
http://lib.ommolketab.ir
http//lib.ommolketab.ir


OpenGL®

Programming Guide
Seventh Edition

http://lib.ommolketab.ir
http//lib.ommolketab.ir


The OpenGL graphics system is a software interface to graphics 
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About This Guide xxxv

0.About This Guide

The OpenGL graphics system is a software interface to graphics hardware. 
“GL” stands for “Graphics Library.” It allows you to create interactive 
programs that produce color images of moving, three-dimensional objects. 
With OpenGL, you can control computer-graphics technology to produce 
realistic pictures, or ones that depart from reality in imaginative ways. This 
guide explains how to program with the OpenGL graphics system to deliver 
the visual effect you want. 

What This Guide Contains

This guide has 15 chapters. The first five chapters present basic information 
that you need to understand to be able to draw a properly colored and lit 
three-dimensional object on the screen.

• Chapter 1, “Introduction to OpenGL,” provides a glimpse into the 
kinds of things OpenGL can do. It also presents a simple OpenGL pro-
gram and explains essential programming details you need to know for 
subsequent chapters.

• Chapter 2, “State Management and Drawing Geometric Objects,”
explains how to create a three-dimensional geometric description of an 
object that is eventually drawn on the screen. 

• Chapter 3, “Viewing,” describes how such three-dimensional models 
are transformed before being drawn on a two-dimensional screen. You 
can control these transformations to show a particular view of a model. 

• Chapter 4, “Color,” describes how to specify the color and shading 
method used to draw an object. 
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• Chapter 5, “Lighting,” explains how to control the lighting condi-
tions surrounding an object and how that object responds to light 
(that is, how it reflects or absorbs light). Lighting is an important topic, 
since objects usually don’t look three-dimensional until they’re lit. 

The remaining chapters explain how to optimize or add sophisticated 
features to your three-dimensional scene. You might choose not to take 
advantage of many of these features until you’re more comfortable with 
OpenGL. Particularly advanced topics are noted in the text where they 
occur. 

• Chapter 6, “Blending, Antialiasing, Fog, and Polygon Offset,”
describes techniques essential to creating a realistic scene—alpha 
blending (to create transparent objects), antialiasing (to eliminate 
jagged edges), atmospheric effects (to simulate fog or smog), and 
polygon offset (to remove visual artifacts when highlighting the 
edges of filled polygons).

• Chapter 7, “Display Lists,” discusses how to store a series of OpenGL 
commands for execution at a later time. You’ll want to use this feature 
to increase the performance of your OpenGL program. 

• Chapter 8, “Drawing Pixels, Bitmaps, Fonts, and Images,” discusses 
how to work with sets of two-dimensional data as bitmaps or images. 
One typical use for bitmaps is describing characters in fonts.

• Chapter 9, “Texture Mapping,” explains how to map one-, two-, and 
three-dimensional images called textures onto three-dimensional 
objects. Many marvelous effects can be achieved through texture 
mapping. 

• Chapter 10, “The Framebuffer,” describes all the possible buffers that 
can exist in an OpenGL implementation and how you can control 
them. You can use the buffers for such effects as hidden-surface elimi-
nation, stenciling, masking, motion blur, and depth-of-field focusing.

• Chapter 11, “Tessellators and Quadrics,” shows how to use the 
tessellation and quadrics routines in the GLU (OpenGL Utility Library).

• Chapter 12, “Evaluators and NURBS,” gives an introduction to 
advanced techniques for efficient generation of curves or surfaces. 

• Chapter 13, “Selection and Feedback,” explains how you can use 
OpenGL’s selection mechanism to select an object on the screen. 
Additionally, the chapter explains the feedback mechanism, which 
allows you to collect the drawing information OpenGL produces, 
rather than having it be used to draw on the screen. 
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• Chapter 14, “Now That You Know,” describes how to use OpenGL 
in several clever and unexpected ways to produce interesting results. 
These techniques are drawn from years of experience with both 
OpenGL and the technological precursor to OpenGL, the Silicon 
Graphics IRIS Graphics Library. 

• Chapter 15, “The OpenGL Shading Language,” discusses the changes 
that occurred starting with OpenGL Version 2.0. This includes an 
introduction to the OpenGL Shading Language, also commonly called 
the “GLSL,” which allows you to take control of portions of OpenGL’s 
processing for vertices and fragments. This functionality can greatly 
enhance the image quality and computational power of OpenGL.

There are also several appendices that you will likely find useful:

• Appendix A, “Basics of GLUT: The OpenGL Utility Toolkit,” dis-
cusses the library that handles window system operations. GLUT is 
portable and it makes code examples shorter and more comprehensible.

• Appendix B, “State Variables,” lists the state variables that OpenGL 
maintains and describes how to obtain their values.

• Appendix C, “Homogeneous Coordinates and Transformation 
Matrices,” explains some of the mathematics behind matrix 
transformations.

• Appendix D, “OpenGL and Window Systems,” briefly describes the 
routines available in window-system-specific libraries, which are 
extended to support OpenGL rendering. Window system interfaces 
to the X Window System, Apple’s Mac OS, and Microsoft Windows are 
discussed here.

Finally, an extensive Glossary defines the key terms used in this guide.

In addition, the appendices listed below are available at the following Web site: 

http://www.opengl-redbook.com/appendices/

• Appendix E, “Order of Operations,” gives a technical overview of the 
operations OpenGL performs, briefly describing them in the order in 
which they occur as an application executes.

• Appendix F, “Programming Tips,” lists some programming tips based 
on the intentions of the designers of OpenGL that you might find 
useful. 

• Appendix G, “OpenGL Invariance,” describes when and where an 
OpenGL implementation must generate the exact pixel values described 
in the OpenGL specification.
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• Appendix H, “Calculating Normal Vectors,” tells you how to 
calculate normal vectors for different types of geometric objects.

• Appendix I, “Built-In OpenGL Shading Language Variables and 
Functions,” describes the built-in variables and functions available in 
the OpenGL Shading Language.

• Appendix J, “Floating-Point Formats for Textures, Framebuffers, 
and Renderbuffers,” documents the various floating-point and 
shared-exponent pixel and texel formats.

• Appendix K, “RGTC Compressed Texture Format,” describes 
the texture format for storing one- and two-component compressed 
textures.

• Appendix L, “std140 Uniform Buffer Layout,” documents the 
standard memory layout of uniform-variable buffers for GLSL 1.40.

What’s New in This Edition

This seventh edition of the OpenGL Programming Guide includes new and 
updated material covering OpenGL Versions 3.0 and 3.1. With those 
versions, OpenGL—which is celebrating its eighteenth birthday the year of 
this writing—has undergone a drastic departure from its previous revisions. 
Version 3.0 added a number of new features as well as a depreciation model,
which sets the way for antiquated features to be removed from the library. 
Note that only new features were added to Version 3.0, making it 
completely source and binary backward compatible with previous versions. 
However, a number of features were marked as deprecated, indicating that 
they may potentially be removed from future versions of the API.

Updates related to OpenGL Version 3.0 that are discussed in this edition 
include the following items:

• New features in OpenGL:

– An update to the OpenGL Shading Language, creating version 1.30 
of GLSL

– Conditional rendering

– Finer-grained access to mapping buffer objects’ memory for update 
and reading

– Floating-point pixel formats for framebuffers in addition to texture 
map formats (which were added in OpenGL Version 2.1)
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– Framebuffer and renderbuffer objects

– Compact floating-point representations for reducing the memory 
storage usage for small dynamic-range data

– Improved support for multisample buffer interactions when 
copying data

– Non-normalized integer values in texture maps and renderbuffers 
whose values retain their original representation, as compared to 
OpenGL’s normal operation of mapping those values into the 
range [0,1]

– One- and two-dimensional texture array support

– Additional packed-pixel formats allowing access to the new 
renderbuffer support

– Separate blending and writemask control for multiple rendering 
targets

– Texture compression format

– Single- and double-component internal formats for textures

– Transform feedback

– Vertex-array objects

– sRGB framebuffer format

• An in-depth discussion of the deprecation model

• Bug fixes and updated token names

And for OpenGL Version 3.1:

• Identification of features removed due to deprecation in Version 3.0

• New features:

– An update to the OpenGL Shading Language, creating version 1.40 
of GLSL

– Instanced rendering

– Efficient server-side copies of data between buffers

– Rendering of multiple similar primitives within a single draw call 
using a special (user-specified) token to indicate when to restart a 
primitive

– Texture buffer objects
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– Texture rectangles

– Uniform buffer objects

– Signed normalized texel formats

What You Should Know Before Reading This Guide

This guide assumes only that you know how to program in the C language 
and that you have some background in mathematics (geometry, trigonom-
etry, linear algebra, calculus, and differential geometry). Even if you have 
little or no experience with computer graphics technology, you should be 
able to follow most of the discussions in this book. Of course, computer 
graphics is an ever-expanding subject, so you may want to enrich your 
learning experience with supplemental reading:

• Computer Graphics: Principles and Practice by James D. Foley, Andries van 
Dam, Steven K. Feiner, and John F. Hughes (Addison-Wesley, 1990)—
This book is an encyclopedic treatment of the subject of computer 
graphics. It includes a wealth of information but is probably best read 
after you have some experience with the subject.

• 3D Computer Graphics by Andrew S. Glassner (The Lyons Press, 1994)—
This book is a nontechnical, gentle introduction to computer graphics. 
It focuses on the visual effects that can be achieved, rather than on the 
techniques needed to achieve them.

Another great place for all sorts of general information is the official 
OpenGL Web site. This Web site contains software, sample programs, 
documentation, FAQs, discussion boards, and news. It is always a good 
place to start any search for answers to your OpenGL questions:

http://www.opengl.org/

Additionally, full documentation of all the procedures that compose 
OpenGL Versions 3.0 and 3.1 will be documented at the official OpenGL 
Web site. These Web pages replace the OpenGL Reference Manual that was 
published by the OpenGL Architecture Review Board and Addison-Wesley.

OpenGL is really a hardware-independent specification of a programming 
interface, and you use a particular implementation of it on a particular kind 
of hardware. This guide explains how to program with any OpenGL imple-
mentation. However, since implementations may vary slightly—in perfor-
mance and in providing additional, optional features, for example—you 
might want to investigate whether supplementary documentation is avail-
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able for the particular implementation you’re using. In addition, the pro-
vider of your particular implementation might have OpenGL-related 
utilities, toolkits, programming and debugging support, widgets, sample 
programs, and demos available at its Web site.

How to Obtain the Sample Code

This guide contains many sample programs to illustrate the use of particular 
OpenGL programming techniques. As the audience for this guide has a wide 
range of experience—from novice to seasoned veteran—with both 
computer graphics and OpenGL, the examples published in these pages 
usually present the simplest approach to a particular rendering situation, 
demonstrated using the OpenGL Version 3.0 interface. This is done mainly 
to make the presentation straightforward and obtainable to those readers 
just starting with OpenGL. For those of you with extensive experience 
looking for implementations using the latest features of the API, we first 
thank you for your patience with those following in your footsteps, and ask 
that you please visit our Web site:

http://www.opengl-redbook.com/

There, you will find the source code for all examples in this text, 
implementations using the latest features, and additional discussion 
describing the modifications required in moving from one version of 
OpenGL to another.

All of the programs contained within this book use the OpenGL Utility 
Toolkit (GLUT), originally authored by Mark Kilgard. For this edition, 
we use the open-source version of the GLUT interface from the folks 
developing the freeglut project. They have enhanced Mark’s original work 
(which is thoroughly documented in his book, OpenGL Programming for the 
X Window System (Addison-Wesley, 1996)). You can find their open-source 
project page at the following address:

http://freeglut.sourceforge.net/

You can obtain code and binaries of their implementation at this site.

The section “OpenGL-Related Libraries” in Chapter 1 and Appendix A give 
more information about using GLUT. Additional resources to help 
accelerate your learning and programming of OpenGL and GLUT can be 
found at the OpenGL Web site’s resource pages:

http://www.opengl.org/resources/
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Many implementations of OpenGL might also include the code samples as 
part of the system. This source code is probably the best source for your 
implementation, because it might have been optimized for your system. 
Read your machine-specific OpenGL documentation to see where those 
code samples can be found. 

Errata

Unfortunately, it is likely this book will have errors. Additionally, 
OpenGL is updated during the publication of this guide: Errors are 
corrected and clarifications are made to the specification, and new 
specifications are released. We keep a list of bugs and updates at our Web 
site, http://www.opengl-redbook.com/, where we also offer facilities for 
reporting any new bugs you might find. If you find an error, please accept 
our apologies, and our thanks in advance for reporting it. We’ll get it 
corrected as soon as possible.

Style Conventions

These style conventions are used in this guide:

• Bold—Command and routine names and matrices

• Italics—Variables, arguments, parameter names, spatial dimensions, 
matrix components, and first occurrences of key terms

• Regular—Enumerated types and defined constants

Code examples are set off from the text in a monospace font, and command 
summaries are shaded with gray boxes. 

In a command summary, braces are used to identify options among data 
types. In the following example, glCommand has four possible suffixes:
s, i, f, and d, which stand for the data types GLshort, GLint, GLfloat, and 
GLdouble. In the function prototype for glCommand, TYPE is a wildcard 
that represents the data type indicated by the suffix.

void glCommand{sifd}(TYPE x1, TYPE y1, TYPE x2, TYPE y2);
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Distinguishing Deprecated Features

As mentioned, this edition of the OpenGL Programming Guide details 
Versions 3.0 and 3.1. OpenGL Version 3.0 is entirely backward compatible 
with all of the versions made available to this point. However, Version 3.1 
employed the deprecation model to remove a number of older features that 
were less compatible with modern graphics systems. While numerous 
features were removed from the “core” of OpenGL, to ease the transition 
between versions, the OpenGL ARB released the GL_ARB_compatibility 
extension. If your implementation supports this extension, it will be able to 
use all of the removed functionality. To easily identify features that were 
removed from OpenGL in Version 3.1, but are still supported by the 
compatibility extension, an informational table listing the affected 
functions or tokens will be shown in the margin of this book next to where 
the command or feature is introduced in its gray box.

While only features from OpenGL were deprecated and removed, some of 
those features affect libraries, such as the OpenGL Utility Library, commonly 
called GLU. Those functions that are affected by the changes in OpenGL 
Version 3.1 are also listed in a table in the margin.

Compatibility 
Extension

glBegin
GL_POLYGON
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Chapter 1

1.Introduction to OpenGL

Chapter Objectives

After reading this chapter, you’ll be able to do the following:

• Appreciate in general terms what OpenGL does

• Identify different levels of rendering complexity

• Understand the basic structure of an OpenGL program

• Recognize OpenGL command syntax

• Identify the sequence of operations of the OpenGL rendering pipeline

• Understand in general terms how to animate graphics in an OpenGL 
program
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This chapter introduces OpenGL. It has the following major sections:

• “What Is OpenGL?” explains what OpenGL is, what it does and doesn’t 
do, and how it works.

• “A Smidgen of OpenGL Code” presents a small OpenGL program and 
briefly discusses it. This section also defines a few basic computer-
graphics terms.

• “OpenGL Command Syntax” explains some of the conventions and 
notations used by OpenGL commands.

• “OpenGL as a State Machine” describes the use of state variables in 
OpenGL and the commands for querying, enabling, and disabling 
states. 

• “OpenGL Rendering Pipeline” shows a typical sequence of operations 
for processing geometric and image data.

• “OpenGL-Related Libraries” describes sets of OpenGL-related routines, 
including a detailed introduction to GLUT (Graphics Library Utility 
Toolkit), a portable toolkit. 

• “Animation” explains in general terms how to create pictures on the 
screen that move.

•  “OpenGL and Its Deprecation Mechanism” describes which changes 
deprecation brought into the latest version(s) of OpenGL, how those 
changes will affect your applications, and how OpenGL will evolve in 
the future in light of those changes.

What Is OpenGL?

OpenGL is a software interface to graphics hardware. This interface consists 
of more than 700 distinct commands (about 670 commands as specified for 
OpenGL Version 3.0 and another 50 in the OpenGL Utility Library) that 
you use to specify the objects and operations needed to produce interactive 
three-dimensional applications. 

OpenGL is designed as a streamlined, hardware-independent interface to be 
implemented on many different hardware platforms. To achieve these qual-
ities, no commands for performing windowing tasks or obtaining user input 
are included in OpenGL; instead, you must work through whatever win-
dowing system controls the particular hardware you’re using. Similarly, 
OpenGL doesn’t provide high-level commands for describing models of 
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three-dimensional objects. Such commands might allow you to specify 
relatively complicated shapes such as automobiles, parts of the body, air-
planes, or molecules. With OpenGL, you must build your desired model 
from a small set of geometric primitives—points, lines, and polygons.

A sophisticated library that provides these features could certainly be built 
on top of OpenGL. The OpenGL Utility Library (GLU) provides many of the 
modeling features, such as quadric surfaces and NURBS curves and surfaces. 
GLU is a standard part of every OpenGL implementation. 

Now that you know what OpenGL doesn’t do, here’s what it does do. Take a 
look at the color plates—they illustrate typical uses of OpenGL. They show 
the scene on the cover of this book, rendered (which is to say, drawn) by a 
computer using OpenGL in successively more complicated ways. The 
following list describes in general terms how these pictures were made. 

• Plate 1 shows the entire scene displayed as a wireframe model—that is, 
as if all the objects in the scene were made of wire. Each line of wire 
corresponds to an edge of a primitive (typically a polygon). For exam-
ple, the surface of the table is constructed from triangular polygons 
that are positioned like slices of pie. 

Note that you can see portions of objects that would be obscured if the 
objects were solid rather than wireframe. For example, you can see the 
entire model of the hills outside the window even though most of this 
model is normally hidden by the wall of the room. The globe appears 
to be nearly solid because it’s composed of hundreds of colored blocks, 
and you see the wireframe lines for all the edges of all the blocks, even 
those forming the back side of the globe. The way the globe is con-
structed gives you an idea of how complex objects can be created by 
assembling lower-level objects. 

• Plate 2 shows a depth-cued version of the same wireframe scene. Note 
that the lines farther from the eye are dimmer, just as they would be in 
real life, thereby giving a visual cue of depth. OpenGL uses atmospheric 
effects (collectively referred to as fog) to achieve depth cueing.

• Plate 3 shows an antialiased version of the wireframe scene. Antialias-
ing is a technique for reducing the jagged edges (also known as jaggies)
created when approximating smooth edges using pixels—short for pic-
ture elements—which are confined to a rectangular grid. Such jaggies 
are usually the most visible, with near-horizontal or near-vertical lines. 

• Plate 4 shows a flat-shaded, unlit version of the scene. The objects in 
the scene are now shown as solid. They appear “flat” in the sense that 
only one color is used to render each polygon, so they don’t appear 
smoothly rounded. There are no effects from any light sources.
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• Plate 5 shows a lit, smooth-shaded version of the scene. Note how the 
scene looks much more realistic and three-dimensional when the 
objects are shaded to respond to the light sources in the room, as if 
the objects were smoothly rounded. 

• Plate 6 adds shadows and textures to the previous version of the scene. 
Shadows aren’t an explicitly defined feature of OpenGL (there is no 
“shadow command”), but you can create them yourself using the 
techniques described in Chapter 9 and Chapter 14. Texture mapping
allows you to apply a two-dimensional image onto a three-dimensional 
object. In this scene, the top on the table surface is the most vibrant 
example of texture mapping. The wood grain on the floor and table 
surface are all texture mapped, as well as the wallpaper and the toy top 
(on the table).

• Plate 7 shows a motion-blurred object in the scene. The sphinx (or dog, 
depending on your Rorschach tendencies) appears to be captured 
moving forward, leaving a blurred trace of its path of motion. 

• Plate 8 shows the scene as it was drawn for the cover of the book from 
a different viewpoint. This plate illustrates that the image really is a 
snapshot of models of three-dimensional objects. 

• Plate 9 brings back the use of fog, which was shown in Plate 2 to simu-
late the presence of smoke particles in the air. Note how the same 
effect in Plate 2 now has a more dramatic impact in Plate 9.

• Plate 10 shows the depth-of-field effect, which simulates the inability of 
a camera lens to maintain all objects in a photographed scene in focus. 
The camera focuses on a particular spot in the scene. Objects that are 
significantly closer or farther than that spot are somewhat blurred. 

The color plates give you an idea of the kinds of things you can do with the 
OpenGL graphics system. The following list briefly describes the major 
graphics operations that OpenGL performs to render an image on the 
screen. (See “OpenGL Rendering Pipeline” on page 10 for detailed 
information on this order of operations.)

1. Construct shapes from geometric primitives, thereby creating mathe-
matical descriptions of objects. (OpenGL considers points, lines, poly-
gons, images, and bitmaps to be primitives.) 

2. Arrange the objects in three-dimensional space and select the desired 
vantage point for viewing the composed scene. 

3. Calculate the colors of all the objects. The colors might be explicitly 
assigned by the application, determined from specified lighting 
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conditions, obtained by pasting textures onto the objects, or some 
combination of these operations. These actions may be carried out using 
shaders, where you explicitly control all the color computations, or they 
may be performed internally in OpenGL using its preprogrammed 
algorithms (by what is commonly termed the fixed-function pipeline).

4. Convert the mathematical description of objects and their associated 
color information to pixels on the screen. This process is called 
rasterization.

During these stages, OpenGL might perform other operations, such as 
eliminating parts of objects that are hidden by other objects. In addition, 
after the scene is rasterized but before it’s drawn on the screen, you can 
perform some operations on the pixel data if you want.

In some implementations (such as with the X Window System), OpenGL is 
designed to work even if the computer that displays the graphics you create 
isn’t the computer that runs your graphics program. This might be the case 
if you work in a networked computer environment where many computers 
are connected to one another by a network. In this situation, the computer 
on which your program runs and issues OpenGL drawing commands is 
called the client, and the computer that receives those commands and per-
forms the drawing is called the server. The format for transmitting OpenGL 
commands (called the protocol) from the client to the server is always the 
same, so OpenGL programs can work across a network even if the client and 
server are different kinds of computers. If an OpenGL program isn’t running 
across a network, then there’s only one computer, and it is both the client 
and the server.

A Smidgen of OpenGL Code

Because you can do so many things with the OpenGL graphics system, an 
OpenGL program can be complicated. However, the basic structure of a 
useful program can be simple: its tasks are to initialize certain states that 
control how OpenGL renders and to specify objects to be rendered.

Before you look at some OpenGL code, let’s go over a few terms. Rendering,
which you’ve already seen used, is the process by which a computer creates 
images from models. These models, or objects, are constructed from geometric 
primitives—points, lines, and polygons—that are specified by their vertices.

The final rendered image consists of pixels drawn on the screen; a pixel is 
the smallest visible element the display hardware can put on the screen. 
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Information about the pixels (for instance, what color they’re supposed to 
be) is organized in memory into bitplanes. A bitplane is an area of memory 
that holds one bit of information for every pixel on the screen; the bit might 
indicate how red a particular pixel is supposed to be, for example. The 
bitplanes are themselves organized into a framebuffer, which holds all the 
information that the graphics display needs to control the color and 
intensity of all the pixels on the screen.

Now look at what an OpenGL program might look like. Example 1-1 
renders a white rectangle on a black background, as shown in Figure 1-1.

Example 1-1 Chunk of OpenGL Code

#include <whateverYouNeed.h>

main() {
   InitializeAWindowPlease();

   glClearColor(0.0, 0.0, 0.0, 0.0);
   glClear(GL_COLOR_BUFFER_BIT);
   glColor3f(1.0, 1.0, 1.0);
   glOrtho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0);
   glBegin(GL_POLYGON);
      glVertex3f(0.25, 0.25, 0.0);
      glVertex3f(0.75, 0.25, 0.0);
      glVertex3f(0.75, 0.75, 0.0);
      glVertex3f(0.25, 0.75, 0.0);
   glEnd();
   glFlush();
   UpdateTheWindowAndCheckForEvents();
}

Figure 1-1 White Rectangle on a Black Background
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The first line of the main() routine initializes a window on the screen: 
The InitializeAWindowPlease() routine is meant as a placeholder for 
window-system-specific routines, which are generally not OpenGL calls. 
The next two lines are OpenGL commands that clear the window to black: 
glClearColor() establishes what color the window will be cleared to, and 
glClear() actually clears the window. Once the clearing color is set, the 
window is cleared to that color whenever glClear() is called. This clearing 
color can be changed with another call to glClearColor(). Similarly, the 
glColor3f() command establishes what color to use for drawing objects—in 
this case, the color is white. All objects drawn after this point use this color, 
until it’s changed with another call to set the color.

The next OpenGL command used in the program, glOrtho(), specifies the 
coordinate system OpenGL assumes as it draws the final image and how 
the image is mapped to the screen. The next calls, which are bracketed by 
glBegin() and glEnd(), define the object to be drawn—in this example, 
a polygon with four vertices. The polygon’s “corners” are defined by the 
glVertex3f() commands. As you might be able to guess from the arguments, 
which are (x, y, z) coordinates, the polygon is a rectangle on the z = 0 plane.

Finally, glFlush() ensures that the drawing commands are actually executed, 
rather than stored in a buffer awaiting additional OpenGL commands. The 
UpdateTheWindowAndCheckForEvents() placeholder routine manages 
the contents of the window and begins event processing. 

Actually, this piece of OpenGL code isn’t well structured. You may be asking, 
“What happens if I try to move or resize the window?” or “Do I need to 
reset the coordinate system each time I draw the rectangle?”. Later in this 
chapter, you will see replacements for both InitializeAWindowPlease() and 
UpdateTheWindowAndCheckForEvents() that actually work but require 
restructuring of the code to make it efficient.

OpenGL Command Syntax

As you might have observed from the simple program in the preceding 
section, OpenGL commands use the prefix gl and initial capital letters 
for each word making up the command name (recall glClearColor(), for 
example). Similarly, OpenGL defined constants begin with GL_, use all 
capital letters, and use underscores to separate words (for example, 
GL_COLOR_BUFFER_BIT). 

You might also have noticed some seemingly extraneous letters appended to 
some command names (for example, the 3f in glColor3f() and glVertex3f()).
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It’s true that the Color part of the command name glColor3f() is enough to 
define the command as one that sets the current color. However, more than 
one such command has been defined so that you can use different types 
of arguments. In particular, the 3 part of the suffix indicates that three 
arguments are given; another version of the Color command takes four 
arguments. The f part of the suffix indicates that the arguments are floating-
point numbers. Having different formats allows OpenGL to accept the 
user’s data in his or her own data format.

Some OpenGL commands accept as many as eight different data types for 
their arguments. The letters used as suffixes to specify these data types for 
ISO C implementations of OpenGL are shown in Table 1-1, along with the 
corresponding OpenGL type definitions. The particular implementation of 
OpenGL that you’re using might not follow this scheme exactly; an imple-
mentation in C++ or Ada that supports function overloading, for example, 
wouldn’t necessarily need to.

Thus, the two commands

glVertex2i(1, 3);
glVertex2f(1.0, 3.0);

are equivalent, except that the first specifies the vertex’s coordinates as 
32-bit integers, and the second specifies them as single-precision floating-
point numbers.

Suffix Data Type Typical Corresponding 
C-Language Type

OpenGL Type Definition

b 8-bit integer signed char GLbyte

s 16-bit integer short GLshort

i 32-bit integer int or long GLint, GLsizei

f 32-bit floating-point float GLfloat, GLclampf

d 64-bit floating-point double GLdouble, GLclampd

ub 8-bit unsigned integer unsigned char GLubyte, GLboolean

us 16-bit unsigned integer unsigned short GLushort

ui 32-bit unsigned integer unsigned int or 
unsigned long

GLuint, GLenum, 
GLbitfield

Table 1-1 Command Suffixes and Argument Data Types
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Note: Implementations of OpenGL have leeway in selecting which C data 
type to use to represent OpenGL data types. If you resolutely use the 
OpenGL defined data types throughout your application, you will 
avoid mismatched types when porting your code between different 
implementations.

Some OpenGL commands can take a final letter v, which indicates that the 
command takes a pointer to a vector (or array) of values, rather than a series 
of individual arguments. Many commands have both vector and nonvector 
versions, but some commands accept only individual arguments and others 
require that at least some of the arguments be specified as a vector. The 
following lines show how you might use a vector and a nonvector version 
of the command that sets the current color:

glColor3f(1.0, 0.0, 0.0);

GLfloat color_array[] = {1.0, 0.0, 0.0};
glColor3fv(color_array);

Finally, OpenGL defines the type of GLvoid. This is most often used for 
OpenGL commands that accept pointers to arrays of values.

In the rest of this guide (except in actual code examples), OpenGL com-
mands are referred to by their base names only, and an asterisk is included 
to indicate that there may be more to the command name. For example, 
glColor*() stands for all variations of the command you use to set the cur-
rent color. If we want to make a specific point about one version of a partic-
ular command, we include the suffix necessary to define that version. For 
example, glVertex*v() refers to all the vector versions of the command you 
use to specify vertices.

OpenGL as a State Machine

OpenGL is a state machine, particularly if you’re using the fixed-function 
pipeline. You put it into various states (or modes) that then remain in effect 
until you change them. As you’ve already seen, the current color is a state 
variable. You can set the current color to white, red, or any other color, and 
thereafter every object is drawn with that color until you set the current 
color to something else. The current color is only one of many state vari-
ables that OpenGL maintains. Others control such things as the current 
viewing and projection transformations, line and polygon stipple patterns, 
polygon drawing modes, pixel-packing conventions, positions and charac-
teristics of lights, and material properties of the objects being drawn. Many 
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state variables refer to modes that are enabled or disabled with the com-
mand glEnable() or glDisable().

If you’re using programmable shaders, depending on which version of 
OpenGL you’re using, the amount of state that is exposed to your shaders 
will vary.

