error . However, the double and float types actually have a special
value that can represent infinity, and the value of the expression 5 .0/0 .0 is Infinity . The
one exception to this rule is the value of the expression 0 .0/0 .0 . Usually, if you divide
zero by anything, the result is zero, but if you divide anything by zero the result is
infinity . The expression 0 .0/0 .0 results in a paradox—the value must be zero and infin-
ity at the same time . C# has another special value for this situation called NaN, which
stands for “not a number .” So if you evaluate 0 .0/0 .0, the result is NaN . NaN and Infinity
propagate through expressions . If you evaluate 10 + NaN, the result is NaN, and if you
evaluate 10 + Infinity, the result is Infinity . The one exception to this rule is the case
when you multiply Infinity by 0; The value of the expression Infinity * 0 is 0, although
the value of NaN * 0 is NaN .

Note If you are familiar with C or C++, you know that you can’t use the remainder operator on
float or double values in these languages . However, C# relaxes this rule . The remainder operator
is valid with all numeric types, and the result is not necessarily an integer . For example, the result
of the expression 7 .0 % 2 .4 is 2 .2 .

Examining Arithmetic Operators
The following exercise demonstrates how to use the arithmetic operators on int values .

Work with arithmetic operators

 . 1 . . Open the MathsOperators project, located in the \Microsoft Press\Visual CSharp Step
By Step\Chapter 2\MathsOperators folder in your Documents folder .

 . 2 . . On the Debug menu, click Start Without Debugging .

A WPF form appears on the screen .

 . 3 . . Type 54 in the left operand text box .

 . 4 . . Type 13 in the right operand text box .

You can now apply any of the operators to the values in the text boxes .

 . 5 . . Click the – Subtraction button, and then click Calculate .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 2 Working with Variables, Operators, and Expressions 39

The text in the Expression text box changes to 54 – 13, and the value 41 appears in the
Result box, as shown in the following image:

 . 6 . . Click the / Division button, and then click Calculate .

The text in the Expression text box changes to 54/13, and the value 4 appears in the
Result text box . In real life, 54/13 is 4 .153846 recurring, but this is not real life; this is
C# performing integer division—when you divide one integer by another integer, the
 answer you get back is an integer, as explained earlier .

 . 7 . . Click the % Remainder button, and then click Calculate .

The text in the Expression text box changes to 54 % 13, and the value 2 appears
in the Result text box . This is because the remainder after dividing 54 by 13 is 2 .
(54 – ((54/13) * 13)) is 2 if you do the arithmetic, rounding down to an integer at
each stage—my old math master at school would be horrified to be told that
(54/13) * 13 does not equal 54!

 . 8 . . Test the other combinations of numbers and operators . When you have finished, click
Quit to return to the Visual Studio 2010 programming environment .

In the next exercise, you will take a look at the MathsOperators program code .

Examine the MathsOperators program code

 . 1 . . Display the MainWindow .xaml form in the Design View window . (Double-click the file
MainWindow.xaml in Solution Explorer .)

 . 2 . . On the View menu, point to Other Windows, and then click Document Outline .

The Document Outline window appears, showing the names and types of the con-
trols on the form . The Document Outline window provides a simple way to locate
and select controls on a complex WPF form . The controls are arranged in a hierarchy,
 starting with the Window that constitutes the WPF form . As mentioned in the previous

http://lib.ommolketab.ir
http//lib.ommolketab.ir

40 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

 chapter, a WPF form actually contains a Grid control, and the other controls are placed
in this Grid . If you expand the Grid node in the Document Outline window, the other
 controls appear . As you click each of the controls on the form, the name of the control
is highlighted in the Document Outline window . Similarly, if you select a control in the
Document Outline window, the corresponding control is selected in the Design View
window . If you hover the mouse over a control in the Document Outline window, an
 image of the control (and any child controls that the control contains) appears .

 . 3 . . On the form, click the two TextBox controls in which the user types numbers . In the
Document Outline window, verify that they are named lhsOperand and rhsOperand.
(You can see the name of a control in the parentheses to the right of the control .)

When the form runs, the Text property of each of these controls holds the values that
the user enters .

 . 4 . . Toward the bottom of the form, verify that the TextBox control used to display the
expression being evaluated is named expression and that the TextBox control used to
display the result of the calculation is named result .

 . 5 . . Close the Document Outline window .

 . 6 . . Display the code for the MainWindow .xaml .cs file in the Code and Text Editor window .

 . 7 . . In the Code and Text Editor window, locate the subtractValues method . It looks like this:

private void subtractValues()
{
 int lhs = int.Parse(lhsOperand.Text);
 int rhs = int.Parse(rhsOperand.Text);
 int outcome;
 outcome = lhs – rhs;
 expression.Text = lhsOperand.Text + " – " + rhsOperand.Text;
 result.Text = outcome.ToString();
}

The first statement in this method declares an int variable called lhs and initializes it
with the integer corresponding to the value typed by the user in the lhsOperand text
box . Remember that the Text property of a text box control contains a string, so you
must convert this string to an integer before you can assign it to an int variable . The int
data type provides the int.Parse method, which does precisely this .

The second statement declares an int variable called rhs and initializes it to the value in
the rhsOperand text box after converting it to an int .

The third statement declares an int variable called outcome .

The fourth statement subtracts the value of the rhs variable from the value of the lhs
variable and assigns the result to outcome .

The fifth statement concatenates three strings indicating the calculation being
 performed (using the plus operator, +) and assigns the result to the expression.Text
property . This causes the string to appear in the expression text box on the form .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 2 Working with Variables, Operators, and Expressions 41

The final statement displays the result of the calculation by assigning it to the Text
property of the result text box . Remember that the Text property is a string and that
the result of the calculation is an int, so you must convert the string to an int before as-
signing it to the Text property . This is what the ToString method of the int type does .

The .ToString .Method
Every class in the .NET Framework has a ToString method . The purpose of ToString is to
convert an object to its string representation . In the preceding example, the ToString
method of the integer object, outcome, is used to convert the integer value of outcome
to the equivalent string value . This conversion is necessary because the value is dis-
played in the Text property of the result text box—the Text property can contain only
strings . When you create your own classes, you can define your own implementation
of the ToString method to specify how your class should be represented as a string .
You learn more about creating your own classes in Chapter 7, “Creating and Managing
Classes and Objects .”

Controlling Precedence
Precedence governs the order in which an expression’s operators are evaluated . Consider the
following expression, which uses the + and * operators:

2 + 3 * 4

This expression is potentially ambiguous; do you perform the addition first or the multiplica-
tion? The order of the operations matters because it changes the result:

n If you perform the addition first, followed by the multiplication, the result of the
 addition (2 + 3) forms the left operand of the * operator, and the result of the whole
expression is 5 * 4, which is 20 .

n If you perform the multiplication first, followed by the addition, the result of the multi-
plication (3 * 4) forms the right operand of the + operator, and the result of the whole
expression is 2 + 12, which is 14 .

In C#, the multiplicative operators (*, /, and %) have precedence over the additive operators
(+ and –), so in expressions such as 2 + 3 * 4, the multiplication is performed first, followed by
the addition . The answer to 2 + 3 * 4 is therefore 14 .

You can use parentheses to override precedence and force operands to bind to operators in
a different way . For example, in the following expression, the parentheses force the 2 and the
3 to bind to the + operator (making 5), and the result of this addition forms the left operand
of the * operator to produce the value 20:

(2 + 3) * 4

http://lib.ommolketab.ir
http//lib.ommolketab.ir

42 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

Note The term parentheses or round brackets refers to () . The term braces or curly brackets
 refers to { } . The term square brackets refers to [] .

Using Associativity to Evaluate Expressions
Operator precedence is only half the story . What happens when an expression contains dif-
ferent operators that have the same precedence? This is where associativity becomes im-
portant . Associativity is the direction (left or right) in which the operands of an operator are
evaluated . Consider the following expression that uses the / and * operators:

4 / 2 * 6

This expression is still potentially ambiguous . Do you perform the division first or the multi-
plication? The precedence of both operators is the same (they are both multiplicative), but
the order in which the expression is evaluated is important because you get one of two pos-
sible results:

n If you perform the division first, the result of the division (4/2) forms the left operand of
the * operator, and the result of the whole expression is (4/2) * 6, or 12 .

n If you perform the multiplication first, the result of the multiplication (2 * 6) forms the
right operand of the / operator, and the result of the whole expression is 4/(2 * 6), or
4/12 .

In this case, the associativity of the operators determines how the expression is evaluated .
The * and / operators are both left-associative, which means that the operands are evalu-
ated from left to right . In this case, 4/2 will be evaluated before multiplying by 6, giving the
result 12 .

Note As each new operator is described in subsequent chapters, its associativity is also covered .

Associativity and the Assignment Operator
In C#, the equal sign = is an operator . All operators return a value based on their operands .
The assignment operator = is no different . It takes two operands; the operand on its right
side is evaluated and then stored in the operand on its left side . The value of the assignment
operator is the value that was assigned to the left operand . For example, in the following
 assignment statement, the value returned by the assignment operator is 10, which is also the
value assigned to the variable myInt:

int myInt;
myInt = 10; // value of assignment expression is 10

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 2 Working with Variables, Operators, and Expressions 43

At this point, you are probably thinking that this is all very nice and esoteric, but so what?
Well, because the assignment operator returns a value, you can use this same value with
 another occurrence of the assignment statement, like this:

int myInt;
int myInt2;
myInt2 = myInt = 10;

The value assigned to the variable myInt2 is the value that was assigned to myInt . The assign-
ment statement assigns the same value to both variables . This technique is very useful if you
want to initialize several variables to the same value . It makes it very clear to anyone reading
your code that all the variables must have the same value:

myInt5 = myInt4 = myInt3 = myInt2 = myInt = 10;

From this discussion, you can probably deduce that the assignment operator associates
from right to left . The rightmost assignment occurs first, and the value assigned propagates
through the variables from right to left . If any of the variables previously had a value, it is
overwritten by the value being assigned .

You should treat this construct with a little caution, however . One frequent mistake that
new C# programmers make is to try and combine this use of the assignment operator with
 variable declarations, like this:

int myInt, myInt2, myInt3 = 10;

This is legal C# code (because it compiles) . What it does is declare the variables myInt,
myInt2, and myInt3, and initialize myInt3 with the value 10 . However, it does not initialize
myInt or myInt2 . If you try and use myInt or myInt2 in an expressions such as this

myInt3 = myInt / myInt2;

the compiler generates the following errors:

Use of unassigned local variable 'myInt'
Use of unassigned local variable 'myInt2'

Incrementing .and .Decrementing .Variables
If you want to add 1 to a variable, you can use the + operator:

count = count + 1;

However, adding 1 to a variable is so common that C# provides its own operator just for this
purpose: the ++ operator . To increment the variable count by 1, you can write the following
statement:

count++;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

44 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

Similarly, C# provides the –– operator that you can use to subtract 1 from a variable, like this:

count--;

The ++ and –– operators are unary operators, meaning that they take only a single operand .
They share the same precedence and left associativity as the ! unary operator, which is dis-
cussed in Chapter 4, “Using Decision Statements .”

Prefix and Postfix
The increment, ++, and decrement, ––, operators are unusual in that you can place them
either before or after the variable . Placing the operator symbol before the variable is called
the prefix form of the operator, and using the operator symbol after the variable is called the
postfix form . Here are examples:

count++; // postfix increment
++count; // prefix increment
count--; // postfix decrement
--count; // prefix decrement

Whether you use the prefix or postfix form of the ++ or –– operator makes no difference
to the variable being incremented or decremented . For example, if you write count++, the
value of count increases by 1, and if you write ++count, the value of count also increases by 1 .
Knowing this, you’re probably wondering why there are two ways to write the same thing . To
understand the answer, you must remember that ++ and –– are operators and that all opera-
tors are used to evaluate an expression that has a value . The value returned by count++ is the
value of count before the increment takes place, whereas the value returned by ++count is
the value of count after the increment takes place . Here is an example:

int x;
x = 42;
Console.WriteLine(x++); // x is now 43, 42 written out
x = 42;
Console.WriteLine(++x); // x is now 43, 43 written out

The way to remember which operand does what is to look at the order of the elements
(the operand and the operator) in a prefix or postfix expression . In the expression x++, the
 variable x occurs first, so its value is used as the value of the expression before x is increment-
ed . In the expression ++x, the operator occurs first, so its operation is performed before the
value of x is evaluated as the result .

These operators are most commonly used in while and do statements, which are presented
in Chapter 5, “Using Compound Assignment and Iteration Statements .” If you are using the
increment and decrement operators in isolation, stick to the postfix form and be consistent .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 2 Working with Variables, Operators, and Expressions 45

Declaring .Implicitly .Typed .Local .Variables
Earlier in this chapter, you saw that you declare a variable by specifying a data type and an
identifier, like this:

int myInt;

It was also mentioned that you should assign a value to a variable before you attempt to use
it . You can declare and initialize a variable in the same statement, like this:

int myInt = 99;

Or you can even do it like this, assuming that myOtherInt is an initialized integer variable:

int myInt = myOtherInt * 99;

Now, remember that the value you assign to a variable must be of the same type as the vari-
able . For example, you can assign an int value only to an int variable . The C# compiler can
quickly work out the type of an expression used to initialize a variable and tell you if it does
not match the type of the variable . You can also ask the C# compiler to infer the type of a
variable from an expression and use this type when declaring the variable by using the var
keyword in place of the type, like this:

var myVariable = 99;
var myOtherVariable = "Hello";

Variables myVariable and myOtherVariable are referred to as implicitly typed variables . The
var keyword causes the compiler to deduce the type of the variables from the types of the
expressions used to initialize them . In these examples, myVariable is an int, and myOtherVari-
able is a string . Understand that this is a convenience for declaring variables only and that
after a variable has been declared, you can assign only values of the inferred type to it—you
cannot assign float, double, or string values to myVariable at a later point in your program,
for example . You should also understand that you can use the var keyword only when you
supply an expression to initialize a variable . The following declaration is illegal and causes a
compilation error:

var yetAnotherVariable; // Error - compiler cannot infer type

Important If you have programmed with Visual Basic in the past, you might be familiar with
the Variant type, which you can use to store any type of value in a variable . I emphasize here and
now that you should forget everything you ever learned when programming with Visual Basic
about Variant variables . Although the keywords look similar, var and Variant mean totally differ-
ent things . When you declare a variable in C# using the var keyword, the type of values that you
assign to the variable cannot change from that used to initialize the variable .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

46 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

If you are a purist, you are probably gritting your teeth at this point and wondering why on
earth the designers of a neat language such as C# should allow a feature such as var to creep
in . After all, it sounds like an excuse for extreme laziness on the part of programmers and can
make it more difficult to understand what a program is doing or track down bugs (and it can
even easily introduce new bugs into your code) . However, trust me that var has a very valid
place in C#, as you will see when you work through many of the following chapters . However,
for the time being, we will stick to using explicitly typed variables except for when implicit
typing becomes a necessity .

In this chapter, you have seen how to create and use variables, and you have learned about
some of the common data types available for variables in C# . You have learned about identi-
fiers . You have used a number of operators to build expressions, and you have learned how
the precedence and associativity of operators determine how expressions are evaluated .

n If you want to continue to the next chapter

Keep Visual Studio 2010 running, and turn to Chapter 3 .

n If you want to exit Visual Studio 2010 now

On the File menu, click Exit . If you see a Save dialog box, click Yes and save the project .

Chapter .2 .Quick .Reference

To Do this

Declare a variable Write the name of the data type, followed by the name of the variable,
followed by a semicolon . For example:

int outcome;

Change the value of a variable Write the name of the variable on the left, followed by the assignment
operator, followed by the expression calculating the new value, followed
by a semicolon . For example:

outcome = 42;

Convert a string to an int Call the System.Int32.Parse method . For example:

System.Int32.Parse("42");

Override the precedence of an
operator

Use parentheses in the expression to force the order of evaluation .
For example:

(3 + 4) * 5

Assign the same value to several
variables

Use an assignment statement that lists all the variables . For example:

myInt4 = myInt3 = myInt2 = myInt = 10;

Increment or decrement a variable Use the ++ or -- operator . For example:

count++;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 . . 47

Chapter 3

Writing Methods and Applying
Scope

After completing this chapter, you will be able to:

n Declare and call methods .

n Pass information to a method .

n Return information from a method .

n Define local and class scope .

n Use the integrated debugger to step in and out of methods as they run .

In Chapter 2, “Working with Variables, Operators, and Expressions,” you learned how to
declare variables, how to create expressions using operators, and how precedence and
 associativity control how expressions containing multiple operators are evaluated . In this
chapter, you’ll learn about methods . You’ll also learn how to use arguments and parameters
to pass information to a method and how to return information from a method by using re-
turn statements . Finally, you’ll see how to step in and out of methods by using the Microsoft
Visual Studio 2010 integrated debugger . This information is useful when you need to trace
the execution of your methods if they do not work quite as you expected .

Creating .Methods
A method is a named sequence of statements . If you have previously programmed using
 languages such as C or Microsoft Visual Basic, you will see that a method is similar to a func-
tion or a subroutine . A method has a name and a body . The method name should be a
meaningful identifier that indicates the overall purpose of the method (calculateIncomeTax,
for example) . The method body contains the actual statements to be run when the method
is called . Additionally, methods can be given some data for processing and can return
 information, which is usually the result of the processing . Methods are a fundamental and
powerful mechanism .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

48 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

Declaring a Method
The syntax for declaring a C# method is as follows:

returnType methodName (parameterList)
{
 // method body statements go here
}

n The returnType is the name of a type and specifies the kind of information the method
returns as a result of its processing . This can be any type, such as int or string . If you’re
writing a method that does not return a value, you must use the keyword void in place
of the return type .

n The methodName is the name used to call the method . Method names follow the same
identifier rules as variable names . For example, addValues is a valid method name,
whereas add$Values is not . For now, you should follow the camelCase convention for
method names—for example, displayCustomer .

n The parameterList is optional and describes the types and names of the information
that you can pass into the method for it to process . You write the parameters between
the opening and closing parentheses as though you’re declaring variables, with the
name of the type followed by the name of the parameter . If the method you’re writing
has two or more parameters, you must separate them with commas .

n The method body statements are the lines of code that are run when the method is
called . They are enclosed between opening and closing braces { } .

Important C, C++, and Microsoft Visual Basic programmers should note that C# does not
 support global methods . You must write all your methods inside a class, or your code will not
compile .

Here’s the definition of a method called addValues that returns an int result and has two int
parameters, called leftHandSide and rightHandSide:

int addValues(int leftHandSide, int rightHandSide)
{
 // ...
 // method body statements go here
 // ...
}

Note You must explicitly specify the types of any parameters and the return type of a method .
You cannot use the var keyword .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 3 Writing Methods and Applying Scope 49

Here’s the definition of a method called showResult that does not return a value and has a
single int parameter, called answer:

void showResult(int answer)
{
 // ...
}

Notice the use of the keyword void to indicate that the method does not return anything .

Important Visual Basic programmers should notice that C# does not use different keywords to
distinguish between a method that returns a value (a function) and a method that does not re-
turn a value (a procedure or subroutine) . You must always specify either a return type or void .

Returning Data from a Method
If you want a method to return information (that is, its return type is not void), you must
include a return statement at the end of the processing in the method body . A return state-
ment consists of the keyword return followed by an expression that specifies the returned
value, and a semicolon . The type of the expression must be the same as the type specified by
the method declaration . For example, if a method returns an int, the return statement must
return an int; otherwise, your program will not compile . Here is an example of a method with
a return statement:

int addValues(int leftHandSide, int rightHandSide)
{
 // ...
 return leftHandSide + rightHandSide;
}

The return statement is usually positioned at the end of your method because it causes the
method to finish and control returns to the statement that called the method, as described
later in this chapter . Any statements that occur after the return statement are not executed
(although the compiler warns you about this problem if you place statements after the return
statement) .

If you don’t want your method to return information (that is, its return type is void), you can
use a variation of the return statement to cause an immediate exit from the method . You
write the keyword return immediately followed by a semicolon . For example:

void showResult(int answer)
{
 // display the answer
 ...
 return;
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

50 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

If your method does not return anything, you can also omit the return statement because the
method finishes automatically when execution arrives at the closing brace at the end of the
method . Although this practice is common, it is not always considered good style .

In the following exercise, you will examine another version of the MathsOperators project
from Chapter 2 . This version has been improved by the careful use of some small methods .

Examine method definitions

 . 1 . . Start Visual Studio 2010 if it is not already running .

 . 2 . . Open the Methods project in the \Microsoft Press\Visual CSharp Step By Step\
Chapter 3\Methods folder in your Documents folder .

 . 3 . . On the Debug menu, click Start Without Debugging .

Visual Studio 2010 builds and runs the application .

 . 4 . . Refamiliarize yourself with the application and how it works, and then click Quit .

 . 5 . . Display the code for MainWindow .xaml .cs in the Code and Text Editor window .

 . 6 . . In the Code and Text Editor window, locate the addValues method .

The method looks like this:

private int addValues(int leftHandSide, int rightHandSide)
{
 expression.Text = leftHandSide.ToString() + " + " + rightHandSide.ToString();
 return leftHandSide + rightHandSide;
}

The addValues method contains two statements . The first statement displays the cal-
culation being performed in the expression text box on the form . The values of the
parameters leftHandSide and rightHandSide are converted to strings (using the ToString
method you met in Chapter 2) and concatenated together with a string representation
of the plus operator (+) in the middle .

The second statement uses the + operator to add the values of the leftHandSide and
rightHandSide int variables together and returns the result of this operation . Remember
that adding two int values together creates another int value, so the return type of the
addValues method is int .

If you look at the methods subtractValues, multiplyValues, divideValues, and
 remainderValues, you will see that they follow a similar pattern .

 . 7 . . In the Code and Text Editor window, locate the showResult method .

The showResult method looks like this:

private void showResult(int answer)
{
 result.Text = answer.ToString();
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 3 Writing Methods and Applying Scope 51

This method contains one statement that displays a string representation of the answer
parameter in the result text box . It does not return a value, so the type of this method
is void .

Tip There is no minimum length for a method . If a method helps to avoid repetition
and makes your program easier to understand, the method is useful regardless of how
small it is .

There is also no maximum length for a method, but usually you want to keep your method
code small enough to get the job done . If your method is more than one screen in length,
consider breaking it into smaller methods for readability .

Calling Methods
Methods exist to be called! You call a method by name to ask it to perform its task . If the
method requires information (as specified by its parameters), you must supply the informa-
tion requested . If the method returns information (as specified by its return type), you should
arrange to capture this information somehow .

Specifying the Method Call Syntax
The syntax of a C# method call is as follows:

result = methodName (argumentList)

n The methodName must exactly match the name of the method you’re calling .
Remember, C# is a case-sensitive language .

n The result = clause is optional . If specified, the variable identified by result contains the
value returned by the method . If the method is void (that is, it does not return a value),
you must omit the result = clause of the statement . If you don’t specify the result =
clause and the method does return a value, the method runs but the return value is
discarded .

n The argumentList supplies the optional information that the method accepts . You must
supply an argument for each parameter, and the value of each argument must be com-
patible with the type of its corresponding parameter . If the method you’re calling has
two or more parameters, you must separate the arguments with commas .

Important You must include the parentheses in every method call, even when calling a
 method that has no arguments .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

52 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

To clarify these points, take a look at the addValues method again:

int addValues(int leftHandSide, int rightHandSide)
{
 // ...
}

The addValues method has two int parameters, so you must call it with two comma-
separated int arguments:

addValues(39, 3); // okay

You can also replace the literal values 39 and 3 with the names of int variables . The values in
those variables are then passed to the method as its arguments, like this:

int arg1 = 99;
int arg2 = 1;
addValues(arg1, arg2);

If you try to call addValues in some other way, you will probably not succeed for the reasons
described in the following examples:

addValues; // compile-time error, no parentheses
addValues(); // compile-time error, not enough arguments
addValues(39); // compile-time error, not enough arguments
addValues("39", "3"); // compile-time error, wrong types

The addValues method returns an int value . This int value can be used wherever an int value
can be used . Consider these examples:

int result = addValues(39, 3); // on right-hand side of an assignment
showResult(addValues(39, 3)); // as argument to another method call

The following exercise continues looking at the Methods application . This time you will
 examine some method calls .

Examine method calls

 . 1 . . Return to the Methods project . (This project is already open in Visual Studio 2010 if
you’re continuing from the previous exercise . If you are not, open it from the \Microsoft
Press\Visual CSharp Step By Step\Chapter 3\Methods folder in your Documents folder .)

 . 2 . . Display the code for MainWindow .xaml .cs in the Code and Text Editor window .

 . 3 . . Locate the calculateClick method, and look at the first two statements of this method
after the try statement and opening brace . (We cover the purpose of try statements in
Chapter 6, “Managing Errors and Exceptions .”)

The statements are as follows:

int leftHandSide = System.Int32.Parse(lhsOperand.Text);
int rightHandSide = System.Int32.Parse(rhsOperand.Text);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 3 Writing Methods and Applying Scope 53

These two statements declare two int variables, called leftHandSide and rightHandSide .
However, the interesting parts are the way in which the variables are initialized . In both
cases, the Parse method of the System.Int32 class is called . (System is a namespace, and
Int32 is the name of the class in this namespace .) You have seen this method before; it
takes a single string parameter and converts it to an int value . These two lines of code
take whatever the user has typed into the lhsOperand and rhsOperand text box controls
on the form and converts them to int values .

 . 4 . . Look at the fourth statement in the calculateClick method (after the if statement and
another opening brace):

calculatedValue = addValues(leftHandSide, rightHandSide);

This statement calls the addValues method, passing the values of the leftHandSide and
rightHandSide variables as its arguments . The value returned by the addValues method
is stored in the calculatedValue variable .

 . 5 . . Look at the next statement:

showResult(calculatedValue);

This statement calls the showResult method, passing the value in the calculatedValue
variable as its argument . The showResult method does not return a value .

 . 6 . . In the Code and Text Editor window, find the showResult method you looked at earlier .

The only statement of this method is this:

result.Text = answer.ToString();

Notice that the ToString method call uses parentheses even though there are no
arguments .

Tip You can call methods belonging to other objects by prefixing the method with the
name of the object . In the preceding example, the expression answer.ToString() calls the
method named ToString belonging to the object called answer .

Applying .Scope
In some of the examples, you can see that you can create variables inside a method .
These variables come into existence at the point where they are defined, and subsequent
 statements in the same method can then use these variables; a variable can be used only af-
ter it has been created . When the method has finished, these variables disappear .

If a variable can be used at a particular location in a program, the variable is said to be in
scope at that location . To put it another way, the scope of a variable is simply the region of

http://lib.ommolketab.ir
http//lib.ommolketab.ir

54 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

the program in which that variable is usable . Scope applies to methods as well as variables .
The scope of an identifier (of a variable or method) is linked to the location of the declaration
that introduces the identifier in the program, as you’ll now learn .

Defining Local Scope
The opening and closing braces that form the body of a method define a scope . Any vari-
ables you declare inside the body of a method are scoped to that method; they disappear
when the method ends and can be accessed only by code running in that method . These
variables are called local variables because they are local to the method in which they are
 declared; they are not in scope in any other method . This arrangement means that you can-
not use local variables to share information between methods . Consider this example:

class Example
{
 void firstMethod()
 {
 int myVar;
 ...
 }
 void anotherMethod()
 {
 myVar = 42; // error – variable not in scope
 ...
 }
}

This code fails to compile because anotherMethod is trying to use the variable myVar, which
is not in scope . The variable myVar is available only to statements in firstMethod and that
 occur after the line of code that declares myVar .

Defining Class Scope
The opening and closing braces that form the body of a class also create a scope . Any vari-
ables you declare inside the body of a class (but not inside a method) are scoped to that
class . The proper C# name for the variables defined by a class is a field . In contrast with local
variables, you can use fields to share information between methods . Here is an example:

class Example
{
 void firstMethod()
 {
 myField = 42; // ok
 ...
 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 3 Writing Methods and Applying Scope 55

 void anotherMethod()
 {
 myField++; // ok
 ...
 }

 int myField = 0;
}

The variable myField is defined in the class but outside the methods firstMethod and
 anotherMethod . Therefore, myField has class scope and is available for use by all methods in
the class .

There is one other point to notice about this example . In a method, you must declare a vari-
able before you can use it . Fields are a little different . A method can use a field before the
statement that defines the field—the compiler sorts out the details for you!

Overloading Methods
If two identifiers have the same name and are declared in the same scope, they are said to be
overloaded . Often an overloaded identifier is a bug that gets trapped as a compile-time error .
For example, if you declare two local variables with the same name in the same method, the
compiler reports an error . Similarly, if you declare two fields with the same name in the same
class or two identical methods in the same class, you also get a compile-time error . This fact
might seem hardly worth mentioning, given that everything so far has turned out to be a
compile-time error . However, there is a way that you can overload an identifier, and that way
is both useful and important .

Consider the WriteLine method of the Console class . You have already used this method for
writing a string to the screen . However, when you type WriteLine in the Code and Text Editor
window when writing C# code, you will notice that Microsoft IntelliSense gives you 19 differ-
ent options! Each version of the WriteLine method takes a different set of parameters; one
version takes no parameters and simply outputs a blank line, another version takes a bool
parameter and outputs a string representation of its value (True or False), yet another imple-
mentation takes a decimal parameter and outputs it as a string, and so on . At compile time,
the compiler looks at the types of the arguments you are passing in and then calls the ver-
sion of the method that has a matching set of parameters . Here is an example:

static void Main()
{
 Console.WriteLine("The answer is ");
 Console.WriteLine(42);
}

Overloading is primarily useful when you need to perform the same operation on different
data types . You can overload a method when the different implementations have differ-
ent sets of parameters; that is, when they have the same name but a different number of

http://lib.ommolketab.ir
http//lib.ommolketab.ir

56 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

 parameters, or when the types of the parameters differ . This capability is allowed so that,
when you call a method, you can supply a comma-separated list of arguments, and the
number and type of the arguments are used by the compiler to select one of the overloaded
methods . However, note that although you can overload the parameters of a method, you
can’t overload the return type of a method . In other words, you can’t declare two methods
with the same name that differ only in their return type . (The compiler is clever, but not that
clever .)

Writing .Methods
In the following exercises, you’ll create a method that calculates how much a consultant
would charge for a given number of consultancy days at a fixed daily rate . You will start by
developing the logic for the application and then use the Generate Method Stub Wizard to
help you write the methods that are used by this logic . Next, you’ll run these methods in a
Console application to get a feel for the program . Finally, you’ll use the Visual Studio 2010
debugger to step in and out of the method calls as they run .

Develop the logic for the application

 . 1 . . Using Visual Studio 2010, open the DailyRate project in the \Microsoft Press\Visual
CSharp Step By Step\Chapter 3\DailyRate folder in your Documents folder .

 . 2 . . In Solution Explorer, double-click the file Program.cs to display the code for the
 program in the Code and Text Editor window .

 . 3 . . Add the following statements to the body of the run method, between the opening
and closing braces:

double dailyRate = readDouble("Enter your daily rate: ");
int noOfDays = readInt("Enter the number of days: ");
writeFee(calculateFee(dailyRate, noOfDays));

The run method is called by the Main method when the application starts . (The way in
which it is called requires an understanding of classes, which we look at in Chapter 7,
“Creating and Managing Classes and Objects .”)

The block of code you have just added to the run method calls the readDouble method
(which you will write shortly) to ask the user for the daily rate for the consultant . The
next statement calls the readInt method (which you will also write) to obtain the num-
ber of days . Finally, the writeFee method (to be written) is called to display the results
on the screen . Notice that the value passed to writeFee is the value returned by the
calculateFee method (the last one you will need to write), which takes the daily rate and
the number of days and calculates the total fee payable .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 3 Writing Methods and Applying Scope 57

Note You have not yet written the readDouble, readInt, writeFee, or calculateFee method,
so IntelliSense does not display these methods when you type this code . Do not try to
build the application yet, because it will fail .

Write the methods using the Generate Method Stub Wizard

 . 1 . . In the Code and Text Editor window, right-click the readDouble method call in the run
method .

A shortcut menu appears that contains useful commands for generating and editing
code, as shown here:

 . 2 . . On the shortcut menu, point to Generate and then click Method Stub .

Visual Studio examines the call to the readDouble method, ascertains the type of its
parameters and return value, and generates a method with a default implementation,
like this:

private double readDouble(string p)
{
 throw new NotImplementedException();
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

58 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

The new method is created with the private qualifier, which is described in Chapter 7 .
The body of the method currently just throws a NotImplementedException . (Exceptions
are described in Chapter 6 .) You will replace the body with your own code in the next
step .

 . 3 . . Delete the throw new NotImplementedException(); statement from the readDouble
method, and replace it with the following lines of code:

Console.Write(p);
string line = Console.ReadLine();
return double.Parse(line);

This block of code displays the string in variable p to the screen . This variable is the
string parameter passed in when the method is called, and it contains a message
prompting the user to type in the daily rate .

Note The Console.Write method is similar to the Console.WriteLine statement that you
have used in earlier exercises, except that it does not output a newline character after the
message .

The user types a value, which is read into a string by using the ReadLine method and
converted to a double by using the double.Parse method . The result is passed back as
the return value of the method call .

Note The ReadLine method is the companion method to WriteLine; it reads user input
from the keyboard, finishing when the user presses the Enter key . The text typed by the
user is passed back as the return value . The text is returned as a string value .

 . 4 . . In the run method, right-click the call to the readInt method in the run method, point
to Generate, and then click Method Stub to generate the readInt method .

The readInt method is generated, like this:

private int readInt(string p)
{
 throw new NotImplementedException();
}

 . 5 . . Replace the throw new NotImplementedException(); statement in the body of the
readInt method with the following code:

Console.Write(p);
string line = Console.ReadLine();
return int.Parse(line);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 3 Writing Methods and Applying Scope 59

This block of code is similar to the code for the readDouble method . The only
 difference is that the method returns an int value, so the string typed by the user is
converted to a number by using the int.Parse method .

 . 6 . . Right-click the call to the calculateFee method in the run method, point to Generate,
and then click Method Stub .

The calculateFee method is generated, like this:

private object calculateFee(double dailyRate, int noOfDays)
{
 throw new NotImplementedException();
}

Notice in this case that Visual Studio uses the name of the arguments passed in to
generate names for the parameters . (You can of course change the parameter names
if they are not suitable .) What is more intriguing is the type returned by the method,
which is object . Visual Studio is unable to determine exactly which type of value should
be returned by the method from the context in which it is called . The object type just
means a “thing,” and you should change it to the type you require when you add the
code to the method . You will learn more about the object type in Chapter 7 .

 . 7 . . Change the definition of the calculateFee method so that it returns a double, as shown
in bold type here:

private double calculateFee(double dailyRate, int noOfDays)
{
 throw new NotImplementedException();
}

 . 8 . . Replace the body of the calculateFee method with the following statement, which cal-
culates the fee payable by multiplying the two parameters together and then returns it:

return dailyRate * noOfDays;

 . 9 . . Right-click the call to the writeFee method in the run method, and then click Generate
Method Stub .

Note that Visual Studio uses the definition of the calculateFee method to work out that
its parameter should be a double . Also, the method call does not use a return value, so
the type of the method is void:

private void writeFee(double p)
{
 ...
}

Tip If you feel sufficiently comfortable with the syntax, you can also write methods by
typing them directly into the Code and Text Editor window . You do not always have to use
the Generate menu option .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

60 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

 . 10 . . Type the following statements inside the writeFee method:

Console.WriteLine("The consultant's fee is: {0}", p * 1.1);

Note This version of the WriteLine method demonstrates the use of a format string . The
text {0} in the string used as the first argument to the WriteLine method is a placeholder
that is replaced with the value of the expression following the string (p * 1.1) when it is
evaluated at run time . Using this technique is preferable to alternatives, such as converting
the value of the expression p * 1.1 to a string and using the + operator to concatenate it to
the message .

 . 11 . . On the Build menu, click Build Solution .

Refactoring .Code
A very useful feature of Visual Studio 2010 is the ability to refactor code .

Occasionally, you will find yourself writing the same (or similar) code in more than one
place in an application . When this occurs, highlight the block of code you have just
typed, and on the Refactor menu, click Extract Method . The Extract Method dialog box
appears, prompting you for the name of a new method to create containing this code .
Type a name, and click OK . The new method is created containing your code, and the
code you typed is replaced with a call to this method . Extract Method is also intelligent
enough to work out whether the method should take any parameters and return a
value .

Test the program

 . 1 . . On the Debug menu, click Start Without Debugging .

Visual Studio 2010 builds the program and then runs it . A console window appears .

 . 2 . . At the Enter your daily rate prompt, type 525 and then press Enter .

 . 3 . . At the Enter the number of days prompt, type 17 and then press Enter .

The program writes the following message to the console window:

The consultant's fee is: 9817.5

 . 4 . . Press the Enter key to close the application and return to the Visual Studio 2010
 programming environment .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 3 Writing Methods and Applying Scope 61

In the next exercise, you’ll use the Visual Studio 2010 debugger to run your program in
slow motion . You’ll see when each method is called (which is referred to as stepping into the
 method) and then see how each return statement transfers control back to the caller (also
known as stepping out of the method) . While you are stepping in and out of methods, you
use the tools on the Debug toolbar . However, the same commands are also available on the
Debug menu when an application is running in Debug mode .

Step through the methods by using the Visual Studio 2010 debugger

 . 1 . . In the Code and Text Editor window, find the run method .

 . 2 . . Move the mouse to the first statement in the run method:

double dailyRate = readDouble("Enter your daily rate: ");

 . 3 . . Right-click anywhere on this line, and on the shortcut menu, click Run To Cursor .

The program starts and runs until it reaches the first statement in the run method, and
then it pauses . A yellow arrow in the left margin of the Code and Text Editor window
indicates the current statement, which is also highlighted with a yellow background .

 . 4 . . On the View menu, point to Toolbars, and then make sure that the Debug toolbar is
selected .

If it was not already visible, the Debug toolbar opens . It might appear docked with the
other toolbars . If you cannot see the toolbar, try using the Toolbars command on the
View menu to hide it, and notice which buttons disappear . Then display the toolbar
again . The Debug toolbar looks like this (although the toolbar differs slightly between
Visual Studio 2010 and Microsoft Visual C# 2010 Express—it does not contain the
Breakpoints button on the right side):

Step Into Step Over

Step OutContinue

Tip To make the Debug toolbar appear in its own window, use the handle at the left end
of the toolbar to drag it over the Code and Text Editor window .

 . 5 . . On the Debug toolbar, click the Step Into button . (This is the sixth button from the left .)

This action causes the debugger to step into the method being called . The yellow
 cursor jumps to the opening brace at the start of the readDouble method .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

62 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

 . 6 . . Click Step Into again . The cursor advances to the first statement:

Console.Write(p);

Tip You can also press F11 rather than repeatedly clicking Step Into on the Debug toolbar .

 . 7 . . On the Debug toolbar, click Step Over . (This is the seventh button from the left .)

This action causes the method to execute the next statement without debugging it
(stepping into it) . The yellow cursor moves to the second statement of the method,
and the program displays the Enter your daily rate prompt in a Console window before
returning to Visual Studio 2010 . (The Console window might be hidden behind Visual
Studio .)

Tip You can also press F10 rather than clicking Step Over on the Debug toolbar .

 . 8 . . On the Debug toolbar, click Step Over .

This time, the yellow cursor disappears and the Console window gets the focus because
the program is executing the Console.ReadLine method and is waiting for you to type
something .

 . 9 . . Type 525 in the Console window, and then press Enter .

Control returns to Visual Studio 2010 . The yellow cursor appears on the third line of the
method .

 . 10 . . Hover the mouse over the reference to the line variable on either the second or third
line of the method . (It doesn’t matter which .)

A ScreenTip appears, displaying the current value of the line variable (“525”) . You can
use this feature to make sure that a variable has been set to an expected value while
stepping through methods .

 . 11 . . On the Debug toolbar, click Step Out . (This is the eighth button from the left .)

This action causes the current method to continue running uninterrupted to its end .
The readDouble method finishes, and the yellow cursor is placed back at the first
 statement of the run method .

Tip You can also press Shift+F11 rather than clicking Step Out on the Debug toolbar .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 3 Writing Methods and Applying Scope 63

 . 12 . . On the Debug toolbar, click Step Into .

The yellow cursor moves to the second statement in the run method:

int noOfDays = readInt("Enter the number of days: ");

 . 13 . . On the Debug toolbar, click Step Over .

This time you have chosen to run the method without stepping through it . The Console
window appears again, prompting you for the number of days .

 . 14 . . In the Console window, type 17 and then press Enter .

Control returns to Visual Studio 2010 . The yellow cursor moves to the third statement
of the run method:

writeFee(calculateFee(dailyRate, noOfDays));

 . 15 . . On the Debug toolbar, click Step Into .

The yellow cursor jumps to the opening brace at the start of the calculateFee method .
This method is called first, before writeFee, because the value returned by this method
is used as the parameter to writeFee .

 . 16 . . On the Debug toolbar, click Step Out .

The yellow cursor jumps back to the third statement of the run method .

 . 17 . . On the Debug toolbar, click Step Into .

This time, the yellow cursor jumps to the opening brace at the start of the writeFee
method .

 . 18 . . Place the mouse over the p variable in the method definition .

The value of p, 8925 .0, is displayed in a ScreenTip .

 . 19 . . On the Debug toolbar, click Step Out .

The message The consultant’s fee is: 9817.5 is displayed in the Console window . (You
might need to bring the Console window to the foreground to display it if it is hidden
behind Visual Studio 2010 .) The yellow cursor returns to the third statement in the run
method .

 . 20 . . On the Debug toolbar, click Continue (the first button on the toolbar) to cause the
 program to continue running without stopping at each statement .

Tip You can also press F5 to continue execution in the debugger .

The application completes and finishes running .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

64 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

Using .Optional .Parameters .and .Named .Arguments
You have seen that by defining overloaded methods you can implement different versions
of a method that take different parameters . When you build an application that uses over-
loaded methods, the compiler determines which specific instances of each method it should
use to satisfy each method call . This is a common feature of many object-oriented languages,
not just C# .

However, there are other languages and technologies that developers can use for building
Windows applications and components that do not follow these rules . A key feature of C#
and other languages designed for the .NET Framework is the ability to interoperate with ap-
plications and components written by using other technologies . One of the principal technol-
ogies used by Microsoft Windows is the Component Object Model, or COM . COM does not
support overloaded methods, but instead uses methods that can take optional parameters .
To make it easier to incorporate COM libraries and components into a C# solution, C# also
supports optional parameters .

Optional parameters are also useful in other situations . They provide a compact and simple
solution when it is not possible to use overloading because the types of the parameters do
not vary sufficiently to enable the compiler to distinguish between implementations . For
 example, consider the following method:

public void DoWorkWithData(int intData, float floatData, int moreIntData)
{
 ...
}

The DoWorkWithData method takes three parameters: two ints and a float . Now suppose you
wanted to provide an implementation of DoWorkWithData that took only two parameters:
intData and floatData . You can overload the method like this:

public void DoWorkWithData(int intData, float floatData)
{
 ...
}

If you write a statement that calls the DoWorkWithData method, you can provide either two
or three parameters of the appropriate types, and the compiler uses the type information to
determine which overload to call:

int arg1 = 99;
float arg2 = 100.0F;
int arg3 = 101;

DoWorkWithData(arg1, arg2, arg3); // Call overload with three parameters
DoWorkWithData(arg1, arg2); // Call overload with two parameters

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 3 Writing Methods and Applying Scope 65

However, suppose you want to implement two further versions of DoWorkWithData that take
only the first parameter and the third parameter . You might be tempted to try this:

public void DoWorkWithData(int intData)
{
 ...
}

public void DoWorkWithData(int moreIntData)
{
 ...
}

The issue is that to the compiler, these two overloads appear identical and your code will
fail to compile and instead generates the error “Type ‘typename’ already defines a member
called ‘DoWorkWithData’ with the same parameter types .” To understand why this is so, if
this code was legal, consider the following statements:

int arg1 = 99;
int arg3 = 101;

DoWorkWithData(arg1);
DoWorkWithData(arg3);

Which overload or overloads would the calls to DoWorkWithData invoke? Using optional
 parameters and named arguments can help to solve this problem .

Defining Optional Parameters
You specify that a parameter is optional when you define a method by providing a default
value for the parameter . You indicate a default value by using the assignment operator . In the
optMethod method shown next, the first parameter is mandatory because it does not specify
a default value, but the second and third parameters are optional:

void optMethod(int first, double second = 0.0, string third = "Hello")
{
 ...
}

You must specify all mandatory parameters before any optional parameters .

You can call a method that takes optional parameters in the same way that you call any other
method; you specify the method name and provide any necessary arguments . The differ-
ence with methods that take optional parameters is that you can omit the corresponding
arguments, and the method will use the default value when the method runs . In the follow-
ing example code, the first call to the optMethod method provides values for all three pa-
rameters . The second call specifies only two arguments, and these values are applied to the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

66 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

first and second parameters . The third parameter receives the default value of “Hello” when
the method runs .

optMethod(99, 123.45, "World"); // Arguments provided for all three parameters
optMethod(100, 54.321); // Arguments provided for 1st two parameters only

Passing Named Arguments
By default, C# uses the position of each argument in a method call to determine which
 parameters they apply to . Hence, the second example method shown in the previous section
passes the two arguments to the first and second parameters in the optMethod method, be-
cause this is the order in which they occur in the method declaration . C# also enables you to
specify parameters by name, and this feature lets you pass the arguments in a different se-
quence . To pass an argument as a named parameter, you provide the name of the parameter,
a colon, and the value to use . The following examples perform the same function as those
shown in the previous section, except that the parameters are specified by name:

optMethod(first : 99, second : 123.45, third : "World");
optMethod(first : 100, second : 54.321);

Named arguments give you the ability to pass arguments in any order . You can rewrite the
code that calls the optMethod method like this:

optMethod(third : "World", second : 123.45, first : 99);
optMethod(second : 54.321, first : 100);

This feature also enables you to omit arguments . For example, you can call the optMethod
method and specify values for the first and third parameters only and use the default value
for the second parameter like this:

optMethod(first : 99, third : "World");

Additionally, you can mix positional and named arguments . However, if you use this tech-
nique you must specify all the positional arguments before the first named argument:

optMethod(99, third : "World"); // First argument is positional

Resolving Ambiguities with Optional Parameters and Named
Arguments
Using optional parameters and named arguments can result in some possible ambiguities in
your code . You need to understand how the compiler resolves these ambiguities; otherwise,
you might find your applications behaving in unexpected ways . Suppose that you defined
the optMethod method as an overloaded method as shown in the following example:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 3 Writing Methods and Applying Scope 67

void optMethod(int first, double second = 0.0, string third = "Hello")
{
 ...
}

void optMethod(int first, double second = 1.0, string third = "Goodbye", int fourth = 100)
{
 ...
}

This is perfectly legal C# code that follows the rules for overloaded methods . The compiler
can distinguish between the methods because they have different parameter lists . However,
a problem can arise if you attempt to call the optMethod method and omit some of the argu-
ments corresponding to one or more of the optional parameters:

optMethod(1, 2.5. "World");

Again, this is perfectly legal code, but which version of the optMethod method does it run?
The answer is that it runs the version that most closely matches the method call, so it invokes
the method that takes three parameters and not the version that takes four . That makes
good sense, so consider this one:

optMethod(1, fourth : 101);

In this code, the call to optMethod omits arguments for the second and third parameters, but
it specifies the fourth parameter by name . Only one version of optMethod matches this call,
so this is not a problem . The next one will get you thinking though!

optMethod(1, 2.5);

This time neither version of the optMethod method exactly matches the list of arguments
provided . Both versions of the optMethod method have optional parameters for the second,
third, and fourth arguments . So does this statement call the version of optMethod that takes
three parameters and use the default value for the third parameter, or does it call the version
of optMethod that takes four parameters and use the default value for the third and fourth
parameters? The answer is that it does neither . The compiler decides that this is an ambigu-
ous method call and does not let you compile the application . The same situation arises with
the same result if you try and call the optMethod method as shown in any of the following
statements:

optMethod(1, third : "World");
optMethod(1);
optMethod(second : 2.5, first : 1);

In the final exercise in this chapter, you will practice implementing methods that take op-
tional parameters and calling them by using named arguments . You will also test common
examples of how the C# compiler resolves method calls that involve optional parameters and
named arguments .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

68 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

Define and call a method that takes optional parameters

 . 1 . . Using Visual Studio 2010, open the DailyRate project in the \Microsoft Press\Visual
CSharp Step By Step\Chapter 3\DailyRate Using Optional Parameters folder in your
Documents folder .

 . 2 . . In Solution Explorer, double-click the file Program.cs to display the code for the
 program in the Code and Text Editor window .

 . 3 . . In the Program class, add the calculateFee method below the run method . This is the
same version of the method that you implemented in the previous set of exercises ex-
cept that it takes two optional parameters with default values . The method also prints
a message indicating the version of the calculateFee method that was called . (You add
overloaded implementations of this method in the following steps .)

private double calculateFee(double dailyRate = 500.0, int noOfDays = 1)
{
 Console.WriteLine("calculateFee using two optional parameters");
 return dailyRate * noOfDays;
}

 . 4 . . Add another implementation of the calculateFee method to the Program class as shown
next . This version takes one optional parameter, called dailyRate, of type double . The
body of the method calculates and returns the fee for a single day .

private double calculateFee(double dailyRate = 500.0)
{
 Console.WriteLine("calculateFee using one optional parameter");
 int defaultNoOfDays = 1;
 return dailyRate * defaultNoOfDays;
}

 . 5 . . Add a third implementation of the calculateFee method to the Program class . This
 version takes no parameters and uses hardcoded values for the daily rate and number
of days .

private double calculateFee()
{
 Console.WriteLine("calculateFee using hardcoded values");
 double defaultDailyRate = 400.0;
 int defaultNoOfDays = 1;
 return defaultDailyRate * defaultNoOfDays;
}

 . 6 . . In the run method, add the following statements that call calculateFee and display the
results:

public void run()
{
 double fee = calculateFee();
 Console.WriteLine("Fee is {0}", fee);
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 3 Writing Methods and Applying Scope 69

 . 7 . . On the Debug menu, click Start Without Debugging to build and run the program . The
program runs in a console window and displays the following messages:

calculateFee using hardcoded values
Fee is 400

The run method called the version of calculateFee that takes no parameters rather than
either of the implementations that take optional parameters . This is because this is the
version that most closely matches the method call .

Press any key to close the console window and return to Visual Studio .

 . 8 . . In the run method, modify the statement that calls calculateFee as shown in bold type
in this code sample:

public void run()
{
 double fee = calculateFee(650.0);
 Console.WriteLine("Fee is {0}", fee);
}

 . 9 . . On the Debug menu, click Start Without Debugging to build and run the program .
The program displays the following messages:

calculateFee using one optional parameter
Fee is 650

This time, the run method called the version of calculateFee that takes one optional
parameter . As before, this is because this is the version that most closely matches the
method call .

Press any key to close the console window and return to Visual Studio .

 . 10 . . In the run method, modify the statement that calls calculateFee again:

public void run()
{
 double fee = calculateFee(500.0, 3);
 Console.WriteLine("Fee is {0}", fee);
}

 . 11 . . On the Debug menu, click Start Without Debugging to build and run the program .
The program displays the following messages:

calculateFee using two optional parameters
Fee is 1500

As you might expect from the previous two cases, the run method called the version of
calculateFee that takes two optional parameters .

Press any key to close the console window and return to Visual Studio .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

70 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

 . 12 . . In the run method, modify the statement that calls calculateFee and specify the
 dailyRate parameter by name:

public void run()
{
 double fee = calculateFee(dailyRate : 375.0);
 Console.WriteLine("Fee is {0}", fee);
}

 . 13 . . On the Debug menu, click Start Without Debugging to build and run the program .
The program displays the following messages:

calculateFee using one optional parameter
Fee is 375

As earlier, the run method called the version of calculateFee that takes one optional
parameter . Changing the code to use a named argument does not change the way in
which the compiler resolves the method call in this example .

Press any key to close the console window and return to Visual Studio .

 . 14 . . In the run method, modify the statement that calls calculateFee and specify the
 noOfDays parameter by name:

public void run()
{
 double fee = calculateFee(noOfDays : 4);
 Console.WriteLine("Fee is {0}", fee);
}

 . 15 . . On the Debug menu, click Start Without Debugging to build and run the program .
The program displays the following messages:

calculateFee using two optional parameters
Fee is 2000

This time the run method called the version of calculateFee that takes two optional
parameters . The method call has omitted the first parameter (dailyRate) and specified
the second parameter by name . This is the only version of the calculateFee method that
matches the call .

Press any key to close the console window and return to Visual Studio .

 . 16 . . Modify the implementation of the calculateFee method that takes two optional param-
eters . Change the name of the first parameter to theDailyRate and update the return
statement, as shown in bold type in the following code:

private double calculateFee(double theDailyRate = 500.0, int noOfDays = 5)
{
 Console.WriteLine("calculateFee using two optional parameters");
 return theDailyRate * noOfDays;
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 3 Writing Methods and Applying Scope 71

 . 17 . . In the run method, modify the statement that calls calculateFee and specify the
 theDailyRate parameter by name:

public void run()
{
 double fee = calculateFee(theDailyRate : 375);
 Console.WriteLine("Fee is {0}", fee);
}

 . 18 . . On the Debug menu, click Start Without Debugging to build and run the program .
The program displays the following messages:

calculateFee using two optional parameters
Fee is 1875

The previous time that you specified the fee but not the daily rate (step 13), the run
method called the version of calculateFee that takes one optional parameter . This time
the run method called the version of calculateFee that takes two optional parameters .
In this case, using a named argument has changed the way in which the compiler re-
solves the method call . If you specify a named argument, the compiler compares the
argument name to the names of the parameters specified in the method declarations
and selects the method that has a parameter with a matching name .

Press any key to close the console window and return to Visual Studio .

In this chapter, you learned how to define methods to implement a named block of code .
You saw how to pass parameters into methods and how to return data from methods . You
also saw how to call a method, pass arguments, and obtain a return value . You learned how
to define overloaded methods with different parameter lists, and you saw how the scope of
a variable determines where it can be accessed . Then you used the Visual Studio 2010 de-
bugger to step through code as it runs . Finally, you learned how to write methods that take
 optional parameters and how to call methods by using named parameters .

n If you want to continue to the next chapter

Keep Visual Studio 2010 running, and turn to Chapter 4 .

n If you want to exit Visual Studio 2010 now

On the File menu, click Exit . If you see a Save dialog box, click Yes and save the project .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

72 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

Chapter .3 .Quick .Reference
To Do this

Declare a method Write the method inside a class . For example:

int addValues(int leftHandSide, int rightHandSide)
{
 ...
}

Return a value from inside a
method

Write a return statement inside the method . For example:

return leftHandSide + rightHandSide;

Return from a method before
the end of the method

Write a return statement inside the method . For example:

return;

Call a method Write the name of the method, together with any arguments between
parentheses . For example:

addValues(39, 3);

Use the Generate Method Stub
Wizard

Right-click a call to the method, and then click Generate Method Stub on
the shortcut menu .

Display the Debug toolbar On the View menu, point to Toolbars, and then click Debug .

Step into a method On the Debug toolbar, click Step Into .

or

On the Debug menu, click Step Into .

Step out of a method On the Debug toolbar, click Step Out .

or

On the Debug menu, click Step Out .

Specify an optional parameter to
a method

Provide a default value for the parameter in the method declaration . For
example:

void optMethod(int first, double second = 0.0,
 string third = "Hello")
{
 ...
}

Pass a method argument as a
named parameter

Specify the name of the parameter in the method call . For example:

optMethod(first : 100, third : "World");

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 . . 73

Chapter 4

Using Decision Statements
After completing this chapter, you will be able to:

n Declare Boolean variables .

n Use Boolean operators to create expressions whose outcome is either true or false .

n Write if statements to make decisions based on the result of a Boolean expression .

n Write switch statements to make more complex decisions .

In Chapter 3, “Writing Methods and Applying Scope,” you learned how to group related
statements into methods . You also learned how to use parameters to pass information to a
method and how to use return statements to pass information out of a method . Dividing a
program into a set of discrete methods, each designed to perform a specific task or calcula-
tion, is a necessary design strategy . Many programs need to solve large and complex prob-
lems . Breaking up a program into methods helps you understand these problems and focus
on how to solve them one piece at a time . You also need to be able to write methods that
selectively perform different actions depending on the circumstances . In this chapter, you’ll
see how to accomplish this task .

Declaring .Boolean .Variables
In the world of C# programming (unlike in the real world), everything is black or white,
right or wrong, true or false . For example, if you create an integer variable called x, assign
the value 99 to x, and then ask, “Does x contain the value 99?”, the answer is definitely true .
If you ask, “Is x less than 10?”, the answer is definitely false . These are examples of Boolean
expressions . A Boolean expression always evaluates to true or false .

Note The answers to these questions are not necessarily definitive for all other programming
languages . An unassigned variable has an undefined value, and you cannot, for example, say
that it is definitely less than 10 . Issues such as this one are a common source of errors in C and
C++ programs . The Microsoft Visual C# compiler solves this problem by ensuring that you al-
ways assign a value to a variable before examining it . If you try to examine the contents of an
 unassigned variable, your program will not compile .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

74 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

Microsoft Visual C# provides a data type called bool . A bool variable can hold one of two
 values: true or false . For example, the following three statements declare a bool variable
called areYouReady, assign true to that variable, and then write its value to the console:

bool areYouReady;
areYouReady = true;
Console.WriteLine(areYouReady); // writes True to the console

Using .Boolean .Operators
A Boolean operator is an operator that performs a calculation whose result is either true
or false . C# has several very useful Boolean operators, the simplest of which is the NOT
 operator, which is represented by the exclamation point, ! . The ! operator negates a Boolean
value, yielding the opposite of that value . In the preceding example, if the value of the vari-
able areYouReady is true, the value of the expression !areYouReady is false .

Understanding Equality and Relational Operators
Two Boolean operators that you will frequently use are the equality == and inequality !=
 operators . You use these binary operators to find out whether one value is the same as
 another value of the same type . The following table summarizes how these operators work,
using an int variable called age as an example .

Operator Meaning Example Outcome if age is 42

== Equal to age == 100 false

!= Not equal to age != 0 true

Closely related to these two operators are the relational operators . You use these operators
to find out whether a value is less than or greater than another value of the same type . The
following table shows how to use these operators .

Operator Meaning Example Outcome if age is 42

< Less than age < 21 false

<= Less than or equal to age <= 18 false

> Greater than age > 16 true

>= Greater than or equal to age >= 30 true

Don’t confuse the equality operator == with the assignment operator = . The expression x==y
compares x with y and has the value true if the values are the same . The expression x=y
 assigns the value of y to x and returns the value of y as its result .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 4 Using Decision Statements 75

Understanding Conditional Logical Operators
C# also provides two other Boolean operators: the logical AND operator, which is repre-
sented by the && symbol, and the logical OR operator, which is represented by the || sym-
bol . Collectively, these are known as the conditional logical operators . Their purpose is to
combine two Boolean expressions or values into a single Boolean result . These binary opera-
tors are similar to the equality and relational operators in that the value of the expressions
in which they appear is either true or false, but they differ in that the values on which they
 operate must be either true or false .

The outcome of the && operator is true if and only if both of the Boolean expressions
it operates on are true . For example, the following statement assigns the value true to
 validPercentage if and only if the value of percent is greater than or equal to 0 and the value
of percent is less than or equal to 100:

bool validPercentage;
validPercentage = (percent >= 0) && (percent <= 100);

Tip A common beginner’s error is to try to combine the two tests by naming the percent
v ariable only once, like this:

percent >= 0 && <= 100 // this statement will not compile

Using parentheses helps avoid this type of mistake and also clarifies the purpose of the
 expression . For example, compare these two expressions:

validPercentage = percent >= 0 && percent <= 100

and

validPercentage = (percent >= 0) && (percent <= 100)

Both expressions return the same value because the precedence of the && operator is less
than that of >= and <= . However, the second expression conveys its purpose in a more
 readable manner .

The outcome of the || operator is true if either of the Boolean expressions it operates
on is true . You use the || operator to determine whether any one of a combination of
Boolean expressions is true . For example, the following statement assigns the value true
to invalidPercentage if the value of percent is less than 0 or the value of percent is greater
than 100:

bool invalidPercentage;
invalidPercentage = (percent < 0) || (percent > 100);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

76 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

Short-Circuiting
The && and || operators both exhibit a feature called short-circuiting . Sometimes it is not
necessary to evaluate both operands when ascertaining the result of a conditional logical
expression . For example, if the left operand of the && operator evaluates to false, the result
of the entire expression must be false regardless of the value of the right operand . Similarly,
if the value of the left operand of the || operator evaluates to true, the result of the entire
expression must be true, irrespective of the value of the right operand . In these cases, the &&
and || operators bypass the evaluation of the right operand . Here are some examples:

(percent >= 0) && (percent <= 100)

In this expression, if the value of percent is less than 0, the Boolean expression on the left side
of && evaluates to false. This value means that the result of the entire expression must be
false, and the Boolean expression to the right of the && operator is not evaluated .

(percent < 0) || (percent > 100)

In this expression, if the value of percent is less than 0, the Boolean expression on the left side
of || evaluates to true . This value means that the result of the entire expression must be true
and the Boolean expression to the right of the || operator is not evaluated .

If you carefully design expressions that use the conditional logical operators, you can boost
the performance of your code by avoiding unnecessary work . Place simple Boolean expres-
sions that can be evaluated easily on the left side of a conditional logical operator, and put
more complex expressions on the right side . In many cases, you will find that the program
does not need to evaluate the more complex expressions .

Summarizing Operator Precedence and Associativity
The following table summarizes the precedence and associativity of all the operators you
have learned about so far . Operators in the same category have the same precedence . The
operators in categories higher up in the table take precedence over operators in categories
lower down .

Category Operators Description Associativity

Primary ()
++
--

Precedence override

Post-increment
Post-decrement

Left

Unary !
+
-
++
--

Logical NOT
Addition
Subtraction
Pre-increment
Pre-decrement

Left

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 4 Using Decision Statements 77

Category Operators Description Associativity

Multiplicative *
/
%

Multiply
Divide
Division remainder
(modulus)

Left

Additive +
-

Addition
Subtraction

Left

Relational <
<=
>
>=

Less than
Less than or equal to
Greater than
Greater than or equal to

Left

Equality ==
!=

Equal to
Not equal to

Left

Conditional AND

Conditional OR

&&

||

Logical AND

Logical OR

Left

Left

Assignment = Right

Using .if .Statements .to .Make .Decisions
When you want to choose between executing two different blocks of code depending on the
result of a Boolean expression, you can use an if statement .

Understanding if Statement Syntax
The syntax of an if statement is as follows (if and else are C# keywords):

if (booleanExpression)
 statement-1;
else
 statement-2;

If booleanExpression evaluates to true, statement-1 runs; otherwise, statement-2 runs . The
else keyword and the subsequent statement-2 are optional . If there is no else clause and the
booleanExpression is false, execution continues with whatever code follows the if statement.

For example, here’s an if statement that increments a variable representing the second hand
of a stopwatch . (Minutes are ignored for now .) If the value of the seconds variable is 59, it is
reset to 0; otherwise, it is incremented using the ++ operator:

int seconds;
...
if (seconds == 59)
 seconds = 0;
else
 seconds++;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

78 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

Boolean .Expressions .Only, .Please!
The expression in an if statement must be enclosed in parentheses . Additionally, the
 expression must be a Boolean expression . In some other languages (notably C and
C++), you can write an integer expression, and the compiler will silently convert the
integer value to true (nonzero) or false (0) . C# does not support this behavior, and the
compiler reports an error if you write such an expression .

If you accidentally specify the assignment operator, =, instead of the equality test
 operator, ==, in an if statement, the C# compiler recognizes your mistake and refuses
to compile your code . For example:

int seconds;
...
if (seconds = 59) // compile-time error
...
if (seconds == 59) // ok

Accidental assignments were another common source of bugs in C and C++ programs,
which would silently convert the value assigned (59) to a Boolean expression (with
anything nonzero considered to be true), with the result that the code following the
if statement would be performed every time .

Incidentally, you can use a Boolean variable as the expression for an if statement,
 although it must still be enclosed in parentheses, as shown in this example:

bool inWord;
...
if (inWord == true) // ok, but not commonly used
...
if (inWord) // more common and considered better style

Using Blocks to Group Statements
Notice that the syntax of the if statement shown earlier specifies a single statement after the
if (booleanExpression) and a single statement after the else keyword . Sometimes, you’ll want
to perform more than one statement when a Boolean expression is true . You can group the
statements inside a new method and then call the new method, but a simpler solution is to
group the statements inside a block . A block is simply a sequence of statements grouped be-
tween an opening brace and a closing brace . A block also starts a new scope . You can define
variables inside a block, but they will disappear at the end of the block .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 4 Using Decision Statements 79

In the following example, two statements that reset the seconds variable to 0 and increment
the minutes variable are grouped inside a block, and the whole block executes if the value of
seconds is equal to 59:

int seconds = 0;
int minutes = 0;
...
if (seconds == 59)
{
 seconds = 0;
 minutes++;
}
else
 seconds++;

Important If you omit the braces, the C# compiler associates only the first statement
(seconds = 0;) with the if statement . The subsequent statement (minutes++;) will not
be recognized by the compiler as part of the if statement when the program is compiled .
Furthermore, when the compiler reaches the else keyword, it will not associate it with the
 previous if statement, and it will report a syntax error instead .

Cascading if Statements
You can nest if statements inside other if statements . In this way, you can chain together a
 sequence of Boolean expressions, which are tested one after the other until one of them
evaluates to true . In the following example, if the value of day is 0, the first test evaluates
to true and dayName is assigned the string “Sunday” . If the value of day is not 0, the first
test fails and control passes to the else clause, which runs the second if statement and com-
pares the value of day with 1 . The second if statement is reached only if the first test is false .
Similarly, the third if statement is reached only if the first and second tests are false .

if (day == 0)
 dayName = "Sunday";
else if (day == 1)
 dayName = "Monday";
else if (day == 2)
 dayName = "Tuesday";
else if (day == 3)
 dayName = "Wednesday";
else if (day == 4)
 dayName = "Thursday";
else if (day == 5)
 dayName = "Friday";
else if (day == 6)
 dayName = "Saturday";
else
 dayName = "unknown";

http://lib.ommolketab.ir
http//lib.ommolketab.ir

80 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

In the following exercise, you’ll write a method that uses a cascading if statement to compare
two dates .

Write if statements

 . 1 . . Start Microsoft Visual Studio 2010 if it is not already running .

 . 2 . . Open the Selection project, located in the \Microsoft Press\Visual CSharp Step By Step
\Chapter 4\Selection folder in your Documents folder .

 . 3 . . On the Debug menu, click Start Without Debugging .

Visual Studio 2010 builds and runs the application . The form contains two
DateTimePicker controls called first and second . These controls display a calendar al-
lowing you to select a date when you click the icon . Both controls are initially set to the
current date .

 . 4 . . Click Compare .

The following text appears in the text box:

first == second : False
first != second : True
first < second : False
first <= second : False
first > second : True
first >= second : True

The Boolean expression first == second should be true because both first and
 second are set to the current date . In fact, only the less than operator and the greater
than or equal to operator seem to be working correctly .

 . 5 . . Click Quit to return to the Visual Studio 2010 programming environment .

 . 6 . . Display the code for MainWindow .xaml .cs in the Code and Text Editor window .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 4 Using Decision Statements 81

 . 7 . . Locate the compareClick method . It looks like this:

private int compareClick(object sender, RoutedEventArgs e)
{
 int diff = dateCompare(first.SelectedDate.Value, second.SelectedDate.Value);
 info.Text = "";
 show("first == second", diff == 0);
 show("first != second", diff != 0);
 show("first < second", diff < 0);
 show("first <= second", diff <= 0);
 show("first > second", diff > 0);
 show("first >= second", diff >= 0);
}

This method runs whenever the user clicks the Compare button on the form . It retrieves
the values of the dates displayed in the first and second DateTimePicker controls on the
form . The date the user selects in each of the DateTimePicker controls is available in the
SelectedDate property . You retrieve the date by using the Value property of this prop-
erty . (You will learn more about properties in Chapter 15, “Implementing Properties to
Access Fields .”) The type of this property is DateTime . The DateTime data type is just
another data type, like int or float, except that it contains subelements that enable you
to access the individual pieces of a date, such as the year, month, or day .

The compareClick method passes the two DateTime values to the dateCompare meth-
od, which compares them . You will examine the dateCompare method in the next step .

The show method summarizes the results of the comparison in the info text box control
on the form .

 . 8 . . Locate the dateCompare method . It looks like this:

private int dateCompare(DateTime leftHandSide, DateTime rightHandSide)
{
 // TO DO
 return 42;
}

This method currently returns the same value whenever it is called—rather than 0, –1,
or +1—depending on the values of its parameters . This explains why the application is
not working as expected!

The purpose of this method is to examine its arguments and return an integer value
based on their relative values; it should return 0 if they have the same value, –1 if the
value of the first argument is less than the value of the second argument, and +1 if the
value of the first argument is greater than the value of the second argument . (A date is
considered greater than another date if it comes after it chronologically .) You need to
implement the logic in this method to compare two dates correctly .

 . 9 . . Remove the // TO DO comment and the return statement from the dateCompare
method .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

82 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

 . 10 . . Add the following statements shown in bold type to the body of the dateCompare
method:

private int dateCompare(DateTime leftHandSide, DateTime rightHandSide)
{
 int result;

 if (leftHandSide.Year < rightHandSide.Year)
 result = -1;
 else if (leftHandSide.Year > rightHandSide.Year)
 result = 1;
}

If the expression leftHandSide.Year < rightHandSide.Year is true, the date in
leftHandSide must be earlier than the date in rightHandSide, so the program sets the
result variable to –1 . Otherwise, if the expression leftHandSide.Year > rightHand-
Side.Year is true, the date in leftHandSide must be later than the date in rightHand-
Side, and the program sets the result variable to 1 .

If the expression leftHandSide.Year < rightHandSide.Year is false and the expres-
sion leftHandSide.Year > rightHandSide.Year is also false, the Year property of
both dates must be the same, so the program needs to compare the months in each
date .

 . 11 . . Add the following statements shown in bold type to the body of the dateCompare
method, after the code you entered in the preceding step:

private int dateCompare(DateTime leftHandSide, DateTime rightHandSide)
{
 ...

 else if (leftHandSide.Month < rightHandSide.Month)
 result = -1;
 else if (leftHandSide.Month > rightHandSide.Month)
 result = 1;
}

These statements follow a similar logic for comparing months to that used to compare
years in the preceding step .

If the expression leftHandSide.Month < rightHandSide.Month is false and the
 expression leftHandSide.Month > rightHandSide.Month is also false, the Month
property of both dates must be the same, so the program finally needs to compare the
days in each date .

 . 12 . . Add the following statements to the body of the dateCompare method, after the code
you entered in the preceding two steps:

private int dateCompare(DateTime leftHandSide, DateTime rightHandSide)
{
 ...
 else if (leftHandSide.Day < rightHandSide.Day)
 result = -1;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 4 Using Decision Statements 83

 else if (leftHandSide.Day > rightHandSide.Day)
 result = 1;
 else
 result = 0;
 return result;
}

You should recognize the pattern in this logic by now .

If leftHandSide.Day < rightHandSide.Day and leftHandSide.Day > rightHand-
Side.Day both are false, the value in the Day properties in both variables must be the
same . The Month values and the Year values must also be identical, respectively, for
the program logic to have reached this far, so the two dates must be the same, and the
program sets the value of result to 0 .

The final statement returns the value stored in the result variable .

 . 13 . . On the Debug menu, click Start Without Debugging .

The application is rebuilt and restarted . Once again, the two DateTimePicker controls,
first and second, are set to the current date .

 . 14 . . Click Compare .

The following text appears in the text box:

first == second : True
first != second : False
first < second : False
first <= second : True
first > second : False
first >= second : True

These are the correct results for identical dates .

 . 15 . . Click the icon for the second DateTimePicker control, and then click tomorrow’s date in
the calendar that appears .

 . 16 . . Click Compare .

The following text appears in the text box:

first == second : False
first != second : True
first < second : True
first <= second : True
first > second : False
first >= second : False

Again, these are the correct results when the first date is earlier than the second date .

 . 17 . . Test some other dates, and verify that the results are as you would expect . Click Quit
when you have finished .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

84 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

Comparing .Dates .in .Real-World .Applications
Now that you have seen how to use a rather long and complicated series of if and else
statements, I should mention that this is not the technique you would use to com-
pare dates in a real-world application . In the Microsoft .NET Framework class library,
dates are held using a special type called DateTime . If you look at the dateCompare
method you have written in the preceding exercise, you will see that the two param-
eters, leftHandSide and rightHandSide, are DateTime values . The logic you have written
compares only the date part of these variables—there is also a time element . For two
DateTime values to be considered equal, they should not only have the same date but
also the same time . Comparing dates and times is such a common operation that the
DateTime type has a built-in method called Compare for doing just that . The Compare
method takes two DateTime arguments and compares them, returning a value indicat-
ing whether the first argument is less than the second, in which case the result will be
negative; whether the first argument is greater than the second, in which case the result
will be positive; or whether both arguments represent the same date and time, in which
case the result will be 0 .

Using .switch .Statements
Sometimes when you write a cascading if statement, all the if statements look similar because
they all evaluate an identical expression . The only difference is that each if compares the
result of the expression with a different value . For example, consider the following block of
code that uses an if statement to examine the value in the day variable and work out which
day of the week it is:

if (day == 0)
 dayName = "Sunday";
else if (day == 1)
 dayName = "Monday";
else if (day == 2)
 dayName = "Tuesday";
else if (day == 3)
 ...
else
 dayName = "Unknown";

In these situations, often you can rewrite the cascading if statement as a switch statement to
make your program more efficient and more readable .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 4 Using Decision Statements 85

Understanding switch Statement Syntax
The syntax of a switch statement is as follows (switch, case, and default are keywords):

switch (controllingExpression)
{
 case constantExpression :
 statements
 break;
 case constantExpression :
 statements
 break;
 ...
 default :
 statements
 break;
}

The controllingExpression is evaluated once . Control then jumps to the block of code identi-
fied by the constantExpression, whose value is equal to the result of the controllingExpression .
(The identifier is called a case label .) Execution runs as far as the break statement, at which
point the switch statement finishes and the program continues at the first statement after the
closing brace of the switch statement . If none of the constantExpression values are equal to
the value of the controllingExpression, the statements below the optional default label run .

Note Each constantExpression value must be unique, so the controllingExpression will match
only one of them . If the value of the controllingExpression does not match any constantExpression
value and there is no default label, program execution continues with the first statement after the
closing brace of the switch statement .

For example, you can rewrite the previous cascading if statement as the following switch
statement:

switch (day)
{
 case 0 :
 dayName = "Sunday";
 break;
 case 1 :
 dayName = "Monday";
 break;
 case 2 :
 dayName = "Tuesday";
 break;
 ...
 default :
 dayName = "Unknown";
 break;
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

86 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

Following the switch Statement Rules
The switch statement is very useful, but unfortunately, you can’t always use it when you
might like to . Any switch statement you write must adhere to the following rules:

n You can use switch only on primitive data types, such as int or string . With any other
types (including float and double), you have to use an if statement .

n The case labels must be constant expressions, such as 42 or “42” . If you need to
 calculate your case label values at run time, you must use an if statement .

n The case labels must be unique expressions . In other words, two case labels cannot
have the same value .

n You can specify that you want to run the same statements for more than one value by
providing a list of case labels and no intervening statements, in which case the code for
the final label in the list is executed for all cases in that list . However, if a label has one
or more associated statements, execution cannot fall through to subsequent labels, and
the compiler generates an error . For example:

switch (trumps)
{
 case Hearts :
 case Diamonds : // Fall-through allowed – no code between labels
 color = "Red"; // Code executed for Hearts and Diamonds
 break;
 case Clubs :
 color = "Black";
 case Spades : // Error – code between labels
 color = "Black";
 break;
}

Note The break statement is the most common way to stop fall-through, but you can also
use a return statement or a throw statement . The throw statement is described in Chapter 6,
“Managing Errors and Exceptions .”

switch .Fall-Through .Rules
Because you cannot accidentally fall through from one case label to the next if there is
any intervening code, you can freely rearrange the sections of a switch statement with-
out affecting its meaning (including the default label, which by convention is usually
placed as the last label but does not have to be) .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 4 Using Decision Statements 87

C and C++ programmers should note that the break statement is mandatory for
every case in a switch statement (even the default case) . This requirement is a
good thing; it is common in C or C++ programs to forget the break statement,
allowing execution to fall through to the next label and leading to bugs that are
difficult to spot .

If you really want to, you can mimic C/C++ fall-through in C# by using a goto
statement to go to the following case or default label . Using goto in general is
not recommended, though, and this book does not show you how to do it!

In the following exercise, you will complete a program that reads the characters of a
string and maps each character to its XML representation . For example, the left angle
bracket character, <, has a special meaning in XML . (It’s used to form elements .) If
you have data that contains this character, it must be translated into the text "<"
so that an XML processor knows that it is data and not part of an XML instruction .
Similar rules apply to the right angle bracket (>), ampersand (&), single quotation
mark ('), and double quotation mark (") characters . You will write a switch statement
that tests the value of the character and traps the special XML characters as case
labels .

Write switch statements

 . 1 . . Start Visual Studio 2010 if it is not already running .

 . 2 . . Open the SwitchStatement project, located in the \Microsoft Press\Visual
CSharp Step By Step\Chapter 4\SwitchStatement folder in your Documents
folder .

 . 3 . . On the Debug menu, click Start Without Debugging .

Visual Studio 2010 builds and runs the application . The application displays a
form containing two text boxes separated by a Copy button .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

88 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

 . 4 . . Type the following sample text into the upper text box:

inRange .= .(lo .<= .number) .&& .(hi .>= .number);

 . 5 . . Click Copy .

The statement is copied verbatim into the lower text box, and no translation of the <,
&, or > character occurs .

 . 6 . . Close the form, and return to Visual Studio 2010 .

 . 7 . . Display the code for MainWindow .xaml .cs in the Code and Text Editor window, and
 locate the copyOne method .

The copyOne method copies the character specified as its input parameter to the end
of the text displayed in the lower text box . At the moment, copyOne contains a switch
statement with a single default action . In the following few steps, you will modify this
switch statement to convert characters that are significant in XML to their XML map-
ping . For example, the "<" character will be converted to the string "<" .

 . 8 . . Add the following statements to the switch statement after the opening brace for the
statement and directly before the default label:

case '<' :
 target.Text += "<";
 break;

If the current character being copied is a >, this code appends the string "<" to the
text being output in its place .

 . 9 . . Add the following statements to the switch statement after the break statement you
have just added and above the default label:

case '>' :
 target.Text += ">";
 break;
case '&' :
 target.Text += "&";
 break;
case '\"' :
 target.Text += """;
 break;
case '\'' :
 target.Text += "'";
 break;

Note The single quotation mark (') and double quotation mark (") have a special mean-
ing in C# as well as in XML—they are used to delimit character and string constants . The
backslash (\) in the final two case labels is an escape character that causes the C# compiler
to treat these characters as literals rather than as delimiters .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 4 Using Decision Statements 89

 . 10 . . On the Debug menu, click Start Without Debugging .

 . 11 . . Type the following text into the upper text box:

inRange .= .(lo .<= .number) .&& .(hi .>= .number);

 . 12 . . Click Copy .

The statement is copied into the lower text box . This time, each character undergoes
the XML mapping implemented in the switch statement . The target text box displays
the following text:

inRange .= .(lo .<= .number) .&& .(hi .>= .number);

 . 13 . . Experiment with other strings, and verify that all special characters (<, >, &, “, and ‘) are
handled correctly .

 . 14 . . Close the form .

In this chapter, you learned about Boolean expressions and variables . You saw how to use
Boolean expressions with the if and switch statements to make decisions in your programs,
and you combined Boolean expressions by using the Boolean operators .

n If you want to continue to the next chapter

Keep Visual Studio 2010 running, and turn to Chapter 5 .

n If you want to exit Visual Studio 2010 now

On the File menu, click Exit . If you see a Save dialog box, click Yes and save the project .

Chapter .4 .Quick .Reference
To Do this Example

Determine whether two values are equivalent Use the == or != operator . answer == 42

Compare the value of two expressions Use the <, <=, >, or >=
 operator .

age >= 21

Declare a Boolean variable Use the bool keyword as the
type of the variable .

bool inRange;

Create a Boolean expression that is true only
if two other conditions are true

Use the && operator . inRange = (lo <= number)
 && (number <= hi);

Create a Boolean expression that is true if
either of two other conditions is true

Use the || operator . outOfRange = (number < lo)
 || (hi < number);

Run a statement if a condition is true Use an if statement . if (inRange)
 process();

http://lib.ommolketab.ir
http//lib.ommolketab.ir

90 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

To Do this Example

Run more than one statement if a condition
is true

Use an if statement and a
block .

if (seconds == 59)
{
 seconds = 0;
 minutes++;
}

Associate different statements with different
values of a controlling expression

Use a switch statement . switch (current)
{
 case 0:
 ...
 break;

 case 1:
 ...
 break;
 default :
 ...
 break;
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 . . 91

Chapter 5

Using Compound Assignment and
Iteration Statements

After completing this chapter, you will be able to:

n Update the value of a variable by using compound assignment operators .

n Write while, for, and do iteration statements .

n Step through a do statement and watch as the values of variables change .

In Chapter 4, “Using Decision Statements,” you learned how to use the if and switch
 constructs to run statements selectively . In this chapter, you’ll see how to use a variety of
iteration (or looping) statements to run one or more statements repeatedly . When you write
iteration statements, you usually need to control the number of iterations that you perform .
You can achieve this by using a variable, updating its value with each iteration, and stop-
ping the process when the variable reaches a particular value . You’ll also learn about the
special assignment operators that you should use to update the value of a variable in these
circumstances .

Using .Compound .Assignment .Operators
You’ve already seen how to use arithmetic operators to create new values . For example, the
following statement uses the plus operator (+) to display to the console a value that is 42
greater than the variable answer:

Console.WriteLine(answer + 42);

You’ve also seen how to use assignment statements to change the value of a variable . The
following statement uses the assignment operator to change the value of answer to 42:

answer = 42;

If you want to add 42 to the value of a variable, you can combine the assignment operator
and the addition operator . For example, the following statement adds 42 to answer . After this
statement runs, the value of answer is 42 more than it was before:

answer = answer + 42;

Although this statement works, you’ll probably never see an experienced programmer write
code like this . Adding a value to a variable is so common that C# lets you perform this task in

http://lib.ommolketab.ir
http//lib.ommolketab.ir

92 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

shorthand manner by using the operator += . To add 42 to answer, you can write the following
statement:

answer += 42;

You can use this shortcut to combine any arithmetic operator with the assignment opera-
tor, as the following table shows . These operators are collectively known as the compound
 assignment operators .

Don’t write this Write this

variable = variable * number; variable *= number;

variable = variable / number; variable /= number;

variable = variable % number; variable %= number;

variable = variable + number; variable += number;

variable = variable - number; variable -= number;

Tip The compound assignment operators share the same precedence and right associativity as
the simple assignment operators .

The += operator also works on strings; it appends one string to the end of another . For
 example, the following code displays “Hello John” on the console:

string name = "John";
string greeting = "Hello ";
greeting += name;
Console.WriteLine(greeting);

You cannot use any of the other compound assignment operators on strings .

Note Use the increment (++) and decrement (--) operators instead of a compound assignment
operator when incrementing or decrementing a variable by 1 . For example, replace

count += 1;

with

count++;

Writing .while .Statements
You use a while statement to run a statement repeatedly while some condition is true . The
syntax of a while statement is as follows:

while (booleanExpression)
 statement

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 5 Using Compound Assignment and Iteration Statements 93

The Boolean expression is evaluated, and if it is true, the statement runs and then the
Boolean expression is evaluated again . If the expression is still true, the statement is repeated
and then the Boolean expression is evaluated again . This process continues until the Boolean
expression evaluates to false, when the while statement exits . Execution then continues with
the first statement after the while statement . A while statement shares many syntactic simi-
larities with an if statement (in fact, the syntax is identical except for the keyword):

n The expression must be a Boolean expression .

n The Boolean expression must be written inside parentheses .

n If the Boolean expression evaluates to false when first evaluated, the statement does
not run .

n If you want to perform two or more statements under the control of a while statement,
you must use braces to group those statements in a block .

Here’s a while statement that writes the values 0 through 9 to the console:

int i = 0;
while (i < 10)
{
 Console.WriteLine(i);
 i++;
}

All while statements should terminate at some point . A common beginner’s mistake is forget-
ting to include a statement to cause the Boolean expression eventually to evaluate to false
and terminate the loop, which results in a program that runs forever . In the example, the i++
statement performs this role .

Note The variable i in the while loop controls the number of iterations that it performs . This is a
common idiom, and the variable that performs this role is sometimes called the Sentinel variable .

In the following exercise, you will write a while loop to iterate through the contents of a text
file one line at a time and write each line to a text box in a form .

Write a while statement

 . 1 . . Using Microsoft Visual Studio 2010, open the WhileStatement project, located in the
\Microsoft Press\Visual CSharp Step By Step\Chapter 5\WhileStatement folder in your
Documents folder .

 . 2 . . On the Debug menu, click Start Without Debugging .

Visual Studio 2010 builds and runs the application . The application is a simple text file
viewer that you can use to select a text file and display its contents .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

94 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

 . 3 . . Click Open File .

The Open dialog box opens .

 . 4 . . Move to the \Microsoft Press\Visual CSharp Step By Step\Chapter 5\WhileStatement\
WhileStatement folder in your Documents folder .

 . 5 . . Select the file MainWindow .xaml .cs, and then click Open .

The name of the file, MainWindow .xaml .cs, appears in the small text box on the form,
but the contents of the file MainWindow .xaml .cs do not appear in the large text box .
This is because you have not yet implemented the code that reads the contents of the
file and displays it . You will add this functionality in the following steps .

 . 6 . . Close the form and return to Visual Studio 2010 .

 . 7 . . Display the code for the file MainWindow .xaml .cs in the Code and Text Editor window,
and locate the openFileDialogFileOk method .

This method runs when the user clicks the Open button after selecting a file in the
Open dialog box . The body of the method is currently implemented as follows:

private void openFileDialogFileOk(object sender, System.ComponentModel.
CancelEventArgs e)
{
 string fullPathname = openFileDialog.FileName;
 FileInfo src = new FileInfo(fullPathname);
 filename.Text = src.Name;

 // add while loop here
}

The first statement declares a string variable called fullPathname and initializes it to the
FileName property of the openFileDialog object . This property contains the full name
(including the folder) of the source file that the user selected in the Open dialog box .

Note The openFileDialog object is an instance of the OpenFileDialog class . This class pro-
vides methods that you can use to display the standard Windows Open dialog box, select a
file, and retrieve the name and path of the selected file . This is one of a number of classes
provided in the .NET Framework Class Library that you can use to perform common tasks
that require the user to select a file . These classes are collectively known as the Common
Dialog classes . You will learn more about them in Chapter 23, “Gathering User Input .”

The second statement declares a FileInfo variable called src and initializes it to an object
that represents the file selected in the Open dialog box . (FileInfo is a class provided by
the Microsoft .NET Framework that you can use to manipulate files .)

The third statement assigns the Text property of the filename control to the Name
property of the src variable . The Name property of the src variable holds the name

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 5 Using Compound Assignment and Iteration Statements 95

of the file selected in the Open dialog box, but without the name of the folder . This
 statement displays the name of the file in the text box on the form .

 . 8 . . Replace the // add while loop here comment with the following statement:

source.Text = "";

The source variable refers to the large text box on the form . Setting its Text property to
the empty string (“”) clears any text that is currently displayed in this text box .

 . 9 . . Type the following statement after the line you just added to the openFileDialogFileOk
method:

TextReader reader = src.OpenText();

This statement declares a TextReader variable called reader . TextReader is another class,
provided by the .NET Framework, that you can use for reading streams of characters
from sources such as files . It is located in the System.IO namespace . The FileInfo class
provides the OpenText method for opening a file for reading . This statement opens the
file selected by the user in the Open dialog box so that the reader variable can read the
contents of this file .

 . 10 . . Add the following statement after the previous line you added to the
 openFileDialogFileOk method:

string line = reader.ReadLine();

This statement declares a string variable called line and calls the reader.ReadLine meth-
od to read the first line from the file into this variable . This method returns either the
next line of text or a special value called null if there are no more lines to read . (If there
are no lines initially, the file must be empty .)

 . 11 . . Add the following statements to the openFileDialogFileOk method after the code you
have just entered:

while (line != null)
{
 source.Text += line + '\n';
 line = reader.ReadLine();
}

This is a while loop that iterates through the file one line at a time until there are no
more lines available .

The Boolean expression at the start of the while loop examines the value in the line
variable . If it is not null, the body of the loop displays the current line of text by
 appending it to the Text property of the source text box, together with a newline
 character ('\n'—the ReadLine method of the TextReader object strips out the new-
line characters as it reads each line, so the code needs to add it back in again) . The

http://lib.ommolketab.ir
http//lib.ommolketab.ir

96 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

while loop then reads in the next line of text before performing the next iteration .
The while loop finishes when there is no more text in the file and the ReadLine method
 returns a null value .

 . 12 . . Add the following statement after the closing brace at the end of the while loop:

reader.Close();

This statement closes the file . It is good practice to close any files that you are using
when you have finished with them; it enables other applications to use the file and also
frees up any memory and other resources required to read the file .

 . 13 . . On the Debug menu, click Start Without Debugging .

 . 14 . . When the form appears, click Open File .

 . 15 . . In the Open File dialog box, move to the \Microsoft Press\Visual CSharp Step By Step\
Chapter 5\WhileStatement\WhileStatement folder in your Documents folder . Select the
file MainWindow .xaml .cs, and then click Open .

This time the contents of the selected file appear in the text box—you should recognize
the code that you have just been editing:

 . 16 . . Scroll through the text in the text box, and find the openFileDialogFileOk method .
Verify that this method contains the code you just added .

 . 17 . . Close the form and return to the Visual Studio 2010 programming environment .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 5 Using Compound Assignment and Iteration Statements 97

Writing .for .Statements
Most while statements have the following general structure:

initialization
while (Boolean expression)
{
 statement
 update control variable
}

By using a for statement, you can write a more formal version of this kind of construct by
combining the initialization, Boolean expression, and code that updates the control variable .
You’ll find the for statement useful because it is much harder to forget any one of the three
parts . Here is the syntax of a for statement:

for (initialization; Boolean expression; update control variable)
 statement

You can rephrase the while loop shown earlier that displays the integers from 0 through 9 as
the following for loop:

for (int i = 0; i < 10; i++)
{
 Console.WriteLine(i);
}

The initialization occurs once at the start of the loop . Then, if the Boolean expression evalu-
ates to true, the statement runs . The control variable update occurs, and then the Boolean
expression is reevaluated . If the condition is still true, the statement is executed again, the
control variable is updated, the Boolean expression is evaluated again, and so on .

Notice that the initialization occurs only once, that the statement in the body of the loop
always executes before the update occurs, and that the update occurs before the Boolean
expression reevaluates .

You can omit any of the three parts of a for statement . If you omit the Boolean expression, it
defaults to true . The following for statement runs forever:

for (int i = 0; ;i++)
{
 Console.WriteLine("somebody stop me!");
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

98 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

If you omit the initialization and update parts, you have a strangely spelled while loop:

int i = 0;
for (; i < 10;)
{
 Console.WriteLine(i);
 i++;
}

Note The initialization, Boolean expression, and update control variable parts of a for statement
must always be separated by semicolons, even when they are omitted .

If necessary, you can provide multiple initializations and multiple updates in a for loop . (You
can have only one Boolean expression .) To achieve this, separate the various initializations
and updates with commas, as shown in the following example:

for (int i = 0, j = 10; i <= j; i++, j--)
{
 ...
}

As a final example, here is the while loop from the preceding exercise recast as a for loop:

for (string line = reader.ReadLine(); line != null; line = reader.ReadLine())
{
 source.Text += line + '\n';
}

Tip It’s considered good style to use braces to explicitly delineate the statement block for the
body of if, while, and for statements even when the block contains only one statement . By writing
the block, you make it easier to add statements to the block at a later date . Without the block, to
add another statement, you’d have to remember to add both the extra statement and the braces,
and it’s very easy to forget the braces .

Understanding for Statement Scope
You might have noticed that you can declare a variable in the initialization part of a for state-
ment . That variable is scoped to the body of the for statement and disappears when the for
statement finishes . This rule has two important consequences . First, you cannot use that vari-
able after the for statement has ended because it’s no longer in scope . Here’s an example:

for (int i = 0; i < 10; i++)
{
 ...
}
Console.WriteLine(i); // compile-time error

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 5 Using Compound Assignment and Iteration Statements 99

Second, you can write next to each other two or more for statements that reuse the same
variable name because each variable is in a different scope, as shown in the following code:

for (int i = 0; i < 10; i++)
{
 ...
}

for (int i = 0; i < 20; i += 2) // okay
{
 ...
}

Writing .do .Statements
The while and for statements both test their Boolean expression at the start of the loop . This
means that if the expression evaluates to false on the first test, the body of the loop does not
run, not even once . The do statement is different; its Boolean expression is evaluated after
each iteration, so the body always executes at least once .

The syntax of the do statement is as follows (don’t forget the final semicolon):

do
 statement
while (booleanExpression);

You must use a statement block if the body of the loop comprises more than one statement .
Here’s a version of the example that writes the values 0 through 9 to the console, this time
constructed using a do statement:

int i = 0;
do
{
 Console.WriteLine(i);
 i++;
}
while (i < 10);

The .break .and .continue .Statements
In Chapter 4, you saw the break statement being used to jump out of a switch state-
ment . You can also use a break statement to jump out of the body of an iteration
statement . When you break out of a loop, the loop exits immediately and execution
continues at the first statement after the loop . Neither the update nor the continuation
condition of the loop is rerun .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

100 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

In contrast, the continue statement causes the program to perform the next iteration of
the loop immediately (after reevaluating the Boolean expression) . Here’s another ver-
sion of the example that writes the values 0 through 9 to the console, this time using
break and continue statements:

int i = 0;
while (true)
{
 Console.WriteLine("continue " + i);
 i++;
 if (i < 10)
 continue;
 else
 break;
}

This code is absolutely ghastly . Many programming guidelines recommend using
 continue cautiously or not at all because it is often associated with hard-to-understand
code . The behavior of continue is also quite subtle . For example, if you execute a
 continue statement from inside a for statement, the update part runs before perform-
ing the next iteration of the loop .

In the following exercise, you will write a do statement to convert a positive decimal whole
number to its string representation in octal notation . The program is based on the following
algorithm, based on a well-known mathematical procedure:

store the decimal number in the variable dec
do the following
 divide dec by 8 and store the remainder
 set dec to the quotient from the previous step
while dec is not equal to zero
combine the values stored for the remainder for each calculation in reverse order

For example, suppose you want to convert the decimal number 999 to octal . You perform
the following steps:

 . 1 . . Divide 999 by 8 . The quotient is 124 and the remainder is 7 .

 . 2 . . Divide 124 by 8 . The quotient is 15 and the remainder is 4 .

 . 3 . . Divide 15 by 8 . The quotient is 1 and the remainder is 7 .

 . 4 . . Divide 1 by 8 . The quotient is 0 and the remainder is 1 .

 . 5 . . Combine the values calculated for the remainder at each step in reverse order . The
 result is 1747 . This is the octal representation of the decimal value 999 .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 5 Using Compound Assignment and Iteration Statements 101

Write a do statement

 . 1 . . Using Visual Studio 2010, open the DoStatement project, located in the \Microsoft
Press\Visual CSharp Step By Step\Chapter 5\DoStatement folder in your Documents
folder .

 . 2 . . Display the WPF form MainWindow.xaml in the Design View window .

The form contains a text box called number that the user can enter a decimal number
into . When the user clicks the Show Steps button, the octal representation of the num-
ber entered is generated . The lower text box, called steps, shows the results of each
stage of the calculation .

 . 3 . . Display the code for MainWindow .xaml .cs in the Code and Text Editor window . Locate
the showStepsClick method . This method runs when the user clicks the Show Steps
 button on the form . Currently it is empty .

 . 4 . . Add the following statements shown in bold to the showStepsClick method:

private void showStepsClick(object sender, RoutedEventArgs e)
{
 int amount = int.Parse(number.Text);
 steps.Text = "";
 string current = "";
}

The first statement converts the string value in the Text property of the number text
box into an int by using the Parse method of the int type and stores it in a local variable
called amount .

The second statement clears the text displayed in the lower text box by setting its Text
property to the empty string .

The third statement declares a string variable called current and initializes it to the
empty string . You use this string to store the digits generated at each iteration of the
loop used to convert the decimal number to its octal representation .

 . 5 . . Add the following do statement, shown in bold, to the showStepsClick method:

private void showStepsClick(object sender, RoutedEventArgs e)
{
 int amount = int.Parse(number.Text);
 steps.Text = "";
 string current = "";
 do
 {
 int nextDigit = amount % 8;
 amount /= 8;
 int digitCode = '0' + nextDigit;
 char digit = Convert.ToChar(digitCode);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

102 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

 current = digit + current;
 steps.Text += current + "\n";

 }
 while (amount != 0);
}

The algorithm used repeatedly performs integer arithmetic to divide the amount
 variable by 8 and determine the remainder; the remainder after each successive
 division constitutes the next digit in the string being built . Eventually, when amount is
reduced to 0, the loop finishes . Notice that the body must run at least once . This be-
havior is exactly what is required because even the number 0 has one octal digit .

Look more closely at the code, and you will see that the first statement inside the do
loop is this:

int nextDigit = amount % 8;

This statement declares an int variable called nextDigit and initializes it to the
 remainder after dividing the value in amount by 8 . This will be a number somewhere
between 0 and 7 .

The next statement inside the do loop is

amount /= 8;

This is a compound assignment statement and is equivalent to writing amount =
amount / 8; . If the value of amount is 999, the value of amount after this statement
runs is 124 .

The next statement is this:

int digitCode = '0' + nextDigit;

This statement requires a little explanation! Characters have a unique code according to
the character set used by the operating system . In the character sets frequently used by
the Microsoft Windows operating system, the code for character ‘0’ has integer value
48 . The code for character ‘1’ is 49, the code for character ‘2’ is 50, and so on up to the
code for character ‘9’, which has integer value 57 . C# allows you to treat a character
as an integer and perform arithmetic on it, but when you do so, C# uses the charac-
ter’s code as the value . So the expression '0' + nextDigit actually results in a value
somewhere between 48 and 55 (remember that nextDigit will be between 0 and 7),
 corresponding to the code for the equivalent octal digit .

The fourth statement inside the do loop is

char digit = Convert.ToChar(digitCode);

This statement declares a char variable called digit and initializes it to the result of the
Convert.ToChar(digitCode) method call . The Convert.ToChar method takes an integer

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 5 Using Compound Assignment and Iteration Statements 103

holding a character code and returns the corresponding character . So, for example, if
digitCode has the value 54, Convert.ToChar(digitCode) returns the character ‘6’ .

To summarize, the first four statements in the do loop have determined the character
representing the least-significant (rightmost) octal digit corresponding to the number
the user typed in . The next task is to prepend this digit to the string being output, like
this:

current = digit + current;

The next statement inside the do loop is this:

steps.Text += current + "\n";

This statement adds to the Steps text box the string containing the digits produced so
far for the octal representation of the number . It also appends a newline character so
that each stage of the conversion appears on a separate line in the text box .

Finally, the condition in the while clause at the end of the loop is evaluated:

while (amount != 0)

Because the value of amount is not yet 0, the loop performs another iteration .

In the final exercise, you will use the Visual Studio 2010 debugger to step through the
 previous do statement to help you understand how it works .

Step through the do statement

 . 1 . . In the Code and Text Editor window displaying the MainWindow .xaml .cs file, move the
cursor to the first statement of the showStepsClick method:

int amount = int.Parse(number.Text);

 . 2 . . Right-click anywhere in the first statement, and then click Run To Cursor .

 . 3 . . When the form appears, type 999 in the upper text box and then click Show Steps .

The program stops, and you are placed in Visual Studio 2010 debug mode . A yellow
arrow in the left margin of the Code and Text Editor window indicates the current
statement .

 . 4 . . Display the Debug toolbar if it is not visible . (On the View menu, point to Toolbars, and
then click Debug.)

 . 5 . . If you are using Visual Studio 2010 Professional or Visual Studio 2010 Standard, on the
Debug toolbar, click the Breakpoints drop-down arrow .

If you are using Visual C# 2010 Express, on the Debug toolbar, click the Output
 drop-down arrow .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

104 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

Note The Breakpoints or Output drop-down arrow is the rightmost icon in the Debug
toolbar .

The menu shown in the following image appears:

Note If you are using Microsoft Visual C# 2010 Express, the Output drop-down menu
contains a subset of those shown in this image .

 . 6 . . On the drop-down menu, click Locals .

The Locals window appears (if it wasn’t already open) . This window displays the name,
value, and type of the local variables in the current method, including the amount local
variable . Notice that the value of amount is currently 0:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 5 Using Compound Assignment and Iteration Statements 105

 . 7 . . On the Debug toolbar, click the Step Into button .

The debugger runs the statement

int amount = int.Parse(number.Text);

The value of amount in the Locals window changes to 999, and the yellow arrow moves
to the next statement .

 . 8 . . Click Step Into again .

The debugger runs the statement

steps.Text = "";

This statement does not affect the Locals window because steps is a control on the form
and not a local variable . The yellow arrow moves to the next statement .

 . 9 . . Click Step Into .

The debugger runs the statement

string current = "";

The yellow arrow moves to the opening brace at the start of the do loop . The do loop
contains three local variables of its own: nextDigit, digitCode, and digit . Notice that
these local variables appear in the Locals window, and that the value of all three vari-
ables is 0 .

 . 10 . . Click Step Into .

The yellow arrow moves to the first statement inside the do loop .

 . 11 . . Click Step Into .

The debugger runs the statement

int nextDigit = amount % 8;

The value of nextDigit in the Locals window changes to 7 . This is the remainder after
dividing 999 by 8 .

 . 12 . . Click Step Into .

The debugger runs the statement

amount /= 8;

The value of amount changes to 124 in the Locals window .

 . 13 . . Click Step Into .

The debugger runs the statement

int digitCode = '0' + nextDigit;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

106 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

The value of digitCode in the Locals window changes to 55 . This is the character code of
'7' (48 + 7) .

 . 14 . . Click Step Into .

The debugger runs the statement

char digit = Convert.ToChar(digitCode);

The value of digit changes to '7' in the Locals window . The Locals window shows char
values using both the underlying numeric value (in this case, 55) and also the character
representation ('7') .

Note that in the Locals window, the value of the current variable is still “” .

 . 15 . . Click Step Into .

The debugger runs the statement

current = current + digit;

The value of current changes to "7" in the Locals window .

 . 16 . . Click Step Into .

The debugger runs the statement

steps.Text += current + "\n";

This statement displays the text "7" in the steps text box, followed by a newline char-
acter to cause subsequent output to be displayed on the next line in the text box . (The
form is currently hidden behind Visual Studio, so you won’t be able to see it .) The cur-
sor moves to the closing brace at the end of the do loop .

 . 17 . . Click Step Into .

The yellow arrow moves to the while statement to evaluate whether the do loop has
completed or whether it should continue for another iteration .

 . 18 . . Click Step Into .

The debugger runs the statement

while (amount != 0);

The value of amount is 124, and the expression 124 != 0 evaluates to true, so the do
loop performs another iteration . The yellow arrow jumps back to the opening brace at
the start of the do loop .

 . 19 . . Click Step Into .

The yellow arrow moves to the first statement inside the do loop again .

 . 20 . . Repeatedly click Step Into to step through the next three iterations of the do loop, and
watch how the values of the variables change in the Locals window .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 5 Using Compound Assignment and Iteration Statements 107

 . 21 . . At the end of the fourth iteration of the loop, the value of amount is now 0 and the
value of current is “1747” . The yellow arrow is on the while condition at the end of the
do loop:

while (amount != 0);

The value of amount is now 0, so the expression amount != 0 evaluates to false, and
the do loop should terminate .

 . 22 . . Click Step Into .

The debugger runs the statement

while (amount != 0);

As predicted, the do loop terminates, and the yellow arrow moves to the closing brace
at the end of the showStepsClick method .

 . 23 . . Click the Continue button on the Debug toolbar .

The form appears, displaying the four steps used to create the octal representation of
999: 7, 47, 747, and 1747 .

 . 24 . . Close the form to return to the Visual Studio 2010 programming environment .

In this chapter, you learned how to use the compound assignment operators to update nu-
meric variables . You saw how to use while, for, and do statements to execute code repeatedly
while some Boolean condition is true .

n If you want to continue to the next chapter

Keep Visual Studio 2010 running, and turn to Chapter 6 .

n If you want to exit Visual Studio 2010 now

On the File menu, click Exit . If you see a Save dialog box, click Yes and save the project .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

108 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

Chapter .5 .Quick .Reference
To Do this

Add an amount to a variable Use the compound addition operator . For example:

variable += amount;

Subtract an amount from a variable Use the compound subtraction operator . For example:

variable -= amount;

Run one or more statements zero or more
times while a condition is true

Use a while statement . For example:

int i = 0;
while (i < 10)
{
 Console.WriteLine(i);
 i++;
}

Alternatively, use a for statement . For example:

for (int i = 0; i < 10; i++)
{
 Console.WriteLine(i);
}

Repeatedly execute statements one or more
times

Use a do statement . For example:

int i = 0;
do
{
 Console.WriteLine(i);
 i++;
}
while (i < 10);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 . . 109

Chapter 6

Managing Errors and Exceptions
After completing this chapter, you will be able to:

n Handle exceptions by using the try, catch, and finally statements .

n Control integer overflow by using the checked and unchecked keywords .

n Raise exceptions from your own methods by using the throw keyword .

n Ensure that code always runs, even after an exception has occurred, by using a
finally block .

You have now seen the core Microsoft Visual C# statements you need to know to write
methods; declare variables; use operators to create values; write if and switch statements to
run code selectively; and write while, for, and do statements to run code repeatedly . However,
the previous chapters haven’t considered the possibility (or probability) that things can go
wrong . It is very difficult to ensure that a piece of code always works as expected . Failures
can occur for a large number of reasons, many of which are beyond your control as a pro-
grammer . Any applications that you write must be capable of detecting failures and handling
them in a graceful manner . In this final chapter of Part I, “Introducing Microsoft Visual C# and
Microsoft Visual Studio 2010,” you’ll learn how C# uses exceptions to signal that an error has
occurred and how to use the try, catch, and finally statements to catch and handle the errors
that these exceptions represent . By the end of this chapter, you’ll have a solid foundation in
C#, on which you will build in Part II, “Understanding the C# Language .”

Coping .with .Errors
It’s a fact of life that bad things sometimes happen . Tires get punctured, batteries run down,
screwdrivers are never where you left them, and users of your applications behave in an un-
predictable manner . In the world of computers, disks fail, other applications running on the
same computer as your program run amok and use up all the available memory, and net-
works disconnect at the most awkward moment . Errors can occur at almost any stage when a
program runs, so how do you detect them and attempt to recover?

Over the years, a number of mechanisms have evolved . A typical approach adopted by older
systems such as UNIX involved arranging for the operating system to set a special global
variable whenever a method failed . Then, after each call to a method, you checked the global
variable to see whether the method succeeded . C# and most other modern object-oriented
languages don’t handle errors in this way . It’s just too painful . They use exceptions instead . If
you want to write robust C# programs, you need to know about exceptions .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

110 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

Trying .Code .and .Catching .Exceptions
Errors can happen at any time, and using traditional techniques to manually add error-
detecting code around every statement is cumbersome, time consuming, and error prone in
its own right . You can also lose sight of the main flow of an application if each statement re-
quires contorted error-handling logic to manage each possible error that can occur at every
stage . Fortunately, C# makes it easy to separate the error-handling code from the code that
implements the main flow of the program by using exceptions and exception handlers . To
write exception-aware programs, you need to do two things:

 . 1 . . Write your code inside a try block (try is a C# keyword) . When the code runs, it
 attempts to execute all the statements inside the try block, and if none of the state-
ments generates an exception, they all run, one after the other, to completion .
However, if an error condition occurs, execution jumps out of the try block and into
another piece of code designed to catch and handle the exception—a catch handler .

 . 2 . . Write one or more catch handlers (catch is another C# keyword) immediately after the
try block to handle any possible error conditions . A catch handler is intended to catch
and handle a specific type of exception, and you can have multiple catch handlers after
a try block, each one designed to trap and process a specific exception so that you can
provide different handlers for the different errors that could arise in the try block . If any
one of the statements inside the try block causes an error, the runtime generates and
throws an exception . The runtime then examines the catch handlers after the try block
and transfers control directly to the first matching handler .

Here’s an example of code in a try block that attempts to convert strings that a user has
typed in some text boxes on a form to integer values, call a method to calculate a value, and
write the result to another text box . Converting a string to an integer requires that the string
contain a valid set of digits and not some arbitrary sequence of characters . If the string con-
tains invalid characters, the int.Parse method automatically throws a FormatException, and
execution transfers to the corresponding catch handler . When the catch handler finishes, the
program continues with the first statement after the handler:

try
{
 int leftHandSide = int.Parse(lhsOperand.Text);
 int rightHandSide = int.Parse(rhsOperand.Text);
 int answer = doCalculation(leftHandSide, rightHandSide);
 result.Text = answer.ToString();
}
catch (FormatException fEx)
{
 // Handle the exception
 ...
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 6 Managing Errors and Exceptions 111

A catch handler uses syntax similar to that used by a method parameter to specify the
 exception to be caught . In the preceding example, when a FormatException is thrown,
the fEx variable is populated with an object containing the details of the exception . The
FormatException type has a number of properties that you can examine to determine the
exact cause of the exception . Many of these properties are common to all exceptions . For
example, the Message property contains a text description of the error that caused the ex-
ception . You can use this information when handling the exception, perhaps recording the
details to a log file or displaying a meaningful message to the user and then asking the user
to try again .

Unhandled Exceptions
What happens if a try block throws an exception and there is no corresponding catch han-
dler? In the previous example, it is possible that the lhsOperand text box contains the string
representation of a valid integer but the integer it represents is outside the range of valid
integers supported by C# (for example, “2147483648”) . In this case, the int.Parse statement
throws an OverflowException, which will not be caught by the FormatException catch han-
dler . If this occurs, if the try block is part of a method, the method immediately exits and
execution returns to the calling method . If the calling method uses a try block, the runtime
attempts to locate a matching catch handler after the try block in the calling method and ex-
ecute it . If the calling method does not use a try block or there is no matching catch handler,
the calling method immediately exits and execution returns to its caller, where the process
is repeated . If a matching catch handler is eventually found, the handler runs and execution
continues with the first statement after the catch handler in the catching method .

Important Notice that after catching an exception, execution continues in the method con-
taining the catch block that caught the exception . If the exception occurred in a method other
than the one containing the catch handler, control does not return to the method that caused
the exception .

If, after cascading back through the list of calling methods, the runtime is unable to find a
matching catch handler, the program terminates with an unhandled exception .

You can easily examine exceptions generated by your application . If you are running the
application in Microsoft Visual Studio 2010 in debug mode (that is, you selected Start
Debugging on the Debug menu to run the application) and an exception occurs, a dialog box
similar to the one shown in the following image appears and the application pauses, helping
you to determine the cause of the exception:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

112 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

The application stops at the statement that caused the exception and you drop into the de-
bugger . You can examine the values of variables, you can change the values of variables, and
you can step through your code from the point at which the exception occurred by using the
Debug toolbar and the various debug windows .

Using Multiple catch Handlers
The previous discussion highlighted how different errors throw different kinds of exceptions
to represent different kinds of failures . To cope with these situations, you can supply multiple
catch handlers, one after the other, like this:

try
{
 int leftHandSide = int.Parse(lhsOperand.Text);
 int rightHandSide = int.Parse(rhsOperand.Text);
 int answer = doCalculation(leftHandSide, rightHandSide);
 result.Text = answer.ToString();
}
catch (FormatException fEx)
{
 //...
}
catch (OverflowException oEx)
{
 //...
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 6 Managing Errors and Exceptions 113

If the code in the try block throws a FormatException exception, the statements in the catch
block for the FormatException exception runs . If the code throws an OverflowException
 exception, the catch block for the OverflowException exception runs .

Note If the code in the FormatException catch block generates an OverflowException excep-
tion, it does not cause the adjacent OverflowException catch block to run . Instead, the exception
propagates to the method that invoked this code, as described earlier in this section .

Catching Multiple Exceptions
The exception-catching mechanism provided by C# and the Microsoft .NET Framework is
quite comprehensive . The .NET Framework defines many types of exceptions, and any pro-
grams you write can throw most of them! It is highly unlikely that you will want to write catch
handlers for every possible exception that your code can throw . So how do you ensure that
your programs catch and handle all possible exceptions?

The answer to this question lies in the way the different exceptions are related to one
another . Exceptions are organized into families called inheritance hierarchies . (You will
learn about inheritance in Chapter 12, “Working with Inheritance .”) FormatException and
OverflowException both belong to a family called SystemException, as do a number of other
exceptions . SystemException is itself a member of a wider family simply called Exception,
which is the great-granddaddy of all exceptions . If you catch Exception, the handler traps
 every possible exception that can occur .

Note The Exception family includes a wide variety of exceptions, many of which are intended for
use by various parts of the .NET Framework . Some of these are somewhat esoteric, but it is still
useful to understand how to catch them .

The next example shows how to catch all possible exceptions:

try
{
 int leftHandSide = int.Parse(lhsOperand.Text);
 int rightHandSide = int.Parse(rhsOperand.Text);
 int answer = doCalculation(leftHandSide, rightHandSide);
 result.Text = answer.ToString();
}
catch (Exception ex) // this is a general catch handler
{
 //...
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

114 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

Tip If you want to catch Exception, you can actually omit its name from the catch handler
 because it is the default exception:

catch
{
 // ...
}

However, this is not always recommended . The exception object passed in to the catch handler
can contain useful information concerning the exception, which is not accessible when using this
version of the catch construct .

There is one final question you should be asking at this point: What happens if the
same exception matches multiple catch handlers at the end of a try block? If you catch
FormatException and Exception in two different handlers, which one will run (or will both
execute)?

When an exception occurs, the first handler found by the runtime that matches the excep-
tion is used, and the others are ignored . What this means is that if you place a handler for
Exception before a handler for FormatException, the FormatException handler will never run .
Therefore, you should place more specific catch handlers above a general catch handler after
a try block . If none of the specific catch handlers matches the exception, the general catch
handler will .

In the following exercise, you will write a try block and catch an exception .

Write a try/catch statement block

 . 1 . . Start Visual Studio 2010 if it is not already running .

 . 2 . . Open the MathsOperators solution located in the \Microsoft Press\Visual CSharp Step
By Step\Chapter 6\MathsOperators folder in your Documents folder .

This is a variation on the program that you first saw in Chapter 2, “Working with
Variables, Operators, and Expressions .” It was used to demonstrate the different arith-
metic operators .

 . 3 . . On the Debug menu, click Start Without Debugging .

The form appears . You are now going to enter some text that is deliberately not valid in
the left operand text box . This operation will demonstrate the lack of robustness in the
current version of the program .

 . 4 . . Type John in the left operand text box, and then click Calculate .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 6 Managing Errors and Exceptions 115

This input triggers Windows error handling, and the following dialog box appears:

This is followed by another dialog box that reports an unhandled exception:

Note If you are using Visual C# 2010 Express, the Debug button does not appear .

You might see a different version of this dialog box depending on how you have
 configured problem reporting in Control Panel .

If this dialog box appears, click Close the program and continue with the second
 sentence of step 6 below .

Additionally, you might be presented with a dialog box displaying the message “Do you
want to send information about the problem?” Windows can gather information about
failing applications and send this information to Microsoft . If this dialog box appears,
click Cancel and continue at the second sentence of step 6 .

 . 5 . . If you are using Visual Studio 2010 Professional or Visual Studio 2010 Standard, click
Debug . In the Visual Studio Just-In-Time Debugger dialog box, in the Possible Debuggers

http://lib.ommolketab.ir
http//lib.ommolketab.ir

116 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

list box, select MathsOperators – Microsoft Visual Studio: Visual Studio 2010 and then
click Yes:

 . 6 . . If you are using Visual C# 2010 Express, click Close Program . On the Debug menu, click
Start Debugging . Type John in the left operand text box, and then click Calculate .

 . 7 . . Visual Studio 2010 displays your code and highlights the statement that caused the
 exception together with a dialog box that describes the exception . In this case, it is
“Input string was not in a correct format .”

You can see that the exception was thrown by the call to int.Parse inside the
 calculateClick method . The problem is that this method is unable to parse the text
“John” into a valid number .

Note You can view the code that caused an exception only if you actually have the
source code available on your computer .

 . 8 . . In the Debug toolbar, click the Stop Debugging button . The program terminates .

 . 9 . . Display the code for the file Window1 .xaml .cs in the Code and Text Editor window, and
locate the calculateClick method .

 . 10 . . Add a try block (including braces) around the four statements inside this method, as
shown in bold type here:

try
{
 int leftHandSide = int.Parse(lhsOperand.Text);
 int rightHandSide = int.Parse(rhsOperand.Text);
 int answer = doCalculation(leftHandSide, rightHandSide);
 result.Text = answer.ToString();
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 6 Managing Errors and Exceptions 117

 . 11 . . Add a catch block immediately after the closing brace for this new try block, as follows:

catch (FormatException fEx)
{
 result.Text = fEx.Message;
}

This catch handler catches the FormatException thrown by int.Parse and then displays
in the result text box at the bottom of the form the text in the exception’s Message
property .

 . 12 . . On the Debug menu, click Start Without Debugging .

 . 13 . . Type John in the left operand text box, and then click Calculate .

The catch handler successfully catches the FormatException, and the message “Input
string was not in a correct format” is written to the Result text box . The application is
now a bit more robust .

 . 14 . . Replace John with the number 10, type Sharp in the right operand text box, and then
click Calculate .

The try block surrounds the statements that parse both text boxes, so the same
 exception handler handles user input errors in both text boxes .

 . 15 . . Replace Sharp with 20 in the right operand text box, click the Addition button, and then
click Calculate .

The application works as expected and displays the value 30 in the Result text box .

 . 16 . . Click Quit to return to the Visual Studio 2010 programming environment .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

118 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

Using .Checked .and .Unchecked .Integer .Arithmetic
In Chapter 2, you learned how to use binary arithmetic operators such as + and * on
 primitive data types such as int and double . You also saw that the primitive data types have a
fixed size . For example, a C# int is 32 bits . Because int has a fixed size, you know exactly the
range of value that it can hold: it is –2147483648 to 2147483647 .

Tip If you want to refer to the minimum or maximum value of int in code, you can use the
int.MinValue or int.MaxValue property .

The fixed size of the int type creates a problem . For example, what happens if you add 1 to
an int whose value is currently 2147483647? The answer is that it depends on how the appli-
cation is compiled . By default, the C# compiler generates code that allows the calculation to
overflow silently and you get the wrong answer . (In fact, the calculation wraps around to the
largest negative integer value, and the result generated is –2147483648 .) The reason for this
behavior is performance: integer arithmetic is a common operation in almost every program,
and adding the overhead of overflow checking to each integer expression could lead to very
poor performance . In many cases, the risk is acceptable because you know (or hope!) that
your int values won’t reach their limits . If you don’t like this approach, you can turn on over-
flow checking .

Tip You can activate and disable overflow checking in Visual Studio 2010 by setting the project
properties . In Solution Explorer, click YourProject (where YourProject is the name of your project) .
On the Project menu, click YourProject Properties . In the project properties dialog box, click the
Build tab . Click the Advanced button in the lower-right corner of the page . In the Advanced Build
Settings dialog box, select or clear the Check for arithmetic overflow/underflow check box .

Regardless of how you compile an application, you can use the checked and unchecked key-
words to turn on and off integer arithmetic overflow checking selectively in parts of an appli-
cation that you think need it . These keywords override the compiler option specified for the
project .

Writing Checked Statements
A checked statement is a block preceded by the checked keyword . All integer arithmetic in a
checked statement always throws an OverflowException if an integer calculation in the block
overflows, as shown in this example:

int number = int.MaxValue;
checked
{
 int willThrow = number++;
 Console.WriteLine("this won't be reached");
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 6 Managing Errors and Exceptions 119

Important Only integer arithmetic directly inside the checked block is subject to overflow
checking . For example, if one of the checked statements is a method call, checking does not
 apply to code that runs in the method that is called .

You can also use the unchecked keyword to create an unchecked block statement . All integer
arithmetic in an unchecked block is not checked and never throws an OverflowException . For
example:

int number = int.MaxValue;
unchecked
{
 int wontThrow = number++;
 Console.WriteLine("this will be reached");
}

Writing Checked Expressions
You can also use the checked and unchecked keywords to control overflow checking on inte-
ger expressions by preceding just the individual parenthesized expression with the checked or
unchecked keyword, as shown in this example:

int wontThrow = unchecked(int.MaxValue + 1);
int willThrow = checked(int.MaxValue + 1);

The compound operators (such as += and -=) and the increment, ++, and decrement, --,
 operators are arithmetic operators and can be controlled by using the checked and un-
checked keywords . Remember, x += y; is the same as x = x + y; .

Important You cannot use the checked and unchecked keywords to control floating-
point (noninteger) arithmetic . The checked and unchecked keywords apply only to integer
arithmetic using data types such as int and long . Floating-point arithmetic never throws
OverflowException—not even when you divide by 0 .0 . (The .NET Framework has a representation
for infinity .)

In the following exercise, you will see how to perform checked arithmetic when using Visual
Studio 2010 .

Use checked expressions

 . 1 . . Return to Visual Studio 2010 .

 . 2 . . On the Debug menu, click Start Without Debugging .

You will now attempt to multiply two large values .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

120 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

 . 3 . . Type 9876543 in the left operand text box, type 9876543 in the right operand text box,
click the Multiplication button, and then click Calculate .

The value –1195595903 appears in the Result text box on the form . This is a nega-
tive value, which cannot possibly be correct . This value is the result of a multiplication
 operation that silently overflowed the 32-bit limit of the int type .

 . 4 . . Click Quit, and return to the Visual Studio 2010 programming environment .

 . 5 . . In the Code and Text Editor window displaying Window1 .xaml .cs, locate the
 multiplyValues method . It looks like this:

private int multiplyValues(int leftHandSide, int rightHandSide)
{
 expression.Text = leftHandSide.ToString() + " * " + rightHandSide.ToString();
 return leftHandSide * rightHandSide;
}

The return statement contains the multiplication operation that is silently overflowing .

 . 6 . . Edit the return statement so that the return value is checked, like this:

return checked(leftHandSide * rightHandSide);

The multiplication is now checked and will throw an OverflowException rather than
 silently returning the wrong answer .

 . 7 . . Locate the calculateClick method .

 . 8 . . Add the following catch handler immediately after the existing FormatException catch
handler in the calculateClick method:

catch (OverflowException oEx)
{
 result.Text = oEx.Message;
}

Tip The logic of this catch handler is the same as that for the FormatException catch
 handler . However, it is still worth keeping these handlers separate rather than simply
writing a generic Exception catch handler because you might decide to handle these
 exceptions differently in the future .

 . 9 . . On the Debug menu, click Start Without Debugging to build and run the application .

 . 10 . . Type 9876543 in the left operand text box, type 9876543 in the right operand text box,
click the Multiplication button, and then click Calculate .

The second catch handler successfully catches the OverflowException and displays the
message “Arithmetic operation resulted in an overflow” in the Result text box .

 . 11 . . Click Quit to return to the Visual Studio 2010 programming environment .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 6 Managing Errors and Exceptions 121

Throwing .Exceptions
Suppose you are implementing a method called monthName that accepts a single int
 argument and returns the name of the corresponding month . For example, monthName(1)
returns “January”, monthName(2) returns “February”, and so on . The question is: What should
the method return if the integer argument is less than 1 or greater than 12? The best answer
is that the method shouldn’t return anything at all; it should throw an exception . The .NET
Framework class libraries contain lots of exception classes specifically designed for situa-
tions such as this . Most of the time, you will find that one of these classes describes your
exceptional condition . (If not, you can easily create your own exception class, but you need
to know a bit more about the C# language before you can do that .) In this case, the existing
 .NET Framework ArgumentOutOfRangeException class is just right . You can throw an excep-
tion by using the throw statement, as shown in the following example:

public static string monthName(int month)
{
 switch (month)
 {
 case 1 :
 return "January";
 case 2 :
 return "February";
 ...
 case 12 :
 return "December";
 default :
 throw new ArgumentOutOfRangeException("Bad month");
 }
}

The throw statement needs an exception object to throw . This object contains the details
of the exception, including any error messages . This example uses an expression that cre-
ates a new ArgumentOutOfRangeException object . The object is initialized with a string that
populates its Message property by using a constructor . Constructors are covered in detail in
Chapter 7, “Creating and Managing Classes and Objects .”

In the following exercises, you will modify the MathsOperators project to throw an exception
if the user attempts to perform a calculation without specifying an operation to perform .

Throw an exception

 . 1 . . Return to Visual Studio 2010 .

 . 2 . . On the Debug menu, click Start Without Debugging .

 . 3 . . Type 24 in the left operand text box, type 36 in the right operand text box, and then
click Calculate .

The value 0 appears in the Result text box . The fact that you have not selected an
 operator option is not immediately obvious . It would be useful to write a diagnostic
message in the Result text box .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

122 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

 . 4 . . Click Quit to return to the Visual Studio 2010 programming environment .

 . 5 . . In the Code and Text Editor window displaying Window1 .xaml .cs, locate and examine
the doCalculation method . It looks like this:

private int doCalculation(int leftHandSide, int rightHandSide) {
 int result = 0;

 if (addition.IsChecked.HasValue && addition.IsChecked.Value)
 result = addValues(leftHandSide, rightHandSide);
 else if (subtraction.IsChecked.HasValue && subtraction.IsChecked.Value)
 result = subtractValues(leftHandSide, rightHandSide);
 else if (multiplication.IsChecked.HasValue && multiplication.IsChecked.Value)
 result = multiplyValues(leftHandSide, rightHandSide);
 else if (division.IsChecked.HasValue && division.IsChecked.Value)
 result = divideValues(leftHandSide, rightHandSide);
 else if (remainder.IsChecked.HasValue && remainder.IsChecked.Value)
 result = remainderValues(leftHandSide, rightHandSide);

 return result;
}

The addition, subtraction, multiplication, division, and remainder fields are the buttons
that appear on the form . Each button has a property called IsChecked that indicates
whether the user has selected it . The IsChecked property is an example of a nullable val-
ue, which means it can either contain a specific value or be in an undefined state . (You
learn more about nullable values in Chapter 8, “Understanding Values and References .”)
The IsChecked.HasValue property indicates whether the button is in a defined state,
and if it is, the IsChecked.Value property indicates what this state is . The IsChecked.Value
property is a Boolean that has the value true if the button is selected or false otherwise .
The cascading if statement examines each button in turn to find which one is selected .
(The radio buttons are mutually exclusive, so the user can select only one radio button
at most .) If none of the buttons are selected, none of the if statements will be true and
the result variable will remain at its initial value (0) . This variable holds the value that is
returned by the method .

You could try to solve the problem by adding one more else statement to the if-else
cascade to write a message to the result text box on the form . However, this solution
is not a good idea because it is not really the purpose of this method to output mes-
sages . It is better to separate the detection and signaling of an error from the catching
and handling of that error .

 . 6 . . Add another else statement to the list of if-else statements (immediately before the
 return statement), and throw an InvalidOperationException exactly as follows:

else
 throw new InvalidOperationException("No operator selected");

 . 7 . . On the Debug menu, click Start Without Debugging to build and run the application .

 . 8 . . Type 24 in the left operand text box, type 36 in the right operand text box, and then
click Calculate .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 6 Managing Errors and Exceptions 123

Windows detects that your application has thrown an exception, and an exception
 dialog box appears (eventually) . The application has thrown an exception, but your
code does not catch it yet .

 . 9 . . Click Close program .

The application terminates, and you return to Visual Studio 2010 .

Now that you have written a throw statement and verified that it throws an exception, you
will write a catch handler to handle this exception .

Catch the exception

 . 1 . . In the Code and Text Editor window displaying Window1 .xaml .cs, locate the
 calculateClick method .

 . 2 . . Add the following catch handler immediately below the existing two catch handlers in
the calculateClick method:

catch (InvalidOperationException ioEx)
{
 result.Text = ioEx.Message;
}

This code catches the InvalidOperationException that is thrown when no operator
 button is selected .

 . 3 . . On the Debug menu, click Start Without Debugging .

 . 4 . . Type 24 in the left operand text box, type 36 in the right operand text box, and then
click Calculate .

The message “No operator selected” appears in the Result text box .

 . 5 . . Click Quit .

The application is now a lot more robust than it was . However, several exceptions could
still arise that are not caught and that will cause the application to fail . For example, if you
 attempt to divide by 0, an unhandled DivideByZeroException will be thrown . (Integer division
by 0 does throw an exception, unlike floating-point division by 0 .) One way to solve this is to
write an ever larger number of catch handlers inside the calculateClick method . However, a
better solution is to add a general catch handler that catches Exception at the end of the list
of catch handlers . This will trap all unhandled exceptions .

Tip The decision of whether to catch all unhandled exceptions explicitly in a method depends
on the nature of the application you are building . In some cases, it makes sense to catch excep-
tions as close as possible to the point at which they occur . In other situations, it is more use-
ful to let an exception propagate back to the method that invoked the routine that threw the
 exception and handle the error there .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

124 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

Catch unhandled exceptions

 . 1 . . In the Code and Text Editor window displaying Window1 .xaml .cs, locate the
 calculateClick method .

 . 2 . . Add the following catch handler to the end of the list of existing catch handlers:

catch (Exception ex)
{
 result.Text = ex.Message;
}

This catch handler will catch all hitherto unhandled exceptions, whatever their specific
type .

 . 3 . . On the Debug menu, click Start Without Debugging .

You will now attempt to perform some calculations known to cause exceptions and
confirm that they are all handled correctly .

 . 4 . . Type 24 in the left operand text box, type 36 in the right operand text box, and then
click Calculate .

Confirm that the diagnostic message “No operator selected” still appears in the Result
text box . This message was generated by the InvalidOperationException handler .

 . 5 . . Type John in the left operand text box, and then click Calculate .

Confirm that the diagnostic message “Input string was not in a correct format” appears
in the Result text box . This message was generated by the FormatException handler .

 . 6 . . Type 24 in the left operand text box, type 0 in the right operand text box, click the
Division button, and then click Calculate .

Confirm that the diagnostic message “Attempted to divide by zero” appears in the
Result text box . This message was generated by the general Exception handler .

 . 7 . . Click Quit .

Using .a .finally .Block
It is important to remember that when an exception is thrown, it changes the flow of
 execution through the program . This means you can’t guarantee that a statement will always
run when the previous statement finishes because the previous statement might throw an
exception . Look at the following example . It’s very easy to assume that the call to reader.Close
will always occur when the while loop completes . After all, it’s right there in the code:

TextReader reader = src.OpenText();
string line;
while ((line = reader.ReadLine()) != null)
{
 source.Text += line + "\n";
}
reader.Close();

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 6 Managing Errors and Exceptions 125

Sometimes it’s not an issue if one particular statement does not run, but on many occasions
it can be a big problem . If the statement releases a resource that was acquired in a previous
statement, failing to execute this statement results in the resource being retained . This exam-
ple is just such a case: If the call to src.OpenText succeeds, it acquires a resource (a file handle)
and you must ensure that you call reader.Close to release the resource . If you don’t, sooner or
later you’ll run out of file handles and be unable to open more files . (If you find file handles
too trivial, think of database connections instead .)

The way to ensure that a statement is always run, whether or not an exception has been
thrown, is to write that statement inside a finally block . A finally block occurs immediately
after a try block or immediately after the last catch handler after a try block . As long as the
program enters the try block associated with a finally block, the finally block will always be
run, even if an exception occurs . If an exception is thrown and caught locally, the exception
handler executes first, followed by the finally block . If the exception is not caught locally (that
is, the runtime has to search through the list of calling methods to find a handler), the finally
block runs first . In any case, the finally block always executes .

The solution to the reader.Close problem is as follows:

TextReader reader = null;
try
{
 reader = src.OpenText();
 string line;
 while ((line = reader.ReadLine()) != null)
 {
 source.Text += line + "\n";
 }
}
finally
{
 if (reader != null)
 {
 reader.Close();
 }
}

Even if an exception is thrown, the finally block ensures that the reader.Close statement
 always executes . You’ll see another way to solve this problem in Chapter 14, “Using Garbage
Collection and Resource Management .”

In this chapter, you learned how to catch and handle exceptions by using the try and catch
constructs . You saw how to enable and disable integer overflow checking by using the
checked and unchecked keywords . You learned how to throw an exception if your code de-
tects an exceptional situation, and you saw how to use a finally block to ensure that critical
code always runs, even if an exception occurs .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

126 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2010

n If you want to continue to the next chapter

Keep Visual Studio 2010 running, and turn to Chapter 7 .

n If you want to exit Visual Studio 2010 now

On the File menu, click Exit . If you see a Save dialog box, click Yes and save the project .

Chapter .6 .Quick .Reference
To Do this

Catch a specific exception Write a catch handler that catches the specific exception class .
For example:

try
{
 ...
}
catch (FormatException fEx)
{
 ...
}

Ensure that integer arithmetic is
 always checked for overflow

Use the checked keyword . For example:

int number = Int32.MaxValue;
checked
{
 number++;
}

Throw an exception Use a throw statement . For example:

throw new FormatException(source);

Catch all exceptions in a single catch
handler

Write a catch handler that catches Exception . For example:

try
{
 ...
}
catch (Exception ex)
{
 ...
}

Ensure that some code will always be
run, even if an exception is thrown

Write the code inside a finally block . For example:

try
{
 ...
}
finally
{
 // always run
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Microsoft Visual C# 2010 Step by Step

 . . 127

Part II

Understanding the C# Language

In this part:

Creating and Managing Classes and Objects . 129

Understanding Values and References . 151

Creating Value Types with Enumerations and Structures 173

Using Arrays and Collections . 191

Understanding Parameter Arrays . 219

Working with Inheritance . 231

Creating Interfaces and Defining Abstract Classes . 253

Using Garbage Collection and Resource Management . 279

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 . . 129

Chapter 7

Creating and Managing Classes
and Objects

After completing this chapter, you will be able to:

n Define a class containing a related set of methods and data items .

n Control the accessibility of members by using the public and private keywords .

n Create objects by using the new keyword to invoke a constructor .

n Write and call your own constructors .

n Create methods and data that can be shared by all instances of the same class by using
the static keyword .

n Explain how to create anonymous classes .

In Part I, “Introducing Microsoft Visual C# and Microsoft Visual Studio 2010,” you learned
how to declare variables, use operators to create values, call methods, and write many of the
statements you need when implementing a method . You now know enough to progress to
the next stage—combining methods and data into your own classes .

The Microsoft .NET Framework contains thousands of classes, and you have used a number
of them already, including Console and Exception . Classes provide a convenient mechanism
for modeling the entities manipulated by applications . An entity can represent a specific item,
such as a customer, or something more abstract, such as a transaction . Part of the design
process of any system is concerned with determining the entities that are important to the
processes that the system implements, and then performing an analysis to see what infor-
mation these entities need to hold and what operations they should perform . You store the
information that a class holds as fields and use methods to implement the operations that a
class can perform .

The chapters in Part II, “Understanding the C# Language,” provide you with all you need to
know to be able to create your own classes .

Understanding .Classification
Class is the root word of the term classification . When you design a class, you systemati-
cally arrange information and behavior into a meaningful entity . This arranging is an act of
classification and is something that everyone does—not just programmers . For example, all
cars share common behaviors (they can be steered, stopped, accelerated, and so on) and

http://lib.ommolketab.ir
http//lib.ommolketab.ir

130 Part II Understanding the C# Language

 common attributes (they have a steering wheel, an engine, and so on) . People use the word
car to mean objects that share these common behaviors and attributes . As long as every-
one agrees on what a word means, this system works well and you can express complex but
precise ideas in a concise form . Without classification, it’s hard to imagine how people could
think or communicate at all .

Given that classification is so deeply ingrained in the way we think and communicate, it
makes sense to try to write programs by classifying the different concepts inherent in a
problem and its solution and then modeling these classes in a programming language . This
is exactly what you can do with modern object-oriented programming languages, such as
Microsoft Visual C# .

The .Purpose .of .Encapsulation
Encapsulation is an important principle when defining classes . The idea is that a program that
uses a class should not have to worry how that class actually works internally; the program
simply creates an instance of a class and calls the methods of that class . As long as those
methods do what they say they will do, the program does not care how they are implement-
ed . For example, when you call the Console.WriteLine method, you don’t want to be bothered
with all the intricate details of how the Console class physically arranges for data to be writ-
ten to the screen . A class might need to maintain all sorts of internal state information to
perform its various methods . This additional state information and activity is hidden from the
program that is using the class . Therefore, encapsulation is sometimes referred to as informa-
tion hiding . Encapsulation actually has two purposes:

n To combine methods and data inside a class; in other words, to support classification

n To control the accessibility of the methods and data; in other words, to control the use
of the class

Defining .and .Using .a .Class
In C#, you use the class keyword to define a new class . The data and methods of the class oc-
cur in the body of the class between a pair of braces . Here is a C# class called Circle that con-
tains one method (to calculate the circle’s area) and one piece of data (the circle’s radius):

class Circle
{
 int radius;

 double Area()
 {
 return Math.PI * radius * radius;
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 7 Creating and Managing Classes and Objects 131

Note The Math class contains methods for performing mathematical calculations
and fields containing mathematical constants . The Math.PI field contains the value
3 .14159265358979323846, which is an approximation of the value of pi .

The body of a class contains ordinary methods (such as Area) and fields (such as radius)—
remember that variables in a class are called fields . You’ve already seen how to declare vari-
ables in Chapter 2, “Working with Variables, Operators, and Expressions,” and how to write
methods in Chapter 3, “Writing Methods and Applying Scope,” so there’s almost no new
syntax here .

You can use the Circle class in a similar manner to using the other types that you have already
met; you create a variable specifying Circle as its type, and then you initialize the variable
with some valid data . Here is an example:

Circle c; // Create a Circle variable
c = new Circle(); // Initialize it

A point worth highlighting in this code is the use of the new keyword . Previously, when you
initialized a variable such as an int or a float, you simply assigned it a value:

int i;
i = 42;

You cannot do the same with variables of class types . One reason for this is that C# just
doesn’t provide the syntax for assigning literal class values to variables . You cannot write a
statement such as this:

Circle c;
c = 42;

After all, what is the Circle equivalent of 42? Another reason concerns the way in which
 memory for variables of class types is allocated and managed by the runtime—this is dis-
cussed further in Chapter 8, “Understanding Values and References .” For now, just accept
that the new keyword creates a new instance of a class, more commonly called an object .

You can, however, directly assign an instance of a class to another variable of the same type,
like this:

Circle c;
c = new Circle();
Circle d;
d = c;

However, this is not as straightforward as it first appears, for reasons that that are described
in Chapter 8 .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

132 Part II Understanding the C# Language

Important Don’t get confused between the terms class and object . A class is the definition of a
type . An object is an instance of that type, created when the program runs .

Controlling .Accessibility
Surprisingly, the Circle class is currently of no practical use . When you encapsulate your
methods and data inside a class, the class forms a boundary to the outside world . Fields
(such as radius) and methods (such as Area) defined in the class can be seen by other meth-
ods inside the class but not by the outside world—they are private to the class . So, although
you can create a Circle object in a program, you cannot access its radius field or call its
Area method, which is why the class is not of much use—yet! However, you can modify the
 definition of a field or method with the public and private keywords to control whether it is
accessible from the outside:

n A method or field is private if it is accessible only from the inside of the class . To declare
that a method or field is private, you write the keyword private before its declaration .
This is actually the default, but it is good practice to state explicitly that fields and
methods are private to avoid any confusion .

n A method or field is public if it is accessible from both the inside and outside of the
class . To declare that a method or field is public, you write the keyword public before its
declaration .

Here is the Circle class again . This time Area is declared as a public method and radius is
 declared as a private field:

class Circle
{
 private int radius;

 public double Area()
 {
 return Math.PI * radius * radius;
 }
}

Note C++ programmers should note that there is no colon after the public and private
 keywords . You must repeat the keyword for every field and method declaration .

Although radius is declared as a private field and is not accessible from outside the class,
 radius is accessible from inside the Circle class . The Area method is inside the Circle class, so
the body of Area has access to radius . However, the class is still of limited value because there
is no way of initializing the radius field . To fix this, you can use a constructor .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 7 Creating and Managing Classes and Objects 133

Tip Unlike variables declared in a method, which are not initialized by default, the fields in a
class are automatically initialized to 0, false, or null depending on their type . However, it is still
good practice to provide an explicit means of initializing fields .

Naming .and .Accessibility
The following recommendations relate to the naming conventions for fields and
 methods based on the accessibility of class members:

n Identifiers that are public should start with a capital letter . For example,
Area starts with “A” (not “a”) because it’s public . This system is known as the
PascalCase naming scheme (because it was first used in the Pascal language) .

n Identifiers that are not public (which include local variables) should start with
a lowercase letter . For example, radius starts with “r” (not “R”) because it’s
 private . This system is known as the camelCase naming scheme .

There’s only one exception to this rule: class names should start with a capital let-
ter, and constructors must match the name of their class exactly; therefore, a private
 constructor must start with a capital letter .

Important Don’t declare two public class members whose names differ only in case . If you do,
developers using other languages that are not case sensitive, such as Microsoft Visual Basic, will
not be able to use your class .

Working with Constructors
When you use the new keyword to create an object, the runtime has to construct that object
by using the definition of the class . The runtime has to grab a piece of memory from the
operating system, fill it with the fields defined by the class, and then invoke a constructor to
perform any initialization required .

A constructor is a special method that runs automatically when you create an instance of a
class . It has the same name as the class, and it can take parameters, but it cannot return a
value (not even void) . Every class must have a constructor . If you don’t write one, the compil-
er automatically generates a default constructor for you . (However, the compiler-generated
default constructor doesn’t actually do anything .) You can write your own default constructor
quite easily—just add a public method with the same name as the class that does not return

http://lib.ommolketab.ir
http//lib.ommolketab.ir

134 Part II Understanding the C# Language

a value . The following example shows the Circle class with a default constructor that initializes
the radius field to 0:

class Circle
{
 private int radius;

 public Circle() // default constructor
 {
 radius = 0;
 }

 public double Area()
 {
 return Math.PI * radius * radius;
 }
}

Note In C# parlance, the default constructor is a constructor that does not take any parameters .
It does not matter whether the compiler generates it or you write it; it is still the default con-
structor . You can also write non–default constructors (constructors that do take parameters), as
you will see in the upcoming section titled “Overloading Constructors .”

In this example, the constructor is marked as public . If this keyword is omitted, the construc-
tor will be private (just like any other methods and fields) . If the constructor is private, it can-
not be used outside the class, which prevents you from being able to create Circle objects
from methods that are not part of the Circle class . You might therefore think that private
constructors are not that valuable . However, they do have their uses, but they are beyond the
scope of the current discussion .

You can now use the Circle class and exercise its Area method . Notice how you use dot
 notation to invoke the Area method on a Circle object:

Circle c;
c = new Circle();
double areaOfCircle = c.Area();

Overloading Constructors
You’re almost finished, but not quite . You can now declare a Circle variable, point it to a
newly created Circle object, and then call its Area method . However, there is still one last
problem . The area of all Circle objects will always be 0 because the default constructor sets
the radius to 0 and it stays at 0; the radius field is private, and there is no easy way of chang-
ing its value after it has been initialized . However, you should realize that a constructor is just

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 7 Creating and Managing Classes and Objects 135

a special kind of method and that it—like all methods—can be overloaded . Just as there are
several versions of the Console.WriteLine method, each of which takes different parameters,
so too you can write different versions of a constructor . You can add a constructor to the
Circle class, with the radius as its parameter, like this:

class Circle
{
 private int radius;

 public Circle() // default constructor
 {
 radius = 0;
 }

 public Circle(int initialRadius) // overloaded constructor
 {
 radius = initialRadius;
 }

 public double Area()
 {
 return Math.PI * radius * radius;
 }
}

Note The order of the constructors in a class is immaterial; you can define constructors in
 whatever order you feel most comfortable with .

You can then use this constructor when creating a new Circle object, like this:

Circle c;
c = new Circle(45);

When you build the application, the compiler works out which constructor it should call
based on the parameters that you specify to the new operator . In this example, you passed
an int, so the compiler generates code that invokes the constructor that takes an int
parameter .

You should be aware of a quirk of the C# language: if you write your own constructor for a
class, the compiler does not generate a default constructor . Therefore, if you’ve written your
own constructor that accepts one or more parameters and you also want a default construc-
tor, you’ll have to write the default constructor yourself .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

136 Part II Understanding the C# Language

Partial .Classes
A class can contain a number of methods, fields, and constructors, as well as other
items discussed in later chapters . A highly functional class can become quite large . With
C#, you can split the source code for a class into separate files so that you can organize
the definition of a large class into smaller, easier to manage pieces . This feature is used
by Microsoft Visual Studio 2010 for Windows Presentation Foundation (WPF) applica-
tions, where the source code that the developer can edit is maintained in a separate
file from the code that is generated by Visual Studio whenever the layout of a form
changes .

When you split a class across multiple files, you define the parts of the class by using
the partial keyword in each file . For example, if the Circle class is split between two files
called circ1 .cs (containing the constructors) and circ2 .cs (containing the methods and
fields), the contents of circ1 .cs look like this:

partial class Circle
{
 public Circle() // default constructor
 {
 this.radius = 0;
 }

 public Circle(int initialRadius) // overloaded constructor
 {
 this.radius = initialRadius;
 }
}

The contents of circ2 .cs look like this:

partial class Circle
{
 private int radius;

 public double Area()
 {
 return Math.PI * this.radius * this.radius;
 }
}

When you compile a class that has been split into separate files, you must provide all
the files to the compiler .

Note You can define partial interfaces and structs in the same way .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 7 Creating and Managing Classes and Objects 137

In the following exercise, you will declare a class that models a point in two-dimensional
space . The class will contain two private fields for holding the x and y coordinates of a point
and will provide constructors for initializing these fields . You will create instances of the class
by using the new keyword and calling the constructors .

Write constructors and create objects

 . 1 . . Start Visual Studio 2010 if it is not already running .

 . 2 . . Open the Classes project located in the \Microsoft Press\Visual CSharp Step By Step\
Chapter 7\Classes folder in your Documents folder .

 . 3 . . In Solution Explorer, double-click the file Program .cs to display it in the Code and Text
Editor window .

 . 4 . . Locate the Main method in the Program class .

The Main method calls the DoWork method, wrapped in a try block and followed by a
catch handler . With this try/catch block, you can write the code that would typically go
inside Main in the DoWork method instead, safe in the knowledge that it will catch and
handle any exceptions .

