
http://lib.ommolketab.ir
http//lib.ommolketab.ir

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2007 by Dino Esposito

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form
or by any means without the written permission of the publisher.

Library of Congress Control Number: 2007924643

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWT 2 1 0 9 8 7

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further infor-
mation about international editions, contact your local Microsoft Corporation office or contact Microsoft
Press International directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress.
Send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, ActiveX, IntelliSense, Internet Explorer, MSDN, MSN, PowerPoint, SQL
Server, Visual Basic, Visual C#, Visual C++, Visual Studio, Windows, Windows Media, and Windows
Vista are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries. Other product and company names mentioned herein may be the trademarks of their
respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places,
and events depicted herein are fictitious. No association with any real company, organization, product,
domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

without any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its
resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions Editor: Ben Ryan
Developmental Editor: Lynn Finnel
Editorial Production: Abshier House
Copy Editor: Roger LeBlanc
Technical Reviewer: Kenn Scribner
Indexer: Sharon Hilgenberg

Body Part No. X13-68385

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Contents at a Glance

Part I ASP.NET AJAX Building Blocks
1 The AJAX Revolution .3
2 The Microsoft Client Library for AJAX. 35

Part II Adding AJAX Capabilities to a Site
3 The Pulsing Heart of ASP.NET AJAX. 69
4 Partial Page Rendering. 91
5 The AJAX Control Toolkit. 139

Part II Client-Centric Development
6 Built-in Application Services . 209
7 Remote Method Calls with ASP.NET AJAX . 233
8 Building AJAX Applications with ASP.NET . 267

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table of Contents
Acknowledgments . xi

Introduction . xiii

Part I ASP.NET AJAX Building Blocks

1 The AJAX Revolution .3

The Paradigm Shift . 4

Classic Web Applications . 5

AJAX-Based Web Applications . 6

The Role of Rich Browsers . 9

The AJAX Core Engine . 10

The XMLHttpRequest Object . 10

Roll Your Own (Little) AJAX Framework . 16

An HTTP Object Model. 13

The Switch to the Document Object Model . 20

Existing AJAX Frameworks for ASP.NET . 24

ASP.NET AJAX in Person . 30

Setting Up ASP.NET AJAX Extensions . 31

Core Components . 32

Conclusion . 34

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

http://lib.ommolketab.ir
http//lib.ommolketab.ir

viii Table of Contents

2 The Microsoft Client Library for AJAX. 35

JavaScript Language Extensions . 36

Infrastructure for Extensions . 36

Object-Oriented Extensions . 47

Core Components. 51

The Sys.Application Object . 52

The Sys.Component Object . 55

The Network Stack . 58

User-Interface Components . 60

Other Components and Functionalities . 63

Conclusion . 66

Part II Adding AJAX Capabilities to a Site

3 The Pulsing Heart of ASP.NET AJAX. 69

Configuration of ASP.NET AJAX . 70

The web.config File . 70

The Runtime Engine . 72

The Script Manager Component . 74

The ASP.NET ScriptManager Control . 74

Script Loading . 79

Script Error Handling . 85

Conclusion . 89

4 Partial Page Rendering. 91

Defining Updatable Regions . 91

Generalities of the UpdatePanel Control. 92

Enabling Partial Rendering . 95

Testing the UpdatePanel Control . 101

The Mechanics of Updatable Panels . 108

Taking Control of Updatable Regions . 114

Triggering the Panel Update . 114

Triggering Periodic Partial Updates . 119

Providing User Feedback During Partial Updates . 121

Client-Side Events for a Partial Update . 124

Passing Data Items during Partial Updates . 130

Animating Panels during Partial Updates . 135

Conclusion . 138

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table of Contents ix

5 The AJAX Control Toolkit. 139

Extender Controls . 140

What Is an Extender, Anyway? . 140

The ExtenderControl Class . 142

Creating a Sample Extender. 144

Introducing the AJAX Control Toolkit . 150

Get Ready for the Toolkit . 151

What’s in the AJAX Control Toolkit . 154

The Accordion Control . 157

Generalities of the Accordion Control. 157

Using the Accordion Control . 159

The Rating Control . 160

Generalities of the Rating Control . 161

Using the Rating Control . 162

The ReorderList Control . 164

Generalities of the ReorderList Control. 164

Using the ReorderList Control . 166

The TabContainer Control . 169

Generalities of the TabContainer Control . 169

Using the TabContainer Control . 170

AJAX Control Toolkit Extenders. 172

Panel Extenders . 172

Button Extenders . 175

Pop-up Extenders . 178

User-Interface Extenders . 183

Input Extenders . 191

Animation Extenders. 203

Conclusion . 205

Part III Client-Centric Development

6 Built-In Application Services . 209

Forms Authentication Services . 210

The System Infrastructure for Authentication . 210

Using the Authentication Service in an Application . 214

User Profiling Services . 222

The System Infrastructure for Profiling. 223

http://lib.ommolketab.ir
http//lib.ommolketab.ir

x Table of Contents

Using the Profile Service in an Application. 226

Conclusion . 231

7 Remote Method Calls with ASP.NET AJAX . 233

Designing the Server API for Remote Calls . 234

Defining the Contract of the Remote API . 235

Implementing the Contract of the Remote API . 236

Remote Calls via Web Services . 238

Creating an AJAX Web Service . 239

Consuming AJAX Web Services . 242

Considerations for AJAX Web Services . 248

Remote Calls via Page Methods . 251

Creating Page Methods . 251

Consuming Page Methods . 253

Bridging External Web Services . 256

Traditional Server-to-Server Approach . 257

ASP.NET AJAX Futures Bridge Files. 258

Conclusion . 265

8 Building AJAX Applications with ASP.NET . 267

AJAX in Perspective . 268

The Benefits of AJAX . 268

The Downsides of AJAX . 270

Patterns, Practices, and Services . 273

Revisiting ASP.NET Starter Kits . 276

The Jobs Site Starter Kit at a Glance . 277

Reducing Page Flickering. 278

Periodic Screen Refresh . 284

Conclusion . 293

Index . 295

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xiii

Introduction
AJAX stands for “Asynchronous JavaScript and XML,” and it’s a sort of blanket term coined in
2005 to indicate rich, highly interactive, and responsive Web applications that do a lot of work
on the client and place out-of-band calls to the server. An out-of-band call is a server request
that results in a page update rather than a page replacement. The net effect is that an AJAX
Web application tends to look like a classic desktop Microsoft Windows application and has
advanced features such as drag-and-drop and asynchronous tasks, a strongly responsive and
nonflickering user interface, and far less user frustration.

ASP.NET AJAX Extensions is a significant extension to the ASP.NET platform that makes
AJAX-style functionalities possible and effective. ASP.NET AJAX Extensions is designed to be
part of ASP.NET and, therefore, seamlessly integrate with the existing platform and applica-
tion model.

Architecturally speaking, the ASP.NET AJAX framework is made of two distinct elements: a
client script library and a set of server extensions. The client script library is entirely written in
JavaScript and, therefore, works with any modern browser. Server extensions are fully inte-
grated with ASP.NET server-based services and controls. As a result, developers can write rich
Web pages using nearly the same approach they know from developing classic ASP.NET
server-based pages.

Most ASP.NET AJAX developers are former ASP.NET developers and, as such, are familiar with
the server-side development model based on controls. The server-centric programming model
is the next big step in the evolution of the ASP.NET programming model. ASP.NET AJAX
server controls are great, especially if you don’t feel confident enough to create AJAX client
scripts manually.

This book provides an overview of the ASP.NET AJAX framework with numerous examples to
familiarize you with a variety of techniques and tools.

AJAX is a real breakthrough for ASP.NET developers and professionals. It makes cross-browser
programming a reality and enables desktop-like functionalities over the Web.

Who This Book Is For
The book is recommended for virtually any ASP.NET developer and professional. As men-
tioned, ASP.NET AJAX is the next big thing in the ASP.NET evolution and follows a key indus-
try trend—the AJAX model. In addition, ASP.NET AJAX goes beyond the classic AJAX model,
pushing a framework that spans the client and server to provide an end-to-end solution for
Web applications. As far as the Microsoft Web platform is concerned, ASP.NET AJAX Exten-
sions weds rich functions with wide reach—an old dream of Web professionals that comes
true. At last.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xiv Introduction

If you’re a Web professional developing for Microsoft-based Web technologies, AJAX is your
next big opportunity to seize. This book is your starting point. And even a bit more.

How This Book Is Organized
The book is divided into three parts: an overview of the platform and its building blocks, tech-
niques to effectively enhance existing sites, and client-centric development. In the first part,
you’ll learn the basics of the AJAX model and the extensions made to the JavaScript language
to back it. The second part is dedicated to the elements in the framework that you use to add
new capabilities to existing server controls and to transform existing classic ASP.NET pages
into full-fledged AJAX pages. Finally, the third part covers tools and techniques that express
the real power of AJAX applications—out-of-band calls to server code.

System Requirements
You’ll need the following hardware and software to build and run the code samples for
this book:

■ Microsoft Windows Vista, Microsoft Windows XP with Service Pack 2, Microsoft Win-
dows Server 2003 with Service Pack 1, or Microsoft Windows 2000 with Service Pack 4

■ Microsoft Visual Studio 2005 Standard Edition or Microsoft Visual Studio 2005 Profes-
sional Edition

■ Microsoft SQL Server 2005 Express (included with Visual Studio 2005) or Microsoft
SQL Server 2005

■ 600-MHz Pentium or compatible processor (1-GHz Pentium recommended)

■ 192 MB of RAM (256 MB or more recommended)

■ Video monitor (800 x 600 or higher resolution) with at least 256 colors (1024 x 768
High Color 16-bit recommended)

■ Microsoft mouse or compatible pointing device

Configuring SQL Server 2005 Express Edition
Some chapters of this book require that you have access to SQL Server 2005 Express Edition
(or SQL Server 2005) to create and use the Northwind Traders database. If you are using SQL
Server 2005 Express Edition, follow these steps to grant access to the user account that you
will be using to perform the exercises in this book:

1. Log on to Windows on your computer by using an account with administrator privileges.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Introduction xv

2. On the Windows Start menu, click All Programs, click Accessories, and then click Com-
mand Prompt to open a command prompt window.

3. In the command prompt window, type the following case-sensitive command:

sqlcmd –S YourServer\SQLExpress –E

Replace YourServer with the name of your computer.

You can find the name of your computer by running the hostname command in the com-
mand prompt window before running the sqlcmd command.

4. At the 1> prompt, type the following command, including the square brackets, and then
press Enter:

sp_grantlogin [YourServer\UserName]

Replace YourServer with the name of your computer, and replace UserName with the
name of the user account you will be using.

5. At the 2> prompt, type the following command and then press Enter:

go

If you see an error message, make sure that you have typed the sp_grantlogin com-
mand correctly, including the square brackets.

6. At the 1> prompt, type the following command, including the square brackets, and then
press Enter:

sp_addsrvrolemember [YourServer\UserName], dbcreator

7. At the 2> prompt, type the following command and then press Enter:

go

If you see an error message, make sure that you have typed the sp_addsrvrolemember
command correctly, including the square brackets.

8. At the 1> prompt, type the following command and then press Enter:

exit

9. Close the command prompt window.

10. Log out of the administrator account.

The Northwind Traders database no longer ships with SQL Server 2005 (either version), so
you’ll need to download that separately. You can download the necessary installation scripts
for the Northwind database from http://www.microsoft.com/downloads/details.aspx?FamilyId=
06616212-0356-46A0-8DA2-EEBC53A68034&displaylang=en. Installation instructions are
included on the download page.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xvi Introduction

Code Samples
The downloadable code includes projects for most chapters that cover the code snippets and
examples referenced in the chapter. All the code samples discussed in this book can be down-
loaded from the book’s companion content page at the following address:

http://www.microsoft.com/mspress/companion/9780735624139

Support for This Book
Every effort has been made to ensure the accuracy of this book and the companion content. As
corrections or changes are collected, they will be added to a Microsoft Knowledge Base article.

Microsoft Press provides support for books and companion content at the following Web site:

http://www.microsoft.com/learning/support/books/

Questions and Comments

If you have comments, questions, or ideas regarding the book or the companion content, or
questions that are not answered by visiting the site just mentioned, please send them to
Microsoft Press via e-mail to

mspinput@microsoft.com

Or via postal mail to

Microsoft Press
Attn: Introducing Microsoft ASP.NET AJAX Editor
One Microsoft Way
Redmond, WA 98052-6399

Please note that Microsoft software product support is not offered through the
above addresses.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Part I
ASP.NET AJAX Building Blocks

In this part:

Chapter 1: The AJAX Revolution . 3

Chapter 2: The Microsoft Client Library for AJAX . 35

http://lib.ommolketab.ir
http//lib.ommolketab.ir

this page intentionally blank)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3

Chapter 1

The AJAX Revolution

In this chapter:

The Paradigm Shift . 4

The AJAX Core Engine .10

ASP.NET AJAX in Person .30

Conclusion .34

Gone are the days when a Web application could be architected and implemented as a collec-
tion of related and linked pages. The advent of the so-called AJAX model is radically modifying
the user’s perception of a Web application, and it is subsequently forcing developers to apply
newer and richer models to the planning and implementation of modern Web applications.
But what is the AJAX model, anyway?

AJAX is a relatively new acronym that stands for Asynchronous JavaScript and XML. It is a sort of
blanket term used to describe highly interactive and responsive Web applications. What’s the
point here? Weren’t Web applications created about a decade ago specifically to be “interac-
tive,” “responsive,” and deployed over a unique tool called the browser? So what’s new today?

The incredible success of the Internet has whetted people’s appetite for Web-related technol-
ogy beyond imagination. Over the years, the users’ demand for ever more powerful and Web-
exposed applications and services led architects and developers to incorporate more and
more features into the server platform and client browser. As a result, the traditional pattern
of Web applications is becoming less adequate every day. A radical change in the design and
programming model cannot be further delayed.

At the current state of the art, the industry needs more than just an improved and more pow-
erful platform devised along the traditional guidelines and principles of Web applications—a
true paradigm shift is required. AJAX is the incarnation of a new paradigm for the next gener-
ation of Web applications that is probably destined to last for at least the next decade.

From a more developer-oriented perspective, AJAX collectively refers to a set of development
components, tools, and techniques for creating highly interactive Web applications that give
users a better experience. According to the AJAX paradigm, Web applications work by
exchanging data rather than pages with the Web server. From a user perspective, this means
that faster roundtrips occur and, more importantly, page loading and refresh is significantly
reduced. As a result, a Web application tends to look like a classic desktop Microsoft Windows

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4 Part I ASP.NET AJAX Building Blocks

application and has advanced features such as drag-and-drop and asynchronous tasks, a
strongly responsive and nonflickering user interface, and other such features that minimize
user frustration, provide timely feedback about what’s going on, and deliver great mashed-up
content. (Hold on! This doesn’t mean AJAX Web applications are the same as desktop applica-
tions; they simply allow for a few more desktop-like features.)

AJAX is the philosophy that has inspired a new generation of components and frameworks,
each designed to target a particular platform, provide a given set of capabilities, and possibly
integrate seamlessly with existing frameworks. Microsoft ASP.NET AJAX Extensions is the
AJAX addition to the ASP.NET 2.0 platform. In the next major release of the .NET Framework
platform ASP.NET AJAX Extensions will officially fuse to ASP.NET and the rest of the Microsoft
Web platform and application model. The next release of Microsoft Visual Studio (code-named
“Orcas”) will also integrate ad hoc design-time support for AJAX-specific features.

In this chapter, I’ll dig deeper into the motivation for and driving force behind AJAX and then
review the basic system requirements common to all AJAX frameworks.

The Paradigm Shift
We are all witnessing and contributing to an interesting and unique phenomenon—the Web is
undergoing an epochal change right before our eyes as a result of our actions. As drastic as it
might sound, the Web revolutionized the concept of an application. Only eight years ago, the
majority of developers considered an application far too serious a thing to reduce it to an
unordered mix of script and markup code. In the late 1990s, the cost of an application was
sweat, blood, tears, and endless debugging sessions. According to the common and semi-
serious perception there was neither honor nor fame for the “real” programmer in writing
Web applications.

Note In the late 1990s, though, a number of Web sites were designed and built. Some of
them grew incredibly in the following years to become pillars of today’s world economy and
even changed the way we do ordinary things. Want some examples? Google, Amazon, eBay.
Nonetheless, a decade ago the guys building these and other applications were sort of
avant-garde developers, perhaps even just smart and game amateurs.

Since then, the Web has evolved significantly. And although 10 years of Web evolution has
resulted in the building of a thick layer of abstraction on the server side, it hasn’t changed the
basic infrastructure—HTTP protocol and pages.

The original infrastructure—one that was simple, ubiquitous, and effective—was the chief fac-
tor for the rapid success of the Web model of applications. The next generation of Web appli-
cations will still be based on the HTTP protocol and pages. However, the contents of pages
and the capabilities of the server-side machinery will change to provide a significantly richer
user experience—as rich as that of classic desktop Windows applications.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 1 The AJAX Revolution 5

Note As we’ll see in greater detail in Chapter 8, “Building AJAX Applications with ASP.NET,”
AJAX applications have a number of plusses but also a few drawbacks. Overall, choosing an
AJAX application rather than a classic Web application is simply a matter of weighing the
trade-offs. An AJAX application certainly gives users continuous feedback and never appears
held up by some remote operation. On the other hand, AJAX applications are not entirely
like desktop applications, and their capabilities in terms of graphics, multimedia, and hard-
ware control are not as powerful as in a regular (smart) client. In the end, AJAX applications
are just one very special breed of a Web application; as such, they might require some code
refactoring to deliver the expected performance and results.

Classic Web Applications

Today Web applications work by submitting user-filled forms to the Web server and display-
ing the markup returned by the Web server. The browser-to-server communication employs
the classic HTTP protocol. As is widely known, the HTTP protocol is stateless, which means
that each request is not related to the next and no state is automatically maintained. (The state
objects we all know and use in, say, ASP.NET are nothing more than an abstraction provided
by the server programming environment.)

Communication between the browser and the Web server occurs through “forms.” From a
user’s perspective, the transition occurs through “pages.” Each user action that originates a
new request for the server results in a brand new page (or a revamped version of the current
page) being downloaded and displayed.

Let’s briefly explore this model a bit further to pinpoint its drawbacks and bring to the surface
the reasons why a new model is needed.

Send Input via Forms

Based on the URL typed in the address bar, the browser displays a page to the user. The page
is ultimately made of HTML markup and contains one or more HTML forms. The user enters
some data, and then instructs the browser to submit the form to an action URL.

Using the local Domain Name System (DNS) resolver in the operating system, the browser
resolves the specified URL to an IP address and opens a socket. An HTTP packet travels over
the wire to the given destination. The packet includes the form and all its fields. The request
is captured by the Web server and typically forwarded to an internal module for further pro-
cessing. At the end of the process, an HTTP response packet is prepared and the return value
for the browser is inserted in the body.

Get Output through Pages

When a request is made for, say, an .aspx resource, the Web server passes it on to ASP.NET
for processing and receives the resulting HTML markup in return. The generated markup

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6 Part I ASP.NET AJAX Building Blocks

comprises all the tags of a classic HTML page, including <html>, <body>, and <form>. The page
source is embedded in the HTTP response and tagged with a Multipurpose Internet Mail
Extensions (MIME) type to instruct the browser how to handle it. The browser looks at the
MIME type and decides what to do.

If the response contains an HTML page, the browser replaces the current contents entirely
with the new chunk of markup. While the request is being processed on the server, the “old”
page is frozen but still displayed to the client user. As soon as the “new” page is downloaded,
the browser clears the display and renders the page.

Capabilities and Drawbacks

This model was just fine in the beginning of the Web age when pages contained little more
than formatted text, hyperlinks, and some images. The success of the Web has prompted
users to ask for increasingly more powerful features, and it has led developers and designers
to create more sophisticated services and graphics. As an example, consider advertising.
Today, most pages—and often even very simple pages, such as blog pages—include ad rotators
that download quite a bit of stuff on the client.

As a result, pages are heavy and cumbersome—even though we still insist on calling them
“rich” pages. Regardless of whether they’re rich or just cumbersome, these are the Web pages
of today’s applications. Nobody really believes that we’re going to return to the scanty and
spartan HTML pages of a decade ago.

Given the current architecture of Web applications, each user action requires a complete
redraw of the page. Subsequently, richer and heavier pages render slowly and as a result pro-
duce a good deal of flickering. Projected to the whole set of pages in a large, portal-like appli-
cation, this mechanism is just perfect for unleashing the frustrations of the poor end user.

Although a developer can build a page on the server using one of many flexible architectures
(ASP.NET being one such example), from the client-side perspective Web pages were origi-
nally designed to be mostly static and unmodifiable. In the late 1990s, the introduction of
Dynamic HTML first, and the advent of a World Wide Web Consortium (W3C) standard for
the page document object model later, changed this basic fact. Today, the browser exposes the
whole content of a displayed page through a read/write object model. In this way, the page
can be modified to incorporate changes made entirely on the client-side to react to user inputs.
(As we’ll see, this is a key factor for AJAX and ASP.NET AJAX solutions.)

Dynamic HTML is a quantum leap, but alone it is not enough to further the evolution of
the Web.

AJAX-Based Web Applications

To minimize the impact of page redraws, primitive forms of scripted remote procedure calls
(RPC) appeared around 1997. Microsoft, in particular, pioneered this field with a technology
called Remote Scripting (RS).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 1 The AJAX Revolution 7

RS employed a Java applet to pull in data from a remote Active Server Pages (ASP)-based URL.
The URL exposed a contracted programming interface through a target ASP page and serial-
ized data back and forth through plain strings. On the client, a little JavaScript framework
received data and invoked a user-defined callback to update the user interface via Dynamic
HTML or similar techniques. RS worked on both Internet Explorer 4.0 and Netscape Naviga-
tor 4.0 and older versions.

Later on, Microsoft replaced the Java applet with a Component Object Model (COM) object
named XMLHttpRequest and released most of the constraints on the programming interface
exposed by the remote URL—for example, no more fixed ASP pages. At the same time, com-
munity efforts produced a range of similar frameworks aimed at taking RS to the next level
and building a broader reach for solutions. The Java applet disappeared and was replaced by
the XMLHttpRequest object.

What Is AJAX, Anyway?

The term AJAX was coined in 2005. It originated in the Java community and was used in ref-
erence to a range of related technologies for implementing forms of remote scripting. Today,
any form of remote scripting is generally tagged with the AJAX prefix. Modern AJAX-based
solutions for the Windows platform are based on the XMLHttpRequest object. Google Maps
and Gmail are the two most popular Web applications designed according to AJAX patterns
and techniques. For AJAX, these were certainly the killer applications that established its use-
fulness and showed its potential.

Two combined elements make an AJAX application live and thrive. On one hand, you need to
serve users fresh data retrieved on the server. On the other hand, you need to integrate new
data in the existing page without a full page refresh.

Browsers generally place a new request when an HTML form is submitted either via client-
side script or through a user action such as a button click. When the response is ready, the
browser replaces the old page with the new one. Figure 1-1 illustrates graphically this tradi-
tional approach.

Figure 1-1 Browsers submit an HTML form and receive a new page to display.

Standard HTTP request

<html>

</html>
:

Browser

http://lib.ommolketab.ir
http//lib.ommolketab.ir

8 Part I ASP.NET AJAX Building Blocks

The chief factor that enables remote scripting is the ability to issue out-of-band HTTP requests.
In this context, an out-of-band call indicates an HTTP request placed using a component that
is different from the browser’s built-in module that handles the HTML form submission (that
is, outside the traditional mechanism you see in Figure 1-1). The out-of-band call is triggered
via script by an HTML page event and is served by a proxy component. In the most recent
AJAX solutions, the proxy component is based on the XMLHttpRequest object; the proxy com-
ponent was a Java applet in the very first implementation of RS.

Update Pages via Script

The proxy component (for example, the XMLHttpRequest object) sends a regular HTTP
request and waits, either synchronously or asynchronously, for it to be fully served. When the
response data is ready, the proxy invokes a user-defined JavaScript callback to refresh any por-
tion of the page that needs updating. Figure 1-2 provides a graphical overview of the model.