Each state variable or mode has a default value, and at any point you can 
query the system for each variable’s current value. Typically, you use one of 
the six following commands to do this: glGetBooleanv(), glGetDoublev(),
glGetFloatv(), glGetIntegerv(), glGetPointerv(), or glIsEnabled(). Which 
of these commands you select depends on what data type you want the 
answer to be given in. Some state variables have a more specific query com-
mand (such as glGetLight*(), glGetError(), or glGetPolygonStipple()). In 
addition, you can save a collection of state variables on an attribute stack 
with glPushAttrib() or glPushClientAttrib(), temporarily modify them, 
and later restore the values with glPopAttrib() or glPopClientAttrib(). For 
temporary state changes, you should use these commands rather than any 
of the query commands, as they’re likely to be more efficient.

See Appendix B for the complete list of state variables you can query. For 
each variable, the appendix also lists a suggested glGet*() command that 
returns the variable’s value, the attribute class to which it belongs, and the 
variable’s default value.

OpenGL Rendering Pipeline

Most implementations of OpenGL have a similar order of operations, a series 
of processing stages called the OpenGL rendering pipeline. This ordering, as 
shown in Figure 1-2, is not a strict rule about how OpenGL is implemented, 
but it provides a reliable guide for predicting what OpenGL will do.

If you are new to three-dimensional graphics, the upcoming description 
may seem like drinking water out of a fire hose. You can skim this now, but 
come back to Figure 1-2 as you go through each chapter in this book.

The following diagram shows the Henry Ford assembly line approach, 
which OpenGL takes to processing data. Geometric data (vertices, lines, and 
polygons) follow the path through the row of boxes that includes evalua-
tors and per-vertex operations, while pixel data (pixels, images, and bit-
maps) are treated differently for part of the process. Both types of data 
undergo the same final steps (rasterization and per-fragment operations) 
before the final pixel data is written into the framebuffer.
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Now you’ll see more detail about the key stages in the OpenGL rendering 
pipeline.

Display Lists

All data, whether it describes geometry or pixels, can be saved in a display 
list for current or later use. (The alternative to retaining data in a display list 
is processing the data immediately—also known as immediate mode.) When 
a display list is executed, the retained data is sent from the display list just 
as if it were sent by the application in immediate mode. (See Chapter 7 for 
more information about display lists.)

Evaluators

All geometric primitives are eventually described by vertices. Parametric 
curves and surfaces may be initially described by control points and poly-
nomial functions called basis functions. Evaluators provide a method for 
deriving the vertices used to represent the surface from the control points. 

Evaluators

Per-vertex

operations

and prim
itive 

assembly

Display lis
t

Pixel
data

Vertex
data

Pixel 

operations
Rasterization

Per-fra
gment

operations

FramebufferTexture

assembly

Figure 1-2 Order of Operations
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The method is a polynomial mapping, which can produce surface normal, 
texture coordinates, colors, and spatial coordinate values from the control 
points. (See Chapter 12 to learn more about evaluators.)

Per-Vertex Operations

For vertex data, next is the “per-vertex operations” stage, which converts 
the vertices into primitives. Some types of vertex data (for example, spatial 
coordinates) are transformed by 4 4 floating-point matrices. Spatial coor-
dinates are projected from a position in the 3D world to a position on your 
screen. (See Chapter 3 for details about the transformation matrices.)

If advanced features are enabled, this stage is even busier. If texturing is 
used, texture coordinates may be generated and transformed here. If 
lighting is enabled, the lighting calculations are performed using the 
transformed vertex, surface normal, light source position, material 
properties, and other lighting information to produce a color value.

Since OpenGL Version 2.0, you’ve had the option of using fixed-function 
vertex processing, as just previously described, or completely controlling 
the operation of the per-vertex operations by using vertex shaders. If you 
employ shaders, all of the operations in the per-vertex operations stage are 
replaced by your shader. In Version 3.1, all of the fixed-function vertex 
operations are removed (unless your implementation supports the 
GL_ARB_compatibility extension), and using a vertex shader is mandatory.

Primitive Assembly

Clipping, a major part of primitive assembly, is the elimination of portions 
of geometry that fall outside a half-space, defined by a plane. Point clipping 
simply passes or rejects vertices; line or polygon clipping can add additional 
vertices depending on how the line or polygon is clipped. 

In some cases, this is followed by perspective division, which makes distant 
geometric objects appear smaller than closer objects. Then viewport and 
depth (z-coordinate) operations are applied. If culling is enabled and the 
primitive is a polygon, it then may be rejected by a culling test. Depending 
on the polygon mode, a polygon may be drawn as points or lines. (See 
“Polygon Details” in Chapter 2.)

The results of this stage are complete geometric primitives, which are the 
transformed and clipped vertices with related color, depth, and sometimes 
texture-coordinate values and guidelines for the rasterization step.
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Pixel Operations

While geometric data takes one path through the OpenGL rendering 
pipeline, pixel data takes a different route. Pixels from an array in system 
memory are first unpacked from one of a variety of formats into the proper 
number of components. Next the data is scaled, biased, and processed by a 
pixel map. The results are clamped and then either written into texture 
memory or sent to the rasterization step. (See “Imaging Pipeline” in 
Chapter 8.)

If pixel data is read from the framebuffer, pixel-transfer operations (scale, 
bias, mapping, and clamping) are performed. Then these results are packed 
into an appropriate format and returned to an array in system memory.

There are special pixel copy operations for copying data in the framebuffer 
to other parts of the framebuffer or to the texture memory. A single pass is 
made through the pixel-transfer operations before the data is written to the 
texture memory or back to the framebuffer.

Many of the pixel operations described are part of the fixed-function pixel 
pipeline and often move large amounts of data around the system. Modern 
graphics implementations tend to optimize performance by trying to 
localize graphics operations to the memory local to the graphics hardware 
(this description is a generalization, of course, but it is how most systems 
are currently implemented). OpenGL Version 3.0, which supports all of 
these operations, also introduces framebuffer objects that help optimize these 
data movements, in particular, these objects can eliminate some of these 
transfers entirely. Framebuffer objects, combined with programmable 
fragment shaders replace many of these operations (most notably, those 
classified as pixel transfers) and provide significantly more flexibility.

Texture Assembly

OpenGL applications can apply texture images to geometric objects to make 
the objects look more realistic, which is one of the numerous techniques 
enabled by texture mapping. If several texture images are used, it’s wise to 
put them into texture objects so that you can easily switch among them.

Almost all OpenGL implementations have special resources for accelerating 
texture performance (which may be allocated from a shared pool of 
resources in the graphics implementation). To help your OpenGL 
implementation manage these memory resources efficiently, texture
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 objects may be prioritized to help control potential caching and locality 
issues of texture maps. (See Chapter 9.) 

Rasterization

Rasterization is the conversion of both geometric and pixel data into 
fragments. Each fragment square corresponds to a pixel in the framebuffer. 
Line and polygon stipples, line width, point size, shading model, and cov-
erage calculations to support antialiasing are taken into consideration as 
vertices are connected into lines or the interior pixels are calculated for a 
filled polygon. Color and depth values are generated for each fragment 
square.

Fragment Operations

Before values are actually stored in the framebuffer, a series of operations are 
performed that may alter or even throw out fragments. All these operations 
can be enabled or disabled.

The first operation that a fragment might encounter is texturing, where a texel
(texture element) is generated from texture memory for each fragment and 
applied to the fragment. Next, primary and secondary colors are combined, 
and a fog calculation may be applied. If your application is employing 
fragment shaders, the preceding three operations may be done in a shader.

After the final color and depth generation of the previous operations, the 
scissor test, the alpha test, the stencil test, and the depth-buffer test (the 
depth buffer is does hidden-surface removal) are evaluated, if enabled. 
Failing an enabled test may end the continued processing of a fragment’s 
square. Then, blending, dithering, logical operation, and masking by a 
bitmask may be performed. (See Chapter 6 and Chapter 10.) Finally, the 
thoroughly processed fragment is drawn into the appropriate buffer, where 
it has finally become a pixel and achieved its final resting place.

OpenGL-Related Libraries

OpenGL provides a powerful but primitive set of rendering commands, 
and all higher-level drawing must be done in terms of these commands. 
Also, OpenGL programs have to use the underlying mechanisms of the 
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windowing system. Several libraries enable you to simplify your program-
ming tasks, including the following:

• The OpenGL Utility Library (GLU) contains several routines that use 
lower-level OpenGL commands to perform such tasks as setting up 
matrices for specific viewing orientations and projections, performing 
polygon tessellation, and rendering surfaces. This library is provided 
as part of every OpenGL implementation. The more useful GLU rou-
tines are described in this guide, where they’re relevant to the topic 
being discussed, such as in all of Chapter 11 and in the section “The 
GLU NURBS Interface” in Chapter 12. GLU routines use the prefix glu.

• For every window system, there is a library that extends the functional-
ity of that window system to support OpenGL rendering. For machines 
that use the X Window System, the OpenGL Extension to the X Win-
dow System (GLX) is provided as an adjunct to OpenGL. GLX routines 
use the prefix glX. For Microsoft Windows, the WGL routines provide 
the Windows to OpenGL interface. All WGL routines use the prefix 
wgl. For Mac OS, three interfaces are available: AGL (with prefix agl),
CGL (cgl), and Cocoa (NSOpenGL classes).

All of these window system extension libraries are described in more 
detail in Appendix D.

• The OpenGL Utility Toolkit (GLUT) is a window-system-independent 
toolkit, originally written by Mark Kilgard, that hides the complexities 
of differing window system APIs. In this edition, we use an open-source 
implementation of GLUT named freeglut, which extends the original 
functionality of GLUT. The next section describes the fundamental 
routines necessary to author programs using GLUT, all of which are 
prefixed with glut. In most parts of the text, we continue to use the 
term GLUT, with the understanding that we are using the Freeglut 
implementation.

Include Files

For all OpenGL applications, you want to include the OpenGL header files 
in every file. Many OpenGL applications may use GLU, the aforementioned 
OpenGL Utility Library, which requires inclusion of the glu.h header file. So 
almost every OpenGL source file begins with

#include <GL/gl.h>
#include <GL/glu.h>
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Note: Microsoft Windows requires that windows.h be included before either 
gl.h or glu.h, because some macros used internally in the Microsoft 
Windows version of gl.h and glu.h are defined in windows.h.

The OpenGL library changes all the time. The various vendors that make 
graphics hardware add new features that may be too new to have been 
incorporated in gl.h. In order for you to take advantage of these new 
extensions to OpenGL, an additional header file is available, named glext.h. 
This header contains all of the latest version and extension functions and 
tokens and is available in the OpenGL Registry at the OpenGL Web site 
(http://www.opengl.org/registry). The Registry also contains the speci-
fications for every OpenGL extension published. As with any header, you 
could include it with the following statement:

#include “glext.h”

You probably noticed the quotes around the filename, as compared to the 
normal angle brackets. Because glext.h is how graphics card vendors enable 
access to new extensions, you will probably need to download versions fre-
quently from the Internet, so having a local copy to compile your program 
is not a bad idea. Additionally, you may not have permission to place the 
glext.h header file in a system header-file include directory (such as 
/usr/include on Unix-type systems).

If you are directly accessing a window interface library to support OpenGL, 
such as GLX, WGL, or CGL, you must include additional header files. For 
example, if you are calling GLX, you may need to add these lines to 
your code:

#include <X11/Xlib.h>
#include <GL/glx.h>

In Microsoft Windows, the WGL routines are made accessible with

#include <windows.h>

If you are using GLUT for managing your window manager tasks, you 
should include

#include <freeglut.h>

Note: The original GLUT header file was named glut.h.  Both glut.h and 
freeglut.h guarantee that gl.h and glu.h are properly included for you, 
so including all three files is redundant. Additionally, these headers 
make sure that any internal operating system dependent macros are 
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properly defined before including gl.h and glu.h. To make your GLUT 
programs portable, include glut.h or freeglut.h and do not explicitly 
include either gl.h or glu.h. 

Most OpenGL applications also use standard C library system calls, so it is 
common to include header files that are not related to graphics, such as

#include <stdlib.h>
#include <stdio.h>

We don’t include the header file declarations for our examples in this text, 
so our examples are less cluttered.

Header Files for OpenGL Version 3.1

As compared to OpenGL Version 3.0, which only added new functions and 
features to the sum of OpenGL’s functionality, OpenGL Version 3.1 
removed functions marked as deprecated. To make that transition easier for 
software authors, OpenGL Version 3.1 provides an entire new set of header 
files, and recommends a location for vendor to integrate them into the 
respective operating systems. You can still use the gl.h and glext.h files, 
which will continue to document all OpenGL entry points, regardless of 
version.

However, if you’re porting code to be used only with Version 3.1, you might 
consider using the new OpenGL Version 3.1 headers:

#include <GL3/gl3.h>
#include <GL3/gl3ext.h>

They include functions and tokens for Version 3.1 (for future versions, the 
features set will be restricted to that particular version). You should find that 
these headers simplify the process of moving existing OpenGL code to 
newer versions. Like any OpenGL headers, these files are available for 
download from the OpenGL Registry (http://www.opengl.org/registry).

GLUT, the OpenGL Utility Toolkit

As you know, OpenGL contains rendering commands but is designed to be 
independent of any window system or operating system. Consequently, it 
contains no commands for opening windows or reading events from the 
keyboard or mouse. Unfortunately, it’s impossible to write a complete 
graphics program without at least opening a window, and most interesting 
programs require a bit of user input or other services from the operating 
system or window system. In many cases, complete programs make the 
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most interesting examples, so this book uses GLUT to simplify opening 
windows, detecting input, and so on. If you have implementations of 
OpenGL and GLUT on your system, the examples in this book should 
run without change when linked with your OpenGL and GLUT libraries. 

In addition, since OpenGL drawing commands are limited to those that 
generate simple geometric primitives (points, lines, and polygons), GLUT 
includes several routines that create more complicated three-dimensional 
objects, such as a sphere, a torus, and a teapot. This way, snapshots of 
program output can be interesting to look at. (Note that the OpenGL Utility 
Library, GLU, also has quadrics routines that create some of the same three-
dimensional objects as GLUT, such as a sphere, cylinder, or cone.)

GLUT may not be satisfactory for full-featured OpenGL applications, but 
you may find it a useful starting point for learning OpenGL. The rest of this 
section briefly describes a small subset of GLUT routines so that you can 
follow the programming examples in the rest of this book. (See Appendix A 
for more details GLUT).

Window Management

Several routines perform tasks necessary for initializing a window:

• glutInit(int *argc, char **argv) initializes GLUT and processes any com-
mand line arguments (for X, this would be options such as -display and 
-geometry). glutInit() should be called before any other GLUT routine.

• glutInitDisplayMode(unsigned int mode) specifies whether to use an 
RGBA or color-index color model. You can also specify whether you 
want a single- or double-buffered window. (If you’re working in color-
index mode, you’ll want to load certain colors into the color map; use
glutSetColor() to do this.) Finally, you can use this routine to indicate 
that you want the window to have an associated depth, stencil, 
multisampling, and/or accumulation buffer. For example, if you want 
a window with double buffering, the RGBA color model, and a depth 
buffer, you might call glutInitDisplayMode(GLUT_DOUBLE | 
GLUT_RGBA | GLUT_DEPTH).

• glutInitWindowPosition(int x, int y) specifies the screen location for 
the upper-left corner of your window.

• glutInitWindowSize(int width, int height) specifies the size, in pixels, 
of your window.

• glutInitContextVersion(int majorVersion, int minorVersion) specifies 
which version of OpenGL you want to use. (This is a new addition 
available only when using Freeglut, and was introduced with OpenGL 
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Version 3.0. See “OpenGL Contexts” on page 27 for more details on 
OpenGL contexts and versions.)

• glutInitContextFlags(int flags) specifes the type of OpenGL context 
you want to use. For normal OpenGL operation, you can omit this call 
from your program.  However, if you want to use a forward-compatible 
OpenGL context, you will need to call this routine. (This is also a new 
addition available only in Freeglut, and was introduced with OpenGL 
Version 3.0. See “OpenGL Contexts” on page 27 for more details on 
the types of OpenGL contexts.)

• int glutCreateWindow(char *string) creates a window with an OpenGL 
context. It returns a unique identifier for the new window. Be warned: 
until glutMainLoop() is called, the window is not yet displayed.

The Display Callback

glutDisplayFunc(void (*func)(void)) is the first and most important event 
callback function you will see. Whenever GLUT determines that the 
contents of the window need to be redisplayed, the callback function regis-
tered by glutDisplayFunc() is executed. Therefore, you should put all the 
routines you need to redraw the scene in the display callback function.

If your program changes the contents of the window, sometimes you will 
have to call glutPostRedisplay(), which gives glutMainLoop() a nudge to 
call the registered display callback at its next opportunity.

Running the Program

The very last thing you must do is call glutMainLoop(). All windows that 
have been created are now shown, and rendering to those windows is now 
effective. Event processing begins, and the registered display callback is 
triggered. Once this loop is entered, it is never exited!

Example 1-2 shows how you might use GLUT to create the simple program 
shown in Example 1-1. Note the restructuring of the code. To maximize effi-
ciency, operations that need to be called only once (setting the background 
color and coordinate system) are now in a procedure called init(). Opera-
tions to render (and possibly re-render) the scene are in the display() pro-
cedure, which is the registered GLUT display callback.

Example 1-2 Simple OpenGL Program Using GLUT: hello.c

void display(void)
{
/*  clear all pixels  */
    glClear(GL_COLOR_BUFFER_BIT);
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/*  draw white polygon (rectangle) with corners at
 *  (0.25, 0.25, 0.0) and (0.75, 0.75, 0.0)  
 */
    glColor3f(1.0, 1.0, 1.0);
    glBegin(GL_POLYGON);
        glVertex3f(0.25, 0.25, 0.0);
        glVertex3f(0.75, 0.25, 0.0);
        glVertex3f(0.75, 0.75, 0.0);
        glVertex3f(0.25, 0.75, 0.0);
    glEnd();

/*  don’t wait!  
 *  start processing buffered OpenGL routines 
 */
    glFlush();
}

void init(void) 
{
/*  select clearing (background) color       */
    glClearColor(0.0, 0.0, 0.0, 0.0);

/*  initialize viewing values  */
    glMatrixMode(GL_PROJECTION);
    glLoadIdentity();
    glOrtho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0);
}

/*
 *  Declare initial window size, position, and display mode
 *  (single buffer and RGBA).  Open window with “hello”
 *  in its title bar.  Call initialization routines.
 *  Register callback function to display graphics.
 *  Enter main loop and process events.
 */
int main(int argc, char** argv)
{
    glutInit(&argc, argv);
    glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
    glutInitWindowSize(250, 250); 
    glutInitWindowPosition(100, 100);
    glutCreateWindow(“hello”);
    init();
    glutDisplayFunc(display); 
    glutMainLoop();
    return 0;   /* ISO C requires main to return int. */
}
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Handling Input Events

You can use the following routines to register callback commands that are 
invoked when specified events occur:

• glutReshapeFunc(void (*func)(int w, int h)) indicates what action 
should be taken when the window is resized. 

• glutKeyboardFunc(void (*func)(unsigned char key, int x, int y)) and 
glutMouseFunc(void (*func)(int button, int state, int x, int y)) allow you 
to link a keyboard key or a mouse button with a routine that’s invoked 
when the key or mouse button is pressed or released. 

• glutMotionFunc(void (*func)(int x, int y)) registers a routine to call 
back when the mouse is moved while a mouse button is also pressed.

Managing a Background Process

You can specify a function that’s to be executed if no other events are 
pending—for example, when the event loop would otherwise be idle—with 
glutIdleFunc(void (*func)(void)). This routine takes a pointer to the function 
as its only argument. Pass in NULL (zero) to disable the execution of the 
function.

Drawing Three-Dimensional Objects

GLUT includes several routines for drawing these three-dimensional 
objects:

You can draw these objects as wireframes or as solid shaded objects with 
surface normals defined. For example, the routines for a cube and a sphere 
are as follows: 

void glutWireCube(GLdouble size);

void glutSolidCube(GLdouble size);

void glutWireSphere(GLdouble radius, GLint slices, GLint stacks);

void glutSolidSphere(GLdouble radius, GLint slices, GLint stacks);

cone icosahedron teapot

cube octahedron tetrahedron

dodecahedron sphere torus
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All these models are drawn centered at the origin of the world coordinate 
system. (See Appendix A for information on the prototypes of all these 
drawing routines.)

Animation

One of the most exciting things you can do on a graphics computer is draw 
pictures that move. Whether you’re an engineer trying to see all sides of a 
mechanical part you’re designing, a pilot learning to fly an airplane using a 
simulation, or merely a computer-game aficionado, it’s clear that animation
is an important part of computer graphics.

In a movie theater, motion is achieved by taking a sequence of pictures and 
projecting them at 24 frames per second on the screen. Each frame is moved 
into position behind the lens, the shutter is opened, and the frame is dis-
played. The shutter is momentarily closed while the film is advanced to the 
next frame, then that frame is displayed, and so on. Although you’re watch-
ing 24 different frames each second, your brain blends them all into a 
smooth animation. (The old Charlie Chaplin movies were shot at 16 frames 
per second and are noticeably jerky.) Computer-graphics screens typically 
refresh (redraw the picture) approximately 60 to 76 times per second, and 
some even run at about 120 refreshes per second. Clearly, 60 per second is 
smoother than 30, and 120 is perceptively better than 60. Refresh rates 
faster than 120, however, may approach a point of diminishing returns, 
depending on the limits of perception.

The key reason that motion picture projection works is that each frame is 
complete when it is displayed. Suppose you try to do computer animation 
of your million-frame movie with a program such as this:

open_window(); 
for (i = 0; i < 1000000; i++) { 
   clear_the_window(); 
   draw_frame(i); 
   wait_until_a_24th_of_a_second_is_over(); 
}

If you add the time it takes for your system to clear the screen and to draw 
a typical frame, this program gives increasingly poor results, depending on 
how close to 1/24 second it takes to clear and draw. Suppose the drawing 
takes nearly a full 1/24 second. Items drawn first are visible for the full 1/24 
second and present a solid image on the screen; items drawn toward the end 
are instantly cleared as the program starts on the next frame. This presents 
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at best a ghostlike image, as for most of the 1/24 second your eye is viewing 
the cleared background instead of the items that were unlucky enough to 
be drawn last. The problem is that this program doesn’t display completely 
drawn frames; instead, you watch the drawing as it happens.

Most OpenGL implementations provide double-buffering—hardware or soft-
ware that supplies two complete color buffers. One is displayed while the 
other is being drawn. When the drawing of a frame is complete, the two buff-
ers are swapped, so the one that was being viewed is now used for drawing, 
and vice versa. This is like a movie projector with only two frames in a loop; 
while one is being projected on the screen, an artist is desperately erasing and 
redrawing the frame that’s not visible. As long as the artist is quick enough, 
the viewer notices no difference between this setup and one in which all the 
frames are already drawn, and the projector is simply displaying them one 
after the other. With double-buffering, every frame is shown only when the 
drawing is complete; the viewer never sees a partially drawn frame. 

A modified version that displays smoothly animated graphics using double-
buffering might look like the following:

open_window_in_double_buffer_mode(); 
for (i = 0; i < 1000000; i++) { 
   clear_the_window(); 
   draw_frame(i); 
   swap_the_buffers(); 
}

The Refresh That Pauses

For some OpenGL implementations, in addition to simply swapping the 
viewable and drawable buffers, the swap_the_buffers() routine waits until 
the current screen refresh period is over so that the previous buffer is com-
pletely displayed. This routine also allows the new buffer to be completely 
displayed, starting from the beginning. Assuming that your system refreshes 
the display 60 times per second, this means that the fastest frame rate you 
can achieve is 60 frames per second (fps), and if all your frames can be 
cleared and drawn in under 1/60 second, your animation will run smoothly 
at that rate.

What often happens on such a system is that the frame is too complicated 
to draw in 1/60 second, so each frame is displayed more than once. If, for 
example, it takes 1/45 second to draw a frame, you get 30 fps, and the 
graphics are idle for 1/30 1/45 = 1/90 second per frame, or one-third of 
the time.
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In addition, the video refresh rate is constant, which can have some unex-
pected performance consequences. For example, with the 1/60 second per 
refresh monitor and a constant frame rate, you can run at 60 fps, 30 fps, 
20 fps, 15 fps, 12 fps, and so on (60/1, 60/2, 60/3, 60/4, 60/5,...). This means 
that if you’re writing an application and gradually adding features (say it’s 
a flight simulator, and you’re adding ground scenery), at first each feature 
you add has no effect on the overall performance—you still get 60 fps. 
Then, all of a sudden, you add one new feature, and the system can’t quite 
draw the whole thing in 1/60 of a second, so the animation slows from 
60 fps to 30 fps because it misses the first possible buffer-swapping time. 
A similar thing happens when the drawing time per frame is more than 
1/30 second—the animation drops from 30 to 20 fps.

If the scene’s complexity is close to any of the magic times (1/60 second, 
2/60 second, 3/60 second, and so on in this example), then, because of 
random variation, some frames go slightly over the time and some slightly 
under. Then the frame rate is irregular, which can be visually disturbing. 
In this case, if you can’t simplify the scene so that all the frames are fast 
enough, it might be better to add an intentional, tiny delay to make sure 
they all miss, giving a constant, slower frame rate. If your frames have 
drastically different complexities, a more sophisticated approach might 
be necessary.

Motion = Redraw + Swap

The structure of real animation programs does not differ very much from 
this description. Usually, it is easier to redraw the entire buffer from scratch 
for each frame than to figure out which parts require redrawing. This is 
especially true with applications such as three-dimensional flight simula-
tors, where a tiny change in the plane’s orientation changes the position of 
everything outside the window. 

In most animations, the objects in a scene are simply redrawn with 
different transformations—the viewpoint of the viewer moves, or a car 
moves down the road a bit, or an object is rotated slightly. If significant 
recomputation is required for nondrawing operations, the attainable frame 
rate often slows down. Keep in mind, however, that the idle time after the 
swap_the_buffers() routine can often be used for such calculations.

OpenGL doesn’t have a swap_the_buffers() command because the fea-
ture might not be available on all hardware and, in any case, it’s highly 
dependent on the window system. For example, if you are using the 
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X Window System and accessing it directly, you might use the following 
GLX routine:

void glXSwapBuffers(Display *dpy, Window window);

(See Appendix D for equivalent routines for other window systems.)

If you are using the GLUT library, you’ll want to call this routine:

void glutSwapBuffers(void);

Example 1-3 illustrates the use of glutSwapBuffers() in drawing a spinning 
square, as shown in Figure 1-3. This example also shows how to use GLUT 
to control an input device and turn on and off an idle function. In this 
example, the mouse buttons toggle the spinning on and off.

Example 1-3 Double-Buffered Program: double.c

static GLfloat spin = 0.0;

void init(void) 
{
   glClearColor(0.0, 0.0, 0.0, 0.0);
   glShadeModel(GL_FLAT);
}

void display(void)
{
   glClear(GL_COLOR_BUFFER_BIT);
   glPushMatrix();
   glRotatef(spin, 0.0, 0.0, 1.0);
   glColor3f(1.0, 1.0, 1.0);
   glRectf(-25.0, -25.0, 25.0, 25.0);
   glPopMatrix();
   glutSwapBuffers();
}

Frame 0 Frame 10 Frame 20 Frame 30 Frame 40

Figure 1-3 Double-Buffered Rotating Square
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void spinDisplay(void)
{
   spin = spin + 2.0;
   if (spin > 360.0)
      spin = spin - 360.0;
   glutPostRedisplay();
}

void reshape(int w, int h)
{
   glViewport(0, 0, (GLsizei) w, (GLsizei) h);
   glMatrixMode(GL_PROJECTION);
   glLoadIdentity();
   glOrtho(-50.0, 50.0, -50.0, 50.0, -1.0, 1.0);
   glMatrixMode(GL_MODELVIEW);
   glLoadIdentity();
}

void mouse(int button, int state, int x, int y) 
{
   switch (button) {
      case GLUT_LEFT_BUTTON:
         if (state == GLUT_DOWN)
            glutIdleFunc(spinDisplay);
         break;

      case GLUT_MIDDLE_BUTTON:
         if (state == GLUT_DOWN)
            glutIdleFunc(NULL);
         break;

      default:
         break;
   }
}

/*
 *  Request double buffer display mode.
 *  Register mouse input callback functions
 */
int main(int argc, char** argv)
{
   glutInit(&argc, argv);
   glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);
   glutInitWindowSize(250, 250); 
   glutInitWindowPosition(100, 100);
   glutCreateWindow(argv[0]);
   init();
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   glutDisplayFunc(display); 
   glutReshapeFunc(reshape); 
   glutMouseFunc(mouse);
   glutMainLoop();
   return 0;
}

OpenGL and Its Deprecation Mechanism

Advanced

As mentioned earlier, OpenGL is continuously undergoing improvement 
and refinement. New ways of doing graphics operations are developed, and 
entire new fields, such as GPGPU (short for “general-purpose computing on 
graphics processing units”), arise that lead to evolution in graphics 
hardware capabilities. New extensions to OpenGL are suggested by vendors, 
and eventually some of those extensions are incorporated as part of a new 
core revision of OpenGL. Over the years, this development process has 
allowed numerous redundant methods for accomplishing the same activity 
to appear in the API. In many cases, while the functionality was similar, the 
methods’ application performance generally was not, giving the impression 
that aspects of the OpenGL API were slow and didn’t work well on modern 
hardware. With OpenGL Version 3.0, the Khronos OpenGL ARB Working 
Group specified a depreciation model that indicated how features could be 
removed from the API. However, this change required more than just 
changes to the core OpenGL API—it also affected how OpenGL contexts 
were created, and the types of contexts available.