 . 5 . . Display the file Point .cs in the Code and Text Editor window .

This file defines a class called Point, which you will use to represent the location of a
point defined by a pair of x and y coordinates . The Point class is currently empty .

 . 6 . . Return to the Program .cs file, and locate the DoWork method of the Program class . Edit
the body of the DoWork method, and replace the // to do comment with the follow-
ing statement:

Point origin = new Point();

 . 7 . . On the Build menu, click Build Solution .

The code builds without error because the compiler automatically generates the code
for a default constructor for the Point class . However, you cannot see the C# code
for this constructor because the compiler does not generate any source language
statements .

 . 8 . . Return to the Point class in the file Point .cs . Replace the // to do comment with a
 public constructor that accepts two int arguments called x and y and that calls the
Console.WriteLine method to display the values of these arguments to the console, as
shown in bold type in the following code example . The Point class should look like this:

class Point
{
 public Point(int x, int y)
 {
 Console.WriteLine("x:{0}, y:{1}", x, y);
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

138 Part II Understanding the C# Language

Note Remember that the Console.WriteLine method uses {0} and {1} as placeholders . In
the statement shown, {0} will be replaced with the value of x, and {1} will be replaced with
the value of y when the program runs .

 . 9 . . On the Build menu, click Build Solution .

The compiler now reports an error:

'Classes.Point' does not contain a constructor that takes '0 ' arguments

The call to the default constructor in DoWork no longer works because there is no lon-
ger a default constructor . You have written your own constructor for the Point class, so
the compiler no longer generates the default constructor . You will now fix this by writ-
ing your own default constructor .

 . 10 . . Edit the Point class, and add a public default constructor that calls Console.WriteLine to
write the string “default constructor called” to the console, as shown in bold type in the
following code example . The Point class should now look like this:

class Point
{
 public Point()
 {
 Console.WriteLine("Default constructor called");
 }

 public Point(int x, int y)
 {
 Console.WriteLine("x:{0}, y:{1}", x, y);
 }
}

 . 11 . . On the Build menu, click Build Solution .

The program should now build successfully .

 . 12 . . In the Program .cs file, edit the body of the DoWork method . Declare a variable called
bottomRight of type Point, and initialize it to a new Point object by using the construc-
tor with two arguments, as shown in bold type in the following code . Supply the values
1024 and 1280, representing the coordinates at the lower-right corner of the screen
based on the resolution 1024 × 1280 . The DoWork method should now look like this:

static void DoWork()
{
 Point origin = new Point();
 Point bottomRight = new Point(1024, 1280);
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 7 Creating and Managing Classes and Objects 139

 . 13 . . On the Debug menu, click Start Without Debugging .

The program builds and runs, displaying the following messages to the console:

Default constructor called
x:1024, y:1280

 . 14 . . Press the Enter key to end the program and return to Visual Studio 2010 .

You will now add two int fields to the Point class to represent the x and y coordinates of
a point, and you will modify the constructors to initialize these fields .

 . 15 . . Edit the Point class in the Point .cs file, and add two private instance fields called x and
y of type int, as shown in bold type in the following code . The Point class should now
look like this:

class Point
{
 private int x, y;

 public Point()
 {
 Console.WriteLine("default constructor called");
 }

 public Point(int x, int y)
 {
 Console.WriteLine("x:{0}, y:{1}", x, y);
 }
}

You will now edit the second Point constructor to initialize the x and y fields to the val-
ues of the x and y parameters . There is a potential trap when you do this . If you are not
careful, the constructor will look like this:

public Point(int x, int y) // Don't type this!
{
 x = x;
 y = y;
}

Although this code will compile, these statements appear to be ambiguous . How does
the compiler know in the statement x = x; that the first x is the field and the second
x is the parameter? The answer is that it doesn’t! A method parameter with the same
name as a field hides the field for all statements in the method . All this code actually
does is assign the parameters to themselves; it does not modify the fields at all . This is
clearly not what you want .

The solution is to use the this keyword to qualify which variables are parameters and
which are fields . Prefixing a variable with this means “the field in this object .”

http://lib.ommolketab.ir
http//lib.ommolketab.ir

140 Part II Understanding the C# Language

 . 16 . . Modify the Point constructor that takes two parameters, and replace the
Console.WriteLine statement with the following code shown in bold type:

public Point(int x, int y)
{
 this.x = x;
 this.y = y;
}

 . 17 . . Edit the default Point constructor to initialize the x and y fields to –1, as follows in bold
type . Note that although there are no parameters to cause confusion, it is still good
practice to qualify the field references with this:

public Point()
{
 this.x = -1;
 this.y = -1;
}

 . 18 . . On the Build menu, click Build Solution . Confirm that the code compiles without errors
or warnings . (You can run it, but it does not produce any output yet .)

Methods that belong to a class and that operate on the data belonging to a particular in-
stance of a class are called instance methods. (There are other types of methods that you will
meet later in this chapter .) In the following exercise, you will write an instance method for the
Point class, called DistanceTo, that calculates the distance between two points .

Write and call instance methods

 . 1 . . In the Classes project in Visual Studio 2010, add the following public instance method
called DistanceTo to the Point class after the constructors . The method accepts a single
Point argument called other and returns a double .

The DistanceTo method should look like this:

class Point
{
 ...

 public double DistanceTo(Point other)
 {
 }
}

In the following steps, you will add code to the body of the DistanceTo instance method
to calculate and return the distance between the Point object being used to make
the call and the Point object passed as a parameter . To do this, you must calculate the
 difference between the x coordinates and the y coordinates .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 7 Creating and Managing Classes and Objects 141

 . 2 . . In the DistanceTo method, declare a local int variable called xDiff, and initialize it to the
difference between this.x and other.x, as shown here in bold type:

public double DistanceTo(Point other)
{
 int xDiff = this.x - other.x;
}

 . 3 . . Declare another local int variable called yDiff, and initialize it to the difference between
this.y and other.y, as shown here in bold type:

public double DistanceTo(Point other)
{
 int xDiff = this.x - other.x;
 int yDiff = this.y - other.y;
}

To calculate the distance, you can use the Pythagorean theorem and calculate the
square root of the sum of the square of xDiff and the square of yDiff . The System.Math
class provides the Sqrt method that you can use to calculate square roots .

 . 4 . . Add the return statement shown in bold type in the following code to the end of the
DistanceTo method to perform the calculation:

public double DistanceTo(Point other)
{
 int xDiff = this.x - other.x;
 int yDiff = this.y - other.y;
 return Math.Sqrt((xDiff * xDiff) + (yDiff * yDiff));
}

You will now test the DistanceTo method .

 . 5 . . Return to the DoWork method in the Program class . After the statements that
 declare and initialize the origin and bottomRight Point variables, declare a variable
called distance of type double . Initialize this double variable to the result obtained when
you call the DistanceTo method on the origin object, passing the bottomRight object to
it as an argument .

The DoWork method should now look like this:

static void DoWork()
{
 Point origin = new Point();
 Point bottomRight = new Point(1024, 1280);
 double distance = origin.DistanceTo(bottomRight);
}

Note Microsoft IntelliSense should display the DistanceTo method when you type the
period character after origin .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

142 Part II Understanding the C# Language

 . 6 . . Add to the DoWork method another statement that writes the value of the distance
variable to the console by using the Console.WriteLine method .

The completed DoWork method should look like this:

static void DoWork()
{
 Point origin = new Point();
 Point bottomRight = new Point(1024, 1280);
 double distance = origin.DistanceTo(bottomRight);
 Console.WriteLine("Distance is: {0}", distance);
}

 . 7 . . On the Debug menu, click Start Without Debugging .

 . 8 . . Confirm that the value 1640 .60537607311 is written to the console window .

 . 9 . . Press Enter to close the application and return to Visual Studio 2010 .

Understanding .static .Methods .and .Data
In the preceding exercise, you used the Sqrt method of the Math class; similarly, when look-
ing at the Circle class, you read the PI field of the Math class . If you think about it, the way
in which you called the Sqrt method or read the PI field was slightly odd . You invoked the
method or read the field on the class itself, not on an object of type Math . It is like trying to
write Point.DistanceTo rather than origin.DistanceTo in the code you added in the preceding
exercise . So what’s happening, and how does this work?

You will often find that not all methods naturally belong to an instance of a class; they are
utility methods inasmuch as they provide a useful function that is independent of any specific
class instance . The Sqrt method is just such an example . If Sqrt were an instance method of
Math, you’d have to create a Math object to call Sqrt on:

Math m = new Math();
double d = m.Sqrt(42.24);

This would be cumbersome . The Math object would play no part in the calculation of the
square root . All the input data that Sqrt needs is provided in the parameter list, and the result
is passed back to the caller by using the method’s return value . Objects are not really needed
here, so forcing Sqrt into an instance straitjacket is just not a good idea . As well as contain-
ing the Sqrt method and the PI field, the Math class contains many other mathematical utility
methods, such as Sin, Cos, Tan, and Log .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 7 Creating and Managing Classes and Objects 143

In C#, all methods must be declared inside a class . However, if you declare a method or a
field as static, you can call the method or access the field by using the name of the class . No
instance is required . This is how the Sqrt method of the real Math class is declared:

class Math
{
 public static double Sqrt(double d)
 {
 ...
 }
 ...
}

When you define a static method, it does not have access to any instance fields defined for
the class; it can use only fields that are marked as static . Furthermore, it can directly invoke
only other methods in the class that are marked as static; nonstatic (instance) methods re-
quire you first to create an object on which to call them .

Creating a Shared Field
As mentioned in the preceding section, you can also use the static keyword when defining a
field . With this feature, you can create a single field that is shared among all objects created
from a single class . (Nonstatic fields are local to each instance of an object .) In the following
example, the static field NumCircles in the Circle class is incremented by the Circle construc-
tor every time a new Circle object is created:

class Circle
{
 private int radius;
 public static int NumCircles = 0;

 public Circle() // default constructor
 {
 radius = 0;
 NumCircles++;
 }

 public Circle(int initialRadius) // overloaded constructor
 {
 radius = initialRadius;
 NumCircles++;
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

144 Part II Understanding the C# Language

All Circle objects share the same NumCircles field, so the statement NumCircles++; incre-
ments the same data every time a new instance is created . You access the NumCircles field by
specifying the Circle class rather than a Circle object . For example:

Console.WriteLine("Number of Circle objects: {0}", Circle.NumCircles);

Tip Keep in mind that static methods are also called class methods . However, static fields aren’t
usually called class fields; they’re just called static fields (or sometimes static variables) .

Creating a static Field by Using the const Keyword
By prefixing the field with the const keyword, you can declare that a field is static but that
its value can never change . const is short for “constant .” A const field does not use the static
keyword in its declaration but is nevertheless static . However, for reasons that are beyond the
scope of this book, you can declare a field as const only when the field is an enumeration, a
numeric type such as int or double, or a string . (You learn about enumerations in Chapter 9,
“Creating Value Types with Enumerations and Structures .”) For example, here’s how the Math
class declares PI as a const field:

class Math
{
 ...
 public const double PI = 3.14159265358979323846;
}

Static Classes
Another feature of the C# language is the ability to declare a class as static . A static class can
contain only static members . (All objects that you create using the class share a single copy
of these members .) The purpose of a static class is purely to act as a holder of utility meth-
ods and fields . A static class cannot contain any instance data or methods, and it does not
make sense to try to create an object from a static class by using the new operator . In fact,
you can’t actually create an instance of an object using a static class by using new even if you
want to . (The compiler will report an error if you try .) If you need to perform any initializa-
tion, a static class can have a default constructor as long as it is also declared as static . Any
other types of constructor are illegal and will be reported as such by the compiler .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 7 Creating and Managing Classes and Objects 145

If you were defining your own version of the Math class, one containing only static members,
it could look like this:

public static class Math
{
 public static double Sin(double x) {...}
 public static double Cos(double x) {...}
 public static double Sqrt(double x) {...}
 ...
}

Note The real Math class is not defined this way because it actually does have some instance
methods .

In the final exercise in this chapter, you will add a private static field to the Point class and ini-
tialize the field to 0 . You will increment this count in both constructors . Finally, you will write
a public static method to return the value of this private static field . With this field, you can
find out how many Point objects have been created .

Write static members, and call static methods

 . 1 . . Using Visual Studio 2010, display the Point class in the Code and Text Editor window .

 . 2 . . Add a private static field called objectCount of type int to the Point class, before the
constructors . Initialize it to 0 as you declare it, like this:

class Point
{
 ...
 private static int objectCount = 0;
 ...
}

Note You can write the keywords private and static in any order . The preferred order is
private first, static second .

 . 3 . . Add a statement to both Point constructors to increment the objectCount field, as
shown in bold type in the following code example .

Each time an object is created, its constructor is called . As long as you increment
the objectCount in each constructor (including the default constructor), objectCount
will hold the number of objects created so far . This strategy works only because
 objectCount is a shared static field . If objectCount were an instance field, each object
would have its own personal objectCount field that would be set to 1 .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

146 Part II Understanding the C# Language

The Point class should now look like this:

class Point
{
 private int x, y;
 private static int objectCount = 0;

 public Point()
 {
 this.x = -1;
 this.y = -1;
 objectCount++;
 }

 public Point(int x, int y)
 {
 this.x = x;
 this.y = y;
 objectCount++;
 }

 public double DistanceTo(Point other)
 {
 int xDiff = this.x - other.x;
 int yDiff = this.y - other.y;
 return Math.Sqrt((xDiff * xDiff) + (yDiff * yDiff));
 }
}

Notice that you cannot prefix static fields and methods with the this keyword because
they do not belong to the current instance of the class . (They do not actually belong to
any instance .)

The question now is this: How can users of the Point class find out how many Point ob-
jects have been created? At the moment, the objectCount field is private and not avail-
able outside the class . A poor solution would be to make the objectCount field publicly
accessible . This strategy would break the encapsulation of the class; you would then
have no guarantee that its value was correct because anyone could change the value in
the field . A much better idea is to provide a public static method that returns the value
of the objectCount field . This is what you will do now .

 . 4 . . Add a public static method to the Point class called ObjectCount that returns an int but
does not take any parameters . In this method, return the value of the objectCount field,
as follows in bold type:

class Point
{
 ...
 public static int ObjectCount()
 {
 return objectCount;
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 7 Creating and Managing Classes and Objects 147

 . 5 . . Display the Program class in the Code and Text Editor window, and locate the DoWork
method .

 . 6 . . Add a statement to the DoWork method to write the value returned from the
ObjectCount method of the Point class to the screen, as shown in bold type in the
 following code example . The DoWork method should look like this:

static void DoWork()
{
 Point origin = new Point();
 Point bottomRight = new Point(600, 800);
 double distance = origin.distanceTo(bottomRight);
 Console.WriteLine("Distance is: {0}", distance);
 Console.WriteLine("No of Point objects: {0}", Point.ObjectCount());
}

The ObjectCount method is called by referencing Point, the name of the class, and not
the name of a Point variable (such as origin or bottomRight) . Because two Point objects
have been created by the time ObjectCount is called, the method should return the
value 2 .

 . 7 . . On the Debug menu, click Start Without Debugging .

Confirm that the value 2 is written to the console window (after the message displaying
the value of the distance variable) .

 . 8 . . Press Enter to finish the program and return to Visual Studio 2010 .

Anonymous Classes
An anonymous class is a class that does not have a name . This sounds rather strange but is
actually quite handy in some situations that you will see later in this book, especially when
using query expressions . (You learn about query expressions in Chapter 20, “Querying In-
Memory Data by Using Query Expressions .”) For the time being, just accept the fact that they
are useful .

You create an anonymous class simply by using the new keyword and a pair of braces defin-
ing the fields and values that you want the class to contain, like this:

myAnonymousObject = new { Name = "John", Age = 44 };

This class contains two public fields called Name (initialized to the string “John”) and Age
(initialized to the integer 42) . The compiler infers the types of the fields from the types of the
data you specify to initialize them .

When you define an anonymous class, the compiler generates its own name for the class,
but it won’t tell you what it is . Anonymous classes therefore raise a potentially interesting
conundrum: If you don’t know the name of the class, how can you create an object of the
appropriate type and assign an instance of the class to it? In the code example shown earlier,

http://lib.ommolketab.ir
http//lib.ommolketab.ir

148 Part II Understanding the C# Language

what should the type of the variable myAnonymousObject be? The answer is that you don’t
know—that is the point of anonymous classes! However, this is not a problem if you declare
myAnonymousObject as an implicitly typed variable by using the var keyword, like this:

var myAnonymousObject = new { Name = "John", Age = 44 };

Remember that the var keyword causes the compiler to create a variable of the same type as
the expression used to initialize it . In this case, the type of the expression is whatever name
the compiler happens to generate for the anonymous class .

You can access the fields in the object by using the familiar dot notation, like this:

Console.WriteLine("Name: {0} Age: {1}", myAnonymousObject.Name, myAnonymousObject.Age};

You can even create other instances of the same anonymous class but with different values:

var anotherAnonymousObject = new { Name = "Diana", Age = 45 };

The C# compiler uses the names, types, number, and order of the fields to determine wheth-
er two instances of an anonymous class have the same type . In this case, variables myAnony-
mousObject and anotherAnonymousObject have the same number of fields, with the same
name and type, in the same order, so both variables are instances of the same anonymous
class . This means that you can perform assignment statements such as this:

anotherAnonymousObject = myAnonymousObject;

Note Be warned that this assignment statement might not accomplish what you expect . You’ll
learn more about assigning object variables in Chapter 8 .

There are quite a lot of restrictions on the contents of an anonymous class . Anonymous
 classes can contain only public fields, the fields must all be initialized, they cannot be static,
and you cannot specify any methods .

In this chapter, you saw how to define new classes . You learned that by default the fields and
methods of a class are private and inaccessible to code outside of the class, but that you can
use the public keyword to expose fields and methods to the outside world . You saw how to
use the new keyword to create a new instance of a class, and how to define constructors that
can initialize class instances . Finally, you saw how to implement static fields and methods to
provide data and operations that are independent of any specific instance of a class .

n If you want to continue to the next chapter

Keep Visual Studio 2010 running, and turn to Chapter 8 .

n If you want to exit Visual Studio 2010 now

On the File menu, click Exit . If you see a Save dialog box, click Yes and save the project .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 7 Creating and Managing Classes and Objects 149

Chapter .7 .Quick .Reference
To Do this

Declare a class Write the keyword class, followed by the name of the class, followed by
an opening and closing brace . The methods and fields of the class are
declared between the opening and closing braces . For example:

class Point
{
 ...
}

Declare a constructor Write a method whose name is the same as the name of the class and
that has no return type (not even void) . For example:

class Point
{
 public Point(int x, int y)
 {
 ...
 }
}

Call a constructor Use the new keyword, and specify the constructor with an appropriate set
of parameters . For example:

Point origin = new Point(0, 0);

Declare a static
method

Write the keyword static before the declaration of the method . For
 example:

class Point
{
 public static int ObjectCount()
 {
 ...
 }
}

Call a static method Write the name of the class, followed by a period, followed by the name
of the method . For example:

int pointsCreatedSoFar = Point.ObjectCount();

Declare a static field Write the keyword static before the declaration of the field . For example:

class Point
{
 ...
 private static int objectCount;
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

150 Part II Understanding the C# Language

To Do this

Declare a const field Write the keyword const before the declaration of the field, and omit the
static keyword . For example:

class Math
{
 ...
 public const double PI = ...;
}

Access a static field Write the name of the class, followed by a period, followed by the name
of the static field . For example:

double area = Math.PI * radius * radius;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 . . 151

Chapter 8

Understanding Values and
References

After completing this chapter, you will be able to:

n Explain the differences between a value type and a reference type .

n Modify the way in which arguments are passed as method parameters by using the ref
and out keywords .

n Box a value by initializing or assigning a variable of type object .

n Unbox a value by casting the object reference that refers to the boxed value .

In Chapter 7, “Creating and Managing Classes and Objects,” you learned how to declare your
own classes and how to create objects by using the new keyword . You also saw how to initial-
ize an object by using a constructor . In this chapter, you will learn about how the character-
istics of the primitive types—such as int, double, and char—differ from the characteristics of
class types .

Copying .Value .Type Variables .and .Classes
Collectively, types such as int, float, double, and char are called value types . When you declare
a variable as a value type, the compiler generates code that allocates a block of memory
big enough to hold a corresponding value . For example, declaring an int variable causes the
compiler to allocate 4 bytes of memory (32 bits) . A statement that assigns a value (such as 42)
to the int causes the value to be copied into this block of memory .

Class types, such as Circle (described in Chapter 7), are handled differently . When you declare
a Circle variable, the compiler does not generate code that allocates a block of memory big
enough to hold a Circle; all it does is allot a small piece of memory that can potentially hold
the address of (or a reference to) another block of memory containing a Circle . (An address
specifies the location of an item in memory .) The memory for the actual Circle object is al-
located only when the new keyword is used to create the object . A class is an example of a
reference type . Reference types hold references to blocks of memory . To write effective C#
programs that make full use of the Microsoft .NET Framework, you need to understand the
difference between value types and reference types .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

152 Part II Understanding the C# Language

Note Most of the built-in types of the C# language are value types except for string, which is a
reference type . The description of reference types such as classes in this chapter applies to the
string type as well . In fact, the string keyword in C# is just an alias for the System.String class .

Consider the situation in which you declare a variable named i as an int and assign it the
value 42 . If you declare another variable called copyi as an int and then assign i to copyi, copyi
will hold the same value as i (42) . However, even though copyi and i happen to hold the same
value, there are two blocks of memory containing the value 42: one block for i and the other
block for copyi . If you modify the value of i, the value of copyi does not change . Let’s see this
in code:

int i = 42; // declare and initialize i
int copyi = i; // copyi contains a copy of the data in i
i++; // incrementing i has no effect on copyi

The effect of declaring a variable c as a Circle (the name of a class) is very different . When
you declare c as a Circle, c can refer to a Circle object . If you declare refc as another Circle, it
can also refer to a Circle object . If you assign c to refc, refc will refer to the same Circle object
that c does; there is only one Circle object, and refc and c both refer to it . What has hap-
pened here is that the compiler has allocated two blocks of memory, one for c and one for
refc, but the address contained in each block points to the same location in memory that
stores the actual Circle object . Let’s see this in code:

Circle c = new Circle(42);
Circle refc = c;

The following graphic illustrates both examples . The at sign (@) in the Circle objects
 represents a reference to an address in memory:

l

l

l

l

l

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 8 Understanding Values and References 153

This difference is very important . In particular, it means that the behavior of method
 parameters depends on whether they are value types or reference types . You’ll explore this
difference in the following exercise .

Note If you actually want to copy the contents of the c variable into refc rather than just
 copying the reference, you must make refc refer to a new instance of the Circle class and
then copy the data field by field from c into refc, like this:

Circle refc = new Circle();
refc.radius = c.radius; // Don't try this

However, if any members of the Circle class are private (like the radius field), you will not be able
to copy this data . Instead, you should make the data in the private fields accessible by expos-
ing them as properties . You will learn how to do this in Chapter 15, “Implementing Properties to
Access Fields .”

Use value parameters and reference parameters

 . 1 . . Start Microsoft Visual Studio 2010 if it is not already running .

 . 2 . . Open the Parameters project located in the \Microsoft Press\Visual CSharp Step By
Step\Chapter 8\Parameters folder in your Documents folder .

The project contains three C# code files named Pass .cs, Program .cs, and WrappedInt .cs .

 . 3 . . Display the Pass .cs file in the Code and Text Editor window . Add a public static method
called Value to the Pass class, replacing the // to do comment, as shown in bold type
in the following code example . This method should accept a single int parameter (a
value type) called param and have the return type void . The body of the Value method
should simply assign 42 to param .

namespace Parameters
{
 class Pass
 {
 public static void Value(int param)
 {
 param = 42;
 }
 }
}

 . 4 . . Display the Program .cs file in the Code and Text Editor window, and then locate the
DoWork method of the Program class .

The DoWork method is called by the Main method when the program starts running .
As explained in Chapter 7, the method call is wrapped in a try block and followed by a
catch handler .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

154 Part II Understanding the C# Language

 . 5 . . Add four statements to the DoWork method to perform the following tasks:

 . 1 . . Declare a local int variable called i, and initialize it to 0 .

 . 2 . . Write the value of i to the console by using Console.WriteLine .

 . 3 . . Call Pass.Value, passing i as an argument .

 . 4 . . Write the value of i to the console again .

With the calls to Console.WriteLine before and after the call to Pass.Value, you can see
whether the call to Pass.Value actually modifies the value of i . The completed DoWork
method should look exactly like this:

static void DoWork()
{
 int i = 0;
 Console.WriteLine(i);
 Pass.Value(i);
 Console.WriteLine(i);
}

 . 6 . . On the Debug menu, click Start Without Debugging to build and run the program .

 . 7 . . Confirm that the value 0 is written to the console window twice .

The assignment statement inside the Pass.Value method that updates the parameter
and sets it to 42 uses a copy of the argument passed in, and the original argument i is
completely unaffected .

 . 8 . . Press the Enter key to close the application .

You will now see what happens when you pass an int parameter that is wrapped inside
a class .

 . 9 . . Display the WrappedInt .cs file in the Code and Text Editor window . Add a public
 instance field called Number of type int to the WrappedInt class, as shown in bold type
here:

namespace Parameters
{
 class WrappedInt
 {
 public int Number;
 }
}

 . 10 . . Display the Pass .cs file in the Code and Text Editor window . Add a public static method
called Reference to the Pass class . This method should accept a single WrappedInt

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 8 Understanding Values and References 155

 parameter called param and have the return type void . The body of the Reference
method should assign 42 to param.Number, like this:

public static void Reference(WrappedInt param)
{
 param.Number = 42;
}

 . 11 . . Display the Program .cs file in the Code and Text Editor window . Comment out the
 existing code in the DoWork method and add four more statements to perform the
 following tasks:

 . a . . Declare a local WrappedInt variable called wi, and initialize it to a new WrappedInt
object by calling the default constructor .

 . b . . Write the value of wi.Number to the console .

 . c . . Call the Pass.Reference method, passing wi as an argument .

 . d . . Write the value of wi.Number to the console again .

As before, with the calls to Console.WriteLine, you can see whether the call to Pass.
Reference modifies the value of wi.Number . The DoWork method should now look
 exactly like this (the new statements are shown in bold type):

static void DoWork()
{
 // int i = 0;
 // Console.WriteLine(i);
 // Pass.Value(i);
 // Console.WriteLine(i);

 WrappedInt wi = new WrappedInt();
 Console.WriteLine(wi.Number);
 Pass.Reference(wi);
 Console.WriteLine(wi.Number);
}

 . 12 . . On the Debug menu, click Start Without Debugging to build and run the application .

This time, the two values displayed in the Console window correspond to the value of
wi.Number before and after Pass.Reference . You should see that the values 0 and 42 are
output .

 . 13 . . Press the Enter key to close the application and return to Visual Studio 2010 .

To explain what the previous exercise shows, the value of wi.Number is initialized to 0 by
the compiler-generated default constructor . The wi variable contains a reference to the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

156 Part II Understanding the C# Language

newly created WrappedInt object (which contains an int) . The wi variable is then copied as
an argument to the Pass.Reference method . Because WrappedInt is a class (a reference type),
wi and param both refer to the same WrappedInt object . Any changes made to the contents
of the object through the param variable in the Pass.Reference method are visible by using
the wi variable when the method completes . The following diagram illustrates what happens
when a WrappedInt object is passed as an argument to the Pass.Reference method:

I

I

I
I

I

Understanding .Null .Values .and .Nullable .Types
When you declare a variable, it is always a good idea to initialize it . With value types, it is
common to see code such as this:

int i = 0;
double d = 0.0;

Remember that to initialize a reference variable such as a class, you can create a new instance
of the class and assign the reference variable to the new object, like this:

Circle c = new Circle(42);

This is all very well, but what if you don’t actually want to create a new object—perhaps the
purpose of the variable is simply to store a reference to an existing object . In the following
code example, the Circle variable copy is initialized, but later it is assigned a reference to an-
other instance of the Circle class:

Circle c = new Circle(42);
Circle copy = new Circle(99); // Some random value, for initializing copy
...
copy = c; // copy and c refer to the same object

After assigning c to copy, what happens to the original Circle object with a radius of 99 that
you used to initialize copy? Nothing refers to it anymore . In this situation, the runtime can
reclaim the memory by performing an operation known as garbage collection, which you

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 8 Understanding Values and References 157

will learn more about in Chapter 14, “Using Garbage Collection and Resource Management .”
The important thing to understand for now is that garbage collection is a potentially time-
consuming operation .

You could argue that if a variable is going to be assigned a reference to another object at
some point in a program, there is no point initializing it . But this is poor programming prac-
tice and can lead to problems in your code . For example, you will inevitably meet the situ-
ation where you want to refer a variable to an object only if that variable does not already
contain a reference, as shown in the following code example:

Circle c = new Circle(42);
Circle copy; // Uninitialized !!!
...
if (copy == // what goes here?)
 copy = c; // copy and c refer to the same object

The purpose of the if statement is to test the copy variable to see whether it is initialized, but
to which value should you compare this variable? The answer is to use a special value called
null .

In C#, you can assign the null value to any reference variable . The null value simply means
that the variable does not refer to an object in memory . You can use it like this:

Circle c = new Circle(42);
Circle copy = null; // Initialized
...
if (copy == null)
 copy = c; // copy and c refer to the same object

Using Nullable Types
The null value is useful for initializing reference types, but null is itself a reference, and you
cannot assign it to a value type . The following statement is therefore illegal in C#:

int i = null; // illegal

However, C# defines a modifier that you can use to declare that a variable is a nullable value
type . A nullable value type behaves in a similar manner to the original value type, but you
can assign the null value to it . You use the question mark (?) to indicate that a value type is
nullable, like this:

int? i = null; // legal

You can ascertain whether a nullable variable contains null by testing it in the same way as a
reference type:

if (i == null)
 ...

http://lib.ommolketab.ir
http//lib.ommolketab.ir

158 Part II Understanding the C# Language

You can assign an expression of the appropriate value type directly to a nullable variable . The
following examples are all legal:

int? i = null;
int j = 99;
i = 100; // Copy a value type constant to a nullable type
i = j; // Copy a value type variable to a nullable type

You should note that the converse is not true . You cannot assign a nullable value to an or-
dinary value type variable . So, given the definitions of variables i and j from the preceding
example, the following statement is not allowed:

j = i; // Illegal

This makes sense if you consider that the variable i might contain null, and j is a value-type
that cannot contain null . This also means that you cannot use a nullable variable as a param-
eter to a method that expects an ordinary value type . If you recall, the Pass.Value method
from the preceding exercise expects an ordinary int parameter, so the following method call
will not compile:

int? i = 99;
Pass.Value(i); // Compiler error

Understanding the Properties of Nullable Types
Nullable types expose a pair of properties that you can use and that you have already met
in Chapter 6, “Managing Errors and Exceptions .” The HasValue property indicates whether a
nullable type contains a value or is null, and you can retrieve the value of a non-null nullable
type by reading the Value property, like this:

int? i = null;
...
if (!i.HasValue)
 i = 99;
else
 Console.WriteLine(i.Value);

Recall from Chapter 4, “Using Decision Statements,” that the NOT operator (!) negates a
Boolean value . This code fragment tests the nullable variable i, and if it does not have a value
(it is null), it assigns it the value 99; otherwise, it displays the value of the variable . In this
example, using the HasValue property does not provide any benefit over testing for a null
value directly . Additionally, reading the Value property is a long-winded way of reading the
contents of the variable . However, these apparent shortcomings are caused by the fact that
int? is a very simple nullable type . You can create more complex value types and use them to
declare nullable variables where the advantages of using the HasValue and Value properties
become more apparent . You will see some examples in Chapter 9, “Creating Value Types with
Enumerations and Structures .”

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 8 Understanding Values and References 159

Note The Value property of a nullable type is read-only . You can use this property to read the
value of a variable but not to modify it . To update a nullable variable, use an ordinary assignment
statement .

Using .ref .and .out .Parameters
Ordinarily, when you pass an argument to a method, the corresponding parameter is initial-
ized with a copy of the argument . This is true regardless of whether the parameter is a value
type (such as an int), a nullable type (such as int?), or a reference type (such as a WrappedInt) .
This arrangement means it’s impossible for any change to the parameter to affect the value
of the argument passed in . For example, in the following code, the value output to the con-
sole is 42 and not 43 . The DoIncrement method increments a copy of the argument (arg) and
not the original argument:

static void DoIncrement(int param)
{
 param++;
}

static void Main()
{
 int arg = 42;
 DoIncrement(arg);
 Console.WriteLine(arg); // writes 42, not 43
}

In the preceding exercise, you saw that if the parameter to a method is a reference type, any
changes made by using that parameter change the data referenced by the argument passed
in . The key point is that, although the data that was referenced changed, the argument
passed in as the parameter did not—it still references the same object . In other words, al-
though it is possible to modify the object that the argument refers to through the parameter,
it’s not possible to modify the argument itself (for example, to set it to refer to a completely
different object) . Most of the time, this guarantee is very useful and can help to reduce the
number of bugs in a program . Occasionally, however, you might want to write a method that
actually needs to modify an argument . C# provides the ref and out keywords so that you can
do this .

Creating ref Parameters
If you prefix a parameter with the ref keyword, the parameter becomes an alias for (or a
reference to) the actual argument rather than a copy of the argument . When using a ref pa-
rameter, anything you do to the parameter you also do to the original argument because the
parameter and the argument both reference the same object . When you pass an argument

http://lib.ommolketab.ir
http//lib.ommolketab.ir

160 Part II Understanding the C# Language

as a ref parameter, you must also prefix the argument with the ref keyword . This syntax
 provides a useful visual cue to the programmer that the argument might change . Here’s the
preceding example again, this time modified to use the ref keyword:

static void DoIncrement(ref int param) // using ref
{
 param++;
}

static void Main()
{
 int arg = 42;
 DoIncrement(ref arg); // using ref
 Console.WriteLine(arg); // writes 43
}

This time, you pass to the DoIncrement method a reference to the original argument rather
than a copy of the original argument, so any changes the method makes by using this refer-
ence also change the original argument . That’s why the value 43 is displayed on the console .

The rule that you must assign a value to a variable before you can use the variable still
 applies to ref arguments . For example, in the following example, arg is not initialized, so
this code will not compile . This failure occurs because param++ inside DoIncrement is really
arg++, and arg++ is allowed only if arg has a defined value:

static void DoIncrement(ref int param)
{
 param++;
}

static void Main()
{
 int arg; // not initialized
 DoIncrement(ref arg);
 Console.WriteLine(arg);
}

Creating out Parameters
The compiler checks whether a ref parameter has been assigned a value before calling
the method . However, there might be times when you want the method to initialize the
 parameter . You can do this with the out keyword .

The out keyword is similar to the ref keyword . You can prefix a parameter with the out
 keyword so that the parameter becomes an alias for the argument . As when using ref,
 anything you do to the parameter, you also do to the original argument . When you pass an
argument to an out parameter, you must also prefix the argument with the out keyword .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 8 Understanding Values and References 161

The keyword out is short for output . When you pass an out parameter to a method, the
method must assign a value to it . The following example does not compile because
DoInitialize does not assign a value to param:

static void DoInitialize(out int param)
{
 // Do nothing
}

However, the following example does compile because DoInitialize now assigns a value to
param:

static void DoInitialize(out int param)
{
 param = 42;
}

Because an out parameter must be assigned a value by the method, you’re allowed to call the
method without initializing its argument . For example, the following code calls DoInitialize to
initialize the variable arg, which is then displayed on the console:

static void DoInitialize(out int param)
{
 param = 42;
}

static void Main()
{
 int arg; // not initialized
 DoInitialize(out arg);
 Console.WriteLine(arg); // writes 42
}

You will examine ref parameters in the next exercise .

Use ref parameters

 . 1 . . Return to the Parameters project in Visual Studio 2010 .

 . 2 . . Display the Pass .cs file in the Code and Text Editor window .

 . 3 . . Edit the Value method to accept its parameter as a ref parameter .

The Value method should look like this:

class Pass
{
 public static void Value(ref int param)
 {
 param = 42;
 }
 ...
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

162 Part II Understanding the C# Language

 . 4 . . Display the Program .cs file in the Code and Text Editor window .

 . 5 . . Uncomment the first four statements . Edit the third statement of the DoWork method
so that the Pass.Value method call passes its argument as a ref parameter .

Note Leave the four statements that create and test the WrappedInt object as they are .

The DoWork method should now look like this:

class Application
{
 static void DoWork()
 {
 int i = 0;
 Console.WriteLine(i);
 Pass.Value(ref i);
 Console.WriteLine(i);
 ...
 }
}

 . 6 . . On the Debug menu, click Start Without Debugging to build and run the program .

This time, the first two values written to the console window are 0 and 42 . This result
shows that the call to the Pass.Value method has successfully modified the argument i .

 . 7 . . Press the Enter key to close the application and return to Visual Studio 2010 .

Note You can use the ref and out modifiers on reference type parameters as well as on
value type parameters . The effect is exactly the same . The parameter becomes an alias for
the argument . If you reassigned the parameter to a newly constructed object, you would
also actually be reassigning the argument to the newly constructed object .

How .Computer .Memory .Is .Organized
Computers use memory to hold programs being executed and the data that these programs
use . To understand the differences between value and reference types, it is helpful to under-
stand how data is organized in memory .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 8 Understanding Values and References 163

Operating systems and language runtimes such as that used by C# frequently divide the
memory used for holding data in two separate chunks, each of which is managed in a
 distinct manner . These two chunks of memory are traditionally called the stack and the heap .
The stack and the heap serve very different purposes:

n When you call a method, the memory required for its parameters and its local variables
is always acquired from the stack . When the method finishes (because it either returns
or throws an exception), the memory acquired for the parameters and local variables is
automatically released back to the stack and is available for reuse when another meth-
od is called .

n When you create an object (an instance of a class) by using the new keyword, the mem-
ory required to build the object is always acquired from the heap . You have seen that
the same object can be referenced from several places by using reference variables .
When the last reference to an object disappears, the memory used by the object be-
comes available for reuse (although it might not be reclaimed immediately) . Chapter 14
includes a more detailed discussion of how heap memory is reclaimed .

Note All value types are created on the stack . All reference types (objects) are created on the
heap (although the reference itself is on the stack) . Nullable types are actually reference types,
and they are created on the heap .

The names stack and heap come from the way in which the runtime manages the memory:

n Stack memory is organized like a stack of boxes piled on top of one another . When a
method is called, each parameter is put in a box that is placed on top of the stack . Each
local variable is likewise assigned a box, and these are placed on top of the boxes al-
ready on the stack . When a method finishes, all its boxes are removed from the stack .

n Heap memory is like a large pile of boxes strewn around a room rather than stacked
neatly on top of each other . Each box has a label indicating whether it is in use . When a
new object is created, the runtime searches for an empty box and allocates it to the ob-
ject . The reference to the object is stored in a local variable on the stack . The runtime
keeps track of the number of references to each box . (Remember that two variables
can refer to the same object .) When the last reference disappears, the runtime marks
the box as not in use, and at some point in the future it will empty the box and make it
available for reuse .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

164 Part II Understanding the C# Language

Using the Stack and the Heap
Now let’s examine what happens when the following method Method is called:

void Method(int param)
{
 Circle c;
 c = new Circle(param);
 ...
}

Suppose the argument passed into param is the value 42 . When the method is called, a block
of memory (just enough for an int) is allocated from the stack and initialized with the value
42 . As execution moves inside the method, another block of memory big enough to hold a
reference (a memory address) is also allocated from the stack but left uninitialized . (This is
for the Circle variable, c .) Next, another piece of memory big enough for a Circle object is
allocated from the heap . This is what the new keyword does . The Circle constructor runs to
convert this raw heap memory to a Circle object . A reference to this Circle object is stored in
the variable c . The following graphic illustrates the situation:

= l l
l

At this point, you should note two things:

n Although the object is stored on the heap, the reference to the object (the variable c) is
stored on the stack .

n Heap memory is not infinite . If heap memory is exhausted, the new operator will throw
an OutOfMemoryException and the object will not be created .

Note The Circle constructor could also throw an exception . If it does, the memory allocated to
the Circle object will be reclaimed and the value returned by the constructor will be null .

When the method ends, the parameters and local variables go out of scope . The memory
acquired for c and for param is automatically released back to the stack . The runtime notes
that the Circle object is no longer referenced and at some point in the future will arrange for
its memory to be reclaimed by the heap . (See Chapter 14 .)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 8 Understanding Values and References 165

The .System.Object .Class
One of the most important reference types in the Microsoft .NET Framework is the Object
class in the System namespace . To fully appreciate the significance of the System.Object class
requires that you understand inheritance, which is described in Chapter 12, “Working with
Inheritance .” For the time being, simply accept that all classes are specialized types of System.
Object and that you can use System.Object to create a variable that can refer to any reference
type . System.Object is such an important class that C# provides the object keyword as an
alias for System.Object . In your code, you can use object or you can write System.Object; they
mean exactly the same thing .

Tip Use the object keyword in preference to System.Object . It’s more direct, and it’s consistent
with other keywords that are synonyms for classes (such as string for System.String and some
others that you’ll discover in Chapter 9) .

In the following example, the variables c and o both refer to the same Circle object . The fact
that the type of c is Circle and the type of o is object (the alias for System.Object) in effect
provides two different views of the same item in memory:

Circle c;
c = new Circle(42);
object o;
o = c;

l
l

l

Boxing
As you have just seen, variables of type object can refer to any object of any reference type .
However, variables of type object can also refer to a value type . For example, the following
two statements initialize the variable i (of type int, a value type) to 42 and then initialize the
variable o (of type object, a reference type) to i:

int i = 42;
object o = i;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

166 Part II Understanding the C# Language

The second statement requires a little explanation to appreciate what is actually happen-
ing . Remember that i is a value type and that it lives on the stack . If the reference inside o
referred directly to i, the reference would refer to the stack . However, all references must
refer to objects on the heap; creating references to items on the stack could seriously com-
promise the robustness of the runtime and create a potential security flaw, so it is not al-
lowed . Therefore, the runtime allocates a piece of memory from the heap, copies the value
of integer i to this piece of memory, and then refers the object o to this copy . This automatic
copying of an item from the stack to the heap is called boxing . The following graphic shows
the result:

Important If you modify the original value of a variable, the value on the heap will not change .
Likewise, if you modify the value on the heap, the original value of the variable will not change .

Unboxing
Because a variable of type object can refer to a boxed copy of a value, it’s only reasonable
to allow you to get at that boxed value through the variable . You might expect to be able to
access the boxed int value that a variable o refers to by using a simple assignment statement
such as this:

int i = o;

However, if you try this syntax, you’ll get a compile-time error . If you think about it, it’s pretty
sensible that you can’t use the int i = o; syntax . After all, o could be referencing abso-
lutely anything and not just an int . Consider what would happen in the following code if this
statement were allowed:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 8 Understanding Values and References 167

Circle c = new Circle();
int i = 42;
object o;

o = c; // o refers to a circle
i = o; // what is stored in i?

To obtain the value of the boxed copy, you must use what is known as a cast . This is an
operation that checks whether it is safe to convert one type to another before it does the
conversion . You prefix the object variable with the name of the type in parentheses, as in this
example:

int i = 42;
object o = i; // boxes
i = (int)o; // compiles okay

The effect of this cast is subtle . The compiler notices that you’ve specified the type int in
the cast . Next, the compiler generates code to check what o actually refers to at run time .
It could be absolutely anything . Just because your cast says o refers to an int, that doesn’t
mean it actually does . If o really does refer to a boxed int and everything matches, the
cast succeeds and the compiler-generated code extracts the value from the boxed int and
 copies it to i . (In this example, the boxed value is then stored in i .) This is called unboxing .
The following diagram shows what is happening:

However, if o does not refer to a boxed int, there is a type mismatch, causing the cast to fail .
The compiler-generated code throws an InvalidCastException at run time . Here’s an example
of an unboxing cast that fails:

Circle c = new Circle(42);
object o = c; // doesn't box because Circle is a reference variable
int i = (int)o; // compiles okay but throws an exception at run time

You will use boxing and unboxing in later exercises . Keep in mind that boxing and unboxing
are expensive operations because of the amount of checking required and the need to allo-
cate additional heap memory . Boxing has its uses, but injudicious use can severely impair the
performance of a program . You will see an alternative to boxing in Chapter 18, “Introducing
Generics .”

http://lib.ommolketab.ir
http//lib.ommolketab.ir

168 Part II Understanding the C# Language

l

l l

ll

Casting .Data .Safely
By using a cast, you can specify that, in your opinion, the data referenced by an object has
a specific type and that it is safe to reference the object by using that type . The key phrase
here is “in your opinion .” The C# compiler will trust you when it builds your application, but
the runtime is more suspicious and will actually check that this is the case when your applica-
tion runs . If the type of object in memory does not match the cast, the runtime will throw an
InvalidCastException, as described in the preceding section . You should be prepared to catch
this exception and handle it appropriately if it occurs .

However, catching an exception and attempting to recover in the event that the type of an
object is not what you expected it to be is a rather cumbersome approach . C# provides two
more very useful operators that can help you perform casting in a much more elegant man-
ner: the is and as operators .

The is Operator
You can use the is operator to verify that the type of an object is what you expect it to be,
like this:

WrappedInt wi = new WrappedInt();
...
object o = wi;
if (o is WrappedInt)
{
 WrappedInt temp = (WrappedInt)o; // This is safe; o is a WrappedInt
 ...
}

The is operator takes two operands: a reference to an object on the left and the name of a
type on the right . If the type of the object referenced on the heap has the specified type, is

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 8 Understanding Values and References 169

evaluates to true; otherwise, it evaluates to false . The preceding code attempts to cast the
reference to the object variable o only if it knows that the cast will succeed .

The as Operator
The as operator fulfills a similar role to is but in a slightly truncated manner . You use the as
operator like this:

WrappedInt wi = new WrappedInt();
...
object o = wi;
WrappedInt temp = o as WrappedInt;
if (temp != null)
 ... // Cast was successful

Like the is operator, the as operator takes an object and a type as its operands . The runtime
attempts to cast the object to the specified type . If the cast is successful, the result is re-
turned, and, in this example, it is assigned to the WrappedInt variable temp . If the cast is un-
successful, the as operator evaluates to the null value and assigns that to temp instead .

There is a little more to the is and as operators than described here, and you will meet them
again in Chapter 12 .

Pointers .and .Unsafe .Code
This section is purely for your information and is aimed at developers who are familiar
with C or C++ . If you are new to programming, feel free to skip this section!

If you have already written programs in languages such as C or C++, much of the dis-
cussion in this chapter concerning object references might be familiar . Although neither
C nor C++ has explicit reference types, both languages have a construct that provides
similar functionality—pointers .

A pointer is a variable that holds the address of, or a reference to, an item in memory
(on the heap or on the stack) . A special syntax is used to identify a variable as a pointer .
For example, the following statement declares the variable pi as a pointer to an integer:

int *pi;

Although the variable pi is declared as a pointer, it does not actually point anywhere
until you initialize it . For example, to use pi to point to the integer variable i, you can
use the following statements and the address operator (&), which returns the address of
a variable:

int *pi;
int i = 99;
...
pi = &i;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

170 Part II Understanding the C# Language

You can access and modify the value held in the variable i through the pointer variable
pi like this:

*pi = 100;

This code updates the value of the variable i to 100 because pi points to the same
memory location as the variable i .

One of the main problems that developers learning C and C++ have is understanding
the syntax used by pointers . The * operator has at least two meanings (in addition to
being the arithmetic multiplication operator), and there is often great confusion about
when to use & rather than * . The other issue with pointers is that it is easy to point
somewhere invalid, or to forget to point somewhere at all, and then try to reference
the data pointed to . The result will be either garbage or a program that fails with an
error because the operating system detects an attempt to access an illegal address in
memory . There is also a whole range of security flaws in many existing systems result-
ing from the mismanagement of pointers; some environments (not Microsoft Windows)
fail to enforce checks that a pointer does not refer to memory that belongs to another
process, opening up the possibility that confidential data could be compromised .

Reference variables were added to C# to avoid all these problems . If you really want to,
you can continue to use pointers in C#, but you must mark the code as unsafe . The un-
safe keyword can be used to mark a block of code, or an entire method, as shown here:

public static void Main(string [] args)
{
 int x = 99, y = 100;
 unsafe
 {
 swap (&x, &y);
 }
 Console.WriteLine("x is now {0}, y is now {1}", x, y);
}

public static unsafe void swap(int *a, int *b)
{
 int temp;
 temp = *a;
 *a = *b;
 *b = temp;
}

When you compile programs containing unsafe code, you must specify the /unsafe
option .

Unsafe code also has a bearing on how memory is managed; objects created in unsafe
code are said to be unmanaged . We discuss this issue in more detail in Chapter 14 .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 8 Understanding Values and References 171

In this chapter, you learned about some important differences between value types that hold
their value directly on the stack and reference types that refer indirectly to their objects on
the heap . You also learned how to use the ref and out keywords on method parameters to
gain access to the arguments . You saw how assigning a value (such as the int 42) to a variable
of the System.Object class creates a boxed copy of the value on the heap and then causes the
System.Object variable to refer to this boxed copy . You also saw how assigning a variable of
a value type (such as an int) to a variable of the System.Object class copies (or unboxes) the
value in the System.Object class to the memory used by the int .

n If you want to continue to the next chapter

Keep Visual Studio 2010 running, and turn to Chapter 9 .

n If you want to exit Visual Studio 2010 now

On the File menu, click Exit . If you see a Save dialog box, click Yes and save the project .

Chapter .8 .Quick .Reference
To Do this

Copy a value type variable Simply make the copy . Because the variable is a value type, you will have
two copies of the same value . For example:

int i = 42;
int copyi = i;

Copy a reference type variable Simply make the copy . Because the variable is a reference type, you will
have two references to the same object . For example:

Circle c = new Circle(42);
Circle refc = c;

Declare a variable that can hold
a value type or the null value

Declare the variable using the ? modifier with the type . For example:

int? i = null;

Pass an argument to a ref
 parameter

Prefix the argument with the ref keyword . This makes the parameter an
alias for the actual argument rather than a copy of the argument . The
method may change the value of the parameter, and this change is made
to the actual argument rather than a local copy . For example:

static void Main()
{
 int arg = 42;
 DoWork(ref arg);
 Console.WriteLine(arg);
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

172 Part II Understanding the C# Language

To Do this

Pass an argument to an out
parameter

Prefix the argument with the out keyword . This makes the parameter an
alias for the actual argument rather than a copy of the argument . The
method must assign a value to the parameter, and this value is made to
the actual argument . For example:

static void Main()
{
 int arg = 42;
 DoWork(out arg);
 Console.WriteLine(arg);
}

Box a value Initialize or assign a variable of type object to the value . For example:

object o = 42;

Unbox a value Cast the object reference that refers to the boxed value to the type of the
value variable . For example:

int i = (int)o;

Cast an object safely Use the is operator to test whether the cast is valid . For example:

WrappedInt wi = new WrappedInt();
...
object o = wi;
if (o is WrappedInt)
{
 WrappedInt temp = (WrappedInt)o;
 ...
}

Alternatively, use the as operator to perform the cast, and test whether
the result is null . For example:

WrappedInt wi = new WrappedInt();
...
object o = wi;
WrappedInt temp = o as WrappedInt;
if (temp != null)
 ...

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 . . 173

Chapter 9

Creating Value Types with
Enumerations and Structures

After completing this chapter, you will be able to:

n Declare an enumeration type .

n Create and use an enumeration type .

n Declare a structure type .

n Create and use a structure type .

n Explain the differences in behavior between a structure and a class .

In Chapter 8, “Understanding Values and References,” you learned about the two
 fundamental types that exist in Microsoft Visual C#: value types and reference types . A value
type variable holds its value directly on the stack, whereas a reference type variable holds
a reference to an object on the heap . In Chapter 7, “Creating and Managing Classes and
Objects,” you learned how to create your own reference types by defining classes . In this
chapter, you’ll learn how to create your own value types .

C# supports two kinds of value types: enumerations and structures . We’ll look at each of
them in turn .

Working .with .Enumerations
Suppose you want to represent the seasons of the year in a program . You could use the
 integers 0, 1, 2, and 3 to represent spring, summer, fall, and winter, respectively . This system
would work, but it’s not very intuitive . If you used the integer value 0 in code, it wouldn’t be
obvious that a particular 0 represented spring . It also wouldn’t be a very robust solution . For
example, if you declare an int variable named season, there is nothing to stop you from as-
signing it any legal integer value apart from 0, 1, 2, or 3 . C# offers a better solution . You can
create an enumeration (sometimes called an enum type), whose values are limited to a set of
symbolic names .

Declaring an Enumeration
You define an enumeration by using the enum keyword, followed by a set of symbols
 identifying the legal values that the type can have, enclosed between braces . Here’s how to

http://lib.ommolketab.ir
http//lib.ommolketab.ir

174 Part II Understanding the C# Language

declare an enumeration named Season whose literal values are limited to the symbolic names
Spring, Summer, Fall, and Winter:

enum Season { Spring, Summer, Fall, Winter }

Using an Enumeration
After you have declared an enumeration, you can use it in exactly the same way as any other
type . If the name of your enumeration is Season, you can create variables of type Season,
fields of type Season, and parameters of type Season, as shown in this example:

enum Season { Spring, Summer, Fall, Winter }

class Example
{
 public void Method(Season parameter)
 {
 Season localVariable;
 ...
 }

 private Season currentSeason;
}

Before you can read the value of an enumeration variable, it must be assigned a value .
You can assign a value that is defined by the enumeration only to an enumeration variable .
For example:

Season colorful = Season.Fall;
Console.WriteLine(colorful); // writes out 'Fall'

Note As you can with all value types, you can create a nullable version of an enumeration
 variable by using the ? modifier . You can then assign the null value, as well the values defined by
the enumeration, to the variable:

Season? colorful = null;

Notice that you have to write Season.Fall rather than just Fall . All enumeration literal names
are scoped by their enumeration type . This is useful because it allows different enumerations
to coincidentally contain literals with the same name .

Also, notice that when you display an enumeration variable by using Console.WriteLine, the
compiler generates code that writes out the name of the literal whose value matches the
value of the variable . If needed, you can explicitly convert an enumeration variable to a string

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 9 Creating Value Types with Enumerations and Structures 175

that represents its current value by using the built-in ToString method that all enumerations
automatically contain . For example:

string name = colorful.ToString();
Console.WriteLine(name); // also writes out 'Fall'

Many of the standard operators you can use on integer variables can also be used on enu-
meration variables (except the bitwise and shift operators, which are covered in Chapter 16,
“Using Indexers”) . For example, you can compare two enumeration variables of the same
type for equality by using the equality operator (==), and you can even perform arithmetic
on an enumeration variable (although the result might not always be meaningful!) .

Choosing Enumeration Literal Values
Internally, an enumeration type associates an integer value with each element of the enumer-
ation . By default, the numbering starts at 0 for the first element and goes up in steps of 1 . It’s
possible to retrieve the underlying integer value of an enumeration variable . To do this, you
must cast it to its underlying type . Remember from the discussion of unboxing in Chapter 8
that casting a type converts the data from one type to another as long as the conversion is
valid and meaningful . The following code example writes out the value 2 and not the word
Fall (in the Season enumeration Spring is 0, Summer 1, Fall 2, and Winter 3):

enum Season { Spring, Summer, Fall, Winter }
...
Season colorful = Season.Fall;
Console.WriteLine((int)colorful); // writes out '2'

If you prefer, you can associate a specific integer constant (such as 1) with an enumeration
literal (such as Spring), as in the following example:

enum Season { Spring = 1, Summer, Fall, Winter }

Important The integer value with which you initialize an enumeration literal must be a
 compile-time constant value (such as 1) .

If you don’t explicitly give an enumeration literal a constant integer value, the compiler gives
it a value that is 1 greater than the value of the previous enumeration literal except for the
very first enumeration literal, to which the compiler gives the default value 0 . In the preced-
ing example, the underlying values of Spring, Summer, Fall, and Winter are now 1, 2, 3, and 4 .

You are allowed to give more than one enumeration literal the same underlying value . For
example, in the United Kingdom, Fall is referred to as Autumn . You can cater to both cultures
as follows:

enum Season { Spring, Summer, Fall, Autumn = Fall, Winter }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

176 Part II Understanding the C# Language

Choosing an Enumeration’s Underlying Type
When you declare an enumeration, the enumeration literals are given values of type int . You
can also choose to base your enumeration on a different underlying integer type . For exam-
ple, to declare that Season’s underlying type is a short rather than an int, you can write this:

enum Season : short { Spring, Summer, Fall, Winter }

The main reason for doing this is to save memory; an int occupies more memory than a
short, and if you do not need the entire range of values available to an int, using a smaller
data type can make sense .

You can base an enumeration on any of the eight integer types: byte, sbyte, short, ushort, int,
uint, long, or ulong . The values of all the enumeration literals must fit inside the range of the
chosen base type . For example, if you base an enumeration on the byte data type, you can
have a maximum of 256 literals (starting at 0) .

Now that you know how to declare an enumeration, the next step is to use it . In the follow-
ing exercise, you will work with a Console application to declare and use an enumeration that
represents the months of the year .

Create and use an enumeration

 . 1 . . Start Microsoft Visual Studio 2010 if it is not already running .

 . 2 . . Open the StructsAndEnums project, located in the \Microsoft Press\Visual CSharp Step
By Step\Chapter 9\StructsAndEnums folder in your Documents folder .

 . 3 . . In the Code and Text Editor window, display the Month .cs file .

The source file contains an empty namespace named StructsAndEnums .

 . 4 . . Add an enumeration named Month for modeling the months of the year inside the
StructsAndEnums namespace, as shown in bold here . The 12 enumeration literals for
Month are January through December .

namespace StructsAndEnums
{
 enum Month
 {
 January, February, March, April,
 May, June, July, August,
 September, October, November, December
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 9 Creating Value Types with Enumerations and Structures 177

 . 5 . . Display the Program .cs file in the Code and Text Editor window .

As in the exercises in previous chapters, the Main method calls the DoWork method
and traps any exceptions that occur .

 . 6 . . In the Code and Text Editor window, add a statement to the DoWork method to declare
a variable named first of type Month and initialize it to Month.January . Add another
statement to write the value of the first variable to the Console .

The DoWork method should look like this:

static void DoWork()
{
 Month first = Month.January;
 Console.WriteLine(first);
}

Note When you type the period following Month, Microsoft IntelliSense will
 automatically display all the values in the Month enumeration .

 . 7 . . On the Debug menu, click Start Without Debugging .

Visual Studio 2010 builds and runs the program . Confirm that the word January is
 written to the console .

 . 8 . . Press Enter to close the program and return to the Visual Studio 2010 programming
environment .

 . 9 . . Add two more statements to the DoWork method to increment the first variable and
display its new value to the console, as shown in bold here:

static void DoWork()
{
 Month first = Month.January;
 Console.WriteLine(first);
 first++;
 Console.WriteLine(first);
}

 . 10 . . On the Debug menu, click Start Without Debugging .

Visual Studio 2010 builds and runs the program . Confirm that the words January and
February are written to the console .

Notice that performing a mathematical operation (such as the increment operation) on
an enumeration variable changes the internal integer value of the variable . When the
variable is written to the console, the corresponding enumeration value is displayed .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

178 Part II Understanding the C# Language

 . 11 . . Press Enter to close the program and return to the Visual Studio 2010 programming
environment .

 . 12 . . Modify the first statement in the DoWork method to initialize the first variable to
Month.December, as shown in bold here:

static void DoWork()
{
 Month first = Month.December;
 Console.WriteLine(first);
 first++;
 Console.WriteLine(first);
}

 . 13 . . On the Debug menu, click Start Without Debugging .

Visual Studio 2010 builds and runs the program . This time the word December is written
to the console, followed by the number 12 . Although you can perform arithmetic on an
enumeration, if the results of the operation are outside the range of values defined for
the enumerator, all the runtime can do is interpret the value of the variable as the cor-
responding integer value .

 . 14 . . Press Enter to close the program and return to the Visual Studio 2010 programming
environment .

Working .with .Structures
You saw in Chapter 8 that classes define reference types that are always created on the heap .
In some cases, the class can contain so little data that the overhead of managing the heap
becomes disproportionate . In these cases, it is better to define the type as a structure . A
structure is a value type . Because structures are stored on the stack, as long as the structure
is reasonably small, the memory management overhead is often reduced .

Like a class, a structure can have its own fields, methods, and (with one important exception
discussed later in this chapter) constructors .

Common .Structure .Types
You might not have realized it, but you have already used structures in previous exer-
cises in this book . In C#, the primitive numeric types int, long, and float are aliases for
the structures System.Int32, System.Int64, and System.Single, respectively . These struc-
tures have fields and methods, and you can actually call methods on variables and liter-
als of these types . For example, all of these structures provide a ToString method that

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 9 Creating Value Types with Enumerations and Structures 179

can convert a numeric value to its string representation . The following statements are
all legal statements in C#:

int i = 99;
Console.WriteLine(i.ToString());
Console.WriteLine(55.ToString());
float f = 98.765F;
Console.WriteLine(f.ToString());
Console.WriteLine(98.765F.ToString());

You don’t see this use of the ToString method often, because the Console.WriteLine
method calls it automatically when it is needed . Use of the static methods exposed by
these structures is much more common . For example, in earlier chapters you used the
static int.Parse method to convert a string to its corresponding integer value . What you
are actually doing is invoking the Parse method of the Int32 structure:

string s = "42";
int i = int.Parse(s); // exactly the same as Int32.Parse

These structures also include some useful static fields . For example, Int32.MaxValue is
the maximum value that an int can hold, and Int32.MinValue is the smallest value you
can store in an int .

The following table shows the primitive types in C# and their equivalent types in the
Microsoft .NET Framework . Notice that the string and object types are classes (refer-
ence types) rather than structures .

Keyword Type equivalent Class or structure

bool System.Boolean Structure

byte System.Byte Structure

decimal System.Decimal Structure

double System.Double Structure

float System.Single Structure

int System.Int32 Structure

long System.Int64 Structure

object System.Object Class

sbyte System.SByte Structure

short System.Int16 Structure

string System.String Class

uint System.UInt32 Structure

ulong System.UInt64 Structure

ushort System.UInt16 Structure

http://lib.ommolketab.ir
http//lib.ommolketab.ir

180 Part II Understanding the C# Language

Declaring a Structure
To declare your own structure type, you use the struct keyword followed by the name of the
type, followed by the body of the structure between opening and closing braces . For exam-
ple, here is a structure named Time that contains three public int fields named hours, minutes,
and seconds:

struct Time
{
 public int hours, minutes, seconds;
}

As with classes, making the fields of a structure public is not advisable in most cases; there
is no way to control the values held in public fields . For example, anyone could set the value
of minutes or seconds to a value greater than 60 . A better idea is to make the fields private
and provide your structure with constructors and methods to initialize and manipulate these
fields, as shown in this example:

struct Time
{
 public Time(int hh, int mm, int ss)
 {
 hours = hh % 24;
 minutes = mm % 60;
 seconds = ss % 60;
 }

 public int Hours()
 {
 return hours;
 }
 ...
 private int hours, minutes, seconds;
}

Note By default, you cannot use many of the common operators on your own structure types .
For example, you cannot use operators such as the equality operator (==) and the inequality op-
erator (!=) on your own structure type variables . However, you can explicitly declare and imple-
ment operators for your own structure types . The syntax for doing this is covered in Chapter 21,
“Operator Overloading .”

Use structures to implement simple concepts whose main feature is their value . When you
copy a value type variable, you get two copies of the value . In contrast, when you copy a ref-
erence type variable, you get two references to the same object . In summary, use structures
for small data values where it’s just as or nearly as efficient to copy the value as it would be
to copy an address . Use classes for more complex data that is too big to copy efficiently .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 9 Creating Value Types with Enumerations and Structures 181

Understanding Structure and Class Differences
A structure and a class are syntactically similar, but there are a few important differences .
Let’s look at some of these differences:

n You can’t declare a default constructor (a constructor with no parameters) for a struc-
ture . The following example would compile if Time were a class, but because Time is a
structure, it does not:

struct Time
{
 public Time() { ... } // compile-time error
 ...
}

The reason you can’t declare your own default constructor for a structure is that the
compiler always generates one . In a class, the compiler generates the default con-
structor only if you don’t write a constructor yourself . The compiler-generated default
constructor for a structure always sets the fields to 0, false, or null—just as for a class .
Therefore, you should ensure that a structure value created by the default constructor
behaves logically and makes sense with these default values . If you don’t want to use
these default values, you can initialize fields to different values by providing a nonde-
fault constructor . However, if you don’t initialize a field in your nondefault structure
constructor, the compiler won’t initialize it for you . This means that you must explic-
itly initialize all the fields in all your nondefault structure constructors or you’ll get a
compile-time error . For example, although the following example would compile and
silently initialize seconds to 0 if Time were a class, because Time is a structure, it fails to
compile:

struct Time
{
 private int hours, minutes, seconds;
 ...
 public Time(int hh, int mm)
 {
 this.hours = hh;
 this.minutes = mm;
 } // compile-time error: seconds not initialized
}

n In a class, you can initialize instance fields at their point of declaration . In a structure,
you cannot . The following example would compile if Time were a class, but because
Time is a structure, it causes a compile-time error:

struct Time
{
 private int hours = 0; // compile-time error
 private int minutes;
 private int seconds;
 ...
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

182 Part II Understanding the C# Language

The following table summarizes the main differences between a structure and a class .

Question Structure Class

Is this a value type or a reference type? A structure is a value
type .

A class is a reference type .

Do instances live on the stack or the heap? Structure instances
are called values and
live on the stack .

Class instances are called
objects and live on the
heap .

Can you declare a default constructor? No Yes

If you declare your own constructor, will
the compiler still generate the default
 constructor?

Yes No

If you don’t initialize a field in your own
 constructor, will the compiler automatically
initialize it for you?

No Yes

Are you allowed to initialize instance fields at
their point of declaration?

No Yes

There are other differences between classes and structures concerning inheritance . These
 differences are covered in Chapter 12 .

Declaring Structure Variables
After you have defined a structure type, you can use it in exactly the same way as any other
type . For example, if you have defined the Time structure, you can create variables, fields,
and parameters of type Time, as shown in this example:

struct Time
{
 private int hours, minutes, seconds;
 ...
}

class Example
{
 private Time currentTime;

 public void Method(Time parameter)
 {
 Time localVariable;
 ...
 }
}

Note You can create a nullable version of a structure variable by using the ? modifier . You can
then assign the null value to the variable:

Time? currentTime = null;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 9 Creating Value Types with Enumerations and Structures 183

Understanding Structure Initialization
Earlier in this chapter, you saw how the fields in a structure can be initialized by using a con-
structor . If you call a constructor, the various rules described earlier guarantee that all the
fields in the structure will be initialized:

Time now = new Time();

The following graphic depicts the state of the fields in this structure:

However, because structures are value types, you can create structure variables without
 calling a constructor, as shown in the following example:

Time now;

This time, the variable is created but its fields are left in their uninitialized state . The following
graphic depicts the state of the fields in the now variable . Any attempt to access the values in
these fields will result in a compiler error:

Note that in both cases, the Time variable is created on the stack .

If you’ve written your own structure constructor, you can also use that to initialize a structure
variable . As explained earlier in this chapter, a structure constructor must always explicitly
initialize all its fields . For example:

struct Time
{
 private int hours, minutes, seconds;
 ...

http://lib.ommolketab.ir
http//lib.ommolketab.ir

184 Part II Understanding the C# Language

 public Time(int hh, int mm)
 {
 hours = hh;
 minutes = mm;
 seconds = 0;
 }
}

The following example initializes now by calling a user-defined constructor:

Time now = new Time(12, 30);

The following graphic shows the effect of this example:

It’s time to put this knowledge into practice . In the following exercise, you will create and use
a structure to represent a date .

Create and use a structure type

 . 1 . . In the StructsAndEnums project, display the Date .cs file in the Code and Text Editor .
window .

 . 2 . . Add a structure named Date inside the StructsAndEnums namespace .

This structure should contain three private fields: one named year of type int, one
named month of type Month (using the enumeration you created in the preceding
exercise), and one named day of type int . The Date structure should look exactly as
follows:

struct Date
{
 private int year;
 private Month month;
 private int day;
}

Consider the default constructor that the compiler will generate for Date . This construc-
tor sets the year to 0, the month to 0 (the value of January), and the day to 0 . The year
value 0 is not valid (because there was no year 0), and the day value 0 is also not valid
(because each month starts on day 1) . One way to fix this problem is to translate the
year and day values by implementing the Date structure so that when the year field
holds the value Y, this value represents the year Y + 1900 (or you can pick a different

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 9 Creating Value Types with Enumerations and Structures 185

century if you prefer), and when the day field holds the value D, this value represents
the day D + 1 . The default constructor will then set the three fields to values that
 represent the date 1 January 1900 .

 . 3 . . Add a public constructor to the Date structure . This constructor should take three
 parameters: an int named ccyy for the year, a Month named mm for the month, and an
int named dd for the day . Use these three parameters to initialize the corresponding
fields . A year field with the value Y represents the year Y + 1900, so you need to initial-
ize the year field to the value ccyy – 1900 . A day field with the value D represents the
day D + 1, so you need to initialize the day field to the value dd – 1 .

The Date structure should now look like this (with the constructor shown in bold):

struct Date
{
 private int year;
 private Month month;
 private int day;

 public Date(int ccyy, Month mm, int dd)
 {
 this.year = ccyy - 1900;
 this.month = mm;
 this.day = dd - 1;
 }
}

 . 4 . . Add a public method named ToString to the Date structure after the constructor .
This method takes no arguments and returns a string representation of the date .
Remember, the value of the year field represents year + 1900, and the value of the day
field represents day + 1 .

Note The ToString method is a little different from the methods you have seen so far .
Every type, including structures and classes that you define, automatically has a ToString
method whether or not you want it . Its default behavior is to convert the data in a variable
to a string representation of that data . Sometimes, the default behavior is meaningful; oth-
er times, it is less so . For example, the default behavior of the ToString method generated
for the Date class simply generates the string “StructsAndEnums.Date” . To quote Zaphod
Beeblebrox in The Restaurant at the End of the Universe by Douglas Adams (Pan Macmillan,
1980), this is “shrewd, but dull .” You need to define a new version of this method that
overrides the default behavior by using the override keyword . Overriding methods are dis-
cussed in more detail in Chapter 12 .

The ToString method should look like this:

public override string ToString()
{
 string data = String.Format("{0} {1} {2}", this.month, this.day + 1, this.year +
1900);
 return data;
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

186 Part II Understanding the C# Language

The Format method of the String class enables you to format data . It operates in a
 similar manner to the Console.WriteLine method, except that rather than displaying
data to the console it returns the formatted result as a string . In this example, the posi-
tional parameters are replaced with the text representations of the values of the month
field, the expression this.day + 1, and the expression this.year + 1900 . The ToString
method returns the formatted string as its result .

 . 5 . . Display the Program .cs file in the Code and Text Editor window .

 . 6 . . In the DoWork method, comment out the existing four statements . Add code to the
DoWork method to declare a local variable named defaultDate, and initialize it to a
Date value constructed by using the default Date constructor . Add another statement
to DoWork to write the defaultDate variable to the console by calling Console.WriteLine .

Note The Console.WriteLine method automatically calls the ToString method of its
 argument to format the argument as a string .

The DoWork method should now look like this:

static void DoWork()
{
 ...
 Date defaultDate = new Date();
 Console.WriteLine(defaultDate);
}

 . 7 . . On the Debug menu, click Start Without Debugging to build and run the program .
Verify that the date January 1 1900 is written to the console .

 . 8 . . Press the Enter key to return to the Visual Studio 2010 programming environment .

 . 9 . . In the Code and Text Editor window, return to the DoWork method, and add two more
statements . In the first statement, declare a local variable named weddingAnniversary
and initialize it to July 4 2010 . (In an example of supreme irony, I actually did get mar-
ried on Independence Day and hence lost my independence!) In the second statement,
write the value of weddingAnniversary to the console .

The DoWork method should now look like this:

static void DoWork()
{
 ...
 Date weddingAnniversary = new Date(2010, Month.July, 4);
 Console.WriteLine(weddingAnniversary);
}

Note When you type the new keyword, IntelliSense automatically detects that there are
two constructors available for the Date type .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 9 Creating Value Types with Enumerations and Structures 187

 . 10 . . On the Debug menu, click Start Without Debugging . Confirm that the date July 4 2010 is
written to the console below the previous information .

 . 11 . . Press Enter to close the program .

Copying Structure Variables
You’re allowed to initialize or assign one structure variable to another structure variable, but
only if the structure variable on the right side is completely initialized (that is, if all its fields
are populated with valid data rather than undefined values) . The following example compiles
because now is fully initialized . The graphic shows the results of performing the assignment .

Time now = new Time(12, 30);
Time copy = now;

The following example fails to compile because now is not initialized:

Time now;
Time copy = now; // compile-time error: now has not been assigned

When you copy a structure variable, each field on the left side is set directly from the
 corresponding field on the right side . This copying is done as a fast, single operation that
copies the contents of the entire structure and that never throws an exception . Compare this
behavior with the equivalent action if Time were a class, in which case both variables (now
and copy) would end up referencing the same object on the heap .

Note C++ programmers should note that this copy behavior cannot be customized .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

188 Part II Understanding the C# Language

In the final exercise in this chapter, you will contrast the copy behavior of a structure with
that of a class .

Compare the behavior of a structure and a class

 . 1 . . In the StructsAndEnums project, display the Date .cs file in the Code and Text Editor
window .

 . 2 . . Add the following method to the Date structure . This method advances the date in the
structure by one month . If, after advancing the month, the value of the month field
has moved beyond December, this code resets the month to January and advances the
value of the year field by 1 .

public void AdvanceMonth()
{
 this.month++;
 if (this.month == Month.December + 1)
 {
 this.month = Month.January;
 this.year++;
 }
}

 . 3 . . Display the Program .cs file in the Code and Text Editor window .

 . 4 . . In the DoWork method, comment out the first two statements that create and display
the value of the defaultDate variable .

 . 5 . . Add the following code shown in bold to the end of the DoWork method . This code
creates a copy of the weddingAnniversary variable called weddingAnniversaryCopy and
prints out the value of this new variable .

static void DoWork()
{
 ...
 Date weddingAnniversaryCopy = weddingAnniversary;
 Console.WriteLine(“Value of copy is {0}”, weddingAnniversaryCopy);
}

 . 6 . . Add the following statements to the end of the DoWork method that call the
AdvanceMonth method of the weddingAnniversary variable, and then display the value
of the weddingAnniversary and weddingAnniversaryCopy variables:

static void DoWork()
{
 ...
 weddingAnniversaryCopy.AdvanceMonth();
 Console.WriteLine("New value of weddingAnniversary is {0}", weddingAnniversary);
 Console.WriteLine("Value of copy is {0}", weddingAnniversaryCopy);
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 9 Creating Value Types with Enumerations and Structures 189

 . 7 . . On the Debug menu, click Start Without Debugging to build and run the application .
Verify that the console window displays the following messages:

July 4 2010
Value of copy is July 4 2010
New value of weddingAnniversary is July 4 2010
Value of copy is August 4 2010

The first message displays the initial value of the weddingAnniversary variable (July 4
2010) . The second message displays the value of the weddingAnniversaryCopy variable .
You can see that it contains a copy of the date held in the weddingAnniversary variable
(July 4 2010) . The third message displays the value of the weddingAnniversary variable
after changing the month of the weddingAnniversaryCopy variable to August 4 2010 .
Notice that it has not changed from its original value of July 4 2010 . The final message
displays the value of the weddingAnniversaryCopy variable . You can see that this has
changed to August 4 2010 .

 . 8 . . Press Enter and return to Visual Studio 2010 .

 . 9 . . Display the Date .cs file in the Code and Text Editor window .

 . 10 . . Change the Date structure into a class, as shown in bold in the following code example:

class Date
{
 ...
}

 . 11 . . On the Debug menu, click Start Without Debugging to build and run the application
again . Verify that the console window displays the following messages:

July 4 2010
Value of copy is July 4 2010
New value of weddingAnniversary is August 4 2010
Value of copy is August 4 2010

The first two messages and the fourth message are the same as before . However, the
third message shows that the value of the weddingAnniversary variable has changed
to August 4 2010 . Remember that a structure is a value type, and when you copy a
value type variable you make a copy of all the data in the variable . However, a class is
a reference type, and when you copy a reference type variable you copy a reference to
the original variable . If the data in a class variable changes, all references to this variable
see the changes .

 . 12 . . Press Enter and return to Visual Studio 2010 .

In this chapter, you have seen how to create and use enumerations and structures . You have
learned some of the similarities and differences between a structure and a class, and you
have seen how to define constructors to initialize the fields in a structure . You have also
learned how to represent a structure as a string by overriding the ToString method .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

190 Part II Understanding the C# Language

n If you want to continue to the next chapter

Keep Visual Studio 2010 running, and turn to Chapter 10 .

n If you want to exit Visual Studio 2010 now

On the File menu, click Exit . If you see a Save dialog box, click Yes and save the project .

Chapter .9 .Quick .Reference
To Do this

Declare an enumeration Write the keyword enum, followed by the name of the type, followed by a pair
of braces containing a comma-separated list of the enumeration literal names .
For example:

enum Season { Spring, Summer, Fall, Winter }

Declare an enumeration
variable

Write the name of the enumeration on the left followed by the name of the
variable, followed by a semicolon . For example:

Season currentSeason;

Assign an enumeration
variable to a value

Write the name of the enumeration literal in combination with the name of the
enumeration to which it belongs . For example:

currentSeason = Spring; // error
currentSeason = Season.Spring; // correct

Declare a structure type Write the keyword struct, followed by the name of the structure type, followed
by the body of the structure (the constructors, methods, and fields) . For ex-
ample:

struct Time
{
 public Time(int hh, int mm, int ss)
 { ... }
 ...
 private int hours, minutes, seconds;
}

Declare a structure variable Write the name of the structure type, followed by the name of the variable,
followed by a semicolon . For example:

Time now;

Initialize a structure variable
to a value

Initialize the variable to a structure value created by calling the structure con-
structor . For example:

Time lunch = new Time(12, 30, 0);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 . . 191

Chapter 10

Using Arrays and Collections
After completing this chapter, you will be able to:

n Declare, initialize, and use array variables .

n Declare, initialize, and use variables of various collection types .

You have already seen how to create and use variables of many different types . However, all
the examples of variables you have seen so far have one thing in common—they hold infor-
mation about a single item (an int, a float, a Circle, a Date, and so on) . What happens if you
need to manipulate a set of items? One solution is to create a variable for each item in the
set, but this leads to a number of further questions: How many variables do you need? How
should you name them? If you need to perform the same operation on each item in the set
(such as increment each variable in a set of integers), how would you avoid very repetitive
code? This solution assumes that you know, when you write the program, how many items
you will need, but how often is this the case? For example, if you are writing an application
that reads and processes records from a database, how many records are in the database,
and how likely is this number to change?

Arrays and collections provide mechanisms that solve the problems posed by these
questions .

What .Is .an .Array?
An array is an unordered sequence of elements . All the elements in an array have the same
type (unlike the fields in a structure or class, which can have different types) . The elements
of an array live in a contiguous block of memory and are accessed by using an integer index
(unlike fields in a structure or class, which are accessed by name) .

Declaring Array Variables
You declare an array variable by specifying the name of the element type, followed by a pair
of square brackets, followed by the variable name . The square brackets signify that the vari-
able is an array . For example, to declare an array of int variables named pins, you write

int[] pins; // Personal Identification Numbers

Microsoft Visual Basic programmers should note that you use square brackets and not
 parentheses . C and C++ programmers should note that the size of the array is not part of the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

192 Part II Understanding the C# Language

declaration . Java programmers should note that you must place the square brackets before
the variable name .

Note You are not restricted to primitive types as array elements . You can also create arrays of
structures, enumerations, and classes . For example, you can create an array of Time structures
like this:

Time[] times;

Tip It is often useful to give array variables plural names, such as places (where each element is
a Place), people (where each element is a Person), or times (where each element is a Time) .

Creating an Array Instance
Arrays are reference types, regardless of the type of their elements . This means that an
 array variable refers to a contiguous block of memory holding the array elements on the
heap, just as a class variable refers to an object on the heap, and this contiguous block of
memory does not hold its array elements directly on the stack as a structure does . (To review
values and references and the differences between the stack and the heap, see Chapter 8,
“Understanding Values and References .”) Remember that when you declare a class variable,
memory is not allocated for the object until you create the instance by using new . Arrays
follow the same rules—when you declare an array variable, you do not declare its size . You
specify the size of an array only when you actually create an array instance .

To create an array instance, you use the new keyword followed by the element type, followed
by the size of the array you’re creating between square brackets . Creating an array also ini-
tializes its elements by using the now familiar default values (0, null, or false, depending on
whether the type is numeric, a reference, or a Boolean, respectively) . For example, to create
and initialize a new array of four integers for the pins variable declared earlier, you write this:

pins = new int[4];

The following graphic illustrates the effects of this statement:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 10 Using Arrays and Collections 193

The size of an array instance does not have to be a constant; it can be calculated at run time,
as shown in this example:

int size = int.Parse(Console.ReadLine());
int[] pins = new int[size];

You’re allowed to create an array whose size is 0 . This might sound bizarre, but it’s useful in
situations where the size of the array is determined dynamically, and could even be 0 . An
 array of size 0 is not a null array .

Initializing Array Variables
When you create an array instance, all the elements of the array instance are initialized to a
default value depending on their type . You can modify this behavior and initialize the ele-
ments of an array to specific values if you prefer . You achieve this by providing a comma-
separated list of values between a pair of braces . For example, to initialize pins to an array of
four int variables whose values are 9, 3, 7, and 2, you write this:

int[] pins = new int[4]{ 9, 3, 7, 2 };

The values between the braces do not have to be constants . They can be values calculated at
run time, as shown in this example:

Random r = new Random();
int[] pins = new int[4]{ r.Next() % 10, r.Next() % 10,
 r.Next() % 10, r.Next() % 10 };

Note The System.Random class is a pseudorandom number generator . The Next method
 returns a nonnegative random integer in the range 0 to Int32.MaxValue by default . The Next
method is overloaded, and other versions enable you to specify the minimum value and maxi-
mum value of the range . The default constructor for the Random class seeds the random number
generator with a time-dependent seed value, which reduces the possibility of the class dupli-
cating a sequence of random numbers . An overloaded version of the constructor enables you
to provide your own seed value . That way, you can generate a repeatable sequence of random
numbers for testing purposes .

The number of values between the braces must exactly match the size of the array instance
being created:

int[] pins = new int[3]{ 9, 3, 7, 2 }; // compile-time error
int[] pins = new int[4]{ 9, 3, 7 }; // compile-time error
int[] pins = new int[4]{ 9, 3, 7, 2 }; // OK

http://lib.ommolketab.ir
http//lib.ommolketab.ir

194 Part II Understanding the C# Language

When you’re initializing an array variable, you can actually omit the new expression and
the size of the array . The compiler calculates the size from the number of initializers
and generates code to create the array . For example:

int[] pins = { 9, 3, 7, 2 };

If you create an array of structures, you can initialize each structure in the array by calling the
structure constructor, as shown in this example:

Time[] schedule = { new Time(12,30), new Time(5,30) };

Creating an Implicitly Typed Array
The element type when you declare an array must match the type of elements that you at-
tempt to store in the array . For example, if you declare pins to be an array of int, as shown in
the preceding examples, you cannot store a double, string, struct, or anything that is not an
int in this array . If you specify a list of initializers when declaring an array, you can let the C#
compiler infer the actual type of the elements in the array for you, like this:

var names = new[]{"John", "Diana", "James", "Francesca"};

In this example, the C# compiler determines that the names variable is an array of strings . It is
worth pointing out a couple of syntactic quirks in this declaration . First, you omit the square
brackets from the type; the names variable in this example is declared simply as var, and not
var[] . Second, you must specify the new operator and square brackets before the initializer
list .

If you use this syntax, you must ensure that all the initializers have the same type . This next
example causes the compile-time error “No best type found for implicitly typed array”:

var bad = new[]{"John", "Diana", 99, 100};

However, in some cases, the compiler will convert elements to a different type if doing so
makes sense . In the following code, the numbers array is an array of double because the con-
stants 3.5 and 99.999 are both double, and the C# compiler can convert the integer values 1
and 2 to double values:

var numbers = new[]{1, 2, 3.5, 99.999};

Generally, it is best to avoid mixing types and hoping that the compiler will convert them for
you .

Implicitly typed arrays are most useful when you are working with anonymous types,
 described in Chapter 7, “Creating and Managing Classes and Objects .” The following code

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 10 Using Arrays and Collections 195

 creates an array of anonymous objects, each containing two fields specifying the name and
age of the members of my family (yes, I am younger than my wife):

var names = new[] { new { Name = "John", Age = 44 },
 new { Name = "Diana", Age = 45 },
 new { Name = "James", Age = 17 },
 new { Name = "Francesca", Age = 15 } };

The fields in the anonymous types must be the same for each element of the array .

Accessing an Individual Array Element
To access an individual array element, you must provide an index indicating which element
you require . For example, you can read the contents of element 2 of the pins array into an int
variable by using the following code:

int myPin;
myPin = pins[2];

Similarly, you can change the contents of an array by assigning a value to an indexed
element:

myPin = 1645;
pins[2] = myPin;

Array indexes are zero-based . The initial element of an array lives at index 0 and not index 1 .
An index value of 1 accesses the second element .

All array element access is bounds-checked . If you specify an index that is less
than 0 or greater than or equal to the length of the array, the compiler throws an
IndexOutOfRangeException, as in this example:

try
{
 int[] pins = { 9, 3, 7, 2 };
 Console.WriteLine(pins[4]); // error, the 4th and last element is at index 3
}
catch (IndexOutOfRangeException ex)
{
 ...
}

Iterating Through an Array
All arrays are instances of the System.Array class in the Microsoft .NET Framework, and this
class defines a number of useful properties and methods . For example, you can query the
Length property to discover how many elements an array contains and iterate through all

http://lib.ommolketab.ir
http//lib.ommolketab.ir

196 Part II Understanding the C# Language

the elements of an array by using a for statement . The following sample code writes the
 array element values of the pins array to the console:

int[] pins = { 9, 3, 7, 2 };
for (int index = 0; index < pins.Length; index++)
{
 int pin = pins[index];
 Console.WriteLine(pin);
}

Note Length is a property and not a method, which is why there are no parentheses when you
call it . You will learn about properties in Chapter 15, “Implementing Properties to Access Fields .”

It is common for new programmers to forget that arrays start at element 0 and that the last
element is numbered Length – 1 . C# provides the foreach statement to enable you to iterate
through the elements of an array without worrying about these issues . For example, here’s
the preceding for statement rewritten as an equivalent foreach statement:

int[] pins = { 9, 3, 7, 2 };
foreach (int pin in pins)
{
 Console.WriteLine(pin);
}

The foreach statement declares an iteration variable (in this example, int pin) that automati-
cally acquires the value of each element in the array . The type of this variable must match
the type of the elements in the array . The foreach statement is the preferred way to iter-
ate through an array; it expresses the intention of the code directly, and all of the for loop
scaffolding drops away . However, in a few cases, you’ll find that you have to revert to a for
statement:

n A foreach statement always iterates through the whole array . If you want to iterate
through only a known portion of an array (for example, the first half) or to bypass cer-
tain elements (for example, every third element), it’s easier to use a for statement .

n A foreach statement always iterates from index 0 through index Length – 1 . If you want
to iterate backwards or in some other sequence, it’s easier to use a for statement .

n If the body of the loop needs to know the index of the element rather than just the
value of the element, you’ll have to use a for statement .

n If you need to modify the elements of the array, you’ll have to use a for statement . This
is because the iteration variable of the foreach statement is a read-only copy of each
element of the array .

You can declare the iteration variable as a var and let the C# compiler work out the type of
the variable from the type of the elements in the array . This is especially useful if you don’t

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 10 Using Arrays and Collections 197

actually know the type of the elements in the array, such as when the array contains anony-
mous objects . The following example demonstrates how you can iterate through the array of
family members shown earlier:

var names = new[] { new { Name = "John", Age = 44 },
 new { Name = "Diana", Age = 45 },
 new { Name = "James", Age = 17 },
 new { Name = "Francesca", Age = 15 } };
foreach (var familyMember in names)
{
 Console.WriteLine("Name: {0}, Age: {1}", familyMember.Name, familyMember.Age);
}

Copying Arrays
Arrays are reference types (remember that an array is an instance of the System.Array class .)
An array variable contains a reference to an array instance . This means that when you copy
an array variable, you actually end up with two references to the same array instance—for
example:

int[] pins = { 9, 3, 7, 2 };
int[] alias = pins; // alias and pins refer to the same array instance

In this example, if you modify the value at pins[1], the change will also be visible by reading
alias[1] .

If you want to make a copy of the array instance (the data on the heap) that an array vari-
able refers to, you have to do two things . First you need to create a new array instance of the
same type and the same length as the array you are copying, and then copy the data ele-
ment by element from the original array to the new array, as in this example:

int[] pins = { 9, 3, 7, 2 };
int[] copy = new int[pins.Length];
for (int i = 0; i < copy.Length; i++)
{
 copy[i] = pins[i];
}

Note that this code uses the Length property of the original array to specify the size of the
new array .

Copying an array is actually a common requirement of many applications—so much so that
the System.Array class provides some useful methods that you can employ to copy an array
rather than writing your own code . For example, the CopyTo method copies the contents of
one array into another array given a specified starting index:

int[] pins = { 9, 3, 7, 2 };
int[] copy = new int[pins.Length];
pins.CopyTo(copy, 0);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

198 Part II Understanding the C# Language

Another way to copy the values is to use the System.Array static method named Copy . As
with CopyTo, you must initialize the target array before calling Copy:

int[] pins = { 9, 3, 7, 2 };
int[] copy = new int[pins.Length];
Array.Copy(pins, copy, copy.Length);

Yet another alternative is to use the System.Array instance method named Clone . You can call
this method to create an entire array and copy it in one action:

int[] pins = { 9, 3, 7, 2 };
int[] copy = (int[])pins.Clone();

Note The Clone method actually returns an object, which is why you must cast it to an array of
the appropriate type when you use it . Furthermore, all four ways of copying shown earlier create
a shallow copy of an array—if the elements in the array being copied contain references, the for
loop as coded and the three preceding methods simply copy the references rather than the ob-
jects being referred to . After copying, both arrays refer to the same set of objects . If you need to
create a deep copy of such an array, you must use appropriate code in a for loop .

Using Multidimensional Arrays
The arrays shown so far have comprised a single dimension, and you can think of them as a
simple list of values . You can create arrays with more than one dimension . For example, to
create a two-dimensional array, you specify an array that requires two integer indexes . The
following code creates a two-dimensional array of 24 integers called items . If it helps, you can
visualize a two-dimensional array as a table, where the first dimension specifies the number
of rows and the second specifies the number of columns .

int[,] items = new int[4, 6];

To access an element in the array, you provide two index values to specify the “cell” hold-
ing the element . (A cell is the intersection of a row and a column .) The following code shows
some examples using the items array:

items[2, 3] = 99; // set the element at cell(2,3) to 99
items[2, 4] = items [2,3]; // copy the element in cell(2, 3) to cell(2, 4)
items[2, 4]++; // increment the integer value at cell(2, 4)

There is no limit on the number of dimensions that you can specify for an array . The next
code example creates and uses an array called cube that contains three dimensions . Notice
that you must specify three indexes to access each element in the array .

int[, ,] cube = new int[5, 5, 5];
cube[1, 2, 1] = 101;
cube[1, 2, 2] = cube[1, 2, 1] * 3;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 10 Using Arrays and Collections 199

At this point, it is worth giving a word of caution about creating arrays with more than
three dimensions . Specifically, arrays can be very memory hungry . The cube array con-
tains 125 elements (5 * 5 * 5) . A four-dimensional array where each dimension has a size
of 5 contains 625 elements . Generally, you should always be prepared to catch and handle
OutOfMemoryException exceptions when you use multidimensional arrays .

Using Arrays to Play Cards
In the following exercise, you will use arrays to implement an application that deals playing
cards as part of a card game . The application displays a Windows Presentation Foundation
(WPF) form with four hands of cards dealt at random from a regular (52-card) pack of play-
ing cards . You will complete the code that deals the cards for each hand .

Use arrays to implement a card game

 . 1 . . Start Microsoft Visual Studio 2010 if it is not already running .

 . 2 . . Open the Cards project, located in the \Microsoft Press\Visual CSharp Step By Step\
Chapter 10\Cards Using Arrays folder in your Documents folder .

 . 3 . . On the Debug menu, click Start Without Debugging to build and run the application .

A WPF form appears with the caption Card Game, four text boxes (labeled North,
South, East and West), and a button with the caption Deal .

 . 4 . . Click Deal .

A message box appears with the text “DealCardFromPack – TBD” . You have not yet
implemented the code that deals the cards .

 . 5 . . Click OK, and then close the Card Game window to return to Visual Studio 2010 .

 . 6 . . In the Code and Text Editor window, display the Value .cs file .

This file contains an enumeration called Value, which represents the different values
that a card can have, in ascending order:

enum Value { Two, Three, Four, Five, Six, Seven, Eight, Nine, Ten, Jack, Queen, King,
Ace }

 . 7 . . Display the Suit .cs file in the Code and Text Editor window .

This file contains an enumeration called Suit, which represents the suits of cards in a
regular pack:

enum Suit { Clubs, Diamonds, Hearts, Spades }

 . 8 . . Display the PlayingCard .cs file in the Code and Text Editor window .

This file contains the PlayingCard class . This class models a single playing card .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

200 Part II Understanding the C# Language

class PlayingCard
{
 private readonly Suit suit;
 private readonly Value value;

 public PlayingCard(Suit s, Value v)
 {
 this.suit = s;
 this.value = v;
 }

 public override string ToString()
 {
 string result = string.Format("{0} of {1}", this.value, this.suit);
 return result;
 }

 public Suit CardSuit()
 {
 return this.suit;
 }

 public Value CardValue()
 {
 return this.value;
 }
}

This class has two readonly fields that represent the value and suit of the card . The
 constructor initializes these fields .

Note A readonly field is useful for modeling data that should not change after it has
been initialized . You can assign a value to a readonly field by using an initializer when you
declare it, or in a constructor, but thereafter you cannot change it .

The class contains a pair of methods called CardValue and CardSuit that return this in-
formation, and it overrides the ToString method to return a string representation of the
card .

Note The CardValue and CardSuit methods are actually better implemented as prop-
erties . You will learn how to do this in Chapter 15, “Implementing Properties to Access
Fields .”

 . 9 . . Open the Pack .cs file in the Code and Text Editor window .

This file contains the Pack class, which models a pack of playing cards . At the top of the
Pack class are two public const int fields called NumSuits and CardsPerSuit . These two

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 10 Using Arrays and Collections 201

fields specify the number of suits in a pack of cards, and the number of cards in each
suit . The private cardPack variable is a two-dimensional array of PlayingCard objects .
(You will use the first dimension to specify the suit and the second to specify the value
of the card in the suit .) The randomCardSelector variable is a Random object . The
Random class is a random number generator, and you will use the randomCardSelector
to shuffle the cards before they are dealt to each hand .

class Pack
{
 public const int NumSuits = 4;
 public const int CardsPerSuit = 13;
 private PlayingCard[,] cardPack;
 private Random randomCardSelector = new Random();
 ...
}

 . 10 . . Locate the default constructor for the Pack class . Currently, this constructor is empty
apart from a to do comment . Delete the comment, and add the statement shown in
bold to instantiate the cardPack array with the correct number of elements:

public Pack()
{
 this.cardPack = new PlayingCard[NumSuits, CardsPerSuit];
}

 . 11 . . Add the following code shown in bold to the Pack constructor . The outer for loop
iterates through the list of values in the Suit enumeration, and the inner loop iter-
ates through the values each card can have in each suit . The inner loop creates a
new PlayingCard object of the specified suit and value and adds it to the appropriate
 element in the cardPack array .

for (Suit suit = Suit.Clubs; suit <= Suit.Spades; suit++)
{
 for (Value value = Value.Two; value <= Value.Ace; value++)
 {
 this.cardPack[(int)suit, (int)value] = new PlayingCard(suit, value);
 }
}

Note You must use one of the integer types as indexes into an array . The suit and value
variables are enumeration variables . However, enumerations are based on the integer
types, so it is safe to cast them to int as shown in the code .

 . 12 . . Find the DealCardFromPack method in the Pack class . The purpose of this method is to
pick a random card from the pack, return it, and then remove the card from the pack
to prevent it being selected again .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

202 Part II Understanding the C# Language

The first task in this method is to pick a suit at random . Delete the comment and the
statement that throws the NotImplementedException exception from this method, and
replace it with the following statement shown in bold:

public PlayingCard DealCardFromPack()
{
 Suit suit = (Suit)randomCardSelector.Next(NumSuits);
}

This statement uses the Next method of the randomCardSelector random number
generator object to return a random number corresponding to a suit . The parameter
to the Next method specifies the exclusive upper bound of the range to use; the value
selected is between 0 and this value minus one . Note that the value returned is an int,
so it has to be cast before you can assign it a Suit variable .

There is always the possibility that there are no more cards left in the pack of the se-
lected suit . You need to handle this situation and pick another suit if necessary .

 . 13 . . Locate the IsSuitEmpty method . The purpose of this method is to take a Suit pa-
rameter and return a Boolean value indicating whether there are any more cards
of this suit left in the pack . Delete the comment and the statement that throws the
NotImplementedException exception from this method, and add the following code
shown in bold:

private bool IsSuitEmpty(Suit suit)
{
 bool result = true;

 for (Value value = Value.Two; value <= Value.Ace; value++)
 {
 if (!IsCardAlreadyDealt(suit, value))
 {
 result = false;
 break;
 }
 }

 return result;
}

This code iterates through the possible card values and determines whether there
is a card left in the cardPack array that has the specified suit and value by using the
IsCardAlreadyDealt method, which you will complete in the next step . If the loop finds
a card, the value in the result variable is set to false and the break statement causes the
loop to terminate . If the loop completes without finding a card, the result variable re-
mains set to its initial value of true . The value of the result variable is passed back as the
return value of the method .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 10 Using Arrays and Collections 203

 . 14 . . Find the IsCardAlreadyDealt method . The purpose of this method is to determine
whether the card with the specified suit and value has already been dealt and removed
from the pack . You will see later that when the DealFromPack method deals a card, it
removes it from the cardPack array and sets the corresponding element to null . Replace
the comment and the statement that throws the NotImplementedException exception in
this method with the code shown in bold:

private bool IsCardAlreadyDealt(Suit suit, Value value)
{
 return (this.cardPack[(int)suit, (int)value] == null);
}

This statement returns true if the element in the cardPack array corresponding to the
suit and value is null, and it returns false otherwise .

 . 15 . . Return to the DealCardFromPack method . After the code that selects a suit at random,
add the following while loop . This loop calls the IsSuitEmpty method to determine
whether there are any cards of the specified suit left in the pack . If not, it picks another
suit at random (it might actually pick the same suit again) and checks again . The loop
repeats the process until it finds a suit with at least one card left .

public PlayingCard DealCardFromPack()
{
 Suit suit = (Suit)randomCardSelector.Next(NumSuits);
 while (this.IsSuitEmpty(suit))
 {
 suit = (Suit)randomCardSelector.Next(NumSuits);
 }
}

 . 16 . . You have now selected a suit at random with at least one card left . The next task is to
pick a card at random in this suit . You can use the random number generator to select
a card value, but as before there is no guarantee that the card with the chosen value
has not already been dealt . However, you can use the same idiom as before; call the
IsCardAlreadyDealt method to determine whether the card has been dealt before, and
if so pick another card at random and try again, repeating the process until a card is
found . Add the following statements to the DealCardFromPack method to do this:

public PlayingCard DealCardFromPack()
{
 ...
 Value value = (Value)randomCardSelector.Next(CardsPerSuit);
 while (this.IsCardAlreadyDealt(suit, value))
 {
 value = (Value)randomCardSelector.Next(CardsPerSuit);
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

204 Part II Understanding the C# Language

 . 17 . . You have now selected a random playing card that has not been dealt previously .
Add the following code to return this card and set the corresponding element in the
cardPack array to null:

public PlayingCard DealCardFromPack()
{
 ...
 PlayingCard card = this.cardPack[(int)suit, (int)value];
 this.cardPack[(int)suit, (int)value] = null;
 return card;
}

 . 18 . . The next step is to add the selected playing card to a hand . Open the Hand .cs file, and
display it in the Code and Text Editor window . This file contains the Hand class, which
implements a hand of cards (that is, all cards dealt to one player) .

This file contains a public const int field called HandSize, which is set to the size of a
hand of cards (13) . It also contains an array of PlayingCard objects, which is initialized
by using the HandSize constant . The playingCardCount field is used by your code to
keep track of how many cards the hand currently contains as it is being populated .

class Hand
{
 public const int HandSize = 13;
 private PlayingCard[] cards = new PlayingCard[HandSize];
 private int playingCardCount = 0;
 …
}

The ToString method generates a string representation of the cards in the hand . It uses
a foreach loop to iterate through the items in the cards array and calls the ToString
method on each PlayingCard object it finds . These strings are concatenated together
with a newline character in between (the ‘\n’ character) for formatting purposes .

public override string ToString()
{
 string result = "";
 foreach (PlayingCard card in this.cards)
 {
 result += card.ToString() + "\n";
 }

 return result;
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 10 Using Arrays and Collections 205

 . 19 . . Locate the AddCardToHand method in the Hand class . The purpose of this method is
to add the playing card specified as the parameter to the hand . Add the statements
shown in bold to this method:

public void AddCardToHand(PlayingCard cardDealt)
{
 if (this.playingCardCount >= HandSize)
 {
 throw new ArgumentException("Too many cards");
 }
 this.cards[this.playingCardCount] = cardDealt;
 this.playingCardCount++;
}

This code first checks to make sure that the hand is not already full and throws an
ArgumentException exception if it is . Otherwise, the card is added to the cards ar-
ray at the index specified by the playingCardCount variable, and this variable is then
incremented .

 . 20 . . In Solution Explorer, expand the Game .xaml node and then open the Game .xaml .cs file
in the Code and Text Editor window . This is the code for the Card Game window . Locate
the dealClick method . This method runs when the user clicks the Deal button . The code
looks like this:

private void dealClick(object sender, RoutedEventArgs e)
{
 try
 {
 pack = new Pack();

 for (int handNum = 0; handNum < NumHands; handNum++)
 {
 hands[handNum] = new Hand();
 for (int numCards = 0; numCards < Hand.HandSize; numCards++)
 {
 PlayingCard cardDealt = pack.DealCardFromPack();
 hands[handNum].AddCardToHand(cardDealt);
 }
 }

 north.Text = hands[0].ToString();
 south.Text = hands[1].ToString();
 east.Text = hands[2].ToString();
 west.Text = hands[3].ToString();
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message, "Error", MessageBoxButton.OK, MessageBoxImage.
Error);
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

206 Part II Understanding the C# Language

The first statement in the try block creates a new pack of cards . The outer for loop cre-
ates four hands from this pack of cards and stores them in an array called hands . The
inner for loop populates each hand by using the DealCardFromPack method to retrieve
a card at random from the pack and the AddCardToHand method to add this card to a
hand .

When all the cards have been dealt, each hand is displayed in the text boxes on the
form . These text boxes are called north, south, east, and west . The code uses the
ToString method of each hand to format the output .

If an exception occurs at any point, the catch handler displays a message box with the
error message for the exception .

 . 21 . . On the Debug menu, click Start Without Debugging . When the Card Game window ap-
pears, click Deal . The card in the pack should be dealt at random to each hand, and the
cards in each hand should be displayed on the form as shown in the following image:

 . 22 . . Click Deal again . A new set of hands is dealt and the cards in each hand change .

 . 23 . . Close the Card Game window and return to Visual Studio .

What .Are .Collection .Classes?
Arrays are useful, but they have their limitations—one of the most obvious being that you
have to use an integer index to access elements in an array . Fortunately, arrays are only one
way to collect elements of the same type . The Microsoft .NET Framework provides several
classes that also collect elements together in other specialized ways . These are the collection
classes, and they live in the System.Collections namespace and sub-namespaces .

Aside from the issue with indexes, there is one other fundamental difference between an ar-
ray and a collection . An array can hold value types . The basic collection classes accept, hold,

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 10 Using Arrays and Collections 207

and return their elements as object types—that is, the element type of a collection class is an
object . To understand the implications of this, it is helpful to contrast an array of int variables
(int is a value type) with an array of objects (object is a reference type) . Because int is a value
type, an array of int variables holds its int values directly, as shown in the following image:

Now consider the effect when the array is an array of objects . You can still add integer values
to this array . (In fact, you can add values of any type to it .) When you add an integer value, it
is automatically boxed, and the array element (an object reference) refers to the boxed copy
of the integer value . Similarly, when you remove a value from an array of objects, you must
unbox it by using a cast . (For a refresher on boxing, refer to Chapter 8 .) The following picture
shows an object array populated with integer values:

The following sections provide a very quick overview of four of the most useful collection
classes . Refer to the Microsoft .NET Framework Class Library documentation for more details
on each class .

Note There are other collection classes that don’t always use object as their element type and
that can hold value types as well as references, but you need to know a bit more about C# before
learning about them . You will meet these collection classes in Chapter 18, “Introducing Generics .”

http://lib.ommolketab.ir
http//lib.ommolketab.ir

208 Part II Understanding the C# Language

The ArrayList Collection Class
ArrayList is a useful class for shuffling elements around in an array . There are certain
 occasions when an ordinary array can be too restrictive:

n If you want to resize an array, you have to create a new array, copy the elements
(leaving out some if the new array is smaller), and then update any references to the
original array so that they refer to the new array .

n If you want to remove an element from an array, you have to move all the trailing
 elements up by one place . Even this doesn’t quite work, because you end up with two
copies of the last element .

n If you want to insert an element into an array, you have to move elements down by one
place to make a free slot . However, you lose the last element of the array!

The ArrayList collection class provides the following features to help overcome these
limitations:

n You can remove an element from an ArrayList by using its Remove method . The
ArrayList automatically reorders its elements .

n You can add an element to the end of an ArrayList by using its Add method . You supply
the element to be added . The ArrayList resizes itself if necessary .

n You can insert an element into the middle of an ArrayList by using its Insert method .
Again, the ArrayList resizes itself if necessary .

n You can reference an existing element in an ArrayList object by using ordinary array
notation, with square brackets and the index of the element .

Note  As with arrays, if you use foreach to iterate through an ArrayList, you cannot use the
 iteration variable to modify the contents of the ArrayList . Additionally, you cannot call the
Remove, Add, or Insert method in a foreach loop that iterates through an ArrayList .

Here’s an example that shows how you can create, manipulate, and iterate through the
 contents of an ArrayList:

using System;
using System.Collections;
...
ArrayList numbers = new ArrayList();
...
// fill the ArrayList
foreach (int number in new int[12]{10, 9, 8, 7, 7, 6, 5, 10, 4, 3, 2, 1})
{
 numbers.Add(number);
}
...

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 10 Using Arrays and Collections 209

// insert an element in the penultimate position in the list, and move the last item up
// (the first parameter is the position;
// the second parameter is the value being inserted)
numbers.Insert(numbers.Count-1, 99);

// remove first element whose value is 7 (the 4th element, index 3)
numbers.Remove(7);
// remove the element that's now the 7th element, index 6 (10)
numbers.RemoveAt(6);
...
// iterate remaining 10 elements using a for statement
for (int i = 0; i < numbers.Count; i++)
{
 int number = (int)numbers[i]; // notice the cast, which unboxes the value
 Console.WriteLine(number);
}
...
// iterate remaining 10 using a foreach statement
foreach (int number in numbers) // no cast needed
{
 Console.WriteLine(number);
}

The output of this code is shown here:

10
9
8
7
6
5
4
3
2
99
1
10
9
8
7
6
5
4
3
2
99
1

Note The way you determine the number of elements for an ArrayList is different from query-
ing the number of items in an array . When using an ArrayList, you examine the Count property,
and when using an array, you examine the Length property .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

210 Part II Understanding the C# Language

The Queue Collection Class
The Queue class implements a first-in, first-out (FIFO) mechanism . An element is inserted into
the queue at the back (the enqueue operation) and is removed from the queue at the front
(the dequeue operation) .

Here’s an example of a queue and its operations:

using System;
using System.Collections;
...
Queue numbers = new Queue();
...
// fill the queue
foreach (int number in new int[4]{9, 3, 7, 2})
{
 numbers.Enqueue(number);
 Console.WriteLine(number + " has joined the queue");
}
...
// iterate through the queue
foreach (int number in numbers)
{
 Console.WriteLine(number);
}
...
// empty the queue
while (numbers.Count > 0)
{
 int number = (int)numbers.Dequeue(); // cast required to unbox the value
 Console.WriteLine(number + " has left the queue");
}

The output from this code is shown here:

9 has joined the queue
3 has joined the queue
7 has joined the queue
2 has joined the queue
9
3
7
2
9 has left the queue
3 has left the queue
7 has left the queue
2 has left the queue

The Stack Collection Class
The Stack class implements a last-in, first-out (LIFO) mechanism . An element joins the stack at
the top (the push operation) and leaves the stack at the top (the pop operation) . To visualize

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 10 Using Arrays and Collections 211

this, think of a stack of dishes: new dishes are added to the top and dishes are removed from
the top, making the last dish to be placed on the stack the first one to be removed . (The dish
at the bottom is rarely used and will inevitably require washing before you can put any food
on it as it will be covered in grime!) Here’s an example:

using System;
using System.Collections;
...
Stack numbers = new Stack();
...
// fill the stack
foreach (int number in new int[4]{9, 3, 7, 2})
{
 numbers.Push(number);
 Console.WriteLine(number + " has been pushed on the stack");
}
...
// iterate through the stack
foreach (int number in numbers)
{
 Console.WriteLine(number);
}
...
// empty the stack
while (numbers.Count > 0)
{
 int number = (int)numbers.Pop();
 Console.WriteLine(number + " has been popped off the stack");
}

The output from this program is shown here:

9 has been pushed on the stack
3 has been pushed on the stack
7 has been pushed on the stack
2 has been pushed on the stack
2
7
3
9
2 has been popped off the stack
7 has been popped off the stack
3 has been popped off the stack
9 has been popped off the stack

The Hashtable Collection Class
The array and ArrayList types provide a way to map an integer index to an element . You
provide an integer index inside square brackets (for example, [4]), and you get back the ele-
ment at index 4 (which is actually the fifth element) . However, sometimes you might want to
provide a mapping where the type you map from is not an int but rather some other type,

http://lib.ommolketab.ir
http//lib.ommolketab.ir

212 Part II Understanding the C# Language

such as string, double, or Time . In other languages, this is often called an associative array . The
Hashtable class provides this functionality by internally maintaining two object arrays, one for
the keys you’re mapping from and one for the values you’re mapping to . When you insert a
key/value pair into a Hashtable, it automatically tracks which key belongs to which value and
enables you to retrieve the value that is associated with a specified key quickly and easily .
There are some important consequences of the design of the Hashtable class:

n A Hashtable cannot contain duplicate keys . If you call the Add method to add a key
that is already present in the keys array, you’ll get an exception . You can, however, use
the square brackets notation to add a key/value pair (as shown in the following ex-
ample), without danger of an exception, even if the key has already been added . You
can test whether a Hashtable already contains a particular key by using the ContainsKey
method .

n Internally, a Hashtable is a sparse data structure that operates best when it has plenty
of memory to work in . The size of a Hashtable in memory can grow quite quickly as you
insert more elements .

n When you use a foreach statement to iterate through a Hashtable, you get back
a DictionaryEntry . The DictionaryEntry class provides access to the key and value
 elements in both arrays through the Key property and the Value properties .

Here is an example that associates the ages of members of my family with their names and
then prints the information:

using System;
using System.Collections;
...
Hashtable ages = new Hashtable();
...
// fill the Hashtable
ages["John"] = 44;
ages["Diana"] = 45;
ages["James"] = 17;
ages["Francesca"] = 15;
...
// iterate using a foreach statement
// the iterator generates a DictionaryEntry object containing a key/value pair
foreach (DictionaryEntry element in ages)
{
 string name = (string)element.Key;
 int age = (int)element.Value;
 Console.WriteLine("Name: {0}, Age: {1}", name, age);
}

The output from this program is shown here:

Name: Diana, Age: 45
Name: James, Age: 17
Name: Francesca, Age: 15
Name: John, Age: 44

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 10 Using Arrays and Collections 213

The SortedList Collection Class
The SortedList class is very similar to the Hashtable class in that it enables you to associate
keys with values . The main difference is that the keys array is always sorted . (It is called a
SortedList, after all .)

When you insert a key/value pair into a SortedList, the key is inserted into the keys array at
the correct index to keep the keys array sorted . The value is then inserted into the values ar-
ray at the same index . The SortedList class automatically ensures that keys and values are kept
synchronized, even when you add and remove elements . This means that you can insert key/
value pairs into a SortedList in any sequence; they are always sorted based on the value of the
keys .

Like the Hashtable class, a SortedList cannot contain duplicate keys . When you use a foreach
statement to iterate through a SortedList, you get back a DictionaryEntry . However, the
DictionaryEntry objects will be returned sorted by the Key property .

Here is the same example that associates the ages of members of my family with their names
and then prints the information, but this version has been adjusted to use a SortedList rather
than a Hashtable:

using System;
using System.Collections;
...
SortedList ages = new SortedList();
...
// fill the SortedList
ages["John"] = 44;
ages["Diana"] = 45;
ages["James"] = 17;
ages["Francesca"] = 15;
...
// iterate using a foreach statement
// the iterator generates a DictionaryEntry object containing a key/value pair
foreach (DictionaryEntry element in ages)
{
 string name = (string)element.Key;
 int age = (int)element.Value;
 Console.WriteLine("Name: {0}, Age: {1}", name, age);
}

The output from this program is sorted alphabetically by the names of my family members:

Name: Diana, Age: 45
Name: Francesca, Age: 15
Name: James, Age: 17
Name: John, Age: 44

http://lib.ommolketab.ir
http//lib.ommolketab.ir

214 Part II Understanding the C# Language

Using Collection Initializers
The examples in the preceding subsections have shown you how to add individual elements
to a collection by using the method most appropriate to that collection (Add for an ArrayList,
Enqueue for a Queue, Push for a Stack, and so on) . You can also initialize some collection
types when you declare them, using a syntax similar to that supported by arrays . For ex-
ample, the following statement creates and initializes the numbers ArrayList object shown
earlier, demonstrating an alternative technique to repeatedly calling the Add method:

ArrayList numbers = new ArrayList(){10, 9, 8, 7, 7, 6, 5, 10, 4, 3, 2, 1};

Internally, the C# compiler actually converts this initialization to a series of calls to the Add
method . Consequently, you can use this syntax only for collections that actually support the
Add method . (The Stack and Queue classes do not .)

For more complex collections such as Hashtable that take key/value pairs, you can specify
each key/value pair as an anonymous type in the initializer list, like this:

Hashtable ages =
 new Hashtable(){{"John", 44}, {"Diana", 45}, {"James", 17}, {"Francesca", 15}};

The first item in each pair is the key, and the second is the value .

Comparing Arrays and Collections
Here’s a summary of the important differences between arrays and collections:

n An array declares the type of the elements that it holds, whereas a collection doesn’t .
This is because the collections store their elements as objects .

n An array instance has a fixed size and cannot grow or shrink . A collection can
 dynamically resize itself as required .

n An array can have more than one dimension . A collection is linear . However, the items
in a collection can be collections themselves, so you can imitate a multidimensional
 array as a collection of collections .

Using Collection Classes to Play Cards
In the next exercise, you will convert the card game you developed in the previous exercise
to use collections rather than arrays .

Use collections to implement a card game

 . 1 . . Return to the Cards project from the previous exercise .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 10 Using Arrays and Collections 215

Note A completed version of the project for the previous exercise is available in the
\Microsoft Press\Visual CSharp Step By Step\Chapter 10\Cards Using Arrays – Complete
folder in your Documents folder .

 . 2 . . Display the Pack .cs file in the Code and Text Editor window . Notice the following using
statement near the top of the file:

using System.Collections;

The collection classes are located in this namespace .

 . 3 . . In the Pack class, change the definition of the cardPack two-dimensional array to a
Hashtable object, as shown here in bold:

class Pack
{
 ...
 private Hashtable cardPack;
 ...
}

Remember that the Hashtable class defines a collection of object types, and you do not
specify the PlayingCard type . Also, the original array had two dimensions whereas a
Hashtable only has one . You will emulate a two-dimensional array by using SortedList
collection objects as elements in the Hashtable .

 . 4 . . Locate the Pack constructor . Modify the first statement in this constructor to instantiate
the cardPack variable as a new Hashtable object rather than an array, as shown here in
bold .

public Pack()
{
 this.cardPack = new Hashtable();
 ...
}

 . 5 . . In the outer for loop, declare a SortedList collection object called cardsInSuit . Change
the code in the inner for loop to add the new PlayingCard object to this collection
rather than the array . After the inner for loop, add the SortedList object to the card-
Pack Hashtable, specifying the value of the suit variable as the key to this item . (The
SortedList contains all the cards in the pack for the specified suit, and the Hashtable
contains a collection of these SortedList objects .)

The following code shows the completed constructor with the changes highlighted in
bold:

public Pack()
{
 this.cardPack = new Hashtable();

 for (Suit suit = Suit.Clubs; suit <= Suit.Spades; suit++)
 {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

216 Part II Understanding the C# Language

 SortedList cardsInSuit = new SortedList();
 for (Value value = Value.Two; value <= Value.Ace; value++)
 {
 cardsInSuit.Add(value, new PlayingCard(suit, value));
 }
 this.cardPack.Add(suit, cardsInSuit);
 }
}

 . 6 . . Find the DealCardFromPack method . Recall that this method picks a card at random
from the pack, removes the card from the pack, and returns this card . The logic for
selecting the card does not require any changes, but the statements at the end of the
method that retrieve the card and remove it from the array must be updated to use the
Hashtable collection instead .

Modify the code after the closing brace of the second while loop as shown in the
 following code in bold .

public PlayingCard DealCardFromPack()
{
 Suit suit = (Suit)randomCardSelector.Next(NumSuits);
 while (this.IsSuitEmpty(suit))
 {
 suit = (Suit)randomCardSelector.Next(NumSuits);
 }

 Value value = (Value)randomCardSelector.Next(CardsPerSuit);
 while (this.IsCardAlreadyDealt(suit, value))
 {
 value = (Value)randomCardSelector.Next(CardsPerSuit);
 }

 SortedList cardsInSuit = (SortedList) cardPack[suit];
 PlayingCard card = (PlayingCard)cardsInSuit[value];
 cardsInSuit.Remove(value);
 return card;
}

The Hashtable contains a collection of SortedList objects, one for each suit of cards . This
new code retrieves the SortedList for the card of the suit selected at random from the
Hashtable, and then it retrieves the card with the selected value from this SortedList .
The final new statement removes the card from the SortedList .

 . 7 . . Locate the IsCardAlreadyDealt method . This method determines whether a card has
already been dealt by seeing whether the corresponding element in the array has been
set to null . You need to modify this method to determine whether a card with the spec-
ified value is present in the SortedList for the suit in the cardPack Hashtable . Update the
method as shown in bold:

private bool IsCardAlreadyDealt(Suit suit, Value value)
{
 SortedList cardsInSuit = (SortedList)this.cardPack[suit];
 return (!cardsInSuit.ContainsKey(value));
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 10 Using Arrays and Collections 217

 . 8 . . Display the Hand .cs file in the Code and Text Editor window . This class uses an array to
hold the playing cards for the hand . Modify the definition of the cards array to use an
ArrayList collection, as shown in bold:

class Hand
{
 public const int HandSize = 13;
 private ArrayList cards = new ArrayList();
 ...
}

 . 9 . . Find the AddCardToHand method . This method currently checks to see whether the
hand is full, and if not it adds the card provided as the parameter to the cards array, at
the index specified by the playingCardCount variable .

Update this method to use the Add method of the ArrayList class instead . This change
also removes the need to explicitly keep track of how many cards the collection holds
because you can use the Count property instead . Modify the if statement that checks
whether the hand is full to reference this property and delete the playingCardCount
variable from the class .

The completed method should look like this .

public void AddCardToHand(PlayingCard cardDealt)
{
 if (this.cards.Count >= HandSize)
 {
 throw new ArgumentException("Too many cards");
 }
 this.cards.Add(cardDealt);
}

 . 10 . . On the Debug menu, click Start Without Debugging to build and run the application .

 . 11 . . When the Card Game window appears, click Deal . Verify that the cards are dealt and
that the populated hands appear as before . Click Deal again to generate another ran-
dom set of hands .

 . 12 . . Close the form and return to Visual Studio 2010 .

In this chapter, you have learned how to create and use arrays to manipulate sets of data . You
have also seen how to use some of the common collection classes to store and access data .

n If you want to continue to the next chapter

Keep Visual Studio 2010 running, and turn to Chapter 11 .

n If you want to exit Visual Studio 2010 now

On the File menu, click Exit . If you see a Save dialog box, click Yes and save the project .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

218 Part II Understanding the C# Language

Chapter .10 .Quick .Reference
To Do this

Declare an array variable Write the name of the element type, followed by square brackets,
 followed by the name of the variable, followed by a semicolon . For
 example:

bool[] flags;

Create an instance of an array Write the keyword new, followed by the name of the element type,
followed by the size of the array enclosed in square brackets . For
 example:

bool[] flags = new bool[10];

Initialize the elements of an array (or
of a collection that supports the Add
method) to specific values

For an array, write the specific values in a comma-separated list
 enclosed in braces . For example:

bool[] flags = { true, false, true, false };

For a collection, use the new operator and the collection type with
the specific values in a comma-separated list enclosed in braces . For
example:

ArrayList numbers = new ArrayList(){10, 9, 8, 7, 6, 5};

Find the number of elements in
an array

Use the Length property . For example:

int [] flags = ...;
...
int noOfElements = flags.Length;

Find the number of elements in a
collection

Use the Count property . For example:

ArrayList flags = new ArrayList();
...
int noOfElements = flags.Count;

Access a single array element Write the name of the array variable, followed by the integer index of
the element enclosed in square brackets . Remember, array indexing
starts at 0, not 1 . For example:

bool initialElement = flags[0];

Iterate through the elements of
an array or a collection

Use a for statement or a foreach statement . For example:

bool[] flags = { true, false, true, false };
for (int i = 0; i < flags.Length; i++)
{
 Console.WriteLine(flags[i]);
}

foreach (bool flag in flags)
{
 Console.WriteLine(flag);
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 . . 219

Chapter 11

Understanding Parameter Arrays
After completing this chapter, you will be able to:

n Write a method that can accept any number of arguments by using the params
keyword .

n Write a method that can accept any number of arguments of any type by using the
params keyword in combination with the object type .

n Explain the differences between methods that take parameter arrays and methods that
take optional parameters .

Parameter arrays are useful if you want to write methods that can take any number of argu-
ments, possibly of different types, as parameters . If you are familiar with object-oriented
concepts, you might well be grinding your teeth in frustration at this sentence . After all, the
object-oriented approach to solving this problem is to define overloaded methods .

Overloading is the technical term for declaring two or more methods with the same name in
the same scope . Being able to overload a method is very useful in cases where you want to
perform the same action on arguments of different types . The classic example of overloading
in Microsoft Visual C# is Console.WriteLine . The WriteLine method is overloaded numerous
times so that you can pass any primitive type argument:

class Console
{
 public static void WriteLine(int parameter)
 ...
 public static void WriteLine(double parameter)
 ...
 public static void WriteLine(decimal parameter)
 ...
}

As useful as overloading is, it doesn’t cover every case . In particular, overloading doesn’t
 easily handle a situation in which the type of parameters doesn’t vary but the number of
 parameters does . For example, what if you want to write many values to the console? Do you
have to provide versions of Console.WriteLine that can take two parameters, other versions
that can take three parameters, and so on? That would quickly get tedious . And doesn’t the
massive duplication of all these overloaded methods worry you? It should . Fortunately, there
is a way to write a method that takes a variable number of arguments (a variadic method):
you can use a parameter array (a parameter declared with the params keyword) .

To understand how params arrays solve this problem, it helps to first understand the uses
and shortcomings of ordinary arrays .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

220 Part II Understanding the C# Language

Using .Array .Arguments
Suppose you want to write a method to determine the minimum value in a set of values
passed as parameters . One way is to use an array . For example, to find the smallest of several
int values, you could write a static method named Min with a single parameter representing
an array of int values:

class Util
{
 public static int Min(int[] paramList)
 {
 if (paramList == null || paramList.Length == 0)
 {
 throw new ArgumentException("Util.Min: not enough arguments");
 }
 int currentMin = paramList [0];
 foreach (int i in paramList)
 {
 if (i < currentMin)
 {
 currentMin = i;
 }
 }
 return currentMin;
 }
}

Note  The ArgumentException class is specifically designed to be thrown by a method if the
 arguments supplied do not meet the requirements of the method .

To use the Min method to find the minimum of two int values, you write this:

int[] array = new int[2];
array[0] = first;
array[1] = second;
int min = Util.Min(array);

And to use the Min method to find the minimum of three int values, you write this:

int[] array = new int[3];
array[0] = first;
array[1] = second;
array[2] = third;
int min = Util.Min(array);

You can see that this solution avoids the need for a large number of overloads, but it does so
at a price: you have to write additional code to populate the array that you pass in . However,
you can get the compiler to write some of this code for you by using the params keyword to
declare a params array .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 11 Understanding Parameter Arrays 221

Declaring a params Array
You use the params keyword as an array parameter modifier . For example, here’s Min
again—this time with its array parameter declared as a params array:

class Util
{
 public static int Min(params int[] paramList)
 {
 // code exactly as before
 }
}

The effect of the params keyword on the Min method is that it allows you to call it by using
any number of integer arguments . For example, to find the minimum of two integer values,
you write this:

int min = Util.Min(first, second);

The compiler translates this call into code similar to this:

int[] array = new int[2];
array[0] = first;
array[1] = second;
int min = Util.Min(array);

To find the minimum of three integer values, you write the code shown here, which is also
converted by the compiler to the corresponding code that uses an array:

int min = Util.Min(first, second, third);

Both calls to Min (one call with two arguments and another with three arguments) resolve
to the same Min method with the params keyword . And as you can probably guess, you can
call this Min method with any number of int arguments . The compiler just counts the number
of int arguments, creates an int array of that size, fills the array with the arguments, and then
calls the method by passing the single array parameter .

Note C and C++ programmers might recognize params as a type-safe equivalent of the varargs
macros from the header file stdarg .h .

There are several points worth noting about params arrays:

n You can’t use the params keyword on multidimensional arrays . The code in the
 following example will not compile:

// compile-time error
public static int Min(params int[,] table)
...

http://lib.ommolketab.ir
http//lib.ommolketab.ir

222 Part II Understanding the C# Language

n You can’t overload a method based solely on the params keyword . The params
 keyword does not form part of a method’s signature, as shown in this example:

// compile-time error: duplicate declaration
public static int Min(int[] paramList)
...
public static int Min(params int[] paramList)
...

n You’re not allowed to specify the ref or out modifier with params arrays, as shown in
this example:

// compile-time errors
public static int Min(ref params int[] paramList)
...
public static int Min(out params int[] paramList)
...

n A params array must be the last parameter . (This means that you can have only one
params array per method .) Consider this example:

// compile-time error
public static int Min(params int[] paramList, int i)
...

n A non-params method always takes priority over a params method . This means that if
you want to, you can still create an overloaded version of a method for the common
cases . For example:

public static int Min(int leftHandSide, int rightHandSide)
...
public static int Min(params int[] paramList)
...

The first version of the Min method is used when called using two int arguments . The
second version is used if any other number of int arguments is supplied . This includes
the case where the method is called with no arguments .

Adding the non-params array method might be a useful optimization technique
 because the compiler won’t have to create and populate so many arrays .

n The compiler detects and rejects any potentially ambiguous overloads . For example,
the following two Min methods are ambiguous; it’s not clear which one should be
called if you pass two int arguments:

// compile-time error
public static int Min(params int[] paramList)
...
public static int Min(int, params int[] paramList)
...

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 11 Understanding Parameter Arrays 223

Using params object[]
A parameter array of type int is very useful because it enables you to pass any number of
int arguments in a method call . However, what if not only the number of arguments varies
but also the argument type? C# has a way to solve this problem, too . The technique is based
on the facts that object is the root of all classes and that the compiler can generate code
that converts value types (things that aren’t classes) to objects by using boxing, as described
in Chapter 8, “Understanding Values and References .” You can use a parameters array of
type object to declare a method that accepts any number of object arguments, allowing the
 arguments passed in to be of any type . Look at this example:

class Black
{
 public static void Hole(params object [] paramList)
 ...
}

I’ve called this method Black.Hole, because no argument can escape from it:

n You can pass the method no arguments at all, in which case the compiler will pass an
object array whose length is 0:

Black.Hole();
// converted to Black.Hole(new object[0]);

Tip It’s perfectly safe to attempt to iterate through a zero-length array by using a foreach
statement .

n You can call the Black.Hole method by passing null as the argument . An array is a
 reference type, so you’re allowed to initialize an array with null:

Black.Hole(null);

n You can pass the Black.Hole method an actual array . In other words, you can manually
create the array normally created by the compiler:

object[] array = new object[2];
array[0] = "forty two";
array[1] = 42;
Black.Hole(array);

n You can pass the Black.Hole method any other arguments of different types, and these
arguments will automatically be wrapped inside an object array:

Black.Hole("forty two", 42);
//converted to Black.Hole(new object[]{"forty two", 42});

http://lib.ommolketab.ir
http//lib.ommolketab.ir

224 Part II Understanding the C# Language

The .Console.WriteLine .Method
The Console class contains many overloads for the WriteLine method . One of these
overloads looks like this:

public static void WriteLine(string format, params object[] arg);

This overload enables the WriteLine method to support a format string argument that
contains placeholders, each of which can be replaced at run time with a variable of any
type . Here’s an example of a call to this method:

Console.WriteLine("Forename:{0}, Middle Initial:{1}, Last name:{2}, Age:{3}", fname,
mi, lname, age);

The compiler resolves this call into the following:

Console.WriteLine("Forename:{0}, Middle Initial:{1}, Last name:{2}, Age:{3}", new
object[4]{fname, mi, lname, age});

Using a params Array
In the following exercise, you will implement and test a static method named Util.Sum . The
purpose of this method is to calculate the sum of a variable number of int arguments passed
to it, returning the result as an int . You will do this by writing Util.Sum to take a params int[]
parameter . You will implement two checks on the params parameter to ensure that the Util.
Sum method is completely robust . You will then call the Util.Sum method with a variety of
different arguments to test it .

Write a params array method

 . 1 . . Start Microsoft Visual Studio 2010 if it is not already running .

 . 2 . . Open the ParamsArray project, located in the \Microsoft Press\Visual CSharp Step By
Step\Chapter 11\ ParamArrays folder in your Documents folder .

 . 3 . . Display the Util .cs file in the Code and Text Editor window .

The Util .cs file contains an empty class named Util in the ParamsArray namespace .

 . 4 . . Add a public static method named Sum to the Util class .

The Sum method returns an int and accepts a params array of int values . The Sum
method should look like this:

public static int Sum(params int[] paramList)
{
}

The first step in implementing the Sum method is to check the paramList parameter .
Apart from containing a valid set of integers, it can also be null or it can be an array of
zero length . In both of these cases, it is difficult to calculate the sum, so the best option
is to throw an ArgumentException . (You could argue that the sum of the integers in a
zero-length array is 0, but we will treat this situation as an exception in this example .)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 11 Understanding Parameter Arrays 225

 . 5 . . Add code to Sum that throws an ArgumentException if paramList is null .

The Sum method should now look like this:

public static int Sum(params int[] paramList)
{
 if (paramList == null)
 {
 throw new ArgumentException("Util.Sum: null parameter list");
 }
}

 . 6 . . Add code to the Sum method that throws an ArgumentException if the length of array
is 0, as shown in bold here:

public static int Sum(params int[] paramList)
{
 if (paramList == null)
 {
 throw new ArgumentException("Util.Sum: null parameter list");
 }

 if (paramList.Length == 0)
 {
 throw new ArgumentException("Util.Sum: empty parameter list");
 }
}

If the array passes these two tests, the next step is to add all the elements inside the
array together .

 . 7 . . You can use a foreach statement to add all the elements together . You will need a lo-
cal variable to hold the running total . Declare an integer variable named sumTotal, and
initialize it to 0 following the code from the preceding step . Add a foreach statement to
the Sum method to iterate through the paramList array . The body of this foreach loop
should add each element in the array to sumTotal . At the end of the method, return the
value of sumTotal by using a return statement, as shown in bold here:

class Util
{
 public static int Sum(params int[] paramList)
 {
 ...
 int sumTotal = 0;
 foreach (int i in paramList)
 {
 sumTotal += i;
 }
 return sumTotal;
 }
}

 . 8 . . On the Build menu, click Build Solution . Confirm that your solution builds without any
errors .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

226 Part II Understanding the C# Language

Test the Util .Sum method

 . 1 . . Display the Program .cs file in the Code and Text Editor window .

 . 2 . . In the Code and Text Editor window, locate the DoWork method in the Program class .

 . 3 . . Add the following statement to the DoWork method:

Console.WriteLine(Util.Sum(null));

 . 4 . . On the Debug menu, click Start Without Debugging .

The program builds and runs, writing the following message to the console:

Exception: Util.Sum: null parameter list

This confirms that the first check in the method works .

 . 5 . . Press the Enter key to close the program and return to Visual Studio 2010 .

 . 6 . . In the Code and Text Editor window, change the call to Console.WriteLine in DoWork as
shown here:

Console.WriteLine(Util.Sum());

This time, the method is called without any arguments . The compiler translates the
empty argument list into an empty array .

 . 7 . . On the Debug menu, click Start Without Debugging .

The program builds and runs, writing the following message to the console:

Exception: Util.Sum: empty parameter list

This confirms that the second check in the method works .

 . 8 . . Press the Enter key to close the program and return to Visual Studio 2010 .

 . 9 . . Change the call to Console.WriteLine in DoWork as follows:

Console.WriteLine(Util.Sum(10, 9, 8, 7, 6, 5, 4, 3, 2, 1));

 . 10 . . On the Debug menu, click Start Without Debugging .

Verify that the program builds, runs, and writes the value 55 to the console .

 . 11 . . Press Enter to close the application and return to Visual Studio 2010 .

Comparing .Parameters .Arrays .and .Optional .Parameters
In Chapter 3, “Writing Methods and Applying Scope”, you saw how to define methods that
take optional parameters . At first glance, it appears there is a degree of overlap between
methods that use parameter arrays and methods that take optional parameters . However,
there are fundamental differences between them:

n A method that takes optional parameters still has a fixed parameter list, and you can-
not pass an arbitrary list of arguments . The compiler generates code that inserts the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 11 Understanding Parameter Arrays 227

default values onto the stack for any missing arguments before the method runs, and
the method is not aware of which arguments the caller provided and which are the
compiler-generated defaults .

n A method that uses a parameter array effectively has a completely arbitrary list of
 parameters, and none of them have default values . Furthermore, the method can
 determine exactly how many arguments the caller provided .

Generally, you use parameter arrays for methods that can take any number of parameters
(including none), whereas you use optional parameters only where it is not convenient to
force a caller to provide an argument for every parameter .

There is one final question worth pondering . If you define a method that takes a parameter
list and provide an overload that takes optional parameters, it is not always immediately ap-
parent which version of the method will be called if the argument list in the calling statement
matches both method signatures . You will investigate this scenario in the final exercise in this
chapter .

Compare a params array and optional parameters

 . 1 . . Return to the ParamsArray solution in Visual Studio 2010, and display the Util .cs file in
the Code and Text Editor window .

 . 2 . . Add the following Console.WriteLine statement shown in bold to the start of the Sum
method in the Util class:

public static int Sum(params int[] paramList)
{
 Console.WriteLine("Using parameter list");
 ...
}

 . 3 . . Add another implementation of the Sum method to the Util class . This version should
take four optional int parameters with a default value of 0 . In the body of the method,
output the message “Using optional parameters”, and then calculate and return the
sum of the four parameters . The completed method should look like this:

public static int Sum(int param1 = 0, int param2 = 0, int param3 = 0, int param4 = 0)
{
 Console.WriteLine("Using optional parameters");
 int sumTotal = param1 + param2 + param3 + param4;
 return sumTotal;
}

 . 4 . . Display the Program .cs file in the Code and Text Editor window .

 . 5 . . In the DoWork method, comment out the existing code and add the following
statement:

Console.WriteLine(Util.Sum(2, 4, 6, 8));

http://lib.ommolketab.ir
http//lib.ommolketab.ir

228 Part II Understanding the C# Language

This statement calls the Sum method, passing four int parameters . This call matches
both overloads of the Sum method .

 . 6 . . On the Debug menu, click Start Without Debugging to build and run the application .

When the application runs, it displays the following messages:

Using optional parameters
20

In this case, the compiler generated code that called the method that takes four op-
tional parameters . This is the version of the method that most closely matches the
method call .

 . 7 . . Press Enter and return to Visual Studio .

 . 8 . . In the DoWork method, change the statement that calls the Sum method, as shown
here:

Console.WriteLine(Util.Sum(2, 4, 6));

 . 9 . . On the Debug menu, click Start Without Debugging to build and run the application .

When the application runs, it displays the following messages:

Using optional parameters
12

The compiler still generated code that called the method that takes optional parame-
ters, even though the method signature does not exactly match the call . Given a choice
between a method that takes optional parameters and a method that takes a param-
eter list, the C# compiler will use the method that takes optional parameters .

 . 10 . . Press Enter and return to Visual Studio .

 . 11 . . In the DoWork method, change the statement that calls the Sum method again .

Console.WriteLine(Util.Sum(2, 4, 6, 8, 10));

 . 12 . . On the Debug menu, click Start Without Debugging to build and run the application .

When the application runs, it displays the following messages:

Using parameter list
30

This time, there are more parameters than the method that takes optional parameters
specifies, so the compiler generated code that calls the method that takes a parameter
array .

 . 13 . . Press Enter and return to Visual Studio .

In this chapter, you have learned how to use a params array to define a method that can take
any number of arguments . You have also seen how to use a params array of object types to
create a method that accepts any number of arguments of any type . You have also seen how

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 11 Understanding Parameter Arrays 229

the compiler resolves method calls when it has a choice between calling a method that takes
a parameter array and a method that takes optional parameters .

n If you want to continue to the next chapter

Keep Visual Studio 2010 running, and turn to Chapter 12 .

n If you want to exit Visual Studio 2010 now

On the File menu, click Exit . If you see a Save dialog box, click Yes and save the project .

Chapter .11 .Quick .Reference
To Do this

Write a method that accepts any
number of arguments of a given
type

Write a method whose parameter is a params array of the given type .
For example, a method that accepts any number of bool arguments is
declared like this:

someType Method(params bool[] flags)
{
 ...
}

Write a method that accepts any
number of arguments of any type

Write a method whose parameter is a params array whose elements are
of type object . For example:

someType Method(params object[] paramList)
{
 ...
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 . . 231

Chapter 12

Working with Inheritance
After completing this chapter, you will be able to:

n Create a derived class that inherits features from a base class .

n Control method hiding and overriding by using the new, virtual, and override keywords .

n Limit accessibility within an inheritance hierarchy by using the protected keyword .

n Define extension methods as an alternative mechanism to using inheritance .

Inheritance is a key concept in the world of object orientation . You can use inheritance as
a tool to avoid repetition when defining different classes that have a number of features in
common and are quite clearly related to each other . Perhaps they are different classes of
the same type, each with its own distinguishing feature—for example, managers, manual
workers, and all employees of a factory . If you were writing an application to simulate the fac-
tory, how would you specify that managers and manual workers have a number of features
that are the same but also have other features that are different? For example, they all have
an employee reference number, but managers have different responsibilities and perform
 different tasks than manual workers .

This is where inheritance proves useful .

What .Is .Inheritance?
If you ask several experienced programmers what they understand by the term inheritance,
you will typically get different and conflicting answers . Part of the confusion stems from the
fact that the word inheritance itself has several subtly different meanings . If someone be-
queaths something to you in a will, you are said to inherit it . Similarly, we say that you inherit
half of your genes from your mother and half of your genes from your father . Both of these
uses of the word inheritance have very little to do with inheritance in programming .

Inheritance in programming is all about classification—it’s a relationship between classes . For
example, when you were at school, you probably learned about mammals, and you learned
that horses and whales are examples of mammals . Each has every attribute that a mammal
does (it breathes air, it suckles its young, it is warm-blooded, and so on), but each also has its
own special features (a horse has hooves, a whale has flippers and a fluke) .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

232 Part II Understanding the C# Language

How can you model a horse and a whale in a program? One way would be to create two
distinct classes named Horse and Whale . Each class can implement the behaviors that are
unique to that type of mammal, such as Trot (for a horse) or Swim (for a whale), in its own
way . How do you handle behaviors that are common to a horse and a whale, such as Breathe
or SuckleYoung? You can add duplicate methods with these names to both classes, but this
situation becomes a maintenance nightmare, especially if you also decide to start modeling
other types of mammal, such as Human or Aardvark .

In C#, you can use class inheritance to address these issues . A horse, a whale, a human, and
an aardvark are all types of mammals, so create a class named Mammal that provides the
common functionality exhibited by these types . You can then declare that the Horse, Whale,
Human, and Aardvark classes all inherit from Mammal . These classes then automatically
provide the functionality of the Mammal class (Breathe, SuckleYoung, and so on), but you
can also add the functionality peculiar to a particular type of mammal to the correspond-
ing class—the Trot method for the Horse class and the Swim method for the Whale class . If
you need to modify the way in which a common method such as Breathe works, you need to
change it in only one place, the Mammal class .

Using .Inheritance
You declare that a class inherits from another class by using the following syntax:

class DerivedClass : BaseClass {
 ...
}

The derived class inherits from the base class, and the methods in the base class also become
part of the derived class . In C#, a class is allowed to derive from, at most, one base class; a
class is not allowed to derive from two or more classes . However, unless DerivedClass is de-
clared as sealed, you can create further derived classes that inherit from DerivedClass using
the same syntax . (You will learn about sealed classes in Chapter 13, “Creating Interfaces and
Defining Abstract Classes .”)

class DerivedSubClass : DerivedClass {
 ...
}

Important All structures inherit from an abstract class called System .ValueType . (You will learn
about abstract classes in Chapter 13 .) This is purely an implementation detail of the way in which
the .NET Framework defines the common behavior for stack-based value types . You cannot
define your own inheritance hierarchy with structures—and you cannot define a structure that
derives from a class or another structure .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 12 Working with Inheritance 233

In the example described earlier, you could declare the Mammal class as shown here . The
methods Breathe and SuckleYoung are common to all mammals .

class Mammal
{
 public void Breathe()
 {
 ...
 }

 public void SuckleYoung()
 {
 ...
 }
 ...
}

You could then define classes for each different type of mammal, adding more methods as
necessary . For example:

class Horse : Mammal
{
 ...
 public void Trot()
 {
 ...
 }

}

class Whale : Mammal
{
 ...
 public void Swim()
 {
 ...
 }

}

Note C++ programmers should notice that you do not and cannot explicitly specify whether
the inheritance is public, private, or protected . C# inheritance is always implicitly public . Java pro-
grammers should note the use of the colon and that there is no extends keyword .

Remember that the System.Object class is the root class of all classes . All classes implicitly
derive from the System.Object class . Consequently, the C# compiler silently rewrites the
Mammal class as the following code (which you can write explicitly if you really want to):

class Mammal : System.Object
{
 ...
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

234 Part II Understanding the C# Language

Any methods in the System.Object class are automatically passed down the chain of
 inheritance to classes that derive from Mammal, such as Horse and Whale . What this means
in practical terms is that all classes that you define automatically inherit all the features of
the System.Object class . This includes methods such as ToString (first discussed in Chapter 2,
“Working with Variables, Operators, and Expressions”), which is used to convert an object to
a string, typically for display purposes .

Calling Base Class Constructors
In addition to the methods that it inherits, a derived class automatically contains all fields
from the base class . These fields usually require initialization when an object is created . You
typically perform this kind of initialization in a constructor . Remember that all classes have at
least one constructor . (If you don’t provide one, the compiler generates a default constructor
for you .) It is good practice for a constructor in a derived class to call the constructor for its
base class as part of the initialization . You can specify the base keyword to call a base class
constructor when you define a constructor for an inheriting class, as shown in this example:

class Mammal // base class
{
 public Mammal(string name) // constructor for base class
 {
 ...
 }
 ...
}

class Horse : Mammal // derived class
{
 public Horse(string name)
 : base(name) // calls Mammal(name)
 {
 ...
 }
 ...
}

If you don’t explicitly call a base class constructor in a derived class constructor, the compiler
attempts to silently insert a call to the base class’s default constructor before executing the
code in the derived class constructor . Taking the earlier example, the compiler rewrites this:

class Horse : Mammal
{
 public Horse(string name)
 {
 ...
 }
 ...
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 12 Working with Inheritance 235

as this:

class Horse : Mammal
{
 public Horse(string name)
 : base()
 {
 ...
 }
 ...
}

This works if Mammal has a public default constructor . However, not all classes have a public
default constructor (for example, remember that the compiler generates only a default con-
structor if you don’t write any nondefault constructors), in which case forgetting to call the
correct base class constructor results in a compile-time error .

Assigning Classes
In previous examples in this book, you have seen how to declare a variable by using a class
type and then how to use the new keyword to create an object . You have also seen how the
type-checking rules of C# prevent you from assigning an object of one type to a variable
declared as a different type . For example, given the definitions of the Mammal, Horse, and
Whale classes shown here, the code that follows these definitions is illegal:

class Mammal
{
 ...
}
class Horse : Mammal
{
 ...
}

class Whale : Mammal
{
 ...
}
...
Horse myHorse = new Horse("Neddy"); // constructor shown earlier expects a name!
Whale myWhale = myHorse; // error – different types

However, it is possible to refer to an object from a variable of a different type as long as the
type used is a class that is higher up the inheritance hierarchy . So the following statements
are legal:

Horse myHorse = new Horse("Neddy");
Mammal myMammal = myHorse; // legal, Mammal is the base class of Horse

http://lib.ommolketab.ir
http//lib.ommolketab.ir

236 Part II Understanding the C# Language

If you think about it in logical terms, all Horses are Mammals, so you can safely assign an
object of type Horse to a variable of type Mammal . The inheritance hierarchy means that you
can think of a Horse simply as a special type of Mammal; it has everything that a Mammal
has with a few extra bits defined by any methods and fields you add to the Horse class . You
can also make a Mammal variable refer to a Whale object . There is one significant limitation,
however—when referring to a Horse or Whale object by using a Mammal variable, you can
access only methods and fields that are defined by the Mammal class . Any additional meth-
ods defined by the Horse or Whale class are not visible through the Mammal class:

Horse myHorse = new Horse("Neddy");
Mammal myMammal = myHorse;
myMammal.Breathe(); // OK - Breathe is part of the Mammal class
myMammal.Trot(); // error - Trot is not part of the Mammal class

Note This explains why you can assign almost anything to an object variable . Remember that
object is an alias for System.Object and all classes inherit from System.Object either directly or
indirectly .