Figure 1-2 Out-of-band calls are sent through a proxy component, and a JavaScript callback is used
to update any portion of the page affected by returned data.

All browsers know how to replace an old page with a new page; until a few years ago, though,
not all of them provided an object model to represent the current contents of the page. (Today,
I can hardly mention a single modern, commercially available browser that doesn’t expose a
read/write page DOM.) For browsers that supply an updatable object model for HTML pages,
the JavaScript callback function can refresh specific portions of the old page, thus making
them look updated, without a full reload.

The Document Object Model

The page Document Object Model (DOM) is the specification that defines a platform- and
language-neutral interface for accessing and updating the contents, structure, and style of
HTML and XML documents. A recognized standard ratified by the W3C committee, the DOM
is now supported by virtually all browsers. The DOM provides a standard set of objects for
representing the constituent elements of HTML and XML documents. All together, these
objects form a standard interface for accessing and manipulating child elements of HTML
pages and, more in general, XML documents.

Note that although the first working frameworks for remote scripting date back to a decade
ago, the limited support browsers have had for dynamic changes in displayed documents
slowed down the adoption of such technologies in the industry. Until now.

Out-of-band HTTP request (Ajax)

Data

HTTP request

HTTP response

URL, params

DHTML

Browser

Proxy
JS

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 1 The AJAX Revolution 9

The Role of Rich Browsers

As shown in Figure 1-2, the AJAX model has two key requirements as far as browsers are con-
cerned: a proxy component and an updatable page DOM. For quite a long time, only high-end
browsers (also known as rich, up-level browsers) provided support for both features. In the
past few years, only companies that could exercise strict control over the capabilities of the
client browsers were able to choose the AJAX model for their sites. For too long, a rich browser
also has meant a browser with too limited reach. For too long, using such a browser was defi-
nitely a bad choice for most businesses because the limited reach excluded significant portions
of the customer base.

Rich vs. Reach

Perhaps due to a rare and likely unrepeatable astral conjunction, today more than 90 percent
of browsers available on the market happen to have built-in support for the advanced capabil-
ities that the AJAX model requires. Internet Explorer since version 5.0, Firefox, Netscape from
version 6 and onward, Safari 1.2, Opera starting with version 8.0, and a variety of mobile
devices are all browsers that fully support the AJAX programming model.

For the very first time, a rich browser is not synonymous with a limited reach browser. Finally,
you don’t have to choose a particular browser to enjoy advanced, programming-rich features.
Designing highly interactive Web applications that implement remote scripting techniques is no
longer an impossible dream to chase but a concrete opportunity to seize—whatever browsers
you and your clients use.

Each platform and each vendor might have a particular framework and tool set to offer, but
this doesn’t change the basic fact that living the AJAX lifestyle is now possible with 90 percent
of the browsers available today. It’s a real breakthrough, and it is now possible to build and
distribute applications that were not possible before.

Required Capabilities

Exactly what are the capabilities required of a browser to run AJAX functionalities? As men-
tioned, a browser needs to provide two key capabilities: a proxy mechanism to make client
code able to place out-of-band HTTP calls, and an updatable DOM.

There’s a W3C ratified standard for the updatable DOM. A W3C standard for the proxy com-
ponent is currently being developed. It takes the form of the XMLHttpRequest object and is
devised as an interface exposed by the browser to allow script code to perform HTTP client
functionality, such as submitting form data or loading data from a remote Web site. The latest
working draft is available at http://www.w3.org/TR/XMLHttpRequest.

In addition, browsers must support JavaScript and preferably cascading style sheets (CSS).

In the end, the AJAX lifestyle is possible and affordable for virtually every developer and nearly
90 percent of the Web audience, regardless of the platform. The tools required to make AJAX
work are becoming as ubiquitous as HTML/XML parsers, HTTP listeners, and JavaScript

http://lib.ommolketab.ir
http//lib.ommolketab.ir

10 Part I ASP.NET AJAX Building Blocks

processors. To paraphrase the catch phrase of a popular advertising campaign, I’d say that
“AJAX is now.” And as far as the Windows and ASP.NET platforms are concerned, AJAX takes
the form of Microsoft ASP.NET AJAX Extensions.

The AJAX Core Engine
AJAX is not a particular technology or product. It refers to a number of client features, and related
development techniques, that make Web applications look like desktop applications. AJAX
doesn’t require any plug-in modules either and is not browser specific. Virtually any browser
released in the past five years can serve as a great host for AJAX-based applications. AJAX develop-
ment techniques revolve around one common software element—the XMLHttpRequest object.
The availability of this object in the object model of most browsers is the key to the current
ubiquity and success of AJAX applications. In addition to XMLHttpRequest, a second factor
contributes to the wide success of AJAX—the availability of a rich document object model in
virtually any browser.

Originally introduced with Internet Explorer 5.0, the XMLHttpRequest object is an internal
object that the browser publishes to its scripting engine. In this way, the script code found in
any client page—typically, JavaScript code—can invoke the object and take advantage of its
functionality.

The XMLHttpRequest object allows script code to send HTTP requests and handle their
response. Functionally speaking, and despite the XML in the name, the XMLHttpRequest
object is nothing more than a tiny object designed to place HTTP calls via script in a
non-browser-led way. When users click the submit button of a form, or perform any
action that ends up invoking the submit method on the DOM’s form object, the browser
kicks in and takes full control of the subsequent HTTP request. From the user’s perspective,
the request is a black box whose only visible outcome is the new page being displayed. The
client script code has no control over the placement and outcome of the request.

The XMLHttpRequest Object

Created by Microsoft and adopted soon thereafter by Mozilla, the XMLHttpRequest object is
today fully supported by the majority of Web browsers. As you’ll see in a moment, the imple-
mentation can significantly differ from one browser to the next, even though the top-level inter-
face is nearly identical. For this reason, a W3C committee is at work with the goal of precisely
documenting a minimum set of interoperable features based on existing implementations.

Note The XMLHttpRequest object originally shipped as a separate component with Internet
Explorer 5.0 back in the spring of 1999. It is a native component of all Microsoft operating
systems that have shipped since. In particular, you’ll certainly find it installed on all machines
that run Windows 2000, Windows XP, and newer operating systems.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 1 The AJAX Revolution 11

The Internet Explorer Object

When the XMLHttpRequest object was first released, the Component Object Model (COM)
was ruling the world at Microsoft. The extensibility model of products and applications was
based on COM and implemented through COM components. In the late 1990s, the right and
natural choice was to implement this new component as a reusable automation COM object,
named Microsoft.XmlHttp.

Various versions of the same component (even with slightly different names) were released
over the years, but all of them preserved the original component model—COM. Internet
Explorer 6.0, for example, ships the XMLHttpRequest object in the form of a COM object.
Where’s the problem?

COM objects are external components that require explicit permission to run inside of a Web
browser. In particular, to run the XMLHttpRequest object and subsequently enable any AJAX
functionality built on top of it, at a minimum a client machine needs to accept ActiveX compo-
nents marked safe for scripting. (See Figure 1-3.)

Figure 1-3 The property window used to change the security settings in Internet Explorer

The XMLHttpRequest object is certainly a safe component, but to enable it users need to lessen
their security settings and accept any other component “declared” safe for scripting that is
around the Web sites they visit.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

12 Part I ASP.NET AJAX Building Blocks

Important The internal implementation of XMLHttpRequest is disjointed from the imple-
mentation of any AJAX-like frameworks, such as Microsoft ASP.NET AJAX. Under the hood,
any framework ends up calling the object as exposed by, or available in, the browser.

The Mozilla Counterpart

Mozilla adopted XMLHttpRequest immediately after its first release with Internet Explorer 5.0.
However, in Mozilla-equipped browsers the XMLHttpRequest object is part of the browser’s
object model and doesn’t rely on external components. Put another way, a Mozilla browser
such as Firefox publishes its own XMLHttpRequest object into the scripting engine and never
uses the COM component, even when the COM component is installed on the client machine
and is part of the operating system. Figure 1-4 shows the different models in Internet Explorer
(up to version 6.0) and Mozilla browsers.

Figure 1-4 XMLHttpRequest is a scriptable component exposed by the browser in Mozilla and an
external COM component in Internet Explorer (up to version 6.0)

As a result, in Mozilla browsers XMLHttpRequest looks like a native JavaScript object and can
be instantiated through the classic new operator:

// The object name requires XML in capital letters

var proxy = new XMLHttpRequest();

When the browser is Internet Explorer, the XMLHttpRequest object is instantiated using the
ActiveXObject wrapper, as shown here:

var proxy = new ActiveXObject("Microsoft.XmlHttp");

Generally, AJAX-style frameworks check the current browser and then decide about the route
to take.

Scripting Engine
JavaScript objects
DOM objects
:
XMLHttpRequest

JavaScript
VBScript

Internet Explo rer Browser

Microsoft
XMLHttp

Published objects

Mozilla B rowser

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 1 The AJAX Revolution 13

Needless to say, as implemented in Mozilla browsers the XMLHttpRequest functionality is
somewhat safer, at least in the sense it doesn’t require users to change their security settings
for the browser.

XMLHttpRequest in Internet Explorer 7

Implemented as a COM component for historical reasons on Internet Explorer browsers, the
XMLHttpRequest object has finally become a browser object with Internet Explorer 7.0. All
potential security concerns are removed at the root, and AJAX frameworks can be updated
to use the same syntax for creating the XMLHttpRequest object regardless of the browser:

var proxy = new XMLHttpRequest();

In addition, this change in Internet Explorer 7.0 completely decouples AJAX-like functionality
in ASP.NET from an ActiveX-enabled environment.

An HTTP Object Model

I spent quite a few words on the XMLHttpRequest object and its expected behavior, but I still
owe you a practical demonstration of the object’s capabilities. In this section, I’ll cover the
members of the component, the actions it can perform, and details of the syntax.

As mentioned, the XML in the name of the component means little and in no way limits the
capabilities of the component. In spite of the XML prefix, you can use the object as a true auto-
mation engine for executing and controlling HTTP requests, from client code generated by
ASP.NET pages or the Windows shell, or Visual Basic 6.0 or C++ unmanaged applications. Using
the XMLHttpRequest COM object from within .NET applications is nonsensical, as you can find
similar functionality in the folds of the System.Net namespace in the .NET Framework.

Important If you’re going to use Microsoft ASP.NET AJAX Extensions or any other AJAX-
like framework for building your applications, you’ll hardly hear about the XMLHttpRequest
object, much less use it directly in your own code. ASP.NET AJAX Extensions completely
encapsulates this object and shields page authors and application designers from it. You
don’t need to know about XMLHttpRequest to write great AJAX applications, no matter how
complex and sophisticated they are. However, knowing the fundamentals of XMLHttpRequest
can lead you to a better and more thorough understanding of the platform and to more
effective diagnoses of problems.

Behavior and Capabilities

The XMLHttpRequest object is designed to perform one key operation: sending an HTTP
request. The request can be sent either synchronously or asynchronously. The following list-
ing shows the programming interface of the object as it results from the W3C working draft at
the time of this writing:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

14 Part I ASP.NET AJAX Building Blocks

interface XMLHttpRequest {

function onreadystatechange;

readonly unsigned short readyState;

void open(string method, string url);

void open(string method, string url, bool async);

void open(string method, string url, bool async, string user);

void open(string method, string url, bool async,

string user, string pswd);

void setRequestHeader(string header, string value);

void send(string data);

void send(Document data);

void abort();

string getAllResponseHeaders();

string getResponseHeader(string header);

string responseText;

Document responseXML;

unsigned short status;

string statusText;

};

Using the component is a two-step operation. First, you open a channel to the URL and spec-
ify the method (GET, POST, or other) to use and whether you want the request to execute
asynchronously. Next, you set any required header and send the request. If the request is a
POST, you pass to the send method the body of the request.

The send method returns immediately in the case of an asynchronous operation. You write an
onreadystatechange function to check the status of the current operation and, using that func-
tion, figure out when it is done.

Sending a Request

Most AJAX frameworks obtain an instance of the XMLHttpRequest object for the current
browser using code that looks like the following:

var xmlRequest, e;

try {

xmlRequest = new XMLHttpRequest();

}

catch(e) {

try {

xmlRequest = new ActiveXObject("Microsoft.XMLHTTP");

}

catch(e) {

}

}

The code first tries to instantiate the internal XMLHttpRequest object and opts for the ActiveX
object in the case of failure. As you can see, the creation of the object requires an exception to
be caught when the browser is Internet Explorer 6.0 or any older versions. Such a code will
work unchanged (and won’t require any exception) in Internet Explorer 7.0.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 1 The AJAX Revolution 15

Note Checking the browser’s user agent and foregoing the exception is fine as well.
However, ASP.NET AJAX Extensions uses the preceding code because it makes the overall
library independent from details of user agent strings and browser details. In this way, you do
“object detection” instead of “browser detection.” The final result, though, is the same. The
exception is fired only if the browser is Internet Explorer older than version 7.0 or any other
browser that doesn’t support AJAX functionalities. If you’re building your own AJAX frame-
work, you need to check the user agent only against Internet Explorer.

The open method prepares the channel for the request; no physical socket is created yet,
though. To execute a POST statement, you need to add the proper content-type header. The
Boolean argument indicates whether the operation is asynchronous:

xmlRequest.open("POST", url, false);

xmlRequest.setRequestHeader("Content-Type",

 "application/x-www-form-urlencoded");

xmlRequest.send(postData);

The send method opens the socket and sends the packet. In the preceding code snippet, the
method returns only when the response has been fully received.

An asynchronous request requires slightly different code:

xmlRequest.open("POST", url, true);

xmlRequest.onreadystatechange = CallbackComplete;

xmlRequest.setRequestHeader("Content-Type",

 "application/x-www-form-urlencoded");

xmlRequest.send(postData);

The CallbackComplete element is a placeholder for a JavaScript function that retrieves and pro-
cesses the response generated by the request.

Note that the function assigned to the onreadystatechange member will be invoked whenever
readyState changes value. Possible values for the state are the integers ranging from 0 through
4, which mean “Uninitialized,” “Open method called successfully,” “Send method called suc-
cessfully,” “Receiving data,” and “Response received,” respectively. The CallbackComplete
framework-specific function will generally check that state and proceed.

Receiving a Response

The response of the request is available in two formats: as raw text and as an XML document.
The responseText property is empty if the state is 0 through 2—that is, no data has been
received yet. When the state transitions to 3 (receiving data), the property contains the data
received so far, interpreted using the character encoding specified in the response. If no char-
acter encoding was specified, it employs UTF-8.

The responseXml property is not available until the full response has been downloaded and
successfully parsed to an XML document. If the body of the response is not XML or if the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

16 Part I ASP.NET AJAX Building Blocks

parsing fails for any reason, the property returns null. It is important to note that the construc-
tion of the XML document takes place on the client once the raw HTTP response has been
fully received.

Roll Your Own (Little) AJAX Framework

As mentioned, you don’t need to use the straight XMLHttpRequest object in your AJAX-based
application, regardless of the framework (for example, ASP.NET AJAX) you end up using. For
completeness, though, let’s briefly review the steps required to use the object in a sample
ASP.NET 2.0 page. The same code can be used with ASP.NET 1.x as well. The following code
represents the minimal engine you need for building homemade AJAX solutions.

Note Although a homemade AJAX framework might not be recommended, it’s not impos-
sible to write. The fact that more than 100 AJAX frameworks have been counted just demon-
strates that writing AJAX homemade solutions is not a mission-impossible task. Personally,
I would consider it only as a way to enrich existing applications with quick and dirty AJAX
functionality limited to placing remote, non-browser-led calls.

Executing an Out-of-Band Call from an ASP.NET Page

Web pages that shoot out-of-band calls need to have one or more trigger events that, when prop-
erly handled with a piece of JavaScript code, place the request via the XMLHttpRequest object.
Trigger events can only be HTML events captured by the browser’s DOM implementation.

The JavaScript code should initiate and control the remote URL invocation, as shown in the
following code:

<script type="text/JavaScript">

function SendRequest(url, params)

{

// Add some parameters to the query string

var pageUrl = url + "?outofband=true¶m=" + params;

// Initialize the XmlHttpRequest object

var xmlRequest, e;

try {

xmlRequest = new XMLHttpRequest();

}

catch(e) {

try {

xmlRequest = new ActiveXObject("Microsoft.XMLHTTP");

}

catch(e) { }

}

// Prepare for a POST synchronous request

xmlRequest.open("POST", pageUrl, false);

xmlRequest.setRequestHeader("Content-Type",

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 1 The AJAX Revolution 17

 "application/x-www-form-urlencoded");

xmlRequest.send(null);

return xmlRequest;

}

</script>

The sample function accepts two strings: the URL to call and the parameter list. Note that the
format of the query string is totally arbitrary and can be adapted at will in custom implemen-
tations. The URL specified by the programmer is extended to include a couple of parameters.
The first parameter—named outofband in the example—is a Boolean value and indicates
whether or not the request is going to be a custom callback request. By knowing this, the tar-
get page can process the request appropriately. The second parameter—named param in the
example—contains the input parameters for the server-side code.

The host ASP.NET page looks like the following code snippet:

<html xmlns="http://www.w3.org/1999/xhtml" >

<head runat="server">

<title>Testing Out-of-band</title>

</head>

<body>

<form id="Form1" runat="server">

<h1>Demonstrate Out-of-band Calls</h1>

<h2><%=Request.Url%></h2>

<hr />

<asp:DropDownList runat="server" ID="EmployeeList" />

<input id="Button1" type="button" value="Go Get Data"

onclick="MoreInfo()" />

<hr />

</form>

</body>

</html>

The code-behind class is shown in the following listing:

public partial class _Default : System.Web.UI.Page

{

protected void Page_Load(object sender, EventArgs e)

{

if (IsOutOfBand())

return;

if (!IsPostBack)

PopulateList();

}

private bool IsOutOfBand()

{

bool isCallback = false;

isCallback = String.Equals(Page.Request.QueryString["callback"],

 "true",

StringComparison.OrdinalIgnoreCase);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

18 Part I ASP.NET AJAX Building Blocks

if (isCallback)

{

string param = Request.QueryString["param"].ToString();

Response.Write(ExecutePageMethod(param));

Response.Flush();

Response.End();

return true;

}

return false;

}

private void PopulateList()

{

SqlDataAdapter adapter = new SqlDataAdapter(

 "SELECT employeeid, lastname FROM employees",

 "SERVER=(local);DATABASE=northwind;UID=...;");

DataTable table = new DataTable();

adapter.Fill(table);

EmployeeList.DataTextField = "lastname";

EmployeeList.DataValueField = "employeeid";

EmployeeList.DataSource = table;

EmployeeList.DataBind();

}

string ExecutePageMethod(string eventArgument)

{

return "You clicked: " + eventArgument;

}

}

A couple of issues deserve more attention and explanation. The first one is the need to find
out whether the request is an out-of-band call or a regular postback. Next, we need to look at
the generation of the response. The IsOutOfBand method checks the outofband field in the
posted form. If the outofband field is found, the request is served and terminated without going
through the final part of the classic ASP.NET request life cycle—events for changed values,
postback, pre-rendering, view-state serialization, rendering, and so forth. An out-of-band
request is therefore short-circuited to return more quickly, carrying the least data possible.

What does the page do when an out-of-band call is placed? How does it determine the
response? Most of the actual AJAX-based frameworks vary on this point, so let’s say it is arbi-
trary. In general, you need to define a public programming interface that is invoked when an
out-of-band call is made. In the sample code, I have a method with a contracted name and
signature—ExecutePageMethod—whose output becomes the plain response for the request. In
the sample code, the method returns and accepts a string, meaning that any input and output
parameters must be serializable to a string.

string param = Request.QueryString["param"].ToString();

Response.Write(ExecutePageMethod(param));

Response.Flush();

Response.End();

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 1 The AJAX Revolution 19

As in the code snippet, the response for the out-of-band request is the output of the method.
No other data is ever returned; and no other data except for the parameters is ever sent. In this
particular implementation, there will be no view state sent and returned.

Important Although you’ll probably never get to write any such code, be aware that thus
far I’ve just provided a minimal but effective description of the underlying mechanism com-
mon to most frameworks that supply AJAX-like functionality. Each framework encapsulates a
good number of details and adds new services and capabilities. At its core, though, this is
how AJAX libraries work.

Displaying Results

One more step is missing—what happens on the client once the response for the out-of-band
call is received? The following snippet shows a piece of client code that, when attached to a
button, fires the out-of-band call and refreshes the user interface:

function MoreInfo()

{

var empID = document.getElementById("EmployeeList").value;

var xml = SendRequest("default.aspx", empID);

// Update the UI

var label = document.getElementById("Msg");

label.innerHTML = xml.responseText;

}

According to the code, whenever the user clicks the button a request is sent at the following URL.
Note that 1 in the sample URL indicates the ID of the requested employee. (See Figure 1-5.)

default.aspx?outofband=true¶m=1

Figure 1-5 A manually coded out-of-band request in ASP.NET 1.x and ASP.NET 2.0

http://lib.ommolketab.ir
http//lib.ommolketab.ir

20 Part I ASP.NET AJAX Building Blocks

Displaying results correctly on most browsers can be tricky. Internet Explorer, in fact, supports
a number of nonstandard shortcuts in the DOM that just don’t work with other browsers. The
most common snag is retrieving references to HTML elements using the document.getElement-
ById method instead of the direct name of the element. For example, the following code works
on Internet Explorer but not on Firefox and other Mozilla-equipped browsers:

// Msg is the ID of a tag.

// This code works only with Internet Explorer

Msg.innerHTML = xml.requestText;

In summary, cross-browser JavaScript code is required to update the currently displayed page
on the client. At the same time, a number of assumptions must be made on the server to come
up with a working and effective environment. For this reason, frameworks are the only reason-
able way of implementing AJAX functionalities. Different frameworks, though, might provide a
different programming interface on top of an engine that uses the same common set of parts.

The Switch to the Document Object Model

Microsoft has pioneered updatable Web pages since the late 1990s. With Internet Explorer 4.0
(released back in 1997), Microsoft introduced Dynamic HTML (DHTML), which is a power-
ful combination of HTML, style sheets, and scripts that allows programmatic changes to any
displayed page. Several companies since then have worked out their own DHTML object
model—often referred to as the Browser Object Model (BOM). The W3C committee worked
hard to bring vendors to agree on an interoperable and language-neutral solution for exposing
Web pages through an updatable programming interface. The result is the Document Object
Model (DOM), as opposed to a browser-specific BOM.

The DOM is a platform-independent and language-neutral representation of the contents of
a Web page that scripts can access and use to modify the content, structure, and style of the
document.

For AJAX, it’s all about exchanging data with a remote server. But once the data is downloaded
out-of-band on the client, what can you do with that? The DOM provides an outlet for the data
to flow into the current page structure and update it.

Representation of a Document

The DOM is a standard API exposed by the browser in which a displayed page has a tree-
based structure. Each node in the logical tree corresponds to an object. On the other hand,
the name “Document Object Model” hints at an object model in the common interpretation
of the object-oriented design terminology. A Web page—the document—is modeled through
objects. The model includes the structure and behavior of a document. Each node in the log-
ical tree is not static data; rather, it is a live object with a known behavior and its own identity.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 1 The AJAX Revolution 21

DOM Implementation

The W3C DOM consists of three levels that indicate, for the browser, three different levels of
adherence to the standard. For more information, take a look at http://www.w3.org/DOM.

The DOM is made of nodes, and each node is an object. For a Web page, each node maps to
an object that represents an HTML tag. The object, therefore, has properties and methods that
can be applied to an HTML tag. There are three fundamental operations you can accomplish
on a node: find the node (including related nodes such as children, parent, or sibling nodes),
create a node, and manipulate a node.

Identifying a particular node is easy as long as the page author knows the ID of the corre-
sponding element. In this case, you use the following standard piece of code:

var node = document.getElementById(id);

In particular, if there are multiple elements sharing the same ID value, the method returns the
first object in the collection. This method is supported in the DOM Level 1 and upper levels.
Another interesting method to find elements is the following:

var coll = document.getElementsByTagName(tagname);

The method retrieves a collection of all objects based on the same HTML tag. For example, the
method retrieves a collection of all <div> or all <input> tags in the page.