OpenGL Contexts

An OpenGL context is the data structure where OpenGL stores state 
information to be used when you’re rendering images. It includes things 
like textures, server-side buffer objects, function entry points, blending 
states, and compiled shader objects—in short, all the things discussed in the 
chapters that follow. In versions of OpenGL prior to Version 3.0, there was 
a single type of OpenGL context—the full context; it contained everything 
available in that implementation of OpenGL, and there was only one way 
to create a context (which is window-system dependent).

With Version 3.0, a new type of context was created—the forward-compatible 
context—which hides the features marked for future removal from the 

Advanced
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OpenGL API to help application developers modify their applications to 
accommodate future versions of OpenGL.

Profiles

In addition to the various types of contexts added to Version 3.0, the concept 
of profiles was introduced. A profile is subset of OpenGL functionality 
specific to an application domain, such as gaming, computer-aided design 
(CAD), or programs written for embedded platforms.

Currently, only a single profile is defined, which exposes the entire set of 
functionality supported in the created OpenGL context. New types of 
profiles may be introduced in future versions of OpenGL.

Each window system has its own set of functions for incorporating OpenGL 
into its operation (e.g., WGL for Microsoft Windows), which is what really 
creates the type of OpenGL context you request (also based on the profile). 
As such, while the procedure is basically the same, the function calls used 
are window-system specific. Fortunately, GLUT hides the details of this 
operation. At some point, you may need to know the details. We defer that 
conversation to Appendix D where you can find information about the 
routines specific to your windowing system.

Specifying OpenGL Context Versions with GLUT

The GLUT library automatically takes care of creating an OpenGL 
context when glutCreateWindow() is called. Be default, the requested 
OpenGL context will be compatible with OpenGL Version 2.1. To 
allocate a context for OpenGL Version 3.0 and later, you’ll need to 
call glutInitContextVersion(). Likewise, if you want to use a forward-
compatible context for porting, you will also need to specify that context 
attribute by calling glutInitContextFlags(). Both of these concepts are 
demonstrated in Example 1-4. These functions are described in more detail 
in Appendix A, “Basics of GLUT: The OpenGL Utility Toolkit.”

Example 1-4 Creating an OpenGL Version 3.0 Context Using GLUT

glutInit(&argc, argv);
glutInitDisplayMode(GLUT_RGBA | GLUT_DEPTH | GLUT_DOUBLE);
glutInitWindowSize(width, height);
glutInitWindowPosition(xPos, yPos);
glutInitContextVersion(3, 0);
glutInitContextFlags(GLUT_FORWARD_COMPATIBLE);
glutCreateWindow(argv[0]);
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Accessing OpenGL Functions

Depending on the operating system on which you’re developing your 
applications, you may need to do some additional work to access certain 
OpenGL functions. You’ll know when this need arises because your 
compiler will report that various functions are undefined (of course, every 
compiler will report this error differently, but that’s crux of the matter). In 
these situations, you’ll need to retrieve the function’s address (into a 
function pointer). There are various ways to accomplish this: 

• If your application uses the native windowing system for 
opening windows and event processing, then use the appropriate 
*GetProcAddress() function for the operating system your 
application will be using. Examples of these functions include 
wglGetProcAddress() and glXGetProcAddress().

• If you are using GLUT, then use GLUT’s function pointer retrieval 
routine, glutGetProcAddress().

• Use the open-source project GLEW (short for “OpenGL Extension 
Wrangler”). GLEW defines every OpenGL function, retrieving function 
pointers and verifying extensions automatically for you. Go to 
http://glew.sourceforge.net/ to find more details and to obtain 
the code or binaries.

While we don’t explicitly show any of these options in the programs 
included in the text, we use GLEW to simplify the process for us.

http://glew.sourceforge.net/
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Chapter 2

2.State Management and Drawing
Geometric Objects

Chapter Objectives

After reading this chapter, you’ll be able to do the following:

• Clear the window to an arbitrary color

• Force any pending drawing to complete

• Draw with any geometric primitive—point, line, or polygon—in two or 
three dimensions

• Turn states on and off and query state variables

• Control the display of geometric primitives—for example, draw dashed 
lines or outlined polygons

• Specify normal vectors at appropriate points on the surfaces of solid 
objects

• Use vertex arrays and buffer objects to store and access geometric data 
with fewer function calls

• Save and restore several state variables at once
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Although you can draw complex and interesting pictures using OpenGL, 
they’re all constructed from a small number of primitive graphical items. 
This shouldn’t be too surprising—look at what Leonardo da Vinci 
accomplished with just pencils and paintbrushes.

At the highest level of abstraction, there are three basic drawing operations: 
clearing the window, drawing a geometric object, and drawing a raster 
object. Raster objects, which include such things as two-dimensional 
images, bitmaps, and character fonts, are covered in Chapter 8. In this 
chapter, you learn how to clear the screen and draw geometric objects, 
including points, straight lines, and flat polygons.

You might think to yourself, “Wait a minute. I’ve seen lots of computer 
graphics in movies and on television, and there are plenty of beautifully 
shaded curved lines and surfaces. How are those drawn if OpenGL can draw 
only straight lines and flat polygons?” Even the image on the cover of this 
book includes a round table and objects on the table that have curved 
surfaces. It turns out that all the curved lines and surfaces you’ve seen are 
approximated by large numbers of little flat polygons or straight lines, in 
much the same way that the globe on the cover is constructed from a large 
set of rectangular blocks. The globe doesn’t appear to have a smooth surface 
because the blocks are relatively large compared with the globe. Later in this 
chapter, we show you how to construct curved lines and surfaces from lots 
of small geometric primitives.

This chapter has the following major sections:

• “A Drawing Survival Kit” explains how to clear the window and force 
drawing to be completed. It also gives you basic information about 
controlling the colors of geometric objects and describing a coordinate 
system. 

• “Describing Points, Lines, and Polygons” shows you the set of primi-
tive geometric objects and how to draw them.

• “Basic State Management” describes how to turn on and off some 
states (modes) and query state variables.

• “Displaying Points, Lines, and Polygons” explains what control you 
have over the details of how primitives are drawn—for example, what 
diameters points have, whether lines are solid or dashed, and whether 
polygons are outlined or filled.

• “Normal Vectors” discusses how to specify normal vectors for 
geometric objects and (briefly) what these vectors are for.
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• “Vertex Arrays” shows you how to put large amounts of geometric data 
into just a few arrays and how, with only a few function calls, to render 
the geometry it describes. Reducing function calls may increase the 
efficiency and performance of rendering.

• “Buffer Objects” details how to use server-side memory buffers to store 
vertex array data for more efficient geometric rendering.

• “Vertex-Array Objects” expands the discussions of vertex arrays and 
buffer objects by describing how to efficiently change among sets of 
vertex arrays.

• “Attribute Groups” reveals how to query the current value of state variables 
and how to save and restore several related state values all at once.

• “Some Hints for Building Polygonal Models of Surfaces” explores the 
issues and techniques involved in constructing polygonal approxima-
tions to surfaces.

One thing to keep in mind as you read the rest of this chapter is that with 
OpenGL, unless you specify otherwise, every time you issue a drawing com-
mand, the specified object is drawn. This might seem obvious, but in some 
systems, you first make a list of things to draw. When your list is complete, 
you tell the graphics hardware to draw the items in the list. The first style is 
called immediate-mode graphics and is the default OpenGL style. In addition 
to using immediate mode, you can choose to save some commands in a list 
(called a display list) for later drawing. Immediate-mode graphics are typi-
cally easier to program, but display lists are often more efficient. Chapter 7 
tells you how to use display lists and why you might want to use them. 

Version 1.1 of OpenGL introduced vertex arrays.

In Version 1.2, scaling of surface normals (GL_RESCALE_NORMAL) was added 
to OpenGL. Also, glDrawRangeElements() supplemented vertex arrays. 

Version 1.3 marked the initial support for texture coordinates for multiple 
texture units in the OpenGL core feature set. Previously, multitexturing had 
been an optional OpenGL extension.

In Version 1.4, fog coordinates and secondary colors may be stored in vertex 
arrays, and the commands glMultiDrawArrays() and glMultiDrawElements()
may be used to render primitives from vertex arrays.

In Version 1.5, vertex arrays may be stored in buffer objects that may be able 
to use server memory for storing arrays and potentially accelerating their 
rendering.

Chapter 2: State Management and Drawing Geometric Objects
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Version 3.0 added support for vertex array objects, allowing all of the state 
related to vertex arrays to be bundled and activated with a single call. This, 
in turn, makes switching between sets of vertex arrays simpler and faster.

Version 3.1 removed most of the immediate-mode routines and added the 
primitive restart index, which allows you to render multiple primitives (of 
the same type) with a single drawing call.

A Drawing Survival Kit

This section explains how to clear the window in preparation for drawing, 
set the colors of objects that are to be drawn, and force drawing to be 
completed. None of these subjects has anything to do with geometric 
objects in a direct way, but any program that draws geometric objects has to 
deal with these issues. 

Clearing the Window

Drawing on a computer screen is different from drawing on paper in that 
the paper starts out white, and all you have to do is draw the picture. On a 
computer, the memory holding the picture is usually filled with the last pic-
ture you drew, so you typically need to clear it to some background color 
before you start to draw the new scene. The color you use for the back-
ground depends on the application. For a word processor, you might clear 
to white (the color of the paper) before you begin to draw the text. If you’re 
drawing a view from a spaceship, you clear to the black of space before 
beginning to draw the stars, planets, and alien spaceships. Sometimes you 
might not need to clear the screen at all; for example, if the image is the 
inside of a room, the entire graphics window is covered as you draw all 
the walls. 

At this point, you might be wondering why we keep talking about clearing
the window—why not just draw a rectangle of the appropriate color that’s 
large enough to cover the entire window? First, a special command to clear 
a window can be much more efficient than a general-purpose drawing com-
mand. In addition, as you’ll see in Chapter 3, OpenGL allows you to set the 
coordinate system, viewing position, and viewing direction arbitrarily, so 
it might be difficult to figure out an appropriate size and location for a 
window-clearing rectangle. Finally, on many machines, the graphics 
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hardware consists of multiple buffers in addition to the buffer containing 
colors of the pixels that are displayed. These other buffers must be cleared 
from time to time, and it’s convenient to have a single command that can 
clear any combination of them. (See Chapter 10 for a discussion of all the 
possible buffers.)

You must also know how the colors of pixels are stored in the graphics 
hardware known as bitplanes. There are two methods of storage. Either the 
red, green, blue, and alpha (RGBA) values of a pixel can be directly stored in 
the bitplanes, or a single index value that references a color lookup table is 
stored. RGBA color-display mode is more commonly used, so most of the 
examples in this book use it. (See Chapter 4 for more information about 
both display modes.) You can safely ignore all references to alpha values 
until Chapter 6.

As an example, these lines of code clear an RGBA mode window to black:

glClearColor(0.0, 0.0, 0.0, 0.0); 
glClear(GL_COLOR_BUFFER_BIT);

The first line sets the clearing color to black, and the next command clears 
the entire window to the current clearing color. The single parameter to 
glClear() indicates which buffers are to be cleared. In this case, the program 
clears only the color buffer, where the image displayed on the screen is kept. 
Typically, you set the clearing color once, early in your application, and 
then you clear the buffers as often as necessary. OpenGL keeps track of the 
current clearing color as a state variable, rather than requiring you to specify 
it each time a buffer is cleared.

Chapter 4 and Chapter 10 discuss how other buffers are used. For now, all 
you need to know is that clearing them is simple. For example, to clear both 
the color buffer and the depth buffer, you would use the following sequence 
of commands:

glClearColor(0.0, 0.0, 0.0, 0.0); 
glClearDepth(1.0); 
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

In this case, the call to glClearColor() is the same as before, the glClearDepth()
command specifies the value to which every pixel of the depth buffer is to be 
set, and the parameter to the glClear() command now consists of the bitwise 
logical OR of all the buffers to be cleared. The following summary of glClear()
includes a table that lists the buffers that can be cleared, their names, and the 
chapter in which each type of buffer is discussed.
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Before issuing a command to clear multiple buffers, you have to set the 
values to which each buffer is to be cleared if you want something other 
than the default RGBA color, depth value, accumulation color, and stencil 
index. In addition to the glClearColor() and glClearDepth() commands 
that set the current values for clearing the color and depth buffers, 
glClearIndex(), glClearAccum(), and glClearStencil() specify the color
index, accumulation color, and stencil index used to clear the corresponding 
buffers. (See Chapter 4 and Chapter 10 for descriptions of these buffers and 
their uses.) 

OpenGL allows you to specify multiple buffers because clearing is generally 
a slow operation, as every pixel in the window (possibly millions) is 
touched, and some graphics hardware allows sets of buffers to be cleared 
simultaneously. Hardware that doesn’t support simultaneous clears 
performs them sequentially. The difference between

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

void glClearColor(GLclampf red, GLclampf green, GLclampf blue,
GLclampf alpha);

Sets the current clearing color for use in clearing color buffers in RGBA 
mode. (See Chapter 4 for more information on RGBA mode.) The red,
green, blue, and alpha values are clamped if necessary to the range [0, 1]. 
The default clearing color is (0, 0, 0, 0), which is black.

void glClear(GLbitfield mask);

Clears the specified buffers to their current clearing values. The mask
argument is a bitwise logical OR combination of the values listed in 
Table 2-1.

Buffer Name Reference

Color buffer GL_COLOR_BUFFER_BIT Chapter 4

Depth buffer GL_DEPTH_BUFFER_BIT Chapter 10

Accumulation buffer GL_ACCUM_BUFFER_BIT Chapter 10

Stencil buffer GL_STENCIL_BUFFER_BIT Chapter 10

Table 2-1 Clearing Buffers

Compatibility 
Extension

GL_ACCUM_
BUFFER_BIT
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and

glClear(GL_COLOR_BUFFER_BIT);
glClear(GL_DEPTH_BUFFER_BIT);

is that although both have the same final effect, the first example might run 
faster on many machines. It certainly won’t run more slowly.

Specifying a Color 

With OpenGL, the description of the shape of an object being drawn is 
independent of the description of its color. Whenever a particular geometric 
object is drawn, it’s drawn using the currently specified coloring scheme. 
The coloring scheme might be as simple as “draw everything in fire-engine 
red” or as complicated as “assume the object is made out of blue plastic, that 
there’s a yellow spotlight pointed in such and such a direction, and that 
there’s a general low-level reddish-brown light everywhere else.” In general, 
an OpenGL programmer first sets the color or coloring scheme and then 
draws the objects. Until the color or coloring scheme is changed, all objects 
are drawn in that color or using that coloring scheme. This method helps 
OpenGL achieve higher drawing performance than would result if it didn’t 
keep track of the current color. 

For example, the pseudocode

set_current_color(red); 
draw_object(A); 
draw_object(B); 
set_current_color(green); 
set_current_color(blue); 
draw_object(C);

draws objects A and B in red, and object C in blue. The command on the 
fourth line that sets the current color to green is wasted.

Coloring, lighting, and shading are all large topics with entire chapters or 
large sections devoted to them. To draw geometric primitives that can be 
seen, however, you need some basic knowledge of how to set the current 
color; this information is provided in the next few paragraphs. (See 
Chapter 4 and Chapter 5 for details on these topics.)

To set a color, use the command glColor3f(). It takes three parameters, all 
of which are floating-point numbers between 0.0 and 1.0. The parameters 
are, in order, the red, green, and blue components of the color. You can think 
of these three values as specifying a “mix” of colors: 0.0 means don’t use any 
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of that component, and 1.0 means use all you can of that component. Thus, 
the code

glColor3f(1.0, 0.0, 0.0);

makes the brightest red the system can draw, with no green or blue compo-
nents. All zeros makes black; in contrast, all ones makes white. Setting all 
three components to 0.5 yields gray (halfway between black and white). 
Here are eight commands and the colors they would set:

glColor3f(0.0, 0.0, 0.0);     /* black */  
glColor3f(1.0, 0.0, 0.0);  /* red */
glColor3f(0.0, 1.0, 0.0);  /* green */
glColor3f(1.0, 1.0, 0.0);  /* yellow */
glColor3f(0.0, 0.0, 1.0);  /* blue */
glColor3f(1.0, 0.0, 1.0);  /* magenta */
glColor3f(0.0, 1.0, 1.0);  /* cyan */
glColor3f(1.0, 1.0, 1.0);  /* white */

You might have noticed earlier that the routine for setting the clearing 
color, glClearColor(), takes four parameters, the first three of which match 
the parameters for glColor3f(). The fourth parameter is the alpha value; it’s 
covered in detail in “Blending” in Chapter 6. For now, set the fourth param-
eter of glClearColor() to 0.0, which is its default value.

Forcing Completion of Drawing

As you saw in “OpenGL Rendering Pipeline” in Chapter 1, most modern 
graphics systems can be thought of as an assembly line. The main central 
processing unit (CPU) issues a drawing command. Perhaps other hardware 
does geometric transformations. Clipping is performed, followed by shad-
ing and/or texturing. Finally, the values are written into the bitplanes for 
display. In high-end architectures, each of these operations is performed by 
a different piece of hardware that’s been designed to perform its particular 
task quickly. In such an architecture, there’s no need for the CPU to wait for 
each drawing command to complete before issuing the next one. While the 
CPU is sending a vertex down the pipeline, the transformation hardware 
is working on transforming the last one sent, the one before that is being 
clipped, and so on. In such a system, if the CPU waited for each command 
to complete before issuing the next, there could be a huge performance 
penalty.
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In addition, the application might be running on more than one machine. 
For example, suppose that the main program is running elsewhere (on a 
machine called the client) and that you’re viewing the results of the draw-
ing on your workstation or terminal (the server), which is connected by a 
network to the client. In that case, it might be horribly inefficient to send 
each command over the network one at a time, as considerable overhead is 
often associated with each network transmission. Usually, the client gathers 
a collection of commands into a single network packet before sending it. 
Unfortunately, the network code on the client typically has no way of 
knowing that the graphics program is finished drawing a frame or scene. In 
the worst case, it waits forever for enough additional drawing commands to 
fill a packet, and you never see the completed drawing. 

For this reason, OpenGL provides the command glFlush(), which forces the 
client to send the network packet even though it might not be full. Where 
there is no network and all commands are truly executed immediately on 
the server, glFlush() might have no effect. However, if you’re writing a pro-
gram that you want to work properly both with and without a network, 
include a call to glFlush() at the end of each frame or scene. Note that 
glFlush() doesn’t wait for the drawing to complete—it just forces the draw-
ing to begin execution, thereby guaranteeing that all previous commands 
execute in finite time even if no further rendering commands are executed. 

There are other situations in which glFlush() is useful:

• Software renderers that build images in system memory and don’t 
want to constantly update the screen.

• Implementations that gather sets of rendering commands to amortize 
start-up costs. The aforementioned network transmission example is 
one instance of this.

void glFlush(void);

Forces previously issued OpenGL commands to begin execution, thus 
guaranteeing that they complete in finite time.

A few commands—for example, commands that swap buffers in double-
buffer mode—automatically flush pending commands onto the network 
before they can occur. 
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Coordinate System Survival Kit

Whenever you initially open a window or later move or resize that window, 
the window system will send an event to notify you. If you are using GLUT, 
the notification is automated; whatever routine has been registered to 
glutReshapeFunc() will be called. You must register a callback function 
that will

• Reestablish the rectangular region that will be the new rendering 
canvas

• Define the coordinate system to which objects will be drawn

In Chapter 3, you’ll see how to define three-dimensional coordinate 
systems, but right now just create a simple, basic two-dimensional 
coordinate system into which you can draw a few objects. Call 
glutReshapeFunc(reshape), where reshape() is the following function 
shown in Example 2-1.

If glFlush() isn’t sufficient for you, try glFinish(). This command flushes 
the network as glFlush() does and then waits for notification from the 
graphics hardware or network indicating that the drawing is complete in 
the framebuffer. You might need to use glFinish() if you want to synchro-
nize tasks—for example, to make sure that your three-dimensional render-
ing is on the screen before you use Display PostScript to draw labels on top 
of the rendering. Another example would be to ensure that the drawing is 
complete before it begins to accept user input. After you issue a glFinish()
command, your graphics process is blocked until it receives notification 
from the graphics hardware that the drawing is complete. Keep in mind 
that excessive use of glFinish() can reduce the performance of your appli-
cation, especially if you’re running over a network, because it requires 
round-trip communication. If glFlush() is sufficient for your needs, use it 
instead of glFinish().

void glFinish(void);

Forces all previously issued OpenGL commands to complete. This com-
mand doesn’t return until all effects from previous commands are fully 
realized.
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Example 2-1 Reshape Callback Function

void reshape(int w, int h)
{
   glViewport(0, 0, (GLsizei) w, (GLsizei) h);
   glMatrixMode(GL_PROJECTION);
   glLoadIdentity();
   gluOrtho2D(0.0, (GLdouble) w, 0.0, (GLdouble) h);
}

The kernel of GLUT will pass this function two arguments: the width and 
height, in pixels, of the new, moved, or resized window. glViewport()
adjusts the pixel rectangle for drawing to be the entire new window. The 
next three routines adjust the coordinate system for drawing so that the 
lower left corner is (0, 0) and the upper right corner is (w, h) (see Figure 2-1).

To explain it another way, think about a piece of graphing paper. The w and 
h values in reshape() represent how many columns and rows of squares are 
on your graph paper. Then you have to put axes on the graph paper. The 
gluOrtho2D() routine puts the origin, (0, 0), in the lowest, leftmost square, 
and makes each square represent one unit. Now, when you render the 
points, lines, and polygons in the rest of this chapter, they will appear on 
this paper in easily predictable squares. (For now, keep all your objects two-
dimensional.)

(0, 0)

(50, 50)

Figure 2-1 Coordinate System Defined by w = 50, h = 50
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Describing Points, Lines, and Polygons

This section explains how to describe OpenGL geometric primitives. All 
geometric primitives are eventually described in terms of their vertices—
coordinates that define the points themselves, the endpoints of line seg-
ments, or the corners of polygons. The next section discusses how these 
primitives are displayed and what control you have over their display.

What Are Points, Lines, and Polygons?

You probably have a fairly good idea of what a mathematician means by the 
terms point, line, and polygon. The OpenGL meanings are similar, but not 
quite the same.

One difference comes from the limitations of computer-based calculations. 
In any OpenGL implementation, floating-point calculations are of finite 
precision, and they have round-off errors. Consequently, the coordinates of 
OpenGL points, lines, and polygons suffer from the same problems.

A more important difference arises from the limitations of a raster graphics 
display. On such a display, the smallest displayable unit is a pixel, and 
although pixels might be less than 1/100 of an inch wide, they are still 
much larger than the mathematician’s concepts of infinitely small (for 
points) and infinitely thin (for lines). When OpenGL performs calculations, 
it assumes that points are represented as vectors of floating-point numbers. 
However, a point is typically (but not always) drawn as a single pixel, and 
many different points with slightly different coordinates could be drawn by 
OpenGL on the same pixel.

Points

A point is represented by a set of floating-point numbers called a vertex. All 
internal calculations are done as if vertices are three-dimensional. Vertices 
specified by the user as two-dimensional (that is, with only x- and y-
coordinates) are assigned a z-coordinate equal to zero by OpenGL. 

Advanced

OpenGL works in the homogeneous coordinates of three-dimensional projec-
tive geometry, so for internal calculations, all vertices are represented with 
four floating-point coordinates (x, y, z, w). If w is different from zero, these 
coordinates correspond to the Euclidean, three-dimensional point (x/w, y/w, 
z/w). You can specify the w-coordinate in OpenGL commands, but this is 

Advanced
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rarely done. If the w-coordinate isn’t specified, it is understood to be 1.0. 
(See Appendix C for more information about homogeneous coordinate 
systems.)

Lines

In OpenGL, the term line refers to a line segment, not the mathematician’s 
version that extends to infinity in both directions. There are easy ways to 
specify a connected series of line segments, or even a closed, connected 
series of segments (see Figure 2-2). In all cases, though, the lines consti-
tuting the connected series are specified in terms of the vertices at their 
endpoints.

Polygons

Polygons are the areas enclosed by single closed loops of line segments, 
where the line segments are specified by the vertices at their endpoints. 
Polygons are typically drawn with the pixels in the interior filled in, but you 
can also draw them as outlines or a set of points. (See “Polygon Details” on 
page 60.) 

In general, polygons can be complicated, so OpenGL imposes some strong 
restrictions on what constitutes a primitive polygon. First, the edges of 
OpenGL polygons can’t intersect (a mathematician would call a polygon 
satisfying this condition a simple polygon). Second, OpenGL polygons must 
be convex, meaning that they cannot have indentations. Stated precisely, a 
region is convex if, given any two points in the interior, the line segment 
joining them is also in the interior. See Figure 2-3 for some examples of 
valid and invalid polygons. OpenGL, however, doesn’t restrict the number 
of line segments making up the boundary of a convex polygon. Note that 
polygons with holes can’t be described. They are nonconvex, and they can’t 
be drawn with a boundary made up of a single closed loop. Be aware that if 

Figure 2-2 Two Connected Series of Line Segments
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you present OpenGL with a nonconvex filled polygon, it might not draw it 
as you expect. For instance, on most systems, no more than the convex hull
of the polygon would be filled. On some systems, less than the convex hull 
might be filled.

The reason for the OpenGL restrictions on valid polygon types is that it’s 
simpler to provide fast polygon-rendering hardware for that restricted class 
of polygons. Simple polygons can be rendered quickly. The difficult cases 
are hard to detect quickly, so for maximum performance, OpenGL crosses 
its fingers and assumes the polygons are simple.

Many real-world surfaces consist of nonsimple polygons, nonconvex poly-
gons, or polygons with holes. Since all such polygons can be formed from 
unions of simple convex polygons, some routines to build more complex 
objects are provided in the GLU library. These routines take complex 
descriptions and tessellate them, or break them down into groups of the 
simpler OpenGL polygons that can then be rendered. (See “Polygon Tessel-
lation” in Chapter 11 for more information about the tessellation routines.) 

Since OpenGL vertices are always three-dimensional, the points forming the 
boundary of a particular polygon don’t necessarily lie on the same plane in 
space. (Of course, they do in many cases—if all the z-coordinates are zero, for 
example, or if the polygon is a triangle.) If a polygon’s vertices don’t lie in the 
same plane, then after various rotations in space, changes in the viewpoint, 
and projection onto the display screen, the points might no longer form a 
simple convex polygon. For example, imagine a four-point quadrilateral
where the points are slightly out of plane, and look at it almost edge-on. 
You can get a nonsimple polygon that resembles a bow tie, as shown in 
Figure 2-4, which isn’t guaranteed to be rendered correctly. This situation 
isn’t all that unusual if you approximate curved surfaces by quadrilaterals 
made of points lying on the true surface. You can always avoid the problem 
by using triangles, as any three points always lie on a plane.

Valid Invalid

Figure 2-3 Valid and Invalid Polygons
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Rectangles

Since rectangles are so common in graphics applications, OpenGL provides 
a filled-rectangle drawing primitive, glRect*(). You can draw a rectangle as 
a polygon, as described in “OpenGL Geometric Drawing Primitives” on 
page 47, but your particular implementation of OpenGL might have 
optimized glRect*() for rectangles.

Note that although the rectangle begins with a particular orientation in 
three-dimensional space (in the xy-plane and parallel to the axes), you can 
change this by applying rotations or other transformations. (See Chapter 3 
for information about how to do this.)

Curves and Curved Surfaces

Any smoothly curved line or surface can be approximated—to any arbitrary 
degree of accuracy—by short line segments or small polygonal regions. 
Thus, subdividing curved lines and surfaces sufficiently and then approxi-
mating them with straight line segments or flat polygons makes them 
appear curved (see Figure 2-5). If you’re skeptical that this really works, 
imagine subdividing until each line segment or polygon is so tiny that 
it’s smaller than a pixel on the screen.

void glRect{sifd}(TYPE x1, TYPE y1, TYPE x2, TYPE y2);
void glRect{sifd}v(const TYPE *v1, const TYPE *v2);

Draws the rectangle defined by the corner points (x1, y1) and (x2, y2). The 
rectangle lies in the plane z = 0 and has sides parallel to the x- and y-axes. 
If the vector form of the function is used, the corners are given by two 
pointers to arrays, each of which contains an (x, y) pair. 

Figure 2-4 Nonplanar Polygon Transformed to Nonsimple Polygon

Compatibility 
Extension

glRect
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Even though curves aren’t geometric primitives, OpenGL provides some 
direct support for subdividing and drawing them. (See Chapter 12 for 
information about how to draw curves and curved surfaces.)

Specifying Vertices

With OpenGL, every geometric object is ultimately described as an ordered 
set of vertices. You use the glVertex*() command to specify a vertex. 

Example 2-2 provides some examples of using glVertex*().

Example 2-2 Legal Uses of glVertex*()

glVertex2s(2, 3); 
glVertex3d(0.0, 0.0, 3.1415926535898); 
glVertex4f(2.3, 1.0, -2.2, 2.0); 

GLdouble dvect[3] = {5.0, 9.0, 1992.0};
glVertex3dv(dvect);

The first example represents a vertex with three-dimensional coordi-
nates (2, 3, 0). (Remember that if it isn’t specified, the z-coordinate is 
understood to be 0.) The coordinates in the second example are (0.0, 0.0, 

void glVertex[234]{sifd}(TYPE coords);
void glVertex[234]{sifd}v(const TYPE* coords);

Specifies a vertex for use in describing a geometric object. You can supply 
up to four coordinates (x, y, z, w) for a particular vertex or as few as two 
(x, y) by selecting the appropriate version of the command. If you use a 
version that doesn’t explicitly specify z or w, z is understood to be 0, and 
w is understood to be 1. Calls to glVertex*() are effective only between a 
glBegin() and glEnd() pair.