Be warned that the converse situation is not true . You cannot unreservedly assign a Mammal
object to a Horse variable:

Mammal myMammal = newMammal("Mammalia");
Horse myHorse = myMammal; // error

This looks like a strange restriction, but remember that not all Mammal objects are Horses—
some might be Whales . You can assign a Mammal object to a Horse variable as long as you
check that the Mammal is really a Horse first, by using the as or is operator or by using a
cast . The following code example uses the as operator to check that myMammal refers to a
Horse, and if it does, the assignment to myHorseAgain results in myHorseAgain referring to
the same Horse object . If myMammal refers to some other type of Mammal, the as operator
returns null instead .

Horse myHorse = new Horse("Neddy");
Mammal myMammal = myHorse; // myMammal refers to a Horse
...
Horse myHorseAgain = myMammal as Horse; // OK - myMammal was a Horse
...
Whale myWhale = new Whale("Moby Dick");
myMammal = myWhale;
...
myHorseAgain = myMammal as Horse; // returns null - myMammal was a Whale

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 12 Working with Inheritance 237

Declaring new Methods
One of the hardest problems in the realm of computer programming is the task of thinking
up unique and meaningful names for identifiers . If you are defining a method for a class and
that class is part of an inheritance hierarchy, sooner or later you are going to try to reuse a
name that is already in use by one of the classes higher up the hierarchy . If a base class and a
derived class happen to declare two methods that have the same signature, you will receive a
warning when you compile the application .

Note The method signature refers to the name of the method and the number and types of
its parameters, but not its return type . Two methods that have the same name and that take the
same list of parameters have the same signature, even if they return different types .

The method in the derived class masks (or hides) the method in the base class that has the
same signature . For example, if you compile the following code, the compiler generates a
warning message telling you that Horse.Talk hides the inherited method Mammal.Talk:

class Mammal
{
 ...
 public void Talk() // assume that all mammals can talk
 {
 ...
 }
}

class Horse : Mammal
{
 ...
 public void Talk() // horses talk in a different way from other mammals!
 {
 ...
 }
}

Although your code will compile and run, you should take this warning seriously . If another
class derives from Horse and calls the Talk method, it might be expecting the method imple-
mented in the Mammal class to be called . However, the Talk method in the Horse class hides
the Talk method in the Mammal class, and the Horse.Talk method will be called instead . Most
of the time, such a coincidence is at best a source of confusion, and you should consider re-
naming methods to avoid clashes . However, if you’re sure that you want the two methods to

http://lib.ommolketab.ir
http//lib.ommolketab.ir

238 Part II Understanding the C# Language

have the same signature, thus hiding the Mammal.Talk method, you can silence the warning
by using the new keyword as follows:

class Mammal
{
 ...
 public void Talk()
 {
 ...
 }
}

class Horse : Mammal
{
 ...
 new public void Talk()
 {
 ...
 }
}

Using the new keyword like this does not change the fact that the two methods are com-
pletely unrelated and that hiding still occurs . It just turns the warning off . In effect, the new
keyword says, “I know what I’m doing, so stop showing me these warnings .”

Declaring Virtual Methods
Sometimes you do want to hide the way in which a method is implemented in a base class .
As an example, consider the ToString method in System.Object . The purpose of ToString is
to convert an object to its string representation . Because this method is very useful, it is a
member of the System.Object class, thereby automatically providing all classes with a ToString
method . However, how does the version of ToString implemented by System.Object know
how to convert an instance of a derived class to a string? A derived class might contain
any number of fields with interesting values that should be part of the string . The answer
is that the implementation of ToString in System.Object is actually a bit simplistic . All it can
do is convert an object to a string that contains the name of its type, such as “Mammal” or
“Horse .” This is not very useful after all . So why provide a method that is so useless? The an-
swer to this second question requires a bit of detailed thought .

Obviously, ToString is a fine idea in concept, and all classes should provide a method that
can be used to convert objects to strings for display or debugging purposes . It is only the
implementation that is problematic . In fact, you are not expected to call the ToString method
defined by System.Object—it is simply a placeholder . Instead, you should provide your own
version of the ToString method in each class you define, overriding the default implementa-
tion in System.Object . The version in System.Object is there only as a safety net, in case a class
does not implement its own ToString method . In this way, you can be confident that you can
call ToString on any object, and the method will return a string containing something .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 12 Working with Inheritance 239

A method that is intended to be overridden is called a virtual method . You should be clear
on the difference between overriding a method and hiding a method . Overriding a method is
a mechanism for providing different implementations of the same method—the methods are
all related because they are intended to perform the same task, but in a class-specific man-
ner . Hiding a method is a means of replacing one method with another—the methods are
usually unrelated and might perform totally different tasks . Overriding a method is a useful
programming concept; hiding a method is usually an error .

You can mark a method as a virtual method by using the virtual keyword . For example, the
ToString method in the System.Object class is defined like this:

namespace System
{
 class Object
 {
 public virtual string ToString()
 {
 ...
 }
 ...
 }
 ...
}

Note Java developers should note that C# methods are not virtual by default .

Declaring override Methods
If a base class declares that a method is virtual, a derived class can use the override keyword
to declare another implementation of that method . For example:

class Horse : Mammal
{
 ...
 public override string ToString()
 {
 ...
 }
}

The new implementation of the method in the derived class can call the original implemen-
tation of the method in the base class by using the base keyword, like this:

 public override string ToString()
 {
 base.ToString();
 ...
 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

240 Part II Understanding the C# Language

There are some important rules you must follow when declaring polymorphic methods (as
discussed in the following sidebar, “Virtual Methods and Polymorphism”) by using the virtual
and override keywords:

n You’re not allowed to declare a private method when using the virtual or override
 keyword . If you try, you’ll get a compile-time error . Private really is private .

n The two method signatures must be identical—that is, they must have the same name,
number, and type of parameters . In addition, both methods must return the same type .

n The two methods must have the same level of access . For example, if one of the two
methods is public, the other must also be public . (Methods can also be protected, as
you will find out in the next section .)

n You can override only a virtual method . If the base class method is not virtual and you
try to override it, you’ll get a compile-time error . This is sensible; it should be up to the
designer of the base class to decide whether its methods can be overridden .

n If the derived class does not declare the method by using the override keyword, it does
not override the base class method . In other words, it becomes an implementation of a
completely different method that happens to have the same name . As before, this will
cause a compile-time hiding warning, which you can silence by using the new keyword
as previously described .

n An override method is implicitly virtual and can itself be overridden in a further derived
class . However, you are not allowed to explicitly declare that an override method is vir-
tual by using the virtual keyword .

Virtual .Methods .and .Polymorphism
Virtual methods enable you to call different versions of the same method, based on the
type of the object determined dynamically at run time . Consider the following example
classes that define a variation on the Mammal hierarchy described earlier:

class Mammal
{
 ...
 public virtual string GetTypeName()
 {
 return "This is a mammal";
 }
}

class Horse : Mammal
{
 ...
 public override string GetTypeName()
 {
 return "This is a horse";
 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 12 Working with Inheritance 241

}

class Whale : Mammal
{
 ...
 public override string GetTypeName ()
 {
 return "This is a whale";
 }
}

class Aardvark : Mammal
{
 ...
}

Notice two things: first, the override keyword used by the GetTypeName method in the
Horse and Whale classes, and second, the fact that the Aardvark class does not have a
GetTypeName method .

Now examine the following block of code:

Mammal myMammal;
Horse myHorse = new Horse(...);
Whale myWhale = new Whale(...);
Aardvark myAardvark = new Aardvark(...);

myMammal = myHorse;
Console.WriteLine(myMammal.GetTypeName()); // Horse
myMammal = myWhale;
Console.WriteLine(myMammal.GetTypeName()); // Whale
myMammal = myAardvark;
Console.WriteLine(myMammal.GetTypeName()); // Aardvark

What will be output by the three different Console.WriteLine statements? At first
glance, you would expect them all to print “This is a mammal,” because each state-
ment calls the GetTypeName method on the myMammal variable, which is a Mammal .
However, in the first case, you can see that myMammal is actually a reference to a
Horse . (Remember, you are allowed to assign a Horse to a Mammal variable because
the Horse class inherits from the Mammal class .) Because the GetTypeName method
is defined as virtual, the runtime works out that it should call the Horse.GetTypeName
method, so the statement actually prints the message “This is a horse .” The same logic
applies to the second Console.WriteLine statement, which outputs the message “This is
a whale .” The third statement calls Console.WriteLine on an Aardvark object . However,
the Aardvark class does not have a GetTypeName method, so the default method in the
Mammal class is called, returning the string “This is a mammal .”

This phenomenon of the same statement invoking a different method depending on its
context is called polymorphism, which literally means “many forms .”

http://lib.ommolketab.ir
http//lib.ommolketab.ir

242 Part II Understanding the C# Language

Understanding protected Access
The public and private access keywords create two extremes of accessibility: public fields and
methods of a class are accessible to everyone, whereas private fields and methods of a class
are accessible to only the class itself .

These two extremes are sufficient when considering classes in isolation . However, as all expe-
rienced object-oriented programmers know, isolated classes cannot solve complex problems .
Inheritance is a powerful way of connecting classes, and there is clearly a special and close
relationship between a derived class and its base class . Frequently, it is useful for a base class
to allow derived classes to access some of its members while hiding these same members
from classes that are not part of the hierarchy . In this situation, you can use the protected
keyword to tag members:

n If a class A is derived from another class B, it can access the protected class members
of class B . In other words, inside the derived class A, a protected member of class B is
effectively public .

n If a class A is not derived from another class B, it cannot access any protected members
of class B . In other words, within class A, a protected member of class B is effectively
private .

C# gives programmers complete freedom to declare methods and fields as protected .
However, most object-oriented programming guidelines recommend keeping your fields
strictly private . Public fields violate encapsulation because all users of the class have direct,
unrestricted access to the fields . Protected fields maintain encapsulation for users of a class,
for whom the protected fields are inaccessible . However, protected fields still allow encapsu-
lation to be violated by classes that inherit from the class .

Note You can access a protected base class member not only in a derived class but also in
classes derived from the derived class . A protected base class member retains its protected
 accessibility in a derived class and is accessible to further derived classes .

In the following exercise, you will define a simple class hierarchy for modeling different types
of vehicles . You will define a base class named Vehicle and derived classes named Airplane
and Car . You will define common methods named StartEngine and StopEngine in the Vehicle
class, and you will add some methods to both of the derived classes that are specific to those
classes . Last you will add a virtual method named Drive to the Vehicle class and override the
default implementation of this method in both of the derived classes .

Create a hierarchy of classes

 . 1 . . Start Microsoft Visual Studio 2010 if it is not already running .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 12 Working with Inheritance 243

 . 2 . . Open the Vehicles project, located in the \Microsoft Press\Visual CSharp Step By Step\
Chapter 12\Vehicles folder in your Documents folder .

The Vehicles project contains the file Program .cs, which defines the Program class with
the Main and DoWork methods that you have seen in previous exercises .

 . 3 . . In Solution Explorer, right-click the Vehicles project, point to Add, and then click Class .

The Add New Item—Vehicles dialog box appears, enabling you to add a new file defin-
ing a class to the project .

 . 4 . . In the Add New Item—Vehicles dialog box, verify that the Class template is highlighted
in the middle pane, type Vehicle .cs in the Name box, and then click Add .

The file Vehicle .cs is created and added to the project and appears in the Code and Text
Editor window . The file contains the definition of an empty class named Vehicle .

 . 5 . . Add the StartEngine and StopEngine methods to the Vehicle class as shown next in bold:

class Vehicle
{
 public void StartEngine(string noiseToMakeWhenStarting)
 {
 Console.WriteLine("Starting engine: {0}", noiseToMakeWhenStarting);
 }

 public void StopEngine(string noiseToMakeWhenStopping)
 {
 Console.WriteLine("Stopping engine: {0}", noiseToMakeWhenStopping);
 }
}

All classes that derive from the Vehicle class will inherit these methods . The values for
the noiseToMakeWhenStarting and noiseToMakeWhenStopping parameters will be dif-
ferent for each different type of vehicle and will help you to identify which vehicle is
being started and stopped later .

 . 6 . . On the Project menu, click Add Class .

The Add New Item—Vehicles dialog box appears again .

 . 7 . . In the Name box, type Airplane .cs and then click Add .

A new file containing a class named Airplane is added to the project and appears in the
Code and Text Editor window .

 . 8 . . In the Code and Text Editor window, modify the definition of the Airplane class so that it
inherits from the Vehicle class, as shown in bold here:

class Airplane : Vehicle
{
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

244 Part II Understanding the C# Language

 . 9 . . Add the TakeOff and Land methods to the Airplane class, as shown in bold here:

class Airplane : Vehicle
{
 public void TakeOff()
 {
 Console.WriteLine("Taking off");
 }

 public void Land()
 {
 Console.WriteLine("Landing");
 }
}

 . 10 . . On the Project menu, click Add Class .

The Add New Item—Vehicles dialog box appears again .

 . 11 . . In the Name box, type Car .cs and then click Add .

A new file containing a class named Car is added to the project and appears in the
Code and Text Editor window .

 . 12 . . In the Code and Text Editor window, modify the definition of the Car class so that it
 derives from the Vehicle class, as shown here in bold:

class Car : Vehicle
{
}

 . 13 . . Add the Accelerate and Brake methods to the Car class, as shown in bold here:

class Car : Vehicle
{
 public void Accelerate()
 {
 Console.WriteLine("Accelerating");
 }

 public void Brake()
 {
 Console.WriteLine("Braking");
 }
}

 . 14 . . Display the Vehicle .cs file in the Code and Text Editor window .

 . 15 . . Add the virtual Drive method to the Vehicle class, as shown here in bold:

class Vehicle
{
 ...
 public virtual void Drive()
 {
 Console.WriteLine("Default implementation of the Drive method");
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 12 Working with Inheritance 245

 . 16 . . Display the Program .cs file in the Code and Text Editor window .

 . 17 . . In the DoWork method, create an instance of the Airplane class and test its methods by
simulating a quick journey by airplane, as follows:

static void DoWork()
{
 Console.WriteLine("Journey by airplane:");
 Airplane myPlane = new Airplane();
 myPlane.StartEngine("Contact");
 myPlane.TakeOff();
 myPlane.Drive();
 myPlane.Land();
 myPlane.StopEngine("Whirr");
}

 . 18 . . Add the following statements shown in bold to the DoWork method after the code
you have just written . These statements create an instance of the Car class and test its
methods .

static void DoWork()
{
 ...
 Console.WriteLine("\nJourney by car:");
 Car myCar = new Car();
 myCar.StartEngine("Brm brm");
 myCar.Accelerate();
 myCar.Drive();
 myCar.Brake();
 myCar.StopEngine("Phut phut");
}

 . 19 . . On the Debug menu, click Start Without Debugging .

In the console window, verify that the program outputs messages simulating the dif-
ferent stages of performing a journey by airplane and by car, as shown in the following
image:

Notice that both modes of transport invoke the default implementation of the virtual
Drive method because neither class currently overrides this method .

 . 20 . . Press Enter to close the application and return to Visual Studio 2010 .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

246 Part II Understanding the C# Language

 . 21 . . Display the Airplane class in the Code and Text Editor window . Override the Drive
 method in the Airplane class, as follows:

public override void Drive()
{
 Console.WriteLine("Flying");
}

Note IntelliSense displays a list of available virtual methods . If you select the Drive meth-
od from the IntelliSense list, Visual Studio automatically inserts into your code a statement
that calls the base.Drive method . If this happens, delete the statement, as this exercise
does not require it .

 . 22 . . Display the Car class in the Code and Text Editor window . Override the Drive method in
the Car class as follows:

public override void Drive()
{
 Console.WriteLine("Motoring");
}

 . 23 . . On the Debug menu, click Start Without Debugging .

In the console window, notice that the Airplane object now displays the message Flying
when the application calls the Drive method and the Car object displays the message
Motoring .

 . 24 . . Press Enter to close the application and return to Visual Studio 2010 .

 . 25 . . Display the Program .cs file in the Code and Text Editor window .

 . 26 . . Add the statements shown here in bold to the end of the DoWork method:

static void DoWork()
{
 ...
 Console.WriteLine("\nTesting polymorphism");
 Vehicle v = myCar;
 v.Drive();
 v = myPlane;
 v.Drive();
}

This code tests the polymorphism provided by the virtual Drive method . The code cre-
ates a reference to the Car object using a Vehicle variable (which is safe, because all Car
objects are Vehicle objects) and then calls the Drive method using this Vehicle variable .
The final two statements refer the Vehicle variable to the Airplane object and call what
seems to be the same Drive method again .

 . 27 . . On the Debug menu, click Start Without Debugging .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 12 Working with Inheritance 247

In the console window, verify that the same messages appear as before, followed by
this text:

Testing polymorphism
Motoring
Flying

The Drive method is virtual, so the runtime (not the compiler) works out which version
of the Drive method to call when invoking it through a Vehicle variable based on the
real type of the object referenced by this variable . In the first case, the Vehicle object
refers to a Car, so the application calls the Car.Drive method . In the second case, the
Vehicle object refers to an Airplane, so the application calls the Airplane.Drive method .

 . 28 . . Press Enter to close the application and return to Visual Studio 2010 .

Understanding .Extension .Methods
Inheritance is a powerful feature, enabling you to extend the functionality of a class by
 creating a new class that derives from it . However, sometimes using inheritance is not the
most appropriate mechanism for adding new behaviors, especially if you need to quickly ex-
tend a type without affecting existing code .

For example, suppose you want to add a new feature to the int type—a method named
Negate that returns the negative equivalent value that an integer currently contains . (I know
that you could simply use the unary minus operator [-] to perform the same task, but bear
with me .) One way to achieve this is to define a new type named NegInt32 that inherits from
System.Int32 (int is an alias for System.Int32) and that adds the Negate method:

class NegInt32 : System.Int32 // don't try this!
{
 public int Negate()
 {
 ...
 }
}

The theory is that NegInt32 will inherit all the functionality associated with the System.Int32
type in addition to the Negate method . There are two reasons why you might not want to
follow this approach:

n This method applies only to the NegInt32 type, and if you want to use it with existing
int variables in your code, you have to change the definition of every int variable to the
NegInt32 type .

n The System.Int32 type is actually a structure, not a class, and you cannot use
 inheritance with structures .

This is where extension methods become very useful .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

248 Part II Understanding the C# Language

An extension method enables you to extend an existing type (a class or a structure) with
 additional static methods . These static methods become immediately available to your code
in any statements that reference data of the type being extended .

You define an extension method in a static class and specify the type that the method ap-
plies to as the first parameter to the method, along with the this keyword . Here’s an example
showing how you can implement the Negate extension method for the int type:

static class Util
{
 public static int Negate(this int i)
 {
 return –i;
 }
}

The syntax looks a little odd, but it is the this keyword prefixing the parameter to Negate that
identifies it as an extension method, and the fact that the parameter that this prefixes is an
int means that you are extending the int type .

To use the extension method, bring the Util class into scope . (If necessary, add a using state-
ment specifying the namespace to which the Util class belongs .) Then you can simply use “ .”
notation to reference the method, like this:

int x = 591;
Console.WriteLine("x.Negate {0}", x.Negate());

Notice that you do not need to reference the Util class anywhere in the statement that calls
the Negate method . The C# compiler automatically detects all extension methods for a given
type from all the static classes that are in scope . You can also invoke the Utils.Negate method
passing an int as the parameter, using the regular syntax you have seen before, although this
use obviates the purpose of defining the method as an extension method:

int x = 591;
Console.WriteLine("x.Negate {0}", Util.Negate(x));

In the following exercise, you will add an extension method to the int type . This extension
method enables you to convert the value an int variable contains from base 10 to a represen-
tation of that value in a different number base .

Create an extension method

 . 1 . . In Visual Studio 2010, open the ExtensionMethod project, located in the \Microsoft
Press\Visual CSharp Step By Step\Chapter 12\ExtensionMethod folder in your
Documents folder .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 12 Working with Inheritance 249

 . 2 . . Display the Util .cs file in the Code and Text Editor window .

This file contains a static class named Util in a namespace named Extensions . The class
is empty apart from the // to do comment . Remember that you must define extension
methods inside a static class .

 . 3 . . Add a public static method to the Util class, named ConvertToBase . The method should
take two parameters: an int parameter named i, prefixed with the this keyword to indi-
cate that the method is an extension method for the int type, and another ordinary int
parameter named baseToConvertTo . The method will convert the value in i to the base
indicated by baseToConvertTo . The method should return an int containing the con-
verted value .

The ConvertToBase method should look like this:

static class Util
{
 public static int ConvertToBase(this int i, int baseToConvertTo)
 {
 }
}

 . 4 . . Add an if statement to the ConvertToBase method that checks that the value of the
 baseToConvertTo parameter is between 2 and 10 . The algorithm used by this exercise
does not work reliably outside this range of values . Throw an ArgumentException with a
suitable message if the value of baseToConvertTo is outside this range .

The ConvertToBase method should look like this:

public static int ConvertToBase(this int i, int baseToConvertTo)
{
 if (baseToConvertTo < 2 || baseToConvertTo > 10)
 throw new ArgumentException("Value cannot be converted to base " +
baseToConvertTo.ToString());
}

 . 5 . . Add the following statements shown in bold to the ConvertToBase method, after the
statement that throws the ArgumentException . This code implements a well-known al-
gorithm that converts a number from base 10 to a different number base . (You saw a
version of this algorithm for converting a decimal number to octal in Chapter 5, “Using
Compound Assignment and Iteration Statements .”)

public static int ConvertToBase(this int i, int baseToConvertTo)
{
 ...
 int result = 0;
 int iterations = 0;
 do

http://lib.ommolketab.ir
http//lib.ommolketab.ir

250 Part II Understanding the C# Language

 {
 int nextDigit = i % baseToConvertTo;
 i /= baseToConvertTo;
 result += nextDigit * (int)Math.Pow(10, iterations);
 iterations++;
 }
 while (i != 0);

 return result;
}

 . 6 . . Display the Program .cs file in the Code and Text Editor window .

 . 7 . . Add the following using statement after the using System; statement at the top of the
file:

using Extensions;

This statement brings the namespace containing the Util class into scope . The
ConvertToBase extension method will not be visible in the Program .cs file if you do not
perform this task .

 . 8 . . Add the following statements to the DoWork method of the Program class:

int x = 591;
for (int i = 2; i <= 10; i++)
{
 Console.WriteLine("{0} in base {1} is {2}", x, i, x.ConvertToBase(i));
}

This code creates an int named x and sets it to the value 591 . (You can pick any integer
value you want .) The code then uses a loop to print out the value 591 in all number
bases between 2 and 10 . Notice that ConvertToBase appears as an extension method in
IntelliSense when you type the period (.) after x in the Console.WriteLine statement .

 . 9 . . On the Debug menu, click Start Without Debugging . Confirm that the program displays
messages showing the value 591 in the different number bases to the console, like this:

 . 10 . . Press Enter to close the program .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 12 Working with Inheritance 251

In this chapter, you have seen how to use inheritance to define a hierarchy of classes, and you
should now understand how to override inherited methods and implement virtual methods .
You have also seen how to add an extension method to an existing type .

n If you want to continue to the next chapter

Keep Visual Studio 2010 running, and turn to Chapter 13 .

n If you want to exit Visual Studio 2010 now

On the File menu, click Exit . If you see a Save dialog box, click Yes and save the project .

Chapter .12 .Quick .Reference
To Do this

Create a derived class from a base
class

Declare the new class name followed by a colon and the name of the
base class . For example:

class Derived : Base
{
 ...
}

Call a base class constructor as part
of the constructor for an inheriting
class

Supply a constructor parameter list before the body of the derived
class constructor . For example:

class Derived : Base
{
 ...
 public Derived(int x) : Base(x)
 {
 ...
 }
 ...
}

Declare a virtual method Use the virtual keyword when declaring the method . For example:

class Mammal
{
 public virtual void Breathe()
 {
 ...
 }
 ...
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

252 Part II Understanding the C# Language

Implement a method in a derived
class that overrides an inherited
 virtual method

Use the override keyword when declaring the method in the derived
class . For example:

class Whale : Mammal
{
 public override void Breathe()
 {
 ...
 }
 ...
}

Define an extension method for a
type

Add a static public method to a static class . The first parameter must
be of the type being extended, preceded by the this keyword . For
example:

static class Util
{
 public static int Negate(this int i)
 {
 return –i;
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 . . 253

Chapter 13

Creating Interfaces and Defining
Abstract Classes

After completing this chapter, you will be able to:

n Define an interface specifying the signatures and return types of methods .

n Implement an interface in a structure or class .

n Reference a class through an interface .

n Capture common implementation details in an abstract class .

n Implement sealed classes that cannot be used to derive new classes .

Inheriting from a class is a powerful mechanism, but the real power of inheritance comes
from inheriting from an interface . An interface does not contain any code or data; it just
specifies the methods and properties that a class that inherits from the interface must pro-
vide . Using an interface enables you to completely separate the names and signatures of the
methods of a class from the method’s implementation .

Abstract classes are similar in many ways to interfaces except that they can contain code and
data . However, you can specify that certain methods of an abstract class are virtual so that
a class that inherits from the abstract class must provide its own implementation of these
methods . You frequently use abstract classes with interfaces, and together they provide a key
technique for enabling you to build extensible programming frameworks, as you will discover
in this chapter .

Understanding .Interfaces
Suppose you want to define a new collection class that enables an application to store ob-
jects in a sequence that depends on the type of objects the collection contains . For example,
if the collection holds alphanumeric objects such as strings, the collection should sort the
objects according to the collating sequence of the computer, and if the collection holds nu-
meric objects such as integers, the collection should sort the objects numerically .

When you define the collection class, you do not want to restrict the types of objects that it
can hold (the objects can even be class or structure types), and consequently you don’t know
how to order these objects . The question is, how do you provide a method in the collection
class that sorts objects whose types you do not know when you write the collection class?
At first glance, this problem seems similar to the ToString problem described in Chapter 12,

http://lib.ommolketab.ir
http//lib.ommolketab.ir

254 Part II Understanding the C# Language

“Working with Inheritance,” which could be resolved by declaring a virtual method that
 subclasses of your collection class can override . However, this is not the case . There is not
usually any form of inheritance relationship between the collection class and the objects that
it holds, so a virtual method would not be of much use . If you think for a moment, the prob-
lem is that the way in which the objects in the collection should be ordered is dependent
on the type of the objects themselves, and not on the collection . The solution, therefore,
is to require that all the objects provide a method such as the CompareTo method shown
here that the collection can call, enabling the collection to compare these objects with one
another:

int CompareTo(object obj)
{
 // return 0 if this instance is equal to obj
 // return < 0 if this instance is less than obj
 // return > 0 if this instance is greater than obj
 ...
}

The collection class can make use of this method to sort the objects that it contains .

You can define an interface for collectable objects that includes the CompareTo method
and specify that the collection class can collect only classes that implement this interface . In
this way, an interface is similar to a contract . If a class implements an interface, the interface
guarantees that the class contains all the methods specified in the interface . This mechanism
ensures that you will be able to call the CompareTo method on all objects in the collection
and sort them .

Interfaces enable you to truly separate the “what” from the “how .” The interface tells you
only the name, return type, and parameters of the method . Exactly how the method is imple-
mented is not a concern of the interface . The interface describes the functionality that a class
should implement but not how this functionality is implemented .

Defining an Interface
To define an interface, you use the interface keyword instead of the class or struct keyword .
Inside the interface, you declare methods exactly as in a class or a structure except that you
never specify an access modifier (public, private, or protected), and you replace the method
body with a semicolon . Here is an example:

interface IComparable
{
 int CompareTo(object obj);
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 13 Creating Interfaces and Defining Abstract Classes 255

Tip The Microsoft .NET Framework documentation recommends that you preface the name of
your interfaces with the capital letter I . This convention is the last vestige of Hungarian notation
in C# . Incidentally, the System namespace already defines the IComparable interface as shown
above .

Implementing an Interface
To implement an interface, you declare a class or structure that inherits from the interface
and that implements all the methods specified by the interface . For example, suppose you
are defining the Mammal hierarchy described in Chapter 12 but you need to specify that
land-bound mammals provide a method named NumberOfLegs that returns as an int the
number of legs that a mammal has . (Sea-bound mammals do not implement this interface .)
You could define the ILandBound interface that contains this method as follows:

interface ILandBound
{
 int NumberOfLegs();
}

You could then implement this interface in the Horse class . You inherit from the interface and
provide an implementation of every method defined by the interface .

class Horse : ILandBound
{
 ...
 public int NumberOfLegs()
 {
 return 4;
 }
}

When you implement an interface, you must ensure that each method matches its
 corresponding interface method exactly, according to the following rules:

n The method names and return types match exactly .

n Any parameters (including ref and out keyword modifiers) match exactly .

n The method name is prefaced by the name of the interface . This is known as explicit
interface implementation and is a good habit to cultivate .

n All methods implementing an interface must be publicly accessible . However, if you are
using explicit interface implementation, the method should not have an access qualifier .

If there is any difference between the interface definition and its declared implementation,
the class will not compile .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

256 Part II Understanding the C# Language

A class can extend another class and implement an interface at the same time . In this case,
C# does not denote the base class and the interface by using specific keywords as, for exam-
ple, Java does . Instead, C# uses a positional notation . The base class is named first, followed
by a comma, followed by the interface . The following example defines Horse as a class that is
a Mammal but that additionally implements the ILandBound interface:

interface ILandBound
{
 ...
}

class Mammal
{
 ...
}

class Horse : Mammal , ILandBound
{
 ...
}

Referencing a Class Through Its Interface
In the same way that you can reference an object by using a variable defined as a class that
is higher up the hierarchy, you can reference an object by using a variable defined as an in-
terface that its class implements . Taking the preceding example, you can reference a Horse
object by using an ILandBound variable, as follows:

Horse myHorse = new Horse(...);
ILandBound iMyHorse = myHorse; // legal

This works because all horses are land-bound mammals, although the converse is not true,
and you cannot assign an ILandBound object to a Horse variable without casting it first
to verify that it does actually reference a Horse object and not some other class that also
 happens to implement the ILandBound interface .

The technique of referencing an object through an interface is useful because it enables you
to define methods that can take different types as parameters, as long as the types imple-
ment a specified interface . For example, the FindLandSpeed method shown here can take any
argument that implements the ILandBound interface:

int FindLandSpeed(ILandBound landBoundMammal)
{
 ...
}

Note that when referencing an object through an interface, you can invoke only methods
that are visible through the interface .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 13 Creating Interfaces and Defining Abstract Classes 257

Working with Multiple Interfaces
A class can have at most one base class, but it is allowed to implement an unlimited number
of interfaces . A class must still implement all the methods it inherits from all its interfaces .

If an interface, structure, or class inherits from more than one interface, you write the inter-
faces in a comma-separated list . If a class also has a base class, the interfaces are listed after
the base class . For example, suppose you define another interface named IGrazable that con-
tains the ChewGrass method for all grazing animals . You can define the Horse class like this:

class Horse : Mammal, ILandBound, IGrazable
{
 ...
}

Explicitly Implementing an Interface
The examples you have seen so far have shown classes that implicitly implement an interface .
If you revisit the ILandBound interface and the Horse class (shown next), although the Horse
class implements from the ILandBound interface, there is nothing in the implementation of
the NumberOfLegs method in the Horse class that says it is part of the ILandBound interface:

interface ILandBound
{
 int NumberOfLegs();
}

class Horse : ILandBound
{
 ...
 public int NumberOfLegs()
 {
 return 4;
 }
}

This might not be an issue in a simple situation, but suppose the Horse class implemented
multiple interfaces . There is nothing to prevent multiple interfaces specifying a method with
the same name, although they might have different semantics . For example, suppose you
wanted to implement a transportation system based on horse-drawn coaches . A lengthy
journey might be broken down into several stages, or “legs .” If you wanted to keep track of
how many legs each horse had pulled the coach for, you might define the following interface:

interface IJourney
{
 int NumberOfLegs();
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

258 Part II Understanding the C# Language

Now, if you implement this interface in the Horse class you have an interesting problem:

class Horse : ILandBound, IJourney
{
 ...
 public int NumberOfLegs()
 {
 return 4;
 }
}

This is legal code, but does the horse have four legs, or has it pulled the coach for four legs
of the journey? The answer as far as C# is concerned is both of these! By default, C# does
not distinguish which interface the method is implementing, so the same method actually
 implements both interfaces .

To solve this problem and disambiguate which method is part of which interface imple-
mentation, you can implement interfaces explicitly . To do this, you specify which interface a
method belongs to when you implement it, like this:

class Horse : ILandBound, IJourney
{
 ...
 int ILandBound.NumberOfLegs()
 {
 return 4;
 }

 int IJourney.NumberOfLegs()
 {
 return 3;
 }
}

Now you can see that the horse has four legs, and has pulled the coach for three legs of the
journey .

Apart from prefixing the name of the method with the interface name, there is one other
subtle difference in this syntax; the methods are not marked as public . You cannot specify the
protection for methods that are part of an explicit interface implementation . This leads to
another interesting phenomenon . If you create a Horse variable in code, you cannot actually
invoke either of the NumberOfLegs methods because they are not visible . As far as the Horse
class is concerned, they are both private . In fact, this makes sense . If the methods were visible
through the Horse class, which method would the following code actually invoke—the one
for the ILandBound interface or the one for the IJourney interface?

Horse horse = new Horse();
...
int legs = horse.NumberOfLegs();

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 13 Creating Interfaces and Defining Abstract Classes 259

So, how do you access these methods? The answer is that you reference the Horse object
through the appropriate interface, like this:

Horse horse = new Horse();
...
IJourney journeyHorse = horse;
int legsInJourney = journeyHorse.NumberOfLegs();
ILandBound landBoundHorse = horse;
int legsOnHorse = landBoundHorse.NumberOfLegs();

I recommend explicitly implementing interfaces when possible .

Interface Restrictions
The essential idea to remember is that an interface never contains any implementation . The
following restrictions are natural consequences of this:

n You’re not allowed to define any fields in an interface, not even static ones . A field is an
implementation detail of a class or structure .

n You’re not allowed to define any constructors in an interface . A constructor is also
 considered to be an implementation detail of a class or structure .

n You’re not allowed to define a destructor in an interface . A destructor contains
the statements used to destroy an object instance . (Destructors are described in
Chapter 14, “Using Garbage Collection and Resource Management .”)

n You cannot specify an access modifier for any method . All methods in an interface are
implicitly public .

n You cannot nest any types (such as enumerations, structures, classes, or interfaces)
 inside an interface .

n An interface is not allowed to inherit from a structure or a class, although an interface
can inherit from another interface . Structures and classes contain implementa-
tion; if an interface were allowed to inherit from either, it would be inheriting some
implementation .

Defining and Using Interfaces
In the following exercises, you will define and implement interfaces that constitute part of a
simple graphical drawing package . You will define two interfaces called IDraw and IColor, and
you will define classes that implement them . Each class will define a shape that can be drawn
on a canvas on a Windows Presentation Foundation (WPF) form . (A canvas is a WPF control
that enables you to draw lines, text, and shapes .)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

260 Part II Understanding the C# Language

The IDraw interface defines the following methods:

n SetLocation This method enables you to specify the position as X and Y coordinates
of the shape on the canvas .

n Draw This method actually draws the shape on the canvas at the location specified by
using the SetLocation method .

The IColor interface defines the following method:

n SetColor This method lets you specify the color of the shape . When the shape is
drawn on the canvas, it will appear in this color .

Define the IDraw and IColor interfaces

 . 1 . . Start Microsoft Visual Studio 2010 if it is not already running .

 . 2 . . Open the Drawing project, located in the \Microsoft Press\Visual CSharp Step By Step\
Chapter 13\Drawing folder in your Documents folder .

The Drawing project is a WPF application . It contains a WPF form called DrawingPad .
This form contains a canvas control called drawingCanvas . You will use this form and
canvas to test your code .

 . 3 . . On the Project menu, click Add New Item .

The Add New Item – Drawing dialog box appears .

 . 4 . . In the left pane of the Add New Item – Drawing dialog box, click Visual C# . If you are
using Visual Studio 2010 Professional or Visual Studio 2010 Standard, click Code . (Visual
C# 2010 Express has fewer templates and does not break them up into groups in the
same way that Visual Studio does .) In the middle pane, click the Interface template . In
the Name text box, type IDraw .cs, and then click Add .

Visual Studio creates the IDraw .cs file and adds it to your project . The IDraw .cs file
 appears in the Code and Text Editor window . It should look like this:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Drawing
{
 interface IDraw
 {
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 13 Creating Interfaces and Defining Abstract Classes 261

 . 5 . . In the IDraw .cs file, add the following using statement to the list at the top of the file:

using System.Windows.Controls;

You will reference the Canvas class in this interface . The Canvas class is located in the
System.Windows.Controls namespace .

 . 6 . . Add the methods shown here in bold to the IDraw interface:

interface IDraw
{
 void SetLocation(int xCoord, int yCoord);
 void Draw(Canvas canvas);
}

 . 7 . . On the Project menu, click Add New Item again .

 . 8 . . In the middle pane of the Add New Item – Drawing dialog box, click the Interface
 template . In the Name text box, type IColor .cs, and then click Add .

Visual Studio creates the IColor .cs file and adds it to your project . The IColor .cs file
 appears in the Code and Text Editor window .

 . 9 . . In the IColor .cs file, add the following using statement to the list at the top of the file:

using System.Windows.Media;

You will reference the Color class in this interface, which is located in the System.
Windows.Media namespace .

 . 10 . . Add the following method shown in bold to the IColor interface definition:

interface IColor
{
 void SetColor(Color color);
}

You have now defined the IDraw and IColor interfaces . The next step is to create some classes
that implement them . In the following exercise, you will create two new shape classes called
Square and Circle . These classes will implement both interfaces .

Create the Square and Circle classes, and implement the interfaces

 . 1 . . On the Project menu, click Add Class .

 . 2 . . In the Add New Item – Drawing dialog box, verify that the Class template is selected in
the middle pane, type Square .cs in the Name text box, and then click Add .

Visual Studio creates the Square .cs file and displays it in the Code and Text Editor
window .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

262 Part II Understanding the C# Language

 . 3 . . Add the following using statements to the list at the top of the Square .cs file:

using System.Windows;
using System.Windows.Media;
using System.Windows.Shapes;
using System.Windows.Controls;

 . 4 . . Modify the definition of the Square class so that it implements the IDraw and IColor
interfaces as shown here in bold:

class Square : IDraw, IColor
{
}

 . 5 . . Add the following private variables shown in bold to the Square class . These variables
will hold the position and size of the Square object on the canvas . The Rectangle class is
a WPF class located in the System.Windows.Shapes namespace . You will use this class to
draw the square:

class Square : IDraw, IColor
{
 private int sideLength;
 private int locX = 0, locY = 0;
 private Rectangle rect = null;
}

 . 6 . . Add the constructor shown in bold to the Square class . This constructor initializes the
sideLength field and specifies the length of each side of the square .

class Square : IDraw, IColor
{
 ...
 public Square(int sideLength)
 {
 this.sideLength = sideLength;
 }
}

 . 7 . . In the definition of the Square class, right-click the IDraw interface . A shortcut menu
appears . In the shortcut menu, point to Implement Interface, and then click Implement
Interface Explicitly, as shown in the following image:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 13 Creating Interfaces and Defining Abstract Classes 263

This feature causes Visual Studio to generate default implementations of the methods
in the IDraw interface . You can also add the methods to the Square class manually if
you prefer . The following example shows the code generated by Visual Studio:

void IDraw.SetLocation(int xCoord, int yCoord)
{
 throw new NotImplementedException();
}

void IDraw.Draw(Canvas canvas)
{
 throw new NotImplementedException();
}

Each of these methods currently throws a NotImplementedException exception . You are
expected to replace the body of these methods with your own code .

 . 8 . . In the SetLocation method, replace the existing code with the statements shown in
bold . This code stores the values passed in through the parameters in the locX and locY
fields in the Square object .

void IDraw.SetLocation(int xCoord, int yCoord)
{
 this.locX = xCoord;
 this.locY = yCoord;
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

264 Part II Understanding the C# Language

 . 9 . . Replace the code in the Draw method with the statements shown here in bold:

void IDraw.Draw(Canvas canvas)
{
 if (this.rect != null)
 {
 canvas.Children.Remove(this.rect);
 }
 else
 {
 this.rect = new Rectangle();
 }

 this.rect.Height = this.sideLength;
 this.rect.Width = this.sideLength;
 Canvas.SetTop(this.rect, this.locY);
 Canvas.SetLeft(this.rect, this.locX);
 canvas.Children.Add(rect);
}

This method renders the Square object by drawing a Rectangle shape on the canvas .
(A square is simply a rectangle where all four sides have the same length .) If the
Rectangle has been drawn previously (possibly at a different location and with a differ-
ent color), it is removed from the canvas . The height and width of the Rectangle are set
by using the value of the sideLength field . The position of the Rectangle on the canvas
is set by using the static SetTop and SetLeft methods of the Canvas class, and then the
Rectangle is added to the canvas . (This causes it to appear .)

 . 10 . . Add the SetColor method from the IColor interface to the Square class, as shown here:

void IColor.SetColor(Color color)
{
 if (rect != null)
 {
 SolidColorBrush brush = new SolidColorBrush(color);
 rect.Fill = brush;
 }
}

This method checks that the Square object has actually been displayed . (The rect field
will be null if it has not yet been rendered .) The code sets the Fill property of the rect
field with the specified color by using a SolidColorBrush object . (The details of the
SolidBrushClass are outside the scope of this discussion .)

 . 11 . . On the Project menu, click Add Class . In the Add New Item – Drawing dialog box, type
Circle .cs in the Name text box, and then click Add .

Visual Studio creates the Circle .cs file and displays it in the Code and Text Editor window .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 13 Creating Interfaces and Defining Abstract Classes 265

 . 12 . . Add the following using statements to the list at the top of the Circle .cs file:

using System.Windows;
using System.Windows.Media;
using System.Windows.Shapes;
using System.Windows.Controls;

 . 13 . . Modify the definition of the Circle class so that it implements the IDraw and IColor in-
terfaces as shown here in bold:

class Circle : IDraw, IColor
{
}

 . 14 . . Add the following private variables shown in bold to the Circle class . These variables will
hold the position and size of the Circle object on the canvas . The Ellipse class is another
WPF class that you will use to draw the circle .

class Circle : IDraw, IColor
{
 private int radius;
 private int locX = 0, locY = 0;
 private Ellipse circle = null;
}

 . 15 . . Add the constructor shown in bold to the Circle class . This constructor initializes the
radius field .

class Circle : IDraw, IColor
{
 ...
 public Circle(int radius)
 {
 this.radius = radius;
 }
}

 . 16 . . Add the SetLocation method shown below to the Circle class . This method implements
part of the IDraw interface, and the code is exactly the same as that in the Square class .

void IDraw.SetLocation(int xCoord, int yCoord)
{
 this.locX = xCoord;
 this.locY = yCoord;
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

266 Part II Understanding the C# Language

 . 17 . . Add the Draw method shown below to the Circle class . This method is also part of the
IDraw interface .

void IDraw.Draw(Canvas canvas)
{
 if (this.circle != null)
 {
 canvas.Children.Remove(this.circle);
 }
 else
 {
 this.circle = new Ellipse();
 }

 this.circle.Height = this.radius;
 this.circle.Width = this.radius;
 Canvas.SetTop(this.circle, this.locY);
 Canvas.SetLeft(this.circle, this.locX);
 canvas.Children.Add(circle);
}

This method is similar to the Draw method in the Square class, except that it renders
the Circle object by drawing an Ellipse shape on the canvas . (A circle is an ellipse where
the width and height are the same .)

 . 18 . . Add the SetColor method to the Circle class . This method is part of the IColor interface .
As before, this method is similar to that of the Square class .

void IColor.SetColor(Color color)
{
 if (circle != null)
 {
 SolidColorBrush brush = new SolidColorBrush(color);
 circle.Fill = brush;
 }
}

You have completed the Square and Circle classes . You can now use the WPF form to test
them .

Test the Square and Circle classes

 . 1 . . Display the DrawingPad .xaml file in the Design View window .

 . 2 . . Click the shaded area in the middle of the WPF form .

The shaded area of the form is the Canvas object, and this action sets the focus to this
object .

 . 3 . . In Properties window, click the Events button . (This button has an icon that looks like a
bolt of lightning .)

 . 4 . . In the list of events, locate the MouseLeftButtonDown event and then double-click it .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 13 Creating Interfaces and Defining Abstract Classes 267

Visual Studio creates a method called drawingCanvas_MouseLeftButtonDown for the
DrawingPadWindow class that implements the WPF form and displays it in the Code
and Text Editor window . This is an event handler that runs when the user clicks the left
mouse button over the canvas . (You will learn more about event handlers in Chapter 17,
“Interrupting Program Flow and Handling Events .”)

 . 5 . . Add the code shown in bold to the drawingCanvas_MouseLeftButtonDown method:

private void drawingCanvas_MouseLeftButtonDown(object sender, MouseButtonEventArgs e)
{
 Point mouseLocation = e.GetPosition(this.drawingCanvas);
 Square mySquare = new Square(100);

 if (mySquare is IDraw)
 {
 IDraw drawSquare = mySquare;
 drawSquare.SetLocation((int)mouseLocation.X, (int)mouseLocation.Y);
 drawSquare.Draw(drawingCanvas);
 }
}

The MouseButtonEventArgs parameter, e, to this method provides useful information
about the position of the mouse . In particular, the GetPosition method returns a Point
structure that contains the X and Y coordinates of the mouse . The code that you have
added creates a new Square object . It then checks to verify that this object implements
the IDraw interface (which is good practice) and creates a reference to the object by
using the IDraw interface . Remember that when you explicitly implement an interface,
the methods defined by the interface are available only by creating a reference to that
interface . (The SetLocation and Draw methods are private to the Square class and are
available only through the IDraw interface .) The code then sets the location of the
Square to the position of the mouse . Note that the X and Y coordinates in the Point
structure are actually double values, so this code casts them to ints . The code then calls
the Draw method to display the Square object .

 . 6 . . Add the following code shown in bold to the end of the drawingCanvas_
MouseLeftButtonDown method:

private void drawingCanvas_MouseLeftButtonDown(object sender, MouseButtonEventArgs e)
{
 ...

 if (mySquare is IColor)
 {
 IColor colorSquare = mySquare;
 colorSquare.SetColor(Colors.BlueViolet);
 }
}

This code tests the Square class to verify that it implements the IColor interface; if it
does, it creates a reference to the Square class through this interface and calls the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

268 Part II Understanding the C# Language

SetColor method to set the color of the Square object to Colors .BlueViolet . (The Colors
enumeration is provided as part of the .NET Framework .)

Important You must call Draw before you call SetColor . This is because the SetColor
method sets the color of the Square only if it has already been rendered . If you invoke
SetColor before Draw, the color will not be set and the Square object will not appear .

 . 7 . . Return to the DrawingPad .xaml file in the Design View window, and click the Canvas
object in the middle of the form . In the list of events in the Properties window, double-
click the MouseRightButtonDown event .

Visual Studio creates another method called drawingCanvas_MouseRightButtonDown .
This method runs when the user clicks the right mouse button on the canvas .

 . 8 . . Add the code shown next in bold to the drawingCanvas_MouseRightButtonDown
 method . The logic in this code is similar to the method that handles the left mouse
 button, except that it displays a Circle object in HotPink .

private void drawingCanvas_MouseRightButtonDown(object sender, MouseButtonEventArgs e)
{
 Point mouseLocation = e.GetPosition(this.drawingCanvas);
 Circle myCircle = new Circle(100);

 if (myCircle is IDraw)
 {
 IDraw drawCircle = myCircle;
 drawCircle.SetLocation((int)mouseLocation.X, (int)mouseLocation.Y);
 drawCircle.Draw(drawingCanvas);
 }

 if (myCircle is IColor)
 {
 IColor colorCircle = myCircle;
 colorCircle.SetColor(Colors.HotPink);
 }
}

 . 9 . . On the Debug menu, click Start Without Debugging to build and run the application .

 . 10 . . When the Drawing Pad window appears, left-click anywhere in the window . A violet
square should appear .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 13 Creating Interfaces and Defining Abstract Classes 269

 . 11 . . Right-click anywhere in the window . A pink circle should appear . You can click the left
and right mouse buttons any number of times, and each click will draw a square or
circle at the mouse position, as shown in the following image:

 . 12 . . Close the window and return to Visual Studio .

Abstract .Classes
You can implement the ILandBound and IGrazable interfaces discussed in the previous
 section in many different classes, depending on how many different types of mammals you
want to model in your C# application . In situations such as this, it’s quite common for parts
of the derived classes to share common implementations . For example, the duplication in the
following two classes is obvious:

class Horse : Mammal, ILandBound, IGrazable
{
 ...
 void IGrazable.ChewGrass()
 {
 Console.WriteLine("Chewing grass");
 // code for chewing grass
 };
}

class Sheep : Mammal, ILandBound, IGrazable
{
 ...
 void IGrazable.ChewGrass()
 {
 Console.WriteLine("Chewing grass");
 // same code as horse for chewing grass
 };
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

270 Part II Understanding the C# Language

Duplication in code is a warning sign . If possible, you should refactor the code to avoid
this duplication and reduce any maintenance costs . One way to achieve this refactoring is
to put the common implementation into a new class created specifically for this purpose . In
 effect, you can insert a new class into the class hierarchy . For example:

class GrazingMammal : Mammal, IGrazable
{
 ...
 void IGrazable.ChewGrass()
 {
 Console.WriteLine("Chewing grass");
 // common code for chewing grass
 }
}

class Horse : GrazingMammal, ILandBound
{
 ...
}

class Sheep : GrazingMammal, ILandBound
{
 ...
}

This is a good solution, but there is one thing that is still not quite right: you can actually
create instances of the GrazingMammal class (and the Mammal class for that matter) . This
doesn’t really make sense . The GrazingMammal class exists to provide a common default
implementation . Its sole purpose is to be inherited from . The GrazingMammal class is an
 abstraction of common functionality rather than an entity in its own right .

To declare that creating instances of a class is not allowed, you must explicitly declare that
the class is abstract, by using the abstract keyword . For example:

abstract class GrazingMammal : Mammal, IGrazable
{
 ...
}

If you try to instantiate a GrazingMammal object, the code will not compile:

GrazingMammal myGrazingMammal = new GrazingMammal(...); // illegal

Abstract Methods
An abstract class can contain abstract methods . An abstract method is similar in principle to a
virtual method (which you met in Chapter 12) except that it does not contain a method body .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 13 Creating Interfaces and Defining Abstract Classes 271

A derived class must override this method . The following example defines the DigestGrass
method in the GrazingMammal class as an abstract method; grazing mammals might use
the same code for chewing grass, but they must provide their own implementation of the
DigestGrass method . An abstract method is useful if it does not make sense to provide a
default implementation in the abstract class and you want to ensure that an inheriting class
provides its own implementation of that method .

abstract class GrazingMammal : Mammal, IGrazable
{
 abstract void DigestGrass();
 ...
}

Sealed .Classes
Using inheritance is not always easy and requires forethought . If you create an interface or an
abstract class, you are knowingly writing something that will be inherited from in the future .
The trouble is that predicting the future is a difficult business . With practice and experience,
you can develop the skills to craft a flexible, easy-to-use hierarchy of interfaces, abstract
classes, and classes, but it takes effort and you also need a solid understanding of the prob-
lem you are modeling . To put it another way, unless you consciously design a class with the
intention of using it as a base class, it’s extremely unlikely that it will function very well as a
base class . C# allows you to use the sealed keyword to prevent a class from being used as
a base class if you decide that it should not be . For example:

sealed class Horse : GrazingMammal, ILandBound
{
 ...
}

If any class attempts to use Horse as a base class, a compile-time error will be generated .
Note that a sealed class cannot declare any virtual methods and that an abstract class cannot
be sealed .

Note A structure is implicitly sealed . You can never derive from a structure .

Sealed Methods
You can also use the sealed keyword to declare that an individual method in an unsealed
class is sealed . This means that a derived class cannot then override the sealed method . You

http://lib.ommolketab.ir
http//lib.ommolketab.ir

272 Part II Understanding the C# Language

can seal only an override method, and you declare the method as sealed override, which
means that you cannot seal a method that is directly implementing a method in an interface .
(You cannot override a method inherited directly from an interface, only from a class .) You
can think of the interface, virtual, override, and sealed keywords as follows:

n An interface introduces the name of a method .

n A virtual method is the first implementation of a method .

n An override method is another implementation of a method .

n A sealed method is the last implementation of a method .

Implementing and Using an Abstract Class
The following exercises use an abstract class to rationalize some of the code that you
 developed in the previous exercise . The Square and Circle classes contain a high propor-
tion of duplicate code . It makes sense to factor this code out into an abstract class called
DrawingShape because this will ease maintenance of the Square and Circle classes in the
future .

Create the DrawingShape abstract class

 . 1 . . Return to the Drawing project in Visual Studio .

Note A finished working copy of the previous exercise is available in the Drawing project
located in the \Microsoft Press\Visual CSharp Step By Step\Chapter 13\Drawing Using
Interfaces - Complete folder in your Documents folder .

 . 2 . . On the Project menu, click Add Class .

The Add New Item – Drawing dialog box appears .

 . 3 . . In the Name text box, type DrawingShape.cs, and then click Add .

Visual Studio creates the file and displays it in the Code and Text Editor window .

 . 4 . . In the DrawingShape .cs file, add the following using statements to the list at the top:

using System.Windows;
using System.Windows.Media;
using System.Windows.Shapes;
using System.Windows.Controls;

 . 5 . . The purpose of this class is to contain the code common to the Circle and Square class-
es . A program should not be able to instantiate a DrawingShape object directly . Modify
the definition of the DrawingShape class, and declare it as abstract, as shown here in
bold:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 13 Creating Interfaces and Defining Abstract Classes 273

abstract class DrawingShape
{
}

 . 6 . . Add the private variables shown in bold to the DrawingShape class:

abstract class DrawingShape
{
 protected int size;
 protected int locX = 0, locY = 0;
 protected Shape shape = null;
}

The Square and Circle classes both use the locX and locY fields to specify the location of
the object on the canvas, so you can move these fields to the abstract class . Similarly,
the Square and Circle classes both used a field to indicate the size of the object when it
was rendered; although it has a different name in each class (sideLength and radius), se-
mantically the field performed the same task in both classes . The name “size” is a good
abstraction of the purpose of this field .

Internally, the Square class uses a Rectangle object to render itself on the canvas, and
the Circle class uses an Ellipse object . Both of these classes are part of a hierarchy based
on the abstract Shape class in the .NET Framework . The DrawingShape class uses a
Shape field to represent both of these types .

 . 7 . . Add the following constructor to the DrawingShape class:

public DrawingShape(int size)
{
 this.size = size;
}

This code initializes the size field in the DrawingShape object .

 . 8 . . Add the SetLocation and SetColor methods to the DrawingShape class, as shown in
bold . These methods provide implementations that are inherited by all classes that
derive from the DrawingShape class . Notice that they are not marked as virtual, and
a derived class is not expected to override them . Also, the DrawingShape class is not
declared as implementing the IDraw or IColor interfaces (interface implementation is
a feature of the Square and Circle classes and not this abstract class), so these methods
are simply declared as public .

abstract class DrawingShape
{
 ...
 public void SetLocation(int xCoord, int yCoord)
 {
 this.locX = xCoord;
 this.locY = yCoord;
 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

274 Part II Understanding the C# Language

 public void SetColor(Color color)
 {
 if (shape != null)
 {
 SolidColorBrush brush = new SolidColorBrush(color);
 shape.Fill = brush;
 }
 }
}

 . 9 . . Add the Draw method to the DrawingShape class . Unlike the previous methods, this
method is declared as virtual, and any derived classes are expected to override it to ex-
tend the functionality . The code in this method verifies that the shape field is not null,
and then draws it on the canvas . The classes that inherit this method must provide their
own code to instantiate the shape object . (Remember that the Square class creates a
Rectangle object and the Circle class creates an Ellipse object .)

abstract class DrawingShape
{
 ...
 public virtual void Draw(Canvas canvas)
 {
 if (this.shape == null)
 {
 throw new ApplicationException(“Shape is null”);
 }

 this.shape.Height = this.size;
 this.shape.Width = this.size;
 Canvas.SetTop(this.shape, this.locY);
 Canvas.SetLeft(this.shape, this.locX);
 canvas.Children.Add(shape);
 }
}

You have now completed the DrawingShape abstract class . The next step is to change the
Square and Circle classes so that they inherit from this class, and remove the duplicated code
from the Square and Circle classes .

Modify the Square and Circle classes to inherit from the DrawingShape class

 . 1 . . Display the code for the Square class in the Code and Text Editor window . Modify the
definition of the Square class so that it inherits from the DrawingShape class as well as
implementing the IDraw and IColor interfaces .

class Square : DrawingShape, IDraw, IColor
{
 ...
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 13 Creating Interfaces and Defining Abstract Classes 275

Notice that you must specify the class that the Square class inherits from before any
interfaces .

 . 2 . . In the Square class, remove the definitions of the sideLength, rect, locX, and locY fields .

 . 3 . . Replace the existing constructor with the following code, which calls the constructor in
the base class . Notice that the body of this constructor is empty because the base class
constructor performs all the initialization required .

class Square : DrawingShape, IDraw, IColor
{
 public Square(int sideLength) : base(sideLength)
 {
 }
 ...
}

 . 4 . . Remove the SetLocation and SetColor methods from the Square class . The
DrawingShape class now provides the implementation of these methods .

 . 5 . . Modify the definition of the Draw method . Declare it as public override, and remove the
reference to the IDraw interface . Again, the DrawingShape class already provides the
base functionality for this method, but you will extend it with specific code required by
the Square class .

public override void Draw(Canvas canvas)
{
 ...
}

 . 6 . . Replace the body of the Draw method with the code shown in bold . These statements
instantiate the shape field inherited from the DrawingShape class as a new instance of
the Rectangle class if it has not already been instantiated, and then they call the Draw
method in the DrawingShape class .

public override void Draw(Canvas canvas)
{
 if (this.shape != null)
 {
 canvas.Children.Remove(this.shape);
 }
 else
 {
 this.shape = new Rectangle();
 }

 base.Draw(canvas);
}

 . 7 . . Repeat steps 2 through 6 for the Circle class, except that the constructor should be
called Circle with a parameter called radius, and in the Draw method you should

http://lib.ommolketab.ir
http//lib.ommolketab.ir

276 Part II Understanding the C# Language

 instantiate the shape field as a new Ellipse object . The complete code for the Circle class
should look like this:

class Circle : DrawingShape, IDraw, IColor
{
 public Circle(int radius) : base(radius)
 {
 }

 public override void Draw(Canvas canvas)
 {
 if (this.shape != null)
 {
 canvas.Children.Remove(this.shape);
 }
 else
 {
 this.shape = new Ellipse();
 }

 base.Draw(canvas);
 }
}

 . 8 . . On the Debug menu, click Start Without Debugging . When the Drawing Pad window
appears, verify that Square objects appear when you left-click in the window and Circle
objects appear when you right-click in the window .

 . 9 . . Close the Drawing Pad window, and return to Visual Studio .

In this chapter, you have seen how to define and implement interfaces and abstract classes .
The following table summarizes the various valid (yes), invalid (no), and mandatory (required)
keyword combinations when defining methods for interfaces and classes .

Keyword Interface Abstract
class

Class Sealed class Structure

abstract no yes no no no

new yes1 yes yes yes no2

override no yes yes yes no3

private no yes yes yes yes

protected no yes yes yes no4

public no yes yes yes yes

sealed no yes yes required no

virtual no yes yes no no

1 An interface can extend another interface and introduce a new method with the same signature .

2 A structure implicitly derives from System.Object, which contains methods that the structure can hide .

3 A structure implicitly derives from System.Object, which contains no virtual methods .

4 A structure is implicitly sealed and cannot be derived from .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 13 Creating Interfaces and Defining Abstract Classes 277

n If you want to continue to the next chapter

Keep Visual Studio 2010 running, and turn to Chapter 14 .

n If you want to exit Visual Studio 2010 now

On the File menu, click Exit . If you see a Save dialog box, click Yes and save the project .

Chapter .13 .Quick .Reference
To Do this

Declare an interface Use the interface keyword . For example:

interface IDemo
{
 string Name();
 string Description();
}

Implement an interface Declare a class using the same syntax as class inheritance, and then im-
plement all the member functions of the interface . For example:

class Test : IDemo
{
 public string IDemo.Name()
 {
 ...
 }

 public string IDemo.Description()
 {
 ...
 }
}

Create an abstract class that can
be used only as a base class,
 containing abstract methods

Declare the class using the abstract keyword . For each abstract method,
declare the method with the abstract keyword and without a method
body . For example:

abstract class GrazingMammal
{
 abstract void DigestGrass();
 ...
}

Create a sealed class that cannot
be used as a base class

Declare the class using the sealed keyword . For example:

sealed class Horse

{
 ...
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 . . 279

Chapter 14

Using Garbage Collection and
Resource Management

After completing this chapter, you will be able to:

n Manage system resources by using garbage collection .

n Write code that runs when an object is finalized by using a destructor .

n Release a resource at a known point in time in an exception-safe manner by writing a
try/finally statement .

n Release a resource at a known point in time in an exception-safe manner by writing a
using statement .

You have seen in earlier chapters how to create variables and objects, and you should
 understand how memory is allocated when you create variables and objects . (In case you
don’t remember, value types are created on the stack, and reference types are allocated
memory from the heap .) Computers do not have infinite amounts of memory, so memory
must be reclaimed when a variable or an object no longer needs it . Value types are de-
stroyed and their memory reclaimed when they go out of scope . That’s the easy bit . How
about reference types? You create an object by using the new keyword, but how and when is
an object destroyed? That’s what this chapter is all about .

The .Life .and .Times .of .an .Object
First, let’s recap what happens when you create an object .

You create an object by using the new operator . The following example creates a new
 instance of the Square class that you met in Chapter 13, “Creating Interfaces and Defining
Abstract Classes”:

Square mySquare = new Square(); // Square is a reference type

From your point of view, the new operation is atomic, but underneath, object creation is
 really a two-phase process:

 . 1 . . The new operation allocates a chunk of raw memory from the heap . You have no
 control over this phase of an object’s creation .

 . 2 . . The new operation converts the chunk of raw memory to an object; it has to initialize
the object . You can control this phase by using a constructor .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

280 Part II Understanding the C# Language

Note C++ programmers should note that in C#, you cannot overload new to control allocation .

After you have created an object, you can access its members by using the dot operator (.) .
For example, the Square class includes a method named Draw that you can run:

mySquare.Draw();

Note This code is based on the version of the Square class that inherits from the DrawingShape
abstract class and that does not implement the IDraw interface explicitly . For more information,
please refer back to Chapter 13 .

You can make other reference variables refer to the same object:

Square referenceToMySquare = mySquare;

How many references can you create to an object? As many as you want! This has an
 impact on the lifetime of an object . The runtime has to keep track of all these references .
If the variable mySquare disappears (by going out of scope), other variables (such as
 referenceToMySquare) might still exist . The lifetime of an object cannot be tied to a particular
reference variable . An object can be destroyed and its memory reclaimed only when all the
references to it have disappeared .

Like object creation, object destruction is a two-phase process . The two phases of
 destruction exactly mirror the two phases of creation:

 . 1 . . The runtime has to perform some tidying up . You can control this by writing a
destructor .

 . 2 . . The runtime has to return the memory previously belonging to the object back to the
heap; the memory that the object lived in has to be deallocated . You have no control
over this phase .

The process of destroying an object and returning memory back to the heap is known as
garbage collection .

Note C++ programmers should note that C# does not have a delete operator . The runtime
 controls when an object is destroyed .

Writing Destructors
You can use a destructor to perform any tidying up required when an object is garbage
 collected . A destructor is a special method, a little like a constructor, except that the runtime

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 14 Using Garbage Collection and Resource Management 281

calls it after the last reference to an object has disappeared . The syntax for writing a destruc-
tor is a tilde (~) followed by the name of the class . For example, here’s a simple class that
counts the number of existing instances by incrementing a static variable in the constructor
and decrementing the same static variable in the destructor:

class Tally
{
 public Tally()
 {
 this.instanceCount++;
 }

 ~Tally()
 {
 this.instanceCount--;
 }

 public static int InstanceCount()
 {
 return this.instanceCount;
 }
 ...
 private static int instanceCount = 0;
}

There are some very important restrictions that apply to destructors:

n Destructors apply only to reference types . You cannot declare a destructor in a value
type, such as a struct .

struct Tally
{
 ~Tally() { ... } // compile-time error
}

n You cannot specify an access modifier (such as public) for a destructor . You never call
the destructor in your own code—part of the runtime called the garbage collector does
this for you .

public ~Tally() { ... } // compile-time error

n A destructor cannot take any parameters . Again, this is because you never call the
 destructor yourself .

~Tally(int parameter) { ... } // compile-time error

Internally, the C# compiler automatically translates a destructor into an override of the
Object.Finalize method . The compiler converts the following destructor:

class Tally
{
 ~Tally() { // your code goes here }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

282 Part II Understanding the C# Language

into this:

class Tally
{
 protected override void Finalize()
 {
 try { // your code goes here }
 finally { base.Finalize(); }
 }
}

The compiler-generated Finalize method contains the destructor body inside a try block, fol-
lowed by a finally block that calls the Finalize method in the base class . (The try and finally
keywords are described in Chapter 6, “Managing Errors and Exceptions .”) This ensures that a
destructor always calls its base class destructor, even if an exception occurs during your de-
structor code .

It’s important to understand that only the compiler can make this translation . You can’t write
your own method to override Finalize, and you can’t call Finalize yourself .

Why Use the Garbage Collector?
You should now understand that you can never destroy an object yourself by using C# code .
There just isn’t any syntax to do it . The runtime does it for you, and there are good reasons
why the designers of C# decided to prevent you from doing it . If it were your responsibility to
destroy objects, sooner or later one of the following situations would arise:

n You’d forget to destroy the object . This would mean that the object’s destructor (if it
had one) would not be run, tidying up would not occur, and memory would not be
deallocated back to the heap . You could quite easily run out of memory .

n You’d try to destroy an active object . Remember, objects are accessed by reference .
If a class held a reference to a destroyed object, it would be a dangling reference . The
dangling reference would end up referring either to unused memory or possibly to a
completely different object in the same piece of memory . Either way, the outcome of
using a dangling reference would be undefined at best or a security risk at worst . All
bets would be off .

n You’d try and destroy the same object more than once . This might or might not be
 disastrous, depending on the code in the destructor .

These problems are unacceptable in a language like C#, which places robustness and security
high on its list of design goals . Instead, the garbage collector is responsible for destroying
objects for you . The garbage collector makes the following guarantees:

n Every object will be destroyed, and its destructors will be run . When a program ends,
all outstanding objects will be destroyed .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 14 Using Garbage Collection and Resource Management 283

n Every object will be destroyed exactly once .

n Every object will be destroyed only when it becomes unreachable—that is, when there
are no references to the object in the process running your application .

These guarantees are tremendously useful and free you, the programmer, from tedious
housekeeping chores that are easy to get wrong . They allow you to concentrate on the logic
of the program itself and be more productive .

When does garbage collection occur? This might seem like a strange question . After all, sure-
ly garbage collection occurs when an object is no longer needed . Well, it does, but not nec-
essarily immediately . Garbage collection can be an expensive process, so the runtime collects
garbage only when it needs to (when it thinks available memory is starting to run low), and
then it collects as much as it can . Performing a few large sweeps of memory is more efficient
than performing lots of little dustings!

Note You can invoke the garbage collector in a program by calling the static method Collect
of the GC class located in the System namespace However, except in a few cases, this is not rec-
ommended . The System.GC.Collect method starts the garbage collector, but the process runs
asynchronously; the System.GC.Collect method does not wait for garbage collection to be com-
plete before it returns, so you still don’t know whether your objects have been destroyed . Let the
 runtime decide when it is best to collect garbage!

One feature of the garbage collector is that you don’t know, and should not rely upon,
the order in which objects will be destroyed . The final point to understand is arguably the
most important: destructors do not run until objects are garbage collected . If you write a
destructor, you know it will be executed, but you just don’t know when . Consequently, you
should never write code that depends on destructors running in a particular sequence or at a
 specific point in your application .

How Does the Garbage Collector Work?
The garbage collector runs in its own thread and can execute only at certain times—typically,
when your application reaches the end of a method . While it runs, other threads running in
your application will temporarily halt . This is because the garbage collector might need to
move objects around and update object references; it cannot do this while objects are in use .

Note A thread is a separate path of execution in an application . Windows uses threads to
 enable an application to perform multiple operations concurrently .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

284 Part II Understanding the C# Language

The steps that the garbage collector takes are as follows:

 . 1 . . It builds a map of all reachable objects . It does this by repeatedly following reference
fields inside objects . The garbage collector builds this map very carefully and makes
sure that circular references do not cause an infinite recursion . Any object not in this
map is deemed to be unreachable .

 . 2 . . It checks whether any of the unreachable objects has a destructor that needs to be run
(a process called finalization) . Any unreachable object that requires finalization is placed
in a special queue called the freachable queue (pronounced “F-reachable”) .

 . 3 . . It deallocates the remaining unreachable objects (those that don’t require finalization)
by moving the reachable objects down the heap, thus defragmenting the heap and
freeing memory at the top of the heap . When the garbage collector moves a reachable
object, it also updates any references to the object .

 . 4 . . At this point, it allows other threads to resume .

 . 5 . . It finalizes the unreachable objects that require finalization (now in the freachable
queue) by its own thread .

Recommendations
Writing classes that contain destructors adds complexity to your code and to the garbage
collection process and makes your program run more slowly . If your program does not con-
tain any destructors, the garbage collector does not need to place unreachable objects in
the freachable queue and finalize them . Clearly, not doing something is faster than doing it .
Therefore, try to avoid using destructors except when you really need them . For example,
consider a using statement instead . (See the section “The using Statement” later in this
chapter .)

You need to be very careful when you write a destructor . In particular, you need to be aware
that, if your destructor calls other objects, those other objects might have already had their
destructor called by the garbage collector . Remember that the order of finalization is not
guaranteed . Therefore, ensure that destructors do not depend on one another or overlap
with one another . (Don’t have two destructors that try to release the same resource, for
example .)

Resource .Management
Sometimes it’s inadvisable to release a resource in a destructor; some resources are just too
valuable to lie around waiting for an arbitrary length of time until the garbage collector ac-
tually releases them . Scarce resources need to be released, and they need to be released as
soon as possible . In these situations, your only option is to release the resource yourself . You

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 14 Using Garbage Collection and Resource Management 285

can achieve this by creating a disposal method . A disposal method is a method that explicitly
disposes of a resource . If a class has a disposal method, you can call it and control when the
resource is released .

Note The term disposal method refers to the purpose of the method rather than its name . A
disposal method can be named using any valid C# identifier .

Disposal Methods
An example of a class that implements a disposal method is the TextReader class from the
System.IO namespace . This class provides a mechanism to read characters from a sequential
stream of input . The TextReader class contains a virtual method named Close, which closes
the stream . The StreamReader class (which reads characters from a stream, such as an open
file) and the StringReader class (which reads characters from a string) both derive from
TextReader, and both override the Close method . Here’s an example that reads lines of text
from a file by using the StreamReader class and then displays them on the screen:

TextReader reader = new StreamReader(filename);
string line;
while ((line = reader.ReadLine()) != null)
{
 Console.WriteLine(line);
}
reader.Close();

The ReadLine method reads the next line of text from the stream into a string . The ReadLine
method returns null if there is nothing left in the stream . It’s important to call Close when you
have finished with reader to release the file handle and associated resources . However, there
is a problem with this example: it’s not exception-safe . If the call to ReadLine or WriteLine
throws an exception, the call to Close will not happen; it will be bypassed . If this happens
 often enough, you will run out of file handles and be unable to open any more files .

Exception-Safe Disposal
One way to ensure that a disposal method (such as Close) is always called, regardless of
whether there is an exception, is to call the disposal method inside a finally block . Here’s the
preceding example coded using this technique:

TextReader reader = new StreamReader(filename);
try
{
 string line;
 while ((line = reader.ReadLine()) != null)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

286 Part II Understanding the C# Language

 {
 Console.WriteLine(line);
 }
}
finally
{
 reader.Close();
}

Using a finally block like this works, but it has several drawbacks that make it a less than ideal
solution:

n It quickly gets unwieldy if you have to dispose of more than one resource . (You end up
with nested try and finally blocks .)

n In some cases, you might have to modify the code . (For example, you might need to
reorder the declaration of the resource reference, remember to initialize the reference
to null, and remember to check that the reference isn’t null in the finally block .)

n It fails to create an abstraction of the solution . This means that the solution is hard to
understand and you must repeat the code everywhere you need this functionality .

n The reference to the resource remains in scope after the finally block . This means that
you can accidentally try to use the resource after it has been released .

The using statement is designed to solve all these problems .

The using Statement
The using statement provides a clean mechanism for controlling the lifetimes of resources .
You can create an object, and this object will be destroyed when the using statement block
finishes .

Important Do not confuse the using statement shown in this section with the using directive
that brings a namespace into scope . It is unfortunate that the same keyword has two different
meanings .

The syntax for a using statement is as follows:

using (type variable = initialization)
{
 StatementBlock
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 14 Using Garbage Collection and Resource Management 287

Here is the best way to ensure that your code always calls Close on a TextReader:

using (TextReader reader = new StreamReader(filename))
{
 string line;
 while ((line = reader.ReadLine()) != null)
 {
 Console.WriteLine(line);
 }
}

This using statement is precisely equivalent to the following transformation:

{
 TextReader reader = new StreamReader(filename);
 try
 {
 string line;
 while ((line = reader.ReadLine()) != null)
 {
 Console.WriteLine(line);
 }
 }
 finally
 {
 if (reader != null)
 {
 ((IDisposable)reader).Dispose();
 }
 }
}

The variable you declare in a using statement must be of a type that implements the
IDisposable interface .

Note The using statement introduces its own block for scoping purposes . This arrangement means
that the variable you declare in a using statement automatically goes out of scope at the end of the
embedded statement and you cannot accidentally attempt to access a disposed resource .

The IDisposable interface lives in the System namespace and contains just one method,
named Dispose:

namespace System
{
 interface IDisposable
 {
 void Dispose();
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

288 Part II Understanding the C# Language

It just so happens that the StreamReader class implements the IDisposable interface, and its
Dispose method calls Close to close the stream . You can employ a using statement as a clean,
exception-safe, and robust way to ensure that a resource is always released . This approach
solves all of the problems that existed in the manual try/finally solution . You now have a
 solution that

n Scales well if you need to dispose of multiple resources .

n Doesn’t distort the logic of the program code .

n Abstracts away the problem and avoids repetition .

n Is robust . You can’t use the variable declared inside the using statement (in this case,
reader) after the using statement has ended because it’s not in scope anymore—you’ll
get a compile-time error .

Calling the Dispose Method from a Destructor
When writing a class, should you write a destructor or implement the IDisposable interface? A
call to a destructor will happen, but you just don’t know when . On the other hand, you know
exactly when a call to the Dispose method happens, but you just can’t be sure that it will ac-
tually happen, because it relies on the programmer remembering to write a using statement .
However, it is possible to ensure that the Dispose method always runs by calling it from the
destructor . This acts as a useful backup . You might forget to call the Dispose method, but at
least you can be sure that it will be called, even if it’s only when the program shuts down .
Here’s an example of how to do this:

class Example : IDisposable
{
 private Resource scarce; // scarce resource to manage and dispose of
 private bool disposed = false; // flag to indicate whether the resource
 // has already been disposed of
 ...
 ~Example()
 {
 Dispose();
 }

 public virtual void Dispose()
 {
 if (!this.disposed)
 {
 try {
 // release scarce resource here
 }
 finally {
 this.disposed = true;
 GC.SuppressFinalize(this);
 }
 }
 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 14 Using Garbage Collection and Resource Management 289

 public void SomeBehavior() // example method
 {
 checkIfDisposed();
 ...
 }
 ...
 private void checkIfDisposed()
 {
 if (this.disposed)
 {
 throw new ObjectDisposedException("Example: object has been disposed of");
 }
 }
}

Notice the following features of the Example class:

n The class implements the IDisposable interface .

n The destructor calls Dispose .

n The Dispose method is public and can be called at any time .

n The Dispose method can safely be called multiple times . The variable disposed indicates
whether the method has already been run . The scarce resource is released only the first
time the method runs .

n The Dispose method calls the static GC.SuppressFinalize method . This method stops the
garbage collector from calling the destructor on this object, because the object has
now been finalized .

n All the regular methods of the class (such as SomeBehavior) check to see whether the
object has already been disposed of . If it has, they throw an exception .

Implementing .Exception-Safe .Disposal
In the following exercise, you will rewrite a small piece of code to make the code exception
safe . The code opens a text file, reads its contents one line at a time, writes these lines to a
text box on a form on the screen, and then closes the text file . However, if an exception arises
as the file is read or as the lines are written to the text box, the call to close the text file will
be bypassed . You will rewrite the code to use a using statement instead, ensuring that the
code is exception safe .

Write a using statement

 . 1 . . Start Microsoft Visual Studio 2010 if it is not already running .

 . 2 . . Open the UsingStatement project, located in the \Microsoft Press\Visual CSharp Step By
Step\Chapter 14\UsingStatement folder in your Documents folder .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

290 Part II Understanding the C# Language

 . 3 . . On the Debug menu, click Start Without Debugging .

A Windows Presentation Foundation (WPF) form appears .

 . 4 . . On the form, click Open File .

 . 5 . . In the Open dialog box, move to the \Microsoft Press\Visual CSharp Step By Step\
Chapter 14\UsingStatement\UsingStatement folder in your Documents folder, and
 select the MainWindow .xaml .cs source file .

This is the source file for the application itself .

 . 6 . . Click Open .

The contents of the file are displayed in the form, as shown here:

 . 7 . . Close the form to return to Visual Studio 2010 .

 . 8 . . Open the MainWindow .xaml .cs file in the Code and Text Editor window, and then locate
the openFileDialogFileOk method .

The method looks like this:

private void openFileDialogFileOk(object sender,
System.ComponentModel.CancelEventArgs e)
{
 string fullPathname = openFileDialog.FileName;
 FileInfo src = new FileInfo(fullPathname);
 fileName.Text = src.Name;
 source.Clear();

 TextReader reader = new StreamReader(fullPathname);
 string line;
 while ((line = reader.ReadLine()) != null)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 14 Using Garbage Collection and Resource Management 291

 {
 source.Text += line + "\n";
 }
 reader.Close();
}

The variables fileName, openFileDialog, and source are three private fields of the
MainWindow class . This code uses a TextReader object called reader to open the file
specified by the user . (The details of how the user selects the file are described in
Chapter 23, “Gathering User Input .”) The while statement contains the key functionality
in this method; it iterates through the file a line at a time by using the ReadLine method
of the reader object and displays each line by appending it to the Text property of the
Source text field on the form . When the ReadLine method returns null, there is no more
data left in the file, the while loop finishes, and the Close method of the reader object
closes the file .

The problem with this code is that the call to reader.Close is not guaranteed to execute .
If an exception occurs after opening the file, the method will terminate with an excep-
tion, but the file will remain open until the application itself finishes .

 . 9 . . Modify the openFileDialogFileOk method, and wrap the code that processes the file in a
using statement (including opening and closing braces), as shown in bold here . Remove
the statement that closes the TextReader object .

private void openFileDialogFileOk(object sender,
System.ComponentModel.CancelEventArgs e)
{
 string fullPathname = openFileDialog.FileName;
 FileInfo src = new FileInfo(fullPathname);
 fileName.Text = src.Name;
 source.Clear();
 using (TextReader reader = new StreamReader(fullPathname))
 {
 string line;
 while ((line = reader.ReadLine()) != null)
 {
 source.Text += line + "\n";
 }
 }
}

You no longer need to call reader.Close because it will be invoked automatically by
the Dispose method of the StreamReader class when the using statement completes .
This applies whether the using statement finishes naturally or terminates because of an
exception .

 . 10 . . On the Debug menu, click Start Without Debugging .

 . 11 . . Verify that the application still works as before, and then close the form .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

292 Part II Understanding the C# Language

In this chapter, you saw how the garbage collector works and how the .NET Framework uses
it to dispose of objects and reclaim memory . You have learned how to write a destructor to
clean up the resources used by an object when memory is recycled by the garbage collector .
You have also seen how to use the using statement to implement exception-safe disposal of
resources .

n If you want to continue to the next chapter

Keep Visual Studio 2010 running, and turn to Chapter 15 .

n If you want to exit Visual Studio 2010 now

On the File menu, click Exit . If you see a Save dialog box, click Yes and save the project .

Chapter .14 .Quick .Reference
To Do this

Write a destructor Write a method whose name is the same as the name of the class and is
prefixed with a tilde (~) . The method must not have an access modifier (such
as public) and cannot have any parameters or return a value . For example:

class Example
{
 ~Example()
 {
 ...
 }
}

Call a destructor You can’t call a destructor . Only the garbage collector can call a destructor .

Force garbage collection (not
recommended)

Call System.GC.Collect .

Release a resource at a known
point in time (but at the risk of
memory leaks if an exception
interrupts the execution)

Write a disposal method (a method that disposes of a resource) and call it
explicitly from the program . For example:

class TextReader
{
 ...
 public virtual void Close()
 {
 ...
 }
}

class Example
{
 void Use()
 {
 TextReader reader = ...;
 // use reader
 reader.Close();
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Microsoft Visual C# 2010 Step by Step

 . . 293

Part III

Creating Components

In this part:

Implementing Properties to Access Fields . 295

Using Indexers . 315

Interrupting Program Flow and Handling Events . 329

Introducing Generics . 353

Enumerating Collections . 381

Querying In-Memory Data by Using Query Expressions 395

Operator Overloading . 419

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 . . 295

Chapter 15

Implementing Properties to
Access Fields

After completing this chapter, you will be able to:

n Encapsulate logical fields by using properties .

n Control read access to properties by declaring get accessors .

n Control write access to properties by declaring set accessors .

n Create interfaces that declare properties .

n Implement interfaces containing properties by using structures and classes .

n Generate properties automatically based on field definitions .

n Use properties to initialize objects .

The first two parts of this book have introduced the core syntax of the C# language and have
shown you how to use C# to build new types by using structures, enumerations, and classes .
You have also seen how the runtime manages the memory used by variables and objects
when a program runs, and you should now understand the life cycle of C# objects . The chap-
ters in Part III, “Creating Components,” build on this information, showing you how to use
C# to create reusable components—functional classes that you can reuse in many different
applications .

This chapter looks at how to define and use properties to encapsulate fields and data in a
class . Previous chapters have emphasized that you should make the fields in a class private
and provide methods to store values in them and to retrieve their values . This approach pro-
vides safe and controlled access to fields and enables you to encapsulate additional logic and
rules concerning the values that are permitted . However, the syntax for accessing a field in
this way is unnatural . When you want to read or write a variable, you normally use an assign-
ment statement, so calling a method to achieve the same effect on a field (which is, after all,
just a variable) feels a little clumsy . Properties are designed to alleviate this awkwardness .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

296 Part III Creating Components

Implementing .Encapsulation .by .Using .Methods
First let’s recap the original motivation for using methods to hide fields .

Consider the following structure that represents a position on a computer screen as a pair of
coordinates, x and y . Assume that the range of valid values for the x-coordinate lies between
0 and 1280 and the range of valid values for the y-coordinate lies between 0 and 1024:

struct ScreenPosition
{
 public int X;
 public int Y;

 public ScreenPosition(int x, int y)
 {
 this.X = rangeCheckedX(x);
 this.Y = rangeCheckedY(y);
 }

 private static int rangeCheckedX(int x)
 {
 if (x < 0 || x > 1280)
 {
 throw new ArgumentOutOfRangeException("X");
 }
 return x;
 }

 private static int rangeCheckedY(int y)
 {
 if (y < 0 || y > 1024)
 {
 throw new ArgumentOutOfRangeException("Y");
 }
 return y;
 }
}

One problem with this structure is that it does not follow the golden rule of encapsula-
tion—that is, it does not keep its data private . Public data is often a bad idea because the
class cannot control the values that an application specifies . For example, the ScreenPosition
constructor range checks its parameters to make sure that they are in a specified range, but
no such check can be done on the “raw” access to the public fields . Sooner or later (probably
sooner), an error or misunderstanding on the part of a developer using this class in an appli-
cation can cause either X or Y to stray out of this range:

ScreenPosition origin = new ScreenPosition(0, 0);
...
int xpos = origin.X;
origin.Y = -100; // oops

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 15 Implementing Properties to Access Fields 297

The common way to solve this problem is to make the fields private and add an accessor
method and a modifier method to respectively read and write the value of each private
field . The modifier methods can then range-check new field values . For example, the follow-
ing code contains an accessor (GetX) and a modifier (SetX) for the X field . Notice that SetX
checks its parameter value .

struct ScreenPosition
{
 ...
 public int GetX()
 {
 return this.x;
 }

 public void SetX(int newX)
 {
 this.x = rangeCheckedX(newX);
 }
 ...
 private static int rangeCheckedX(int x) { ... }
 private static int rangeCheckedY(int y) { ... }
 private int x, y;
}

The code now successfully enforces the range constraints, which is good . However, there is
a price to pay for this valuable guarantee—ScreenPosition no longer has a natural field-like
syntax; it uses awkward method-based syntax instead . The following example increases the
value of X by 10 . To do so, it has to read the value of X by using the GetX accessor method
and then write the value of X by using the SetX modifier method .

int xpos = origin.GetX();
origin.SetX(xpos + 10);

Compare this with the equivalent code if the X field were public:

origin.X += 10;

There is no doubt that, in this case, using public fields is syntactically cleaner, shorter, and
easier . Unfortunately, using public fields breaks encapsulation . Properties enable you to
 combine the best of both worlds (fields and methods) to retain encapsulation while providing
a field-like syntax .

What .Are .Properties?
A property is a cross between a field and a method—it looks like a field but acts like a
 method . You access a property by using exactly the same syntax that you use to access
a field . However, the compiler automatically translates this field-like syntax into calls to
 accessor methods .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

298 Part III Creating Components

The syntax for a property declaration looks like this:

AccessModifier Type PropertyName
{
 get
 {
 // read accessor code
 }

 set
 {
 // write accessor code
 }
}

A property can contain two blocks of code, starting with the get and set keywords . The get
block contains statements that execute when the property is read, and the set block contains
statements that run when the property is written to . The type of the property specifies the
type of data read and written by the get and set accessors .

The next code example shows the ScreenPosition structure rewritten by using properties .
When reading this code, notice the following:

n Lowercase x and y are private fields .

n Uppercase X and Y are public properties .

n All set accessors are passed the data to be written by using a hidden, built-in parameter
named value .

Tip The fields and properties follow the standard Microsoft Visual C# public/private naming
convention . Public fields and properties should start with an uppercase letter, but private fields
and properties should start with a lowercase letter .

struct ScreenPosition
{
 private int x, y;

 public ScreenPosition(int X, int Y)
 {
 this.x = rangeCheckedX(X);
 this.y = rangeCheckedY(Y);
 }

 public int X
 {
 get { return this.x; }
 set { this.x = rangeCheckedX(value); }
 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 15 Implementing Properties to Access Fields 299

 public int Y
 {
 get { return this.y; }
 set { this.y = rangeCheckedY(value); }
 }

 private static int rangeCheckedX(int x) { ... }
 private static int rangeCheckedY(int y) { ... }
}

In this example, a private field directly implements each property, but this is only one way
to implement a property . All that is required is that a get accessor returns a value of the
specified type . Such a value can easily be calculated dynamically rather than being simply
retrieved from stored data, in which case there would be no need for a physical field .

Note Although the examples in this chapter show how to define properties for a structure, they
are equally applicable to classes; the syntax is the same .

Using Properties
When you use a property in an expression, you can use it in a read context (when you are
reading its value) and in a write context (when you are modifying its value) . The following
example shows how to read values from the X and Y properties of a ScreenPosition structure:

ScreenPosition origin = new ScreenPosition(0, 0);
int xpos = origin.X; // calls origin.X.get
int ypos = origin.Y; // calls origin.Y.get

Notice that you access properties and fields by using the same syntax . When you use a
 property in a read context, the compiler automatically translates your field-like code into a
call to the get accessor of that property . Similarly, if you use a property in a write context, the
compiler automatically translates your field-like code into a call to the set accessor of that
property:

origin.X = 40; // calls origin.X.set, with value set to 40
origin.Y = 100; // calls origin.Y.Set, with value set to 100

The values being assigned are passed in to the set accessors by using the value variable, as
described in the preceding section . The runtime does this automatically .

It’s also possible to use a property in a read/write context . In this case, both the get accessor
and the set accessor are used . For example, the compiler automatically translates statements
such as the following into calls to the get and set accessors:

origin.X += 10;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

300 Part III Creating Components

Tip You can declare static properties in the same way that you can declare static fields and
methods . Static properties are accessed by using the name of the class or structure rather than
an instance of the class or structure .

Read-Only Properties
You can declare a property that contains only a get accessor . In this case, you can use the
property only in a read context . For example, here’s the X property of the ScreenPosition
structure declared as a read-only property:

struct ScreenPosition
{
 ...
 public int X
 {
 get { return this.x; }
 }
}

The X property does not contain a set accessor; therefore, any attempt to use X in a write
context will fail . For example:

origin.X = 140; // compile-time error

Write-Only Properties
Similarly, you can declare a property that contains only a set accessor . In this case, you
can use the property only in a write context . For example, here’s the X property of the
ScreenPosition structure declared as a write-only property:

struct ScreenPosition
{
 ...
 public int X
 {
 set { this.x = rangeCheckedX(value); }
 }
}

The X property does not contain a get accessor; any attempt to use X in a read context will
fail . For example:

Console.WriteLine(origin.X); // compile-time error
origin.X = 200; // compiles OK
origin.X += 10; // compile-time error

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 15 Implementing Properties to Access Fields 301

Note Write-only properties are useful for secure data such as passwords . Ideally, an application
that implements security should allow you to set your password but should never allow you to
read it back . When a user attempts to log in, he can provide the password . A login method can
compare this password with the stored password and return only an indication of whether they
match .

Property Accessibility
You can specify the accessibility of a property (public, private, or protected) when you declare
it . However, it is possible within the property declaration to override the property acces-
sibility for the get and set accessors . For example, the version of the ScreenPosition structure
shown here defines the set accessors of the X and Y properties as private . (The get accessors
are public, because the properties are public .)

struct ScreenPosition
{
 ...
 public int X
 {
 get { return this.x; }
 private set { this.x = rangeCheckedX(value); }
 }

 public int Y
 {
 get { return this.y; }
 private set { this.y = rangeCheckedY(value); }
 }
 ...
 private int x, y;
}

You must observe some rules when defining accessors with different accessibility from one
another:

n You can change the accessibility of only one of the accessors when you define it .
It wouldn’t make much sense to define a property as public only to change the
 accessibility of both accessors to private anyway!

n The modifier must not specify an accessibility that is less restrictive than that of the
property . For example, if the property is declared as private, you cannot specify the
read accessor as public . (Instead, you would make the property public and make the
write accessor private .)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

302 Part III Creating Components

Properties .and .Field .Names: .A .Warning
Although it is a commonly accepted practice to give properties and private fields the
same name that differs only in the case of the initial letter, you should be aware of one
drawback . Examine the following code, which implements a class named Employee . The
employeeID field is private, but the EmployeeID property provides public access to this
field .

class Employee
{
 private int employeeID;

 public int EmployeeID;
 {
 get { return this.EmployeeID; }
 set { this.EmployeeID = value; }
 }
}

This code will compile perfectly well, but it results in a program raising a
StackOverflowException whenever the EmployeeID property is accessed . This is because
the get and set accessors reference the property (uppercase E) rather than the private
field (lowercase e), which causes an endless recursive loop that eventually causes the
process to exhaust the available memory . This sort of bug is very difficult to spot!

Understanding .the .Property .Restrictions
Properties look, act, and feel like fields . However, they are not true fields, and certain
 restrictions apply to them:

n You can assign a value through a property of a structure or class only after the
 structure or class has been initialized . The following code example is illegal because the
location variable has not been initialized (by using new):

ScreenPosition location;
location.X = 40; // compile-time error, location not assigned

Note This might seem trivial, but if X were a field rather than a property, the code would
be legal . What this really means is that there are some differences between fields and
properties . You should define structures and classes by using properties from the start,
rather than by using fields that you later migrate to properties—code that uses your class-
es and structures might no longer work after you change fields into properties . We will
return to this matter in the section “Generating Automatic Properties” later in this chapter .

n You can’t use a property as a ref or an out argument to a method (although you can
use a writable field as a ref or an out argument) . This makes sense because the property

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 15 Implementing Properties to Access Fields 303

doesn’t really point to a memory location but rather to an accessor method . For
example:

MyMethod(ref location.X); // compile-time error

n A property can contain at most one get accessor and one set accessor . A property
 cannot contain other methods, fields, or properties .

n The get and set accessors cannot take any parameters . The data being assigned is
passed to the set accessor automatically by using the value variable .

n You can’t declare const properties . For example:

const int X { get { ... } set { ... } } // compile-time error

Using .Properties .Appropriately
Properties are a powerful feature, and used in the correct manner they can help to
make code easier to understand and maintain . However, they are no substitute for
careful object-oriented design that focuses on the behavior of objects rather than on
the properties of objects . Accessing private fields through regular methods or through
properties does not, by itself, make your code well-designed . For example, a bank
 account holds a balance . You might therefore be tempted to create a Balance property
on a BankAccount class, like this:

class BankAccount
{
 ...
 public money Balance
 {
 get { ... }
 set { ... }
 }

 private money balance;
}

This is a poor design . It fails to represent the functionality required when withdrawing
money from and depositing money into an account . (If you know of a bank that allows
you to change the balance of your account directly without depositing money, please
let me know!) When you’re programming, try to express the problem you are solving in
the solution and don’t get lost in a mass of low-level syntax:

class BankAccount
{
 ...
 public money Balance { get { ... } }
 public void Deposit(money amount) { ... }
 public bool Withdraw(money amount) { ... }
 private money balance;
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

304 Part III Creating Components

Declaring .Interface .Properties
You encountered interfaces in Chapter 13, “Creating Interfaces and Defining Abstract
Classes .” Interfaces can define properties as well as methods . To do this, you specify the get
or set keyword, or both, but replace the body of the get or set accessor with a semicolon . For
example:

interface IScreenPosition
{
 int X { get; set; }
 int Y { get; set; }
}

Any class or structure that implements this interface must implement the X and Y properties
with get and set accessor methods . For example:

struct ScreenPosition : IScreenPosition
{
 ...
 public int X
 {
 get { ... }
 set { ... }
 }

 public int Y
 {
 get { ... }
 set { ... }
 }
 ...
}

If you implement the interface properties in a class, you can declare the property
 implementations as virtual, which enables derived classes to override the implementations .
For example:

class ScreenPosition : IScreenPosition
{
 ...
 public virtual int X
 {
 get { ... }
 set { ... }
 }

 public virtual int Y
 {
 get { ... }
 set { ... }
 }
 ...
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 15 Implementing Properties to Access Fields 305

Note This example shows a class . Remember that the virtual keyword is not valid when creating
a struct because structures are implicitly sealed .

You can also choose to implement a property by using the explicit interface implementa-
tion syntax covered in Chapter 13 . An explicit implementation of a property is nonpublic and
nonvirtual (and cannot be overridden) . For example:

struct ScreenPosition : IScreenPosition
{
 ...
 int IScreenPosition.X
 {
 get { ... }
 set { ... }
 }

 int IScreenPosition.Y
 {
 get { ... }
 set { ... }
 }
 ...
 private int x, y;
}

Using Properties in a Windows Application
When you set property values of objects such as TextBox controls, Windows, and Button
 controls by using the Properties window in Microsoft Visual Studio 2010, you are actually
generating code that sets the values of these properties at run time . Some components have
a large number of properties, although some properties are more commonly used than
 others . You can write your own code to modify many of these properties at run time by using
the same syntax you have seen throughout this chapter .

In the following exercise, you will use some predefined properties of the TextBox controls and
the Window class to create a simple application that continually displays the size of its main
window, even when the window is resized .

Use properties

 . 1 . . Start Visual Studio 2010 if it is not already running .

 . 2 . . Open the WindowProperties project, located in the \Microsoft Press\Visual CSharp Step
By Step\Chapter 15\WindowProperties folder in your Documents folder .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

306 Part III Creating Components

 . 3 . . On the Debug menu, click Start Without Debugging .

The project builds and runs . A Windows Presentation Foundation (WPF) form appears,
displaying two empty text boxes labeled Width and Height .

In the program, the text box controls are named width and height . They are currently
empty . You will add code to the application that displays the current size of the window
and that updates the values in these text boxes if the window is resized .

 . 4 . . Close the form, and return to the Visual Studio 2010 programming environment .

 . 5 . . Display the MainWindow .xaml .cs file in the Code and Text Editor window, and locate the
sizeChanged method .

This method is called by the MainWindow constructor . You will use it to display the
current size of the form in the width and height text boxes . You will make use of the
ActualWidth and ActualHeight properties of the Window class . These properties return
the current width and height of the form as double values .

 . 6 . . Add two statements to the sizeChanged method to display the size of the form . The
first statement should read the value of the ActualWidth property of the form, convert
it to a string, and assign this value to the Text property of the width text box . The sec-
ond statement should read the value of the ActualHeight property of the form, convert
it to a string, and assign this value to the Text property of the height text box .

The sizeChanged method should look like this:

private void sizeChanged()
{
 width.Text = this.ActualWidth.ToString();
 height.Text = this.ActualHeight.ToString();
}

 . 7 . . Locate the mainWindowSizeChanged method .

This method runs whenever the size of the window changes when the application is
running . Notice that this method calls the sizeChanged method to display the new size
of the window in the text boxes .

 . 8 . . On the Debug menu, click Start Without Debugging to build and run the project .

The form displays the two text boxes containing the values 305 and 155 . These are the
default dimensions of the form, specified when the form was designed .

 . 9 . . Resize the form . Notice that the text in the text boxes changes to reflect the new size .

 . 10 . . Close the form, and return to the Visual Studio 2010 programming environment .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 15 Implementing Properties to Access Fields 307

Generating .Automatic .Properties
This chapter mentioned earlier that the principal purpose of properties is to hide the
 implementation of fields from the outside world . This is fine if your properties actually
 perform some useful work, but if the get and set accessors simply wrap operations that just
read or assign a value to a field, you might be questioning the value of this approach . There
are at least two good reasons why you should define properties rather than exposing data as
public fields:

n . Compatibility .with .applications Fields and properties expose themselves by using
different metadata in assemblies . If you develop a class and decide to use public fields,
any applications that use this class will reference these items as fields . Although you
use the same C# syntax for reading and writing a field that you use when reading and
writing a property, the compiled code is actually quite different—the C# compiler just
hides the differences from you . If you later decide that you really do need to change
these fields to properties (maybe the business requirements have changed, and you
need to perform additional logic when assigning values), existing applications will
not be able to use the updated version of the class without being recompiled . This is
awkward if you have deployed the application on a large number of users’ desktops
throughout an organization . There are ways around this, but it is generally better to
avoid getting into this situation in the first place .

n . Compatibility .with .interfaces If you are implementing an interface and the
 interface defines an item as a property, you must write a property that matches the
specification in the interface, even if the property just reads and writes data in a pri-
vate field . You cannot implement a property simply by exposing a public field with
the same name .

The designers of the C# language recognized that programmers are busy people who
should not have to waste their time writing more code than they need to . To this end, the
C# compiler can generate the code for properties for you automatically, like this:

class Circle
{
 public int Radius{ get; set; }
 ...
}

In this example, the Circle class contains a property named Radius . Apart from the type of
this property, you have not specified how this property works—the get and set accessors

http://lib.ommolketab.ir
http//lib.ommolketab.ir

308 Part III Creating Components

are empty . The C# compiler converts this definition to a private field and a default
 implementation that looks similar to this:

class Circle
{
 private int _radius;
 public int Radius{
 get
 {
 return this._radius;
 }
 set
 {
 this._radius = value;
 }
 }
 ...
}

So for very little effort, you can implement a simple property by using automatically
 generated code, and if you need to include additional logic later, you can do so without
breaking any existing applications . You should note, however, that you must specify both a
get and a set accessor with an automatically generated property—an automatic property
cannot be read-only or write-only .

Note The syntax for defining an automatic property is almost identical to the syntax for
 defining a property in an interface . The exception is that an automatic property can specify an
access modifier, such as private, public, or protected .

Initializing .Objects .by .Using .Properties
In Chapter 7, “Creating and Managing Classes and Objects,” you learned how to define
 constructors to initialize an object . An object can have multiple constructors, and you can
define constructors with varying parameters to initialize different elements in an object .
For example, you could define a class that models a triangle like this:

public class Triangle
{
 private int side1Length;
 private int side2Length;
 private int side3Length;

 // default constructor - default values for all sides
 public Triangle()
 {
 this.side1Length = this.side2Length = this.side3Length = 10;
 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 15 Implementing Properties to Access Fields 309

 // specify length for side1Length, default values for the others
 public Triangle(int length1)
 {
 this.side1Length = length1;
 this.side2Length = this.side3Length = 10;
 }

 // specify length for side1Length and side2Length,
 // default value for side3Length
 public Triangle(int length1, int length2)
 {
 this.side1Length = length1;
 this.side2Length = length2;
 this.side3Length = 10;
 }

 // specify length for all sides
 public Triangle(int length1, int length2, int length3)
 {
 this.side1Length = length1;
 this.side2Length = length2;
 this.side3Length = length3;
 }
}

Depending on how many fields a class contains and the various combinations you want to
enable for initializing the fields, you could end up writing a lot of constructors . There are also
potential problems if many of the fields have the same type: you might not be able to write a
unique constructor for all combinations of fields . For example, in the preceding Triangle class,
you could not easily add a constructor that initializes only the side1Length and side3Length
fields because it would not have a unique signature; it would take two int parameters, and
the constructor that initializes side1Length and side2Length already has this signature . One
possible solution is to define a constructor that takes optional parameters, and specify values
for the parameters as named arguments when you create a Triangle object . However, a bet-
ter and more transparent solution is to initialize the private fields to their default values and
to define properties, like this:

public class Triangle
{
 private int side1Length = 10;
 private int side2Length = 10;
 private int side3Length = 10;

 public int Side1Length
 {
 set { this.side1Length = value; }
 }

 public int Side2Length
 {
 set { this.side2Length = value; }
 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

310 Part III Creating Components

 public int Side3Length
 {
 set { this.side3Length = value; }
 }
}

When you create an instance of a class, you can initialize it by specifying values for any public
properties that have set accessors . This means that you can create Triangle objects and initial-
ize any combination of the three sides, like this:

Triangle tri1 = new Triangle { Side3Length = 15 };
Triangle tri2 = new Triangle { Side1Length = 15, Side3Length = 20 };
Triangle tri3 = new Triangle { Side2Length = 12, Side3Length = 17 };
Triangle tri4 = new Triangle { Side1Length = 9, Side2Length = 12,
 Side3Length = 15 };

This syntax is known as an object initializer . When you invoke an object initializer in this way,
the C# compiler generates code that calls the default constructor and then calls the set ac-
cessor of each named property to initialize it with the value specified . You can specify object
initializers in combination with non–default constructors as well . For example, if the Triangle
class also provided a constructor that took a single string parameter describing the type of
triangle, you could invoke this constructor and initialize the other properties like this:

Triangle tri5 = new Triangle("Equilateral triangle") { Side1Length = 3,
 Side2Length = 3,
 Side3Length = 3 };

The important point to remember is that the constructor runs first and the properties are
set afterward . Understanding this sequencing is important if the constructor sets fields in an
 object to specific values and the properties that you specify change these values .

You can also use object initializers with automatic properties, as you will see in the next
 exercise . In this exercise, you will define a class for modeling regular polygons, which con-
tains automatic properties for providing access to information about the number of sides the
polygon contains and the length of these sides .

Define automatic properties, and use object initializers

 . 1 . . In Visual Studio 2010, open the AutomaticProperties project, located in the \Microsoft
Press\Visual CSharp Step By Step\Chapter 15\AutomaticProperties folder in your
Documents folder .

The AutomaticProperties project contains the Program .cs file, defining the Program
class with the Main and DoWork methods that you saw in previous exercises .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 15 Implementing Properties to Access Fields 311

 . 2 . . In Solution Explorer, right-click the AutomaticProperties project, point to Add, and then
click Class . In the Add New Item—AutomaticProperties dialog box, in the Name text
box, type Polygon .cs and then click Add .

The Polygon .cs file, holding the Polygon class, is created and added to the project and
appears in the Code and Text Editor window .

 . 3 . . Add the automatic properties NumSides and SideLength, shown here in bold, to the
Polygon class:

class Polygon
{
 public int NumSides { get; set; }
 public double SideLength { get; set; }
}

 . 4 . . Add the following default constructor to the Polygon class:

class Polygon
{
 ...

 public Polygon()
 {
 this.NumSides = 4;
 this.SideLength = 10.0;
 }
}

In this exercise, the default polygon is a square with sides 10 units long .

 . 5 . . Display the Program .cs file in the Code and Text Editor window .

 . 6 . . Add the statements shown here in bold to the DoWork method:

static void DoWork()
{
 Polygon square = new Polygon();
 Polygon triangle = new Polygon { NumSides = 3 };
 Polygon pentagon = new Polygon { SideLength = 15.5, NumSides = 5 };
}

These statements create Polygon objects . The square variable is initialized by using the
default constructor . The triangle and pentagon variables are also initialized by using
the default constructor, and then this code changes the value of the properties exposed
by the Polygon class . In the case of the triangle variable, the NumSides property is set to
3, but the SideLength property is left at its default value of 10.0 . For the pentagon vari-
able, the code changes the values of the SideLength and NumSides properties .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

312 Part III Creating Components

 . 7 . . Add the following code to the end of the DoWork method:

static void DoWork()
{
 ...

 Console.WriteLine("Square: number of sides is {0}, length of each side is {1}",
 square.NumSides, square.SideLength);
 Console.WriteLine("Triangle: number of sides is {0}, length of each side is {1}",
 triangle.NumSides, triangle.SideLength);
 Console.WriteLine("Pentagon: number of sides is {0}, length of each side is {1}",
 pentagon.NumSides, pentagon.SideLength);
}

These statements display the values of the NumSides and SideLength properties for
each Polygon object .

 . 8 . . On the Debug menu, click Start Without Debugging .

Verify that the program builds and runs, writing the message shown here to the
console:

 . 9 . . Press the Enter key to close the application and return to Visual Studio 2010 .

In this chapter, you saw how to create and use properties to provide controlled access to data
in an object . You also saw how to create automatic properties and how to use properties
when initializing objects .

n If you want to continue to the next chapter

Keep Visual Studio 2010 running, and turn to Chapter 16 .

n If you want to exit Visual Studio 2010 now

On the File menu, click Exit . If you see a Save dialog box, click Yes and save the project .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 15 Implementing Properties to Access Fields 313

Chapter .15 .Quick .Reference
To Do this

Declare a read/write property for
a structure or class

Declare the type of the property, its name, a get accessor, and a set
 accessor . For example:

struct ScreenPosition
{
 ...
 public int X
 {
 get { ... }
 set { ... }
 }
 ...
}

Declare a read-only property for
a structure or class

Declare a property with only a get accessor . For example:

struct ScreenPosition
{
 ...
 public int X
 {
 get { ... }
 }
 ...
}

Declare a write-only property for
a structure or class

Declare a property with only a set accessor . For example:

struct ScreenPosition
{
 ...
 public int X
 {
 set { ... }
 }
 ...
}

Declare a property in an interface Declare a property with just the get or set keyword, or both . For example:

interface IScreenPosition
{
 int X { get; set; } // no body
 int Y { get; set; } // no body
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

314 Part III Creating Components

To Do this

Implement an interface property
in a structure or class

In the class or structure that implements the interface, declare the
 property and implement the accessors . For example:

struct ScreenPosition : IScreenPosition
{
 public int X
 {
 get { ... }
 set { ... }
 }

 public int Y
 {
 get { ... }
 set { ... }
 }
}

Create an automatic property In the class or structure that contains the property, define the property
with empty get and set accessors . For example:

class Polygon
{
 public int NumSides { get; set; }
}

Use properties to initialize an
 object

Specify the properties and their values as a list enclosed in braces when
constructing the object . For example:

Triangle tri3 =
 new Triangle { Side2Length = 12, Side3Length = 17 };

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 . . 315

Chapter 16

Using Indexers
After completing this chapter, you will be able to:

n Encapsulate logical array-like access to an object by using indexers .

n Control read access to indexers by declaring get accessors .

n Control write access to indexers by declaring set accessors .

n Create interfaces that declare indexers .

n Implement indexers in structures and classes that inherit from interfaces .

The preceding chapter described how to implement and use properties as a means of
 providing controlled access to the fields in a class . Properties are useful for mirroring fields
that contain a single value . However, indexers are invaluable if you want to provide access to
items that contain multiple values by using a natural and familiar syntax .

What .Is .an .Indexer?
You can think of an indexer as a smart array in much the same way that you can think of a
property as a smart field . Where a property encapsulates a single value in a class, an indexer
encapsulates a set of values . The syntax that you use for an indexer is exactly the same as the
syntax that you use for an array .

The best way to understand indexers is to work through an example . First we’ll examine a
problem and examine a solution that doesn’t use indexers . Then we’ll work through the same
problem and look at a better solution that does use indexers . The problem concerns integers,
or more precisely, the int type .

An Example That Doesn’t Use Indexers
You normally use an int to hold an integer value . Internally, an int stores its value as a
 sequence of 32 bits, where each bit can be either 0 or 1 . Most of the time, you don’t care
about this internal binary representation; you just use an int type as a container that holds an
integer value . However, sometimes programmers use the int type for other purposes: some
programs use an int as a set of binary flags and manipulate the individual bits within an int .
If you are an old C hack like I am, what follows should have a very familiar feel!

http://lib.ommolketab.ir
http//lib.ommolketab.ir

316 Part III Creating Components

Note Some older programs used int types to try to save memory . Such programs typically date
back to when the size of computer memory was measured in kilobytes rather than the gigabytes
available these days and memory was at an absolute premium . A single int holds 32 bits, each of
which can be 1 or 0 . In some cases, programmers assigned 1 to indicate the value true and 0 to
indicate false and then employed an int as a set of Boolean values .

C# provides a set of operators that you can use to access and manipulate the individual bits
in an int . These operators are

n . The .NOT .(~) .operator This is a unary operator that performs a bitwise complement .
For example, if you take the 8-bit value 11001100 (204 decimal) and apply the ~
 operator to it, you obtain the result 00110011 (51 decimal)—all the 1s in the original
value become 0s, and all the 0s become 1s .

n . The .left-shift .(<<) .operator This is a binary operator that performs a left shift . The
expression 204 << 2 returns the value 48 . (In binary, 204 decimal is 11001100, and left-
shifting it by two places yields 00110000, or 48 decimal .) The far-left bits are discarded,
and zeros are introduced from the right . There is a corresponding right-shift operator
>> .

n . The .OR .(|) .operator This is a binary operator that performs a bitwise OR operation,
returning a value containing a 1 in each position in which either of the operands has
a 1 . For example, the expression 204 | 24 has the value 220 (204 is 11001100, 24 is
00011000, and 220 is 11011100) .

n . The .AND .(&) .operator This operator performs a bitwise AND operation . AND is
similar to the bitwise OR operator, except that it returns a value containing a 1 in each
position where both of the operands have a 1 . So 204 & 20 is 8 (204 is 11001100, 24 is
00011000, and 8 is 00001000) .

n . The .XOR .(̂) .operator This operator performs a bitwise exclusive OR operation,
returning a 1 in each bit where there is a 1 in one operand or the other but not both .
(Two 1s yield a 0—this is the “exclusive” part of the operator .) So 204 ^ 24 is 212
(11001100 ^ 00011000 is 11010100) .

You can use these operators together to determine the values of the individual bits in an int .
As an example, the following expression uses the left-shift (<<) and bitwise AND (&) opera-
tors to determine whether the sixth bit of the int named bits is set to 0 or to 1:

(bits & (1 << 6)) != 0

Suppose the bits variable contains the decimal value 42 . In binary, this is 00101010 . The
 decimal value 1 is 00000001 in binary, so the expression 1 << 6 has the value 00100000 .
In binary, the expression bits & (1 << 6) is 00101010 & 00100000, and the value of this ex-
pression is binary 00100000, which is non-zero . If the variable bits contains the value 65, or
01000001 in binary, the value of the expression is 01000001 & 00100000, which yields the
binary result 00000000, or zero .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 16 Using Indexers 317

This is a fairly complicated example, but it’s trivial in comparison to the following expression,
which uses the compound assignment operator &= to set the bit at position 4 to 0:

bits &= ~(1 << 4)

Note The bitwise operators count the positions of bits from right to left, so bit 0 is the
 rightmost bit, and the bit at position 6 is the bit six places from the right .

Similarly, if you want to set the bit at position 4 to 1, you can use a bitwise OR (|) operator .
The following complicated expression is based on the compound assignment operator |=:

bits |= (1 << 4)

The trouble with these examples is that although they work, they are fiendishly difficult to
understand . They’re complicated, and the solution is a very low-level one: it fails to create an
abstraction of the problem that it solves .

The Same Example Using Indexers
Let’s pull back from the preceding low-level solution for a moment and stop to remind
ourselves what the problem is . We’d like to use an int not as an int but as an array of bits .
Therefore, the best way to solve this problem is to use an int as if it were an array of bits! In
other words, what we’d like to be able to write to access the bit at index 6 of the bits variable
is something like this:

bits[6]

And to set the bit at index 4 to true, we’d like to be able to write this:

bits[4] = true

Note To seasoned C developers, the Boolean value true is synonymous with the binary value 1,
and the Boolean value false is synonymous with the binary value 0 . Consequently, the expression
bits[4] = true means “set bit 4 of the bits variable to 1” .

Unfortunately, you can’t use the square bracket notation on an int—it works only on an array
or on a type that behaves like an array . So the solution to the problem is to create a new type
that acts like, feels like, and is used like an array of bool variables but is implemented by using
an int . You can achieve this feat by defining an indexer . Let’s call this new type IntBits .
IntBits will contain an int value (initialized in its constructor), but the idea is that we’ll
use IntBits as an array of bool variables .

Tip The IntBits type is small and lightweight, so it makes sense to create it as a structure rather
than as a class .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

318 Part III Creating Components

struct IntBits
{
 public IntBits(int initialBitValue)
 {
 bits = initialBitValue;
 }

 // indexer to be written here

 private int bits;
}

To define the indexer, you use a notation that is a cross between a property and an array . You
introduce the indexer with the this keyword, specify the type of the value returned by the
indexer, and also specify the type of the value to use as the index into the indexer between
square brackets . The indexer for the IntBits struct uses an integer as its index type and returns
a Boolean value . It looks like this:

struct IntBits
{
 ...
 public bool this [int index]
 {
 get
 {
 return (bits & (1 << index)) != 0;
 }

 set
 {
 if (value) // turn the bit on if value is true; otherwise, turn it off
 bits |= (1 << index);
 else
 bits &= ~(1 << index);
 }
 }
 ...
}

Notice the following points:

n An indexer is not a method—there are no parentheses containing a parameter, but
there are square brackets that specify an index . This index is used to specify which
 element is being accessed .

n All indexers use the this keyword . A class or structure can define at most one indexer,
and it is always named this .

n Indexers contain get and set accessors just like properties . In this example, the get and
set accessors contain the complicated bitwise expressions previously discussed .

n The index specified in the indexer declaration is populated with the index value
 specified when the indexer is called . The get and set accessor methods can read this
argument to determine which element should be accessed .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 16 Using Indexers 319

Note You should perform a range check on the index value in the indexer to prevent any
 unexpected exceptions from occurring in your indexer code .

After you have declared the indexer, you can use a variable of type IntBits instead of an int
and apply the square bracket notation, as shown in the next example:

int adapted = 62; // 62 has the binary representation 111110
IntBits bits = new IntBits(adapted);
bool peek = bits[6]; // retrieve bool at index 6; should be true (1)
bits[0] = true; // set the bit at index 0 to true (1)
bits[3] = false; // set the bit at index 3 to false (0)
 // the value in adapted is now 111011, or 59 in decimal

This syntax is certainly much easier to understand . It directly and succinctly captures the
 essence of the problem .

Understanding Indexer Accessors
When you read an indexer, the compiler automatically translates your array-like code into a
call to the get accessor of that indexer . Consider the following example:

bool peek = bits[6];

This statement is converted to a call to the get accessor for bits, and the index argument is set
to 6 .

Similarly, if you write to an indexer, the compiler automatically translates your array-like
code into a call to the set accessor of that indexer, setting the index argument to the value
 enclosed in the square brackets . For example:

bits[4] = true;

This statement is converted to a call to the set accessor for bits where index is 4 . As with
 ordinary properties, the data you are writing to the indexer (in this case, true) is made avail-
able inside the set accessor by using the value keyword . The type of value is the same as the
type of indexer itself (in this case, bool) .

It’s also possible to use an indexer in a combined read/write context . In this case, the get and
set accessors are both used . Look at the following statement, which uses the XOR operator
(̂) to invert the value of bit 6 in the bits variable:

bits[6] ^= true;

This code is automatically translated into the following:

bits[6] = bits[6] ^ true;

This code works because the indexer declares both a get and a set accessor .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

320 Part III Creating Components

Note You can declare an indexer that contains only a get accessor (a read-only indexer) or only
a set accessor (a write-only accessor) .

Comparing Indexers and Arrays
When you use an indexer, the syntax is deliberately very array-like . However, there are some
important differences between indexers and arrays:

n Indexers can use non-numeric subscripts, such as a string as shown in the following
 example . Arrays can use only integer subscripts:

public int this [string name] { ... } // OK

Tip Many collection classes, such as Hashtable, that implement an associative lookup
based on key/value pairs implement indexers to provide a convenient alternative to using
the Add method to add a new value and as an alternative to iterating through the Values
property to locate a value in your code . For example, instead of this:

Hashtable ages = new Hashtable();
ages.Add("John", 42);

you can use this:

Hashtable ages = new Hashtable();
ages["John"] = 42;

n Indexers can be overloaded (just like methods), whereas arrays cannot:

public Name this [PhoneNumber number] { ... }
public PhoneNumber this [Name name] { ... }

n Indexers cannot be used as ref or out parameters, whereas array elements can:

IntBits bits; // bits contains an indexer
Method(ref bits[1]); // compile-time error

Properties, .Arrays, .and .Indexers
It is possible for a property to return an array, but remember that arrays are reference
types, so exposing an array as a property makes it possible to accidentally overwrite a
lot of data . Look at the following structure that exposes an array property named Data:

struct Wrapper
{
 private int[] data;
 ...
 public int[] Data
 {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 16 Using Indexers 321

 get { return this.data; }
 set { this.data = value; }
 }
}

Now consider the following code that uses this property:

Wrapper wrap = new Wrapper();
...
int[] myData = wrap.Data;
myData[0]++;
myData[1]++;

This looks pretty innocuous . However, because arrays are reference types, the variable
myData refers to the same object as the private data variable in the Wrapper structure .
Any changes you make to elements in myData are made to the data array; the expres-
sion myData[0]++ has exactly the same effect as data[0]++ . If this is not the intention,
you should use the Clone method in the get and set accessors of the Data property to
return a copy of the data array, or make a copy of the value being set, as shown here .
(The Clone method returns an object, which you must cast to an integer array .)

struct Wrapper
{
 private int[] data;
 ...
 public int[] Data
 {
 get { return this.data.Clone() as int[]; }
 set { this.data = value.Clone() as int[]; }
 }
}

However, this approach can become very messy and expensive in terms of memory
use . Indexers provide a natural solution to this problem—don’t expose the entire array
as a property; just make its individual elements available through an indexer:

struct Wrapper
{
 private int[] data;
 ...
 public int this [int i]
 {
 get { return this.data[i]; }
 set { this.data[i] = value; }
 }
}

The following code uses the indexer in a similar manner to the property shown earlier:

Wrapper wrap = new Wrapper();
...
int[] myData = new int[2];
myData[0] = wrap[0];

http://lib.ommolketab.ir
http//lib.ommolketab.ir

322 Part III Creating Components

myData[1] = wrap[1];
myData[0]++;
myData[1]++;

This time, incrementing the values in the MyData array has no effect on the original
 array in the Wrapper object . If you really want to modify the data in the Wrapper
 object, you must write statements such as this:

wrap[0]++;

This is much clearer, and safer!

Indexers .in .Interfaces
You can declare indexers in an interface . To do this, specify the get keyword, the set keyword,
or both, but replace the body of the get or set accessor with a semicolon . Any class or struc-
ture that implements the interface must implement the indexer accessors declared in the
interface . For example:

interface IRawInt
{
 bool this [int index] { get; set; }
}

struct RawInt : IRawInt
{
 ...
 public bool this [int index]
 {
 get { ... }
 set { ... }
 }
 ...
}

If you implement the interface indexer in a class, you can declare the indexer implementa-
tions as virtual . This allows further derived classes to override the get and set accessors . For
example:

class RawInt : IRawInt
{
 ...
 public virtual bool this [int index]
 {
 get { ... }
 set { ... }
 }
 ...
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 16 Using Indexers 323

You can also choose to implement an indexer by using the explicit interface implementation
syntax covered in Chapter 12, “Working with Inheritance .” An explicit implementation of an
indexer is nonpublic and nonvirtual (and so cannot be overridden) . For example:

struct RawInt : IRawInt
{
 ...
 bool IRawInt.this [int index]
 {
 get { ... }
 set { ... }
 }
 ...
}

Using .Indexers .in .a .Windows .Application
In the following exercise, you will examine a simple phone book application and complete its
implementation . You will write two indexers in the PhoneBook class: one that accepts a Name
parameter and returns a PhoneNumber and another that accepts a PhoneNumber parameter
and returns a Name . (The Name and PhoneNumber structures have already been written .)
You will also need to call these indexers from the correct places in the program .

Familiarize yourself with the application

 . 1 . . Start Microsoft Visual Studio 2010 if it is not already running .

 . 2 . . Open the Indexers project, located in the \Microsoft Press\Visual CSharp Step By Step\
Chapter 16\Indexers folder in your Documents folder .

This is a Windows Presentation Foundation (WPF) application that enables a user to
search for the telephone number for a contact and also find the name of a contact that
matches a given telephone number .

 . 3 . . On the Debug menu, click Start Without Debugging .

The project builds and runs . A form appears, displaying two empty text boxes labeled
Name and Phone Number . The form also contains three buttons—one to add a name/
phone number pair to a list of names and phone numbers held by the application,
one to find a phone number when given a name, and one to find a name when given
a phone number . These buttons currently do nothing . Your task is to complete the
 application so that these buttons work .

 . 4 . . Close the form, and return to Visual Studio 2010 .

 . 5 . . Display the Name .cs file in the Code and Text Editor window . Examine the Name
 structure . Its purpose is to act as a holder for names .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

324 Part III Creating Components

The name is provided as a string to the constructor . The name can be retrieved
by using the read-only string property named Text . (The Equals and GetHashCode
 methods are used for comparing Names when searching through an array of Name
values—you can ignore them for now .)

 . 6 . . Display the PhoneNumber .cs file in the Code and Text Editor window, and examine the
PhoneNumber structure . It is similar to the Name structure .

 . 7 . . Display the PhoneBook .cs file in the Code and Text Editor window, and examine the
PhoneBook class .

This class contains two private arrays: an array of Name values named names, and an
array of PhoneNumber values named phoneNumbers . The PhoneBook class also con-
tains an Add method that adds a phone number and name to the phone book . This
method is called when the user clicks the Add button on the form . The enlargeIfFull
method is called by Add to check whether the arrays are full when the user adds
 another entry . This method creates two new bigger arrays, copies the contents of the
existing arrays to them, and then discards the old arrays .

Write the indexers

 . 1 . . In the PhoneBook .cs file, add a public read-only indexer to the PhoneBook class, as
shown in bold in the following code . The indexer should return a Name and take a
PhoneNumber item as its index . Leave the body of the get accessor blank .

The indexer should look like this:

sealed class PhoneBook
{
 ...
 public Name this [PhoneNumber number]
 {
 get
 {
 }
 }
 ...
}

 . 2 . . Implement the get accessor as shown in bold in the following code . The purpose of
the accessor is to find the name that matches the specified phone number . To do this,
you need to call the static IndexOf method of the Array class . The IndexOf method
performs a search through an array, returning the index of the first item in the array
that matches the specified value . The first argument to IndexOf is the array to search
through (phoneNumbers) . The second argument to IndexOf is the item you are search-
ing for . IndexOf returns the integer index of the element if it finds it; otherwise, IndexOf
returns –1 . If the indexer finds the phone number, it should return it; otherwise, it
should return an empty Name value . (Note that Name is a structure and so the default
constructor sets its private name field to null .)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 16 Using Indexers 325

sealed class PhoneBook
{
 ...
 public Name this [PhoneNumber number]
 {
 get
 {
 int i = Array.IndexOf(this.phoneNumbers, number);
 if (i != -1)
 {
 return this.names[i];
 }
 else
 {
 return new Name();
 }
 }
 }
 ...
}

 . 3 . . Add a second public read-only indexer to the PhoneBook class that returns a
PhoneNumber and accepts a single Name parameter . Implement this indexer in the
same way as the first one . (Again note that PhoneNumber is a structure and therefore
always has a default constructor .)

The second indexer should look like this:

sealed class PhoneBook
{
 ...
 public PhoneNumber this [Name name]
 {
 get
 {
 int i = Array.IndexOf(this.names, name);
 if (i != -1)
 {
 return this.phoneNumbers[i];
 }
 else
 {
 return new PhoneNumber();
 }
 }
 }
 ...
}

Notice that these overloaded indexers can coexist because they return different types,
which means that their signatures are different . If the Name and PhoneNumber struc-
tures were replaced by simple strings (which they wrap), the overloads would have the
same signature and the class would not compile .

 . 4 . . On the Build menu, click Build Solution . Correct any syntax errors, and then rebuild if
necessary .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

326 Part III Creating Components

Call the indexers

 . 1 . . Display the MainWindow .xaml .cs file in the Code and Text Editor window, and then
 locate the findPhoneClick method .

This method is called when the Search by Name button is clicked . This method is cur-
rently empty . Add the code shown in bold in the following example to perform these
tasks:

 . 1 .1 . . Read the value of the Text property from the name text box on the form . This is a
string containing the contact name that the user has typed in .

 . 1 .2 . . If the string is not empty, search for the phone number corresponding to that
name in the PhoneBook by using the indexer . (Notice that the MainWindow class
contains a private PhoneBook field named phoneBook .) Construct a Name object
from the string, and pass it as the parameter to the PhoneBook indexer .

 . 1 .3 . . Write the Text property of the PhoneNumber structure returned by the indexer to
the phoneNumber text box on the form .

The findPhoneClick method should look like this:

private void findPhoneClick(object sender, RoutedEventArgs e)
{
 string text = name.Text;
 if (!String.IsNullOrEmpty(text))
 {
 Name personsName = new Name(text);
 PhoneNumber personsPhoneNumber = this.phoneBook[personsName];
 phoneNumber.Text = personsPhoneNumber.Text;
 }
}

Tip Notice the use of the static String method IsNullOrEmpty to determine whether a
string is empty or contains a null value . This is the preferred method for testing whether a
string contains a value . It returns true if the string has a non-null value and false otherwise .

 . 2 . . Locate the findNameClick method in the MainWindow .xaml .cs file . It is below the
 findPhoneClick method .

The findName_Click method is called when the Search by Phone button is clicked . This
method is currently empty, so you need to implement it as follows . (The code is shown
in bold in the following example .)

 . 2 .1 . . Read the value of the Text property from the phoneNumber text box on the form .
This is a string containing the phone number that the user has typed .

 . 2 .2 . . If the string is not empty, search for the name corresponding to that phone
 number in the PhoneBook by using the indexer .

 . 2 .3 . . Write the Text property of the Name structure returned by the indexer to the
name text box on the form .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 16 Using Indexers 327

The completed method should look like this:

private void findNameClick(object sender, RoutedEventArgs e)
{
 string text = phoneNumber.Text;
 if (!String.IsNullOrEmpty(text))
 {
 PhoneNumber personsPhoneNumber = new PhoneNumber(text);
 Name personsName = this.phoneBook[personsPhoneNumber];
 name.Text = personsName.Text;
 }
}

 . 3 . . On the Build menu, click Build Solution . Correct any errors that occur .

Run the application

 . 1 . . On the Debug menu, click Start Without Debugging .

 . 2 . . Type your name and phone number in the text boxes, and then click Add .

When you click the Add button, the Add method stores the information in the phone
book and clears the text boxes so that they are ready to perform a search .

 . 3 . . Repeat step 2 several times with some different names and phone numbers so that
the phone book contains a selection of entries . Note that the application performs no
checking of the names and telephone numbers that you enter, and you can input the
same name and telephone number more than once . To avoid confusion, please make
sure that you provide different names and telephone numbers .

 . 4 . . Type a name that you used in step 2 into the Name text box, and then click Search by
Name .

The phone number you added for this contact in step 2 is retrieved from the phone
book and is displayed in the Phone Number text box .

 . 5 . . Type a phone number for a different contact in the Phone Number text box, and then
click Search by Phone .

The contact name is retrieved from the phone book and is displayed in the Name text
box .

 . 6 . . Type a name that you did not enter in the phone book into the Name text box, and
then click Search by Name .

This time the Phone Number text box is empty, indicating that the name could not be
found in the phone book .

 . 7 . . Close the form, and return to Visual Studio 2010 .

In this chapter, you have seen how to use indexers to provide array-like access to data in a
class . You have learned how to create indexers that can take an index and return the corre-
sponding value by using logic defined by the get accessor, and you have seen how to use the
set accessor with an index to populate a value in an indexer .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

328 Part III Creating Components

n If you want to continue to the next chapter

Keep Visual Studio 2010 running, and turn to Chapter 17 .

n If you want to exit Visual Studio 2010 now

On the File menu, click Exit . If you see a Save dialog box, click Yes and save the project .

Chapter .16 .Quick .Reference
To Do this

Create an indexer for a class or
structure

Declare the type of the indexer, followed by the keyword this and then
the indexer arguments in square brackets . The body of the indexer can
contain a get and/or set accessor . For example:

struct RawInt
{
 ...
 public bool this [int index]
 {
 get { ... }
 set { ... }
 }
 ...
}

Define an indexer in an interface Define an indexer with the get and/or set keywords . For example:

interface IRawInt
{
 bool this [int index] { get; set; }
}

Implement an interface indexer
in a class or structure

In the class or structure that implements the interface, define the indexer
and implement the accessors . For example:

struct RawInt : IRawInt
{
 ...
 public bool this [int index]
 {
 get { ... }
 set { ... }
 }
 ...
}

Implement an indexer defined
by an interface by using explicit
interface implementation in a
class or structure

In the class or structure that implements the interface, specify the
 interface, but do not specify the indexer accessibility . For example:

struct RawInt : IRawInt
{
 ...
 bool IRawInt.this [int index]
 {
 get { ... }
 set { ... }
 }
 ...
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 . . 329

Chapter 17

Interrupting Program Flow and
Handling Events

After completing this chapter, you will be able to:

n Declare a delegate type to create an abstraction of a method signature .

n Create an instance of a delegate to refer to a specific method .

n Call a method through a delegate .

n Define a lambda expression to specify the code for a delegate .

n Declare an event field .

n Handle an event by using a delegate .

n Raise an event .

Much of the code you have written in the various exercises in this book has assumed that
statements execute sequentially . Although this is a common scenario, you will find that it
is sometimes necessary to interrupt the current flow of execution and perform another,
more important, task . When the task has completed, the program can continue where it
left off . The classic example of this style of program is the Microsoft Windows Presentation
Foundation (WPF) form . A WPF form displays controls such as buttons and text boxes . When
you click a button or type text in a text box, you expect the form to respond immediately .
The application has to temporarily stop what it is doing and handle your input . This style of
operation applies not just to graphical user interfaces but to any application where an opera-
tion must be performed urgently—shutting down the reactor in a nuclear power plant if it is
getting too hot, for example .

To handle this type of application, the runtime has to provide two things: a means of
 indicating that something urgent has happened and a way of specifying the code that should
be run when it happens . This is the purpose of events and delegates .

We start by looking at delegates .

Declaring .and .Using .Delegates
A delegate is a pointer to a method . You can call a method through a delegate by specifying
the name of the delegate . When you invoke a delegate, the runtime actually executes the
method to which the delegate refers . You can dynamically change the method that a dele-
gate references so that code that calls a delegate might actually run a different method each
time it executes . The best way to understand delegates is to see them in action, so let’s work
through an example .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

330 Part III Creating Components

Note If you are familiar with C++, a delegate is similar to a function pointer . However, delegates
are type-safe; you can make a delegate refer to only a method that matches the signature of the
delegate, and you cannot call a delegate that does not refer to a valid method .

The Automated Factory Scenario
Suppose you are writing the control systems for an automated factory . The factory contains
a large number of different machines, each performing distinct tasks in the production of
the articles manufactured by the factory—shaping and folding metal sheets, welding sheets
together, painting sheets, and so on . Each machine was built and installed by a specialist ven-
dor . The machines are all computer controlled, and each vendor has provided a set of APIs
that you can use to control its machine . Your task is to integrate the different systems used
by the machines into a single control program . One aspect on which you have decided to
concentrate is to provide a means of shutting down all the machines, quickly if needed!

Note The term API stands for application programming interface . It is a method, or set of
methods, exposed by a piece of software that you can use to control that software . You can think
of the Microsoft .NET Framework as a set of APIs because it provides methods that you can use
to control the .NET common language runtime and the Microsoft Windows operating system .

Each machine has its own unique computer-controlled process (and API) for shutting down
safely . These are summarized here:

StopFolding(); // Folding and shaping machine
FinishWelding(); // Welding machine
PaintOff(); // Painting machine

Implementing the Factory Without Using Delegates
A simple approach to implementing the shutdown functionality in the control program
is as follows:

class Controller
{
 // Fields representing the different machines
 private FoldingMachine folder;
 private WeldingMachine welder;
 private PaintingMachine painter;
 ...
 public void ShutDown()
 {
 folder.StopFolding();
 welder.FinishWelding();
 painter.PaintOff();
 }
 ...
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 17 Interrupting Program Flow and Handling Events 331

Although this approach works, it is not very extensible or flexible . If the factory buys a
new machine, you must modify this code; the Controller class and code for managing the
machines is tightly coupled .

Implementing the Factory by Using a Delegate
Although the names of each method are different, they all have the same “shape”: They take
no parameters, and they do not return a value . (We consider what happens if this isn’t the
case later, so bear with me!) The general format of each method, therefore, is this:

void methodName();

This is where a delegate is useful . A delegate that matches this shape can be used to refer to
any of the machinery shutdown methods . You declare a delegate like this:

delegate void stopMachineryDelegate();

Note the following points:

n Use the delegate keyword when declaring a delegate .

n A delegate defines the shape of the methods it can refer to . You specify the return
type (void in this example), a name for the delegate (stopMachineryDelegate), and any
 parameters . (There are none in this case .)

After you have defined the delegate, you can create an instance and make it refer to a
matching method by using the += compound assignment operator . You can do this in the
constructor of the controller class like this:

class Controller
{
 delegate void stopMachineryDelegate();
 private stopMachineryDelegate stopMachinery; // an instance of the delegate
 ...
 public Controller()
 {
 this.stopMachinery += folder.StopFolding;
 }
 ...
}

This syntax takes a bit of getting used to . You add the method to the delegate; you are not
actually calling the method at this point . The + operator is overloaded to have this new
meaning when used with delegates . (You will learn more about operator overloading in
Chapter 21, “Operator Overloading .”) Notice that you simply specify the method name and
do not include any parentheses or parameters .

It is safe to use the += operator on an uninitialized delegate . It will be initialized automati-
cally . Alternatively, you can also use the new keyword to initialize a delegate explicitly with a
single specific method, like this:

this.stopMachinery = new stopMachineryDelegate(folder.StopFolding);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

332 Part III Creating Components

You can call the method by invoking the delegate, like this:

public void ShutDown()
{
 this.stopMachinery();
 ...
}

You use the same syntax to invoke a delegate as you use to make a method call . If the
 method that the delegate refers to takes any parameters, you should specify them at this
time, between parentheses .

Note If you attempt to invoke a delegate that is uninitialized and does not refer to any
 methods, you will get a NullReferenceException .

The principal advantage of using a delegate is that it can refer to more than one method;
you simply use the += operator to add methods to the delegate, like this:

public Controller()
{
 this.stopMachinery += folder.StopFolding;
 this.stopMachinery += welder.FinishWelding;
 this.stopMachinery += painter.PaintOff;
}

Invoking this.stopMachinery() in the Shutdown method of the Controller class automatically
calls each of the methods in turn . The Shutdown method does not need to know how many
machines there are or what the method names are .

You can remove a method from a delegate by using the –= compound assignment operator:

this.stopMachinery -= folder.StopFolding;

The current scheme adds the machine methods to the delegate in the Controller constructor .
To make the Controller class totally independent of the various machines, you need to make
stopMachineryDelegate type public and supply a means of enabling classes outside Controller
to add methods to the delegate . You have several options:

n Make the delegate variable, stopMachinery, public:

public stopMachineryDelegate stopMachinery;

n Keep the stopMachinery delegate variable private, but provide a read/write property to
provide access to it:

public delegate void stopMachineryDelegate();
...
public stopMachineryDelegate StopMachinery
{
 get

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 17 Interrupting Program Flow and Handling Events 333

 {
 return this.stopMachinery;
 }

 set
 {
 this.stopMachinery = value;
 }
}

n Provide complete encapsulation by implementing separate Add and Remove methods .
The Add method takes a method as a parameter and adds it to the delegate, while
the Remove method removes the specified method from the delegate (notice that you
specify a method as a parameter by using a delegate type):

public void Add(stopMachineryDelegate stopMethod)
{
 this.stopMachinery += stopMethod;
}

public void Remove(stopMachineryDelegate stopMethod)
{
 this.stopMachinery -= stopMethod;
}

If you are an object-oriented purist, you will probably opt for the Add/Remove approach .
However, the others are viable alternatives that are frequently used, which is why they are
shown here .

Whichever technique you choose, you should remove the code that adds the machine
 methods to the delegate from the Controller constructor . You can then instantiate a
Controller and objects representing the other machines like this (this example uses the
Add/Remove approach):

Controller control = new Controller();
FoldingMachine folder = new FoldingMachine();
WeldingMachine welder = new WeldingMachine();
PaintingMachine painter = new PaintingMachine();
...
control.Add(folder.StopFolding);
control.Add(welder.FinishWelding);
control.Add(painter.PaintOff);
...
control.ShutDown();
...

Using Delegates
In the following exercise, you will complete an application that implements a world clock .
The application contains a WPF form that displays the local time, as well as the current time
in London, New York, and Tokyo . Each of the displays is controlled by a clock object . Each of
the clocks are implemented differently, to simulate the earlier scenario of controlling a set of

http://lib.ommolketab.ir
http//lib.ommolketab.ir

334 Part III Creating Components

independent machines operating in a factory . However, each clock exposes a pair of methods
that enable you to start and stop the clock . When you start a clock, its display is updated
 every second with the time . When you stop a clock, the display is no longer updated . You will
add functionality to the application that starts and stops the clocks by using delegates .

Complete the World Clock application

 . 1 . . Start Microsoft Visual Studio 2010 if it is not already running .

 . 2 . . Open the Clock project located in the \Microsoft Press\Visual CSharp Step By Step\
Chapter 17\Clock folder in your Documents folder .

 . 3 . . On the Debug menu, click Start Without Debugging .

The project builds and runs . A form appears, displaying the local time as well as
the times in London, New York, and Tokyo . The clock displays the current times as
“00:00:00” .

 . 4 . . Click Start to start the clocks .

Nothing happens . The Start method has not been written yet, and the Stop button is
disabled by default . Your task is to implement the code behind these buttons .

 . 5 . . Close the form, and return to the Visual Studio 2010 environment .

 . 6 . . Examine the list of files in Solution Explorer . The project contains a number of files,
including AmericanClock .cs, EuropeanClock .cs, JapaneseClock .cs, and LocalClock .cs .
These files contain the classes that implement the different clocks . You don’t need to be
concerned with how these clocks work just yet (although you are welcome to examine
the code) . However, the key information that you need is the names of the methods
that start and stop each type of clock . The following list summarizes them by clock type
(they are all very similar):

o . AmericanClock . The start method is called StartAmericanClock, and the stop
method is called StopAmericanClock . Neither method takes any parameters, and
both methods have a void return type .

o . EuropeanClock . The start method is called StartEuropeanClock, and the stop
method is called StopEuropeanClock . Neither method takes any parameters, and
both methods have a void return type .

o . JapaneseClock . The start method is called StartJapaneseClock, and the stop
method is called StopJapaneseClock . Neither method takes any parameters, and
both methods have a void return type .

o . LocalClock . The start method is called StartLocalClock, and the stop method is
called StopLocalClock . Neither method takes any parameters, and both methods
have a void return type .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 17 Interrupting Program Flow and Handling Events 335

 . 7 . . Open the ClockWindow .xaml .cs file in the Code and Text Editor window . This is the code
for the WPF form, and it looks like this:

public partial class ClockWindow : Window
{
 private LocalClock localClock = null;
 private EuropeanClock londonClock = null;
 private AmericanClock newYorkClock = null;
 private JapaneseClock tokyoClock = null;

 public ClockWindow()
 {
 InitializeComponent();
 localClock = new LocalClock(localTimeDisplay);
 londonClock = new EuropeanClock(londonTimeDisplay);
 newYorkClock = new AmericanClock(newYorkTimeDisplay);
 tokyoClock = new JapaneseClock(tokyoTimeDisplay);
 }

 private void startClick(object sender, RoutedEventArgs e)
 {

 }

 private void stopClick(object sender, RoutedEventArgs e)
 {

 }
}

The four private fields represent the four clock objects used by the application . The
constructor initializes each of these clock objects . The parameter to the constructor in
each case specifies the text field on the form that the clock object will update when it
starts running . The startClick method runs when the user clicks the Start button on the
form, and its purpose is to start each of the clocks . Similarly, the stopClick method runs
when the user clicks the Stop button and is intended to stop the clocks . You can see
that both of these methods are currently empty .

A naïve approach would simply be to call the appropriate start methods for each
clock in the startClick method and the stop methods for each clock in the stopClick
method . However, as you saw earlier in this chapter, that approach ties the applica-
tion very closely to the way in which each clock is implemented and is not very exten-
sible . Instead, you are going to create a Controller object to start and stop the clocks,
and you will use a pair of delegates to specify the methods that the Controller object
should use .

 . 8 . . On the Project menu, click Add Class . In the Add New Item - Delegates dialog box, in
the Name text box, type Controller .cs and then click Add .

Visual Studio creates the Controller class and displays the Controller .cs file in the Code
and Text Editor window .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

336 Part III Creating Components

 . 9 . . In the Controller class, add the delegate types startClocksDelegate and
 stopClocksDelegate, as shown below in bold . These delegate types can refer to methods
that take no parameters and that have a void return type . This signature and return
type matches the various start and stop methods for the clock classes .

class Controller
{
 public delegate void StartClocksDelegate();
 public delegate void StopClocksDelegate();
}

 . 10 . . Add two public delegates called StartClocks and StopClocks to the Controller class by
using these delegate types, as shown next in bold .

class Controller
{
 public delegate void StartClocksDelegate();
 public delegate void StopClocksDelegate();

 public StartClocksDelegate StartClocks;
 public StopClocksDelegate StopClocks;
}

 . 11 . . Add the StartClocksRunning method to the Controller class . This method simply invokes
the StartClocks delegate . Any methods attached to this delegate will be run .

class Controller
{
 ...
 public void StartClocksRunning()
 {
 this.StartClocks();
 }
}

 . 12 . . Add the StopClocksRunning method to the Controller class . This method is similar to the
StartClocksRunning method, except that it invokes the StopClocks delegate .

class Controller
{
 ...
 public void StopClocksRunning()
 {
 this.StopClocks();
 }
}

 . 13 . . Return to the ClockWindow .xaml .cs file in the Code and Text Editor window . Add a
 private Controller variable called controller to the ClockWindow class and instantiate it,
like this:

public partial class ClockWindow : Window
{
 ...
 private Controller controller = new Controller();
 ...
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 17 Interrupting Program Flow and Handling Events 337

 . 14 . . In the ClockWindow constructor, add the statements shown next in bold . These
 statements add the methods that start and stop the clocks to the delegates exposed by
the Controller class .

public ClockWindow()
{
 InitializeComponent();
 localClock = new LocalClock(localTimeDisplay);
 londonClock = new EuropeanClock(londonTimeDisplay);
 newYorkClock = new AmericanClock(newYorkTimeDisplay);
 tokyoClock = new JapaneseClock(tokyoTimeDisplay);

 controller.StartClocks += localClock.StartLocalClock;
 controller.StartClocks += londonClock.StartEuropeanClock;
 controller.StartClocks += newYorkClock.StartAmericanClock;
 controller.StartClocks += tokyoClock.StartJapaneseClock;

 controller.StopClocks += localClock.StopLocalClock;
 controller.StopClocks += londonClock.StopEuropeanClock;
 controller.StopClocks += newYorkClock.StopAmericanClock;
 controller.StopClocks += tokyoClock.StopJapaneseClock;
}

 . 15 . . In the startClick method, invoke the StartClocks delegate of the controller object,
 disable the Start button, and enable the Stop button, like this:

private void startClick(object sender, RoutedEventArgs e)
{
 controller.StartClocks();
 start.IsEnabled = false;
 stop.IsEnabled = true;
}

Remember that when you invoke a delegate, all the methods attached to that delegate
run . In this case, the call to StartClocks will call the start method of each of the clocks .

Many WPF controls expose the Boolean property IsEnabled . By default, controls are
 enabled when you add them to a form . This means that you can click them and they
will do something . However, in this application, the IsEnabled property of the Stop but-
ton is set to false because it does not make sense to try and stop the clocks until they
have been started . The last two statements in this method disable the Start button and
enable the Stop button .

 . 16 . . In the stopClick method, call the StopClocks delegate of the controller object, enable the
Start button, and disable the Stop button:

private void stopClick(object sender, RoutedEventArgs e)
{
 controller.StopClocks();
 start.IsEnabled = true;
 stop.IsEnabled = false;
}

 . 17 . . On the Debug menu, click Start Without Debugging .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

338 Part III Creating Components

 . 18 . . On the WPF form, click Start .

The form now displays the correct times and updates every second, as shown in the
 following image . (I am based in the UK, so my local time is the same as London time .)

 . 19 . . Click Stop .

The display stops updating the clocks .

 . 20 . . Click Start again .

The display resumes processing, corrects the time, and updates the time every second .

 . 21 . . Close the form, and return to Visual Studio 2010 .