Related DOM objects are grouped in node lists. Each node has a name, type, parent, and col-
lection of children. A node also holds a reference to its siblings and attributes. The following
code snippet shows how to retrieve the parent of a node and its previous sibling:

var oParent = oNode.parentNode

var oPrevious = oNode.previousSibling

How can you modify the contents of a node? The easiest and most common approach entails
that you use the innerHTML property:

var node = document.getElementById("button1");

node.innerHTML = "Hey click me";

The innerHTML property is supported by virtually all browsers, and it sets or retrieves the
HTML between the start and end tags of the given object. Some browsers such as Internet
Explorer also support the innerText property. This property is designed to set or retrieve the
text inside of a given DOM object. Unfortunately, this property is not supported by all brows-
ers. It exists in Internet Explorer and Safari but, for example, it is not supported by Firefox.
Firefox, on the other hand, supports a property with a similar behavior but a different name—
textContent.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

22 Part I ASP.NET AJAX Building Blocks

Note The advent of the Microsoft AJAX Client Library (discussed in Chapter 2, “The
Microsoft Client Library for AJAX”) shields developers from having to know much about the
little differences between the DOM implementation of the various browsers. For example, you
should know about innerText and textContent if you’re embedding your own JavaScript in the
page; however, you don’t have to if you rely on the AJAX Client Library to refresh portions of
the displayed page.

Note Finally, note that you should not check the user agent string to figure out whether
the current browser supports a given feature. You should check the desired object instead.
For example, to know whether the browser supports innerText, you’re better off running the
following code:

var supportsInnerText = false;

var supportsInnerText = false;

if (temp != undefined)

supportsInnerText = true;

...

In this way, you directly check the availability of the property without having to maintain a list
of browsers.

Nodes are created using the createElement method exposed only to the document object.
Alternatively, you can add new elements to the document hierarchy by modifying the
innerHTML property value, or by using methods explicit to particular elements, such as the
insertRow and insertCell methods for the table element. Here’s an example:

// Create an element

var oImg = document.createElement("");

...

// Create a new option for the SELECT element

var oOption = new Option(text, id);

control.options.add(oOption);

With this information, I have only scratched the surface of the DOM implementation in the
various browsers. Nonetheless, the DOM is a key part of the AJAX jigsaw puzzle and deserves
a lot of attention and skilled use. For a primer, you can take a look at http://
msdn.microsoft.com/workshop/author/dom/domoverview.asp.

Be Pragmatic: DHTML vs. DOM

In the beginning, only the browser’s support for the DHTML object model provided JavaScript
developers with the ability to update the page contents dynamically. The success of DHTML
led to the definition of a standard document object model—the W3C’s DOM. Quite obviously,
the DOM evolved from DHTML and became much more generalized than DHTML. As men-
tioned, the DOM provides a tree-based model for the whole document, not just for an individ-
ual HTML tag.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 1 The AJAX Revolution 23

Most browsers, though, support a mix of DOM and DHTML. Which one should you use? In
particular, to update some contents, should you obtain a reference to the textual child node of
the node that matches the intended HTML tag (the DOM way) or just grab a reference to a
node and use innerHTML (the DHTML way)? Likewise, to add a new element, should you cre-
ate a new element or just stuff in a chunk of updated HTML via innerHTML? Admittedly, one
of the most interesting debates in the community is whether to use DHTML to manipulate
pages or opt for the cleaner approach propounded by the DOM application programming
interface (API).

The key fact is that the DOM API is significantly slower than using innerHTML. If you go
through the DOM to generate some user interface dynamically, you have to create every ele-
ment, append each into the proper container, and then set properties. The alternative only
entails that you define the HTML you want and render it into the page using innerHTML. The
browser, then, does the rest by rendering your markup into direct graphics.

Overall, DHTML and DOM manipulation are both useful depending on the context. There are
many Web sites that discuss performance tests and DHTML is always the winner. Anyway,
DOM is still perfectly fast as long as you use it the right way—that is, create HTML fragments
and append them to the proper container only as the final step.

Be Pragmatic: Use Events

Let’s make it clear: without events, there would be no point in adding JavaScript to Web pages.
To be effective, therefore, scripts have to react to some user action as well as to actions gener-
ated by the browser, such as when loading the page. Events and event handlers are old com-
panions to Web pages, as they appeared the first time with Netscape 2.

For quite some time, largely incompatible event models lived and thrived in different
browsers—mainly in Internet Explorer and Netscape. A few years ago, the W3C standardized
the event model with a paper that you can read at http://www.w3.org/TR/2000/
REC-DOM-Level-2-Events-20001113/events.html.

With Internet Explorer and Netscape having their own original event model, and making
themselves compatible to the W3C standard, you understand that writing model-agnostic
event handlers is going to be a hard task. There are a lot of events, but not all of them are sup-
ported by all browsers. The following categories of events can be considered standard: user
interface events (blur, focus, scroll), device events (click, keydown), and form events (submit,
select). The second big point concerns how you set event handlers. The most reliable way is
still the following:

An excellent paper that discusses the theme of events in JavaScript can be found here: http://
www.quirksmode.org/js/introevents.html.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

24 Part I ASP.NET AJAX Building Blocks

Tip If you’re looking for a great Web site to learn about the various aspects of JavaScript,
DHTML, DOM, CSS and client-side programming in general, the right place to go is
http://www.quirksmode.org.

Existing AJAX Frameworks for ASP.NET

Today, quite a few APIs exist to implement AJAX functionality in ASP.NET, and one of these
APIs is already integrated into ASP.NET 2.0. Other APIs come from third-party vendors or take
form from open-source projects. I’ll briefly look at some of these APIs. Note, though, that as
long as ASP.NET is your development environment, the most reasonable choice you can make
is Microsoft ASP.NET AJAX Extensions. However, ASP.NET AJAX Extensions can coexist
pretty well with a large number of the existing alternative AJAX frameworks. ASP.NET AJAX is
not a mutually exclusive choice.

Since early 2005, some aggressive independent software vendors (for example, Telerik,
Infragistics, and ComponentArt) have integrated AJAX functionality into their existing suite
of controls for rapid and rich Web development. In the beginning, each vendor developed its
own internal and proprietary AJAX engine and integrated it with the product. The advent of
ASP.NET AJAX Extensions will likely prompt vendors to offer native ASP.NET AJAX controls
or, at a minimum, provide controls that work seamlessly with ASP.NET AJAX.

Let’s review some of the options you have today for developing AJAX-enabled ASP.NET Web
applications. As you can see, the list is not exhaustive and features libraries from both inde-
pendent software vendor (ISV) companies and open-source projects started by outstanding
members of the ASP.NET community.

ASP.NET Script Callbacks

ASP.NET 2.0 contains a native API, named ASP.NET Script Callback, to implement out-of-
band calls to the same URL of the current page. This API makes the out-of-band request look
like a special-case page request. It transmits the view state along with original input fields. A
few additional input fields are inserted in the body of the request to carry extra information.
Once on the server, the request passes through the regular pipeline of HTTP modules and
raises the expected sequence of server-side events up to the pre-rendering stage.

Just before the pre-rendering stage, the page method is executed, the return value is serialized
to a string, and then the string is returned to the client. No rendering phase ever occurs, and
the view state is not updated and serialized back.

ASP.NET Script Callback provides its own JavaScript API to wrap any needed calls to
XMLHttpRequest. As a developer, you are not required to know about this API in detail. As a
developer, you should instead focus on the programming interface of the GetCallbackEvent-
Reference method of the Page.ClientScript object. This method simply returns the JavaScript
code to attach to a client-side event handler to place an out-of-band call. The JavaScript code

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 1 The AJAX Revolution 25

also references another piece of JavaScript used to update the page with the results generated
on the server. But what happens on the server when the secondary request is made? Which
page method is executed?

ASP.NET Script Callback defines an interface—the ICallbackEventHandler interface—that any
server object that is the target of an out-of-band call can implement. The target of the out-of-
band call can be either the page or any of its child controls. The execution of an out-of-band
call is divided into two steps: preparation and results generation. The RaiseCallbackEvent
method of the ICallbackEventHandler interface is invoked first to prepare the remote code
execution. The GetCallbackResult method is invoked later in the request life cycle when it is
time for the ASP.NET runtime to generate the response for the browser.

All in all, the programming interface of ASP.NET Script Callback is a bit clumsy. Although the
programming interface shields developers from a lot of internal details, it still requires the
programmer to have good JavaScript skills and is articulated in a bunch of boilerplate server
code. You need server code to bind HTML elements to client-side event handlers, and you
need ad hoc server code to publish a programming interface that is callable from the client.
Each request carries with it a copy of the original view state and rebuilds the last known good
state on the server. In other words, the original value of all input fields in the currently dis-
played page (regardless of any changes entered before the out-of-band call is made) are sent
to the server along with any parameters for the server method. Any out-of-band calls are pro-
cessed as a regular postback request up to the pre-rendering stage, meaning that all standard
server events are fired: Init, Load, LoadComplete, and so on. Before the pre-rendering stage,
the callback is prepared and executed shortly after. The requests ends immediately after the
server method executes. The view state is not updated to reflect the state of the page after
the out-of-band call and subsequently, it is not sent back to the client.

The advantage of using ASP.NET Script Callback is that it is a native part of ASP.NET and can
be easily encapsulated in server controls. For example, the TreeView control in ASP.NET 2.0
uses script callbacks to expand its nodes.

ASP.NET Script Callback is not free of significant issues, however. In particular, the server
method is constrained to a fixed signature and can only take and return a string. Sure, you can
place any contents in the string, but the serialization and deserialization of custom objects to
the string is something you must take care of entirely on your own. In addition, a page based
on ASP.NET Script Callback can have only one endpoint for remote calls. This means that if a
client page needs to place two distinct calls to the same remote page, you have to implement
a switch in the implementation of the ICallbackEventHandler interface to interpret which
method was intended to be executed.

The AJAX.NET Professional Library

To effectively implement out-of-band calls in application-wide scenarios, a kind of framework
is required that hides all the nitty-gritty details of HTTP communication and exposes addi-
tional and higher-level controls and services.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

26 Part I ASP.NET AJAX Building Blocks

AJAX.NET Professional (AjaxPro) is a pretty popular open-source library that adds a good
layer of abstraction over the XMLHttpRequest machinery. Written by Michael Schwarz, the
library creates proxy classes that are used by client-side JavaScript to invoke methods on the
server page. The AjaxPro framework provides full data type support and works on all com-
mon Web browsers, including mobile devices. Nicely enough, the library can be used with
both ASP.NET 1.1 and ASP.NET 2.0.

The key tool behind the AjaxPro library is an HTTP handler that hooks up any HTTP requests
generated by the client-side part of the library:

<httpHandlers>

<add verb="POST,GET" path="ajaxpro/*.ashx"

type="AjaxPro.AjaxHandlerFactory, AjaxPro.2" />

</httpHandlers>

Once the web.config file has been correctly set up, you write JavaScript functions to trigger and
control the out-of-band call. Each call targets a JavaScript object that represents the publicly
callable method on the server ASP.NET page. A client-callable method is just a public method
decorated with a specific attribute, as shown here:

[AjaxPro.AjaxMethod]

public DateTime GetCurrentTimeOnServer()

{

return DateTime.Now;

}

The class with public methods, as well as any custom types used for I/O, has to be registered
with the framework to have the corresponding JavaScript proxy created:

protected void Page_Load(object sender, EventArgs e)

{

AjaxPro.Utility.RegisterTypeForAjax(typeof(YourAjaxClass));

}

If you do this, the handler guarantees that any managed .NET object that is returned by a
server method will be serialized to a dynamically created JavaScript object to be seamlessly
used on the client. You can return any managed type, your own classes, or enum types as you
would do in plain .NET code. No view state is available during the AJAX request, meaning that
you can’t do much with page controls. In light of this, it is recommended that you create call-
able methods as static methods preferably, though not necessarily, on a separate class.

AjaxPro has some key advantages over the ASP.NET Script Callback API. It uses an attribute to
mark server methods that can be called from the client. This means that you have the greatest
flexibility when it comes to defining the server public interface callable from the client. In
particular, you don’t have to change the flow of the code or add new ad hoc methods just
to comply with the requested programming interface.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 1 The AJAX Revolution 27

In addition, you can register server types for use on the client, which provides for a strong-
typed data transfer. The AjaxPro infrastructure serializes .NET types to JavaScript objects and
vice versa. The AJAX.NET hooks up and replaces the standard request processing mechanism
of ASP.NET—the page handler. As a result, you won’t receive classic ASP.NET server events
such as Init, Load, and postback. At the same time, you won’t have the view state automatically
transmitted with each out-of-band request. An AjaxPro request, though, is still processed by
the ASP.NET HTTP runtime, meaning that the request is still subject to the modules regis-
tered with the HTTP pipeline, including session state management, roles, and authentication.

For more information about the AjaxPro library, you can take a look at http://www.ajaxpro.info.
There you will also find a link to the CodePlex Web site to get the source code of the library.

The Anthem.NET Framework

Anthem.NET is a free, cross-browser AJAX toolkit for both ASP.NET 1.1 and 2.0, written by
Jason Diamond. The library is made of a number of server controls that use XMLHttpRequest
to post back. It sets itself apart from AjaxPro because it fully integrates with the classic life
cycle of each ASP.NET request. The view state is sent across the wire, and server-side page and
control events such as Init, Load, and PreRender are regularly fired. As a result, you write a page
using the same programming model of ASP.NET, you are not required to write any JavaScript
yourself, and you still leverage the beauty of the AJAX model. The only difference with a tradi-
tional ASP.NET application is that you use a different set of server controls, most of which are
just subclassed versions of the original ASP.NET controls.

Extremely lean and easy to use, Anthem.NET implements AJAX functionalities through the
“partial rendering” model applied at the control level. The partial rendering model is the same
model that ASP.NET AJAX pushes hard. (See Chapter 4, “Partial Page Rendering.”) For more
information, check out http://www.anthemdotnet.com.

The ComfortASP.NET Framework

Conceptually similar to Anthem.NET, but significantly different in its implementation, is
Daniel Zeiss’ ComfortASP.NET framework. ComfortASP.NET uses a manager server control to
inject script code in the client page. Invisible to the page author, the script code hooks up
client postbacks and replaces them with calls to XMLHttpRequest.

Once back on the server, the manager component takes control of the operations and deter-
mines the delta between the current page and the page resulting from the processing of the
current request. The markup that describes the changes in the displayed page is sent back and
used to dynamically modify the page contents on the client via the previously emitted script.
The server life cycle of the page is executed as usual, and events such as Init and Load are fired
when expected.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

28 Part I ASP.NET AJAX Building Blocks

The ComfortASP.NET framework refers to this technique as “selective update;” but in the end
it is just another term to indicate what ASP.NET AJAX calls “partial rendering.” (We’ll cover
partial rendering in Chapter 4.)

Using ComfortASP.NET couldn’t be easier and faster. It only requires you to tweak the
web.config file to add an HTTP handler for ASP.NET requests and add a manager control to
each page you intend to expand with AJAX capabilities. The manager control features a few
interesting properties such as compression, automatic form disabling during postback, and
request timeout handling.

Taken alone, the manager control works on the page as a whole. The framework also includes
a PanelUpdater control for you to selectively update specific portions (panels) of the page. You
can learn more about the ComfortASP.NET Framework at http://www.comfortasp.de/.

The Telerik r.a.d.controls for ASP.NET Framework

Telerik r.a.d.controls for ASP.NET is a suite of versatile user-interface (UI) components, which
offer complete interoperability with Microsoft ASP.NET AJAX Extensions. The product allows
developers to build a sophisticated and largely customizable user interface based on ASP.NET
AJAX. This means that r.a.d.controls are safe for use inside of any ASP.NET AJAX page and
interact smoothly with any built-in ASP.NET AJAX controls.

Telerik is currently working on a special update of the r.a.d.controls suite, which will leverage
the complete capabilities of the ASP.NET AJAX Framework. The new version of the product
should be available by the time you read this book. Among the novelties, you can certainly
expect a client-side object model that is consistent with the Microsoft AJAX Client Library
conventions and controls that fully participate in the client life cycle of the request. (See Chap-
ter 2.) In addition, the r.a.d.controls suite has rich type information similar to the .NET type
descriptors, easy component discoverability and enumeration, and optimized resource man-
agement and disposal on partial page updates.

Apart from that, Telerik offers its own AJAX framework, called r.a.d.ajax. The purpose of the
product is to eliminate the complexities of building JavaScript-intensive AJAX applications so
that developers can take advantage of this new technology with no additional learning curve
to climb. Complexities are eliminated by encapsulating the AJAX engine and all surrounding
logic, including scripts, into classic ASP.NET server components, which can be configured
visually with convenient builders in Visual Studio 2005. As a result, developers can simply
write regular postback-based applications and turn them into AJAX-enabled ones without
writing any JavaScript or server-side code.

The Telerik engine completely preserves the life cycle of the ASP.NET page, which is
imperative for the proper operation of your application. The view state, event validation,
and client-side scripts are also preserved as if a normal postback takes place. All form values
are automatically sent to the server for processing. Telerik’s framework is based on a patent-
pending technology that manages AJAX postbacks internally.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 1 The AJAX Revolution 29

For more information, visit http://www.telerik.com.

The ComponentArt Web.UI Framework

ComponentArt features Web.UI for ASP.NET AJAX—the first suite of controls designed specif-
ically for ASP.NET AJAX. The library has a variety of advanced user interface controls for use
in sophisticated Web applications—for example, grids, splitters, tree views, and drop-down
lists. The Callback control, on the other hand, provides base AJAX capabilities.

The Web.UI library goes beyond mere compatibility or basic interoperability with ASP.NET
AJAX. Rather, it offers deep integration into the new Microsoft AJAX framework. You find a
bunch of server controls enriched with a client-side object model that fully leverages the
Microsoft AJAX Client Library type system. (We’ll cover the Microsoft AJAX Client Library
in Chapter 2.) In particular, all controls inherit from the Sys.UI.Control client-side base class
and expose extensive client-side methods and attributes to be invoked and set via script.
Controls participate in the client-side life cycle, notify events, and communicate with native
DOM elements.

All Web.UI controls have the ability to command AJAX postbacks on their own or through
the ASP.NET AJAX’s UpdatePanel control. (See Chapter 4.) For example, the TreeView and Grid
controls implement their own built-in lightweight callback mechanisms for things such as
load on demand or paging.

Similar to the ASP.NET AJAX UpdatePanel, the CallBack component can optionally wrap con-
trols to update, and it can either bypass the standard page life cycle and execute server-side
logic more quickly or maintain the latest state of all ASP.NET controls contained in the page
through the view state. The client-side model of the CallBack component can be used from the
client to execute server-side code. The CallBack control, though, is not used by any other
Web.UI control internally.

For more information, visit http://www.componentart.com.

Infragistics’s NetAdvantage for ASP.NET AJAX

NetAdvantage for ASP.NET—the Infragistics’s flagship product for ASP.NET development—
offers a full range of components ranging from a tree and menu, to a hierarchical grid, and
even a charting engine. Infragistics employs a technique known as “Embedded AJAX” to build
the AJAX functionality directly into their controls. By embedding the AJAX into the control
itself, performance levels are achieved that would not otherwise be possible (when utilizing a
separate AJAX engine or wrapper). In addition to the built-in AJAX features, Infragistics also
supplies the “WARP Panel,” which can be used to give any control(s) AJAX capabilities, much
in the same manner as Microsoft’s UpdatePanel.

Because the AJAX capabilities are built into Infragistics’ WebControls, a developer need
only know how to set a property to start using AJAX. Infragistics refers to this concept as

http://lib.ommolketab.ir
http//lib.ommolketab.ir

30 Part I ASP.NET AJAX Building Blocks

“No-Touch AJAX.” Should you want to get your hands dirty, Infragistics provides a full client-
side object model with API’s and even an event model that can be programmed entirely
through JavaScript. NetAdvantage for ASP.NET offers interoperability with Microsoft’s
ASP.NET AJAX Extensions—enabling you to use these two powerful toolsets side-by-side.
Though the current level of integration with ASP.NET AJAX is not as deep as we’ve seen with
ComponentArt’s Web.UI, Infragistics manages to provide much of the same functionality
through their own framework.

For more information, visit http://www.infragistics.com/ajax.

Categorizing AJAX Frameworks

As you can witness yourself, each AJAX-oriented framework falls into one of the following
three main categories:

■ RPC-style frameworks

■ A suite of rich controls

■ AJAX frameworks

RPC-style frameworks are ASP.NET libraries that simply provide the capability of calling back
server code from the client via JavaScript. ASP.NET Script Callbacks and AjaxPro certainly
have this capability.

Commercial products from popular vendors such as Telerik, ComponentArt, and Infragistics
offer a suite of controls with AJAX capabilities. Currently, they don’t provide the same level of
integration with the ASP.NET AJAX platform; however, in the short term they will be aligned
at the same level and differentiate their product offerings by extending differing levels of fea-
tures and capabilities, some solidly Microsoft ASP.NET AJAX compliant (Component Art) and
others to a lesser degree.

Finally, there will be pure AJAX frameworks—that is, a code library that enables pages and
applications to do AJAX. Of course, ASP.NET AJAX Extensions is the most rich and powerful
option, and it’s certainly the standard to follow for the largest share of developers. However, a
number of good frameworks (often, open-source frameworks) exist—such as Anthem.NET
and ComfortASP.NET—that simply help you build AJAX pages quickly and effectively. They
have anticipated most of the features you find today in ASP.NET AJAX Extensions.

ASP.NET AJAX in Person
Architecturally speaking, the ASP.NET AJAX framework is made of two distinct elements: a cli-
ent script library and a set of server controls that add AJAX capabilities to ASP.NET 2.0. The
client script library is written entirely in JavaScript and therefore works with any modern
browser. ASP.NET AJAX offers an end-to-end programming model that spans the client and

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 1 The AJAX Revolution 31

server environment. It’s also seamless to use for most developers because it simply extends
the popular and known application model of classic ASP.NET.

Setting Up ASP.NET AJAX Extensions

Before we delve into the ASP.NET AJAX architecture, let’s briefly review some common issues
related to installing, configuring, and running ASP.NET AJAX applications.

Installing ASP.NET AJAX Extensions

The setup phase of ASP.NET AJAX Extensions installs debug and release copies of the AJAX
Script Library and any needed binaries. If you have any version of Visual Studio 2005
installed, the package also configures the Integrated Development Environment (IDE) to
show a ready-made AJAX project template. (See Figure 1-6.)

Figure 1-6 The new AJAX project template that shows up when you create a new Web site.

The ASP.NET AJAX Extensions Microsoft Windows Installer (MSI) package installs a handful
of files on your computer under the following folder:

%DRIVE%:\Program Files\Microsoft ASP.NET\ASP.NET 2.0 AJAX Extensions\v1.0.61025

In addition, it places an assembly named System.Web.Extensions.dll in the global assembly
cache (GAC). The ASP.NET AJAX assembly incorporates a bunch of JavaScript files (.js files)
that form the client script library.

Note The official installer of ASP.NET AJAX copies the binaries in the GAC. This is still the
recommended way to go. However, simply copying the System.Web.Extensions assembly in
the Bin folder does suffice to deploy an ASP.NET AJAX Web site.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

32 Part I ASP.NET AJAX Building Blocks

Deploying ASP.NET AJAX Applications

The simplest way to create an ASP.NET AJAX application is by choosing the Visual Studio
2005 project template. (See Figure 1-6.) Visual Studio adds to the project a web.config file that
contains all settings required to run an ASP.NET AJAX application. In particular, the configu-
ration file links the ASP.NET AJAX assembly to the project.

If your ASP.NET AJAX application consumes Web services, you should ensure that these Web
services—local to the application—have correctly installed and can find all of their required
resources.

Important Not all configuration entries created in the default web.config file are required
in all cases. You might want to remove those that you don’t need. In particular, you might
want to remove HTTP handlers and HTTP modules that serve calls to Web services and page
methods, respectively, if your application doesn’t place remote out-of-band calls directly from
JavaScript. However, when you edit the web.config file pay a lot of attention and limit your-
self to commenting out parts rather than deleting them. You might inadvertently remove an
important setting that breaks the whole application.