Figure 2-5 Approximating Curves

Compatibility 
Extension

glVertex

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Describing Points, Lines, and Polygons 47

3.1415926535898) (double-precision floating-point numbers). The third 
example represents the vertex with three-dimensional coordinates (1.15, 
0.5, 1.1) as a homogenous coordinate. (Remember that the x-, y-, and 
z-coordinates are eventually divided by the w-coordinate.) In the final 
example, dvect is a pointer to an array of three double-precision floating-
point numbers. 

On some machines, the vector form of glVertex*() is more efficient, since 
only a single parameter needs to be passed to the graphics subsystem. Spe-
cial hardware might be able to send a whole series of coordinates in a single 
batch. If your machine is like this, it’s to your advantage to arrange your 
data so that the vertex coordinates are packed sequentially in memory. In 
this case, there may be some gain in performance by using the vertex array 
operations of OpenGL. (See “Vertex Arrays” on page 70.)

OpenGL Geometric Drawing Primitives

Now that you’ve seen how to specify vertices, you still need to know how 
to tell OpenGL to create a set of points, a line, or a polygon from those ver-
tices. To do this, you bracket each set of vertices between a call to glBegin()
and a call to glEnd(). The argument passed to glBegin() determines what 
sort of geometric primitive is constructed from the vertices. For instance, 
Example 2-3 specifies the vertices for the polygon shown in Figure 2-6.

Example 2-3 Filled Polygon

glBegin(GL_POLYGON);
   glVertex2f(0.0, 0.0);
   glVertex2f(0.0, 3.0);
   glVertex2f(4.0, 3.0);
   glVertex2f(6.0, 1.5);
   glVertex2f(4.0, 0.0);
glEnd();

GL_POLYGON GL_POINTS

Figure 2-6 Drawing a Polygon or a Set of Points
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If you had used GL_POINTS instead of GL_POLYGON, the primitive would 
have been simply the five points shown in Figure 2-6. Table 2-2 in the fol-
lowing function summary for glBegin() lists the 10 possible arguments and 
the corresponding types of primitives.

void glBegin(GLenum mode);

Marks the beginning of a vertex-data list that describes a geometric prim-
itive. The type of primitive is indicated by mode, which can be any of the 
values shown in Table 2-2. 

Value Meaning

GL_POINTS Individual points

GL_LINES Pairs of vertices interpreted as individual line segments

GL_LINE_STRIP Series of connected line segments

GL_LINE_LOOP Same as above, with a segment added between last and 
first vertices

GL_TRIANGLES Triples of vertices interpreted as triangles

GL_TRIANGLE_STRIP Linked strip of triangles

GL_TRIANGLE_FAN Linked fan of triangles

GL_QUADS Quadruples of vertices interpreted as four-sided polygons

GL_QUAD_STRIP Linked strip of quadrilaterals

GL_POLYGON Boundary of a simple, convex polygon

Table 2-2 Geometric Primitive Names and Meanings

void glEnd(void);

Marks the end of a vertex-data list.

Compatibility 
Extension

glBegin
GL_QUADS
GL_QUAD_STRIP
GL_POLYGON

Compatibility 
Extension

glEnd

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Describing Points, Lines, and Polygons 49

Figure 2-7 shows examples of all the geometric primitives listed in Table 2-2, 
with descriptions of the pixels that are drawn for each of the objects. Note 
that in addition to points, several types of lines and polygons are defined. 
Obviously, you can find many ways to draw the same primitive. The 
method you choose depends on your vertex data.

GL_POINTS

GL_LINES GL_LINE_STRIP

GL_TRIANGLES GL_TRIANGLE_STRIP GL_TRIANGLE_FAN

GL_QUADS GL_POLYGON

V0
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V3
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Figure 2-7 Geometric Primitive Types
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As you read the following descriptions, assume that n vertices (v0, v1, v2, ... , 
vn–1) are described between a glBegin() and glEnd() pair.

GL_POINTS Draws a point at each of the n vertices.

GL_LINES Draws a series of unconnected line segments. 
Segments are drawn between v0 and v1,
between v2 and v3, and so on. If n is odd, the 
last segment is drawn between vn–3 and vn–2,
and vn–1 is ignored.

GL_LINE_STRIP Draws a line segment from v0 to v1, then from 
v1 to v2, and so on, finally drawing the segment 
from vn–2 to vn–1. Thus, a total of n – 1 line 
segments are drawn. Nothing is drawn unless n
is larger than 1. There are no restrictions on the 
vertices describing a line strip (or a line loop); 
the lines can intersect arbitrarily.

GL_LINE_LOOP Same as GL_LINE_STRIP, except that a final line 
segment is drawn from vn–1 to v0, completing 
a loop.

GL_TRIANGLES Draws a series of triangles (three-sided polygons) 
using vertices v0, v1, v2, then v3, v4, v5, and so 
on. If n isn’t a multiple of 3, the final one or two 
vertices are ignored.

GL_TRIANGLE_STRIP Draws a series of triangles (three-sided 
polygons) using vertices v0, v1, v2, then v2, v1,
v3 (note the order), then v2, v3, v4, and so on. 
The ordering is to ensure that the triangles are 
all drawn with the same orientation so that 
the strip can correctly form part of a surface. 
Preserving the orientation is important for some 
operations, such as culling (see “Reversing and 
Culling Polygon Faces” on page 61). n must be 
at least 3 for anything to be drawn.

GL_TRIANGLE_FAN Same as GL_TRIANGLE_STRIP, except that the 
vertices are v0, v1, v2, then v0, v2, v3, then v0,
v3, v4, and so on (see Figure 2-7).
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Restrictions on Using glBegin() and glEnd()

The most important information about vertices is their coordinates, which 
are specified by the glVertex*() command. You can also supply additional 
vertex-specific data for each vertex—a color, a normal vector, texture coor-
dinates, or any combination of these—using special commands. In addi-
tion, a few other commands are valid between a glBegin() and glEnd() pair. 
Table 2-3 contains a complete list of such valid commands. 

GL_QUADS Draws a series of quadrilaterals (four-sided 
polygons) using vertices v0, v1, v2, v3, then v4,
v5, v6, v7, and so on. If n isn’t a multiple of 4, 
the final one, two, or three vertices are ignored.

GL_QUAD_STRIP Draws a series of quadrilaterals (four-sided 
polygons) beginning with v0, v1, v3, v2, then 
v2, v3, v5, v4, then v4, v5, v7, v6, and so on (see 
Figure 2-7). n must be at least 4 before anything 
is drawn. If n is odd, the final vertex is ignored.

GL_POLYGON Draws a polygon using the points v0, ... , vn–1 as 
vertices. n must be at least 3, or nothing is 
drawn. In addition, the polygon specified must 
not intersect itself and must be convex. If the 
vertices don’t satisfy these conditions, the 
results are unpredictable.

Command Purpose of Command Reference

glVertex*() set vertex coordinates Chapter 2

glColor*() set RGBA color Chapter 4

glIndex*() set color index Chapter 4

glSecondaryColor*() set secondary color for post-
texturing application

Chapter 9

glNormal*() set normal vector coordinates Chapter 2

glMaterial*() set material properties Chapter 5

glFogCoord*() set fog coordinates Chapter 6

Table 2-3 Valid Commands between glBegin() and glEnd()
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No other OpenGL commands are valid between a glBegin() and glEnd()
pair, and making most other OpenGL calls generates an error. Some vertex 
array commands, such as glEnableClientState() and glVertexPointer(),
when called between glBegin() and glEnd(), have undefined behavior but 
do not necessarily generate an error. (Also, routines related to OpenGL, such 
as glX*() routines, have undefined behavior between glBegin() and glEnd().)
These cases should be avoided, and debugging them may be more difficult. 

Note, however, that only OpenGL commands are restricted; you can 
certainly include other programming-language constructs (except for calls, 
such as the aforementioned glX*() routines). For instance, Example 2-4 
draws an outlined circle.

Example 2-4 Other Constructs between glBegin() and glEnd()

#define PI 3.1415926535898 
GLint circle_points = 100; 
glBegin(GL_LINE_LOOP); 
for (i = 0; i < circle_points; i++) {    
   angle = 2*PI*i/circle_points; 
   glVertex2f(cos(angle), sin(angle)); 
}
glEnd();

Note: This example isn’t the most efficient way to draw a circle, especially 
if you intend to do it repeatedly. The graphics commands used are 
typically very fast, but this code calculates an angle and calls the 
sin() and cos() routines for each vertex; in addition, there’s the loop 

glTexCoord*() set texture coordinates Chapter 9

glMultiTexCoord*() set texture coordinates for 
multitexturing

Chapter 9

glVertexAttrib*() set generic vertex attribute Chapter 15

glEdgeFlag*() control drawing of edges Chapter 2

glArrayElement() extract vertex array data Chapter 2

glEvalCoord*(), glEvalPoint*() generate coordinates Chapter 12

glCallList(), glCallLists() execute display list(s) Chapter 7

Command Purpose of Command Reference

Table 2-3 (continued)        Valid Commands between glBegin() and glEnd()
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overhead. (Another way to calculate the vertices of a circle is to use 
a GLU routine; see “Quadrics: Rendering Spheres, Cylinders, and 
Disks” in Chapter 11.) If you need to draw numerous circles, calculate 
the coordinates of the vertices once and save them in an array and 
create a display list (see Chapter 7), or use vertex arrays to render them. 

Unless they are being compiled into a display list, all glVertex*() commands 
should appear between a glBegin() and glEnd() combination. (If they 
appear elsewhere, they don’t accomplish anything.) If they appear in a 
display list, they are executed only if they appear between a glBegin() and 
a glEnd(). (See Chapter 7 for more information about display lists.)

Although many commands are allowed between glBegin() and glEnd(),
vertices are generated only when a glVertex*() command is issued. At the 
moment glVertex*() is called, OpenGL assigns the resulting vertex the 
current color, texture coordinates, normal vector information, and so on. To 
see this, look at the following code sequence. The first point is drawn in red, 
and the second and third ones in blue, despite the extra color commands:

glBegin(GL_POINTS); 
   glColor3f(0.0, 1.0, 0.0);                  /* green */ 
   glColor3f(1.0, 0.0, 0.0);                  /* red */ 
   glVertex(...); 
   glColor3f(1.0, 1.0, 0.0);                  /* yellow */ 
   glColor3f(0.0, 0.0, 1.0);                  /* blue */ 
   glVertex(...); 
   glVertex(...); 
glEnd();

You can use any combination of the 24 versions of the glVertex*()
command between glBegin() and glEnd(), although in real applications all 
the calls in any particular instance tend to be of the same form. If your 
vertex-data specification is consistent and repetitive (for example, glColor*,
glVertex*, glColor*, glVertex*,...), you may enhance your program’s 
performance by using vertex arrays. (See “Vertex Arrays” on page 70.)

Basic State Management

In the preceding section, you saw an example of a state variable, the current 
RGBA color, and how it can be associated with a primitive. OpenGL 
maintains many states and state variables. An object may be rendered with 
lighting, texturing, hidden surface removal, fog, and other states affecting 
its appearance.
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By default, most of these states are initially inactive. These states may be 
costly to activate; for example, turning on texture mapping will almost 
certainly slow down the process of rendering a primitive. However, the 
image will improve in quality and will look more realistic, owing to the 
enhanced graphics capabilities.

To turn many of these states on and off, use these two simple commands:

You can also check whether a state is currently enabled or disabled.

The states you have just seen have two settings: on and off. However, most 
OpenGL routines set values for more complicated state variables. For 
example, the routine glColor3f() sets three values, which are part of the 
GL_CURRENT_COLOR state. There are five querying routines used to find 
out what values are set for many states:

void glEnable(GLenum capability);
void glDisable(GLenum capability);

glEnable() turns on a capability, and glDisable() turns it off. More than 60 
enumerated values can be passed as parameters to glEnable() or glDisable().
Some examples are GL_BLEND (which controls blending of RGBA values), 
GL_DEPTH_TEST (which controls depth comparisons and updates to the 
depth buffer), GL_FOG (which controls fog), GL_LINE_STIPPLE (patterned 
lines), and GL_LIGHTING (you get the idea).

GLboolean glIsEnabled(GLenum capability)

Returns GL_TRUE or GL_FALSE, depending on whether or not the queried 
capability is currently activated.

void glGetBooleanv(GLenum pname, GLboolean *params);
void glGetIntegerv(GLenum pname, GLint *params);
void glGetFloatv(GLenum pname, GLfloat *params);
void glGetDoublev(GLenum pname, GLdouble *params);
void glGetPointerv(GLenum pname, GLvoid **params);
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These querying routines handle most, but not all, requests for obtaining 
state information. (See “The Query Commands” in Appendix B for a list of 
all of the available OpenGL state querying routines.)

Displaying Points, Lines, and Polygons

By default, a point is drawn as a single pixel on the screen, a line is drawn 
solid and 1 pixel wide, and polygons are drawn solidly filled in. The following 
paragraphs discuss the details of how to change these default display modes.

Point Details

To control the size of a rendered point, use glPointSize() and supply the 
desired size in pixels as the argument. 

The actual collection of pixels on the screen that are drawn for various point 
widths depends on whether antialiasing is enabled. (Antialiasing is a tech-
nique for smoothing points and lines as they’re rendered; see “Antialiasing” 
and “Point Parameters” in Chapter 6 for more detail.) If antialiasing is dis-
abled (the default), fractional widths are rounded to integer widths, and a 
screen-aligned square region of pixels is drawn. Thus, if the width is 1.0, the 
square is 1 pixel by 1 pixel; if the width is 2.0, the square is 2 pixels by 2 
pixels; and so on.

Obtains Boolean, integer, floating-point, double-precision, or pointer 
state variables. The pname argument is a symbolic constant indicating the 
state variable to return, and params is a pointer to an array of the indicated 
type in which to place the returned data. See the tables in Appendix B for 
the possible values for pname. For example, to get the current RGBA color, 
a table in Appendix B suggests you use glGetIntegerv(GL_CURRENT_
COLOR, params) or glGetFloatv(GL_CURRENT_COLOR, params). A type 
conversion is performed, if necessary, to return the desired variable as the 
requested data type.

void glPointSize(GLfloat size);

Sets the width in pixels for rendered points; size must be greater than 0.0 
and by default is 1.0.
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With antialiasing or multisampling enabled, a circular group of pixels is 
drawn, and the pixels on the boundaries are typically drawn at less than full 
intensity to give the edge a smoother appearance. In this mode, noninteger 
widths aren’t rounded. 

Most OpenGL implementations support very large point sizes. You can 
query the minimum and maximum sized for aliased points by using 
GL_ALIASED_POINT_SIZE_RANGE with glGetFloatv(). Likewise, you 
can obtain the range of supported sizes for antialiased points by passing 
GL_SMOOTH_POINT_SIZE_RANGE to glGetFloatv(). The sizes of sup-
ported antialiased points are evenly spaced between the minimum and 
maximum sizes for the range. Calling glGetFloatv() with the parameter 
GL_SMOOTH_POINT_SIZE_GRANULARITY will return how accurately 
a given antialiased point size is supported. For example, if you request 
glPointSize(2.37) and the granularity returned is 0.1, then the point size 
is rounded to 2.4.

Line Details

With OpenGL, you can specify lines with different widths and lines that are 
stippled in various ways—dotted, dashed, drawn with alternating dots and 
dashes, and so on. 

Wide Lines

The actual rendering of lines is affected if either antialiasing or multisam-
pling is enabled. (See “Antialiasing Points or Lines” on page 269 and “Anti-
aliasing Geometric Primitives with Multisampling” on page 275.) Without 
antialiasing, widths of 1, 2, and 3 draw lines 1, 2, and 3 pixels wide. With 
antialiasing enabled, noninteger line widths are possible, and pixels on the 
boundaries are typically drawn at less than full intensity. As with point 
sizes, a particular OpenGL implementation might limit the width of non-
antialiased lines to its maximum antialiased line width, rounded to the 
nearest integer value. You can obtain the range of supported aliased line 

void glLineWidth(GLfloat width);

Sets the width, in pixels, for rendered lines; width must be greater than 0.0 
and by default is 1.0.

Version 3.1 does not support values greater than 1.0, and will generate a 
GL_INVALID_VALUE error if a value greater than 1.0 is specified.
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widths by using GL_ALIASED_LINE_WIDTH_RANGE with glGetFloatv().
To determine the supported minimum and maximum sizes of antialiased 
line widths, and what granularity your implementation supports, call 
glGetFloatv(), with GL_SMOOTH_LINE_WIDTH_RANGE and GL_
SMOOTH_LINE_WIDTH_GRANULARITY.

Note: Keep in mind that, by default, lines are 1 pixel wide, so they appear 
wider on lower-resolution screens. For computer displays, this isn’t 
typically an issue, but if you’re using OpenGL to render to a high-
resolution plotter, 1-pixel lines might be nearly invisible. To obtain 
resolution-independent line widths, you need to take into account 
the physical dimensions of pixels. 

Advanced

With non-antialiased wide lines, the line width isn’t measured perpendicu-
lar to the line. Instead, it’s measured in the y-direction if the absolute value 
of the slope is less than 1.0; otherwise, it’s measured in the x-direction. The 
rendering of an antialiased line is exactly equivalent to the rendering of a 
filled rectangle of the given width, centered on the exact line. 

Stippled Lines

To make stippled (dotted or dashed) lines, you use the command 
glLineStipple() to define the stipple pattern, and then you enable line 
stippling with glEnable().

glLineStipple(1, 0x3F07);
glEnable(GL_LINE_STIPPLE);

With the preceding example and the pattern 0x3F07 (which translates 
to 0011111100000111 in binary), a line would be drawn with 3 pixels on, 
then 5 off, 6 on, and 2 off. (If this seems backward, remember that the 

void glLineStipple(GLint factor, GLushort pattern);

Sets the current stippling pattern for lines. The pattern argument is a 16-bit 
series of 0s and 1s, and it’s repeated as necessary to stipple a given line. A 
1 indicates that drawing occurs, and a 0 that it does not, on a pixel-by-
pixel basis, beginning with the low-order bit of the pattern. The pattern 
can be stretched out by using factor, which multiplies each subseries of 
consecutive 1s and 0s. Thus, if three consecutive 1s appear in the pattern, 
they’re stretched to six if factor is 2. factor is clamped to lie between 1 and 
256. Line stippling must be enabled by passing GL_LINE_STIPPLE to 
glEnable(); it’s disabled by passing the same argument to glDisable().

Advanced

Compatibility 
Extension

glLineStipple
GL_LINE_
STIPPLE
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low-order bit is used first.) If factor had been 2, the pattern would have been 
elongated: 6 pixels on, 10 off, 12 on, and 4 off. Figure 2-8 shows lines drawn 
with different patterns and repeat factors. If you don’t enable line stippling, 
drawing proceeds as if pattern were 0xFFFF and factor were 1. (Use 
glDisable() with GL_LINE_STIPPLE to disable stippling.) Note that stippling 
can be used in combination with wide lines to produce wide stippled lines.

One way to think of the stippling is that as the line is being drawn, the 
pattern is shifted by 1 bit each time a pixel is drawn (or factor pixels are 
drawn, if factor isn’t 1). When a series of connected line segments is drawn 
between a single glBegin() and glEnd(), the pattern continues to shift as 
one segment turns into the next. This way, a stippling pattern continues 
across a series of connected line segments. When glEnd() is executed, the 
pattern is reset, and if more lines are drawn before stippling is disabled the 
stippling restarts at the beginning of the pattern. If you’re drawing lines 
with GL_LINES, the pattern resets for each independent line. 

Example 2-5 illustrates the results of drawing with a couple of different 
stipple patterns and line widths. It also illustrates what happens if the lines 
are drawn as a series of individual segments instead of a single connected 
line strip. The results of running the program appear in Figure 2-9.

PATTERN
0x00FF
0x00FF
0x0C0F
0x0C0F
0xAAAA 
0xAAAA 
0xAAAA 
0xAAAA 

FACTOR
1
2
1
3
1
2
3
4

Figure 2-8 Stippled Lines

Figure 2-9 Wide Stippled Lines
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Example 2-5 Line Stipple Patterns: lines.c

#define drawOneLine(x1,y1,x2,y2)  glBegin(GL_LINES);  \
   glVertex2f((x1),(y1)); glVertex2f((x2),(y2)); glEnd();

void init(void) 
{
   glClearColor(0.0, 0.0, 0.0, 0.0);
   glShadeModel(GL_FLAT);
}

void display(void)
{
   int i;

   glClear(GL_COLOR_BUFFER_BIT);
/* select white for all lines  */
   glColor3f(1.0, 1.0, 1.0);

/* in 1st row, 3 lines, each with a different stipple  */
   glEnable(GL_LINE_STIPPLE);

   glLineStipple(1, 0x0101);  /*  dotted  */
   drawOneLine(50.0, 125.0, 150.0, 125.0);
   glLineStipple(1, 0x00FF);  /*  dashed  */
   drawOneLine(150.0, 125.0, 250.0, 125.0);
   glLineStipple(1, 0x1C47);  /*  dash/dot/dash  */
   drawOneLine(250.0, 125.0, 350.0, 125.0);

/* in 2nd row, 3 wide lines, each with different stipple */
   glLineWidth(5.0);
   glLineStipple(1, 0x0101);  /*  dotted  */
   drawOneLine(50.0, 100.0, 150.0, 100.0);
   glLineStipple(1, 0x00FF);  /*  dashed  */
   drawOneLine(150.0, 100.0, 250.0, 100.0);
   glLineStipple(1, 0x1C47);  /*  dash/dot/dash  */
   drawOneLine(250.0, 100.0, 350.0, 100.0);
   glLineWidth(1.0);

/* in 3rd row, 6 lines, with dash/dot/dash stipple  */
/* as part of a single connected line strip         */
   glLineStipple(1, 0x1C47);  /*  dash/dot/dash  */
   glBegin(GL_LINE_STRIP);
   for (i = 0; i < 7; i++)
      glVertex2f(50.0 + ((GLfloat) i * 50.0), 75.0);
   glEnd();
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/* in 4th row, 6 independent lines with same stipple  */
   for (i = 0; i < 6; i++) {
      drawOneLine(50.0 + ((GLfloat) i * 50.0), 50.0,
                  50.0 + ((GLfloat)(i+1) * 50.0), 50.0);
   }

/* in 5th row, 1 line, with dash/dot/dash stipple    */
/* and a stipple repeat factor of 5                  */
   glLineStipple(5, 0x1C47);  /*  dash/dot/dash  */
   drawOneLine(50.0, 25.0, 350.0, 25.0);

   glDisable(GL_LINE_STIPPLE);
   glFlush();
}

void reshape(int w, int h)
{
   glViewport(0, 0, (GLsizei) w, (GLsizei) h);
   glMatrixMode(GL_PROJECTION);
   glLoadIdentity();
   gluOrtho2D(0.0, (GLdouble) w, 0.0, (GLdouble) h);
}

int main(int argc, char** argv)
{
   glutInit(&argc, argv);
   glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
   glutInitWindowSize(400, 150); 
   glutInitWindowPosition(100, 100);
   glutCreateWindow(argv[0]);
   init();
   glutDisplayFunc(display); 
   glutReshapeFunc(reshape);
   glutMainLoop();
   return 0;
}

Polygon Details

Polygons are typically drawn by filling in all the pixels enclosed within the 
boundary, but you can also draw them as outlined polygons or simply as 
points at the vertices. A filled polygon might be solidly filled or stippled with 
a certain pattern. Although the exact details are omitted here, filled polygons 
are drawn in such a way that if adjacent polygons share an edge or vertex, 
the pixels making up the edge or vertex are drawn exactly once—they’re 
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included in only one of the polygons. This is done so that partially 
transparent polygons don’t have their edges drawn twice, which would 
make those edges appear darker (or brighter, depending on what color 
you’re drawing with). Note that it might result in narrow polygons having 
no filled pixels in one or more rows or columns of pixels. 

To antialias filled polygons, multisampling is highly recommended. For details, 
see “Antialiasing Geometric Primitives with Multisampling” in Chapter 6.

Polygons as Points, Outlines, or Solids

A polygon has two sides—front and back—and might be rendered differ-
ently depending on which side is facing the viewer. This allows you to have 
cutaway views of solid objects in which there is an obvious distinction 
between the parts that are inside and those that are outside. By default, both 
front and back faces are drawn in the same way. To change this, or to draw 
only outlines or vertices, use glPolygonMode().

For example, you can have the front faces filled and the back faces outlined 
with two calls to this routine:

glPolygonMode(GL_FRONT, GL_FILL);
glPolygonMode(GL_BACK, GL_LINE);

Reversing and Culling Polygon Faces

By convention, polygons whose vertices appear in counterclockwise order 
on the screen are called front-facing. You can construct the surface of any 
“reasonable” solid—a mathematician would call such a surface an orient-
able manifold (spheres, donuts, and teapots are orientable; Klein bottles and 
Möbius strips aren’t)—from polygons of consistent orientation. In other 
words, you can use all clockwise polygons or all counterclockwise polygons. 
(This is essentially the mathematical definition of orientable.)

void glPolygonMode(GLenum face, GLenum mode);

Controls the drawing mode for a polygon’s front and back faces. The 
parameter face can be GL_FRONT_AND_BACK, GL_FRONT, or GL_BACK; 
mode can be GL_POINT, GL_LINE, or GL_FILL to indicate whether the 
polygon should be drawn as points, outlined, or filled. By default, both 
the front and back faces are drawn filled.

Version 3.1 only accepts GL_FRONT_AND_BACK as a value for face, and 
renders polygons the same way regardless of whether they’re front- or 
back-facing.

Compatibility 
Extension

GL_FRONT
GL_BACK
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Suppose you’ve consistently described a model of an orientable surface but 
happen to have the clockwise orientation on the outside. You can swap 
what OpenGL considers the back face by using the function glFrontFace(),
supplying the desired orientation for front-facing polygons.

Note: The orientation (clockwise or counterclockwise) of the vertices is also 
known as its winding.

In a completely enclosed surface constructed from opaque polygons with 
a consistent orientation, none of the back-facing polygons are ever visible—
they’re always obscured by the front-facing polygons. If you are outside 
this surface, you might enable culling to discard polygons that OpenGL deter-
mines are back-facing. Similarly, if you are inside the object, only back-
facing polygons are visible. To instruct OpenGL to discard front- or 
back-facing polygons, use the command glCullFace() and enable culling 
with glEnable().

Advanced

In more technical terms, deciding whether a face of a polygon is front- 
or back-facing depends on the sign of the polygon’s area computed in 
window coordinates. One way to compute this area is

void glFrontFace(GLenum mode);

Controls how front-facing polygons are determined. By default, mode is 
GL_CCW, which corresponds to a counterclockwise orientation of the 
ordered vertices of a projected polygon in window coordinates. If mode is 
GL_CW, faces with a clockwise orientation are considered front-facing.

void glCullFace(GLenum mode);

Indicates which polygons should be discarded (culled) before they’re 
converted to screen coordinates. The mode is either GL_FRONT, 
GL_BACK, or GL_FRONT_AND_BACK to indicate front-facing, back-
facing, or all polygons. To take effect, culling must be enabled using 
glEnable() with GL_CULL_FACE; it can be disabled with glDisable() and 
the same argument.

Advanced
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where xi and yi are the x and y window coordinates of the ith vertex of the 
n-vertex polygon and

Assuming that GL_CCW has been specified, if a > 0, the polygon corre-
sponding to that vertex is considered to be front-facing; otherwise, it’s back-
facing. If GL_CW is specified and if a < 0, then the corresponding polygon 
is front-facing; otherwise, it’s back-facing.

Try This

Modify Example 2-5 by adding some filled polygons. Experiment with differ-
ent colors. Try different polygon modes. Also, enable culling to see its effect.

Stippling Polygons

By default, filled polygons are drawn with a solid pattern. They can also be 
filled with a 32-bit by 32-bit window-aligned stipple pattern, which you 
specify with glPolygonStipple().

In addition to defining the current polygon stippling pattern, you must 
enable stippling:

glEnable(GL_POLYGON_STIPPLE);

Use glDisable() with the same argument to disable polygon stippling.

Figure 2-11 shows the results of polygons drawn unstippled and then with 
two different stippling patterns. The program is shown in Example 2-6. The 
reversal of white to black (from Figure 2-10 to Figure 2-11) occurs because 
the program draws in white over a black background, using the pattern in 
Figure 2-10 as a stencil. 

void glPolygonStipple(const GLubyte *mask);

Defines the current stipple pattern for filled polygons. The argument mask
is a pointer to a 32 32 bitmap that’s interpreted as a mask of 0s and 1s. 
Where a 1 appears, the corresponding pixel in the polygon is drawn, and 
where a 0 appears, nothing is drawn. Figure 2-10 shows how a stipple 
pattern is constructed from the characters in mask. Polygon stippling 
is enabled and disabled by using glEnable() and glDisable() with GL_
POLYGON_STIPPLE as the argument. The interpretation of the mask data 
is affected by the glPixelStore*() GL_UNPACK* modes. (See “Controlling 
Pixel-Storage Modes” in Chapter 8.)

i+1 is (i+1) mod n.

Try This

Compatibility 
Extension

glPolygonStipple
GL_POLYGON_
STIPPLE
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128 64 32 16 8 4 2 1

By default, for each byte the most significant bit is first.
Bit ordering can be changed by calling glPixelStore*().