Lambda .Expressions .and .Delegates
All the examples of adding a method to a delegate that you have seen so far use the
 method’s name . For example, returning to the automated factory scenario described earlier,
you add the StopFolding method of the folder object to the stopMachinery delegate like this:

this.stopMachinery += folder.StopFolding;

This approach is very useful if there is a convenient method that matches the signature of the
delegate, but what if this is not the case? Suppose that the StopFolding method actually had
the following signature:

void StopFolding(int shutDownTime); // Shut down in the specified number of seconds

This signature is now different from that of the FinishWelding and PaintOff methods, and
therefore you cannot use the same delegate to handle all three methods . So, what do
you do?

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 17 Interrupting Program Flow and Handling Events 339

Creating a Method Adapter
One way around this problem is to create another method that calls StopFolding but that
takes no parameters itself, like this:

void FinishFolding()
{
 folder.StopFolding(0); // Shut down immediately
}

You can then add the FinishFolding method to the stopMachinery delegate in place of the
StopFolding method, using the same syntax as before:

this.stopMachinery += folder.FinishFolding;

When the stopMachinery delegate is invoked, it calls FinishFolding, which in turn calls the
StopFolding method, passing in the parameter of 0 .

Note The FinishFolding method is a classic example of an adapter: a method that converts (or
adapts) a method to give it a different signature . This pattern is very common and is one of the
set of patterns documented in the book Design Patterns: Elements of Reusable Object-Oriented
Software by Gamma, Helm, Johnson, and Vlissides (Addison-Wesley Professional, 1994) .

In many cases, adapter methods such as this are small, and it is easy to lose them in a sea of
methods, especially in a large class . Furthermore, apart from using it to adapt the StopFolding
method for use by the delegate, it is unlikely to be called elsewhere . C# provides lambda
 expressions for situations such as this .

Using a Lambda Expression as an Adapter
A lambda expression is an expression that returns a method . This sounds rather odd because
most expressions that you have met so far in C# actually return a value . If you are familiar
with functional programming languages such as Haskell, you are probably comfortable with
this concept . For the rest of you, fear not: lambda expressions are not particularly compli-
cated, and after you have gotten used to a new bit of syntax, you will see that they are very
useful .

You saw in Chapter 3, “Writing Methods and Applying Scope,” that a typical method consists
of four elements: a return type, a method name, a list of parameters, and a method body . A
lambda expression contains two of these elements: a list of parameters and a method body .
Lambda expressions do not define a method name, and the return type (if any) is inferred
from the context in which the lambda expression is used . In the StopFolding method of the
FoldingMachine class, the problem is that this method now takes a parameter, so you need to
create an adapter that takes no parameters that you can add to the stopMachinery delegate .
You can use the following statement to do this:

this.stopMachinery += (() => { folder.StopFolding(0); });

http://lib.ommolketab.ir
http//lib.ommolketab.ir

340 Part III Creating Components

All of the text to the right of the += operator is a lambda expression, which defines the
method to be added to the stopMachinery delegate . It has the following syntactic items:

n A list of parameters enclosed in parentheses . As with a regular method, if the method
you are defining (as in the preceding example) takes no parameters, you must still
 provide the parentheses .

n The => operator, which indicates to the C# compiler that this is a lambda expression .

n The body of the method . The example shown here is very simple, containing a single
statement . However, a lambda expression can contain multiple statements, and you can
format it in whatever way you feel is most readable . Just remember to add a semicolon
after each statement as you would in an ordinary method .

Strictly speaking, the body of a lambda expression can be a method body containing
 multiple statements, or it can actually be a single expression . If the body of a lambda
 expression contains only a single expression, you can omit the braces and the semicolon
(but you still need a semicolon to complete the entire statement), like this:

this.stopMachinery += (() => folder.StopFolding(0));

When you invoke the stopMachinery delegate, it will run the code defined by the lambda
expression .

The Form of Lambda Expressions
Lambda expressions can take a number of subtly different forms . Lambda expressions were
originally part of a mathematical notation called the Lambda Calculus, which provides a no-
tation for describing functions . (You can think of a function as a method that returns a value .)
Although the C# language has extended the syntax and semantics of the Lambda Calculus in
its implementation of lambda expressions, many of the original principles still apply . Here are
some examples showing the different forms of lambda expression available in C#:

x => x * x // A simple expression that returns the square of its parameter
 // The type of parameter x is inferred from the context.

x => { return x * x ; } // Semantically the same as the preceding
 // expression, but using a C# statement block as
 // a body rather than a simple expression

(int x) => x / 2 // A simple expression that returns the value of the
 // parameter divided by 2
 // The type of parameter x is stated explicitly.

() => folder.StopFolding(0) // Calling a method
 // The expression takes no parameters.
 // The expression might or might not
 // return a value.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 17 Interrupting Program Flow and Handling Events 341

(x, y) => { x++; return x / y; } // Multiple parameters; the compiler
 // infers the parameter types.
 // The parameter x is passed by value, so
 // the effect of the ++ operation is
 // local to the expression.

(ref int x, int y) { x++; return x / y; } // Multiple parameters
 // with explicit types
 // Parameter x is passed by
 // reference, so the effect of
 // the ++ operation is permanent.

To summarize, here are some features of lambda expressions that you should be aware of:

n If a lambda expression takes parameters, you specify them in the parentheses to the
left of the => operator . You can omit the types of parameters, and the C# compiler will
infer their types from the context of the lambda expression . You can pass parameters
by reference (by using the ref keyword) if you want the lambda expression to be able to
change their values other than locally, but this is not recommended .

n Lambda expressions can return values, but the return type must match that of the
 delegate they are being added to .

n The body of a lambda expression can be a simple expression or a block of C# code
made up of multiple statements, method calls, variable definitions, and other code
items .

n Variables defined in a lambda expression method go out of scope when the method
finishes .

n A lambda expression can access and modify all variables outside the lambda expression
that are in scope when the lambda expression is defined . Be very careful with this
feature!

You will learn more about lambda expressions and see further examples that take parameters
and return values in later chapters in this book .

Lambda .Expressions .and .Anonymous .Methods
Lambda expressions are a new addition to the C# language in version 3 .0 . C# version
2 .0 introduced anonymous methods that can perform a similar task but that are not as
flexible . Anonymous methods were added primarily so that you can define delegates
without having to create a named method; you simply provide the definition of the
method body in place of the method name, like this:

this.stopMachinery += delegate { folder.StopFolding(0); };

You can also pass an anonymous method as a parameter in place of a delegate, like
this:

control.Add(delegate { folder.StopFolding(0); });

http://lib.ommolketab.ir
http//lib.ommolketab.ir

342 Part III Creating Components

Notice that whenever you introduce an anonymous method, you must prefix it with the
delegate keyword . Also, any parameters needed are specified in braces following the
delegate keyword . For example:

control.Add(delegate(int param1, string param2) { /* code that uses param1 and param2
*/ ... });

After you are used to them, you will notice that lambda expressions provide a more
succinct syntax than anonymous methods do and they pervade many of the more
 advanced aspects of C#, as you will see later in this book . Generally speaking, you
should use lambda expressions rather than anonymous methods in your code .

Enabling .Notifications .with .Events
You have now seen how to declare a delegate type, call a delegate, and create delegate
 instances . However, this is only half the story . Although by using delegates you can invoke
any number of methods indirectly, you still have to invoke the delegate explicitly . In many
cases, it would be useful to have the delegate run automatically when something signifi-
cant happens . For example, in the automated factory scenario, it could be vital to be able
to invoke the stopMachinery delegate and halt the equipment if the system detects that a
 machine is overheating .

The .NET Framework provides events, which you can use to define and trap significant actions
and arrange for a delegate to be called to handle the situation . Many classes in the .NET
Framework expose events . Most of the controls that you can place on a WPF form, and the
Windows class itself, use events so that you can run code when, for example, the user clicks a
button or types something in a field . You can also declare your own events .

Declaring an Event
You declare an event in a class intended to act as an event source . An event source is usually
a class that monitors its environment and raises an event when something significant hap-
pens . In the automated factory, an event source could be a class that monitors the tempera-
ture of each machine . The temperature-monitoring class would raise a “machine overheating”
event if it detects that a machine has exceeded its thermal radiation boundary (that is, it has
become too hot) . An event maintains a list of methods to call when it is raised . These meth-
ods are sometimes referred to as subscribers . These methods should be prepared to handle
the “machine overheating” event and take the necessary corrective action: shut down the
machines .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 17 Interrupting Program Flow and Handling Events 343

You declare an event similarly to how you declare a field . However, because events are
 intended to be used with delegates, the type of an event must be a delegate, and you must
prefix the declaration with the event keyword . Use the following syntax to declare an event:

event delegateTypeName eventName

As an example, here’s the StopMachineryDelegate delegate from the automated factory . It
has been relocated to a new class called TemperatureMonitor, which provides an interface to
the various electronic probes monitoring the temperature of the equipment (this is a more
logical place for the event than the Controller class is):

class TemperatureMonitor
{
 public delegate void StopMachineryDelegate();
 ...
}

You can define the MachineOverheating event, which will invoke the stopMachineryDelegate,
like this:

class TemperatureMonitor
{
 public delegate void StopMachineryDelegate();
 public event StopMachineryDelegate MachineOverheating;
 ...
}

The logic (not shown) in the TemperatureMonitor class raises the MachineOverheating event
as necessary . You will see how to raise an event in the upcoming “Raising an Event” section .
Also, you add methods to an event (a process known as subscribing to the event) rather than
adding them to the delegate that the event is based on . You will look at this aspect of events
next .

Subscribing to an Event
Like delegates, events come ready-made with a += operator . You subscribe to an event by
using this += operator . In the automated factory, the software controlling each machine
can arrange for the shutdown methods to be called when the MachineOverheating event is
raised, like this:

class TemperatureMonitor
{
 public delegate void StopMachineryDelegate();
 public event StopMachineryDelegate MachineOverheating;
 ...
}
...
TemperatureMonitor tempMonitor = new TemperatureMonitor();
...
tempMonitor.MachineOverheating += (() => { folder.StopFolding(0); });

http://lib.ommolketab.ir
http//lib.ommolketab.ir

344 Part III Creating Components

tempMonitor.MachineOverheating += welder.FinishWelding;
tempMonitor.MachineOverheating += painter.PaintOff;

Notice that the syntax is the same as for adding a method to a delegate . You can even
 subscribe by using a lambda expression . When the tempMonitor.MachineOverheating event
runs, it will call all the subscribing methods and shut down the machines .

Unsubscribing from an Event
Knowing that you use the += operator to attach a delegate to an event, you can probably
guess that you use the –= operator to detach a delegate from an event . Calling the
–= operator removes the method from the event’s internal delegate collection . This action
is often referred to as unsubscribing from the event .

Raising an Event
An event can be raised, just like a delegate, by calling it like a method . When you raise
an event, all the attached delegates are called in sequence . For example, here’s the
TemperatureMonitor class with a private Notify method that raises the MachineOverheating
event:

class TemperatureMonitor
{
 public delegate void StopMachineryDelegate();
 public event StopMachineryDelegate MachineOverheating;
 ...
 private void Notify()
 {
 if (this.MachineOverheating != null)
 {
 this.MachineOverheating();
 }
 }
 ...
}

This is a common idiom . The null check is necessary because an event field is implicitly null
and only becomes non-null when a method subscribes to it by using the += operator . If you
try to raise a null event, you will get a NullReferenceException . If the delegate defining the
event expects any parameters, the appropriate arguments must be provided when you raise
the event . You will see some examples of this later .

Important Events have a very useful built-in security feature . A public event (such
as MachineOverheating) can be raised only by methods in the class that defines it (the
TemperatureMonitor class) . Any attempt to raise the method outside the class results in a
 compiler error .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 17 Interrupting Program Flow and Handling Events 345

Understanding .WPF .User .Interface .Events
As mentioned earlier, the .NET Framework classes and controls used for building graphi-
cal user interfaces (GUIs) employ events extensively . You’ll see and use GUI events on many
occasions in the second half of this book . For example, the WPF Button class derives from
the ButtonBase class, inheriting a public event called Click of type RoutedEventHandler . The
RoutedEventHandler delegate expects two parameters: a reference to the object that caused
the event to be raised and a RoutedEventArgs object that contains additional information
about the event:

public delegate void RoutedEventHandler(Object sender, RoutedEventArgs e);

The Button class looks like this:

public class ButtonBase: ...
{
 public event RoutedEventHandler Click;
 ...
}

public class Button: ButtonBase
{
 ...
}

The Button class automatically raises the Click event when you click the button on-screen .
(How this actually happens is beyond the scope of this book .) This arrangement makes it easy
to create a delegate for a chosen method and attach that delegate to the required event . The
following example shows the code for a WPF form that contains a button called okay and the
code to connect the Click event of the okay button to the okayClick method:

public partial class Example : System.Windows.Window, System.Windows.Markup.
IComponentConnector
{
 internal System.Windows.Controls.Button okay;
 ...
 void System.Windows.Markup.IComponentConnector.Connect(...)
 {
 ...
 this.okay.Click += new System.Windows.RoutedEventHandler(this.okayClick);
 ...
 }
 ...
}

This code is usually hidden from you . When you use the Design View window in Visual
Studio 2010 and set the Click property of the okay button to okayClick in the Extensible
Application Markup Language (XAML) description of the form, Visual Studio 2010 gener-
ates this code for you . All you have to do is write your application logic in the event handling

http://lib.ommolketab.ir
http//lib.ommolketab.ir

346 Part III Creating Components

method, okayClick, in the part of the code that you do have access to, in the Example .xaml .cs
file in this case:

public partial class Example : System.Windows.Window
{
 ...
 private void okayClick(object sender, RoutedEventArgs args)
 {
 // your code to handle the Click event
 }
}

The events that the various GUI controls generate always follow the same pattern . The events
are of a delegate type whose signature has a void return type and two arguments . The first
argument is always the sender (the source) of the event, and the second argument is always
an EventArgs argument (or a class derived from EventArgs) .

With the sender argument, you can reuse a single method for multiple events . The delegated
method can examine the sender argument and respond accordingly . For example, you can
use the same method to subscribe to the Click event for two buttons . (You add the same
method to two different events .) When the event is raised, the code in the method can
 examine the sender argument to ascertain which button was clicked .

You learn more about how to handle events for WPF controls in Chapter 22, “Introducing
Windows Presentation Foundation .”

Using Events
In the previous exercise, you completed a World Clock application that displays the local time
as well as the time in London, New York, and Tokyo . You used delegates to start and stop the
clocks . You might recall that each of the clocks had a constructor that expected the name of
the field on the form in which to display the time . However, a clock should really concentrate
on being a clock and should not necessarily be concerned with how to display the time—this
functionality is best left to the logic in the WPF form itself . In this exercise, you will modify
the local clock to raise an event every second . You will subscribe to this event in the WPF
form and invoke an event handler that displays the new local time .

Modify the World Clock application to use events

 . 1 . . Return to the Visual Studio 2010 window displaying the Clock project .

 . 2 . . Display the LocalClock .cs file in the Code and Text Editor window .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 17 Interrupting Program Flow and Handling Events 347

This file contains the LocalClock class that implements the local clock . Here are key
 elements of this class:

o A DispatcherTimer object called ticker. The DispatcherTimer class is provided
as part of the .NET Framework . Its purpose is to raise events at specified time
intervals .

o A TextBox field called display . The constructor initializes this field with the TextBox
object passed in as the parameter . The LocalClock class sets the Text property of
this object to display the time in the RefreshTime method .

o A TimeZoneInfo object called timeZoneForThisClock . The TimeZoneInfo class is
also part of the .NET Framework . You use this class to obtain the time in a speci-
fied time zone . The constructor initializes this object to TimeZone.Local, which is
the local time zone for the computer running the application .

o The StartLocalClock method, which starts the DispatcherTimer running . The
DispatcherTimer class provides the Tick event, which you use to specify a method
to run each time a tick event occurs, and the Interval property, which you use to
specify how frequently Tick events occur . The code in the LocalClock class raises
an event every second . The Start method of the DispatcherTimer class actually
starts the timer running . Remember from the previous exercise that you called
this method by using the StartClocksDelegate delegate in the Controller class .

o The StopLocalClock method, which calls the Stop method of the DispatcherTimer
object . This stops the timer running, and it will not raise any more events until
you call the Start method again . You called this method in the previous exercise
by using the StopClocksDelegate in the Controller class .

o The OnTimedEvent method . The StartLocalClock method adds this method to
the Tick event of the DispatcherTimer object, so when a Tick event occurs, this
method runs . The parameters to this method are required by the definition of the
delegate used by the Tick event, but they are not used in this example so you can
ignore them . This method retrieves the current date and time by using the static
Now property of the DateTime class . It then converts the time retrieved to the lo-
cal time by using the TimeZoneInfo.ConvertTime method . The hours, minutes, and
seconds are extracted from the time, and they are passed as parameters to the
RefreshTime method .

Note It is not actually necessary to convert from the value returned by DateTime.Now
to local time because the value of DateTime.Now is expressed as local time by default .
However, this is good practice, and you can convert the value of DateTime.Now to the
time in any time zone by using this technique—you simply specify the target time zone
as the second parameter to the TimeZoneInfo.ConvertTime method . This is what the
AmericanClock, EuropeanClock, and JapaneseClock classes do .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

348 Part III Creating Components

o The RefreshTime method, which formats the hours, minutes, and seconds passed
in as parameters into a string and then displays this string in the TextBox refer-
enced by the display field .

 . 3 . . The purpose of this exercise is to remove the responsibility for displaying the time from
the LocalClock class, so comment out the definition of the display field:

class LocalClock
{
 ...
 // private TextBox display = null;
 ...
}

 . 4 . . Remove the parameter from the LocalClock constructor, and comment out the state-
ment that sets the display field with this parameter . The amended constructor should
look like this:

public LocalClock()
{
 this.timeZoneForThisClock = TimeZoneInfo.Local;
 // this.display = displayBox;
}

 . 5 . . Add a public delegate called DisplayTime to the LocalClock class, before the
 constructor . This delegate should specify a method that takes a string parameter and
that returns a void . The WPF form will provide a method that matches this delegate .
This method will update the time displayed on the form with the string passed in as
the parameter .

class LocalClock
{
 ...
 public delegate void DisplayTime(string time);
 ...
}

 . 6 . . Add a public event called LocalClockTick to the LocalClock class after the DisplayTime
delegate . This event should be based on the DisplayTime delegate .

class LocalClock
{
 ...
 public delegate void DisplayTime(string time);
 public event DisplayTime LocalClockTick;
 ...
}

 . 7 . . Locate the RefreshTime method at the end of the LocalClock class . This method cur-
rently sets the Text property of the display field with a formatted string containing the
current time . Change this method so that it raises the LocalClockTick event instead, and
passes the formatted string as the parameter to any methods that subscribe to this
event .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 17 Interrupting Program Flow and Handling Events 349

private void RefreshTime(int hh, int mm, int ss)
{
 if (this.LocalClockTick != null)
 {
 this.LocalClockTick(String.Format("{0:D2}:{1:D2}:{2:D2}". hh, mm, ss));
 }
}

Note The format string in this example specifies that each digit should be displayed as a
two-digit decimal value, with a leading zero if necessary .

 . 8 . . Display the ClockWindow .xaml .cs file in the Code and Text Editor window . In the
ClockWindow constructor, modify the statement that instantiates the localClock variable
and remove the parameter from the call to the constructor .

public ClockWindow()
{
 ...
 localClock = new LocalClock();
 ...
}

 . 9 . . On the Debug menu, click Start Without Debugging . When the WPF form appears, click
Start . You should see that the clocks for London, New York, and Tokyo function as
before, but the display for the local time remains stuck at 00:00:00 . This is because al-
though the LocalClock object is raising events every second, you have not subscribed to
them yet . Close the WPF form and return to Visual Studio .

 . 10 . . In the ClockWindow .xaml .cs file, add the following method to the end of the
ClockWindow class:

private void displayLocalTime(string time)
{
 localTimeDisplay.Text = time;
}

This method displays the string passed in as the parameter in the localTimeDisplay
TextBox on the form .

 . 11 . . In the startClick method, add the statement shown next in bold that subscribes the
 displayLocalTime method to the LocalClockTick event of the localClock object:

private void startClick(object sender, RoutedEventArgs e)
{
 controller.StartClocks();
 localClock.LocalClockTick += displayLocalTime;
 start.IsEnabled = false;
 stop.IsEnabled = true;
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

350 Part III Creating Components

 . 12 . . In the stopClick method, unsubscribe the displayLocalTime method from the
LocalClickTick event .

private void stopClick(object sender, RoutedEventArgs e)
{
 controller.StopClocks();
 localClock.LocalClockTick -= displayLocalTime;
 start.IsEnabled = true;
 stop.IsEnabled = false;
}

 . 13 . . On the Debug menu, click Start Without Debugging .

 . 14 . . Click Start . This time, the local clock displays the correct time and is updated every
second .

 . 15 . . Click Stop, and verify that the local clock stops . Then close the form, and return to
Visual Studio 2010 .

In this exercise, you updated the local clock to signal to the form that it should update its
 display by using events but that the other clocks should still display the time themselves . If
you have time, you might like to modify the remaining clock classes in the same manner .

In this chapter, you learned how to use delegates to reference methods and invoke those
methods . You saw how to define anonymous methods and lambda expressions that can
be run by using a delegate . Finally, you learned how to define and use events to trigger
 execution of a method .

n If you want to continue to the next chapter

Keep Visual Studio 2010 running, and turn to Chapter 18 .

n If you want to exit Visual Studio 2010 now

On the File menu, click Exit . If you see a Save dialog box, click Yes and save the project .

Chapter .17 .Quick .Reference
To Do this

Declare a delegate type Write the keyword delegate, followed by the return type, followed by the name
of the delegate type, followed by any parameter types . For example:

delegate void myDelegate();

Create an instance of a
 delegate initialized with a
single specific method

Use the same syntax you use for a class or structure: write the keyword new,
followed by the name of the type (the name of the delegate), followed by the
argument between parentheses . The argument must be a method whose sig-
nature exactly matches the signature of the delegate . For example:

delegate void myDelegate();
private void myMethod() { ... }
...
myDelegate del = new myDelegate(this.myMethod);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 17 Interrupting Program Flow and Handling Events 351

To Do this

Invoke a delegate Use the same syntax as a method call . For example:

myDelegate del;
...
del();

Declare an event Write the keyword event, followed by the name of the type (the type must be a
delegate type), followed by the name of the event . For example:

delegate void myEvent();

class MyClass
{
 public event myDelegate MyEvent;
}

Subscribe to an event Create a delegate instance (of the same type as the event), and attach the del-
egate instance to the event by using the += operator . For example:

class MyEventHandlingClass
{
 private MyClass myClass = new MyClass();
 ...
 public void Start()
 {
 myClass.MyEvent += new myDelegate
 (this.eventHandlingMethod);
 }

 private void eventHandlingMethod()
 {
 ...
 }
}

You can also get the compiler to generate the new delegate automatically sim-
ply by specifying the subscribing method:

public void Start()
{
 myClass.MyEvent += this.eventHandlingMethod;
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

352 Part III Creating Components

To Do this

Unsubscribe from an event Create a delegate instance (of the same type as the event), and detach the del-
egate instance from the event by using the –= operator . For example:

class MyEventHandlingClass
{
 private MyClass myClass = new MyClass();
 ...
 public void Stop()
 {
 myClass.MyEvent -= new myDelegate
 (this.eventHandlingMethod);
 }
 ...
}

Or:

public void Stop()
{
 myClass.MyEvent -= this.eventHandlingMethod;
}

Raise an event Use the same syntax as a method call . You must supply arguments to match
the type of the parameters expected by the delegate referenced by the event .
Don’t forget to check whether the event is null . For example:

class MyClass
{
 public event myDelegate MyEvent;
 ...
 private void RaiseEvent()
 {
 if (this.MyEvent != null)
 {
 this.MyEvent();
 }
 }
 ...
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 . . 353

Chapter 18

Introducing Generics
After completing this chapter, you will be able to:

n Define a type-safe class by using generics .

n Create instances of a generic class based on types specified as type parameters .

n Implement a generic interface .

n Define a generic method that implements an algorithm independent of the type of
data on which it operates .

In Chapter 8, “Understanding Values and References,” you learned how to use the object type
to refer to an instance of any class . You can use the object type to store a value of any type,
and you can define parameters by using the object type when you need to pass values of
any type into a method . A method can also return values of any type by specifying object as
the return type . Although this practice is very flexible, it puts the onus on the programmer
to remember what sort of data is actually being used and can lead to run-time errors if the
 programmer makes a mistake . In this chapter, you will learn about generics, a feature that
has been designed to help you prevent this kind of mistake .

The .Problem .with .objects
To understand generics, it is worth looking in detail at the problems they are designed to
solve, specifically when using the object type .

You can use the object type to refer to a value or variable of any type . All reference types
 automatically inherit (either directly or indirectly) from the System.Object class in the
Microsoft .NET Framework . You can use this information to create highly generalized classes
and methods . For example, many of the classes in the System.Collections namespace exploit
this fact, so you can create collections holding almost any type of data . (You have already
been introduced to the collection classes in Chapter 10, “Using Arrays and Collections .”) By
homing in on one particular collection class as a detailed example, you will also notice in the
System.Collections.Queue class that you can create queues containing practically anything .
The following code example shows how to create and manipulate a queue of Circle objects:

using System.Collections;
...
Queue myQueue = new Queue();
Circle myCircle = new Circle();
myQueue.Enqueue(myCircle);
...
myCircle = (Circle)myQueue.Dequeue();

http://lib.ommolketab.ir
http//lib.ommolketab.ir

354 Part III Creating Components

The Enqueue method adds an object to the head of a queue, and the Dequeue method
 removes the object at the other end of the queue . These methods are defined like this:

public void Enqueue(object item);
public object Dequeue();

Because the Enqueue and Dequeue methods manipulate objects, you can operate on queues
of Circles, PhoneBooks, Clocks, or any of the other classes you have seen in earlier exercises in
this book . However, it is important to notice that you have to cast the value returned by the
Dequeue method to the appropriate type because the compiler will not perform the conver-
sion from the object type automatically . If you don’t cast the returned value, you will get the
compiler error “Cannot implicitly convert type ‘object’ to ‘Circle’ .”

This need to perform an explicit cast denigrates much of the flexibility afforded by the object
type . It is very easy to write code such as this:

Queue myQueue = new Queue();
Circle myCircle = new Circle();
myQueue.Enqueue(myCircle);
...
Clock myClock = (Clock)myQueue.Dequeue(); // run-time error

Although this code will compile, it is not valid and throws a System.InvalidCastException at
run time . The error is caused by trying to store a reference to a Circle in a Clock variable, and
the two types are not compatible . This error is not spotted until run time because the com-
piler does not have enough information to perform this check at compile time . The real type
of the object being dequeued becomes apparent only when the code runs .

Another disadvantage of using the object approach to create generalized classes and
 methods is that it can use additional memory and processor time if the runtime needs to
convert an object to a value type and back again . Consider the following piece of code that
manipulates a queue of int variables:

Queue myQueue = new Queue();
int myInt = 99;
myQueue.Enqueue(myInt); // box the int to an object
...
myInt = (int)myQueue.Dequeue(); // unbox the object to an int

The Queue data type expects the items it holds to be reference types . Enqueueing a value
type, such as an int, requires it to be boxed to convert it to a reference type . Similarly, de-
queueing into an int requires the item to be unboxed to convert it back to a value type . See
the sections titled “Boxing” and “Unboxing” in Chapter 8 for more details . Although boxing
and unboxing happen transparently, they add performance overhead because they involve
dynamic memory allocations . This overhead is small for each item, but it adds up when a
program creates queues of large numbers of value types .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 18 Introducing Generics 355

The .Generics .Solution
C# provides generics to remove the need for casting, improve type safety, reduce the
amount of boxing required, and make it easier to create generalized classes and methods .
Generic classes and methods accept type parameters, which specify the type of objects that
they operate on . The .NET Framework class library includes generic versions of many of the
collection classes and interfaces in the System.Collections.Generic namespace . The following
code example shows how to use the generic Queue class found in this namespace to create a
queue of Circle objects:

using System.Collections.Generic;
...
Queue<Circle> myQueue = new Queue<Circle>();
Circle myCircle = new Circle();
myQueue.Enqueue(myCircle);
...
myCircle = myQueue.Dequeue();

There are two new things to note about the code in the preceding example:

n The use of the type parameter between the angle brackets, <Circle>, when declaring
the myQueue variable

n The lack of a cast when executing the Dequeue method

The type parameter in angle brackets specifies the type of objects accepted by the queue . All
references to methods in this queue automatically expect to use this type rather than object,
rendering unnecessary the cast to the Circle type when invoking the Dequeue method . The
compiler checks to ensure that types are not accidentally mixed and generates an error at
compile time rather than at run time if you try to dequeue an item from circleQueue into a
Clock object, for example .

If you examine the description of the generic Queue class in the Microsoft Visual Studio 2010
documentation, you will notice that it is defined as follows:

public class Queue<T> : ...

The T identifies the type parameter and acts as a placeholder for a real type at compile
time . When you write code to instantiate a generic Queue, you provide the type that should
be substituted for T (Circle in the preceding example) . Furthermore, if you then look at the
methods of the Queue<T> class, you will observe that some of them, such as Enqueue and
Dequeue, specify T as a parameter type or return value:

public void Enqueue(T item);
public T Dequeue();

http://lib.ommolketab.ir
http//lib.ommolketab.ir

356 Part III Creating Components

The type parameter, T, is replaced with the type you specify when you declare the queue .
Additionally, the compiler now has enough information to perform strict type checking when
you build the application and can trap any type mismatch errors early .

You should also be aware that this substitution of T for a specified type is not simply a textual
replacement mechanism . Instead, the compiler performs a complete semantic substitution so
that you can specify any valid type for T . Here are more examples:

struct Person
{
 ...
}
...
Queue<int> intQueue = new Queue<int>();
Queue<Person> personQueue = new Queue<Person>();
Queue<Queue<int>> queueQueue = new Queue<Queue<int>>();

The first two examples create queues of value types, while the third creates a queue of
queues (of ints) . For example, for the intQueue variable the compiler also generates the
 following versions of the Enqueue and Dequeue methods:

public void Enqueue(int item);
public int Dequeue();

Contrast these definitions with those of the nongeneric Queue class shown in the preced-
ing section . In the methods derived from the generic class, the item parameter to Enqueue is
passed as a value type that does not require boxing . Similarly, the value returned by Dequeue
is also a value type that does not need to be unboxed .

It is also possible for a generic class to have multiple type parameters . For example, the
 generic System.Collections.Generic.Dictionary class expects two type parameters: one type for
keys and another for the values . The following definition shows how to specify multiple type
parameters:

public class Dictionary<TKey, TValue>

A dictionary provides a collection of key/value pairs . You store values (type TValue) with
an associated key (type TKey) and then retrieve them by specifying the key to look up . The
Dictionary class provides an indexer that allows you to access items by using array notation .
It is defined like this:

public virtual TValue this[TKey key] { get; set; }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 18 Introducing Generics 357

Notice that the indexer accesses values of type TValue by using a key of type TKey . To create
and use a dictionary called directory containing Person values identified by string keys, you
could use the following code:

struct Person
{
 ...
}
...
Dictionary<string, Person> directory = new Dictionary<string, Person>();
Person john = new Person();
directory["John"] = john;
...
Person author = directory["John"];

As with the generic Queue class, the compiler detects attempts to store values other than
Person structures in the directory, as well as ensures that the key is always a string value .
For more information about the Dictionary class, you should read the Visual Studio 2010
documentation .

Note You can also define generic structures and interfaces by using the same type–parameter
syntax as generic classes .

Generics vs . Generalized Classes
It is important to be aware that a generic class that uses type parameters is different from a
generalized class designed to take parameters that can be cast to different types . For exam-
ple, the System.Collections.Queue class is a generalized class . There is a single implementation
of this class, and its methods take object parameters and return object types . You can use this
class with ints, strings, and many other types, but in each case, you are using instances of the
same class and you have to cast the data you are using to and from the object type .

Compare this with the System.Collections.Generic.Queue<T> class . Each time you use this
class with a type parameter (such as Queue<int> or Queue<string>), you actually cause the
compiler to generate an entirely new class that happens to have functionality defined by
the generic class . What this means is that Queue<int> is a completely different type from
Queue<string>, but they both happen to have the same behavior . You can think of a ge-
neric class as one that defines a template that is then used by the compiler to generate new
type-specific classes on demand . The type-specific versions of a generic class (Queue<int>,
Queue<string>, and so on) are referred to as constructed types, and you should treat them as
distinctly different types (albeit ones that have a similar set of methods and properties) .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

358 Part III Creating Components

Generics and Constraints
Occasionally, you will want to ensure that the type parameter used by a generic class
identifies a type that provides certain methods . For example, if you are defining a
PrintableCollection class, you might want to ensure that all objects stored in the class have a
Print method . You can specify this condition by using a constraint .

By using a constraint, you can limit the type parameters of a generic class to those that
implement a particular set of interfaces, and therefore provide the methods defined by those
interfaces . For example, if the IPrintable interface defined the Print method, you could create
the PrintableCollection class like this:

public class PrintableCollection<T> where T : IPrintable

When you build this class with a type parameter, the compiler checks to ensure that the type
used for T actually implements the IPrintable interface and it stops with a compilation error if
the type doesn’t .

Creating .a .Generic .Class
The .NET Framework class library contains a number of generic classes readily available for
you . You can also define your own generic classes, which is what you will do in this section .
Before you do this, I provide a bit of background theory .

The Theory of Binary Trees
In the following exercises, you will define and use a class that represents a binary tree . This
is a practical exercise because this class happens to be one that is missing from the System.
Collections.Generic namespace . A binary tree is a useful data structure used for a variety of
operations, including sorting and searching through data very quickly . There are volumes
written on the minutiae of binary trees, but it is not the purpose of this book to cover binary
trees in detail . Instead, we just look at the pertinent details . If you are interested, you should
consult a book such as The Art of Computer Programming, Volume 3: Sorting and Searching
by Donald E . Knuth (Addison-Wesley Professional, 2nd edition, 1998) .

A binary tree is a recursive (self-referencing) data structure that can either be empty or con-
tain three elements: a datum, which is typically referred to as the node, and two subtrees,
which are themselves binary trees . The two subtrees are conventionally called the left subtree
and the right subtree because they are typically depicted to the left and right of the node,
respectively . Each left subtree or right subtree is either empty or contains a node and other
subtrees . In theory, the whole structure can continue ad infinitum . The following image
shows the structure of a small binary tree .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 18 Introducing Generics 359

The real power of binary trees becomes evident when you use them for sorting data . If you
start with an unordered sequence of objects of the same type, you can construct an ordered
binary tree and then walk through the tree to visit each node in an ordered sequence . The
algorithm for inserting an item I into an ordered binary tree T is shown here:

If the tree, T, is empty
Then
 Construct a new tree T with the new item I as the node, and empty left and
 right subtrees
Else
 Examine the value of the current node, N, of the tree, T
 If the value of N is greater than that of the new item, I
 Then
 If the left subtree of T is empty
 Then
 Construct a new left subtree of T with the item I as the node, and
 empty left and right subtrees
 Else
 Insert I into the left subtree of T
 End If
 Else
 If the right subtree of T is empty
 Then
 Construct a new right subtree of T with the item I as the node, and
 empty left and right subtrees
 Else
 Insert I into the right subtree of T
 End If
 End If
End If

http://lib.ommolketab.ir
http//lib.ommolketab.ir

360 Part III Creating Components

Notice that this algorithm is recursive, calling itself to insert the item into the left or right
subtree depending on how the value of the item compares with the current node in the tree .

Note The definition of the expression greater than depends on the type of data in the item
and node . For numeric data, greater than can be a simple arithmetic comparison, and for text
data it can be a string comparison; however, other forms of data must be given their own means
of comparing values . This is discussed in more detail when you implement a binary tree in the
 upcoming section titled “Building a Binary Tree Class by Using Generics .”

If you start with an empty binary tree and an unordered sequence of objects, you can iterate
through the unordered sequence, inserting each object into the binary tree by using this
 algorithm, resulting in an ordered tree . The next image shows the steps in the process for
constructing a tree from a set of five integers .

After you have built an ordered binary tree, you can display its contents in sequence by visit-
ing each node in turn and printing the value found . The algorithm for achieving this task is
also recursive:

If the left subtree is not empty
Then
 Display the contents of the left subtree
End If
Display the value of the node

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 18 Introducing Generics 361

If the right subtree is not empty
Then
 Display the contents of the right subtree
End If

The following image shows the steps in the process for outputting the tree . Notice that the
integers are now displayed in ascending order .

Building a Binary Tree Class by Using Generics
In the following exercise, you will use generics to define a binary tree class capable of holding
almost any type of data . The only restriction is that the data type must provide a means of
comparing values between different instances .

The binary tree class is a class that you might find useful in many different applications .
Therefore, you will implement it as a class library rather than as an application in its own
right . You can then reuse this class elsewhere without having to copy the source code and
 recompile it . A class library is a set of compiled classes (and other types such as structures
and delegates) stored in an assembly . An assembly is a file that usually has the .dll suffix .
Other projects and applications can make use of the items in a class library by adding a
 reference to its assembly and then bringing its namespaces into scope with using statements .
You will do this when you test the binary tree class .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

362 Part III Creating Components

The .System.IComparable .and .System.IComparable<T> .Interfaces
The algorithm for inserting a node into a binary tree requires you to compare the value
of the node that you are inserting against nodes already in the tree . If you are using a
numeric type, such as int, you can use the <, >, and == operators . However, if you are
using some other type, such as Mammal or Circle described in previous chapters, how
do you compare objects?

If you need to create a class that requires you to be able to compare values accord-
ing to some natural (or possibly unnatural) ordering, you should implement the
IComparable interface . This interface contains a method called CompareTo, which takes
a single parameter specifying the object to be compared with the current instance and
returns an integer that indicates the result of the comparison as summarized by the
 following table .

Value Meaning

Less than 0 The current instance is less than the value of the parameter .

0 The current instance is equal to the value of the parameter .

Greater than 0 The current instance is greater than the value of the parameter .

As an example, consider the Circle class that was described in Chapter 7, “Creating and
Managing Classes and Objects,” and is reproduced here:

class Circle
{
 public Circle(int initialRadius)
 {
 radius = initialRadius;
 }

 public double Area()
 {
 return Math.PI * radius * radius;
 }

 private double radius;
}

You can make the Circle class “comparable” by implementing the System.IComparable
interface and providing the CompareTo method . In this example, the CompareTo
 method compares Circle objects based on their areas . A circle with a larger area is
 considered to be greater than a circle with a smaller area .

class Circle : System.IComparable
{
 ...

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 18 Introducing Generics 363

 public int CompareTo(object obj)
 {
 Circle circObj = (Circle)obj; // cast the parameter to its real type
 if (this.Area() == circObj.Area())
 return 0;

 if (this.Area() > circObj.Area())
 return 1;

 return -1;
 }
}

If you examine the System.IComparable interface, you will see that its parameter is
defined as an object . However, this approach is not type-safe . To understand why this
is so, consider what happens if you try to pass something that is not a Circle to the
CompareTo method . The System.IComparable interface requires the use of a cast to be
able to access the Area method . If the parameter is not a Circle but some other type
of object, this cast will fail . However, the System namespace also defines the generic
IComparable<T> interface, which contains the following methods:

int CompareTo(T other);

Notice that this method takes a type parameter (T) rather than an object and, therefore,
is much safer than the nongeneric version of the interface . The following code shows
how you can implement this interface in the Circle class:

class Circle : System.IComparable<Circle>
{
 ...
 public int CompareTo(Circle other)
 {
 if (this.Area() == other.Area())
 return 0;

 if (this.Area() > other.Area())
 return 1;

 return -1;
 }
}

The parameter for the CompareTo method must match the type specified in the
 interface, IComparable<Circle> . In general, it is preferable to implement the System.
IComparable<T> interface rather than the System.IComparable interface. You can also
implement both, just as many of the types in the .NET Framework do .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

364 Part III Creating Components

Create the Tree<TItem> class

 . 1 . . Start Visual Studio 2010 if it is not already running .

 . 2 . . If you are using Visual Studio 2010 Standard or Visual Studio 2010 Professional, perform
the following tasks to create a new class library project:

 . 2 .1 . . On the File menu, point to New, and then click Project .

 . 2 .2 . . In the New Project dialog box, in the middle pane, select the Class Library
template .

 . 2 .3 . . In the Name text box, type BinaryTree .

 . 2 .4 . . In the Location text box, specify \Microsoft Press\Visual CSharp Step By Step\
Chapter 18 under your Documents folder .

 . 2 .5 . . Click OK .

 . 3 . . If you are using Microsoft Visual C# 2010 Express, perform the following tasks to create
a new class library project:

 . 3 .1 . . On the Tools menu, click Options .

 . 3 .2 . . In the Options dialog box, select the Show all settings check box .

 . 3 .3 . . Click Projects and Solutions in the tree view in the left pane .

 . 3 .4 . . In the right pane, in the Visual Studio projects location text box, specify the
 location as the \Microsoft Press\Visual CSharp Step By Step\Chapter 18 folder un-
der your Documents folder .

 . 3 .5 . . Click OK .

 . 3 .6 . . On the File menu, click New Project .

 . 3 .7 . . In the New Project dialog box, click the Class Library icon .

 . 3 .8 . . In the Name field, type BinaryTree .

 . 3 .9 . . Click OK .

 . 4 . . In Solution Explorer, right-click Class1.cs, click Rename, and change the name of the file
to Tree .cs . Allow Visual Studio to change the name of the class as well as the name of
the file when prompted .

 . 5 . . In the Code and Text Editor window, change the definition of the Tree class to
Tree<TItem>, as shown in bold type in the following code:

public class Tree<TItem>
{
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 18 Introducing Generics 365

 . 6 . . In the Code and Text Editor window, modify the definition of the Tree<TItem> class as
follows in bold type to specify that the type parameter TItem must denote a type that
implements the generic IComparable<TItem> interface .

The modified definition of the Tree<TItem> class should look like this:

public class Tree<TItem> where TItem : IComparable<TItem>
{
}

 . 7 . . Add three public, automatic properties to the Tree<TItem> class: a TItem property
called NodeData and two Tree<TItem> properties called LeftTree and RightTree, as
 follows in bold type:

public class Tree<TItem> where TItem : IComparable<TItem>
{
 public TItem NodeData { get; set; }
 public Tree<TItem> LeftTree { get; set; }
 public Tree<TItem> RightTree { get; set; }
}

 . 8 . . Add a constructor to the Tree<TItem> class that takes a single TItem parameter called
nodeValue . In the constructor, set the NodeData property to nodeValue, and initialize the
LeftTree and RightTree properties to null, as shown in bold type in the following code:

public class Tree<TItem> where TItem : IComparable<TItem>
{
 public Tree(TItem nodeValue)
 {
 this.NodeData = nodeValue;
 this.LeftTree = null;
 this.RightTree = null;
 }
 ...
}

Note Notice that the name of the constructor does not include the type parameter; it is
called Tree, and not Tree<TItem> .

 . 9 . . Add a public method called Insert to the Tree<TItem> class as shown in bold type in the
following code . This method inserts a TItem value into the tree .

The method definition should look like this:

public class Tree<TItem> where TItem: IComparable<TItem>
{
 ...
 public void Insert(TItem newItem)
 {
 }
 ...
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

366 Part III Creating Components

The Insert method implements the recursive algorithm described earlier for creating an
ordered binary tree . The programmer will have used the constructor to create the ini-
tial node of the tree (there is no default constructor), so the Insert method can assume
that the tree is not empty . The part of the algorithm after checking whether the tree is
empty is reproduced here to help you understand the code you will write for the Insert
method in the following steps:

...
Examine the value of the node, N, of the tree, T
If the value of N is greater than that of the new item, I
Then
 If the left subtree of T is empty
 Then
 Construct a new left subtree of T with the item I as the node, and empty
 left and right subtrees
 Else
 Insert I into the left subtree of T
End If
...

 . 10 . . In the Insert method, add a statement that declares a local variable of type TItem,
called currentNodeValue . Initialize this variable to the value of the NodeData property
of the tree, as shown here:

public void Insert(TItem newItem)
{
 TItem currentNodeValue = this.NodeData;
}

 . 11 . . Add the following if-else statement shown in bold type to the Insert method after
the definition of the currentNodeValue variable . This statement uses the CompareTo
method of the IComparable<T> interface to determine whether the value of the current
node is greater than the new item is:

public void Insert(TItem newItem)
{
 TItem currentNodeValue = this.NodeData;
 if (currentNodeValue.CompareTo(newItem) > 0)
 {
 // Insert the new item into the left subtree
 }
 else
 {
 // Insert the new item into the right subtree
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 18 Introducing Generics 367

 . 12 . . Replace the // Insert the new item into the left subtree comment with the
following block of code:

if (this.LeftTree == null)
{
 this.LeftTree = new Tree<TItem>(newItem);
}
else
{
 this.LeftTree.Insert(newItem);
}

These statements check whether the left subtree is empty . If so, a new tree is created
using the new item and it is attached as the left subtree of the current node; other-
wise, the new item is inserted into the existing left subtree by calling the Insert method
recursively .

 . 13 . . Replace the // Insert the new item into the right subtree comment with the
equivalent code that inserts the new node into the right subtree:

if (this.RightTree == null)
{
 this.RightTree = new Tree<TItem>(newItem);
}
else
{
 this.RightTree.Insert(newItem);
}

 . 14 . . Add another public method called WalkTree to the Tree<TItem> class after the Insert
method . This method walks through the tree, visiting each node in sequence and
 printing out its value .

The method definition should look like this:

public void WalkTree()
{
}

 . 15 . . Add the following statements to the WalkTree method . These statements implement
the algorithm described earlier for printing the contents of a binary tree:

if (this.LeftTree != null)
{
 this.LeftTree.WalkTree();
}

Console.WriteLine(this.NodeData.ToString());

if (this.RightTree != null)
{
 this.RightTree.WalkTree();
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

368 Part III Creating Components

 . 16 . . On the Build menu, click Build Solution . The class should compile cleanly, but correct
any errors that are reported and rebuild the solution if necessary .

Note If you are using Visual C# 2010 Express and the Build menu is not visible, on the
Tools menu click Settings, and then click Expert Settings .

 . 17 . . If you are using Visual C# 2010 Express, on the File menu, click Save All . If the Save
Project dialog box appears, click Save .

In the next exercise, you will test the Tree<TItem> class by creating binary trees of integers
and strings .

Test the Tree<TItem> class

 . 1 . . In Solution Explorer, right-click the BinaryTree solution, point to Add, and then click New
Project .

Note Make sure you right-click the BinaryTree solution rather than the BinaryTree project .

 . 2 . . Add a new project using the Console Application template . Name the project
BinaryTreeTest . Set the Location to \Microsoft Press\Visual CSharp Step By Step\Chapter
18 under your Documents folder, and then click OK .

Note Remember that a Visual Studio 2010 solution can contain more than one project .
You are using this feature to add a second project to the BinaryTree solution for testing the
Tree<TItem> class . This is the recommended way of testing class libraries .

 . 3 . . Ensure that the BinaryTreeTest project is selected in Solution Explorer . On the Project
menu, click Set as Startup Project .

The BinaryTreeTest project is highlighted in Solution Explorer . When you run the
 application, this is the project that will actually execute .

 . 4 . . Ensure that the BinaryTreeTest project is still selected in Solution Explorer . On the Project
menu, click Add Reference . In the Add Reference dialog box, click the Projects tab . Select
the BinaryTree project, and then click OK .

The BinaryTree assembly appears in the list of references for the BinaryTreeTest
 project in Solution Explorer . You will now be able to create Tree<TItem> objects in the
BinaryTreeTest project .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 18 Introducing Generics 369

Note If the class library project is not part of the same solution as the project that uses it,
you must add a reference to the assembly (the .dll file) and not to the class library project .
You do this by selecting the assembly from the Browse tab in the Add Reference dialog
box . You will use this technique in the final set of exercises in this chapter .

 . 5 . . In the Code and Text Editor window displaying the Program class, add the following
 using directive to the list at the top of the class:

using BinaryTree;

 . 6 . . Add the statements in bold type in the following code to the Main method:

static void Main(string[] args)
{
 Tree<int> tree1 = new Tree<int>(10);
 tree1.Insert(5);
 tree1.Insert(11);
 tree1.Insert(5);
 tree1.Insert(-12);
 tree1.Insert(15);
 tree1.Insert(0);
 tree1.Insert(14);
 tree1.Insert(-8);
 tree1.Insert(10);
 tree1.Insert(8);
 tree1.Insert(8);
 tree1.WalkTree();
}

These statements create a new binary tree for holding ints . The constructor creates an
initial node containing the value 10 . The Insert statements add nodes to the tree, and
the WalkTree method prints out the contents of the tree, which should appear sorted in
ascending order .

Note Remember that the int keyword in C# is actually just an alias for the
System.Int32 type; whenever you declare an int variable, you are actually declaring a
struct variable of type System.Int32 . The System.Int32 type implements the IComparable
and IComparable<T> interfaces, which is why you can create Tree<int> objects . Similarly,
the string keyword is an alias for System.String, which also implements IComparable and
IComparable<T> .

 . 7 . . On the Build menu, click Build Solution . Verify that the solution compiles, and correct
any errors if necessary .

 . 8 . . Save the project, and then on the Debug menu, click Start Without Debugging .

The program runs and displays the values in the following sequence:

–12, –8, 0, 5, 5, 8, 8, 10, 10, 11, 14, 15

http://lib.ommolketab.ir
http//lib.ommolketab.ir

370 Part III Creating Components

 . 9 . . Press the Enter key to return to Visual Studio 2010 .

 . 10 . . Add the following statements shown in bold type to the end of the Main method in the
Program class, after the existing code:

static void Main(string[] args)
{
 ...
 Tree<string> tree2 = new Tree<string>("Hello");
 tree2.Insert("World");
 tree2.Insert("How");
 tree2.Insert("Are");
 tree2.Insert("You");
 tree2.Insert("Today");
 tree2.Insert("I");
 tree2.Insert("Hope");
 tree2.Insert("You");
 tree2.Insert("Are");
 tree2.Insert("Feeling");
 tree2.Insert("Well");
 tree2.Insert("!");
 tree2.WalkTree();
}

These statements create another binary tree for holding strings, populate it with some
test data, and then print the tree . This time, the data is sorted alphabetically .

 . 11 . . On the Build menu, click Build Solution . Verify that the solution compiles, and correct
any errors if necessary .

 . 12 . . On the Debug menu, click Start Without Debugging .

The program runs and displays the integer values as before, followed by the strings in
the following sequence:

!, Are, Are, Feeling, Hello, Hope, How, I, Today, Well, World, You, You

 . 13 . . Press the Enter key to return to Visual Studio 2010 .

Creating .a .Generic .Method
As well as defining generic classes, you can also use the .NET Framework to create generic
methods .

With a generic method, you can specify parameters and the return type by using a type
parameter in a manner similar to that used when defining a generic class . In this way, you
can define generalized methods that are type-safe and avoid the overhead of casting (and
boxing in some cases) . Generic methods are frequently used in conjunction with generic
classes—you need them for methods that take a generic class as a parameter or that have a
return type that is a generic class .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 18 Introducing Generics 371

You define generic methods by using the same type parameter syntax that you use when
creating generic classes . (You can also specify constraints .) For example, you can call the
following generic Swap<T> method to swap the values in its parameters . Because this func-
tionality is useful regardless of the type of data being swapped, it is helpful to define it as a
generic method:

static void Swap<T>(ref T first, ref T second)
{
 T temp = first;
 first = second;
 second = temp;
}

You invoke the method by specifying the appropriate type for its type parameter . The
 following examples show how to invoke the Swap<T> method to swap over two ints and
two strings:

int a = 1, b = 2;
Swap<int>(ref a, ref b);
...
string s1 = "Hello", s2 = "World";
Swap<string>(ref s1, ref s2);

Note Just as instantiating a generic class with different type parameters causes the compiler to
generate different types, each distinct use of the Swap<T> method causes the compiler to gener-
ate a different version of the method . Swap<int> is not the same method as Swap<string>; both
methods just happen to have been generated from the same generic method, so they exhibit the
same behavior, albeit over different types .

Defining a Generic Method to Build a Binary Tree
The preceding exercise showed you how to create a generic class for implementing a binary
tree . The Tree<TItem> class provides the Insert method for adding data items to the tree .
However, if you want to add a large number of items, repeated calls to the Insert method
are not very convenient . In the following exercise, you will define a generic method called
InsertIntoTree that you can use to insert a list of data items into a tree with a single method
call . You will test this method by using it to insert a list of characters into a tree of characters .

Write the InsertIntoTree method

 . 1 . . Using Visual Studio 2010, create a new project by using the Console Application tem-
plate . In the New Project dialog box, name the project BuildTree . If you are using
Visual Studio 2010 Standard or Visual Studio 2010 Professional, set the Location to \
Microsoft Press\Visual CSharp Step By Step\Chapter 18 under your Documents folder,
and select Create a new Solution from the Solution drop-down list . Click OK .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

372 Part III Creating Components

 . 2 . . On the Project menu, click Add Reference . In the Add Reference dialog box, click the
Browse tab . Move to the folder \Microsoft Press\Visual CSharp Step By Step\Chapter 18\
BinaryTree\BinaryTree\bin\Debug, click BinaryTree.dll, and then click OK .

The BinaryTree assembly is added to the list of references shown in Solution .Explorer .

 . 3 . . In the Code and Text Editor window displaying the Program .cs file, add the following
 using directive to the top of the Program .cs file:

using BinaryTree;

This namespace contains the Tree<TItem> class .

 . 4 . . Add a method called InsertIntoTree to the Program class after the Main method . This
should be a static method that takes a Tree<TItem> variable and a params array of
TItem elements called data .

The method definition should look like this:

static void InsertIntoTree<TItem>(Tree<TItem> tree, params TItem[] data)
{
}

Tip An alternative way of implementing this method is to create an extension method of
the Tree<TItem> class by prefixing the Tree<TItem> parameter with the this keyword and
defining the InsertIntoTree method in a static class, like this:

public static class TreeMethods
{
 public static void InsertIntoTree<TItem>(this Tree<TItem> tree,
 params TItem[] data)
 {
 ...
 }
 ...
}

The principal advantage of this approach is that you can invoke the InsertIntoTree method
directly on a Tree<TItem> object rather than pass the Tree<TItem> in as a parameter .
However, for this exercise, we will keep things simple .

 . 5 . . The TItem type used for the elements being inserted into the binary tree must
 implement the IComparable<TItem> interface . Modify the definition of the
InsertIntoTree method and add the appropriate where clause, as shown in bold type
in the following code:

static void InsertIntoTree<TItem>(Tree<TItem> tree, params TItem[] data) where TItem :
IComparable<TItem>
{
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 18 Introducing Generics 373

 . 6 . . Add the following statements shown in bold type to the InsertIntoTree method . These
statements check to make sure that the user has actually passed some parameters into
the method (the data array might be empty), and then they iterate through the params
list, adding each item to the tree by using the Insert method . The tree is passed back as
the return value:

static void InsertIntoTree<TItem>(Tree<TItem> tree, params TItem[] data) where TItem :
IComparable<TItem>
{
 if (data.Length == 0)
 throw new ArgumentException("Must provide at least one data value");

 foreach (TItem datum in data)
 {
 tree.Insert(datum);
 }
}

Test the InsertIntoTree method

 . 1 . . In the Main method of the Program class, add the following statements shown in bold
type that create a new Tree for holding character data, populate it with some sample
data by using the InsertIntoTree method, and then display it by using the WalkTree
method of Tree:

static void Main(string[] args)
{
 Tree<char> charTree = new Tree<char>('M');
 InsertIntoTree<char>(charTree, 'X', 'A', 'M', 'Z', 'Z', 'N');
 charTree.WalkTree();
}

 . 2 . . On the Build menu, click Build Solution . Verify that the solution compiles, and correct
any errors if necessary .

 . 3 . . On the Debug menu, click Start Without Debugging .

The program runs and displays the character values in the following order:

A, M, M, N, X, Z, Z

 . 4 . . Press the Enter key to return to Visual Studio 2010 .

Variance .and .Generic .Interfaces
In Chapter 8, you learned that you can use the object type to hold a value or reference of any
other type . For example, the following code is completely legal:

string myString = "Hello";
object myObject = myString;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

374 Part III Creating Components

Remember that in inheritance terms, the String class is derived from the Object class, so all
strings are objects .

Now consider the following generic interface and class:

interface IWrapper<T>
{
 void SetData(T data);
 T GetData();
}

class Wrapper<T> : IWrapper<T>
{
 private T storedData;

 void IWrapper<T>.SetData(T data)
 {
 this.storedData = data;
 }

 T IWrapper<T>.GetData()
 {
 return this.storedData;
 }
}

The Wrapper<T> class provides a simple wrapper around a specified type . The IWrapper
 interface defines the SetData method that the Wrapper<T> class implements to store the
data, and the GetData method that the Wrapper<T> class implements to retrieve the data .
You can create an instance of this class and use it to wrap a string like this:

Wrapper<string> stringWrapper = new Wrapper<string>();
IWrapper<string> storedStringWrapper = stringWrapper;
storedStringWrapper.SetData("Hello");
Console.WriteLine("Stored value is {0}", storedStringWrapper.GetData());

The code creates an instance of the Wrapper<string> type . It references the object through
the IWrapper<string> interface to call the SetData method . (The Wrapper<T> type imple-
ments its interfaces explicitly, so you must call the methods through an appropriate interface
reference .) The code also calls the GetData method through the IWrapper<string> interface .
If you run this code, it outputs the message “Stored value is Hello” .

Now look at the following line of code:

IWrapper<object> storedObjectWrapper = stringWrapper;

This statement is similar to the one that creates the IWrapper<string> reference in the
 previous code example, the difference being that the type parameter is object rather than
string . Is this code legal? Remember that all strings are objects (you can assign a string
value to an object reference, as shown earlier), so in theory this statement looks promising .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 18 Introducing Generics 375

However, if you try it, the statement will fail to compile with the message “Cannot implicitly
convert type ‘Wrapper<string>’ to ‘IWrapper<object>’ .”

You can try an explicit cast such as this:

IWrapper<object> storedObjectWrapper = (IWrapper<object>)stringWrapper;

This code compiles, but will fail at runtime with an InvalidCastException exception . The
 problem is that although all strings are objects, the converse is not true . If this statement was
allowed, you could write code like this, which ultimately attempts to store a Circle object in a
string field:

IWrapper<object> storedObjectWrapper = (IWrapper<object>)stringWrapper;
Circle myCircle = new Circle();
storedObjectWrapper.SetData(myCircle);

The IWrapper<T> interface is said to be invariant . You cannot assign an IWrapper<A> object
to a reference of type IWrapper, even if type A is derived from type B . By default, C#
implements this restriction to ensure the type-safety of your code .

Covariant Interfaces
Suppose you defined the IStoreWrapper<T> and IRetrieveWrapper<T> interfaces shown next
in place of IWrapper<T> and implemented these interfaces in the Wrapper<T> class, like this:

interface IStoreWrapper<T>
{
 void SetData(T data);
}

interface IRetrieveWrapper<T>
{
 T GetData();
}

class Wrapper<T> : IStoreWrapper<T>, IRetrieveWrapper<T>
{
 private T storedData;

 void IStoreWrapper<T>.SetData(T data)
 {
 this.storedData = data;
 }

 T IRetrieveWrapper<T>.GetData()
 {
 return this.storedData;
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

376 Part III Creating Components

Functionally, the Wrapper<T> class is the same as before, except that you access the SetData
and GetData methods through different interfaces:

Wrapper<string> stringWrapper = new Wrapper<string>();
IStoreWrapper<string> storedStringWrapper = stringWrapper;
storedStringWrapper.SetData("Hello");
IRetrieveWrapper<string> retrievedStringWrapper = stringWrapper;
Console.WriteLine("Stored value is {0}", retrievedStringWrapper.GetData());

Now, is the following code legal?

IRetrieveWrapper<object> retrievedObjectWrapper = stringWrapper;

The quick answer is “no”, and it fails to compile with the same error as before . But if you think
about it, although the C# compiler has deemed that this statement is not type-safe, the rea-
sons for assuming this are no longer valid . The IRetrieveWrapper<T> interface only allows you
to read the data held in the IWrapper<T> object by using the GetData method, and it does
not provide any way to change the data . In situations such as this where the type parameter
occurs only as the return value of the methods in a generic interface, you can inform the
compiler that some implicit conversions are legal and that it does not have to enforce strict
type-safety . You do this by specifying the out keyword when you declare the type parameter,
like this:

interface IRetrieveWrapper<out T>
{
 T GetData();
}

This feature is called covariance . You can assign an IRetrieveWrapper<A> object to an
IRetrieveWrapper reference as long as there is a valid conversion from type A to type B,
or type A derives from type B . The following code now compiles and runs as expected:

// string derives from object, so this is now legal
IRetrieveWrapper<object> retrievedObjectWrapper = stringWrapper;

You can specify the out qualifier with a type parameter only if the type parameter occurs as
the return type of methods . If you use the type parameter to specify the type of any method
parameters, the out qualifier is illegal and your code will not compile . Also, covariance works
only with reference types . This is because value types cannot form inheritance hierarchies .
The following code will not compile because int is a value type:

Wrapper<int> intWrapper = new Wrapper<int>();
IStoreWrapper<int> storedIntWrapper = intWrapper; // this is legal
...
// the following statement is not legal – ints are not objects
IRetrieveWrapper<object> retrievedObjectWrapper = intWrapper;

Several of the interfaces defined by the .NET Framework exhibit covariance, including the
IEnumerable<T> interface that you will meet in Chapter 19, “Enumerating Collections .”

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 18 Introducing Generics 377

Contravariant Interfaces
Contravariance is the corollary of covariance . It enables you to use a generic interface to
 reference an object of type B through a reference to type A as long as type B derives type A .
This sounds complicated, so it is worth looking at an example from the .NET Framework class
library .

The System.Collections.Generic namespace in the .NET Framework provides an interface
called IComparer, which looks like this:

public interface IComparer<in T>
{
 int Compare(T x, T y);
}

A class that implements this interface has to define the Compare method, which is used to
compare two objects of the type specified by the T type parameter . The Compare method
is expected to return an integer value: zero if the parameters x and y have the same value,
negative if x is less than y, and positive if x is greater than y . The following code shows an
example that sorts objects according to their hash code . (The GetHashCode method is imple-
mented by the Object class . It simply returns an integer value that identifies the object . All
reference types inherit this method and can override it with their own implementations .)

class ObjectComparer : IComparer<Object>
{
 int Comparer<object>.Compare(Object x, Object y)
 {
 int xHash = x.GetHashCode();
 int yHash = y.GetHashCode();

 if (xHash == yHash)
 return 0;

 if (xHash < yHash)
 return -1;

 return 1;
 }
}

You can create an ObjectComparer object and call the Compare method through the
IComparer<Object> interface to compare two objects, like this:

Object x = ...;
Object y = ...;
ObjectComparer comparer = new ObjectComparer();
IComparer<Object> objectComparator = objectComparer;
int result = objectComparator(x, y);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

378 Part III Creating Components

That’s the boring bit . What is more interesting is that you can reference this same object
through a version of the IComparer interface that compares strings, like this:

IComparer<String> stringComparator = objectComparer;

At first glance, this statement seems to break every rule of type-safety that you can imagine .
However, if you think about what the IComparer<T> interface does, this makes some sense .
The purpose of the Compare method is to return a value based on a comparison between
the parameters passed in . If you can compare Objects, you certainly should be able to com-
pare Strings, which are just specialized types of Objects. After all, a String should be able to
do anything that an Object can do—that is the purpose of inheritance .

This still sounds a little presumptive, however . How does the C# compiler know that you are
not going to perform any type-specific operations in the code for the Compare method that
might fail if you invoke the method through an interface based on a different type? If you
revisit the definition of the IComparer interface, you can see the in qualifier prior to the type
parameter:

public interface IComparer<in T>
{
 int Compare(T x, T y);
}

The in keyword tells the C# compiler that either you can pass the type T as the parameter
type to methods or you can pass any type that derives from T . You cannot use T as the return
type from any methods . Essentially, this enables you to reference an object either through a
generic interface based on the object type or through a generic interface based on a type
that derives from the object type . Basically, if a type A exposes some operations, properties,
or fields, then if type B derives from type A it must also expose the same operations (which
might behave differently if they have been overridden), properties, and fields . Consequently,
it should be safe to substitute an object of type B for an object of type A .

Covariance and contravariance might seem like fringe topics in the world of generics, but
they are useful . For example, the List<T> generic collection class uses IComparer<T> objects
to implement the Sort and BinarySearch methods . A List<Object> object can contain a col-
lection of objects of any type, so the Sort and BinarySearch methods need to be able to sort
objects of any type . Without using contravariance, the Sort and BinarySearch methods would
need to include logic that determines the real types of the items being sorted or searched
and then implement a type-specific sort or search mechanism . However, unless you are a
mathematician it can be quite difficult to recall what covariance and contravariance actually
do . The way I remember, based on the examples in this section, is as follows:

n . Covariance If the methods in a generic interface can return strings, they can also
 return objects . (All strings are objects .)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 18 Introducing Generics 379

n		 Contravariance If the methods in a generic interface can take object parameters,
they can take string parameters . (If you can perform an operation by using an object,
you can perform the same operation by using a string because all strings are objects .)

Note Only interface and delegate types can be declared as covariant or contravariant . You
 cannot use the in or out modifiers with generic classes .

In this chapter, you learned how to use generics to create type-safe classes . You saw how to
instantiate a generic type by specifying a type parameter . You also saw how to implement a
generic interface and define a generic method . Finally, you learned how to define covariant
and contravariant generic interfaces that can operate with a hierarchy of types .

n If you want to continue to the next chapter

Keep Visual Studio 2010 running, and turn to Chapter 19 .

n If you want to exit Visual Studio 2010 now

On the File menu, click Exit . If you see a Save dialog box, click Yes and save the project .

Chapter .18 .Quick .Reference
To Do this

Instantiate an object by using a
generic type

Specify the appropriate generic type parameter . For example:

Queue<int> myQueue = new Queue<int>();

Create a new generic type Define the class using a type parameter . For example:

public class Tree<TItem>
{
 ...
}

Restrict the type that can be
 substituted for the generic type
parameter

Specify a constraint by using a where clause when defining the class . For
example:

public class Tree<TItem>
where TItem : IComparable<TItem>
{
 ...
}

Define a generic method Define the method by using type parameters . For example:

static void InsertIntoTree<TItem>
(Tree<TItem> tree, params TItem[] data)
{
 ...
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

380 Part III Creating Components

To Do this

Invoke a generic method Provide types for each of the type parameters . For example:

InsertIntoTree<char>(charTree, 'Z', 'X');

Define a covariant interface Specify the out qualifier for covariant type parameters . Reference the co-
variant type parameters only as the return types from methods and not
as the types for method parameters:

interface IRetrieveWrapper<out T>
{
 T GetData();
}

Define a contravariant interface Specify the in qualifier for contravariant type parameters . Reference the
contravariant type parameters only as the types of method parameters
and not as return types:

public interface IComparer<in T>
{
 int Compare(T x, T y);
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 . . 381

Chapter 19

Enumerating Collections
After completing this chapter, you will be able to:

n Manually define an enumerator that can be used to iterate over the elements in a
collection .

n Implement an enumerator automatically by creating an iterator .

n Provide additional iterators that can step through the elements of a collection in
 different sequences .

In Chapter 10, “Using Arrays and Collections,” you learned about arrays and collection classes
for holding sequences or sets of data . Chapter 10 also introduced the foreach statement that
you can use for stepping through, or iterating over, the elements in a collection . At the time,
you just used the foreach statement as a quick and convenient way of accessing the contents
of a collection, but now it is time to learn a little more about how this statement actually
works . This topic becomes important when you start defining your own collection classes .
Fortunately, C# provides iterators to help you automate much of the process .

Enumerating .the .Elements .in .a .Collection
In Chapter 10, you saw an example of using the foreach statement to list the items in a simple
array . The code looked like this:

int[] pins = { 9, 3, 7, 2 };
foreach (int pin in pins)
{
 Console.WriteLine(pin);
}

The foreach construct provides an elegant mechanism that greatly simplifies the code you
need to write, but it can be exercised only under certain circumstances—you can use foreach
only to step through an enumerable collection . So, what exactly is an enumerable collection?
The quick answer is that it is a collection that implements the System.Collections.IEnumerable
interface .

Note Remember that all arrays in C# are actually instances of the System.Array class . The
System.Array class is a collection class that implements the IEnumerable interface .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

382 Part III Creating Components

The IEnumerable interface contains a single method called GetEnumerator:

IEnumerator GetEnumerator();

The GetEnumerator method should return an enumerator object that implements the System.
Collections.IEnumerator interface . The enumerator object is used for stepping through (enu-
merating) the elements of the collection . The IEnumerator interface specifies the following
property and methods:

object Current { get; }
bool MoveNext();
void Reset();

Think of an enumerator as a pointer pointing to elements in a list . Initially, the pointer points
before the first element . You call the MoveNext method to move the pointer down to the
next (first) item in the list; the MoveNext method should return true if there actually is an-
other item and false if there isn’t . You use the Current property to access the item currently
pointed to, and you use the Reset method to return the pointer back to before the first item
in the list . By creating an enumerator by using the GetEnumerator method of a collection and
repeatedly calling the MoveNext method and retrieving the value of the Current property by
using the enumerator, you can move forward through the elements of a collection one item
at a time . This is exactly what the foreach statement does . So if you want to create your own
enumerable collection class, you must implement the IEnumerable interface in your collec-
tion class and also provide an implementation of the IEnumerator interface to be returned by
the GetEnumerator method of the collection class .

Important At first glance, it is easy to confuse the IEnumerable<T> and IEnumerator<T>
 interfaces because of the similarity of their names . Don’t get them mixed up .

If you are observant, you will have noticed that the Current property of the IEnumerator
 interface exhibits non–type-safe behavior in that it returns an object rather than a specific
type . However, you should be pleased to know that the Microsoft .NET Framework class
library also provides the generic IEnumerator<T> interface, which has a Current property
that returns a T instead . Likewise, there is also an IEnumerable<T> interface containing a
GetEnumerator method that returns an Enumerator<T> object . If you are building applica-
tions for the .NET Framework version 2 .0 or later, you should make use of these generic inter-
faces when defining enumerable collections rather than using the nongeneric definitions .

Note The IEnumerator<T> interface has some further differences from the IEnumerator
 interface; it does not contain a Reset method but extends the IDisposable interface .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 19 Enumerating Collections 383

Manually Implementing an Enumerator
In the next exercise, you will define a class that implements the generic IEnumerator<T>
interface and create an enumerator for the binary tree class that you built in Chapter 18,
“Introducing Generics .” In Chapter 18, you saw how easy it is to traverse a binary tree and
display its contents . You would therefore be inclined to think that defining an enumerator
that retrieves each element in a binary tree in the same order would be a simple matter .
Sadly, you would be mistaken . The main problem is that when defining an enumerator you
need to remember where you are in the structure so that subsequent calls to the MoveNext
method can update the position appropriately . Recursive algorithms, such as that used when
walking a binary tree, do not lend themselves to maintaining state information between
method calls in an easily accessible manner . For this reason, you will first preprocess the data
in the binary tree into a more amenable data structure (a queue) and actually enumerate this
data structure instead . Of course, this deviousness is hidden from the user iterating through
the elements of the binary tree!

Create the TreeEnumerator class

 . 1 . . Start Microsoft Visual Studio 2010 if it is not already running .

 . 2 . . Open the BinaryTree solution located in the \Microsoft Press\Visual CSharp Step By
Step\Chapter 19\BinaryTree folder in your Documents folder . This solution contains a
working copy of the BinaryTree project you created in Chapter 18 .

 . 3 . . Add a new class to the project: On the Project menu, click Add Class. In the middle
pane of the Add New Item – BinaryTree dialog box, select the Class template, type
TreeEnumerator .cs in the Name text box, and then click Add .

 . 4 . . The TreeEnumerator class generates an enumerator for a Tree<TItem> object . To
 ensure that the class is type-safe, you must provide a type parameter and implement
the IEnumerator<T> interface . Also, the type parameter must be a valid type for the
Tree<TItem> object that the class enumerates, so it must be constrained to implement
the IComparable<TItem> interface .

In the Code and Text Editor window displaying the TreeEnumerator .cs file, modify the
definition of the TreeEnumerator class to satisfy these requirements, as shown in bold in
the following example:

class TreeEnumerator<TItem> : IEnumerator<TItem> where TItem : IComparable<TItem>
{
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

384 Part III Creating Components

 . 5 . . Add the following three private variables shown next in bold to the
TreeEnumerator<TItem> class:

class TreeEnumerator<TItem> : IEnumerator<TItem> where TItem : IComparable<TItem>
{
 private Tree<TItem> currentData = null;
 private TItem currentItem = default(TItem);
 private Queue<TItem> enumData = null;
}

The currentData variable will be used to hold a reference to the tree being enumer-
ated, and the currentItem variable will hold the value returned by the Current property .
You will populate the enumData queue with the values extracted from the nodes in
the tree, and the MoveNext method will return each item from this queue in turn . The
default keyword is explained in the section titled “Initializing a Variable Defined with a
Type Parameter” later in this chapter .

 . 6 . . Add a TreeEnumerator constructor that takes a single Tree<TItem> parameter called
data . In the body of the constructor, add a statement that initializes the currentData
variable to data:

class TreeEnumerator<TItem> : IEnumerator<TItem> where TItem : IComparable<TItem>
{
 public TreeEnumerator(Tree<TItem> data)
 {
 this.currentData = data;
 }
 ...
}

 . 7 . . Add the following private method, called populate, to the TreeEnumerator<TItem> class
immediately after the constructor:

private void populate(Queue<TItem> enumQueue, Tree<TItem> tree)
{
 if (tree.LeftTree != null)
 {
 populate(enumQueue, tree.LeftTree);
 }

 enumQueue.Enqueue(tree.NodeData);

 if (tree.RightTree != null)
 {
 populate(enumQueue, tree.RightTree);
 }
}

This method walks a binary tree, adding the data it contains to the queue . The algo-
rithm used is similar to that used by the WalkTree method in the Tree<TItem> class,
which was described in Chapter 18 . The main difference is that rather than the method
outputting NodeData values to the screen, it stores these values in the queue .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 19 Enumerating Collections 385

 . 8 . . Return to the definition of the TreeEnumerator<TItem> class . Right-click anywhere in
the IEnumerator<TItem> interface in the class declaration, point to Implement Interface,
and then click Implement Interface Explicitly .

This action generates stubs for the methods of the IEnumerator<TItem> interface and
the IEnumerator interface and adds them to the end of the class . It also generates the
Dispose method for the IDisposable interface .

Note The IEnumerator<TItem> interface inherits from the IEnumerator and IDisposable
interfaces, which is why their methods also appear . In fact, the only item that belongs to
the IEnumerator<TItem> interface is the generic Current property . The MoveNext and
Reset methods belong to the nongeneric IEnumerator interface . The IDisposable interface
was described in Chapter 14, “Using Garbage Collection and Resource Management .”

 . 9 . . Examine the code that has been generated . The bodies of the properties and methods
contain a default implementation that simply throws a NotImplementedException . You
will replace this code with a real implementation in the following steps .

 . 10 . . Replace the body of the MoveNext method with the code shown in bold here:

bool System.Collections.IEnumerator.MoveNext()
{
 if (this.enumData == null)
 {
 this.enumData = new Queue<TItem>();
 populate(this.enumData, this.currentData);
 }

 if (this.enumData.Count > 0)
 {
 this.currentItem = this.enumData.Dequeue();
 return true;
 }

 return false;
}

The purpose of the MoveNext method of an enumerator is actually twofold . The first
time it is called, it should initialize the data used by the enumerator and advance to the
first piece of data to be returned . (Prior to MoveNext being called for the first time, the
value returned by the Current property is undefined and should result in an exception .)
In this case, the initialization process consists of instantiating the queue and then call-
ing the populate method to fill the queue with data extracted from the tree .

Subsequent calls to the MoveNext method should just move through data items until
there are no more left, dequeuing items from the queue until the queue is empty in
this example . It is important to bear in mind that MoveNext does not actually return
data items—that is the purpose of the Current property . All MoveNext does is update

http://lib.ommolketab.ir
http//lib.ommolketab.ir

386 Part III Creating Components

the internal state in the enumerator (that is, the value of the currentItem variable is set
to the data item extracted from the queue) for use by the Current property, returning
true if there is a next value and false otherwise .

 . 11 . . Modify the definition of the get accessor of the generic Current property as follows:

TItem IEnumerator<TItem>.Current
{
 get
 {
 if (this.enumData == null)
 throw new InvalidOperationException
 ("Use MoveNext before calling Current");

 return this.currentItem;
 }
}

Important Be sure to add the code to the correct implementation of the Current
 property . Leave the nongeneric version, System.Collections.IEnumerator.Current, with its
default implementation .

The Current property examines the enumData variable to ensure that MoveNext has
been called . (This variable will be null prior to the first call to MoveNext .) If this is not
the case, the property throws an InvalidOperationException—this is the conventional
mechanism used by .NET Framework applications to indicate that an operation cannot
be performed in the current state . If MoveNext has been called beforehand, it will have
updated the currentItem variable, so all the Current property needs to do is return the
value in this variable .

 . 12 . . Locate the IDisposable.Dispose method . Comment out the throw new
NotImplementedException(); statement as follows in bold below . The enumera-
tor does not use any resources that require explicit disposal, so this method does not
need to do anything . It must still be present, however . For more information about the
Dispose method, refer to Chapter 14 .

void IDisposable.Dispose()
{
 // throw new NotImplementedException();
}

 . 13 . . Build the solution, and fix any errors that are reported .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 19 Enumerating Collections 387

Initializing .a .Variable .Defined .with .a .Type .Parameter
You should have noticed that the statement that defines and initializes the currentItem
variable uses the default keyword . The currentItem variable is defined by using the type
parameter TItem . When the program is written and compiled, the actual type that will
be substituted for TItem might not be known—this issue is resolved only when the
code is executed . This makes it difficult to specify how the variable should be initialized .
The temptation is to set it to null . However, if the type substituted for TItem is a value
type, this is an illegal assignment . (You cannot set value types to null, only reference
types .) Similarly, if you set it to 0 in the expectation that the type will be numeric, this
will be illegal if the type used is actually a reference type . There are other possibilities
as well—TItem could be a boolean, for example . The default keyword solves this prob-
lem . The value used to initialize the variable will be determined when the statement is
executed; if TItem is a reference type, default(TItem) returns null; if TItem is numeric,
default(TItem) returns 0; if TItem is a boolean, default(TItem) returns false . If TItem is a
struct, the individual fields in the struct are initialized in the same way . (Reference fields
are set to null, numeric fields are set to 0, and boolean fields are set to false .)

Implementing the IEnumerable Interface
In the following exercise, you will modify the binary tree class to implement the IEnumerable
interface . The GetEnumerator method will return a TreeEnumerator<TItem> object .

Implement the IEnumerable<TItem> interface in the Tree<TItem> class

 . 1 . . In Solution Explorer, double-click the file Tree .cs to display the Tree<TItem> class in the
Code and Text Editor window .

 . 2 . . Modify the definition of the Tree<TItem> class so that it implements the
IEnumerable<TItem> interface, as shown in bold in the following code:

public class Tree<TItem> : IEnumerable<TItem> where TItem : IComparable<TItem>

Notice that constraints are always placed at the end of the class definition .

 . 3 . . Right-click the IEnumerable<TItem> interface in the class definition, point to Implement
Interface, and then click Implement Interface Explicitly .

This action generates implementations of the IEnumerable<TItem>.GetEnumerator
and IEnumerable.GetEnumerator methods and adds them to the class . The non-
generic IEnumerable interface method is implemented because the generic
IEnumerable<TItem> interface inherits from IEnumerable .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

388 Part III Creating Components

 . 4 . . Locate the generic IEnumerable<TItem>.GetEnumerator method near the end of the
class . Modify the body of the GetEnumerator() method, replacing the existing throw
statement as shown in bold here:

IEnumerator<TItem> IEnumerable<TItem>.GetEnumerator()
{
 return new TreeEnumerator<TItem>(this);
}

The purpose of the GetEnumerator method is to construct an enumerator object
for iterating through the collection . In this case, all you need to do is build a new
TreeEnumerator<TItem> object by using the data in the tree .

 . 5 . . Build the solution .

The project should compile cleanly, but correct any errors that are reported and rebuild
the solution if necessary .

You will now test the modified Tree<TItem> class by using a foreach statement to iterate
through a binary tree and display its contents .

Test the enumerator

 . 1 . . In Solution Explorer, right-click the BinaryTree solution, point to Add, and then click New
Project . Add a new project by using the Console Application template . Name the proj-
ect EnumeratorTest, set the Location to \Microsoft Press\Visual CSharp Step By Step\
Chapter 19 in your Documents folder, and then click OK .

 . 2 . . Right-click the EnumeratorTest project in Solution Explorer, and then click Set as Startup
Project .

 . 3 . . On the Project menu, click Add Reference . In the Add Reference dialog box, click the
Projects tab . Select the BinaryTree project, and then click OK .

The BinaryTree assembly appears in the list of references for the EnumeratorTest project
in Solution Explorer .

 . 4 . . In the Code and Text Editor window displaying the Program class, add the following
 using directive to the list at the top of the file:

using BinaryTree;

 . 5 . . Add to the Main method the following statements shown in bold that create and
 populate a binary tree of integers:

static void Main(string[] args)
{
 Tree<int> tree1 = new Tree<int>(10);
 tree1.Insert(5);
 tree1.Insert(11);
 tree1.Insert(5);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 19 Enumerating Collections 389

 tree1.Insert(-12);
 tree1.Insert(15);
 tree1.Insert(0);
 tree1.Insert(14);
 tree1.Insert(-8);
 tree1.Insert(10);
}

 . 6 . . Add a foreach statement, as follows in bold, that enumerates the contents of the tree
and displays the results:

static void Main(string[] args)
{
 ...
 foreach (int item in tree1)
 Console.WriteLine(item);
}

 . 7 . . Build the solution, correcting any errors if necessary .

 . 8 . . On the Debug menu, click Start Without Debugging .

The program runs and displays the values in the following sequence:

–12, –8, 0, 5, 5, 10, 10, 11, 14, 15

 . 9 . . Press Enter to return to Visual Studio 2010 .

Implementing .an .Enumerator .by .Using .an .Iterator
As you can see, the process of making a collection enumerable can become complex and
potentially error prone . To make life easier, C# includes iterators that can automate much of
this process .

An iterator is a block of code that yields an ordered sequence of values . Additionally, an itera-
tor is not actually a member of an enumerable class . Rather, it specifies the sequence that an
enumerator should use for returning its values . In other words, an iterator is just a description
of the enumeration sequence that the C# compiler can use for creating its own enumerator .
This concept requires a little thought to understand it properly, so consider a basic example
before returning to binary trees and recursion .

A Simple Iterator
The following BasicCollection<T> class illustrates the principles of implementing an
 iterator . The class uses a List<T> object for holding data and provides the FillList method

http://lib.ommolketab.ir
http//lib.ommolketab.ir

390 Part III Creating Components

for populating this list . Notice also that the BasicCollection<T> class implements the
IEnumerable<T> interface . The GetEnumerator method is implemented by using an iterator:

using System;
using System.Collections.Generic;
using System.Collections;

class BasicCollection<T> : IEnumerable<T>
{
 private List<T> data = new List<T>();

 public void FillList(params T [] items)
 {
 foreach (var datum in items)
 data.Add(datum);
 }

 IEnumerator<T> IEnumerable<T>.GetEnumerator()
 {
 foreach (var datum in data)
 yield return datum;
 }

 IEnumerator IEnumerable.GetEnumerator()
 {
 // Not implemented in this example
 }
}

The GetEnumerator method appears to be straightforward, but it warrants closer examina-
tion . The first thing you should notice is that it doesn’t appear to return an IEnumerator<T>
type . Instead, it loops through the items in the data array, returning each item in turn . The
key point is the use of the yield keyword . The yield keyword indicates the value that should
be returned by each iteration . If it helps, you can think of the yield statement as calling a
temporary halt to the method, passing back a value to the caller . When the caller needs the
next value, the GetEnumerator method continues at the point it left off, looping around and
then yielding the next value . Eventually, the data is exhausted, the loop finishes, and the
GetEnumerator method terminates . At this point, the iteration is complete .

Remember that this is not a normal method in the usual sense . The code in the
GetEnumerator method defines an iterator . The compiler uses this code to gener-
ate an implementation of the IEnumerator<T> class containing a Current method and a
MoveNext method . This implementation exactly matches the functionality specified by the
GetEnumerator method . You don’t actually get to see this generated code (unless you de-
compile the assembly containing the compiled code), but that is a small price to pay for the
convenience and reduction in code that you need to write . You can invoke the enumerator
generated by the iterator in the usual manner, as shown in this block of code:

BasicCollection<string> bc = new BasicCollection<string>();
bc.FillList("Twas", "brillig", "and", "the", "slithy", "toves");
foreach (string word in bc)
 Console.WriteLine(word);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 19 Enumerating Collections 391

This code simply outputs the contents of the bc object in this order:

Twas, brillig, and, the, slithy, toves

If you want to provide alternative iteration mechanisms presenting the data in a different
sequence, you can implement additional properties that implement the IEnumerable inter-
face and that use an iterator for returning data . For example, the Reverse property of the
BasicCollection<T> class, shown here, emits the data in the list in reverse order:

public IEnumerable<T> Reverse
{
 get
 {
 for (int i = data.Count - 1; i >= 0; i--)
 yield return data[i];
 }
}

You can invoke this property as follows:

BasicCollection<string> bc = new BasicCollection<string>();
bc.FillList("Twas", "brillig", "and", "the", "slithy", "toves");
foreach (string word in bc.Reverse)
 Console.WriteLine(word);

This code outputs the contents of the bc object in reverse order:

toves, slithy, the, and, brillig, Twas

Defining an Enumerator for the Tree<TItem> Class by Using
an Iterator
In the next exercise, you will implement the enumerator for the Tree<TItem> class by using
an iterator . Unlike the preceding set of exercises, which required the data in the tree to be
preprocessed into a queue by the MoveNext method, you can define an iterator that travers-
es the tree by using the more natural recursive mechanism, similar to the WalkTree method
discussed in Chapter 18 .

Add an enumerator to the Tree<TItem> class

 . 1 . . Using Visual Studio 2010, open the BinaryTree solution located in the \Microsoft Press\
Visual CSharp Step By Step\Chapter 19\IteratorBinaryTree folder in your Documents
folder . This solution contains another copy of the BinaryTree project you created in
Chapter 18 .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

392 Part III Creating Components

 . 2 . . Display the file Tree .cs in the Code and Text Editor window . Modify the definition of the
Tree<TItem> class so that it implements the IEnumerable<TItem> interface, as shown in
bold here:

public class Tree<TItem> : IEnumerable<TItem> where TItem : IComparable<TItem>
{
 ...
}

 . 3 . . Right-click the IEnumerable<TItem> interface in the class definition, point to Implement
Interface, and then click Implement Interface Explicitly .

The IEnumerable<TItem>.GetEnumerator and IEnumerable.GetEnumerator methods are
added to the class .

 . 4 . . Locate the generic IEnumerable<TItem>.GetEnumerator method . Replace the contents
of the GetEnumerator method as shown in bold in the following code:

IEnumerator<TItem> IEnumerable<TItem>.GetEnumerator()
{
 if (this.LeftTree != null)
 {
 foreach (TItem item in this.LeftTree)
 {
 yield return item;
 }
 }

 yield return this.NodeData;

 if (this.RightTree != null)
 {
 foreach (TItem item in this.RightTree)
 {
 yield return item;
 }
 }
}

It might not look like it at first glance, but this code follows the same recursive algo-
rithm that you used in Chapter 18 for printing the contents of a binary tree . If LeftTree
is not empty, the first foreach statement implicitly calls the GetEnumerator method
(which you are currently defining) over it . This process continues until a node is found
that has no left subtree . At this point, the value in the NodeData property is yielded,
and the right subtree is examined in the same way . When the right subtree is exhaust-
ed, the process unwinds to the parent node, outputting the parent’s NodeData prop-
erty and examining the right subtree of the parent . This course of action continues until
the entire tree has been enumerated and all the nodes have been output .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 19 Enumerating Collections 393

Test the new enumerator

 . 1 . . In Solution Explorer, right-click the BinaryTree solution, point to Add, and then click
Existing Project . In the Add Existing Project dialog box, move to the folder \Microsoft
Press\Visual CSharp Step By Step\Chapter 19\EnumeratorTest, select the EnumeratorTest
project file, and then click Open .

This is the project that you created to test the enumerator you developed manually
earlier in this chapter .

 . 2 . . Right-click the EnumeratorTest project in Solution Explorer, and then click Set as Startup
Project .

 . 3 . . Expand the References node for the EnumeratorTest project in Solution Explorer .
 Right-click the BinaryTree assembly, and then click Remove .

This action removes the reference to the old BinaryTree assembly (from Chapter 18)
from the project .

 . 4 . . On the Project menu, click Add Reference . In the Add Reference dialog box, click the
Projects tab . Select the BinaryTree project, and then click OK .

The new BinaryTree assembly appears in the list of references for the EnumeratorTest
project in Solution Explorer .

Note These two steps ensure that the EnumeratorTest project references the version of
the BinaryTree assembly that uses the iterator to create its enumerator rather than the
 earlier version .

 . 5 . . Display the Program .cs file for the EnumeratorTest project in the Code and Text Editor
window . Review the Main method in the Program .cs file . Recall from testing the earlier
enumerator that this method instantiates a Tree<int> object, fills it with some data, and
then uses a foreach statement to display its contents .

 . 6 . . Build the solution, correcting any errors if necessary .

 . 7 . . On the Debug menu, click Start Without Debugging .

The program runs and displays the values in the same sequence as before:

–12, –8, 0, 5, 5, 10, 10, 11, 14, 15

 . 8 . . Press Enter and return to Visual Studio 2010 .

In this chapter, you saw how to implement the IEnumerable and IEnumerator interfaces with a
collection class to enable applications to iterate through the items in the collection . You also
saw how to implement an enumerator by using an iterator .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

394 Part III Creating Components

n If you want to continue to the next chapter

Keep Visual Studio 2010 running, and turn to Chapter 20 .

n If you want to exit Visual Studio 2010 now

On the File menu, click Exit . If you see a Save dialog box, click Yes and save the project .

Chapter .19 .Quick .Reference
To Do this

Make a class enumerable,
 allowing it to support the
foreach construct

Implement the IEnumerable interface, and provide a GetEnumerator
method that returns an IEnumerator object . For example:

public class Tree<TItem> : IEnumerable<TItem>
{
 ...
 IEnumerator<TItem> GetEnumerator()
 {
 ...
 }
}

Implement an enumerator not
by using an iterator

Define an enumerator class that implements the IEnumerator interface
and that provides the Current property and the MoveNext method (and
optionally the Reset method) . For example:

public class TreeEnumerator<TItem> : IEnumerator<TItem>
{
 ...
 TItem Current
 {
 get
 {
 ...
 }
 }

 bool MoveNext()
 {
 ...
 }
}

Define an enumerator by using
an iterator

Implement the enumerator to indicate which items should be returned
(using the yield statement) and in which order . For example:

IEnumerator<TItem> GetEnumerator()
{
 for (...)
 yield return ...
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 . . 395

Chapter 20

Querying In-Memory Data by Using
Query Expressions

After completing this chapter, you will be able to:

n Define Language Integrated Query (LINQ) queries to examine the contents of
 enumerable collections .

n Use LINQ extension methods and query operators .

n Explain how LINQ defers evaluation of a query and how you can force immediate
 execution and cache the results of a LINQ query .

You have now met most of the features of the C# language . However, we have glossed over
one important aspect of the language that is likely to be used by many applications—the
support that C# provides for querying data . You have seen that you can define structures
and classes for modeling data and that you can use collections and arrays for temporarily
storing data in memory . However, how do you perform common tasks such as searching for
items in a collection that match a specific set of criteria? For example, if you have a collection
of Customer objects, how do you find all customers that are located in London, or how can
you find out which town has the most customers for your services? You can write your own
code to iterate through a collection and examine the fields in each object, but these types
of tasks occur so often that the designers of C# decided to include features to minimize the
amount of code you need to write . In this chapter, you will learn how to use these advanced
C# language features to query and manipulate data .

What .Is .Language .Integrated .Query?
All but the most trivial of applications need to process data . Historically, most applications
provided their own logic for performing these operations . However, this strategy can lead to
the code in an application becoming very tightly coupled to the structure of the data that
it processes; if the data structures change, you might need to make a significant number of
changes to the code that handles the data . The designers of the Microsoft .NET Framework
thought long and hard about these issues and decided to make the life of an application
developer easier by providing features that abstract the mechanism that an application uses
to query data from application code itself . These features are called Language Integrated
Query, or LINQ .

The designers of LINQ took an unabashed look at the way in which relational database
 management systems, such as Microsoft SQL Server, separate the language used to query a

http://lib.ommolketab.ir
http//lib.ommolketab.ir

396 Part III Creating Components

database from the internal format of the data in the database . Developers accessing a SQL
Server database issue Structured Query Language (SQL) statements to the database man-
agement system . SQL provides a high-level description of the data that the developer wants
to retrieve but does not indicate exactly how the database management system should
retrieve this data . These details are controlled by the database management system itself .
Consequently, an application that invokes SQL statements does not care how the database
management system physically stores or retrieves data . The format used by the database
management system can change (for example, if a new version is released) without the
 application developer needing to modify the SQL statements used by the application .

LINQ provides syntax and semantics very reminiscent of SQL, and with many of the same
advantages . You can change the underlying structure of the data being queried without
needing to change the code that actually performs the queries . You should be aware that
although LINQ looks similar to SQL, it is far more flexible and can handle a wider variety of
logical data structures . For example, LINQ can handle data organized hierarchically, such
as that found in an XML document . However, this chapter concentrates on using LINQ in a
 relational manner .

Using .LINQ .in .a .C# .Application
Perhaps the easiest way to explain how to use the C# features that support LINQ is to
work through some simple examples based on the following sets of customer and address
information:

 . Customer .Information

CustomerID FirstName LastName CompanyName

1 Orlando Gee A Bike Store

2 Keith Harris Bike World

3 Donna Carreras A Bike Store

4 Janet Gates Fitness Hotel

5 Lucy Harrington Grand Industries

6 David Liu Bike World

7 Donald Blanton Grand Industries

8 Jackie Blackwell Fitness Hotel

9 Elsa Leavitt Grand Industries

10 Eric Lang Distant Inn

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 20 Querying In-Memory Data by Using Query Expressions 397

 . Address .Information

CompanyName City Country

A Bike Store New York United States

Bike World Chicago United States

Fitness Hotel Ottawa Canada

Grand Industries London United Kingdom

Distant Inn Tetbury United Kingdom

LINQ requires the data to be stored in a data structure that implements the IEnumerable
 interface, as described in Chapter 19, “Enumerating Collections .” It does not matter what
structure you use (an array, a HashTable, a Queue, or any of the other collection types, or
even one that you define yourself) as long as it is enumerable . However, to keep things
straightforward, the examples in this chapter assume that the customer and address informa-
tion is held in the customers and addresses arrays shown in the following code example .

Note In a real-world application, you would populate these arrays by reading the data from a
file or a database . You will learn more about the features provided by the .NET Framework for
retrieving information from a database in Part V of this book, “Managing Data” .

var customers = new[] {
 new { CustomerID = 1, FirstName = "Orlando", LastName = "Gee",
 CompanyName = "A Bike Store" },
 new { CustomerID = 2, FirstName = "Keith", LastName = "Harris",
 CompanyName = "Bike World" },
 new { CustomerID = 3, FirstName = "Donna", LastName = "Carreras",
 CompanyName = "A Bike Store" },
 new { CustomerID = 4, FirstName = "Janet", LastName = "Gates",
 CompanyName = "Fitness Hotel" },
 new { CustomerID = 5, FirstName = "Lucy", LastName = "Harrington",
 CompanyName = "Grand Industries" },
 new { CustomerID = 6, FirstName = "David", LastName = "Liu",
 CompanyName = "Bike World" },
 new { CustomerID = 7, FirstName = "Donald", LastName = "Blanton",
 CompanyName = "Grand Industries" },
 new { CustomerID = 8, FirstName = "Jackie", LastName = "Blackwell",
 CompanyName = "Fitness Hotel" },
 new { CustomerID = 9, FirstName = "Elsa", LastName = "Leavitt",
 CompanyName = "Grand Industries" },
 new { CustomerID = 10, FirstName = "Eric", LastName = "Lang",
 CompanyName = "Distant Inn" }
};

var addresses = new[] {
 new { CompanyName = "A Bike Store", City = "New York", Country = "United States"},
 new { CompanyName = "Bike World", City = "Chicago", Country = "United States"},
 new { CompanyName = "Fitness Hotel", City = "Ottawa", Country = "Canada"},

http://lib.ommolketab.ir
http//lib.ommolketab.ir

398 Part III Creating Components

 new { CompanyName = "Grand Industries", City = "London",
 Country = "United Kingdom"},
 new { CompanyName = "Distant Inn", City = "Tetbury", Country = "United Kingdom"}
};

Note The following sections—“Selecting Data,” “Filtering Data,” “Ordering, Grouping, and
Aggregating Data,” and “Joining Data”—show you the basic capabilities and syntax for querying
data by using LINQ methods . The syntax can become a little complex at times, and you will see
when you reach the section “Using Query Operators” that it is not actually necessary to remem-
ber how the syntax all works . However, it is useful for you to at least take a look at the following
sections so that you can fully appreciate how the query operators provided with C# perform
their tasks .

Selecting Data
Suppose you want to display a list comprising the first name of each customer in the
 customers array . You can achieve this task with the following code:

IEnumerable<string> customerFirstNames =
 customers.Select(cust => cust.FirstName);
foreach (string name in customerFirstNames)
{
 Console.WriteLine(name);
}

Although this block of code is quite short, it does a lot, and it requires a degree of
 explanation, starting with the use of the Select method of the customers array .

The Select method enables you to retrieve specific data from the array—in this case, just the
value in the FirstName field of each item in the array . How does it work? The parameter to
the Select method is actually another method that takes a row from the customers array and
returns the selected data from that row . You can define your own custom method to perform
this task, but the simplest mechanism is to use a lambda expression to define an anonymous
method, as shown in the preceding example . There are three important things that you need
to understand at this point:

n The variable cust is the parameter passed in to the method . You can think of cust as an
alias for each row in the customers array . The compiler deduces this from the fact that
you are calling the Select method on the customers array . You can use any legal C#
identifier in place of cust .

n The Select method does not actually retrieve the data at this time; it simply returns
an enumerable object that will fetch the data identified by the Select method when
you iterate over it later . We will return to this aspect of LINQ in the section “LINQ and
Deferred Evaluation” later in this chapter .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 20 Querying In-Memory Data by Using Query Expressions 399

n The Select method is not actually a method of the Array type . It is an extension method
of the Enumerable class . The Enumerable class is located in the System.Linq namespace
and provides a substantial set of static methods for querying objects that implement
the generic IEnumerable<T> interface .

The preceding example uses the Select method of the customers array to generate an
IEnumerable<string> object named customerFirstNames. (It is of type IEnumerable<string>
because the Select method returns an enumerable collection of customer first names, which
are strings .) The foreach statement iterates through this collection of strings, printing out the
first name of each customer in the following sequence:

Orlando
Keith
Donna
Janet
Lucy
David
Donald
Jackie
Elsa
Eric

You can now display the first name of each customer . How do you fetch the first and last
name of each customer? This task is slightly trickier . If you examine the definition of the
Enumerable.Select method in the System.Linq namespace in the documentation supplied with
Microsoft Visual Studio 2010, you will see that it looks like this:

public static IEnumerable<TResult> Select<TSource, TResult> (
 IEnumerable<TSource> source,
 Func<TSource, TResult> selector
)

What this actually says is that Select is a generic method that takes two type parameters
named TSource and TResult, as well as two ordinary parameters named source and selector .
TSource is the type of the collection that you are generating an enumerable set of results for
(customer objects in our example), and TResult is the type of the data in the enumerable set
of results (string objects in our example) . Remember that Select is an extension method, so
the source parameter is actually a reference to the type being extended (a generic collection
of customer objects that implements the IEnumerable interface in our example) . The selector
parameter specifies a generic method that identifies the fields to be retrieved . (Func is the
name of a generic delegate type in the .NET Framework that you can use for encapsulating
a generic method .) The method referred to by the selector parameter takes a TSource (in
this case, customer) parameter and yields a collection of TResult (in this case, string) objects .
The value returned by the Select method is an enumerable collection of TResult (again string)
objects .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

400 Part III Creating Components

Note If you need to review how extension methods work and the role of the first parameter to
an extension method, revisit Chapter 12, “Working with Inheritance .”

The important point to understand from the preceding paragraph is that the Select method
returns an enumerable collection based on a single type . If you want the enumerator to
return multiple items of data, such as the first and last name of each customer, you have at
least two options:

n You can concatenate the first and last names together into a single string in the Select
method, like this:

IEnumerable<string> customerFullName =
 customers.Select(cust => cust.FirstName + " " + cust.LastName);

n You can define a new type that wraps the first and last names and use the Select
 method to construct instances of this type, like this:

class Names
{
 public string FirstName{ get; set; }
 public string LastName{ get; set; }
}
...
IEnumerable<Names> customerName =
 customers.Select(cust => new Names
 {
 FirstName = cust.FirstName,
 LastName = cust.LastName
 });

The second option is arguably preferable, but if this is the only use that your application
makes of the Names type, you might prefer to use an anonymous type instead of defining a
new type specifically for a single operation, like this:

var customerName =
 customers.Select(cust => new { FirstName = cust.FirstName, LastName = cust.LastName });

Notice the use of the var keyword here to define the type of the enumerable collection . The
type of objects in the collection is anonymous, so you do not know the specific type for the
objects in the collection .

Filtering Data
The Select method enables you to specify, or project, the fields that you want to include
in the enumerable collection . However, you might also want to restrict the rows that the
 enumerable collection contains . For example, suppose you want to list the names of all

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 20 Querying In-Memory Data by Using Query Expressions 401

 companies in the addresses array that are located in the United States only . To do this, you
can use the Where method, as follows:

IEnumerable<string> usCompanies =
 addresses.Where(addr => String.Equals(addr.Country, "United States"))
 .Select(usComp => usComp.CompanyName);

foreach (string name in usCompanies)
{
 Console.WriteLine(name);
}

Syntactically, the Where method is similar to Select . It expects a parameter that defines a
method that filters the data according to whatever criteria you specify . This example makes
use of another lambda expression . The type addr is an alias for a row in the addresses ar-
ray, and the lambda expression returns all rows where the Country field matches the string
“United States” . The Where method returns an enumerable collection of rows containing
every field from the original collection . The Select method is then applied to these rows to
project only the CompanyName field from this enumerable collection to return another enu-
merable collection of string objects . (The type usComp is an alias for the type of each row
in the enumerable collection returned by the Where method .) The type of the result of this
complete expression is therefore IEnumerable<string> . It is important to understand this se-
quence of operations—the Where method is applied first to filter the rows, followed by the
Select method to specify the fields . The foreach statement that iterates through this collec-
tion displays the following companies:

A Bike Store
Bike World

Ordering, Grouping, and Aggregating Data
If you are familiar with SQL, you are aware that SQL enables you to perform a wide variety
of relational operations besides simple projection and filtering . For example, you can specify
that you want data to be returned in a specific order, you can group the rows returned ac-
cording to one or more key fields, and you can calculate summary values based on the rows
in each group . LINQ provides the same functionality .

To retrieve data in a particular order, you can use the OrderBy method . Like the Select and
Where methods, OrderBy expects a method as its argument . This method identifies the ex-
pressions that you want to use to sort the data . For example, you can display the names of
each company in the addresses array in ascending order, like this:

IEnumerable<string> companyNames =
 addresses.OrderBy(addr => addr.CompanyName).Select(comp => comp.CompanyName);

foreach (string name in companyNames)
{
 Console.WriteLine(name);
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

402 Part III Creating Components

This block of code displays the companies in the addresses table in alphabetical order:

A Bike Store
Bike World
Distant Inn
Fitness Hotel
Grand Industries

If you want to enumerate the data in descending order, you can use the OrderByDescending
method instead . If you want to order by more than one key value, you can use the ThenBy or
ThenByDescending method after OrderBy or OrderByDescending .

To group data according to common values in one or more fields, you can use the GroupBy
method . The next example shows how to group the companies in the addresses array by
country:

var companiesGroupedByCountry =
 addresses.GroupBy(addrs => addrs.Country);

foreach (var companiesPerCountry in companiesGroupedByCountry)
{
 Console.WriteLine("Country: {0}\t{1} companies",
 companiesPerCountry.Key, companiesPerCountry.Count());
 foreach (var companies in companiesPerCountry)
 {
 Console.WriteLine("\t{0}", companies.CompanyName);
 }
}

By now, you should recognize the pattern! The GroupBy method expects a method that
specifies the fields to group the data by . There are some subtle differences between the
GroupBy method and the other methods that you have seen so far, though .

The main point of interest is that you don’t need to use the Select method to project the
fields to the result . The enumerable set returned by GroupBy contains all the fields in the
original source collection, but the rows are ordered into a set of enumerable collections
based on the field identified by the method specified by GroupBy . In other words, the result
of the GroupBy method is an enumerable set of groups, each of which is an enumerable set
of rows . In the example just shown, the enumerable set companiesGroupedByCountry is a
set of countries . The items in this set are themselves enumerable collections containing the
companies for each country in turn . The code that displays the companies in each country
uses a foreach loop to iterate through the companiesGroupedByCountry set to yield and dis-
play each country in turn, and then it uses a nested foreach loop to iterate through the set
of companies in each country . Notice in the outer foreach loop that you can access the value
you are grouping by using the Key field of each item, and you can also calculate summary

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 20 Querying In-Memory Data by Using Query Expressions 403

data for each group by using methods such as Count, Max, Min, and many others . The output
generated by the example code looks like this:

Country: United States 2 companies
 A Bike Store
 Bike World
Country: Canada 1 companies
 Fitness Hotel
Country: United Kingdom 2 companies
 Grand Industries
 Distant Inn

You can use many of the summary methods such as Count, Max, and Min directly over the
results of the Select method . If you want to know how many companies there are in the
 addresses array, you can use a block of code such as this:

int numberOfCompanies = addresses.Select(addr => addr.CompanyName).Count();
Console.WriteLine("Number of companies: {0}", numberOfCompanies);

Notice that the result of these methods is a single scalar value rather than an enumerable
collection . The output from this block of code looks like this:

Number of companies: 5

I should utter a word of caution at this point . These summary methods do not distinguish
 between rows in the underlying set that contain duplicate values in the fields you are pro-
jecting . What this means is that, strictly speaking, the preceding example shows you only
how many rows in the addresses array contain a value in the CompanyName field . If you
wanted to find out how many different countries are mentioned in this table, you might be
tempted to try this:

int numberOfCountries = addresses.Select(addr => addr.Country).Count();
Console.WriteLine("Number of countries: {0}", numberOfCountries);

The output looks like this:

Number of countries: 5

In fact, there are only three different countries in the addresses array; it just so happens that
United States and United Kingdom both occur twice . You can eliminate duplicates from the
calculation by using the Distinct method, like this:

int numberOfCountries =
 addresses.Select(addr => addr.Country).Distinct().Count();
Console.WriteLine("Number of companies: {0}", numberOfCompanies);

The Console.WriteLine statement will now output the expected result:

Number of countries: 3

http://lib.ommolketab.ir
http//lib.ommolketab.ir

404 Part III Creating Components

Joining Data
Just like SQL, LINQ enables you to join multiple sets of data together over one or more
 common key fields . The following example shows how to display the first and last names of
each customer, together with the names of the countries where they are located:

var citiesAndCustomers = customers
 .Select(c => new { c.FirstName, c.LastName, c.CompanyName })
 .Join(addresses, custs => custs.CompanyName, addrs => addrs.CompanyName,
 (custs, addrs) => new {custs.FirstName, custs.LastName, addrs.Country });

foreach (var row in citiesAndCustomers)
{
 Console.WriteLine(row);
}

The customers’ first and last names are available in the customers array, but the country for
each company that customers work for is stored in the addresses array . The common key be-
tween the customers array and the addresses array is the company name . The Select method
specifies the fields of interest in the customers array (FirstName and LastName), together with
the field containing the common key (CompanyName) . You use the Join method to join the
data identified by the Select method with another enumerable collection . The parameters to
the Join method are as follows:

n The enumerable collection with which to join

n A method that identifies the common key fields from the data identified by the Select
method

n A method that identifies the common key fields on which to join the selected data

n A method that specifies the columns you require in the enumerable result set returned
by the Join method

In this example, the Join method joins the enumerable collection containing the FirstName,
LastName, and CompanyName fields from the customers array with the rows in the addresses
array . The two sets of data are joined where the value in the CompanyName field in the cus-
tomers array matches the value in the CompanyName field in the addresses array . The result
set comprises rows containing the FirstName and LastName fields from the customers array
with the Country field from the addresses array . The code that outputs the data from the cit-
iesAndCustomers collection displays the following information:

{ FirstName = Orlando, LastName = Gee, Country = United States }
{ FirstName = Keith, LastName = Harris, Country = United States }
{ FirstName = Donna, LastName = Carreras, Country = United States }
{ FirstName = Janet, LastName = Gates, Country = Canada }
{ FirstName = Lucy, LastName = Harrington, Country = United Kingdom }
{ FirstName = David, LastName = Liu, Country = United States }
{ FirstName = Donald, LastName = Blanton, Country = United Kingdom }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 20 Querying In-Memory Data by Using Query Expressions 405

{ FirstName = Jackie, LastName = Blackwell, Country = Canada }
{ FirstName = Elsa, LastName = Leavitt, Country = United Kingdom }
{ FirstName = Eric, LastName = Lang, Country = United Kingdom }

Note Remember that collections in memory are not the same as tables in a relational database
and that the data they contain is not subject to the same data integrity constraints . In a relational
database, it could be acceptable to assume that every customer had a corresponding company
and that each company had its own unique address . Collections do not enforce the same level
of data integrity, meaning that you could quite easily have a customer referencing a company
that does not exist in the addresses array, and you might even have the same company occurring
more than once in the addresses array . In these situations, the results that you obtain might be
accurate but unexpected . Join operations work best when you fully understand the relationships
between the data you are joining .

Using Query Operators
The preceding sections have shown you many of the features available for querying in-
memory data by using the extension methods for the Enumerable class defined in the
System.Linq namespace . The syntax makes use of several advanced C# language features,
and the resultant code can sometimes be quite hard to understand and maintain . To relieve
you of some of this burden, the designers of C# added query operators to the language to
enable you to employ LINQ features by using a syntax more akin to SQL .

As you saw in the examples shown earlier in this chapter, you can retrieve the first name for
each customer like this:

IEnumerable<string> customerFirstNames =
 customers.Select(cust => cust.FirstName);

You can rephrase this statement by using the from and select query operators, like this:

var customerFirstNames = from cust in customers
 select cust.FirstName;

At compile time, the C# compiler resolves this expression into the corresponding Select
method . The from operator defines an alias for the source collection, and the select opera-
tor specifies the fields to retrieve by using this alias . The result is an enumerable collection
of customer first names . If you are familiar with SQL, notice that the from operator occurs
 before the select operator .

Continuing in the same vein, to retrieve the first and last name for each customer, you can
use the following statement . (You might want to refer to the earlier example of the same
statement based on the Select extension method .)

var customerNames = from cust in customers
 select new { cust.FirstName, cust.LastName };

http://lib.ommolketab.ir
http//lib.ommolketab.ir

406 Part III Creating Components

You use the where operator to filter data . The following example shows how to return the
names of the companies based in the United States from the addresses array:

var usCompanies = from a in addresses
 where String.Equals(a.Country, "United States")
 select a.CompanyName;

To order data, use the orderby operator, like this:

var companyNames = from a in addresses
 orderby a.CompanyName
 select a.CompanyName;

You can group data by using the group operator:

var companiesGroupedByCountry = from a in addresses
 group a by a.Country;

Notice that, as with the earlier example showing how to group data, you do not provide the
select operator, and you can iterate through the results by using exactly the same code as the
earlier example, like this:

foreach (var companiesPerCountry in companiesGroupedByCountry)
{
 Console.WriteLine("Country: {0}\t{1} companies",
 companiesPerCountry.Key, companiesPerCountry.Count());
 foreach (var companies in companiesPerCountry)
 {
 Console.WriteLine("\t{0}", companies.CompanyName);
 }
}

You can invoke the summary functions, such as Count, over the collection returned by an
enumerable collection, like this:

int numberOfCompanies = (from a in addresses
 select a.CompanyName).Count();

Notice that you wrap the expression in parentheses . If you want to ignore duplicate values,
use the Distinct method, like this:

int numberOfCountries = (from a in addresses
 select a.Country).Distinct().Count();

Tip In many cases, you probably want to count just the number of rows in a collection rather
than the number of values in a field across all the rows in the collection . In this case, you can
 invoke the Count method directly over the original collection, like this:

int numberOfCompanies = addresses.Count();

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 20 Querying In-Memory Data by Using Query Expressions 407

You can use the join operator to combine two collections across a common key . The
 following example shows the query returning customers and addresses over the
CompanyName column in each collection, this time rephrased using the join operator . You
use the on clause with the equals operator to specify how the two collections are related .
(LINQ currently supports equi-joins only .)

var citiesAndCustomers = from a in addresses
 join c in customers
 on a.CompanyName equals c.CompanyName
 select new { c.FirstName, c.LastName, a.Country };

Note In contrast with SQL, the order of the expressions in the on clause of a LINQ expression is
important . You must place the item you are joining from (referencing the data in the collection in
the from clause) to the left of the equals operator and the item you are joining with (referencing
the data in the collection in the join clause) to the right .

LINQ provides a large number of other methods for summarizing information, joining,
grouping, and searching through data; this section has covered just the most common fea-
tures . For example, LINQ provides the Intersect and Union methods, which you can use to
perform setwide operations . It also provides methods such as Any and All that you can use
to determine whether at least one item in a collection or every item in a collection matches
a specified predicate . You can partition the values in an enumerable collection by using the
Take and Skip methods . For more information, see the documentation provided with Visual
Studio 2010 .

Querying Data in Tree<TItem> Objects
The examples you’ve seen so far in this chapter have shown how to query the data in an
array . You can use exactly the same techniques for any collection class that implements
the IEnumerable interface . In the following exercise, you will define a new class for model-
ing employees for a company . You will create a BinaryTree object containing a collection
of Employee objects, and then you will use LINQ to query this information . You will initially
call the LINQ extension methods directly, but then you will modify your code to use query
operators .

Retrieve data from a BinaryTree by using the extension methods

 . 1 . . Start Visual Studio 2010 if it is not already running .

 . 2 . . Open the QueryBinaryTree solution, located in the \Microsoft Press\Visual CSharp Step
By Step\Chapter 20\QueryBinaryTree folder in your Documents folder . The project con-
tains the Program .cs file, which defines the Program class with the Main and DoWork
methods that you saw in previous exercises .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

408 Part III Creating Components

 . 3 . . In Solution Explorer, right-click the QueryBinaryTree project, point to Add, and then click
Class . In the Add New Item—Query BinaryTree dialog box, type Employee .cs in the
Name box and then click Add .

 . 4 . . Add the automatic properties shown here in bold to the Employee class:

class Employee
{
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string Department { get; set; }
 public int Id { get; set; }
}

 . 5 . . Add the ToString method shown here in bold to the Employee class . Classes in the .NET
Framework use this method when converting the object to a string representation, such
as when displaying it by using the Console.WriteLine statement .

class Employee
{
 ...
 public override string ToString()
 {
 return String.Format("Id: {0}, Name: {1} {2}, Dept: {3}",
 this.Id, this.FirstName, this.LastName,
 this.Department);
 }
}

 . 6 . . Modify the definition of the Employee class in the Employee .cs file to implement the
IComparable<Employee> interface, as shown here:

class Employee : IComparable<Employee>
{
}

This step is necessary because the BinaryTree class specifies that its elements must be
“comparable .”

 . 7 . . Right-click the IComparable<Employee> interface in the class definition, point to
Implement Interface, and then click Implement Interface Explicitly .

This action generates a default implementation of the CompareTo method . Remember
that the BinaryTree class calls this method when it needs to compare elements when
inserting them into the tree .

 . 8 . . Replace the body of the CompareTo method with the code shown here in bold . This
implementation of the CompareTo method compares Employee objects based on the
value of the Id field .

int IComparable<Employee>.CompareTo(Employee other)
{
 if (other == null)
 return 1;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 20 Querying In-Memory Data by Using Query Expressions 409

 if (this.Id > other.Id)
 return 1;

 if (this.Id < other.Id)
 return -1;

 return 0;
}

Note For a description of the IComparable interface, refer to Chapter 18, “Introducing
Generics .”

 . 9 . . In Solution Explorer, right-click the QueryBinaryTree solution, point to Add, and
then click Existing Project . In the Add Existing Project dialog box, move to the folder
Microsoft Press\Visual CSharp Step By Step\Chapter 20\BinaryTree in your Documents
folder, click the BinaryTree project, and then click Open .

The BinaryTree project contains a copy of the enumerable BinaryTree class that you
implemented in Chapter 19 .

 . 10 . . In Solution Explorer, right-click the QueryBinaryTree project and then click Add
Reference . In the Add Reference dialog box, click the Projects tab, select the BinaryTree
project, and then click OK .

 . 11 . . Display the Program .cs file for the QueryBinaryTree project in the Code and Text Editor
window, and verify that the list of using statements at the top of the file includes the
following line of code:

using System.Linq;

 . 12 . . Add the following using statement to the list at the top of the Program .cs file to bring
the BinaryTree namespace into scope:

using BinaryTree;

 . 13 . . In the DoWork method in the Program class, add the following statements shown in
bold type to construct and populate an instance of the BinaryTree class:

static void DoWork()
{
 Tree<Employee> empTree = new Tree<Employee>(new Employee
 { Id = 1, FirstName = "Janet", LastName = "Gates", Department = "IT"});
 empTree.Insert(new Employee
 { Id = 2, FirstName = "Orlando", LastName = "Gee", Department = "Marketing"});
 empTree.Insert(new Employee
 { Id = 4, FirstName = "Keith", LastName = "Harris", Department = "IT" });
 empTree.Insert(new Employee
 { Id = 6, FirstName = "Lucy", LastName = "Harrington", Department = "Sales" });

http://lib.ommolketab.ir
http//lib.ommolketab.ir

410 Part III Creating Components

 empTree.Insert(new Employee
 { Id = 3, FirstName = "Eric", LastName = "Lang", Department = "Sales" });
 empTree.Insert(new Employee
 { Id = 5, FirstName = "David", LastName = "Liu", Department = "Marketing" });
}

 . 14 . . Add the following statements shown in bold to the end of the DoWork method . This
code invokes the Select method to list the departments found in the binary tree .

static void DoWork()
{
 ...
 Console.WriteLine("List of departments");
 var depts = empTree.Select(d => d.Department);

 foreach (var dept in depts)
 {
 Console.WriteLine("Department: {0}", dept);
 }
}

 . 15 . . On the Debug menu, click Start Without Debugging .

The application should output the following list of departments:

List of departments
Department: IT
Department: Marketing
Department: Sales
Department: IT
Department: Marketing
Department: Sales

Each department occurs twice because there are two employees in each depart-
ment . The order of the departments is determined by the CompareTo method of the
Employee class, which uses the Id property of each employee to sort the data . The first
department is for the employee with the Id value 1, the second department is for the
employee with the Id value 2, and so on .

 . 16 . . Press Enter to return to Visual Studio 2010 .

 . 17 . . Modify the statement that creates the enumerable collection of departments as shown
here in bold:

var depts = empTree.Select(d => d.Department).Distinct();

The Distinct method removes duplicate rows from the enumerable collection .

 . 18 . . On the Debug menu, click Start Without Debugging .

Verify that the application now displays each department only once, like this:

List of departments
Department: IT
Department: Marketing
Department: Sales

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 20 Querying In-Memory Data by Using Query Expressions 411

 . 19 . . Press Enter to return to Visual Studio 2010 .

 . 20 . . Add the following statements to the end of the DoWork method . This block of code
uses the Where method to filter the employees and return only those in the IT depart-
ment . The Select method returns the entire row rather than projecting specific columns .

Console.WriteLine("\nEmployees in the IT department");
var ITEmployees =
 empTree.Where(e => String.Equals(e.Department, "IT"))
 .Select(emp => emp);

foreach (var emp in ITEmployees)
{
 Console.WriteLine(emp);
}

 . 21 . . Add the code shown next to the end of the DoWork method, after the code from the
preceding step . This code uses the GroupBy method to group the employees found
in the binary tree by department . The outer foreach statement iterates through each
group, displaying the name of the department . The inner foreach statement displays
the names of the employees in each department .

Console.WriteLine("\nAll employees grouped by department");
var employeesByDept = empTree.GroupBy(e => e.Department);

foreach (var dept in employeesByDept)
{
 Console.WriteLine("Department: {0}", dept.Key);
 foreach (var emp in dept)
 {
 Console.WriteLine("\t{0} {1}", emp.FirstName, emp.LastName);
 }
}

 . 22 . . On the Debug menu, click Start Without Debugging . Verify that the output of the
 application looks like this:

List of departments
Department: IT
Department: Marketing
Department: Sales

Employees in the IT department
Id: 1, Name: Janet Gates, Dept: IT
Id: 4, Name: Keith Harris, Dept: IT

All employees grouped by department
Department: IT
 Janet Gates
 Keith Harris
Department: Marketing
 Orlando Gee
 David Liu

http://lib.ommolketab.ir
http//lib.ommolketab.ir

412 Part III Creating Components

Department: Sales
 Eric Lang
 Lucy Harrington

 . 23 . . Press Enter to return to Visual Studio 2010 .

Retrieve data from a BinaryTree by using query operators

 . 1 . . In the DoWork method, comment out the statement that generates the enumerable
collection of departments, and replace it with the following statement shown in bold,
based on the from and select query operators:

//var depts = empTree.Select(d => d.Department).Distinct();
var depts = (from d in empTree
 select d.Department).Distinct();

 . 2 . . Comment out the statement that generates the enumerable collection of employees in
the IT department, and replace it with the following code shown in bold:

//var ITEmployees =
// empTree.Where(e => String.Equals(e.Department, "IT"))
// .Select(emp => emp);
var ITEmployees = from e in empTree
 where String.Equals(e.Department, "IT")
 select e;

 . 3 . . Comment out the statement that generates the enumerable collection grouping em-
ployees by department, and replace it with the statement shown here in bold:

//var employeesByDept = empTree.GroupBy(e => e.Department);
var employeesByDept = from e in empTree
 group e by e.Department;

 . 4 . . On the Debug menu, click Start Without Debugging . Verify that the output of the appli-
cation is the same as before .

 . 5 . . Press Enter to return to Visual Studio 2010 .

LINQ and Deferred Evaluation
When you use LINQ to define an enumerable collection, either by using the LINQ extension
methods or by using query operators, you should remember that the application does not
actually build the collection at the time that the LINQ extension method is executed; the col-
lection is enumerated only when you iterate over the collection . This means that the data in
the original collection can change between executing a LINQ query and retrieving the data
that the query identifies; you will always fetch the most up-to-date data . For example, the
following query (which you saw earlier) defines an enumerable collection of U .S . companies:

var usCompanies = from a in addresses
 where String.Equals(a.Country, "United States")
 select a.CompanyName;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 20 Querying In-Memory Data by Using Query Expressions 413

The data in the addresses array is not retrieved, and any conditions specified in the Where
filter are not evaluated until you iterate through the usCompanies collection:

foreach (string name in usCompanies)
{
 Console.WriteLine(name);
}

If you modify the data in the addresses array between defining the usCompanies collection
and iterating through the collection (for example, if you add a new company based in the
United States), you will see this new data . This strategy is referred to as deferred evaluation .

You can force evaluation of a LINQ query and generate a static, cached collection . This col-
lection is a copy of the original data and will not change if the data in the collection changes .
LINQ provides the ToList method to build a static List object containing a cached copy of the
data . You use it like this:

var usCompanies = from a in addresses.ToList()
 where String.Equals(a.Country, "United States")
 select a.CompanyName;

This time, the list of companies is fixed when you define the query . If you add more U .S .
 companies to the addresses array, you will not see them when you iterate through the
 usCompanies collection . LINQ also provides the ToArray method that stores the cached
 collection as an array .

In the final exercise in this chapter, you will compare the effects of using deferred evaluation
of a LINQ query to generating a cached collection .

Examine the effects of deferred and cached evaluation of a LINQ query

 . 1 . . Return to Visual Studio 2010, displaying the QueryBinaryTree project, and edit the
Program .cs file .

 . 2 . . Comment out the contents of the DoWork method apart from the statements that con-
struct the empTree binary tree, as shown here:

static void DoWork()
{
 Tree<Employee> empTree = new Tree<Employee>(new Employee
 { Id = 1, FirstName = "Janet", LastName = "Gates", Department = "IT" });
 empTree.Insert(new Employee
 { Id = 2, FirstName = "Orlando", LastName = "Gee", Department = "Marketing" });
 empTree.Insert(new Employee
 { Id = 4, FirstName = "Keith", LastName = "Harris", Department = "IT" });
 empTree.Insert(new Employee
 { Id = 6, FirstName = "Lucy", LastName = "Harrington", Department = "Sales" });
 empTree.Insert(new Employee
 { Id = 3, FirstName = "Eric", LastName = "Lang", Department = "Sales" });

http://lib.ommolketab.ir
http//lib.ommolketab.ir

414 Part III Creating Components

 empTree.Insert(new Employee
 { Id = 5, FirstName = "David", LastName = "Liu", Department = "Marketing" });

 // comment out the rest of the method
 ...
}

Tip You can comment out a block of code by selecting the entire block in the Code and
Text Editor window and then clicking the Comment Out The Selected Lines button on the
toolbar or by pressing Ctrl+E and then pressing C .

 . 3 . . Add the following statements to the DoWork method, after building the empTree
 binary tree:

Console.WriteLine("All employees");
var allEmployees = from e in empTree
 select e;

foreach (var emp in allEmployees)
{
 Console.WriteLine(emp);
}

This code generates an enumerable collection of employees named allEmployees and
then iterates through this collection, displaying the details of each employee .

 . 4 . . Add the following code immediately after the statements you typed in the preceding
step:

empTree.Insert(new Employee
 {
 Id = 7,
 FirstName = "Donald",
 LastName = "Blanton",
 Department = "IT"
 });
Console.WriteLine("\nEmployee added");

Console.WriteLine("All employees");
foreach (var emp in allEmployees)
{
 Console.WriteLine(emp);
}

These statements add a new employee to the empTree tree and then iterate through
the allEmployees collection again .

 . 5 . . On the Debug menu, click Start Without Debugging . Verify that the output of the appli-
cation looks like this:

All employees
Id: 1, Name: Janet Gates, Dept: IT

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 20 Querying In-Memory Data by Using Query Expressions 415

Id: 2, Name: Orlando Gee, Dept: Marketing
Id: 3, Name: Eric Lang, Dept: Sales
Id: 4, Name: Keith Harris, Dept: IT
Id: 5, Name: David Liu, Dept: Marketing
Id: 6, Name: Lucy Harrington, Dept: Sales

Employee added
All employees
Id: 1, Name: Janet Gates, Dept: IT
Id: 2, Name: Orlando Gee, Dept: Marketing
Id: 3, Name: Eric Lang, Dept: Sales
Id: 4, Name: Keith Harris, Dept: IT
Id: 5, Name: David Liu, Dept: Marketing
Id: 6, Name: Lucy Harrington, Dept: Sales
Id: 7, Name: Donald Blanton, Dept: IT

Notice that the second time the application iterates through the allEmployees
 collection, the list displayed includes Donald Blanton, even though this employee was
added only after the allEmployees collection was defined .

 . 6 . . Press Enter to return to Visual Studio 2010 .

 . 7 . . In the DoWork method, change the statement that generates the allEmployees
 collection to identify and cache the data immediately, as shown here in bold:

var allEmployees = from e in empTree.ToList<Employee>()
 select e;

LINQ provides generic and nongeneric versions of the ToList and ToArray methods . If
possible, it is better to use the generic versions of these methods to ensure the type
safety of the result . The data returned by the select operator is an Employee object, and
the code shown in this step generates allEmployees as a generic List<Employee> collec-
tion . If you specify the nongeneric ToList method, the allEmployees collection will be a
List of object types .

 . 8 . . On the Debug menu, click Start Without Debugging . Verify that the output of the
 application looks like this:

All employees
Id: 1, Name: Janet Gates, Dept: IT
Id: 2, Name: Orlando Gee, Dept: Marketing
Id: 3, Name: Eric Lang, Dept: Sales
Id: 4, Name: Keith Harris, Dept: IT
Id: 5, Name: David Liu, Dept: Marketing
Id: 6, Name: Lucy Harrington, Dept: Sales

Employee added
All employees
Id: 1, Name: Janet Gates, Dept: IT
Id: 2, Name: Orlando Gee, Dept: Marketing
Id: 3, Name: Eric Lang, Dept: Sales
Id: 4, Name: Keith Harris, Dept: IT
Id: 5, Name: David Liu, Dept: Marketing
Id: 6, Name: Lucy Harrington, Dept: Sales

http://lib.ommolketab.ir
http//lib.ommolketab.ir

416 Part III Creating Components

Notice that this time, the second time the application iterates through the allEmployees
collection, the list displayed does not include Donald Blanton . This is because the query
is evaluated and the results are cached before Donald Blanton is added to the empTree
binary tree .

 . 9 . . Press Enter to return to Visual Studio 2010 .

In this chapter, you learned how LINQ uses the IEnumerable<T> interface and extension
methods to provide a mechanism for querying data . You also saw how these features sup-
port the query expression syntax in C# .

n If you want to continue to the next chapter

Keep Visual Studio 2010 running, and turn to Chapter 21 .

n If you want to exit Visual Studio 2010 now

On the File menu, click Exit . If you see a Save dialog box, click Yes and save the project .

Chapter .20 .Quick .Reference
To Do this

Project specified fields from an
enumerable collection

Use the Select method, and specify a lambda expression that identifies
the fields to project . For example:

var customerFirstNames = customers.Select(cust => cust.FirstName);

Or use the from and select query operators . For example:

var customerFirstNames =
 from cust in customers
 select cust.FirstName;

Filter rows from an enumerable
collection

Use the Where method, and specify a lambda expression containing the
criteria that rows should match . For example:

var usCompanies =
 addresses.Where(addr =>
 String.Equals(addr.Country, "United States"))
 .Select(usComp => usComp.CompanyName);

Or use the where query operator . For example:

var usCompanies =
 from a in addresses
 where String.Equals(a.Country, "United States")
 select a.CompanyName;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 20 Querying In-Memory Data by Using Query Expressions 417

To Do this

Enumerate data in a specific order Use the OrderBy method, and specify a lambda expression identifying the
field to use to order rows . For example:

var companyNames =
 addresses.OrderBy(addr => addr.CompanyName)
 .Select(comp => comp.CompanyName);

Or use the orderby query operator . For example:

var companyNames =
 from a in addresses
 orderby a.CompanyName
 select a.CompanyName;

Group data by the values in a field Use the GroupBy method, and specify a lambda expression identifying
the field to use to group rows . For example:

var companiesGroupedByCountry =
 addresses.GroupBy(addrs => addrs.Country);

Or use the group by query operator . For example:

var companiesGroupedByCountry =
 from a in addresses
 group a by a.Country;

Join data held in two different
 collections

Use the Join method specifying the collection to join with, the join
 criteria, and the fields for the result . For example:

var citiesAndCustomers =
 customers
 .Select(c => new { c.FirstName, c.LastName, c.CompanyName }).
 Join(addresses, custs => custs.CompanyName,
 addrs => addrs.CompanyName,
 (custs, addrs) => new {custs.FirstName, custs.LastName,
 addrs.Country });

Or use the join query operator . For example:

var citiesAndCustomers =
 from a in addresses
 join c in customers
 on a.CompanyName equals c.CompanyName
 select new { c.FirstName, c.LastName, a.Country };

Force immediate generation of
the results for a LINQ query

Use the ToList or ToArray method to generate a list or an array containing
the results . For example:

var allEmployees =
 from e in empTree.ToList<Employee>()
 select e;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 . . 419

Chapter 21

Operator Overloading
After completing this chapter, you will be able to:

n Implement binary operators for your own types .

n Implement unary operators for your own types .

n Write increment and decrement operators for your own types .

n Understand the need to implement some operators as pairs .

n Implement implicit conversion operators for your own types .

n Implement explicit conversion operators for your own types .

You have made a great deal of use of the standard operator symbols (such as + and –) to
perform standard operations (such as addition and subtraction) on types (such as int and
double) . Many of the built-in types come with their own predefined behaviors for each
 operator . You can also define how operators should behave for your own structures and
classes, which is the subject of this chapter .

Understanding .Operators
It is worth recapping some of the fundamental aspects of operators before delving into the
details of how they work and how you can overload them . In summary:

n You use operators to combine operands together into expressions . Each operator has
its own semantics, dependent on the type it works with . For example, the + operator
means “add” when used with numeric types or “concatenate” when used with strings .

n Each operator has a precedence . For example, the * operator has a higher precedence
than the + operator . This means that the expression a + b * c is the same as a + (b * c) .

n Each operator also has an associativity to define whether the operator evaluates from
left to right or from right to left . For example, the = operator is right-associative (it
evaluates from right to left), so a = b = c is the same as a = (b = c) .

n A unary operator is an operator that has just one operand . For example, the increment
operator (++) is a unary operator .

n A binary operator is an operator that has two operands . For example, the multiplication
operator (*) is a binary operator .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

420 Part III Creating Components

Operator Constraints
You have seen throughout this book that C# enables you to overload methods when defining
your own types . C# also allows you to overload many of the existing operator symbols for
your own types, although the syntax is slightly different . When you do this, the operators you
implement automatically fall into a well-defined framework with the following rules:

n You cannot change the precedence and associativity of an operator . The precedence
and associativity are based on the operator symbol (for example, +) and not on the
type (for example, int) on which the operator symbol is being used . Hence, the expres-
sion a + b * c is always the same as a + (b * c), regardless of the types of a, b, and c .

n You cannot change the multiplicity (the number of operands) of an operator . For
 example, * (the symbol for multiplication), is a binary operator . If you declare a *
 operator for your own type, it must be a binary operator .

n You cannot invent new operator symbols . For example, you can’t create a new operator
symbol, such as ** for raising one number to the power of another number . You’d have
to create a method for that .

n You can’t change the meaning of operators when applied to built-in types . For
 example, the expression 1 + 2 has a predefined meaning, and you’re not allowed to
override this meaning . If you could do this, things would be too complicated!

n There are some operator symbols that you can’t overload . For example, you can’t
 overload the dot (.) operator, which indicates access to a class member . Again, if you
could do this, it would lead to unnecessary complexity .

Tip You can use indexers to simulate [] as an operator . Similarly, you can use properties to
simulate assignment (=) as an operator, and you can use delegates to simulate a function call as
an operator .

Overloaded Operators
To define your own operator behavior, you must overload a selected operator . You use
method-like syntax with a return type and parameters, but the name of the method is the
keyword operator together with the operator symbol you are declaring . For example, the fol-
lowing code shows a user-defined structure named Hour that defines a binary + operator to
add together two instances of Hour:

struct Hour
{
 public Hour(int initialValue)
 {
 this.value = initialValue;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 21 Operator Overloading 421

 }

 public static Hour operator +(Hour lhs, Hour rhs)
 {
 return new Hour(lhs.value + rhs.value);
 }
 ...
 private int value;
}

Notice the following:

n The operator is public . All operators must be public .

n The operator is static . All operators must be static . Operators are never polymorphic
and cannot use the virtual, abstract, override, or sealed modifier .

n A binary operator (such as the + operator, shown earlier) has two explicit arguments,
and a unary operator has one explicit argument . (C++ programmers should note that
operators never have a hidden this parameter .)

Tip When declaring highly stylized functionality (such as operators), it is useful to adopt a
 naming convention for the parameters . For example, developers often use lhs and rhs (acronyms
for left-hand side and right-hand side, respectively) for binary operators .

When you use the + operator on two expressions of type Hour, the C# compiler
 automatically converts your code to a call to your operator+ method . The C# compiler
 converts the code

Hour Example(Hour a, Hour b)
{
 return a + b;
}

to this:

Hour Example(Hour a, Hour b)
{
 return Hour.operator +(a,b); // pseudocode
}

Note, however, that this syntax is pseudocode and not valid C# . You can use a binary
 operator only in its standard infix notation (with the symbol between the operands) .

There is one final rule that you must follow when declaring an operator (otherwise, your code
will not compile): at least one of the parameters must always be of the containing type . In
the preceding operator+ example for the Hour class, one of the parameters, a or b, must be
an Hour object . In this example, both parameters are Hour objects . However, there could be

http://lib.ommolketab.ir
http//lib.ommolketab.ir

422 Part III Creating Components

times when you want to define additional implementations of operator+ that add, for ex-
ample, an integer (a number of hours) to an Hour object—the first parameter could be Hour,
and the second parameter could be the integer . This rule makes it easier for the compiler to
know where to look when trying to resolve an operator invocation, and it also ensures that
you can’t change the meaning of the built-in operators .

Creating Symmetric Operators
In the preceding section, you saw how to declare a binary + operator to add together two
instances of type Hour . The Hour structure also has a constructor that creates an Hour from
an int . This means that you can add together an Hour and an int—you just have to first use
the Hour constructor to convert the int to an Hour . For example:

Hour a = ...;
int b = ...;
Hour sum = a + new Hour(b);

This is certainly valid code, but it is not as clear or concise as adding together an Hour and an
int directly, like this:

Hour a = ...;
int b = ...;
Hour sum = a + b;

To make the expression (a + b) valid, you must specify what it means to add together an
Hour (a, on the left) and an int (b, on the right) . In other words, you must declare a binary
+ operator whose first parameter is an Hour and whose second parameter is an int . The
 following code shows the recommended approach:

struct Hour
{
 public Hour(int initialValue)
 {
 this.value = initialValue;
 }
 ...
 public static Hour operator +(Hour lhs, Hour rhs)
 {
 return new Hour(lhs.value + rhs.value);
 }

 public static Hour operator +(Hour lhs, int rhs)
 {
 return lhs + new Hour(rhs);
 }
 ...
 private int value;
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 21 Operator Overloading 423

Notice that all the second version of the operator does is construct an Hour from its int
 argument and then call the first version . In this way, the real logic behind the operator is
held in a single place . The point is that the extra operator + simply makes existing function-
ality easier to use . Also, notice that you should not provide many different versions of this
 operator, each with a different second parameter type—instead, cater to the common and
meaningful cases only, and let the user of the class take any additional steps if an unusual
case is required .

This operator+ declares how to add together an Hour as the left-hand operand and an int
as the right-hand operand . It does not declare how to add together an int as the left-hand
 operand and an Hour as the right-hand operand:

int a = ...;
Hour b = ...;
Hour sum = a + b; // compile-time error

This is counterintuitive . If you can write the expression a + b, you expect to also be able to
write b + a . Therefore, you should provide another overload of operator+:

struct Hour
{
 public Hour(int initialValue)
 {
 this.value = initialValue;
 }
 ...
 public static Hour operator +(Hour lhs, int rhs)
 {
 return lhs + new Hour(rhs);
 }

 public static Hour operator +(int lhs, Hour rhs)
 {
 return new Hour(lhs) + rhs;
 }
 ...
 private int value;
}

Note C++ programmers should notice that you must provide the overload yourself . The
 compiler won’t write the overload for you or silently swap the sequence of the two operands to
find a matching operator .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

424 Part III Creating Components

Operators .and .Language .Interoperability
Not all languages that execute using the common language runtime (CLR) support
or understand operator overloading . If you are creating classes that you want to be
able to use from other languages, if you overload an operator, you should provide an
 alternative mechanism that supports the same functionality . For example, suppose you
implement operator+ for the Hour structure:

public static Hour operator +(Hour lhs, int rhs)
{
 ...
}

If you need to be able to use your class from a Visual Basic application, you should also
provide an Add method that achieves the same thing:

public static Hour Add(Hour lhs, int rhs)
{
 ...
}

Understanding .Compound .Assignment .Evaluation
A compound assignment operator (such as +=) is always evaluated in terms of its associated
operator (such as +) . In other words, the statement

a += b;

is automatically evaluated like this:

a = a + b;

In general, the expression a @= b (where @ represents any valid operator) is always evalu-
ated as a = a @ b . If you have overloaded the appropriate simple operator, the overloaded
version is automatically called when you use its associated compound assignment operator .
For example:

Hour a = ...;
int b = ...;
a += a; // same as a = a + a
a += b; // same as a = a + b

The first compound assignment expression (a += a) is valid because a is of type Hour, and the
Hour type declares a binary operator+ whose parameters are both Hour . Similarly, the second
compound assignment expression (a += b) is also valid because a is of type Hour and b is of
type int . The Hour type also declares a binary operator+ whose first parameter is an Hour and
whose second parameter is an int . Note, however, that you cannot write the expression b +=
a because that’s the same as b = b + a . Although the addition is valid, the assignment is not,
because there is no way to assign an Hour to the built-in int type .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 21 Operator Overloading 425

Declaring .Increment .and .Decrement .Operators
C# allows you to declare your own version of the increment (++) and decrement (––)
 operators . The usual rules apply when declaring these operators: they must be public, they
must be static, and they must be unary (they can only take a single parameter) . Here is the
increment operator for the Hour structure:

struct Hour
{
 ...
 public static Hour operator ++(Hour arg)
 {
 arg.value++;
 return arg;
 }
 ...
 private int value;
}

The increment and decrement operators are unique in that they can be used in prefix and
postfix forms . C# cleverly uses the same single operator for both the prefix and postfix ver-
sions . The result of a postfix expression is the value of the operand before the expression
takes place . In other words, the compiler effectively converts the code

Hour now = new Hour(9);
Hour postfix = now++;

to this:

Hour now = new Hour(9);
Hour postfix = now;
now = Hour.operator ++(now); // pseudocode, not valid C#

The result of a prefix expression is the return value of the operator . The C# compiler
 effectively converts the code

Hour now = new Hour(9);
Hour prefix = ++now;

to this:

Hour now = new Hour(9);
now = Hour.operator ++(now); // pseudocode, not valid C#
Hour prefix = now;

This equivalence means that the return type of the increment and decrement operators must
be the same as the parameter type .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

426 Part III Creating Components

Comparing .Operators .in .Structures .and .Classes
Be aware that the implementation of the increment operator in the Hour structure works
only because Hour is a structure . If you change Hour into a class but leave the implementa-
tion of its increment operator unchanged, you will find that the postfix translation won’t give
the correct answer . If you remember that a class is a reference type and revisit the compiler
translations explained earlier, you can see why this occurs:

Hour now = new Hour(9);
Hour postfix = now;
now = Hour.operator ++(now); // pseudocode, not valid C#

If Hour is a class, the assignment statement postfix = now makes the variable postfix refer to
the same object as now . Updating now automatically updates postfix! If Hour is a structure,
the assignment statement makes a copy of now in postfix, and any changes to now leave
postfix unchanged, which is what we want .

The correct implementation of the increment operator when Hour is a class is as follows:

class Hour
{
 public Hour(int initialValue)
 {
 this.value = initialValue;
 }
 ...
 public static Hour operator ++(Hour arg)
 {
 return new Hour(arg.value + 1);
 }
 ...
 private int value;
}

Notice that operator ++ now creates a new object based on the data in the original . The data
in the new object is incremented, but the data in the original is left unchanged . Although this
works, the compiler translation of the increment operator results in a new object being creat-
ed each time it is used . This can be expensive in terms of memory use and garbage collection
overhead . Therefore, it is recommended that you limit operator overloads when you define
types . This recommendation applies to all operators, and not just to the increment operator .

Defining .Operator .Pairs
Some operators naturally come in pairs . For example, if you can compare two Hour values
by using the != operator, you would expect to be able to also compare two Hour values by
using the == operator . The C# compiler enforces this very reasonable expectation by insist-
ing that if you define either operator == or operator !=, you must define them both . This

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 21 Operator Overloading 427

neither-or-both rule also applies to the < and > operators and the <= and >= operators .
The C# compiler does not write any of these operator partners for you . You must write them
all explicitly yourself, regardless of how obvious they might seem . Here are the == and !=
 operators for the Hour structure:

struct Hour
{
 public Hour(int initialValue)
 {
 this.value = initialValue;
 }
 ...
 public static bool operator ==(Hour lhs, Hour rhs)
 {
 return lhs.value == rhs.value;
 }

 public static bool operator !=(Hour lhs, Hour rhs)
 {
 return lhs.value != rhs.value;
 }
 ...
 private int value;
}

The return type from these operators does not actually have to be Boolean . However, you
would have to have a very good reason for using some other type, or these operators could
become very confusing!

Note If you define operator == and operator != in a class, you should also override the Equals
and GetHashCode methods inherited from System.Object (or System.ValueType if you are creating
a structure) . The Equals method should exhibit exactly the same behavior as operator ==. (You
should define one in terms of the other .) The GetHashCode method is used by other classes in the
Microsoft .NET Framework . (When you use an object as a key in a hash table, for example, the
GetHashCode method is called on the object to help calculate a hash value . For more informa-
tion, see the .NET Framework Reference documentation supplied with Visual Studio 2010 .) All this
method needs to do is return a distinguishing integer value . (Don’t return the same integer from
the GetHashCode method of all your objects, however, because this will nullify the effectiveness
of the hashing algorithms .)

Implementing .Operators
In the following exercise, you will develop a class that simulates complex numbers .

A complex number has two elements: a real component and an imaginary component .
Typically, a complex number is represented in the form (x + yi), where x is the real compo-
nent and yi is the imaginary component . The values of x and y are regular integers, and i

http://lib.ommolketab.ir
http//lib.ommolketab.ir

428 Part III Creating Components

represents the square root of –1 (hence the reason why yi is imaginary) . Despite their rather
obscure and theoretical feel, complex numbers have a large number of uses in the fields of
electronics, applied mathematics, physics, and many aspects of engineering .

Note The .NET Framework 4 .0 now includes a type called Complex in the System.Numerics
namespace that implements complex numbers, so there is no real need to define your own
implementation any more . However, it is still instructive to see how to implement some of the
common operators for this type .

You will implement complex numbers as a pair of integers that represent the coefficients
x and y for the real and imaginary elements . You will also implement the operands necessary
for performing simple arithmetic using complex numbers . The following table summarizes
how to perform the four primary arithmetic operations on a pair of complex numbers,
(a + bi) and (c + di) .

Operation Calculation

(a + bi) + (c + di) ((a + c) + (b + d)i)

(a + bi) – (c + di) ((a – c) + (b – d)i)

(a + bi) * (c + di) ((a * c – b * d) + (b * c + a * d)i)

(a + bi) / (c + di) (((a * c + b * d) / (c * c + d * d)) + (b * c - a * d) / (c * c + d * d))i)

Create the Complex class, and implement the arithmetic operators

 . 1 . . Start Microsoft Visual Studio 2010 if it is not already running .

 . 2 . . Open the ComplexNumbers project, located in the \Microsoft Press\Visual CSharp Step
By Step\Chapter 21\ComplexNumbers folder in your Documents folder . This is a console
application that you will use to build and test your code . The Program .cs file contains
the familiar DoWork method .