Core Components

The ASP.NET AJAX framework is made of a client and a server part. Applications use a client-
side JavaScript library mostly to manage the page user interface, to call server-based compo-
nents, and order partial page refreshes. Server components generate the response for the
client and emit predefined client script that integrates and sometimes extends the client
library. The server-side part of ASP.NET AJAX includes Web services, ad hoc controls, and
the JavaScript Object Notation (JSON) infrastructure. (I discuss the JSON data interchange
technology a bit later in this chapter.)

The Microsoft Client Library for AJAX

The AJAX client library is made of a set of JavaScript (*.js) files that are linked from client
pages in case of need. These *.js files are downloaded on each client that consumes ASP.NET
AJAX pages. These files are transparent to ASP.NET developers, as they are embedded in the
ASP.NET AJAX assembly.

The client library provides object-oriented and cross-browser extensions to the JavaScript lan-
guage such as classes, namespaces, inheritance, and data types. In addition, it defines a largely
shrink-wrapped version of the .NET base class library that includes string builders, regular
expressions, timers, and tracing. The key part of the ASP.NET AJAX client library is the net-
working layer that manages the complexity of making asynchronous calls over XMLHttpRequest.
This layer allows the client page to communicate with Web services and Web pages through
out-of-band calls.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 1 The AJAX Revolution 33

Server-Based Components

ASP.NET AJAX is an extension to ASP.NET, and ASP.NET is a server-side development plat-
form. Hence, ASP.NET AJAX sports a number of server-based components, including Web
services and controls, that offer a double benefit. On one end, you can program these compo-
nents from the client and update the current page without a full refresh; on the other hand,
though, the programming model remains unaltered for the most part. In this way, at least lim-
ited to core functionalities, the ASP.NET AJAX learning curve might be pleasantly short.

Built-in Web services expose a handful of ASP.NET features to client pages, including user pro-
files, membership, and roles. Server controls look like classic ASP.NET server controls, except
that they emit additional script code. The script code enriches the user’s experience with the
control by optionally taking advantage of the facilities provided by the AJAX client library.
Some key AJAX server controls you will work with are UpdatePanel, UpdateProgress, and Timer.
I’ll cover them in Chapter 4.

The JSON Infrastructure

The growing use of out-of-band calls in Web applications poses a new issue—moving more
and more complex data around. It’s not a mere serialization issue for which the .NET Frame-
work and other platform-specific frameworks have a ready-made solution. The serialization
involved with out-of-band calls is not just cross-platform; it also involves distinct tiers and rad-
ically different tools and languages. With out-of-band calls, you move data from a client to a
server and back. But the client is a browser (if not a mobile device), and JavaScript is the native
format of data. The server is a Web server hosted on a variety of hardware/software platforms
and running a specific Web application framework.

JSON is the emerging technology for passing structured data across the Web. It is a data
interchange format and is fully described at http://www.json.org. Relatively easy to read for
humans and to parse and generate for machines, JSON describes data using two universal
data structures—collections and array—that are supported in one way or another by most
modern programming languages and class libraries.

JSON is a text format that is completely language independent, although it relies heavily on a
number of conventions inherited from the C family of languages.

The JSON client infrastructure can serialize a JavaScript object to an interchange format and
send it over the wire to a server-side receiver. The platform-specific receiver will parse the data
stream to build a platform-specific object. Likewise, the JSON server infrastructure can take
any platform-specific object and serialize to an interchange format. Back on the client, the data
stream is promptly transformed in a JavaScript object. As far as the .NET Framework and
ASP.NET are concerned, a bit of reflection is used to examine the internal structure of classes
and create proper JavaScript wrappers.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

34 Part I ASP.NET AJAX Building Blocks

Virtually all AJAX-based frameworks implement a JSON infrastructure. ASP.NET AJAX is
no exception.

Note For a while, XML has been touted as the lingua franca of the Web because it is ideal
and made-to-measure for developers and architects to package and exchange data in a
totally cross-platform way. Today, you find out that JSON (a non-XML technology) is sold for
the same task. Is there any difference? Both JSON and XML do the same work. XML is more
complex, quirky in some respects, and general-purpose, and it is preferable to describe data
to be styled using an XSLT style sheet for UI purposes. For raw data, JSON is a more light-
weight format that is easier to read and parse for both humans and computers.

Conclusion
Most attentive developers have been developing around interactive Web technologies since
the late 1990s. Various technologies (for example, Microsoft Remote Scripting and open-
source and commercial variations) have been developed without forming a critical mass of
acceptance and use. Or perhaps the mass was big enough, but everyone was waiting for the
spark of a killer application. Another factor that slowed down the adoption of more advanced
client techniques was the lack of cross-browser support for them.

Today, the situation is radically different from what it was only three or four years ago. Now
about 90 percent of the available browsers support all the minimal requirements for imple-
menting interactive Web applications, known as AJAX applications. In addition, the W3C is
standardizing the XMLHttpRequest object, which is the necessary communication workhorse
behind all existing platforms for AJAX. The next generation of Web applications will be based
on a different mechanism: it is no longer, or not just, forms posted in a change of pages, but
individual requests for data and dynamic updates to displayed pages.

As a server technology aimed at the creation of Web pages, ASP.NET takes advantage of the
opportunity for providing this much desired functionality. Script callbacks were the first
Microsoft attempt to offer an API for building AJAX-style pages. Modeled after the classic
postback event, callbacks are sometimes unnecessarily heavy and inflexible.

An add-on to ASP.NET 2.0, Microsoft ASP.NET AJAX Extensions, shows the way ahead for
AJAX applications as far as the ASP.NET platform is concerned. It integrates the AJAX lifestyle
into the existing application model of ASP.NET, resulting in a familiar programming model
with greatly improved and richer functionality.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

139

Chapter 5

The AJAX Control Toolkit

In this chapter:

Extender Controls .140

Introducing the AJAX Control Toolkit .150

The Accordion Control. .157

The Rating Control .160

The ReorderList Control .164

The TabContainer Control .169

AJAX Control Toolkit Extenders. .172

Conclusion .205

Although ASP.NET AJAX is a framework designed to bring more programming power to the
Web client, it happens to be mostly used by server developers—for example, ASP.NET devel-
opers or, at least, Web developers with strong server-side skills. Unfortunately, for the time
being, there’s no way to add rich capabilities and functionalities to the Web client other than
by crafting good and tricky JavaScript code.

ASP.NET AJAX takes up the challenge and provides two ways for developers to build rich
Web applications using a server-centric development approach. As we discussed in Chapter 4,
“Partial Page Rendering,” developers can refresh specific regions of the page using partial ren-
dering instead of normal ASP.NET postbacks. To create such regions, you just use a particular
set of server controls—the most important of which is the UpdatePanel control.

In addition to partial rendering, developers can use control extenders to add a predefined
client-side behavior to new and existing ASP.NET controls. A client-side behavior is a block
of JavaScript code that adds a new capability to the markup generated by a given ASP.NET
control. An extender is basically a server control that emits proper script code—the client
behavior—to enhance how a given ASP.NET control behaves on the client. An extender is
not simply a custom control derived from an existing control. Rather, it represents a general
behavior—such as auto-completion, focus management, generation of popups, and draggability—
that can be declaratively applied to various target control types. For example, a special behav-
ior can be applied to any focused control—be it a TextBox, Button, or CheckBox control.

ASP.NET AJAX Extensions 1.0 simply delivers the base class for extender controls.
No concrete extender controls are provided with the binaries. The online documentation
provides some good tutorials on how to build extenders. You can find one at http://
ajax.asp.net/docs/tutorials/ExtenderControlTutorial1.aspx. A fair number of sample extenders

http://lib.ommolketab.ir
http//lib.ommolketab.ir

140 Part II Adding AJAX Capabilities to a Site

and additional rich client controls are provided through a separate download—the AJAX
Control Toolkit (ACT).

In this chapter, I’ll first review the syntax and semantics of control extenders and then take
you on a tour of the major components in the ACT.

Extender Controls
ASP.NET pages are made of server controls. ASP.NET comes with a fairly rich collection of
built-in controls. In addition, plenty of custom controls are available for developers from third-
party vendors, from community projects, and even from contributions by volunteers. If you
need a text box with a set of features that the ASP.NET control can’t provide (for example,
a numeric text box), you typically write one yourself or buy a new specialized control that
extends the original control and adds the desired behavior. Object orientation, of course,
encourages this approach.

However, it’s rare that you need to write a completely new control yourself. More often, your
control will derive from an existing ASP.NET control base class. Blindly using inheritance for
building specialized versions of controls might not be a wise choice, though. Even in relatively
small projects, in fact, it can lead straight to a proliferation of controls. For example, you can
end up with a regular text box, plus a numeric text box, a filtered text box, a text box that
changes its style when focused, a text box that displays a prompt when left empty, and so on.
On the other hand, merging all these behaviors into a single super TextBox control might not
be wise either. In this case, the resulting code will be literally full of branches, logical condi-
tions, and properties to check. For just a simple extra feature, you would load a huge control.
There has to be a different approach. Enter extender controls.

What Is an Extender, Anyway?

First and foremost, an extender control is a server control itself. It represents a logical behav-
ior that can be attached to one or more control types to extend their base capabilities.

Formalizing the Concept of a “Behavior”

Imagine you want only the text boxes in a given input form to change their style when
focused. If you create a new control, say FocusedTextBox, you’re fine. What if, instead, you want
the same behavior from buttons, check boxes, and drop-down lists? You should create a
bunch of new controls—all of which will extend the target controls with the same logical
behavior. Extender controls are just a formal way to define such a behavior.

Note Virtually all behaviors require the injection of some script code in the client page. For
this reason, extenders are naturally associated with ASP.NET AJAX. From a technology stand-
point, on the other hand, ASP.NET AJAX and extenders are independent concepts. You could

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5 The AJAX Control Toolkit 141

develop extenders for ASP.NET 1.1 and ASP.NET 2.0 that work without ASP.NET AJAX Exten-
sions. However, ASP.NET AJAX Extensions provides some interesting facilities for writers of
extender controls—specifically, base classes and, more importantly, the Microsoft AJAX
library for developing JavaScript functionalities more comfortably.

A typical extender control is made of a set of properties and one or more JavaScript files that,
all together, define the expected behavior of the target control in the browser. The ASP.NET
developer adds extenders declaratively to a server page and configures properties to obtain
the desired behavior.

Next, when the extender renders out, it emits proper script code in the client page. This
script code typically registers handlers for client-side events and modifies the Document
Object Model (DOM) of the markup elements it is associated with. As a result, the original
control looks and behaves in a slightly different manner while its programming interface
remains intact.

To some extent, the concept of a “behavior” is similar to a theme. The theme is used to change
the control’s look and feel. Where the behavior and theme differ, however, is that the behavior
might change some visual aspects of the control, but it is not limited to graphical attributes. It
can alter the structure of the control by accessing the client DOM, add event handlers, and
even expose a true object model with properties and methods.

Examining a Sample Extender

To better understand the goals and characteristics of AJAX extenders, let’s briefly consider the
behavior encapsulated by one of the extenders contained in the ACT—the TextBoxWatermark
extender.

A text box watermark is a string of text that is displayed in an empty text box as a guide to
the user. This help text is stripped off when the text box is submitted and is automatically
removed as the user starts typing in the field. Likewise, it is automatically re-inserted when
the user wipes out any text in the text box.

The watermark behavior hooks up three HTML events: onfocus, onblur, and onkeypress. In its
initialization stage, it also sets a new style and default text for the target text box if the body
of the field is empty. When the text box gets the input focus, the event handler promptly
removes the watermark text and restores the original style. As the user types, the handler
for onkeypress ensures that the current text box is watermarked. Finally, when the input field
loses the focus—the onblur event—the handler sets the watermark back if the content of the
field is the empty string.

To associate this behavior with an ASP.NET TextBox, you use the extender. Alternatively, if you
feel comfortable with ASP.NET control development and JavaScript, you can use a client-side
code fragment to achieve the same results.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

142 Part II Adding AJAX Capabilities to a Site

Note The concept of AJAX extenders closely resembles Dynamic HTML (DHTML) behavior.
Introduced with Internet Explorer 5.0, DHTML behaviors were nothing more than a script file
(or a compiled COM object) that hooked up HTML events and modified the DOM of a given
HTML tag to implement a given behavior. DHTML behaviors were used to extend the capa-
bilities of individual HTML tags. ASP.NET AJAX behaviors are used to extend the capabilities
of the markup block generated by individual ASP.NET controls.

Target Properties

Extender controls are characterized by a set of properties that determine the resulting
behavior. The values of these properties are passed on to the client and incorporated in the
client script.

Obviously, a made-to-measure framework is required both on the server and the client to
make the implementation of behaviors effective and, more importantly, affordable. This frame-
work is exactly the benefit that ASP.NET AJAX Extensions provides. We’ll examine the inter-
nals of extenders in a moment while going through some sample code. Meanwhile, let’s take
a quick look at how you actually use extenders in ASP.NET pages.

In a page, you have one extender instance for each control you want to enhance. The extender
is decorated with a set of properties, as shown here:

<act:TextBoxWatermarkExtender ID="Watermark1" runat="server"

TargetControlID="TextBox1"

WatermarkText=" ... "

WatermarkCssClass=" ... " />

</act:TextBoxWatermarkExtender>

<act:TextBoxWatermarkExtender ID="Watermark2" runat="server"

TargetControlID="TextBox2"

WatermarkText=" ... "

WatermarkCssClass=" ... " />

</act:TextBoxWatermarkExtender>

The TargetControlID property is common to all extenders and indicates the control in the page
that is the target of the extender. Other properties specific to the extender tailor its individual
behavior. The WatermarkText and WatermarkCssClass properties are implemented only by the
Watermark Extender, for example, and serve to assign the text and style the watermarked text
should exhibit.

Armed with this background information, let’s take the plunge into the programming inter-
face of extender controls.

The ExtenderControl Class

As mentioned, ASP.NET AJAX Extensions doesn’t include any concrete implementation of an
extender. However, it defines the base class from which all custom extenders, as well as all
extenders in the ACT, derive. This class is named ExtenderControl.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5 The AJAX Control Toolkit 143

Generalities of Extender Controls

The ExtenderControl class derives from Control and implements the IExtenderControl interface.
The class defines one specific property—TargetControlID. The property is a string and repre-
sents the ID of the server control being extended. The Visible property, common to all server
controls is overridden and made virtually read-only. More precisely, you can’t override a
read/write property to remove the set modifier, but you can just make it throw an exception
if invoked. Here’s the pseudocode of the property:

public override bool Visible

{

get { return base.Visible; }

set { throw new NotImplementedException(); }

}

An extender requires a script manager control in the page, just as any ASP.NET AJAX server
controls do. Note that extenders are mostly used declaratively and are never modified pro-
grammatically. For this reason, an extender doesn’t need (and doesn’t use) view state.

The IExtenderControl Interface

The IExtenderControl interface defines the contract of an extender control. It comprises two
methods: GetScriptDescriptors and GetScriptReferences. Here’s the definition of the interface:

public interface IExtenderControl

{

IEnumerable<ScriptDescriptor> GetScriptDescriptors(

Control targetControl);

IEnumerable<ScriptReference> GetScriptReferences();

}

Both methods return a collection of specific objects—script descriptors and script references,
respectively.

A script descriptor is represented by an instance of the ScriptDescriptor class, whereas the
ScriptReference class represents a linked script file. What is a script descriptor, anyway? It
describes the JavaScript class that provides the expected client behavior. A script descriptor
indicates the client type to create, the properties to set, and the client events for which han-
dlers are required.

Actually, ScriptDescriptor is just a base class that you use only as a reference. The real class you
work with is ScriptBehaviorDescriptor. Here’s some code that demonstrates the typical imple-
mentation of a GetScriptDescriptors method in a sample extender control:

protected IEnumerable<ScriptDescriptor> GetScriptDescriptors(

Control targetControl)

{

ScriptBehaviorDescriptor descriptor;

descriptor = new ScriptBehaviorDescriptor(className, id);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

144 Part II Adding AJAX Capabilities to a Site

descriptor.AddProperty(propertyName1, value1);

...

return new ScriptDescriptor[] { descriptor };

}

The ScriptBehaviorDescriptor class doesn’t feature public properties, but it does expose a cargo
collection property that is filled with property descriptions—typically, name and value.

As discussed in Chapter 3, “The Pulsing Heart of ASP.NET AJAX,” a ScriptReference object
describes a piece of JavaScript code. In particular, in this context it represents the client script
included with the behavior. All referenced scripts define client types and any other auxiliary
JavaScript code that is required. We’ll return to this method in a moment.

The ExtenderControl base class implements the IExtenderControl interface by falling back into
internal members that are declared as protected and abstract (or as must-override in Microsoft
Visual Basic .NET):

IEnumerable<ScriptDescriptor> IExtenderControl.GetScriptDescriptors(

Control targetControl)

{

return this.GetScriptDescriptors(targetControl);

}

IEnumerable<ScriptReference> IExtenderControl.GetScriptReferences()

{

return this.GetScriptReferences();

}

The internal members must be overridden in any derived classes.

Creating a Sample Extender

Let’s apply the previously exposed concepts to a practical scenario and create a sample
extender control. The new extender adds a highlighting behavior that changes the appearance
of the control when this gets focused. This extender, named FocusExtender, is not specific to
just one control but can be applied to virtually any ASP.NET control.

The FocusExtender Control

The focus extender is implemented as a control type that derives from ExtenderControl and
overrides the two abstract members on the base class:

[TargetControlType(typeof(Control))]

public class FocusExtender : ExtenderControl

{

protected override IEnumerable<ScriptReference> GetScriptReferences()

{

...

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5 The AJAX Control Toolkit 145

protected override IEnumerable<ScriptDescriptor> GetScriptDescriptors(

Control targetControl)

{

...

}

...

}

The TargetControlType attribute defines the base class of controls that can be extended. In this
case, all Web controls can be extended. As you can see, if multiple control types must be
extended, it is required that they all derive from the same base class.

The skeleton of the extender is pretty much done. You only have to add some properties to
make the extender configurable and flesh out the body of abstract methods.

The focus extender is designed to change the appearance of the target control when this gets
the focus. At a minimum, you need two sets of visual properties: one for the highlighted state
and one for the normal state. However, these attributes will be processed and applied on the
client. On the client browser, though, there’s a better way to set the appearance of elements
than by using individual properties—cascading styles. To assign these styles, the extender has
two properties—HighlightCssClass and NormalCssClass:

public class FocusExtender : ExtenderControl

{

private string _highlightCssClass;

private string _normalCssClass;

public string HighlightCssClass

{

get { return _highlightCssClass; }

set { _highlightCssClass = value; }

}

public string NormalCssClass

{

get { return _normalCssClass; }

set { _normalCssClass = value; }

}

...

}

As mentioned, an extender class doesn’t need a view state and implements storage for proper-
ties through private fields. This requires that an extender be either used declaratively (and not
modified programmatically during postbacks) or fully configured in the page initialization
phase regardless of postbacks.

Defining the Client Behavior

The GetScriptDescriptors method instantiates a descriptor class and it uses that class to bind
the IntroAjax.FocusBehavior JavaScript class to the HTML subtree rooted in the client ID of the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

146 Part II Adding AJAX Capabilities to a Site

specified control. The descriptor registers bindings between properties on the JavaScript class
and properties on the extender control. The AddProperty method is called upon to link, say,
the highlightCssClass on the JavaScript’s FocusBehavior class and the HighlightCssClass on
the extender.

protected override IEnumerable<ScriptDescriptor> GetScriptDescriptors(

Control targetControl)

{

ScriptBehaviorDescriptor descriptor;

descriptor = new ScriptBehaviorDescriptor("IntroAjax.FocusBehavior",

targetControl.ClientID);

descriptor.AddProperty("highlightCssClass", this.HighlightCssClass);

descriptor.AddProperty("normalCssClass", this.NormalCssClass);

return new ScriptDescriptor[] { descriptor };

}

The binding between client and server properties serves to have the client property set with
the value specified on the server. An extender should be seen as a pair of classes—one server
control class, and a JavaScript class that exposes the extender’s object model on the client.

You save the JavaScript class in one or more .js files and then register all of them with the
ASP.NET AJAX infrastructure through the ScriptReference class. Here’s a typical implementa-
tion of the GetScriptReferences method:

protected override IEnumerable<ScriptReference> GetScriptReferences()

{

ScriptReference reference = new ScriptReference();

reference.Path = ResolveClientUrl("FocusBehavior.js");

return new ScriptReference[] { reference };

}

The ResolveClientUrl method is defined on the Control class, and it resolves a relative URL in
the context of the application. Used as in the preceding code snippet, the method looks for a
FocusBehavior.js file in the same folder as the host page. (However, that’s not the place where
reasonably most developers would put it.)

The Extender’s Client Object Model

The FocusBehavior.js file defines a behavior class with properties that reflect the properties of
the server-side extender control—highlightCssClass and normalCssClass. In addition, the behav-
ior registers a couple of handlers for blur and focus client events. When the focus event fires, the
behavior sets the highlighted cascading style sheet (CSS) style. It sets the normal CSS style
when the blur event occurs. Here’s the full source code:

Type.registerNamespace('IntroAjax');

// Constructor

IntroAjax.FocusBehavior = function(element)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5 The AJAX Control Toolkit 147

{

IntroAjax.FocusBehavior.initializeBase(this, [element]);

this._highlightCssClass = null;

this._normalCssClass = null;

}

// Create the prototype for the behavior

IntroAjax.FocusBehavior.prototype =

{

initialize : IntroAjax$FocusBehavior$initialize,

dispose : IntroAjax$FocusBehavior$dispose,

_onFocus : IntroAjax$FocusBehavior$_onFocus,

_onBlur : IntroAjax$FocusBehavior$_onBlur,

get_highlightCssClass : IntroAjax$FocusBehavior$get_highlightCssClass,

set_highlightCssClass : IntroAjax$FocusBehavior$set_highlightCssClass,

get_normalCssClass : IntroAjax$FocusBehavior$get_normalCssClass,

set_normalCssClass : IntroAjax$FocusBehavior$set_normalCssClass

}

// Internal methods

function IntroAjax$FocusBehavior$initialize()

{

IntroAjax.FocusBehavior.callBaseMethod(this, 'initialize');

this._onfocusHandler = Function.createDelegate(this, this._onFocus);

this._onblurHandler = Function.createDelegate(this, this._onBlur);

$addHandlers(this.get_element(),

{ 'focus' : this._onFocus,

'blur' : this._onBlur },

this);

this.get_element().className = this._normalCssClass;

}

function IntroAjax$FocusBehavior$dispose()

{

$clearHandlers(this.get_element());

IntroAjax.FocusBehavior.callBaseMethod(this, 'dispose');

}

function IntroAjax$FocusBehavior$_onFocus(e)

{

if (this.get_element() && !this.get_element().disabled)

this.get_element().className = this._highlightCssClass;

}

function IntroAjax$FocusBehavior$_onBlur(e)

{

if (this.get_element() && !this.get_element().disabled)

this.get_element().className = this._normalCssClass;

}

function IntroAjax$FocusBehavior$get_highlightCssClass()

http://lib.ommolketab.ir
http//lib.ommolketab.ir

148 Part II Adding AJAX Capabilities to a Site

{

return this._highlightCssClass;

}

function IntroAjax$FocusBehavior$set_highlightCssClass(value)

{

if (this._highlightCssClass !== value)

{

this._highlightCssClass = value;

this.raisePropertyChanged('highlightCssClass');

}

}

function IntroAjax$FocusBehavior$get_normalCssClass()

{

return this._normalCssClass;

}

function IntroAjax$FocusBehavior$set_normalCssClass(value)

{

if (this._normalCssClass !== value)

{

this._normalCssClass = value;

this.raisePropertyChanged('normalCssClass');

}

}

// Register the class

IntroAjax.FocusBehavior.registerClass('IntroAjax.FocusBehavior',

Sys.UI.Behavior);

Sys.Application.notifyScriptLoaded();

The IntroAjax.FocusBehavior class derives from Sys.UI.Behavior—a Microsoft AJAX library pro-
vided class that sets the baseline for behaviors. Note the final call to the notifyScriptLoaded
method on the Sys.Application class. It serves to notify the ASP.NET AJAX client infrastructure
that a required script has been loaded.