128 64 32 16 8 4 2 1 128 64 32 16 8 4 2 1 128 64 32 16 8 4 2 1

128 64 32 16 8 4 2 1

Figure 2-10 Constructing a Polygon Stipple Pattern 
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Example 2-6 Polygon Stipple Patterns: polys.c

void display(void)
{
   GLubyte fly[] = {
      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
      0x03, 0x80, 0x01, 0xC0, 0x06, 0xC0, 0x03, 0x60, 
      0x04, 0x60, 0x06, 0x20, 0x04, 0x30, 0x0C, 0x20, 
      0x04, 0x18, 0x18, 0x20, 0x04, 0x0C, 0x30, 0x20,
      0x04, 0x06, 0x60, 0x20, 0x44, 0x03, 0xC0, 0x22, 
      0x44, 0x01, 0x80, 0x22, 0x44, 0x01, 0x80, 0x22, 
      0x44, 0x01, 0x80, 0x22, 0x44, 0x01, 0x80, 0x22,
      0x44, 0x01, 0x80, 0x22, 0x44, 0x01, 0x80, 0x22, 
      0x66, 0x01, 0x80, 0x66, 0x33, 0x01, 0x80, 0xCC, 
      0x19, 0x81, 0x81, 0x98, 0x0C, 0xC1, 0x83, 0x30,
      0x07, 0xe1, 0x87, 0xe0, 0x03, 0x3f, 0xfc, 0xc0, 
      0x03, 0x31, 0x8c, 0xc0, 0x03, 0x33, 0xcc, 0xc0, 
      0x06, 0x64, 0x26, 0x60, 0x0c, 0xcc, 0x33, 0x30,
      0x18, 0xcc, 0x33, 0x18, 0x10, 0xc4, 0x23, 0x08, 
      0x10, 0x63, 0xC6, 0x08, 0x10, 0x30, 0x0c, 0x08, 
      0x10, 0x18, 0x18, 0x08, 0x10, 0x00, 0x00, 0x08};

   GLubyte halftone[] = {
      0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55, 
      0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55, 
      0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
      0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55, 
      0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55, 
      0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
      0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55, 
      0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55, 

Figure 2-11 Stippled Polygons
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      0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
      0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55, 
      0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55, 
      0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
      0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55, 
      0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55, 
      0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
      0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55};

   glClear(GL_COLOR_BUFFER_BIT);
   glColor3f(1.0, 1.0, 1.0);
/*  draw one solid, unstippled rectangle,       */      
/*  then two stippled rectangles                */
   glRectf(25.0, 25.0, 125.0, 125.0);
   glEnable(GL_POLYGON_STIPPLE);
   glPolygonStipple(fly);
   glRectf(125.0, 25.0, 225.0, 125.0);
   glPolygonStipple(halftone);
   glRectf(225.0, 25.0, 325.0, 125.0);
   glDisable(GL_POLYGON_STIPPLE);
   glFlush();
}

void init(void) 
{
   glClearColor(0.0, 0.0, 0.0, 0.0);
   glShadeModel(GL_FLAT);    
}

void reshape(int w, int h)
{
   glViewport(0, 0, (GLsizei) w, (GLsizei) h);
   glMatrixMode(GL_PROJECTION);
   glLoadIdentity();
   gluOrtho2D(0.0, (GLdouble) w, 0.0, (GLdouble) h);
}

int main(int argc, char** argv)
{
   glutInit(&argc, argv);
   glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
   glutInitWindowSize(350, 150);
   glutCreateWindow(argv[0]);
   init();
   glutDisplayFunc(display);
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   glutReshapeFunc(reshape);
   glutMainLoop();
   return 0;  
}

You might want to use display lists to store polygon stipple patterns to 
maximize efficiency. (See “Display List Design Philosophy” in Chapter 7.) 

Marking Polygon Boundary Edges

Advanced

OpenGL can render only convex polygons, but many nonconvex poly-
gons arise in practice. To draw these nonconvex polygons, you typically 
subdivide them into convex polygons—usually triangles, as shown in 
Figure 2-12—and then draw the triangles. Unfortunately, if you decompose 
a general polygon into triangles and draw the triangles, you can’t really use 
glPolygonMode() to draw the polygon’s outline, as you get all the triangle 
outlines inside it. To solve this problem, you can tell OpenGL whether a par-
ticular vertex precedes a boundary edge; OpenGL keeps track of this infor-
mation by passing along with each vertex a bit indicating whether that 
vertex is followed by a boundary edge. Then, when a polygon is drawn in 
GL_LINE mode, the nonboundary edges aren’t drawn. In Figure 2-12, the 
dashed lines represent added edges.

By default, all vertices are marked as preceding a boundary edge, but 
you can manually control the setting of the edge flag with the command 
glEdgeFlag*(). This command is used between glBegin() and glEnd() pairs, 
and it affects all the vertices specified after it until the next glEdgeFlag() call 
is made. It applies only to vertices specified for polygons, triangles, and 
quads, not to those specified for strips of triangles or quads. 

Advanced

Figure 2-12 Subdividing a Nonconvex Polygon 
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For instance, Example 2-7 draws the outline shown in Figure 2-13. 

Example 2-7 Marking Polygon Boundary Edges

glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
glBegin(GL_POLYGON);
    glEdgeFlag(GL_TRUE);
    glVertex3fv(V0);
    glEdgeFlag(GL_FALSE);
    glVertex3fv(V1);
    glEdgeFlag(GL_TRUE);
    glVertex3fv(V2);
glEnd();

Normal Vectors

A normal vector (or normal, for short) is a vector that points in a direction 
that’s perpendicular to a surface. For a flat surface, one perpendicular direc-
tion is the same for every point on the surface, but for a general curved sur-
face, the normal direction might be different at each point on the surface. 
With OpenGL, you can specify a normal for each polygon or for each ver-
tex. Vertices of the same polygon might share the same normal (for a flat 
surface) or have different normals (for a curved surface). You can’t assign 
normals anywhere other than at the vertices. 

void glEdgeFlag(GLboolean flag);
void glEdgeFlagv(const GLboolean *flag);

Indicates whether a vertex should be considered as initializing a boundary 
edge of a polygon. If flag is GL_TRUE, the edge flag is set to TRUE (the 
default), and any vertices created are considered to precede boundary 
edges until this function is called again with flag being GL_FALSE. 

Compatibility 
Extension

glEdgeFlag

V0

V2

V1

Figure 2-13 Outlined Polygon Drawn Using Edge Flags
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An object’s normal vectors define the orientation of its surface in space—in 
particular, its orientation relative to light sources. These vectors are used by 
OpenGL to determine how much light the object receives at its vertices. 
Lighting—a large topic by itself—is the subject of Chapter 5, and you might 
want to review the following information after you’ve read that chapter. 
Normal vectors are discussed briefly here because you define normal vectors 
for an object at the same time you define the object’s geometry. 

You use glNormal*() to set the current normal to the value of the argument 
passed in. Subsequent calls to glVertex*() cause the specified vertices to be 
assigned the current normal. Often, each vertex has a different normal, 
which necessitates a series of alternating calls, as in Example 2-8. 

Example 2-8 Surface Normals at Vertices

glBegin (GL_POLYGON);
   glNormal3fv(n0);
   glVertex3fv(v0);
   glNormal3fv(n1);
   glVertex3fv(v1);
   glNormal3fv(n2);
   glVertex3fv(v2);
   glNormal3fv(n3);
   glVertex3fv(v3);
glEnd();

There’s no magic to finding the normals for an object—most likely, you 
have to perform some calculations that might include taking derivatives—
but there are several techniques and tricks you can use to achieve certain 
effects. Appendix H,  “Calculating Normal Vectors,”1 explains how to find 
normal vectors for surfaces. If you already know how to do this, if you can 
count on always being supplied with normal vectors, or if you don’t want 
to use the OpenGL lighting facilities, you don’t need to read this appendix. 

void glNormal3{bsidf}(TYPE nx, TYPE ny, TYPE nz);
void glNormal3{bsidf}v(const TYPE *v);

Sets the current normal vector as specified by the arguments. The 
nonvector version (without the v) takes three arguments, which specify 
an (nx, ny, nz) vector that’s taken to be the normal. Alternatively, you can 
use the vector version of this function (with the v) and supply a single 
array of three elements to specify the desired normal. The b, s, and i
versions scale their parameter values linearly to the range [ 1.0, 1.0]. 

1 This appendix is available online at http://www.opengl-redbook.com/appendices/.

Compatibility 
Extension

glNormal
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Note that at a given point on a surface, two vectors are perpendicular to the 
surface, and they point in opposite directions. By convention, the normal 
is the one that points to the outside of the surface being modeled. (If you 
get inside and outside reversed in your model, just change every normal 
vector from (x, y, z) to ( x, y, z)).

Also, keep in mind that since normal vectors indicate direction only, their 
lengths are mostly irrelevant. You can specify normals of any length, but 
eventually they have to be converted to a length of 1 before lighting calcu-
lations are performed. (A vector that has a length of 1 is said to be of unit 
length, or normalized.) In general, you should supply normalized normal 
vectors. To make a normal vector of unit length, divide each of its x-, y-,
z-components by the length of the normal:

Normal vectors remain normalized as long as your model transformations 
include only rotations and translations. (See Chapter 3 for a discussion of 
transformations.) If you perform irregular transformations (such as scaling 
or multiplying by a shear matrix), or if you specify nonunit-length normals, 
then you should have OpenGL automatically normalize your normal vec-
tors after the transformations. To do this, call glEnable(GL_NORMALIZE).

If you supply unit-length normals, and you perform only uniform scaling 
(that is, the same scaling value for x, y, and z), you can use glEnable(GL_
RESCALE_NORMAL) to scale the normals by a constant factor, derived 
from the modelview transformation matrix, to return them to unit length 
after transformation.

Note that automatic normalization or rescaling typically requires additional 
calculations that might reduce the performance of your application. Rescal-
ing normals uniformly with GL_RESCALE_NORMAL is usually less expen-
sive than performing full-fledged normalization with GL_NORMALIZE. By 
default, both automatic normalizing and rescaling operations are disabled.

Vertex Arrays

You may have noticed that OpenGL requires many function calls to render 
geometric primitives. Drawing a 20-sided polygon requires at least 22 func-
tion calls: one call to glBegin(), one call for each of the vertices, and a final 
call to glEnd(). In the two previous code examples, additional information 
(polygon boundary edge flags or surface normals) added function calls for 

x2 + y2 + z2

Compatibility 
Extension

GL_NORMALIZE
GL_RESCALE_
NORMAL
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each vertex. This can quickly double or triple the number of function calls 
required for one geometric object. For some systems, function calls have a 
great deal of overhead and can hinder performance.

An additional problem is the redundant processing of vertices that are 
shared between adjacent polygons. For example, the cube in Figure 2-14 has 
six faces and eight shared vertices. Unfortunately, if the standard method of 
describing this object is used, each vertex has to be specified three times: 
once for every face that uses it. Therefore, 24 vertices are processed, even 
though eight would be enough.

OpenGL has vertex array routines that allow you to specify a lot of vertex-
related data with just a few arrays and to access that data with equally few 
function calls. Using vertex array routines, all 20 vertices in a 20-sided 
polygon can be put into one array and called with one function. If each 
vertex also has a surface normal, all 20 surface normals can be put into 
another array and also called with one function. 

Arranging data in vertex arrays may increase the performance of your 
application. Using vertex arrays reduces the number of function calls, 
which improves performance. Also, using vertex arrays may allow reuse of 
already processed shared vertices.

Note: Vertex arrays became standard in Version 1.1 of OpenGL. Version 1.4 
added support for storing fog coordinates and secondary colors in 
vertex arrays.

There are three steps to using vertex arrays to render geometry:

1. Activate (enable) the appropriate arrays, with each storing a different 
type of data: vertex coordinates, surface normals, RGBA colors, 
secondary colors, color indices, fog coordinates, texture coordinates, 
polygon edge flags, or vertex attributes for use in a vertex shader.

Figure 2-14 Six Sides, Eight Shared Vertices
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2. Put data into the array or arrays. The arrays are accessed by the 
addresses of (that is, pointers to) their memory locations. In the 
client-server model, this data is stored in the client’s address space, 
unless you choose to use buffer objects (see “Buffer Objects” on 
page 91), for which the arrays are stored in server memory.

3. Draw geometry with the data. OpenGL obtains the data from all 
activated arrays by dereferencing the pointers. In the client-server 
model, the data is transferred to the server’s address space. There are 
three ways to do this:

• Accessing individual array elements (randomly hopping around)

• Creating a list of individual array elements (methodically hopping 
around)

• Processing sequential array elements 

The dereferencing method you choose may depend on the type of 
problem you encounter. Version 1.4 added support for multiple array 
access from a single function call.

Interleaved vertex array data is another common method of organization. 
Instead of several different arrays, each maintaining a different type of data 
(color, surface normal, coordinate, and so on), you may have the different 
types of data mixed into a single array. (See “Interleaved Arrays” on page 88.) 

Step 1: Enabling Arrays

The first step is to call glEnableClientState() with an enumerated parame-
ter, which activates the chosen array. In theory, you may need to call this 
up to eight times to activate the eight available arrays. In practice, you’ll 
probably activate up to six arrays. For example, it is unlikely that you would 
activate both GL_COLOR_ARRAY and GL_INDEX_ARRAY, as your program’s 
display mode supports either RGBA mode or color-index mode, but proba-
bly not both simultaneously.

void glEnableClientState(GLenum array)

Specifies the array to enable. The symbolic constants GL_VERTEX_ARRAY, 
GL_COLOR_ARRAY, GL_SECONDARY_COLOR_ARRAY, 
GL_INDEX_ARRAY, GL_NORMAL_ARRAY, 
GL_FOG_COORD_ARRAY, GL_TEXTURE_COORD_ARRAY, and 
GL_EDGE_FLAG_ARRAY are acceptable parameters.

Compatibility 
Extension

glEnableClientState
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Note: Version 3.1 supports only vertex array data stored in buffer objects 
(see “Buffer Objects” on page 91 for details).

If you use lighting, you may want to define a surface normal for every 
vertex. (See “Normal Vectors” on page 68.) To use vertex arrays for that case, 
you activate both the surface normal and vertex coordinate arrays:

glEnableClientState(GL_NORMAL_ARRAY);
glEnableClientState(GL_VERTEX_ARRAY);

Suppose that you want to turn off lighting at some point and just draw 
the geometry using a single color. You want to call glDisable() to turn off 
lighting states (see Chapter 5). Now that lighting has been deactivated, you 
also want to stop changing the values of the surface normal state, which is 
wasted effort. To do this, you call

glDisableClientState(GL_NORMAL_ARRAY);

You might be asking yourself why the architects of OpenGL created these 
new (and long) command names, like gl*ClientState(), for example. 
Why can’t you just call glEnable() and glDisable()? One reason is that 
glEnable() and glDisable() can be stored in a display list, but the specifica-
tion of vertex arrays cannot, because the data remains on the client’s side.

If multitexturing is enabled, enabling and disabling client arrays affects 
only the active texturing unit. See “Multitexturing” on page 467 for more 
details.

Step 2: Specifying Data for the Arrays

There is a straightforward way by which a single command specifies a single 
array in the client space. There are eight different routines for specifying 
arrays—one routine for each kind of array. There is also a command that can 
specify several client-space arrays at once, all originating from a single 
interleaved array.

void glDisableClientState(GLenum array);

Specifies the array to disable. It accepts the same symbolic constants as 
glEnableClientState().

Compatibility 
Extension

glDisableClientState
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To access the other seven arrays, there are seven similar routines:

Note: Additional vertex attributes, used by programmable shaders, can be 
stored in vertex arrays. Because of their association with shaders, 
they are discussed in Chapter 15, “The OpenGL Shading Language,” 
on page 720. For Version 3.1, only generic vertex arrays are 
supported for storing vertex data.

The main difference among the routines is whether size and type are unique 
or must be specified. For example, a surface normal always has three com-
ponents, so it is redundant to specify its size. An edge flag is always a single 
Boolean, so neither size nor type needs to be mentioned. Table 2-4 displays 
legal values for size and data types.

For OpenGL implementations that support multitexturing, specifying a tex-
ture coordinate array with glTexCoordPointer() only affects the currently 
active texture unit. See “Multitexturing” on page 467 for more information.

void glVertexPointer(GLint size, GLenum type, GLsizei stride,
const GLvoid *pointer);

Specifies where spatial coordinate data can be accessed. pointer is the memory 
address of the first coordinate of the first vertex in the array. type specifies 
the data type (GL_SHORT, GL_INT, GL_FLOAT, or GL_DOUBLE) of each 
coordinate in the array. size is the number of coordinates per vertex, which 
must be 2, 3, or 4. stride is the byte offset between consecutive vertices. If 
stride is 0, the vertices are understood to be tightly packed in the array.

void glColorPointer(GLint size, GLenum type, GLsizei stride,
const GLvoid *pointer);

void glSecondaryColorPointer(GLint size, GLenum type, GLsizei stride,
const GLvoid *pointer);

void glIndexPointer(GLenum type, GLsizei stride, const GLvoid *pointer);
void glNormalPointer(GLenum type, GLsizei stride,

const GLvoid *pointer);
void glFogCoordPointer(GLenum type, GLsizei stride,

const GLvoid *pointer);
void glTexCoordPointer(GLint size, GLenum type, GLsizei stride,

const GLvoid *pointer);
void glEdgeFlagPointer(GLsizei stride, const GLvoid *pointer);

Compatibility 
Extension

glVertexPointer

Compatibility 
Extension

glColorPointer
glSecondaryColor
Pointer
glIndexPointer
glNormalPointer
glFogCoordPointer
glTexCoordPointer
glEdgeFlagPointer
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Example 2-9 uses vertex arrays for both RGBA colors and vertex coordinates. 
RGB floating-point values and their corresponding (x, y) integer coordi-
nates are loaded into the GL_COLOR_ARRAY and GL_VERTEX_ARRAY.

Example 2-9 Enabling and Loading Vertex Arrays: varray.c

static GLint vertices[] = {25, 25,
                          100, 325,
                          175, 25,
                          175, 325,
                          250, 25,
                          325, 325};
static GLfloat colors[] = {1.0, 0.2, 0.2,
                          0.2, 0.2, 1.0,
                          0.8, 1.0, 0.2,
                          0.75, 0.75, 0.75,
                          0.35, 0.35, 0.35,
                          0.5, 0.5, 0.5};

Command Sizes Values for type Argument

glVertexPointer 2, 3, 4 GL_SHORT, GL_INT, GL_FLOAT, 
GL_DOUBLE

glColorPointer 3, 4 GL_BYTE, GL_UNSIGNED_BYTE, 
GL_SHORT, GL_UNSIGNED_SHORT, 
GL_INT, GL_UNSIGNED_INT, GL_FLOAT, 
GL_DOUBLE

glSecondaryColorPointer 3 GL_BYTE, GL_UNSIGNED_BYTE, 
GL_SHORT, GL_UNSIGNED_SHORT, 
GL_INT, GL_UNSIGNED_INT, GL_FLOAT, 
GL_DOUBLE

glIndexPointer 1 GL_UNSIGNED_BYTE, GL_SHORT, GL_INT, 
GL_FLOAT, GL_DOUBLE

glNormalPointer 3 GL_BYTE, GL_SHORT, GL_INT, GL_FLOAT, 
GL_DOUBLE

glFogCoordPointer 1 GL_FLOAT, GL_DOUBLE

glTexCoordPointer 1, 2, 3, 4 GL_SHORT, GL_INT, GL_FLOAT, GL_DOUBLE

glEdgeFlagPointer 1 no type argument (type of data must be 
GLboolean)

Table 2-4 Vertex Array Sizes (Values per Vertex) and Data Types 
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glEnableClientState(GL_COLOR_ARRAY);
glEnableClientState(GL_VERTEX_ARRAY);

glColorPointer(3, GL_FLOAT, 0, colors);
glVertexPointer(2, GL_INT, 0, vertices);

Stride

The stride parameter for the gl*Pointer() routines tells OpenGL how to 
access the data you provide in your pointer arrays. Its value should be the 
number of bytes between the starts of two successive pointer elements, or 
zero, which is a special case. For example, suppose you stored both your 
vertex’s RGB and (x, y, z) coordinates in a single array, such as the following:

static GLfloat intertwined[] =
      {1.0, 0.2, 1.0, 100.0, 100.0, 0.0,
       1.0, 0.2, 0.2,   0.0, 200.0, 0.0,
       1.0, 1.0, 0.2, 100.0, 300.0, 0.0,
       0.2, 1.0, 0.2, 200.0, 300.0, 0.0,
       0.2, 1.0, 1.0, 300.0, 200.0, 0.0,
       0.2, 0.2, 1.0, 200.0, 100.0, 0.0};

To reference only the color values in the intertwined array, the following 
call starts from the beginning of the array (which could also be passed as 
&intertwined[0]) and jumps ahead 6 * sizeof(GLfloat) bytes, which is the size 
of both the color and vertex coordinate values. This jump is enough to get 
to the beginning of the data for the next vertex:

glColorPointer(3, GL_FLOAT, 6*sizeof(GLfloat), &intertwined[0]);

For the vertex coordinate pointer, you need to start from further in the 
array, at the fourth element of intertwined (remember that C programmers 
start counting at zero):

glVertexPointer(3,GL_FLOAT, 6*sizeof(GLfloat), &intertwined[3]);

If your data is stored similar to the intertwined array above, you may find the 
approach described in “Interleaved Arrays” on page 88 more convenient for 
storing your data.

With a stride of zero, each type of vertex array (RGB color, color index, 
vertex coordinate, and so on) must be tightly packed. The data in the array 
must be homogeneous; that is, the data must be all RGB color values, all 
vertex coordinates, or all some other data similar in some fashion.
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Step 3: Dereferencing and Rendering

Until the contents of the vertex arrays are dereferenced, the arrays remain 
on the client side, and their contents are easily changed. In Step 3, contents 
of the arrays are obtained, sent to the server, and then sent down the 
graphics processing pipeline for rendering.

You can obtain data from a single array element (indexed location), from an 
ordered list of array elements (which may be limited to a subset of the entire 
vertex array data), or from a sequence of array elements.

Dereferencing a Single Array Element

glArrayElement() is usually called between glBegin() and glEnd(). (If 
called outside, glArrayElement() sets the current state for all enabled 
arrays, except for vertex, which has no current state.) In Example 2-10, a 
triangle is drawn using the third, fourth, and sixth vertices from enabled 
vertex arrays. (Again, remember that C programmers begin counting array 
locations with zero.)

Example 2-10 Using glArrayElement() to Define Colors and Vertices

glEnableClientState(GL_COLOR_ARRAY);
glEnableClientState(GL_VERTEX_ARRAY);
glColorPointer(3, GL_FLOAT, 0, colors);
glVertexPointer(2, GL_INT, 0, vertices);

glBegin(GL_TRIANGLES);
glArrayElement(2);
glArrayElement(3);
glArrayElement(5);
glEnd();

void glArrayElement(GLint ith)

Obtains the data of one (the ith) vertex for all currently enabled arrays. 
For the vertex coordinate array, the corresponding command would be 
glVertex[size][type]v(), where size is one of [2, 3, 4], and type is one of 
[s,i,f,d] for GLshort, GLint, GLfloat, and GLdouble, respectively. Both size 
and type were defined by glVertexPointer(). For other enabled arrays, 
glArrayElement() calls glEdgeFlagv(), glTexCoord[size][type]v(),
glColor[size][type]v(), glSecondaryColor3[type]v(), glIndex[type]v(),
glNormal3[type]v(), and glFogCoord[type]v(). If the vertex coordinate 
array is enabled, the glVertex*v() routine is executed last, after the 
execution (if enabled) of up to seven corresponding array values.

Compatibility 
Extension

glArrayElement

http://lib.ommolketab.ir
http//lib.ommolketab.ir


78 Chapter 2: State Management and Drawing Geometric Objects

When executed, the latter five lines of code have the same effect as

glBegin(GL_TRIANGLES);
glColor3fv(colors + (2 * 3));
glVertex2iv(vertices + (2 * 2));
glColor3fv(colors + (3 * 3));
glVertex2iv(vertices + (3 * 2));
glColor3fv(colors + (5 * 3));
glVertex2iv(vertices + (5 * 2));
glEnd();

Since glArrayElement() is only a single function call per vertex, it may 
reduce the number of function calls, which increases overall performance. 

Be warned that if the contents of the array are changed between glBegin()
and glEnd(), there is no guarantee that you will receive original data or 
changed data for your requested element. To be safe, don’t change the 
contents of any array element that might be accessed until the primitive 
is completed.

Dereferencing a List of Array Elements

glArrayElement() is good for randomly “hopping around” your data 
arrays. Similar routines, glDrawElements(), glMultiDrawElements(), and 
glDrawRangeElements(), are good for hopping around your data arrays in 
a more orderly manner.

The effect of glDrawElements() is almost the same as this command 
sequence:

glBegin(mode);
for (i = 0; i < count; i++)
   glArrayElement(indices[i]);
glEnd();

void glDrawElements(GLenum mode, GLsizei count, GLenum type,
const GLvoid *indices);

Defines a sequence of geometric primitives using count number of ele-
ments, whose indices are stored in the array indices. type must be one of 
GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT, or GL_UNSIGNED_INT, 
indicating the data type of the indices array. mode specifies what kind of 
primitives are constructed and is one of the same values that is accepted 
by glBegin(); for example, GL_POLYGON, GL_LINE_LOOP, GL_LINES, 
GL_POINTS, and so on.
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glDrawElements() additionally checks to make sure mode, count, and type
are valid. Also, unlike the preceding sequence, executing glDrawElements()
leaves several states indeterminate. After execution of glDrawElements(),
current RGB color, secondary color, color index, normal coordinates, fog 
coordinates, texture coordinates, and edge flag are indeterminate if the 
corresponding array has been enabled.

With glDrawElements(), the vertices for each face of the cube can be placed in 
an array of indices. Example 2-11 shows two ways to use glDrawElements()
to render the cube. Figure 2-15 shows the numbering of the vertices used in 
Example 2-11.
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Example 2-11 Using glDrawElements() to Dereference Several Array Elements

static GLubyte frontIndices[] = {4, 5, 6, 7};
static GLubyte rightIndices[] = {1, 2, 6, 5};
static GLubyte bottomIndices[] = {0, 1, 5, 4};
static GLubyte backIndices[] = {0, 3, 2, 1};
static GLubyte leftIndices[] = {0, 4, 7, 3};
static GLubyte topIndices[] = {2, 3, 7, 6};

glDrawElements(GL_QUADS, 4, GL_UNSIGNED_BYTE, frontIndices);
glDrawElements(GL_QUADS, 4, GL_UNSIGNED_BYTE, rightIndices);
glDrawElements(GL_QUADS, 4, GL_UNSIGNED_BYTE, bottomIndices);
glDrawElements(GL_QUADS, 4, GL_UNSIGNED_BYTE, backIndices);
glDrawElements(GL_QUADS, 4, GL_UNSIGNED_BYTE, leftIndices);
glDrawElements(GL_QUADS, 4, GL_UNSIGNED_BYTE, topIndices);

Note: It is an error to encapsulate glDrawElements() between a 
glBegin()/glEnd() pair.

With several primitive types (such as GL_QUADS, GL_TRIANGLES, and GL_
LINES), you may be able to compact several lists of indices together into a 
single array. Since the GL_QUADS primitive interprets each group of four 

Figure 2-15 Cube with Numbered Vertices
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vertices as a single polygon, you may compact all the indices used in 
Example 2-11 into a single array, as shown in Example 2-12:

Example 2-12 Compacting Several glDrawElements() Calls into One

static GLubyte allIndices[] = {4, 5, 6, 7, 1, 2, 6, 5, 
0, 1, 5, 4, 0, 3, 2, 1, 
0, 4, 7, 3, 2, 3, 7, 6};

glDrawElements(GL_QUADS, 24, GL_UNSIGNED_BYTE, allIndices);

For other primitive types, compacting indices from several arrays into 
a single array renders a different result. In Example 2-13, two calls to 
glDrawElements() with the primitive GL_LINE_STRIP render two line 
strips. You cannot simply combine these two arrays and use a single call to 
glDrawElements() without concatenating the lines into a single strip that 
would connect vertices #6 and #7. (Note that vertex #1 is being used in both 
line strips just to show that this is legal.)

Example 2-13  Two glDrawElements() Calls That Render Two Line Strips

static GLubyte oneIndices[] = {0, 1, 2, 3, 4, 5, 6};
static GLubyte twoIndices[] = {7, 1, 8, 9, 10, 11};

glDrawElements(GL_LINE_STRIP, 7, GL_UNSIGNED_BYTE, oneIndices);
glDrawElements(GL_LINE_STRIP, 6, GL_UNSIGNED_BYTE, twoIndices);

The routine glMultiDrawElements() was introduced in OpenGL Version 
1.4 to enable combining the effects of several glDrawElements() calls into 
a single call.

void glMultiDrawElements(GLenum mode, GLsizei *count,
GLenum type, const GLvoid **indices, 
GLsizei primcount);

Calls a sequence of primcount (a number of) glDrawElements() com-
mands. indices is an array of pointers to lists of array elements. count is 
an array of how many vertices are found in each respective array element 
list. mode (primitive type) and type (data type) are the same as they are in 
glDrawElements().
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The effect of glMultiDrawElements() is the same as

for (i = 0; i < primcount; i++) {
   if (count[i] > 0)
      glDrawElements(mode, count[i], type, indices[i]);
}
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The calls to glDrawElements() in Example 2-13 can be combined into a 
single call of glMultiDrawElements(), as shown in Example 2-14:

Example 2-14 Use of glMultiDrawElements(): mvarray.c

static GLubyte oneIndices[] = {0, 1, 2, 3, 4, 5, 6};
static GLubyte twoIndices[] = {7, 1, 8, 9, 10, 11};
static GLsizei count[] = {7, 6};
static GLvoid * indices[2] = {oneIndices, twoIndices};

glMultiDrawElements(GL_LINE_STRIP, count, GL_UNSIGNED_BYTE,
                     indices, 2);

Like glDrawElements() or glMultiDrawElements(), glDrawRangeElements()
is also good for hopping around data arrays and rendering their contents. 
glDrawRangeElements() also introduces the added restriction of a range 
of legal values for its indices, which may increase program performance. 
For optimal performance, some OpenGL implementations may be able to 
prefetch (obtain prior to rendering) a limited amount of vertex array data. 
glDrawRangeElements() allows you to specify the range of vertices to be 
prefetched.