 . 3 . . On the Project menu, click Add Class . In the Add New Item – Complex Numbers dialog
box, type Complex .cs in the Name text box and then click Add .

Visual Studio creates the Complex class and opens the Complex .cs file in the Code and
Text Editor window .

 . 4 . . .Add the automatic integer properties Real and Imaginary to the Complex class, as
shown next in bold . You will use these two properties to hold the real and imaginary
components of a complex number .

class Complex
{
 public int Real { get; set; }
 public int Imaginary { get; set; }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 21 Operator Overloading 429

 . 5 . . Add the constructor shown next in bold to the Complex class . This constructor takes
two int parameters and uses them to populate the Real and Imaginary properties .

class Complex
{
 ...
 public Complex (int real, int imaginary)
 {
 this.Real = real;
 this.Imaginary = imaginary;
 }
}

 . 6 . . Override the ToString method as shown next in bold . This method returns a string
 representing the complex number in the form (x + yi) .

class Complex
{
 ...
 public override string ToString()
 {
 return String.Format("({0} + {1}i)", this.Real, this.Imaginary);
 }
}

 . 7 . . Add the overloaded + operator shown next in bold to the Complex class . This is the
binary addition operator . It takes two Complex objects and adds them together by
performing the calculation shown in the table at the start of the exercise . The operator
returns a new Complex object containing the results of this calculation .

class Complex
{
 ...
 public static Complex operator +(Complex lhs, Complex rhs)
 {
 return new Complex(lhs.Real + rhs.Real, lhs.Imaginary + rhs.Imaginary);
 }
}

 . 8 . . Add the overloaded – operator to the Complex class . This operator follows the same
form as the overloaded + operator .

class Complex
{
 ...
 public static Complex operator -(Complex lhs, Complex rhs)
 {
 return new Complex(lhs.Real - rhs.Real, lhs.Imaginary - rhs.Imaginary);
 }
}

 . 9 . . Implement the * operator and / operator . These two operators follow the same form
as the previous two operators, although the calculations are a little more complicated .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

430 Part III Creating Components

(The calculation for the / operator has been broken down into two steps to avoid
lengthy lines of code .)

class Complex
{
 ...
 public static Complex operator *(Complex lhs, Complex rhs)
 {
 return new Complex(lhs.Real * rhs.Real + lhs.Imaginary * rhs.Real,
 lhs.Imaginary * rhs.Imaginary + lhs.Real * rhs.Imaginary);
 }

 public static Complex operator /(Complex lhs, Complex rhs)
 {
 int realElement = (lhs.Real * rhs.Real + lhs.Imaginary * rhs.Imaginary) /
 (rhs.Real * rhs.Real + rhs.Imaginary * rhs.Imaginary);
 int imaginaryElement = (lhs.Imaginary * rhs.Real - lhs.Real * rhs.Imaginary) /
 (rhs.Real * rhs.Real + rhs.Imaginary * rhs.Imaginary);
 return new Complex(realElement, imaginaryElement);
 }
}

 . 10 . . Display the Program .cs file in the Code and Text Editor window . Add the following
 statements shown in bold to the DoWork method of the Program class:

static void DoWork()
{
 Complex first = new Complex(10, 4);
 Complex second = new Complex(5, 2);

 Console.WriteLine("first is {0}", first);
 Console.WriteLine("second is {0}", second);

 Complex temp = first + second;
 Console.WriteLine("Add: result is {0}", temp);

 temp = first - second;
 Console.WriteLine("Subtract: result is {0}", temp);

 temp = first * second;
 Console.WriteLine("Multiply: result is {0}", temp);

 temp = first / second;
 Console.WriteLine("Divide: result is {0}", temp);
}

This code creates two Complex objects that represent the complex values (10 + 4i) and
(5 + 2i) . The code displays them, and then tests each of the operators you have just
 defined, displaying the results in each case .

 . 11 . . On the Debug menu, click Start Without Debugging .

Verify that the application displays the results shown in the following image .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 21 Operator Overloading 431

 . 12 . . Close the application, and return to the Visual Studio 2010 programming environment .

You have now created a type that models complex numbers and supports basic arithmetic
operations . In the next exercise, you will extend the Complex class and provide the equal-
ity operators, == and != . Remember that if you implement these operators you should also
override the Equals and GetHashCode methods that the class inherits from the Object type .

Implement the equality operators

 . 1 . . In Visual Studio 2010, display the Complex .cs file in the Code and Text Editor window .

 . 2 . . Add the == and != operators to the Complex class as shown next in bold . Notice that
these operators both make use of the Equal method . The Equal method compares an
instance of a class against another instance specified as an argument . It returns true if
they are equal and false otherwise .

class Complex
{
 ...
 public static bool operator ==(Complex lhs, Complex rhs)
 {
 return lhs.Equals(rhs);
 }

 public static bool operator !=(Complex lhs, Complex rhs)
 {
 return !(lhs.Equals(rhs));
 }
}

 . 3 . . On the Build menu, click Rebuild Solution .

The Error List window displays the following warning messages:

'ComplexNumbers.Complex' defines operator == or operator != but does not override
Object.GetHashCode()

'ComplexNumbers.Complex' defines operator == or operator != but does not override
Object.Equals(object o)

If you define the != and == operators, you should also override the Equal and
GetHashCode methods inherited from SystemObject .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

432 Part III Creating Components

Note If the Error List window is not displayed, on the View menu, click Error List .

 . 4 . . Override the Equals method in the Complex class as shown next in bold:

class Complex
{
 ...
 public override bool Equals(Object obj)
 {
 if (obj is Complex)
 {
 Complex compare = (Complex)obj;
 return (this.Real == compare.Real) &&
 (this.Imaginary == compare.Imaginary);
 }
 else
 {
 return false;
 }
 }
}

The Equals method takes an Object as a parameter . This code verifies that the type of
the parameter is actually a Complex object . If it is, this code compares the values in
the Real and Imaginary properties in the current instance and the parameter passed
in; if they are the same, the method returns true, or it returns false otherwise . If the
 parameter passed in is not a Complex object, the method returns false .

Important It is tempting to write the Equals method like this:

 public override bool Equals(Object obj)
 {
 Complex compare = obj As Complex;
 if (compare != null)
 {
 return (this.Real == compare.Real) &&
 (this.Imaginary == compare.Imaginary);
 }
 else
 {
 return false;
 }
 }

However, the expression compare != null invokes the != operator of the Complex class,
which calls the Equals method again, resulting in an infinitely recursive loop .

 . 5 . . Override the GetHashCode method . This implementation simply calls the method
 inherited from the Object class, but you can provide your own mechanism to generate
a hash code for an object if you prefer .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 21 Operator Overloading 433

Class Complex
{
 ...
 public override int GetHashCode()
 {
 return base.GetHashCode();
 }
}

 . 6 . . On the Build menu, click Rebuild Solution .

Verify that the solution now builds without reporting any warnings .

 . 7 . . Display the Program .cs file in the Code and Text Editor window . Add the following code
to the end of the DoWork method:

static void DoWork()
{
 ...
 if (temp == first)
 {
 Console.WriteLine("Comparison: temp == first");
 }
 else
 {
 Console.WriteLine("Comparison: temp != first");
 }

 if (temp == temp)
 {
 Console.WriteLine("Comparison: temp == temp");
 }
 else
 {
 Console.WriteLine("Comparison: temp != temp");
 }
}

Note The expression temp == temp generates a warning message “Comparison made to
same variable: did you mean to compare to something else?” In this case, you can ignore
the warning because this comparison is intentional; it is to verify that the == operator is
working as expected .

 . 8 . . On the Debug menu, click Start Without Debugging . Verify that the final two messages
displayed are these:

Comparison: temp != first
Comparison: temp == temp

 . 9 . . Close the application, and return to Visual Studio 2010 .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

434 Part III Creating Components

Understanding .Conversion .Operators
Sometimes you need to convert an expression of one type to another . For example, the
 following method is declared with a single double parameter:

class Example
{
 public static void MyDoubleMethod(double parameter)
 {
 ...
 }
}

You might reasonably expect that only values of type double could be used as argu-
ments when calling MyDoubleMethod, but this is not so . The C# compiler also allows
MyDoubleMethod to be called with an argument whose type is not double, but only if that
value can be converted to a double . For example, you can provide an int argument . In that
case, the compiler generates code that converts the argument from an int to a double when
the method is called .

Providing Built-in Conversions
The built-in types have some built-in conversions . For example, as mentioned previously, an
int can be implicitly converted to a double . An implicit conversion requires no special syntax
and never throws an exception:

Example.MyDoubleMethod(42); // implicit int-to-double conversion

An implicit conversion is sometimes called a widening conversion because the result is wider
than the original value—it contains at least as much information as the original value, and
nothing is lost .

On the other hand, a double cannot be implicitly converted to an int:

class Example
{
 public static void MyIntMethod(int parameter)
 {
 ...
 }
}
...
Example.MyIntMethod(42.0); // compile-time error

When you convert a double to an int, you run the risk of losing information, so the conver-
sion will not be performed automatically . (Consider what would happen if the argument to
MyIntMethod were 42 .5—how should this be converted?) A double can be converted to an
int, but the conversion requires an explicit notation (a cast):

Example.MyIntMethod((int)42.0);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 21 Operator Overloading 435

An explicit conversion is sometimes called a narrowing conversion because the result is
narrower than the original value (that is, it can contain less information) and can throw an
OverflowException . C# allows you to provide conversion operators for your own user-defined
types to control whether it is sensible to convert values to other types and whether these
conversions are implicit or explicit .

Implementing User-Defined Conversion Operators
The syntax for declaring a user-defined conversion operator is similar to that for declaring an
overloaded operator . A conversion operator must be public and must also be static . Here’s a
conversion operator that allows an Hour object to be implicitly converted to an int:

struct Hour
{
 ...
 public static implicit operator int (Hour from)
 {
 return this.value;
 }

 private int value;
}

The type you are converting from is declared as the single parameter (in this case, Hour), and
the type you are converting to is declared as the type name after the keyword operator (in
this case, int) . There is no return type specified before the keyword operator .

When declaring your own conversion operators, you must specify whether they are implicit
conversion operators or explicit conversion operators . You do this by using the implicit and
explicit keywords . For example, the Hour to int conversion operator mentioned earlier is
 implicit, meaning that the C# compiler can use it implicitly (without requiring a cast):

class Example
{
 public static void MyOtherMethod(int parameter) { ... }
 public static void Main()
 {
 Hour lunch = new Hour(12);
 Example.MyOtherMethod(lunch); // implicit Hour to int conversion
 }
}

If the conversion operator had been declared explicit, the preceding example would not have
compiled, because an explicit conversion operator requires an explicit cast:

Example.MyOtherMethod((int)lunch); // explicit Hour to int conversion

http://lib.ommolketab.ir
http//lib.ommolketab.ir

436 Part III Creating Components

When should you declare a conversion operator as explicit or implicit? If a conversion is
 always safe, does not run the risk of losing information, and cannot throw an exception, it
can be defined as an implicit conversion . Otherwise, it should be declared as an explicit con-
version . Converting from an Hour to an int is always safe—every Hour has a corresponding
int value—so it makes sense for it to be implicit . An operator that converts a string to an
Hour should be explicit because not all strings represent valid Hours . (The string “7” is fine,
but how would you convert the string “Hello, World” to an Hour?)

Creating Symmetric Operators, Revisited
Conversion operators provide you with an alternative way to resolve the problem of
 providing symmetric operators . For example, instead of providing three versions of
operator+ (Hour + Hour, Hour + int, and int + Hour) for the Hour structure, as shown ear-
lier, you can provide a single version of operator+ (that takes two Hour parameters) and an
 implicit int to Hour conversion, like this:

struct Hour
{
 public Hour(int initialValue)
 {
 this.value = initialValue;
 }

 public static Hour operator +(Hour lhs, Hour rhs)
 {
 return new Hour(lhs.value + rhs.value);
 }

 public static implicit operator Hour (int from)
 {
 return new Hour (from);
 }
 ...
 private int value;
}

If you add an Hour to an int (in either order), the C# compiler automatically converts the int
to an Hour and then calls operator+ with two Hour arguments:

void Example(Hour a, int b)
{
 Hour eg1 = a + b; // b converted to an Hour
 Hour eg2 = b + a; // b converted to an Hour
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 21 Operator Overloading 437

Writing Conversion Operators
In the following exercise, you will add further operators to the Complex class . You will start
by writing a pair of conversion operators that convert between the int type and the Complex
type . Converting an int to a Complex object is always a safe process and never loses informa-
tion (because an int is really just a Complex number without an imaginary element) . So you
will implement this as an implicit conversion operator . However, the converse is not true; to
convert a Complex object into an int, you have to discard the imaginary element . So you will
implement this conversion operator as explicit .

Implement the conversion operators

 . 1 . . Return to Visual Studio 2010 and display the Complex .cs file in the Code and Text Editor
window . Add the constructor shown next in bold to the Complex class . This constructor
takes a single int parameter which it uses to initialize the Real property . The imaginary
property is set to 0 .

class Complex
{
 ...
 public Complex(int real)
 {
 this.Real = real;
 this.Imaginary = 0;
 }
 ...
}

 . 2 . . Add the following implicit conversion operator to the Complex class . This operator
 converts from an int to a Complex object by returning a new instance of the Complex
class by using the constructor you created in the previous step .

class Complex
{
 ...
 public static implicit operator Complex(int from)
 {
 return new Complex(from);
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

438 Part III Creating Components

 . 3 . . Add the explicit conversion operator shown next to the Complex class . This operator
takes a Complex object and returns the value of the Real property . This conversion
 discards the imaginary element of the complex number .

class Complex
{
 ...
 public static explicit operator int(Complex from)
 {
 return from.Real;
 }
}

 . 4 . . Display the Program .cs file in the Code and Text Editor window . Add the following code
to the end of the DoWork method:

static void DoWork()
{
 ...
 Console.WriteLine("Current value of temp is {0}", temp);

 if (temp == 2)
 {
 Console.WriteLine("Comparison after conversion: temp == 2");
 }
 else
 {
 Console.WriteLine("Comparison after conversion: temp != 2");
 }

 temp += 2;
 Console.WriteLine("Value after adding 2: temp = {0}", temp);
}

These statements test the implicit operator that converts an int to a Complex object .
The if statement compares a Complex object to an int . The compiler generates code
that converts the int into a Complex object first, and then invokes the == operator
of the Complex class . The statement that adds 2 to the temp variable converts the int
value 2 into a Complex object and then uses the + operator of the Complex class .

 5 . Add the following statements to end of the DoWork method:

static void DoWork()
{
 ...
 int tempInt = temp;
 Console.WriteLine("Int value after conversion: tempInt = {0}", tempInt);
}

The first statement attempts to assign a Complex object to an int variable .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 21 Operator Overloading 439

 6 . On the Build menu, click Rebuild Solution .

The solution fails to build, and the compiler reports the following error in the Error List
window:

Cannot implicitly convert type 'ComplexNumbers.Complex' to 'int'. An explicit
conversion exists (are you missing a cast?)

The operator that converts from a Complex object to an int is an explicit conversion
 operator, so you must specify a cast .

 . 7 . . Modify the statement that attempts to store a Complex value in an int variable to use a
cast, like this:

int tempInt = (int)temp;

 . 8 . . On the Debug menu, click Start Without Debugging . Verify that the solution now builds,
and that the final four statements output are these:

Current value of temp is (2 + 0i)
Comparison after conversion: temp == 2
Value after adding 2: temp = (4 + 0i)
Int value after conversion: tempInt = 4

 . 9 . . Close the application, and return to Visual Studio 2010 .

In this chapter, you learned how to overload operators and provide functionality specific to a
class or structure . You implemented a number of common arithmetic operators, and you also
created operators that enable you to compare instances of a class . Finally, you learned how
to create implicit and explicit conversion operators .

n If you want to continue to the next chapter

Keep Visual Studio 2010 running, and turn to Chapter 22 .

n If you want to exit Visual Studio 2010 now

On the File menu, click Exit . If you see a Save dialog box, click Yes and save the project .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

440 Part III Creating Components

Chapter .21 .Quick .Reference
To Do this

Implement an operator Write the keywords public and static, followed by the return type,
 followed by the operator keyword, followed by the operator symbol
 being declared, followed by the appropriate parameters between paren-
theses . Implement the logic for the operator in the body of the method .
For example:

class Complex
{
 ...
 public static bool operator==(Complex lhs, Complex rhs)
 {
 ... // Implement logic for == operator
 }
 ...
}

Define a conversion operator Write the keywords public and static, followed by the keyword implicit
or explicit, followed by the operator keyword, followed by the type be-
ing converted to, followed by the type being converted from as a single
 parameter between parentheses . For example:

class Complex
{
 ...
 public static implicit operator Complex(int from)
 {
 ... // code to convert from an int
 }
 ...
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Microsoft Visual C# 2010 Step by Step

 . . 441

Part IV

Building Windows Presentation
Foundation Applications

In this part:

Introducing Windows Presentation Foundation . 443

Gathering User Input . 477

Performing Validation . 509

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 . . 443

Chapter 22

Introducing Windows Presentation
Foundation

After completing this chapter, you will be able to:

n Create Microsoft Windows Presentation Foundation (WPF) applications .

n Use common WPF controls such as labels, text boxes, and buttons .

n Define styles for WPF controls .

n Change the properties of WPF forms and controls at design time and through code at
run time .

n Handle events exposed by WPF forms and controls .

Now that you have completed the exercises and examined the examples in the first three
parts of this book, you should be well versed in the C# language . You have learned how to
write programs and create components by using Microsoft C#, and you should understand
many of the finer points of the language, such as extension methods, lambda expressions,
and the distinction between value and reference types . You now have the essential lan-
guage skills, and in Part IV you will expand upon them and use C# to take advantage of the
 graphical user interface (GUI) libraries provided as part of the Microsoft .NET Framework . In
particular, you will see how to use the objects in the System.Windows namespace to create
WPF applications .

In this chapter, you learn how to build a basic WPF application by using the common
 components that are a feature of most GUI applications . You see how to set the properties of
WPF forms and controls by using the Design View and Properties windows, and also by using
Extensible Application Markup Language, or XAML . You also learn how to use WPF styles to
build user interfaces that can be easily adapted to conform to your organization’s presenta-
tion standards . Finally, you learn how to intercept and handle some of the events that WPF
forms and controls expose .

Creating .a .WPF .Application
As an example, you are going to create an application that a user can use to input and
 display details for members of the Middleshire Bell Ringers Association, an esteemed group
of the finest campanologists . Initially, you will keep the application very simple, concentrat-
ing on laying out the form and making sure that it all works . On the way, you learn about
some of the features that WPF provides for building highly adaptable user interfaces . In

http://lib.ommolketab.ir
http//lib.ommolketab.ir

444 Part IV Building Windows Presentation Foundation Applications

later chapters, you will provide menus and learn how to implement validation to ensure that
the data that is entered makes sense . The following graphic shows what the application will
look like after you have completed it . (You can see the completed version by building and
running the BellRingers project in the \Microsoft Press\Visual CSharp Step By Step\Chapter
22\BellRingers - Complete\ folder in your Documents folder .)

Building the WPF Application
In this exercise, you’ll start building the Middleshire Bell Ringers Association application by
creating a new project, laying out the form, and adding controls to the form . You have been
using existing WPF applications in Microsoft Visual Studio 2010 in previous chapters, so much
of the first couple of exercises will be a review for you .

Create the Middleshire Bell Ringers Association project

 . 1 . . Start Visual Studio 2010 if it is not already running .

 . 2 . . If you are using Visual Studio 2010 Standard or Visual Studio 2010 Professional, perform
the following operations to create a new WPF application:

 . 2 .1 . . On the File menu, point to New, and then click Project .

The New Project dialog box opens .

 . 2 .2 . . In the left pane, expand Installed Templates (if it is not already expanded) expand
Visual C#, and then click Windows .

 . 2 .3 . . In the middle pane, click the WPF Application icon .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 22 Introducing Windows Presentation Foundation 445

 . 2 .4 . . In the Location field, type \Microsoft .Press\Visual .CSharp .Step .By .Step\
Chapter .22 under your Documents folder .

 . 2 .5 . . In the Name field, type BellRingers .

 . 2 .6 . . Click OK .

 . 3 . . If you are using Microsoft Visual C# 2010 Express, perform the following tasks to create
a new graphical application:

 . 3 .1 . . On the File menu, click New Project .

 . 3 .2 . . In the New Project dialog box, in the left pane, under Installed Templates, click
Visual C# .

 . 3 .3 . . In the middle pane, click WPF Application; in the Name field, type BellRingers;
and then click OK .

 . 3 .4 . . When Visual Studio has created the project, on the File menu click Save All .

 . 3 .5 . . In the Save Project dialog box, in the Location field specify the location Microsoft .
Press\Visual .CSharp .Step .By .Step\Chapter .22 under your Documents folder,
and then click Save .

The new project is created and contains a blank form called MainWindow .

Examine the form and the Grid layout

 . 1 . . Examine the form in the XAML pane underneath the Design View window . Notice that
the XAML definition of the form looks like this:

<Window x:Class="BellRingers.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="350" Width="525">
 <Grid>

 </Grid>
</Window>

The Class attribute specifies the fully qualified name of the class that implements the
form . In this case, it is called MainWindow in the BellRingers namespace . The WPF
Application template uses the name of the application as the default namespace for
forms . The xmlns attributes specify the XML namespaces that define the schemas used
by WPF; all the controls and other items that you can incorporate into a WPF applica-
tion have definitions that live in these namespaces . (If you are not familiar with XML
namespaces, you can ignore these xmlns attributes for now .) The Title attribute specifies
the text that appears in the title bar of the form, and the Height and Width attributes
specify the default height and width of the form . You can modify these values either
by changing them in the XAML pane or by using the Properties window . You can also

http://lib.ommolketab.ir
http//lib.ommolketab.ir

446 Part IV Building Windows Presentation Foundation Applications

change the value of these and many other properties dynamically by writing C# code
that executes when the form runs .

 . 2 . . Click the MainWindow form in the Design View window . In the Properties window,
locate and click the Title property, type Middleshire .Bell .Ringers .Association .– .
Members, and then press Enter to change the text in the title bar of the form .

Notice that the value in the Title attribute of the form changes in the XAML pane, and
the new title is displayed in the title bar of the form in the Design View window .

Note The MainWindow form contains a child control that you will examine in the next
step . If the Properties window displays the properties for a System.Windows.Controls.
Grid control, click the MainWindow text on the MainWindow form . This action selects the
form rather than the grid, and the Properties window then displays the properties for the
System.Windows.Window control .

 . 3 . . In the XAML pane, notice that the Window element contains a child element called
Grid .

In a WPF application, you place controls such as buttons, text boxes, and labels in a
panel on a form . The panel manages the layout of the controls it contains . The default
panel added by the WPF Application template is a Grid, which you can use to specify
exactly the location of your controls at design time . Other types of panels are available
that provide different styles of layout . For example, StackPanel automatically places
controls in a vertical arrangement, with each control arranged directly beneath its im-
mediate predecessor . Another example is WrapPanel, which arranges controls in a row
from left to right and then wraps the content to the next line when the current row is
full . A primary purpose of a layout panel is to govern how the controls are positioned
if the user resizes the window at run time; the controls are automatically resized and
repositioned according to the type of the panel .

Note The Grid panel is flexible but complex . By default, you can think of the Grid panel
as defining a single cell into which you can drop controls and set their location . However,
you can set the properties of a Grid panel to define multiple rows and columns (hence its
name), and you can drop controls into each of the cells defined by these rows and col-
umns . In this chapter, we keep things simple and use only a single cell .

 . 4 . . In the Design View window, click the MainWindow form, and then click the Toolbox tab .

 . 5 . . In the Common WPF Controls section of the toolbox, click Button, and then click in the
upper right part of the form .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 22 Introducing Windows Presentation Foundation 447

A button control that displays two connectors anchoring it to the top and left edges of
the form is added to the form, like this:

Anchor points

Connectors

Although you clicked the form, the Button control is added to the Grid control
 contained in the form . The grid occupies the entire form apart from the title bar at
the top . The connectors show that the button is anchored to the top and right edges
of the grid . At run time, if you resize the form, the button moves to maintain these
 connections and keep the button the same distance from the connected edges . You
can anchor the button to different edges of the form by clicking the anchor points
of the control or changing the HorizontalAlignment and VerticalAlignment properties
of the button, as described in the next step .

 . 6 . . Examine the code in the XAML pane . The Grid element and its contents should now
look something like this (although your values for the Margin property might vary):

<Grid>
 <Button Content="Button" HorizontalAlignment="Left"
 Margin="0,84,34,0" Name="button1" Width="75" Height="23"
 VerticalAlignment="Top"/>
</Grid>

Note Throughout this chapter, lines from the XAML pane are shown split and indented
so that they will fit on the printed page .

When you place a control on a grid, you can connect any or all of the anchor points to
the corresponding edge of the grid . If you move the control around, it stays connected
to the same edges until you change the alignment properties of the control .

The HorizontalAlignment and VerticalAlignment properties of the button indicate the
edges to which the button is currently connected, and the Margin property indicates
the distance to those edges . Recall from Chapter 1, “Welcome to C#,” that the Margin
property contains four values specifying the distance from the left, top, right, and
 bottom edges of the grid, respectively . In the XAML fragment just shown, the button

http://lib.ommolketab.ir
http//lib.ommolketab.ir

448 Part IV Building Windows Presentation Foundation Applications

is 84 units from the top edge of the grid and 34 units from the right edge . (Each unit is
1/96th of an inch .) Margin values of 0 indicate that the button is not connected to the
corresponding edge . As mentioned in the previous step, when you run the application,
the WPF runtime will endeavor to maintain these distances even if you resize the form .

 . 7 . . On the Debug menu, click Start Without Debugging to build and run the application .

 . 8 . . When the form appears, resize the window by clicking and dragging each of the edges
in turn . Notice that as you drag the edges of the form around, the distance of the
 button from the top and left edges of the form remains fixed .

 . 9 . . Close the form, and return to Visual Studio 2010 .

 . 10 . . In the Design View window, click the button control, and then click the right anchor
point to attach the control to the right edge of the form, as shown in the following
image:

In the XAML pane, notice that the HorizontalAlignment property is no longer specified .
The default value for the HorizontalAlignment and VerticalAlignment properties is a val-
ue called Stretch, which indicates that the control is anchored to both opposite edges .
Also notice that the Margin property now specifies a nonzero value for the left margin .

Note You can also click the anchor point that is connected to the edge of the grid to
 remove the connection .

 . 11 . . On the Debug menu, click Start Without Debugging to build and run the application
again .

 . 12 . . When the form appears, experiment by making the form narrower and wider .
Notice that the button no longer moves to the left or right because it is anchored to
the left and right edges of the form . Instead, the button gets wider or narrower as the
edges move .

 . 13 . . Close the form, and return to Visual Studio 2010 .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 22 Introducing Windows Presentation Foundation 449

 . 14 . . In the Design View window, add a second Button control to the form from the Toolbox,
and position it near the middle of the form .

 . 15 . . In the XAML pane, set the Margin property to 0,0,0,0; remove the VerticalAlignment
and HorizontalAlignment properties; and set the Width and Height properties, as shown
here:

<Button Content="Button" Margin="0,0,0,0" Name="button2"
 Width="75" Height="23"/>

Tip You can also set many of the properties of a control, such as Margin, by using the
Properties window . However, sometimes it is simply easier to type values directly into the
XAML pane as long as you enter the values carefully .

Note If you don’t set the Width and Height properties of the button control, the button
fills the entire form .

 . 16 . . On the Debug menu, click Start Without Debugging to build and run the application
once more .

 . 17 . . When the form appears, resize the form . Notice that as the form shrinks or grows the
new button relocates itself to try to maintain its relative position on the form with re-
spect to all four sides (that is, it tries to stay in the center of the form) . The new button
control even travels over the top of the first button control if you shrink the height of
the form .

 . 18 . . Close the form, and return to Visual Studio 2010 .

As long as you are consistent in your approach, by using layout panes, such as the Grid, you
can build forms that look right regardless of the user’s screen resolution without having to
write complex code to determine when the user has resized a window . Additionally, with
WPF, you can modify the look and feel of the controls an application uses—again, without
having to write lots of complex code . With these features, you can build applications that can
easily be customized to conform to any house style required by your organization . You will
examine some of these features in the following exercises .

Add a background image to the form

 . 1 . . In the Design View window, click the MainWindow form .

 . 2 . . In the Toolbox, in the Common WPF Controls section, click Image, and then click
 anywhere on the form . You will use this image control to display an image on the
 background of the form .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

450 Part IV Building Windows Presentation Foundation Applications

Note You can use many other techniques to display an image in the background of a
Grid . The method shown in this exercise is probably the simplest, although other strategies
can provide more flexibility .

 . 3 . . In the XAML pane, set the Margin property of the image control and remove any other
property values apart from the Name, as shown here:

<Image Margin="0,0,0,0" Name="image1"/>

The image control expands to occupy the grid; the two button controls remain visible .

 . 4 . . In Solution Explorer, right-click the BellRingers project, point to Add, and then click
Existing Item . In the Add Existing Item – BellRingers dialog box, move to the folder
Microsoft Press\Visual CSharp Step By Step\Chapter 22 under your Documents folder . In
the drop-down list box adjacent to the File name text box, select All Files (*.*) . Select the
file bell.gif, and then click Add .

This action adds the image file bell .gif as a resource to your application . The bell .gif file
contains a sketch of a ringing bell .

 . 5 . . In the XAML pane, modify the definition of the image control as shown here in bold .
The Image.Source property is an example of a composite property that contains one or
more child elements . Notice that you must replace the closing tag delimiter (/>) of the
image control with an ordinary tag delimiter character (>) and add a closing </Image>
tag to enclose the Image.Source property:

<Image Margin="0,0,0,0" Name="image1" >
 <Image.Source>
 <BitmapImage UriSource="bell.gif" />
 </Image.Source>
</Image>

The purpose of an image control is to display an image . You can specify the source of
the image in a variety of ways . The example shown here loads the image from the file
bell .gif that you just added as a resource to the project .

The image should now appear on the form, like this:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 22 Introducing Windows Presentation Foundation 451

There is a problem, however . The image is not in the background, and it totally ob-
scures the two button controls . The issue is that, unless you specify otherwise, all con-
trols placed on a layout panel have an implied z-order that renders controls added
lower down in the XAML description over the top of controls added previously .

Note The term z-order refers to the relative depth positions of items on the z-axis of a
three-dimensional space (the y-axis being vertical and the x-axis being horizontal) . Items
with a higher value for the z-order appear in front of those items with a lower value .

There are at least two ways you can move the image control behind the buttons . The
first is to move the XAML definitions of the buttons so that they appear after the im-
age control, and the second is to explicitly specify a value for the ZIndex property for
the control . Controls with a higher ZIndex value appear in front of those on the same
panel with a lower ZIndex . If two controls have the same ZIndex value, their relative
precedence is determined by the order in which they occur in the XAML description, as
before .

 . 6 . . In the XAML pane, set the ZIndex properties of the button and image controls as shown
in bold type in the following code:

<Button Panel.ZIndex="1" Content="Button" Margin="379,84,49,0"
 Name="button1" Height="23" VerticalAlignment="Top" />
<Button Panel.ZIndex="1" Content="Button" Height="23" Margin="0,0,0,0"
 Name="button2" Width="75" />
<Image Panel.ZIndex="0" Margin="0,0,0,0" Name="image1" >
 <Image.Source>
 <BitmapImage UriSource="Bell.gif" />
 </Image.Source>
</Image>

The two buttons should now reappear in front of the image .

With WPF, you can create styles to modify the way in which controls such as buttons, text
boxes, and labels present themselves on a form . You will investigate this feature in the next
exercise .

Create a style to manage the look and feel of controls on the form

 . 1 . . In the XAML pane, modify the definition of the first button on the form, as shown in
bold type in the following code . The Button.Resources property is another example of a
composite property, and you must modify the definition of the Button element to wrap
this property—by replacing the closing tag delimiter (/>) of the button control with an
ordinary tag delimiter character (>) and adding a closing </Button> tag . Notice that
it is good practice to split the XAML description of a control that contains composite

http://lib.ommolketab.ir
http//lib.ommolketab.ir

452 Part IV Building Windows Presentation Foundation Applications

child property values such as Button.Resources over multiple lines to make the code
easier to read and maintain:

<Button Panel.ZIndex="1" Content="Button" Margin="169,84,34,0"
 Name="button1" Height="23" VerticalAlignment="Top">
 <Button.Resources>
 <Style x:Key="buttonStyle">
 <Setter Property="Button.Background" Value="Gray"/>
 <Setter Property="Button.Foreground" Value="White"/>
 <Setter Property="Button.FontFamily" Value="Comic Sans MS"/>
 </Style>
 </Button.Resources>
</Button>

This example specifies the values for the background and foreground colors of the
button as well as the font used for the text on the button . Styles are resources, and
you add them to a Resources element for the control . You can give each style a unique
name by using the Key property .

Note When you compile a WPF window, Visual Studio adds any resources included with
the window to a collection associated with the window . Strictly speaking, the Key property
doesn’t specify the name of the style but rather an identifier for the resource in this col-
lection . You can specify the Name property as well if you want to manipulate the resource
in your C# code, but controls reference resources by specifying the Key value for that re-
source . Controls and other items that you add to a form should have their Name property
set because, as with resources, this is how you reference these items in code .

Although you have defined a style as part of the button definition, the appearance of
the button has not changed . You specify the style to apply to a control by using the
Style property .

 . 2 . . Modify the definition of the button to reference the buttonStyle style, as shown here in
bold:

<Button Style="{DynamicResource buttonStyle}" Panel.ZIndex="1"
 Content="Button" Margin ="169,84,34,0" Name="button1" Height="23"
 VerticalAlignment="Top">
 <Button.Resources>
 <Style x:Key="buttonStyle">
 ...
 </Style>
 </Button.Resources>
 Button
</Button>

The syntax {DynamicResource buttonStyle} creates a new style object based on the
named style, and the Style property applies this style to the button . The appearance of
the button on the form should now change .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 22 Introducing Windows Presentation Foundation 453

Styles have scope . If you attempt to reference the buttonStyle style from the second
button on the form, it will have no effect . One solution is to create a copy of this style
and add it to the Resources element of the second button, and then reference it, like
this:

<Grid>
 <Button Style="{DynamicResource buttonStyle}" Content="Button"
 Panel.ZIndex="1" Margin ="169,84,34,0" Name="button1" Height="23"
 VerticalAlignment="Top">
 <Button.Resources>
 <Style x:Key="buttonStyle">
 <Setter Property="Button.Background" Value="Gray"/>
 <Setter Property="Button.Foreground" Value="White"/>
 <Setter Property="Button.FontFamily" Value="Comic Sans MS"/>
 </Style>
 </Button.Resources>
 </Button>
 <Button Style="{DynamicResource buttonStyle}" Content="Button"
 Panel.ZIndex="1" Height="23" Margin="0,0,0,0" Name="button2"
 Width="76">
 <Button.Resources>
 <Style x:Key="buttonStyle">
 <Setter Property="Button.Background" Value="Gray"/>
 <Setter Property="Button.Foreground" Value="White"/>
 <Setter Property="Button.FontFamily" Value="Comic Sans MS"/>
 </Style>
 </Button.Resources>
 </Button>
 ...
</Grid>

However, this approach can get very repetitive and becomes a maintenance nightmare
if you need to change the style of buttons . A much better strategy is to define the style
as a resource for the window, and then you can reference it from all controls in that
window .

 . 3 . . In the XAML pane, add a <Window.Resources> element above the grid, move the
definition of the buttonStyle style to this new element, and then delete the <Button.
Resources> element from the first button . Add or modify the Style property of both
buttons to reference this style . The updated code for the entire XAML description
of the form is as follows, with the resource definition and references to the resource
shown in bold type:

<Window x:Class="BellRingers.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Middleshire Bell Ringers Association - Members"
 Height="350" Width="525">
 <Window.Resources>
 <Style x:Key="buttonStyle">
 <Setter Property="Button.Background" Value="Gray"/>
 <Setter Property="Button.Foreground" Value="White"/>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

454 Part IV Building Windows Presentation Foundation Applications

 <Setter Property="Button.FontFamily" Value="Comic Sans MS"/>
 </Style>
 </Window.Resources>
 <Grid>
 <Button Style="{StaticResource buttonStyle}" Panel.ZIndex="1"
 Content="Button" Margin ="169,84,34,0" Name="button1" Height="23"
 VerticalAlignment="Top">
 </Button>
 <Button Style="{StaticResource buttonStyle}" Panel.ZIndex="1"
 Content="Button" Height="23" Margin="0,0,0,0" Name="button2"
 Width="76" />
 <Image Panel.ZIndex="0" Margin="0,0,0,0" Name ="image1">
 <Image.Source>
 <BitmapImage UriSource="Bell.gif" />
 </Image.Source>
 </Image>
 </Grid>
</Window>

Both buttons now appear in the Design View window using the same style .

The code you have just entered references the button style by using the StaticResource
keyword rather than the DynamicResource keyword . The scoping rules of static re-
sources are like those of C# in that they require you to define a resource before you
can reference it . In step 1 of this exercise, you referenced the buttonStyle style above
the XAML code that defined it, so the style name was not actually in scope . This out-of-
scope reference works because using DynamicResource defers until run time the time
at which the resource reference is resolved, at which point the resource should have
been created .

Generally speaking, static resources are more efficient than dynamic ones because
they are resolved when the application is built, but dynamic resources give you more
flexibility . For example, if the resource itself changes as the application executes (you
can write code to change styles at run time), any controls referencing the style us-
ing StaticResource will not be updated, but any controls referencing the style using
DynamicResource will be .

Note There are many other differences between the behavior of static and dynamic
resources and restrictions on when you can reference a resource dynamically . For more
information, consult the .NET Framework documentation provided with Visual Studio 2010 .

There is still a little bit of repetition involved in the definition of the style; each of the
properties (background, foreground, and font family) explicitly state that they are but-
ton properties . You can remove this repetition by specifying the TargetType attribute in
the Style tag .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 22 Introducing Windows Presentation Foundation 455

 . 4 . . Modify the definition of the style to specify the TargetType attribute, and remove the
Button reference from each of the properties, like this:

<Style x:Key="buttonStyle" TargetType="Button">
 <Setter Property="Background" Value="Gray"/>
 <Setter Property="Foreground" Value="White"/>
 <Setter Property="FontFamily" Value="Comic Sans MS"/>
</Style>

You can add as many buttons as you like to the form, and you can style them all using
the buttonStyle style . But what about other controls, such as labels and text boxes?

 . 5 . . In the Design View window, click the MainWindow form, and then click the Toolbox tab .
In the Common section, click TextBox, and then click anywhere in the lower half of the
form .

The TextBox control is added to the form .

 . 6 . . In the XAML pane, change the definition of the text box control and specify the Style
attribute shown in bold type in the following example, attempting to apply the button-
Style style:

<TextBox Style="{StaticResource buttonStyle}" Height="21"
 Margin="114,0,44,58" Name="textBox1" VerticalAlignment="Bottom" />

Not surprisingly, attempting to set the style of a text box to a style intended for a but-
ton fails . The XAML pane displays blue underline below the reference to the style in
the TextBox control . If you hover the mouse over this element, a tooltip appears and
displays the message “’Button’ TargetType does not match type of element ‘TextBox’ .” If
you attempt to build the application, it will fail with the same error message .

 . 7 . . To fix this error, in the XAML pane, change the TargetType to Control in the definition of
the style, change the Key property to bellRingersStyle (a more meaningful name), and
then modify the references to the style in the button and text box controls as shown in
bold type here:

<Window x:Class="BellRingers.MainWindow"
 ...>
 <Window.Resources>
 <Style x:Key="bellRingersStyle" TargetType="Control">
 <Setter Property="Background" Value="Gray"/>
 <Setter Property="Foreground" Value="White"/>
 <Setter Property="FontFamily" Value="Comic Sans MS"/>
 </Style>
 </Window.Resources>
 <Grid>
 <Button Style="{StaticResource bellRingersStyle}" ...>
 </Button>
 <Button Style="{StaticResource bellRingersStyle}" ... />
 ...
 <TextBox ... Style="{StaticResource bellRingersStyle}" ... />
 </Grid>
</Window>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

456 Part IV Building Windows Presentation Foundation Applications

Setting the TargetType attribute of a style to Control specifies that the style can be
 applied to any control that inherits from the Control class . In the WPF model, many
different types of controls, including text boxes and buttons, inherit from the Control
class . However, you can provide Setter elements only for properties that explicitly be-
long to the Control class . (Buttons have some additional properties that are not part of
the Control class; if you specify any of these button-only properties, you cannot set the
TargetType to Control.)

 . 8 . . On the Debug menu, click Start Without Debugging to build and run the application .
Type some text in the text box, and verify that it appears in white using the Comic Sans
MS font .

Unfortunately, the choice of colors makes it a little difficult to see the text caret when
you click the text box and type text . You will fix this in a following step .

 . 9 . . Close the form, and return to Visual Studio 2010 .

 . 10 . . In the XAML pane, edit the bellRingersStyle style and add the <Style.Triggers> element
shown in bold type in the following code . (If you get an error message that the
TriggerCollection is sealed, simply rebuild the solution .)

<Style x:Key="bellRingersStyle" TargetType="Control">
 <Setter Property="Background" Value="Gray"/>
 <Setter Property="Foreground" Value="White"/>
 <Setter Property="FontFamily" Value="Comic Sans MS"/>
 <Style.Triggers>
 <Trigger Property="IsMouseOver" Value="True">
 <Setter Property="Background" Value="Blue" />
 </Trigger>
 </Style.Triggers>
</Style>

A trigger specifies an action to perform when a property value changes . The
 bellRingersStyle style detects a change in the IsMouseOver property to temporarily
modify the background color of the control the mouse is over .

Note Don’t confuse triggers with events . Triggers respond to transient changes in
 property values . When the value in the triggering property reverts to its original value,
the triggered action is undone . In the example shown previously, when the IsMouseOver
property is no longer true for a control, the Background property is set back to its original
value . Events specify an action to perform when a significant incident (such as the user
clicking a button) occurs in an application; the actions performed by an event are not
 undone when the incident is finished .

 . 11 . . On the Debug menu, click Start Without Debugging to build and run the application
again . This time, when you move the mouse over the text box, it turns blue so that you
can see the text caret more easily . The text box reverts to its original gray color when
you move the mouse away . Notice that the buttons do not behave in quite the same
way . Button controls already implement this functionality and turn a paler shade of

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 22 Introducing Windows Presentation Foundation 457

blue when you place the mouse over them . This default behavior overrides the trigger
specified in the style .

 . 12 . . Close the form, and return to Visual Studio 2010 .

Note An alternative approach that you can use to apply a font globally to all controls on
a form is to set the text properties of the window holding the controls . These properties
include FontFamily, FontSize, and FontWeight . However, styles provide additional facilities,
such as triggers, and you are not restricted to setting font-related properties . If you specify
the text properties for a window and apply a style to controls in the window, the controls’
style takes precedence over the window’s text properties .

How .a .WPF .Application .Runs
A WPF application can contain any number of forms—you can add forms to an appli-
cation by using the Add Window command on the Project menu in Visual Studio 2010 .
How does an application know which form to display when an application starts? If you
recall from Chapter 1, this is the purpose of the App .xaml file . If you open the App .xaml
file for the BellRingers project, you will see that it looks like this:

<Application x:Class="BellRingers.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 StartupUri="MainWindow.xaml">
 <Application.Resources>

 </Application.Resources>
</Application>

When you build a WPF application, the compiler converts this XAML definition to an
Application object . The Application object controls the lifetime of the application and
is responsible for creating the initial form that the application displays . You can think
of the Application object as providing the Main method for the application . The key
 property is StartupUri, which specifies the XAML file for the window that the Application
object should create . When you build the application, this property is converted to
code that creates and opens the specified WPF form . If you want to display a different
form, you simply need to change the value of the StartupUri property .

It is important to realize that the StartupUri property refers to the name of the XAML
file and not the class implementing the window in this XAML file . If you rename
the class from the default (MainWindow), the file name does not change . (It is still
MainWindow .xaml .) Similarly, if you change the name of the file, the name of the win-
dow class defined in this file does not change . It can become confusing if the window
class and XAML file have different names, so if you do want to rename things, be con-
sistent and change both the file name and the window class name .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

458 Part IV Building Windows Presentation Foundation Applications

Adding .Controls .to .the .Form
So far, you have created a form, set some properties, added a few controls, and defined a
style . To make the form useful, you need to add some more controls and write some code of
your own to implement some meaningful functionality .

The WPF library contains a varied collection of controls . The purposes of some are obvious—
for example, TextBox, ListBox, CheckBox, and ComboBox—whereas other, more powerful
 controls might not be so familiar .

Using WPF Controls
In the next exercise, you will add controls to the form that a user can use to input details
about members of the bell ringers association . You will use a variety of controls, each suited
to a particular type of data entry .

You will use TextBox controls for entering the first name and last name of the member . Each
member belongs to a “tower” (where bells hang) . The Middleshire district has several towers,
but the list is static—new towers are not built very often, and hopefully, old towers do not
fall down with any great frequency either . The ideal control for handling this type of data is a
ComboBox . The form also records whether the member is the tower “captain” (the person in
charge of the tower who conducts the other ringers) . A CheckBox is the best sort of control
for this; it can be either selected (True) or cleared (False) .

Tip CheckBox controls can actually have three states if the IsThreeState property is set to True .
The three states are true, false, and null . These states are useful if you are displaying information
that has been retrieved from a relational database . Some columns in a table in a database allow
null values, indicating that the value held is not defined or is unknown .

The application also gathers statistical information about when members joined the associa-
tion and how much bell-ringing experience they have (up to 1 year, between 1 and 4 years,
between 5 and 9 years, and 10 or more years) . You can use a group of options, or radio but-
tons, to indicate the member’s experience—radio buttons provide a mutually exclusive set of
values . WPF provides the DateTimePicker control for selecting and displaying dates, and this
control is ideal for indicating the date that the member joined the association .

Finally, the application records the tunes the member can ring—rather confusingly, these
tunes are referred to as “methods” by the bell-ringing fraternity . Although a bell ringer
rings only one bell at a time, a group of bell ringers under the direction of the tower cap-
tain can ring their bells in different sequences and play simple music . There are a variety

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 22 Introducing Windows Presentation Foundation 459

of bell-ringing methods, and they have rather quaint-sounding names such as Plain Bob,
Reverse Canterbury, Grandsire, Stedman, Kent Treble Bob, and Old Oxford Delight . New
methods are being written with alarming regularity, so the list of methods can vary over
time . In a real-world application, you would store this list in a database . In this application,
you will use a small selection of methods that you will hard-wire into the form . (You will see
how to access and retrieve data from a database in Part V of this book, “Managing Data .”)
A good control for displaying this information and indicating whether a member can ring a
method is a ListBox containing a list of CheckBox controls .

When the user has entered the member’s details, the Add button will validate and store the
data . The user can click Clear to reset the controls on the form and cancel any data entered .

Add controls to the form

 . 1 . . Ensure that MainWindow .xaml is displayed in the Design View window . Remove the two
button controls and the text box control from the form .

Tip To remove a control from a form, click the control and then press the Delete key .

 . 2 . . In the XAML pane, change the Height property of the form to 470 and the Width
 property to 600, as shown in bold type here:

<Window x:Class="BellRingers.MainWindow"
 ...
 Title="..." Height="470" Width="600">
 ...
</Window>

 . 3 . . In the Design View window, click the MainWindow form . From the Toolbox, drag a Label
control onto the form and place it near the upper left corner . Do not worry about po-
sitioning and sizing the label precisely, because you will do this task for several controls
later .

 . 4 . . In the XAML pane, change the text for the label to First .Name, as shown in bold type
here:

<Label Content="First Name" ... />

Tip You can also change the text displayed by a label and many other controls by setting
the Content property in the Properties window .

 . 5 . . In the Design View window, click the MainWindow form . From the Toolbox, drag a
TextBox control onto the form and place it to the right of the label .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

460 Part IV Building Windows Presentation Foundation Applications

Tip You can use the guide lines displayed by the Design View window to help align
 controls . (The guide lines are displayed after you drop the control on the form .)

 . 6 . . In the XAML pane, change the Name property of the text box to firstName, as shown
here in bold type:

<TextBox ... Name="firstName" .../>

 . 7 . . Add a second Label control to the form . Place it to the right of the firstName text box .
In the XAML pane, modify the Content property to change the text for the label to Last .
Name .

 . 8 . . Add another TextBox control to the form, and position it to the right of the Last Name
label . In the XAML pane, change the Name property of this text box to lastName .

 . 9 . . Add a third Label control to the form, and place it directly under the First Name label .
In the XAML pane, change the text for the label to Tower .

 . 10 . . Add a ComboBox control to the form . Place it under the firstName text box and to the
right of the Tower label . In the XAML pane, change the Name property of this combo
box to towerNames .

 . 11 . . Add a CheckBox control to the form . Place it under the lastName text box and to the
right of the towerNames combo box . In the XAML pane, change the Name property
of the check box to isCaptain, and change the text displayed by this check box to
Captain .

 . 12 . . Add a fourth Label to the form, and place it under the Tower label . In the XAML pane,
change the text for this label to Member .Since .

 . 13 . . In the Toolbox, expand the Controls section . Add a DatePicker control to the form, and
place it under the towerNames combo box . Change the Name property of this control
to memberSince .

 . 14 . . Add a GroupBox control from the Controls section of the Toolbox to the form, and place
it under the Member Since label . In the XAML pane, change the Name property of the
group box to yearsExperience and change the Header property to Experience . The
Header property changes the label that appears on the form for the group box . Set the
Height property to 200 .

 . 15 . . Add a StackPanel control to the form . In the XAML pane, set the Margin property of
this control to “0,0,0,0” . Remove the values for all the other properties apart from the
Name property . The code for the StackPanel control should look like this:

<StackPanel Margin="0,0,0,0" Name="stackPanel1" />

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 22 Introducing Windows Presentation Foundation 461

 . 16 . . In the XAML pane, change the definition of the yearsExperience GroupBox control and
delete the <Grid></Grid> elements . Move the definition of the StackPanel control into
the XAML code for the GroupBox control, like this:

<GroupBox Header="Experience" ... Name="yearsExperience" ...>
 <StackPanel Margin="0,0,0,0" Name="stackPanel1" />
</GroupBox>

 . 17 . . Add a RadioButton control to the form, and place it inside the StackPanel control, at the
top . Add three more RadioButton controls to the StackPanel control . They should auto-
matically be arranged vertically .

 . 18 . . In the XAML pane, change the Name property of each radio button and the text it dis-
plays in the Content property, as shown here in bold type:

<GroupBox...>
 <StackPanel ...>
 <RadioButton ... Content="Up to 1 year" ... Name="novice" ... />
 <RadioButton ... Content="1 to 4 years" ... Name="intermediate" ... />
 <RadioButton ... Content="5 to 9 years" ... Name="experienced" ... />
 <RadioButton ... Content="10 or more years" ... Name="accomplished" ... />
 </StackPanel>
</GroupBox>

 . 19 . . Add a ListBox control to the form, and place it to the right of the GroupBox control . In
the XAML pane, change the Name property of the list box to methods .

 . 20 . . Add a Button control to the form, and place it near the bottom on the lower left side
of the form, underneath the GroupBox control . In the XAML pane, change the Name
property of this button to add and change the text displayed by the Content property
to Add .

 . 21 . . Add another Button control to the form, and place it near the bottom to the right of
the Add button . In the XAML pane, change the Name property of this button to clear
and change the text displayed by the Content property to Clear .

You have now added all the required controls to the form . The next step is to tidy up the
layout . The following table lists the layout properties and values you should assign to each
of the controls . In the Design View window, click each control in turn, and then using the
Properties window, make these changes . The margins and alignment of the controls are de-
signed to keep the controls in place if the user resizes the form . Also notice that the margin
values specified for the radio buttons are relative to each preceding item in the StackPanel
control containing them; the first radio button is 10 units from the top of the StackPanel
 control, and the remaining radio buttons have a gap between them of 20 units vertically .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

462 Part IV Building Windows Presentation Foundation Applications

Control Property Value

label1 Height 28

Margin 29, 25, 0, 0

VerticalAlignment Top

HorizontalAlignment Left

Width 75

firstName Height 23

Margin 121, 25, 0, 0

VerticalAlignment Top

HorizontalAlignment Left

Width 175

label2 Height 28

Margin 305, 25, 0, 0

VerticalAlignment Top

HorizontalAlignment Left

Width 75

lastName Height 23

Margin 380, 25, 0, 0

VerticalAlignment Top

HorizontalAlignment Left

Width 175

label3 Height 28

Margin 29, 72, 0, 0

VerticalAlignment Top

HorizontalAlignment Left

Width 75

towerNames Height 23

Margin 121, 72, 0, 0

VerticalAlignment Top

HorizontalAlignment Left

Width 275

isCaptain Height 23

Margin 420, 72, 0, 0

VerticalAlignment Top

HorizontalAlignment Left

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 22 Introducing Windows Presentation Foundation 463

Control Property Value

Width 75

label4 Height 28

Margin 29, 134, 0, 0

VerticalAlignment Top

HorizontalAlignment Left

Width 90

memberSince Height 23

Margin 121, 134, 0, 0

VerticalAlignment Top

HorizontalAlignment Left

Width 275

yearsExperience Height 200

Margin 29, 174, 0, 0

VerticalAlignment Top

HorizontalAlignment Left

Width 258

stackPanel1 Margin 0, 0, 0, 0

novice Height 16

Margin 0, 10, 0, 0

Width 120

intermediate Height 16

Margin 0, 20, 0, 0

Width 120

experienced Height 16

Margin 0, 20, 0, 0

Width 120

accomplished Height 16

Margin 0, 20, 0, 0

Width 120

methods Height 200

Margin 310, 174, 0, 0

VerticalAlignment Top

HorizontalAlignment Left

Width 245

http://lib.ommolketab.ir
http//lib.ommolketab.ir

464 Part IV Building Windows Presentation Foundation Applications

Control Property Value

add Height 23

Margin 188, 388, 0, 0

VerticalAlignment Top

HorizontalAlignment Left

Width 75

clear Height 23

Margin 313, 388, 0, 0

VerticalAlignment Top

HorizontalAlignment Left

Width 75

As a finishing touch, you will next apply a style to the controls . You can use the
 bellRingersStyle style for controls such as the buttons and text boxes, but the labels, combo
box, group box, and radio buttons should probably not be displayed on a gray background .

Apply styles to the controls, and test the form

 . 1 . . In the XAML pane, add the bellRingersFontStyle style shown in bold type in the follow-
ing code to the <Windows.Resources> element . Leave the existing bellRingersStyle style
in place . Notice that this new style only changes the font .

<Window.Resources>
 <Style x:Key="bellRingersFontStyle" TargetType="Control">
 <Setter Property="FontFamily" Value="Comic Sans MS"/>
 </Style>
 <Style x:Key="bellRingersStyle" TargetType="Control">
 ...
 </Style>
</Window.Resources>

 . 2 . . On the form, click the label1 Label control displaying the text First Name . In the
Properties window, locate the Style property for this control . Click the Resource… label
shown as the value for this property . A list of the styles available as resources in the
form appears as shown in the following image .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 22 Introducing Windows Presentation Foundation 465

 . 3 . . Verify that the drop-down list in the bottom right corner of the list box is set to Static,
and then double-click bellRingersFontStyle .

 . 4 . In the XAML pane, verify that the bellRingersFontStyle style has been applied to the
 label1 control, as shown in bold type here:

<Label Content="First Name" ... Style="{StaticResource bellRingersFontStyle}"/>

 . 5 . . Apply the same style to the following controls . You can either use the property
 resource editor or add the style manually to each control by editing the XAML
definitions:

n label2

n label3

n isCaptain

n towerNames

n label4

n yearsExperience

n methods

Note Applying the style to the yearsExperience group box and the methods list box
 automatically causes the style to be used by the items displayed in these controls .

 . 6 . . Apply the bellRingersStyle style to the following controls:

n firstName

n lastName

n add

n clear

http://lib.ommolketab.ir
http//lib.ommolketab.ir

466 Part IV Building Windows Presentation Foundation Applications

 . 7 . . On the Debug menu, click Start Without Debugging .

When the form runs, it should look like the following image:

Notice that the methods list box is currently empty . You will add code to populate it in
a later exercise .

 . 8 . . Click the drop-down arrow in the Tower combo box . The list of towers is currently
 empty . Again, you will write code to fill this combo box in a later exercise .

 . 9 . . Close the form, and return to Visual Studio 2010 .

Changing Properties Dynamically
You have been using the Design View window, Properties window, and XAML pane to set
properties statically . When the form runs, it would be useful to reset the value of each control
to an initial default value . To do this, you will need to write some code (at last) . In the follow-
ing exercises, you will create a private method called Reset . Later, you will invoke the Reset
method when the form first starts as well as when the user clicks the Clear button .

Create the Reset method

 . 1 . . In the Design View window, right-click the form, and then click View Code . The Code
and Text Editor window opens and displays the MainWindow .xaml .cs file so that you
can add C# code to the form .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 22 Introducing Windows Presentation Foundation 467

 . 2 . . Add the following Reset method, shown in bold type, to the MainWindow class:

public partial class MainWindow : Window
{
 ...
 public void Reset()
 {
 firstName.Text = String.Empty;
 lastName.Text = String.Empty;
 }
}

These two statements in this method ensure that the firstName and lastName text
boxes are blank by assigning an empty string to their Text property .

You also need to initialize the properties for the remaining controls on the form and
populate the towerNames combo box and the methods list box .

If you recall, the towerName combo box will contain a list of all the bell towers in the
Middleshire district . This information would usually be held in a database, and you
would write code to retrieve the list of towers and populate the ComboBox . For this
example, the application will use a hard-coded collection . A ComboBox has a property
called Items that contains a list of the data to be displayed .

 . 3 . . Add the following string array called towers, shown in bold type, which contains a
 hard-coded list of tower names, to the MainWindow class:

public partial class MainWindow : Window
{
 private string[] towers = { "Great Shevington", "Little Mudford",
 "Upper Gumtree", "Downley Hatch" };
 ...
}

 . 4 . . Add the following statements shown in bold type to the end of the Reset method . This
code clears the towerNames combo box (which is important because otherwise you
could end up with many duplicate values in the list) and adds the towers found in the
towers array . A combo box contains a property called Items that contains a collection
of items to display . The statement after the foreach loop causes the first tower to be
 displayed as the default value:

public void Reset()
{
 ...
 towerNames.Items.Clear();
 foreach (string towerName in towers)
 {
 towerNames.Items.Add(towerName);
 }
 towerNames.Text = towerNames.Items[0] as string;
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

468 Part IV Building Windows Presentation Foundation Applications

Note You can also specify hard-coded values at design time in the XAML description of a
combo box, like this:

<ComboBox Text="towerNames">
 <ComboBox.Items>
 <ComboBoxItem>
 Great Shevington
 </ComboBoxItem>
 <ComboBoxItem>
 Little Mudford
 </ComboBoxItem>
 <ComboBoxItem>
 Upper Gumtree
 </ComboBoxItem>
 <ComboBoxItem>
 Downley Hatch
 </ComboBoxItem>
 </ComboBox.Items>
</ComboBox>

 . 5 . . You must populate the methods list box with a list of bell-ringing methods . As with a
combo box, a list box has a property called Items that contains a collection of values to
be displayed . Also, like the ComboBox, it can be populated from a database . However,
as before, you will simply supply some hard-coded values for this example . Add the
following string array shown in bold type, which contains the list of methods, to the
MainWindow class:

public partial class MainWindow : Window
{
 ...
 private string[] ringingMethods = { "Plain Bob", "Reverse Canterbury",
 "Grandsire", "Stedman", "Kent Treble Bob", "Old Oxford Delight",
 "Winchendon Place", "Norwich Surprise", "Crayford Little Court" };
 ...
}

 . 6 . . To enable the user to specify which methods a member can ring, the methods list box
should display a list of check boxes rather than ordinary text strings . With the flexibil-
ity of the WPF model, you can specify different types of content for controls such as
list boxes and combo boxes . Add the following code shown in bold type to the Reset
method to fill the methods list box with the methods in the ringingMethods array .
Notice that this time each item is a check box . You can specify the text displayed by the
check box by setting its Content property, and you can specify the spacing between
items in the list by setting the Margin property; this code inserts a spacing of 10 units
after each item:

public void Reset()
{
 ...
 methods.Items.Clear();

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 22 Introducing Windows Presentation Foundation 469

 CheckBox method = null;
 foreach (string methodName in ringingMethods)
 {
 method = new CheckBox();
 method.Margin = new Thickness(0, 0, 0, 10);
 method.Content = methodName;
 methods.Items.Add(method);
 }
}

Note Most WPF controls have a Content property that you can use to set and read the
value displayed by that control . This property is actually an object, so you can set it to al-
most any type, as long as it makes sense to display it!

 . 7 . . The isCaptain check box should default to false . To do this, you need to set the
IsChecked property . Add the following statement shown in bold type to the Reset
method:

public void Reset()
{
 ...
 isCaptain.IsChecked = false;
}

 . 8 . . The form contains four radio buttons that indicate the number of years of bell-ringing
experience the member has . A radio button is similar to a CheckBox in that it can con-
tain a true or false value . However, the power of radio buttons increases when you put
them together in a GroupBox . In this case, the radio buttons form a mutually exclusive
collection—at most, only one radio button in a group can be selected (set to true), and
all the others will automatically be cleared (set to false) . By default, none of the buttons
will be selected . You should rectify this by setting the IsChecked property of the novice
radio button . Add the following statement shown in bold type to the Reset method:

public void Reset()
{
 ...
 novice.IsChecked = true;
}

 . 9 . . You should ensure that the memberSince DatePicker control defaults to the current
date . You can do this by setting the Text property of the control . You can obtain the
current date from the static Today method of the DateTime class .

Add the following code shown in bold type to the Reset method to initialize the
DatePicker control:

public void Reset()
{
 ...
 memberSince.Text = DateTime.Today.ToString();
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

470 Part IV Building Windows Presentation Foundation Applications

 . 10 . . Finally, you need to arrange for the Reset method to be called when the form is first
displayed . A good place to do this is in the MainWindow constructor . Insert a call to the
Reset method after the statement that calls the InitializeComponent method, as shown
in bold type here:

public MainWindow()
{
 InitializeComponent();
 this.Reset();
}

 . 11 . . On the Debug menu, click Start Without Debugging to verify that the project builds and
runs .

 . 12 . . When the form opens, click the Tower combo box .

You will see the list of bell towers, and you can select one of them .

 . 13 . . Click the icon on the right side of the Member Since date/time picker .

You will be presented with a calendar of dates . The default value will be the current
date . You can click a date and use the arrows to select a month . You can also click the
month name to display the months as a list, and you can also click the year to display a
list of years .

 . 14 . . Click each of the radio buttons in the Experience group box .

Notice that you cannot select more than one radio button at a time .

 . 15 . . In the Methods list box, click some of the methods to select the corresponding check
box . If you click a method a second time, it clears the corresponding check box, just as
you would expect .

 . 16 . . Click the Add and Clear buttons .

Currently, these buttons don’t do anything . You will add this functionality in the final
set of exercises in this chapter .

 . 17 . . Close the form, and return to Visual Studio 2010 .

Handling .Events .in .a .WPF .Form
If you are familiar with Microsoft Visual Basic, Microsoft Foundation Classes (MFC), or any
of the other tools available for building GUI applications for Windows, you are aware that
Windows uses an event-driven model to determine when to execute code . In Chapter 17,
“Interrupting Program Flow and Handling Events,” you saw how to publish your own events
and subscribe to them . WPF forms and controls have their own predefined events that you
can subscribe to, and these events should be sufficient to handle the requirements of most
user interfaces .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 22 Introducing Windows Presentation Foundation 471

Processing Events in Windows Forms
The developer’s task is to capture the events that are relevant to the application and write
the code that responds to these events . A familiar example is the Button control, which
raises a “Somebody clicked me” event when a user clicks it with the mouse or presses Enter
when the button has the focus . If you want the button to do something, you write code that
 responds to this event . This is what you will do in the next exercise .

Handle the Click events for the Clear and Add buttons

 . 1 . . Display the MainWindow .xaml file in the Design View window . Double-click the Clear
button on the form .

Note When you modify the code behind a WPF form and build the application, the
next time you display the form in the Design View window it might display the following
message at the top of the window: “An assembly or related document has been updated
which requires the designer to be reloaded . Click here to reload .” If this happens, click the
message and allow the form to be reloaded .

The Code and Text Editor window appears and creates a method called clear_Click . This
is an event method that will be invoked when the user clicks the Clear button . Notice
that the event method takes two parameters: the sender parameter (an object) and
an additional arguments parameter (a RoutedEventArgs object) . The WPF runtime will
populate these parameters with information about the source of the event and with
any additional information that might be useful when handling the event . You will not
use these parameters in this exercise .

WPF controls can raise a variety of events . When you double-click a control or a form in
the Design View window, Visual Studio generates the stub of an event method for the
default event for the control; for a button, the default event is the Click event . (If you
double-click a text box control, Visual Studio generates the stub of an event method
for handling the TextChanged event .)

 . 2 . . When the user clicks the Clear button, you want the form to be reset to its default val-
ues . In the body of the clear_Click method, call the Reset method, as shown here in bold
type:

private void clear_Click(object sender, RoutedEventArgs e)
{
 this.Reset();
}

Users will click the Add button when they have filled in all the data for a member and
want to store the information . The Click event for the Add button should validate the
information entered to ensure that it makes sense (for example, should you allow a

http://lib.ommolketab.ir
http//lib.ommolketab.ir

472 Part IV Building Windows Presentation Foundation Applications

tower captain to have less than one year of experience?) and, if it is okay, arrange for
the data to be sent to a database or other persistent store . You will learn more about
validation and storing data in later chapters . For now, the code for the Click event of
the Add button will simply display a message box echoing the data input .

 . 3 . . Return to the Design View window displaying the MainWindow .xaml form . In the XAML
pane, locate the element that defines the Add button, and begin entering the following
code shown in bold type:

<Button Content="Add" ... Click= />

Notice that as you type the = character, a shortcut menu appears, displaying two items:
<New Event Handler> and clear_Click . If two buttons perform a common action, you
can share the same event handler method between them, such as clear_Click . If you
want to generate an entirely new event handling method, you can select the <New
Event Handler> command instead .

 . 4 . . On the shortcut menu, double-click the <New Event Handler> command .

The text add_Click appears in the XAML code for the button .

Note You are not restricted to handling the Click event for a button . When you edit the
XAML code for a control, the IntelliSense list displays the properties and events for the
control . To handle an event other than the Click event, simply type the name of the event,
and then select or type the name of the method that you want to handle this event . For a
complete list of events supported by each control, see the Visual Studio 2010 documenta-
tion .

 . 5 . . Switch to the Code and Text Editor window displaying the MainWindow .xaml .cs file .
Notice that the add_Click method has been added to the MainWindow class .

Tip  You don’t have to use the default names generated by Visual Studio 2010 for the
event handler methods . Rather than clicking the <New Event Handler> command on the
shortcut menu, you can just type the name of a method . However, you must then manu-
ally add the method to the window class . This method must have the correct signature; it
should return a void and take two arguments—an object parameter and a RoutedEventArgs
parameter .

Important  If you later decide to remove an event method such as add_Click from the
MainWindow .xaml .cs file, you must also edit the XAML definition of the corresponding
control and remove the Click="add_Click" reference to the event; otherwise, your
application will not compile .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 22 Introducing Windows Presentation Foundation 473

 . 6 . . Add the following code shown in bold type to the add_Click method:

private void add_Click(object sender, RoutedEventArgs e)
{
 string nameAndTower = String.Format(
 "Member name: {0} {1} from the tower at {2} rings the following methods:",
 firstName.Text, lastName.Text, towerNames.Text);

 StringBuilder details = new StringBuilder();
 details.AppendLine(nameAndTower);

 foreach (CheckBox cb in methods.Items)
 {
 if (cb.IsChecked.Value)
 {
 details.AppendLine(cb.Content.ToString());
 }
 }

 MessageBox.Show(details.ToString(), "Member Information");
}

This block of code creates a string variable called nameAndTower that it fills with the
name of the member and the tower to which the member belongs .

Notice how the code accesses the Text property of the text box and combo box con-
trols to read the current values of those controls . Additionally, the code uses the static
String.Format method to format the result . The String.Format method operates in a
similar manner to the Console.WriteLine method, except that it returns the formatted
string as its result rather than displaying it on the screen .

The code then creates a StringBuilder object called details . The method uses this
StringBuilder object to build a string representation of the information it will display .
The text in the nameAndTower string is used to initially populate the details object . The
code then iterates through the Items collection in the methods list box . If you recall, this
list box contains check box controls . Each check box is examined in turn, and if the user
has selected it, the text in the Content property of the check box is appended to the
details StringBuilder object . There is one small quirk here . Remember that a CheckBox
can be set to true, false, or null . The IsChecked property actually returns a nullable
bool? value . You access the Boolean value of the IsChecked property through the Value
property .

Finally, the MessageBox class provides static methods for displaying dialog boxes on
the screen . The Show method used here displays the contents of the details string in the
body of the message box and will put the text “Member Information” in the title bar .
Show is an overloaded method, and there are other variants that you can use to specify
icons and buttons to display in the message box .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

474 Part IV Building Windows Presentation Foundation Applications

Note You could use ordinary string concatenation instead of a StringBuilder object, but
the StringBuilder class is far more efficient and is the recommended approach for perform-
ing the kind of tasks required in this code . In the .NET Framework and C#, the string data
type is immutable; when you modify the value in a string, the run time actually creates
a new string containing the modified value and then discards the old string . Repeatedly
modifying a string can cause your code to become inefficient because a new string must
be created in memory at each change . (The old strings will eventually be garbage collect-
ed .) The StringBuilder class, in the System.Text namespace, is designed to avoid this inef-
ficiency . You can add and remove characters from a StringBuilder object using the Append,
Insert, and Remove methods without creating a new object each time .

 . 7 . . On the Debug menu, click Start Without Debugging to build and run the application .

 . 8 . . Type some sample data for the member’s first name and last name, select a tower, and
pick a few methods . Click the Add button, and verify that the Member Information mes-
sage box appears displaying the details of the new member and the methods he can
ring . In the Member Information message box, click OK .

 . 9 . . Click the Clear button, and verify that the controls on the form are reset to the correct
default values .

 . 10 . . Close the form, and return to Visual Studio 2010 .

In the final exercise in this chapter, you will add an event handler to handle the Closing event
for the window so that users can confirm that they really want to quit the application . The
Closing event is raised when the user attempts to close the form but before the form actually
closes . You can use this event to prompt the user to save any unsaved data or even ask the
user whether she really wants to close the form—if not, you can cancel the event in the event
handler and prevent the form from closing .

Handle the Closing event for the form

 . 1 . . In the Design View window, in the XAML pane, begin entering the code shown in bold
type to the XAML description of the MainWindow window:

<Window x:Class="BellRingers.MainWindow"
 ...
 Title="..." ... Closing=>

 . 2 . . When the shortcut menu appears after you type the = character, double-click the
<New Event Handler> command .

Visual Studio generates an event method called Window_Closing and associates it with
the Closing event for the form, like this:

<Window x:Class="BellRingers.MainWindow"
 ...
 Title="..." ... Closing="Window_Closing">

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 22 Introducing Windows Presentation Foundation 475

 . 3 . . Switch to the Code and Text Editor window displaying the MainWindow .xaml .cs file .

A stub for the Window_Closing event method has been added to the MainWindow
class:

private void Window_Closing(object sender, System.ComponentModel.CancelEventArgs e)
{

}

Observe that the second parameter for this method has the type CancelEventArgs . The
CancelEventArgs class has a Boolean property called Cancel . If you set Cancel to true in
the event handler, the form will not close . If you set Cancel to false (the default value),
the form will close when the event handler finishes .

 . 4 . . Add the following statements shown in bold type to the memberFormClosing method:

private void Window_Closing(object sender, System.ComponentModel.CancelEventArgs e)
{
 MessageBoxResult key = MessageBox.Show(
 "Are you sure you want to quit",
 "Confirm",
 MessageBoxButton.YesNo,
 MessageBoxImage.Question,
 MessageBoxResult.No);
 e.Cancel = (key == MessageBoxResult.No);
}

These statements display a message box asking the user to confirm whether to quit
the application . The message box will contain Yes and No buttons and a question mark
icon . The final parameter, MessageBoxResult.No, indicates the default button if the user
simply presses the Enter key—it is safer to assume that the user does not want to exit
the application than to risk accidentally losing the details that the user has just typed .
When the user clicks either button, the message box will close and the button clicked
will be returned as the value of the method (as a MessageBoxResult—an enumeration
identifying which button was clicked) . If the user clicks No, the second statement will
set the Cancel property of the CancelEventArgs parameter (e) to true, preventing the
form from closing .

 . 5 . . On the Debug menu, click Start Without Debugging to run the application .

 . 6 . . Try to close the form . In the message box that appears, click No .

The form should continue running .

 . 7 . . Try to close the form again . This time, in the message box, click Yes .

The form closes, and the application finishes .

In this chapter, you saw how to use the essential features of WPF to build a functional
user interface . WPF contains many more features than we have space to go into here, es-
pecially concerning some of its really cool capabilities for handling two-dimensional and

http://lib.ommolketab.ir
http//lib.ommolketab.ir

476 Part IV Building Windows Presentation Foundation Applications

 three-dimensional graphics and animation . If you want to learn more about WPF, you can
consult a book such as Applications = Code + Markup: A Guide to the Microsoft Windows
Presentation Foundation, by Charles Petzold (Microsoft Press, 2006) .

n If you want to continue to the next chapter

Keep Visual Studio 2010 running, and turn to Chapter 23 .

n If you want to exit Visual Studio 2010 now

On the File menu, click Exit . If you see a Save dialog box, click Yes and save the project .

Chapter .22 .Quick .Reference
To Do this

Create a WPF application Use the WPF Application template .

Add controls to a form Drag the control from the Toolbox onto the form .

Change the properties of
a form or control

Click the form or control in the Design View window . Then do one of the following:

n In the Properties window, select the property you want to change and enter
the new value .

n In the XAML pane, specify the property and value in the <Window> element
or the element defining the control .

View the code behind a
form

Do one of the following:

n On the View menu, click Code .

n Right-click in the Design View window, and then click View Code .

n In Solution Explorer, expand the folder corresponding to the .xaml file for the
form, and then double-click the .xaml .cs file that appears .

Define a set of mutually
exclusive radio buttons .

Add a panel control, such as StackPanel, to the form . Add the radio buttons to the
panel . All radio buttons in the same panel are mutually exclusive .

Populate a combo box
or a list box by using C#
code

Use the Add method of the Items property . For example:

towerNames.Items.Add("Upper Gumtree");

You might need to clear the Items property first, depending on whether you want
to retain the existing contents of the list . For example:

towerNames.Items.Clear();

Initialize a check box or
radio button control

Set the IsChecked property to true or false . For example:

novice.IsChecked = true;

Handle an event for a
control or form

In the XAML pane, add code to specify the event, and then either select an existing
method that has the appropriate signature or click the <Add New Event> com-
mand on the shortcut menu that appears, and then write the code that handles the
event in the event method that is created .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 . . 477

Chapter 23

Gathering User Input
After completing this chapter, you will be able to:

n Create menus for Microsoft Windows Presentation Foundation (WPF) applications by
using the Menu and MenuItem classes .

n Perform processing in response to menu events when a user clicks a menu command .

n Create context-sensitive pop-up menus by using the ContextMenu class .

n Manipulate menus through code, and create dynamic menus .

n Use Windows common dialog boxes in an application to prompt the user for the name
of a file .

n Build WPF applications that can take advantage of multiple threads to improve
responsiveness .

In Chapter 22, “Introducing Windows Presentation Foundation,” you saw how to create a
simple WPF application made up of a selection of controls and events . Many professional
Microsoft Windows–based applications also provide menus containing commands and
 options, giving the user the ability to perform various tasks related to the application . In
this chapter, you will learn how to create menus and add them to forms by using the Menu
control . You will see how to respond when the user clicks a command on a menu . You’ll learn
how to create pop-up menus whose contents vary according to the current context . Finally,
you will find out about the common dialog classes supplied as part of the WPF library . With
these dialog classes, you can prompt the user for frequently used items, such as files and
printers, in a quick, easy, and familiar manner .

Menu .Guidelines .and .Style
If you look at most Windows-based applications, you’ll notice that some items on the menu
bar tend to appear repeatedly in the same place, and the contents of these items are often
predictable . For example, the File menu is typically the first item on the menu strip, and on
this menu you typically find commands for creating a new document, opening an existing
document, saving the document, printing the document, and exiting the application .

Note The term document means the data that the application manipulates . In Microsoft Office
Excel, it is a worksheet; in the BellRingers application that you created in Chapter 22, it could be
the details of a new member .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

478 Part IV Working with Windows Applications

The order in which these commands appear tends to be the same across applications; for
example, the Exit command is invariably the last command on the File menu . There might be
other application-specific commands on the File menu as well .

An application often has an Edit menu containing commands such as Cut, Paste, Clear, and
Find . There are usually some additional application-specific menus on the menu bar, but
again, convention dictates that the final menu is the Help menu, which contains access to the
Help system for your application as well as “about” information, which contains copyright
and licensing details for the application . In a well-designed application, most menus are
 predictable and help ensure that the application is easy to learn and use .

Tip Microsoft publishes a full set of guidelines for building intuitive user interfaces, including
menu design, on the Microsoft Web site at http://msdn2.microsoft.com/en-us/library/
Aa286531.aspx.

Menus .and .Menu .Events
WPF provides the Menu control as a container for menu items . The Menu control provides a
basic shell for defining a menu . Like most aspects of WPF, the Menu control is very flexible so
that you can define a menu structure consisting of almost any type of WPF control . You are
probably familiar with menus that contain text items that you can click to perform a com-
mand . WPF menus can also contain buttons, text boxes, combo boxes, and so on . You can
define menus by using the XAML pane in the Design View window, and you can also con-
struct menus at run time by using Microsoft Visual C# code . Laying out a menu is only half of
the story . When a user clicks a command on a menu, the user expects something to happen!
Your application acts on the commands by trapping menu events and executing code in
much the same way as handling control events .

Creating a Menu
In the following exercise, you will use the XAML pane to create menus for the Middleshire
Bell Ringers Association application . You will learn how to manipulate and create menus
through code later in this chapter .

Create the application menu

 . 1 . . Start Microsoft Visual Studio 2010 if it is not already running .

 . 2 . . Open the BellRingers solution located in the \Microsoft Press\Visual CSharp Step By
Step\Chapter 23\BellRingers folder in your Documents folder . This is a copy of the
 application that you built in Chapter 22 .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 23 Gathering User Input 479

 . 3 . . Display the MainWindow .xaml file in the Design View window .

 . 4 . . From the Toolbox, drag a DockPanel control from the All WPF Controls section any-
where onto the form . (Make sure that you drop it onto the form and not onto one
of the controls on the form .) In the Properties window, set the Width property of
the DockPanel to Auto, set the HorizontalAlignment property to Stretch, set the
VerticalAlignment property to Top, and set the Margin property to 0 .

Note Setting the Margin property to 0 is the same as setting it to 0, 0, 0, 0 .

The DockPanel control should appear at the top of the form, occupying the full width
of the form . (It will cover the First Name, Last Name, Tower, and Captain user interface
elements .)

The DockPanel control is a panel control that you can use for controlling the arrange-
ment of other controls that you place on it, such as the Grid and StackPanel controls
that you met in Chapter 22 . You can add a menu directly to a form, but it is better
practice to place it on a DockPanel because you can then more easily manipulate the
menu and its positioning on the form . For example, if you want to place the menu at
the bottom or on one side, you can relocate the entire menu elsewhere on the form
simply by moving the panel either at design time or at run time by executing code .

 . 5 . . From the Toolbox, drag a Menu control from the All WPF Controls section onto the
DockPanel control . In the Properties window, set the DockPanel.Dock property to Top,
set the Width property to Auto, set the HorizontalAlignment property to Stretch, and
set the VerticalAlignment property to Top .

The Menu control appears as a gray bar across the top of the DockPanel . If you examine
the code for the DockPanel and Menu controls in the XAML pane, they should look like
this:

<DockPanel Height="100" HorizontalAlignment="Stretch" Margin="0"
 Name="dockPanel1" VerticalAlignment="Top" Width="Auto">
 <Menu Height="23" Name="menu1" Width="Auto" DockPanel.Dock="Top"
 VerticalAlignment="Top">
</DockPanel>

The HorizontalAlignment property does not appear in the XAML code because the
value “Stretch” is the default value for this property .

Note Throughout this chapter, lines from the XAML pane are shown split and indented
so that they fit on the printed page .

 . 6 . . Click the Menu control on the form . In the Properties window, locate the Items
 property . The value of this property is reported as (Collection) . A Menu control contains

http://lib.ommolketab.ir
http//lib.ommolketab.ir

480 Part IV Working with Windows Applications

a collection of MenuItem elements . Currently, the menu has no menu items, so the
 collection is empty . Click the ellipses button (…) adjacent to the value .

The Collection Editor: Items dialog box appears, as shown in the following image:

 . 7 . . In the Collection Editor: Items dialog box, click Add . A new MenuItem element is created
and appears in the dialog box . In the Properties pane, set the Header property to _File
(including the leading underscore) .

The Header attribute of the MenuItem element specifies the text that appears for the
menu item . The underscore (_) in front of a letter provides fast access to that menu
item when the user presses the Alt key and the letter following the underscore (in
this case, Alt+F for “File”) . This is another common convention . At run time, when the
user presses the Alt key, the F at the start of File appears underscored . Do not use the
same access key more than once on any menu because you will confuse the user (and
 probably the application) .

 . 8 . . Click Add again . In the Properties pane, set the Header property of the second
MenuItem element to _Help, and then click OK to close the dialog box .

 . 9 . . In the XAML pane, examine the definition of the Menu control . It should look like this
(the new items are shown in bold):

<Menu Height="22" Name="menu1" Width="Auto" DockPanel.Dock="Top"
 VerticalAlignment="Top" HorizontalAlignment="Stretch" >
 <MenuItem Header="_File" />
 <MenuItem Header="_Help" />
</Menu>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 23 Gathering User Input 481

Notice that MenuItem elements appear as child items of the Menu control . You can
 create menu items by typing the code directly into the XAML pane rather than by using
the Collection Editor dialog box if you prefer .

 . 10 . . On the Debug menu, click Start Without Debugging to build and run the application .

When the form appears, you should see the menu at the top of the window under-
neath the title bar . Press the Alt key; the menu should get the focus, and the “F” in “File”
and the “H” in “Help” should both be underscored, like this:

If you click either menu item, nothing currently happens because you have not defined
the child menus that each of these items will contain .

 . 11 . . Close the form, and return to Visual Studio 2010 .

 . 12 . . In the XAML pane, modify the definition of the _File menu item, remove the “/”
 character from the end of the tag, and add the child menu items together with a
 closing </MenuItem> element as shown here in bold type:

<MenuItem Header="_File" >
 <MenuItem Header="_New Member" Name="newMember" />
 <MenuItem Header="_Save Member Details" Name="saveMember" />
 <Separator/>
 <MenuItem Header="E_xit" Name="exit" />
</MenuItem>

This XAML code adds New Member, Save Member Details, and Exit as commands to
the File menu . The <Separator/> element appears as a bar when the menu is displayed
and is conventionally used to group related menu items . Apart from the separator, each
menu item is also given a name because you will need to refer to them later in your
application .

Tip You can also add child menu items to a MenuItem element by using the Collection
Editor: Items dialog box . Like the Menu control, each MenuItem element has a property
called Items, which is a collection of MenuItem elements . You can click the ellipses button
that appears in the Items property in the Properties pane for a MenuItem element to open
another instance of the Collection Editor: Items dialog box . Any items that you add appear
as child items of the MenuItem element .

 . 13 . . Modify the definition of the _Help menu item, and add the child menu item shown next
in bold type:

<MenuItem Header="_Help" >
 <MenuItem Header="_About Middleshire Bell Ringers" Name="about" />
</MenuItem>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

482 Part IV Working with Windows Applications

 . 14 . . On the Debug menu, click Start Without Debugging to build and run the application .

When the form appears, click the File menu . You should see the child menu items,
like this:

You can also click the Help menu to display the About Middleshire Bell Ringers child
menu item .

None of the child menu items do anything when you click them, though . You will see
how to associate menu items with actions in the next section .

 . 15 . . Close the form, and return to Visual Studio 2010 .

As a further touch, you can add icons to menu items . Many applications, including
Visual Studio 2010, make use of icons in menus to provide an additional visual cue .

 . 16 . . In Solution Explorer, right-click the BellRingers project, point to Add, and then click
Existing Item . In the Add Existing Item – BellRingers dialog box, move to the folder
Microsoft Press\Visual CSharp Step By Step\Chapter 23 under your Documents folder . In
the drop-down list box adjacent to the File name text box, select All Files (*.*) . Select the
files Face.bmp, Note.bmp, and Ring.bmp, and then click Add .

This action adds the three image files as resources to your application .

 . 17 . . In the XAML pane, modify the definitions of the newMember, saveMember, and about
menu items and add MenuItem.Icon child elements that refer to each of the three icon
files you added to the project in the preceding step, as shown in bold type next . Notice
that you also need to remove the “/” character from the closing tag for each MenuItem
element, and add a </MenuItem> tag:

<Menu Height="22" Name="menu1" ... >
 <MenuItem Header="_File" >
 <MenuItem Header="_New Member" Name="newMember" >
 <MenuItem.Icon>
 <Image Source="Face.bmp"/>
 </MenuItem.Icon>
 </MenuItem>
 <MenuItem Header="_Save Member Details" Name="saveMember" >
 <MenuItem.Icon>
 <Image Source="Note.bmp"/>
 </MenuItem.Icon>
 </MenuItem>
 <Separator/>
 <MenuItem Header="E_xit" Name="exit"/>
 </MenuItem>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 23 Gathering User Input 483

 <MenuItem Header="_Help">
 <MenuItem Header="_About Middleshire Bell Ringers" Name="about" >
 <MenuItem.Icon>
 <Image Source="Ring.bmp"/>
 </MenuItem.Icon>
 </MenuItem>
 </MenuItem>
</Menu>

 . 18 . . The final tweak is to ensure that the text for the menu items is styled in a consistent
manner with the rest of the form . In the XAML pane, edit the definition of the top-level
menu1 element and set the Style property to the BellRingersFontStyle style, as shown in
bold type here:

<Menu Style="{StaticResource bellRingersFontStyle}" ... Name="menu1" ... >

Note that the child menu items automatically inherit the style from the top-level menu
item that contains them .

 . 19 . . On the Debug menu, click Start Without Debugging to build and run the application
again .

When the form appears, click the File menu . You should now see that the text of the
menu items is displayed in the correct font and that the icons appear with the child
menu items, like this:

 . 20 . . Close the form, and return to Visual Studio 2010 .

Types .of .Menu .Items
You have been using the MenuItem element to add child menu items to a Menu
 control . You have seen that you can specify the items in the top-level menu as
MenuItem elements and then add nested MenuItem elements to define your menu
structure . The nested MenuItem elements can themselves contain further nested
MenuItem elements if you want to create cascading menus . In theory, you can continue
this process to a very deep level, but in practice you should probably not go beyond
two levels of nesting .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

484 Part IV Working with Windows Applications

However, you are not restricted to using the MenuItem element . You can also add com-
bo boxes, text boxes, and most other types of controls to WPF menus . For example, the
following menu structure contains a button and a combo box:

<Menu ...>
 <MenuItem Header="Miscellaneous">
 <Button Content="Add new member" />
 <ComboBox>
 <ComboBox.Items>
 <ComboBoxItem>
 Great Shevington
 </ComboBoxItem>
 <ComboBoxItem>
 Little Mudford
 </ComboBoxItem>
 <ComboBoxItem>
 Upper Gumtree
 </ComboBoxItem>
 <ComboBoxItem>
 Downley Hatch
 </ComboBoxItem>
 </ComboBox.Items>
 </ComboBox>
 </MenuItem>
</Menu>

At run time, the menu structure looks like this:

Although you have great freedom when designing your menus, you should endeavor
to keep things simple and not be too elaborate . A menu such as this is not very
intuitive!

Handling Menu Events
The menu that you have built so far looks very pretty, but none of the items do anything
when you click them . To make them functional, you have to write code to handle the various
menu events . Several different events can occur when a user selects a menu item . Some are

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 23 Gathering User Input 485

more useful than others are . The most frequently used event is the Click event, which occurs
when the user clicks the menu item . You typically trap this event to perform the tasks associ-
ated with the menu item .

In the following exercise, you will learn more about menu events and how to process them .
You will create Click events for the newMember and exit menu items .

The purpose of the New Member command is so that the user can enter the details of a new
member . Therefore, until the user clicks New Member, all fields on the form should be dis-
abled, as should the Save Member Details command . When the user clicks the New Member
command, you want to enable all the fields, reset the contents of the form so that the user
can start adding information about a new member, and enable the Save Member Details
command .

Handle the New Member and Exit menu item events

 . 1 . . In the XAML pane, click the definition of the firstName text box . In the Properties
window, clear the IsEnabled property . (This action sets IsEnabled to False in the XAML
definition .)

Repeat this process for the lastName, towerNames, isCaptain, memberSince,
 yearsExperience, methods, and clear controls and for the saveMember menu item .

 . 2 . . In the Design View window, in the XAML pane, begin entering the code shown here in
bold type in the XAML description of the _New Member menu item:

<MenuItem Header="_New Member" Name="newMember" Click=>

 . 3 . . When the shortcut menu appears after you type the = character, double-click the
<New Event Handler> command .

Visual Studio generates an event method called newMember_Click and associates it
with the Click event for the menu item .

Tip Always give a menu item a meaningful name if you are going to define event
 methods for it . If you don’t, Visual Studio generates an event method called MenuItem_
Click for the Click event . If you then create Click event methods for other menu items that
also don’t have names, they are called MenuItem_Click_1, MenuItem_Click_2, and so on .
If you have several of these event methods, it can be difficult to work out which event
 method belongs to which menu item .

 . 4 . . Switch to the Code and Text Editor window displaying the MainWindow .xaml .cs file .
(On the View menu, click Code .)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

486 Part IV Working with Windows Applications

The newMember_Click event method will have been added to the bottom of the
MainWindow class definition:

private void newMember_Click(object sender, RoutedEventArgs e)
{

}

 . 5 . . Add the following statements shown in bold type to the newMember_Click method:

private void newMember_Click(object sender, RoutedEventArgs e)
{
 this.Reset();
 saveMember.IsEnabled = true;
 firstName.IsEnabled = true;
 lastName.IsEnabled = true;
 towerNames.IsEnabled = true;
 isCaptain.IsEnabled = true;
 memberSince.IsEnabled = true;
 yearsExperience.IsEnabled = true;
 methods.IsEnabled = true;
 clear.IsEnabled = true;
}

This code calls the Reset method and then enables all the controls . Recall from Chapter
22 that the Reset method resets the controls on the form to their default values . (If you
don’t recall how the Reset method works, scroll the Code and Text Editor window to
 display the method and refresh your memory .)

Next, you need to create a Click event method for the Exit command . This method
should cause the form to close .

 . 6 . . Return to the Design View window displaying the MainWindow .xaml file . Use the
technique you followed in step 2 to create a Click event method for the exit menu
item called exit_Click . (This is the default name generated by selecting <New Event
Handler> .)

 . 7 . . Switch to the Code and Text Editor window . In the body of the exit_Click method, type
the statement shown in bold type in the following code:

private void exit_Click(object sender, RoutedEventArgs e)
{
 this.Close();
}

The Close method of a form attempts to close the form . Remember that if the form
intercepts the Closing event, it can prevent the form from closing . The Middleshire Bell
Ringers Association application does precisely this, and it asks the user if he wants to
quit . If the user says no, the form does not close and the application continues to run .

The next step is to handle the saveMember menu item . When the user clicks this menu
item, the data on the form should be saved to a file . For the time being, you will save the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 23 Gathering User Input 487

 information to an ordinary text file called Members .txt in the current folder . Later, you will
modify the code so that the user can select an alternative file name and location .

Handle the Save Member Details menu item event

 . 1 . . Return to the Design View window displaying the MainWindow .xaml file . In the XAML
pane, locate the definition of the saveMember menu item and use the <New Event
Handler> command to generate a Click event method called saveMember_Click. (This is
the default name generated by selecting <New Event Handler> .)

 . 2 . . In the Code and Text Editor window displaying the MainWindow .xaml .cs file, scroll to
the top of the file and add the following using statement to the list:

using System.IO;

 . 3 . . Locate the saveMember_Click event method at the end of the file . Add the following
statements shown in bold type to the body of the method:

private void saveMember_Click(object sender, RoutedEventArgs e)
{
 using (StreamWriter writer = new StreamWriter("Members.txt"))
 {
 writer.WriteLine("First Name: {0}", firstName.Text);
 writer.WriteLine("Last Name: {0}", lastName.Text);
 writer.WriteLine("Tower: {0}", towerNames.Text);
 writer.WriteLine("Captain: {0}", isCaptain.IsChecked.ToString());
 writer.WriteLine("Member Since: {0}", memberSince.Text);
 writer.WriteLine("Methods: ");
 foreach (CheckBox cb in methods.Items)
 {
 if (cb.IsChecked.Value)
 {
 writer.WriteLine(cb.Content.ToString());
 }
 }

 MessageBox.Show("Member details saved", "Saved");
 }
}

This block of code creates a StreamWriter object that the method uses for writing text
to the Member .txt file . Using the StreamWriter class is similar to displaying text in a
console application by using the Console object—you can simply use the WriteLine
method .

When the details have all been written out, a message box is displayed giving the user
some feedback (always a good idea) .

 . 4 . . The Add button and its associated event method are now obsolete, so in the Design
View window delete the Add button . In the Code and Text Editor window, comment out
the add_Click method .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

488 Part IV Working with Windows Applications

The remaining menu item is the about menu item, which should display a dialog box
 providing information about the version of the application, the publisher, and any other
 useful information . You will add an event method to handle this event in the next exercise .

Handle the About Middleshire Bell Ringers menu item event

 . 1 . . On the Project menu, click Add Window .

 . 2 . . In the Add New Item – BellRingers dialog box, in the middle pane, click Window (WPF) .
In the Name text box, type About .xaml, and then click Add .

When you have added the appropriate controls, you will display this window when the
user clicks the About Middleshire Bell Ringers command on the Help menu .

Note Visual Studio provides the About Box windows template . However, this template
generates a Windows Forms window rather than a WPF window .

 . 3 . . In the Design View window, click the About.xaml form . In the Properties window,
change the Title property to About .Middleshire .Bell .Ringers, set the Width property
to 300, and set the Height property to 156 . Set the ResizeMode property to NoResize
to prevent the user from changing the size of the window when it appears . (This is the
convention for this type of dialog box .)

 . 4 . . In the Name box at the top of the Properties window, type AboutBellRingers .

 . 5 . . From the Toolbox, add two label controls and a button control to the form . In the XAML
pane, modify the properties of these three controls as shown next in bold type (or
change the text displayed by the buildDate label if you prefer):

<Window x:Class="BellRingers.About"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="About Middleshire Bell Ringers" Height="156" Width="300"
 Name="AboutBellRingers" ResizeMode="NoResize">
 <Grid>
 <Label Content="Version 1.0" Height="28" HorizontalAlignment="Left"
 Margin="80,20,0,0" Name="version" VerticalAlignment="Top"
 Width="75" />
 <Label Content="Build date: September 2009" Height="28"
 HorizontalAlignment="Left" Margin="80,50,0,0" Name="buildDate"
 VerticalAlignment="Top" Width="160" />
 <Button Content="OK" Height="23" HorizontalAlignment="Left"
 Margin="100,85,0,0" Name="ok" VerticalAlignment="Top"
 Width="78" />
 </Grid>
</Window>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 23 Gathering User Input 489

The completed form should look like this:

 . 6 . . In the Design View window, double-click the OK button .

Visual Studio generates an event method called ok_Click for the Click event of the
 button and adds this method to the About .xaml .cs file .

 . 7 . . In the Code and Text Editor window displaying the About .xaml .cs file, add the statement
shown in bold type to the ok_Click method:

private void ok_Click(object sender, RoutedEventArgs e)
{
 this.Close();
}

When the user clicks the OK button, the About Middleshire Bell Ringers window will
close .

 . 8 . . Return to the Design View window displaying the MainWindow .xaml file . In the XAML
pane, locate the definition of the about menu item and use the <New Event Handler>
command to specify a Click event method called about_Click . (This is the default name .)

 . 9 . . In the Code and Text Editor window displaying the MainWindow .xaml .cs file, add the
following statements shown in bold to the about_Click method:

private void about_Click(object sender, RoutedEventArgs e)
{
 About aboutWindow = new About();
 aboutWindow.ShowDialog();
}

WPF forms are really just classes that inherit from the System.Windows.Windows class .
You can create an instance of a WPF form in the same way as any other class . This code
creates a new instance of the About window and then calls the ShowDialog method to
display it . The ShowDialog method is inherited from the Windows class and displays
the WPF form on the screen . The ShowDialog method does not return until the About
 window closes (when the user clicks the OK button) .

Test the menu events

 . 1 . . On the Debug menu, click Start Without Debugging to build and run the application .

Notice that all the fields on the form are disabled .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

490 Part IV Working with Windows Applications

 . 2 . . Click the File menu .

The Save Member Details command is disabled .

 . 3 . . On the File menu, click New Member .

The fields on the form are now available .

 . 4 . . Input some details for a new member .

 . 5 . . Click the File menu again .

The Save Member Details command is now available .

 . 6 . . On the File menu, click Save Member Details .

After a short delay, the message “Member details saved” appears . Click OK in this
 message box .

 . 7 . . Using Windows Explorer, move to the \Microsoft Press\Visual CSharp Step By Step\
Chapter 23\BellRingers\BellRingers\bin\Debug folder under your Documents folder .

You should see a file called Members .txt in this folder .

 . 8 . . Double-click Members.txt to display its contents using Notepad .

This file should contain the details of the new member . The following text shows an
example:

First Name: John
Last Name: Sharp
Tower: Little Mudford
Captain: False
Member Since: 15/01/2000
Methods:
Plain Bob
Reverse Canterbury
Grandsire
Stedman
Kent Treble Bob
Old Oxford Delight
Winchendon Place

 . 9 . . Close Notepad, and return to the Middleshire Bell Ringers application .

 . 10 . . On the Help menu, click About Middleshire Bell Ringers .

The About window appears . Notice that you cannot resize this window, and you cannot
click any items on the Members form while the About window is still visible .

 . 11 . . Click OK to return to the Members form .

 . 12 . . On the File menu, click Exit .

The form tries to close . You are asked if you are sure you want to close the form . If you
click No, the form remains open; if you click Yes, the form closes and the application
finishes .

 . 13 . . Click Yes to close the form .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 23 Gathering User Input 491

Shortcut .Menus
Many Windows-based applications make use of pop-up menus that appear when you right-
click a form or control . These menus are usually context-sensitive and display commands
that are applicable only to the control or form that currently has the focus . They are usu-
ally referred to as context or shortcut menus . You can easily add shortcut menus to a WPF
 application by using the ContextMenu class .

Creating Shortcut Menus
In the following exercises, you will create two shortcut menus . The first shortcut menu is
 attached to the firstName and lastName text box controls and allows the user to clear these
controls . The second shortcut menu is attached to the form and contains commands for
 saving the currently displayed member’s information and for clearing the form .

Note TextBox controls are associated with a default shortcut menu that provides Cut, Copy,
and Paste commands for performing text editing . The shortcut menu that you will define in the
following exercise will override this default menu .

Create the firstName and lastName shortcut menu

 . 1 . . In the Design View window displaying MainWindow .xaml, add the following
ContextMenu element shown in bold type to the end of the window resources in the
XAML pane after the style definitions:

<Window.Resources>
 ...
 <ContextMenu x:Key="textBoxMenu" Style="{StaticResource bellRingersFontStyle}" >
 </ContextMenu>
</Window.Resources>

This shortcut menu will be shared by the firstName and lastName text boxes .
Adding the shortcut menu to the window resources makes it available to any controls
in the window .

 . 2 . . Add the following MenuItem element shown in bold type to the textBoxMenu shortcut
menu:

<Window.Resources>
 ...
 <ContextMenu x:Key="textBoxMenu" Style="{StaticResource bellRingersFontStyle}">
 <MenuItem Header="Clear Name" Name="clearName" />
 </ContextMenu>
</Window.Resources>

This code adds a menu item called clearName with the legend “Clear Name” to the
shortcut menu .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

492 Part IV Working with Windows Applications

 . 3 . . In the XAML pane, modify the definitions of the firstName and lastName text box
 controls, and add the ContextMenu property, shown here in bold type:

<TextBox ... Name="firstName" ContextMenu="{StaticResource textBoxMenu}" ... />
...
<TextBox ... Name="lastName" ContextMenu="{StaticResource textBoxMenu}" ... />

The ContextMenu property determines which menu (if any) will be displayed when the
user right-clicks the control .

 . 4 . . Return to the definition of the textBoxMenu style, and add a Click event method called
clearName_Click to the clearName menu item . (This is the default name generated by
the <New Event Handler> command .)

<MenuItem Header="Clear Name" Name="clearName" Click="clearName_Click" />

 . 5 . . In the Code and Text Editor window displaying MainWindow .xaml .cs, add the follow-
ing statements to the clearName_Click event method that the <New Event Handler>
 command generated:

firstName.Clear();
lastName.Clear();

This code clears both text boxes when the user clicks the Clear Name command on the
shortcut menu .

 . 6 . . On the Debug menu, click Start Without Debugging to build and run the application .
When the form appears, click File, and then click New Member .

 . 7 . . Type a name in the First Name and Last Name text boxes . Right-click the First Name
text box . On the shortcut menu, click the Clear Name command, and verify that both
text boxes are cleared .

 . 8 . . Type a name in the First Name and Last Name text boxes . This time, right-click the Last
Name text box . On the shortcut menu, click the Clear Name command and again verify
that both text boxes are cleared .

 . 9 . . Right-click any controls except the Member Since control . Right-click anywhere on the
form outside the First Name and Last Name text boxes .

With the exception of the Member Since control, only the First Name and Last Name
text boxes have shortcut menus, so no pop-up menu should appear anywhere else .

Note The Member Since control displays a pop-up menu with Cut, Copy, and Paste
 commands . This functionality is built into the DatePicker control by default .

 . 10 . . Close the form, and return to Visual Studio 2010 .

Now you can add the second shortcut menu, which contains commands that the user can use
to save member information and to clear the fields on the form . To provide a bit of variation,

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 23 Gathering User Input 493

and to show you how easy it is to create shortcut menus dynamically, in the following exer-
cise you will create the shortcut menu by using code . The best place to put this code is in the
constructor of the form . You will then add code to enable the shortcut menu for the window
when the user creates a new member .

Create the window shortcut menu

 . 1 . . Switch to the Code and Text Editor window displaying the MainWindow .xaml .cs file .

 . 2 . . Add the following private variable shown in bold type to the MainWindow class:

public partial class MainWindow : Window
{
 ...
 private ContextMenu windowContextMenu = null;
 ...
}

 . 3 . . Locate the constructor for the MainWindow class . This is actually the first method in the
class and is called MainWindow . Add the statements shown in bold type after the code
that calls the Reset method to create the menu items for saving member details:

public MainWindow()
{
 InitializeComponent();
 this.Reset();

 MenuItem saveMemberMenuItem = new MenuItem();
 saveMemberMenuItem.Header = "Save Member Details";
 saveMemberMenuItem.Click += new RoutedEventHandler(saveMember_Click);
}

This code sets the Header property for the menu item and then specifies that the Click
event should invoke the saveMember_Click event method; this is the same method that
you wrote in an earlier exercise in this chapter . The RoutedEventHandler type is a del-
egate that represents methods for handling the events raised by many WPF controls .
(For more information about delegates and events, refer to Chapter 17, “Interrupting
Program Flow and Handling Events .”)

 . 4 . . In the MainWindow constructor, add the following statements shown in bold type to
create the menu items for clearing the fields on the form and resetting them to their
default values:

public MainWindow()
{
 ...
 MenuItem clearFormMenuItem = new MenuItem();
 clearFormMenuItem.Header = "Clear Form";
 clearFormMenuItem.Click += new RoutedEventHandler(clear_Click);
}

This menu item invokes the clear_Click event method when clicked by the user .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

494 Part IV Working with Windows Applications

 . 5 . . In the MainWindow constructor, add the following statements shown in bold type to
construct the shortcut menu and populate it with the two menu items you have just
created:

public MainWindow()
{
 ...
 windowContextMenu = new ContextMenu();
 windowContextMenu.Items.Add(saveMemberMenuItem);
 windowContextMenu.Items.Add(clearFormMenuItem);
}

The ContextMenu type contains a collection called Items that holds the menu items .

 . 6 . . At the end of the newMember_Click event method, add the statement shown in bold
type to associate the context menu with the form:

private void newMember_Click(object sender, RoutedEventArgs e)
{
 ...
 this.ContextMenu = windowContextMenu;
}

Notice that the application associates the shortcut menu with the form only when the
new member functionality is available . If you were to set the ContextMenu property of
the form in the constructor, the Save Member Details and Clear Details shortcut menu
items would be available even when the controls on the form were disabled, which is
not how you want this application to behave .

Tip You can disassociate a shortcut menu from a form by setting the ContextMenu
 property of the form to null .

 . 7 . . On the Debug menu, click Start Without Debugging to build and run the application .

 . 8 . . When the form appears, right-click the form and verify that the shortcut menu does
not appear .

 . 9 . . On the File menu, click New Member, and then input some details for a new member .

 . 10 . . Right-click the form . On the shortcut menu, click Clear Form and verify that the fields
on the form are reset to their default values .

 . 11 . . Input some more member details . Right-click the form . On the shortcut menu, click
Save Member Details . Verify that the “Member details saved” message box appears,
and then click OK .

 . 12 . . Close the form, and return to Visual Studio 2010 .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 23 Gathering User Input 495

Windows .Common .Dialog .Boxes
The BellRingers application now lets you save member information, but it always saves data
to the same file, overwriting anything that is already there . Now is the time to address this
issue .

A number of everyday tasks require the user to specify the same information, regardless of
the functionality of the application that the user is running . For example, if the user wants to
open or save a file, the user is usually asked which file to open or where to save it . You might
have noticed that the same dialog boxes are used by many different applications . This is not
a result of a lack of imagination by applications developers; it is just that this functionality
is so common that Microsoft has standardized it and made it available as a “common dia-
log box”—a component supplied with the Microsoft Windows operating system that you
can use in your own applications . The Microsoft .NET Framework class library provides the
OpenFileDialog and SaveFileDialog classes, which act as wrappers for these common dialog
boxes .

Using the SaveFileDialog Class
In the following exercise, you will use the SaveFileDialog class . In the BellRingers application,
when the user saves details to a file, you will prompt the user for the name and location of
the file by displaying the Save File common dialog box .

Use the SaveFileDialog class

 . 1 . . In the Code and Text Editor window displaying MainWindow .xaml .cs, add the following
using statement to the list at the top of the file:

using Microsoft.Win32;

The SaveFileDialog class is in the Microsoft.Win32 namespace (even on 64-bit versions
of the Windows operating system) .

 . 2 . . Locate the saveMember_Click method, and add the code shown in bold to the start of
this method, replacing YourName with the name of your account on your computer:

private void saveMember_Click(object sender, RoutedEventArgs e)
{
 SaveFileDialog saveDialog = new SaveFileDialog();
 saveDialog.DefaultExt = "txt";
 saveDialog.AddExtension = true;
 saveDialog.FileName = "Members";
 saveDialog.InitialDirectory = @"C:\Users\YourName\Documents\";
 saveDialog.OverwritePrompt = true;
 saveDialog.Title = "Bell Ringers";
 saveDialog.ValidateNames = true;
 ...
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

496 Part IV Working with Windows Applications

This code creates a new instance of the SaveFileDialog class and sets its properties . The
following table describes the purpose of these properties .

Property Description

DefaultExt The default file name extension to use if the user does not specify the
extension when providing the file name .

AddExtension Enables the dialog box to add the file name extension indicated by the
DefaultExt property to the name of the file specified by the user if the
user omits the extension .

FileName The name of the currently selected file . You can populate this property
to specify a default file name or clear it if you don’t want a default file
name .

InitialDirectory The default directory to be used by the dialog box .

OverwritePrompt Causes the dialog box to warn the user when an attempt is made to
overwrite an existing file with the same name . For this to work, the
ValidateNames property must also be set to true .

Title A string that is displayed on the title bar of the dialog box .

ValidateNames Indicates whether file names are validated . It is used by some other
properties, such as OverwritePrompt . If the ValidateNames property is
set to true, the dialog box also checks to verify that any file name typed
by the user contains only valid characters .

 . 3 . . Add the following if statement (and closing brace) shown in bold type to the
 saveMember_Click method . This statement encloses the previous code that creates the
StreamWriter object and writes the member details to a file:

if (saveDialog.ShowDialog().Value)
{
 using (StreamWriter writer = new StreamWriter("Members.txt"))
 {
 // existing code
 ...
 }
}

The ShowDialog method displays the Save File dialog box . The Save File dialog box is
modal, which means that the user cannot continue using any other forms in the appli-
cation until the user has closed this dialog box by clicking one of its buttons . The Save
File dialog box has a Save button and a Cancel button . If the user clicks Save, the value
returned by the ShowDialog method is true; otherwise, it is false .

The ShowDialog method prompts the user for the name of a file to save to but does
not actually do any saving—you still have to supply that code yourself . All it does is
provide the name of the file that the user has selected in the FileName property .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 23 Gathering User Input 497

 . 4 . . In the saveMember_Click method, modify the statement that creates the StreamWriter
object as shown in bold type here:

using (StreamWriter writer = new StreamWriter(saveDialog.FileName))
{
 ...
}

The saveMember_Click method will now write to the file specified by the user rather
than to Members .txt .

 . 5 . . On the Debug menu, click Start Without Debugging to build and run the application .

 . 6 . . On the File menu, click New Member, and then add some details for a new member .

 . 7 . . On the File menu, click Save Member Details .

The Save File dialog box should appear, with the caption “Bell Ringers .” The default
folder should be your Documents folder, and the default file name should be Members,
as shown in the following image:

If you omit the file name extension, .txt is added automatically when the file is saved . If
you pick an existing file, the dialog box warns you before it closes .

 . 8 . . Change the value in the File name text box to TestMember, and then click Save .

 . 9 . . In the BellRingers application, verify that the “Member details saved” message appears,
click OK, and then close the application .

 . 10 . . Using Windows Explorer, move to your Documents folder .

Verify that the TestMember .txt file has been created .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

498 Part IV Working with Windows Applications

 . 11 . . Double-click the file, and verify that it contains the details of the member that you
added . Close Notepad when you have finished .

You can use a similar technique for opening a file: create an OpenFileDialog object, activate
it by using the ShowDialog method, and retrieve the FileName property when the method
returns if the user has clicked the Open button . You can then open the file, read its contents,
and populate the fields on the screen . For more details on using the OpenFileDialog class,
consult the MSDN Library for Visual Studio 2010 .

Improving .Responsiveness .in .a .WPF .Application
The purpose of the WPF libraries is to provide a foundation for building applications that
provide graphical user interfaces . Consequently, WPF applications are inherently interactive .
When a user runs a WPF application, she might visit the controls that form the user interface
in almost any order . You have seen that your application responds to the user performing
operations such as clicking buttons, typing text into boxes, or selecting menu items by us-
ing code that runs when the corresponding events are triggered . However, what happens
if the code that responds to an event takes a long time to run? For example, suppose the
BellRingers application saved its data to a remote database located somewhere over the
Internet . It might take several seconds to actually transmit this data and store it . What effect
might this delay have on the usability of your application?

In the next exercise, you will simulate this scenario and see the results .

Simulate a long-running event handler in a WPF application

 . 1 . . In Visual Studio, switch to the Code and Text Editor window displaying the MainWindow .
xaml .cs file .

 . 2 . . Add the following using statement to the list at the top of the file .

using System.Threading;

 . 3 . . Add the following statement shown in bold to the using statement that writes the
member data to the file specified by the user:

private void saveMember_Click(object sender, RoutedEventArgs e)
{
 ...
 if (saveDialog.ShowDialog().Value)
 {
 using (StreamWriter writer = new StreamWriter(saveDialog.FileName))
 {
 ...
 Thread.Sleep(10000);
 MessageBox,Show("Member details saved", "Saved");
 }
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 23 Gathering User Input 499

The static Sleep method of the Thread class in the System.Threading namespace causes
the current thread in the application to stop responding for the specified period of
time . This time is specified in milliseconds, so this code causes the thread to stop for 10
seconds .

Note A thread is a path of execution in an application . All applications have at least one
thread, and you can create applications that use multiple threads . If a computer has mul-
tiple CPUs or a multicore processor, it can execute multiple threads simultaneously . If you
create more threads than there are available CPUs or processor cores, the operating sys-
tem allocates quanta of CPU time to each thread to give the appearance of simultaneous
execution . You will learn a lot more about threads and performing operations in parallel in
Chapter 27, “Introducing the Task Parallel Library .”

 . 4 . . On the Debug menu, click Start Without Debugging .

 . 5 . . When the WPF form appears, on the File menu click New Member and enter some de-
tails for a new member .

 . 6 . . On the File menu, click Save Member Details. In the Bell Ringers dialog box, accept the
default file name and then click Save (and overwrite the file if you are prompted) .

 . 7 . . When the Bell Ringers dialog box closes, attempt to click any of the controls on the
WPF form . Notice that the form fails to respond . (The form might appear blank, and
the title bar might display the text “Not Responding .”)

 . 8 . . When the Saved dialog box appears, click OK .

 . 9 . . Now click any of the controls on the WPF form . The form now responds properly .

 . 10 . . Close the form, and return to Visual Studio 2010 .

By default, WPF applications are single-threaded . Consequently, a long-running event
 handler can cause the application to stop responding . This is clearly not acceptable in a
 professional program . However, the .NET Framework enables you to create multiple threads .
You can then execute long-running tasks on these threads . However, you should be aware
that there are some restrictions with these threads in a WPF application, as you will see in the
next exercise .

Perform a long-running operation on a new thread

 . 1 . . In Visual Studio, display the MainWindow .xaml .cs file in the Code and Text Editor window .

 . 2 . . Add a new private method to the MainWindow class called saveData . This method
should take a string parameter that specifies a file name and should not return a value,
as follows:

private void saveData(string fileName)
{
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

500 Part IV Working with Windows Applications

 . 3 . . Locate the saveMember_Click method . Copy the using statement and the enclosing
code from this method to the saveData method . The saveData method should look like
this:

private void saveData(string fileName)
{
 using (StreamWriter writer = new StreamWriter(saveDialog.FileName))
 {
 writer.WriteLine("First Name: {0}", firstName.Text);
 writer.WriteLine("Last Name: {0}", lastName.Text);
 writer.WriteLine("Tower: {0}", towerNames.Text);
 writer.WriteLine("Captain: {0}", isCaptain.IsChecked.ToString());
 writer.WriteLine("Member Since: {0}", memberSince.Text);
 writer.WriteLine("Methods: ");
 foreach (CheckBox cb in methods.Items)
 {
 if (cb.IsChecked.Value)
 {
 writer.WriteLine(cb.Content.ToString());
 }
 }

 Thread.Sleep(10000);
 MessageBox.Show("Member details saved", "Saved");
 }
}

 . 4 . . In the using statement, change the code that calls the constructor for the StreamWriter
object and replace the reference to saveDialog.FileName with the fileName parameter,
as shown here in bold:

using (StreamWriter writer = new StreamWriter(fileName))
{
 ...
}

 . 5 . . In the saveMember_Click method, remove the using statement and enclosing code
block and replace it with the statements shown here in bold:

private void saveMember_Click(object sender, RoutedEventArgs e)
{
 ...
 if (saveDialog.ShowDialog().Value)
 {
 Thread workerThread = new Thread(
 () => this.saveData(saveDialog.FileName));
 workerThread.Start();
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 23 Gathering User Input 501

This code creates a new Thread object called workerThread . The constructor for the
Thread class expects a delegate that references a method to run when the thread ex-
ecutes . This example uses a lambda expression to create an anonymous delegate that
invokes the saveData method .

The Start method of the Thread class starts the thread running . The thread executes
asynchronously—the Start method does not wait for the method run by the thread to
complete .

 . 6 . . On the Debug menu, click Start Debugging .

Important Do not run the application without debugging .

 . 7 . . When the WPF form appears, on the File menu, click New Member, provide some data
for the new member, and then click Save Member Details . In the Bell Ringers dialog
box, select the Members .txt file and then click Save (and overwrite the file if you are
prompted) .

The application stops in the saveData method and reports the exception
“InvalidOperationException was unhandled” shown in the following image .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

502 Part IV Working with Windows Applications

The text of the exception is “The calling thread cannot access this object because a
 different thread owns it”, and the line highlighted is the code that reads the data from
the firstName text box .

 . 8 . . On the Debug menu, click Stop Debugging and return to Visual Studio 2010 .

You have attempted to use a thread to perform a long-running task in the background . This
is a sound approach . The problem is that the security model implemented by WPF prevents
any threads other than the thread that created a user interface object such as a control from
accessing that object . This restriction prevents two or more threads from attempting to take
control of the user input or modifying the data on the screen because this could result in
corruption of your data .

You can work around this restriction in many ways, but the simplest solution is to gather the
data to be saved into a structure in the method run by the user-interface thread and then
pass this structure to the method run by the background thread . This is what you will do in
the next exercise .

Copy data from the user-interface thread to the background thread

 . 1 . . In Visual Studio, on the Project menu, click Add New Item .

 . 2 . . In the Add New Item – Bell Ringers dialog box, in the left pane expand Visual C#
and then click Code . In the middle pane, click Code File . In the Name text box, type
Member .cs and then click Add .

Visual Studio adds a blank code file called Member .cs to your project and displays it in
the Code and Text Editor window .

 . 3 . . Add the following using statements to the top of the Member .cs file:

using System;
using System.Collections.Generic;

 . 4 . . In the Member .cs file, define the Member structure as shown next . This structure
 contains public properties that correspond to each of the fields on the form . The list
of methods (tunes) that the member can ring is held as a List<string> collection (not a
property) .

struct Member
{
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string TowerName { get; set; }
 public bool IsCaptain { get; set; }
 public DateTime MemberSince { get; set; }
 public List<string> Methods;
}

 . 5 . . Return to the MainWindow .xaml .cs file in the Code and Text Editor window .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 23 Gathering User Input 503

 . 6 . . Modify the saveData method to take a Member structure as the second parameter . In
the body of the saveData method, change the code to read the member data from
this structure rather than the fields on the WPF form . The following code example
shows the completed method . Notice that the for loop iterates through the List<string>
 collection rather than the check boxes on the form:

private void saveData(string fileName, Member member)
{
 using (StreamWriter writer = new StreamWriter(fileName))
 {
 writer.WriteLine("First Name: {0}", member.FirstName);
 writer.WriteLine("Last Name: {0}", member.LastName);
 writer.WriteLine("Tower: {0}", member.TowerName);
 writer.WriteLine("Captain: {0}", member.IsCaptain.ToString());
 writer.WriteLine("Member Since: {0}", member.MemberSince.ToString());
 writer.WriteLine("Methods: ");
 foreach (string method in member.Methods)
 {
 writer.WriteLine(method);
 }

 Thread.Sleep(10000);
 MessageBox.Show("Member details saved", "Saved");
 }
}

 . 7 . . In the saveMember_Click method, in the if statement block that starts the background
thread, create a Member variable and populate it with the data from the form . Pass this
Member variable as the second parameter to the saveData method run by the back-
ground thread . The following code in bold shows the changes you need to make:

private void saveMember_Click(object sender, RoutedEventArgs e)
{
 ...
 if (saveDialog.ShowDialog().Value)
 {
 Member member = new Member();
 member.FirstName = firstName.Text;
 member.LastName = lastName.Text;
 member.TowerName = towerNames.Text;
 member.IsCaptain = isCaptain.IsChecked.Value;
 member.MemberSince = memberSince.SelectedDate.Value;
 member.Methods = new List<string>();
 foreach (CheckBox cb in methods.Items)
 {
 if (cb.IsChecked.Value)
 {
 member.Methods.Add(cb.Content.ToString());
 }
 }

 Thread workerThread = new Thread(
 () => this.saveData(saveDialog.FileName, member));
 workerThread.Start();
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

504 Part IV Working with Windows Applications

Note The isCaptain control on the form is a CheckBox control, and the IsChecked prop-
erty is nullable, so you determine whether the control is checked by examining the Value
property . Similarly, the SelectedDate property of the DatePicker control is also nullable, so
the code uses the Value property to retrieve the data related to membership .

 . 8 . . On the Debug menu, click Start Without Debugging . On the File menu, click New
Member and add some data . Then, on the File menu, click Save MemberDetails . In the
Bell Ringers dialog box, specify the default file name and then click Save .

Notice that the WPF form now functions correctly—it responds when you click any
fields or try to enter some data .

 . 9 . . After 10 seconds, the Saved message box appears indicating that the data has been
saved . Click OK, close the WPF form, and return to Visual Studio 2010 .

Threads .and .the .BackgroundWorker .Class
The example shown in the previous exercise created a Thread object to run a method
on a new thread . An alternative approach is to create a BackgroundWorker object . The
BackgroundWorker class lives in the System.ComponentModel namespace and provides
a wrapper around threads . The following code shows how to run the saveData method
by using a BackgroundWorker object .

BackgroundWorker workerThread = new BackgroundWorker();
workerThread.DoWork += (x, y) => this.saveData(saveDialog.FileName, member);
workerThread.RunWorkerAsync();

You specify the method that a BackgroundWorker object runs by subscribing to the
DoWork event . The DoWork event expects you to provide a DoWorkEventHandler del-
egate (specified as a lambda expression in this example) . The DoWorkEventHandler del-
egate refers to a method that takes two parameters; an object parameter that indicates
the item that invoked the BackgroundWorker object, and a DoWorkEventArgs param-
eter that contains specific information passed to the BackgroundWorker to perform its
work . The example code shown does not use these two parameters .

You start a thread running by calling the RunWorkerAsync method of the
BackgroundWorker object .

For performing simple operations in the background, the Thread class is ideal . However,
in more complex scenarios the BackgroundWorker class provides some advantages over
the Thread class . Specifically, it provides the ProgressChanged event that a thread can
use to report the progress of a long-running task, and the RunWorkerCompleted event
that a thread can use to indicate that it has completed its work .

For more information about the BackgroundWorker class, consult the documentation
provided with Visual Studio .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 23 Gathering User Input 505

You have made the application more responsive by using a separate thread to perform
a long-running operation and passing the data required by that thread as a parameter .
However, there is one final quirk that you need to address . When the user saves the data for
a member, the Saved message box appears and confirms that the data was saved correctly .
This was fine originally when the save operation ran quickly and the user was not able to
perform any other tasks at the same time . Now, though, this message box can appear while
the user is entering data for another member and can become an annoyance because the
message box grabs the focus . The user has to acknowledge the message box before being
able to continue entering data, and this action can break the user’s concentration, leading
to input errors . A better solution is to display the message in a status bar at the bottom of
the form . This provides an unobtrusive means of informing the user that the save operation
has completed .

There is a problem with this approach, though; the status bar is a control created and owned
by the user interface thread . How can the background thread access this control and display
a message? The answer lies in the WPF Dispatcher object .

You can use the Dispatcher object to request that the user interface thread runs a method on
behalf of another thread . The Dispatcher object queues these requests and runs them on the
user interface thread at an appropriate point in time—for example, you can assign a prior-
ity to a request telling the Dispatcher object to run the request only when the user interface
thread is idle . You can access the Dispatcher object through the Dispatcher property of any
control on a WPF form, including the form itself .

You send a request to the Dispatcher object by calling the Invoke method . This method is
overloaded, but all overloads expect a Delegate object that wraps a reference to a method
that the Dispatcher object should run .

In the final exercise in this chapter, you will amend the BellRingers application to display the
status of the save operation in a status bar at the bottom of the form, by using the Dispatcher
object .

Use the Dispatcher object to display a status message

 . 1 . . In Visual Studio, display the MainWindow .xaml file in the Design View window .

 . 2 . . In the Toolbox, select the StatusBar control in the Controls section and add it to the
bottom of the WPF form .

 . 3 . . In the Properties window, set the properties of the StatusBar control to the values listed
in the following table .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

506 Part IV Working with Windows Applications

Property Value

Name status

Height 23

HorizontalAlignment Stretch

Margin 0, 0, 0, 0

Style {StaticResource bellRingersFontStyle}

VerticalAlignment Bottom

Width Auto

These properties cause the status bar to occupy one line at the bottom of the form .

 . 4 . . The Clear button is partly obscured by the status bar, so it needs to be moved . In the
Properties window, change the Margin property for the Clear button to 313,378,0,0 .

 . 5 . . Display the MainWindow .xaml .cs file in the Code and Text Editor window .

 . 6 . . Add the following using statement to the list at the top of the file:

using System.Windows.Threading;

 . 7 . . In the saveData method, replace the statement that displays the message box with the
code shown here in bold:

private void saveData(string fileName, Member member)
{
 using (StreamWriter writer = new StreamWriter(fileName))
 {
 ...
 Thread.Sleep(10000);
 Action action = new Action(() => {
 status.Items.Add("Member details saved");
 });
 this.Dispatcher.Invoke(action, DispatcherPriority.ApplicationIdle);
 }
}

The Invoke method of the Dispatcher object expects a request in the form of a Delegate
parameter that references a method to run . However, Delegate is an abstract class . The
Action class in the System namespace is a concrete implementation of the Delegate
class, designed for referencing a method that takes no parameters and that does not
return a result . (In other words, the method simply performs an action .)

Note The Func<T> generic type that you met briefly in Chapter 20, “Querying In-Memory
Data by Using Query Expressions,” is another implementation of the Delegate class . A
Func<T> object references a method that returns an object of type T, and it is useful if you
need to invoke a method that returns a value through a delegate .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 23 Gathering User Input 507

The code shown here uses a lambda expression to define an anonymous method that
displays the message “Member details saved” in the status bar . A StatusBar object can
display multiple pieces of information, and to display an item you add it to the Items
collection .

The example of the Invoke method shown here obtains a reference to the Dispatcher
object by using the Dispatcher property of the form . The second parameter to the
Invoke method specifies the priority that the Dispatcher object should assign to the
request . This is a value from the DispatcherPriority enumeration in the System.Windows.
Threading namespace . The value ApplicationIdle causes the Dispatcher object to run the
request when the application is not performing any other work .

 . 8 . . On the Debug menu, click Start Without Debugging . When the WPF form appears,
on the File menu click New Member and add some member details . Then, on the File
menu, click Save Member Details . In the Bell Ringers dialog box, specify the default file
name and then click Save .

Verify that the WPF form still responds while the background thread is running .

 . 9 . . After 10 seconds, verify that the “Member details saved” message box appears in the
status bar at the bottom of the form .

 . 10 . . Close the WPF form, and return to Visual Studio 2010 .

Threads are extremely valuable for maintaining responsiveness in a user interface . However,
sometimes threads can be difficult to manage effectively; it can be difficult to synchronize
concurrent operations if you need to wait for one or more threads to complete before con-
tinuing a process, and if you create too many threads the computer can become overloaded
and slow down . The .NET Framework provides an abstraction of threads called Tasks that you
can use to create and control threads in a manageable manner . You will learn more about
Tasks in Chapter 27 .

In this chapter, you saw how to create menus to enable users to perform operations in an
application, and you also created shortcut menus that appear when the user right-clicks on
a control or form . You saw how to use the common dialog classes to prompt the user for
the name and location of a file . Finally, you learned about the threading model used by WPF
 applications and how you can use threads to make applications more responsive .

n If you want to continue to the next chapter

Keep Visual Studio 2010 running, and turn to Chapter 24 .

n If you want to exit Visual Studio 2010 now

On the File menu, click Exit . If you see a Save dialog box, click Yes and save the project .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

508 Part IV Working with Windows Applications

Chapter .23 .Quick .Reference
To Do this

Create a menu for a form Add a DockPanel control, and place it at the top of the form . Add a Menu
control to the DockPanel control .

Add menu items to a menu Add MenuItem elements to the Menu control . Specify the text for a menu
item by setting the Header property, and give each menu item a name by
specifying the Name property . You can optionally specify properties so
that you can display features such as icons and child menus . You can add
an access key to a menu item by prefixing the appropriate letter with an
underscore character .

Create a separator bar in a menu Add a Separator element to the menu .

Enable or disable a menu item Set the IsEnabled property to True or False in the Properties window at
design time, or write code to set the IsEnabled property of the menu item
to true or false at run time .

Perform an action when the user
clicks a menu item

Select the menu item, and specify an event method for the Click event .
Add your code to the event method .

Create a shortcut menu Add a ContextMenu to the window resources . Add items to the shortcut
menu just as you add items to an ordinary menu .

Associate a shortcut menu with a
form or control

Set the ContextMenu property of the form or control to refer to the
shortcut menu .

Create a shortcut menu dynami-
cally

Create a ContextMenu object . Populate the Items collection of this ob-
ject with MenuItem objects defining each of the menu items . Set the
ContextMenu property of the form or control to refer to the shortcut
menu .

Prompt the user for the name of a
file to save

Use the SaveFileDialog class . Display the dialog box by using the
ShowDialog method . When the dialog box closes, the FileName property
of the SaveFileDialog instance contains the name of the file selected by
the user .

Perform an operation on a back-
ground thread

Create a Thread object that references a method to run . Call the Start
method of the Thread object to invoke the method . For example:

Thread workerThread new Thread(
 () => doWork(...));

workerThread,Start();

Enable a background thread to ac-
cess controls managed by the user
interface thread

Create an Action delegate that references a method that accesses the
controls . Run the method by using the Invoke method of the Dispatcher
object, and optionally specify a priority . For example:

Action action = new Action(() => {
 status.Items.Add("Member details added");
});

this.Dispatcher.Invoke(action,
 DispatcherPriority.ApplicationIdle);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 . . 509

Chapter 24

Performing Validation
After completing this chapter, you will be able to:

n Verify the information entered by a user to ensure that it does not violate any
 application or business rules .

n Bind properties of one control on a form to properties of other controls .

n Use data binding validation rules to validate information entered by a user .

n Perform validation effectively but unobtrusively .

In the previous two chapters, you saw how to create a Microsoft Windows Presentation
Foundation (WPF) application that uses a variety of controls for data entry . You created
menus to make the application easier to use . You learned how to trap events raised by
menus, forms, and controls so that your application can actually do something besides just
look pretty . You also used threads to make the application responsive .

Although careful design of a form and the appropriate use of controls can help to ensure
that the information entered by a user makes sense, you often need to perform additional
checks . In this chapter, you will learn how to validate the data entered by a user running
an application to ensure that it matches any business rules specified by the application’s
requirements .

Validating .Data
The concept of input validation is simple enough, but it is not always easy to imple-
ment, especially if validation involves cross-checking data the user has entered into two
or more controls . The underlying business rule might be relatively straightforward, but all
too often, the validation is performed at an inappropriate time, making the form difficult
(and infuriating) to use .

Strategies for Validating User Input
You can employ many strategies to validate the information entered by the users of your
applications . A common technique that many Microsoft Windows developers familiar with
previous versions of the Microsoft .NET Framework use is to handle the LostFocus event of
controls . The LostFocus event is raised when the user moves away from a control . You can
add code to this event to examine the data in the control that the user is vacating and en-
sure that it matches the requirements of the application before allowing the cursor to move
away . The problem with this strategy is that often you need to cross-check data entered

http://lib.ommolketab.ir
http//lib.ommolketab.ir

510 Part IV Working with Windows Applications

into one control against the values in others, and the validation logic can become quite
convoluted; you frequently end up repeating similar logic in the LostFocus event handler for
several controls . Additionally, you have no power over the sequence in which the user moves
from control to control . Users can move through the controls on a form in any order, so you
 cannot always assume that every control contains a valid value if you are cross-checking a
particular control against others on the form .

Another fundamental issue with this strategy is that it can tie the validation logic of the
 presentation elements of an application too closely to the business logic . If the business
 requirements change, you might need to modify the validation logic, and maintenance can
become a complex task .

With WPF, you can define validation rules as part of the business model used by your
 applications . You can then reference these rules from the Extensible Application Markup
Language (XAML) description of the user interface . To do this, you define the classes required
by the business model and then bind properties of the user interface controls to proper-
ties exposed by these classes . At run time, WPF can create instances of these classes . When
you modify the data in a control, the data can be automatically copied back to the speci-
fied property in the appropriate business model class instance and validated . You will learn
more about data binding in Part V, “Managing Data .” For the purposes of this chapter, I will
 concentrate on the validation rules you can associate with data binding .

An .Example—Order .Tickets .for .Events
Consider a simple scenario . You have been asked to build an application that enables
 customers to order tickets for events . Part of the application needs to enable a customer to
enter her details, specify an event, and select the number of tickets required . A customer
has a privilege level (Standard, Premium, Executive, or Premium Executive), and the higher
this level the more tickets a customer can order . (Standard customers can order at most two
 tickets for an event, Premium customers can order four tickets, Executive customers can
 order eight tickets, and Premium Executive customers can order 10 tickets) . You decide to
create a prototype form like the one shown in the following graphic .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 24 Performing Validation 511

You need to ensure that the user’s input is valid and consistent . Specifically, the customer
must do the following:

n Select an event . The prototype application uses a hard-coded set of events . In a
 production application, you store the set of events in a database and use data bind-
ing to retrieve and display these events . You will see how to do this in Chapter 26,
“Displaying and Editing Data by Using the Entity Framework and Data Binding .”

n Input a customer reference number . The prototype application does not verify this
 reference number .

n Specify a privilege level . Again, the prototype application does not verify that the
 customer actually has this privilege level .

n Pick a number of tickets greater than 0 and less than or equal to the value that the
 customer’s privilege level allows .

When the user has completed entering data, the user clicks the Purchase item in the File
menu . The real application takes the user to a screen that enables the user to enter her
 payment details . In this prototype application, all that happens is that the application displays
a message box confirming the user’s input .

Performing Validation by Using Data Binding
In the following exercises, you will examine the Ticket Ordering application and add valida-
tion rules by using data binding . As a cautionary step, one of the exercises will show you how
easy it is to get the validation timing wrong and render an application almost unusable!

Examine the Ticket Orders form

 . 1 . . Start Microsoft Visual Studio 2010 if it is not already running .

 . 2 . . Open the OrderTickets project, located in the \Microsoft Press\Visual CSharp Step By
Step\Chapter 24\OrderTickets folder in your Documents folder .

 . 3 . . On the Debug menu, click Start Without Debugging to build and run the application .

 . 4 . . When the form appears, do not enter any data, but on the File menu click Purchase
immediately .

The application displays a message box with the text “Purchasing 0 tickets for customer:
for event:” . The application currently enables the user to purchase tickets without speci-
fying who they are for, the event, or even the number of tickets required .

 . 5 . . Click OK and return to the Ticket Orders form .

 . 6 . . In the Event combo box, click Little Mudford Festival .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

512 Part IV Working with Windows Applications

 . 7 . . In the Customer Reference box, type C1234 .

 . 8 . . In the Privilege Level combo box, click Premium .

 . 9 . . Using the Tickets slider control, click the slider and drag it to the right side of the
 control . This specifies 10 tickets .

 . 10 . . On the File menu, click Purchase .

The application displays a message box with the text “Purchasing 10 tickets for
Premium customer: C1234 for event: Little Mudford Festival .” Notice that the applica-
tion does not check whether the number of tickets exceeds the number allowed by the
customer’s privilege level .

 . 11 . . Click OK, and then close the form and return to Visual Studio 2010 .

Currently, this form is not very useful . It does not validate the data entered by the user,
and the slider control makes it difficult to determine exactly how many tickets the user has
selected until the user clicks the Purchase button . (You have to count the ticks underneath
the control .) This second problem is the easiest to fix, so you will start with that . In the next
exercise, you will add a TextBox control to the form and use data binding to display the
 current value of the slider in this control .

Use data binding to display the number of tickets requested

 . 1 . . In Solution Explorer, double-click the TicketForm .xaml file .

 . 2 . . From the Toolbox, add a TextBox control to the form and place it to the right of the
slider control . In the Properties window, set the properties of this control to the values
shown in the following table .

Property Value

Name tickets

Height 23

Width 25

Margin 380, 170, 0, 0

IsReadOnly True (selected)

TextAlignment Right

HorizontalAlignment Left

VerticalAlignment Top

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 24 Performing Validation 513

 . 3 . . In the XAML pane, edit the definition of the tickets TextBox control . Add the TextBox.
Text child element as shown next in bold type, making sure you replace the closing de-
limiter tag (/>) for the TextBox control with an ordinary delimiter (>) and that you add a
closing </TextBox> tag:

<TextBox Height="23" HorizontalAlignment="Left" Margin="380,170,0,0"
 Name="tickets" VerticalAlignment="Top" Width="25" TextAlignment="Right"
 IsReadOnly="True">
 <TextBox.Text>
 </TextBox.Text>
</TextBox>

 . 4 . . In the TextBox.Text child element, add the Binding element shown here in bold:

<TextBox ...>
 <TextBox.Text>
 <Binding ElementName="numberOfTickets" Path="Value" />
 </TextBox.Text>
</TextBox>

This Binding element associates the Text property of the TextBox control with the Value
property of the Slider control . (The Slider control is named numberOfTickets .) When
the user changes this value, the TextBox will be updated automatically . Notice that the
TextBox control displays the value 0 in the Design View window—this is the default
value of the Slider control .

 . 5 . . On the Debug menu, click Start Without Debugging .

 . 6 . . When the form appears, drag the slider on the Slider control and verify that the
 number of tickets appears in the TextBox control to the right .

 . 7 . . Close the form and return to Visual Studio .

You can now turn your attention to validating the data that the user enters . There are many
approaches you can take, but in cases such as this, the recommended approach involves
creating a class that can model the entity that you are entering the data for . You can add the
validation logic to this class, and then bind the properties in the class to the various fields on
the form . If you enter invalid data on the form, the validation rules in the class can throw an
exception that you can capture and display on the form .

You will start by creating a class to model a customer’s order, and then learning how to
use this class to ensure the user always specifies an event and enters a reference number for
the customer .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

514 Part IV Working with Windows Applications

Create the TicketOrder class with validation logic for specifying an event and
enforcing the entry of a customer reference number

 . 1 . . In Solution Explorer, right-click the OrderTickets project, point to Add, and then click
Class .

 . 2 . . In the Add New Item – OrderTickets dialog box, in the Name text box, type
TicketOrder .cs and then click Add .

 . 3 . . In the Code and Text Editor window displaying the TickerOrder .cs file, add the private
eventName and customerReference fields shown here in bold type to the TicketOrder
class:

class TicketOrder
{
 private string eventName;
 private string customerReference;
}

 . 4 . . Add the following public EventName property to the TicketOrder class as shown in bold
type, based on the eventName field you added in the previous step:

class TicketOrder
{
 ...
 public string EventName
 {
 get { return this.eventName; }
 set
 {
 if (String.IsNullOrEmpty(value))
 {
 throw new ApplicationException
 ("Specify an event");
 }
 else
 {
 this.eventName = value;
 }
 }
 }
}

The property set accessor examines the value supplied for the event name, and if it is
empty, it raises an exception with a suitable message .

 . 5 . . Add the following public CustomerReference property to the TicketOrder class as shown
in bold type:

class TicketOrder
{
 ...
 public string CustomerReference
 {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 24 Performing Validation 515

 get { return this.customerReference; }
 set
 {
 if (String.IsNullOrEmpty(value))
 {
 throw new ApplicationException
 ("Specify the customer reference number");
 }
 else
 {
 this.customerReference = value;
 }
 }
 }
}

This property is similar to the EventName property . The property set accessor examines
the value supplied for the customer reference number, and if it is empty, it raises an
exception .

Now that you have created the TicketOrder class, the next step is to bind the
 customerReference text box on the form to the CustomerReference property of the class .

Bind the text box control on the form to the property in the TicketOrder class

 . 1 . . In Solution Explorer, double-click the TicketForm .xaml file to display the form in the
Design View window .

 . 2 . . In the XAML pane, add the XML namespace declaration shown here in bold type to the
Window definition:

<Window x:Class="OrderTickets.TicketForm"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:ticketOrder="clr-namespace:OrderTickets"
 Title="Ticket Orders" Height="250" Width="480" ResizeMode="NoResize">
...

This declaration is similar to a using statement in Microsoft C# code . It enables you to
reference the types in the OrderTickets namespace in the XAML code for the window .

 . 3 . . Add the following Window.Resources element shown in bold type to the window:

<Window x:Class=" OrderTickets.TicketForm"
 ...
 ...ResizeMode="NoResize">
 <Window.Resources>
 <ticketOrder:TicketOrder x:Key="orderData" />
 </Window.Resources>
 <Grid>
 ...

http://lib.ommolketab.ir
http//lib.ommolketab.ir

516 Part IV Working with Windows Applications

This resource creates a new instance of the TicketOrder class . You can reference this
instance by using the key value, orderData, elsewhere in the XAML definition of the
window .

 . 4 . . Find the definition of the customerReference text box in the XAML pane, and modify it
as shown here in bold type, making sure you replace the closing delimiter tag (/>) for
the TextBox control with an ordinary delimiter (>) and that you add a closing
</TextBox> tag:

<TextBox Height="23" HorizontalAlignment="Left" Margin="156,78,0,0"
 Name="customerReference" VerticalAlignment="Top" Width="205">
 <TextBox.Text>
 <Binding Source="{StaticResource orderData}"
 Path="CustomerReference" />
 </TextBox.Text>
</TextBox>

This code binds the data displayed in the Text property of this text box to the value in
the CustomerReference property of the orderData object . If the user updates the value
in the customerReference text box on the form, the new data is automatically cop-
ied to the orderData object . Remember that the CustomerReference property in the
TicketOrder class checks that the user has actually specified a value .

 . 5 . . Modify the definition of the binding you added in the preceding step, and add a
Binding.ValidationRules child element, as shown here in bold type:

<TextBox Height="23" HorizontalAlignment="Left" Margin="156,78,0,0"
 Name="customerReference" VerticalAlignment="Top" Width="205">
 <TextBox.Text>
 <Binding Source="{StaticResource orderData}"
 Path="CustomerReference">
 <Binding.ValidationRules>
 <ExceptionValidationRule/>
 </Binding.ValidationRules>
 </Binding>
 </TextBox.Text>
</TextBox>

The ValidationRules element of a binding enables you to specify the validation
that the application should perform when the user enters data in this control . The
ExceptionValidationRule element is a built-in rule that checks for any exceptions thrown
by the application when the data in this control changes . If it detects any exceptions, it
highlights the control so that the user can see there is a problem with the input .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 24 Performing Validation 517

 . 6 . . Add the equivalent binding and binding rule to the Text property of the eventList
 combo box, associating it with the EventName property of the orderData object, as
shown here in bold:

<ComboBox Height="23" HorizontalAlignment="Left" Margin="156,29,0,0"
 Name="eventList" VerticalAlignment="Top" Width="205" >
 <ComboBox.Text>
 <Binding Source="{StaticResource orderData}" Path="EventName" >
 <Binding.ValidationRules>
 <ExceptionValidationRule/>
 </Binding.ValidationRules>
 </Binding>
 </ ComboBox.Text>
 <ComboBox.Items>
 ...
 </ComboBox.Items>
</ComboBox >

 . 7 . . On the Debug menu, click Start Without Debugging to build and run the application .

 . 8 . . When the form appears, on the File menu click Purchase without entering any data .

The message “Purchasing 0 tickets for customer: for event:” appears .

 . 9 . . Click OK .

 . 10 . . On the Ticket Orders form, select Little Mudford Festival from the Event combo box,
type C1234 in the customerReference text box, and then select Premium in the Privilege
Level combo box .

Nothing noteworthy should happen .

 . 11 . . Click the customerReference text box, delete the reference number you entered, and
then click the Privilege Level combo box again .

This time, the customerReference text box is highlighted with a red border . When
the binding attempted to copy the value that the user entered to the TickerOrder
object, the value was an empty string, so the CustomerReference property throws an
ApplicationException exception . In these circumstances, a control that uses binding
 indicates that an exception has occurred by displaying a red border .

 . 12 . . Type C1234 in the customerReference text box again, and then click the Privilege Level
combo box .

The red box around the customerReference text box disappears .

 . 13 . . Delete the value in the customerReference text box again . On the File menu, click
Purchase .

Rather surprisingly, no red border appears around the customerReference text box .

 . 14 . . In the message box, click OK, and then click the Privilege Level combo box .

The red border now appears around the customerReference text box .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

518 Part IV Working with Windows Applications

 . 15 . . Close the form, and return to Visual Studio 2010 .

There are at least two questions you should be asking yourself at this point:

n Why doesn’t the form always detect when the user has forgotten to enter a value in
a text box? The answer is that the validation occurs only when the text box loses its
 focus . This, in turn, happens only when the user moves the focus to another control on
the form . Menus are not actually treated as though they are part of the form . (They
are handled differently .) When you select a menu item, you are not moving to another
control on the form; therefore, the text box has not yet lost its focus . Only when you
click the Privilege Level combo box (or some other control) does the focus move and
the validation occur . Additionally, the customerReference text box and the Event combo
box are initially empty . If you move away from either of these controls without selecting
or typing anything, the validation will not be performed . Only when you select or type
something and then delete it does the validation run . You will address these problems
later in this chapter .

n How can I get the form to display a meaningful error message rather than just
 highlighting that there is a problem with the input in a control? You can capture the
message generated by an exception and display it elsewhere on the form . You will see
how to do this in the following exercise .

The next exercise answers these questions .

Add a style to display exception messages

 . 1 . . In the Design View window displaying the TicketForm .xaml file, in the XAML pane, add
the following style shown in bold type to the Window.Resources element:

<Window.Resources>
 <ticketOrder:Customer x:Key="orderData" />
 <Style x:Key="errorStyle" TargetType="Control">
 <Style.Triggers>
 <Trigger Property="Validation.HasError" Value="True">
 <Setter Property="ToolTip"
 Value="{Binding RelativeSource={x:Static RelativeSource.Self},
 Path=(Validation.Errors)[0].ErrorContent}" />
 </Trigger>
 </Style.Triggers>
 </Style>
</Window.Resources>

This style contains a trigger that detects when the Validation.HasError property
of the control is set to true . This occurs if a binding validation rule for the control
generates an exception . The trigger sets the ToolTip property of the current con-
trol to display the text of the exception . A detailed explanation of the binding syn-
tax shown here is outside the scope of this book, but the binding source {Binding
RelativeSource={x:Static RelativeSource.Self} is a reference to the current

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 24 Performing Validation 519

control, and the binding path (Validation.Errors)[0].ErrorContent associates
the first exception message found in this binding source with the ToolTip property . (An
 exception could throw further exceptions, all of which generate their own messages .
The first message is usually the most significant, though .)