Note When writing a JavaScript class, you can optionally define a JSON serializer to be
used when an instance of the class is serialized—for example, if the instance of the class is
used as an argument to a remote method call. (We’ll cover remote scripting in Chapter 7,
“Remote Method Calls with ASP.NET AJAX.”)

IntroAjax.FocusBehavior.descriptor = {

 properties: [{name: 'highlightCssClass', type: String},

 {name: 'normalCssClass', type: String}]

To support JSON serialization, you add a descriptor member defined as in the preceding code
snippet. The properties member refers to an array of pairs made by property name and type.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5 The AJAX Control Toolkit 149

Using the Focus Extender Control

To use the sample extender in an ASP.NET page, you first register the control using the
@Register directive:

<%@ Register Namespace="IntroAjax.Controls" TagPrefix="x" %>

The host page must also have a script manager just as any other ASP.NET AJAX page. Imagine
a sample page with three text boxes and a button that you want to change style when focused.
Here is what the code looks like:

<asp:ScriptManager ID="ScriptManager1" runat="server" />

<table>

<tr>

<td><asp:Label runat="server" ID="Label1">Name</asp:Label></td>

<td><asp:TextBox ID="TextBox1" runat="server" /></td>

</tr>

<tr>

<td><asp:Label runat="server" ID="Label2">Phone</asp:Label></td>

<td><asp:TextBox ID="TextBox2" runat="server" /></td>

</tr>

<tr>

<td><asp:Label runat="server" ID="Label3">E-mail</asp:Label></td>

<td><asp:TextBox ID="TextBox3" runat="server" /></td>

</tr>

</table>

<asp:Button runat="server" ID="Button1" Text="Submit Form" />

You extend these controls through the focus extender using the following ASP.NET markup:

<x:FocusExtender ID="FocusExtender1" runat="server"

NormalCssClass="Normal"

HighlightCssClass="HighLight"

TargetControlID="TextBox1" />

<x:FocusExtender ID="FocusExtender2" runat="server"

NormalCssClass="Normal"

HighlightCssClass="HighLight"

TargetControlID="TextBox2" />

<x:FocusExtender ID="FocusExtender3" runat="server"

NormalCssClass="Normal"

HighlightCssClass="HighLight"

TargetControlID="TextBox3" />

<x:FocusExtender ID="FocusExtender4" runat="server"

NormalCssClass="NormalButton"

HighlightCssClass="HighLightButton"

TargetControlID="Button1" />

As you can see, each instance of the extender is bound to a particular target control and sets
properties. In particular, all text boxes share the same normal and highlighted CSS styles.
Figure 5-1 shows the sample page in action.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

150 Part II Adding AJAX Capabilities to a Site

Figure 5-1 The focus extender in action

In the code snippet, Normal and HighLight are just CSS classes. Here’s a possible definition:

<style type="text/css">

.Normal {

background-color:#FFFFEE;

}

.HighLight {

background-color:Orange;

}

.NormalButton {

font-weight:normal;

width:100px;

}

.HighLightButton {

font-weight:bold;

width:100px;

}

</style>

CSS classes are the preferred way to define visual properties for behaviors and client controls
because they let you group multiple visual attributes in a single object and, subsequently, a
single class property of type string.

Introducing the AJAX Control Toolkit
As mentioned, currently the vast majority of control extenders are compiled into an assembly
known as the AJAX Control Toolkit. This assembly is a separate download and must be regis-
tered with any applications in which you plan to use it. The ACT project is an open-source
project that results from a joint effort of Microsoft and the ASP.NET community. You can learn

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5 The AJAX Control Toolkit 151

more about the project by visiting the home page of the project on the CodePlex Web site.
The exact URL is http://www.codeplex.com/AtlasControlToolkit.

If interested, you can become a contributor to the project and have your work highlighted. The
main purpose of the ACT is to provide a collection of controls and extenders that fully benefit
from the ASP.NET AJAX programming model and provide free and effective Web components
to developers. The ACT is expected to remain and evolve separately from ASP.NET AJAX.
However, chances are that, in the future, part of the contents of the ACT assembly will be
merged with the ASP.NET core binaries. Time will tell.

As of today, you have two main options for using ACT controls. You can link the full assembly
to your application, or you can incorporate some of the controls as source code in your
project. Before you do this, though, make sure you read the license page at http://
www.codeplex.com/AtlasControlToolkit/Project/License.aspx.

Get Ready for the Toolkit

To download the latest bits of the ACT, visit the project’s home page on CodePlex: http://
www.codeplex.com/AtlasControlToolkit. Once it is downloaded, the Toolkit looks like a ZIP file
that you click to unpack and install any contained files.

The ACT Project

At the end of the setup, you have a Microsoft Visual Studio 2005 ASP.NET project on your hard
disk. If you run the project, you should see something like the screen shown in Figure 5-2.

Figure 5-2 The sample Web site built to illustrate the facilities in the ACT

http://lib.ommolketab.ir
http//lib.ommolketab.ir

152 Part II Adding AJAX Capabilities to a Site

If you take a tour of the project files, you’ll see that the ACT is a collection of ASP.NET AJAX con-
trols and extenders plus many examples that illustrate their functionality and tests. In addition,
the ACT contains a development kit to simplify the creation and re-use of your own custom con-
trols and extenders. The development kit includes Visual Studio 2005 templates for Visual Basic
and Visual C# to let developers write their own controls and extenders. In addition, it features a
library of helper classes to speed up the creation of controls and extenders.

Adding ACT Components to the Toolbox

So the ACT contains a number of controls and extenders that you might want to compose and
combine in your ASP.NET pages. The Visual Studio 2005 toolbox appears to be the perfect
place to list all these components so that developers can pick up exactly the one they need
and paste it to the current page. To add ACT components to the toolbox, you first create a new
tab in the toolbox. You right-click on the toolbox surface and select Add Tab from the context
menu. Once the new tab is added, you can give it any name you want—for example, AJAX
Control Toolkit.

Next, you populate the tab with all components in the ACT assembly. To do this, you right-
click the toolbox area below the newly added tab and select Choose Items. The standard dia-
log box that lists .NET assemblies and COM components will show up. Browse to the location
where you installed the ACT, and select the AjaxControlToolkit assembly from the Bin folder of
the SampleWebsite folder. That’s all there is to it. When you’re done, your toolbox will magi-
cally look like the one shown in Figure 5-3.

Figure 5-3 Creating a new tab in the Visual Studio 2005 toolbox to host the ACT components

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5 The AJAX Control Toolkit 153

Note In the ACT, you find a few server controls (such as TabContainer) and many more
extenders (such as RoundedCorners, DropShadow, and TextBoxWatermark). What’s the difference
between controls and extenders? A control provides a closed set of functionalities and a well-
known, fixed behavior that you can rule only through properties and events. An extender is a
(mostly) client-side behavior that can be attached to a variety of controls. For example, you can
attach the DropShadow extender to a TextBox as well as to a Panel and, in both cases, the target
control renders out with a shadow. In spite of such logical differences, both server controls and
extenders are implemented in the same way—both are, in the end, ASP.NET server controls.

Registering ACT Components with the Page

Although the ACT is a native part of the ASP.NET AJAX framework and a constituent part of
the next ASP.NET platform, as of today it is simply an external library. For this reason, you
need to explicitly register the ACT with each and every page where you happen to use any of
its controls or extenders. You use the @Register directive, as shown here:

<%@ Register Assembly="AjaxControlToolkit"

Namespace="AjaxControlToolkit"

TagPrefix="act" %>

If you don’t like the idea of repeating the same code for all the pages of a given application, you
can take the same shortcut that the ASP.NET team took for avoiding the same burden with
ASP.NET AJAX controls.

In fact, the same ASP.NET AJAX core library discussed here is also an external library to the
ASP.NET platform and would need explicit registration with each page. In ASP.NET 2.0, you can
use the following configuration script to enable a @Register directive for all pages of the application:

<pages>

<controls>

<add tagPrefix="asp"

namespace="System.Web.UI"

assembly="System.Web.Extensions, ..." />

</controls>

</pages>

For example, all controls in the System.Web.UI namespace are associated with the asp tag pre-
fix and don’t need an explicit @Register directive in the pages where they’re used. You can add
a similar block to the web.config file for ACT controls as well:

<pages>

<controls>

<add namespace="AjaxControlToolkit"

assembly="AjaxControlToolkit, ..."

tagPrefix="act" />

...

</controls>

</pages>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

154 Part II Adding AJAX Capabilities to a Site

As you may already know, the string you choose as the tag prefix is arbitrary. For the sake of
clarity, though, it is not recommended that you choose the asp prefix as well. The asp prefix
should be reserved for system controls.

What’s in the AJAX Control Toolkit

The ACT is a library designed to extend the capabilities of the ASP.NET AJAX framework. Its
control set might change in the future and could be further extended or cut down. You can
check the progress of the project from the aforementioned CodePlex site. At the time of this
writing, the ACT contains a fair number of extenders and controls, but they certainly don’t
address every possible development scenario.

Extenders in the ACT

Table 5-1 lists the components currently available in the ACT. Note that the full name of the
extender class contains an “Extender” suffix that I omitted in the table for brevity. So, for
example, there will be no CollapsiblePanel component in the ACT assembly, but you will find
a CollapsiblePanelExtender control instead.

Table 5-1 Extenders in the ACT

Component Description

AlwaysVisibleControl Pins a control to a corner of the page, and keeps it floating over
the page background as the user scrolls or resizes the page. You
use this extender to make sure that, say, a given panel shows up
at the top-left corner of the page regardless of the scroll position
or the size of the browser window.

Animation Provides a specialized framework for adding animation effects to
controls hosted in ASP.NET pages. You associate client-side events
of the target control with one or more of the predefined animation
effects.

AutoComplete Associated with a text box, provides a list of suggestions for the text
to type in the field.

Calendar Attached to a text box, the extender provides client-side date-
picking functionality with customizable date format and pop-up
control.

CascadingDropDown Associated with a DropDownList control. This extender automati-
cally populates the list with data retrieved from a Web service
method. The nice thing about this extender is that you can create
a hierarchy of drop-down lists and have the extender automatically
populate child drop-down lists based on the current selections in
any of the previous lists in the heirarchy, if any.

CollapsiblePanel Adds collapsible sections to a Web page. This extender can be used
only with panel controls—that is, with the ASP.NET Panel control or
any class derived from it. You let the extender know which panel in
the page acts as the header and which panel provides the contents
that collapse and expand.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5 The AJAX Control Toolkit 155

ConfirmButton Associated with a button control. This extender adds a confirma-
tion JavaScript dialog box to the click event of the button. The
extender is supported on any class that implements the IButton-
Control interface, including Button, LinkButton, and ImageButton.

DragPanel Associated with panel controls. This extender adds drag-and-drop
capabilities so that you can move the panel around the page. You
can specify the contents to move as well as the handle that, if
pressed, triggers the dragging operation.

DropDown The extender provides a mouse-over link to open a drop-down
panel.

DropShadow Adds drop shadows to any control available on the page. With this
extender, you can specify the opacity and width of the shadow.

DynamicPopulate Updates the contents of a control with the result of a Web service
or page method call.

FilteredTextBox Lets users enter text in a TextBox control that matches a given set of
valid characters.

HoverMenu Displays the contents of an associated panel control when the
mouse hovers next to a given control. You can associate this
extender with any ASP.NET control. The extender works as a kind
of specialized and extremely flexible ToolTip.

MaskedEdit Lets users enter text in a TextBox control according to a given input
layout.

ModalPopup Associated with a control that can fire a client-side onclick event
(typically, buttons and hyperlinks), this extender implements a clas-
sic modal dialog box without using HTML dialog boxes. Basically, it
displays the contents of a given panel and prevents the user from
interacting with the rest of the page.

MutuallyExclusiveCheckBox Associated with CheckBox controls, this extender lets you define
logical groups of check boxes so that users can check only one in
each group.

NoBot Applies some anti-bot techniques to input forms. Bots, or robot
applications, are software applications that run automated tasks
over the Internet. For example, bots are used to fill input forms and
submit ad hoc values.

NumericUpDown Associated with text box controls, this extender allows you to click
automatically displayed buttons to enter the next/previous value in
the field. It works with numbers, custom lists, and Web service
methods.

PagingBulletedList Associated with BulletedList controls, this extender groups all items
bound to the list and organizes them in client-side sorted pages.

PasswordStrength Associated with text box controls used to type a password, this
extender provides visual feedback on the strength of the password
being typed.

Table 5-1 Extenders in the ACT (Continued)

Component Description

http://lib.ommolketab.ir
http//lib.ommolketab.ir

156 Part II Adding AJAX Capabilities to a Site

As you can probably guess, some extenders listed in the table require rich browser capabili-
ties, whereas others are just a smart piece of JavaScript code attached to a block of markup
elements. Note that all these features work in a cross-browser way. I’ll return to each of the
aforementioned extenders with code samples and more details in a moment.

Controls in the ACT

Along with all the extenders listed in Table 5-1, the ACT also supplies a few traditional server
controls with rich capabilities: the Accordion, Rating, ReorderList and TabContainer controls.

The Accordion control allows you to provide multiple collapsible panes and display only one at
a time. When the user clicks a new pane, the currently displayed pane is collapsed to leave
room for the new one.

The Rating control provides an intuitive user interface to let users select the number of stars
that represents their rating of a given subject. The control is the wrapped-up version of the
user interface that several Web sites provide to let users rate published items.

PopupControl Transforms the contents of a given panel into a pop-up window
without using HTML dialog boxes. You can associate this extender
with any control that can fire any of the following client-side
events: onfocus, onclick, and onkeydown.

ResizableControl Attaches to any page element, and allows the user to resize the
element using a handle placed at the lower-right corner of
the control.

RoundedCorners Adds a background panel to any ASP.NET control so that the con-
trol appears with rounded corners. The overall height of the origi-
nal control changes slightly.

Slider Extends a TextBox control with a slider user interface.

TextBoxWatermark Associated with TextBox controls. This extender adds sample or
prompt text, called a “watermark,” that illustrates the type of text
the user is expected to enter in the field. For example, the water-
mark might say, “Type your name here.” The watermark text disap-
pears as soon as the user starts typing and reappears as the text
box becomes empty.

ToggleButton Associated with CheckBox controls. This extender enables you to
use custom images to render the check buttons. You can use dif-
ferent images to indicate the selected and cleared states.

UpdatePanelAnimation Plays animations during key steps of a partial update. You can use
the extender to animate the page both while the panel is being
updating and when the update has completed.

ValidatorCallout Works on top of ASP.NET validators, and improves their user inter-
face. In particular, the extender displays a yellow callout with the
error message.

Table 5-1 Extenders in the ACT (Continued)

Component Description

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5 The AJAX Control Toolkit 157

A data-bound control, ReorderList, allows its child elements to be reordered on the client using
drag-and-drop functionality. To move an item in the list, the user drags the item’s handle up to
its new position. At the end of the operation, the control posts back so that the new status of
the data source can be recorded.

Finally, the TabContainer control is a purely client-side container of tabbed forms.

Let’s first get to know more about these controls and then move on to discuss extenders.

The Accordion Control
Collapsible panels are a frequent feature in modern and cutting-edge Web sites. They allow
you to display a short highlight—the header—and keep more text hidden and available on
demand. The CollapsiblePanel extender (discussed later) allows you to hide and display any
block of markup. But what if you need to build a sort of hierarchy of panels?

The Accordion control allows you to group multiple collapsible panels in a single control, and it
manages the collapsed/expanded state of each panel so that only one can be expanded at a time.

Generalities of the Accordion Control

The Accordion control contains a collection of child AccordionPane controls, each of which fea-
tures a template property to define header and content. Each pane can include any HTML,
ASP.NET, or ASP.NET AJAX markup you want.

Properties of the Control

Table 5-2 lists the key properties of the Accordion control.

Table 5-2 Properties of the Accordion Control

Property Description

AutoSize The value assigned to this property indicates how the control will deter-
mine its actual size.

ContentCssClass Gets and sets the CSS class used to style the content of child panes.

FadeTransitions Indicates whether to use a fade-out transition effect while hiding the
current pane. This property is set to false by default.

FramesPerSecond Gets and sets the number of frames per second used in the transition
animation for the newly selected pane. This property is set to 30 frames
by default.

HeaderCssClass Gets and sets the CSS class used to style the header of child panes.

Panes Returns the collection of child panes.

SelectedIndex Gets and sets the currently expanded pane.

TransitionDuration Gets and sets the number of milliseconds to animate the transition. This
property is set to 250 by default.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

158 Part II Adding AJAX Capabilities to a Site

As you can see, the control has no visual properties except for the ASP.NET base properties
defined on the parent WebControl class (such as BackColor, ForeColor, and so on). In particu-
lar, there’s no style property for child panes. To style the header and content of child panes,
you use CSS classes. Note that if the control worked through regular postbacks, you would
probably have had Style objects instead of CSS class properties, as in many other classic
ASP.NET controls.

Animating the Control

The Accordion control supports animation in two different contexts. First, it might optionally
fade out the content of the current pane when a new one is selected. This effect is controlled
by the FadeTransitions Boolean property. The effect is not very visible on small-sized content
panes. Note also that the fade animation is tightly coupled with the transition animation that
slowly rolls down the content of the new pane.

This second form of animation is controlled by the TransitionDuration and FramesPerSecond
properties. If this latter effect is disabled, you won’t see any fade-out effect regardless of the
setting of the FadeTransitions property.

To skip transition animation completely and obtain a quick swap of panes, you set both
FramesPerSecond and TransitionDuration to 0. If you do so, also set FadeTransitions to false to
save the control unnecessary tasks that will produce no observable effects.

Sizing the Control

The size of the Accordion control is clearly determined by any container element as well as the
content of the various panes. This means that the overall size of the accordion might vary with
the selected pane. In this case, other elements in the page might be pushed up or down. The
AutoSize property helps to keep the overall size of accordion under control.

The AutoSize property takes its values from the AutoSize enumeration, whose values are None
(default), Limit, and Fill. When the AutoSize property is set to None, the accordion modifies its
size freely following the size of the selected pane.

When you set AutoSize to Limit, the accordion never grows larger than the value specified by
its Width and Height properties. The Accordion control inherits these properties from its base
class. The Height and Width properties are both ignored if None is set. If the content to display
is larger than the designated size of the accordion, scrollbars are employed to let users see
all of it.

With the Fill value set, the accordion stays exactly within the bounding box delimited by the
Width and Height properties. In this case, the content will be expanded or made scrollable if it
isn’t the right size. Expanding the contents just means making the pane larger.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5 The AJAX Control Toolkit 159

Using the Accordion Control

The accordion consists of a number of child panes, each of which is an instance of the
AccordionPane class. You add panes using markup and retrieve the collection of panes pro-
grammatically using the Panes collection property.

The Accordion Control in Action

The following code demonstrates the usage of the Accordion control:

<div style="width:300px;">

<act:Accordion ID="Accordion1" runat="server" Height="400px"

SelectedIndex="0"

ContentCssClass="accordionContent"

HeaderCssClass="accordionHeader"

FadeTransitions="true"

AutoSize="Fill">

<Panes>

<act:AccordionPane ID="AccordionPane1" runat="server">

<Header>One</Header>

<Content>This is the first pane</Content>

</act:AccordionPane>

<act:AccordionPane ID="AccordionPane2" runat="server">

<Header>Two</Header>

<Content>

<div style="height:400px">

This is the second pane</div>

</Content>

</act:AccordionPane>

<act:AccordionPane ID="AccordionPane3" runat="server">

<Header>Three</Header>

<Content>This is the third pane</Content>

</act:AccordionPane>

<act:AccordionPane ID="AccordionPane4" runat="server">

<Header>Four</Header>

<Content>This is the fourth pane</Content>

</act:AccordionPane>

</Panes>

</act:Accordion>

</div>

You add an <act:AccordionPane> element for each collapsible panel you want to display. Each
pane consists of a <header> and <content> template.

The sample accordion is embedded in a fixed-width <div> tag. The outermost container deter-
mines the width and height of the accordion. The AutoSize property set to Fill forces the accor-
dion to cover and fill the whole bounding box. Figure 5-4 shows the results.

Note that the content of the second pane is set to a height of 400 pixels; the accordion itself,
though, can’t be taller than 400 pixels and can’t grow uncontrolled because of the AutoSize

http://lib.ommolketab.ir
http//lib.ommolketab.ir

160 Part II Adding AJAX Capabilities to a Site

setting. As a result, the second pane displays a scrollbar to let you see the content that exceeds
that limit.

Figure 5-4 The Accordion control in action

Accordion Panes

An accordion pane is a simple Web control named AccordionPane. It has a Header template
property that you use to define the highlighting of the panel—that is, the portion of the panel
that is visible also when it is collapsed. You can style the header using the settings in the CSS
class defined by the HeaderCssClass property.

Likewise, the content of the pane is defined by the Content template property and styled using
the settings in the CSS class referenced by the ContentCssClass property.

The Rating Control
The satisfaction of users is one of the key metrics used to determine the success of a Web site.
And how do you recognize the satisfaction level of a user? Many Web sites kindly ask users to
provide their feedback through ad hoc panels scattered through the pages. The most common
user-interface pattern for user feedback is a ratings system. The Web site shows a fixed num-
ber of stars and lets users click those stars to rate a given feature (usually, more stars clicked
indicates a higher level of satisfaction).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5 The AJAX Control Toolkit 161

Most ASP.NET developers can easily arrange a rating mechanism that works through classic
postbacks. The ACT Rating control, on the other hand, provides a standard rating mechanism
that works over callbacks.

Generalities of the Rating Control

The output of the control consists of a repeated tag that is decorated through a set of
CSS classes. Each tag represents a “star” in the rating system and is styled according to
the status it represents. Figure 5-5 gives you an idea of the Rating control.

Figure 5-5 The Rating control in action

Properties of the Control

Table 5-3 lists the key properties of the Rating control.

Table 5-3 Properties of the Rating Control

Property Description

AutoPostBack Indicates whether the control will post back whenever the user rates a
given associated content.

CurrentRating Gets and sets the current value rendered by the control. The default
value is 3.

EmptyStarCssClass Gets and sets the CSS class to render an unselected star.

FilledStarCssClass Gets and sets the CSS class to render a selected star.

MaxRating Gets and sets the maximum value that can be rated through the control.
The default value is 5.

RatingAlign Indicates the alignment of the stars. The default is horizontal.

RatingDirection Indicates the orientation of the stars. The default is left to right if the
RatingAlign value is horizontal and top to bottom if RatingAlign is vertical.

ReadOnly Indicates whether the control accepts user input.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

162 Part II Adding AJAX Capabilities to a Site

The markup generated by the Rating control looks like the following code:

<div id="Rating1" style="float: left;">

<span id="Rating1_Star_1" class="ratingStar filledRatingStar"

style="float:left;">

<span id="Rating1_Star_2" class="ratingStar filledRatingStar"

style="float:left;">

...

</div>

As you can see, each “star” is characterized by a unique ID and is represented with a
tag set to the empty string. In Figure 5-5, though, each star is clearly an image. How is
that possible?

Styling the Control

The Rating control supports four different CSS classes. StarCssClass defines the style for the
entire control. WaitingStarCssClass defines the style to be used when the control is posting
back. EmptyStarCssClass and FilledStarCssClass define the style for the tag. You can use
either an image to fill the tag or a contrasting background color. Let’s consider the following
CSS classes:

.filledRatingStar

{

background-color: #2E4d7B;

}

.emptyRatingStar

{

background-image: url(images/NotSelected.png);

}

These classes produce an effect like the second rating object shown in Figure 5-5. The selected
part is rendered as a gauge bar; the unselected part is rendered using empty stars. By editing
the CSS classes, you can choose the “star” images to meet the expectations of the users of
your application.