It is a mistake for vertices in the array indices to reference outside the range 
[start, end]. However, OpenGL implementations are not required to find or 
report this mistake. Therefore, illegal index values may or may not generate 
an OpenGL error condition, and it is entirely up to the implementation to 
decide what to do.

You can use glGetIntegerv() with GL_MAX_ELEMENTS_VERTICES and 
GL_MAX_ELEMENTS_INDICES to find out, respectively, the recommended 
maximum number of vertices to be prefetched and the maximum number 

void glDrawRangeElements(GLenum mode, GLuint start,
GLuint end, GLsizei count,
GLenum type, const GLvoid *indices);

Creates a sequence of geometric primitives that is similar to, but more 
restricted than, the sequence created by glDrawElements(). Several 
parameters of glDrawRangeElements() are the same as counterparts in 
glDrawElements(), including mode (kind of primitives), count (number 
of elements), type (data type), and indices (array locations of vertex data). 
glDrawRangeElements() introduces two new parameters: start and end,
which specify a range of acceptable values for indices. To be valid, values 
in the array indices must lie between start and end, inclusive.
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of indices (indicating the number of vertices to be rendered) to be refer-
enced. If end – start + 1 is greater than the recommended maximum of 
prefetched vertices, or if count is greater than the recommended maximum 
of indices, glDrawRangeElements() should still render correctly, but per-
formance may be reduced. 

Not all vertices in the range [start, end] have to be referenced. However, 
on some implementations, if you specify a sparsely used range, you may 
unnecessarily process many vertices that go unused.

With glArrayElement(), glDrawElements(), glMultiDrawElements(), and
glDrawRangeElements(), it is possible that your OpenGL implementation 
caches recently processed (meaning transformed, lit) vertices, allowing your 
application to “reuse” them by not sending them down the transformation 
pipeline additional times. Take the aforementioned cube, for example, 
which has six faces (polygons) but only eight vertices. Each vertex is used 
by exactly three faces. Without gl*Elements(), rendering all six faces would 
require processing 24 vertices, even though 16 vertices are redundant. Your 
implementation of OpenGL may be able to minimize redundancy and 
process as few as eight vertices. (Reuse of vertices may be limited to all 
vertices within a single glDrawElements() or glDrawRangeElements() call, 
a single index array for glMultiDrawElements(), or, for glArrayElement(),
within one glBegin()/glEnd() pair.)

Dereferencing a Sequence of Array Elements

While glArrayElement(), glDrawElements(), and glDrawRangeElements() 
“hop around” your data arrays, glDrawArrays() plows straight through them.

The effect of glDrawArrays() is almost the same as this command sequence:

glBegin (mode);
for (i = 0; i < count; i++)
   glArrayElement(first + i);
glEnd();

void glDrawArrays(GLenum mode, GLint first, GLsizei count);

Constructs a sequence of geometric primitives using array elements 
starting at first and ending at first + count – 1 of each enabled array. mode
specifies what kinds of primitives are constructed and is one of the same 
values accepted by glBegin(); for example, GL_POLYGON, GL_LINE_
LOOP, GL_LINES, GL_POINTS, and so on.
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As is the case with glDrawElements(), glDrawArrays() also performs error 
checking on its parameter values and leaves the current RGB color, secondary 
color, color index, normal coordinates, fog coordinates, texture coordinates, 
and edge flag with indeterminate values if the corresponding array has been 
enabled.

Try This

Change the icosahedron drawing routine in Example 2-19 on page 115 to 
use vertex arrays.

Similar to glMultiDrawElements(), the routine glMultiDrawArrays() was 
introduced in OpenGL Version 1.4 to combine several glDrawArrays() calls 
into a single call.

The effect of glMultiDrawArrays() is the same as

for (i = 0; i < primcount; i++) {
   if (count[i] > 0)
      glDrawArrays(mode, first[i], count[i]);
}

Restarting Primitives

As you start working with larger sets of vertex data, you are likely to find 
that you need to make numerous calls to the OpenGL drawing routines, 
usually rendering the same type of primitive (such as GL_TRIANGLE_STRIP, 
for example) that you used in the previous drawing call. Of course, you can 
use the glMultiDraw*() routines, but they require the overhead of 
maintaining the arrays for the starting index and length of each primitive.

OpenGL Version 3.1 added the ability to restart primitives within the same 
drawing call by specifying a special value, the primitive restart index, which 

void glMultiDrawArrays(GLenum mode, GLint *first, GLsizei *count
GLsizei primcount);

Calls a sequence of primcount (a number of) glDrawArrays() commands. 
mode specifies the primitive type with the same values as accepted by 
glBegin(). first and count contain lists of array locations indicating where 
to process each list of array elements. Therefore, for the ith list of array 
elements, a geometric primitive is constructed starting at first[i] and 
ending at first[i] + count[i] – 1.

Try This
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is specially processed by OpenGL. When the primitive restart index is 
encountered in a draw call, a new rendering primitive of the same type is 
started with the vertex following the index. The primitive restart index is 
specified by the glPrimitiveRestartIndex() routine.

Primitive restarting is controlled by calling glEnable() or glDisable() and 
specifying GL_PRIMITIVE_RESTART, as demonstrated in Example 2-15.

Example 2-15 Using glPrimitiveRestartIndex() to Render Multiple Triangle Strips: 
primrestart.c.

#define BUFFER_OFFSET(offset) ((GLvoid *) NULL + offset)

#define XStart      -0.8
#define XEnd         0.8
#define YStart      -0.8
#define YEnd         0.8

#define NumXPoints          11
#define NumYPoints          11
#define NumPoints           (NumXPoints * NumYPoints)
#define NumPointsPerStrip   (2*NumXPoints)
#define NumStrips           (NumYPoints-1)
#define RestartIndex        0xffff

void
init()
{
    GLuint    vbo, ebo;
    GLfloat   *vertices;
    GLushort  *indices;

    /* Set up vertex data */
    glGenBuffers(1, &vbo);
    glBindBuffer(GL_ARRAY_BUFFER, vbo);
    glBufferData(GL_ARRAY_BUFFER, 2*NumPoints*sizeof(GLfloat), 
        NULL, GL_STATIC_DRAW);

void glPrimitiveRestartIndex(GLuint index);

Specifies the vertex array element index used to indicate that a new 
primitive should be started during rendering. When processing of vertex 
array element indices encounters a value that matches index, no vertex 
data is processed, the current graphics primitive is terminated, and a new 
one of the identical type is started.
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    vertices = glMapBuffer(GL_ARRAY_BUFFER, GL_WRITE_ONLY);

    if (vertices == NULL) {
        fprintf(stderr, "Unable to map vertex buffer\n");
        exit(EXIT_FAILURE);
    }
    else {
        int       i, j;
        GLfloat  dx = (XEnd - XStart) / (NumXPoints - 1);
        GLfloat  dy = (YEnd - YStart) / (NumYPoints - 1);
        GLfloat  *tmp = vertices;
        int n = 0;

        for (j = 0; j < NumYPoints; ++j) {
            GLfloat y = YStart + j*dy;

            for (i = 0; i < NumXPoints; ++i) {
                GLfloat x = XStart + i*dx;
                *tmp++ = x;
                *tmp++ = y;
            }
         }

         glUnmapBuffer(GL_ARRAY_BUFFER);
         glVertexPointer(2, GL_FLOAT, 0, BUFFER_OFFSET(0));
         glEnableClientState(GL_VERTEX_ARRAY);
    }

    /* Set up index data */
    glGenBuffers(1, &ebo);
    glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ebo);

    /* We allocate an extra restart index because it simplifies
    **   the element-array loop logic */
    glBufferData( GL_ELEMENT_ARRAY_BUFFER,
        NumStrips*(NumPointsPerStrip+1)*sizeof(GLushort), 
        NULL, GL_STATIC_DRAW );
    indices = glMapBuffer(GL_ELEMENT_ARRAY_BUFFER,
        GL_WRITE_ONLY);
    
    if (indices == NULL) {
        fprintf(stderr, "Unable to map index buffer\n");
        exit(EXIT_FAILURE);
    }
    else {
        int       i, j;
        GLushort  *index = indices;
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        for (j = 0; j < NumStrips; ++j) {
            GLushort  bottomRow = j*NumYPoints;
            GLushort  topRow = bottomRow + NumYPoints;

            for (i = 0; i < NumXPoints; ++i) {
                *index++ = topRow + i;
                *index++ = bottomRow + i;
            }
            *index++ = RestartIndex;
        }

        glUnmapBuffer(GL_ELEMENT_ARRAY_BUFFER);
    }

    glPrimitiveRestartIndex(RestartIndex);
    glEnable(GL_PRIMITIVE_RESTART);
}

void
display()
{
    int  i, start;

    glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

    glColor3f(1, 1, 1);
    glDrawElements(GL_TRIANGLE_STRIP,
        NumStrips*(NumPointsPerStrip + 1),
        GL_UNSIGNED_SHORT, BUFFER_OFFSET(0));

    glutSwapBuffers();
}

Instanced Drawing

Advanced

OpenGL Version 3.1 (specifically, GLSL version 1.40) added support for 
instanced drawing, which provides an additional value—gl_InstanceID,
called the instance ID, and accessible only in a vertex shader—that is 
monotonically incremented for each group of primitives specified.

Advanced
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glDrawArraysInstanced() operates similarly to glMultiDrawArrays(),
except that the starting index and vertex count (as specified by first and 
count, respectively) are the same for each call to glDrawArrays().

glDrawArraysInstanced() has the same effect as this call sequence (except 
that your application cannot manually update gl_InstanceID):

for (i = 0; i < primcount; i++) {
gl_InstanceID = i;
glDrawArrays(mode, first, count);

}
gl_InstanceID = 0;

Likewise, glDrawElementsInstanced() performs the same operation, but 
allows random-access to the data in the vertex array:

The implementation of glDrawElementsInstanced() is shown here:

for (i = 0; i < primcount; i++) {
gl_InstanceID = i;
glDrawElements(mode, count, type, indicies);

}
gl_InstanceID = 0;

void glDrawArraysInstanced(GLenum mode, GLint first, GLsizei count,
GLsizei primcount);

Effectively calls glDrawArrays() primcount times, setting the GLSL vertex 
shader value gl_InstanceID before each call. mode specifies the primitive 
type. first and count specify the range of array elements that are passed to 
glDrawArrays().

void glDrawElementsInstanced(GLenum mode, GLsizei count,
GLenum type, const void *indicies,
GLsizei primcount);

Effectively calls glDrawElements() primcount times, setting the GLSL 
vertex shader value gl_InstanceID before each call. mode specifies the 
primitive type. type indicates the data type of the array indices and must 
be one of the following: GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT, 
or GL_UNSIGNED_INT. indicies and count specify the range of array 
elements that are passed to glDrawElements().
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Interleaved Arrays

Advanced

Earlier in this chapter (see “Stride” on page 76), the special case of inter-
leaved arrays was examined. In that section, the array intertwined, which 
interleaves RGB color and 3D vertex coordinates, was accessed by calls to 
glColorPointer() and glVertexPointer(). Careful use of stride helped prop-
erly specify the arrays:

static GLfloat intertwined[] =
      {1.0, 0.2, 1.0, 100.0, 100.0, 0.0,
       1.0, 0.2, 0.2, 0.0, 200.0, 0.0,
       1.0, 1.0, 0.2, 100.0, 300.0, 0.0,
       0.2, 1.0, 0.2, 200.0, 300.0, 0.0,
       0.2, 1.0, 1.0, 300.0, 200.0, 0.0,
       0.2, 0.2, 1.0, 200.0, 100.0, 0.0};

There is also a behemoth routine, glInterleavedArrays(), that can specify 
several vertex arrays at once. glInterleavedArrays() also enables and dis-
ables the appropriate arrays (so it combines “Step 1: Enabling Arrays” on 
page 72 and “Step 2: Specifying Data for the Arrays” on page 73). The array 
intertwined exactly fits one of the 14 data-interleaving configurations sup-
ported by glInterleavedArrays(). Therefore, to specify the contents of the 
array intertwined into the RGB color and vertex arrays and enable both 
arrays, call

glInterleavedArrays(GL_C3F_V3F, 0, intertwined);

This call to glInterleavedArrays() enables GL_COLOR_ARRAY and 
GL_VERTEX_ARRAY. It disables GL_SECONDARY_COLOR_ARRAY, 
GL_INDEX_ARRAY, GL_NORMAL_ARRAY, GL_FOG_COORD_ARRAY, 
GL_TEXTURE_COORD_ARRAY, and GL_EDGE_FLAG_ARRAY.

This call also has the same effect as calling glColorPointer() and 
glVertexPointer() to specify the values for six vertices in each array. Now 
you are ready for Step 3: calling glArrayElement(), glDrawElements(),
glDrawRangeElements(), or glDrawArrays() to dereference array 
elements.

Note that glInterleavedArrays() does not support edge flags. 

The mechanics of glInterleavedArrays() are intricate and require reference 
to Example 2-16 and Table 2-5. In that example and table, you’ll see et, ec,
and en, which are the Boolean values for the enabled or disabled texture 
coordinate, color, and normal arrays; and you’ll see st, sc, and sv, which are 
the sizes (numbers of components) for the texture coordinate, color, and 

Advanced
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vertex arrays. tc is the data type for RGBA color, which is the only array that 
can have nonfloating-point interleaved values. pc, pn, and pv are the calcu-
lated strides for jumping into individual color, normal, and vertex values; 
and s is the stride (if one is not specified by the user) to jump from one array 
element to the next.

The effect of glInterleavedArrays() is the same as calling the command 
sequence in Example 2-16 with many values defined in Table 2-5. All 
pointer arithmetic is performed in units of sizeof(GLubyte).

Example 2-16 Effect of glInterleavedArrays(format, stride, pointer)

int str;
/*  set et, ec, en, st, sc, sv, tc, pc, pn, pv, and s
 *  as a function of Table 2-5 and the value of format
 */

str = stride;
if (str == 0)
   str = s;

glDisableClientState(GL_EDGE_FLAG_ARRAY);
glDisableClientState(GL_INDEX_ARRAY);
glDisableClientState(GL_SECONDARY_COLOR_ARRAY);
glDisableClientState(GL_FOG_COORD_ARRAY);

if (et) {
   glEnableClientState(GL_TEXTURE_COORD_ARRAY);
   glTexCoordPointer(st, GL_FLOAT, str, pointer);
}
else

void glInterleavedArrays(GLenum format,
GLsizei stride, const GLvoid *pointer)

Initializes all eight arrays, disabling arrays that are not specified in format,
and enabling the arrays that are specified. format is one of 14 symbolic 
constants, which represent 14 data configurations; Table 2-5 displays 
format values. stride specifies the byte offset between consecutive vertices. 
If stride is 0, the vertices are understood to be tightly packed in the array. 
pointer is the memory address of the first coordinate of the first vertex in 
the array. 

If multitexturing is enabled, glInterleavedArrays() affects only the active 
texture unit. See “Multitexturing” on page 467 for details.

Compatibility 
Extension

glInterleavedArrays
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   glDisableClientState(GL_TEXTURE_COORD_ARRAY);
if (ec) {
   glEnableClientState(GL_COLOR_ARRAY);
   glColorPointer(sc, tc, str, pointer+pc);
}
else
   glDisableClientState(GL_COLOR_ARRAY);

if (en) {
   glEnableClientState(GL_NORMAL_ARRAY);
   glNormalPointer(GL_FLOAT, str, pointer+pn);
}
else
   glDisableClientState(GL_NORMAL_ARRAY);

glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(sv, GL_FLOAT, str, pointer+pv);

In Table 2-5, T and F are True and False. f is sizeof(GLfloat). c is 4 times 
sizeof(GLubyte), rounded up to the nearest multiple of f.

Start by learning the simpler formats, GL_V2F, GL_V3F, and GL_C3F_V3F. If 
you use any of the formats with C4UB, you may have to use a struct data 

Format et ec en st sc sv tc pc pn pv s

GL_V2F F F F 2 0 2f

GL_V3F F F F 3 0 3f

GL_C4UB_V2F F T F 4 2 GL_UNSIGNED_BYTE 0 c c+2f

GL_C4UB_V3F F T F 4 3 GL_UNSIGNED_BYTE 0 c c+3f

GL_C3F_V3F F T F 3 3 GL_FLOAT 0 3f 6f

GL_N3F_V3F F F T 3 0 3f 6f

GL_C4F_N3F_V3F F T T 4 3 GL_FLOAT 0 4f 7f 10f

GL_T2F_V3F T F F 2 3 2f 5f

GL_T4F_V4F T F F 4 4 4f 8f

GL_T2F_C4UB_V3F T T F 2 4 3 GL_UNSIGNED_BYTE 2f c+2f c+5f

GL_T2F_C3F_V3F T T F 2 3 3 GL_FLOAT 2f 5f 8f

GL_T2F_N3F_V3F T F T 2 3 2f 5f 8f

GL_T2F_C4F_N3F_V3F T T T 2 4 3 GL_FLOAT 2f 6f 9f 12f

GL_T4F_C4F_N3F_V4F T T T 4 4 4 GL_FLOAT 4f 8f 11f 15f

Table 2-5 Variables That Direct glInterleavedArrays()
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type or do some delicate type casting and pointer math to pack four 
unsigned bytes into a single 32-bit word.

For some OpenGL implementations, use of interleaved arrays may increase 
application performance. With an interleaved array, the exact layout of 
your data is known. You know your data is tightly packed and may be 
accessed in one chunk. If interleaved arrays are not used, the stride and size 
information has to be examined to detect whether data is tightly packed.

Note: glInterleavedArrays() only enables and disables vertex arrays 
and specifies values for the vertex-array data. It does not render any-
thing. You must still complete “Step 3: Dereferencing and Render-
ing” on page 77 and call glArrayElement(), glDrawElements(),
glDrawRangeElements(), or glDrawArrays() to dereference 
the pointers and render graphics.

Buffer Objects

Advanced

There are many operations in OpenGL where you send a large block of data 
to OpenGL, such as passing vertex array data for processing. Transferring 
that data may be as simple as copying from your system’s memory down 
to your graphics card. However, because OpenGL was designed as a client-
server model, any time that OpenGL needs data, it will have to be transferred 
from the client’s memory. If that data doesn’t change, or if the client and 
server reside on different computers (distributed rendering), that data 
transfer may be slow, or redundant.

Buffer objects were added to OpenGL Version 1.5 to allow an application to 
explicitly specify which data it would like to be stored in the graphics server.

Many different types of buffer objects are used in the current versions of 
OpenGL:

• Vertex data in arrays can be stored in server-side buffer objects starting 
with OpenGL Version 1.5. They are described in “Using Buffer Objects 
with Vertex-Array Data” on page 102 of this chapter. 

• Support for storing pixel data, such as texture maps or blocks of pixels, 
in buffer objects was added into OpenGL Version 2.1 It is described in 
“Using Buffer Objects with Pixel Rectangle Data” in Chapter 8.

Advanced
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• Version 3.1 added uniform buffer objects for storing blocks of uniform-
variable data for use with shaders.

You will find many other features in OpenGL that use the term “objects,” 
but not all apply to storing blocks of data. For example, texture objects 
(introduced in OpenGL Version 1.1) merely encapsulate various state 
settings associated with texture maps (See “Texture Objects” on page 437). 
Likewise, vertex-array objects, added in Version 3.0, encapsulate the state 
parameters associated with using vertex arrays. These types of objects allow 
you to alter numerous state settings with many fewer function calls. For 
maximum performance, you should try to use them whenever possible, 
once you’re comfortable with their operation.

Note: An object is referred to by its name, which is an unsigned integer 
identifier. Starting with Version 3.1, all names must be generated by 
OpenGL using one of the glGen*() routines; user-defined names are 
no longer accepted.

Creating Buffer Objects

In OpenGL Version 3.0, any nonzero unsigned integer may used as a buffer 
object identifier. You may either arbitrarily select representative values or let 
OpenGL allocate and manage those identifiers for you. Why the difference? 
By having OpenGL allocate identifiers, you are guaranteed to avoid an 
already used buffer object identifier. This helps to eliminate the risk of 
modifying data unintentionally. In fact, OpenGL Version 3.1 requires that 
all object identifiers be generated, disallowing user-defined names.

To have OpenGL allocate buffer objects identifiers, call glGenBuffers().

void glGenBuffers(GLsizei n, GLuint *buffers);

Returns n currently unused names for buffer objects in the array buffers.
The names returned in buffers do not have to be a contiguous set of 
integers.

The names returned are marked as used for the purposes of allocating 
additional buffer objects, but only acquire a valid state once they have 
been bound.

Zero is a reserved buffer object name and is never returned as a buffer 
object by glGenBuffers().
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You can also determine whether an identifier is a currently used buffer 
object identifier by calling glIsBuffer().

Making a Buffer Object Active

To make a buffer object active, it needs to be bound. Binding selects which 
buffer object future operations will affect, either for initializing data or 
using that buffer for rendering. That is, if you have more than one buffer 
object in your application, you’ll likely call glBindBuffer() multiple times: 
once to initialize the object and its data, and then subsequent times either 
to select that object for use in rendering or to update its data.

To disable use of buffer objects, call glBindBuffer() with zero as the buffer 
identifier. This switches OpenGL to the default mode of not using buffer 
objects.

Allocating and Initializing Buffer Objects with Data

Once you’ve bound a buffer object, you need to reserve space for storing 
your data. This is done by calling glBufferData().

GLboolean glIsBuffer(GLuint buffer);

Returns GL_TRUE if buffer is the name of a buffer object that has been 
bound, but has not been subsequently deleted. Returns GL_FALSE if buffer
is zero or if buffer is a nonzero value that is not the name of a buffer object.

void glBindBuffer(GLenum target, GLuint buffer);

Specifies the current active buffer object. target must be set to one of
GL_ARRAY_BUFFER, GL_ELEMENT_ARRAY_BUFFER, GL_PIXEL_PACK_
BUFFER, GL_PIXEL_UNPACK_BUFFER, GL_COPY_READ_BUFFER, 
GL_COPY_WRITE_BUFFER, GL_TRANSFORM_FEEDBACK_BUFFER, or 
GL_UNIFORM_BUFFER. buffer specifies the buffer object to be bound to.

glBindBuffer() does three things: 1. When using buffer of an unsigned 
integer other than zero for the first time, a new buffer object is created and 
assigned that name. 2. When binding to a previously created buffer 
object, that buffer object becomes the active buffer object. 3. When 
binding to a buffer value of zero, OpenGL stops using buffer objects.
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glBufferData() first allocates memory in the OpenGL server for storing your 
data. If you request too much memory, a GL_OUT_OF_MEMORY error will 
be set. Once the storage has been reserved, and if the data parameter is not 
NULL, size units of storage (usually bytes) are copied from the client’s 
memory into the buffer object. However, if you need to dynamically load 
the data at some point after the buffer is created, pass NULL in for the data
pointer. This will reserve the appropriate storage for your data, but leave it 
uninitialized.

void glBufferData(GLenum target, GLsizeiptr size, const GLvoid *data,
GLenum usage);

Allocates size storage units (usually bytes) of OpenGL server memory for 
storing vertex array data or indices. Any previous data associated with the 
currently bound object will be deleted.

target may be either GL_ARRAY_BUFFER for vertex data; GL_ELEMENT_
ARRAY_BUFFER for index data; GL_PIXEL_UNPACK_BUFFER for pixel 
data being passed into OpenGL; GL_PIXEL_PACK_BUFFER for pixel data 
being retrieved from OpenGL; GL_COPY_READ_BUFFER and GL_COPY_
WRITE_BUFFER for data copied between buffers; GL_TEXTURE_BUFFER 
for texture data stored as a texture buffer; GL_TRANSFORM_FEEDBACK_
BUFFER for results from executing a transform feedback shader; or 
GL_UNIFORM_BUFFER for uniform variable values.

size is the amount of storage required for storing the respective data. This 
value is generally number of elements in the data multiplied by their 
respective storage size.

data is either a pointer to a client memory that is used to initialize the 
buffer object or NULL. If a valid pointer is passed, size units of storage are 
copied from the client to the server. If NULL is passed, size units of storage 
are reserved for use, but are left uninitialized.

usage provides a hint as to how the data will be read and written after 
allocation. Valid values are GL_STREAM_DRAW, GL_STREAM_READ, GL_
STREAM_COPY, GL_STATIC_DRAW, GL_STATIC_READ, GL_STATIC_COPY, 
GL_DYNAMIC_DRAW, GL_DYNAMIC_READ, GL_DYNAMIC_COPY.

glBufferData() will generate a GL_OUT_OF_MEMORY error if the 
requested size exceeds what the server is able to allocate. It will generate a 
GL_INVALID_VALUE error if usage is not one of the permitted values.
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The final parameter to glBufferData(), usage, is a performance hint to 
OpenGL. Based upon the value you specify for usage, OpenGL may be able 
to optimize the data for better performance, or it can choose to ignore the 
hint. There are three operations that can be done to buffer object data:

1. Drawing—the client specifies data that is used for rendering.

2. Reading—data values are read from an OpenGL buffer (such as the 
framebuffer) and used in the application in various computations not 
immediately related to rendering.

3. Copying—data values are read from an OpenGL buffer and then used 
as data for rendering.

Additionally, depending upon how often you intend to update the data, 
there are various operational hints for describing how often the data will be 
read or used in rendering:

• Stream mode—you specify the data once, and use it only a few times in 
drawing or other operations.

• Static mode—you specify the data once, but use the values often.

• Dynamic mode—you may update the data often and use the data 
values in the buffer object many times as well.

Possible values for usage are described in Table 2-6.

Parameter Meaning

GL_STREAM_DRAW Data is specified once and used at most a few times 
as the source of drawing and image specification 
commands.

GL_STREAM_READ Data is copied once from an OpenGL buffer and is 
used at most a few times by the application as data 
values.

GL_STREAM_COPY Data is copied once from an OpenGL buffer and is 
used at most a few times as the source for drawing or 
image specification commands.

GL_STATIC_DRAW Data is specified once and used many times as the 
source of drawing or image specification commands.

GL_STATIC_READ Data is copied once from an OpenGL buffer and is 
used many times by the application as data values.

Table 2-6 Values for usage Parameter of glBufferData() 
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Updating Data Values in Buffer Objects

There are two methods for updating data stored in a buffer object. The first 
method assumes that you have data of the same type prepared in a buffer 
in your application. glBufferSubData() will replace some subset of the data 
in the bound buffer object with the data you provide.

The second method allows you more control over which data values are 
updated in the buffer. glMapBuffer() and glMapBufferRange() return a 
pointer to the buffer object memory, into which you can write new values 

GL_STATIC_COPY Data is copied once from an OpenGL buffer and is 
used many times as the source for drawing or image 
specification commands.

GL_DYNAMIC_DRAW Data is specified many times and used many times 
as the source of drawing and image specification 
commands.

GL_DYNAMIC_READ Data is copied many times from an OpenGL buffer and 
is used many times by the application as data values.

GL_DYNAMIC_COPY Data is copied many times from an OpenGL buffer and 
is used many times as the source for drawing or image 
specification commands.

void glBufferSubData(GLenum target, GLintptr offset, GLsizeiptr size,
const GLvoid *data);

Update size bytes starting at offset (also measured in bytes) in the currently 
bound buffer object associated with target using the data pointed to by 
data. target must be one of GL_ARRAY_BUFFER, GL_ELEMENT_ARRAY_
BUFFER, GL_PIXEL_UNPACK_BUFFER, GL_PIXEL_PACK_BUFFER, 
GL_COPY_READ_BUFFER, GL_COPY_WRITE_BUFFER, GL_TRANSFORM_
FEEDBACK_BUFFER, or GL_UNIFORM_BUFFER.

glBufferSubData() will generate a GL_INVALID_VALUE error if size is less 
than zero or if size + offset is greater than the original size specified when 
the buffer object was created.

Parameter Meaning

Table 2-6 (continued)        Values for usage Parameter of glBufferData() 
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(or simply read the data, depending on your choice of memory access 
permissions), just as if you were assigning values to an array. When you’ve 
completed updating the values in the buffer, you call glUnmapBuffer() to 
signify that you’ve completed updating the data.

glMapBuffer() provides access to the entire set of data contained in the 
buffer object. This approach is useful if you need to modify much of the 
data in buffer, but may be inefficient if you have a large buffer and need to 
update only a small portion of the values. 

When you’ve completed accessing the storage, you can unmap the buffer 
by calling glUnmapBuffer().

 As a simple example of how you might selectively update elements of your 
data, we’ll use glMapBuffer() to obtain a pointer to the data in a buffer 
object containing three-dimensional positional coordinates, and then 
update only the z-coordinates.

GLvoid *glMapBuffer(GLenum target, GLenum access);

Returns a pointer to the data storage for the currently bound buffer 
object associated with target, which must be one of GL_ARRAY_BUFFER, 
GL_ELEMENT_ARRAY_BUFFER, GL_PIXEL_PACK_BUFFER, GL_PIXEL_
UNPACK_BUFFER, GL_COPY_READ_BUFFER, GL_COPY_WRITE_
BUFFER, GL_TRANSFORM_FEEDBACK_BUFFER, or GL_UNIFORM_
BUFFER. access must be either GL_READ_ONLY, GL_WRITE_ONLY, or 
GL_READ_WRITE, indicating the operations that a client may do on the data.

glMapBuffer() will return NULL either if the buffer cannot be mapped 
(setting the OpenGL error state to GL_OUT_OF_MEMORY) or if the buffer 
was already mapped previously (where the OpenGL error state will be set 
to GL_INVALID_OPERATION).