 . 2 . . Apply the errorStyle style to the eventList and customerReference controls, as shown in
bold type here:

<ComboBox Style="{StaticResource errorStyle}" ... Name="eventList" ... >
 ...
</ComboBox>
<TextBox Style="{StaticResource errorStyle}" ... Name="customerReference" ... >
 ...
</TextBox>

 . 3 . . On the Debug menu, click Start Without Debugging to build and run the application .

 . 4 . . When the form appears, in the Event combo box select Little Mudford Festival, type
C1234 in the customerReference text box, and then click the Privilege Level combo box .

 . 5 . . Click the customerReference text box, delete the reference number you entered, and
then click the Privilege Level combo box again .

The customerReference text box is highlighted with a red border .

Note Make sure you actually delete the contents of the foreName text box rather than
just overtyping the text with spaces .

 . 6 . . Rest the mouse pointer on the customerReference text box . A ScreenTip should appear,
displaying the message “Specify the customer reference number,” like this:

This is the message from the ApplicationException exception raised by the
CustomerReference property in the TicketOrder class .

 . 7 . . Close the form, and return to Visual Studio 2010 .

There are still some issues left to fix, but you will address them after you have seen how to
validate the privilege level and number of tickets and ensure that they are consistent .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

520 Part IV Working with Windows Applications

Add properties to validate the privilege level and number of tickets

 . 1 . . Switch to the Code and Text Editor window displaying the TicketOrder .cs file .

 . 2 . . Add the PrivilegeLevel enumeration shown next in bold type to the file, above the
TicketOrder class:

enum PrivilegeLevel { Standard, Premium, Executive, PremiumExecutive }

class TicketOrder
{
 ...
}

You will use this enumeration to specify the type of the PrivilegeLevel property in the
TicketOrder class .

 . 3 . . Add the privilegeLevel and numberOfTickets private fields to the TicketOrder class, as
shown in bold type here:

class TicketOrder
{
 private string eventName;
 private string customerReference;
 private PrivilegeLevel privilegeLevel;
 private short numberOfTickets;
 ...
}

 . 4 . . Add the private checkPrivilegeAndNumberOfTickets Boolean method to the TicketOrder
class as shown in bold type here:

class TicketOrder
{
 ...
 private bool checkPrivilegeAndNumberOfTickets(
 PrivilegeLevel proposedPrivilegeLevel,
 short proposedNumberOfTickets)
 {
 bool retVal = false;

 switch (proposedPrivilegeLevel)
 {
 case PrivilegeLevel.Standard:
 retVal = (proposedNumberOfTickets <= 2);
 break;

 case PrivilegeLevel.Premium:
 retVal = (proposedNumberOfTickets <= 4);
 break;

 case PrivilegeLevel.Executive:
 retVal = (proposedNumberOfTickets <= 8);
 break;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 24 Performing Validation 521

 case PrivilegeLevel.PremiumExecutive:
 retVal = (proposedNumberOfTickets <= 10);
 break;
 }

 return retVal;
 }
}

This method examines the values in the proposedPrivilegeLevel and
 proposedNumberOfTickets parameters and tests them for consistency according to the
business rules described earlier in this chapter . If the values are consistent, this method
returns true; otherwise, it returns false .

 . 5 . . Add the public PrivilegeLevel and NumberOfTickets properties shown next in bold
type to the TicketOrder class . Note that the type of the PrivilegeLevel property is the
PrivilegeLevel enumeration:

class Customer
{
 ...
 public PrivilegeLevel PrivilegeLevel
 {
 get { return this.privilegeLevel; }
 set
 {
 this.privilegeLevel = value;
 if (!this.checkPrivilegeAndNumberOfTickets(value, this.numberOfTickets))
 {
 throw new ApplicationException(
 "Privilege level too low for this number of tickets");
 }
 }
 }

 public short NumberOfTickets
 {
 get { return this.numberOfTickets; }
 set
 {
 this.numberOfTickets = value;
 if (!this.checkPrivilegeAndNumberOfTickets(this.privilegeLevel, value))
 {
 throw new ApplicationException(
 "Too many tickets for this privilege level");
 }

 if (this.numberOfTickets <=0)
 {
 throw new ApplicationException(
 "You must buy at least one ticket");
 }
 }
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

522 Part IV Working with Windows Applications

The set accessors of these properties call the CheckPrivilegeAndNumberOfTickets
 method to verify that the privilegeLevel and the numberOfTickets fields match, and they
raise an exception if the fields do not match .

Additionally, the set accessor for the NumberOfTickets property verifies that the user
has specified at least one ticket . You do not need to verify that the user has specified
a value for the PrivilegeLevel property because it defaults to Standard (the first item in
the PrivilegeLevel enumeration) .

 . 6 . . Add the ToString method shown next in bold type to the TicketOrder class:

class TicketOrder
{
 ...
 public override string ToString()
 {
 string formattedString = String.Format("Event: {0}\tCustomer: {1}\tPrivilege:
{2}\tTickets: {3}",
 this.eventName, this.customerReference,
 this.privilegeLevel.ToString(), this.numberOfTickets.ToString());
 return formattedString;
 }
}

You will use this method to display the details of ticket orders to verify that the data is
correct .

The next step is to bind the privilegeLevel combo box and the numberOfTickets slider control
on the form to these new properties . However, if you stop and think for a moment, you
will realize that there is a small problem with the PrivilegeLevel property . You need to bind
the Text property of the privilegeLevel combo box to the PrivilegeLevel property of the
TicketOrder object created by the form . The type of the Text property is string . The type of
the PrivilegeLevel property is PrivilegeLevel (an enumeration) . You must convert between
string and PrivilegeLevel values for the binding to work . Fortunately, with the binding mecha-
nism implemented by WPF, you can specify a converter class to perform actions such as this .

Note A WPF binding can automatically convert between an enumeration and a string if the
string values are identical to the names of each element in the enumeration . In the Ticket Order
application, the first three items in the privilegeLevel combo box (Standard, Premium, and
Executive) correspond directly to elements with the same names in the PrivilegeLevel enumera-
tion . However, the final item in the combo box is Premium Executive (with a space), but the cor-
responding element in the enumeration is called PremiumExecutive (without a space) . The WPF
binding cannot convert between these two values, so a converter class is required .

Converter methods reside in their own classes that must implement the IValueConverter
 interface . This interface defines two methods: Convert, which converts from the type used by
the property in the class that is providing the data for the binding to the type displayed on

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 24 Performing Validation 523

the form, and ConvertBack, which converts the data from the type displayed on the form to
the type required by the class .

Create the converter class and methods

 . 1 . . In the TicketOrder .cs file, add the following using statement to the list at the top of the
file:

using System.Windows.Data;

The IValueConverter interface is defined in this namespace .

 . 2 . . Add the PrivilegeLevelConverter class shown next to the end of the file, after the
Customer class:

[ValueConversion(typeof(string), typeof(PrivilegeLevel))]
public class PrivilegeLevelConverter : IValueConverter
{
}

The text in brackets directly above the class is an example of an attribute . An attribute
provides descriptive metadata for a class . The ValueConversion attribute is used by
tools such as the WPF designer in the Design View window to verify that you are apply-
ing the class correctly when you reference it . The parameters to the ValueConversion
attribute specify the type of the value displayed by the form (string) and the type of
the value in the corresponding property in the class (PrivilegeLevel) . You will see more
 examples of attributes in later chapters in this book .

 . 3 . . In the PrivilegeLevelConverter class, add the Convert method shown here in bold type:

[ValueConversion(typeof(string), typeof(PrivilegeLevel))]
public class PrivilegeLevelConverter: IValueConverter
{
 public object Convert(object value, Type targetType, object parameter,
 System.Globalization.CultureInfo culture)
 {
 PrivilegeLevel privilegeLevel = (PrivilegeLevel)value;
 string convertedPrivilegeLevel = String.Empty;

 switch (privilegeLevel)
 {
 case PrivilegeLevel.Standard:
 convertedPrivilegeLevel = "Standard";
 break;

 case PrivilegeLevel.Premium:
 convertedPrivilegeLevel = "Premium";
 break;

 case PrivilegeLevel.Executive:
 convertedPrivilegeLevel = "Executive";
 break;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

524 Part IV Working with Windows Applications

 case PrivilegeLevel.PremiumExecutive:
 convertedPrivilegeLevel = "Premium Executive";
 break;
 }

 return convertedPrivilegeLevel;
 }
}

The signature of the Convert method is defined by the IValueConverter interface . The
value parameter is the value in the class that you are converting from . (You can ignore
the other parameters for now .) The return value from this method is the data bound
to the property on the form . In this case, the Convert method converts a PrivilegeLevel
value to a string . Notice that the value parameter is passed in as an object, so you need
to cast it to the appropriate type before attempting to use it .

 . 4 . . Add the ConvertBack method shown next in bold type to the PrivilegeLevelConverter
class:

[ValueConversion(typeof(string), typeof(PrivilegeLevel))]
public class PrivilegeLevelConverter: IValueConverter
{
 ...
 public object ConvertBack(object value, Type targetType, object parameter,
 System.Globalization.CultureInfo culture)
 {
 PrivilegeLevel privilegeLevel = PrivilegeLevel.Standard;

 switch ((string)value)
 {
 case "Standard":
 privilegeLevel = PrivilegeLevel.Standard;
 break;

 case "Premium":
 privilegeLevel = PrivilegeLevel.Premium;
 break;

 case "Executive":
 privilegeLevel = PrivilegeLevel.Executive;
 break;

 case "Premium Executive":
 privilegeLevel = PrivilegeLevel.PremiumExecutive;
 break;
 }

 return privilegeLevel;
 }
}

The ConvertBack method is also part of the IValueConverter interface . In the
ConvertBack method, the value parameter is now the value from the form that you

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 24 Performing Validation 525

are converting back to a value of the appropriate type for the class . In this case, the
ConvertBack method converts the data from a string (displayed in the Text property in
the combo box) to the corresponding Title value .

 . 5 . . On the Build menu, click Build Solution . Verify that the solution compiles correctly, and
correct any errors and rebuild the solution if necessary .

Bind the combo box and slider controls on the form to the properties in the
TicketOrder class

 . 1 . . Return to the Design View window displaying the TicketForm .xaml file .

 . 2 . . In the XAML pane, add a PrivilegeLevelConverter object as a resource to the window,
and specify a key value of privilegeLevelConverter, as shown in bold type here:

<Window.Resources>
 <ticketOrder:TicketOrder x:Key="orderData" />
 <ticketOrder:PrivilegeLevelConverter x:Key="privilegeLevelConverter" />
 ...
</Window.Resources>

 . 3 . . Locate the definition of the privilegeLevel combo box control, and style the control by
using the errorStyle style . After the list of combo box items, add the XAML code shown
next in bold type to bind the Text property of the combo box to the Title property in
the orderData object, specifying the titleConverter resource as the object providing the
converter methods:

<ComboBox Style="{StaticResource errorStyle}" ... Name="privilegeLevel" ...>
 <ComboBox.Text>
 <Binding Source="{StaticResource orderData}" Path="PrivilegeLevel"
 Converter="{StaticResource privilegeLevelConverter}" >
 <Binding.ValidationRules>
 <ExceptionValidationRule />
 </Binding.ValidationRules>
 </Binding>
 </ComboBox.Text>
 <ComboBox.Items>
 ...
 </ComboBox.Items>
</ComboBox>

 . 4 . . Modify the definition for the numberOfTickets slider control .Apply the errorStyle style,
and bind the Value property to the NumberOfTickets property of the orderData object,
as shown here in bold type:

<Slider Style="{StaticResource errorStyle}" Height="22"
 HorizontalAlignment="Left" Margin="156,171,0,0", Name="numberOfTickets"
 VerticalAlignment="Top" Width="205" SmallChange="1"
 TickPlacement="BottomRight" Maximum="10" IsSnapToTickEnabled="True" >
 <Slider.Value>
 <Binding Source="{StaticResource orderData}" Path="NumberOfTickets">
 <Binding.ValidationRules>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

526 Part IV Working with Windows Applications

 <ExceptionValidationRule />
 </Binding.ValidationRules>
 </Binding>
 </Slider.Value>
</Slider>

 . 5 . . On the View menu, click Code to switch to the Code and Text Editor window displaying
the TicketForm .xaml .cs file .

 . 6 . . Change the code in the purchaseTickets_Click method, as shown here in bold type:

private void purchaseTickets_Click(object sender, RoutedEventArgs e)
{
 Binding ticketOrderBinding =
 BindingOperations.GetBinding(privilegeLevel, ComboBox.TextProperty);
 TicketOrder ticketOrder = ticketOrderBinding.Source as TicketOrder;
 MessageBox.Show(ticketOrder.ToString(), "Purchased");
}

This code displays the details of the order in the message box . (It still does not actually
save the ticket order anywhere .) The static GetBinding method of the BindingOperations
class returns a reference to the object to which the specified property is bound . In this
case, the GetBinding method retrieves the object bound to the Text property of the title
combo box . This should be the same object referred to by the orderData resource . In
fact, the code could have queried any of the bound properties of the eventList, custom-
erReference, privilegeLevel, or numberOfTickets controls to retrieve the same reference .
The reference is returned as a Binding object . The code then casts this Binding object
into a TicketOrder object before displaying its details .

You can now run the application again and see how the validation performs .

Run the application, and test the validation

 . 1 . . On the Debug menu, click Start Without Debugging to build and run the application .

 . 2 . . In the Privilege Level combo box, click Premium .

 . 3 . . Set the Tickets slider to 5 .

The CheckPrivilegeAndNumberOfTickets method in the TicketOrder class generates
an exception because the privilege level and the number of tickets do not match . The
Tickets slider is highlighted with a red border . Rest the mouse pointer on the Tickets
slider, and verify that the ScreenTip text “Too many tickets for this privilege level”
appears .

 . 4 . . In the Privilege Level combo box, click Executive .

Although the privilege level is now sufficient to enable the customer to order 5 tickets,
the slider remains highlighted .

 . 5 . . Set the Tickets slider to 6 .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 24 Performing Validation 527

Verify that the red highlighting disappears . The validation occurs only when you
change the value in a control, not when you change the value of a different control .

 . 6 . . In the Privilege Level combo box, click Standard .

The combo box is highlighted . If you hover the mouse cursor over the combo box, it
should display the message “Privilege level too low for this number of tickets .”

 . 7 . . Set the Tickets slider to 5 .

The slider control is now also highlighted .

 . 8 . . On the File menu, click Purchase .

A message box appears, displaying the privilege level (Standard) and the number
of tickets (5) for the order . Additionally, the event and customer reference are both
blank . Although the form contains erroneous and missing data, you can still make the
purchase!

 . 9 . . Click OK, and then type C1234 in the customerReference text box, but do not click away
from this text box .

 . 10 . . On the File menu, click Purchase again .

The message box does not include the customer reference . This happens because the
customerReference text box on the form has not lost the focus . Remember from earlier
that data binding validation for a text box occurs only when the user clicks another
control on the form . The same applies to the data itself; by default, it is copied to the
orderDetails object only when the text box loses the focus . In fact, it is the act of copy-
ing the data from the form to the orderDetails object that triggers the validation .

 . 11 . . Click OK, and then click the Event combo box and select Little Mudford Festival .

 . 12 . . On the File menu, click Purchase .

This time, the message box displays all the details from the form .

 . 13 . . Click OK, close the application, and return to Visual Studio 2010 .

You can see from this exercise that although the validation successfully cross-checks the
Privilege Level and Tickets controls, there is still more work to be done before the application
is usable .

Changing the Point at Which Validation Occurs
The issues with the application are that the validation is performed at the wrong time, is in-
consistently applied, and does not actually prevent the user from providing inconsistent data .
You just need an alternative approach to handling the validation . The solution is to check
the user’s input only when the user attempts to make the purchase . This way, you can ensure
the user has finished entering all the data and that it is consistent . If there are any problems,

http://lib.ommolketab.ir
http//lib.ommolketab.ir

528 Part IV Working with Windows Applications

you can display an error message and prevent the data from being used until the problems
have been corrected . In the following exercise, you will modify the application to postpone
validation until the user attempts to purchase tickets .

Validate data explicitly

 . 1 . . Return to the Design View window displaying TicketForm .xaml . In the XAML pane,
modify the binding for the privilegeLevel combo box and set the UpdateSourceTrigger
property to “Explicit”, as shown in bold type here:

<ComboBox ... Name="privilegeLevel" ...>
...
 <ComboBox.Text>
 <Binding Source="{StaticResource orderData}" Path="PrivilegeLevel"
 Converter="{StaticResource privilegeLevelConverter}"
UpdateSourceTrigger="Explicit" >
 ...
 </Binding>
 </ComboBox.Text>
</ComboBox>

The UpdateSourceTrigger property governs when the information entered by the user
is sent back to the underlying TicketOrder object and validated . Setting this property to
“Explicit” postpones this synchronization until your application explicitly performs it by
using code .

 . 2 . . Modify the bindings for the eventList, customerReference, and numberOfTickets controls
to set the UpdateSourceTrigger property to “Explicit”:

<ComboBox ... Name="eventList" ... >
 <ComboBox.Text>
 <Binding Source="{StaticResource orderData}" Path="EventName"
 UpdateSourceTrigger="Explicit" >
 ...
 </Binding>
 </ComboBox.Text>
 ...
</ComboBox>
...
<TextBox ... Name="customerReference" ... >
 <TextBox.Text>
 <Binding Source="{StaticResource orderData}" Path="CustomerReference"
 UpdateSourceTrigger="Explicit" >
 ...
 </Binding>
 </TextBox.Text>
</TextBox>
...
<Slider ...Name="numberOfTickets" ...>
 <Slider.Value>
 <Binding Source="{StaticResource orderData}" Path="NumberOfTickets"
 UpdateSourceTrigger="Explicit" >

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 24 Performing Validation 529

 ...
 </Binding>
 </Slider.Value>
</Slider>

 . 3 . . Display the TicketForm .xaml .cs file in the Code and Text Editor window . In the
 purchaseTickets_Click method, add the statements shown next in bold type to the start
of the method:

private void purchaseTickets_Click(object sender, RoutedEventArgs e)
{
 BindingExpression eventBe =
 eventList.GetBindingExpression(ComboBox.TextProperty);
 BindingExpression customerReferenceBe =
 customerReference.GetBindingExpression(TextBox.TextProperty);
 BindingExpression privilegeLevelBe =
 privilegeLevel.GetBindingExpression(ComboBox.TextProperty);
 BindingExpression numberOfTicketsBe =
 numberOfTickets.GetBindingExpression(Slider.ValueProperty);
 ...
}

These statements create BindingExpression objects for each of the four controls with
binding validation rules . You will use these objects in the next step to propagate the
values on the form to the TicketOrder object and trigger the validation rules .

 . 4 . . Add the statements shown next in bold type to the purchaseTickets_Click method after
the code you added in the preceding step:

private void purchaseTickets_Click(object sender, RoutedEventArgs e)
{
 ...
 eventBe.UpdateSource();
 customerReferenceBe.UpdateSource();
 privilegeLevelBe.UpdateSource();
 numberOfTicketsBe.UpdateSource();
 ...
}

The UpdateSource method of the BindingExpression class synchronizes data in an object
with the controls that reference the object through bindings . It sends the values in the
bound properties of controls on the form back to the TicketOrder object . When this oc-
curs, the data is also validated .

The statements you added in the step update the properties in the TicketOrder object
with the values entered by the user on the form, and they validate the data as they
do so . The BindingExpression class provides a property called HasError that indicates
whether the UpdateSource method was successful or whether it caused an exception .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

530 Part IV Working with Windows Applications

 . 5 . . Add the code shown next in bold type to the purchaseTickets_Click method to test the
HasError property of each BindingExpression object and display a message if the valida-
tion fails . Move the original code that displays the customer details to the else part of
the if statement .

private void purchaseTickets_Click(object sender, RoutedEventArgs e)
{
 ...
 if (eventBe.HasError || customerReferenceBe.HasError ||
 privilegeLevelBe.HasError || numberOfTicketsBe.HasError)
 {
 MessageBox.Show("Please correct errors", "Purchase aborted");
 }
 else
 {
 Binding ticketOrderBinding =
 BindingOperations.GetBinding(privilegeLevel, ComboBox.TextProperty);
 TicketOrder ticketOrder = ticketOrderBinding.Source as TicketOrder;
 MessageBox.Show(ticketOrder.ToString(), "Purchased");
 }
}

Test the application again

 . 1 . . On the Debug menu, click Start Without Debugging to build and run the application .

 . 2 . . When the Ticket Orders form appears, on the File menu, click Purchase .

Verify that the Purchase aborted message box appears with the text “Please correct
 errors” and that the Event, Customer Reference, and Tickets controls are highlighted .

Note The Privilege Level is not highlighted because it defaults to Standard, as described
earlier in this chapter .

 . 3 . . Click OK and return to the Ticket Orders form . Hover the mouse cursor over each high-
lighted control in turn, and verify that the messages thrown by the ApplicationException
exception for each property in the underlying TicketOrder object appear as ToolTips .

 . 4 . . In the Event combo box, select Little Mudford Festival . In the Customer Reference text
box, type C1234 . In the Privilege Level combo box, select Premium . Set the Tickets slider
to 8, and then on the File menu click Purchase .

Verify that the Purchase aborted message box appears again, but that this time only the
Tickets slider is highlighted .

 . 5 . . Click OK, and hover the mouse cursor over the Tickets control .

Verify that the ToolTip displays the message “Too many tickets for this privilege level” .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 24 Performing Validation 531

 . 6 . . In the Privilege Level combo box, select Premium Executive, and then on the File menu
click Purchase .

Verify that a Purchased message box now appears displaying the text “Event: Little
Mudford Festival Customer: C1234 Privilege: PremiumExecutive Tickets: 8” and
that none of the controls on the form are highlighted . The data is now complete and
consistent .

 . 7 . . Experiment with other combinations of values, and verify that the validation works as
expected . When you have finished, close the form and return to Visual Studio .

In this chapter, you saw how to perform basic validation by using the default exception
 validation rule processing provided by using data binding . You learned how to define your
own custom validation rules if you want to perform more complex checks .

n If you want to continue to the next chapter

Keep Visual Studio 2010 running, and turn to Chapter 25 .

n If you want to exit Visual Studio 2010 now

On the File menu, click Exit . If you see a Save dialog box, click Yes and save the project .

Chapter .24 .Quick .Reference
To Do this

Use data binding to bind a
 property of a control on a form
to a property of another control
on the same form

In the XAML code for the property of the control, create a binding .
Reference the control containing the property to bind to by using the
ElementName tag, and the property to bind to by using the Path tag .
For example:

<TextBox ...>
 <TextBox.Text>
 <Binding ElementName="numberOfTickets"
 Path="Value" />
 </TextBox.Text>
</TextBox>

Use data binding to bind a
 property of a control on a form
to a property of an object

In the XAML code for the property of the control, specify a binding
source identifying the object and the name of the property in the object
to bind to . For example:

<TextBox ...>
 <TextBox.Text>
 <Binding Source="{StaticResource orderData}"
 Path="ForeName" />
 </TextBox.Text>
</TextBox>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

532 Part IV Working with Windows Applications

To Do this

Enable a data binding to validate
data entered by the user

Specify the Binding.ValidationRules element as part of the binding . For
example:

<Binding Source="{StaticResource orderData}"
 Path="ForeName" />
 <Binding.ValidationRules>
 <ExceptionValidationRule/>
 </Binding.ValidationRules>
</Binding>

Display error information in a
 nonintrusive manner

Define a style that detects a change to the Validation.HasError property
of the control, and then set the ToolTip property of the control to the
message returned by the exception . Apply this style to all controls that
require validation . For example:

<Style x:Key="errorStyle" TargetType="Control">
 <Style.Triggers>
 <Trigger Property="Validation.HasError"
 Value="True">
 <Setter Property="ToolTip"
 Value="{Binding RelativeSource=
 {x:Static RelativeSource.Self},
 Path=(Validation.Errors)[0].ErrorContent}" />
 </Trigger>
 </Style.Triggers>
</Style>

Validate all the controls on a
form under programmatic control
rather than when the user moves
from control to control

In the XAML code for the binding, set the UpdateSourceTrigger property
of the binding to “Explicit” to defer validation until the application re-
quests it . To validate the data for all controls, create a BindingExpression
object for each bound property of each control and call the UpdateSource
method . Examine the HasError property of each BindingExpression object .
If this property is true, the validation failed .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Microsoft Visual C# 2010 Step by Step

 . . 533

Part V

Managing Data

In this part:

Querying Information in a Database . 535

Displaying and Editing Data by Using the Entity Framework
and Data Binding . 565

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 . . 535

Chapter 25

Querying Information in a Database
After completing this chapter, you will be able to:

n Fetch and display data from a Microsoft SQL Server database by using Microsoft
ADO .NET .

n Define entity classes for holding data retrieved from a database .

n Use LINQ to SQL to query a database and populate instances of entity classes .

n Create a custom DataContext class for accessing a database in a typesafe manner .

In Part IV of this book, “Building Windows Presentation Foundation Applications,” you
learned how to use Microsoft Visual C# to build user interfaces and present and validate in-
formation . In Part V, you will learn about managing data by using the data access functional-
ity available in Microsoft Visual Studio 2010 and the Microsoft .NET Framework . The chapters
in this part of the book describe ADO .NET, a library of objects specifically designed to make
it easy to write applications that use databases . In this chapter, you will also learn how to
query data by using LINQ to SQL—extensions to LINQ based on ADO .NET that are designed
for retrieving data from a database . In Chapter 26, “Displaying and Editing Data by Using the
Entity Framework and Data Binding,” you will learn more about using ADO .NET and LINQ to
SQL for updating data .

Important To perform the exercises in this chapter, you must have installed Microsoft SQL
Server 2008 Express . This software is available on the retail DVD with Microsoft Visual Studio
2010 and Visual C# 2010 Express and is installed by default .

Important It is recommended that you use an account that has Administrator privileges to
perform the exercises in this chapter and the remainder of this book .

Querying .a .Database .by .Using .ADO .NET
The ADO .NET class library contains a comprehensive framework for building applications
that need to retrieve and update data held in a relational database . The model defined by
ADO .NET is based on the notion of data providers . Each database management system (such
as SQL Server, Oracle, IBM DB2, and so on) has its own data provider that implements an
abstraction of the mechanisms for connecting to a database, issuing queries, and updating
data . By using these abstractions, you can write portable code that is independent of the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

536 Part V Managing Data

underlying database management system . In this chapter, you will connect to a database
managed by SQL Server 2008 Express, but the techniques that you will learn are equally
 applicable when using a different database management system .

The Northwind Database
Northwind Traders is a fictitious company that sells edible goods with exotic names .
The Northwind database contains several tables with information about the goods that
Northwind Traders sells, the customers it sells to, orders placed by customers, suppliers from
whom Northwind Traders obtains goods to resell, shippers that it uses to send goods to cus-
tomers, and employees who work for Northwind Traders . The following image shows all the
tables in the Northwind database and how they are related to one another . The tables that
you will be using in this chapter are Orders and Products .

Creating the Database
Before proceeding further, you need to create the Northwind database .

Create the Northwind database

 . 1 . . On the Windows Start menu, click All Programs, click Accessories, right-click Command
Prompt, and then click Run as administrator .

If you are logged in using an account that has administrator rights, in the User Account
Control dialog box, click Yes .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 25 Querying Information in a Database 537

If you are logged in using an account that does not have administrator rights, in the
User Account Control dialog box enter the administrator password and then click Yes .

The command prompt window appears, running as Administrator .

 . 2 . . In the command prompt window, type the following command:

sqlcmd -S.\SQLExpress -E

This command starts the sqlcmd utility to connect to your local instance of SQL Server
2008 Express . A “1>” prompt should appear .

Tip Ensure that SQL Server 2008 Express is running before you attempt to run the sqlcmd
utility . (It is set to start automatically by default . You will simply receive an error message
if it is not started when you execute the sqlcmd command .) You can check the status of
SQL Server 2008 Express, and start it running if necessary, by using the SQL Configuration
Manager tool available in the Configuration Tools folder of the Microsoft SQL Server 2008
program group .

 . 3 . . At the 1> prompt, type the following command including the square brackets, and
then press Enter . Replace computer with the name of your computer, and replace login
with the name of the account you used to log in to Windows .

CREATE LOGIN [computer\login] FROM WINDOWS

A “2>” prompt should appear .

 . 4 . . At the 2> prompt, type GO and then press Enter .

SQL Server attempts to create a login for your user account so that you can create the
Northwind database . If the command is successful, the “1>” prompt should reappear .
If the command displays the message “The server principal ‘computer\login’ already
exists .”, you already have a SQL Server login and you can ignore the message . If the
command displays any other message, check that you have specified the correct values
for computer and login and repeat steps 3 and 4 .

 . 5 . . At the 1> prompt, type the following command and the press Enter (and as before,
replace computer with the name of your computer, and replace login with the name of
the account you used to log in to Windows):

GRANT CREATE DATABASE TO [computer\login]

 . 6 . . At the 2> prompt, type GO and then press Enter .

 . 7 . . At the 1> prompt, type EXIT and then press Enter .

This command quits the sqlcmd utility, and you return to the Windows
command prompt .

 . 8 . . Close the command prompt window .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

538 Part V Managing Data

 . 9 . . On the Windows Start menu, click All Programs, click Accessories, and then click
Command Prompt .

This action opens a command prompt window using your own credentials rather than
that of an administrator .

 . 10 . . In the command prompt window, type the following command to go to the \Microsoft
Press\Visual CSharp Step By Step\Chapter 25 folder under your Documents folder .
Replace Name with your user name .

cd "\Users\Name\Documents\Microsoft Press\Visual CSharp Step By Step\Chapter 25"

 . 11 . . In the command prompt window, type the following command:

sqlcmd -S.\SQLExpress -E -iinstnwnd.sql

This command uses the sqlcmd utility to run the instnwnd .sql script . This script contains
the SQL commands that create the Northwind Traders database and the tables in the
database, and it fills them with some sample data .

 . 12 . . When the script finishes running, close the command prompt window .

Note You can run the command you executed in step 11 at any time if you need to reset
the Northwind Traders database . The instnwnd .sql script automatically drops the database
if it exists and then rebuilds it . See Chapter 26 for additional information .

Using ADO .NET to Query Order Information
In the following set of exercises, you will write code to access the Northwind database and
display information in a simple console application . The aim of the exercise is to help you
learn more about ADO .NET and understand the object model it implements . In later exercis-
es, you will use LINQ to SQL to query the database . In Chapter 26, you will see how to use the
wizards included with Visual Studio 2010 to generate code that can retrieve and update data
and display data graphically in a Windows Presentation Foundation (WPF) application .

The first application you are going to create will produce a simple report displaying informa-
tion about customers’ orders . The program will prompt the user for a customer ID and then
display the orders for that customer .

Connect to the database

 . 1 . . Start Visual Studio 2010 if it is not already running .

 . 2 . . Create a new project called ReportOrders by using the Console Application template .
Save it in the \Microsoft Press\Visual CSharp Step By Step\Chapter 25 folder under your
Documents folder .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 25 Querying Information in a Database 539

Note Remember, if you are using Visual C# 2010 Express, you can specify the location
for saving your project when you save your project by using Save ReportOrders on the File
menu .

 . 3 . . In Solution Explorer, right-click the file Program .cs and rename it Report .cs . In the
Microsoft Visual Studio message, click Yes to change all references of the Program class
to Report .

 . 4 . . In the Code and Text Editor window, add the following using statements to the list at
the top of the Report .cs file:

using System.Data;
using System.Data.SqlClient;

The System.Data namespace contains many of the types used by ADO .NET . The
System.Data.SqlClient namespace contains the SQL Server data provider classes for
ADO .NET . These classes are specialized versions of the ADO .NET classes, optimized for
working with SQL Server .

 . 5 . . In the Main method of the Report class, add the following statement shown in bold
type, which creates a SqlConnection object:

static void Main(string[] args)
{
 SqlConnection dataConnection = new SqlConnection();
}

SqlConnection is a subclass of an ADO .NET class called Connection . It is designed to
handle connections to SQL Server databases .

 . 6 . . After the variable declaration, add a try/catch block to the Main method as shown
next in bold . All the code that you will write for gaining access to the database goes
inside the try part of this block . In the catch block, add a simple handler that catches
SqlException exceptions .

static void Main(string[] args)
{
 ...
 try
 {
 // You will add your code here in a moment
 }
 catch (SqlException e)
 {
 Console.WriteLine("Error accessing the database: {0}", e.Message);
 }
}

A SqlException is thrown if an error occurs when accessing a SQL Server database .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

540 Part V Managing Data

 . 7 . . Replace the comment in the try block with the code shown in bold here:

try
{
 SqlConnectionStringBuilder builder = new SqlConnectionStringBuilder();
 builder.DataSource = ".\\SQLExpress";
 builder.InitialCatalog = "Northwind";
 builder.IntegratedSecurity = true;
 dataConnection.ConnectionString = builder.ConnectionString;
}

To connect to a SQL Server database, you must construct a connection string that
specifies the database to connect to, the instance of SQL Server holding this data-
base, and how the application will identify itself as a valid user of the database to SQL
Server . The simplest way to do this is to use a SqlConnectionStringBuilder object . The
SqlConnectionStringBuilder class exposes properties for each of the elements of a con-
nection string . You can then read a complete connection string that combines all of
these elements in the correct format from the ConnectionString property .

This code uses a SqlConnectionStringBuilder object to build a connection string for ac-
cessing the Northwind database running on the instance of SQL Server Express on your
computer . The code specifies that the connection will use Windows Authentication
to connect to the database . This is the preferred method of access because you do
not have to prompt the user for any form of user name or password, and you are not
tempted to hard-code user names and passwords into your application .

The connection string is stored in the ConnectionString property of the SqlConnection
object, which you will use in the next step .

You can also encode many other elements in the connection string by using the
SqlConnectionStringBuilder class—the properties shown in this example are a minimal
but sufficient set . See the documentation supplied with Visual Studio 2010 for more
details .

 . 8 . . Add the following statement shown in bold to the code in the try block:

try
{
 ...
 dataConnection.Open();
}

This statement uses the connection string specified by the ConnectionString property
of the dataConnection object to open a connection to the database . If the connection
is successful, you can use the dataConnection object to perform database commands
and queries . If the connection is unsuccessful, the statement throws a SqlException
exception .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 25 Querying Information in a Database 541

Using .SQL .Server .Authentication .
Windows Authentication is useful for authenticating users who are all members of a
Windows domain . However, there might be occasions when the user accessing the da-
tabase does not have a Windows account—for example, if you are building an applica-
tion designed to be accessed by remote users over the Internet . In these cases, you can
use the User ID and Password parameters instead, like this:

string userName = ...;
string password = ...;
// Prompt the user for his name and password, and fill these variables

string connString = String.Format(
 "User ID={0};Password={1};Initial Catalog=Northwind;" +
 "Data Source=YourComputer\\SQLExpress", username, password);

myConnection.ConnectionString = connString;

At this point, I should offer a sentence of advice: never hard-code user names and pass-
words into your applications . Anyone who obtains a copy of the source code (or who
reverse-engineers the compiled code) can see this information, and this renders the
whole point of security meaningless .

The next step is to prompt the user for a customer ID and then query the database to find all
of the orders for that customer .

Query the Orders table

 . 1 . . Add the statements shown here in bold type to the try block after the dataConnection.
Open(); statement:

try
{
 ...
 Console.Write("Please enter a customer ID (5 characters): ");
 string customerId = Console.ReadLine();
}

These statements prompt the user for a customer ID and read the user’s response in
the string variable customerId .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

542 Part V Managing Data

 . 2 . . Type the following statements shown in bold type after the code you just entered:

try
{
 ...
 SqlCommand dataCommand = new SqlCommand();
 dataCommand.Connection = dataConnection;
 dataCommand.CommandType = CommandType.Text;
 dataCommand.CommandText =
 "SELECT OrderID, OrderDate, ShippedDate, ShipName, ShipAddress, " +
 "ShipCity, ShipCountry " +
 "FROM Orders WHERE CustomerID = @CustomerIdParam";
}

The first statement creates a SqlCommand object . Like SqlConnection, this is a special-
ized version of an ADO .NET class, Command, that has been designed for performing
queries against a SQL Server database . An ADO .NET Command object is used to ex-
ecute a command against a data source . In the case of a relational database, the text of
the command is a SQL statement .

The second line of code sets the Connection property of the SqlCommand object to the
database connection you opened in the preceding exercise . The next two statements
specify that the SqlCommand object contains the text of a SQL statement (you can also
specify the name of a stored procedure or the name of a single table in the database)
and populate the CommandText property with a SQL SELECT statement that retrieves
information from the Orders table for all orders that have a specified CustomerID . The
text @CustomerIdParam is a placeholder for a SQL parameter . (The @ symbol indicates
to the data provider that this is a parameter and not the name of a column in the data-
base .) The value for the CustomerID will be passed as a SqlParameter object in the next
step .

 . 3 . . Add the following statements shown in bold to the try block, after the code you en-
tered in the previous step:

try
{
 ...
 SqlParameter param = new SqlParameter("@CustomerIdParam", SqlDbType.Char, 5);
 param.Value = customerId;
 dataCommand.Parameters.Add(param);
}

These statements create a SqlParameter object that can be substituted for the @
CustomerIdParam when the SqlCommand object is executed . The parameter is marked
as a database Char type (the SQL Server equivalent of a fixed-length string), and the
length of this string is specified as 5 characters . The SqlParameter is populated with the
string entered by the user in the customerId variable and then added to the Parameter
collection of the SqlCommand. When SQL Server runs this command, it will examine
the Parameters collection of the command for a parameter named @CustomerIdParam
and then substitute the value of this parameter into the text of the SQL statement .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 25 Querying Information in a Database 543

Important If you are new to building database applications, you might be wondering
why the code creates a SqlParameter object and does not just build a simple SQL state-
ment that embeds the value of the customerId variable, like this:

 dataCommand.CommandText =
 "SELECT OrderID, OrderDate, ShippedDate, ShipName, ShipAddress, " +
 "ShipCity, ShipCountry " +
 "FROM Orders WHERE CustomerID = '" + customerId + "'";

This approach is phenomenally bad practice because it renders your application vulner-
able to SQL injection attacks . Do not write code such as this in your production applica-
tions . For a description of what a SQL injection attack is and how dangerous it can be, see
the SQL Injection topic in SQL Server Books Online, available at http://msdn2.microsoft.
com/en-us/library/ms161953.aspx .

 . 4 . . Add the following statements shown in bold type after the code you just entered:

try
{
 ...
 Console.WriteLine("About to find orders for customer {0}\n\n", customerId);
 SqlDataReader dataReader = dataCommand.ExecuteReader();
}

The ExecuteReader method of a SqlCommand object constructs a SqlDataReader object
that you can use to fetch the rows identified by the SQL statement . The SqlDataReader
class provides the fastest mechanism available (as fast as your network allows) for re-
trieving data from a SQL Server .

The next task is to iterate through all the orders (if there are any) and display them .

Fetch data and display orders

 . 1 . . In the Report .cs file, add the while loop shown next in bold type after the statement
that creates the SqlDataReader object:

try
{
 ...
 while (dataReader.Read())
 {
 // Code to display the current row
 }
}

The Read method of the SqlDataReader class fetches the next row from the database . It
returns true if another row was retrieved successfully; otherwise, it returns false, usually
because there are no more rows . The while loop you have just entered keeps reading
rows from the dataReader variable and finishes when there are no more rows available .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

544 Part V Managing Data

 . 2 . . Add the statements shown in bold type here to the body of the while loop you created
in the preceding step:

while (dataReader.Read())
{
 int orderId = dataReader.GetInt32(0);
 DateTime orderDate = dataReader.GetDateTime(1);
 DateTime shipDate = dataReader.GetDateTime(2);
 string shipName = dataReader.GetString(3);
 string shipAddress = dataReader.GetString(4);
 string shipCity = dataReader.GetString(5);
 string shipCountry = dataReader.GetString(6);
 Console.WriteLine(
 "Order: {0}\nPlaced: {1}\nShipped: {2}\n" +
 "To Address: {3}\n{4}\n{5}\n{6}\n\n", orderId, orderDate,
 shipDate, shipName, shipAddress, shipCity, shipCountry);
}

This block of code shows how you read the data from the database by using a
SqlDataReader object . A SqlDataReader object contains the most recent row retrieved
from the database . You can use the GetXXX methods to extract the information from
each column in the row—there is a GetXXX method for each common type of data . For
example, to read an int value, you use the GetInt32 method; to read a string, you use
the GetString method; and you can probably guess how to read a DateTime value . The
GetXXX methods take a parameter indicating which column to read: 0 is the first col-
umn, 1 is the second column, and so on . The preceding code reads the various columns
from the current Orders row, stores the values in a set of variables, and then prints out
the values of these variables .

Firehose .Cursors
One of the major drawbacks in a multiuser database application is locked data .
Unfortunately, it is common to see applications retrieve rows from a database and keep
those rows locked to prevent another user from changing the data while the applica-
tion is using them . In some extreme circumstances, an application can even prevent
other users from reading data that it has locked . If the application retrieves a large
number of rows, it locks a large proportion of the table . If there are many users run-
ning the same application at the same time, they can end up waiting for one another to
 release locks and it all leads to a slow-running and frustrating mess .

The SqlDataReader class has been designed to remove this drawback . It fetches rows
one at a time and does not retain any locks on a row after it has been retrieved . It is
wonderful for improving concurrency in your applications . The SqlDataReader class
is sometimes referred to as a firehose cursor because it pours data out as quickly as
 possible . (The term cursor is an acronym that stands for “current set of rows .”)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 25 Querying Information in a Database 545

When you have finished using a database, it’s good practice to close your connection and
release any resources you have been using .

Disconnect from the database, and test the application

 . 1 . . Add the statement shown next in bold after the while loop in the try block:

try
{
 ...
 while(dataReader.Read())
 {
 ...
 }

 dataReader.Close();
}

This statement closes the SqlDataReader object . You should always close a SqlDataReader
object when you have finished with it because you will not able to use the current
SqlConnection object to run any more commands until you do . It is also considered good
practice to do it even if all you are going to do next is close the SqlConnection .

Note If you activate multiple active result sets (MARS) with SQL Server 2008, you can
open more than one SqlDataReader object against the same SqlConnection object and
process multiple sets of data . MARS is disabled by default . To learn more about MARS and
how you can activate and use it, consult SQL Server 2008 Books Online .

 . 2 . . After the catch block, add the following finally block:

catch(SqlException e)
{
 ...
}
finally
{
 dataConnection.Close();
}

Database connections are scarce resources . You need to ensure that they are closed
when you have finished with them . Putting this statement in a finally block guarantees
that the SqlConnection will be closed, even if an exception occurs; remember that the
code in the finally block will be executed after the catch handler has finished .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

546 Part V Managing Data

Tip An alternative approach to using a finally block is to wrap the code that creates the
SqlDataConnection object in a using statement, as shown in the following code . At the end
of the block defined by the using statement, the SqlConnection object is closed automati-
cally, even if an exception occurs:

using (SqlConnection dataConnection = new SqlConnection())
{
 try
 {
 SqlConnectionStringBuilder builder = new SqlConnectionStringBuilder();
 ...
 }
 catch (SqlException e)
 {
 Console.WriteLine("Error accessing the database: {0}", e.Message);
 }
}

 . 3 . . On the Debug menu, click Start Without Debugging to build and run the application .

 . 4 . . At the customer ID prompt, type the customer ID VINET, and press Enter .

The SQL SELECT statement appears, followed by the orders for this customer, as shown
in the following image:

You can scroll back through the console window to view all the data . Press the Enter
key to close the console window when you have finished .

 . 5 . . Run the application without debugging, and then type BONAP when prompted for the
customer ID .

Some rows appear, but then an error occurs and a message box is displayed with the
message “ReportOrders has stopped working .” If the message “Do you want to send
more information about the problem?” appears, click Cancel .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 25 Querying Information in a Database 547

An error message containing the text “Unhandled Exception: System .Data .SqlTypes .
SqlNullValueException: Data is Null . This method or property cannot be called on Null
values” appears in the console window .

The problem is that relational databases allow some columns to contain null values .
A null value is a bit like a null variable in C#: it doesn’t have a value, but if you try to
read it, you get an error . In the Orders table, the ShippedDate column can contain a
null value if the order has not yet been shipped . You should also note that this is a
SqlNullValueException and consequently is not caught by the SqlException handler .

 . 6 . . Press Enter to close the console window and return to Visual Studio 2010 .

Closing .Connections
In many older applications, you might notice a tendency for the application to open a
connection when the application starts and not close the connection until the applica-
tion terminates . The rationale behind this strategy was that opening and closing data-
base connections were expensive and time-consuming operations . This strategy had an
impact on the scalability of applications because each user running the application had
a connection to the database open while the application was running, even if the user
went to lunch for a few hours . Most databases limit the number of concurrent connec-
tions that they allow . (Sometimes this is because of licensing, but usually it’s because
each connection consumes resources on the database server that are not infinite .)
Eventually, the database would hit a limit on the number of users that could operate
concurrently .

Most .NET Framework data providers (including the SQL Server provider) implement
connection pooling . Database connections are created and held in a pool . When an
application requires a connection, the data access provider extracts the next available
connection from the pool . When the application closes the connection, it is returned
to the pool and made available for the next application that wants a connection . This
means that opening and closing database connections are no longer expensive op-
erations . Closing a connection does not disconnect from the database; it just returns
the connection to the pool . Opening a connection is simply a matter of obtaining an
already-open connection from the pool . Therefore, you should not hold on to connec-
tions longer than you need to—open a connection when you need it, and close it as
soon as you have finished with it .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

548 Part V Managing Data

You should note that the ExecuteReader method of the SqlCommand class, which cre-
ates a SqlDataReader, is overloaded . You can specify a System.Data.CommandBehavior
parameter that automatically closes the connection used by the SqlDataReader when
the SqlDataReader is closed, like this:

SqlDataReader dataReader =
 dataCommand.ExecuteReader(System.Data.CommandBehavior.CloseConnection);

When you read the data from the SqlDataReader object, you should check that the
data you are reading is not null . You’ll see how to do this next .

Handle null database values

 . 1 . . In the Main method of the Report class, change the code in the body of the while loop
to contain an if … else block, as shown here in bold:

while (dataReader.Read())
{
 int orderId = dataReader.GetInt32(0);
 if (dataReader.IsDBNull(2))
 {
 Console.WriteLine("Order {0} not yet shipped\n\n", orderId);
 }
 else
 {
 DateTime orderDate = dataReader.GetDateTime(1);
 DateTime shipDate = dataReader.GetDateTime(2);
 string shipName = dataReader.GetString(3);
 string shipAddress = dataReader.GetString(4);
 string shipCity = dataReader.GetString(5);
 string shipCountry = dataReader.GetString(6);
 Console.WriteLine(
 "Order {0}\nPlaced {1}\nShipped{2}\n" +
 "To Address {3}\n{4}\n{5}\n{6}\n\n", orderId, orderDate,
 shipDate, shipName, shipAddress, shipCity, shipCountry);
 }
}

The if statement uses the IsDBNull method to determine whether the ShippedDate
column (column 2 in the table) is null . If it is null, no attempt is made to fetch it (or
any of the other columns, which should also be null if there is no ShippedDate value);
 otherwise, the columns are read and printed as before .

 . 2 . . Build and run the application again .

 . 3 . . Type BONAP for the customer ID when prompted .

This time you do not get any errors, but you receive a list that includes orders that have
not yet been shipped .

 . 4 . . When the application finishes, press Enter and return to Visual Studio 2010 .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 25 Querying Information in a Database 549

Querying .a .Database .by .Using .LINQ .to .SQL
In Chapter 20, “Querying In-Memory Data by Using Query Expressions,” you saw how to use
LINQ to examine the contents of enumerable collections held in memory . LINQ provides
query expressions, which use SQL-like syntax for performing queries and generating a re-
sult set that you can then step through . It should come as no surprise that you can use an
extended form of LINQ, called LINQ to SQL, for querying and manipulating the contents of
a database . LINQ to SQL is built on top of ADO .NET . LINQ to SQL provides a high level of ab-
straction, removing the need for you to worry about the details of constructing an ADO .NET
Command object, iterating through a result set returned by a DataReader object, or fetching
data column by column using the various GetXXX methods .

Defining an Entity Class
You saw in Chapter 20 that using LINQ requires the objects that you are querying to be enu-
merable; they must be collections that implement the IEnumerable interface . LINQ to SQL
can create its own enumerable collections of objects based on classes you define and that
map directly to tables in a database . These classes are called entity classes . When you con-
nect to a database and perform a query, LINQ to SQL can retrieve the data identified by your
query and create an instance of an entity class for each row fetched .

The best way to explain LINQ to SQL is to see an example . The Products table in the
Northwind database consists of columns that contain information about the different aspects
of the various products that Northwind Traders sells . The instnwnd .sql script that you ran in
the first exercise in this chapter includes a CREATE TABLE statement that looks similar to this
(some of the columns, constraints, and other details have been omitted):

CREATE TABLE "Products" (
 "ProductID" "int" NOT NULL ,
 "ProductName" nvarchar (40) NOT NULL ,
 "SupplierID" "int" NULL ,
 "UnitPrice" "money" NULL,
 CONSTRAINT "PK_Products" PRIMARY KEY CLUSTERED ("ProductID"),
 CONSTRAINT "FK_Products_Suppliers" FOREIGN KEY ("SupplierID")
 REFERENCES "dbo"."Suppliers" ("SupplierID")
)

You can define an entity class that corresponds to the Products table like this:

[Table(Name = "Products")]
public class Product
{
 [Column(IsPrimaryKey = true, CanBeNull = false)]
 public int ProductID { get; set; }

 [Column(CanBeNull = false)]
 public string ProductName { get; set; }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

550 Part V Managing Data

 [Column]
 public int? SupplierID { get; set; }

 [Column(DbType = "money")]
 public decimal? UnitPrice { get; set; }
}

The Product class contains a property for each of the columns in which you are interested in
the Products table . You don’t have to specify every column from the underlying table, but
any columns that you omit will not be retrieved when you execute a query based on this
 entity class . The important points to note are the Table and Column attributes .

The Table attribute identifies this class as an entity class . The Name parameter specifies the
name of the corresponding table in the database . If you omit the Name parameter, LINQ to
SQL assumes that the entity class name is the same as the name of the corresponding table
in the database .

The Column attribute describes how a column in the Products table maps to a property in the
Product class . The Column attribute can take a number of parameters . The ones shown in this
example and described in the following list are the most common:

n The IsPrimaryKey parameter specifies that the property makes up part of the primary
key . (If the table has a composite primary key spanning multiple columns, you should
specify the IsPrimaryKey parameter for each corresponding property in the entity
class .)

n The DbType parameter specifies the type of the underlying column in the database . In
many cases, LINQ to SQL can detect and convert data in a column in the database to
the type of the corresponding property in the entity class, but in some situations you
need to specify the data type mapping yourself . For example, the UnitPrice column
in the Products table uses the SQL Server money type . The entity class specifies the
 corresponding property as a decimal value .

Note The default mapping of money data in SQL Server is to the decimal type in an entity
class, so the DbType parameter shown here is actually redundant . However, I wanted to
show you the syntax .

n The CanBeNull parameter indicates whether the column in the database can contain a
null value . The default value for the CanBeNull parameter is true . Notice that the two
properties in the Product class that correspond to columns that permit null values in
the database (SupplierID and UnitPrice) are defined as nullable types in the entity class .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 25 Querying Information in a Database 551

Note You can also use LINQ to SQL to create new databases and tables based on the
definitions of your entity classes by using the CreateDatabase method of the DataContext
object . LINQ to SQL uses the definition of the DbType parameter to specify whether a col-
umn should allow null values . If you are using LINQ to SQL to create a new database, you
should specify the nullability of each column in each table in the DbType parameter, like
this:

[Column(DbType = "NVarChar(40) NOT NULL", CanBeNull = false)]
public string ProductName { get; set; }
...
[Column(DbType = "Int NULL", CanBeNull = true)]
public int? SupplierID { get; set; }

Like the Table attribute, the Column attribute provides a Name parameter that you can use
to specify the name of the underlying column in the database . If you omit this parameter,
LINQ to SQL assumes that the name of the column is the same as the name of the prop-
erty in the entity class .

Creating and Running a LINQ to SQL Query
After you have defined an entity class, you can use it to fetch and display data from the
Products table . The following code shows the basic steps for performing this task:

SqlConnectionStringBuilder builder = new SqlConnectionStringBuilder();
builder.DataSource = ".\\SQLExpress";
builder.InitialCatalog = "Northwind";
builder.IntegratedSecurity = true;

DataContext db = new DataContext(builder.ConnectionString);

Table<Product> products = db.GetTable<Product>();
var productsQuery = from p in products
 select p;

foreach (var product in productsQuery)
{
 Console.WriteLine("ID: {0}, Name: {1}, Supplier: {2}, Price: {3:C}",
 product.ProductID, product.ProductName,
 product.SupplierID, product.UnitPrice);
}

Note Remember that the keywords from, in, and select in this context are C# identifiers and are
not elements of SQL syntax . You must type them in lowercase .

The DataContext class is responsible for managing the relationship between your entity
 classes and the tables in the database . You use it to establish a connection to the database
and create collections of the entity classes . The DataContext constructor expects a connec-
tion string as a parameter, specifying the database that you want to use . This connection

http://lib.ommolketab.ir
http//lib.ommolketab.ir

552 Part V Managing Data

string is exactly the same as the connection string that you would use when connecting
through an ADO .NET Connection object . (The DataContext class actually creates an ADO .NET
connection behind the scenes .)

The generic GetTable<TEntity> method of the DataContext class expects an entity class as its
TEntity type parameter . This method constructs an enumerable collection based on this type
and returns the collection as a Table<TEntity> type . You can perform LINQ to SQL queries
over this collection . The query shown in this example simply retrieves every object from the
Products table .

Note If you need to recap your knowledge of LINQ query expressions, turn back to Chapter 20 .

The foreach statement iterates through the results of this query and displays the details of
each product . The following image shows the results of running this code . (The prices shown
are per case, not per individual item .)

The DataContext object controls the database connection automatically; it opens the con-
nection immediately prior to fetching the first row of data in the foreach statement and then
closes the connection after the last row has been retrieved .

The LINQ to SQL query shown in the preceding example retrieves every column for every
row in the Products table . In this case, you can actually iterate through the products collection
directly, like this:

Table<Product> products = db.GetTable<Product>();

foreach (Product product in products)
{
 ...
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 25 Querying Information in a Database 553

When the foreach statement runs, the DataContext object constructs a SQL SELECT
 statement that simply retrieves all the data from the Products table . If you want to retrieve a
single row in the Products table, you can call the Single method of the Products entity class .
Single is an extension method that itself takes a method that identifies the row you want
to find and returns this row as an instance of the entity class (as opposed to a collection of
rows in a Table collection) . You can specify the method parameter as a lambda expression .
If the lambda expression does not identify exactly one row, the Single method returns an
InvalidOperationException . The following code example queries the Northwind database for
the product with the ProductID value of 27 . The value returned is an instance of the Product
class, and the Console.WriteLine statement prints the name of the product . As before, the
 database connection is opened and closed automatically by the DataContext object .

Product singleProduct = products.Single(p => p.ProductID == 27);
Console.WriteLine("Name: {0}", singleProduct.ProductName);

Deferred and Immediate Fetching
An important point to emphasize is that by default, LINQ to SQL retrieves the data from the
database only when you request it and not when you define a LINQ to SQL query or create a
Table collection . This is known as deferred fetching . In the example shown earlier that displays
all of the products from the Products table, the productsQuery collection is populated only
when the foreach loop runs . This mode of operation matches that of LINQ when querying
in-memory objects; you will always see the most up-to-date version of the data, even if the
data changes after you have run the statement that creates the productsQuery enumerable
collection .

When the foreach loop starts, LINQ to SQL creates and runs a SQL SELECT statement derived
from the LINQ to SQL query to create an ADO .NET DataReader object . Each iteration of the
foreach loop performs the necessary GetXXX methods to fetch the data for that row . After
the final row has been fetched and processed by the foreach loop, LINQ to SQL closes the
database connection .

Deferred fetching ensures that only the data an application actually uses is retrieved from
the database . However, if you are accessing a database running on a remote instance of SQL
Server, fetching data row by row does not make the best use of network bandwidth . In this
scenario, you can fetch and cache all the data in a single network request by forcing imme-
diate evaluation of the LINQ to SQL query . You can do this by calling the ToList or ToArray
extension methods, which fetch the data into a list or array when you define the LINQ to SQL
query, like this:

var productsQuery = from p in products.ToList()
 select p;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

554 Part V Managing Data

In this code example, productsQuery is now an enumerable list, populated with information
from the Products table . When you iterate over the data, LINQ to SQL retrieves it from this
list rather than sending fetch requests to the database .

Joining Tables and Creating Relationships
LINQ to SQL supports the join query operator for combining and retrieving related data
held in multiple tables . For example, the Products table in the Northwind database holds
the ID of the supplier for each product . If you want to know the name of each supplier, you
have to query the Suppliers table . The Suppliers table contains the CompanyName column,
which specifies the name of the supplier company, and the ContactName column, which con-
tains the name of the person in the supplier company that handles orders from Northwind
Traders . You can define an entity class containing the relevant supplier information like this
(the SupplierName column in the database is mandatory, but the ContactName allows null
values):

[Table(Name = "Suppliers")]
public class Supplier
{
 [Column(IsPrimaryKey = true, CanBeNull = false)]
 public int SupplierID { get; set; }

 [Column(CanBeNull = false)]
 public string CompanyName { get; set; }

 [Column]
 public string ContactName { get; set; }
}

You can then instantiate Table<Product> and Table<Supplier> collections and define a LINQ
to SQL query to join these tables together, like this:

DataContext db = new DataContext(...);
Table<Product> products = db.GetTable<Product>();
Table<Supplier> suppliers = db.GetTable<Supplier>();
var productsAndSuppliers = from p in products
 join s in suppliers
 on p.SupplierID equals s.SupplierID
 select new { p.ProductName, s.CompanyName, s.ContactName };

When you iterate through the productsAndSuppliers collection, LINQ to SQL will execute a
SQL SELECT statement that joins the Products and Suppliers tables in the database over the
SupplierID column in both tables and fetches the data .

However, with LINQ to SQL you can specify the relationships between tables as part of the
definition of the entity classes . LINQ to SQL can then fetch the supplier information for each
product automatically without requiring that you construct a potentially complex and error-
prone join statement . Returning to the products and suppliers example, these tables have a

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 25 Querying Information in a Database 555

many-to-one relationship in the Northwind database; each product is supplied by a single
supplier, but a single supplier can supply several products . Phrasing this relationship slightly
differently, a row in the Products table can reference a single row in the Suppliers table
through the SupplierID columns in both tables, but a row in the Suppliers table can reference
a whole set of rows in the Products table . LINQ to SQL provides the EntityRef<TEntity> and
EntitySet<TEntity> generic types to model this type of relationship . Taking the Product entity
class first, you can define the “one” side of the relationship with the Supplier entity class by
using the EntityRef<Supplier> type, as shown here in bold:

[Table(Name = "Products")]
public class Product
{
 [Column(IsPrimaryKey = true, CanBeNull = false)]
 public int ProductID { get; set; }
 ...
 [Column]
 public int? SupplierID { get; set; }
 ...
 private EntityRef<Supplier> supplier;
 [Association(Storage = "supplier", ThisKey = "SupplierID", OtherKey = "SupplierID")]
 public Supplier Supplier
 {
 get { return this.supplier.Entity; }
 set { this.supplier.Entity = value; }
 }
}

The private supplier field is a reference to an instance of the Supplier entity class . The public
Supplier property provides access to this reference . The Association attribute specifies how
LINQ to SQL locates and populates the data for this property . The Storage parameter identi-
fies the private field used to store the reference to the Supplier object . The ThisKey parameter
indicates which property in the Product entity class LINQ to SQL should use to locate the
Supplier to reference for this product, and the OtherKey parameter specifies which property
in the Supplier table LINQ to SQL should match against the value for the ThisKey parameter .
In this example, the Product and Supplier tables are joined across the SupplierID property in
both entities .

Note The Storage parameter is actually optional . If you specify it, LINQ to SQL accesses the
 corresponding data member directly when populating it rather than going through the set
 accessor . The set accessor is required for applications that manually fill or change the entity
 object referenced by the EntityRef<TEntity> property . Although the Storage parameter is actually
redundant in this example, it is recommended practice to include it .

The get accessor in the Supplier property returns a reference to the Supplier entity by using
the Entity property of the EntityRef<Supplier> type . The set accessor populates this property
with a reference to a Supplier entity .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

556 Part V Managing Data

You can define the “many” side of the relationship in the Supplier class with the
EntitySet<Product> type, like this:

[Table(Name = "Suppliers")]
public class Supplier
{
 [Column(IsPrimaryKey = true, CanBeNull = false)]
 public int SupplierID { get; set; }
 ...
 private EntitySet<Product> products = null;
 [Association(Storage = "products", OtherKey = "SupplierID", ThisKey = "SupplierID")]
 public EntitySet<Product> Products
 {
 get { return this.products; }
 set { this.products.Assign(value); }
 }
}

Tip It is conventional to use a singular noun for the name of an entity class and its properties .
The exception to this rule is that EntitySet<TEntity> properties typically take the plural form
 because they represent a collection rather than a single entity .

This time, notice that the Storage parameter of the Association attribute specifies the pri-
vate EntitySet<Product> field . An EntitySet<TEntity> object holds a collection of references
to entities . The get accessor of the public Products property returns this collection . The set
 accessor uses the Assign method of the EntitySet<Product> class to populate this collection .

So, by using the EntityRef<TEntity> and EntitySet<TEntity> types you can define properties
that can model a one-to-many relationship, but how do you actually fill these properties with
data? The answer is that LINQ to SQL fills them for you when it fetches the data . The follow-
ing code creates an instance of the Table<Product> class and issues a LINQ to SQL query to
fetch the details of all products . This code is similar to the first LINQ to SQL example you saw
earlier . The difference is in the foreach loop that displays the data .

DataContext db = new DataContext(...);
Table<Product> products = db.GetTable<Product>();

var productsAndSuppliers = from p in products
 select p;

foreach (var product in productsAndSuppliers)
{
 Console.WriteLine("Product {0} supplied by {1}",
 product.ProductName, product.Supplier.CompanyName);
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 25 Querying Information in a Database 557

The Console.WriteLine statement reads the value in the ProductName property of the product
entity as before, but it also accesses the Supplier entity and displays the CompanyName
property from this entity . If you run this code, the output looks like this:

As the code fetches each Product entity, LINQ to SQL executes a second, deferred, query to
retrieve the details of the supplier for that product so that it can populate the Supplier prop-
erty, based on the relationship specified by the Association attribute of this property in the
Product entity class .

When you have defined the Product and Supplier entities as having a one-to-
many relationship, similar logic applies if you execute a LINQ to SQL query over the
Table<Supplier> collection, like this:

DataContext db = new DataContext(...);
Table<Supplier> suppliers = db.GetTable<Supplier>();
var suppliersAndProducts = from s in suppliers
 select s;

foreach (var supplier in suppliersAndProducts)
{
 Console.WriteLine("Supplier name: {0}", supplier.CompanyName);
 Console.WriteLine("Products supplied");
 foreach (var product in supplier.Products)
 {
 Console.WriteLine("\t{0}", product.ProductName);
 }
 Console.WriteLine();
}

In this case, when the foreach loop fetches a supplier, it runs a second query (again deferred)
to retrieve all the products for that supplier and populate the Products property . This time,
however, the property is a collection (an EntitySet<Product>), so you can code a nested

http://lib.ommolketab.ir
http//lib.ommolketab.ir

558 Part V Managing Data

foreach statement to iterate through the set, displaying the name of each product . The
 output of this code looks like this:

Deferred and Immediate Fetching Revisited
Earlier in this chapter, I mentioned that LINQ to SQL defers fetching data until the data
is actually requested but that you could apply the ToList or ToArray extension meth-
od to retrieve data immediately . This technique does not apply to data referenced as
EntitySet<TEntity> or EntityRef<TEntity> properties; even if you use ToList or ToArray, the
data will still be fetched only when accessed . If you want to force LINQ to SQL to query and
fetch referenced data immediately, you can set the LoadOptions property of the DataContext
object as follows:

DataContext db = new DataContext(...);
Table<Supplier> suppliers = db.GetTable<Supplier>();
DataLoadOptions loadOptions = new DataLoadOptions();
loadOptions.LoadWith<Supplier>(s => s.Products);
db.LoadOptions = loadOptions;
var suppliersAndProducts = from s in suppliers
 select s;

The DataLoadOptions class provides the generic LoadWith method . By using this method,
you can specify whether an EntitySet<TEntity> property in an instance should be loaded
when the instance is populated . The parameter to the LoadWith method is a lambda
 expression that identifies the related data to retrieve when the data for a table is fetched . The
example shown here causes the Products property of each Supplier entity to be populated as
soon as the data for each Product entity is fetched rather than being deferred . If you specify
the LoadOptions property of the DataContext object together with the ToList or ToArray ex-
tension method of a Table collection, LINQ to SQL will load the entire collection as well as the
data for the referenced properties for the entities in that collection into memory as soon as
the LINQ to SQL query is evaluated .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 25 Querying Information in a Database 559

Tip If you have several EntitySet<TEntity> properties, you can call the LoadWith method of the
same LoadOptions object several times, each time specifying the EntitySet<TEntity> to load .

Defining a Custom DataContext Class
The DataContext class provides functionality for managing databases and database
 connections, creating entity classes, and executing commands to retrieve and update data
in a database . Although you can use the raw DataContext class provided with the .NET
Framework, it is better practice to use inheritance and define your own specialized version
that declares the various Table<TEntity> collections as public members . For example, here is
a specialized DataContext class that exposes the Products and Suppliers Table collections as
public members:

public class Northwind : DataContext
{
 public Table<Product> Products;
 public Table<Supplier> Suppliers;

 public Northwind(string connectionInfo) : base(connectionInfo)
 {
 }
}

Notice that the Northwind class also provides a constructor that takes a connection string as
a parameter . You can create a new instance of the Northwind class and then define and run
LINQ to SQL queries over the Table collection classes it exposes like this:

Northwind nwindDB = new Northwind(...);

var suppliersQuery = from s in nwindDB.Suppliers
 select s;

foreach (var supplier in suppliersQuery)
{
 ...
}

This practice makes your code easier to maintain . Using an ordinary DataContext object,
you can instantiate any entity class by using the GetTable method, regardless of the data-
base to which the DataContext object connects . You find out that you have used the wrong
DataContext object and have connected to the wrong database only at run time, when you
try to retrieve data . With a custom DataContext class, you reference the Table collections
through the DataContext object . (The base DataContext constructor uses a mechanism called
reflection to examine its members, and it automatically instantiates any members that are
Table collections—the details of how reflection works are outside the scope of this book .)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

560 Part V Managing Data

It is obvious to which database you need to connect to retrieve data for a specific table; if
IntelliSense does not display your table when you define the LINQ to SQL query, you have
picked the wrong DataContext class, and your code will not compile .

Using LINQ to SQL to Query Order Information
In the following exercise, you will write a version of the console application that you
 developed in the preceding exercise that prompts the user for a customer ID and displays the
details of any orders placed by that customer . You will use LINQ to SQL to retrieve the data .
You will then be able to compare LINQ to SQL with the equivalent code written by using
ADO .NET .

Define the Order entity class

 . 1 . . Using Visual Studio 2010, create a new project called LINQOrders by using the
Console Application template . Save it in the \Microsoft Press\Visual CSharp Step By
Step\Chapter 25 folder under your Documents folder .

 . 2 . . In Solution Explorer, change the name of the file Program .cs to LINQReport .cs . In the
Microsoft Visual Studio message box, click Yes to change all references of the Program
class to LINQReport .

 . 3 . . On the Project menu, click Add Reference . In the Add Reference dialog box, click the
.NET tab, select the System.Data.Linq assembly, and then click OK .

This assembly holds the LINQ to SQL types and attributes .

 . 4 . . In the Code and Text Editor window, add the following using statements to the list at
the top of the file:

using System.Data.Linq;
using System.Data.Linq.Mapping;
using System.Data.SqlClient;

 . 5 . . Add the Order entity class to the LINQReport .cs file after the LINQReport class . Tag the
Order class with the Table attribute, as follows:

[Table(Name = "Orders")]
public class Order
{
}

The table is called Orders in the Northwind database . Remember that it is common
practice to use the singular noun for the name of an entity class because an entity
 object represents one row from the database .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 25 Querying Information in a Database 561

 . 6 . . Add the property shown here in bold to the Order class:

[Table(Name = "Orders")]
public class Order
{
 [Column(IsPrimaryKey = true, CanBeNull = false)]
 public int OrderID { get; set; }
}

The OrderID column is the primary key for this table in the Northwind database .

 . 7 . . Add the following properties shown in bold type to the Order class:

[Table(Name = "Orders")]
public class Order
{
 ...
 [Column]
 public string CustomerID { get; set; }

 [Column]
 public DateTime? OrderDate { get; set; }

 [Column]
 public DateTime? ShippedDate { get; set; }

 [Column]
 public string ShipName { get; set; }

 [Column]
 public string ShipAddress { get; set; }

 [Column]
 public string ShipCity { get; set; }

 [Column]
 public string ShipCountry { get; set; }
}

These properties hold the customer ID, order date, and shipping information for an or-
der . In the database, all of these columns allow null values, so it is important to use the
nullable version of the DateTime type for the OrderDate and ShippedDate properties .
(Note that string is a reference type that automatically allows null values .) Notice that
LINQ to SQL automatically maps the SQL Server NVarChar type to the .NET Framework
string type and the SQL Server DateTime type to the .NET Framework DateTime type .

 . 8 . . Add the following Northwind class to the LINQReport .cs file after the Order entity class:

public class Northwind : DataContext
{
 public Table<Order> Orders;

 public Northwind(string connectionInfo)
 : base (connectionInfo)
 {
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

562 Part V Managing Data

The Northwind class is a DataContext class that exposes a Table property based on
the Order entity class . In the next exercise, you will use this specialized version of the
DataContext class to access the Orders table in the database .

Retrieve order information by using a LINQ to SQL query

 . 1 . . In the Main method of the LINQReport class, add the code shown next in bold type,
which creates a Northwind object:

static void Main(string[] args)
{
 SqlConnectionStringBuilder builder = new SqlConnectionStringBuilder();
 builder.DataSource = ".\\SQLExpress";
 builder.InitialCatalog = "Northwind";
 builder.IntegratedSecurity = true;

 Northwind northwindDB = new Northwind(builder.ConnectionString);
}

The connection string constructed by using the SqlConnectionStringBuilder object is
exactly the same as in the earlier exercise . The northwindDB object uses this string to
connect to the Northwind database .

 . 2 . . After the code added in the previous step, add a try/catch block to the Main method:

static void Main(string[] args)
{
 ...
 try
 {
 // You will add your code here in a moment
 }
 catch (SqlException e)
 {
 Console.WriteLine("Error accessing the database: {0}", e.Message);
 }
}

As when using ordinary ADO .NET code, LINQ to SQL raises a SqlException if an error
occurs when accessing a SQL Server database .

 . 3 . . Replace the comment in the try block with the following code shown in bold type:

try
{
 Console.Write("Please enter a customer ID (5 characters): ");
 string customerId = Console.ReadLine();
}

These statements prompt the user for a customer ID and save the user’s response in the
string variable customerId .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 25 Querying Information in a Database 563

 . 4 . . Type the statement shown here in bold type after the code you just entered:

try
{
 ...
 var ordersQuery = from o in northwindDB.Orders
 where String.Equals(o.CustomerID, customerId)
 select o;
}

This statement defines the LINQ to SQL query that will retrieve the orders for the
 specified customer .

 . 5 . . Add the foreach statement and if…else block shown next in bold type after the code
you added in the previous step:

try
{
 ...
 foreach (var order in ordersQuery)
 {
 if (order.ShippedDate == null)
 {
 Console.WriteLine("Order {0} not yet shipped\n\n", order.OrderID);
 }
 else
 {
 // Display the order details
 }
 }
}

The foreach statement iterates through the orders for the customer . If the value in the
ShippedDate column in the database is null, the corresponding property in the Order
entity object is also null, and then the if statement outputs a suitable message .

 . 6 . . Replace the comment in the else part of the if statement you added in the preceding
step with the code shown here in bold type:

if (order.ShippedDate == null)
{
 ...
}
else
{
 Console.WriteLine("Order: {0}\nPlaced: {1}\nShipped: {2}\n" +
 "To Address: {3}\n{4}\n{5}\n{6}\n\n", order.OrderID,
 order.OrderDate, order.ShippedDate, order.ShipName,
 order.ShipAddress, order.ShipCity,
 order.ShipCountry);
}

 . 7 . . On the Debug menu, click Start Without Debugging to build and run the application .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

564 Part V Managing Data

 . 8 . . In the console window displaying the message “Please enter a customer ID (5
 characters):”, type VINET .

The application should display a list of orders for this customer . When the application
has finished, press Enter to return to Visual Studio 2010 .

 . 9 . . Run the application again . This time type BONAP when prompted for a customer ID .

The final order for this customer has not yet shipped and contains a null value for the
ShippedDate column . Verify that the application detects and handles this null value .
When the application has finished, press Enter to return to Visual Studio 2010 .

In this chapter, you have seen the basic elements that LINQ to SQL provides for querying
information from a database . LINQ to SQL has many more features that you can employ in
your applications, including the ability to modify data and update a database . You will look
briefly at some of these aspects of LINQ to SQL in the next chapter .

n If you want to continue to the next chapter

Keep Visual Studio 2010 running, and turn to Chapter 26 .

n If you want to exit Visual Studio 2010 now

On the File menu, click Exit . If you see a Save dialog box, click Yes and save the project .

Chapter .25 .Quick .Reference

To Do this

Connect to a SQL Server database
by using ADO .NET

Create a SqlConnection object, set its ConnectionString property with
 details specifying the database to use, and call the Open method .

Create and execute a database
query by using ADO .NET

Create a SqlCommand object . Set its Connection property to a valid
SqlConnection object . Set its CommandText property to a valid SQL
SELECT statement . Call the ExecuteReader method to run the query, and
create a SqlDataReader object .

Fetch data by using an ADO .NET
SqlDataReader object

Ensure that the data is not null by using the IsDBNull method . If the data
is not null, use the appropriate GetXXX method (such as GetString or
GetInt32) to retrieve the data .

Define an entity class Define a class with public properties for each column . Prefix the class
definition with the Table attribute, specifying the name of the table in
the underlying database . Prefix each property with the Column attribute,
and specify parameters indicating the name, type, and nullability of the
 corresponding column in the database .

Create and execute a query by
 using LINQ to SQL

Create a DataContext object, and specify a connection string for the
 database . Create a Table collection based on the entity class corre-
sponding to the table you want to query . Define a LINQ to SQL query
that identifies the data to be retrieved from the database and returns
an enumerable collection of entities . Iterate through the enumerable
 collection to retrieve the data for each row and process the results .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 . . 565

Chapter 26

Displaying and Editing Data by
Using the Entity Framework and
Data Binding

After completing this chapter, you will be able to:

n Use the ADO .NET Entity Framework to generate entity classes .

n Use data binding in a Microsoft Windows Presentation Foundation (WPF) application to
display and maintain data retrieved from a database .

n Update a database by using the Entity Framework .

n Detect and resolve conflicting updates made by multiple users .

In Chapter 25, “Querying Information in a Database,” you learned the essentials of using
Microsoft ADO .NET and LINQ to SQL for executing queries against a database . The primary
purpose of LINQ to SQL is to provide a LINQ interface to Microsoft SQL Server . However, the
underlying model used by LINQ to SQL is extensible, and some third-party vendors have
built data providers that can access different database management systems .

Visual Studio 2010 also provides a technology called the Entity Framework that you can use
for querying and manipulating databases . However, where LINQ to SQL generates code
that closely resembles the database structure, you can use the Entity Framework to gener-
ate a logical model of a database called an entity data model, and you can write your code
against this logical model . By using the Entity Framework, you can construct classes that map
the items in the logical model (or entities) to the physical tables in the database . This map-
ping layer can help to insulate your applications against any changes that might occur in
the structure of your database at a later date, and it can also be used to provide a degree of
independence from the technology used to implement the database . For example, you can
build an application that uses the Entity Framework to access data in an Oracle database, and
later migrate the database to SQL Server . The logic in your application should not need to
change; all you need to do is to update the way in which the logical entities are implemented
in the mapping layer .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

566 Part V Managing Data

The Entity Framework can operate with a variant of LINQ called LINQ to Entities . By using
LINQ to Entities, you can query and manipulate data through an entity object model
through LINQ syntax .

In this chapter, you will learn how to use the Entity Framework to generate a logical data
model, and then write applications that use data binding to display and modify data through
this model .

Note This chapter provides only a brief introduction to the Entity Framework and LINQ to
Entities . For more information, consult the documentation provided with Microsoft Visual Studio
2010, or visit the ADO .NET Entity Framework page on the Microsoft Web site at http://msdn.
microsoft.com/en-us/library/bb399572(VS.100).aspx .

Using .Data .Binding .with .the .Entity .Framework
You first encountered the idea of data binding in a WPF application in Chapter 24,
“Performing Validation,” when you used this technique to associate the properties of controls
on a WPF form with properties in an instance of a class . You can adopt a similar strategy and
bind properties of controls to entity objects so that you can display and maintain data held
in a database by using a graphical user interface . First, however, you need to define the entity
classes that map to the tables in the database .

In Chapter 25, you used LINQ to SQL to construct a series of entity classes and a context
class . The Entity Framework operates in a similar but more expansive manner, and many of
the concepts that you learned in Chapter 25 are still applicable . The Entity Framework pro-
vides the ADO .NET Entity Data Model template and wizards that can generate entity classes
from the database . (You can also define an entity model manually and use it to create a data-
base .) The Entity Framework also generates a custom context class that you can use to access
the entities and connect to the database .

In the first exercise, you will use the ADO .NET Entity Data Model template to generate a data
model for managing products and suppliers in the Northwind database .

Important The exercises in this chapter assume that you have created and populated the
Northwind database . For more information, see the exercise in the section “Creating the
Database” in Chapter 25 .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 26 Displaying and Editing Data by Using the Entity Framework and Data Binding 567

Granting .Access .to .a .SQL .Server .2008 .Database .File—Visual .C# .
2010 .Express .Edition
If you are using Microsoft Visual C# 2010 Express Edition, when you define a
Microsoft SQL Server database connection for the entity wizard, you connect directly
to the SQL Server database file . Visual C# 2010 Express Edition starts its own instance of
SQL Server Express, called a user instance for accessing the database . The user instance
runs using the credentials of the user executing the application . If you are using Visual
C# 2010 Express Edition, you must detach the database from the SQL Server Express
default instance because it will not allow a user instance to connect to a database that
it is currently using . The following procedures describe how to perform these tasks .

Detach the Northwind database
 . 1 . . On the Windows Start menu, click All Programs, click Accessories, and then click

Command Prompt to open a command prompt window .

 . 2 . . In the command prompt window, type the following command to move to
the \Microsoft Press\Visual CSharp Step By Step\Chapter 26 folder under your
Documents folder . Replace Name with your user name .

cd "\Users\Name\Documents\Microsoft Press\Visual CSharp Step By Step\Chapter 26"

 . 3 . . In the command prompt window, type the following command:

sqlcmd -S.\SQLExpress -E -idetach.sql

Note The detach.sql script contains the following SQL Server command, which detaches
the Northwind database from the SQL Server instance:

sp_detach_db 'Northwind'

 . 4 . . When the script finishes running, close the command prompt window .

Note If you need to rebuild the Northwind database, you can run the instnwnd.sql script
as described in Chapter 25 . However, if you have detached the Northwind database, you
must first delete the Northwind .mdf and Northwind_log .ldf files in the C:\Program Files\
Microsoft SQL Server\MSSQL10 .SQLEXPRESS\MSSQL\DATA folder . Otherwise, the script
will fail .

After you have detached the database from SQL Server, you must grant your login
 account access to the folder holding the database and grant Full Control over the
 database files themselves . The next procedure shows how to do this .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

568 Part V Managing Data

Grant access to the Northwind database file
 . 1 . . Log on to your computer using an account that has administrator access .

 . 2 . . Using Windows Explorer, move to the folder C:\Program Files\Microsoft SQL
Server\MSSQL10 .SQLEXPRESS\MSSQL .

Note If you are using a 64-bit version of Windows Vista or Windows 7, replace all
 references to the C:\Program Files folder in these instructions with C:\Program Files (x86) .

 . 3 . . If a message box appears displaying the message “You don’t currently have
 permission to access this folder,” click Continue . In the User Account Control
 message that follows, click Continue again .

 . 4 . . Move to the DATA folder, right-click the Northwind file, and then click Properties .

 . 5 . . In the Northwind Properties dialog box, click the Security tab .

 . 6 . . If the Security page contains the message “Do you want to continue?”, click
Continue . In the User Account Control message box, click Continue .

If the Security page contains the message “To change permissions, click Edit”, click
Edit . If a User Account Control message box appears, click Continue .

 . 7 . . If your user account is not listed in the Group or user names list box, in the
Permissions for Northwind dialog box, click Add . In the Select Users or Groups
 dialog box, enter the name of your user account, and then click OK .

 . 8 . . In the Permissions for Northwind dialog box, in the Group or user names list box,
click your user account .

 . 9 . . In the Permissions for Account list box (where Account is your user account name),
select the Allow check box for the Full Control entry, and then click OK .

 . 10 . . In the Northwind Properties dialog box, click OK .

 . 11 . . Repeat steps 4 through 10 for the Northwind_log file in the DATA folder .

Generate an Entity Data Model for the Suppliers and Products tables

 . 1 . . Start Visual Studio 2010 if it is not already running .

 . 2 . . Create a new project by using the WPF Application template . Name the project
Suppliers, and save it in the \Microsoft Press\Visual CSharp Step By Step\Chapter 26
folder in your Documents folder .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 26 Displaying and Editing Data by Using the Entity Framework and Data Binding 569

Note If you are using Visual C# 2010 Express Edition, you can specify the location for
 saving your project when you click Save Suppliers on the File menu .

 . 3 . . In Solution Explorer, right-click the Suppliers project, point to Add, and then click New
Item .

 . 4 . . In the Add New Item – Suppliers dialog box, in the left pane expand Visual C# if it is not
already expanded . In the middle pane, scroll down and click the ADO.NET Entity Data
Model template, type Northwind .edmx in the Name box, and then click Add .

The Entity Data Model Wizard dialog box appears . You can use this window to specify
the tables in the Northwind database for which you want to create entity classes, select
the columns that you want to include, and define the relationships between them .

 . 5 . . In the Entity Data Model Wizard dialog box, choose Generate from database and then
click Next .

The Entity Data Model Wizard requires you to configure a connection to a database,
and the Choose Your Data Connection page appears .

 . 6 . . If you are using Visual Studio 2010 Standard Edition or Visual Studio 2010 Professional
Edition, perform the following tasks:

 . 6 .1 . . Click New Connection .

If the Choose Data Source dialog box appears, in the Data source list box, click
Microsoft SQL Server . In the Data provider drop-down list box, select .NET
Framework Data Provider for SQL Server if it is not already selected and then click
Continue .

Note If you have already created database connections previously, this dialog box might
not appear and the Connection Properties dialog box will be displayed . In this case, click
the Change button adjacent to the Data source text box . The Change Data Source dialog
box appears, which is the same as the Choose Data Source dialog box except that the
Continue button has the legend OK instead .

 . 6 .2 . . In the Connection Properties dialog box, in the Server name combo box type
 .\SQLExpress . In the Log on to the server section of the dialog box, choose the
Use Windows Authentication radio button . In the Connect to a database sec-
tion of the dialog box, in the Select or enter a database name combo box type
Northwind, and then click OK .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

570 Part V Managing Data

 . 7 . . If you are using Visual C# 2010 Express Edition, perform the following tasks:

 . 7 .1 . . Click New Connection .

If the Choose Data Source dialog box appears, in the Data source list box, click
Microsoft SQL Server Database File . In the Data provider drop-down list box, se-
lect .NET Framework Data Provider for SQL Server if it is not already selected and
then click Continue .

Note If you have already created database connections previously, this dialog box might
not appear and the Connection Properties dialog box will be displayed . In this case, click
the Change button adjacent to the Data source text box . The Change Data Source dialog
box appears, which is the same as the Choose Data Source dialog box except that the
Continue button has the legend OK instead .

 . 7 .2 . . In the Connection Properties dialog box, in the Database file name text click
Browse .

 . 7 .3 . . In the Select SQL Server Database File dialog box, move to the folder C:\Program
Files\Microsoft SQL Server\MSSQL10 .SQLEXPRESS\MSSQL\DATA, click the
Northwind database file, and then click Open .

 . 7 .4 . . In the Log on to the server section of the dialog box, choose the Use Windows
Authentication radio button and then click OK .

 . 8 . . On the Choose Your Data Connection page of the Entity Data Model Wizard, select the
Save entity connection settings in App.Config as check box, type NorthwindEntities
(this is the default name), and then click Next .

If you are using Visual C# 2010 Express Edition, a message box appears asking whether
you want to add the database file to your project . Click No .

 . 9 . . On the Choose Your Database Objects page, verify that the Pluralize or singularize gen-
erated object names and Include foreign key columns in the model check boxes are both
selected . In the Which database objects do you want to include in your model? list box,
expand Tables and then click the Products (dbo) and Suppliers (dbo) tables . In the Model
Namespace text box, type NorthwindModel (this is the default namespace) . The
 following image shows the completed page .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 26 Displaying and Editing Data by Using the Entity Framework and Data Binding 571

 . 10 . . Click Finish .

The Entity Data Model Wizard generates entity classes called Supplier and Product
based on the Suppliers and Products tables, with property fields for each column in the
tables, as shown in the following image . The data model also defines navigation prop-
erties that link the two entities together and maintain the relationship between them .
In this case, a single Supplier entity can be related to many Product entities .

You can modify the properties of an entity class by selecting the class and changing the
property values in the Properties window . You can also use the Mapping Details pane
that appears at the bottom of the window to select and edit the fields that appear in

http://lib.ommolketab.ir
http//lib.ommolketab.ir

572 Part V Managing Data

an entity class . This is how you change the mapping from the logical properties in an
entity to the physical columns in a table .

Important This exercise assumes that you are using the default entity classes generated
for the Suppliers and Products tables in the database, so please do not change anything!

 . 11 . . In Solution Explorer, expand the Northwind .edmx folder, and then double-click
Northwind.designer.cs .

Tip If Solution Explorer is not visible, on the View menu click Solution Explorer .

The code generated by the Entity Data Model Wizard appears in the Code and Text
Editor window . If you expand the Contexts region, you will see that it contains a
class called NorthwindEntities that derives from the ObjectContext class . In the Entity
Framework, the ObjectContext class performs a similar role to a DataContext class in
LINQ to SQL, and you can use it to connect to the database . The NorthwindEntities class
extends the ObjectContext class with logic to connect to the Northwind database, and
to populate Supplier and Product entities (just like a custom DataContext class in LINQ
to SQL) .

The information concerning the connection you specified before creating the two
 entity classes is saved in an application configuration file . Storing the connection string
in a configuration file enables you to modify the connection string without rebuilding
the application; you simply edit the application configuration file . You’ll find it useful if
you envisage ever needing to relocate or rename the database, or switching from using
a local development database to a production database that has the same set of tables .

The code for the two entity classes is located in the Entities region of the file . These
entity classes are a little more complicated than the classes that you created manually
in Chapter 25, but the general principles are similar . The additional complexity is the
result of the entity classes indirectly implementing the INotifyPropertyChanging and
INotifyPropertyChanged interfaces, and the navigational properties used to link related
entities together . The INotifyPropertyChanging and INotifyPropertyChanged interfaces
define events that the entity classes raise when their property values change . The vari-
ous user interface controls in the WPF library subscribe to these events to detect any
changes to data and ensure that the information displayed on a WPF form is up to date .

Note The entity classes inherit from the System.Data.Objects.DataClasses.EntityObject
class, which in turn inherits from the System.Data.Objects.DataClasses.StructuralObject
class . The StructuralObject class implements the the INotifyPropertyChanging and
INotifyPropertyChanged interfaces .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 26 Displaying and Editing Data by Using the Entity Framework and Data Binding 573

Using .an .Application .Configuration .File
An application configuration file provides a useful mechanism enabling a user to mod-
ify some of the resources used by an application without rebuilding the application it-
self . The connection string used for connecting to a database is an example of just such
a resource .

When you use the Entity Data Model Wizard to generate entity classes, a new file is
added to your project called App .config . This is the source for the application configu-
ration file, and it appears in the Solution Explorer window . You can examine the con-
tents of the App .config file by double-clicking it . You will see that it is an XML file, as
shown here (the text has been reformatted to fit on the printed page):

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <connectionStrings>
 <add name="NorthwindEntities" connectionString="metadata=res://*/Northwind.
csdl|res://*/Northwind.ssdl|res://*/Northwind.msl;provider=System.Data.
SqlClient;provider connection string="Data Source=.\SQLExpress;Initial
Catalog=Northwind;Integrated Security=True;MultipleActiveResultSets=True""
providerName="System.Data.EntityClient" />
 </connectionStrings>
</configuration>

The connection string is held in the <connectionStrings> element of the file . This string
contains a set of elements in the form property=value . The elements are separated
by a semi-colon character . The key properties are the Data Source, Initial Catalog, and
Integrated Security elements, which you should recognize from earlier exercises .

When you build the application, the C# compiler copies the app .config file to the folder
holding the compiled code and renames it as application .exe .config, where application
is the name of your application . When your application connects to the database, it
should read the connection string value from the configuration file rather than using
values that are hard-coded in your C# code . You will see how to do this when using
generated entity classes later in this chapter .

You should deploy the application configuration file (the application .exe .config file)
with the executable code for the application . If you need to connect to a different
database, you can edit the configuration file by using a text editor to modify the
< connectionString> attribute of the <connectionStrings> element . When the application
runs, it will use the new value automatically .

Be aware that you should take steps to protect the application configuration file and
prevent a user from making inappropriate changes .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

574 Part V Managing Data

Now that you have created the entity model for the application, you can build the user inter-
face that can display the information retrieved by using data binding .

Create the user interface for the Suppliers application

 . 1 . . In Solution Explorer, right-click the MainWindow .xaml file, click Rename, and rename the
file as SupplierInfo .xaml .

 . 2 . . Double-click the App .xaml file to display it in the Design View window . In the XAML
pane, change the StartupUri element to “SupplierInfo .xaml”, as shown next in bold type:

<Application x:Class="Suppliers.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 StartupUri="SupplierInfo.xaml">
 ...
</Application>

 . 3 . . In Solution Explorer, double-click the SupplierInfo .xaml file to display it in the Design
View window . In the XAML pane, as shown in bold type in the following code snip-
pet, change the value of the x:Class element to “Suppliers .SupplierInfo”, set the Title to
“Supplier Information”, set the Height to”362”, and set the Width to “614”:

<Window x:Class="Suppliers.SupplierInfo"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Supplier Information" Height="362" Width="614">
 ...
</Window>

 . 4 . . Display the SupplierInfo .xaml .cs file in the Code and Text Editor window . Change
the name of the MainWindow class to SupplierInfo, and change the name of the
 constructor, as shown next in bold type:

public partial class SupplierInfo : Window
{
 public SupplierInfo()
 {
 InitializeComponent();
 }
}

 . 5 . . In Solution Explorer, double-click the SupplierInfo .xaml file to display it in the Design
View window . From the Common WPF Controls section of the Toolbox, add a ComboBox
control and a Button control to the form . (Place them anywhere on the form .) From the
All WPF Controls section of the Toolbox, add a ListView control to the form .

 . 6 . . Using the Properties window, set the properties of these controls to the values specified
in the following table .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 26 Displaying and Editing Data by Using the Entity Framework and Data Binding 575

Control Property Value

comboBox1 Name suppliersList

Height 23

Width Auto

Margin 40,16,42,0

VerticalAlignment Top

HorizontalAlignment Stretch

listView1 Name productsList

Height Auto

Width Auto

Margin 40,44,40,60

VerticalAlignment Stretch

HorizontalAlignment Stretch

button1 Name saveChanges

Content Save Changes

IsEnabled False (clear the check box)

Height 23

Width 90

Margin 40,0,0,10

VerticalAlignment Bottom

HorizontalAlignment Left

The Supplier Information form should look like this in the Design View window:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

576 Part V Managing Data

 . 7 . . In the XAML pane, add the Window.Resources element shown next in bold type to the
Window element, above the Grid element:

<Window x:Class="Suppliers.SupplierInfo"
...>
 <Window.Resources>
 <DataTemplate x:Key="SuppliersTemplate">
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="{Binding Path=SupplierID}" />
 <TextBlock Text=" : " />
 <TextBlock Text="{Binding Path=CompanyName}" />
 <TextBlock Text=" : " />
 <TextBlock Text="{Binding Path=ContactName}" />
 </StackPanel>
 </DataTemplate>
 </Window.Resources>
 <Grid>
 ...
 </Grid>
</Window>

You can use a DataTemplate to specify how to display data in a control . You will apply
this template to the suppliersList combo box in the next step . This template contains
five TextBlock controls organized horizontally by using a StackPanel . The first, third,
and fifth TextBlock controls will display the data in the SupplierID, CompanyName, and
ContactName properties, respectively, of the Supplier entity object to which you will
bind later . The other TextBlock controls just display a “:” separator .

 . 8 . . In the XAML pane, modify the definition of the suppliersList combo box and specify the
IsSynchronizedWithCurrentItem, ItemsSource, and ItemTemplate properties, as shown
next in bold type:

<ComboBox ... Name="suppliersList" IsSynchronizedWithCurrentItem="True"
 ItemsSource="{Binding}" ItemTemplate="{StaticResource SuppliersTemplate}" />

Tip If you prefer, you can also set these properties by using the Properties window for the
suppliersList combo box .

You will display the data for each supplier in the suppliersList control . Recall from
Chapter 25 that LINQ to SQL used Table<T> collection classes to hold the rows for a
table . The Entity Framework follows a similar approach, but it holds the rows in an
ObjectSet<T> collection class . Setting the IsSynchronizedWithCurrentItem property
ensures that the SelectedItem property of the control is kept synchronized with the cur-
rent item in the collection . If you don’t set this property to True, when the application
starts up and establishes the binding with the collection, the combo box will not auto-
matically display the first item in this collection .

ItemsSource currently has an empty binding . In Chapter 24, you defined an instance
of a class as a static resource and specified that resource as the binding source . If you

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 26 Displaying and Editing Data by Using the Entity Framework and Data Binding 577

do not specify a binding source, WPF binds to an object specified in the DataContext
property of the control . (Do not confuse the DataContext property of a control with a
DataContext object used by LINQ to SQL to communicate with a database; it is unfortu-
nate that they happen to have the same name .) You will set the DataContext property
of the control to an ObjectSet<Supplier> collection object in code .

The ItemTemplate property specifies the template to use to display data retrieved from
the binding source . In this case, the suppliersList control will display the SupplierID,
CompanyName, and ContactName fields from the binding source .

 . 9 . . Modify the definition of the productsList ListView, and specify the
IsSynchronizedWithCurrentItem and ItemsSource properties:

<ListView ... Name="productsList" IsSynchronizedWithCurrentItem="True"
 ItemsSource="{Binding}" />

The Supplier entity class contains an EntityCollection<Product> property that references
the products the supplier can provide . (The EntityCollection<T> class is very similar to
the EntitySet<T> class in LINQ to SQL .) You will set the DataContext property of the
productsList control to the Products property of the currently selected Supplier object
in code . In a later exercise, you will also provide functionality enabling the user to add
and remove products . This code will modify the list of products acting as the binding
source . Setting the IsSynchronizedWithCurrentItem property to True ensures that the
newly created product is selected in the list when the user adds a new one or that an
existing item is selected if the user deletes one . (If you set this property to False, when
you delete a product, no item in the list will be selected afterwards, which can cause
problems in your application if your code attempts to access the currently selected
item .)

 . 10 . . Add the ListView.View child element shown next in bold type, which contains a
GridView and column definitions, to the productsList control . Be sure to replace the
closing delimiter (/>) of the ListView element with an ordinary delimiter (>) and add a
terminating </ListView> element .

<ListView ... Name="productsList" ...>
 <ListView.View>
 <GridView>
 <GridView.Columns>
 <GridViewColumn Width="75" Header="Product ID"
 DisplayMemberBinding="{Binding Path=ProductID}" />
 <GridViewColumn Width="225" Header="Name"
 DisplayMemberBinding="{Binding Path=ProductName}" />
 <GridViewColumn Width="135" Header="Quantity Per Unit"
 DisplayMemberBinding="{Binding Path=QuantityPerUnit}" />
 <GridViewColumn Width="75" Header="Unit Price"
 DisplayMemberBinding="{Binding Path=UnitPrice}" />
 </GridView.Columns>
 </GridView>
 </ListView.View>
</ListView>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

578 Part V Managing Data

You can make a ListView control display data in various formats by setting the View
property . This Extensible Application Markup Language (XAML) code uses a GridView
component . A GridView displays data in a tabular format; each row in the table has a
fixed set of columns defined by the GridViewColumn properties . Each column has its own
header that displays the name of the column . The DisplayMemberBinding property of
each column specifies the data that the column should display from the binding source .

The data for the UnitPrice column is a Decimal property in the Product entity class . WPF
will convert this information to a string and apply a default numeric format . Ideally, the
data in this column should be displayed as a currency value . You can reformat the data
in a GridView column by creating a converter class . You first encountered converter
classes in Chapter 24 when converting an enumeration to a string . This time, the con-
verter class will convert a decimal? value to a string containing a representation of a
currency value .

 . 11 . . Switch to the Code and Text Editor window displaying the SupplierInfo .xaml .cs file . Add
the PriceConverter class shown next to this file, after the SupplierInfo class:

[ValueConversion(typeof(string), typeof(Decimal))]
class PriceConverter : IValueConverter
{
 public object Convert(object value, Type targetType, object parameter,
 System.Globalization.CultureInfo culture)
 {
 if (value != null)
 return String.Format("{0:C}", value);
 else
 return "";
 }

 public object ConvertBack(object value, Type targetType, object parameter,
 System.Globalization.CultureInfo culture)
 {
 throw new NotImplementedException();
 }
}

The Convert method calls the String.Format method to create a string that uses the
 local currency format of your computer . The user will not actually modify the unit price
in the list view, so there is no need to implement the ConvertBack method to convert a
string back to a Decimal value .

 . 12 . . Return to the Design View window displaying the SupplierInfo .xaml form . Add the
 following XML namespace declaration to the Window element, and define an instance
of the PriceConverter class as a Window resource, as shown next in bold type:

<Window x:Class="Suppliers.SupplierInfo"
...
xmlns:app="clr-namespace:Suppliers"
...>
 <Window.Resources>
 <app:PriceConverter x:Key="priceConverter" />

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 26 Displaying and Editing Data by Using the Entity Framework and Data Binding 579

 ...
 </Window.Resources>
 ...
</Window>

Note The Design View window caches the definitions of controls and other user interface
items, and does not always recognize new namespaces that have been added to a form
immediately . If this statement causes an error in the Design View window, on the Build
menu click Build Solution . This will refresh the WPF cache and should clear the errors .

 . 13 . . Modify the definition of the Unit Price GridViewColumn, and apply the converter class
to the binding, as shown next in bold type:

<GridViewColumn ... Header ="Unit Price" DisplayMemberBinding=
 "{Binding Path=UnitPrice, Converter={StaticResource priceConverter}}" />

You have now laid out the form . Next, you need to write some code to retrieve the data
displayed by the form, and you must set the DataContext properties of the suppliersList and
productsList controls so that the bindings function correctly .

Write code to retrieve supplier information and establish the data bindings

 . 1 . . In the SupplierInfo .xaml file, change the definition of the Window element and add a
Loaded event method called Window_Loaded . (This is the default name of this method,
generated when you click <New Event Handler>.) The XAML code for the Window
 element should look like this:

<Window x:Class="Suppliers.SupplierInfo"
 ...
 Title="Supplier Information" ... Loaded="Window_Loaded">
 ...
</Window>

 . 2 . . In the Code and Text Editor window displaying the SupplierInfo .xaml .cs file, add the
 following using statements to the list at the top of the file:

using System.ComponentModel;
using System.Collections;

 . 3 . . Add the three private fields shown next in bold type to the SupplierInfo class:

public partial class SupplierInfo : Window
{
 private NorthwindEntities northwindContext = null;
 private Supplier supplier = null;
 private IList productsInfo = null;
 ...
}

You will use the northwindContext variable to connect to the Northwind database and
retrieve the data from the Suppliers table . The supplier variable holds the data for the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

580 Part V Managing Data

current supplier displayed in the suppliersList control . The productsInfo variable holds
the products provided by the currently displayed supplier . It will be bound to the
 productsList control .

You might be wondering about this definition of the productsInfo variable; after all, you
learned in the previous exercise that the Supplier class has an EntityCollection<Product>
property that you can use to access the products supplied by a supplier . You can actu-
ally bind this EntityCollection<Product> property to the productsList control, but there
is one important problem with this approach . I mentioned earlier that the Supplier
and Product entity classes indirectly implement the INotifyPropertyChanging and
INotifyPropertyChanged interfaces through the EntityObject and StructuralObject class-
es . When you bind a WPF control to a data source, the control automatically subscribes
to the events exposed by these interfaces to update the display when the data changes .
However, the EntityCollection<Product> class does not implement these interfaces, so
the list view control will not be updated if any products are added to, or removed from,
the supplier . (It will be updated if an existing product changes, however, because each
item in EntityCollection<Product> is a Product object, which does send the appropriate
notifications to the WPF controls to which it is bound .)

 . 4 . . Add the following code shown in bold to the Window_Loaded method:

private void Window_Loaded(object sender, RoutedEventArgs e)
{
 this.northwindContext = new NorthwindEntities();
 suppliersList.DataContext = this.northwindContext.Suppliers;
}

When the application starts and loads the window, this code creates a
NorthwindEntities variable that connects to the Northwind database . Remember that
the Entity Data Model Wizard created this class earlier . The default constructor for
this class reads the database connection string from the application configuration file .
The method then sets the DataContext property of the suppliersList combo box to the
Suppliers ObjectSet collection property of the northwindContext variable . This action
resolves the binding for the combo box, and the data template used by this combo
box displays the values in the SupplierID, CompanyName, and ContactName for each
Supplier object in the collection .

Note If a control is a child of another control—for example, a GridViewColumn in a
ListView—you need to set the DataContext property only of the parent control . If the
DataContext property of a child control is not set, the WPF runtime uses the DataContext
of the parent control instead . This technique makes it possible for you to share a data
 context between several child controls and a parent control .

If the immediate parent control does not have a data context, the WPF runtime examines
the grandparent control, and so on, all the way up to the Window control defining the
form . If no data context is available, any data bindings for a control are ignored .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 26 Displaying and Editing Data by Using the Entity Framework and Data Binding 581

 . 5 . . Return to the Design View window . Double-click the suppliersList combo box . This
 action creates the suppliersList_SelectionChanged event method, which runs whenever
the user selects a different item in the combo box .

 . 6 . . In the Code and Text Editor window, add the statements shown next in bold type to the
suppliersList_SelectionChanged method:

private void suppliersList_SelectionChanged(object sender,
SelectionChangedEventArgs e)
{
 this.supplier = suppliersList.SelectedItem as Supplier;
 this.northwindContext.LoadProperty<Supplier>(this.supplier, s => s.Products);
 this.productsInfo = ((IListSource)supplier.Products).GetList();
 productsList.DataContext = this.productsInfo;
}

This method obtains the currently selected supplier from the combo box and copies
the data in the EntityCollection<Product> property for this supplier to the productsInfo
variable . The EntityCollection<Product> class implements the IListSource interface,
which provides the GetList method for copying the data in the entity set into an IList
object . Like LINQ to SQL, any data related to an entity is not retrieved automatically
when an entity is instantiated . In this case, this means that whenever the application
fetches the data for a Supplier entity from the database, it does not automatically re-
trieve the data for the products related to that supplier . You saw in Chapter 25 that
LINQ to SQL provides the LoadWith method of DataLoadOptions class to specify re-
lated data that should be retrieved when a row is read from the database . The Entity
Framework provides the generic LoadProperty<T> method of the ObjectContext class,
which performs much the same task . The second statement in the preceding code
causes the Entity Framework to retrieve the products associated with a supplier each
time a supplier is fetched .

Finally, the code sets the DataContext property of the productsList control to this list of
products . This statement enables productsList control to display the items in the list of
products .

 . 7 . . On the Debug menu, click Start Without Debugging to build and run the application .

When the form runs, it should display the products for the first supplier—Exotic
Liquids . The form should look like the following image .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

582 Part V Managing Data

 . 8 . . Select a different supplier from the combo box, and verify that the list view displays the
products for that supplier . When you have finished browsing the data, close the form
and return to Visual Studio 2010 .

Using .LINQ .to .Entities .to .Query .Data
The previous exercise used data binding to fetch and display information through the
Entity Framework rather than explicitly creating and running LINQ queries . However, as
mentioned previously, you can also retrieve information from a data model built by us-
ing the Entity Framework by using LINQ to Entities . The syntax is similar to that of LINQ
to SQL, with the principal difference being that you base a LINQ to Entities query on an
ObjectQuery<T> object, where T is an EntityObject type .

For example, you can retrieve a list of product names from the Products ObjectSet in
the NorthwindEntities ObjectContext shown in the previous examples and display them
like this:

NorthwindEntities northwindContext = new NorthwindEntities();
ObjectQuery<Product> products = northwindContext.Products;

var productNames = from p in products
 select p.ProductName;

foreach (var name in productNames)
{
 Console.WriteLine("Product name: {0}", name);
}

Note Strictly speaking, the Products property of the NorthwindEntities class has the type
ObjectSet<Products> . However, the ObjectSet<T> type inherits from ObjectQuery<T>, so
you can safely assign the Products property to an ObjectQuery<Products> variable .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 26 Displaying and Editing Data by Using the Entity Framework and Data Binding 583

LINQ to Entities supports most of the standard LINQ query operators, although there
are a few exceptions described in the documentation supplied with Visual Studio 2010 .
You can join data from multiple tables, order the results, and perform operations such
as grouping data and calculating aggregate values . For more information, refer back to
Chapter 20, “Querying In-Memory Data by Using Query Expressions .”

The next step in the Suppliers application is to provide functionality enabling the user to
modify the details of products, remove products, and create new products . Before you can
do that, you need to learn how to use the Entity Framework to update data .

Using .Data .Binding .to .Modify .Data
The Entity Framework provides a two-way communication channel with a database . You
have seen how to use data binding with the Entity Framework to fetch data, but you can also
modify the information you have retrieved and send these changes back to the database .

Updating Existing Data
When you retrieve data by using an ObjectContext object, the objects created from this data
are held in an in-memory cache within the application . You can change the values of objects
held in this cache in exactly the same way that you change the values in any ordinary ob-
ject—by setting their properties . However, updating an object in memory does not update
the database . To persist changes to the database, you need to generate the appropriate SQL
UPDATE commands and arrange for them to be executed by the database server . You can
do this quite easily with the Entity Framework . The following code fragment shows a LINQ to
Entities query that fetches product number 14 . The code then changes the name of the prod-
uct to “Bean Curd” (product 14 was originally named “Tofu” in the Northwind database) and
sends the change back to the database:

NorthwindEntities northwindContext = new NorthwindEntities();
Product product = northwindContext.Products.Single(p => p.ProductID == 14);
product.ProductName = "Bean Curd";
northwindContext.SaveChanges();

The key statement in this code example is the call to the SaveChanges method of the
ObjectContext object . (Remember that NorthwindEntities inherits from ObjectContext .) When
you modify the information in an entity object that was populated by running a query, the
ObjectContext object managing the connection that was used to run the original query tracks
the changes you make to the data . The SaveChanges method propagates these changes back
to the database . Behind the scenes, the ObjectContext object constructs and executes a SQL
UPDATE statement .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

584 Part V Managing Data

If you fetch and modify several products, you need to call SaveChanges only once, after
the final modification . The SaveChanges method batches all of the updates together . The
ObjectContext object creates a database transaction and performs all of the SQL UPDATE
statements within this transaction . If any of the updates fail, the transaction is aborted, all
the changes made by the SaveChanges method are rolled back in the database, and the
SaveChanges method throws an exception . If all the updates succeed, the transaction is
 committed, and the changes become permanent in the database . You should note that if
the SaveChanges method fails, only the database is rolled back; your changes are still pres-
ent in the entity objects in memory . The exception thrown when the SaveChanges method
fails provides some information on the reason for the failure . You can attempt to rectify the
 problem and call SaveChanges again .

The ObjectContext class also provides the Refresh method . With this method, you can repop-
ulate EntityObject collections in the cache from the database and discard any changes you
have made . You use it like this:

northwindContext.Refresh(RefreshMode.StoreWins, northwindContext.Products);

The first parameter is a member of the System.Data.Objects.RefreshMode enumeration .
Specifying the value RefreshMode.StoreWins forces the data to be refreshed from the
 database . The second parameter is the entity in the cache to be refreshed .

Tip Change tracking is a potentially expensive operation for an ObjectContext object to
 perform . If you know that you are not going to modify data (if for example your application
 generates a read-only report), you can disable change tracking for an EntityObject object by
 setting the MergeOption property to MergeOption.NoTracking, like this:

northwindContext.Suppliers.MergeOption = MergeOption.NoTracking;

You can make changes to an entity that has change tracking disabled, but these changes will not
be saved when you call SaveChanges, and they will be lost when the application exits .

Handling Conflicting Updates
There could be any number of reasons why an update operation fails, but one of the most
common causes is conflicts occurring when two users attempt to update the same data si-
multaneously . If you think about what happens when you run an application that uses the
Entity Framework, you can see that there is plenty of scope for conflict . When you retrieve
data through an ObjectContext object, it is cached in the memory of your application .
Another user could perform the same query and retrieve the same data . If you both modify
the data and then you both call the SaveChanges method, one of you will overwrite the
changes made by the other in the database . This phenomenon is known as a lost update .

This phenomenon occurs because the Entity Framework implements optimistic concur-
rency . In other words, when it fetches data from a database it does not lock that data in the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 26 Displaying and Editing Data by Using the Entity Framework and Data Binding 585

 database . This form of concurrency enables other users to access the same data at the same
time, but it assumes that the probability of two users changing the same data is small (hence
the term optimistic concurrency .)

The opposite of optimistic concurrency is pessimistic concurrency . In this scheme, all data
is locked in the database as it is fetched and no other concurrent users can access it . This
 approach guarantees that you will not lose any changes, but it is somewhat extreme .

The Entity Framework does not directly support pessimistic concurrency . Instead, it provides
a middle ground . Each item in an EntityObject class has a property called Concurrency Mode .
By default, the Concurrency Mode is set to None, but you can change it to Fixed by using
the Entity Framework designer . The following image shows the entity model you built ear-
lier . The user has clicked the ProductName item in the Product entity and has changed the
Concurrency Mode property to Fixed in the Properties window .

When an application modifies the value in the ProductName property in an instance of the
Products EntityObject class, the Entity Framework keeps a copy of the original value of this
property in the cache . When you set the Concurrency Mode for a property, when the ap-
plication calls the SaveChanges method of the ObjectContext object, the Entity Framework
uses the cached copy of the original value to verify that the column in the corresponding
row in the database has not been changed by another user since it was fetched . If it has not,
the row is updated . If the column has changed, the SaveChanges method stops and throws
an OptimisticConcurrencyException exception . When this happens, all changes made by the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

586 Part V Managing Data

SaveChanges method in the database are undone, although the changes still remain in the
cache in your application .

When an OptimisticConcurrencyException exception arises, you can determine which entity
caused the conflict by examining the StateEntries property of the exception object . This
property holds a collection of ObjectStateEntry objects . The ObjectStateEntry class itself
 contains a number of properties . The most important are the Entity property, which contains
a reference to the entity that caused the conflict; the CurrentValues property, which con-
tains the modified data for the entity; and the OriginalValues property, which contains the
data for the entity originally retrieved from the database .

The recommended approach to resolving conflicts is to use the Refresh method to reload the
cache from the database and call SaveChanges again . The Refresh method repopulates the
original values for a specified entity (passed as the second parameter) with up-to-date values
from the database . If the user has made a large number of changes, you might not want to
force the user to rekey them . Fortunately, the RefreshMode parameter of the Refresh method
enables you to handle this situation . The RefreshMode enumeration defines two values:

n . StoreWins The current values for the entity will be overwritten with the up-to-date
values from the database . Any changes made to the entity by the user are lost .

n . ClientWins The current values for the entity will not be overwritten with the values
from the database . Any changes made to the entity by the user are retained in the
cache and will be propagated to the database the next time SaveChanges is called .

The following code shows an example that attempts to modify the name of the product in
the Products ObjectSet with the ProductID of 14, and then save this change to the database .
If another user has already modified this same data, the OptimisticConcurrencyException han-
dler refreshes the original values in the cache, but it retains the modified data in the current
values in the cache, and then calls SaveChanges again .

NorthwindEntities northwindContext = new NorthwindEntities();

try
{
 Product product = northwindContext.Products.Single(p => p.ProductID == 14);
 product.ProductName = "Bean Curd";
 northwindContext.SaveChanges();
}
catch (OptimisticConcurrencyException ex)
{
 northwindContext.Refresh(RefreshMode.ClientWins, northwindContext.Products);
 northwindContext.SaveChanges();
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 26 Displaying and Editing Data by Using the Entity Framework and Data Binding 587

Important The Entity Framework stops and throws the OptimisticConcurrencyException
 exception when it detects the first conflict . If you have changed multiple rows, subsequent calls
to the SaveChanges method might detect further conflicts .

Additionally, there is a small possibility that another user might have changed the data between
the calls to Refresh and SaveChanges in the OptimisticConcurrencyException exception handler . In
a commercial application, you should be prepared to catch this exception as well .

Adding and Deleting Data
As well as modifying existing data, the Entity Framework enables you to add new items to an
ObjectSet collection and remove items from an ObjectSet collection .

When you use the Entity Framework to generate an entity model, the definition of each en-
tity includes a factory method called CreateXXX (where XXX is the name of the entity class),
which you can use to create a new entity . This method expects you to provide parameters
for each of the mandatory (non-NULL) columns in the underlying database . You can set the
values of additional columns by using the properties exposed by the entity class . You add the
new entity to an ObjectSet collection by using the AddObject method . To save the new entity
to the database, call the SaveChanges method on the ObjectContext object .

The following code example creates a new Product entity and adds it to the list of products
in the collection maintained by the NorthwindEntities context object . The code also adds
a reference to the new object to the supplier with the SupplierID of 1 . (The Add method is
provided by the Entity Framework to help maintain the relationships between entities .) The
SaveChanges method inserts the new product into the database .

NorthwindEntities northwindContext = new NorthwindEntities();

Product newProduct = Product,CreateProduct(0, "Fried Bread", false);
newProduct.UnitPrice = 55;
newProduct.QuantityPerUnit = "10 boxes";

ObjectSet<Product> products = northwindContext.Products;
products.AddObject(newProduct);

Supplier supplier = northwindContext.Suppliers.Single(s => s.SupplierID == 1);
supplier.Products.Add(newProduct);
northwindContext.SaveChanges();

Note In this example, the first parameter to the CreateProduct method is the ProductID . In the
Northwind database, the ProductID is an IDENTITY column . When you call SaveChanges, SQL
Server generates its own unique value for this column and discards the value that you specified .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

588 Part V Managing Data

Deleting an entity object from an ObjectSet collection is straightforward . You call the
DeleteObject method and specify the entity to be deleted . The following code deletes all
products with a ProductID greater than or equal to 79 . The products are removed from the
database when the SaveChanges method runs .

NorthwindEntities northwindContext = new NorthwindEntities();

var productList = from p in northwindContext.Products
 where p.productID >= 79
 select p;

ObjectSet<Product> products = northwindContext.Products;
foreach (var product in productList)
{
 products.DeleteObject(product);
}

northwindContext.SaveChanges();

Be careful when deleting rows in tables that have relationships to other tables because
such deletions can cause referential integrity errors when you update the database . For ex-
ample, in the Northwind database, if you attempt to delete a supplier that currently supplies
products, the update will fail . You must first remove all products from the supplier . You can
achieve this by using the Remove method of the Supplier class . (Like the Add method, the
Remove method is also provided by the Entity Framework .)

If an error occurs while saving changes after adding or deleting data, the SaveChanges
 method throws an UpdateException exception . You should be prepared to catch this
exception .

You now have enough knowledge to complete the Suppliers application .

Write code to modify, delete, and create products

 . 1 . . Return to the Suppliers application in Visual Studio 2010, and display the SupplierInfo .
xaml file in the Design View window .

 . 2 . . In the XAML pane, modify the definition of the productsList control to trap the
KeyDown event and invoke an event method called productsList_KeyDown . (This is the
default name of the event method .)

 . 3 . . In the Code and Text Editor window, add the following code shown in bold type to the
productsList_KeyDown method:

private void productsList_KeyDown(object sender, KeyEventArgs e)
{
 switch (e.Key)
 {
 case Key.Enter: editProduct(this.productsList.SelectedItem as Product);
 break;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 26 Displaying and Editing Data by Using the Entity Framework and Data Binding 589

 case Key.Insert: addNewProduct();
 break;

 case Key.Delete: deleteProduct(this.productsList.SelectedItem as Product);
 break;
 }
}

This method examines the key pressed by the user . If the user presses the Enter key, the
code calls the editProduct method, passing in the details of the product as a parameter .
If the user presses the Insert key, the code calls the addNewProduct method to cre-
ate and add a new product to the list for the current supplier, and if the user presses
the Delete key, the code calls the deleteProduct method to delete the product . You
will write the editProduct, addNewProduct, and deleteProduct methods in the next few
steps .

 . 4 . . Return to the Design View window . In the XAML pane, modify the definition of the
productsList control to trap the MouseDoubleClick event and invoke an event method
called productsList_MouseDoubleClick . (Again, this is the default name of the event
method .)

 . 5 . . In the Code and Text Editor window, add the following statement shown in bold type to
the productsList_MouseDoubleClick method:

private void productsList_MouseDoubleClick(object sender, KeyEventArgs e)
{
 editProduct(this.productsList.SelectedItem as Product);
}

This method simply calls the editProducts method . It is a convenience for users, who
naturally expect to edit data by double-clicking on it .

 . 6 . . Add the deleteProduct method to the SupplierInfo class, as follows:

private void deleteProduct(Product product)
{
 MessageBoxResult response = MessageBox.Show(
 String.Format("Delete {0}", product.ProductName),
 "Confirm", MessageBoxButton.YesNo, MessageBoxImage.Question,
 MessageBoxResult.No);
 if (response == MessageBoxResult.Yes)
 {
 this.northwindContext.Products.DeleteObject(product);
 saveChanges.IsEnabled = true;
 }
}

This method prompts the user to confirm that she really does want to delete the
currently selected product . The if statement calls the DeleteObject method of the
Products ObjectSet collection . Finally, the method activates the saveChanges button . In
a later step, you will add functionality to this button to send the changes made to the
Products ObjectSet collection back to the database .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

590 Part V Managing Data

 . 7 . . On the Project menu, click Add Class . In the Add New Items – Suppliers dialog box, se-
lect the Window (WPF) template, type ProductForm .xaml in the Name box, and then
click Add .

There are several approaches you can use for adding and editing products . The col-
umns in the ListView control are read-only text items, but you can create a customized
list view that contains text boxes or other controls that enable user input . However,
the simplest strategy is to create another form that enables the user to edit or add the
 details of a product .

 . 8 . . In the Design View window, click the ProductForm form, and in the Properties window,
set the ResizeMode property to NoResize, set the Height property to 225, and set the
Width property to 515 .

 . 9 . . Add three Label controls, three TextBox controls, and two Button controls anywhere on
the form . Using the Properties window, set the properties of these controls to the values
shown in the following table .

Control Property Value

label1 Content Product Name

Height 23

Width 120

Margin 17,20,0,0

VerticalAlignment Top

HorizontalAlignment Left

label2 Content Quantity Per Unit

Height 23

Width 120

Margin 17,60,0,0

VerticalAlignment Top

HorizontalAlignment Left

label3 Content Unit Price

Height 23

Width 120

Margin 17,100,0,0

VerticalAlignment Top

HorizontalAlignment Left

textBox1 Name productName

Height 21

Width 340

Margin 130,24,0,0

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 26 Displaying and Editing Data by Using the Entity Framework and Data Binding 591

Control Property Value

VerticalAlignment Top

HorizontalAlignment Left

textBox2 Name quantityPerUnit

Height 21

Width 340

Margin 130,64,0,0

VerticalAlignment Top

HorizontalAlignment Left

textBox3 Name unitPrice

Height 21

Width 120

Margin 130,104,0,0

VerticalAlignment Top

HorizontalAlignment Left

button1 Name ok

Content OK

Height 23

Width 75

Margin 130,150,0,0

VerticalAlignment Top

HorizontalAlignment Left

button2 Name cancel

Content Cancel

Height 23

Width 75

Margin 300,150,0,0

VerticalAlignment Top

HorizontalAlignment Left

The form should look like this in the Design View window:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

592 Part V Managing Data

 . 10 . . Double-click the OK button to create an event handler for the click event . In the Code
and Text Editor window displaying the ProductForm .xaml .cs file, add the following code
shown in bold type:

private void ok_Click(object sender, RoutedEventArgs e)
{
 if (String.IsNullOrEmpty(this.productName.Text))
 {
 MessageBox.Show("The product must have a name", "Error",
 MessageBoxButton.OK, MessageBoxImage.Error);
 return;
 }

 decimal result;
 if (!Decimal.TryParse(this.unitPrice.Text, out result))
 {
 MessageBox.Show("The price must be a valid number", "Error",
 MessageBoxButton.OK, MessageBoxImage.Error);
 return;
 }

 if (result < 0)
 {
 MessageBox.Show("The price must not be less than zero", "Error",
 MessageBoxButton.OK, MessageBoxImage.Error);
 return;
 }

 this.DialogResult = true;
}

The application will display this form by calling the ShowDialog method . This method
displays the form as a modal dialog box . When the user clicks a button on the form, it
closes automatically if the code for the click event sets the DialogResult property . If the
user clicks OK, this method performs some simple validation of the information entered
by the user . The Quantity Per Unit column in the database accepts null values, so the
user can leave this field on the form empty . If the user enters a valid product name
and price, the method sets the DialogResult property of the form to true . This value is
passed back to the ShowDialog method call .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 26 Displaying and Editing Data by Using the Entity Framework and Data Binding 593

 . 11 . . Return to the Design View window displaying the ProductForm .xaml file . Select the
Cancel button, and in the Properties window, set the IsCancel property to true . (Select
the check box .)

If the user clicks the Cancel button, it automatically closes the form and returns a
DialogResult value of false to the ShowDialog method .

 . 12 . . Switch to the Code and Text Editor window displaying the SupplierInfo .xaml .cs file . Add
the addNewProduct method shown here to the SupplierInfo class:

private void addNewProduct()
{
 ProductForm pf = new ProductForm();
 pf.Title = "New Product for " + supplier.CompanyName;
 if (pf.ShowDialog().Value)
 {
 Product newProd = new Product();
 newProd.ProductName = pf.productName.Text;
 newProd.QuantityPerUnit = pf.quantityPerUnit.Text;
 newProd.UnitPrice = Decimal.Parse(pf.unitPrice.Text);
 this.supplier.Products.Add(newProd);
 this.productsInfo.Add(newProd);
 saveChanges.IsEnabled = true;
 }
}

The addNewProduct method creates a new instance of the ProductForm form, sets
the Title property of this form to contain the name of the supplier, and then calls the
ShowDialog method to display the form as a modal dialog box . If the user enters some
valid data and clicks the OK button on the form, the code in the if block creates a new
Product object and populates it with the information from the ProductForm instance .
The method then adds it to the Products collection for the current supplier and also
adds it to the list displayed in the list view control on the form . Finally, the code ac-
tivates the Save Changes button . In a later step, you will add code to the click event
 handler for this button so that the user can save changes back to the database .

 . 13 . . Add the editProduct method shown here to the SupplierInfo class:

private void editProduct(Product product)
{
 ProductForm pf = new ProductForm();
 pf.Title = "Edit Product Details";
 pf.productName.Text = product.ProductName;
 pf.quantityPerUnit.Text = product.QuantityPerUnit;
 pf.unitPrice.Text = product.UnitPrice.ToString();

 if (pf.ShowDialog().Value)
 {
 product.ProductName = pf.productName.Text;
 product.QuantityPerUnit = pf.quantityPerUnit.Text;
 product.UnitPrice = Decimal.Parse(pf.unitPrice.Text);
 saveChanges.IsEnabled = true;
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

594 Part V Managing Data

The editProduct method also creates an instance of the ProductForm form . This time, as
well as setting the Title property, the code also populates the fields on the form with
the information from the currently selected product . When the form is displayed, the
user can edit these values . If the user clicks the OK button to close the form, the code
in the if block copies the new values back to the currently selected product before
 activating the Save Changes button . Notice that this time you do not need to update
the current item manually in the productsInfo list because the Product class notifies the
list view control of changes to its data automatically .

 . 14 . . Return to the Design View window displaying the SupplierInfo .xaml file . Double-click
the Save Changes button to create the click event handler method .

 . 15 . . In the Code and Text Editor window, add the following using statements to the list at
the top of the file:

using System.Data;
using System.Data.Objects;

These namespaces contain many of the types used by the Entity Framework .

 . 16 . . Find the saveChanges_Click method, and add the code shown here in bold type to this
method:

private void saveChanges_Click(object sender, RoutedEventArgs e)
{
 try
 {
 this.northwindContext.SaveChanges();
 saveChanges.IsEnabled = false;
 }
 catch (OptimisticConcurrencyException)
 {
 this.northwindContext.Refresh(RefreshMode.ClientWins,
 northwindContext.Products);
 this.northwindContext.SaveChanges();
 }
 catch (UpdateException uEx)
 {
 MessageBox.Show(uEx.InnerException.Message, "Error saving changes");
 this.northwindContext.Refresh(RefreshMode.StoreWins,
 northwindContext.Products);
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message, "Error saving changes");
 this.northwindContext.Refresh(RefreshMode.StoreWins,
 northwindContext.Products);
 }
}

This method calls the SaveChanges method of the ObjectContext object to send all
the changes back to the database . The exception handlers catch any exceptions that
might occur . The OptimisticConcurrencyException handler uses the strategy described
earlier to refresh the cache and save the changes again . The UpdateException handler

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 26 Displaying and Editing Data by Using the Entity Framework and Data Binding 595

reports the error to the user and then refreshes the cache from the database by speci-
fying the RefreshMode.StoreWins parameter . (This causes the changes made by the
user to be discarded .) Note that the most meaningful data for this exception is held in
the InnerException property of the exception (although you might not want to display
this type of information to a user!) . If any other type of exception occurs, the Exception
 handler displays a simple message and refreshes the cache from the database .

Test the Suppliers application

 . 1 . . On the Debug menu, click Start Without Debugging to build and run the application .
When the form appears displaying the products supplied by Exotic Liquids, click prod-
uct 3 (Aniseed Syrup) and then press Enter or double-click the row . The Edit Product
Details form should appear . Change the value in the Unit Price field to 12 .5, and then
click OK . Verify that the new price is copied back to the list view .

 . 2 . . Press the Insert key . The New Product for Exotic Liquids form should appear . Enter a
product name, quantity per unit, and price, and then click OK . Verify that the new
product is added to the list view .

The value in the Product ID column should be 0 . This value is an identity column in the
database, so SQL Server will generate its own unique value for this column when you
save the changes .

 . 3 . . Click Save Changes . After the data is saved, the ID for the new product is displayed in
the list view .

 . 4 . . Click the new product, and then press the Delete key . In the Confirm dialog box, click
Yes . Verify that the product disappears from the form . Click Save Changes again, and
verify that the operation completes without any errors .

Feel free to experiment by adding, removing, and editing products for other suppliers .
You can make several modifications before clicking Save Changes—the SubmitChanges
method saves all changes made since the data was retrieved or last saved .

Tip If you accidentally delete or overwrite the data for a product that you want to keep,
close the application without clicking Save Changes . Note that the application as written
does not warn the user if the user tries to exit without first saving changes .

Alternatively, you can add a Discard Changes button to the application that calls the
Refresh method of the northwindContext ObjectContext object to repopulate its tables
from the database, as shown in the exception handlers in the previous exercise .

 . 5 . . Close the form, and return to Visual Studio 2010 .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

596 Part V Managing Data

In this chapter, you learned how to use the Entity Framework to generate an entity model for
a database . You saw how to use the entity model from a WPF application by binding controls
to collections of entities . You also saw how to use LINQ to Entities to access data through an
entity model .

n If you want to continue to the next chapter

Keep Visual Studio 2010 running, and turn to Chapter 27 .

n If you want to exit Visual Studio 2010 now

On the File menu, click Exit . If you see a Save dialog box, click Yes and save the project .

Chapter .26 .Quick .Reference
To Do .this

Create entity classes by using the
Entity Framework

Add a new class to the project by using the ADO.NET Entity Data Model
template . Use the Entity Model Wizard to connect to the database con-
taining the tables that you want to model, and select the tables that you
require .

Display data from an entity object
or collection in a WPF control

Define a binding for the appropriate property of the control . If the
 control displays a list of objects, set the DataContext property of the con-
trol to a collection of entity objects . If the control displays the data for
a single object, set the DataContext property of the control to an entity
object and specify the property of the entity object to display in the Path
attribute of the binding .

Modify information in a database
by using the Entity Framework

First do one of the following:

n . To update a row in a table in the database, fetch the data for the row
into an entity object, and assign the new values to the appropriate
properties of the entity object .

n . To insert a new row into a table in the database, create a new in-
stance of the corresponding entity object by using the CreateXXX
factory method generated for this entity class (where XXX is the
name of the entity) . Set its properties, and then call the AddObject
method of the appropriate ObjectSet collection, specifying the new
entity object as the parameter .

n . To remove a row from a table in the database, call the DeleteObject
method of the appropriate ObjectSet collection, specifying the entity
object to be removed as the parameter .

Then, after making all your changes, call the SaveChanges method of the
ObjectContext object to propagate the modifications to the database .

Handle conflicts when updating
a database by using the Entity
Framework

Provide a handler for the OptimisticConcurrencyException . In the
 exception handler, call the Refresh method of the ObjectContext object to
retrieve the most recent data from the database for the original values in
the cache, and then call SaveChanges again .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Microsoft Visual C# 2010 Step by Step

 . . 597

Part VI

Building Professional Solutions
with Visual Studio 2010

In this part:

Introducing the Task Parallel Library . 599

Performing Parallel Data Access . 649

Creating and Using a Web Service . 683

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 . . 599

Chapter 27

Introducing the Task Parallel Library
After completing the chapter, you will be able to

n Describe the benefits that implementing parallel operations in an application can bring .

n Explain how the Task Parallel Library provides an optimal platform for implementing
applications that can take advantage of multiple processor cores .

n Use the Task class to create and run parallel operations in an application .

n Use the Parallel class to parallelize some common programming constructs .

n Use tasks with threads to improve responsiveness and throughput in graphical user
 interface (GUI) applications .

n Cancel long-running tasks, and handle exceptions raised by parallel operations .

You have now seen how to use Microsoft Visual C# to build applications that provide a
graphical user interface and that can manage data held in a database . These are common
features of most modern systems . However, as technology has advanced so have the require-
ments of users, and the applications that enable them to perform their day-to-day opera-
tions need to provide ever-more sophisticated solutions . In the final part of this book, you
will look at some of the advanced features introduced with the .NET Framework 4 .0 . In par-
ticular, in this chapter you will see how to improve concurrency in an application by using the
Task Parallel Library . In the next chapter, you will see how the parallel extensions provided
with the .NET Framework can be used in conjunction with Language Integrated Query (LINQ)
to improve the throughput of data access operations . And in the final chapter, you will meet
Windows Communication Foundation for building distributed solutions that can incorporate
services running on multiple computers . As a bonus, the appendix (provided on the CD) de-
scribes how to use the Dynamic Language Runtime to build C# applications and components
that can interoperate with services built by using other languages that operate outside of the
structure provided by the .NET Framework, such as Python and Ruby .

In the bulk of the preceding chapters in this book, you learned how to use C# to write
 programs that run in a single-threaded manner . By “single-threaded,” I mean that at any
one point in time, a program has been executing a single instruction . This might not always
be the most efficient approach for an application to take . For example, you saw in Chapter
23, “Gathering User Input,” that if your program is waiting for the user to click a button on
a Windows Presentation Foundation (WPF) form, there might be other work that it can per-
form while it is waiting . However, if a single-threaded program has to perform a lengthy, pro-
cessor-intensive calculation, it cannot respond to the user typing in data on a form or clicking
a menu item . To the user, the application appears to have frozen . Only when the calculation

http://lib.ommolketab.ir
http//lib.ommolketab.ir

600 Part VI Building Professional Solutions with Visual Studio 2010

has completed does the user interface start responding again . Applications that can perform
multiple tasks at the same time can make far better use of the resources available on a com-
puter, can run more quickly, and can be more responsive . Additionally, some individual tasks
might run more quickly if you can divide them into parallel paths of execution that can run
concurrently . In Chapter 23, you saw how WPF can take advantage of threads to improve re-
sponsiveness in a graphical user interface . In this chapter, you will learn how to use the Task
Parallel Library to implement a more generic form of multitasking in your programs that can
apply to computationally intensive applications and not just those concerned with managing
user interfaces .

Why .Perform .Multitasking .by .Using .Parallel .Processing?
As mentioned in the introduction, there are two principle reasons why you might want to
perform multitasking in an application:

n To improve responsiveness You can give the user of an application the impression
that the program is performing more than one task at a time by dividing the program
up into concurrent threads of execution and allowing each thread to run in turn for
a short period of time . This is the conventional co-operative model that many expe-
rienced Windows developers are familiar with . However, it is not true multitasking
because the processor is shared between threads, and the co-operative nature of this
approach requires that the code executed by each thread behaves in an appropriate
manner . If one thread dominates the CPU and resources available at the expense of
other threads, the advantages of this approach are lost . It is sometimes difficult to write
well-behaved applications that follow this model consistently .

n To improve scalability You can improve scalability by making efficient use of the
processing resources available and using these resources to reduce the time required
to execute parts of an application . A developer can determine which parts of an ap-
plication can be performed in parallel and arrange for them to be run concurrently .
As more computing resources are added, more tasks can be run in parallel . Until re-
cently, this model was suitable only for systems that either had multiple CPUs or were
able to spread the processing across different computers networked together . In both
cases, you had to use a model that arranged for coordination between parallel tasks .
Microsoft provides a specialized version of Windows called High Performance Compute
(HPC) Server 2008, which enables an organization to build clusters of servers that can
distribute and execute tasks in parallel . Developers can use the Microsoft implemen-
tation of the Message Passing Interface (MPI), a well-known language-independent
communications protocol, to build applications based on parallel tasks that coordinate
and cooperate with each other by sending messages . Solutions based on Windows
HPC Server 2008 and MPI are ideal for large-scale, compute-bound engineering and
 scientific applications, but they are expensive for smaller scale, desktop systems .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 27 Introducing the Task Parallel Library 601

From these descriptions, you might be tempted to conclude that the most cost-effective
way to build multitasking solutions for desktop applications is to use the cooperative multi-
threaded approach . However, the multithreaded approach was simply intended as a mecha-
nism to provide responsiveness—to enable computers with a single processor to ensure that
each task got a fair share of the processor . It is not well-suited for multiprocessor machines
because it is not designed to distribute the load across processors and, consequently, does
not scale well . While desktop machines with multiple processors were expensive (and con-
sequently relatively rare), this was not an issue . However, this situation is changing, as I will
briefly explain .

The Rise of the Multicore Processor
Ten years ago, the cost of a decent personal computer was in the range of $500 to $1000 .
Today, a decent personal computer still costs about the same, even after ten years of price
inflation . The specification of a typical PC these days is likely to include a processor running
at a speed of between 2 GHz and 3 GHz, 500 GB of hard disk storage, 4 GB of RAM, high-
speed and high-resolution graphics, and a rewritable DVD drive . Ten years ago, the processor
speed for a typical machine was between 500 MHz and 1 GHz, 80 GB was a big hard drive,
Windows ran quite happily with 256 MB or less of RAM, and rewritable CD drives cost well
over $100 . (Rewritable DVD drives were rare and extremely expensive .) This is the joy of tech-
nological progress: ever faster and more powerful hardware at cheaper and cheaper prices .

This is not a new trend . In 1965, Gordon E . Moore, co-founder of Intel, wrote a paper titled
“Cramming more components onto integrated circuits,” which discussed how the increasing
miniaturization of components enabled more transistors to be embedded on a silicon chip,
and how the falling costs of production as the technology became more accessible would
lead economics to dictate squeezing as many as 65,000 components onto a single chip by
1975 . Moore’s observations lead to the dictum frequently referred to as “Moore’s Law,” which
basically states that the number of transistors that can be placed inexpensively on an inte-
grated circuit will increase exponentially, doubling approximately every two years . (Actually,
Gordon Moore was more optimistic than this initially, postulating that the volume of transis-
tors was likely to double every year, but he later modified his calculations .) The ability to pack
transistors together led to the ability to pass data between them more quickly . This meant we
could expect to see chip manufacturers produce faster and more powerful microprocessors
at an almost unrelenting pace, enabling software developers to write ever more complicated
software that would run more quickly .

Moore’s Law concerning the miniaturization of electronic components still holds, even after
more than 40 years . However, physics has started to intervene . There comes a limit when it is
not possible transmit signals between transistors on a single chip any more quickly, no matter
how small or densely packed they are . To a software developer, the most noticeable result of

http://lib.ommolketab.ir
http//lib.ommolketab.ir

602 Part VI Building Professional Solutions with Visual Studio 2010

this limitation is that processors have stopped getting faster . Six years ago, a fast processor
ran at 3 GHz . Today, a fast processor still runs at 3 GHz .

The limit to the speed at which processors can transmit data between components has
caused chip companies to look at alternative mechanisms for increasing the amount of work
a processor can do . The result is that most modern processors now have two or more proces-
sor cores . Effectively, chip manufacturers have put multiple processors on the same chip and
added the necessary logic to enable them to communicate and coordinate with each other .
Dual-core processors (two cores) and quad-core processors (four cores) are now common .
Chips with 8, 16, 32, and 64 cores are available, and the price of these is expected to fall
sharply in the near future . So, although processors have stopped speeding up, you can now
expect to get more of them on a single chip .

What does this mean to a developer writing C# applications?

In the days before multicore processors, a single-threaded application could be sped up
simply by running it on a faster processor . With multicore processors, this is no longer the
case . A single-threaded application will run at the same speed on a single-core, dual-core,
or quad-core processor that all have the same clock frequency . The difference is that on a
dual-core processor, one of the processor cores will be sitting around idle, and on a quad-
core processor, three of the cores will be simply ticking over waiting for work . To make the
best use of multicore processors, you need to write your applications to take advantage of
multitasking .

Implementing .Multitasking .in .a .Desktop .Application
Multitasking is the ability to do more than one thing at the same time . It is one of those
 concepts that is easy to describe but that, until recently, has been difficult to implement .

In the optimal scenario, an application running on a multicore processor performs as many
concurrent tasks as there are processor cores available, keeping each of the cores busy .
However, there are many issues you have to consider to implement concurrency, including
the following:

n How can you divide an application into a set of concurrent operations?

n How can you arrange for a set of operations to execute concurrently, on multiple
processors?

n How can you ensure that you attempt to perform only as many concurrent operations
as there are processors available?

n If an operation is blocked (such as while it is waiting for I/O to complete), how can
you detect this and arrange for the processor to run a different operation rather than
sit idle?

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 27 Introducing the Task Parallel Library 603

n How can you determine when one or more concurrent operations have completed?

n How can you synchronize access to shared data to ensure that two or more concurrent
operations do not inadvertently corrupt each other’s data?

To an application developer, the first question is a matter of application design . The
 remaining questions depend on the programmatic infrastructure—Microsoft provides the
Task Parallel Library (TPL) to help address these issues .

In Chapter 28, “Performing Parallel Data Access,” you will see how some query-oriented
problems have naturally parallel solutions, and how you can use the ParallelEnumerable type
of PLINQ to parallelize query operations . However, sometimes you need a more imperative
approach for more generalized situations . The TPL contains a series of types and operations
that enable you to more explicitly specify how you want to divide an application into a set of
parallel tasks .

Tasks, Threads, and the ThreadPool
The most important type in the TPL is the Task class . The Task class is an abstraction of a
concurrent operation . You create a Task object to run a block of code . You can instantiate
multiple Task objects and start them running in parallel if sufficient processors or processor
cores are available .

Note From now on, I will use the term “processor” to refer to either a single-core processor or a
single processor core on a multicore processor .

Internally, the TPL implements tasks and schedules them for execution by using Thread
 objects and the ThreadPool class . Multithreading and thread pools have been available
with the .NET Framework since version 1 .0, and you can use the Thread class in the System.
Threading namespace directly in your code . However, the TPL provides an additional degree
of abstraction that enables you to easily distinguish between the degree of parallelization in
an application (the tasks) and the units of parallelization (the threads) . On a single-processor
computer, these items are usually the same . However, on a computer with multiple proces-
sors or with a multicore processor, they are different . If you design a program based directly
on threads, you will find that your application might not scale very well; the program will
use the number of threads you explicitly create, and the operating system will schedule only
that number of threads . This can lead to overloading and poor response time if the number
of threads greatly exceeds the number of available processors, or to inefficiency and poor
throughput if the number of threads is less than the number of processors .

The TPL optimizes the number of threads required to implement a set of concurrent tasks
and schedules them efficiently according to the number of available processors . The TPL uses
a set of threads provided by the .NET Framework, called the ThreadPool, and implements

http://lib.ommolketab.ir
http//lib.ommolketab.ir

604 Part VI Building Professional Solutions with Visual Studio 2010

a queuing mechanism to distribute the workload across these threads . When a program
 creates a Task object, the task is added to a global queue . When a thread becomes available,
the task is removed from the global queue and is executed by that thread . The ThreadPool
implements a number of optimizations and uses a work-stealing algorithm to ensure that
threads are scheduled efficiently .

Note The ThreadPool was available in previous editions of the .NET Framework, but it has been
enhanced significantly in the .NET Framework 4 .0 to support Tasks .

You should note that the number of threads created by the .NET Framework to handle your
tasks is not necessarily the same as the number of processors . Depending on the nature
of the workload, one or more processors might be busy performing high-priority work for
other applications and services . Consequently, the optimal number of threads for your ap-
plication might be less than the number of processors in the machine . Alternatively, one or
more threads in an application might be waiting for long-running memory access, I/O, or a
network operation to complete, leaving the corresponding processors free . In this case, the
optimal number of threads might be more than the number of available processors . The .NET
Framework follows an iterative strategy, known as a hill-climbing algorithm, to dynamically
determine the ideal number of threads for the current workload .

The important point is that all you have to do in your code is divide your application into
tasks that can be run in parallel . The .NET Framework takes responsibility for creating the
 appropriate number of threads based on the processor architecture and workload of your
computer, associating your tasks with these threads and arranging for them to be run ef-
ficiently . It does not matter if you divide your work into too many tasks because the .NET
Framework will attempt to run only as many concurrent threads as is practical; in fact, you are
encouraged to overpartition your work because this will help to ensure that your application
scales if you move it onto a computer that has more processors available .

Creating, Running, and Controlling Tasks
The Task object and the other types in the TPL reside in the System.Threading.Tasks
namespace . You can create Task objects by using the Task constructor . The Task construc-
tor is overloaded, but all versions expect you to provide an Action delegate as a parameter .
Remember from Chapter 23 that an Action delegate references a method that does not
return a value . A task object uses this delegate to run the method when it is scheduled .
The following example creates a Task object that uses a delegate to run the method called

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 27 Introducing the Task Parallel Library 605

doWork (you can also use an anonymous method or a lambda expression, as shown by the
code in the comments):

Task task = new Task(new Action(doWork));
// Task task = new Task(delegate { this.doWork(); });
// Task task = new Task(() => { this.doWork(); });
...
private void doWork()
{
 // The task runs this code when it is started
 ...
}

Note In many cases, you can let the compiler infer the Action delegate type itself and simply
specify the method to run . For example, you can rephrase the first example just shown as follows:

Task task = new Task(doWork);

The delegate inference rules implemented by the compiler apply not just to the Action type, but
anywhere you can use a delegate . You will see many more examples throughout the remainder
of this book .

The default Action type references a method that takes no parameters . Other overloads of
the Task constructor take an Action<object> parameter representing a delegate that refers to
a method that takes a single object parameter . These overloads enable you to pass data into
the method run by the task . The following code shows an example:

Action<object> action;
action = doWorkWithObject;
object parameterData = ...;
Task task = new Task(action, parameterData);
...
private void doWorkWithObject(object o)
{
 ...
}

After you create a Task object, you can set it running by using the Start method, like this:

Task task = new Task(...);
task.Start();

The Start method is also overloaded, and you can optionally specify a TaskScheduler object
to control the degree of concurrency and other scheduling options . It is recommended that
you use the default TaskScheduler object built into the .NET Framework, or you can define
your own custom TaskScheduler class if you want to take more control over the way in which
tasks are queued and scheduled . The details of how to do this are beyond the scope of

http://lib.ommolketab.ir
http//lib.ommolketab.ir

606 Part VI Building Professional Solutions with Visual Studio 2010

this book, but if you require more information look at the description of the TaskScheduler
 abstract class in the .NET Framework Class Library documentation provided with Visual
Studio .

You can obtain a reference to the default TaskScheduler object by using the static Default
property of the TaskScheduler class . The TaskScheduler class also provides the static Current
property, which returns a reference to the TaskScheduler object currently used . (This
TaskScheduler object is used if you do not explicitly specify a scheduler .) A task can provide
hints to the default TaskScheduler about how to schedule and run the task if you specify a
value from the TaskCreationOptions enumeration in the Task constructor . For more informa-
tion about the TaskCreationOptions enumeration, consult the documentation describing the
 .NET Framework Class Library provided with Visual Studio .

When the method run by the task completes, the task finishes, and the thread used to run
the task can be recycled to execute another task .

Normally, the scheduler arranges to perform tasks in parallel wherever possible, but you can
also arrange for tasks to be scheduled serially by creating a continuation . You create a contin-
uation by calling the ContinueWith method of a Task object . When the action performed by
the Task object completes, the scheduler automatically creates a new Task object to run the
action specified by the ContinueWith method . The method specified by the continuation ex-
pects a Task parameter, and the scheduler passes in a reference to the task that completed to
the method . The value returned by ContinueWith is a reference to the new Task object . The
following code example creates a Task object that runs the doWork method and specifies a
continuation that runs the doMoreWork method in a new task when the first task completes:

Task task = new Task(doWork);
task.Start();
Task newTask = task.ContinueWith(doMoreWork);
...
private void doWork()
{
 // The task runs this code when it is started
 ...
}
...
private void doMoreWork(Task task)
{
 // The continuation runs this code when doWork completes
 ...
}

The ContinueWith method is heavily overloaded, and you can provide a number
of parameters that specify additional items, such as the TaskScheduler to use and a
TaskContinuationOptions value . The TaskContinuationOptions type is an enumeration that

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 27 Introducing the Task Parallel Library 607

contains a superset of the values in the TaskCreationOptions enumeration . The additional
 values available include

n NotOnCanceled and OnlyOnCanceled The NotOnCanceled option specifies that the
continuation should run only if the previous action completes and is not canceled, and
the OnlyOnCanceled option specifies that the continuation should run only if the previ-
ous action is canceled . The section “Canceling Tasks and Handling Exceptions” later in
this chapter describes how to cancel a task .

n NotOnFaulted and OnlyOnFaulted The NotOnFaulted option indicates that the con-
tinuation should run only if the previous action completes and does not throw an un-
handled exception . The OnlyOnFaulted option causes the continuation to run only if
the previous action throws an unhandled exception . The section “Canceling Tasks and
Handling Exceptions” provides more information on how to manage exceptions in a
task .

n NotOnRanToCompletion and OnlyOnRanToCompletion The NotOnRanToCompletion
option specifies that the continuation should run only if the previous action does
not complete successfully; it must either be canceled or throw an exception .
OnlyOnRanToCompletion causes the continuation to run only if the previous action
completes successfully .