Using the Rating Control

The Rating control is relatively simple to use. It only requires you to set a few properties—the
CSS classes—and it has no child elements or templates.

StarCssClass Gets and sets the CSS class to style the whole control.

Tag A string to pass to the server-side code that handles the user’s click.

WaitingStarCssClass Gets and sets the CSS class to render selected stars during a server post-
back following a user update.

Table 5-3 Properties of the Rating Control (Continued)

Property Description

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5 The AJAX Control Toolkit 163

The Rating Control in Action

The following code demonstrates the usage of the Rating control:

<h2>Rate this item:</h2>

<div>

<act:Rating ID="Rating1" runat="server"

CurrentRating="3"

MaxRating="10"

StarCssClass="ratingStar"

WaitingStarCssClass="savedRatingStar"

FilledStarCssClass="filledRatingStar"

EmptyStarCssClass="emptyRatingStar"

OnChanged="Rating_Changed" />

</div>

The MaxRating property determines the number of stars to render. Of these, the first stars (or
the last ones, depending on the direction) up to the value specified by CurrentRating are styled
using the class name specified by FilledStarCssClass. The remaining stars are styled using the
attributes set by EmptyStarCssClass.

Specifying valid CSS class names is key. If you omit, say, the empty-star style, the correspond-
ing tag will be rendered as is, without any graphical adjustments. Because the
tag is set to the empty string, no visible output will be generated.

The Eventing Model

The Rating control injects into the client browser a piece of script code that does two main
things. First, it captures mouse movements over the bounding box of the control. Second, it
handles the user’s clicking.

As the user moves the mouse over the unselected stars, the script code automatically toggles
the class name of the underlying tag to give you an idea of the interface if you select the
given number of stars.

To change the current value, you just click on the star that represents the new value. For
example, in an rating system with five stars, you click on the fourth star to set a rating of 4.
When this happens, the Rating control makes an out-of-band call to the server and raises the
Changed event:

protected void Rating_Changed(object sender, RatingEventArgs e)

{

// Perform any significant server-side action

// such as storing the new value to a database

}

The RatingEventArgs class contains three main properties: Tag, Value, and CallbackResult. Tag
is a cargo property used to carry any custom string from the client to the server. Value indi-
cates the currently selected value in the control. CallbackResult, on the other hand, is a string

http://lib.ommolketab.ir
http//lib.ommolketab.ir

164 Part II Adding AJAX Capabilities to a Site

property you can set on the server with any information you want to bring back to the client.
For example, you can use the Changed event to store the rating value to a database and use the
CallbackResult string to return an error message if the operation fails.

The ReorderList Control
Data-bound lists of data are commonly displayed to Web users and, most of the time, are read-
only, immutable lists. There might be situations, though, in which the end user might want to
reorder a displayed list of items. A good example is a page on which the user can select multi-
ple cities in the world to be informed about the current weather. The cities appear in a given
order on the page, but the user might want to change the order at some point.

As a developer, you can add a Move Up button to the page and have the user click three times
to bring the last city to the top of a list with four cities. Although this approach is functionally
effective, it is certainly not very user friendly. A more natural approach would be to enable the
user to simply select the item of a given city and drop it to the desired new location.

This is exactly what the ReorderList control allows you to do. Let’s learn more about this new
ASP.NET AJAX control.

Generalities of the ReorderList Control

The contents of the ReorderList control are expressed through a series of templates that you use
to indicate the structure of each data-bound item, the user interface for the drag handle, and the
user interface for the insertion point where the dragged item is being moved. More properties
and events, though, interact to form the programming interface of the control.

Properties of the Control

Table 5-4 lists the key properties of the ReorderList control. In particular, the list describes the
properties that can be set through attributes in an ASP.NET Web page. The control, in fact,
derives from DataBoundControl and implements the IRepeatInfoUser interface—the typical
interface for controls that support a variety of alignments and layouts, such as CheckBoxList.
The base class and the interface include a bunch of additional properties that relate to data
binding and control layout.

Table 5-4 Properties of the ReorderList Control

Property Description

AllowReorder Indicates whether the control supports drag-and-drop reordering. This
property is automatically set to true if a reorder template is specified.

DataKeyField Indicates the name of the data-bound source that operates as the primary
key field.

DataSourceID Indicates the ID of the data source control used to populate the control.

DragHandleAlignment Indicates the position of the drag handle with respect to the item to drag.
It can have any of the following values: Top, Left, Bottom, or Right.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5 The AJAX Control Toolkit 165

The key properties are ItemTemplate, DragHandleTemplate, and ReorderTemplate. ItemTemplate
allows you to populate the list control with any information and layout you need. DragHandle-
Template defines the graphical elements that users need to identify when they want to reorder
the list. Finally, the ReorderTemplate defines the template of the visual feedback that is shown
to the user while the operation is occurring.

Events of the Control

The ReorderList control is primarily a data-bound control with a rich user interface largely
made up of templates. This means that the control can include a number of child controls that
might trigger postbacks and cause the contents of the control to change.

It is not surprising, then, to find a long list of events associated with this control. These events
are detailed in Table 5-5.

DragHandleTemplate The template for the drag handle that the user clicks to drag and
reorder items.

EditItemTemplate The template used to show that a row is in edit mode.

EmptyListTemplate The template used to show that the list has no data. This item is not
data bindable.

InsertItemTemplate The template used to add new items to the list.

ItemInsertLocation When the InsertItemTemplate property is used to add a new item to the
displayed list, this property indicates where the item has to be inserted.
Feasible values are Beginning and End.

ItemTemplate The template for any items in the list.

PostBackOnReorder Indicates whether the control has to post back at the end of a reorder
operation.

ReorderTemplate The template used to show the drop location during a reorder operation.
This template is not data bindable.

SortOrderField The field, if any, that represents the sort order of the items.

Table 5-5 Events of the ReorderList Control

Event Description

CancelCommand Occurs when a button with the CommandName of “Cancel” is clicked from
within the control.

DeleteCommand Occurs when a button with the CommandName of “Delete” is clicked from
within the control.

EditCommand Occurs when a button with the CommandName of “Edit” is clicked from within
the control.

InsertCommand Occurs when a button with the CommandName of “Insert” is clicked from
within the control.

ItemCommand Occurs when a button is clicked from within the item template of a row.

Table 5-4 Properties of the ReorderList Control (Continued)

Property Description

http://lib.ommolketab.ir
http//lib.ommolketab.ir

166 Part II Adding AJAX Capabilities to a Site

Most command events are related to the capabilities of the bound data source. For example, the
InsertCommand event occurs if the control features a proper template with controls to capture
data and invoke an Insert command on the bound data source control. Here’s a quick example:

<act:ReorderList ...>

...

<InsertItemTemplate>

<div>

<asp:TextBox ID="TextBox1" runat="server"

Text=‘<%# Bind("Title") %>‘></asp:TextBox>

<asp:LinkButton ID="LinkButton1" runat="server"

CommandName="Insert">Add</asp:LinkButton>

</div>

</InsertItemTemplate>

</act:ReorderList>

By clicking on the link button, you cause the ReorderList control to invoke the Insert command
on the bound data source, if there is any. The new item, which will have a Title property, is added
at the top or bottom of the data source based on the value of the ItemInsertLocation property.

The ItemReorder event is fired on the server before the new control is rendered back to the
client with the new order of items. The event carries a ReorderListItemReorderEventArgs object
with the following structure:

public class ReorderListItemReorderEventArgs : EventArgs

{

public ReorderListItem Item { get; set; }

public int NewIndex { get; set; }

public int OldIndex { get; set; }

}

The Item property indicates the item being moved, whereas NewIndex and OldIndex specify
the new and old positions (a 0-based index), respectively.

Using the ReorderList Control

Let’s consider a sample page that makes use of the ReorderList control. As you’ll see in a
moment, the ReorderList control must be bound to a data source and embedded in an
UpdatePanel control.

ItemCreated Occurs when an item row is created.

ItemDataBound Occurs when an item row is bound to its data.

ItemReorder Occurs when an item row is moved to a new location at the end of a
reorder operation.

UpdateCommand Occurs when a button with the CommandName of “Update” is clicked from
within the control.

Table 5-5 Events of the ReorderList Control (Continued)

Event Description

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5 The AJAX Control Toolkit 167

Configuring the ReorderList Control

The following code snippet demonstrates a sample reorder list control bound to an
ObjectDataSource control:

<act:ReorderList runat="server" ID="list"

DataSourceID="ObjectDataSource1">

<ItemTemplate>

<asp:Label ID="Label1" runat="server"

Text=‘<%# Eval("lastname") %>‘ />

</ItemTemplate>

<ReorderTemplate>

<asp:Panel ID="Panel2" runat="server" CssClass="reorderCue" />

</ReorderTemplate>

</act:ReorderList>

<asp:ObjectDataSource ID="ObjectDataSource1" runat="server"

TypeName="IntroAtlas.EmployeeManager"

SelectMethod="LoadAll">

</asp:ObjectDataSource>

The sample control has no DragHandleTemplate set, which means that its user interface has no
visible element to start dragging. In this case, the output looks like a bulleted list, and to start
reordering you simply click and drag the text beside the bullet point, as shown in Figure 5-6.

Figure 5-6 Reordering the items in a ReorderList control

Generally, the item being moved is rendered through a template that you specify via the Reor-
derTemplate property. In this case, the reorder template consists of the sole text of the item
plus a cascading style. If you omit the template but still enable reordering through the Allow-
Reorder Boolean property, the text of the item, rendered with a gray color, is used to give feed-
back to users about the ongoing operation.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

168 Part II Adding AJAX Capabilities to a Site

Building a reorder list that allows items to be moved around is a breeze. However, a couple of
essential issues still need to be properly addressed.

Reordering and Postback Events

The ReorderList control can be configurated to post back at the end of each drag-and-drop
operation. To avoid a full page refresh, you need to wrap the ReorderList control in an
UpdatePanel control. As explained in Chapter 4, in this way you guarantee that only the user
interface of the list control is refreshed rather than the entire page being updated with a
complete postback. The following few lines of markup can accomplish this for us:

<asp:UpdatePanel runat="server" ID="UpdatePanel1">

<ContentTemplate>

...

<!-- ReorderList goes here -->

...

</ContentTemplate>

</asp:UpdatePanel>

Why does the control do a postback of its own? The ReorderList control attempts to persist the
changes the user made so that if any postback occurs from within the page—say, a postback
caused by the user clicking on another button in the page—the contents of the ReorderList, as
modified via a drag-and-drop operation, are maintained. Note, in fact, that any changes made
on the client should be persisted on the server; otherwise, they will be lost in the first subse-
quent page postback.

Persisting Reordered Items

If you run a page that contains a ReorderList control, you notice that invariably after a post-
back, any moved element is restored to its original location. Why is that so? At the end of the
drop operation, the ReorderList control posts back, fires the ItemReorder event on the server,
and rebuilds the list. The list is data bound, so unless you change something in the binding
process, the list will be bound back to the same record set in the same old order.

Subsequently, a page that hosts a ReorderList control should wire up the ItemReorder event and
make sure that the data source bound to the control properly reflects the changes generated
on the client. The ItemReorder event has the following signature:

void OnItemReorder(object sender, ReorderListItemReorderEventArgs e)

In this event handler, you should do the real work of the reorder—that is, move the item from
the old position to the new position in the data source used to populate the list. How you do
this depends on the binding mechanism. If you opted for a data source control (for example,
ObjectDataSource), you can try sorting on a given field, if any, that reflects the new order. If you
set the data source assigning an IEnumerable object to the DataSource property, you can
retrieve and modify this object to reflect the new order. For a DataTable, for example, this
means swapping two rows.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5 The AJAX Control Toolkit 169

Note The ReorderList can automatically perform server-side reorders if its SortOrderField
property is set and if the data source can be sorted on that field. In addition, the type of the
sort field must be integer.

The TabContainer Control
Multiple views are a common feature in most pages. They group information in tabs and
let users click to display only a portion of the information available. In ASP.NET 2.0, the
MultiView control provides an effective shortcut to this feature. But it requires a postback to
update the page when the user selects a new tab. In the ACT, the TabContainer control pro-
vides an AJAX version of the multiview control.

Generalities of the TabContainer Control

The TabContainer control is made of a collection of tabs, each of which is represented by an
instance of the TabPanel class. You can add and remove panels programmatically, as well as
define them declaratively.

Properties of the Control

Table 5-6 lists the properties supported by the control.

In addition, the control fires the ActiveTabChanged event when the selected tab changes. The
event is a mere notification, and the required delegate is EventHandler. No additional informa-
tion is passed along with the event.

Table 5-6 Properties of the TabContainer Control

Property Description

ActiveTab Returns a reference to the currently selected tab.

ActiveTabIndex Gets and sets the 0-based index of the selected tab.

CssClass Gets and sets the CSS class to use to style the control.

Height Gets and sets the height of the tabs. The value of the property is
expressed as a Unit value. This value doesn’t include headers.

OnClientActiveTabChanged Gets and sets the JavaScript code to be executed on the client
when the user changes the selection.

Scrollbars Gets and sets the desired support for scrollbars. This property is
set to Auto by default. Feasible values come from the ASP.NET 2.0
Scrollbars type.

Tabs Returns the collection of TabPanel objects that defines the user
interface of the control.

Width Gets and sets the width of the tabs. The value of the property is
expressed as a Unit value.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

170 Part II Adding AJAX Capabilities to a Site

Properties of Tab Panels

The TabPanel class represents an individual tab in the container. Each tab defines its header
either as plain text or as a template. Likewise, a tab features a template to let developers spec-
ify its content. The most recent tab should remain selected after a postback. Table 5-7 lists the
properties of the TabPanel class.

The JavaScript code you can attach to some client events can be either the name of function
embedded in the host page or a string of JavaScript executable code.

Using the TabContainer Control

Let’s consider a sample page that makes use of the TabContainer control. As you’ll see in a
moment, the markup required for a tab container is straightforward.

Configuring the TabContainer Control

The TabContainer tag maps its child tags to the Tabs collection of TabPanel objects. You add
one <TabPanel> tag for each desired tab and configure it at will. Here’s an example:

<act:TabContainer runat="server" ID="TabContainer1">

<act:TabPanel runat="server" ID="TabPanel1" HeaderText="Your Tab">

<ContentTemplate>

<h3>Some text here</h3>

</ContentTemplate>

</act:TabPanel>

...

</act:TabContainer>

All tabs are given the same size, and you can control the size designation through the Width
and Height properties of the container. The height you set refers to the body of tags and
doesn’t include the header.

Table 5-7 Properties of the TabPanel Class

Property Description

ContentTemplate Sets the contents of the tab.

Enabled Indicates whether the tab should be displayed. The value of the property
can be changed on the client.

HeaderTemplate Gets and sets the template to use to define the header of the tab.

HeaderText Gets and sets the text to display in the tab’s header.

OnClientClick JavaScript code to attach to the client-side click event of the tab.

OnClientPopulated JavaScript code to run on the client when the tab has been fully populated.

OnClientPopulating JavaScript code to run on the client when the tab is going to be populated.

Scrollbars Gets and sets the desired support for scrollbars. This property is set to Auto
by default. Feasible values come from the ASP.NET 2.0 Scrollbars type.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5 The AJAX Control Toolkit 171

Changing the Selected Tab

You can add some script code to run when the user selects a new tab. You can wrap up all the
code in a page-level JavaScript function and bind the name of the function to the OnClientActive-
TabChanged property of the tab container. The following code writes the name of the currently
selected tab to a page element (originally, an ASP.NET Label control) named CurrentTab:

<script type="text/javascript">

function ActiveTabChanged(sender, e)

{

var tab = $get(‘<%=CurrentTab.ClientID%>‘);

tab.innerHTML = sender.get_activeTab().get_headerText();

}

</script>

Note the usage of code blocks in JavaScript. In this way, the client ID of the label is merged in
the script regardless of whether the page is a regular page or a content page (with a hierarchy
of parent controls and naming containers). Figure 5-7 shows the control in action.

Figure 5-7 The TabContainer control in action

The Client-Side Object Model

As a full-fledged ASP.NET AJAX control, the TabContainer control exposes a client-side object
model. In particular, there’s a set of properties that represents the programming interface of
the container and another set of properties for each tab panel.

The container features read/write properties—such as activeTabIndex, activeTab, tabs, and
scrollBars—plus the activeTabChanged event.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

172 Part II Adding AJAX Capabilities to a Site

The tab panel exposes read/write properties such as enabled, headerText, and scrollBars along
with a read-only tabIndex property and a few events—click, populating, and populated.

AJAX Control Toolkit Extenders
In addition to finding full-fledged server controls such as ReorderList and Accordion in the ACT,
you find a bunch of other server controls designed to extend existing controls on the page and
provide them with new and additional behaviors. Existing extenders can be categorized into
a few groups: panel, input, popup, user interface, animation, and button. Let’s dig deeper into
these groupings.

Panel Extenders

ASP.NET pages are full of blocks of markup that, ideally, users would love to move around,
collapse if too large, and expand on demand. The perfect panel control in ASP.NET is, there-
fore, both draggable and expandable. Purposely, ASP.NET AJAX defines a few server-side
behaviors that allow you to easily create collapsible sections and drag panels around the page.

The CollapsiblePanel Extender

The extender builds up a collapsible section in your pages by combining two panels—one act-
ing as the content panel, and one being the expand/collapse controller. In its simplest form,
the CollapsiblePanel extender looks like the following code sample:

<act:CollapsiblePanelExtender ID="CollPanel" runat="server"

TargetControlID="ContentPanel"

ExpandControlID="HeaderPanel"

CollapseControlID="HeaderPanel" />

As usual, the TargetControlID property sets the target panel to expand or collapse.
ExpandControlID and CollapseControlID indicate the panel to use to expand and collapse the
content panel. Note the extreme flexibility of the component design—it might not make sense
in all cases, but you can use different panels to control the expansion and collapsing of the
content panel. In most cases, though, you’ll be using the same header panel with an image
button that changes according to the state of the content panel. The following code snippet
shows a more complete usage for the extender:

<act:CollapsiblePanelExtender ID="cpe" runat="server"

TargetControlID="CollapsibleCustomersPanelContent"

ExpandControlID="CollapsibleCustomersPanel"

CollapseControlID="CollapsibleCustomersPanel"

Collapsed="true"

ExpandDirection="Vertical"

ImageControlID="ToggleImage"

ExpandedImage="~/images/collapse.jpg"

ExpandedText="Collapse"

CollapsedImage="~/images/expand.jpg"

CollapsedText="Expand" />

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5 The AJAX Control Toolkit 173

The ImageControlID indicates the Image control, if any, that if clicked causes the panel to
expand or collapse. The ExpandedImage and CollapsedImage properties set the URL of the
images to use to expand and collapse. Likewise, CollapsedText and ExpandedText set the Tool-
Tip text for the image. Collapsed sets the state of the panel, whereas ExpandDirection indicates
whether the panel expands horizontally or vertically. Figure 5-8 provides a view of the control
in action.

Figure 5-8 The CollapsiblePanel extender in action

The following code demonstrates a typical pair of Panel controls used with the extender:

<asp:Panel ID="CollapsibleCustomersPanel" runat="server">

<asp:Image ID="ToggleImage" runat="server"

ImageUrl="~/images/collapse.jpg" />

Customers

</asp:Panel>

<asp:Panel ID="CollapsibleCustomersPanelContent" runat="server"

Height="0" CssClass="collapsePanel">

...

</asp:Panel>

Unlike draggable panels, the header and content panels are distinct and are typically placed
one after the next in the page layout. The extender panel is also postback aware, meaning that,
on a client postback, it automatically records and restores its collapsed/expanded client state.

Note To avoid the initial flickering when a collapsible panel is displayed, make sure you
properly style the panel that is going to be collapsed and expanded. This panel needs to
have Height=0 and the CSS overflow style set to hidden.

The DragPanel Extender

The DragPanel extender is one of the simplest extenders in the ACT. It has only two properties—
one to indicate the panel to drag, and one to indicate the panel to use as the drag handle:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

174 Part II Adding AJAX Capabilities to a Site

<act:DragPanelExtender ID="DragPanelExtender1" runat="server"

TargetControlID="CustomerPanel"

DragHandleID="CustomersDragHandle" />

As the name suggests, the TargetControlID property refers to the ID of the panel control in the
page that is going to be moved. The DragHandleID, on the other hand, indicates the ID of the
panel control that is used as the handle of the drag. In other words, to drag the target panel
users drag and drop the handle panel. Although functionally distinct, the two panels are, in
effect, logically correlated and rendered through nested tags:

<asp:Panel ID="CustomersPanel" runat="server" >

<asp:Panel ID="CustomersDragHandle" runat="server">

<div style="background-color:yellow">Customers</div>

</asp:Panel>

<asp:Panel runat="server">

<asp:gridview runat="server" DataSourceID="ObjectDataSource1">

<Columns>

...

</Columns>

</asp:gridview>

<asp:ObjectDataSource ID="ObjectDataSource2" runat="server"

TypeName="IntroAjax.CustomerManager"

SelectMethod="LoadAll">

</asp:ObjectDataSource>

</asp:Panel>

</asp:Panel>

The target panel usually contains as a child the drag handle panel. In this way, you obtain the
effect of moving the whole panel as if it were a Microsoft Windows window. (See Figure 5-9.)

Figure 5-9 The DragPanel extender in action

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5 The AJAX Control Toolkit 175

The DropDown Extender

The DropDown extender can be attached to virtually any ASP.NET control. Once attached to a
control, the extender provides a mouse-over link to open a drop-down panel. The contents of
the panel are entirely up to you—typically, arranged as a menu. The drop-down is activated by
clicking the extended control with any mouse buttons.

<asp:Label ID="Label1" runat="server" Text="Move the mouse here" />

<asp:Panel ID="Panel1" runat="server" CssClass="ContextMenuPanel"

Style="display:none;visibility:hidden;">

<asp:LinkButton runat="server" ID="Option1" Text="I'm the first"

CssClass="ContextMenuItem" OnClick="LinkButton1_Click" />

<asp:LinkButton runat="server" ID="Option2" Text="I'm the second"

CssClass="ContextMenuItem" OnClick="LinkButton1_Click" />

<asp:LinkButton runat="server" ID="Option3" Text="I'm the third"

CssClass="ContextMenuItem" OnClick="LinkButton1_Click" />

</asp:Panel>

<act:DropDownExtender runat="server" ID="DropDownExtender1"

TargetControlID="Label1" DropDownControlID="Panel1" />

In the sample just shown, the drop-down user interface is a Panel that contains a list of link
buttons. Link buttons are styled to look like menu items. Link and push buttons, and indeed
embedded controls in general, operate normally. (See Figure 5-10.)

Figure 5-10 The DropDown extender in action

Button Extenders

Buttons are by far one of the most common elements in ASP.NET pages. However, as pages
become functionally richer, additional features are required for buttons to stay in sync with
users’ expectations. ASP.NET AJAX provides a few extenders that apply to submit buttons and
to the pseudo-buttons that form a CheckBox element.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

176 Part II Adding AJAX Capabilities to a Site

The ConfirmButton Extender

Many times, a safe approach to responding to a user clicking a button is to ask the user for a
confirmation for the operation she’s going to start. A common solution for implementing this
behavior entails that the ASP.NET page attach some script code to the button to pop up a
JavaScript message box with a confirmation message. The ConfirmButton extender greatly
simplifies this common task by making it declarative:

<asp:Button runat="server" ID="Button1" Text="Click me" />

<act:ConfirmButtonExtender ID="ConfirmButtonExtender1" runat="server"

TargetControlID="Button1"

ConfirmText="Are you sure you want to click this?\nReally sure?" />

The ConfirmText property specifies the text of the message box being displayed as the user
clicks the button. Note that HTML entities can be used in the text, but by design no HTML
formatting, such as or <i>, can be used. You can, however, use entitized special characters.
For example, you can use
 to break the line and continue the text on the next line.
The reason for this lies in the JavaScript code for the ConfirmButton—it’s using JavaScript’s
window.confirm. Providing HTML formatting makes no sense because the confirmation dialog
box is basically a non-HTML Windows MessageBox call.