GLboolean glUnmapBuffer(GLenum target);

Indicates that updates to the currently bound buffer object are complete, 
and the buffer may be released. target must be one of GL_ARRAY_BUFFER, 
GL_ELEMENT_ARRAY_BUFFER, GL_PIXEL_PACK_BUFFER, GL_PIXEL_
UNPACK_BUFFER, GL_COPY_READ_BUFFER, GL_COPY_WRITE_
BUFFER, GL_TRANSFORM_FEEDBACK_BUFFER, or GL_UNIFORM_
BUFFER.
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GLfloat* data;

data = (GLfloat*) glMapBuffer(GL_ARRAY_BUFFER, GL_READ_WRITE);

if (data != (GLfloat*) NULL) {
    for( i = 0; i < 8; ++i )
        data[3*i+2] *= 2.0;  /* Modify Z values */
    glUnmapBuffer(GL_ARRAY_BUFFER);
} else {
    /* Handle not being able to update data */
}

If you need to update only a relatively small number of values in the buffer 
(as compared to its total size), or small contiguous ranges of values in a very 
large buffer object, it may be more efficient to use glMapBufferRange(). It 
allows you to map only the range of data values you need.

GLvoid *glMapBufferRange(GLenum target, GLintptr offset,
GLsizeiptr length, GLbitfield access);

Returns a pointer into the data storage for the currently bound buffer object 
associated with target, which must be one of GL_ARRAY_BUFFER, 
GL_ELEMENT_ARRAY_BUFFER, GL_PIXEL_PACK_BUFFER, GL_PIXEL_
UNPACK_BUFFER, GL_COPY_READ_BUFFER, GL_COPY_WRITE_BUFFER, 
GL_TRANSFORM_FEEDBACK_BUFFER, or GL_UNIFORM_BUFFER. offset
and length specify the range to be mapped. access is a bitmask composed of 
GL_MAP_READ_BIT, GL_MAP_WRITE_BIT, which indicate the operations 
that a client may do on the data, and optionally GL_MAP_INVALIDATE_
RANGE_BIT, GL_MAP_INVALIDATE_BUFFER_BIT, GL_MAP_FLUSH_
EXPLICIT_BIT, or GL_MAP_UNSYNCHRONIZED_BIT, which provide hints 
on how OpenGL should manage the data in the buffer.

glMapBufferRange() will return NULL if an error occurs. GL_INVALID_
VALUE is generated if offset or length are negative, or offset+length is greater 
than the buffer size. GL_OUT_OF_MEMORY error is generated if adequate 
memory cannot be obtained to map the buffer. GL_INVALID_OPERATION 
is generated if any of the following occur: The buffer is already mapped; 
access does not have either GL_MAP_READ_BIT or GL_MAP_WRITE_BIT 
set; access has GL_MAP_READ_BIT set and any of GL_MAP_INVALIDATE_
RANGE_BIT, GL_MAP_INVALIDATE_BUFFER_BIT, or GL_MAP_
UNSYNCHRONIZED_BIT is also set; or both GL_MAP_WRITE_BIT and 
GL_MAP_FLUSH_EXPLICIT_BIT are set in access.
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Using glMapBufferRange(), you can specify optional hints by setting 
additional bits within access. These flags describe how the OpenGL server 
needs to preserve data that was originally in the buffer before you mapped 
it. The hints are meant to aid the OpenGL implementation in determining 
which data values it needs to retain, or for how long, to keep any internal 
copies of the data correct and consistent.

Parameter Meaning

GL_MAP_INVALIDATE_RANGE_BIT Specify that the previous values in the 
mapped range may be discarded, but 
preserve the other values within the 
buffer. Data within this range are 
undefined unless explicitly written. No 
OpenGL error is generated if later OpenGL 
calls access undefined data, and the results 
of such calls are undefined (but may cause 
application or system errors). This flag 
may not be used in conjunction with the 
GL_READ_BIT.

GL_MAP_INVALIDATE_BUFFER_BIT Specify that the previous values of the 
entire buffer may be discarded, and all 
values with the buffer are undefined 
unless explicitly written. No OpenGL 
error is generated if later OpenGL calls 
access undefined data, and the results of 
such calls are undefined (but may cause 
application or system errors). This flag 
may not be used in conjunction with the 
GL_READ_BIT.

GL_MAP_FLUSH_EXPLICIT_BIT Indicate that discrete ranges of the 
mapped region may be updated, that the 
application will signal when 
modifications to a range should be 
considered completed by calling 
glFlushMappedBufferRange(). No 
OpenGL error is generated if a range of the 
mapped buffer is updated but not flushed, 
however, the values are undefined until 
flushed.

Using this option will require any modified 
ranges to be explicitly flushed to the 
OpenGL server—glUnmapBuffer() will 
not automatically flush the buffer’s data.

Table 2-7 Values for the access Parameter of glMapBufferRange()
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As described in Table 2-7, specifying GL_MAP_FLUSH_EXPLICIT_BIT in the 
access flags when mapping a buffer region with glMapBufferRange()
requires ranges modified within the mapped buffer to be indicated to the 
OpenGL by a call to glFlushMappedBufferRange().

GL_MAP_UNSYNCHRONIZED_BIT Specify that OpenGL should not attempt 
to synchronize pending operations on a 
buffer (e.g., updating data with a call to 
glBufferData(), or the application is 
trying to use the data in the buffer for 
rendering) until the call to 
glMapBufferRange() has completed. 
No OpenGL errors are generated for the 
pending operations that access or modify 
the mapped region, but the results of 
those operations is undefined.

GLvoid glFlushMappedBufferRange(GLenum target, GLintptr offset,
GLsizeiptr length);

Signal that values within a mapped buffer range have been modified, 
which may cause the OpenGL server to update cached copies of the buffer 
object. target must be one of the following: GL_ARRAY_BUFFER, 
GL_ELEMENT_ARRAY_BUFFER, GL_PIXEL_PACK_BUFFER, GL_PIXEL_
UNPACK_BUFFER, GL_COPY_READ_BUFFER, GL_COPY_WRITE_
BUFFER, GL_TRANSFORM_FEEDBACK_BUFFER, or GL_UNIFORM_
BUFFER. offset and length specify the range of the mapped buffer region, 
relative to the beginning of the mapped range of the buffer.

A GL_INVALID_VALUE error is generated if offset or length is negative or if 
offset+length is greater than the size of the mapped region. A GL_INVALID_
OPERATION error is generated if there is no buffer bound to target (i.e.,
zero was specified as the buffer to be bound in a call to glBindBuffer() for 
target), or if the buffer bound to target is not mapped, or if it is mapped 
without having set the GL_MAP_FLUSH_EXPLICIT_BIT.

Parameter Meaning

Table 2-7 (continued)        Values for the access Parameter of glMapBufferRange()

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Buffer Objects 101

Copying Data Between Buffer Objects

On some occasions, you may need to copy data from one buffer object to 
another. In versions of OpenGL prior to Version 3.1, this would be a two-
step process:

1. Copy the data from the buffer object into memory in your application. 
You would do this either by mapping the buffer and copying it into a 
local memory buffer, or by calling glGetBufferSubData() to copy the 
data from the server.

2. Update the data in another buffer object by binding to the new object 
and then sending the new data using glBufferData() (or 
glBufferSubData() if you’re replacing only a subset). Alternatively, you 
could map the buffer, and then copy the data from a local memory 
buffer into the mapped buffer.

In OpenGL Version 3.1, the glCopyBufferSubData() command copies data 
without forcing it to make a temporary stop in your application’s memory. 

void glCopyBufferSubData(GLenum readbuffer, GLenum writebuffer,
GLintptr readoffset, GLintptr writeoffset,
GLsizeiptr size);

Copy data from the buffer object associated with readbuffer to the buffer 
object bound to writebuffer. readbuffer and writebuffer must be one of GL_
ARRAY_BUFFER, GL_COPY_READ_BUFFER, GL_COPY_WRITE_BUFFER, 
GL_ELEMENT_ARRAY_BUFFER, GL_PIXEL_PACK_BUFFER, GL_PIXEL_
UNPACK_BUFFER, GL_TEXTURE_BUFFER, GL_TRANSFORM_
FEEDBACK_BUFFER, or GL_UNIFORM_BUFFER.

readoffset and size specify the amount of data copied into the destination 
buffer object, replacing the same size of data starting at writeoffset.

Numerous situations will cause a GL_INVALID_VALUE error to be 
generated: readoffset, writeoffset, or size being negative; readoffset + size
exceeding the extent of the buffer object bound to readbuffer; writeoffset + 
size exceeding the extent of the buffer object bound to writebuffer; or if 
readbuffer and writebuffer are bound to the same object, and the regions 
specified by readoffset and size overlap the region defined by writeoffset
and size.

A GL_INVALID_OPERATION error is generated if either readbuffer or 
writebuffer is bound to zero, or either buffer is currently mapped.
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Cleaning Up Buffer Objects

When you’re finished with a buffer object, you can release its resources and 
make its identifier available by calling glDeleteBuffers(). Any bindings to 
currently bound objects that are deleted are reset to zero.

Using Buffer Objects with Vertex-Array Data

To store your vertex-array data in buffer objects, you will need to add a few 
steps to your application.

1. (Optional) Generate buffer object identifiers.

2. Bind a buffer object, specifying that it will be used for either storing 
vertex data or indices.

3. Request storage for your data, and optionally initialize those data 
elements.

4. Specify offsets relative to the start of the buffer object to initialize the 
vertex-array functions, such as glVertexPointer().

5. Bind the appropriate buffer object to be utilized in rendering.

6. Render using an appropriate vertex-array rendering function, such as 
glDrawArrays() or glDrawElements().

If you need to initialize multiple buffer objects, you will repeat steps 2 
through 4 for each buffer object.

Both “formats” of vertex-array data are available for use in buffer objects. As 
described in “Step 2: Specifying Data for the Arrays,” vertex, color, lighting 
normal, or any other type of associated vertex data can be stored in a buffer 

void glDeleteBuffers(GLsizei n, const GLuint *buffers);

Deletes n buffer objects, named by elements in the array buffers. The freed 
buffer objects may now be reused (for example, by glGenBuffers()).

If a buffer object is deleted while bound, all bindings to that object are 
reset to the default buffer object, as if glBindBuffer() had been called with 
zero as the specified buffer object. Attempts to delete nonexistent buffer 
objects or the buffer object named zero are ignored without generating 
an error.
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object. Additionally, interleaved vertex array data, as described in “Inter-
leaved Arrays,” can also be stored in a buffer object. In either case, you 
would create a single buffer object to hold all of the data to be used as vertex 
arrays.

As compared to specifying a memory address in the client’s memory where 
OpenGL should access the vertex-array data, you specify the offset in 
machine units (usually bytes) to the data in the buffer. To help illustrate 
computing the offset, and to frustrate the purists in the audience, we’ll use 
the following macro to simplify expressing the offset:

#define BUFFER_OFFSET(bytes)  ((GLubyte*) NULL + (bytes))

For example, if you had floating-point color and position data for each 
vertex, perhaps represented as the following array

GLfloat vertexData[][6] = {
    { R0, G0, B0, X0, Y0, Z0 },
    { R1, G1, B1, X1, Y1, Z1 },
    ...
    { Rn, Gn, Bn, Xn, Yn, Zn }
};

that were used to initialize the buffer object, you could specify the data as 
two separate vertex array calls, one for colors and one for vertices:

glColorPointer(3, GL_FLOAT, 6*sizeof(GLfloat),BUFFER_OFFSET(0));
glVertexPointer(3, GL_FLOAT, 6*sizeof(GLfloat),
                BUFFER_OFFSET(3*sizeof(GLfloat));
glEnableClientState(GL_COLOR_ARRAY);
glEnableClientState(GL_VERTEX_ARRAY);

Conversely, since the data in vertexData matches a format for an interleaved 
vertex array, you could use glInterleavedArrays() for specifying the vertex-
array data:

glInterleavedArrays(GL_C3F_V3F, 0, BUFFER_OFFSET(0));

Putting this all together, Example 2-17 demonstrates how buffer objects of 
vertex data might be used. The example creates two buffer objects, one 
containing vertex data and the other containing index data.

Example 2-17 Using Buffer Objects with Vertex Data

#define VERTICES     0
#define INDICES      1
#define NUM_BUFFERS  2
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GLuint  buffers[NUM_BUFFERS];

GLfloat vertices[][3] = {
    { -1.0, -1.0, -1.0 },
    {  1.0, -1.0, -1.0 },
    {  1.0,  1.0, -1.0 },
    { -1.0,  1.0, -1.0 },
    { -1.0, -1.0,  1.0 },
    {  1.0, -1.0,  1.0 },
    {  1.0,  1.0,  1.0 },
    { -1.0,  1.0,  1.0 }
};

GLubyte indices[][4] = {
    { 0, 1, 2, 3 },
    { 4, 7, 6, 5 },
    { 0, 4, 5, 1 },
    { 3, 2, 6, 7 },
    { 0, 3, 7, 4 },
    { 1, 5, 6, 2 }
};

glGenBuffers(NUM_BUFFERS, buffers);

glBindBuffer(GL_ARRAY_BUFFER, buffers[VERTICES]);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices,
             GL_STATIC_DRAW);
glVertexPointer(3, GL_FLOAT, 0, BUFFER_OFFSET(0));
glEnableClientState(GL_VERTEX_ARRAY);

glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, buffers[INDICES]);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices
             GL_STATIC_DRAW);

glDrawElements(GL_QUADS, 24, GL_UNSIGNED_BYTE,
               BUFFER_OFFSET(0));

Vertex-Array Objects

As your programs grow larger and use more models, you will probably 
find that you switch between multiple sets of vertex arrays each frame. 
Depending on how many vertex attributes you’re using for each vertex, the 
number of calls—such as to glVertexPointer()—may start to become large. 
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Vertex-array objects bundle collections of calls for setting the vertex array’s 
state. After being initialized, you can quickly change between different sets 
of vertex arrays with a single call.

To create a vertex-array object, first call glGenVertexArrays(), which will 
create the requested number of uninitialized objects:

After creating your vertex-array objects, you’ll need to initialize the new 
objects, and associate the set of vertex-array data that you want to enable 
with the individual allocated objects. You do this with the 
glBindVertexArray() routine. Once you initialize all of your vertex-array 
objects, you can use glBindVertexArray() to switch between the different 
sets of vertex arrays that you’ve set up.

Example 2-18 demonstrates switching between two sets of vertex arrays 
using vertex-arrays objects.

void glGenVertexArrays(GLsizei n, GLuint *arrays);

Returns n currently unused names for use as vertex-array objects in the 
array arrays. The names returned are marked as used for the purposes of 
allocating additional buffer objects, and initialized with values 
representing the default state of the collection of uninitialized vertex 
arrays.

GLvoid gBindVertexArray(GLuint array);

glBindVertexArray() does three things. When using the value array that 
is other than zero and was returned from glGenVertexArrays(), a new 
vertex-array object is created and assigned that name. When binding to a 
previously created vertex-array object, that vertex array object becomes 
active, which additionally affects the vertex array state stored in the 
object. When binding to an array value of zero, OpenGL stops using 
vertex-array objects and returns to the default state for vertex arrays.

A GL_INVALID_OPERATION error is generated if array is not a value 
previously returned from glGenVertexArrays(), or if it is a value that has 
been released by glDeleteVertexArrays(), or if any of the gl*Pointer()
routines are called to specify a vertex array that is not associated with a 
buffer object while a non-zero vertex-array object is bound (i.e., using a 
client-side vertex array storage).
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Example 2-18 Using Vertex-Array Objects: vao.c 

#define BUFFER_OFFSET(offset)  ((GLvoid*) NULL + offset)
#define NumberOf(array)        (sizeof(array)/sizeof(array[0]))

typedef struct {
    GLfloat x, y, z;
} vec3;

typedef struct {
    vec3     xlate;   /* Translation */
    GLfloat  angle;
    vec3     axis;
} XForm;

enum { Cube, Cone, NumVAOs };
GLuint   VAO[NumVAOs];
GLenum   PrimType[NumVAOs];
GLsizei  NumElements[NumVAOs];
XForm    Xform[NumVAOs] = {
    { { -2.0, 0.0, 0.0 }, 0.0, { 0.0, 1.0, 0.0 } },
    { {  0.0, 0.0, 2.0 }, 0.0, { 1.0, 0.0, 0.0 } }
};
GLfloat  Angle = 0.0;

void
init()
{
    enum { Vertices, Colors, Elements, NumVBOs };
    GLuint  buffers[NumVBOs];

    glGenVertexArrays(NumVAOs, VAO);

    { 
        GLfloat  cubeVerts[][3] = {
            { -1.0, -1.0, -1.0 },
            { -1.0, -1.0,  1.0 },
            { -1.0,  1.0, -1.0 },
            { -1.0,  1.0,  1.0 },
            {  1.0, -1.0, -1.0 },
            {  1.0, -1.0,  1.0 },
            {  1.0,  1.0, -1.0 },
            {  1.0,  1.0,  1.0 },
        };
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        GLfloat  cubeColors[][3] = {
            {  0.0,  0.0,  0.0 },
            {  0.0,  0.0,  1.0 },
            {  0.0,  1.0,  0.0 },
            {  0.0,  1.0,  1.0 },
            {  1.0,  0.0,  0.0 },
            {  1.0,  0.0,  1.0 },
            {  1.0,  1.0,  0.0 },
            {  1.0,  1.0,  1.0 },
        };

        GLubyte  cubeIndices[] = {
            0, 1, 3, 2,
            4, 6, 7, 5,
            2, 3, 7, 6,
            0, 4, 5, 1,
            0, 2, 6, 4,
            1, 5, 7, 3
        };

        glBindVertexArray(VAO[Cube]);
        glGenBuffers(NumVBOs, buffers);
        glBindBuffer(GL_ARRAY_BUFFER, buffers[Vertices]);
        glBufferData(GL_ARRAY_BUFFER, sizeof(cubeVerts),
            cubeVerts, GL_STATIC_DRAW);
        glVertexPointer(3, GL_FLOAT, 0, BUFFER_OFFSET(0));
        glEnableClientState(GL_VERTEX_ARRAY);
        
        glBindBuffer(GL_ARRAY_BUFFER, buffers[Colors]);
        glBufferData(GL_ARRAY_BUFFER, sizeof(cubeColors),
            cubeColors, GL_STATIC_DRAW);
        glColorPointer(3, GL_FLOAT, 0, BUFFER_OFFSET(0));
        glEnableClientState(GL_COLOR_ARRAY);
        
        glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 
            buffers[Elements]);
        glBufferData(GL_ELEMENT_ARRAY_BUFFER, 
            sizeof(cubeIndices), cubeIndices, GL_STATIC_DRAW);

        PrimType[Cube] = GL_QUADS;
        NumElements[Cube] = NumberOf(cubeIndices);
    }
    
    { 
        int i, idx;
        float  dTheta;
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#define NumConePoints  36
        /* We add one more vertex for the cone's apex */
        GLfloat  coneVerts[NumConePoints+1][3] = {
            {0.0, 0.0, 1.0}
        };
        GLfloat  coneColors[NumConePoints+1][3] = {
            {1.0, 1.0, 1.0}
        };
        GLubyte  coneIndices[NumConePoints+1];

        dTheta = 2*M_PI / (NumConePoints - 1);
        idx = 1;
        for (i = 0; i < NumConePoints; ++i, ++idx) {
            float theta = i*dTheta;
            coneVerts[idx][0] = cos(theta);
            coneVerts[idx][1] = sin(theta);
            coneVerts[idx][2] = 0.0;

            coneColors[idx][0] = cos(theta);
            coneColors[idx][1] = sin(theta);
            coneColors[idx][2] = 0.0;

            coneIndices[idx] = idx;
        }

        glBindVertexArray(VAO[Cone]);
        glGenBuffers(NumVBOs, buffers);
        glBindBuffer(GL_ARRAY_BUFFER, buffers[Vertices]);
        glBufferData(GL_ARRAY_BUFFER, sizeof(coneVerts),
            coneVerts, GL_STATIC_DRAW);
        glVertexPointer(3, GL_FLOAT, 0, BUFFER_OFFSET(0));
        glEnableClientState(GL_VERTEX_ARRAY);

        glBindBuffer(GL_ARRAY_BUFFER, buffers[Colors]);
        glBufferData(GL_ARRAY_BUFFER, sizeof(coneColors),
            coneColors, GL_STATIC_DRAW);
        glColorPointer(3, GL_FLOAT, 0, BUFFER_OFFSET(0));
        glEnableClientState(GL_COLOR_ARRAY);

        glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 
            buffers[Elements]);
        glBufferData(GL_ELEMENT_ARRAY_BUFFER, 
            sizeof(coneIndices), coneIndices, GL_STATIC_DRAW);

        PrimType[Cone] = GL_TRIANGLE_FAN;
        NumElements[Cone] = NumberOf(coneIndices);
    }

    glEnable(GL_DEPTH_TEST);
}
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void
display()
{
    int  i;
    
    glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
    
    glPushMatrix();
    glRotatef(Angle, 0.0, 1.0, 0.0);

    for (i = 0; i < NumVAOs; ++i) {
        glPushMatrix();
        glTranslatef(Xform[i].xlate.x, Xform[i].xlate.y, 
            Xform[i].xlate.z);
        glRotatef(Xform[i].angle, Xform[i].axis.x,
            Xform[i].axis.y, Xform[i].axis.z);
        glBindVertexArray(VAO[i]);
        glDrawElements(PrimType[i], NumElements[i],
            GL_UNSIGNED_BYTE, BUFFER_OFFSET(0));
        glPopMatrix();
    }

    glPopMatrix();
    glutSwapBuffers();
}

To delete vertex-array objects and release their names for reuse, call 
glDeleteVertexArrays(). If you’re using buffer objects for storing data, they 
are not deleted when the vertex-array object referencing them is deleted. 
They continue to exist (until you delete them). The only change that occurs 
is if the buffer objects were currently bound when you deleted the vertex-
array object, they become unbound.

void glDeleteVertexArrays(GLsizei n, GLuint *arrays);

Deletes the n vertex-arrays objects specified in arrays, enabling the names 
for reuse as vertex arrays later. If a bound vertex array is deleted, the 
bindings for that vertex array become zero (as if you had called 
glBindBuffer() with a value of zero), and the default vertex array becomes 
the current one. Unused names in arrays are released, but no changes to 
the current vertex array state are made.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


110 Chapter 2: State Management and Drawing Geometric Objects

Finally, if you need to determine whether a particular value might represent 
an allocated (but not necessarily initialized) vertex-array object, you can 
check by calling glIsVertexArray().

Attribute Groups

In “Basic State Management” you saw how to set or query an individual 
state or state variable. You can also save and restore the values of a 
collection of related state variables with a single command.

OpenGL groups related state variables into an attribute group. For example, 
the GL_LINE_BIT attribute consists of five state variables: the line width, 
the GL_LINE_STIPPLE enable status, the line stipple pattern, the line 
stipple repeat counter, and the GL_LINE_SMOOTH enable status. (See 
“Antialiasing” in Chapter 6.) With the commands glPushAttrib() and 
glPopAttrib(), you can save and restore all five state variables at once. 

Some state variables are in more than one attribute group. For example, 
the state variable GL_CULL_FACE is part of both the polygon and the 
enable attribute groups.

In OpenGL Version 1.1, there are now two different attribute stacks. In addi-
tion to the original attribute stack (which saves the values of server state 
variables), there is also a client attribute stack, accessible by the commands 
glPushClientAttrib() and glPopClientAttrib().

In general, it’s faster to use these commands than to get, save, and restore 
the values yourself. Some values might be maintained in the hardware, and 
getting them might be expensive. Also, if you’re operating on a remote 
client, all the attribute data has to be transferred across the network connec-
tion and back as it is obtained, saved, and restored. However, your OpenGL 
implementation keeps the attribute stack on the server, avoiding unneces-
sary network delays.

GLboolean glIsVertexArray(GLuint array);

Returns GL_TRUE if array is the name of a vertex-array object that was 
previously generated with glGenVertexArrays(), but has not been 
subsequently deleted. Returns GL_FALSE if array is zero or a nonzero value 
that is not the name of a vertex-array object.
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There are about 20 different attribute groups, which can be saved and 
restored by glPushAttrib() and glPopAttrib(). There are two client attribute 
groups, which can be saved and restored by glPushClientAttrib() and 
glPopClientAttrib(). For both server and client, the attributes are stored on 
a stack, which has a depth of at least 16 saved attribute groups. (The actual 
stack depths for your implementation can be obtained using GL_MAX_
ATTRIB_STACK_DEPTH and GL_MAX_CLIENT_ATTRIB_STACK_DEPTH 
with glGetIntegerv().) Pushing a full stack or popping an empty one gener-
ates an error.

(See the tables in Appendix B to find out exactly which attributes are saved 
for particular mask values—that is, which attributes are in a particular 
attribute group.)

The special mask GL_ALL_ATTRIB_BITS is used to save and restore all the 
state variables in all the attribute groups. 

void glPushAttrib(GLbitfield mask);
void glPopAttrib(void);

glPushAttrib() saves all the attributes indicated by bits in mask by 
pushing them onto the attribute stack. glPopAttrib() restores the values 
of those state variables that were saved with the last glPushAttrib().
Table 2-8 lists the possible mask bits that can be logically ORed together 
to save any combination of attributes. Each bit corresponds to a collection 
of individual state variables. For example, GL_LIGHTING_BIT refers to all 
the state variables related to lighting, which include the current material 
color; the ambient, diffuse, specular, and emitted light; a list of the lights 
that are enabled; and the directions of the spotlights. When glPopAttrib()
is called, all these variables are restored.

Mask Bit Attribute Group

GL_ACCUM_BUFFER_BIT accum-buffer

GL_ALL_ATTRIB_BITS —

GL_COLOR_BUFFER_BIT color-buffer

GL_CURRENT_BIT current

GL_DEPTH_BUFFER_BIT depth-buffer

Table 2-8 Attribute Groups

Compatibility 
Extension

glPushAttrib
glPopAttrib
GL_ACCUM_
BUFFER_BIT
GL_ALL_ATTRIB_
BITS
GL_COLOR_
BUFFER_BIT
GL_CURRENT_BIT
GL_DEPTH_
BUFFER_BIT
GL_ENABLE_BIT
GL_EVAL_BIT
GL_FOG_BIT
GL_HINT_BIT
GL_LIGHTING_BIT 
GL_LINE_BIT
GL_LIST_BIT
GL_
MULTISAMPLE_BIT
GL_PIXEL_MODE_
BIT
GL_POINT_BIT
GL_POLYGON_BIT
GL_POLYGON_
STIPPLE_BIT
GL_SCISSOR_BIT
GL_STENCIL_
BUFFER_BIT
GL_TEXTURE_BIT
GL_TRANSFORM_
BIT
GL_VIEWPORT_BIT 
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GL_ENABLE_BIT enable

GL_EVAL_BIT eval

GL_FOG_BIT fog

GL_HINT_BIT hint

GL_LIGHTING_BIT lighting

GL_LINE_BIT line

GL_LIST_BIT list

GL_MULTISAMPLE_BIT multisample

GL_PIXEL_MODE_BIT pixel

GL_POINT_BIT point

GL_POLYGON_BIT polygon

GL_POLYGON_STIPPLE_BIT polygon-stipple

GL_SCISSOR_BIT scissor

GL_STENCIL_BUFFER_BIT stencil-buffer

GL_TEXTURE_BIT texture

GL_TRANSFORM_BIT transform

GL_VIEWPORT_BIT viewport

void glPushClientAttrib(GLbitfield mask);
void glPopClientAttrib(void);

glPushClientAttrib() saves all the attributes indicated by bits in mask
by pushing them onto the client attribute stack. glPopClientAttrib()
restores the values of those state variables that were saved with the last 
glPushClientAttrib(). Table 2-9 lists the possible mask bits that can be 
logically ORed together to save any combination of client attributes.

Two client attribute groups, feedback and select, cannot be saved or 
restored with the stack mechanism.

Mask Bit Attribute Group

Table 2-8 (continued)        Attribute Groups

Compatibility 
Extension

glPushClientAttrib
glPopClientAttrib
GL_CLIENT_
PIXEL_STORE_
BIT
GL_CLIENT_
VERTEX_ARRAY_
BIT
GL_CLIENT_ALL_
ATTRIB_BITS
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Some Hints for Building Polygonal Models 
of Surfaces

Following are some techniques that you can use as you build polygonal 
approximations of surfaces. You might want to review this section after 
you’ve read Chapter 5 on lighting and Chapter 7 on display lists. The light-
ing conditions affect how models look once they’re drawn, and some of the 
following techniques are much more efficient when used in conjunction 
with display lists. As you read these techniques, keep in mind that when 
lighting calculations are enabled, normal vectors must be specified to get 
proper results. 

Constructing polygonal approximations to surfaces is an art, and there is no 
substitute for experience. This section, however, lists a few pointers that 
might make it a bit easier to get started.

• Keep polygon orientations (windings) consistent. Make sure that when 
viewed from the outside, all the polygons on the surface are oriented in 
the same direction (all clockwise or all counterclockwise). Consistent 
orientation is important for polygon culling and two-sided lighting. 
Try to get this right the first time, as it’s excruciatingly painful to fix 
the problem later. (If you use glScale*() to reflect geometry around 
some axis of symmetry, you might change the orientation with 
glFrontFace() to keep the orientations consistent.)

• When you subdivide a surface, watch out for any nontriangular 
polygons. The three vertices of a triangle are guaranteed to lie on a 
plane; any polygon with four or more vertices might not. Nonplanar 

Mask Bit Attribute Group

GL_CLIENT_PIXEL_STORE_BIT pixel-store

GL_CLIENT_VERTEX_ARRAY_BIT vertex-array

GL_CLIENT_ALL_ATTRIB_BITS --

can’t be pushed or popped feedback

can’t be pushed or popped select

Table 2-9 Client Attribute Groups
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polygons can be viewed from some orientation such that the edges 
cross each other, and OpenGL might not render such polygons 
correctly.