The following code example shows how to add a continuation to a task that runs only if the
initial action does not throw an unhandled exception:

Task task = new Task(doWork);
task.ContinueWith(doMoreWork, TaskContinuationOptions.NotOnFaulted);
task.Start();

If you commonly use the same set of TaskCreationOptions values and the same TaskScheduler
object, you can use a TaskFactory object to create and run a task in a single step . The con-
structor for the TaskFactory class enables you to specify the task scheduler, task creation
options, and task continuation options that tasks constructed by this factory should use . The
TaskFactory class provides the StartNew method to create and run a Task object . Like the
Start method of the Task class, the StartNew method is overloaded, but all of them expect a
reference to a method that the task should run .

The following code shows an example that creates and runs two tasks using the same task
factory:

TaskScheduler scheduler = TaskScheduler.Current;
TaskFactory taskFactory = new TaskFactory(scheduler, TaskCreationOptions.None,
 TaskContinuationOptions.NotOnFaulted);
Task task = taskFactory.StartNew(doWork);
Task task2 = taskFactory.StartNew(doMoreWork);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

608 Part VI Building Professional Solutions with Visual Studio 2010

Even if you do not currently specify any particular task creation options and you use the
default task scheduler, you should still consider using a TaskFactory object; it ensures con-
sistency, and you will have less code to modify to ensure that all tasks run in the same man-
ner if you need to customize this process in the future . The Task class exposes the default
TaskFactory used by the TPL through the static Factory property . You can use it like this:

Task task = Task.Factory.StartNew(doWork);

A common requirement of applications that invoke operations in parallel is to synchronize
tasks . The Task class provides the Wait method, which implements a simple task coordination
method . It enables you to suspend execution of the current thread until the specified task
completes, like this:

task2.Wait(); // Wait at this point until task2 completes

You can wait for a set of tasks by using the static WaitAll, and WaitAny methods of the Task
class . Both methods take a params array containing a set of Task objects . The WaitAll method
waits until all specified tasks have completed, and WaitAny stops until at least one of the
specified tasks has finished . You use them like this:

Task.WaitAll(task, task2); // Wait for both task and task2 to complete
Task.WaitAny(task, task2); // Wait for either of task or task2 to complete

Using the Task Class to Implement Parallelism
In the next exercise, you will use the Task class to parallelize processor-intensive code in an
application, and you will see how this parallelization reduces the time taken for the applica-
tion to run by spreading the computations across multiple processor cores .

The application, called GraphDemo, comprises a WPF form that uses an Image control to
display a graph . The application plots the points for the graph by performing a complex
calculation .

Note The exercises in this chapter are intended to run on a computer with a multicore
 processor . If you have only a single-core CPU, you will not observe the same effects . Also, you
should not start any additional programs or services between exercises because these might
 affect the results that you see .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 27 Introducing the Task Parallel Library 609

Examine and run the GraphDemo single-threaded application

 . 1 . . Start Microsoft Visual Studio 2010 if it is not already running .

 . 2 . . Open the GraphDemo solution, located in the \Microsoft Press\Visual CSharp Step By
Step\Chapter 27\GraphDemo folder in your Documents folder .

 . 3 . . In Solution Explorer, in the GraphDemo project, double-click the file GraphWindow .
xaml to display the form in the Design View window .

 . . The form contains the following controls:

n An Image control called graphImage . This image control displays the graph
 rendered by the application .

n A Button control called plotButton . The user clicks this button to generate the
data for the graph and display it in the graphImage control .

n A Label control called duration . The application displays the time taken to
 generate and render the data for the graph in this label .

 . 4 . . In Solution Explorer, expand GraphWindow .xaml, and then double-click GraphWindow .
xaml .cs to display the code for the form in the Code and Text Editor window .

The form uses a System.Windows.Media.Imaging.WriteableBitmap object called
 graphBitmap to render the graph . The variables pixelWidth and pixelHeight specify the
horizontal and vertical resolution, respectively, for the WriteableBitmap object; the
variables dpiX and dpiY specify the horizontal and vertical density, respectively, of the
image in dots per inch:

public partial class GraphWindow : Window
{
 private static long availableMemorySize = 0;
 private int pixelWidth = 0;
 private int pixelHeight = 0;
 private double dpiX = 96.0;
 private double dpiY = 96.0;
 private WriteableBitmap graphBitmap = null;
 …
}

 . 5 . . Examine the GraphWindow constructor . It looks like this:

public GraphWindow()
{
 InitializeComponent();

 PerformanceCounter memCounter = new PerformanceCounter("Memory", "Available
Bytes");
 availableMemorySize = Convert.ToUInt64(memCounter.NextValue());

 this.pixelWidth = (int)availablePhysicalMemory / 20000;
 if (this.pixelWidth < 0 || this.pixelWidth > 15000)
 this.pixelWidth = 15000;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

610 Part VI Building Professional Solutions with Visual Studio 2010

 this.pixelHeight = (int)availablePhysicalMemory / 40000;
 if (this.pixelHeight < 0 || this.pixelHeight > 7500)
 this.pixelHeight = 7500;
}

To avoid presenting you with code that exhausts the memory available on your
computer and generates OutOfMemory exceptions, this application creates a
PerformanceCounter object to query the amount of available physical memory on the
computer . It then uses this information to determine appropriate values for the pixel-
Width and pixelHeight variables . The more available memory you have on your com-
puter, the bigger the values generated for pixelWidth and pixelHeight (subject to the
limits of 15,000 and 7500 for each of these variables, respectively) and the more you
will see the benefits of using the TPL as the exercises in this chapter proceed . However,
if you find that the application still generates OutOfMemory exceptions, increase
the divisors (20,000 and 40,000) used for generating the values of pixelWidth and
pixelHeight .

If you have a lot of memory, the values calculated for pixelWidth and pixelHeight
might overflow . In this case, they will contain negative values and the application will
fail with an exception later on . The code in the constructor checks this case and sets the
pixelWidth and pixelHeight fields to a pair of useful values that enable the application to
run correctly in this situation .

 . 6 . . Examine the code for the plotButton_Click method:

private void plotButton_Click(object sender, RoutedEventArgs e)
{
 if (graphBitmap == null)
 {
 graphBitmap = new WriteableBitmap(pixelWidth, pixelHeight, dpiX, dpiY,
PixelFormats.Gray8, null);
 }
 int bytesPerPixel = (graphBitmap.Format.BitsPerPixel + 7) / 8;
 int stride = bytesPerPixel * graphBitmap.PixelWidth;
 int dataSize = stride * graphBitmap.PixelHeight;
 byte [] data = new byte[dataSize];

 Stopwatch watch = Stopwatch.StartNew();
 generateGraphData(data);

 duration.Content = string.Format("Duration (ms): {0}", watch.ElapsedMilliseconds);
 graphBitmap.WritePixels(
 new Int32Rect(0, 0, graphBitmap.PixelWidth, graphBitmap.PixelHeight),
 data, stride, 0);
 graphImage.Source = graphBitmap;
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 27 Introducing the Task Parallel Library 611

This method runs when the user clicks the plotButton button . The code instantiates
the graphBitmap object if it has not already been created by the user clicking the
 plotButton button previously, and it specifies that each pixel represents a shade of gray,
with 8 bits per pixel . This method uses the following variables and methods:

n The bytesPerPixel variable calculates the number of bytes required to hold each
pixel . (The WriteableBitmap type supports a range of pixel formats, with up to
128 bits per pixel for full-color images .)

n The stride variable contains the vertical distance, in bytes, between adjacent pixels
in the WriteableBitmap object .

n The dataSize variable calculates the number of bytes required to hold the data for
the WriteableBitmap object . This variable is used to initialize the data array with
the appropriate size .

n The data byte array holds the data for the graph .

n The watch variable is a System.Diagnostics.Stopwatch object . The StopWatch type
is useful for timing operations . The static StartNew method of the StopWatch type
creates a new instance of a StopWatch object and starts it running . You can query
the running time of a StopWatch object by examining the ElapsedMilliseconds
property .

n The generateGraphData method populates the data array with the data for
the graph to be displayed by the WriteableBitmap object . You will examine this
 method in the next step .

n The WritePixels method of the WriteableBitmap class copies the data from a byte
array to a bitmap for rendering . This method takes an Int32Rect parameter that
specifies the area in the WriteableBitmap object to populate, the data to be used
to copy to the WriteableBitmap object, the vertical distance between adjacent
pixels in the WriteableBitmap object, and an offset into the WriteableBitmap
 object to start writing the data to .

Note You can use the WritePixels method to selectively overwrite information in a
WriteableBitmap object . In this example, the code overwrites the entire contents . For more
information about the WriteableBitmap class, consult the .NET Framework Class Library
documentation installed with Visual Studio 2010 .

n The Source property of an Image control specifies the data that the Image control
should render . This example sets the Source property to the WriteableBitmap
object .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

612 Part VI Building Professional Solutions with Visual Studio 2010

 . 7 . . Examine the code for the generateGraphData method:

private void generateGraphData(byte[] data)
{
 int a = pixelWidth / 2;
 int b = a * a;
 int c = pixelHeight / 2;

 for (int x = 0; x < a; x ++)
 {
 int s = x * x;
 double p = Math.Sqrt(b - s);
 for (double i = -p; i < p; i += 3)
 {
 double r = Math.Sqrt(s + i * i) / a;
 double q = (r - 1) * Math.Sin(24 * r);
 double y = i / 3 + (q * c);
 plotXY(data, (int)(-x + (pixelWidth / 2)), (int)(y + (pixelHeight / 2)));
 plotXY(data, (int)(x + (pixelWidth / 2)), (int)(y + (pixelHeight / 2)));
 }
 }
}

This method performs a series of calculations to plot the points for a rather complex
graph . (The actual calculation is unimportant—it just generates a graph that looks at-
tractive!) As it calculates each point, it calls the plotXY method to set the appropriate
bytes in the data array that correspond to these points . The points for the graph are
reflected around the X axis, so the plotXY method is called twice for each calculation:
once for the positive value of the X coordinate, and once for the negative value .

 . 8 . . Examine the plotXY method:

private void plotXY(byte[] data, int x, int y)
{
 data[x + y * pixelWidth] = 0xFF;
}

This is a simple method that sets the appropriate byte in the data array that corre-
sponds to X and Y coordinates passed in as parameters . The value 0xFF indicates that
the corresponding pixel should be set to white when the graph is rendered . Any pixels
left unset are displayed as black .

 . 9 . . On the Debug menu, click Start Without Debugging to build and run the application .

 . 10 . . When the Graph Demo window appears, click Plot Graph, and wait .

Please be patient . The application takes several seconds to generate and display the
graph . The following image shows the graph . Note the value in the Duration (ms) label
in the following figure . In this case, the application took 4478 milliseconds (ms) to plot
the graph .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 27 Introducing the Task Parallel Library 613

Note The application was run on a computer with 2 GB of memory and an Intel® Core 2
Duo Desktop Processor E6600 running at 2 .40 GHz . Your times might vary if you are using
a different processor or a different amount of memory . Additionally, you might notice that
it seems to take longer initially to display the graph than the reported time . This is because
of the time taken to initialize the data structures required to actually display the graph as
part of the WritePixels method of the graphBitmap control rather than the time taken to
calculate the data for the graph . Subsequent runs do not have this overhead .

 . 11 . . Click Plot Graph again, and take note of the time taken . Repeat this action several times
to get an average value .

 . 12 . . On the desktop, right-click an empty area of the taskbar, and then in the pop-up menu
click Start Task Manager .

Note Under Windows Vista, the command in the pop-up menu is called Task Manager .

 . 13 . . In the Windows Task Manager, click the Performance tab .

 . 14 . . Return to the Graph Demo window and then click Plot Graph .

 . 15 . . In the Windows Task Manager, note the maximum value for the CPU usage while the
graph is being generated . Your results will vary, but on a dual-core processor the CPU
utilization will probably be somewhere around 50–55 percent, as shown in the follow-
ing image . On a quad-core machine, the CPU utilization will likely be below 30 percent .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

614 Part VI Building Professional Solutions with Visual Studio 2010

 . 16 . . Return to the Graph Demo window, and click Plot Graph again . Note the value for the
CPU usage in the Windows Task Manager . Repeat this action several times to get an
average value .

 . 17 . . Close the Graph Demo window, and minimize the Windows Task Manager .

You now have a baseline for the time the application takes to perform its calculations .
However, it is clear from the CPU usage displayed by the Windows Task Manager that the
application is not making full use of the processing resources available . On a dual-core ma-
chine, it is using just over half of the CPU power, and on a quad-core machine it is employing
a little over a quarter of the CPU . This phenomenon occurs because the application is single-
threaded, and in a Windows application, a single thread can occupy only a single core on a
multicore processor . To spread the load over all the available cores, you need to divide the
application into tasks and arrange for each task to be executed by a separate thread running
on a different core .

Modify the GraphDemo application to use parallel threads

 . 1 . . Return to the Visual Studio 2010, and display the GraphWindow .xaml .cs file in the Code
and Text Editor window if it is not already open .

 . 2 . . Examine the generateGraphData method .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 27 Introducing the Task Parallel Library 615

If you think about it carefully, the purpose of this method is to populate the items in
the data array . It iterates through the array by using the outer for loop based on the x
loop control variable, highlighted in bold here:

private void generateGraphData(byte[] data)
{
 int a = pixelWidth / 2;
 int b = a * a;
 int c = pixelHeight / 2;

 for (int x = 0; x < a; x ++)
 {
 int s = x * x;
 double p = Math.Sqrt(b - s);
 for (double i = -p; i < p; i += 3)
 {
 double r = Math.Sqrt(s + i * i) / a;
 double q = (r - 1) * Math.Sin(24 * r);
 double y = i / 3 + (q * c);
 plotXY(data, (int)(-x + (pixelWidth / 2)), (int)(y + (pixelHeight / 2)));
 plotXY(data, (int)(x + (pixelWidth / 2)), (int)(y + (pixelHeight / 2)));
 }
 }
}

The calculation performed by one iteration of this loop is independent of the calcula-
tions performed by the other iterations . Therefore, it makes sense to partition the work
performed by this loop and run different iterations on a separate processor .

 . 3 . . Modify the definition of the generateGraphData method to take two additional int pa-
rameters called partitionStart and partitionEnd, as shown in bold here:

private void generateGraphData(byte[] data, int partitionStart, int partitionEnd)
{
 ...
}

 . 4 . . In the generateGraphData method, change the outer for loop to iterate between the
values of partitionStart and partitionEnd, as shown in bold here:

private void generateGraphData(byte[] data, int partitionStart, int partitionEnd)
{
 ...

 for (int x = partitionStart; x < partitionEnd; x ++)
 {
 ...
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

616 Part VI Building Professional Solutions with Visual Studio 2010

 . 5 . . In the Code and Text Editor window, add the following using statement to the list at the
top of the GraphWindow .xaml .cs file:

using System.Threading.Tasks;

 . 6 . . In the plotButton_Click method, comment out the statement that calls the
 generateGraphData method and add the statement shown next in bold that creates a
Task object by using the default TaskFactory object and starts it running:

...
Stopwatch watch = Stopwatch.StartNew();
// generateGraphData(data);
Task first = Task.Factory.StartNew(() => generateGraphData(data, 0, pixelWidth / 4));
...

The task runs the code specified by the lambda expression . The values for the
 partitionStart and partitionEnd parameters indicate that the Task object calculates the
data for the first half of the graph . (The data for the complete graph consists of points
plotted for the values between 0 and pixelWidth / 2 .)

 . 7 . . Add another statement that creates and runs a second Task object on another thread,
as shown in bold here:

...

Task first = Task.Factory.StartNew(() => generateGraphData(data, 0, pixelWidth / 4));
Task second = Task.Factory.StartNew(() => generateGraphData(data, pixelWidth / 4,
pixelWidth / 2));
...

This Task object invokes the generateGraph method and calculates the data for the
 values between pixelWidth / 4 and pixelWidth / 2 .

 . 8 . . Add the following statement that waits for both Task objects to complete their work
before continuing:

Task.WaitAll(first, second);

 . 9 . . On the Debug menu, click Start Without Debugging to build and run the application .

 . 10 . . Display the Windows Task Manager, and click the Performance tab if it is not currently
displayed .

 . 11 . . Return to the Graph Demo window, and click Plot Graph . In the Windows Task Manager,
note the maximum value for the CPU usage while the graph is being generated . When
the graph appears in the Graph Demo window, record the time taken to generate the
graph . Repeat this action several times to get an average value .

 . 12 . . Close the Graph Demo window, and minimize the Windows Task Manager .

This time you should see that the application runs significantly quicker than previ-
ously . On my computer, the time dropped to 2682 milliseconds—a reduction in time of
about 40 percent . Additionally, you should see that the application uses more cores of

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 27 Introducing the Task Parallel Library 617

the CPU . On a dual-core machine, the CPU usage peaked at 100 percent . If you have a
quad-core computer, the CPU utilization will not be as high . This is because two of the
cores will not be occupied . To rectify this and reduce the time further, add two further
Task objects and divide the work into four chunks in the plotButton_Click method, as
shown in bold here:

...
Task first = Task.Factory.StartNew(() => generateGraphData(data, 0, pixelWidth / 8));
Task second = Task.Factory.StartNew(() => generateGraphData(data, pixelWidth / 8,
pixelWidth / 4));
Task third = Task.Factory.StartNew(() => generateGraphData(data, pixelWidth / 4,
pixelWidth * 3 / 8));
Task fourth = Task.Factory.StartNew(() => generateGraphData(data, pixelWidth * 3 / 8,
pixelWidth / 2));
Task.WaitAll(first, second, third, fourth);
...

If you have only a dual-core processor, you can still try this modification, and you
should still notice a beneficial effect on the time . This is primarily because of efficiencies
in the TPL and the algorithms in the .NET Framework optimizing the way in which the
threads for each task are scheduled .

Abstracting Tasks by Using the Parallel Class
By using the Task class, you have complete control over the number of tasks your applica-
tion creates . However, you had to modify the design of the application to accommodate
the use of Task objects . You also had to add code to synchronize operations; the applica-
tion can render the graph only when all the tasks have completed . In a complex application,
 synchronization of tasks can become a nontrivial process and it is easy to make mistakes .

The Parallel class in the TPL enables you to parallelize some common programming
 constructs without requiring that you redesign an application . Internally, the Parallel class
creates its own set of Task objects, and it synchronizes these tasks automatically when they
have completed . The Parallel class is located in the System.Threading.Tasks namespace and
provides a small set of static methods you can use to indicate that code should be run in
 parallel if possible . These methods are as follows:

n Parallel.For You can use this method in place of a C# for statement . It defines a loop
in which iterations can run in parallel by using tasks . This method is heavily overloaded
(there are nine variations), but the general principle is the same for each; you specify a
start value, an end value, and a reference to a method that takes an integer parameter .
The method is executed for every value between the start value and one below the
end value specified, and the parameter is populated with an integer that specifies the
current value . For example, consider the following simple for loop that performs each
iteration in sequence:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

618 Part VI Building Professional Solutions with Visual Studio 2010

for (int x = 0; x < 100; x++)
{
 // Perform loop processing
}

Depending on the processing performed by the body of the loop, you might be able to
replace this loop with a Parallel.For construct that can perform iterations in parallel, like
this:

Parallel.For(0, 100, performLoopProcessing);
...
private void performLoopProcessing(int x)
{
 // Perform loop processing
}

The overloads of the Parallel.For method enable you to provide local data that is
 private to each thread, specify various options for creating the tasks run by the For
method, and create a ParallelLoopState object that can be used to pass state informa-
tion to other concurrent iterations of the loop . (Using a ParallelLoopState object is
 described later in this chapter .)

n Parallel .ForEach<T> You can use this method in place of a C# foreach statement .
Like the For method, ForEach defines a loop in which iterations can run in parallel . You
specify a collection that implements the IEnumerable<T> generic interface and a refer-
ence to a method that takes a single parameter of type T . The method is executed for
each item in the collection, and the item is passed as the parameter to the method .
Overloads are available that enable you to provide private local thread data and specify
options for creating the tasks run by the ForEach method .

n Parallel .Invoke You can use this method to execute a set of parameterless method
calls as parallel tasks . You specify a list of delegated method calls (or lambda expres-
sions) that take no parameters and do not return values . Each method call can be run
on a separate thread, in any order . For example, the following code makes a series of
method calls:

doWork();
doMoreWork();
doYetMoreWork();

You can replace these statements with the following code, which invokes these meth-
ods by using a series of tasks:

Parallel.Invoke(
 doWork,
 doMoreWork,
 doYetMoreWork
);

You should bear in mind that the .NET Framework determines the actual degree of
 parallelism appropriate for the environment and workload of the computer . For example, if

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 27 Introducing the Task Parallel Library 619

you use Parallel.For to implement a loop that performs 1000 iterations, the .NET Framework
does not necessarily create 1000 concurrent tasks (unless you have an exceptionally power-
ful processor with 1000 cores) . Instead, the .NET Framework creates what it considers to be
the optimal number of tasks that balances the available resources against the requirement to
keep the processors occupied . A single task might perform multiple iterations, and the tasks
coordinate with each other to determine which iterations each task will perform . An impor-
tant consequence of this is that you cannot guarantee the order in which the iterations are
executed, so you must ensure there are no dependencies between iterations; otherwise, you
might get unexpected results, as you will see later in this chapter .

In the next exercise, you will return to the original version of the GraphData application and
use the Parallel class to perform operations concurrently .

Use the Parallel class to parallelize operations in the GraphData application

 . 1 . . Using Visual Studio 2010, open the GraphDemo solution, located in the \Microsoft
Press\Visual CSharp Step By Step\Chapter 27\GraphDemo Using the Parallel Class folder
in your Documents folder .

This is a copy of the original GraphDemo application . It does not use tasks yet .

 . 2 . . In Solution Explorer, in the GraphDemo project, expand the GraphWindow .xaml node,
and then double-click GraphWindow .xaml .cs to display the code for the form in the
Code and Text Editor window .

 . 3 . . Add the following using statement to the list at the top of the file:

using System.Threading.Tasks;

 . 4 . . Locate the generateGraphData method . It looks like this:

private void generateGraphData(byte[] data)
{
 int a = pixelWidth / 2;
 int b = a * a;
 int c = pixelHeight / 2;

 for (int x = 0; x < a; x++)
 {
 int s = x * x;
 double p = Math.Sqrt(b - s);
 for (double i = -p; i < p; i += 3)
 {
 double r = Math.Sqrt(s + i * i) / a;
 double q = (r - 1) * Math.Sin(24 * r);
 double y = i / 3 + (q * c);
 plotXY(data, (int)(-x + (pixelWidth / 2)), (int)(y + (pixelHeight / 2)));
 plotXY(data, (int)(x + (pixelWidth / 2)), (int)(y + (pixelHeight / 2)));
 }
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

620 Part VI Building Professional Solutions with Visual Studio 2010

The outer for loop that iterates through values of the integer variable x is a prime
 candidate for parallelization . You might also consider the inner loop based on the
 variable i, but this loop takes more effort to parallelize because of the type of i . (The
methods in the Parallel class expect the control variable to be an integer .) Additionally,
if you have nested loops such as occur in this code, it is good practice to parallelize the
outer loops first and then test to see whether the performance of the application is suf-
ficient . If it is not, work your way through nested loops and parallelize them working
from outer to inner loops, testing the performance after modifying each one . You will
find that in many cases parallelizing outer loops has the most effect on performance,
while the effects of modifying inner loops becomes more marginal .

 . 5 . . Move the code in the body of the for loop, and create a new private void method
called calculateData with this code . The calculateData method should take an integer
parameter called x and a byte array called data . Also, move the statements that declare
the local variables a, b, and c from the generateGraphData method to the start of the
 calculateData method . The following code shows the generateGraphData method with
this code removed and the calculateData method (do not try and compile this code
yet):

private void generateGraphData(byte[] data)
{
 for (int x = 0; x < a; x++)
 {
 }
}

private void calculateData(int x, byte[] data)
{
 int a = pixelWidth / 2;
 int b = a * a;
 int c = pixelHeight / 2;

 int s = x * x;
 double p = Math.Sqrt(b - s);
 for (double i = -p; i < p; i += 3)
 {
 double r = Math.Sqrt(s + i * i) / a;
 double q = (r - 1) * Math.Sin(24 * r);
 double y = i / 3 + (q * c);
 plotXY(data, (int)(-x + (pixelWidth / 2)), (int)(y + (pixelHeight / 2)));
 plotXY(data, (int)(x + (pixelWidth / 2)), (int)(y + (pixelHeight / 2)));
 }
}

 . 6 . . In the generateGraphData method, change the for loop to a statement that calls the
static Parallel.For method, as shown in bold here:

private void generateGraphData(byte[] data)
{
 Parallel.For (0, pixelWidth / 2, (int x) => { calculateData(x, data); });
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 27 Introducing the Task Parallel Library 621

This code is the parallel equivalent of the original for loop . It iterates through the val-
ues from 0 to pixelWidth / 2 – 1 inclusive . Each invocation runs by using a task . (Each
task might run more than one iteration .) The Parallel.For method finishes only when all
the tasks it has created complete their work . Remember that the Parallel.For method
 expects the final parameter to be a method that takes a single integer parameter . It
calls this method passing the current loop index as the parameter . In this example, the
calculateData method does not match the required signature because it takes two pa-
rameters: an integer and a byte array . For this reason, the code uses a lambda expres-
sion to define an anonymous method that has the appropriate signature and that acts
as an adapter that calls the calculateData method with the correct parameters .

 . 7 . . On the Debug menu, click Start Without Debugging to build and run the application .

 . 8 . . Display the Windows Task Manager, and click the Performance tab if it is not currently
displayed .

 . 9 . . Return to the Graph Demo window, and click Plot Graph . In the Windows Task Manager,
note the maximum value for the CPU usage while the graph is being generated . When
the graph appears in the Graph Demo window, record the time taken to generate the
graph . Repeat this action several times to get an average value .

 . 10 . . Close the Graph Demo window, and minimize the Windows Task Manager .

You should notice that the application runs at a comparable speed to the previous
 version that used Task objects (and possibly slightly faster, depending on the number of
CPUs you have available), and that the CPU usage peaks at 100 percent .

When Not to Use the Parallel Class
You should be aware that despite appearances and the best efforts of the Visual Studio
development team at Microsoft, the Parallel class is not magic; you cannot use it without
due consideration and just expect your applications to suddenly run significantly faster and
produce the same results . The purpose of the Parallel class is to parallelize compute-bound,
independent areas of your code .

The key phrases in the previous paragraph are compute-bound and independent . If your code
is not compute-bound, parallelizing it might not improve performance . The next exercise
shows you that you should be careful in how you determine when to use the Parallel.Invoke
construct to perform method calls in parallel .

Determine when to use Parallel .Invoke

 . 1 . . Return to Visual Studio 2010, and display the GraphWindow .xaml .cs file in the Code and
Text Editor window if it is not already open .

 . 2 . . Examine the calculateData method .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

622 Part VI Building Professional Solutions with Visual Studio 2010

The inner for loop contains the following statements:

plotXY(data, (int)(-x + (pixelWidth / 2)), (int)(y + (pixelWidth / 2)));
plotXY(data, (int)(x + (pixelWidth / 2)), (int)(y + (pixelWidth / 2)));

These two statements set the bytes in the data array that correspond to the points
specified by the two parameters passed in . Remember that the points for the graph are
reflected around the X axis, so the plotXY method is called for the positive value of the
X coordinate and also for the negative value . These two statements look like good can-
didates for parallelization because it does not matter which one runs first, and they set
different bytes in the data array .

 . 3 . . Modify these two statements, and wrap them in a Parallel.Invoke method call, as shown
next . Notice that both calls are now wrapped in lambda expressions, and that the semi-
colon at the end of the first call to plotXY is replaced with a comma and the semi-colon
at the end of the second call to plotXY has been removed because these statements are
now a list of parameters:

Parallel.Invoke(
 () => plotXY(data, (int)(-x + (pixelWidth / 2)), (int)(y + (pixelWidth / 2))),
 () => plotXY(data, (int)(x + (pixelWidth / 2)), (int)(y + (pixelWidth / 2)))
);

 . 4 . . On the Debug menu, click Start Without Debugging to build and run the application .

 . 5 . . In the Graph Demo window, click Plot Graph . Record the time taken to generate the
graph . Repeat this action several times to get an average value .

You should find, possibly unexpectedly, that the application takes significantly longer to
run . It might be up to 20 times slower than it was previously .

 . 6 . . Close the Graph Demo window .

The questions you are probably asking at this point are, “What went wrong? Why did the
application slow down so much?” The answer lies in the plotXY method . If you take another
look at this method, you will see that it is very simple:

private void plotXY(byte[] data, int x, int y)
{
 data[x + y * pixelWidth] = 0xFF;
}

There is very little in this method that takes any time to run, and it is definitely not a com-
pute-bound piece of code . In fact, it is so simple that the overhead of creating a task, run-
ning this task on a separate thread, and waiting for the task to complete is much greater than
the cost of running this method directly . The additional overhead might account for only a
few milliseconds each time the method is called, but you should bear in mind the number
of times that this method runs; the method call is located in a nested loop and is executed
thousands of times, so all of these small overhead costs add up . The general rule is to use

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 27 Introducing the Task Parallel Library 623

Parallel.Invoke only when it is worthwhile . Reserve Parallel.Invoke for operations that are
computationally intensive .

As mentioned earlier in this chapter, the other key consideration for using the Parallel class
is that operations should be independent . For example, if you attempt to use Parallel.For to
parallelize a loop in which iterations are not independent, the results will be unpredictable .
To see what I mean, look at the following program:

using System;
using System.Threading;
using System.Threading.Tasks;

namespace ParallelLoop
{
 class Program
 {
 private static int accumulator = 0;

 static void Main(string[] args)
 {
 for (int i = 0; i < 100; i++)
 {
 AddToAccumulator(i);
 }
 Console.WriteLine("Accumulator is {0}", accumulator);
 }

 private static void AddToAccumulator(int data)
 {
 if ((accumulator % 2) == 0)
 {
 accumulator += data;
 }
 else
 {
 accumulator -= data;
 }
 }
 }
}

This program iterates through the values from 0 to 99 and calls the AddToAccumulator
 method with each value in turn . The AddToAccumulator method examines the current
value of the accumulator variable, and if it is even it adds the value of the parameter to the
 accumulator variable; otherwise, it subtracts the value of the parameter . At the end of the
program, the result is displayed . You can find this application in the ParallelLoop solution,
located in the \Microsoft Press\Visual CSharp Step By Step\Chapter 27\ParallelLoop folder in
your Documents folder . If you run this program, the value output should be –100 .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

624 Part VI Building Professional Solutions with Visual Studio 2010

To increase the degree of parallelism in this simple application, you might be tempted to
 replace the for loop in the Main method with Parallel.For, like this:

static void Main(string[] args)
{
 Parallel.For (0, 100, AddToAccumulator);
 Console.WriteLine("Accumulator is {0}", accumulator);
}

However, there is no guarantee that the tasks created to run the various invocations of
the AddToAccumulator method will execute in any specific sequence . (The code is also not
thread-safe because multiple threads running the tasks might attempt to modify the ac-
cumulator variable concurrently .) The value calculated by the AddToAccumulator method
depends on the sequence being maintained, so the result of this modification is that the
application might now generate different values each time it runs . In this simple case, you
might not actually see any difference in the value calculated because the AddToAccumulator
method runs very quickly and the .NET Framework might elect to run each invocation se-
quentially by using the same thread . However, if you make the following change shown in
bold to the AddToAccumulator method, you will get different results:

private static void AddToAccumulator(int data)
{
 if ((accumulator % 2) == 0)
 {
 accumulator += data;
 Thread.Sleep(10); // wait for 10 milliseconds
 }
 else
 {
 accumulator -= data;
 }
}

The Thread.Sleep method simply causes the current thread to wait for the specified period
of time . This modification simulates the thread, performing additional processing and affects
the way in which the .NET Framework schedules the tasks, which now run on different
threads resulting in a different sequence .

The general rule is to use Parallel.For and Parallel.ForEach only if you can guarantee that each
iteration of the loop is independent, and test your code thoroughly . A similar consideration
applies to Parallel.Invoke; use this construct to make method calls only if they are indepen-
dent and the application does not depend on them being run in a particular sequence .

Returning a Value from a Task
So far, all the examples you have seen use a Task object to run code that performs a piece
of work but does not return a value . However, you might also want to run a method that

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 27 Introducing the Task Parallel Library 625

 calculates a result . The TPL includes a generic variant of the Task class, Task<TResult>, that
you can use for this purpose .

You create and run a Task<TResult> object in a similar way as a Task object . The main dif-
ference is that the method run by the Task<TResult> object returns a value, and you specify
the type of this return value as the type parameter, T, of the Task object . For example, the
method calculateValue shown in the following code example returns an integer value . To
invoke this method by using a task, you create a Task<int> object and then call the Start
method . You obtain the value returned by the method by querying the Result property of
the Task<int> object . If the task has not finished running the method and the result is not
yet available, the Result property blocks the caller . What this means is that you don’t have to
perform any synchronization yourself, and you know that when the Result property returns a
value the task has completed its work .

Task<int> calculateValueTask = new Task<int>(() => calculateValue(...));
calculateValueTask.Start(); // Invoke the calculateValue method
...
int calculatedData = calculateValueTask.Result; // Block until calculateValueTask completes
...
private int calculateValue(...)
{
 int someValue;
 // Perform calculation and populate someValue
 ...
 return someValue;
}

Of course, you can also use the StartNew method of a TaskFactory object to create a
Task<TResult> object and start it running . The next code example shows how to use
the default TaskFactory for a Task<int> object to create and run a task that invokes the
 calculateValue method:

Task<int> calculateValueTask = Task<int>.Factory.StartNew(() => calculateValue(...));
...

To simplify your code a little (and to support tasks that return anonymous types), the
TaskFactory class provides generic overloads of the StartNew method and can infer the type
returned by the method run by a task . Additionally, the Task<TResult> class inherits from the
Task class . This means that you can rewrite the previous example like this:

Task calculateValueTask = Task.Factory.StartNew(() => calculateValue(...));
...

The next exercise gives a more detailed example . In this exercise, you will restructure
the GraphDemo application to use a Task<TResult> object . Although this exercise seems
a little academic, you might find the technique that it demonstrates useful in many real-
world situations .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

626 Part VI Building Professional Solutions with Visual Studio 2010

Modify the GraphDemo application to use a Task<TResult> object

 . 1 . . Using Visual Studio 2010, open the GraphDemo solution, located in the \Microsoft
Press\Visual CSharp Step By Step\Chapter 27\GraphDemo Using Tasks that Return
Results folder in your Documents folder .

This is a copy of the GraphDemo application that creates a set of four tasks that you
saw in an earlier exercise .

 . 2 . . In Solution Explorer, in the GraphDemo project, expand the GraphWindow .xaml node,
and then double-click GraphWindow .xaml .cs to display the code for the form in the
Code and Text Editor window .

 . 3 . . Locate the plotButton_Click method . This is the method that runs when the user clicks
the Plot Graph button on the form . Currently, it creates a set of Task objects to perform
the various calculations required and generate the data for the graph, and it waits for
these Task objects to complete before displaying the results in the Image control on the
form .

 . 4 . . Underneath the plotButton_Click method, add a new method called getDataForGraph .
This method should take an integer parameter called dataSize and return a byte array,
as shown in the following code:

private byte[] getDataForGraph(int dataSize)
{
}

You will add code to this method to generate the data for the graph in a byte array and
return this array to the caller . The dataSize parameter specifies the size of the array .

 . 5 . . Move the statement that creates the data array from the plotButton_Click method to
the getDataForGraph method as shown here in bold:

private byte[] getDataForGraph(int dataSize)
{
 byte[] data = new byte[dataSize];
}

 . 6 . . Move the code that creates, runs, and waits for the Task objects that populate the data
array from the plotButton_Click method to the getDataForGraph method, and add a
return statement to the end of the method that passes the data array back to the caller .
The completed code for the getDataForGraph method should look like this:

private byte[] getDataForGraph(int dataSize)
{
 byte[] data = new byte[dataSize];
 Task first = Task.Factory.StartNew(() => generateGraphData(data, 0, pixelWidth /
8));
 Task second = Task.Factory.StartNew(() => generateGraphData(data, pixelWidth / 8,
pixelWidth / 4));
 Task third = Task.Factory.StartNew(() => generateGraphData(data, pixelWidth / 4,

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 27 Introducing the Task Parallel Library 627

pixelWidth * 3 / 8));
 Task fourth = Task.Factory.StartNew(() => generateGraphData(data, pixelWidth * 3 /
8, pixelWidth / 2));
 Task.WaitAll(first, second, third, fourth);
 return data;
}

Tip You can replace the code that creates the tasks and waits for them to complete with
the following Parallel.Invoke construct:

Parallel.Invoke(
 () => Task.Factory.StartNew(() => generateGraphData(data, 0, pixelWidth / 8))
 () => Task.Factory.StartNew(() => generateGraphData(data, pixelWidth / 8,
pixelWidth / 4)),
 () => Task.Factory.StartNew(() => generateGraphData(data, pixelWidth / 4,
pixelWidth * 3 / 8)),
 () => Task.Factory.StartNew(() => generateGraphData(data, pixelWidth * 3 / 8,
pixelWidth / 2))
);

 . 7 . . In the plotButton_Click method, after the statement that creates the Stopwatch
 variable used to time the tasks, add the statement shown next in bold that cre-
ates a Task<byte[]> object called getDataTask and uses this object to run the
 getDataForGraph method . This method returns a byte array, so the type of the task is
Task<byte []> . The StartNew method call references a lambda expression that invokes
the getDataForGraph method and passes the dataSize variable as the parameter to this
method .

private void plotButton_Click(object sender, RoutedEventArgs e)
{
 ...
 Stopwatch watch = Stopwatch.StartNew();
 Task<byte[]> getDataTask = Task<byte[]>.Factory.StartNew(() =>
getDataForGraph(dataSize));
 ...
}

 . 8 . . After creating and starting the Task<byte []> object, add the following statements
shown in bold that examine the Result property to retrieve the data array returned by
the getDataForGraph method into a local byte array variable called data . Remember
that the Result property blocks the caller until the task has completed, so you do not
need to explicitly wait for the task to finish .

private void plotButton_Click(object sender, RoutedEventArgs e)
{
 ...
 Task<byte[]> getDataTask = Task<byte[]>.Factory.StartNew(() =>
getDataForGraph(dataSize));
 byte[] data = getDataTask.Result;
 ...
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

628 Part VI Building Professional Solutions with Visual Studio 2010

Note It might seem a little strange to create a task and then immediately wait for it to
complete before doing anything else because it only adds overhead to the application .
However, in the next section, you will see why this approach has been adopted .

 . 9 . . Verify that the completed code for the plotButton_Click method looks like this:

private void plotButton_Click(object sender, RoutedEventArgs e)
{
 if (graphBitmap == null)
 {
 graphBitmap = new WriteableBitmap(pixelWidth, pixelHeight, dpiX, dpiY,
PixelFormats.Gray8, null);
 }
 int bytesPerPixel = (graphBitmap.Format.BitsPerPixel + 7) / 8;
 int stride = bytesPerPixel * pixelWidth;
 int dataSize = stride * pixelHeight;

 Stopwatch watch = Stopwatch.StartNew();
 Task<byte[]> getDataTask = Task<byte[]>.Factory.StartNew(() =>
getDataForGraph(dataSize));
 byte[] data = getDataTask.Result;

 duration.Content = string.Format("Duration (ms): {0}", watch.ElapsedMilliseconds);
 graphBitmap.WritePixels(new Int32Rect(0, 0, pixelWidth, pixelHeight), data,
stride, 0);
 graphImage.Source = graphBitmap;
}

 . 10 . . On the Debug menu, click Start Without Debugging to build and run the application .

 . 11 . . In the Graph Demo window, click Plot Graph . Verify that the graph is generated as
 before and that the time taken is similar to that seen previously . (The time reported
might be marginally slower because the data array is now created by the task, whereas
previously it was created before the task started running .)

 . 12 . . Close the Graph Demo window .

Using .Tasks .and .User .Interface .Threads .Together
The section “Why Perform Multitasking by Using Parallel Processing?” at the start of this
chapter highlighted the two principal reasons for using multitasking in an application—to
improve throughput and increase responsiveness . The TPL can certainly assist in improving
throughput, but you need to be aware that using the TPL alone is not the complete solu-
tion to improving responsiveness, especially in an application that provides a graphical user
interface . In the GraphDemo application used as the basis for the exercises in this chapter,
although the time taken to generate the data for the graph is reduced by the effective use
of tasks, the application itself exhibits the classic symptoms of many GUIs that perform pro-
cessor-intensive computations—it is not responsive to user input while these computations

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 27 Introducing the Task Parallel Library 629

are being performed . For example, if you run the GraphDemo application from the previous
exercise, click Plot Graph, and then try and move the Graph Demo window by clicking and
dragging the title bar, you will find that it does not move until after the various tasks used to
generate the graph have completed and the graph is displayed .

In a professional application, you should ensure that users can still use your application even
if parts of it are busy performing other tasks . This is where you need to use threads as well as
tasks .

In Chapter 23, you saw how the items that constitute the graphical user interface in a WPF
application all run on the same user interface (UI) thread . This is to ensure consistency and
safety, and it prevents two or more threads from potentially corrupting the internal data
structures used by WPF to render the user interface . Remember also that you can use the
WPF Dispatcher object to queue requests for the UI thread, and these requests can update
the user interface . The next exercise revisits the Dispatcher object and shows how you can
use it to implement a responsive solution in conjunction with tasks that ensure the best
 available throughput .

Improve responsiveness in the GraphDemo application

 . 1 . . Return to Visual Studio 2010, and display the GraphWindow .xaml .cs file in the Code and
Text Editor window if it is not already open .

 . 2 . . Add a new method called doPlotButtonWork below the plotButton_Click method . This
method should take no parameters and not return a result . In the next few steps, you
will move the code that creates and runs the tasks that generate the data for the graph
to this method, and you will run this method on a separate thread, leaving the UI
thread free to manage user input .

private void doPlotButtonWork()
{
}

 . 3 . . Move all the code except for the if statement that creates the graphBitmap object
from the plotButton_Click method to the doPlotButtonWork method . Note that some
of these statements attempt to access user interface items; you will modify these
statements to use the Dispatcher object later in this exercise . The plotButton_Click and
doPlotButtonWork methods should look like this:

private void plotButton_Click(object sender, RoutedEventArgs e)
{
 if (graphBitmap == null)
 {
 graphBitmap = new WriteableBitmap(pixelWidth, pixelHeight, dpiX, dpiY,
PixelFormats.Gray8, null);
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

630 Part VI Building Professional Solutions with Visual Studio 2010

private void doPlotButtonWork()
{
 int bytesPerPixel = (graphBitmap.Format.BitsPerPixel + 7) / 8;
 int stride = bytesPerPixel * pixelWidth;
 int dataSize = stride * pixelHeight;

 Stopwatch watch = Stopwatch.StartNew();
 Task<byte[]> getDataTask = Task<byte[]>.Factory.StartNew(() =>
getDataForGraph(dataSize));
 byte[] data = getDataTask.Result;

 duration.Content = string.Format("Duration (ms): {0}", watch.ElapsedMilliseconds);
 graphBitmap.WritePixels(new Int32Rect(0, 0, pixelWidth, pixelHeight), data,
stride, 0);
 graphImage.Source = graphBitmap;
}

 . 4 . . In the plotButton_Click method, after the if block, create an Action delegate called
doPlotButtonWorkAction that references the doPlotButtonWork method, as shown here
in bold:

private void plotButton_Click(object sender, RoutedEventArgs e)
{
 ...
 Action doPlotButtonWorkAction = new Action(doPlotButtonWork);
}

 . 5 . . Call the BeginInvoke method on the doPlotButtonWorkAction delegate . The BeginInvoke
method of the Action type executes the method associated with the delegate (in this
case, the doPlotButtonWork method) on a new thread .

Note The Action type also provides the Invoke method, which runs the delegated meth-
od on the current thread . This behavior is not what we want in this case because it blocks
the user interface and prevents it from being able to respond while the method is running .

The BeginInvoke method takes parameters you can use to arrange notification when
the method finishes, as well as any data to pass to the delegated method . In this ex-
ample, you do not need to be notified when the method completes and the method
does not take any parameters, so specify a null value for these parameters as shown in
bold here:

private void plotButton_Click(object sender, RoutedEventArgs e)
{
 ...
 Action doPlotButtonWorkAction = new Action(doPlotButtonWork);
 doPlotButtonWorkAction.BeginInvoke(null, null);
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 27 Introducing the Task Parallel Library 631

The code will compile at this point, but if you try and run it, it will not work correctly
when you click Plot Graph . This is because several statements in the doPlotButtonWork
method attempt to access user interface items, and this method is not running on
the UI thread . You met this issue in Chapter 23, and you also saw the solution at that
time—use the Dispatcher object for the UI thread to access UI elements . The following
steps amend these statements to use the Dispatcher object to access the user interface
items from the correct thread .

 . 6 . . Add the following using statement to the list at the top of the file:

using System.Windows.Threading;

The DispatcherPriority enumeration is held in this namespace . You will use this enumer-
ation when you schedule code to run on the UI thread by using the Dispatcher object .

 . 7 . . At the start of the doPlotButtonWork method, examine the statement that initializes the
bytesPerPixel variable:

private void doPlotButtonWork()
{
 int bytesPerPixel = (graphBitmap.Format.BitsPerPixel + 7) / 8;
 ...
}

This statement references the graphBitmap object, which belongs to the UI thread . You
can access this object only from code running on the UI thread . Change this statement
to initialize the bytesPerPixel variable to zero, and add a statement to call the Invoke
method of the Dispatcher object, as shown in bold here:

private void doPlotButtonWork()
{
 int bytesPerPixel = 0;
 plotButton.Dispatcher.Invoke(new Action(() =>
 { bytesPerPixel = (graphBitmap.Format.BitsPerPixel + 7) / 8; }),
 DispatcherPriority.ApplicationIdle);
 ...
}

Recall from Chapter 23 that you can access the Dispatcher object through the
Dispatcher property of any UI element . This code uses the plotButton button . The
Invoke method expects a delegate and an optional dispatcher priority . In this case,
the delegate references a lambda expression . The code in this expression runs on the
UI thread . The DispatcherPriority parameter indicates that this statement should run
only when the application is idle and there is nothing else more important going on in
the user interface (such as the user clicking a button, typing some text, or moving the
window) .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

632 Part VI Building Professional Solutions with Visual Studio 2010

 . 8 . . Examine the final three statements in the doPlotButtonWork method . They look like
this:

private void doPlotButtonWork()
{
 ...
 duration.Content = string.Format("Duration (ms): {0}", watch.ElapsedMilliseconds);
 graphBitmap.WritePixels(new Int32Rect(0, 0, pixelWidth, pixelHeight), data,
stride, 0);
 graphImage.Source = graphBitmap;
}

These statements reference the duration, graphBitmap, and graphImage objects, which
are all part of the user interface . Consequently, you must change these statements to
run on the UI thread .

 . 9 . . Modify these statements, and run them by using the Dispatcher.Invoke method, as
shown in bold here:

private void doPlotButtonWork()
{
 ...
 plotButton.Dispatcher.Invoke(new Action(() =>
 {
 duration.Content = string.Format("Duration (ms): {0}", watch.
ElapsedMilliseconds);
 graphBitmap.WritePixels(new Int32Rect(0, 0, pixelWidth, pixelHeight), data,
stride, 0);
 graphImage.Source = graphBitmap;
 }), DispatcherPriority.ApplicationIdle);
}

This code converts the statements into a lambda expression wrapped in an Action
 delegate, and then invokes this delegate by using the Dispatcher object .

 . 10 . . On the Debug menu, click Start Without Debugging to build and run the application .

 . 11 . . In the Graph Demo window, click Plot Graph and before the graph appears quickly
drag the window to another location on the screen . You should find that the window
responds immediately and does not wait for the graph to appear first .

 . 12 . . Close the Graph Demo window .

Canceling .Tasks .and .Handling .Exceptions
Another common requirement of applications that perform long-running operations is the
ability to stop those operations if necessary . However, you should not simply abort a task be-
cause this could leave the data in your application in an indeterminate state . Instead, the TPL
implements a cooperative cancellation strategy . Cooperative cancellation enables a task to

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 27 Introducing the Task Parallel Library 633

select a convenient point at which to stop processing and also enables it to undo any work it
has performed prior to cancellation if necessary .

The Mechanics of Cooperative Cancellation
Cooperative cancellation is based on the notion of a cancellation token . A cancellation token
is a structure that represents a request to cancel one or more tasks . The method that a task
runs should include a System.Threading.CancellationToken parameter . An application that
wants to cancel the task sets the Boolean IsCancellationRequested property of this parameter
to true . The method running in the task can query this property at various points during its
processing . If this property is set to true at any point, it knows that the application has re-
quested that the task be canceled . Also, the method knows what work it has done so far, so
it can undo any changes if necessary and then finish . Alternatively, the method can simply
ignore the request and continue running if it does not want to cancel the task .

Tip You should examine the cancellation token in a task frequently, but not so frequently that
you adversely impact the performance of the task . If possible, you should aim to check for
 cancellation at least every 10 milliseconds, but no more frequently than every millisecond .

An application obtains a CancellationToken by creating a System.Threading.
CancellationTokenSource object and querying the Token property of this object . The appli-
cation can then pass this CancellationToken object as a parameter to any methods started
by tasks that the application creates and runs . If the application needs to cancel the tasks,
it calls the Cancel method of the CancellationTokenSource object . This method sets the
IsCancellationRequested property of the CancellationToken passed to all the tasks .

The following code example shows how to create a cancellation token and use it to cancel a
task . The initiateTasks method instantiates the cancellationTokenSource variable and obtains
a reference to the CancellationToken object available through this variable . The code then
creates and runs a task that executes the doWork method . Later on, the code calls the Cancel
method of the cancellation token source, which sets the cancellation token . The doWork
method queries the IsCancellationRequested property of the cancellation token . If the
 property is set the method terminates; otherwise, it continues running .

public class MyApplication
{
 ...
 // Method that creates and manages a task
 private void initiateTasks()
 {
 // Create the cancellation token source and obtain a cancellation token
 CancellationTokenSource cancellationTokenSource = new CancellationTokenSource();
 CancellationToken cancellationToken = cancellationToken.Token;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

634 Part VI Building Professional Solutions with Visual Studio 2010

 // Create a task and start it running the doWork method
 Task myTask = Task.Factory.StartNew(() => doWork(cancellationToken));
 ...
 if (...)
 {
 // Cancel the task
 cancellationTokenSource.Cancel();
 }
 ...
 }

 // Method run by the task
 private void doWork(CancellationToken token)
 {
 ...
 // If the application has set the cancellation token, finish processing
 if (token.IsCancellationRequested)
 {
 // Tidy up and finish
 ...
 return;
 }
 // If the task has not been canceled, continue running as normal
 ...
 }
}

As well as providing a high degree of control over the cancellation processing, this approach
is scalable across any number of tasks . You can start multiple tasks and pass the same
CancellationToken object to each of them . If you call Cancel on the CancellationTokenSource
object, each task will see that the IsCancellationRequested property has been set and can
 react accordingly .

You can also register a callback method with the cancellation token by using the
Register method . When an application invokes the Cancel method of the corresponding
CancellationTokenSource object, this callback runs . However, you cannot guarantee when this
method executes; it might be before or after the tasks have performed their own cancellation
processing, or even during that process .

...
cancellationToken,Register(doAdditionalWork);
...
private void doAdditionalWork()
{
 // Perform additional cancellation processing
}

In the next exercise, you will add cancellation functionality to the GraphDemo application .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 27 Introducing the Task Parallel Library 635

Add cancellation functionality to the GraphDemo application

 . 1 . . Using Visual Studio 2010, open the GraphDemo solution, located in the \Microsoft
Press\Visual CSharp Step By Step\Chapter 27\GraphDemo Canceling Tasks folder in
your Documents folder .

This is a completed copy of the GraphDemo application from the previous exercise that
uses tasks and threads to improve responsiveness .

 . 2 . . In Solution Explorer, in the GraphDemo project, double-click GraphWindow .xaml to
display the form in the Design View window .

 . 3 . . From the Toolbox, add a Button control to the form under the duration label . Align the
button horizontally with the plotButton button . In the Properties window, change the
Name property of the new button to cancelButton, and change the Content property to
Cancel .

The amended form should look like the following image .

 . 4 . . Double-click the Cancel button to create a Click event handling method called
cancelButton_Click .

 . 5 . . In the GraphWindow .xaml .cs file, locate the getDataForGraph method . This method
creates the tasks used by the application and waits for them to complete . Move the
declaration of the Task variables to the class level for the GraphWindow class as shown
in bold in the following code, and then modify the getDataForGraph method to
 instantiate these variables:

public partial class GraphWindow : Window
{
 ...
 private Task first, second, third, fourth;
 ...
 private byte[] getDataForGraph(int dataSize)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

636 Part VI Building Professional Solutions with Visual Studio 2010

 {
 byte[] data = new byte[dataSize];
 first = Task.Factory.StartNew(() => generateGraphData(data, 0, pixelWidth /
8));
 second = Task.Factory.StartNew(() => generateGraphData(data, pixelWidth / 8,
pixelWidth / 4));
 third = Task.Factory.StartNew(() => generateGraphData(data, pixelWidth / 4,
pixelWidth * 3 / 8));
 fourth = Task.Factory.StartNew(() => generateGraphData(data, pixelWidth * 3 /
8, pixelWidth / 2));
 Task.WaitAll(first, second, third, fourth);
 return data;
 }
}

 . 6 . . Add the following using statement to the list at the top of the file:

using System.Threading;

The types used by cooperative cancellation live in this namespace .

 . 7 . . Add a CancellationTokenSource member called tokenSource to the GraphWindow class,
and initialize it to null, as shown here in bold:

public class GraphWindow : Window
{
 ...
 private Task first, second, third, fourth;
 private CancellationTokenSource tokenSource = null;
 ...
}

 . 8 . . Find the generateGraphData method, and add a CancellationToken parameter called
token to the method definition:

private void generateGraphData(byte[] data, int partitionStart, int partitionEnd,
CancellationToken token)
{
 ...
}

 . 9 . . In the generateGraphData method, at the start of the inner for loop, add the code
shown next in bold to check whether cancellation has been requested . If so, return
from the method; otherwise, continue calculating values and plotting the graph .

private void generateGraphData(byte[] data, int partitionStart, int partitionEnd,
CancellationToken token)
{
 int a = pixelWidth / 2;
 int b = a * a;
 int c = pixelHeight / 2;

 for (int x = partitionStart; x < partitionEnd; x ++)
 {
 int s = x * x;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 27 Introducing the Task Parallel Library 637

 double p = Math.Sqrt(b - s);
 for (double i = -p; i < p; i += 3)
 {
 if (token.IsCancellationRequested)
 {
 return;
 }

 double r = Math.Sqrt(s + i * i) / a;
 double q = (r - 1) * Math.Sin(24 * r);
 double y = i / 3 + (q * c);
 plotXY(data, (int)(-x + (pixelWidth / 2)), (int)(y + (pixelHeight / 2)));
 plotXY(data, (int)(x + (pixelWidth / 2)), (int)(y + (pixelHeight / 2)));
 }
 }
}

 . 10 . . In the getDataForGraph method, add the following statements shown in bold that in-
stantiate the tokenSource variable and retrieve the CancellationToken object into a vari-
able called token:

private byte[] getDataForGraph(int dataSize)
{
 byte[] data = new byte[dataSize];
 tokenSource = new CancellationTokenSource();
 CancellationToken token = tokenSource.Token;
 ...
}

 . 11 . . Modify the statements that create and run the four tasks, and pass the token variable as
the final parameter to the generateGraphData method:

first = Task.Factory.StartNew(() => generateGraphData(data, 0, pixelWidth / 8,
token));
second = Task.Factory.StartNew(() => generateGraphData(data, pixelWidth / 8,
pixelWidth / 4, token));
third = Task.Factory.StartNew(() => generateGraphData(data, pixelWidth / 4, pixelWidth
* 3 / 8, token));
fourth = Task.Factory.StartNew(() => generateGraphData(data, pixelWidth * 3 / 8,
pixelWidth / 2, token));

 . 12 . . In the cancelButton_Click method, add the code shown here in bold:

private void cancelButton_Click(object sender, RoutedEventArgs e)
{
 if (tokenSource != null)
 {
 tokenSource.Cancel();
 }
}

This code checks that the tokenSource variable has been instantiated; if it has been, the
code invokes the Cancel method on this variable .

 . 13 . . On the Debug menu, click Start Without Debugging to build and run the application .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

638 Part VI Building Professional Solutions with Visual Studio 2010

 . 14 . . In the GraphDemo window, click Plot Graph, and verify that the graph appears as it did
before .

 . 15 . . Click Plot Graph again, and then quickly click Cancel .

If you are quick and click Cancel before the data for the graph is generated, this ac-
tion causes the methods being run by the tasks to return . The data is not complete, so
the graph appears with holes, as shown in the following figure . (The size of the holes
 depends on how quickly you clicked Cancel .)

 . 16 . . Close the GraphDemo window, and return to Visual Studio .

You can determine whether a task completed or was canceled by examining the Status prop-
erty of the Task object . The Status property contains a value from the System.Threading.Tasks.
TaskStatus enumeration . The following list describes some of the status values that you might
commonly encounter (there are others):

n Created This is the initial state of a task . It has been created but has not yet been
scheduled to run .

n WaitingToRun The task has been scheduled but has not yet started to run .

n Running The task is currently being executed by a thread .

n RanToCompletion The task completed successfully without any unhandled exceptions .

n Canceled The task was canceled before it could start running, or it acknowledged
cancellation and completed without throwing an exception .

n Faulted The task terminated because of an exception .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 27 Introducing the Task Parallel Library 639

In the next exercise, you will attempt to report the status of each task so that you can see
when they have completed or have been canceled .

Canceling .a .Parallel .For .or .ForEach .Loop
The Parallel.For and Parallel.ForEach methods don’t provide you with direct access to
the Task objects that have been created . Indeed, you don’t even know how many tasks
are running—the .NET Framework uses its own heuristics to work out the optimal num-
ber to use based on the resources available and the current workload of the computer .

If you want to stop the Parallel.For or Parallel.ForEach method early, you must use a
ParallelLoopState object . The method you specify as the body of the loop must include
an additional ParallelLoopState parameter . The TPL creates a ParallelLoopState object
and passes it as this parameter into the method . The TPL uses this object to hold infor-
mation about each method invocation . The method can call the Stop method of this
object to indicate that the TPL should not attempt to perform any iterations beyond
those that have already started and finished . The following example shows the Parallel.
For method calling the doLoopWork method for each iteration . The doLoopWork meth-
od examines the iteration variable; if it is greater than 600, the method calls the Stop
method of the ParallelLoopState parameter . This causes the Parallel.For method to stop
running further iterations of the loop . (Iterations currently running might continue to
completion .)

Note Remember that the iterations in a Parallel.For loop are not run in a specific
 sequence . Consequently, canceling the loop when the iteration variable has the value
600 does not guarantee that the previous 599 iterations have already run . Equally, some
 iterations with values greater than 600 might already have completed .

Parallel.For(0, 1000, doLoopWork);
...
private void doLoopWork(int i, ParallelLoopState p)
{
 ...
 if (i > 600)
 {
 p.Stop();
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

640 Part VI Building Professional Solutions with Visual Studio 2010

Display the status of each task

 . 1 . . In Visual Studio, in the Code and Text Editor window, find the getDataForGraph method .

 . 2 . . Add the following code shown in bold to this method . These statements generate a
string that contains the status of each task after they have finished running, and they
display a message box containing this string .

private byte[] getDataForGraph(int dataSize)
{
 ...
 Task.WaitAll(first, second, third, fourth);

 String message = String.Format("Status of tasks is {0}, {1}, {2}, {3}",
 first.Status, second.Status, third.Status, fourth.Status);
 MessageBox.Show(message);

 return data;
}

 . 3 . . On the Debug menu, click Start Without Debugging .

 . 4 . . In the GraphDemo window, click Plot Graph but do not click Cancel . Verify that
the following message box appears, which reports that the status of the tasks is
RanToCompletion (four times), and then click OK . Note that the graph appears only
 after you have clicked OK .

 . 5 . . In the GraphDemo window, click Plot Graph again and then quickly click Cancel .

Surprisingly, the message box that appears still reports the status of each task as
RanToCompletion, even though the graph appears with holes . This is because although
you sent a cancellation request to each task by using the cancellation token, the
 methods they were running simply returned . The .NET Framework runtime does not
know whether the tasks were actually canceled or whether they were allowed to run to
completion and simply ignored the cancellation requests .

 . 6 . . Close the GraphDemo window, and return to Visual Studio .

So how do you indicate that a task has been canceled rather than allowed to run to
completion? The answer lies in the CancellationToken object passed as a parameter to the
method that the task is running . The CancellationToken class provides a method called
ThrowIfCancellationRequested . This method tests the IsCancellationRequested property of a

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 27 Introducing the Task Parallel Library 641

cancellation token; if it is true, the method throws an OperationCanceledException exception
and aborts the method that the task is running .

The application that started the thread should be prepared to catch and handle this
exception, but this leads to another question . If a task terminates by throwing an ex-
ception, it actually reverts to the Faulted state . This is true, even if the exception is an
OperationCanceledException exception . A task enters the Canceled state only if it is canceled
without throwing an exception . So how does a task throw an OperationCanceledException
without it being treated as an exception?

The answer lies in the task itself . For a task to recognize that an OperationCanceledException
is the result of canceling the task in a controlled manner and not just an exception caused
by other circumstances, it has to know that the operation has actually been canceled . It can
do this only if it can examine the cancellation token . You passed this token as a parameter
to the method run by the task, but the task does not actually look at any of these param-
eters . (It considers them to be the business of the method and is not concerned with them .)
Instead, you specify the cancellation token when you create the task, either as a parameter
to the Task constructor or as a parameter to the StartNew method of the TaskFactory object
you are using to create and run tasks . The following code shows an example based on the
GraphDemo application . Notice how the token parameter is passed to the generateGraph-
Data method (as before), but also as a separate parameter to the StartNew method:

Task first = null;
tokenSource = new CancellationTokenSource();
CancellationToken token = tokenSource.Token;
...
first = Task.Factory.StartNew(() => generateGraphData(data, 0, pixelWidth / 8, token),
token);

Now when the method being run by the task throws an OperationCanceledException excep-
tion, the infrastructure behind the task examines the CancellationToken . If it indicates that the
task has been canceled, the infrastructure handles the OperationCanceledException excep-
tion, acknowledges the cancelation, and sets the status of the task to Canceled . The infra-
structure then throws a TaskCanceledException, which your application should be prepared to
catch . This is what you will do in the next exercise, but before you do that you need to learn a
little more about how tasks raise exceptions and how you should handle them .

Handling Task Exceptions by Using the AggregateException
Class
You have seen throughout this book that exception handling is an important element in any
commercial application . The exception handling constructs you have met so far are straight-
forward to use, and if you use them carefully it is a simple matter to trap an exception and
determine which piece of code raised it . However, when you start dividing work into multiple

http://lib.ommolketab.ir
http//lib.ommolketab.ir

642 Part VI Building Professional Solutions with Visual Studio 2010

concurrent tasks, tracking and handling exceptions becomes a more complex problem . The
issue is that different tasks might each generate their own exceptions, and you need a way
to catch and handle multiple exceptions that might be thrown concurrently . This is where the
AggregateException class comes in .

An AggregateException acts as a wrapper for a collection of exceptions . Each of the
 exceptions in the collection might be thrown by different tasks . In your application, you can
catch the AggregateException exception and then iterate through this collection and perform
any necessary processing . To help you, the AggregateException class provides the Handle
method . The Handle method takes a Func<Exception, bool> delegate that references a meth-
od . The referenced method takes an Exception object as its parameter and returns a Boolean
value . When you call Handle, the referenced method runs for each exception in the collection
in the AggregateException object . The referenced method can examine the exception and
take the appropriate action . If the referenced method handles the exception, it should return
true . If not, it should return false . When the Handle method completes, any unhandled excep-
tions are bundled together into a new AggregateException and this exception is thrown; a
 subsequent outer exception handler can then catch this exception and process it .

In the next exercise, you will see how to catch an AggregateException and use it to handle the
TaskCanceledException exception thrown when a task is canceled .

Acknowledge cancellation, and handle the AggregateException exception

 . 1 . . In Visual Studio, display the GraphWindow .xaml file in the Design View window .

 . 2 . . From the Toolbox, add a Label control to the form underneath the cancelButton button .
Align the left edge of the Label control with the left edge of the cancelButton button .

 . 3 . . Using the Properties window, change the Name property of the Label control to status,
and remove the value in the Content property .

 . 4 . . Return to the Code and Text Editor window displaying the GraphWindow .xaml .cs file,
and add the following method below the getDataForGraph method:

private bool handleException(Exception e)
{
 if (e is TaskCanceledException)
 {
 plotButton.Dispatcher.Invoke(new Action(() =>
 {
 status.Content = "Tasks Canceled";
 }), DispatcherPriority.ApplicationIdle);
 return true;
 }
 else
 {
 return false;
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 27 Introducing the Task Parallel Library 643

This method examines the Exception object passed in as a parameter; if it is a
TaskCanceledException object, the method displays the text “Tasks Canceled” in the
status label on the form and returns true to indicate that it has handled the exception;
otherwise, it returns false .

 . 5 . . In the getDataForGraph method, modify the statements that create and run the tasks
and specify the CancellationToken object as the second parameter to the StartNew
method, as shown in bold in the following code:

private byte[] getDataForGraph(int dataSize)
{
 byte[] data = new byte[dataSize];
 tokenSource = new CancellationTokenSource();
 CancellationToken token = tokenSource.Token;

 ...
 first = Task.Factory.StartNew(() => generateGraphData(data, 0, pixelWidth / 8,
token), token);
 second = Task.Factory.StartNew(() => generateGraphData(data, pixelWidth / 8,
pixelWidth / 4, token), token);
 third = Task.Factory.StartNew(() => generateGraphData(data, pixelWidth / 4,
pixelWidth * 3 / 8, token), token);
 fourth = Task.Factory.StartNew(() => generateGraphData(data, pixelWidth * 3 / 8,
pixelWidth / 2, token), token);
 Task.WaitAll(first, second, third, fourth);
 ...
}

 . 6 . . Add a try block around the statements that create and run the tasks, and wait for
them to complete . If the wait is successful, display the text “Tasks Completed” in the
status label on the form by using the Dispatcher.Invoke method . Add a catch block that
handles the AggregateException exception . In this exception handler, call the Handle
method of the AggregateException object and pass a reference to the handleException
method . The code shown next in bold highlights the changes you should make:

private byte[] getDataForGraph(int dataSize)
{
 byte[] data = new byte[dataSize];
 tokenSource = new CancellationTokenSource();
 CancellationToken token = tokenSource.Token;

 try
 {
 first = Task.Factory.StartNew(() => generateGraphData(data, 0, pixelWidth / 8,
token), token);
 second = Task.Factory.StartNew(() => generateGraphData(data, pixelWidth / 8,
pixelWidth / 4, token), token);
 third = Task.Factory.StartNew(() => generateGraphData(data, pixelWidth / 4,
pixelWidth * 3 / 8, token), token);
 fourth = Task.Factory.StartNew(() => generateGraphData(data, pixelWidth * 3 /
8, pixelWidth / 2, token), token);
 Task.WaitAll(first, second, third, fourth);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

644 Part VI Building Professional Solutions with Visual Studio 2010

 plotButton.Dispatcher.Invoke(new Action(() =>
 {
 status.Content = "Tasks Completed";
 }), DispatcherPriority.ApplicationIdle);
 }
 catch (AggregateException ae)
 {
 ae.Handle(handleException);
 }

 String message = String.Format("Status of tasks is {0}, {1}, {2}, {3}",
 first.Status, second.Status, third.Status, fourth.Status);
 MessageBox.Show(message);

 return data;
}

 . 7 . . In the generateDataForGraph method, replace the if statement that examines the
IsCancellationProperty of the CancellationToken object with code that calls the
ThrowIfCancellationRequested method, as shown here in bold:

private void generateDataForGraph(byte[] data, int partitionStart, int partitionEnd,
CancellationToken token)
{
 ...
 for (int x = partitionStart; x < partitionEnd; x++);
 {
 ...
 for (double i = -p; I < p; i += 3)
 {
 token.ThrowIfCancellationRequested();
 ...
 }
 }
 ...
}

 . 8 . . On the Debug menu, click Start Without Debugging .

 . 9 . . In the Graph Demo window, click Plot Graph and verify that the status of every task is
reported as RanToCompletion, the graph is generated, and the status label displays the
message “Tasks Completed” .

 . 10 . . Click Plot Graph again, and then quickly click Cancel . If you are quick, the status of one
or more tasks should be reported as Canceled, the status label should display the text
“Tasks Canceled”, and the graph should be displayed with holes . If you are not quick
enough, repeat this step to try again!

 . 11 . . Close the Graph Demo window, and return to Visual Studio .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 27 Introducing the Task Parallel Library 645

Using Continuations with Canceled and Faulted Tasks
If you need to perform additional work when a task is canceled or raises an unhandled
exception, remember that you can use the ContinueWith method with the appropriate
TaskContinuationOptions value . For example, the following code creates a task that runs the
method doWork . If the task is canceled, the ContinueWith method specifies that another task
should be created and run the method doCancellationWork . This method can perform some
simple logging or tidying up . If the task is not canceled, the continuation does not run .

Task task = new Task(doWork);
task.ContinueWith(doCancellationWork, TaskContinuationOptions.OnlyOnCanceled);
task.Start();
...
private void doWork()
{
 // The task runs this code when it is started
 ...
}
...
private void doCancellationWork(Task task)
{
 // The task runs this code when doWork completes
 ...
}

Similarly, you can specify the value TaskContinuationOptions.OnlyOnFaulted to specify a
 continuation that runs if the original method run by the task raises an unhandled exception .

In this chapter, you learned why it is important to write applications that can scale across
multiple processors and processor cores . You saw how to use the Task Parallel Library to run
operations in parallel, and how to synchronize concurrent operations and wait for them to
complete . You learned how to use the Parallel class to parallelize some common program-
ming constructs, and you also saw when it is inappropriate to parallelize code . You used tasks
and threads together in a graphical user interface to improve responsiveness and through-
put, and you saw how to cancel tasks in a clean and controlled manner .

n If you want to continue to the next chapter

Keep Visual Studio 2010 running, and turn to Chapter 28 .

n If you want to exit Visual Studio 2010 now

On the File menu, click Exit . If you see a Save dialog box, click Yes and save the project .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

646 Part VI Building Professional Solutions with Visual Studio 2010

Chapter .27 .Quick .Reference
To Do this

Create a task and run it Either use the StartNew method of a TaskFactory object to create and run
the task in a single step:

Task task = taskFactory.StartNew(doWork());
...
private void doWork()
{
 // The task runs this code when it is started
 ...
}

Or create a new Task object that references a method to run and call the
Start method:

Task task = new Task(doWork);
task.Start();

Wait for a task to finish Call the Wait method of the Task object:

Task task = ...;
...
task.Wait();

Wait for several tasks to finish Call the static WaitAll method of the Task class, and specify the tasks to
wait for:

Task task1 = ...;
Task task2 = ...;
Task task3 = ...;
Task task4 = ...;
...
Task.WaitAll(task1, task2, task3, task4);

Specify a method to run in a new
task when a task has completed

Call the ContinueWith method of the task, and specify the method as a
continuation:

Task task = new Task(doWork);
task.ContinueWith(doMoreWork,
 TaskContinuationOptions.NotOnFaulted);

Return a value from a task Use a Task<TResult> object to run a method, where the type parameter T
specifies the type of the return value of the method . Use the Result prop-
erty of the task to wait for the task to complete and return the value:

Task<int> calculateValueTask = new Task<int>(() =>
calculateValue(...));
calculateValueTask.Start(); // Invoke the calculateValue method
...
int calculatedData = calculateValueTask.Result; // Block until
calculateValueTask completes

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 27 Introducing the Task Parallel Library 647

To Do this

Perform loop iterations and state-
ment sequences by using parallel
tasks

Use the Parallel.For and Parallel.ForEach methods to perform loop itera-
tions by using tasks:

Parallel.For(0, 100, performLoopProcessing);
...
private void performLoopProcessing(int x)
{
 // Perform loop processing
}

Use the Parallel.Invoke method to perform concurrent method calls by
using separate tasks:

Parallel.Invoke(
 doWork,
 doMoreWork,
 doYetMoreWork
);

Handle exceptions raised by one or
more tasks

Catch the AggregateException exception . Use the Handle method to spec-
ify a method that can handle each exception in the AggregateException
object . If the exception-handling method handles the exception, return
true; otherwise, return false:

try
{
 Task task = Task.Factory.StartNew(...);
 ...
}
catch (AggregateException ae)
{
 ae.Handle(new Func<Exception, bool> (handleException));
}
...
private bool handleException(Exception e)
{
 if (e is TaskCanceledException)
 {
 ...
 return true;
 }
 else
 {
 return false;
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

648 Part VI Building Professional Solutions with Visual Studio 2010

To Do this

Support cancellation in a task Implement cooperative cancellation by creating a
CancellationTokenSource object and using a CancellationToken pa-
rameter in the method run by the task . In the task method, call the
ThrowIfCancellationRequested method of the CancellationToken param-
eter to throw an OperationCanceledException exception and terminate
the task:

private void generateGraphData(..., CancellationToken token)
{
 ...
 token.ThrowIfCancellationRequested();
 ...
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 . . 649

Chapter 28

Performing Parallel Data Access
After completing this chapter, you will be able to:

n Use PLINQ to parallelize time-consuming LINQ queries .

n Use the parallel concurrent collection classes to maintain collections of data in a
thread-safe manner .

n Use the parallel synchronization primitives to coordinate access to data being
 manipulated by concurrent tasks .

In Chapter 27, “Introducing the Task Parallel Library,” you saw how to exploit the new features
of the .NET Framework to perform operations in parallel . Earlier chapters also showed you
how you can access data in a declarative manner by using Language Integrated Query
(LINQ) . A typical LINQ query generates an enumerable result set, and you can iterate seri-
ally through this set to retrieve the data . If the data source used to generate the result set
is large, running a LINQ query can take a long time . Many database management systems
faced with the issue of optimizing queries address this issue by using algorithms that break
down the process of identifying the data for a query into a series of tasks, and then running
these tasks in parallel, combining the results when the tasks have completed to generate the
completed result set . The designers of the Task Parallel Library (TPL) decided to provide LINQ
with a similar facility, and the result is Parallel LINQ, or PLINQ . You will study PLINQ in the
first part of this chapter .

However, PLINQ is not always the most appropriate technology to use for an application . If
you create your own tasks manually, you need to ensure that the concurrent threads that
run the tasks coordinate their activities correctly . The TPL provides methods that enable you
to wait for tasks to complete, and you can use these methods to coordinate tasks at a very
coarse level . But consider what happens if two tasks attempt to access and modify the same
data . If both tasks run at the same time, their overlapping operations might corrupt the data .
This situation can lead to bugs that are difficult to correct, primarily because of their unpre-
dictability . Since version 1 .0, the Microsoft .NET Framework has provided primitives that you
can use to lock data and coordinate threads, but to use them effectively you must have a
good understanding of the way in which threads interact . The TPL includes some variations
to these primitives, and it includes specialized collection classes that can synchronize access
to data across tasks . These classes hide much of the complexity involved in coordinating data
access . You will see how to use some of these new synchronization primitives and collection
classes in the second half of this chapter .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

650 Part VI Building Professional Solutions with Visual Studio 2010

Using .PLINQ .to .Parallelize .Declarative .Data .Access
In earlier chapters, you saw how powerful LINQ is for retrieving data from an enumerable
data structure . In the .NET Framework 4 .0, LINQ has been extended by using the technol-
ogy available as part of the TPL to help you boost performance and parallelize some query
 operations . These extensions are PLINQ .

PLINQ works by dividing a data set into partitions, and then using tasks to retrieve the data
that matches the criteria specified by the query for each partition in parallel . The results
 retrieved for each partition are combined into a single enumerable result set when the tasks
have completed . PLINQ is ideal for scenarios that involve data sets with large numbers of
 elements, or if the criteria specified for matching data involve complex, expensive operations .

A primary aim of PLINQ is to be as nonintrusive as possible . If you have a lot of existing LINQ
queries, you don’t want to have to modify your code to enable them to run with the latest
build of the .NET Framework . To achieve this, the .NET Framework includes the extension
method AsParallel that you can use with an enumerable object . The AsParallel method re-
turns a ParallelQuery object that acts in a similar manner to the original enumerable object
except that it provides parallel implementations of many of the LINQ operators, such as join
and where . These new implementations of the LINQ operators are based on the TPL and use
various algorithms to try and run parts of your LINQ query in parallel wherever possible .

As ever in the world of parallel computing, the AsParallel method is not magic . You cannot
guarantee that your code will speed up; it all depends on the nature of your LINQ queries
and whether the tasks they are performing lend themselves to parallelization . To understand
how PLINQ works and the situations in which it is useful, it helps to see some examples . The
exercises in the following sections demonstrate a pair of simple scenarios .

Using PLINQ to Improve Performance While Iterating
Through a Collection
The first scenario is simple . Consider a LINQ query that iterates through a collection and
retrieves elements from the collection based on a processor-intensive calculation . This form
of query can benefit from parallel execution as long as the calculations are independent .
The elements in the collection can be divided into a number of partitions; the exact number
depends on the current load of the computer and the number of CPUs available . The ele-
ments in each partition can be processed by a separate thread . When all the partitions have
been processed, the results can be merged . Any collection that supports access to elements
through an index, such as an array or a collection that implements the IList<T> interface, can
be managed in this way .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 28 Performing Parallel Data Access 651

Note If the calculations require access to shared data, you must synchronize the threads . This
can impose an overhead and might negate the benefits of parallelizing the query .

Parallelize a LINQ query over a simple collection

 . 1 . . Using Microsoft Visual Studio 2010, open the PLINQ solution, located in the \Microsoft
Press\Visual CSharp Step By Step\Chapter 28\PLINQ folder in your Documents folder .

 . 2 . . In Solution Explorer, double-click Program .cs to display the file in the Code and Text
Editor window .

This is a console application . The skeleton structure of the application has already
been created for you . The Program class contains two methods called Test1 and Test2
that illustrate a pair of common scenarios . The Main method calls each of these test
 methods in turn .

Both test methods have the same general structure; they create a LINQ query, run it,
and display the time taken . The code for each of these methods is almost completely
separate from the statements that actually create and run the queries . You will add
these statements as you progress through this set of exercises .

 . 3 . . Locate the Test1 method . This method creates a large array of integers and populates
it with a set of random numbers between 0 and 200 . The random number generator is
seeded, so you should get the same results every time you run the application . You will
add a LINQ query that retrieves all the numbers in this array that have a value greater
than 100 .

 . 4 . . After the first TO DO comment in this method, add the LINQ query shown here in bold:

// TO DO: Create a LINQ query that retrieves all numbers that are greater than 100
var over100 = from n in numbers
 where TestIfTrue(n > 100)
 select n;

The test n > 100 is not computationally intensive enough by itself to show the benefits
of parallelizing this query, so the code calls a method named TestIfTrue, which slows
it down a little by performing a SpinWait operation . The SpinWait method causes the
processor to continually execute a loop of special “no operation” instructions for a short
period of time, keeping the processor busy but not actually doing any work . (This is
known as spinning .) The TestIfTrue method looks like this:

public static bool TestIfTrue(bool expr)
{
 Thread.SpinWait(1000);
 return expr;
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

652 Part VI Building Professional Solutions with Visual Studio 2010

 . 5 . . After the second TO DO comment in the Test1 method, add the following code shown
in bold:

// TO DO: Run the LINQ query, and save the results in a List<int> object
List<int> numbersOver100 = new List<int>(over100);

Remember that LINQ queries use deferred execution, so they do not run until you re-
trieve the results from them . This statement creates a List<int> object and populates it
with the results of running the over100 query .

 . 6 . . After the third TO DO comment in the Test1 method, add the following statement
shown in bold:

// TO DO: Display the results
Console.WriteLine("There are {0} numbers over 100.", numbersOver100.Count);

 . 7 . . On the Debug menu, click Start Without Debugging . Note the time taken to run Test 1
and the number of items in the array that are greater than 100 .

 . 8 . . Run the application several times, and take an average for the time . Verify that the
number of items greater than 100 is the same each time . Return to Microsoft Visual
Studio when you have finished .

 . 9 . . Each item returned by the LINQ query is independent of all the other rows, and this
query is an ideal candidate for partitioning . Modify the statement that defines the
LINQ query, and specify the AsParallel extension method to the numbers array, as
shown here in bold:

var over100 = from n in numbers.AsParallel()
 where TestIfTrue(n > 100)
 select n;

 . 10 . . On the Debug menu, click Start Without Debugging . Verify that the number of items
 reported by Test 1 is the same as before, but that the time taken to perform the test
has decreased significantly . Run the test several times, and take an average of the
duration required for the test . If you are running on a dual-core processor (or a twin-
processor computer), you should see the time reduced by 40 to 45 percent . If you have
more processor cores, the decrease should be even more dramatic .

 . 11 . . Close the application, and return to Visual Studio .

The preceding exercise shows the performance improvement you can get by making a small
change to a LINQ query . However, bear in mind that you will see results such as this only if
the calculations performed by the query require significant CPU time . I cheated a little by
spinning the processor . Without this overhead, the parallel version of the query is actually
slower than the serial version . In the next exercise, you will see a LINQ query that joins two
arrays in memory . This time, the exercise uses more realistic data volumes, so there is no
need to slow down the query artificially .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 28 Performing Parallel Data Access 653

Parallelize a LINQ query that joins two collections

 . 1 . . In the Code and Text Editor window, locate the CustomersInMemory class .

This class contains a public string array called Customers . Each string in the Customers
array holds the data for a single customer, with the fields separated by commas; this
format is typical of data that an application might read in from a text file that uses
comma-separated fields . The first field contains the customer ID, the second field is the
name of the company that the customer represents, and the remaining fields hold the
address, city, country, and postal code .

 . 2 . . Find the OrdersInMemory class .

This class is similar to the CustomersInMemory class except that it contains a string array
called Orders . The first field in each string is the order number, the second field is the
customer ID, and the third field is the date that the order was placed .

 . 3 . . Find the OrderInfo class . This class contains four fields that hold the customer ID, com-
pany name, order ID, and order date for an order . You will use a LINQ query to popu-
late a collection of OrderInfo objects from the data in the Customers and Orders arrays .

 . 4 . . Locate the Test2 method in the Program class . In this method, you will create a LINQ
query that joins the Customers and Orders arrays over the customer ID . The query will
store each row of the result in an OrderInfo object .

 . 5 . . In the try block in this method, add the code shown next in bold after the first TO DO
comment:

// TO DO: Create a LINQ query that retrieves customers and orders from arrays
// Store each row returned in an OrderInfo object
var orderInfoQuery = from c in CustomersInMemory.Customers
 join o in OrdersInMemory.Orders
 on c.Split(',')[0] equals o.Split(',')[1]
 select new OrderInfo
 {
 CustomerID = c.Split(',')[0],
 CompanyName = c.Split(',')[1],
 OrderID = Convert.ToInt32(o.Split(',')[0]),
 OrderDate = Convert.ToDateTime(o.Split(',')[2], new
CultureInfo("en-US"))
 };

This statement defines the LINQ query . Notice that it uses the Split method of the String
class to split each string into an array of strings . The strings are split on the comma
character . (The commas are stripped out .) One complication is that the dates in the ar-
ray are held in US English format, so the code that converts them into DateTime objects
in the OrderInfo object specifies the US English formatter . If you use the default format-
ter for your locale, the dates might not parse correctly .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

654 Part VI Building Professional Solutions with Visual Studio 2010

 . 6 . . In the Test2 method, add the following code shown in bold after the second TO DO
statement:

// TO DO: Run the LINQ query, and save the results in a List<OrderInfo> object
List<OrderInfo> orderInfo = new List<OrderInfo>(orderInfoQuery);

This statement runs the query and populates the orderInfo collection .

 . 7 . . Add the statement shown here in bold after the third TO DO statement:

// TO DO: Display the results
Console.WriteLine("There are {0} orders", orderInfo.Count);

 . 8 . . On the Debug menu, click Start Without Debugging .

Verify that Test 2 retrieves 830 orders, and note the duration of the test . Run the appli-
cation several times to obtain an average duration and then return to Visual Studio .

 . 9 . . In theTest2 method, modify the LINQ query and add the AsParallel extension method
to the Customers and Orders arrays, as shown here in bold:

var orderInfoQuery = from c in CustomersInMemory.Customers.AsParallel()
 join o in OrdersInMemory.Orders.AsParallel()
 on c.Split(',')[0] equals o.Split(',')[1]
 select new OrderInfo
 {
 CustomerID = c.Split(',')[0],
 CompanyName = c.Split(',')[1],
 OrderID = Convert.ToInt32(o.Split(',')[0]),
 OrderDate = Convert.ToDateTime(o.Split(',')[2], new
CultureInfo("en-US"))
 };

Note When you join two data sources in this way, they must both be IEnumerable objects
or ParallelQuery objects . This means that if you specify the AsParallel method for one
source you should also specify AsParallel for the other . If you fail to do this, the runtime
will not parallelize the query and you will not gain any benefits .

 10 . . Run the application several times again . Notice that the time taken for Test 2 should
be significantly less than it was previously . PLINQ can make use of multiple threads to
optimize join operations by fetching the data for each part of the join in parallel .

 11 . . Close the application, and return to Visual Studio .

These two simple exercises have shown you the power of the AsParallel extension method
and PLINQ . However, PLINQ is an evolving technology, and the internal implementation is
very likely to change over time . Additionally, the volumes of data and the amount of pro-
cessing you perform in a query also have a bearing on the effectiveness of using PLINQ .
Therefore, you should not regard these exercises as defining fixed rules you should always

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 28 Performing Parallel Data Access 655

follow . Rather, they illustrate the point that you should carefully measure and assess the likely
performance or other benefits of using PLINQ with your own data in your own environment .

Specifying Options for a PLINQ Query
The ParallelEnumerable object returned by the AsParallel method exposes a number of
methods you can use to influence the way in which a query is parallelized . For example, you
can specify the number of tasks that you feel is optimal and override any decisions made by
the runtime by using the WithDegreeOfParallelism method, like this:

var orderInfoQuery =
 from c in CustomersInMemory.Customers.AsParallel().WithDegreeOfParallelism(4)
 join o in OrdersInMemory.Orders.AsParallel()
 on ...

The value you specify applies across the entire query . Consequently, you should specify
WithDegreeOfParallelism only once in a query . In the example just shown, the degree of
 parallelism applies to the Customers and the Orders objects .

On occasion, there might be instances when the runtime decides, by using its own heuristics,
that parallelizing a query might be of little benefit . If you are certain this is not the case, you
can use the WithExecutionMode method of the ParallelQuery class and force the runtime to
parallelize the query . The following code shows an example:

var orderInfoQuery =
 from c in CustomersInMemory.Customers.AsParallel().WithExecutionMode(ParallelExecutionMo
de.ForceParallelism)
 join o in OrdersInMemory.Orders.AsParallel()
 on ...

Again, you can use WithExecutionMode only once in a query .

When you parallelize queries, you might affect the sequence in which data is returned . If
ordering is important, you can specify the AsOrdered extension method of the ParallelQuery
class . For example, if you want to return only the first few results from a query, it might be
important to preserve the order to ensure that the query returns consistent results each time
it runs, as shown in the following example, which uses the Take method to return the first 10
matching items from a data set:

var over100 = from n in numbers.AsParallel().AsOrdered().Take(10)
 where ...
 select n;

This will likely slow down the query, and you need to consider the tradeoffs between
 performance and ordering when implementing queries such as this .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

656 Part VI Building Professional Solutions with Visual Studio 2010

Canceling a PLINQ Query
Unlike ordinary LINQ queries, a PLINQ query can be canceled . To do this, you specify a
CancellationToken object from a CancellationTokenSource and use the WithCancellation
 extension method of the ParallelQuery .

CancellationToken tok = ...;
...
var orderInfoQuery =
 from c in CustomersInMemory.Customers.AsParallel().WithCancellation(tok)
 join o in OrdersInMemory.Orders.AsParallel()
 on ...

You specify WithCancellation only once in a query . Cancellation applies to all sources in
the query . If the CancellationTokenSource object used to generate the CancellationToken is
 canceled, the query stops with an OperationCanceledException exception .

Synchronizing .Concurrent .Imperative .Data .Access .
The TPL supplies a powerful framework that enables you to design and build applications
that can take advantage of multiple CPU cores to perform tasks in parallel . However, as I
 alluded to in the introduction to this chapter, you need to be careful when building solutions
that perform concurrent operations, especially if those operations share access to the same
data .

The issue is that you have little control over how parallel operations are scheduled, or even
the degree of parallelism that the operating system might provide to an application con-
structed by using the TPL . These decisions are left as run-time considerations and depend on
the workload and hardware capabilities of the computer running your application . This level
of abstraction was a deliberate design decision on the part of the development team within
Microsoft, and it removes the need for you to understand the low-level threading and sched-
uling details when you build applications that require concurrent tasks . But this abstraction
comes at a cost . Although it all appears to work magically, you must make some effort to
understand how your code runs; otherwise, you can end up with applications that exhibit
 unpredictable (and erroneous) behavior, as shown in the following example:

using System;
using System.Threading;

class Program
{
 private const int NUMELEMENTS = 10;

 static void Main(string[] args)
 {
 SerialTest();
 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 28 Performing Parallel Data Access 657

 static void SerialTest()
 {
 int[] data = new int[NUMELEMENTS];
 int j = 0;

 for (int i = 0; i < NUMELEMENTS; i++)
 {
 j = i;
 doAdditionalProcessing();
 data[i] = j;
 doMoreAdditionalProcessing();
 }

 for (int i = 0; i < NUMELEMENTS; i++)
 {
 Console.WriteLine("Element {0} has value {1}", i, data[i]);
 }
 }

 static void doAdditionalProcessing()
 {
 Thread.Sleep(10);
 }

 static void doMoreAdditionalProcessing()
 {
 Thread.Sleep(10);
 }
}

The SerialTest method populates an integer array with a set of values (in a rather long-
winded way), and then iterates through this list, printing the index of each item in the array
together with the value of the corresponding item . The doAdditionalProcessing and doMore-
AdditionalProcessing methods simply simulate performing long-running operations as part of
the processing that might cause the runtime to yield control of the processor . The output of
the program method is shown here:

Element 0 has value 0
Element 1 has value 1
Element 2 has value 2
Element 3 has value 3
Element 4 has value 4
Element 5 has value 5
Element 6 has value 6
Element 7 has value 7
Element 8 has value 8
Element 9 has value 9

Now consider the ParallelTest method shown next . This method is the same as the SerialTest
method except that it uses the Parallel .For construct to populate the data array by running
concurrent tasks . The code in the lambda expression run by each task is identical to that in
the initial for loop in the SerialTest method .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

658 Part VI Building Professional Solutions with Visual Studio 2010

using System.Threading.Tasks;
...

static void ParallelTest()
{
 int[] data = new int[NUMELEMENTS];
 int j = 0;

 Parallel.For (0, NUMELEMENTS, (i) =>
 {
 j = i;
 doAdditionalProcessing();
 data[i] = j;
 doMoreAdditionalProcessing();
 });

 for (int i = 0; i < NUMELEMENTS; i++)
 {
 Console.WriteLine("Element {0} has value {1}", i, data[i]);
 }
}

The intention is for the ParallelTest method to perform the same operation as the SerialTest
method, except that it uses concurrent tasks and (hopefully) runs a little faster as a result . The
problem is that it might not always work as expected . Some sample output generated by the
ParallelTest method is shown here:

Element 0 has value 1
Element 1 has value 1
Element 2 has value 4
Element 3 has value 8
Element 4 has value 4
Element 5 has value 1
Element 6 has value 4
Element 7 has value 8
Element 8 has value 8
Element 9 has value 9

The values assigned to each item in the data array are not always the same as the values
 generated by using the SerialTest method . Additionally, further runs of the ParallelTest
 method can produce different sets of results .

If you examine the logic in the Paralell.For construct, you should see where the problem lies .
The lambda expression contains the following statements:

j = i;
doAdditionalProcessing();
data[i] = j;
doMoreAdditionalProcessing();

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 28 Performing Parallel Data Access 659

The code looks innocuous enough . It copies the current value of the variable i (the index
variable identifying which iteration of the loop is running) into the variable j, and later on
it stores the value of j in the element of the data array indexed by i . If i contains 5, then j is
assigned the value 5, and later on the value of j is stored in data[5] . The problem is that be-
tween assigning the value to j and then reading it back, the code does more work; it calls
the doAdditionalProcessing method . If this method takes a long time to execute, the runtime
might suspend the thread and schedule another task . A concurrent task running another
iteration of the Parallel.For construct might run and assign a new value to j . Consequently,
when the original task resumes, the value of j it assigns to data[5] is not the value it stored,
and the result is data corruption . More troublesome is that sometimes this code might run
as expected and produce the correct results, and at other times it does not; it all depends on
how busy the computer is and when the various tasks are scheduled . Consequently, these
types of bugs can lie dormant during testing and then suddenly manifest themselves in a
production environment .

The variable j is shared by all the concurrent tasks . If a task stores a value in j and later reads
it back, it has to ensure that no other task has modified j in the meantime . This requires syn-
chronizing access to the variable across all concurrent tasks that can access it . One way in
which you can achieve synchronized access is to lock data .

Locking Data
The C# language provides locking semantics through the lock keyword, which you can use to
guarantee exclusive access to resources . You use the lock keyword like this:

object myLockObject = new object();
...
lock (myLockObject)
{
 // Code that requires exclusive access to a shared resource
 ...
}

The lock statement attempts to obtain a mutual-exclusion lock over the specified object (you
can actually use any reference type, not just object), and it blocks if this same object is cur-
rently locked by another thread . When the thread obtains the lock, the code in the block fol-
lowing the lock statement runs . At the end of this block, the lock is released . If another thread
is blocked waiting for the lock, it can then grab the lock and continue its processing .

If an object is locked, what should a thread do while waiting for the lock to be released?
There are at least two answers . The thread can be put to sleep until the lock becomes
 available . This requires the runtime to perform a significant amount of work, including saving

http://lib.ommolketab.ir
http//lib.ommolketab.ir

660 Part VI Building Professional Solutions with Visual Studio 2010

the state of the thread and queuing the thread for later execution when the lock becomes
available . If the lock is held only for a small duration, the overhead of suspending, reschedul-
ing, and resuming the thread can exceed the time taken for the lock to become available,
which in turn affects the performance of your application . An alternative strategy is to let the
thread spin the processor (in the style of the Thread.SpinWait method you saw earlier in this
chapter) until the lock is released, at which point it can quickly obtain the lock and continue .
This mechanism avoids the overhead of suspending and resuming the thread; however, if the
wait is lengthy, this action can occupy the processor and consume resources while doing no
useful work, and this will also impact the performance of your application .

Internally, the lock statement uses the System.Threading.Monitor class to lock the specified
object . The Monitor class follows an intelligent algorithm to minimize the potential overhead
associated with locking an object and waiting for the lock to be released . When a thread
requests a lock, if the same object is currently locked by another thread, the waiting thread
spins the processor for a small number of iterations . If the lock is not obtained during this
period, the thread is then put to sleep and suspended . The thread is resumed when the lock
is released . In this way, short waits are very responsive while longer waits do not impact the
performance of other threads too drastically .

The lock keyword is fine for many simple scenarios, but there are situations in which you
might have more complex requirements . The TPL includes a number of additional synchro-
nization primitives you can use to address these situations . The following sections sum-
marize some of these primitives . The primitives have been designed to operate not only
with the TPL, but with any multithreaded code . They are all located in the System.Threading
namespace .

Note The .NET Framework has included a good set of synchronization primitives ever since its
initial release . The following section describes only the new primitives added as part of the TPL .
There is some overlap between the new primitives and those provided previously . Where over-
lapping functionality exists, you should use the primitives in the TPL because they have been
designed and optimized for computers with multiple CPUs .

Detailed discussion of the theory of all the possible synchronization mechanisms available for
building multithreaded applications is outside the scope of this book . For more information
about the general theory of multiple threads and synchronization, see the topic “Synchronizing
Data for Multithreading” in the .NET Framework Developers Guide, provided as part of the
 documentation with Visual Studio 2010 .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 28 Performing Parallel Data Access 661

Important You should not use locking and the synchronization primitives as a substitute for
good design or proper programming practice . The .NET Framework provides many other mecha-
nisms you can use to maximize parallelism while reducing the potential overhead associated with
locking data . For example, if multiple tasks must update common information in a collection, you
can use thread-local storage (TLS) to hold the data used by the threads running each task . To
create a variable in TLS, declare the variable as a static class member and then prefix it with the
ThreadStatic attribute, like this:

[ThreadStatic]
static Hashtable privateDataForThread;

Although the Hashtable variable is declared as static, it is not shared by all instances of the
class in which it is defined . Instead, a copy of the static variable is held in TLS . If two concurrent
tasks access this variable, they each get their own copy in TLS . When the tasks have completed,
they can return their copy of the static data and you can aggregate these results together .
Detailed discussion of TLS is outside the scope of this book, but for more information see the
 documentation provided with Visual Studio 2010 .

Synchronization Primitives in the Task Parallel Library
Most synchronization primitives take the form of locking mechanisms that restrict access
to a resource while a thread holds the lock . The TPL supports a variety of locking tech-
niques you can use to implement different styles of concurrent access, ranging from simple
 exclusive locks (where a single thread has sole access to a resource) to semaphores (where
 multiple threads can access a resource simultaneously, but in a controlled manner) to reader/
writer locks that enable different threads to share read-only access to a resource while
 guaranteeing exclusive access to a thread that needs to modify the resource .

The ManualResetEventSlim Class
The ManualResetEventSlim class provides functionality that enables one or more threads
to wait for an event . A ManualResetEventSlim object can be in one of two states: signaled
(true) and unsignaled (false) . A thread creates a ManualResetEventSlim object and speci-
fies its initial state . Other threads can wait for the ManualResetEventSlim object to be sig-
naled by calling the Wait method . If the ManualResetEventSlim object is in the unsignaled
state, the Wait method blocks the threads . Another thread can change the state of the
ManualResetEventSlim object to signaled by calling the Set method . This action releases all
threads waiting on the ManualResetEventSlim object, which can then resume running . The
Reset method changes the state of a ManualResetEventSlim object back to unsignaled .

When a thread waits for an event, it spins . However, if the wait exceeds a number of spin
cycles, the thread is suspended and yields the processor in a manner similar to that of the
Monitor class described earlier . You can specify the number of spin cycles that occur be-
fore suspending the thread in the constructor for a ManualResetEventSlim object, and you
can determine how many spin cycles will be performed before the thread is suspended by

http://lib.ommolketab.ir
http//lib.ommolketab.ir

662 Part VI Building Professional Solutions with Visual Studio 2010

 querying the SpinCount property . You can ascertain the state of a ManualResetEventSlim ob-
ject by examining the Boolean IsSet property .

The following example creates two tasks that access the integer variable i . The first task
uses a do/while loop to repeatedly display the value of i and increment it until the value of i
reaches 10 . The second task waits for the first task to finish updating i; it then reads the value
of i and displays it . The tasks use a ManualResetEventSlim object to coordinate their activities .
The ManualResetEventSlim object is initialized to the unsignaled state (false), and it specifies
that a thread waiting on this object can spin 100 times before it is suspended . The first task
signals the ManualResetEventSlim object at the end of the loop . The second task waits for the
ManualResetEventSlim object to be signaled . In this way, the second task reads i only when it
has reached 10 .

ManualResetEventSlim resetEvent = new ManualResetEventSlim(false, 100);
int i = 0;

Task t1 = Task.Factory.StartNew(() =>
 {
 do
 {
 Console.WriteLine("Task t1. i is {0}", i);
 i++;
 } while (i < 10);
 resetEvent.Set();
 });

Task t2 = Task.Factory.StartNew(() =>
 {
 resetEvent.Wait();
 Console.WriteLine("Task t2. i is {0}", i);
 });

Task.WaitAll(t1, t2);

The output from this code looks like this:

Task t1. i is 0
Task t1. i is 1
Task t1. i is 2
Task t1. i is 3
Task t1. i is 4
Task t1. i is 5
Task t1. i is 6
Task t1. i is 7
Task t1. i is 8
Task t1. i is 9
Task t2. i is 10

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 28 Performing Parallel Data Access 663

The SemaphoreSlim Class
You can use the SemaphoreSlim class to control access to a pool of resources . A
SemaphoreSlim object has an initial value (a non-negative integer) and an optional maximum
value . Typically, the initial value of a SemaphoreSlim object is the number of resources in the
pool . Threads accessing the resources in the pool first call the Wait method . This method
attempts to decrement the value of the SemaphoreSlim object, and if the result is non-zero
the thread is allowed to continue and can take a resource from the pool . When it has fin-
ished, the thread should call the Release method on the SemaphoreSlim object . This action
 increments the value of the Semaphore .

If a thread calls the Wait method and the result of decrementing the value of the
SemaphoreSlim object would result in a negative value, the thread waits until another thread
calls Release . The thread spins initially, but the thread is suspended if the waiting time is too
long .

The SemaphoreSlim class also provides the CurrentCount property, which you can use to
determine whether a Wait operation is likely to succeed immediately or will result in block-
ing . The following example shows how to create a SemaphoreSlim object to protect a pool of
three shared resources . Concurrent tasks can call the Wait method before they access a re-
source from this pool, and they call the Release method when they have finished . In this way,
no more than three tasks can use a resource at any one time—the fourth task will be blocked
until one of the first three calls Release .

// SemaphoreSlim object shared by threads
SemaphoreSlim semaphore = new SemaphoreSlim(3);
...
Task t1 = Task.Factory.StartNew(() =>
 {
 semaphore.Wait();
 // Access a resource from the pool
 semaphore.Release();
 });

Task t2 = Task.Factory.StartNew(() =>
 {
 semaphore.Wait();
 // Access a resource from the pool
 semaphore.Release();
 });

Task t3 = Task.Factory.StartNew(() =>
 {
 semaphore.Wait();
 // Access a resource from the pool
 semaphore.Release();
 });

http://lib.ommolketab.ir
http//lib.ommolketab.ir

664 Part VI Building Professional Solutions with Visual Studio 2010

Task t4 = Task.Factory.StartNew(() =>
 {
 // This task will be blocked until one of the previous three calls Release
 semaphore.Wait();
 // Access a resource from the pool
 semaphore.Release();
 });

Task.WaitAll(t1, t2, t3, t4);

The CountdownEvent Class
You can think of the CountdownEvent class as a cross between the inverse of a semaphore
and a manual reset event . When a thread creates a CountdownEvent object, it specifies an
initial value (a non-negative integer) . One or more threads can call the Wait method of the
CountdownEvent object, and if its value is non-zero the threads are blocked . (The thread spins
initially and is then suspended .) Wait does not decrement the value of the CountdownEvent
object; instead, other threads can call the Signal method to reduce the value . When the value
of the CountdownEvent object reaches zero, all blocked threads are signaled and can resume
running .

A thread can set the value of a CountdownEvent object back to the value specified in its
constructor by using the Reset method, and a thread can increase the value by calling the
AddCount method . You can query the value of a CountdownEvent object and determine
whether a call to Wait is likely to block by examining the CurrentCount property . The follow-
ing code creates a CountdownEvent object that must be signaled five times before threads
blocked waiting for it can continue . The countDownWaitTask waits on this object, and the
task countDownSignalTask signals it five times .

CountdownEvent countDown = new CountdownEvent(5);

Task countDownWaitTask = Task.Factory.StartNew(() =>
 {
 countDown.Wait();
 Console.WriteLine("CountdownEvent has been signaled 5 times");
 });

Task countDownSignalTask = Task.Factory.StartNew(() =>
 {
 for (int i = 0; i < 5; i++)
 {
 Console.WriteLine("Signaling CountdownEvent");
 countDown.Signal();
 }
 });

Task.WaitAll(countDownWaitTask, countDownSignalTask);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 28 Performing Parallel Data Access 665

The output from this code is shown here:

Signaling CountdownEvent
Signaling CountdownEvent
Signaling CountdownEvent
Signaling CountdownEvent
Signaling CountdownEvent
CountdownEvent has been signaled 5 times

The ReaderWriterLockSlim Class
The ReaderWriterLockSlim class is an advanced synchronization primitive that supports a
single writer and multiple readers . The idea is that modifying (writing) to a resource requires
exclusive access, but reading a resource does not; multiple readers can access the same
 resource at the same time .

A thread that wants to read a resource calls the EnterReadLock method of a
ReaderWriterLockSlim object . This action grabs a read lock on the object . When the thread
has finished with the resource, it calls the ExitReadLock method, which releases the read lock .
Multiple threads can read the same resource at the same time, and each thread obtains its
own read lock .

If a thread wants to modify the resource, it calls the EnterWriteLock method of the same
ReaderWriterLockSlim object to obtain a write lock . If one or more threads currently have a
read lock for this object, the EnterWriteLock method blocks until they are all released . The
thread can then modify the resource and call the ExitWriteLock method to release the write
lock . A ReaderWriterLockSlim object has only a single write lock . If another thread attempts
to obtain the write lock, it is blocked until the first thread releases the write lock .

To ensure that writing threads are not blocked indefinitely, as soon as a thread requests the
write lock all subsequent calls to EnterReadLock are blocked until the write lock has been
 obtained and released .

The blocking mechanism is similar to that used by the other primitives described in this
 section; it spins the processor for a number of cycles before suspending the thread if it is still
blocked .

The following code creates a ReaderWriterLockSlim object to protect a shared resource and
then creates three tasks . Two of the tasks obtain a read lock over the object, and the third
obtains a write lock . The two tasks readerTask1 and readerTask2 can access the shared re-
source simultaneously, but the task writerTask can access the resource only when readerTask1
and readerTask2 have both released their read locks .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

666 Part VI Building Professional Solutions with Visual Studio 2010

ReaderWriterLockSlim readerWriterLock = new ReaderWriterLockSlim();

Task readerTask1 = Task.Factory.StartNew(() =>
 {
 readerWriterLock.EnterReadLock();
 // Read shared resource
 readerWriterLock.ExitReadLock();
 });

Task readerTask2 = Task.Factory.StartNew(() =>
 {
 readerWriterLock.EnterReadLock();
 // Read shared resource
 readerWriterLock.ExitReadLock();
 });

Task writerTask = Task.Factory.StartNew(() =>
 {
 readerWriterLock.EnterWriteLock();
 // Write to shared resource
 readerWriterLock.ExitWriteLock();
 });

Task.WaitAll(readerTask1, readerTask2, writerTask);

The Barrier Class
The Barrier class enables you to temporarily halt the execution of a set of threads at a par-
ticular point in an application and continue only when all threads have reached this point . It
is useful for synchronizing threads that need to perform a series of concurrent operations in
step with each other .

When a thread creates a Barrier object, it specifies the number of threads in the set that
will be synchronized . You can think of this value as a thread counter maintained internally
inside the Barrier class . This value can be amended later by calling the AddParticipant or
RemoveParticipant methods . When a thread reaches a synchronization point, it calls the
SignalAndWait method of the Barrier object, which decrements the thread counter inside the
Barrier object . If this counter is greater than zero, the thread is blocked . Only when the coun-
ter reaches zero are all the threads waiting on the Barrier object released and only then can
they continue running .

The Barrier class provides the ParticipantCount property, which specifies the number of
threads that it synchronizes, and the ParticipantsRemaining property, which indicates how
many threads need to call SignalAndWait before the barrier is raised and blocked threads can
continue running .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 28 Performing Parallel Data Access 667

You can also specify a delegate in the Barrier constructor . This delegate can refer to a
 method that runs when all the threads have arrived at the barrier . The Barrier object is passed
in as a parameter to this method . The barrier is not raised and the threads are not released
until this method completes .

The following example creates a Barrier object that synchronizes three threads and provides
a lambda expression that runs when the Barrier is signaled . The tasks t1, t2, and t3 all call
SignalAndWait on this barrier . The tasks can continue only when all three have signaled the
barrier and the delegate specified by the Barrier object has completed .

Barrier barrier = new Barrier(3, (x) =>
{
 Console.WriteLine("All tasks have reached the barrier");
});

Task t1 = Task.Factory.StartNew(() =>
 {
 Console.WriteLine("Task t1 starting");
 barrier.SignalAndWait();
 Console.WriteLine("Task t1 continuing after the barrier");
 });

Task t2 = Task.Factory.StartNew(() =>
 {
 Console.WriteLine("Task t2 starting");
 barrier.SignalAndWait();
 Console.WriteLine("Task t2 continuing after the barrier");
 });

Task t3 = Task.Factory.StartNew(() =>
 {
 Console.WriteLine("Task t3 starting");
 barrier.SignalAndWait();
 Console.WriteLine("Task t3 continuing after the barrier");
 });

Task.WaitAll(t1, t2, t3);

The output from this code looks like this (the order in which the tasks start and resume after
the barrier has been raised can vary):

Task t1 starting
Task t2 starting
Task t3 starting
All tasks have reached the barrier
Task t3 continuing after the barrier
Task t1 continuing after the barrier
Task t2 continuing after the barrier

http://lib.ommolketab.ir
http//lib.ommolketab.ir

668 Part VI Building Professional Solutions with Visual Studio 2010

Cancellation and the Synchronization Primitives
The ManualResetEventSlim, SemaphoreSlim, CountdownEvent, and Barrier classes all support
cancellation by following the cancellation model described in Chapter 27 . The wait operations
for each of these classes can take an optional CancellationToken parameter, retrieved from a
CancellationTokenSource object . If you call the Cancel method of the CancellationTokenSource
object, each wait operation referencing a CancellationToken generated from this source is
aborted with an OperationCanceledException exception .

Note If the wait operation is being executed by a task, OperationCanceledException is wrapped
in an AggregateException, as described in Chapter 27 .

The following code shows how to invoke the Wait method of a SemaphoreSlim
object and specify a cancellation token . If the wait operation is canceled, the
OperationCanceledException catch handler runs .

CancellationTokenSource cancellationTokenSource = new CancellationTokenSource();
CancellationToken cancellationToken = cancellationTokenSource.Token;
...
// Semaphore that protects a pool of 3 resources
SemaphoreSlim semaphoreSlim = new SemaphoreSlim(3);
...
// Wait on the semaphore, and catch the OperationCanceledException if
// another thread calls Cancel on cancellationTokenSource
try
{
 semaphoreSlim.Wait(cancellationToken);
}
catch (OperationCanceledException e)
{
 ...
}

The Concurrent Collection Classes
A common requirement of many multithreaded applications is to store and retrieve data in a
collection . The standard collection classes provided with the .NET Framework are not thread-
safe by default, although you can use the synchronization primitives described in the previ-
ous section to wrap code that adds, queries, and removes elements in a collection . However,
this process is potentially error-prone and not very scalable, so the .NET Framework 4 .0 Class
Library includes a small set of thread-safe collection classes and interfaces in the System.
Collections.Concurrent namespace that are designed specifically for use with the TPL . The
 following table briefly summarizes these types .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 28 Performing Parallel Data Access 669

Class Description

ConcurrentBag<T> This is a general-purpose class for holding an unordered col-
lection of items . It includes methods to insert (Add), remove
(TryTake), and examine (TryPeek) items in the collection . These
methods are thread-safe . The collection is also enumerable, so
you can iterate over its contents by using a foreach statement .

ConcurrentDictionary<TKey, TValue> This class implements a thread-safe version of the generic
Dictionary<TKey, TValue> collection class described in Chapter
18, “Introducing Generics .” It provides the methods TryAdd,
ContainsKey, TryGetValue, TryRemove, and TryUpdate, which
you can use to add, query, remove, and modify items in the
dictionary .

ConcurrentQueue<T> This class provides a thread-safe version of the generic
Queue<T> class described in Chapter 18 . It includes the meth-
ods Enqueue, TryDequeue, and TryPeek, which you can use to
add, remove, and query items in the queue .

ConcurrentStack<T> This is a thread-safe implementation of the generic Stack<T>
class, also described in Chapter 18 . It provides methods such
as Push, TryPop, and TryPeek, which you can use to push, pop,
and query items on the stack .

IProducerConsumerCollection<T> This interface defines methods for implementing classes that
exhibit producer/consumer behavior . A producer adds items
to a collection, and a consumer reads (and possibly removes)
items from the same collection . It is frequently used to define
types that work with the BlockingCollection<T> class described
next in this table .

The IProducerConsumerCollection interface defines methods
to add (TryAdd) items to a collection, remove (TryTake) items
from a collection, and obtain an enumerator (GetEnumerator)
to enable an application to iterate through a collection . (The
interface defines other methods and properties as well .)
You can implement this interface and create your own cus-
tom concurrent collection classes . The ConcurrentBag<T>,
ConcurrentQueue<T>, and ConcurrentStack<T> classes all
implement this interface .

BlockingCollection<T> This class is useful for building applications based on
 producers and consumers that access the same collection .
The type parameter references a type that implements the
IProducerConsumerCollection<T> interface and adds blocking
capabilities to it .

It achieves this feat by acting as a thread-safe adapter; it
 provides methods such as Add and Take that wrap calls to
the TryAdd and TryTake methods in the underlying collec-
tion by using code that creates and uses the synchronization
primitives described earlier . The BlockingCollection<T> class
can also limit the number of items held in the underlying
 collection .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

670 Part VI Building Professional Solutions with Visual Studio 2010

The following code shows how to use a BlockingCollection<T> object to wrap an instance of a
user-defined type called MyCollection<T> that implements the IProducerConsumerCollection
interface . It limits the number of items in the underlying collection to 1000 .

class MyCollection<T> : IProducerConsumerCollection<T>
{
 // Implementation details not shown
 ...
}

...

// Create an instance of MyCollection<T>,
// and wrap it in a BlockingCollection<T> object
MyCollection<int> intCollection = new MyCollection<int>();
BlockingCollection<int> collection = new BlockingCollection<int>(myCollection, 1000);

Note You can also instantiate a BlockingCollection<T> object without specifying a collec-
tion class . In this case, the BlockingCollection<T> object creates a ConcurrentQueue<T> object
 internally .

Adding thread-safety to the methods in a collection class imposes additional runtime over-
head, so these classes are not as fast as the regular collection classes . You need to bear this
fact in mind when deciding whether to parallelize a set of operations that require access to a
shared collection .

Using a Concurrent Collection and a Lock to Implement
Thread-Safe Data Access
In the following set of exercises, you will implement an application that calculates PI by using
a geometric approximation . Initially, you will perform the calculation in a single-threaded
manner; then you will change the code to perform the calculation by using parallel tasks .
In the process, you will uncover some data synchronization issues you need to address and
that you will solve by using a concurrent collection class and a lock to ensure that the tasks
 coordinate their activities correctly .

The algorithm you will implement calculates PI based on some simple mathematics and
 statistical sampling . If you draw a circle of radius r and draw a square with sides that touch
the circle, the sides of the square are 2 * r in length as shown in the following image:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 28 Performing Parallel Data Access 671

The area of the square, S, is calculated as follows:

(2 * r) * (2 * r)

or

4 * r * r

The area of the circle, C, is calculated as follows:

PI * r * r

Using these areas, you can calculate PI as follows:

4 * C / S

The trick is to determine the value of the ratio C / S . This is where the statistical sampling
comes in .

To do this, generate a set of random points that lie within the square and count how many of
these points also fall within the circle . If you have generated a sufficiently large and random
sample, the ratio of points that lie within the circle to the points that lie within the square
(and also in the circle) approximates the ratio of the areas of the two shapes, C / S . All you
have to do is count them .

How do you determine whether a point lies within the circle? To help visualize the solution,
draw the square on a piece of graph paper with the center of the square at the origin, point
(0, 0) . You can then generates pairs of values, or coordinates, that lie within the range (-r, -r)
to (+r, +r) . You can determine whether any set of coordinates (x, y) lie within the circle by ap-
plying Pythagoras’ theorem to determine the distance d of these coordinates from the origin .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

672 Part VI Building Professional Solutions with Visual Studio 2010

You can calculate d as the square root of ((x * x) + (y * y)) . If d is less than or equal to r, the
radius of the circle, then the coordinates (x, y) specify a point within the circle, as shown in
the following diagram:

You can simplify matters further by generating only coordinates that lie in the upper right
quadrant of the graph so that you only have to generate pairs of random numbers between
0 and r . This is the approach you will take in the exercises .

Note The exercises in this chapter are intended to run on a computer with a multicore proces-
sor . If you have only a single-core CPU, you will not observe the same effects . Also, you should
not start any additional programs or services between exercises because these might affect the
results you see .

Calculate PI by using a single thread

 . 1 . . Start Microsoft Visual Studio 2010 if it is not already running .

 . 2 . . Open the CalculatePI solution, located in the \Microsoft Press\Visual CSharp Step By
Step\Chapter 28\CalculatePI folder in your Documents folder .

 . 3 . . In Solution Explorer, double-click Program .cs to display the file in the Code and Text
Editor window .

This is a console application . The skeleton structure of the application has already been
created for you .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 28 Performing Parallel Data Access 673

 . 4 . . Scroll to the bottom of the file, and examine the Main method . It looks like this:

static void Main(string[] args)
{
 double pi = SerialPI();
 Console.WriteLine("Geometric approximation of PI calculated serially: {0}", pi);

 Console.WriteLine();
 pi = ParallelPI();
 Console.WriteLine("Geometric approximation of PI calculated in parallel: {0}",
pi);
}

This code calls the SerialPI method, which will calculate PI by using the geometric al-
gorithm described before this exercise . The value is returned as a double and displayed .
The code then calls the ParallelPI method, which will perform the same calculation but
by using concurrent tasks . The result displayed should be exactly the same as that re-
turned by the SerialPI method .

 . 5 . . Examine the SerialPI method .

static double SerialPI()
{
 List<double> pointsList = new List<double>();
 Random random = new Random(SEED);
 int numPointsInCircle = 0;
 Stopwatch timer = new Stopwatch();
 timer.Start();

 try
 {
 // TO DO: Implement the geometric approximation of PI
 return 0;
 }
 finally
 {
 long milliseconds = timer.ElapsedMilliseconds;
 Console.WriteLine("SerialPI complete: Duration: {0} ms", milliseconds);
 Console.WriteLine("Points in pointsList: {0}. Points within circle: {1}",
pointsList.Count, numPointsInCircle);
 }
}

This method will generate a large set of coordinates and calculates the distances of
each set of coordinates from the origin . The size of the set is specified by the constant
NUMPOINTS at the top of the Program class . The bigger this value is, the greater the
set of coordinates and the more accurate is the value of PI calculated by this method .
If you have sufficient memory, you can increase the value of NUMPOINTS . Similarly, if
you find that the application throws OutOfMemoryException exceptions when you run
it, you can reduce this value .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

674 Part VI Building Professional Solutions with Visual Studio 2010

You store the distance of each point from the origin in the pointsList List<double>
 collection . The data for the coordinates is generated by using the random variable . This
is a Random object, seeded with a constant to generate the same set of random num-
bers each time you run the program . (This helps you determine that it is running cor-
rectly .) You can change the SEED constant at the top of the Program class if you want to
seed the random number generator with a different value .

You use the numPointsInCircle variable to count the number of points in the pointsList
collection that lie within the bounds of the circle . The radius of the circle is specified by
the RADIUS constant at the top of the Program class .

To help you compare performance between this method and the ParallelPI method,
the code creates a Stopwatch variable called timer and starts it running . The finally
block determines how long the calculation took and displays the result . For reasons
that will be described later, the finally block also displays the number of items in the
pointsList collection and the number of points that it found that lay within the circle .

You will add the code that actually performs the calculation to the try block in the next
few steps .

 . 6 . . In the try block, delete the comment and remove the return statement . (This statement
was provided only to ensure that the code compiles .) Add the for block and statements
shown next in bold to the try block:

try
{
 for (int points = 0; points < NUMPOINTS; points++)
 {
 int xCoord = random.Next(RADIUS);
 int yCoord = random.Next(RADIUS);
 double distanceFromOrigin = Math.Sqrt(xCoord * xCoord + yCoord * yCoord);
 pointsList.Add(distanceFromOrigin);
 doAdditionalProcessing();
 }
}

This block of code generates a pair of coordinate values that lie in the range 0 to
RADIUS, and it stores them in the xCoord and yCoord variables . The code then uses
Pythagoras’ theorem to calculate the distance of these coordinates from the origin and
adds the result to the pointsList collection .

Note Although there is a little bit of computational work performed by this block of
code, in a real-world scientific application you are likely to include far more complex cal-
culations that will keep the processor occupied for longer . To simulate this situation, this
block of code calls another method, doAdditionalProcessing . All this method does is oc-
cupy a number of CPU cycles as shown in the following code sample . I opted to follow this
approach to better demonstrate the data synchronization requirements of multiple tasks
rather than have you write an application that performs a highly complex calculation such
as a Fast Fourier Transform to keep the CPU occupied:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 28 Performing Parallel Data Access 675

private static void doAdditionalProcessing()
{
 Thread.SpinWait(SPINWAITS);
}

SPINWAITS is another constant defined at the top of the Program class .

 . 7 . . In the SerialPI method, in the try block, add the foreach statement shown next in bold
after the for block:

try
{
 for (int points = 0; points < NUMPOINTS; points++)
 {
 ...
 }

 foreach (double datum in pointsList)
 {
 if (datum <= RADIUS)
 {
 numPointsInCircle++;
 }
 }
}

This code iterates through the pointsList collection and examines each value in turn . If
the value is less than or equal to the radius of the circle, it increments the numPointsIn-
Circle variable . At the end of this loop, numPointsInCircle should contain the total num-
ber of coordinates that were found to lie within the bounds of the circle .

 . 8 . . Add the following statements shown in bold to the try block, after the foreach block:

try
{
 for (int points = 0; points < NUMPOINTS; points++)
 {
 ...
 }

 foreach (double datum in pointsList)
 {
 ...
 }

 double pi = 4.0 * numPointsInCircle / NUMPOINTS;
 return pi;
}

These statements calculate PI based on the ratio of the number of points that lie within
the circle to the total number of points, using the formula described earlier . The value is
returned as the result of the method .

 . 9 . . On the Debug menu, click Start Without Debugging .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

676 Part VI Building Professional Solutions with Visual Studio 2010

The program runs and displays its approximation of PI, as shown in the following
 image . (It took just over 46 seconds on my computer, so be prepared to wait for a
little while .) The time taken to calculate the result is also displayed . (You can ignore
the results from the ParallelPI method because you have not written the code for this
method yet .)

Note Apart from the timing, your results should be the same unless you have changed
the NUMPOINTS, RADIUS, or SEED constants .

 . 10 . . Close the console window, and return to Visual Studio .

In the SerialPI method, the code in the for loop that generates the points and calculates their
distance from the origin is an obvious area that can parallelized . This is what you will do in
the next exercise .

Calculate PI by using parallel tasks

 . 1 . . In Solution Explorer, double-click Program .cs to display the file in the Code and Text
Editor window if it is not already open .

 . 2 . . Locate the ParallelPI method . It contains exactly the same code as the initial version of
the SerialPI method before you added the code to the try block to calculate PI .

 . 3 . . In the try block, delete the comment and remove the return statement . Add the
Parallel.For statement shown next in bold to the try block:

try
{
 Parallel.For (0, NUMPOINTS, (x) =>
 {
 int xCoord = random.Next(RADIUS);
 int yCoord = random.Next(RADIUS);
 double distanceFromOrigin = Math.Sqrt(xCoord * xCoord + yCoord * yCoord);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 28 Performing Parallel Data Access 677

 pointsList.Add(distanceFromOrigin);
 doAdditionalProcessing();
 });
}

This construct is the parallel analog of the code in the for loop in the SerialPI method .
The body of the original for loop is wrapped in a lambda expression .

 . 4 . . Add the following code shown in bold to the try block after the Parallel.For statement .
This code is exactly the same as the corresponding statements in the SerialPI method .

try
{
 Parallel.For (...
);

 foreach (double datum in pointsList)
 {
 if (datum <= RADIUS)
 {
 numPointsInCircle++;
 }
 }

 double pi = 4.0 * numPointsInCircle / NUMPOINTS;
 return pi;
}

 . 5 . . On the Debug menu, click Start Without Debugging .

The program runs . The following image shows the typical output:

The value calculated by the SerialPI method should be exactly the same as before .
However, the result of the ParallelPI method looks somewhat suspect . The random
number generator is seeded with the same value as that used by the SerialPI method,
so it should produce the same sequence of random numbers with the same result and

http://lib.ommolketab.ir
http//lib.ommolketab.ir

678 Part VI Building Professional Solutions with Visual Studio 2010

the same number of points within the circle . Another curious point is that the point-
sList collection in the ParallelPI method seems to contain fewer points than the same
 collection in the SerialPI method .

Note If the pointsList collection actually contains the expected number of items, run the
application again . You should find that it contains fewer items than expected in most (but
not necessarily all) runs .

 . 6 . . Close the console window, and return to Visual Studio .

So what went wrong with the parallel calculation? A good place to start is the number of
items in the pointsList collection . This collection is a generic List<double> object . However,
this type is not thread-safe . The code in the Parallel.For statement calls the Add method to
append a value to the collection, but remember that this code is being executed by tasks
running as concurrent threads . Consequently, given the number of items being added to the
collection, it is highly probable that some of the calls to Add will interfere with each other
and cause some corruption . A solution is to use one of the collections from the System.
Collections.Concurrent namespace because these collections are thread-safe . The generic
ConcurrentBag<T> class in this namespace is probably the most suitable collection to use for
this example .

Use a thread-safe collection

 . 1 . . In Solution Explorer, double-click Program .cs to display the file in the Code and Text
Editor window if it is not already open .

 . 2 . . Locate the ParallelPI method . At the start of this method, replace the statement that in-
stantiates the List<double> collection with code that creates a ConcurrentBag<double>
collection, as shown here in bold:

static double ParallelPI()
{
 ConcurrentBag<double> pointsList = new ConcurrentBag <double>();
 Random random = ...;
 ...
}

 . 3 . . On the Debug menu, click Start Without Debugging .

The program runs and displays its approximation of PI by using the SerialPI and
ParallelPI methods . The following image shows the typical output .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 28 Performing Parallel Data Access 679

This time, the pointsList collection in the ParallelPI method contains the correct number
of points, but the number of points within the circle still appears to be very high; it
should be the same as that reported by the SerialPI method .

You should also note that the time taken by the ParallelPI method has increased
 significantly . This is because the methods in the ConcurrentBag<T> class have to lock
and unlock data to guarantee thread safety, and this process adds to the overhead of
calling these methods . You need to bear this in mind when considering whether it is
appropriate to parallelize an operation .

 . 4 . . Close the console window, and return to Visual Studio .

You now have the correct number of points in the pointsList collection, but the values of
these points is now suspect . The code in the Parallel.For construct calls the Next method of a
Random object, but like the methods in the generic List<T> class this method is not thread-
safe . Sadly, there is no concurrent version of the Random class, so you must resort to using
an alternative technique to serialize calls to the Next method . Because each invocation is
 relatively brief, it makes sense to use a lock to guard calls to this method .

Use a lock to serialize method calls

 . 1 . . In Solution Explorer, double-click Program .cs to display the file in the Code and Text
Editor window if it is not already open .

 . 2 . . Locate the ParallelPI method . Modify the code in the lambda expression in the Parallel.
For statement to protect the calls to random.Next by using a lock statement . Specify
the pointsList collection as the subject of the lock, as shown here in bold:

static double ParallelPI()
{
 ...
 Parallel.For(0, NUMPOINTS, (x) =>
 {
 int xCoord;
 int yCoord;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

680 Part VI Building Professional Solutions with Visual Studio 2010

 lock(pointsList)
 {
 xCoord = random.Next(RADIUS);
 yCoord = random.Next(RADIUS);
 }

 double distanceFromOrigin = Math.Sqrt(xCoord * xCoord + yCoord * yCoord);
 pointsList.Add(distanceFromOrigin);
 doAdditionalProcessing();
 });

 ...
}

 . 3 . . On the Debug menu, click Start Without Debugging .

This time, the values of PI calculated by the SerialPI and ParallelPI methods are the
same . The only difference is that the ParallelPI method runs more quickly .

 . 4 . . Close the console window, and return to Visual Studio .

In this chapter, you learned a little about PLINQ and how you can use the AsParallel exten-
sion method to parallelize some LINQ queries . However, PLINQ is a big subject in its own
right and this chapter has only shown you how to get started . For more information, see the
topic “Parallel LINQ (PLINQ)” in the documentation provided with Visual Studio .

This chapter also showed you how to synchronize data access in concurrent tasks by using
the synchronization primitives provided for use with the TPL . You also saw how to use the
concurrent collection classes to maintain collections of data in a thread-safe manner .

n If you want to continue to the next chapter

Keep Visual Studio 2010 running, and turn to Chapter 29 .

n If you want to exit Visual Studio 2010 now

On the File menu, click Exit . If you see a Save dialog box, click Yes and save the project .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 28 Performing Parallel Data Access 681

Chapter .28 .Quick .Reference
To Do this

Parallelize a LINQ query Specify the AsParallel extension method with the data source in the query .
For example:

var over100 = from n in numbers.AsParallel()
 where ...
 select n;

Enable cancellation in a PLINQ
query

Use the WithCancellation method of the ParallelQuery class in the PLINQ
query, and specify a cancellation token . For example:

CancellationToken tok = ...;
...
var orderInfoQuery =
 from c in CustomersInMemory.Customers.AsParallel().
WithCancellation(tok)
 join o in OrdersInMemory.Orders.AsParallel()
 on ...

Synchronize one or more tasks
to implement thread-safe ex-
clusive access to shared data

Use the lock statement to guarantee exclusive access to the data . For example:

object myLockObject = new object();
...
lock (myLockObject)
{
 // Code that requires exclusive access to a shared resource
 ...
}

Synchronize threads, and make
them wait for an event

Use a ManualResetEventSlim object to synchronize an indeterminate number
of threads .

Use a CountdownEvent object to wait for an event to be signaled a specified
number of times .

Use a Barrier object to coordinate a specified number of threads and
 synchronize them at a particular point in an operation .

Synchronize access to a shared
pool of resources

Use a SemaphoreSlim object . Specify the number of items in the pool in the
constructor . Call the Wait method prior to accessing a resource in the shared
pool . Call the Release method when you have finished with the resource . For
example:

SemaphoreSlim semaphore = new SemaphoreSlim(3);
...
semaphore.Wait();
// Access a resource from the pool
...
semaphore.Release();

http://lib.ommolketab.ir
http//lib.ommolketab.ir

682 Part VI Building Professional Solutions with Visual Studio 2010

To Do this

Provide exclusive write access
to a resource, but shared read
access

Use a ReaderWriterLockSlim object . Prior to reading the shared resource, call
the EnterReadLock method . Call the ExitReadLock method when you have fin-
ished . Before writing to the shared resource, call the EnterWriteLock method .
Call the ExitWriteLock method when you have completed the write operation .
For example:

ReaderWriterLockSlim readerWriterLock = new ReaderWriterLockSlim();

Task readerTask = Task.Factory.StartNew(() =>
 {
 readerWriterLock.EnterReadLock();
 // Read shared resource
 readerWriterLock.ExitReadLock();
 });

Task writerTask = Task.Factory.StartNew(() =>
 {
 readerWriterLock.EnterWriteLock();
 // Write to shared resource
 readerWriterLock.ExitWriteLock();
 });

Cancel a blocking wait
 operation

Create a cancellation token from a CancellationTokenSource object, and specify
this token as a parameter to the wait operation . To cancel the wait operation,
call the Cancel method of the CancellationTokenSource object . For example:

CancellationTokenSource cancellationTokenSource = new
CancellationTokenSource();
CancellationToken cancellationToken = cancellationTokenSource.Token;
...
// Semaphore that protects a pool of 3 resources
SemaphoreSlim semaphoreSlim = new SemaphoreSlim(3);
...
// Wait on the semaphore, and throw an OperationCanceledException if
// another thread calls Cancel on cancellationTokenSource
semaphore.Wait(cancellationToken);

Create a thread-safe collection
object

Depending on the functionality required for the collection, either
use one of the classes in the in the System.Collections.Concurrent
namespace (ConcurrentBag<T>, ConcurrentDictionary<TKey, TValue>,
ConcurrentQueue<T>, or ConcurrentStack<T>) or create your own class that
implements the IProducerConsumerCollection<T> interface and wrap an in-
stance of this type in a BlockingCollection<T> object . For example:

class MyCollection<T> : IProducerConsumerCollection<T>
{
 // Implementation details not shown
 ...
}
...
// Create an instance of MyCollection<T>,
// and wrap it in a BlockingCollection<T> object
MyCollection<int> intCollection = new MyCollection<int>();
BlockingCollection<int> collection = new BlockingCollection<int>(myCo
llection, 1000);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 . . 683

Chapter 29

Creating and Using a Web Service
After completing this chapter, you will be able to:

n Create SOAP and REST Web services that expose simple Web methods .

n Display the description of a SOAP Web service by using Internet Explorer .

n Design classes that can be passed as parameters to a Web method and returned from a
Web method .

n Create proxies for SOAP and REST Web services in a client application .

n Invoke a REST Web method by using Internet Explorer .

n Invoke Web methods from a client application .

The previous chapters showed you how to build desktop applications that can perform a
variety of tasks . However, in this day and age, very few systems operate in isolation . An orga-
nization performs business operations and, as such, frequently has existing applications that
support this business functionality . An increasingly common requirement is to build new so-
lutions that can reuse much of this functionality and protect the investment the organization
has made in building or buying the underlying software components . These components
and services might be constructed by using an assortment of technologies and programming
languages, and running on a collection of computers connected together over a network .
Additionally, now that we are in the Internet age, an organization can elect to compose
 solutions that incorporate various third-party services . The challenge is to establish how to
combine these pieces to enable them to communicate and cooperate in a seamless manner .

Web services provide one possible solution . By using Web services, you can build distributed
systems from elements that are spread across the Internet—databases, business services, and
so on . Components and services are hosted by a Web server that receives requests from a
client application, parses them, and sends the corresponding command to the component or
service . The response is routed back through the Web server to the client application .

The aim of this chapter is to show you how to design, build, and test Web services that can
be accessed over the Internet and integrated into distributed applications . You’ll also learn
how to construct a client application that uses the methods exposed by a Web service .

Note The purpose of this chapter is to provide a basic introduction to Web services and
Microsoft Windows Communication Foundation (WCF) . If you want detailed information about
how WCF works and how to build secure services by using WCF, you should consult a book such
as Microsoft Windows Communication Foundation Step by Step (Microsoft Press, 2007) .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

684 Part VI Building Professional Solutions with Visual Studio 2010

What .Is .a .Web .Service?
A Web service is a business component that provides some useful, reusable functionality
to clients or consumers . A Web service can be thought of as a component with truly global
accessibility—if you have the appropriate access rights, you can make use of a Web service
from anywhere in the world as long as your computer is connected to the Internet . Web ser-
vices use a standard, accepted, and well-understood protocol—Hypertext Transfer Protocol
(HTTP)—to transmit data and a portable data format that is based on XML . HTTP and XML
are both standardized technologies that can be used by other programming environments
outside the Microsoft .NET Framework . With Microsoft Visual Studio 2010, you can build
Web services by using Microsoft Visual C++, Microsoft Visual C#, or Microsoft Visual Basic .
However, as far as a client application is concerned, the language used to create the Web
 service, and even how the Web service performs its tasks, is not important . Client applica-
tions running in a totally different environment, such as Java, can use them . The reverse is
also true: you can build Web services by using Java and write client applications in C# .

The Role of Windows Communication Foundation
Windows Communication Foundation, or WCF, emerged as part of version 3 .0 of the .NET
Framework . Visual Studio provides a set of templates you can use for building Web services
by using WCF . However, Web services are just one technology you can use to create distrib-
uted applications for the Windows operating systems . Others include Enterprise Services,
 .NET Framework Remoting, and Microsoft Message Queue (MSMQ) . If you are building a
distributed application for Windows, which technology should you use, and how difficult will
it be to switch later if you need to? The purpose of WCF is to provide a unified programming
model for many of these technologies so that you can build applications that are as indepen-
dent as possible from the underlying mechanism being used to connect services and applica-
tions . (Note that WCF applies as much to services operating in non-Web environments as it
does to the World Wide Web .) It is very difficult, if not impossible, to completely divorce the
programmatic structure of an application or service from its communications infrastructure,
but WCF lets you come very close to achieving this aim much of the time .

To summarize, if you are considering building distributed applications and services for
Windows, you should use WCF . The exercises in this chapter will show you how .

Web .Service .Architectures
There are two common architectures that organizations use for implementing Web services;
services based on the Simple Object Access Protocol (SOAP), and services based on the
Representational State Transfer (REST) model . Both architectures rely on the ubiquitous HTTP
protocol (the protocol used by the Web to send and receive HTML pages) and the addressing

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 29 Creating and Using a Web Service 685

scheme used by the Internet, but they use it in different ways . If you are building solutions
that incorporate Web services hosted by third-party organizations, they might implement
these Web services by using either of these models, so it helps to have a good understanding
of both . The following sections briefly describe these architectures .

SOAP Web Services
A SOAP Web service exposes functionality by using the traditional procedural model; the
principal difference from an ordinary desktop application is that the procedures run remotely
on the Web server . A client application’s view of a Web service is of an interface that exposes
a number of well-defined methods, known as Web methods . The client application sends re-
quests to these Web methods by using standard Internet protocols, passing parameters in an
XML format and receiving responses also in an XML format . SOAP Web methods can query
and modify data .

The Role of SOAP
SOAP is the protocol used by client applications for sending requests to and receiving
 responses from Web services . SOAP is built on top of HTTP . SOAP defines an XML grammar
for specifying the names of Web methods that a consumer can invoke on a Web service, for
defining the parameters and return values, and for describing the types of parameters and
return values . When a client calls a Web service, it must specify the method and parameters
by using this XML grammar .

SOAP is an industry standard . Its function is to improve cross-platform interoperability . The
strength of SOAP is its simplicity and also the fact that it is based on other industry-standard
technologies, such as HTTP and XML . The SOAP specification defines a number of things . The
most important are the following:

n The format of a SOAP message

n How data should be encoded

n How to send messages

n How to process replies

Descriptions of the exact details of how SOAP works and the internal format of a SOAP
 message are beyond the scope of this book . It is highly unlikely you will ever need to create
and format SOAP messages manually because many development tools, including Visual
Studio 2010, automate this process, presenting a programmer-friendly API to developers
building Web services and client applications .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

686 Part VI Building Professional Solutions with Visual Studio 2010

What Is the Web Services Description Language?
The body of a SOAP message is an XML document . When a client application invokes a
Web method, the Web server expects the client to use a particular set of tags for encod-
ing the parameters for the method . How does a client know which tags, or XML schema, to
use? The answer is that, when asked, a Web service is expected to supply a description of
itself . The Web service response is another XML document that describes the Web service .
Unsurprisingly, this document is known as the Web Service Description . The XML schema
used for this document has been standardized and is called Web Services Description
Language (WSDL) . This description provides enough information for a client application to
construct a SOAP request in a format that the Web server should understand . Again, the de-
tails of WSDL are beyond the scope of this book, but Visual Studio 2010 contains tools that
can parse the WSDL for a Web service in a mechanical manner . Visual Studio 2010 then uses
the information to define a proxy class that a client application can use to convert ordinary
method calls on this proxy class to SOAP requests that the proxy sends over the Web . This is
the approach you will use in the exercises in this chapter .

Nonfunctional Requirements of Web Services
The initial efforts to define Web services and their associated standards concentrated on the
functional aspects for sending and receiving SOAP messages . Not long after Web services
became a mainstream technology for integrating distributed services, it became apparent
that there were issues that SOAP and HTTP alone could not address . These issues concern
many nonfunctional requirements that are important in any distributed environment, but
much more so when using the Internet as the basis for a distributed solution . They include
the following items:

n . Security How do you ensure that SOAP messages that flow between a Web ser-
vice and a consumer have not been intercepted and changed on their way across the
Internet? How can you be sure that a SOAP message has actually been sent by the
consumer or Web service that claims to have sent it, and not some “spoof” site that is
trying to obtain information fraudulently? How can you restrict access to a Web service
to specific users? These are matters of message integrity, confidentiality, and authen-
tication and are fundamental concerns if you are building distributed applications that
make use of the Internet .

In the early 1990s, a number of vendors supplying tools for building distributed sys-
tems formed an organization that later became known as the Organization for the
Advancement of Structured Information Standards (OASIS) . As the shortcomings of the
early Web services infrastructure became apparent, members of OASIS pondered these
problems (and other Web services issues) and produced what became known as the
WS-Security specification . The WS-Security specification describes how to protect the
messages sent by Web services . Vendors that subscribe to WS-Security provide their
own implementations that meet this specification, typically by using technologies such
as encryption and certificates .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 29 Creating and Using a Web Service 687

n . Policy Although the WS-Security specification defines how to provide enhanced
 security, developers still need to write code to implement it . Web services created by
different developers often vary in how stringent the security mechanism is that they
have elected to implement . For example, a Web service might use only a relatively
weak form of encryption that can easily be broken . A consumer sending highly confi-
dential information to this Web service would probably insist on a higher level of se-
curity . This is one example of policy . Other examples include the quality of service and
reliability of the Web service . A Web service can implement varying degrees of security,
quality of service, and reliability and charge the client application accordingly . The cli-
ent application and the Web service can negotiate which level of service to use based
on the requirements and cost . However, this negotiation requires that the client and
the Web service have a common understanding of the policies available . The WS-Policy
specification provides a general-purpose model and corresponding syntax to describe
and communicate the policies that a Web service implements .

n . Routing .and .addressing It is useful for a Web server to be able to reroute a Web
service request to one of a number of computers hosting instances of the service . For
example, many scalable systems make use of load balancing, in which requests sent to
a Web server are actually redirected by that server to other computers to spread the
load across those computers . The server can use any number of algorithms to try to
balance the load . The important point is that this redirection is transparent to the cli-
ent making the Web service request, and the server that ultimately handles the request
must know where to send any responses that it generates . Redirecting Web service
requests is also useful if an administrator needs to shut down a computer to perform
maintenance . Requests that would otherwise have been sent to this computer can be
rerouted to one of its peers . The WS-Addressing specification describes a framework
for routing Web service requests .

Note Developers refer to the WS-Security, WS-Policy, WS-Addressing, and other “WS-“
 specifications collectively as the WS-* specifications .

REST Web Services
In contrast to SOAP Web services, the REST model of Web services uses a navigational
scheme to represent business objects and resources over a network . For example, an
 organization might provide access to employee information, exposing the details of each
employee as a single resource, by using a scheme similar to this:

http://northwind.com/employees/7

Accessing this URL causes the Web service to retrieve the data for employee 7 . This data can
be returned in a number of formats, but for portability the most common formats include

http://lib.ommolketab.ir
http//lib.ommolketab.ir

688 Part VI Building Professional Solutions with Visual Studio 2010

XML (sometimes referred to as “Plain Old XML” or POX) and JavaScript Object Notation (or
JSON) . If the Northwind Traders organization chooses to use POX, the result returned by
querying the URL shown earlier might be something like this:

<Employee>
 <EmployeeID>
 7
 </EmployeeID>
 <LastName>
 King
 </LastName>
 <FirstName>
 Robert
 </FirstName>
 <Title>
 Sales Representative
 </Title>
</Employee>

The key to designing a REST-based solution is to understand how to divide a business model
into a set of resources . In some cases, such as employees, this might be straightforward, but
in other situations this might be more of a challenge .

The REST model relies on the application that accesses the data sending the appropriate
HTTP verb as part of the request used to access the data . For example, the simple request
shown previously should send an HTTP GET request to the Web service . HTTP supports other
verbs as well, such as POST, PUT, and DELETE, which you can use to create, modify, and re-
move resources, respectively . Using the REST model, you can exploit these verbs and build
Web services that can update data .

In contrast to SOAP, the messages sent and received by using the REST model tend to be
much more compact . This is primarily because REST does not provide the same routing,
 policy, or security facilities provided by the WS-* specifications, and you have to rely on the
underlying infrastructure provided by the Web server to protect REST Web services . However,
this minimalist approach means that a REST Web service is usually much more efficient than
the equivalent SOAP Web service when transmitting and receiving messages .

Building .Web .Services
Using WCF, you can build Web services that follow the REST or SOAP models . However, the
SOAP mechanism is the more straightforward of the two schemes to implement by using
WCF, so you will concentrate on this model for the initial exercises in this chapter . Later in this
chapter, you will see how to build a REST Web service .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 29 Creating and Using a Web Service 689

In this chapter, you will create two Web services:

n The ProductInformation Web service . This is a SOAP Web service that enables the
user to calculate the cost of buying a specified quantity of a particular product in the
Northwind database

n The ProductDetails Web service . This is a REST Web service that enables a user to query
the details of products in the Northwind database .

Creating the ProductInformation SOAP Web Service
In the first exercise, you will create the ProductInformation Web service and examine the
sample code generated by Visual Studio 2010 whenever you create a new WCF service
 project . In subsequent exercises, you will define and implement the HowMuchWillItCost Web
method and then test the Web method to ensure that it works as expected .

Important You cannot build Web services by using Microsoft Visual C# 2010 Express . Instead,
you should use Microsoft Visual Web Developer 2010 Express . You can download Visual Web
Developer 2010 Express free of charge from the Microsoft Web site .

Create the SOAP Web service, and examine the sample code

 . 1 . . Start Visual Studio 2010 if it is not already running, or start Visual Web Developer 2010
Express .

 . 2 . . If you are using Visual Studio 2010 Professional or Enterprise, on the File menu, point to
New, and then click Web Site .

 . 3 . . If you are using Visual Web Developer 2010 Express, on the File menu, click New Web
Site . Make sure that you select Visual C# under Installed Templates in the left pane .

 . 4 . . In the New Web Site dialog box, click the WCF Service template . Select File System in
the Location drop-down list box, specify the \Microsoft Press\Visual CSharp Step By
Step\Chapter 29\ProductInformationService folder under your Documents folder, and
then click OK .