Internally, the ConfirmButton extender sets a handler for the onsubmit event of the form and
swallows the event if the user doesn’t confirm the operation. Only controls that implement
the IButtonControl interface can be used with the extender, including LinkButton and
ImageButton controls. (See Figure 5-11.)

Figure 5-11 The ConfirmButton extender in action

The MutuallyExclusiveCheckBox Extender

The MutuallyExclusiveCheckBox extender can be attached to any ASP.NET CheckBox control to
make it part of a group of logically related options. The extender implements a behavior that

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5 The AJAX Control Toolkit 177

looks a lot like a list of radio buttons—multiple options are available but only one can be
chosen. So what’s the point of having a mutually exclusive set of check boxes rather than a
radio button list?

A list of radio buttons can be initially unselected, but once one option has been
selected there’s no way for the user to return to the initial state of having all options
unselected. Returning to the original, completely unselected state is possible with the
MutuallyExclusiveCheckBox extender.

The idea is that you group a number of check boxes under the same key. The extender then
ensures that only one check box with the specified key can be selected at a time:

<h2>What Kind of Experience Do You Have with ASP.NET?</h2>

<asp:CheckBox runat="server" ID="chkBeginner" Text="Beginner" />

<asp:CheckBox runat="server" ID="chkIntermediate" Text="Intermediate" />

<asp:CheckBox runat="server" ID="chkExpert" Text="Expert" />

<act:MutuallyExclusiveCheckBoxExtender runat="server" ID="Mutual1"

TargetControlID="chkBeginner"

Key="AspNetExpertise" />

<act:MutuallyExclusiveCheckBoxExtender runat="server" ID="Mutual2"

TargetControlID="chkIntermediate"

Key="AspNetExpertise" />

<act:MutuallyExclusiveCheckBoxExtender runat="server" ID="Mutual3"

TargetControlID="chkExpert"

Key="AspNetExpertise" />

It can be argued that the same functionality could have been applied to radio buttons instead
of check boxes. Using check boxes was the choice of developers, and it also provides a more
consistent and expected user interface. However, you can re-implement the behavior to use
JavaScript to allow the deselection of a radio button item.

The ToggleButton Extender

Check boxes are graphical HTML elements visually represented by a pair of little bitmaps
(selected and unselected) plus companion text. Each browser can use its own pair of bitmaps,
thus resulting in the check boxes having a slightly different look and feel. Most browsers,
though, tend to represent check-box buttons as square embossed buttons.

The ToggleButton extender provides a way to simulate a check-box element that uses custom
bitmaps. The extender is applied to a CheckBox control, and it replaces the control with a com-
pletely new markup block that uses custom images and provides the same behavior as a stan-
dard check box:

<act:ToggleButtonExtender ID="ToggleButtonExtender1" runat="server"

TargetControlID="CheckBox1"

ImageWidth="19"

ImageHeight="19"

UncheckedImageUrl="DontLike.gif"

CheckedImageUrl="Like.gif" />

http://lib.ommolketab.ir
http//lib.ommolketab.ir

178 Part II Adding AJAX Capabilities to a Site

ImageWidth and ImageHeight properties indicate the desired size of the images. Note that these
attributes are required. UncheckedImageUrl and CheckedImageUrl specify the images to use
when the check box is selected or not selected.

Pop-up Extenders

Virtually every Web developer has a sort of love/hate relationship with pop-up windows. As a
matter of fact, pop-up windows often greatly simplify a number of tasks—especially modal dia-
log boxes. One of the nasty things about HTML pop-up windows is that they are browser win-
dows and require a page to navigate. The pop-up extenders that ASP.NET AJAX Extensions
has to offer, on the other hand, do not require a new browser instance. Instead, they are
limited to popping up the content of any panel you indicate, with or without modality.

The HoverMenu Extender

The HoverMenu extender is similar to the PopupControl extender and can be associated with
any ASP.NET control. Both extenders display a pop-up panel to display additional content,
but they do it for different events. The HoverMenu, in particular, pops up its panel when the
user moves the mouse cursor over the target control. The panel can be displayed at a position
specified by the developer. It can be at the left, right, top, or bottom of the target control. In
addition, the control can be given an optional CSS style so that it looks like it is in a high-
lighted state. (See Figure 5-12.)

Figure 5-12 The HoverMenu extender in action

The HoverMenu extender is good for implementing an auto-display context menu for
virtually every ASP.NET control instance and for providing tips to fill in some input fields.
In Figure 5-12, for example, when the user hovers the cursor over the text box, a list of sugges-
tions appears to simplify the work.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5 The AJAX Control Toolkit 179

<asp:TextBox ID="TextBox1" runat="server" />

<asp:Panel ID="Panel1" runat="server" CssClass="popupMenu">

<asp:RadioButtonList ID="RadioButtonList1" runat="server"

AutoPostBack="true"

OnSelectedIndexChanged="RadioButtonList1_SelectedIndexChanged">

<asp:ListItem Text="Dino Esposito"></asp:ListItem>

<asp:ListItem Text="Nancy Davolio"></asp:ListItem>

<asp:ListItem Text="Andrew Fuller"></asp:ListItem>

<asp:ListItem Value="" Text="None of the above"></asp:ListItem>

</asp:RadioButtonList>

</asp:Panel>

<act:HoverMenuExtender ID="HoverMenu1" runat="server"

TargetControlID="TextBox1"

HoverCssClass="hoverPopupMenu"

PopupControlID="Panel1"

PopupPosition="Right" />

The Panel1 control defines a list of radio buttons, each containing a suggestion for filling
the text box. The HoverMenu extender targets the text box control and defines Panel1 as its
dynamic pop-up panel. The PopupPosition property indicates the position of the panel with
respect to the target control. Likewise, other properties not shown in the previous example
code, such as OffsetX and OffsetY, define the desired offset of the panel. The PopDelay sets the
time (in milliseconds) to pass between the mouse movement and the display of the panel.
The HoverCssClass can optionally be used to give the text box a different style when the hover
menu is on. It is interesting to look at the CSS class associated with the panel:

.popupMenu

{

position:absolute;

visibility:hidden;

background-color:#F5F7F8;

}

.hoverPopupMenu

{

background-color:yellow;

}

It is key that the visibility attribute of the panel is set to hidden just as with CollapsiblePanel con-
trol; otherwise, the panel will display upon page loading and hidden immediately afterwards.

Just as for the PopupControl extender, to take full advantage of the HoverMenu extender
you need to place extended controls inside of an UpdatePanel control. In this way,
whenever the user clicks a radio button, the panel posts back asynchronously and fires
the SelectedIndexChanged event on the server.

void RadioButtonList1_SelectedIndexChanged(object sender, EventArgs e)

{

TextBox1.Text = RadioButtonList1.SelectedValue;

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

180 Part II Adding AJAX Capabilities to a Site

The server-side event handler will then just update the text in the text box., as shown in
Figure 5-12.

The ModalPopup Extender

The ModalPopup extender displays in a modal way any content associated with the control
identified by the PopupControlID property. The TargetControlID property in this case refers to
a clickable control:

<act:ModalPopupExtender ID="ModalPopupExtender1" runat="server"

TargetControlID="LinkButton1"

PopupControlID="PopupContent"

OkControlID="Button1"

CancelControlID="Button2">

Notice that the ModalPopup extender is fired by the onclick event on the target control. It turns
out, therefore, that the target control can only be a control that supports clicking. The pop-up
control doesn’t have to be a Panel control; generally, it can be any control. However, it will nor-
mally be a control that contains a bunch of other controls—typically, a Panel.

In the pop-up panel you can optionally identify an OK control and a Cancel control. You set
the ID of such controls (commonly, buttons) through the OkControlID and CancelControlID
properties. The pop-up behavior is clearly a client-side action, so some JavaScript code might
be required in response to the user’s clicking the OK or Cancel control. You use the OnOkScript
property to specify the JavaScript function to run in case the user clicks the OK button; you
use OnCancelScript otherwise.

The following markup shows the content of a sample modal panel. Note that the Panel control
should set its CSS display attribute to none to make any contents invisible at first.

<asp:LinkButton ID="LinkButton1" runat="server" text="Click me" />

<asp:Panel runat="server" ID="PopupContent" BackColor="Yellow">

<div style="margin:10px">

Take note of this message and tell us if you strongly agree.

<asp:Button ID="Button1" runat="server" Text="Yes" width="40px" />

<asp:Button ID="Button2" runat="server" Text="No" width="40px" />

</div>

</asp:Panel>

Figure 5-13 shows the modal dialog box in action.

A couple of graphical properties—DropShadow and BackgroundCssClass—complete the
extender. A Boolean property, DropShadow indicates whether a drop shadow—as shown in
Figure 5-13—should be rendered. BackgroundCssClass, on the other hand, determines the style
that is temporarily applied to the underlying page:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5 The AJAX Control Toolkit 181

Figure 5-13 The ModalPopup extender in action

modalBackground {

background-color:Gray;

filter:alpha(opacity=70);

opacity:0.7;

}

The preceding style grays out the page and makes it partially opaque for a nicer effect.

The PopupControl Extender

The PopupControl extender can be attached to any HTML element that fires the onclick,
onfocus, or onkeydown events. The ultimate goal of the extender is to display a pop-up window
that shows additional content, such as a calendar on a text box in which the user is expected
to enter a date. The contents of the pop-up panel are expressed through a Panel control, and
they can contain ASP.NET server controls as well as static text and HTML elements:

<asp:textbox runat="server" ID="InvoiceDateTextBox" />

<asp:panel runat="server" ID="Panel1">

...

</asp:panel>

<act:PopupControlExtender ID="PopupExtender1" runat="server"

TargetControlID="InvoiceDateTextBox"

PopupControlID="Panel1"

Position="Bottom" />

The TargetControlID property points to the control that triggers the popup, whereas
PopupControlID indicates the panel to display. The Position property sets the position of
the panel—either at the top, left, right, or bottom of the parent control. (See Figure 5-14.)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

182 Part II Adding AJAX Capabilities to a Site

Figure 5-14 The PopupControl extender in action

Additional properties are OffsetX and OffsetY, which indicate the number of pixels to offset the
popup from its position, as well as CommitProperty and CommitScript, which can be used to
assign values to the target control.

The pop-up window will probably contain some interactive controls and post back. For this
reason, you might want to insert it within an UpdatePanel control so that it can perform server-
side tasks without refreshing the whole page. Typically, the popup will be dismissed after a
postback—for example, the popup shown in Figure 5-14 is configured to be dismissed after the
user has selected a date. The calendar in this case fires the SelectionChanged event on the server:

protected void Calendar1_SelectionChanged(object sender, EventArgs e)

{

PopupExtender1.Commit(

Calendar1.SelectedDate.ToShortDateString());

}

The Commit method sets the default property of the associated control to the specified value.
If you want to control which (nondefault) property is set on the target when the popup is dis-
missed, use the CommitProperty property. Likewise, you use the CommitScript property to indi-
cate the Javascript function to execute on the client after setting the result of the popup.

Warning Note that an extender can’t be placed in a different UpdatePanel than the control
it extends. If the extended control is incorporated in an UpdatePanel, the extender should also
be placed in the updatable panel. If you miss this, you get a runtime exception.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5 The AJAX Control Toolkit 183

User-Interface Extenders

In the family of ASP.NET AJAX extenders, the biggest group is user-interface extenders—that
is, special components that help in the implementation of rich and user-friendly features.

The AlwaysVisibleControl Extender

The AlwaysVisibleControl extender allows you to pin a given control, or panel of controls, to
one of the page corners so that it appears to float over the background body as the page is
scrolled or resized. You can use the extender with virtually any ASP.NET control.

Need a bit of dummy text? Look at

http://www.loremipsum.net

<act:AlwaysVisibleControlExtender ID="av1" runat="server"

TargetControlID="Msg"

HorizontalSide="Left"

VerticalSide="Top" />

You set the target position for the bound control using the HorizontalSide and VerticalSide
properties to define the corner of the page where the content should be docked. The
HorizontalSide property accepts Left and Right as values, whereas Top and Bottom are feasible
values for the VerticalSide property. You can also control the offset from each border using the
VerticalOffset and HorizontalOffset properties. Finally, ScrollEffectDuration indicates how many
seconds the scrolling effect will last when the target control is repositioned. (See Figure 5-15.)

Figure 5-15 The AlwaysVisible extender in action

http://lib.ommolketab.ir
http//lib.ommolketab.ir

184 Part II Adding AJAX Capabilities to a Site

Note that you can’t add the extender to a plain HTML element. If you have an HTML block
to keep always visible (for example, the tag in the previous example), add the
runat=server attribute and give it a unique ID.

The CascadingDropDown Extender

The CascadingDropDown extender can be attached to a DropDownList control to automatically
populate it based on the current selection of one or more parent DropDownList controls.

The CascadingDropDown extender is designed to fit in a relatively common scenario in which
the contents of one drop-down list depend on the selection of another list. With this arrange-
ment, you don’t need to transfer to the client the entire data set from which a child list can
select a subset of items to display in accordance with the selection on its parent. For example,
suppose you want the user to select a country and a city in that country. To minimize data
transfer and provide a friendlier user interface, you might want to keep the city list empty until
a selection is made on the country list. When a country is selected, you get back to the server
to download the list of cities available for that country. The CascadingDropDown extender sim-
plifies this scenario by injecting some glue code into the client page and also making some
assumptions on the structure of your page code.

All the logic about the contents of the set of DropDownList controls is expected to reside on a
Web service. The Web service, in turn, can use any suitable method for storing and looking up
any relevant data. The Web service, though, is somewhat forced to use a contracted schema. In
particular, it needs to have a method with the following signature:

[WebMethod]

public CascadingDropDownNameValue[] GetDropDownContents(

string knownCategoryValues, string category)

{

...

}

The name of the method can vary, of course. The CascadingDropDownNameValue type is an
internal collection type that is designed to contain the name/value items to show in the drop-
down list. Each drop-down list bound to the extender belongs to a category:

<act:CascadingDropDown ID="CascadingDropDown1" runat="server"

TargetControlID="DropDownList1"

Category="Country"

PromptText="Please select a country"

ServiceMethod="GetDropDownContentsPageMethod" />

<act:CascadingDropDown ID="CascadingDropDown2" runat="server"

TargetControlID="DropDownList2"

Category="City"

PromptText="Please select a city"

LoadingText="Please, wait ..."

ServicePath="CityFinderService.asmx"

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5 The AJAX Control Toolkit 185

ServiceMethod="GetDropDownContents"

ParentControlID="DropDownList1" />

The content of the Category property is any name that helps the Web service method to under-
stand what kind of data should be retrieved and the meaning of the input arguments. The
PromptText property sets any text that you want to display in the drop-down list when no
selection is currently made and the control is typically disabled. The LoadingText property
indicates any text that has to be displayed while the drop-down list is being populated. The
ServiceMethod property indicates the method to call to fill in the list control. If no ServicePath
is specified, the method is assumed to be a page method. Finally, ParentControlID creates a
hierarchy and designates a list to be the child of another list.

Each time the selection changes in a parent DropDownList control, the extender makes a call to
the Web service and retrieves the list of values for the next DropDownList in the hierarchy. If no
selection is currently made, the extender automatically disables the control. (See Figure 5-16.)

Figure 5-16 The CascadingDropDown extender in action on two drop-down lists

The DropShadow Extender

The DropShadow extender is designed to add a drop shadow to panel controls to make them
look more professional. You can also set the opacity and width of the shadow:

<asp:Panel runat="server" ID="Panel1">

<div style="padding:8px">

<asp:TextBox ID="TextBox1" runat="server" />

</div>

</asp:Panel>

<act:DropShadowExtender ID="DropShadowExtender1" runat="server"

TargetControlID="Panel1" Opacity=".65" Width="5" Rounded="true" />

The TargetControlID property sets the control that will be rendered with a drop shadow. This con-
trol should generally be a Panel; however, as long as you don’t set rounded corners, it can also be
any other ASP.NET control, such as a TextBox. You control the opacity of the shadow through the
Opacity property. Values for the property range from 0.0 to 1.0, where 0 (or 0.0) means total trans-
parency. Hence, the closer the value is to 1 (or 1.0) the darker the shadow will be.

The Rounded Boolean property indicates whether the surrounding panel and the shadow
should have rounded corners. The default is false. Figure 5-17 shows the extender in action.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

186 Part II Adding AJAX Capabilities to a Site

Figure 5-17 The DropShadow extender in action

The DynamicPopulate Extender

The DynamicPopulate extender is a sort of binder component that replaces the markup of a
given control with the markup returned by a Web service method call. The extender can be
seen as a shrink-wrapped and simplified version of the UpdatePanel control that we discussed
in Chapter 4. It captures a client event and fires a remote call. The returned string is inserted
in the page DOM as the child of the target element. Here’s an example:

<input type="button" id="Button1" runat="server" value="Refresh ..." />

<hr />

Last updated:

<asp:Panel runat="server" ID="Msg" Style="padding:2px;height:2em;" />

<act:DynamicPopulateExtender ID="DynamicPopulateExtender1" runat="server"

TargetControlID="Msg"

ClearContentsDuringUpdate="true"

PopulateTriggerControlID="Button1"

ServiceMethod="GetTimeOnServer"

UpdatingCssClass="updating" />

When the user clicks on the specified item—in this case, the button named Button1—the
extender starts working. It invokes the method GetTimeOnServer and replaces the subtree
rooted in the Msg control with its output. The method GetTimeOnServer is a Web service
method. You specify the URL to the service using the ServicePath property. If this property is
not set, the method is assumed to be a page method defined either in the code file of the page
or inline through a server <script> tag:

[WebMethod]

public string GetTimeOnServer(string contextKey)

{

// Use contextKey to receive data from the client

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5 The AJAX Control Toolkit 187

// Get the output—it can be HTML markup

return DateTime.UtcNow.ToString();

}

ClearContentsDuringUpdate is a Boolean property that clears the contents of the target control
during the update. If you want to display a special style or a bitmap during the operation, you
set a CSS style through the UpdatingCssClass property. When creating such a CSS class, bear in
mind that you should ensure the target control has a minimum height. (It must be explicitly
set on panels.) You use the background-image CSS attribute to set the image to display.

Note that you can use any HTML element to trigger the dynamic population of the target con-
trol. It doesn’t have to be a button control; and it doesn’t have to be a submit button such as
LinkButton or Button. In this case, in fact, the page will post back and you’ll lose the benefit of
the ASP.NET AJAX platform.

Note You can also use a piece of JavaScript code to dynamically populate a given DOM
element. In this case, you set the CustomScript property to the name of a JavaScript global
function. Whether you use a custom script or a server method, you can use the ContextKey
property of the extender to pass an arbitrary string to the code.

The PagingBulletedList Extender

Imagine a page that has to present a long list of items to users—say, a list of customers. A com-
mon solution entails using a pageable grid control. ASP.NET grids do a postback for each new
page, but by wrapping the grid in an UpdatePanel control you can brilliantly fix the issue.
What if you figure that a grid is far too heavy a control and that you need to list items using a
bullet-list control?

The ASP.NET BulletedList control lists the contents of a data source using a variety of bullet-
point user interfaces. It doesn’t provide paging, though. The PagingBulletedList extender is a
surprisingly simple and effective extender to page through the contents of a BulletedList con-
trol. Let’s consider the following code that populates a bulleted list with no paging:

<asp:BulletedList ID="BulletedList1" runat="server" DisplayMode="Text"

DataSourceID="ObjectDataSource1" DataTextField="CompanyName" />

<asp:ObjectDataSource ID="ObjectDataSource1" runat="server"

TypeName="IntroAjax.CustomerManager"

SelectMethod="LoadAll">

</asp:ObjectDataSource>

Such a page will generate more than 80 bullet-point items—one for each customer in the
Northwind database. By extending the BulletedList control with the extender, you get output
like that shown in Figure 5-18.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

188 Part II Adding AJAX Capabilities to a Site

Figure 5-18 The PagingBulletedList extender in action

But then add the code for the extender:

<act:PagingBulletedListExtender ID="PagingBulletedList1" runat="server"

TargetControlID="BulletedList1"

ClientSort="true"

IndexSize="2"

Separator=" - "

SelectIndexCssClass="selectIndex" />

The extender organizes all bound items in pages and displays links to each of them. Pages can
contain a fixed number of items or all the items that match an initial string. The IndexSize
property indicates how many letters in the displayed text should be used to create a page. If
you set it to 1, you will have a pure alphabetical menu. If you set it to 2, you obtain a more gran-
ular view, as each page contains only the items whose name matches the two-letter initial. As
an alternative to using IndexSize, you can use MaxItemsPerPage. In this case, each page (except
perhaps the last one) will have exactly the specified number of items.

The Separator property indicates the character used to separate menu items. SelectIndexCssClass
and UnselectIndexCssClass set the CSS classes for selected and unselected menu items. Finally,
if ClientSort is set to true, items are alphabetically sorted on the client before display.

The ResizableControl Extender

Most users would welcome pages where they can dynamically resize certain HTML elements,
such as panels of text or images. The ResizableControl extender attaches to an element of a
Web page and provides a graphical handle for users to resize that element. Placed at the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5 The AJAX Control Toolkit 189

lower-right corner of the element, the handle lets the user resize the element as if it were a win-
dow. Let’s consider the following markup:

<asp:Panel ID="Panel1" runat="server" Style="overflow:hidden"

Width="130px" Height="65px">

<asp:Image ID="Image1" runat="server" ImageUrl="~/images/ajax.gif"

Style="width:100%; height:100%;" />

</asp:Panel>

<asp:Panel ID="Panel2" runat="server" Style="overflow:auto"

Width="130px" height="100px">

This text resizes itself to be as large as possible

within its container.

</asp:Panel>

As you can see, the first panel contains an image; the second includes plain text. Some CSS
attributes are necessary for the extender to work properly. In particular, you might want to set
the overflow attribute to hidden for images and to auto for text. The overflow attribute controls
the appearance of scrollbars when the contents of the element exceeds the reserved space. In
the example, I stretch or shrink the image and scroll the text.

It is important to give panels an initial correct size. In particular, for images you should give
the surrounding panel the same size of the image. Panels surrounding a block of text should
be given an explicit size too.

<act:ResizableControlExtender ID="Resizable1" runat="server"

TargetControlID="Panel1"

ResizableCssClass="resizingStyle"

HandleCssClass="handleStyle" />

<act:ResizableControlExtender ID="Resizable2" runat="server"

TargetControlID="Panel2"

ResizableCssClass="resizingStyle"

HandleCssClass="handleStyle" />

The ResizableControl extender features two mandatory properties: TargetControlID and
HandleCssClass. The former indicates the control to resize; the latter sets the name of the
CSS class to apply to the resize handle. In addition, ResizableCssClass is the CSS class to apply
to the element when resizing. You might want to use this class to change or thicken the color
of the border to emphasize the operation. Here’s a typical handle CSS class:

. handleStyle

{

width:16px;

height:16px;

background-image:url(~/images/HandleGrip.gif);

overflow:hidden;

cursor:se-resize;

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

190 Part II Adding AJAX Capabilities to a Site

Figure 5-19 shows the extender in action.

Figure 5-19 The ResizableControl extender in action

The ResizableControl extender also features two client events (onresizing and onresize) that can
trigger some JavaScript code to do more complex things, such as increasing the font size to
fit a larger area. The extender allows you to define a minimum and maximum size for the
elements being resized. Any changes resulting from control resizing are automatically
persisted across postbacks.

The RoundedCorners Extender

The RoundedCorners extender is a subset of the DropShadow extender, as it is limited to round-
ing the corners of child panels:

<asp:Panel runat="server" ID="Panel1" BackColor="LightBlue" Width="170px">

<div style="margin-left:2px">

<asp:TextBox ID="TextBox1" runat="server"

BackColor="LightBlue"

BorderWidth="0px" />

</div>

</asp:Panel>

<act:RoundedCornersExtender ID="RoundedCornerExtender1" runat="server"

TargetControlID="Panel1" Radius="6" Color="LightBlue" />

The extender accepts arguments to set the target control and define the desired radius of
the rounded corner and the color of the surrounding border. The rounded corner, in fact, is
obtained by rendering an additional border all around the target control. By removing all bor-
ders around the text box and using the same background color for the panel and the text box,
you can obtain the nice effect shown in Figure 5-20—a rounded text box control.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5 The AJAX Control Toolkit 191

Figure 5-20 The RoundedCorners extender in action

Input Extenders

Web pages still rely on the facilities built into the HTML markup language to let users enter
data into forms and input fields. But HTML input elements are sometimes too limited and
simple for today’s applications and users. For this reason, the plain old <input type="text">
element, and its TextBox ASP.NET counterpart, need some extra features. The ACT supplies a
couple of extenders that transform the classic input field into a more interactive and user-
friendly text box.

The AutoComplete Extender

Typing data into a text box might be boring at times, and even more so when you type the
same chunk of text over and over again. For this reason, Web browsers began supporting
auto-completion features a while ago. A Web browser’s auto-completion feature consists of the
code’s ability to track any URL that the user ever types in. In this way, the browser can quickly
prompt you with a suggestion when you’re typing a possibly long and hard-to-remember URL.

Auto-completion is also a feature that some browsers, such as Internet Explorer 5 and newer
versions, support for any custom text box you use in HTML forms. The browser saves on the
local machine any data ever typed into an input field with a given name, and it makes that
information available to all pages in the site that feature an HTML element with the same
name. The feature is integrated with the browser and is transparent to users and developers.
The list of suggestions builds up incrementally and is entirely beyond the control of page
authors.

The AutoComplete extender extends the auto-completion to any ASP.NET TextBox control;
more importantly, it gives page authors the means to define programmatically the list of
suggestions (as retrieved via a Web Service).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

192 Part II Adding AJAX Capabilities to a Site

<asp:TextBox ID="CustomerName" runat="server" />

<act:AutoCompleteExtender runat="server" ID="AutoCompleteExtender1"

TargetControlID="CustomerName"

Enabled="true"

MinimumPrefixLength="1"

ServicePath="Suggestions.asmx"

ServiceMethod="GetSuggestions" />

In the code snippet, the text box is auto-completed using the data returned by the Get-
Suggestions method of the specified Web service. The ServicePath and ServiceMethod extender
properties identify the service to provide auto-completion data; the MinimumPrefixLength
property sets how many characters the user has to type to trigger the auto-completion feature.
In the preceding code, auto-completion begins with the first typed character.

Note The Web service has to be a local Web service that is installed on the same server
machine and application as the page that is using it. Note that this consideration holds true
for all Web services used by ASP.NET AJAX extenders.

The Web service method you use to provide suggestions must have a known signature:

[WebMethod]

public string[] GetSuggestions(string prefixText, int count)

{

...

}

The prefixText argument indicates the text the user has typed so far; the count argument sets
the desired number of suggestions. The result is displayed in a drop-down panel underneath
the text box. The user can use either the mouse or the keyboard to select one of the suggested
items. The following code shows a Web service method that returns a subset of customer
names that match the provided prefix. (See Figure 5-21.)

public class SuggestionService : System.Web.Services.WebService

{

[WebMethod]

public string[] GetSuggestions(string prefixText, int count)

{

int i=0;

DataView data = GetData();

data = FilterData(data, prefixText);

string [] suggestions = new string[data.Count];

foreach (DataRowView row in data)

suggestions[i++] = row["companyname"].ToString();

return suggestions;

}

private DataView GetData()

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5 The AJAX Control Toolkit 193

{

DataView view = (DataView)HttpContext.Current.Cache["Suggestions"];

if (view == null)

{

SqlDataAdapter adapter = new SqlDataAdapter(

 "SELECT * FROM customers", "...");

DataTable table = new DataTable();

adapter.Fill(table);

view = table.DefaultView;

// Store the entire data set to the ASP.NET Cache for

// further reuse

HttpContext.Current.Cache["Suggestions"] = view;

}

return view;

}

private DataView FilterData(DataView view, string prefix)

{

// Filter out undesired strings

view.RowFilter = String.Format("companyname LIKE '{0}%'", prefix);

return view;

}

}

Figure 5-21 The AutoComplete extender in action

The Calendar Extender

Plenty of input forms require users to specify a date. As an ASP.NET developer, you know how
frustrating it can be for a user to cope with separators, formats, cultures, and all sorts of things
that affect the representation of a date. The most natural way of choosing a date in an input
form is through a calendar; and ASP.NET 2.0 does indeed provide such a control. The original

http://lib.ommolketab.ir
http//lib.ommolketab.ir

194 Part II Adding AJAX Capabilities to a Site

ASP.NET 2.0 Calendar control requires full-page postbacks, although you can find a number
of good workarounds for it—from wrapping it up in an updatable panel to using the hover-
menu extender we considered earlier.

The Calendar extender is the ultimate and, I believe, definitive solution. Attached to a text box,
it provides client-side date-picking functionality with customizable date format and pop-up
control. You can interact with the calendar by clicking on a day, navigating to a month, or
selecting a particular link to set the current date. (See Figure 5-22.)

Figure 5-22 The Calendar extender in action

<asp:TextBox runat="server" ID="TextBox1" />

<act:CalendarExtender runat="server" ID="CalendarExtender1"

TargetControlID="TextBox1"

CssClass="MyCalendar"

Format="dd/MM/yyyy" />

By clicking on the title of the calendar, you can change the view from days-per-month to
months-per-year, and even years-per-decade. The Format property allows you to select the final
format of the date, which will be inserted in the bound text box. Normally, the calendar pops
up when the companion text box gets the input focus. However, you can associate the display
of the calendar with the clicking of an element—for example, an image. The PopupButtonID
property gets and sets the ID of a control to show the calendar popup when clicked.

The FilteredTextBox Extender

The FilteredTextBox extender filters out some characters from the buffer of a given text box control.
It differs from a validation control in that it just prevents users from entering invalid characters,
whereas a validation control operates at a later time when the user tabs out of the input field.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5 The AJAX Control Toolkit 195

How old are you?

<asp:TextBox ID="TextBox1" runat="server" />

<act:FilteredTextBoxExtender ID="Filtered1" runat="server"

TargetControlID="TextBox1"

FilterType="Numbers" />

The preceding text box is expected to accept a number indicating the age of the user. Clearly,
it can accept only numbers. The extender ensures that only numbers can be typed in the input
field. It does that by adding a piece of JavaScript code to the text box to filter out undesired
characters.

The extender supports a few properties, including FilterType, which determine the
filter applied to the input. The property can take any of the following values: Numbers,
UppercaseLetters, LowercaseLetters, and Custom. The effect of the filter is obvious for the first
three cases. When Custom is specified, though, you also set the ValidChars property to a
comma-separated string where each item denotes a valid character. For example, the following
code allows users to enter only A and B characters regardless of the case:

<act:FilteredTextBoxExtender ID="Filtered1" runat="server"

TargetControlID="TextBox1"

FilterType="Custom"

ValidChars="A,a,B,b" />

You can’t combine multiple filters on the same text box. If you want to filter all but letters, you
can’t add two FilteredTextBox extenders to the same control. Instead, you resort to a custom
filter where you specify in the ValidChars property all acceptable characters.

Important Client-side filtering, as well as validation, is subject to the action of some Java-
Script code. This means that by deactivating JavaScript on the client browser, any filtering or
validation is subsequently disabled. In any case, you should not blindly trust what’s typed by
a user in a text box and, instead, apply proper filtering and validation on the server before
you use that data for critical operations.

The MaskedEdit Extender

Added to a TextBox control, the MaskedEdit extender forces users to enter input according
to the specified mask. In addition, data is validated on the client according to the data type
chosen. To achieve the validation, a new validator control is introduced—MaskedEditValidator—that
verifies the input. The masked edit validator is, in turn, associated with an instance of the
masked edit extender:

<asp:TextBox runat="server" ID="TextBox1" />

<act:MaskedEditValidator ID="MaskedEditValidator1" runat="server"

ControlExtender="MaskedEditExtender1"

ControlToValidate="TextBox1"

IsValidEmpty="False"

http://lib.ommolketab.ir
http//lib.ommolketab.ir

196 Part II Adding AJAX Capabilities to a Site

EmptyValueMessage="Date is required"

InvalidValueMessage="Date is invalid"

TooltipMessage="Input a Date" />

<act:MaskedEditExtender runat="server" ID="MaskedEditExtender1"

TargetControlID="TextBox1"

Mask="99/99/9999"

MessageValidatorTip="true"

OnFocusCssClass="MaskedEditFocus"

OnInvalidCssClass="MaskedEditError"

MaskType="Date" />

Figure 5-23 shows the extender at work with date and monetary values.

Figure 5-23 The MaskedEdit extender in action

The extender supports three different masks for most common and specialized types: date,
number, and time. The MaskType property sets the type of the final data; the Mask property
defines the required input mask.

The NoBot Extender

Web applications such as blogs, forums, and portals are subject to having their input forms
automatically filled by robot applications (also known as bots). For example, a bot can register
as a user of the mail service and use the portal to send spam. The techniques employed to
ensure that humans are filling an input form instead of a piece of smart software go under the
name of CAPTCHA, an acronym for Completely Automated Public Turing test to tell Computers

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5 The AJAX Control Toolkit 197

and Humans Apart. In practice, CAPTCHA is a challenge-response test that requires the provi-
sion of additional information that must be figured out on the fly. Figuring this out is nothing
special for humans, but virtually impossible for automated programs. The most popular
example of CAPTCHA technique is a distorted image that represents a number. In a variety of
blog systems, users encounter an additional input field to specify a number depicted within a
figure before their posts will be accepted.

The NoBot extender is a control that attempts to apply anti-bot techniques to input forms. The
extender might not be as powerful as a distorted image with a number inside, but it has the
advantage of being completely invisible and hard to detect. All in all, the NoBot extender’s use-
fulness is probably limited to sites with low traffic where the main goal is stopping spam, and
where it’s not a big deal if it doesn’t achieve 100-percent effectiveness.

The NumericUpDown Extender

Added to a TextBox control, the NumericUpDown extender adds a couple of arrow buttons
next to the control to let users increment and decrement the displayed value. Note that incre-
ment and decrement apply to numeric input as well as any user-defined enumeration.

How old are you?

<asp:TextBox ID="TextBox1" runat="server" Width="100px" />

<act:NumericUpDownExtender ID="UpDown1" runat="server"

Width="100"

TargetControlID="TextBox1" />

You should set the Width property on both the text box and the extender to control the size of
the input field. Note that the Width property on the extender indicates the total width of the
control including the arrow buttons. (See Figure 5-24.)

Figure 5-24 The NumericUpDown extender in action

The default increment is a numeric +1 or -1. However, the RefValues property lets you define a
sequence of values to cycle through. The property accepts a string where each value is sepa-
rated by a semicolon (;) symbol.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

198 Part II Adding AJAX Capabilities to a Site

<act:NumericUpDownExtender ID="UpDown1" runat="server"

Width="100"

RefValues="Sun;Mon;Tue;Wed;Thu;Fri;Sat"

TargetControlID="TextBox1" />

The extender can also use a Web service to calculate the next or the previous value. In this
case, you use ServiceUpPath and ServiceUpMethod to locate the service and method for the up
operation. Likewise, you use ServiceDownPath and ServiceDownMethod for the down operation.
The service methods can receive an arbitrary value from the client through the Tag property.

Note The sole use of the up-down extender is usually not enough to guarantee a pleasant
experience. The up-down extender, in fact, doesn’t force the text box to accept “only” the
values generated by the up-down process. So you could type words in a numeric text box
with an associated up-down extender. To avoid that, you might want to combine the up-
down extender with a filter extender and use the TextBox’s MaxLength property to set the
maximum number of characters.

The PasswordStrength Extender

Even the most secure system can’t do much to protect your server if authorized users employ
weak and easy-to-guess passwords. A number of best practices have been developed lately that
characterize a strong password. The PasswordStrength extender attaches to a TextBox control
and measures the strength of the current text if it’s being used as a password.

From a syntax point of view, the extender can be attached to any TextBox control; from a
semantic perspective instead, it makes sense only if applied to a TextBox control that is used
for the entry of a password. The scenario in which the PasswordStrength extender proves useful
is not a login page where the user enters his password to access a given functionality. Rather,
it is helpful in forms where users registers their credentials to access a system feature.

<h2>Choose your password</h2>

<asp:TextBox ID="TextBox1" runat="server" />

<act:PasswordStrength runat="server" TargetControlID="TextBox1" />

The extender validates the current text against a set of requirements set by the page author.
The result of the validation process is output through either a text message or a bar indicator
to let users know about the level of complexity of the chosen password. With all default set-
tings, the extender works as shown in Figure 5-25.

The feedback is displayed as plain text and dynamically as the user types in the buffer. The
properties of the extender can be divided into two groups: appearance and behavior.

Appearance properties include DisplayPosition to set the position of the feedback text (above,
below, left side, or right side), and StrengthIndicatorType to choose the type of visual feedback.
It can be Text or BarIndicator. When the indicator type is Text, the PrefixText property sets

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5 The AJAX Control Toolkit 199

some text to use in the composition of the feedback message. The TextCssClass defines the CSS
class to style the feedback message.

Figure 5-25 The PasswordStrength extender in action

When the indicator type is BarIndicator, the feedback appears as a gauge bar in a framed area.
BarBorderCssClass and BarIndicatorCssClass properties let you style the bar.

The following properties allow you to set the password requirements to check:
RequiresUpperAndLowerCaseCharacters, PreferredPasswordLength, MinimumNumericCharacters,
and MinimumSymbolCharacters. By default, the password length is set to 10 and no other
check is enabled on the contents.

The extender ranks the password text based on the requirements set. The score is rendered as
a gauge bar or through a text message, as you saw in Figure 5-25. Text messages can be cus-
tomized by assigning a list of semicolon-separated descriptions to the TextStrengthDescriptions
property. You can specify a minimum of 2 and a maximum of 10 strings ordered from the
weakest to the strongest.

The feedback you get from the extender is split in two parts: score and status message.
The score is used to update the indicator or display a strength description. The status message
is a help message displayed on a companion control identified by the HelpStatusLabelID
property:

<asp:TextBox ID="TextBox1" runat="server" />

<asp:Label runat="server" ID="Label1" />

<act:PasswordStrength runat="server"

TargetControlID="TextBox1"

DisplayPosition="RightSide"

PreferredPasswordLength="12"

HelpStatusLabelID="Label1" />

</act:PasswordStrength>

The Label1 control receives a message that suggests what to do to meet password requirements.
You can also keep this message hidden all the time and display it on demand by clicking a
button. In this case, you set two new properties: HelpHandlePosition and HelpHandleCssClass.
The former sets the display position for the help icon; the latter styles the icon.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

200 Part II Adding AJAX Capabilities to a Site

<act:PasswordStrength runat="server">

<act:PasswordStrengthExtenderProperties TargetControlID="TextBox1"

DisplayPosition="BelowRight"

PreferredPasswordLength="12"

HelpHandlePosition="RightSide"

HelpHandleCssClass="helpHandle" />

</act:PasswordStrength>

To be precise, you set the icon to display using the CSS style:

.helpHandle

{

width:16px;

height:14px;

background-image:url(images/Question.png);

overflow:hidden;

cursor:help;

}

Figure 5-26 shows the final page.

Figure 5-26 The PasswordStrength extender in action with a help button

The Slider Extender

The Slider extender allows you to morph a classic TextBox into a graphical slider so that users
can pick up a numeric value from a finite range. You can set the orientation of the slider (hor-
izontal or vertical) and also make it accept a discrete interval of values—that is, only a specified
number of values within a given range. By default, the slider accepts values in the 0 through
100 range.

<h2>Your age</h2>

<asp:TextBox ID="TextBox1" runat="server" />

<hr />

<asp:Label runat="server" ID="Label1" />

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5 The AJAX Control Toolkit 201

<act:SliderExtender runat="server" ID="SliderExtender1"

TargetControlID="TextBox1"

BoundControlID="Label1" />

A value chosen using the slider is automatically persisted via a full or partial postback. You can
reference the value using the TextBox programming interface. (See Figure 5-27.)

Figure 5-27 The Slider extender in action

The TextBoxWatermark Extender

The TextBoxWatermark extender allows you to define default text to display when the text box
is empty. The extender takes care of showing and hiding the text as required.

<h2>Watermark</h2>

<asp:TextBox ID="TextBox1" runat="server" />

<asp:TextBox ID="TextBox2" runat="server" />

<act:TextBoxWatermarkExtender runat="server" ID="TextBoxWatermark1"

TargetControlID="TextBox1"

WatermarkText="Type First Name Here"

WatermarkCssClass="watermarked" />

<act:TextBoxWatermarkExtender runat="server" ID="TextBoxWatermark2"

TargetControlID="TextBox2"

WatermarkText="Type Last Name Here"

WatermarkCssClass="watermarked" />

The extender uses the TargetControlID property to designate the target text box. The
WatermarkText property defines the text to display, whereas WatermarkCssClass indicates
the CSS style to apply to the watermark text. (See Figure 5-28.)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

202 Part II Adding AJAX Capabilities to a Site

Figure 5-28 The TextBoxWatermark extender in action

The ValidatorCallout Extender

The ValidatorCallout extender enhances the graphical capabilities of existing ASP.NET valida-
tors. It displays the error message of a validator using the balloon-style ToolTips of Windows
XP. (See Figure 5-29.)

Figure 5-29 The ValidatorCallout extender in action

Here’s how to use the extender:

<table>

<tr>

<td>Name:</td>

<td><asp:TextBox runat="server" ID="txtName" /></td>

</tr>

<tr>

<td>Email:</td>

<td><asp:TextBox runat="server" ID="txtEmail" /></td>

</tr>

</table>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5 The AJAX Control Toolkit 203

<asp:Button runat="server" ID="Button1" Text="Submit" />

<asp:RequiredFieldValidator runat="server" ID="requiredName"

ControlToValidate="txtName"

Display="None"

ErrorMessage="Required Field Missing
A name is required." />

<asp:RequiredFieldValidator runat="server" ID="requiredEmail"

ControlToValidate="txtEmail"

Display="None"

ErrorMessage="Required Field Missing
Email address required." />

<asp:RegularExpressionValidator runat="server" ID="regularEmail"

ControlToValidate="txtEmail"

Display="None"

ValidationExpression="[a-zA-Z_0-9.-]+\@[a-zA-Z_0-9.-]+\.\w+"

ErrorMessage="Invalid Email
Please, enter a valid email

address" />

<act:ValidatorCalloutExtender runat="server" ID="CalloutExtender1"

TargetControlID="requiredName" HighlightCssClass="highlight" />

<act:ValidatorCalloutExtender runat="server" ID="CalloutExtender2"

TargetControlID="requiredEmail" HighlightCssClass="highlight" />

<act:ValidatorCalloutExtender runat="server" ID="CalloutExtender3"

TargetControlID="regularEmail" HighlightCssClass="highlight" />

Animation Extenders

The ACT comes with a full-fledged framework for building animations over the Web, leverag-
ing the capabilities of rich browsers. The idea is to have an extensible set of animation blocks
that can be composed together and run either in sequence or in parallel. The animations to be
played are declaratively specified using XML.

The Animation Extender

The Animation extender allows you to use the built-in animation framework in a mostly
declarative and codeless fashion. The extender plays specified animations whenever a client
event occurs on the target control. Supported events include load, click, mouseover, and
mouseout. Here’s an example:

<act:AnimationExtender ID="AnimationExtender1" runat="server"

TargetControlID="Panel1">

<Animations>

<OnLoad>

<OpacityAction Opacity=".2" />

</OnLoad>

<OnHoverOver>

<FadeIn Duration=".25" Fps="20"

MinimumOpacity=".2" MaximumOpacity=".8" />

</OnHoverOver>

<OnHoverOut>

<FadeOut Duration=".25" Fps="20"

MinimumOpacity=".2" MaximumOpacity=".8" />

</OnHoverOut>

</Animations>

</act:AnimationExtender>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

204 Part II Adding AJAX Capabilities to a Site

The Animations tag fully describes the animation. It is made up of a list of actions bound to
specific events. In the above preceding example, the events are load, hover, and mouseout. The
tag OnLoad describes the animation performed when the extended control is loaded. Tags
OnHoverOver and OnHoverOut describe what happens when the hover effect is to take place,
which is typically delayed from the actual mouseover and mouseout events. To describe an ani-
mation, you use a combination of existing animation blocks: fade-in, fade-out, opacity, pulse,
move, resize, color interpolation, and scaling. You can also specify actions using custom script.
The sample code just shown applies a slight opacity filter to the extended control upon load-
ing and then fades its area in when the mouse hovers over it and out of it. For more informa-
tion on built-in animation blocks, take a look at http://ajax.asp.net/ajaxtoolkit/Walkthrough/
AnimationReference.aspx.

The UpdatePanelAnimation Extender

The UpdatePanelAnimation extender applies animation to a very specific situation where cus-
tom events need to be handled—before and after an updatable region is refreshed. Using the
extender is as simple as defining an updatable panel in the page and adding the following
code for the extender:

<act:UpdatePanelAnimationExtender runat="server" ID="UpdatePanelAnimation1"

TargetControlID="UpdatePanel1">

<Animations>

<OnUpdating>

<Sequence>

<EnableAction AnimationTarget="Button1" Enabled="false" />

<FadeOut AnimationTarget="Panel1" minimumOpacity=".3" />

</Sequence>

</OnUpdating>

<OnUpdated>

<Sequence>

<FadeIn AnimationTarget="Panel1" minimumOpacity=".3" />

<EnableAction AnimationTarget="Button1" Enabled="true" />

</Sequence>

</OnUpdated>

</Animations>

</act:UpdatePanelAnimationExtender>

As you can see, it is nothing more than an animation applied to panel-specific events such as
OnUpdating and OnUpdated. Before the update begins, the area that contains the sensitive
contents to update is faded out and a control, Button1, is disabled. You use the FadeOut anima-
tion block for this purpose. In the preceding example, Panel1 is merely the HTML block that
contains the UpdatePanel control.

<div ID="Panel1">

<asp:UpdatePanel ID="UpdatePanel1" runat="server" ...>

...

</asp:UpdatePanel>

</div>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5 The AJAX Control Toolkit 205

The EnableAction animation block declaratively disables the specified control during the
update. In Chapter 4, you learned how to accomplish the same thing programmatically—
the extender now provides a declarative approach.

Once the region has been updated, you run a FadeIn animation to bring the panel content
back to its full colors and re-enable previously disabled controls using the EnableAction. The
Resize animation can also be used to implement a sort of collapse/expand effect during the
update: the panel closes, gets updated, and then unfolds to show its new contents. Imagina-
tion is your only limit. (See Figure 5-30.)

Figure 5-30 The UpdatePanelAnimation extender in action

Conclusion
No matter how many controls you have in your arsenal, you’ll likely be always lacking just the
one that is crucial for your current work. That’s why the extensibility model of ASP.NET has
been so successful over the years, and that’s why so many component vendors crowd the mar-
ket with excellent product offerings.

Anyway, always deriving new controls from existing ones might not necessarily be a wise strat-
egy. A new control is required for a significant piece of server and client code that can be used
to back up a good chunk of user interface. If you only need to filter the values in a text box, a
custom text box control is hardly the best option. But until the arrival of ASP.NET AJAX and
the AJAX Control Toolkit, there was no other way out.

With control extenders, you define the concept of a “behavior” and work with it as a distinct
entity set apart from classic server controls. Extenders are server controls, but they work on
top of bound controls and improve their overall capabilities by adding a new behavior.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

206 Part II Adding AJAX Capabilities to a Site

An extender doesn’t necessarily have to be an AJAX control. However, in the implementation
of the AJAX Control Toolkit all extenders require a script manager, inject a good quantity of
script code into the client pages, and take advantage of the client JavaScript library.

To take advantage of extenders and controls in the ACT, you don’t have to import the binaries
into your application. The ACT is an open-source project and, according to the license agree-
ment you accept when you download the assembly, it can be incorporated piecemeal in your
applications. This means, for example, that you can import only a few components through
their source code and perhaps even adapt the code to your specific needs.

With this overview of controls and extenders, and armed with a strong knowledge of partial
rendering, we’re now ready to tackle an alternative programming model in ASP.NET AJAX—
making remote procedure calls over the Web.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