Visual Studio 2010 generates a Web site hosted by using the Development Web Server
provided with Visual Studio and Visual Web Developer . You can also host Web services
by using Microsoft Internet Information Services (IIS) if you have it available, although
the details for doing this are outside the scope of this chapter . The Web site contains
folders called App_Code and App_Data, a file called Service .svc, and a configuration file
called Web .config . The code for an example Web service is defined in the Service class,
stored in the file Service .cs in the App_Code folder, and displayed in the Code and Text
Editor window . The Service class implements a sample interface called IService, stored in
the file IService .cs in the App_Code folder .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

690 Part VI Building Professional Solutions with Visual Studio 2010

Note The solution file for a Web site project is located under the Visual Studio 2010\
Projects folder in your Documents folder rather than in the folder that contains the files for
the Web site . You can open an existing Web Site project either by finding and opening the
appropriate solution file, or by using the Open Web Site command on the File menu and
then specifying the folder that contains the files for the Web site . You can also copy the
solution file for a Web site to the folder holding the files for the Web site, but this is not
recommended in a production environment, for security purposes .

 . 5 . . Click the C:\ . . .\ProductInformationService\ project . In the Properties window, set the
Use dynamic ports property to False and set the Port number property to 4500 .

Note You might need to wait a few seconds after setting the Use dynamic ports property
to False before you can set the Port number property .

A port specifies the location that the Web server listens on for incoming requests from
client applications . By default, the Development Web server picks a port at random to
reduce the chances of clashing with any other ports used by other network services
running on your computer . This feature is useful if you are building and testing Web
sites (as opposed to Web services) in a development environment prior to copying
them to a production server such as IIS . However, when building a Web service, it is
more useful to use a fixed port number because client applications need to be able to
connect to it .

Note When you close a Web site and reopen it by using Visual Studio or by using Visual
Web Developer, the Use dynamic ports property frequently reverts to True and the Port
number property is set to a random port . In this case, reset these properties to the values
described in this step .

 . 6 . . In Solution Explorer, expand the App_Code folder if it is not already open, right-
click the Service .cs file, and then click Rename . Change the name of the file to
ProductInformation .cs .

 . 7 . . Using the same technique, change the name of the IService .cs file to
IProductInformation .cs .

 . 8 . . Double-click the IProductInformation .cs file to display it in the Code and Text Editor
window .

This file contains the definition of an interface called IService . At the top of the
IProductInformation .cs file, you will find using statements referencing the System,
System.Collections.Generic, and System.Text namespaces (which you have met be-
fore), and three additional statements referencing the System.ServiceModel, System.
ServiceModel.Web, and System.Runtime.Serialization namespaces .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 29 Creating and Using a Web Service 691

The System.ServiceModel and System.ServiceModel.Web namespaces contain the
classes used by WCF for defining services and their operations . WCF uses the classes
in the System.Runtime.Serialization namespace to convert objects to a stream of data
for transmission over the network (a process known as serialization) and to convert
a stream of data received from the network back to objects (deserialization) . You will
learn a little about how WCF serializes and deserializes objects later in this chapter .

The primary contents of the IProductInformation file are the IService interface and a
class called CompositeType . The IService interface is prefixed with the ServiceContract
attribute, and the CompositeType class is tagged with the DataContract attribute .
Because of the structure of a WCF service, you can adopt a “contract-first” approach to
development . When performing contract-first development, you define the interfaces,
or contracts, that the service will implement, and then you build a service that conforms
to these contracts . This is not a new technique, and you have seen examples of this
strategy throughout this book . The point behind using contract-first development is
that you can concentrate on the design of your service . If necessary, it can quickly be
reviewed to ensure that your design does not introduce any dependencies on specific
hardware or software before you perform too much development; remember that in
many cases client applications might not be built using WCF and might not even be
running on Windows .

The ServiceContract attribute marks an interface as defining methods that the class
implementing the Web service will expose as Web methods . The methods themselves
are tagged with the OperationContract attribute . The tools provided with Visual Studio
2010 use these attributes to help generate the appropriate WSDL document for the
service . Any methods in the interface not marked with the OperationContract attribute
will not be included in the WSDL document and therefore will not be accessible to
 client applications using the Web service .

If a Web method takes parameters or returns a value, the data for these parameters
and values must be converted to a format that can be transmitted over the network
and then converted back again to objects—this is the process known as serialization
and deserialization mentioned earlier . The various Web services standards define mech-
anisms for specifying the serialized format of simple data types, such as numbers and
strings, as part of the WSDL description for a Web service . However, you can also define
your own complex data types based on classes and structures . If you make use of these
types in a Web service, you must provide information on how to serialize and deserial-
ize them . If you look at the definition of the GetDataUsingDataContract method in the
IService interface, you can see that it expects a parameter of the type CompositeType .
The CompositeType class is marked with the DataContract attribute, which specifies that
the class must define a type that can be serialized and deserialized as an XML stream as
part of a SOAP request or response message . Each member that you want to include in
the serialized stream sent over the network must be tagged with the DataMember
attribute .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

692 Part VI Building Professional Solutions with Visual Studio 2010

 . 9 . . Double-click the ProductInformation .cs file to display it in the Code and Text Editor
window .

This file contains a class called Service that implements the IService interface and
 provides the GetData and GetDataUsingDataContract methods defined by this inter-
face . This class is the Web service . When a client application invokes a Web method in
this Web service, it generates a SOAP request message and sends it to the Web server
hosting the Web service . The Web server creates an instance of this class and runs the
corresponding method . When the method completes, the Web server constructs a
SOAP response message, which it sends back to the client application .

 . 10 . . Double-click the Service .svc file to display it in the Code and Text Editor window .

This is the service file for the Web service; it is used by the host environment (IIS, in
this case) to determine which class to load when it receives a request from a client
application .

The Service property of the @ ServiceHost directive specifies the name of the Web
 service class, and the CodeBehind property specifies the location of the source code for
this class .

Tip If you don’t want to deploy the source code for your WCF service to the Web server,
you can provide a compiled assembly instead . You can then specify the name and loca-
tion of this assembly by using the @ Assembly directive . For more information, search for
“@ Assembly” in the documentation provided with Visual Studio 2010 .

Now that you have seen the structure of a WCF service, you can define the interface that
specifies the service contract for the ProductInformation Web service and then create a class
that implements this service contract .

Define the contract for the ProductInformation Web service

 . 1 . . Display the IProductInformation .cs file in the Code and Text Editor window .

 . 2 . . In the line of code that defines the IService interface, double-click the name IService
to highlight it . On the Refactor menu, click Rename . In the Rename dialog box, type
IProductInformation in the New name text box, deselect the Preview reference chang-
es check box, and then click OK .

This action changes the name of the interface from IService to IProductInformation and
also changes all references to IService to IProductInformation in all files in the project .
The line that defines the interface in the Code and Text Editor window should look like
this:

public interface IProductInformation
{
 ...
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 29 Creating and Using a Web Service 693

 . 3 . . In the IProductInformation interface, remove the definitions of the GetData and
GetDataUsingDataContract methods and replace them with the HowMuchWillItCost
method shown next in bold . Make sure you retain the OperationContract attribute in
the Web method .

[ServiceContract]
public interface IProductInformation
{
 [OperationContract]
 decimal HowMuchWillItCost(int productID, int howMany);
}

The HowMuchWillItCost method takes a product ID and a quantity and returns a
 decimal value specifying the amount this quantity will cost .

 . 4 . . Remove the CompositeType class, including the DataContract attribute, from
the IProductInformation .cs file . The file should contain only the definition of the
IProductInformation interface .

The next stage is to define the ProductInformation class, which implements the
IProductInformation interface . The HowMuchWillItCost method in this class will retrieve the
price of the product from the database by performing a simple ADO .NET query .

Note The Web services that you build in this chapter require access to the Northwind database .
If you have not already done so, you can create this database by following the steps in the sec-
tion “Creating the Database” in Chapter 25, “Querying Information in a Database .”

Implement the IProductInformation interface

 . 1 . . Display the code for the ProductInformation .cs file in the Code and Text Editor window .

 . 2 . . Add the following using statements to the list at the top of the file:

using System.Data;
using System.Data.SqlClient;

You should recall from Chapter 25 that these namespaces contain the types necessary
to access a Microsoft SQL Server database and query data .

 . 3 . . In the line of code that defines the Service class, double-click the name Service to
highlight it . On the Refactor menu, click Rename . In the Rename dialog box, type
ProductInformation in the New name text box and then click OK .

As in the previous exercise, this action changes the name of the class from Service to
ProductInformation and also changes all references to Service to ProductInformation in

http://lib.ommolketab.ir
http//lib.ommolketab.ir

694 Part VI Building Professional Solutions with Visual Studio 2010

all files in the project . The line that defines the class in the Code and Text Editor window
should look like this:

public class ProductInformation : IProductInformation
{
 ...
}

 . 4 . . Remove the GetData and GetDataUsingDataContract methods from the
ProductInformation class .

 . 5 . . Add the HowMuchWillItCost method to the ProductInformation class, shown here in
bold:

public class ProductInformation : IProductInformation
{
 public decimal HowMuchWillItCost(int productID, int howMany)
 {
 SqlConnection dataConnection = new SqlConnection();
 decimal totalCost = 0;

 try
 {
 SqlConnectionStringBuilder builder = new SqlConnectionStringBuilder();
 builder.DataSource = ".\\SQLExpress";
 builder.InitialCatalog = "Northwind";
 builder.IntegratedSecurity = true;
 dataConnection.ConnectionString = builder.ConnectionString;
 dataConnection.Open();

 SqlCommand dataCommand = new SqlCommand();
 dataCommand.Connection = dataConnection;
 dataCommand.CommandType = CommandType.Text;
 dataCommand.CommandText = "SELECT UnitPrice FROM Products WHERE ProductID
= @ProductID";

 SqlParameter productIDParameter = new SqlParameter("@ProductID",
SqlDbType.Int);
 productIDParameter.Value = productID;
 dataCommand.Parameters.Add(productIDParameter);

 decimal? price = dataCommand.ExecuteScalar() as decimal?;
 if (price.HasValue)
 {
 totalCost = price.Value * howMany;
 }
 }
 finally
 {
 dataConnection.Close();
 }

 return totalCost;
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 29 Creating and Using a Web Service 695

This method connects to the database and executes an ADO .NET query to retrieve the
price of the product matching the supplied product ID from the Northwind database .
If the price returned is not null, the method calculates the total cost of the request
and returns it; otherwise, the method returns the value 0 . The code is similar to that
shown in Chapter 25, except that it uses the ExecuteScalar method to read the value
of the UnitPrice column from the database . The ExecuteScalar method provides a very
efficient mechanism for running queries that return a single, scalar value (and is much
more efficient than opening a cursor and reading data from the cursor) . The value re-
turned by ExecuteScalar is an object, so you must cast it to the appropriate type before
using it .

Important This method performs no validation of the input parameters . For example,
you can specify a negative value for the howMany parameter . In a production Web ser-
vice, you would trap errors such as this, log them, and return an exception . However,
transmitting meaningful reasons for an exception back to a client application has security
implications in a WCF service . The details are beyond the scope of this book . For more
 information, see Microsoft Windows Communication Foundation Step by Step .

Before you can use the Web service, you must update the configuration in the Service .svc file
to refer to the ProductInformation class in the ProductInformation .cs file . The Web server uses
information in the Web .config file created with the project to hold information about how to
publish the service and make it available to client applications . You must modify the
Web .config file and add the details of the Web service .

Configure the Web service

 . 1 . . In Solution Explorer, double-click the Service .svc file to display it in the Code and
Text Editor window . Update the Service and CodeBehind attributes of the ServiceHost
 directive, as shown here in bold:

<%@ ServiceHost Language="C#" Debug="true" Service="ProductInformation"
 CodeBehind="~/App_Code/ProductInformation.cs" %>

 . 2 . . In Solution Explorer, double-click the Web .config file . In the Code and Text Editor
 window, locate the <system.serviceModel> element . You use this element to specify the
configuration of a WCF service . This element currently contains a <behaviors> element,
which you can ignore for the moment .

 . 3 . . In the Web .config file, add the <services> element and child elements shown next in
bold to the <system.serviceModel> element, before the <behaviors> element:

<system.serviceModel>
 <services>
 <service name="ProductInformation">
 <endpoint address="" binding="wsHttpBinding" contract="IProductInformation"/>
 </service>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

696 Part VI Building Professional Solutions with Visual Studio 2010

 </services>
 <behaviors>
 ...
 </behaviors>
</system.serviceModel>

This configuration specifies the name of the class that implements the Web service
(ProductInformation) . WCF uses the notion of endpoints to associate a network ad-
dress with a specific Web service . If you are hosting a Web service by using IIS or the
Development Web Server, you should leave the address property of your endpoint
blank because these servers listen for incoming requests on an address specified by
their own configuration information . You can build your own custom host applica-
tions if you don’t want to use IIS or the Development Server . In these situations, you
must specify an address for the service as part of the endpoint definition . The binding
parameter indicates the network protocol that the server uses to receive requests and
transmit responses .

For more information about endpoints, custom hosts, and bindings see Microsoft
Windows Communication Foundation Step by Step, published by Microsoft Press .

 . 4 . . On the File menu, click Save All .

 . 5 . . In Solution Explorer, right-click Service.svc, and then click View in Browser .

Internet Explorer starts and displays the following page, confirming that you have
 successfully created and deployed the Web service and providing helpful information
about how to create a simple client application that can access the Web service .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 29 Creating and Using a Web Service 697

Note If you click the link shown on the Web page (http://localhost:4500/
ProductInformationService/Service.svc?wsdl), Internet Explorer displays a page containing
the WSDL description of the Web service . This is a long and complicated piece of XML,
but Visual Studio 2010 can take the information in this description and use it to generate a
class that a client application can use to communicate with the Web service .

 . 6 . . Close Internet Explorer, and return to Visual Studio 2010 .

SOAP Web Services, Clients, and Proxies
A SOAP Web service uses the SOAP protocol to transmit data between a client application
and a service . SOAP uses XML to format the data being transmitted, which rides on top of
the HTTP protocol used by Web servers and browsers . This is what makes Web services so
powerful—SOAP, HTTP, and XML are well understood (in theory anyway) and are the sub-
jects of several standards committees . Any client application that “talks” SOAP can commu-
nicate with a Web service . So how does a client “talk” SOAP? There are two ways: the difficult
way and the easy way .

Talking SOAP: The Difficult Way
In the difficult way, the client application performs a number of steps . It must do the
following:

 . 1 . . Determine the URL of the Web service running the Web method .

 . 2 . . Perform a Web Services Description Language (WSDL) inquiry using the URL to obtain
a description of the Web methods available, the parameters used, and the values re-
turned . You saw how to do this by using Internet Explorer in the preceding exercise .

 . 3 . . Parse the WSDL document, convert each operation to a Web request, and serialize each
parameter into the format described by the WSDL document .

 . 4 . . Submit the request, along with the serialized data, to the URL by using HTTP .

 . 5 . . Wait for the Web service to reply .

 . 6 . . Using the formats specified by the WSDL document, deserialize the data returned by
the Web service into meaningful values that your application can then process .

This is a lot of work just to invoke a method, and it is potentially error-prone .

Talking SOAP: The Easy Way
The bad news is that the easy way to use SOAP is not much different from the difficult way .
The good news is that the process can be automated because it is largely mechanical . As
mentioned earlier, many vendors, including Microsoft, supply tools that can generate a proxy

http://lib.ommolketab.ir
http//lib.ommolketab.ir

698 Part VI Building Professional Solutions with Visual Studio 2010

class based on a WSDL description . The proxy hides the complexity of using SOAP and ex-
poses a simple programmatic interface based on the methods published by the Web service .
The client application calls Web methods by invoking methods with the same name in the
proxy . The proxy converts these local method calls to SOAP requests and sends them to the
Web service . The proxy waits for the reply, deserializes the data, and then passes it back to
the client just like the return from any simple method call . This is the approach you will take
in the exercises in this section .

Consuming the ProductInformation SOAP Web Service
You have created a SOAP Web service call that exposes a Web method called
HowMuchWillItCost to determine the cost of buying n items of product x from Northwind
Traders . In the following exercises, you will use this Web service and create an application
that consumes this method .

Open the Web service client application

 . 1 . . Start another instance of Visual Studio 2010 . This is important . The Development
Server used to host the Web service stops if you close the ProductInformationService
Web service project, meaning that you won’t be able to access it from the client . (An
 alternative approach you can use if you are running Visual Studio 2010 and not Visual
Web Developer 2010 Express is to create the client application as a project in the same
solution as the Web service .) When you host a Web service in a production environ-
ment by using IIS, this problem does not arise because IIS runs independently of Visual
Studio 2010 .

Important If you have been using Visual Web Developer 2010 Express for the exercises
in this part of the book, start Visual C# 2010 Express rather than a second instance of
Visual Web Developer 2010 Express . (Leave Visual Web Developer 2010 Express running .)

 . 2 . . In the second instance of Microsoft Visual Studio 2010, open the ProductClient solution
in the \Microsoft Press\Visual CSharp Step By Step\Chapter 29\ProductClient folder in
your Documents folder .

 . 3 . . In Solution Explorer, double-click the file ProductClient .xaml to display the form in the
Design View window . The form looks like this:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 29 Creating and Using a Web Service 699

The form enables the user to specify a product ID and retrieve the details of the
 product from the Northwind database . (You will implement this functionality in a
later exercise by using a REST Web service .) The user can also provide a quantity and
retrieve a price for buying that quantity of the product . Currently, the buttons on the
form do nothing . In the following steps, you will add the necessary code to invoke the
HowMuchWillItCost method from the ProductInformation Web service to obtain the
cost and then display it .

Add code to call the Web service in the client application

 . 1 . . On the Project menu, click Add Service Reference .

The Add Service Reference dialog box opens . In this dialog box, you can browse for
Web services and examine the Web methods that they provide .

 . 2 . . In the Address text box, type http://localhost:4500/ProductInformationService/
Service .svc and then click Go .

The ProductInformation service appears in the Services box .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

700 Part VI Building Professional Solutions with Visual Studio 2010

 . 3 . . Expand the ProductInformation service, and then click the IProductInformation interface
that appears . In the Operations list box, verify that the operation HowMuchWillItCost
appears, as shown in the following image:

 . 4 . . Change the value in the Namespace text box to ProductInformationService and then
click OK .

A new folder called Service References appears in Solution Explorer . This folder contains
an item called ProductInformationService .

 . 5 . . Click the Show All Files button on the Solution Explorer toolbar . Expand the
ProductInformationService folder, and then expand the Reference .svcmap folder .
Double-click the Reference .cs file and examine its contents in the Code and Text Editor
window .

This file contains several classes and interfaces, including a class
called ProductInformationClient in a namespace called ProductClient.
ProductInformationService . The ProductInformationClient is the proxy class generated by
Visual Studio 2010 from the WSDL description of the ProductInformation Web service . It
contains a number of constructors, as well as a method called HowMuchWillItCost . The
following code shows some highlights of this file, formatted to make it slightly more
readable:

namespace ProductClient.ProductInformationService {
 ...
 [System.ServiceModel.ServiceContractAttribute(...)]
 public interface IProductInformation {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 29 Creating and Using a Web Service 701

 [System.ServiceModel.OperationContractAttribute(...)]
 decimal HowMuchWillItCost(int productID, int howMany);
 }
 ...
 ...
 public partial class ProductInformationClient :
System.ServiceModel.ClientBase<ProductClient.ProductInformationService.
IProductInformation>,
ProductClient.ProductInformationService.IProductInformation {

 public ProductInformationClient() {
 }

 public ProductInformationClient(string endpointConfigurationName) :
 base(endpointConfigurationName) {
 }

 public ProductInformationClient(string endpointConfigurationName, string
remoteAddress) :
 base(endpointConfigurationName, remoteAddress) {
 }

 public ProductInformationClient(string endpointConfigurationName,
 System.ServiceModel.EndpointAddress remoteAddress) :
 base(endpointConfigurationName, remoteAddress) {
 }

 public ProductInformationClient(System.ServiceModel.Channels.Binding binding,
 System.ServiceModel.EndpointAddress remoteAddress) :
 base(binding, remoteAddress) {
 }

 public decimal HowMuchWillItCost(int productID, int howMany) {
 return base.Channel.HowMuchWillItCost(productID, howMany);
 }
 }
}

The IProductInformation interface is similar to the interface you defined in the Web
service, except that some of the attributes specify additional parameters . (The purpose
of these parameters is beyond the scope of this chapter .) The ProductInformation class
implements this interface, as well as inheriting from the generic ClientBase class . The
ClientBase class in the System.ServiceModel namespace provides the basic communica-
tions functionality that a client application requires to communicate with a Web service .
The type parameter specifies the interface that the class implements . The ClientBase
class provides the Channel property, which encapsulates an HTTP connection to a Web
service . The various constructors for the ProductInformationClient class configure the
channel to connect it to the endpoint that the Web service is listening on .

The client application can instantiate the ProductInformationClient class, specifying
the endpoint to connect to, and then call the HowMuchWillItCost method . When this
 happens, the channel in the underlying ClientBase class packages up the information

http://lib.ommolketab.ir
http//lib.ommolketab.ir

702 Part VI Building Professional Solutions with Visual Studio 2010

supplied as parameters into a SOAP message that it transmits to the Web service . When
the Web service replies, the information returned is unpacked from the SOAP response
and passed back to the client application . In this way, the client application can call a
method in a Web service in exactly the same way as it would call a local method .

Note You might have noticed that the interface is tagged with ServiceContractAttribute
rather than simply ServiceContract, and the operation is tagged with
OperationContractAttribute rather than OperationContract . In fact, all attributes have the
Attribute suffix to their name . The C# compiler recognizes this naming convention, and
consequently it allows you to omit the Attribute suffix in your own code .

 . 6 . . Display the ProductClient .xaml form in the Design View window . Double-click the
Calculate Cost button to generate the calcCost_Click event handler method for this
button .

 . 7 . . In the Code and Text Editor window, add the following using statements to the list at
the top of the ProductClient .xaml .cs file:

using ProductClient.ProductInformationService;
using System.ServiceModel;

 . 8 . . In the calcCost_Click method, add the following code shown in bold:

private void calcCost_Click(object sender, RoutedEventArgs e)
{
 ProductInformationClient proxy = new ProductInformationClient();
}

This statement creates an instance of the ProductInformationClient class that your code
will use to call the HowMuchWillItCost Web method .

 . 9 . . Add the code shown next in bold to the calcCost_Click method . This code extracts the
product ID and the number required from the How Many text box on the form, exe-
cutes the HowMuchWillItCost Web method by using the proxy object, and then displays
the result in the totalCost label .

private void calcCost_Click(object sender, RoutedEventArgs e)
{
 ProductInformationClient proxy = new ProductInformationClient();
 try
 {
 int prodID = Int32.Parse(productID.Text);
 int numberRequired = Int32.Parse(howMany.Text);
 decimal cost = proxy.HowMuchWillItCost(prodID, numberRequired);
 totalCost.Content = String.Format("{0:C}", cost);
 }
 catch (Exception ex)
 {
 MessageBox.Show("Error obtaining cost: " + ex.Message,
 "Error", MessageBoxButton.OK, MessageBoxImage.Error);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 29 Creating and Using a Web Service 703

 }
 finally
 {
 if (proxy.State == CommunicationState.Faulted)
 proxy.Abort();
 else
 proxy.Close();
 }
}

You are probably aware of how unpredictable networks are, and this applies doubly to
the Internet . The try/catch block ensures that the client application catches any network
exceptions that might occur . It is also possible that the user might not enter a valid
integer into the ProductID text box on the form . The try/catch block also handles this
exception .

The finally block examines the state of the proxy object . If an exception occurred in the
Web service (which could be caused by the user supplying a nonexistent product ID,
for example), the proxy will be in the Faulted state . In this case, the finally block calls
the Abort method of the proxy to acknowledge the exception and close the connec-
tion; otherwise, it calls the Close method . The Abort and Close methods both close the
 communications channel with the Web service and release the resources associated
with this instance of the ProductInformationClient object .

Test the application

 . 1 . . On the Debug menu, click Start Without Debugging .

 . 2 . . When the Product Details form appears, type 3 in the Product ID text box, type 5 in the
How Many text box, and then click Calculate Cost .

After a short delay while the client instantiates the proxy and builds a SOAP request
containing the product ID, the proxy sends the request to the Web service . The Web
service deserializes the SOAP request to extract the product ID, reads the unit price of
the product form the database, calculates the total cost, wraps it up as XML in a SOAP
response message, and then sends this response message back to the proxy . The proxy
deserializes the XML data and then passes it to your code in the calcCost_Click method .
The cost for 5 units of product 3 appears on the form (50 currency units) .

Tip If you get an exception with the message “Error obtaining cost: There was no
 endpoint listening at http://localhost:4500/ProductInformationService/Service .svc that
could accept the message,” the Development Server has probably stopped running . (It
shuts down if it is inactive for a time .) To restart it, switch to the Visual Studio 2010 in-
stance for the ProductInformation Web service, right-click Service.svc in Solution Explorer,
and then click View in Browser . Close Internet Explorer when it appears .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

704 Part VI Building Professional Solutions with Visual Studio 2010

 . 3 . . Experiment by typing the IDs of other products . Notice that if you enter an ID for a
product that does not exist, the Web service returns the value 0 for the total cost .

 . 4 . . When you have finished, close the form and return to Visual Studio .

Creating the ProductDetails REST Web Service
In the previous section, you built and used a SOAP Web service to implement a small piece
of procedural functionality . In the next set of exercises, you will build the ProductDetails
Web service that enables a user to retrieve the details of products . This form of Web service
is naturally navigational, so you will implement it by using the REST model . You will start by
creating a data contract for transmitting Product objects over the network .

You can access a REST Web service from a client application in a similar manner to a SOAP
Web service—by using a proxy object that hides the complexity of sending a message over a
network from the client application . However, Visual Studio does not currently support gen-
erating proxy classes for REST Web services automatically, so you will create the proxy class
manually . Also, it is not necessarily good practice to duplicate code such as service contracts
across Web services and clients because it can make maintenance difficult . For these reasons,
you will adopt a slightly different approach to building the Web service .

Create the data contract for the REST Web service

 . 1 . . If you are using Visual Studio 2010 Standard or Visual Studio 2010 Professional, perform
the following tasks to create a new class library project:

 . 1 .1 . . In the instance of Visual Studio that you used to edit the client application, on the
File menu, point to New, and then click Project .

 . 1 .2 . . In the New Project dialog box, in the left pane, under Visual C#, click Windows .

 . 1 .3 . . In the middle pane, select the Class Library template .

 . 1 .4 . . In the Name text box, type ProductDetailsContracts .

 . 1 .5 . . In the Location text box, specify the \Microsoft Press\Visual CSharp Step By Step\
Chapter 29 folder under your Documents folder .

 . 1 .6 . . Click OK .

 . 2 . . If you are using Microsoft Visual C# 2010 Express, perform the following tasks to create
a new class library project:

 . 2 .1 . . Start Visual C# 2010 Express if it is not already running .

 . 2 .2 . . On the File menu, click New Project .

 . 2 .3 . . In the New Project dialog box, in the middle pane select the Class Library
template .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 29 Creating and Using a Web Service 705

 . 2 .4 . . In the Name text box, type ProductDetailsContracts .

 . 2 .5 . . Click OK .

 . 2 .6 . . On the File menu, click Save ProductDetailsContracts .

 . 2 .7 . . In the Save Project dialog box, in the Location text box specify the \Microsoft
Press\Visual CSharp Step By Step\Chapter 29 folder under your Documents folder .

 . 2 .8 . . Click Save .

 . 3 . . On the Project menu, click Add Reference .

 . 4 . . In the Add Reference dialog box, click the .NET tab . Select the System.Data.Linq, System.
ServiceModel, System.ServiceModel.Web, and System.Runtime.Serialization assemblies
and then click OK .

 . 5 . . In Solution Explorer, right-click the Class1 .cs file and then click Rename . Change the
name of the file to Product .cs . Allow Visual Studio to change all references to Class1 to
Product when prompted .

 . 6 . . Double-click the Product .cs file to display it in the Code and Text Editor window if it is
not already open .

 . 7 . . In the Product .cs file, add the following using statements to the list at the top:

using System.Runtime.Serialization;
using System.Data.Linq.Mapping;

 . 8 . . Prefix the Product class with the Table and DataContract attributes, as shown here in
bold:

[Table (Name="Products")]
[DataContract]
public class Product
{
}

You will use LINQ to SQL to retrieve the data from the Northwind database . Recall from
Chapter 25 that the Table attribute marks the class as an Entity class . The table is called
Products in the Northwind database .

 . 9 . . Add the properties shown next in bold to the Product class . Make sure that you prefix
each property with the Column and DataMember attributes . Notice that some of these
properties are nullable .

[DataContract]
public class Product
{
 [Column]
 [DataMember]
 public int ProductID { get; set; }

 [Column]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

706 Part VI Building Professional Solutions with Visual Studio 2010

 [DataMember]
 public string ProductName { get; set; }

 [Column]
 [DataMember]
 public int? SupplierID { get; set; }

 [Column]
 [DataMember]
 public int? CategoryID { get; set; }

 [Column]
 [DataMember]
 public string QuantityPerUnit { get; set; }

 [Column]
 [DataMember]
 public decimal? UnitPrice { get; set; }

 [Column]
 [DataMember]
 public short? UnitsInStock { get; set; }

 [Column]
 [DataMember]
 public short? UnitsOnOrder { get; set; }

 [Column]
 [DataMember]
 public short? ReorderLevel { get; set; }

 [Column]
 [DataMember]
 public bool Discontinued { get; set; }
}

The next step is to define the service contract for the ProductDetails Web service .

Create the service contract for the REST Web service

 . 1 . . On the Project menu, click Add Class .

 . 2 . . In the Add Class dialog box, in the middle pane select the Class template . In the Name
text box, type IProductDetails .cs, and then click Add .

 . 3 . . In the Code and Text Editor window displaying the IProductDetails .cs file, add the fol-
lowing using statements to the list at the top of the file:

using System.ServiceModel;
using System.ServiceModel.Web;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 29 Creating and Using a Web Service 707

 . 4 . . Change the IProductDetails class into a public interface, and prefix it with the
ServiceContract attribute, as shown here in bold:

[ServiceContract]
public interface IProductDetails
{
}

 . 5 . . Add the GetProduct method definition shown next in bold to the IProductsService
interface:

[ServiceContract]
public interface IProductDetails
{
 [OperationContract]
 [WebGet(UriTemplate = "products/{productID}")]
 Product GetProduct(string productID);
}

The GetProduct method takes a product ID and will return a Product object for the
product that has this ID . The OperationContract attribute indicates that this method
should be exposed as a Web method . (If you omit the OperationContract attribute, the
method is not accessible to client applications .) The WebGet attribute indicates that this
is a logical retrieve operation, and the UriTemplate parameter specifies the format of
the URL you provide to invoke this operation, relative to the base address of the Web
service . In this case, you can specify the following URL to retrieve the product with
 productID 7:

http://host/service/products/7

The terms host and service represent the address of your Web server and the name of
the Web service . The element of the UriTemplate in curly braces denotes the data that
is passed as the parameter to the GetProduct method . The identifier in the curly braces
must match the name of the parameter .

 . 6 . . On the Build menu, click Build Solution and verify that the class library compiles without
any errors . The project creates an assembly called ProductDetailsContracts .dll .

Now that you have built an assembly that defines the data contract and service contract for
the Web service, you can build the Web service itself .

Create the REST Web service

 . 1 . . Open another instance of Visual Studio or Visual Web Developer Express .

Important Do not use the instance you used to create the SOAP Web service because
this copy of Visual Studio must remain running to keep the Development Web Server
 hosting the SOAP Web service open .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

708 Part VI Building Professional Solutions with Visual Studio 2010

 . 2 . . If you are using Visual Studio 2010 Professional or Enterprise, on the File menu, point to
New, and then click Web Site .

 . 3 . . If you are using Visual Web Developer 2010 Express, on the File menu, click New Web
Site .

 . 4 . . In the New Web Site dialog box, click the WCF Service template . Select File System in
the Location drop-down list box, and specify the \Microsoft Press\Visual CSharp Step By
Step\Chapter 29\ProductDetailsService folder under your Documents folder and then
click OK .

 . 5 . . Click the C:\ . . .\ProductDetailsService\ project . In the Properties window, set the Use
 dynamic ports property to False and set the Port number property to 4600 .

Note It is important to specify a different port from the ProductInformationService Web
service; otherwise, the two Web services will conflict .

 . 6 . . On the Website menu, click Add Reference . In the Add Reference dialog box, click
the Browse tab . In the toolbar, click the Up One Level button, browse to the folder
ProductDetailsContracts\ProductDetailsContracts\bin\Debug folder, select the
ProductDetailsContracts.dll assembly, and then click OK .

 . 7 . . In Solution Explorer, expand the App_Code folder if it is not already open, right-click the
file Service .cs, and then click Rename . Change the name of the file to ProductDetails .cs .

 . 8 . . In the App_Code folder, delete the file IService .cs . This file is not needed by the Web
service .

 . 9 . . Double-click the ProductDetails .cs file to display it in the Code and Text Editor window .

 . 10 . . Add the following using statements to the list at the top of the file:

using System.Data.Linq;
using System.Data.SqlClient;
using ProductDetailsContracts;

 . 11 . . Modify the definition of the Service class, change the name to ProductDetails, and spec-
ify that it implements the IProductDetails interface, as shown next in bold . Remove the
GetData and GetDataUsingDataContract methods from the ProductDetails class:

public class ProductDetails : IProductDetails
{

}

 . 12 . . Add the GetProduct method shown next in bold to the ProductDetails class:

public class ProductDetails : IProductDetails
{
 public Product GetProduct(string productID)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 29 Creating and Using a Web Service 709

 {
 int ID = Int32.Parse(productID);

 SqlConnectionStringBuilder builder =
 new SqlConnectionStringBuilder();
 builder.DataSource = ".\\SQLExpress";
 builder.InitialCatalog = "Northwind";
 builder.IntegratedSecurity = true;
 DataContext productsContext =
 new DataContext(builder.ConnectionString);

 Product product = (from p in productsContext.GetTable<Product>()
 where p.ProductID == ID
 select p).First();

 return product;
 }
}

The product ID is passed to the method as a string, so the first statement converts it to
an integer and stores the result in the variable ID . The code then creates a DataContext
object that connects to the Northwind database . The LINQ query retrieves all rows that
have a product ID that matches the value in the ID variable . There should be at most
one matching product . Usually, you must iterate through the results of a LINQ to SQL
query to fetch each row in turn, but if there is only a single row you can use the First
extension method to retrieve the data immediately . The Product object retrieved by the
query is returned as the result of the method .

The next step is to configure the REST Web service to provide the connection string that the
ProductDetailsContract assembly uses to connect to the database, and then specify the pro-
tocol and endpoint that client applications can use to communicate with the Web service .

Configure the Web service

 . 1 . . In Solution Explorer, double-click the Web.config file to display it in the Code and Text
Editor window .

 . 2 . . Add the <services> element and child elements shown next in bold to the
<system.serviceModel> element, before the <behaviors> element . Also, add the
 <endpointBehaviors> element also shown in bold as a child of the <behaviors>
 element . Notice that you must fully qualify the name of the interface that provides the
service contract with the ProductDetailsContracts namespace .

<?xml version="1.0"?>
<configuration>
 <system.web>
 <compilation debug="false" targetFramework="4.0" />
 </system.web>
 <system.serviceModel>
 <services>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

710 Part VI Building Professional Solutions with Visual Studio 2010

 <service name="ProductDetails">
 <endpoint address="" binding="webHttpBinding"
 contract="ProductDetailsContracts.IProductDetails"
 behaviorConfiguration="WebBehavior"/>
 </service>
 </services>
 <behaviors>
 <endpointBehaviors>
 <behavior name="WebBehavior">
 <webHttp/>
 </behavior>
 </endpointBehaviors>
 <serviceBehaviors>
 <behavior>
 <!-- To avoid disclosing metadata information, set the value below
to false and remove the metadata endpoint above before deployment -->
 <serviceMetadata httpGetEnabled="true"/>
 <!-- To receive exception details in faults for debugging
purposes, set the value below to true. Set to false before deployment to
avoid disclosing exception information -->
 <serviceDebug includeExceptionDetailInFaults="false"/>
 </behavior>
 </serviceBehaviors>
 </behaviors>
 </system.serviceModel>
</configuration>

This Web service uses a different binding from the ProductInformation Web service—
webHttpBinding . The webHttpBinding binding and the WebBehavior behavior indicate
that the Web service expects requests to be sent following the REST style, encoded in
the URL, and that it should return response messages as plain XML (POX) .

 . 3 . . In Solution Explorer, double-click the Service .svc file to display it in the Code and
Text Editor window . Update the Service and CodeBehind elements to refer to the
ProductsDetails class in the ProductDetails .cs file, as shown here in bold:

<%@ ServiceHost Language="C#" Debug="true" Service="ProductDetails"
CodeBehind="~/App_Code/ProductDetails.cs" %>

 . 4 . . On the Build menu, click Build Web Site .

 . 5 . . In Solution Explorer, right-click Service .svc, and then click View in Browser .

Internet Explorer appears displaying the page for the ProductDetails service .

 . 6 . . In the address bar, specify the following URL and then press Enter:

http://localhost:4600/ProductDetailsService/Service.svc/products/5

This URL invokes the GetProduct method in the ProductDetails Web service and
specifies product 5 . The GetProduct method fetches the data for product 5 from the
Northwind database and returns the information as a Product object, serialized as XML .
Internet Explorer should display the XML representation of this product .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 29 Creating and Using a Web Service 711

 . 7 . . Close Internet Explorer .

Consuming the ProductDetails REST Web Service
You have seen that you can invoke a REST Web service quite easily from a Web browser
 simply by specifying an appropriate URL . To call methods in a REST Web service from an
 application, you can construct a proxy class, similar to that used by a client application con-
necting to a SOAP Web service . As mentioned earlier, Visual Studio does not provide func-
tionality that can generate a proxy class for a REST Web service . Fortunately, it is not difficult
to create a simple REST proxy class manually; you can use the same generic ClientBase class
that a SOAP proxy class uses .

In the final exercise, you will return to the ProductClient application and add functionality to
call the GetProduct method in the REST Web service .

Invoke the REST Web service from the client application

 . 1 . . Return to the instance of Visual Studio or Visual C# Express that you used to create the
service contract for the REST Web service .

 . 2 . . Open the ProductClient solution in the \Microsoft Press\Visual CSharp Step By Step\
Chapter 29\ProductClient folder in your Documents folder . This is the client application
that you used to test the SOAP Web service earlier in this chapter .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

712 Part VI Building Professional Solutions with Visual Studio 2010

 . 3 . . On the Project menu, click Add Reference . In the Add Reference dialog box, click
the Browse tab . In the toolbar, click the Up One Level button twice, browse to the
folder ProductDetailsContracts\ProductDetailsContracts\bin\Debug folder, select the
ProductDetailsContracts assembly, and then click OK .

 . 4 . . On the Project menu, click Add Reference again . In the Add Reference dialog box, click
the .NET tab . Select the System.Data.Linq assembly, and then click OK .

 . 5 . . On the Project menu, click Add Class . In the Add New Item – ProductClient dialog
box, in the middle pane click the Class template . In the Name text box, type
ProductClientProxy .cs, and then click Add .

 . 6 . . In the Code and Text Editor window displaying the ProductClientProxy .cs file, add the
following using statements to the list at the top of the file:

using System.ServiceModel;
using ProductDetailsContracts;

 . 7 . . Modify the definition of the ProductClientProxy class so that it inherits from the
generic ClientBase class and implements the IProductDetails interface . Specify
the IProductDetails interface as the type parameter for the ClientBase class . The
ProductClientProxy class should look like the following code example:

class ProductClientProxy : ClientBase<IProductDetails>, IProductDetails
{
}

 . 8 . . Add the GetProduct method shown next in bold to the ProductClientProxy class . This
method follows the same pattern as that used by the SOAP proxy shown earlier in this
chapter; it forwards the request from the client to the communications channel .

class ProductClientProxy : ClientBase<IProductDetails>, IProductDetails
{
 public Product GetProduct(string productID)
 {
 return this.Channel.GetProduct(productID);
 }
}

 . 9 . . Display the ProductClient .xaml file in the Design View window .

 . 10 . . Double-click the Get Product button to generate the getProduct_Click event handler
method for this button .

 . 11 . . In the Code and Text Editor window, add the following using statement to the list at the
top of the ProductClient .xaml .cs file:

using ProductDetailsContracts;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 29 Creating and Using a Web Service 713

 . 12 . . In the getProduct_Click method, add the following code shown in bold:

private void getProduct_Click(object sender, RoutedEventArgs e)
{
 ProductClientProxy proxy = new ProductClientProxy();
 try
 {
 Product product = proxy.GetProduct(productID.Text);
 productName.Content = product.ProductName;
 supplierID.Content = product.SupplierID.Value;
 categoryID.Content = product.CategoryID.Value;
 quantityPerUnit.Content = product.QuantityPerUnit;
 unitPrice.Content = String.Format("{0:C}", product.UnitPrice.Value);
 unitsInStock.Content = product.UnitsInStock.Value;
 unitsOnOrder.Content = product.UnitsOnOrder.Value;
 reorderLevel.Content = product.ReorderLevel.Value;
 discontinued.IsChecked = product.Discontinued;
 }
 catch (Exception ex)
 {
 MessageBox.Show("Error fetching product details: " + ex.Message,
 "Error", MessageBoxButton.OK, MessageBoxImage.Error);
 }
 finally
 {
 if (proxy.State == CommunicationState.Faulted)
 {
 proxy.Abort();
 }
 else
 {
 proxy.Close();
 }
 }
}

This code creates an instance of the ProductClientProxy class and uses it to call the
GetProduct method in the REST Web service . The data in the Product object returned is
displayed in the labels on the form .

 . 13 . . In Solution Explorer, double-click the app.config file . This is the configuration file for the
application . It was generated automatically when you created the SOAP Web service
proxy in an earlier exercise . It contains a <system.serviceModel> element that describes
the endpoint for the SOAP Web service, including the URL that the application should
connect to .

 . 14 . . Locate the <client> element, and add the <endpoint> element shown here in bold
above the existing <endpoint> section:

<client>
 <endpoint address="http://localhost:4600/ProductDetailsService/Service.svc"
 binding="webHttpBinding" contract="ProductDetailsContracts.
IProductDetails"
 behaviorConfiguration="WebBehavior">
 </endpoint>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

714 Part VI Building Professional Solutions with Visual Studio 2010

 <endpoint address="http://localhost:4500/ProductInformationService/Service.svc"
 binding="wsHttpBinding" bindingConfiguration="WSHttpBinding_
IProductInformation"
 contract="ProductInformationService.IProductInformation"
 name="WSHttpBinding_IProductInformation">
 <identity>
 <userPrincipalName value="YourComputer\YourName" />
 </identity>
 </endpoint>
</client>

 . 15 . . After the closing </client> tag, add the <behaviors> section shown here in bold:

<client>
 ...
</client>
<behaviors>
 <endpointBehaviors>
 <behavior name="WebBehavior">
 <webHttp />
 </behavior>
 </endpointBehaviors>
</behaviors>

This code defines the WebBehavior behavior referenced by the client endpoint . It
 specifies that the client should connect to the Web service by using the webHttp
 behavior expected by the REST Web service .

 . 16 . . On the Debug menu, click Start Without Debugging .

 . 17 . . When the Product Details form appears, in the Product ID text box type 10; in the How
Many text box, type 5; and then click Calculate Cost . The total cost should be displayed
(155 currency units) . This verifies that the SOAP Web service is still working .

 . 18 . . Click Get Product . The details for Ikura should appear in the labels on the form, as
shown in the following image:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 29 Creating and Using a Web Service 715

 . 19 . . Experiment with other product IDs . Note that if you specify a product ID that does not
exist, the Web service returns a “Bad Request” exception .

 . 20 . . Close the Product Details form when you have finished .

In this chapter, you saw how to use Visual Studio to build two different styles of Web service:
SOAP and REST . You also saw how to build client applications that can consume these
 different styles of Web service .

You have now completed all the exercises in this book . Hopefully, you are thoroughly
 conversant with the C# language and understand how to use Visual Studio 2010 to build
professional applications . However, this is not the end of the story . You have jumped the first
hurdle, but the best C# programmers learn from continued experience, and you can gain
this experience only by building C# applications . As you do so, you will discover new ways
to use the C# language and the many features available in Visual Studio 2010 that I have not
had space to cover in this book . Also, remember that C# is an evolving language . Back in
2001, when we wrote the first edition of this book, C# introduced the syntax and semantics
necessary for you to build applications that made use of .NET Framework 1 .0 . Some enhance-
ments were added to Visual Studio and .NET Framework 1 .1 in 2003, and then in 2005, C#
2 .0 emerged with support for generics and .NET Framework 2 .0 . C# 3 .0 added numerous
features such as anonymous types, lambda expressions, and most significantly, LINQ . And
now C# 4 .0 has extended the language further with support for named arguments, optional
parameters, contra and covariant interfaces, and integration with dynamic languages . What
will the next version of C# bring? Watch this space!

Chapter .29 .Quick .Reference
To Do this

Create a SOAP Web service Use the WCF Service template . Define a service contract that specifies the
Web methods exposed by the Web service by creating an interface with
the ServiceContract attribute . Tag each method with the OperationContract
 attribute . Create a class that implements this interface .

Configure the service to use the wsHttpBinding binding .

Create a REST Web service Use the WCF Service template . Define a service contract that specifies the
Web methods exposed by the Web service by creating an interface with the
ServiceContract attribute . Tag each method with the OperationContract attri-
bute and the WebGet attribute, which specifies the URI template for invoking
the method . Create a class that implements this interface .

Configure the service to use the webHttpBinding, and specify the webHttp
behavior for the service endpoint .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

716 Part VI Building Professional Solutions with Visual Studio 2010

To Do this

Display the description of a
SOAP Web service

Right-click the .svc file in Solution Explorer, and click View in Browser . Internet
Explorer runs, moves to the Web service URL, and displays a page describing
how to create a client application that can access the Web service . Click the
WSDL link to display the WSDL description of the Web service .

Pass complex data as Web
method parameters and return
values

Define a class to hold the data, and tag it with the DataContract attribute .
Ensure that each item of data is accessible either as a public field or through
a public property that provides get and set access . Ensure that the class has a
default constructor (which might be empty) .

Create a proxy class for a SOAP
Web service in a client applica-
tion

On the Project menu, click Add Service Reference . Type the URL of the Web
service in the Address text box at the top of the dialog box, and then click Go .
Specify the namespace for the proxy class, and then click OK .

Create a proxy class for a REST
Web service in a client applica-
tion

Create a class that inherits from the ClientBase generic class, and specify the
interface that defines the service contract as the type parameter . Implement
this interface, and use the Channel property inherited from the ClientBase
class to send requests to the Web service .

Invoke a Web method Create an instance of the proxy class . Call the Web method by using the
proxy class .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 . . 717

Appendix

Interoperating with
Dynamic Languages

After completing this chapter, you will be able to:

n Explain the purpose of the Dynamic Language Runtime .

n Use the dynamic keyword to reference objects implemented by using dynamic
 languages, and invoke methods on these objects .

Interoperability between code written by using managed languages has been a key feature
of the Microsoft .NET Framework ever since its inception . The idea is that you can build a
component using the language of your choice, compile it into an assembly, reference the as-
sembly from your application, and then access the component from code in your application .
Your application might be built by using a different language from the component, but this
does not matter . The compilers for each of the managed languages (Visual C#, Visual Basic,
Visual C++, Visual F#, and so on) all convert code written by using these languages into an-
other language called MSIL, or Microsoft Intermediate Language . When you run an applica-
tion, the .NET Framework runtime converts the MSIL code into machine instructions and then
runs them . The result is that the .NET Framework does not actually know, nor even care, what
language you originally used . If you really want to, you can write your applications by using
MSIL rather than C#, although this would be a real shame!

However, not all modern computer languages are compiled . There are a large number of in-
terpreted scripting languages currently in use . Two of the most common examples that have
appeared outside of the Microsoft domain are Ruby and Python . In earlier releases of the
 .NET Framework, it was never a straightforward matter to incorporate code written by using
languages such as these into managed applications, and the result was often applications
that were difficult to understand and maintain . The .NET Framework 4 .0 has addressed this
issue with the Dynamic Language Runtime, which is the subject of this brief appendix .

Note This appendix assumes you are familiar with either Ruby or Python . It does not attempt
to teach you about these languages . Additionally, this appendix does not contain any exercises .
If you want to run the code shown in this chapter, you must download and install the most re-
cent builds of IronRuby or IronPython from the CodePlex Web site at http://www.codeplex.com .
IronPython and IronRuby are full implementations of the Python and Ruby languages that in-
clude extensions enabling them to instantiate objects defined in the .NET Framework . They are
fully compatible with the most recent open source versions of these languages, and you can use
them to run existing Python and Ruby scripts unchanged .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

718 Appendix

What .Is .the .Dynamic .Language .Runtime?
C# is a strongly typed language . When you create a variable, you specify the type of that
variable, and you can invoke only methods and access members defined by that type . If you
try and call a method that the type does not implement, your code will not compile . This is
good because it catches a large number of possible errors early, before you even run your
code .

However, this strong typing becomes a problem if you want to create objects defined by
languages such as Ruby and Python that are interpreted and not compiled . It is very difficult,
if not impossible, for the C# compiler to verify that any members you access in your C# code
actually exist in these objects . Additionally, if you call a method on a Ruby or Python object,
the C# compiler cannot check that you have passed the correct number of parameters and
that each parameter has the appropriate type .

There is another issue . The types defined by C# and the .NET Framework by and large have a
different internal representation from those used by Ruby and Python . Therefore, if you call a
Ruby method that returns an integer, for example, somehow this integer has to be converted
from the representation used by Ruby to that expected by C# . A similar problem arises if you
pass an integer as a parameter from a C# application into a Ruby method; the integer must
be converted from the C# representation to that of Ruby .

The process of converting data between formats is known as marshaling, and it is an age-old
problem familiar to developers who have ever had to build applications that invoke COM
components . The solution is to use an intermediary layer . In the .NET Framework 4 .0, this
 intermediary layer is called the Dynamic Language Runtime, or DLR .

As well as marshaling data between languages, the DLR also provides many of the services
provided by the compiler when using a strongly typed language . For example, when you
 invoke a method on a Ruby or Python object, the DLR checks that this method call is valid .

The DLR is not tied to a specific set of languages; it implements an architecture based on
 language binders as shown in the following image:

IronPython IronRuby C# VB.NET Others

Dynamic Language Runtime

Python Ruby Microsoft
.NET

Microsoft
Silverlight

Microsoft
Office

Python
Binder

Ruby
Binder

Object
Binder

JScript
Binder

COM
Binder

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Appendix 719

A language binder is a component that slots into the DLR and understands how to invoke
methods in a specified language, and how to marshal and unmarshal data between the for-
mat expected by the language and the .NET Framework . The binder also performs a certain
amount of checking, such as verifying that an object does actually expose a method being
invoked, and that the parameters and return types are valid .

The .NET Framework 4 .0 provides binders for IronPython, IronRuby, COM (which you can
use to access COM components, such as those in Microsoft Office), and Jscript, as well
as the .NET Framework itself . Furthermore, the .NET Framework 4 .0 enables you to write
your own binders for other languages by using the types and interfaces in the System.
Dynamic namespace . (The details of how to do this are outside the scope of this appendix .)
Additionally, IronPython and IronRuby can themselves use the DLR to access objects built by
using other technologies and languages .

The DLR performs its work at runtime . This means that any type-checking for objects refer-
enced through the DLR is deferred until your application executes . How do you indicate in a
C# application that type-checking for an object should be deferred in this way? The answer
lies in the dynamic keyword .

The .dynamic .Keyword
The dynamic keyword is new in C# 4 .0 . You use it in exactly the same way that you use a
type . For example, the following statement creates a variable called rubyObject using the
 dynamic type:

dynamic rubyObject;

There is actually no such thing as the dynamic type in C# . All this statement does is create a
variable of type object, but with type-checking deferred until runtime . You can assign a value
to this variable and call methods using it . At runtime, the DLR uses the appropriate binder to
validate your code, instantiate objects, and invoke methods . The internal details of the DLR
are subject to change, so discussion of how this works is beyond the scope of this appendix .
Suffice to say, that the DLR knows how to call a binder to create objects, invoke methods, and
marshal and unmarshal data .

There is one small caveat . Because the type-checking is deferred until runtime, Visual Studio
IntelliSense cannot help you by providing the names of members exposed through a dy-
namic object reference . If you attempt to call an invalid method or reference a nonexistent
field in a dynamic object, you will not know about it until runtime, when it will throw a
RuntimeBinderException exception .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

720 Appendix

Example: .IronPython
The following example shows a Python script called CustomerDB .py . This class contains four
items:

n A class called Customer . This class contains three fields, which contain the ID, name, and
telephone number for a customer . The constructor initializes these fields with values
passed in as parameters . The __str__ method formats the data in the class as a string so
that it can be output .

n A class called CustomerDB . This class contains a dictionary called customerDatabase .
The storeCustomer method adds a customer to this dictionary, and the getCustomer
method retrieves a customer when given the customer ID . The __str__ method iterates
through the customers in the dictionary and formats them as a string . For simplicity,
none of these methods include any form of error checking .

n A function called GetNewCustomer . This is a factory method that constructs a Customer
object using the parameters passed in and then returns this object .

n A function called GetCustomerDB . This is another factory method that constructs a
CustomerDB object and returns it .

class Customer:
 def __init__(self, id, name, telephone):
 self.custID = id
 self.custName = name
 self.custTelephone = telephone

 def __str__(self):
 return str.format("ID: {0}\tName: {1}\tTelephone: {2}",
 self.custID, self.custName, self.custTelephone)

class CustomerDB:
 def __init__(self):
 self.customerDatabase = {}

 def storeCustomer(self, customer):
 self.customerDatabase[customer.custID] = customer

 def getCustomer(self, id):
 return self.customerDatabase[id]

 def __str__(self):
 list = "Customers\n"
 for id, cust in self.customerDatabase.iteritems():
 list += str.format("{0}", cust) + "\n"
 return list

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Appendix 721

def GetNewCustomer(id, name, telephone):
 return Customer(id, name, telephone)

def GetCustomerDB():
 return CustomerDB()

The following code example shows a simple C# console application that tests these items .
You can find this application in the \Microsoft Press\Visual CSharp Step By Step\Appendix\
PythonInteroperability folder under your Documents folder . It references the IronPython
 assemblies, which provide the language binding for Python . These assemblies are included
with the IronPython download and are not part of the .NET Framework Class Library .

Note This sample application was built using the version of IronPython that was current when
the book went to press . If you have a later build of IronPython, you should replace the references
to the IronPython and Microsoft .Scripting assemblies in this application with those provided with
your installation of IronPython .

The static CreateRuntime method of the Python class creates an instance of the Python
 runtime . The UseFile method of the Python runtime opens a script containing Python code,
and it makes the items in this script accessible .

Note In this example, the script CustomerDB .py is located in the Appendix folder, but the
 executable is built under the Appendix\PythonInteroperability\PythonInteroperability\bin\
Debug folder, which accounts for the path to the CustomerDB .py script shown in the parameter
to the UseFile method .

In this code, notice that the pythonCustomer and pythonCustomerDB variables reference
Python types, so they are declared as dynamic . The python variable used to invoke the
GetNewCustomer and GetCustomerDB functions is also declared as dynamic . In reality, the
type returned by the UseFile method is a Microsoft.Scriping.Hosting.ScriptScope object .
However, if you declare the python variable using the ScriptScope type, the code will not
build because the compiler, quite correctly, spots that the ScriptScope type does not con-
tain definitions for the GetNewCustomer and GetCustomerDB methods . Specifying dynamic
causes the compiler to defer its checking to the DLR at runtime, by which time the python
variable refers to an instance of a Python script, which does include these functions .

The code calls the GetNewCustomer Python function to create a new Customer object with
the details for Fred . It then calls GetCustomerDB to create a CustomerDB object, and then
invokes the storeCustomer method to add Fred to the dictionary in the CustomerDB object .
The code creates another Customer object for a customer called Sid, and adds this cus-
tomer to the CustomerDB object as well . Finally, the code displays the CustomerDB object .
The Console .WriteLine method expects a string representation of the CustomerDB object .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

722 Appendix

Consequently, the Python runtime invokes the __str__ method to generate this represen-
tation, and the WriteLine statement displays a list of the customers found in the Python
dictionary .

using System;
using IronPython.Hosting;

namespace PythonInteroperability
{
 class Program
 {
 static void Main(string[] args)
 {
 // Creating IronPython objects
 Console.WriteLine(“Testing Python”);
 dynamic python =
 Python.CreateRuntime().UseFile(@”..\..\..\..\CustomerDB.py”);
 dynamic pythonCustomer = python.GetNewCustomer(100, “Fred”, “888”);
 dynamic pythonCustomerDB = python.GetCustomerDB();
 pythonCustomerDB.storeCustomer(pythonCustomer);
 pythonCustomer = python.GetNewCustomer(101, “Sid”, “999”);
 pythonCustomerDB.storeCustomer(pythonCustomer);
 Console.WriteLine(“{0}”, pythonCustomerDB);
 }
 }
}

The following image shows the output generated by this application:

Example: .IronRuby
For completeness, the following code shows a Ruby script called CustomerDB .rb, which
contains classes and functions that exhibit similar functionality to those in the Python script
demonstrated previously .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Appendix 723

Note The to_s method in a Ruby class returns a string representation of an object, just like the
__str__ method in a Python class .

class Customer
 attr_reader :custID
 attr_accessor :custName
 attr_accessor :custTelephone

 def initialize(id, name, telephone)
 @custID = id
 @custName = name
 @custTelephone = telephone
 end

 def to_s
 return “ID: #{custID}\tName: #{custName}\tTelephone: #{custTelephone}”
 end
end

class CustomerDB
 attr_reader :customerDatabase

 def initialize
 @customerDatabase ={}
 end

 def storeCustomer(customer)
 @customerDatabase[customer.custID] = customer
 end

 def getCustomer(id)
 return @customerDatabase[id]
 end

 def to_s
 list = “Customers\n”
 @customerDatabase.each {
 |key, value|
 list = list + “#{value}” + “\n”
 }
 return list
 end
end

def GetNewCustomer(id, name, telephone)
 return Customer.new(id, name, telephone)
end

def GetCustomerDB
 return CustomerDB.new
end

http://lib.ommolketab.ir
http//lib.ommolketab.ir

724 Appendix

The following C# program uses this Ruby script to create two Customer objects, store them
in a CustomerDB object, and then print the contents of the CustomerDB object . It operates
in the same way as the Python interoperability application described in the previous section,
and it uses the dynamic type to define the variables for the Ruby script and the Ruby objects .
You can find this application in the \Microsoft Press\Visual CSharp Step By Step\Appendix\
RubyInteroperability folder under your Documents folder . It references the IronRuby as-
semblies, which provide the language binding for Ruby . These assemblies are part of the
IronRuby download .

Note This sample application was built using the version of IronRuby that was current when the
book went to press . If you have a later build of IronRby, you should replace the references to the
IronRuby, IronRuby .Libraries, and Microsoft .Scripting assemblies in this application with those
provided with your installation of IronRuby .

using System;
using IronRuby;

namespace RubyInteroperability
{
 class Program
 {
 static void Main(string[] args)
 {
 // Creating IronRuby objects
 Console.WriteLine(“Testing Ruby”);
 dynamic ruby =
 Ruby.CreateRuntime().UseFile(@”..\..\..\..\CustomerDB.rb”);
 dynamic rubyCustomer = ruby.GetNewCustomer(100, “Fred”, “888”);
 dynamic rubyCustomerDB = ruby.GetCustomerDB();
 rubyCustomerDB.storeCustomer(rubyCustomer);
 rubyCustomer = ruby.GetNewCustomer(101, “Sid”, “999”);
 rubyCustomerDB.storeCustomer(rubyCustomer);
 Console.WriteLine(“{0}”, rubyCustomerDB);
 Console.WriteLine();
 }
 }
}

The following image shows the output of this program:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Appendix 725

Summary
This appendix has provided a brief introduction to using the DLR to integrate code written
with scripting languages such as Ruby and Python into a C# application . The DLR provides
an extensible model that can support any language or technology that has a binder . You can
write a binder by using the types in the System .Dynamic namespace .

The C# language includes the dynamic type . When you declare a variable as dy-namic, C#
type-checking is disabled for this variable . The DLR performs type-checking at runtime,
 dispatches method calls, and marshals data .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 . . 727

Index

Symbols
–= compound assignment

operator, 92, 332, 344
+= compound assignment

operator, 92, 331, 343
? modifier, 157, 171, 174
–– operator, 44, 425
* operator, 36, 170
*= operator, 92
/= operator, 92
%= operator, 37, 92
++ operator, 43, 425

A
About Box windows template,

488
about event methods, 488–489
abstract classes, 232, 253,

269–271
creating, 272–274, 277

abstract keyword, 270, 276, 277
abstract methods, 270–271, 277
access, protected, 242
accessibility

of fields and methods,
132–133

 of properties, 301
access keys for menu items, 480
accessors, get and set, 298
Action delegates, 604–605

creating, 508
invoking, 632

Action type, 630
add_Click method, 472
AddCount method, 664
AddExtension property, 496
addition operator, 36

precedence of, 41, 77
Add method, 208, 214, 217, 587
<Add New Event> command,

476
AddObject method, 596
AddParticipant method, 666
addValues method, 50, 52
Add Window command, 457
Administrator privileges, for

exercises, 535–537

ADO .NET, 535
connecting to databases with,

564
LINQ to SQL and, 549
querying databases with,

535–548, 564
ADO .NET class library, 535
ADO .NET Entity Data Model

template, 566, 569, 596
ADO .NET Entity Framework,

566–583
AggregateException class,

642–644
Handle method, 642

AggregateException exceptions,
647

AggregateException handler,
642–644

anchor points of controls,
447–448

AND (&) operator, 316
anonymous classes, 147–148
anonymous methods, 341
anonymous types in arrays,

194–195, 197
APIs, 300
App .config (application

configuration) file, 8, 573
connection strings, storing in,

572, 573
ApplicationException exceptions,

517
Application objects, 457
application programming

interfaces, 330
applications

building, 26
multitasking in, 602–628
parallelization in, 603
responsiveness of, 498–507
running, 26

Application .xaml .cs files, 24
App .xaml files, code in, 24
ArgumentException class, 220
ArgumentException exceptions,

205, 225
argumentList, 51
ArgumentOutOfRangeException

class, 121
arguments

in methods, 52
modifying, 159–162
named, ambiguities with,

66–71

omitting, 66
passing to methods, 159
positional, 66

arithmetic operations, 36–43
results type, 37

arithmetic operators
checked and unchecked, 119
precedence, 41–42
using, 38–41

array arguments, 220–226
array elements

accessing, 195, 218
types of, 192

array indexes, 195, 218
integer types for, 201

array instances
copying, 197–198
creating, 192–193, 218

ArrayList class, 208–209, 217
number of elements in, 209

arrays, 191–206
associative, 212
card playing application,

199–206
cells in, 198
vs . collections, 214
copying, 197–198
implicitly typed, 194–195
initializing elements of, 218
inserting elements, 208
of int variables, 207
iterating through, 195–197,

218
keys arrays, 212, 213
length of, 218
multidimensional, 198–199
of objects, 207
params arrays, 219–220
removing elements from, 208
resizing, 208
size of, 192–193
zero-length arrays, 223

array variables
declaring, 191–192, 218
initializing, 193–194
naming conventions, 192

as operator, 169, 236
AsOrdered method, 655
AsParallel method, 650, 681

specifying, 652
assemblies, 361

definition of, 16
namespaces and, 16
uses of, 8

http://lib.ommolketab.ir
http//lib.ommolketab.ir

728

AssemblyInfo .cs files, 8
assignment operator (=), 31,

74, 91
precedence and associativity

of, 42, 77
assignment operators,

compound, 91–98
assignment statements, 91

for anonymous classes, 148
Association attribute, 555
associative arrays, 212
associativity, 42

of assignment operator, 42
of Boolean operators, 76–77

asterisk (*) operator, 36
at (@) symbol, 542
attributes, class, 523
automatic properties, 307, 310

B
background threads

access to controls, 508
copying data to, 502–504
for long-running operations,

499–502
performing operations on,

508
BackgroundWorker class, 504
backslash (\), 88
Barrier class, 666–667
Barrier constructors, specifying

delegates for, 667
Barrier objects, 681
base class constructors, calling,

234–235, 251
base classes, 232–234 . See

also inheritance
preventing class use as, 271–

272, 277
protected class members of,

242
base keyword, 234, 239
BeginInvoke method, 630
BellRingers project, 444–476

application GUI, 444
binary operators, 419
binary trees

building using generics, 361
creating generic classes, 371
datum, 358
enumerators, 383
iComparable interface, 362

inserting a node, 362
node, 358
sorting data, 359
subtrees, 358
theory of, 358
TreeEnumerator class, 383
walking, 384

Binding elements, for
associating control
properties with control
properties, 513

BindingExpression class
HasError property, 529–530,

532
UpdateSource method, 529

BindingExpression objects, 532
creating, 529

Binding objects, 526
BindingOperations class

GetBinding method, 526
binding paths, 519
binding sources, 518

specifying, 531, 577
Binding.ValidationRules

elements, 532
child elements, 516

bin folder, 13
Black.Hole method, 223
BlockingCollection<T> class, 669
BlockingCollection<T> objects,

670
blocking mechanisms of

synchronization primitives,
663–665

blocks of statements, 78–79
braces in, 98

bool data type, 32, 74
Boolean expressions

creating, 89
declaring, 73–74
in if statements, 78
in while statements, 93

Boolean operators, 74–77
precedence and associativity,

76–77
short-circuiting, 76

Boolean variables, declaring, 89
bool keyword, 89
bound objects, references to,

526
bound properties,

BindingExpression object
of, 532

boxing, 165–166
braces

in class definitions, 130
for grouping statements,

78–79, 93, 98
Breakpoints icon, 103
break statements, 85

for breaking out of loops, 99
fall-through, preventing, 86
in switch statements, 87

Build Solution command, 11, 12
ButtonBase class, 345
Button class, 345
button controls

adding, 21
anchoring, 447
Click event handlers, 471–474
mouse over behaviors,

456–457
Width and Height properties,

449
Button.Resources property,

451–452

C
C#

case-sensitivity, 9
COM interoperability, 64
compiling code, 11
IntelliSense and, 9
layout style, 28
matched character pairs, 10
role in .NET, 3

calculateClick method, 52–53
callback methods, registering,

634
camelCase, 30, 133

for method names, 48
CanBeNull parameter, 550
Canceled task state, 638, 641
CancelEventArgs class, 475
cancellation, 632–645

of PLINQ queries, 656
synchronization primitives

and, 668
CancellationToken objects, 633

specifying, 643, 656
ThrowIfCancellationRequested

method, 640–641
cancellation tokens, 633

creating, 633–634
examining, 641

AssemblyInfo .cs .files

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 729

cancellation tokens (continued)
specifying, 668, 681
for wait operations, 668

CancellationTokenSource objects
Cancel method, 668

cascading if statements, 79–80,
84

case, use in identifier names, 30
case keyword, 85
case labels, 85

fall-through and, 86
rules of use, 86

casting data, 167–171, 175
catch handlers, 110

multiple, 112–113
order of execution, 114
syntax of, 111
writing, 117, 126

catch keyword, 110
cells in arrays, 198
Change Data Source dialog box,

569–570
change tracking, 584
character codes, 102
characters, reading streams of,

95
char data type, 32, 542
check box controls, 458

adding, 460
initializing, 476
IsChecked property, 473

checked expressions, 119–120
checked keyword, 126,
checked statements, 118
Choose Data Source dialog box,

569–570
Circle class, 130–131

NumCircles field, 143–144
C# keywords . See also keywords

IntelliSense lists of, 9
 .NET equivalents, 179

Class attribute, 445
classes, 129

abstract classes, 232, 269–274
accessibility of fields and

methods, 132–142
anonymous classes, 147–148
in assemblies, 16
attributes of, 523
base classes, 232–234
body of, 131
classification and, 129–130

collection classes, 206–217,
668–670

constructors for, 133–134 . See
also constructors

declaring, 149
defining, 130–132
definition of, 132
derived classes, 232–234
encapsulation in, 130
generic classes, 358–370
inheriting from interfaces,

255–256
instances of, assigning, 131
interfaces, implementing,

261–266
method keyword

combinations, 276
modeling entities with,

513–515
with multiple interfaces, 257
naming conventions, 133
new, adding, 243
partial classes, 136
referencing through

interfaces, 256–257
sealed classes, 232, 271–277
static classes, 144–145
vs . structures, 181–182,

188–190
testing, 266–269

class hierarchies, defining,
242–247

classification, 129–130
inheritance and, 231–232

class keyword, 130, 149
class libraries, 361
class members drop-down list

box, 34
class methods, 144
class scope, defining, 54–55
class types, copying, 151–156
clear_Click method, 471
clearName_Click method, 492
Click event handlers, 471–474

for menu items, 485–487
Click events, 25, 345
Clone method, 198
Closing event handler, 474–476
CLS (Common Language

Specification), 30
code . See also execution flow

compiled, 8, 14
compiling, 11

compute-bound, 621–623
error-handling, separating

out, 110
exception safe, 289–292
refactoring, 60, 270
trying, 110–117
in WPF forms, viewing, 476

Code and Text Editor pane, 7
keywords in, 29

code duplication, 269–270
code views, 17
collection classes, 206–217

ArrayList class, 208–209
card playing implentation,

214–217
Queue class, 210
SortedList class, 213
Stack class, 210–211
thread-safe, 668–670

Collection Editor: Items dialog
box, 480, 481

collection initializers, 214
collections

vs . arrays, 214
counting number of rows, 406
enumerable, 381
enumerating elements,

381–389
GetEnumerator methods, 382
IEnumerable interface, 382
iterating through, 218,

650–655
iterators, 389
join operator, 407
limiting number of items in,

669–670
number of items in, 218
producers and consumers of,

669
thread-safe, 678–679
of unordered items, 669

Collect method, 283
Colors enumeration, 268
Column attribute, 550, 564
combo box controls, 458

adding, 460
populating, 476

Command class, 542
Command objects, 542
command prompt windows,

opening, 538
CommandText property, 542,

564

CommandText .property

http://lib.ommolketab.ir
http//lib.ommolketab.ir

730

commenting out a block of
code, 414

comments, 11
multiline comments, 11

common dialog boxes, 495–498
modal, 496
SaveFileDialog class, 495–498

Common Dialog classes, 94
Common Language

Specification (CLS), 30
Compare method, 84, 377
CompareTo method, 362
comparing strings, 378
comparing two objects, 377
compiled code, 14

references to, 8
compiler

comments and, 11
method call resolution, 66–71,
226–228

compiler errors, 12–13
compiling code, 11, 14
complex numbers, 428
Complex objects, 432
Component Object

Model (COM) and C#
interoperability, 64

CompositeType class, 691
compound addition operator,

108
compound assignment

operators, 91–92, 424
compound subtraction

operator, 108
computer memory . See memory
Concurrency Mode property,

585
ConcurrentBag<T> class, 669,

678–679
overhead of, 679

ConcurrentDictionary<TKey,
TValue> class, 669

concurrent imperative data
access, 656–680

ConcurrentQueue<T> class, 669
ConcurrentStack<T> class, 669
concurrent tasks

synchronizing access to
resources, 659

unpredictable performance
of, 656–659

concurrent threads, 600 . See
also multitasking; threads

conditional AND operator,
precedence and
associativity of, 77

conditional logical operators, 75
short-circuiting, 76

conditional OR operator,
precedence and
associativity of, 77

Connection class, 539
connection pooling, 547
Connection Properties dialog

box, 569–570
Connection property, 564
ConnectionString property, 540,

564
connection strings, 559, 562,

564
building, 540
for DataContext constructor,

551–552
storing, 572

Console Application icon, 5, 6
console applications

assembly references in, 16
creating, 8–14, 26
definition of, 3
Visual Studio-created files,

8–9
Console Application template, 7
Console class, 9
Console.WriteLine method, 186,

219, 224
calling, 137–138

Console.Write method, 58
const keyword, 144
constraints, with generics, 358
constructed types, 357
constructors, 133–134

base class constructors,
234–235

calling, 149
declaring, 149
default, 133–134, 135
definition of, 23
initializing fields with, 139
initializing objects with, 279
order of definition, 135
overloading, 134–135
private, 134
shortcut menu code in,

493–494
for structures, 183, 185
writing, 137–140

consumers, 669
Content property, 20, 459, 469
ContextMenu elements, 491

adding, 508
ContextMenu property, 494
context menus . See shortcut

menus
continuations, 606–608, 645,

646
Continue button (Debug

toolbar), 63
continue statements, 100
ContinueWith method, 606, 645,

646
contravariance, 377
Control class Setter elements,

456
controls

adding to forms, 459–461, 476
aligning, 460
alignment indicators, 21
anchor points, 447
Content property, 469
displaying, 40
focus, validation and, 509,

518, 527
IsChecked property, 476
layout properties of, 461–464
Name property, 452
properties, modifying, 20
properties, setting, 449, 476
removing from forms, 459
repositioning, 19
resetting to default values,

466–470
resizing, 21
Resources elements, 452
style of, 451–457, 464–466
TargetType attribute, 454–456
text properties, 457
ToolTip property of, 532
WPF controls, 458–459
z-order of, 451

conversion operators, 434, 435
writing, 437

ConvertBack method, 523, 524
converter classes, 578

creating, 523–525
for data binding, 522

converter methods, 522–523
creating, 523–525

Convert method, 578

commenting .out .a .block .of .code

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 731

cooperative cancellation,
632–637

copying
reference and value type

variables, 189
structure variables, 187

Copy method, 198
CopyTo method, 197
CountdownEvent objects, 681
Count method, 403
Count property, 209, 218
covariance, 376
covarient interfaces, 375
C# project files, 8
CreateDatabase method, 551
Created task state, 638
CREATE TABLE statements, 549
CreateXXX method, 587, 596
cross-checking data, 509–510
cross-platform interoperability,

685
C# source file (Program .cs), 8
 .csproj suffix, 33
CurrentCount property, 663
cursors (current set of rows),

544

D
dangling references, 282
data

aggregating, 401
counting number of rows, 406
Count method, 403
Distinct method, 406
encapsulation of, 130
filtering, 400
GroupBy method, 402
Grouping, 401
group operator, 406
joining, 404
locking, 659–661
Max method, 403
Min method, 403
OrderBy, 402
OrderByDescending, 402
orderby operator, 406
querying, 395–417
selecting, 398
ThenByDescending, 402
validation of, 509–532

data access
concurrent imperative,

656–680

thread-safe, 670–682
database applications

data bindings, establishing,
579–582

retrieving information,
579–582

user interface for, 574–579
database connections

closing, 545–547, 553
connection pooling, 547
creating, 569–570
logic for, 572
opening, 540

database queries
ADO .NET for, 564
deferred, 557–558
immediate evaluation of,

553–554
iterating through, 552
LINQ to Entities for, 582–583
LINQ to SQL for, 564

databases
access errors, 539
adding and deleting data,

587–594, 596
concurrent connections, 547
connecting to, 538–540, 564
creating, 536–538
data type mapping, 550
disconnecting from, 545–547
entity data models, 565
fetching and displaying data,

543–544, 551–553
granting access to, 567–568
locked data, 544
mapping layer, 565
new, creating, 551
null values in, 547–548, 550,

564
prompting users for

information, 541–543, 562
querying, 541–543
querying, with ADO .NET,

535–548
querying, with LINQ to SQL,

549–564
referential integrity errors,

588
saving changes to, 584–586,

594–596
saving user information, 562
updating data, 583–596
Windows Authentication

access, 540, 541

database tables
Column attribute, 550
deleting rows in, 588, 596
entity classes, relationships

between, 551–552
entity data models for,

568–572
joining, 554–558
many-to-one relationships,

555–556
modifying information in, 596
new, creating, 551
null values in, 550
one-to-many relationships,

556–558
primary keys, 550
querying, 541–543
retrieving data from, 579–582
retrieving single rows, 553
Table attribute, 550
underlying type of columns,

550
data binding

binding control properties
to control properties, 513,
525–526, 531

binding control properties to
object properties, 531

binding controls to class
properties, 515

binding sources, 518, 531
binding WPF controls to data

sources, 580
converter classes, 522–525
Entity Framework, using with,

579–582
existing data, updating with,

583–584
fetching and displaying data

with, 579–583
modifying data with, 583–596
for validation, 511–527

DataContext classes, 551–552
accessing database tables

with, 562–564
custom, 559–560

DataContext objects, 551–553
creating, 564

DataContext property, 577, 596
of parent controls, 580

DataContract attribute, 691
DataLoadOptions class

LoadWith method, 558
DataMember attribute, 691

DataMember .attribute

http://lib.ommolketab.ir
http//lib.ommolketab.ir

732

data provider classes for ADO .
NET, 539

data providers, 535–536
data sets, partitioning, 650
data sources, joining, 654
DataTemplate, 576
data types

bool data type, 32, 74
char data type, 32, 542
data type mapping, 550
DateTime data type, 81, 84
decimal data type, 31
double data type, 31
of enumerations, 176
float data type, 31
IntelliSense lists of, 9
long data type, 31
operators and, 37–38
primitive data types, 31–36,

86, 118
Queue data type, 354
thread-safe, 678

data validation, 509–532
dateCompare method, 81, 82
DatePicker controls

adding, 460
default shortcut menu for, 492

dates, comparing, 80–83, 84
DateTime data type, 81, 84
DateTimePicker controls, 458

SelectedDate property, 81
DbType parameter, 550
Debug folder, 13
debugger

stepping through methods
with, 61–63

variables, checking values in,
62–63

Debug toolbar, 61
displaying, 61, 72

decimal data type, 31
declaration statements, 30–31
decrement operators, 425

–– operator, 44
++ operator, 92

default constructors, 133–135
in static classes, 144
structures and, 181, 184–185
writing, 138

DefaultExt property, 496
default keyword, 85
deferred fetching, 553–554,

558–559
defining operator pairs, 426

Definite Assignment Rule, 32
Delegate class, 506
delegates, 329

advantages, 332
attaching to events, 345
calling automatically, 342
declaring, 331
defining, 331
DoWorkEventHandler

delegate, 504
initializing with a single,

specific method, 331
invoking, 332
lambda expressions, 338
matching shapes, 331
scenario for using, 330
using, 333

DeleteObject method, 589, 596
delimiters, 88
Dequeue method, 354
derived classes, 232–234 . See

also inheritance
base class constructors,

calling, 234–235, 251
creating, 251

deserialization, 691
design views, 17
Design View window, 19

cached information in, 579
working in, 19–22
WPF forms in, 445

desktop applications . See also
applications

multitasking in, 602–628
destructors

calling, 292
Dispose method, calling from,

288–289
recommendations on, 284
timing of execution, 283
writing, 280–282, 292

detach.sql script, 567
dialog boxes, common,

495–498
dictionaries, creating, 669
Dictionary class, 356
DictionaryEntry class, 212, 213
Dictionary<TKey, TValue>

collection class, thread-safe
version, 669

Dispatcher.Invoke method, 632
Dispatcher objects, 505–507

Invoke method, 506

responsiveness, improving
with, 629, 631–632

DispatcherPriority enumeration,
507, 631

disposal methods, 285
exception-safe, 285–286,

289–292
writing, 292

Dispose method, 287
calling from destructors,

288–289
Distinct method, 406
DivideByZeroException

exceptions, 123
division operator, 36

precedence of, 41
 .dll file name extension, 16
DockPanel controls, adding,

479, 508
documenting code, 11
Document Outline window,

39–40
documents, definition of, 477
Documents folder, 6
do statements, 99–108

stepping through, 103–107
syntax of, 99

dot notation, 134
dot operator (.), 280
double data type, 31
double.Parse method, 58
double quotation marks (“), 88
DoWork event, subscribing to,

504
DoWorkEventHandler delegates,

504
drawingCanvas_

MouseLeftButtonDown
method, 267

drawingCanvas_
MouseRightButtonDown
method, 268

DrawingPadWindow class, 267
Drawing project, 260–262
dual-core processors, 602
duplication in code, 269–270
DynamicResource keyword, 454

E
ElementName tag, 531
else keyword, 77, 78
encapsulation, 130, 146

golden rule, 296

data .provider .classes .for .ADO .NET

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 733

encapsulation (continued)
public fields, 297
violations of, 242

Enqueue method, 354
Enterprise Services, 684
EnterReadLock method, 665
EnterWriteLock method, 665
entities

adding, 587
deleting, 588
modeling, 129

entity classes
code for, 572
creating, with Entity

Framework, 596
database tables, relationships

between, 551–552
defining, 549–551, 560–562,

564
EntityCollection<Product>

property, 577
generation of, 571
inheritance from, 572
modifying properties of,

571–572
naming conventions, 556
table relationships, defining

in, 554–555
EntityCollection<Product>

property, 577, 580
entity data models, 565

generating, 568–572
Entity Data Model Wizard,

569–571
Entity Framework, 565

adding and deleting data
with, 587–588, 596

application user interfaces,
creating, 574–579

data binding, using with,
566–583

entity classes, creating, 596
fetching and displaying data,

579–582
LoadProperty<T> method, 581
mapping layer and, 565
optimistic concurrency,

584–585
retrieving data from tables

with, 581
updating data with, 583–596

EntityObject class Concurrency
Mode property, 585

entity objects

binding properties of controls
to, 566–583

displaying data from, 596
modifying, 583

EntityRef<TEntity> types,
555–556

EntitySet<Product> types, 556
EntitySet<TEntity> types,

555–556
enumerable collections, 381
enumerating collections, 381
enumerations, 173–178

converting to strings, 522
declaring, 173–174, 176–178,

190
integer values for, 175
literal names, 174
literal values, 175
nullable versions of, 174
syntax of, 173–174
underlying type of, 176
using, 174–175

enumeration variables, 174
assigning to values, 190
converting to strings, 174
declaring, 190
mathematical operations on,

177–178
enumerator objects, 382
enumerators

Current property, 382
iterators, 389
manually implementing, 383
MoveNext method, 382
Reset method, 382
yield keyword, 390

enum keyword, 173, 190
enum types, 173–178
equality (==) operator, 74

precedence and associativity
of, 77

Equal method, 431
equal sign (=) operator, 42 . See

also assignment operator
(=)

Equals method, 432
error information, displaying,

518–519, 532
Error List window, 12
errors

dealing with, 109
exceptions . See exceptions
marking of, 12
text descriptions of, 111

errorStyle style, 525

escape character (\), 88
EventArgs argument, 346
event handlers

for about events, 488
for Closing events, 474–476
for menu actions, 508
long-running, simulating,

498–499
for new events, 485–486
for save events, 487–488
testing, 489–490
in WPF applications, 470–476

event methods, 471
for menu items, 508
naming, 472
removing, 472
writing, 476

events, 342–344
attaching delegates, 345
declaring, 342
EventArgs argument, 346
menu events, handling,

484–491
null checks, 344
raising, 344
sender argument, 346
sources, 342
subscribers, 342
subscribing, 343
vs . triggers, 456
unsubscribing, 344
using a single method, 346
waiting for, 661, 681
WPF user interface, 345

event sources, 342
Example class, 289
exception handling, 110

for tasks, 641–644
Exception inheritance hierarchy,

113
catching, 126,

exception objects, 121
examining, 111–112, 642–643

exceptions, 109
AggregateException

exceptions, 647
ApplicationException

exceptions, 517
ArgumentException

exceptions, 205, 225
catching, 110–117, 126
catching all, 123, 124, 126
DivideByZeroException

exceptions, 123
examining, 111–112

exceptions

http://lib.ommolketab.ir
http//lib.ommolketab.ir

734

exceptions (continued)
execution flow and, 111, 113,

124
FormatException exceptions,

110, 111
handler execution order, 114
handling, 110
inheritance hierarchies, 113
InvalidCastException

exceptions, 167
InvalidOperationException

exceptions, 122, 501, 553
NotImplementedException

exceptions, 202, 263
NullReferenceException

exceptions, 344
OperationCanceledException

exceptions, 641, 668
OptimisticConcurrency-

Exception exceptions, 586,
587

OutOfMemoryException
exceptions, 164, 199

OverflowException exceptions,
111, 118, 120

SqlException exceptions,
539–540, 562

throwing, 121–126
unhandled, 111–112, 115,

124–125
UpdateException exceptions,

588
to validation rules, detecting,

516–519
viewing code causing, 116

exception safe code, 289–292
ExceptionValidationRule

elements, 516
exclusive locks, 661
ExecuteReader method, 543

calling, 564
overloading of, 548

execution
multitasking, 602–628
parallel processing, 600–601,

608–617, 676–678
single-threaded, 599

execution flow, exceptions and,
111, 113, 124

Exit command, Click event
handler for, 486

ExitReadLock method, 665
ExitWriteLock method, 665

expressions, comparing values
of, 89

Extensible Application Markup
Language (XAML), 19–20,
445

extensible programming
frameworks, building, 253

extension methods, 247–251
creating, 248–250
Single method, 553
syntax of, 248

Extract Method command, 60

F
F5 key, 63
F10 key, 62
F11 key, 62
failures . See errors; exceptions
fall-through, stopping, 86
Faulted task state, 638, 641
fetching, 543–545

deferred, 553–554, 558
immediate, 558
with SqlDataReader objects,

564
fields, 54–55, 129

definition of, 131
inheritance of, 234–235
initializing, 133, 139, 140
naming conventions, 133
shared fields, 143–144
static and nonstatic, 143–144 .

See also static fields
FileInfo class, 94

OpenText method, 95
fileName parameter, 500
FileName property, 496
file names, asterisks by, 12
files, closing, 96
finalization, 284

order of, 283, 284
Finalize method, compiler-

generated, 282
finally blocks, 124–126

database connection close
statements in, 545

disposal methods in, 285–286
execution flow and, 125

firehose cursors, 544
first-in, first-out (FIFO)

mechanisms, 210
float data type, 31

floating-point arithmetic, 119
focus of controls, validation and,

509, 518, 527
FontFamily property, 457
FontSize property, 20, 457
FontWeight property, 457
foreach statements, 196, 381

for database queries, 553,
556–558

iterating arrays with, 204
iterating database queries

with, 552
iterating database tables with,

563
iterating param arrays with,

225
iterating zero-length arrays

with, 223
FormatException catch handler,

110–113, 120
FormatException exceptions,

110, 111
Format method, 186
format strings, 60
forms . See also WPF forms

resize handles, 21
for statements, 97–99, 108

iterating arrays with, 196
omitting parts of, 97–98
scope of, 98–99
syntax of, 97

forward slash (/) operator, 36
freachable queue, 284
F type suffix, 34
fully qualified names, 15
Func<T> generic type, 506

G
garbage collection, 156–157,

280
destructors, 280–282
guarantees of, 282–283
invoking, 283, 292
timing of, 283

garbage collector, functionality
of, 283–284

GC class
Collect method, 283
SuppressFinalize method, 289

generalized class, 357
Generate Method Stub Wizard,

57–60, 72

exceptions .(continued)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 735

generic classes, 358–370
generic interfaces

contravariant, 377
covariant, 375
variance, 373–379

generic methods, 370–373
constraints, 371
parameters, 371

generics, 355–380
binary trees, 358
binary trees, building, 361
constraints, 358
creating, 358–370
multiple type parameters, 356
purpose, 353
type parameters, 356
vs . generalized classes, 357

geometric algorithm, 670–672
get accessors, 299

for database queries, 555–556
GetBinding method, 526
get blocks, 298
GetEnumerator method, 382
GetInt32 method, 544
GetPosition method, 267
GetString method, 544
GetTable<TEntity> method, 552
GetXXX methods, 544, 564
global methods, 48
goto statements, 87
graphical applications

creating, 17–26
views of, 17

Grid controls, in WPF forms, 40
Grid panels, 446

controls, placing, 447
in WPF applications, 446

GridView controls, display
characteristics, 578

GroupBox controls, 469
adding, 460

GroupBy method, 402
group operator, 406

H
Handle method, 642, 647
HasError property, 529

testing, 530
Hashtable class, 215
Hashtable object, SortedList

collection objects in, 215
HasValue property, 158
Header attribute, 480

heap memory, 163–164
allocations from, 279
returning memory to, 280

hiding methods, 237–238
High Performance Compute

(HPC) Server 2008, 600
hill-climbing algorithm, 604
HorizontalAlignment property,

447–448
Hungarian notation, 30
Hypertext Transfer Protocol

(HTTP), 684

I
IColor interface, 260–261

implementing, 261–266
IComparable interface, 255, 362
identifiers, 28–29

naming, 237–238
overloaded, 55–65
reserved, 28
scope of, 54

IDisposable interface, 287
IDraw interface, 260–261

implementing, 261–266
IEnumerable interface, 382, 549

implementing, 387
IEnumerable objects, joining,

654
if statements, 77–84, 89

block statements, 78–79
Boolean expressions in, 78
cascading, 79–80, 84
syntax, 77–78
writing, 80–83

image controls, adding,
449–451

Image.Source property, 450
Implement Interface Explicitly

command, 262–263
implicitly typed variables, 45–46
increment (++) operator, 44,

92, 425
indexers, 315–322

accessors, 319
vs . arrays, 320
calling, 326
in combined read/write

context, 319
defining, 318
example with and without,

315

explicit interface
implementation syntax, 323

in interfaces, 322
operators with ints, 316
syntax, 315
virtual implementations, 322
in a Windows application, 323
writing, 324

inequality (!=) operator, 74
inheritance, 231–232

abstract classes and, 269–271
base class constructors,

calling, 234–235, 251
classes, assigning, 235–236
class hierarchy, creating,

242–247
implementing, 274–276
implicitly public, 233
menu items, 483
new method, declaring,

237–238
override methods,declaring,

239–240
protected access, 242
using, 232–247
virtual methods, declaring,

238–239, 251
InitialDirectory property, 496
initialization

of array variables, 193–194
of derived classes, 234–235
of fields, 133, 139, 140
of structures, 183–184

InitializeComponent method, 23
INotifyPropertyChanged

interface, 572
INotifyPropertyChanging

interface, 572
input validation, 509–510
Insert method, 208, 366
instance methods

definition of, 140
writing and calling, 140–142

instances
of classes, assigning, 131
of WPF forms, 489

instnwnd.sql script, 538, 549,
567

Int32.Parse method, 37
int arguments, summing,

224–226
integer arithmetic, checked and

unchecked, 118–120, 126

integer .arithmetic, .checked .and .unchecked

http://lib.ommolketab.ir
http//lib.ommolketab.ir

736

integer arithmetic algorithm,
102

integer division, 39
integers, converting string

values to, 40, 46,
integer types, enumerations

based on, 176
IntelliSense, 9–10

icons, 10, 11
tips, scrolling through, 10

interface keyword, 254, 272, 277
interface properties, 304
interfaces, 253–269

declaring, 277
defining, 254–255, 260–261
explicitly implemented,

257–259
implementing, 255–256,

261–266, 277
inheriting from, 253, 255–256
method keyword

combinations, 276
multiple, 257
naming conventions, 255
referencing classes through,

256–257
restrictions of, 259
rules for use, 255

int.MaxValue property, 118
int.MinValue property, 118
int parameters, passing, 154
int.Parse method, 40, 110, 116,

179
int type, 31

fixed size of, 118
int? type, 158
int values

arithmetic operations on,
38–41

minimums, finding, 220–221
int variable type, 31
InvalidCastException exceptions,

167
InvalidOperationException catch

handler, 123
InvalidOperationException

exceptions, 122, 501, 553
invariant interfaces, 375
Invoke method, 506–508

calling, 505
IProducerConsumerCollection<T>

class, 669
IsChecked property, 473, 476

nullability, 504

IsDBNull method, 548, 564
is operator, 168–169
IsPrimaryKey parameter, 550
IsSynchronizedWithCurrentItem

property, 576, 577
IsThreeState property (CheckBox

control), 458
ItemsSource property, 577
ItemTemplate property, 577
iteration statements, 91
iterators, 389
IValueConverter interface,

522–523
ConvertBack method, 524–525
Convert method, 524

J
JavaScript Object Notation

(JSON), 688
Join method, 404

parameters, 404
joins, 404, 554–558

of data sources, 654
JSON (JavaScript Object

Notation), 688

K
key presses, examining,

588–589
Key property, 213
keys arrays, 212

sorted, 213
key/value pairs, 356

as anonymous types, 214
in Hashtables, 212
in SortedLists, 213

keywords, 28–29
abstract keyword, 270, 276,

277
base keyword, 234, 239
bool keyword, 89
case keyword, 85
catch keyword, 110
checked keyword, 126
class keyword, 130, 149
const keyword, 144
default keyword, 85
DynamicResource keyword,

454
else keyword, 77, 78
enum keyword, 173, 190
get and set keywords, 298

IntelliSense lists of, 9
interface keyword, 254, 272,

277
lock keyword, 659
method keyword

combinations, 276
 .NET equivalents, 179
new keyword, 131, 218, 238,

276
object keyword, 165
out keyword, 160–161, 376
override keyword, 239, 240,

272, 276
params keyword, 219, 221,

222
partial keyword, 136
private keyword, 132, 145,

242, 276
protected keyword, 242, 276
public keyword, 132, 242, 276
ref keyword, 159
return keyword, 49
sealed keyword, 271, 272, 276,

277
set keyword, 298
static keyword, 143, 145, 149
StaticResource keyword, 454
string keyword, 152
struct keyword, 180, 190
this keyword, 139–140, 146,

248
try keyword, 110
unchecked keyword, 118–119
unsafe keyword, 170
var keyword, 45, 148
virtual keyword, 239, 240, 251,

272, 276
void keyword, 48, 49, 51
yield keyword, 390

Knuth, Donald E ., 358

L
label controls

adding, 19, 459
properties, modifying, 20

Lambda Calculus, 340
lambda expressions

and delegates, 338–342
for anonymous delegates,

501, 507
anonymous methods, 341
as adapters, 339
body, 341

integer .arithmetic .algorithm

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 737

lambda expressions (continued)
forms, 340
method parameters specified

as, 553
syntax, 340
variables, 341

Language Integrated Query
(LINQ), 395

All method, 407
Any method, 407
BinaryTree objects, 407
deferred evaluation, 412
defining an enumerable

collection, 412
equi-joins, 407
extension methods, 412
filtering data, 400
generic vs . nongeneric

methods, 415
Intersect method, 407
joining data, 404
Join method, 404
OrderBy method, 401
query operators, 405
selecting data, 398
Select method, 398
Skip method, 407
Take method, 407
Union method, 407
using, 396
Where method, 401

last-in, first-out (LIFO)
mechanisms, 210–211

layout panels, 446
z-order of controls, 451

left-shift (<<) operator, 316
Length property, 195–196, 218
LINQ . See Language Integrated

Query (LINQ)
LINQ queries, 649

parallelizing, 651–655, 681
LINQ to Entities, 566

querying data with, 573–574
LINQ to SQL, 535, 549–564

DataContext class, custom,
559–560

data type mapping, 561
deferred fetching, 553–554,

558–559
extensions to, 565
joins, 554–558
new databases and tables,

creating, 551

querying databases with,
551–553, 560–564

table relationships, 554–558
list box controls, 459

adding, 461
populating, 476

List<Object> objects, 378
List<T> generic collection class,

378
ListView controls

for accepting user input, 590
display options, 578
View element, 577

LoadProperty<T> method, 581
LoadWith method, 558–559
local scope, defining, 54
Locals window, 104–106
local variables, 54

displaying information about,
104

locking, 659–661 . See
also synchronization
primitives

overhead of, 661
serializing method calls with,

679–680
lock keyword, 659
lock statements, 659–661, 681
logical operators

logical AND operator (&&),
75, 89

logical OR operator (||), 75, 89
short-circuiting, 76

long data type, 31
long-running operations

canceling, 632–645
dividing into parallel tasks,

614–617
measuring processing time,

612–614
parallelizing with Parallel

class, 619–621
responsiveness, improving

with Dispatcher object,
629–632

long-running tasks
executing on multiple threads,

499–502
simulating, 498–499

looping statements, 108
breaking out of, 99
continuing, 100
do statements, 99–107
for statements, 97–99

while statements, 92–96,
97–99

loops
independent iterations, 624
parallelizing, 618–621, 623,

647
LostFocus event, 509

M
Main method, 8

for console applications, 9
for graphical applications,

23–24
MainWindow class, 23
MainWindow constructors,

shortcut menu code in,
493–494

MainWindow .xaml .cs file, code
for, 22–23

ManualResetEventSlim class,
661–682

ManualResetEventSlim objects,
681

Margin property, 20, 447–448,
479

MARS (multiple active result
sets), 545

matched character pairs, 10
Math class, 131

Sqrt method, 141, 143
Math.PI field, 131
MathsOperators program code,

39–41
memory

allocation for new objects,
279–280

for arrays, 191
for class types, 151
for Hashtables, 212
heap memory, 163–164, 279,

280
organization of, 162–164
reclaiming, 279 . See

also garbage collection
stack memory, 163–164, 178,

669
for value types, 151
for variables of class types,

131
Menu controls, 477, 478

adding, 479, 508
MenuItem elements, 480

Menu controls

http://lib.ommolketab.ir
http//lib.ommolketab.ir

738

menu events, handling,
484–491

MenuItem_Click methods, 485
MenuItem elements, 480, 481

Header attribute, 480
nested, 483

MenuItem objects, 508
menu items

about items, 488–489
access keys for, 480
child items, 481
Click events, 485–487
naming, 481, 485
text styling, 483
types of, 483–484
WPF controls as, 484

menus, 477–478
cascading, 483
creating, 478–484, 508
DockPanel controls, adding

to, 479
separator bars in, 481, 508
shortcut menus, 491–494

MergeOption property, 584
MessageBox.Show statement, 25
Message Passing Interface

(MPI), 600
Message property, 111, 117
method adapters, 339
method calls

examining, 52–53
memory required for, 163
optional paramters vs .

parameter lists, 227–229
parallelizing, 618
parentheses in, 51
serializing, 679–680
syntax of, 51–53

method completion, notification
of, 630

methodName, 48, 51
methods, 129

abstract methods, 270–271
anonymous methods, 341
arguments, 52 . See

also arguments
bodies of, 47
calling, 51, 53, 72
constructors, 134–135
creating, 47–53
declaring, 48–49, 72
encapsulation of, 130
event methods, 471
examining, 50–51
exiting, 49

extension methods, 247–251
global, 48
hard-coded values for, 468
hiding, 237–238
implementations of, 239–241
in interfaces, 254–255
keyword combinations for,

276
length of, 51
naming, 47, 133
optional parameters for,

65–66, 68–72, 226
overloaded methods, 9
overloading, 55–56, 219
override methods, 239–240
overriding, 272
parameter arrays and, 227,

229
returning data from, 49–51,

72
return types, 48, 72
scope of, 54–55
sealed methods, 271–272
sharing information between,

54–55
statements in, 27
static (noninstance) methods,

142 . See also static methods
stepping in and out of, 61–63,

72
virtual methods, 238–239,

240–241
wizard generation of, 57–60
writing, 56–63

method signatures, 237
Microsoft Message Queue

(MSMQ), 684
Microsoft .NET Framework . See

 .NET Framework
Microsoft SQL Server 2008

Express, 535 . See also SQL
Server

Microsoft Visual C# . See C#
Microsoft.Win32 namespace,

495
Microsoft Windows

Presentation Foundation .
See WPF applications

Min method, 220, 221
minus sign (–) operator, 36
modal dialog boxes, 496
Monitor class, 660
Moore, Gordon E ., 601
Moore’s Law, 601

MouseButtonEventArgs
parameter, 267

MoveNext method, 382
MPI (Message Passing

Interface), 600
MSMQ (Microsoft Message

Queue), 684
multicore processors, 601–602
multidimensional arrays,

198–199
params keyword and, 221

multiline comments, 11
multiple active result sets

(MARS), 545
multiplication operator, 36

precedence of, 41, 77
multitasking

considerations for, 602–603
definition of, 602
implementing, 602–628
reasons for, 600–601

mutlithreaded approach,
600–601

N
name-clashing problems, 14
“The name ’Console’ does not

exist in the current context”
error, 15

named arguments, 66
ambiguities with, 66–71

named parameters, 72
passing, 66

Name parameter, 550
Name property, 21, 452
namespaces, 14–17

assemblies and, 16
bringing into scope, 15

naming conventions
for array variables, 192
for entity classes, 556
for fields and methods, 133
for identifiers, 237–238
for interfaces, 255
for nonpublic identifiers, 133

narrowing conversions, 435
 .NET common language

runtime, 330
 .NET Framework, 330

hill-climbing algorithm, 604
LINQ extensions, 650
mutlithreading, 603
parallelism, determining, 604,

617–619, 624, 639

menu .events, .handling,

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 739

 .NET Framework (continued)
synchronization primitives,

660
TaskScheduler object, 605
thread pools, 603–604

 .NET Framework class library
classes in, 16
namespaces in, 15

 .NET Framework Remoting, 684
<New Event Handler>

command, 472, 485, 492
new keyword, 131, 218, 238, 276

for anonymous classes, 147
for array instances, 192
for constructors, 149

newline character (‘\n’), 95
new method, declaring, 237–238
new operator, functionality of,

279–280
New Project dialog box, 5, 6
Next method of SystemRandom,

193
nondefault constructors, 134
nonpublic identifiers, 133
Northwind database, 536

creating, 536–538
detaching from user instance,

567–568
Orders table, 560–562
resetting, 538
Suppliers application, 575,

582–584, 595–596
Suppliers table, 554

Northwind Traders, 536
notification of method

completion, 630
NotImplementedException

exceptions, 202, 263
NotOnCanceled option, 607
NotOnFaulted option, 607
NotOnRanToCompletion option,

607
NOT (~) operator, 316
NOT operator (!), 74
nullable types, 156–159

properties of, 158–159
Value property, 158–159

nullable values, 122
nullable variables

assigning expressions to, 158
testing, 157
updating, 159

NullReferenceException
exceptions, 344

null values, 156–159, 171
in databases, 547, 548, 564
in database table columns,

550
numbers, converting to strings,

100–103
NumCircles field, 143–144

O
OASIS (Organization for the

Advancement of Structured
Information Standards), 686

ObjectContext class, 572
Refresh method, 584

ObjectContext objects
caching of data, 583
change tracking, 584

objectCount field, 145
Object.Finalize method,

overriding, 281–282
object initializers, 310
object keyword, 165
ObjectQuery<T> objects,

database queries based on,
582–583

objects
assigning, 235–236
binding to properties of, 531
creating, 131, 137–140,

279–280
definition of, 132
destruction of, 280, 282–283
disadvantages, 353
initializing using properties,

308
life of, 279–284
locking, 659–661
member access, 280
in memory, updating,

583–584
memory for, 163
reachable and unreachable,

284
references to, 280
referencing through

interfcaes, 256
ObjectSet collections

AddObject method, 596
DeleteObject method, 596
deleting entities from, 588

ObjectSet<T> collection class,
576

ObjectStateEntry class, 586

object type, 59, 207
obj folder, 13
octal notation, converting

numbers to, 100–103
okayClick method, 345
ok_Click method, 25
OnlyOnCanceled option, 607
OnlyOnFaulted option, 607
OnlyOnRanToCompletion

option, 607
Open dialog box, 94
Open File dialog box, 498
OpenFileDialog class, 94, 495
openFileDialogFileOk method,

94
openFileDialog objects, 94
Open method, calling, 564
OpenText method, 95
operands, 36
OperationCanceledException

exceptions, 641, 668
OperationContract attribute,

691
operations, independent,

623–624
operations, long-running

canceling, 632–645
dividing into parallel tasks,

614–617
measuring processing time,

612–614
parallelizing with Parallel

class, 619–621
responsiveness, improving

with Dispatcher object,
629–632

operators, 419–440
-- operator, 44, 425
-= operator, 92, 332, 344
+ operator, 419
++ operator, 43, 44, 92, 425
+= operator, 92, 331, 343
*= operator, 92
/= operator, 92
addition operator, 36, 41, 77
AND (&) operator, 316
arithmetic operators, 38–42,

119
as operator, 169, 236
assignment operator (=), 31,

42, 74, 77, 91–98
associativity and, 42, 419
asterisk (*) operator, 36, 170
binary operators, 419

operators

http://lib.ommolketab.ir
http//lib.ommolketab.ir

740

operators (continued)
bitwise, 317
Boolean operators, 74–77
comparing in structures and

classes, 426
complex numbers, 428
compound addition operator,

108
compound assignment

operators, 91–92, 424
compound subtraction

operator, 108
conditional logical operators,

75–77
constraints, 420
conversion operators, 434,

435, 437
data types and, 37–38
decrement operators, 44, 92,

425
division operator, 36, 41
dot operator (.), 280, 420
equality (==) operator, 74, 77,

431
forward slash (/) operator, 36
fundamentals, 419–424
group operator, 406
implementing, 427–433
increment (++) operator, 43,

44, 92, 425
inequality (!=) operator, 74
is operator, 168–169
join operator, 407
language interoperability, 424
left-shift (<<) operator, 316
logical AND operator (&&),

75, 89
logical OR operator (||), 75, 89
multiplication operator, 36,

41, 77, 419
multiplicity, 420
new operator, 279–280
NOT (~) operator, 316
NOT operator (!), 74
operands, 420
operator pairs, 426
operator+, 423
OR (|) operator, 316
orderby operator, 406
overloading, 420
percent sign (%) operator,

37, 92
postfix forms, 44–45
precedence, 41–42, 419

prefix forms, 44–45
primary operators, 76
public operators, 421
query operators, 405
relational operators, 74, 77
remainder (modulus) operator,

37
short-circuiting, 76
simulating [], 420
static operators, 421
symmetric operators, 422, 436
unary operators, 44, 76, 419
user-defined conversion, 435
XOR (̂) operator, 316

optimistic concurrency, 584–585
OptimisticConcurrencyException

exceptions, 586, 587
OptimisticConcurrencyException

handler, 594, 596
optional parameters, 64–65

ambiguities with, 66–71
defining, 65–66, 68–69, 72
vs . parameter arrays, 226–229

OrderByDescending method,
402

OrderBy method, 401
orderby operator, 406
Organization for the

Advancement of Structured
Information Standards
(OASIS), 686

original implementations (of
methods), 239–241

OR (|) operator, 316
OtherKey parameter, 555
out keyword, 160–161, 376
out modifier, params arrays and,

222
OutOfMemoryException

exceptions, 164
multidimensional arrays and,

199
out parameters, 159–162
Output icon, 103, 104
Output window (Visual Studio

2010), 11
overflow checking, 118, 119
OverflowException handler, 120
OverflowException exceptions,

111, 118, 120
overloaded methods, 9, 55–56
overloading, 219

ambiguous, 222
constructors, 134–135

optional parameters and,
64–65

override keyword, 239, 240, 272,
276

override methods, declaring,
239–240

overriding methods, 239
sealed methods and, 271–272

OverwritePrompt property, 496

P
panel controls

DockPanel controls, 479, 481,
508

Grid panels, 446, 447
layout panels, 446
StackPanels, 446, 460, 476
WrapPanels, 446
z-order, 451

paralellization of LINQ queries,
650–656

Parallel class
abstracting tasks with,

617–624
for independent operations,

621, 623–624
Parallel.ForEach<T> method,

618
Parallel.For method, 617, 618,

620–621, 624, 639, 647
Parallel.Invoke method, 618,

621–624, 627
when to use, 621

ParallelEnumerable objects, 655
Parallel.For construct, 657–658
Parallel.ForEach method, 647

canceling, 639
when to use, 624

Parallel.ForEach<T> method,
618

Parallel.For method, 617, 618,
620–621, 647

canceling, 639
when to use, 624

Parallel.Invoke method, 618, 627
when to use, 621–624

Parallel LINQ, 649–655
ParallelLoopState objects, 618,

639
parallel operations

scheduling, 656
unpredictable performance

of, 656–659

operators .(continued)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 741

parallel processing, 676–678
benefits of, 600–601
implementing with Task class,

608–617
ParallelQuery class

AsOrdered method, 655
WithCancellation method,

656, 681
WithExecutionMode method,

655
ParallelQuery objects, 650, 654
parallel tasks, 600, 647
parameter arrays, 219, 221–222

declaring, 221–222
vs . optional parameters,

226–229
type object, 223, 229
writing, 224–226

parameterList, 48
parameters

aliases to arguments, 159–160
default values for, 65–66
method types, 152
named, 72
naming, 59
optional, 64–65, 72
optional, ambiguities with,

66–71
optional, defining, 65–66
passing, 66
reference types, 152–156, 159
types of, specifying, 48

params arrays . See parameter
arrays

params keyword, 219, 221
overloading methods and,

222
params methods, priority of,

222
params object [], 223
parentheses

in Boolean expressions, 75, 93
in if statements, 78
operator precedence and, 41

Parse method, 53, 101
partial classes, 136
partial interfaces, 136
partial keyword, 136
partial structs, 136
ParticipantCount property, 666
ParticipantsRemaining property,

666
partitioning data, 650
PascalCase naming scheme, 133

Pass.Value method, 154–155
Password parameter, 541
Path tag, 531
percent sign (%) operator, 37
performance

of concurrent collection
classes, 670

improving with PLINQ,
650–655

suspending and resuming
threads and, 660

pessimistic concurrency, 585
physical memory . See also

memory
querying amount of, 610

Plain Old XML (POX), 688
PLINQ (Parallel LINQ), 649

improving performance with,
650–655

PLINQ queries
cancellation of, 681
parallelism options for,

655–656
plus sign (+) operator, 36
pointers, 169–170
polymorphic methods, rules for

use, 240
polymorphism

testing, 246
virtual methods and, 240–241

pop-up menus . See shortcut
menus

postfix form, operators, 44–45
POX (Plain Old XML), 688
precedence, 419

of Boolean operators, 76–77
controlling, 41–42
overriding, 46

prefix form, operators, 44–45
Press any key to continue

prompt, 13
primary keys, database tables,

550
primary operators, precedence

and associativity of, 76
primitive data types, 31–36

displaying values of, 32–33
fixed size of, 118
switch statements on, 86
using in code, 33–34

private fields, 132–133, 242, 298
adding, 139

private keyword, 132, 145, 242,
276

private methods, 132–133
private qualifier, 58
private static fields, writing, 145
PrivilegeLevel enumeration, 521

adding, 520
problem reporting, configuring,

115
processors

multicore, 601–602
quad-core, 602
spinning, 651

producers, 669
Program class, 8
Program .cs file, 8
program entry points, 8
ProgressChanged event, 504
project attributes, adding, 8
project files, 8
project properties, setting, 118
projects, searching in, 34
properties, 297–314

accessibility, 301
automatic, 307, 310
binding to control properties,

525–526, 531
binding to object properties,

531
declarations, 298
declaration syntax, 297
explicit implementations, 305
get and set keywords, 298
get block, 297
initializing objects, 308
interface, 304
object initializers, 310
private, 301
protected, 301
public, 298, 301
read context, 299
read-only, 300
read/write context, 299
reasons for defining, 307
restrictions, 302
security, 301
set block, 297
static, 300
using, 299
using appropriately, 303
virtual implementations, 304
Windows applications, 305
write context, 299
write-only, 300

Properties folder, 8

Properties .folder

http://lib.ommolketab.ir
http//lib.ommolketab.ir

742

Properties window, 449
displaying, 20

property declaration syntax,
297

protected access, 242
protected class members, access

to, 242
protected keyword, 242, 276
pseudorandom number

generator, 193
public fields, 132–133, 242
public identifiers, naming

conventions for, 133
public keyword, 132, 242, 276
public methods, 132–133
public operators, 421
public/private naming

conventions, 298
public properties, 298
public static methods, writing,

146

Q
quad-core processors, 602
querying data, 395–417
query operators, 405
question mark (?) modifier for

nullable values, 157
Queue class, 210
Queue data type, 354
queues, 353

creating, 669
Queue<T> class, thread-safe

version, 669
Quick Find command, 34

R
radio button controls, 469

adding, 461
initializing, 476
mutually exclusive, 461, 476

RanToCompletion task state, 638
reader.ReadLine method, 95
ReaderWriterLockSlim class,

665–682
reading resources, 665–666
ReadLine method, 58
read locks, 661, 665
Read method, 543
readonly fields, 200
read-only properties, 300
recursive data structures, 358

refactoring code, 60, 270
reference parameters

out and ref modifiers for, 162
using, 153–156

references, adding, 16
References folder, 8
reference types, 151

arrays . See arrays
destructors for, 281
heap, creation in, 163
Object class, 165

reference variables, 280
copying, 171, 189
initializing, 156–157
null values, 157

referential integrity errors, 588
ref keyword, 159
ref modifier, params arrays and,

222
ref parameters, 159–162

passing arguments to, 171
Refresh method, 584, 596

calling, 586
RefreshMode enumeration, 586
Register method, 634
relational databases . See

also databases
null values in, 547

relational operations, 401
relational operators, 74

precedence and associativity
of, 77

Release folder, 14
Release method, 681
remainder (modulus) operator,

37
validity of, 38

Remove method, 208
RemoveParticipant method, 666
Representational State Transfer

(REST), 684, 688
requests to Dispatcher object,

505–507
resize handles, 21
Reset method, 466–470

calling, 486
resource management, 284–289

database connections, 545
multitasking and, 600
releasing resources, 292

resource pools, access control,
663–664

resources
reading, 665–666

writing to, 665–666
Resources elements, 452
responsiveness, application

improving, 600 . See
also multitasking

improving with Dispatcher
object, 629–632

threads and, 498–507, 507
REST model, 684, 688
result = clause, 51
Result property, 646
results, return order of, 655
result text box, 117
return keyword, 49
return statements, 49–50, 141

fall-through, preventing with,
86

returnType, 48
RoutedEventArgs object, 345
RoutedEventHandler, 345
Run as administrator command,

536
run method, 56
Running task state, 638
runtime, query parallelization,

655
Run To Cursor command, 61,

103
RunWorkerAsync method, 504
RunWorkerCompleted event,

504

S
saveChanges_Click method, 594
SaveChanges method, 587

calling, 583–584, 596
failure of, 584

save event handlers, 487
Save File dialog box, 496, 497
SaveFileDialog class, 495–498,

508
save operations, status bar

updates on, 505–507
scalability, improving, 600 . See

also multitasking
scope

applying, 53–56
defining, 54
of for statements, 98–99
of static resources, 454
of styles, 453

ScreenTips
in debugger, 62

Properties window

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 743

ScreenTips (continued)
for variables, 31

sealed classes, 232, 271–277
creating, 277

sealed keyword, 271, 272, 276,
277

sealed methods, 271–272
security, hard coding user

names and passwords and,
541

SelectedDate property, 81
nullability, 504

Select method, 398
type parameters, 399

semantics, 27
semaphores, 661
SemaphoreSlim class, 663–682
SemaphoreSlim objects, 681
semicolons

in do statements, 99
in for statements, 98
syntax rules for, 27

Separator elements, 481, 508
serialization, 691

of method calls, 679–680
ServiceContract attribute, 691
set accessors, 298, 299

for database queries, 555–556
set keyword, 298
Setter elements, 456
Shape class, 273
shared fields, 143–144
shared resources, exclusive

access to, 681
Shift+F11 (Step Out), 62
short-circuiting, 76
shortcut menus, 491–494

adding in code, 493–494
associating with forms and

controls, 493–494, 508
creating, 491–495, 508
creating dynamically, 508
for DatePicker controls, 492
dissassociating from WPF

forms, 494
for text box controls, 491–492

Show All Files command
(Solution Explorer), 13

ShowDialog method, 489, 496,
592

showDoubleValue method, 36
showFloatValue method, 34
showIntValue method, 35
showResult method, 50, 53

SignalAndWait method, 666
Simple Object Access Protocol .

See SOAP (Simple Object
Access Protocol), 684

Single method, 553
single quotation marks (‘), 88
single-threaded execution, 599 .

See also multithreading
single-threaded operations,

672–676
Sleep method, 499
 .sln suffix, 33
SOAP (Simple Object Access

Protocol), 684–688
role, 685
security, 686
talking, methods, 697
Web services, 685

Solution Explorer, accessing
code in, 34

Solution Explorer pane, 7
solution files

file names, 33
top-level, 8

SortedList class, 213
SortedList collection objects in

Hashtables, 215
sorting data with binary trees,

359
source code, 8
source files, viewing, 7
Source property, 611
spinning, 651, 660

threads, 661
SpinWait operations, 651
Split method, 653
sqlcmd utility, 537
SqlCommand objects, creating,

542, 564
SQL Configuration Manager

tool, 537
SqlConnection objects, creating,

539, 564
SqlConnectionStringBuilder class,

540
SqlConnectionStringBuilder

objects, 540, 562
SqlDataReader class, 543, 544
SqlDataReader objects, 543

closing, 545
creating, 564
fetching data with, 564
reading data with, 544

SqlException exceptions, 539–
540, 562

SQL injection attacks, 543
SqlParameter objects, 542–543
SQL SELECT statements, 546,

553
SQL Server

logging in, 537
multiple active result sets, 545
starting, 537

SQL Server authentication, 541
SQL Server databases . See

also databases
granting access to, 567–568

SQL Server Express user
instance, 567

SQL UPDATE commands,
583–584

Sqrt method, 141, 142
declaration of, 143

square brackets in array
declarations, 191

Stack class, 210–211
stack memory, 163–164

pushing, popping, and
querying items on, 669

strucures on, 178
StackPanel controls, 446, 476

adding, 460
Stack<T> class, thread-safe

version, 669
Start Debugging command, 13
Start method, 501, 605
StartNew method, 625, 646
StartupUri property, 24–25, 457
Start Without Debugging

command, 13
StateEntries property, 586
statements, 27–28

running iterations of, 108 . See
also looping statements

semantics, 27
syntax, 27

statement sequences,
performing, 647

static classes, 144–145, 248
static fields, 143–144

const keyword for, 144
declaring, 149
writing, 145

static keyword, 143, 145, 149
static methods, 142–148

calling, 149
declaring, 149

static .methods

http://lib.ommolketab.ir
http//lib.ommolketab.ir

744

static methods (continued)
extension methods, 248
writing, 146

static operators, 421
static properties, 300
StaticResource keyword, 454
static resources, scoping rules,

454
static variables, 144
status bar, displaying save

operation status in, 505–507
StatusBar controls, adding, 505
Status property, 638
Step Into button (Debug

toolbar), 61–63
Step Out button (Debug

toolbar), 62–63
Step Over button (Debug

toolbar), 62–63
stepping into methods, 61–63
stepping out of methods, 61–63
StopWatch type, 611
Storage parameter, 555
StreamWriter objects, creating,

487
StringBuilder objects, 473, 474
String class Split method, 653
String.Format method, 473, 578
string keyword, 152
strings

appending to other strings, 92
converting enumerations to,

174–175
converting to enumerations,

522
definition of, 34
format strings, 60
formatting arguments as, 186
splitting into arrays, 653

string types, 32, 152, 474
string values

concatenating, 37, 40
converting to integers, 46,
converting to int values, 101

string variables, storing data
in, 101

struct keyword, 180, 190
StructsAndEnums namespace,

176
structure constructors, 183
structures, 178–190

arrays of, 194
vs . classes, 181–182, 188–190
declaring, 180

inheritance hierarchy for, 232
inheriting from interfaces,

255–256
initialization of, 183–187
instance fields in, 181–182
operators for, 180
private fields in, 180
sealed nature of, 271
types of, 178–179
using, 184–187

structure types, declaring, 190
structure variables

copying, 187
declaring, 182, 190
initializing, 190
nullable versions of, 182

Style property, 452
styles

scope of, 453
of WPF form controls, 451–

457, 464–466
Style tags TargetType attribute,

454–456
<Style.Triggers> element, 456
subscribers, 342
subtraction operator, 36

precedence of, 41
switch statements, 84–89

break statements in, 87
fall-through rules, 86–87
rules of use, 86–87
syntax, 85
writing, 87–89

symmetric operators, 422, 436
synchronization of threads, 666,

681
synchronization primitives

cancellation and, 668
in TPL, 661–667

synchronized access, 659
syntax rules, 27

for identifiers, 28
for statements, 27

System.Array class, 195
System.Collections.Concurrent

namespace, 668
System.Collections.Generic

namespace, 377
System.Collections.IEnumerable

interface, 381
System.Collections namespace,

206
System.ComponentModel

namespace, 504

System.Data.Linq assembly, 560
System.Data namespace, 539
System.Data.Objects.

DataClasses.EntityObject
class, 572

System.Data.Objects.
DataClasses.StructuralObject
class, 572

System.Data.SqlClient
namespace, 539

SystemException inheritance
hierarchy, 113

System.GC.Collect method, 283,
292

System.IComparable interface,
362

System.Math class Sqrt method,
141

System.Object class, 165
classes derived from, 233–234

System.Random class, 193
System.Runtime.Serialization

namespace, 691
System.ServiceModel

namespace, 691
System.ServiceModel.Web

namespace, 691
System.Threading.

CancellationToken
parameter, 633

System.Threading.Monitor class,
660

System.Threading namespace,
603

synchronization primitives in,
660

System.Threading.Tasks
namespace, 604, 617

System.ValueType class, 232
System.Windows.Data

namespace, 523
System.Windows namespace,

443

T
Table attribute, 550, 564
Table collections, 553, 558

creating, 564
tables . See database tables
Table<TEntity> collections as

public members, 559
Table<TEntity> types, 552
TargetType attribute, 454–456

static .methods .(continued)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 745

Task<byte[]> objects, creating,
627

Task class, 603
parallelism, implementing

with, 608–617
WaitAll method, 646
Wait method, 608

Task constructors, 604–605
overloads of, 605

TaskContinuationOptions type,
606–607, 645

TaskCreationOptions
enumeration, 606

TaskFactory class, 607–608
TaskFactory objects, 607–608

StartNew method, 625, 646
Task objects

ContinueWith method, 606
creating, 604–605, 616, 646
multiple, 603
running, 605–606
Start method, 646
Status property, 638
Wait method, 646

Task Parallel Library . See TPL
(Task Parallel Library)

tasks, 603–604
aborting, 632
abstracting, 617–624
canceling, 632–645
cancellation tokens, 633
continuations of, 606–608,

645, 646
coordinating, 649
creating, running, controlling,

604–608, 646
exceptions handling, 641–644,

647
parallel, 600, 647
returning values from, 624–

628, 646
scheduling, 606–607
status of, 638, 640, 644
synchronizing, 608, 615–617
user interface threads and,

628–632
waiting for, 616, 646

Tasks, 507
TaskScheduler class, 606
TaskScheduler objects, 605
Task<TResult> objects, 625–628,

646
TEntity type parameter, 552
TestIfTrue method, 651

text box controls
adding, 21, 455, 459–460
binding to class properties,

515–518
default shortcut menu for, 491
shortcut menu for, 491–492

text boxes
clearing, 101
displaying items in, 34–35

text editing, shortcut menu for,
491

Text property, setting, 34–35
TextReader class, 95

disposal method of, 285
text strings . See also strings

converting to integers, 40
ThenByDescending method, 402
ThenBy method, 402
theory of binary trees, 358
ThisKey parameter, 555
this keyword, 139–140, 146, 248

with indexers, 318
Thread class, 499

Start method, 501
thread-local storage (TLS), 661
Thread objects, 603

creating new, 501
referencing methods in, 508

ThreadPool class, 603
thread pools, 603
threads, 603–604

background threads, 502–504
blocking, 663–664
concurrent, 600
definition of, 283, 499
halting execution of, 666–667
locking data, 659–661
multiple, 499–500
object access restrictions, 502
optimal number of, 604
parallel, 614–617
reading resources, 665
resource pools, accessing,

663–664
scheduling, 603–604
sleeping, 659–660
spinning the processor, 660
suspending, 661–662
synchronizing, 651, 666, 681
waiting for events, 661–662
wrapper for, 504
writing to resources, 665

thread-safe collection classes,
668–670

Thread.Sleep method, 624
Thread.SpinWait method, 660
ThreadStatic attribute, 661
ThrowIfCancellationRequested

method, 640–641
throw statements, 126,

fall-through, preventing with,
86

writing, 122
Ticket Ordering application

binding text box control to
class property, 515–518

converter class and methods,
creating, 523–525

displaying number of tickets,
512–514

examining, 511–512
privilege level and number of

tickets, validating, 520–522
TicketOrder class with

validation logic, 514–515
tilde (~) modifier, 281, 292
Title property, 21, 496
TKey, 357
ToArray method, for retrieving

data, 553–554, 558
ToList method, for retrieving

data, 553–554, 558–559
Toolbox

All Controls section, 19
Common WPF Controls

section, 19
displaying, 19

ToolTip property, error
messages as, 518–519, 532

top-level namespaces, 15
top-level solution files, 8
ToString method, 41, 175, 185

implementation of, 238–239
of structures, 178–179

TPL (Task Parallel Library), 603
cancellation strategy, 632–645
locking techniques, 661
Parallel class, 617–624
synchronization primitives in,

661–667
Task class, 603 . See also Task

class
thread-safe collection classes

and interfaces, 668
thread scheduling, 603–604

TResult type parameter, 399
triggers, 456

triggers

http://lib.ommolketab.ir
http//lib.ommolketab.ir

746

try blocks, 110
writing, 116

try/catch statement blocks,
writing, 114–118

try keyword, 110
TSource type parameter, 399
TValue, 357
type checking, inheritance and,

235
type parameters, 356

out keyword, 376
types, extending, 248
type-specific versions of a

generic class, 357
“Type ‘typename’ already

defines a member called X
with the same parameter
types” error, 65

U
unary operators, 44, 419

precedence and associativity
of, 76

unassigned variables, 32, 73
unboxing, 166–168
unchecked block statements,

119
unchecked expressions, 119
unchecked keyword, 118–119
underscores, syntax rules for,

28, 30
unhandled exceptions, 111–112,

123
catching, 124–125
reporting, 115

unsafe code, 170
unsafe keyword, 170
UpdateException exceptions,

588
UpdateException handler,

594–595
update operations, database

conflicting updates, 584–587,
596

performing, 583–584
UpdateSource method, 529

calling, 532
UpdateSourceTrigger property,

528
defering validation with, 532

Use dynamic ports property, 690
user data, validation of, 509–532

User ID parameter, 541
user input

key presses, 588–589
responsiveness to, 628–629

user instance of SQL Server
Express, 567

detaching from, 567–568
user interfaces, Microsoft

guidelines for, 478
user interface threads

copying data from, 502–505
running methods on behalf of

other threads, 505–507
tasks and, 628–632

using directives, 286
using statements, 15, 16

data connection close
statements in, 546

for resource management,
286–288

syntax of, 286
writing, 289–292

utility methods, 142

V
ValidateNames property, 496
validation

with data binding, 511–532
explicit, 528–531
input validation, 509–510
programmatic control of, 532
testing, 526–527, 530–531
timing of, 518, 527–531

Validation.HasError property
detecting changes to, 532
trigger for, 518

validation rules, 510
adding, 511–518
exceptions to, detecting,

518–519
specifying, 516

ValidationRules elements, 516
ValueConversion attribute, 523
value parameters

out and ref modifiers for, 162
using, 153–156

Value property, 158, 159
values

boxing, 165–166
comparing, 89
returning from tasks, 625–628
unboxing, 166–168

values arrays, 212
value types, 171

copying, 151–156
destruction of, 279
nullable, 157–158
numerations, 173–178
stack, creation in, 163
structures, 178–190

value type variables, 299
copying, 171, 189

variables, 29–31
assigning values to, 31
checking values in debugger,

62–63
of class types, 131
copying contents into

reference types, 153
declaring, 46,
decrementing, 43–44, 46, 92,

108
implicitly typed, 45–46, 148
incrementing, 43–44, 46, 92,

108
initializing, 53
initializing to same value, 46,
in methods, 53
naming, 29, 30
naming conventions, 30
qualifying as parameters,

139–140
scope of, 53
ScreenTips on, 31
types of, inferring, 45
unassigned, 32, 73
value of, changing, 46
values assigned to, 45
value types, 171, 189, 299

variadic methods, 219
Variant type, 45
var keyword, 45

for implicitly typed variables,
148

VerticalAlignment property,
447–448

View Code command, 33, 476
virtual keyword, 239, 240, 251,

272, 276
virtual methods

declaring, 238–239, 251
polymorphism and, 240–241

virtual property
implementations, 304

try .blocks

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 747

Visual C# 2010 Express, 4 . See
also Visual Studio 2010

console applications, creating,
6–8

default development
environment settings, 5

graphical applications,
creating, 18

save location, specifying, 539
starting, 4

Visual Studio 2010
auto-generated code, 22–23
Code and Text Editor pane, 7
coding error display, 12
default development

environment settings, 4
Entity Framework, 565 . See

also Entity Framework
Error List window, 12
files created by, 8–9
menu bar, 7
Output window, 11
programming environment,

3–8
Solution Explorer pane, 7
starting, 4
toolbar, 7

Visual Studio 2010 Professional,
4 . See also Visual Studio 2010

console applications, creating,
5–6

graphical applications,
creating, 17

Visual Studio 2010 Standard, 4 .
See also Visual Studio 2010

console applications, creating,
5–6

graphical applications,
creating, 17

Visual Studio Just-In-Time
Debugger dialog box, 115

void keyword, 48, 49, 51

W
WaitAll method, 608, 646
WaitAny method, 608
WaitingToRun task state, 638
Wait method, 608, 646, 661,

681
wait operations

cancellation tokens for, 668
CurrentCount property, 663

WCF (Windows Communication
Foundation), 684

Web methods, 685
Web service architectures, 684
Web services, 683–716

addressing, 687
architectures, 684
building, 688
consuming, 711
creating using REST, 704
creating using SOAP, 689
defined, 684
invoking, 711
load balancing, 687
nonfunctional requirements,

686
policy, 687
Representational State

Transfer (REST), 684, 687
routing, 687
security, 686
Service .svc file, 695
Simple Object Access Protocol

(SOAP), 684, 685
SOAP vs . REST, 688
Web .config file, 695
Web methods, 685
Web Services Description

Language (WSDL), 686
Windows Communication

Foundation, 684
WS-Addressing specification,

687
WS-Policy specification, 687
WS-Security specification, 686

Web Services Description
Language (WSDL), 686

Where method, 401
while statements, 92–96, 108

syntax of, 92–93
termination of, 93
writing, 93–96

white space, 28
widening conversions, 434
Window_Closing method,

474–476
Window_Loaded method, 579
window resources, adding to

shortcut menus, 491
Window.Resources element,

453–454, 515
Windows Authentication for

database access, 540, 541

Windows common dialog
boxes, 495–498

Windows Communication
Foundation (WCF), 684

Windows Forms, 17
Windows Forms Application

template, 17
Windows Open dialog box,

displaying, 94
Windows Presentation

Foundation (WPF), 17 . See
also WPF applications; WPF
controls; WPF forms

WithCancellation method, 656,
681

WithDegreeOfParallelism
method, 655

WithExecutionMode method,
655

workload, optimal number of
threads for, 604

WPF applications
anchor points of controls,

447–448
background images, adding,

449–451
building, 444–458
Closing events, 474–476
code, viewing, 476
controls, adding, 458–470
controls, resetting to default

values, 466–470
creating, 443–445, 476
database information,

displaying in, 574–579
events, handling, 470–476,

476
forms, adding, 457
functionality of, 457–460
Grid panels, 446
layout panels, 446
long-running event handlers,

simulating, 498–499
menu controls, 477–508
properties, changing

dynamically, 466–470
properties, setting, 476
responsiveness, improving,

498–507
style for controls, 451–457
text properties, 457
thread safety, 502

WPF .applications

http://lib.ommolketab.ir
http//lib.ommolketab.ir

748

WPF applications (continued)
updating and reloading forms,

471
validation rules, 510
XAML definition of, 445

WPF Application template, 17,
445, 476

WPF cache, refreshing, 579
WPF controls . See also controls

binding to data sources, 580
displaying entity data in, 596
as menu items, 484
shortcut menus for, 491

WPF forms, 457
code, displaying, 23
displaying, 489, 592
Document Outline window,

39–40
instances of, 489
shortcut menus,

dissassociating from, 494
XAML in, 19–20

WPF user interface events, 345

WPF windows, compiling, 452
WrapPanels, 446
WrappedInt class, 156
WrappedInt objects, passing as

arguments, 154–156
WrappedInt variables, declaring,

155
WriteableBitmap class, 611
WriteableBitmap type, 611
WriteLine method, 9, 219

overloading, 55–56
overloads of, 224

write locks, 661, 665
write-only properties, 300
writing to resources, 665–666
WS-Addressing specification,

687
WSDL (Web Services

Description Language), 686 .
See also SOAP (Simple Object
Access Protocol)

WS-Policy specification, 687
WS-Security specification, 686

WS-* specifications, 687

X
XAML (Extensible Application

Markup Language) in WPF
forms, 19–20, 445

XML, 684
XML namespace declaration,

515
XML namespaces, 445
xmlns attributes, 445
XOR (̂) operator, 316

Y
yield keyword, 390

Z
ZIndex property, 451
z-order of controls, 451

WPF .applications .(continued)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

About the Author
John Sharp is a principal technologist at Content Master,
part of CM Group Ltd, a technical authoring and con-
sulting company . An expert on developing applications
by using the Microsoft .NET Framework and other tech-
nologies, John has produced numerous tutorials, white
papers, and presentations on distributed systems, SOA
and Web services, the C# language, and interoperability
issues . John has helped to develop a large number of
courses for Microsoft Training (he co-wrote the first C#
programming course for them) and he is also the author
of several popular books, including Microsoft Windows
Communication Foundation Step by Step .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Stay in touch!
To subscribe to the Microsoft Press® Book Connection Newsletter—for news on upcoming
books, events, and special offers—please visit:

What do
you think of
this book?
We want to hear from you!
To participate in a brief online survey, please visit:

Tell us how well this book meets your needs —what works effectively, and what we can
do better. Your feedback will help us continually improve our books and learning
resources for you.

Thank you in advance for your input!

microsoft.com/learning/booksurvey

microsoft.com/learning/books/newsletter

SurvPage_corp.indd 1 8/14/09 4:40 AM

http://lib.ommolketab.ir
http//lib.ommolketab.ir

	Cover
	Copyright page

	Acknowledgments
	Introduction
	Who This Book Is For
	Finding Your Best Starting Point in This Book
	Conventions and Features in This Book
	Conventions
	Other Features

	Prerelease Software
	Hardware and Software Requirements
	Code Samples
	Installing the Code Samples
	Using the Code Samples
	Uninstalling the Code Samples

	Find Additional Content Online
	Support for This Book
	Questions and Comments

	Part I:Introducing Microsoft Visual C# and Microsoft Visual Studio 2010
	Chapter 1:Welcome to C#
	Beginning Programming with the Visual Studio 2010 Environment
	Writing Your First Program
	Using Namespaces
	Creating a Graphical Application
	Chapter 1 Quick Reference

	Chapter 2:Working with Variables, Operators, and Expressions
	Understanding Statements
	Using Identifiers
	Identifying Keywords

	Using Variables
	Naming Variables
	Declaring Variables

	Working with Primitive Data Types
	Unassigned Local Variables
	Displaying Primitive Data Type Values

	Using Arithmetic Operators
	Operators and Types
	Examining Arithmetic Operators
	Controlling Precedence
	Using Associativity to Evaluate Expressions
	Associativity and the Assignment Operator

	Incrementing and Decrementing Variables
	Prefix and Postfix

	Declaring Implicitly Typed Local Variables
	Chapter 2 Quick Reference

	Chapter 3:Writing Methods and Applying Scope
	Creating Methods
	Declaring a Method
	Returning Data from a Method
	Calling Methods
	Specifying the Method Call Syntax

	Applying Scope
	Defining Local Scope
	Defining Class Scope
	Overloading Methods

	Writing Methods
	Using Optional Parameters and Named Arguments
	Defining Optional Parameters
	Passing Named Arguments
	Resolving Ambiguities with Optional Parameters and Named Arguments

	Chapter 3 Quick Reference

	Chapter 4:Using Decision Statements
	Declaring Boolean Variables
	Using Boolean Operators
	Understanding Equality and Relational Operators
	Understanding Conditional Logical Operators
	Short-Circuiting
	Summarizing Operator Precedence and Associativity

	Using if Statements to Make Decisions
	Understanding if Statement Syntax
	Using Blocks to Group Statements
	Cascading if Statements

	Using switch Statements
	Understanding switch Statement Syntax
	Following the switch Statement Rules

	Chapter 4 Quick Reference

	Chapter 5:Using Compound Assignment and Iteration Statements
	Using Compound Assignment Operators
	Writing while Statements
	Writing for Statements
	Understanding for Statement Scope

	Writing do Statements
	Chapter 5 Quick Reference

	Chapter 6:Managing Errors and Exceptions
	Coping with Errors
	Trying Code and Catching Exceptions
	Unhandled Exceptions
	Using Multiple catch Handlers
	Catching Multiple Exceptions

	Using Checked and Unchecked Integer Arithmetic
	Writing Checked Statements
	Writing Checked Expressions

	Throwing Exceptions
	Using a finally Block
	Chapter 6 Quick Reference

	Part II:Understanding the C# Language
	Chapter 7:Creating and Managing Classes and Objects
	Understanding Classification
	The Purpose of Encapsulation
	Defining and Using a Class
	Controlling Accessibility
	Working with Constructors
	Overloading Constructors

	Understanding static Methods and Data
	Creating a Shared Field
	Creating a static Field by Using the const Keyword
	Static Classes
	Anonymous Classes

	Chapter 7 Quick Reference

	Chapter 8:Understanding Values and References
	Copying Value Type Variables and Classes
	Understanding Null Values and Nullable Types
	Using Nullable Types
	Understanding the Properties of Nullable Types

	Using ref and out Parameters
	Creating ref Parameters
	Creating out Parameters

	How Computer Memory Is Organized
	Using the Stack and the Heap

	The System.Object Class
	Boxing
	Unboxing
	Casting Data Safely
	The is Operator
	The as Operator

	Chapter 8 Quick Reference

	Chapter 9:Creating Value Types with Enumerations and Structures
	Working with Enumerations
	Declaring an Enumeration
	Using an Enumeration
	Choosing Enumeration Literal Values
	Choosing an Enumeration’s Underlying Type

	Working with Structures
	Declaring a Structure
	Understanding Structure and Class Differences
	Declaring Structure Variables
	Understanding Structure Initialization
	Copying Structure Variables

	Chapter 9 Quick Reference

	Chapter 10:Using Arrays and Collections
	What Is an Array?
	Declaring Array Variables
	Creating an Array Instance
	Initializing Array Variables
	Creating an Implicitly Typed Array
	Accessing an Individual Array Element
	Iterating Through an Array
	Copying Arrays
	Using Multidimensional Arrays
	Using Arrays to Play Cards

	What Are Collection Classes?
	The ArrayList Collection Class
	The Queue Collection Class
	The Stack Collection Class
	The Hashtable Collection Class
	The SortedList Collection Class
	Using Collection Initializers
	Comparing Arrays and Collections
	Using Collection Classes to Play Cards

	Chapter 10 Quick Reference

	Chapter 11:Understanding Parameter Arrays
	Using Array Arguments
	Declaring a params Array
	Using params object[]
	Using a params Array

	Comparing Parameters Arrays and Optional Parameters
	Chapter 11 Quick Reference

	Chapter 12:Working with Inheritance
	What Is Inheritance?
	Using Inheritance
	Calling Base Class Constructors
	Assigning Classes
	Declaring new Methods
	Declaring Virtual Methods
	Declaring override Methods
	Understanding protected Access

	Understanding Extension Methods
	Chapter 12 Quick Reference

	Chapter 13:Creating Interfaces and Defining Abstract Classes
	Understanding Interfaces
	Defining an Interface
	Implementing an Interface
	Referencing a Class Through Its Interface
	Working with Multiple Interfaces
	Explicitly Implementing an Interface
	Interface Restrictions
	Defining and Using Interfaces

	Abstract Classes
	Abstract Methods

	Sealed Classes
	Sealed Methods
	Implementing and Using an Abstract Class

	Chapter 13 Quick Reference

	Chapter 14:Using Garbage Collection and Resource Management
	The Life and Times of an Object
	Writing Destructors
	Why Use the Garbage Collector?
	How Does the Garbage Collector Work?
	Recommendations

	Resource Management
	Disposal Methods
	Exception-Safe Disposal
	The using Statement
	Calling the Dispose Method from a Destructor

	Implementing Exception-Safe Disposal
	Chapter 14 Quick Reference

	Part III:Creating Components
	Chapter 15:Implementing Properties to Access Fields
	Implementing Encapsulation by Using Methods
	What Are Properties?
	Using Properties
	Read-Only Properties
	Write-Only Properties
	Property Accessibility

	Understanding the Property Restrictions
	Declaring Interface Properties
	Using Properties in a Windows Application

	Generating Automatic Properties
	Initializing Objects by Using Properties
	Chapter 15 Quick Reference

	Chapter 16:Using Indexers
	What Is an Indexer?
	An Example That Doesn’t Use Indexers
	The Same Example Using Indexers
	Understanding Indexer Accessors
	Comparing Indexers and Arrays

	Indexers in Interfaces
	Using Indexers in a Windows Application
	Chapter 16 Quick Reference

	Chapter 17:Interrupting Program Flow and Handling Events
	Declaring and Using Delegates
	The Automated Factory Scenario
	Implementing the Factory Without Using Delegates
	Implementing the Factory by Using a Delegate
	Using Delegates

	Lambda Expressions and Delegates
	Creating a Method Adapter
	Using a Lambda Expression as an Adapter
	The Form of Lambda Expressions

	Enabling Notifications with Events
	Declaring an Event
	Subscribing to an Event
	Unsubscribing from an Event
	Raising an Event

	Understanding WPF User Interface Events
	Using Events

	Chapter 17 Quick Reference

	Chapter 18:Introducing Generics
	The Problem with objects
	The Generics Solution
	Generics vs. Generalized Classes
	Generics and Constraints

	Creating a Generic Class
	The Theory of Binary Trees
	Building a Binary Tree Class by Using Generics

	Creating a Generic Method
	Defining a Generic Method to Build a Binary Tree

	Variance and Generic Interfaces
	Covariant Interfaces
	Contravariant Interfaces

	Chapter 18 Quick Reference

	Chapter 19:Enumerating Collections
	Enumerating the Elements in a Collection
	Manually Implementing an Enumerator
	Implementing the IEnumerable Interface

	Implementing an Enumerator by Using an Iterator
	A Simple Iterator
	Defining an Enumerator for the Tree<TItem> Class by Using an Iterator

	Chapter 19 Quick Reference

	Chapter 20:Querying In-Memory Data by Using Query Expressions
	What Is Language Integrated Query?
	Using LINQ in a C# Application
	Selecting Data
	Filtering Data
	Ordering, Grouping, and Aggregating Data
	Joining Data
	Using Query Operators
	Querying Data in Tree<TItem> Objects
	LINQ and Deferred Evaluation

	Chapter 20 Quick Reference

	Chapter 21:Operator Overloading
	Understanding Operators
	Operator Constraints
	Overloaded Operators
	Creating Symmetric Operators

	Understanding Compound Assignment Evaluation
	Declaring Increment and Decrement Operators
	Comparing Operators in Structures and Classes
	Defining Operator Pairs
	Implementing Operators
	Understanding Conversion Operators
	Providing Built-in Conversions
	Implementing User-Defined Conversion Operators
	Creating Symmetric Operators, Revisited
	Writing Conversion Operators

	Chapter 21 Quick Reference

	Part IV:Building Windows Presentation Foundation Applications
	Chapter 22:Introducing Windows Presentation Foundation
	Creating a WPF Application
	Building the WPF Application

	Adding Controls to the Form
	Using WPF Controls
	Changing Properties Dynamically

	Handling Events in a WPF Form
	Processing Events in Windows Forms

	Chapter 22 Quick Reference

	Chapter 23:Gathering User Input
	Menu Guidelines and Style
	Menus and Menu Events
	Creating a Menu
	Handling Menu Events

	Shortcut Menus
	Creating Shortcut Menus

	Windows Common Dialog Boxes
	Using the SaveFileDialog Class

	Improving Responsiveness in a WPF Application
	Chapter 23 Quick Reference

	Chapter 24:Performing Validation
	Validating Data
	Strategies for Validating User Input

	An Example—Order Tickets for Events
	Performing Validation by Using Data Binding
	Changing the Point at Which Validation Occurs

	Chapter 24 Quick Reference

	Part V:Managing Data
	Chapter 25:Querying Information in a Database
	Querying a Database by Using ADO.NET
	The Northwind Database
	Creating the Database
	Using ADO.NET to Query Order Information

	Querying a Database by Using LINQ to SQL
	Defining an Entity Class
	Creating and Running a LINQ to SQL Query
	Deferred and Immediate Fetching
	Joining Tables and Creating Relationships
	Deferred and Immediate Fetching Revisited
	Defining a Custom DataContext Class
	Using LINQ to SQL to Query Order Information

	Chapter 25 Quick Reference

	Chapter 26:Displaying and Editing Data by Using the Entity Framework and Data Binding
	Using Data Binding with the Entity Framework
	Using Data Binding to Modify Data
	Updating Existing Data
	Handling Conflicting Updates
	Adding and Deleting Data

	Chapter 26 Quick Reference

	Part VI:Building Professional Solutions with Visual Studio 2010
	Chapter 27:Introducing the Task Parallel Library
	Why Perform Multitasking by Using Parallel Processing?
	The Rise of the Multicore Processor

	Implementing Multitasking in a Desktop Application
	Tasks, Threads, and the ThreadPool
	Creating, Running, and Controlling Tasks
	Using the Task Class to Implement Parallelism
	Abstracting Tasks by Using the Parallel Class
	Returning a Value from a Task

	Using Tasks and User Interface Threads Together
	Canceling Tasks and Handling Exceptions
	The Mechanics of Cooperative Cancellation
	Handling Task Exceptions by Using the AggregateException Class
	Using Continuations with Canceled and Faulted Tasks

	Chapter 27 Quick Reference

	Chapter 28:Performing Parallel Data Access
	Using PLINQ to Parallelize Declarative Data Access
	Using PLINQ to Improve Performance While Iterating Through a Collection
	Specifying Options for a PLINQ Query
	Canceling a PLINQ Query

	Synchronizing Concurrent Imperative Data Access
	Locking Data
	Synchronization Primitives in the Task Parallel Library
	Cancellation and the Synchronization Primitives
	The Concurrent Collection Classes
	Using a Concurrent Collection and a Lock to Implement Thread-Safe Data Access

	Chapter 28 Quick Reference

	Chapter 29:Creating and Using a Web Service
	What Is a Web Service?
	The Role of Windows Communication Foundation

	Web Service Architectures
	SOAP Web Services
	REST Web Services

	Building Web Services
	Creating the ProductInformation SOAP Web Service
	SOAP Web Services, Clients, and Proxies
	Consuming the ProductInformation SOAP Web Service
	Creating the ProductDetails REST Web Service
	Consuming the ProductDetails REST Web Service

	Chapter 29 Quick Reference

	Appendix:Interoperating with Dynamic Languages
	What Is the Dynamic Language Runtime?
	The dynamic Keyword
	Example: IronPython
	Example: IronRuby
	Summary

	Index
	About the Author
	Survey page