• There’s always a trade-off between the display speed and the quality of 
the image. If you subdivide a surface into a small number of polygons, 
it renders quickly but might have a jagged appearance; if you subdivide 
it into millions of tiny polygons, it probably looks good but might take 
a long time to render. Ideally, you can provide a parameter to the sub-
division routines that indicates how fine a subdivision you want, and if 
the object is farther from the eye, you can use a coarser subdivision. 
Also, when you subdivide, use large polygons where the surface is rela-
tively flat, and small polygons in regions of high curvature. 

• For high-quality images, it’s a good idea to subdivide more on the sil-
houette edges than in the interior. If the surface is to be rotated relative 
to the eye, this is tougher to do, as the silhouette edges keep moving. 
Silhouette edges occur where the normal vectors are perpendicular to 
the vector from the surface to the viewpoint—that is, when their vec-
tor dot product is zero. Your subdivision algorithm might choose to 
subdivide more if this dot product is near zero.

• Try to avoid T-intersections in your models (see Figure 2-16). As shown, 
there’s no guarantee that the line segments AB and BC lie on exactly 
the same pixels as the segment AC. Sometimes they do, and sometimes 
they don’t, depending on the transformations and orientation. This 
can cause cracks to appear intermittently in the surface.

A
B

C

Undesirable OK

Figure 2-16 Modifying an Undesirable T-Intersection
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• If you’re constructing a closed surface, be sure to use exactly the same 
numbers for coordinates at the beginning and end of a closed loop, or 
you can get gaps and cracks due to numerical round-off. Here’s an 
example of bad code for a two-dimensional circle:

/* don’t use this code */
#define PI 3.14159265 
#define EDGES 30 

/* draw a circle */
glBegin(GL_LINE_STRIP); 
for (i = 0; i <= EDGES; i++)
    glVertex2f(cos((2*PI*i)/EDGES), sin((2*PI*i)/EDGES)); 
glEnd(); 

The edges meet exactly only if your machine manages to calculate 
exactly the same values for the sine and cosine of 0 and of 
(2*PI*EDGES/EDGES). If you trust the floating-point unit on your 
machine to do this right, the authors have a bridge they’d like to sell 
you  To correct the code, make sure that when i == EDGES, you use 0 
for the sine and cosine, not 2*PI*EDGES/EDGES. (Or simpler still, use 
GL_LINE_LOOP instead of GL_LINE_STRIP, and change the loop 
termination condition to i < EDGES.)

An Example: Building an Icosahedron

To illustrate some of the considerations that arise in approximating a sur-
face, let’s look at some example code sequences. This code concerns the 
vertices of a regular icosahedron (which is a Platonic solid composed of 
20 faces that span 12 vertices, the face of each being an equilateral triangle). 
An icosahedron can be considered a rough approximation of a sphere. 
Example 2-19 defines the vertices and triangles making up an icosahedron 
and then draws the icosahedron.

Example 2-19 Drawing an Icosahedron

#define X .525731112119133606 
#define Z .850650808352039932

static GLfloat vdata[12][3] = {    
   {-X, 0.0, Z}, {X, 0.0, Z}, {-X, 0.0, -Z}, {X, 0.0, -Z},    
   {0.0, Z, X}, {0.0, Z, -X}, {0.0, -Z, X}, {0.0, -Z, -X},    
   {Z, X, 0.0}, {-Z, X, 0.0}, {Z, -X, 0.0}, {-Z, -X, 0.0} 
};
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static GLuint tindices[20][3] = { 
  {1,4,0}, {4,9,0}, {4,5,9}, {8,5,4}, {1,8,4},    
  {1,10,8}, {10,3,8}, {8,3,5}, {3,2,5}, {3,7,2},    
  {3,10,7}, {10,6,7}, {6,11,7}, {6,0,11}, {6,1,0}, 
  {10,1,6}, {11,0,9}, {2,11,9}, {5,2,9}, {11,2,7} 
};

int i;

glBegin(GL_TRIANGLES);    
for (i = 0; i < 20; i++) {    
   /* color information here */ 
   glVertex3fv(&vdata[tindices[i][0]][0]); 
   glVertex3fv(&vdata[tindices[i][1]][0]); 
   glVertex3fv(&vdata[tindices[i][2]][0]); 
}
glEnd();

The strange numbers X and Z are chosen so that the distance from the 
origin to any of the vertices of the icosahedron is 1.0. The coordinates of 
the 12 vertices are given in the array vdata[][], where the zeroth vertex is 

X, 0.0, Z}, the first is {X, 0.0, Z}, and so on. The array tindices[][] tells how 
to link the vertices to make triangles. For example, the first triangle is made 
from the zeroth, fourth, and first vertices. If you take the vertices for tri-
angles in the order given, all the triangles have the same orientation.

The line that mentions color information should be replaced by a com-
mand that sets the color of the ith face. If no code appears here, all faces are 
drawn in the same color, and it will be impossible to discern the three-
dimensional quality of the object. An alternative to explicitly specifying 
colors is to define surface normals and use lighting, as described in the next 
subsection.

Note: In all the examples described in this section, unless the surface is to 
be drawn only once, you should probably save the calculated vertex 
and normal coordinates so that the calculations don’t need to be 
repeated each time the surface is drawn. This can be done using your 
own data structures or by constructing display lists (see Chapter 7). 

Calculating Normal Vectors for a Surface

If a surface is to be lit, you need to supply the vector normal to the surface. 
Calculating the normalized cross product of two vectors on that surface 
provides their normal vector. With the flat surfaces of an icosahedron, all 
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three vertices defining a surface have the same normal vector. In this case, 
the normal needs to be specified only once for each set of three vertices. The 
code in Example 2-20 can replace the “color information here” line in 
Example 2-19 for drawing the icosahedron. 

Example 2-20 Generating Normal Vectors for a Surface

GLfloat d1[3], d2[3], norm[3];    
for (j = 0; j < 3; j++) {    
   d1[j] = vdata[tindices[i][0]][j] - vdata[tindices[i][1]][j];    
   d2[j] = vdata[tindices[i][1]][j] - vdata[tindices[i][2]][j];    
}
normcrossprod(d1, d2, norm); 
glNormal3fv(norm);

The function normcrossprod() produces the normalized cross product of 
two vectors, as shown in Example 2-21. 

Example 2-21 Calculating the Normalized Cross Product of Two Vectors

void normalize(float v[3])
{    
   GLfloat d = sqrt(v[0]*v[0]+v[1]*v[1]+v[2]*v[2]); 
   if (d == 0.0) {
      error(“zero length vector”);    
      return;
   }
   v[0] /= d;
   v[1] /= d;
   v[2] /= d; 
}

void normcrossprod(float v1[3], float v2[3], float out[3]) 
{
   out[0] = v1[1]*v2[2] - v1[2]*v2[1]; 
   out[1] = v1[2]*v2[0] - v1[0]*v2[2]; 
   out[2] = v1[0]*v2[1] - v1[1]*v2[0]; 
   normalize(out); 
}

If you’re using an icosahedron as an approximation for a shaded sphere, 
you’ll want to use normal vectors that are perpendicular to the true surface 
of the sphere, rather than perpendicular to the faces. For a sphere, the nor-
mal vectors are simple; each points in the same direction as the vector from 
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the origin to the corresponding vertex. Since the icosahedron vertex data is 
for an icosahedron of radius 1, the normal data and vertex data are identi-
cal. Here is the code that would draw an icosahedral approximation of a 
smoothly shaded sphere (assuming that lighting is enabled, as described 
in Chapter 5):

glBegin(GL_TRIANGLES); 
for (i = 0; i < 20; i++) {    
      glNormal3fv(&vdata[tindices[i][0]][0]); 
      glVertex3fv(&vdata[tindices[i][0]][0]); 
      glNormal3fv(&vdata[tindices[i][1]][0]); 
      glVertex3fv(&vdata[tindices[i][1]][0]); 
      glNormal3fv(&vdata[tindices[i][2]][0]); 
      glVertex3fv(&vdata[tindices[i][2]][0]); 
}
glEnd();

Improving the Model

A 20-sided approximation to a sphere doesn’t look good unless the image of 
the sphere on the screen is quite small, but there’s an easy way to increase 
the accuracy of the approximation. Imagine the icosahedron inscribed in 
a sphere, and subdivide the triangles as shown in Figure 2-17. The newly 
introduced vertices lie slightly inside the sphere, so push them to the sur-
face by normalizing them (dividing them by a factor to make them have 
length 1). This subdivision process can be repeated for arbitrary accuracy. 
The three objects shown in Figure 2-17 use 20, 80, and 320 approximating 
triangles, respectively.

Figure 2-17 Subdividing to Improve a Polygonal Approximation to a Surface
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Example 2-22 performs a single subdivision, creating an 80-sided spherical 
approximation.

Example 2-22 Single Subdivision

void drawtriangle(float *v1, float *v2, float *v3) 
{
   glBegin(GL_TRIANGLES); 
      glNormal3fv(v1);
      glVertex3fv(v1);
      glNormal3fv(v2);
      glVertex3fv(v2);
      glNormal3fv(v3);
      glVertex3fv(v3);
   glEnd(); 
}

void subdivide(float *v1, float *v2, float *v3) 
{
   GLfloat v12[3], v23[3], v31[3];    
   GLint i;

   for (i = 0; i < 3; i++) { 
      v12[i] = (v1[i]+v2[i])/2.0;
      v23[i] = (v2[i]+v3[i])/2.0;
      v31[i] = (v3[i]+v1[i])/2.0;
   } 
   normalize(v12);
   normalize(v23); 
   normalize(v31); 
   drawtriangle(v1, v12, v31);
   drawtriangle(v2, v23, v12);
   drawtriangle(v3, v31, v23);
   drawtriangle(v12, v23, v31);
}

for (i = 0; i < 20; i++) { 
   subdivide(&vdata[tindices[i][0]][0],
             &vdata[tindices[i][1]][0],
             &vdata[tindices[i][2]][0]);
}

Example 2-23 is a slight modification of Example 2-22 that recursively 
subdivides the triangles to the proper depth. If the depth value is 0, no 
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subdivisions are performed, and the triangle is drawn as is. If the depth is 1, 
a single subdivision is performed, and so on.

Example 2-23 Recursive Subdivision

void subdivide(float *v1, float *v2, float *v3, long depth)
{
   GLfloat v12[3], v23[3], v31[3];
   GLint i;

   if (depth == 0) {
      drawtriangle(v1, v2, v3);
      return;
   }
   for (i = 0; i < 3; i++) {
      v12[i] = (v1[i]+v2[i])/2.0;
      v23[i] = (v2[i]+v3[i])/2.0;
      v31[i] = (v3[i]+v1[i])/2.0;
   }
   normalize(v12);
   normalize(v23);
   normalize(v31);
   subdivide(v1, v12, v31, depth-1);
   subdivide(v2, v23, v12, depth-1);
   subdivide(v3, v31, v23, depth-1);
   subdivide(v12, v23, v31, depth-1);
}

Generalized Subdivision

A recursive subdivision technique such as the one described in Example 2-23 
can be used for other types of surfaces. Typically, the recursion ends 
if either a certain depth is reached or some condition on the curvature 
is satisfied (highly curved parts of surfaces look better with more 
subdivision).

To look at a more general solution to the problem of subdivision, consider 
an arbitrary surface parameterized by two variables, u[0] and u[1]. Suppose 
that two routines are provided:

void surf(GLfloat u[2], GLfloat vertex[3], GLfloat normal[3]); 
float curv(GLfloat u[2]);

If u[] is passed to surf(), the corresponding three-dimensional vertex and 
normal vectors (of length 1) are returned. If u[] is passed to curv(), the 
curvature of the surface at that point is calculated and returned. (See an 
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introductory textbook on differential geometry for more information about 
measuring surface curvature.)

Example 2-24 shows the recursive routine that subdivides a triangle until 
either the maximum depth is reached or the maximum curvature at the 
three vertices is less than some cutoff.

Example 2-24 Generalized Subdivision

void subdivide(float u1[2], float u2[2], float u3[2],
                float cutoff, long depth)
{
   GLfloat v1[3], v2[3], v3[3], n1[3], n2[3], n3[3];
   GLfloat u12[2], u23[2], u32[2];
   GLint i;

   if (depth == maxdepth || (curv(u1) < cutoff &&
       curv(u2) < cutoff && curv(u3) < cutoff)) {
      surf(u1, v1, n1);
      surf(u2, v2, n2);
      surf(u3, v3, n3);
      glBegin(GL_POLYGON);
         glNormal3fv(n1); glVertex3fv(v1);
         glNormal3fv(n2); glVertex3fv(v2);
         glNormal3fv(n3); glVertex3fv(v3);
      glEnd();
      return;
   }

   for (i = 0; i < 2; i++) {
      u12[i] = (u1[i] + u2[i])/2.0;
      u23[i] = (u2[i] + u3[i])/2.0;
      u31[i] = (u3[i] + u1[i])/2.0;
   }
   subdivide(u1, u12, u31, cutoff, depth+1);
   subdivide(u2, u23, u12, cutoff, depth+1);
   subdivide(u3, u31, u23, cutoff, depth+1);
   subdivide(u12, u23, u31, cutoff, depth+1);
}
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Chapter 3

3.Viewing

Chapter Objectives

After reading this chapter, you’ll be able to do the following:

• View a geometric model in any orientation by transforming it in three-
dimensional space

• Control the location in three-dimensional space from which the model 
is viewed

• Clip undesired portions of the model out of the scene that’s to be 
viewed

• Manipulate the appropriate matrix stacks that control model 
transformation for viewing, and project the model onto the screen

• Combine multiple transformations to mimic sophisticated systems in 
motion, such as a solar system or an articulated robot arm

• Reverse or mimic the operations of the geometric processing pipeline
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Note: For OpenGL Version 3.1, many of the techniques and functions 
described in this chapter were removed through deprecation. The 
concepts are still relevant, but the transformations described need to 
be implemented in a vertex shader, as described in “Vertex 
Processing” in Chapter 15.

Chapter 2 explained how to instruct OpenGL to draw the geometric models 
you want displayed in your scene. Now you must decide how you want to 
position the models in the scene, and you must choose a vantage point 
from which to view the scene. You can use the default positioning and 
vantage point, but most likely you want to specify them. 

Look at the image on the cover of this book. The program that produced 
that image contained a single geometric description of a building block. 
Each block was carefully positioned in the scene: Some blocks were scattered 
on the floor, some were stacked on top of each other on the table, and some 
were assembled to make the globe. Also, a particular viewpoint had to be 
chosen. Obviously, we wanted to look at the corner of the room containing 
the globe. But how far away from the scene—and where exactly—should 
the viewer be? We wanted to make sure that the final image of the scene 
contained a good view out the window, that a portion of the floor was 
visible, and that all the objects in the scene were not only visible but 
presented in an interesting arrangement. This chapter explains how to use 
OpenGL to accomplish these tasks: how to position and orient models in 
three-dimensional space and how to establish the location—also in three-
dimensional space—of the viewpoint. All of these factors help determine 
exactly what image appears on the screen.

You want to remember that the point of computer graphics is to create a 
two-dimensional image of three-dimensional objects (it has to be two-
dimensional because it’s drawn on a flat screen), but you need to think in 
three-dimensional coordinates while making many of the decisions that 
determine what is drawn on the screen. A common mistake people make 
when creating three-dimensional graphics is to start thinking too soon that 
the final image appears on a flat, two-dimensional screen. Avoid thinking 
about which pixels need to be drawn, and instead try to visualize three-
dimensional space. Create your models in some three-dimensional universe 
that lies deep inside your computer, and let the computer do its job of 
calculating which pixels to color.

A series of three computer operations converts an object’s three-dimensional 
coordinates to pixel positions on the screen:
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• Transformations, which are represented by matrix multiplication, 
include modeling, viewing, and projection operations. Such operations 
include rotation, translation, scaling, reflecting, orthographic projec-
tion, and perspective projection. Generally, you use a combination of 
several transformations to draw a scene.

• Since the scene is rendered on a rectangular window, objects (or parts 
of objects) that lie outside the window must be clipped. In three-
dimensional computer graphics, clipping occurs by throwing out 
objects on one side of a clipping plane.

• Finally, a correspondence must be established between the transformed 
coordinates and screen pixels. This is known as a viewport
transformation.

This chapter describes all of these operations, and how to control them, in 
the following major sections:

• “Overview: The Camera Analogy” gives an overview of the transforma-
tion process by describing the analogy of taking a photograph with a 
camera, presents a simple example program that transforms an object, 
and briefly describes the basic OpenGL transformation commands.

• “Viewing and Modeling Transformations” explains in detail how to 
specify and imagine the effect of viewing and modeling transforma-
tions. These transformations orient the model and the camera relative 
to each other to obtain the desired final image. 

• “Projection Transformations” describes how to specify the shape and 
orientation of the viewing volume. The viewing volume determines how 
a scene is projected onto the screen (with a perspective or orthographic 
projection) and which objects or parts of objects are clipped out of the 
scene.

• “Viewport Transformation” explains how to control the conversion of 
three-dimensional model coordinates to screen coordinates.

• “Troubleshooting Transformations” presents some tips for discovering 
why you might not be getting the desired effect from your modeling, 
viewing, projection, and viewport transformations.

• “Manipulating the Matrix Stacks” discusses how to save and restore 
certain transformations. This is particularly useful when you’re 
drawing complicated objects that are built from simpler ones.

Chapter 3: Viewing
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• “Additional Clipping Planes” describes how to specify additional 
clipping planes beyond those defined by the viewing volume. 

• “Examples of Composing Several Transformations” walks you through 
a couple of more complicated uses for transformations.

• “Reversing or Mimicking Transformations” shows you how to take a 
transformed point in window coordinates and reverse the transfor-
mation to obtain its original object coordinates. The transformation 
itself (without reversal) can also be emulated.

In Version 1.3, new OpenGL functions were added to directly support row-
major (in OpenGL terms, transposed) matrices.

Overview: The Camera Analogy

The transformation process used to produce the desired scene for viewing is 
analogous to taking a photograph with a camera. As shown in Figure 3-1, 
the steps with a camera (or a computer) might be the following:

1. Set up your tripod and point the camera at the scene (viewing 
transformation). 

2. Arrange the scene to be photographed into the desired composition 
(modeling transformation). 

3. Choose a camera lens or adjust the zoom (projection transformation). 

4. Determine how large you want the final photograph to be—for 
example, you might want it enlarged (viewport transformation). 

After these steps have been performed, the picture can be snapped or the 
scene can be drawn.

Note that these steps correspond to the order in which you specify the 
desired transformations in your program, not necessarily the order in which 
the relevant mathematical operations are performed on an object’s vertices. 
The viewing transformations must precede the modeling transformations 
in your code, but you can specify the projection and viewport transforma-
tions at any point before drawing occurs. Figure 3-2 shows the order in 
which these operations occur on your computer.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Overview: The Camera Analogy 127

With a computer

Viewing

Positioning the
viewing volume
in the world

Modeling

Projection

Viewport

Positioning the
models in the 
world

Determining
the shape of
the viewing

volume

Tripod

Model

Lens

With a camera

Photograph

Figure 3-1 The Camera Analogy

http://lib.ommolketab.ir
http//lib.ommolketab.ir


128 Chapter 3: Viewing

To specify viewing, modeling, and projection transformations, you con-
struct a 4 4 matrix M, which is then multiplied by the coordinates of each 
vertex v in the scene to accomplish the transformation:

v’ = Mv

(Remember that vertices always have four coordinates (x, y, z, w), although 
in most cases w is 1, and for two-dimensional data, z is 0.) Note that view-
ing and modeling transformations are automatically applied to surface 
normal vectors, in addition to vertices. (Normal vectors are used only in 
eye coordinates.) This ensures that the normal vector’s relationship to the 
vertex data is properly preserved. 

The viewing and modeling transformations you specify are combined 
to form the modelview matrix, which is applied to the incoming object
coordinates to yield eye coordinates. Next, if you’ve specified additional 
clipping planes to remove certain objects from the scene or to provide 
cutaway views of objects, these clipping planes are applied.

After that, OpenGL applies the projection matrix to yield clip coordinates.
This transformation defines a viewing volume; objects outside this volume 
are clipped so that they’re not drawn in the final scene. After this point, 
the perspective division is performed by dividing coordinate values by w, to 
produce normalized device coordinates. (See  for more information about the 
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Figure 3-2 Stages of Vertex Transformation
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meaning of the w-coordinate and how it affects matrix transformations.) 
Finally, the transformed coordinates are converted to window coordinates by 
applying the viewport transformation. You can manipulate the dimensions 
of the viewport to cause the final image to be enlarged, shrunk, or stretched.

You might correctly suppose that the x- and y-coordinates are sufficient to 
determine which pixels need to be drawn on the screen. However, all the 
transformations are performed on the z-coordinates as well. This way, at the 
end of this transformation process, the z-values correctly reflect the depth 
of a given vertex (measured in distance away from the screen). One use for 
this depth value is to eliminate unnecessary drawing. For example, suppose 
two vertices have the same x- and y-values but different z-values. OpenGL 
can use this information to determine which surfaces are obscured by other 
surfaces and can then avoid drawing the hidden surfaces. (See Chapter 5 
and Chapter 10 for more information about this technique, which is called 
hidden-surface removal.)

As you’ve probably guessed by now, you need to know a few things about 
matrix mathematics to get the most out of this chapter. If you want to brush 
up on your knowledge in this area, you might consult a textbook on linear 
algebra.

A Simple Example: Drawing a Cube

Example 3-1 draws a cube that’s scaled by a modeling transformation (see 
Figure 3-3). The viewing transformation, gluLookAt(), positions and aims 
the camera toward where the cube is drawn. A projection transformation 
and a viewport transformation are also specified. The rest of this section 
walks you through Example 3-1 and briefly explains the transformation 
commands it uses. The succeeding sections contain a complete, detailed 
discussion of all OpenGL transformation commands.

Figure 3-3 Transformed Cube
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Example 3-1 Transformed Cube: cube.c

void init(void) 
{
   glClearColor(0.0, 0.0, 0.0, 0.0);
   glShadeModel(GL_FLAT);
}

void display(void)
{
   glClear(GL_COLOR_BUFFER_BIT);
   glColor3f(1.0, 1.0, 1.0);
   glLoadIdentity();             /* clear the matrix */
           /* viewing transformation  */
   gluLookAt(0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
   glScalef(1.0, 2.0, 1.0);      /* modeling transformation */ 
   glutWireCube(1.0);
   glFlush();
}

void reshape(int w, int h)
{
   glViewport(0, 0, (GLsizei) w, (GLsizei) h); 
   glMatrixMode(GL_PROJECTION);
   glLoadIdentity();
   glFrustum(-1.0, 1.0, -1.0, 1.0, 1.5, 20.0);
   glMatrixMode(GL_MODELVIEW);
}

int main(int argc, char** argv)
{
   glutInit(&argc, argv);
   glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
   glutInitWindowSize(500, 500); 
   glutInitWindowPosition(100, 100);
   glutCreateWindow(argv[0]);
   init();
   glutDisplayFunc(display); 
   glutReshapeFunc(reshape);
   glutMainLoop();
   return 0;
}

The Viewing Transformation

Recall that the viewing transformation is analogous to positioning and 
aiming a camera. In this code example, before the viewing transformation 
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can be specified, the current matrix is set to the identity matrix with
glLoadIdentity(). This step is necessary since most of the transformation 
commands multiply the current matrix by the specified matrix and then set 
the result to be the current matrix. If you don’t clear the current matrix by 
loading it with the identity matrix, you continue to combine previous 
transformation matrices with the new one you supply. In some cases, you 
do want to perform such combinations, but you also need to clear the 
matrix sometimes.

In Example 3-1, after the matrix is initialized, the viewing transformation 
is specified with gluLookAt(). The arguments for this command indicate 
where the camera (or eye position) is placed, where it is aimed, and which 
way is up. The arguments used here place the camera at (0, 0, 5), aim the 
camera lens toward (0, 0, 0), and specify the up-vector as (0, 1, 0). The up-
vector defines a unique orientation for the camera.

If gluLookAt() was not called, the camera has a default position and orien-
tation. By default, the camera is situated at the origin, points down the 
negative z-axis, and has an up-vector of (0, 1, 0). Therefore, in Example 3-1, 
the overall effect is that gluLookAt() moves the camera five units along the 
z-axis. (See “Viewing and Modeling Transformations” on page 137 for more 
information about viewing transformations.) 

The Modeling Transformation

You use the modeling transformation to position and orient the model. For 
example, you can rotate, translate, or scale the model—or perform some 
combination of these operations. In Example 3-1, glScalef() is the model-
ing transformation that is used. The arguments for this command specify 
how scaling should occur along the three axes. If all the arguments are 1.0, 
this command has no effect. In Example 3-1, the cube is drawn twice as 
large in the y-direction. Thus, if one corner of the cube had originally been 
at (3.0, 3.0, 3.0), that corner would wind up being drawn at (3.0, 6.0, 3.0). 
The effect of this modeling transformation is to transform the cube so that 
it isn’t a cube but a rectangular box. 

Try This

Change the gluLookAt() call in Example 3-1 to the modeling transforma-
tion glTranslatef() with parameters (0.0, 0.0, –5.0). The result should look 
exactly the same as when you used gluLookAt(). Why are the effects of 
these two commands similar?

Note that instead of moving the camera (with a viewing transformation) so 
that the cube could be viewed, you could have moved the cube away from 

Try This
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the camera (with a modeling transformation). This duality in the nature of 
viewing and modeling transformations is why you need to think about the 
effects of both types of transformations simultaneously. It doesn’t make 
sense to try to separate the effects, but sometimes it’s easier to think about 
them in one way more than in the other. This is also why modeling and 
viewing transformations are combined into the modelview matrix before the 
transformations are applied. (See “Viewing and Modeling Transformations” 
on page 137 for more information about on how to think about modeling 
and viewing transformations and how to specify them to get the results 
you want.) 

Also note that the modeling and viewing transformations are included 
in the display() routine, along with the call that’s used to draw the cube, 
glutWireCube(). In this way, display() can be used repeatedly to draw the 
contents of the window if, for example, the window is moved or uncovered, 
and you’ve ensured that the cube is drawn in the desired way each time, with 
the appropriate transformations. The potential repeated use of display()
underscores the need to load the identity matrix before performing the view-
ing and modeling transformations, especially when other transformations 
might be performed between calls to display().

The Projection Transformation

Specifying the projection transformation is like choosing a lens for a 
camera. You can think of this transformation as determining what the field 
of view or viewing volume is and therefore what objects are inside it and to 
some extent how they look. This is equivalent to choosing among wide-
angle, normal, and telephoto lenses, for example. With a wide-angle lens, 
you can include a wider scene in the final photograph than you can with a 
telephoto lens, but a telephoto lens allows you to photograph objects as 
though they’re closer to you than they actually are. In computer graphics, 
you don’t have to pay $10,000 for a 2,000-millimeter telephoto lens; once 
you’ve bought your graphics workstation, all you need to do is use a smaller 
number for your field of view. 

In addition to the field-of-view considerations, the projection transforma-
tion determines how objects are projected onto the screen, as the term sug-
gests. Two basic types of projections are provided for you by OpenGL, along 
with several corresponding commands for describing the relevant parame-
ters in different ways. One type is the perspective projection, which matches 
how you see things in daily life. Perspective makes objects that are farther 
away appear smaller; for example, it makes railroad tracks appear to converge 
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in the distance. If you’re trying to make realistic pictures, you’ll want to 
choose perspective projection, which is specified with the glFrustum()
command in , “Viewing,”Example 3-1.

The other type of projection is orthographic, which maps objects directly 
onto the screen without affecting their relative sizes. Orthographic 
projection is used in architectural and computer-aided design applications 
where the final image needs to reflect the measurements of objects, rather 
than how they might look. Architects create perspective drawings to show 
how particular buildings or interior spaces look when viewed from various 
vantage points; the need for orthographic projection arises when blueprint 
plans or elevations, which are used in the construction of buildings, are 
generated. (See “Projection Transformations” on page 152 for a discussion 
of ways to specify both kinds of projection transformations.) 

Before glFrustum() can be called to set the projection transformation, some 
preparation is needed. As shown in the reshape() routine in Example 3-1, 
the command called glMatrixMode() is used first, with the argument 
GL_PROJECTION. This indicates that the current matrix specifies the pro-
jection transformation and that subsequent transformation calls affect the 
projection matrix. As you can see, a few lines later, glMatrixMode() is called 
again, this time with GL_MODELVIEW as the argument. This indicates that 
succeeding transformations now affect the modelview matrix instead of the 
projection matrix. (See “Manipulating the Matrix Stacks” on page 164 for 
more information about how to control the projection and modelview 
matrices.)

Note that glLoadIdentity() is used to initialize the current projection 
matrix so that only the specified projection transformation has an effect. 
Now glFrustum() can be called, with arguments that define the parameters 
of the projection transformation. In this example, both the projection 
transformation and the viewport transformation are contained in the 
reshape() routine, which is called when the window is first created and 
whenever the window is moved or reshaped. This makes sense, because 
both projecting (the width-to-height aspect ratio of the projection viewing 
volume) and applying the viewport relate directly to the screen, and 
specifically to the size or aspect ratio of the window on the screen.

Try This

Change the glFrustum() call in Example 3-1 to the more commonly used 
Utility Library routine gluPerspective(), with parameters (60.0, 1.0, 1.5, 
20.0). Then experiment with different values, especially for fovy and aspect.

Try This
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The Viewport Transformation 

Together, the projection transformation and the viewport transformation 
determine how a scene is mapped onto the computer screen. The projection 
transformation specifies the mechanics of how the mapping should occur, 
and the viewport indicates the shape of the available screen area into which 
the scene is mapped. Since the viewport specifies the region the image occu-
pies on the computer screen, you can think of the viewport transformation 
as defining the size and location of the final processed photograph—for 
example, whether the photograph should be enlarged or shrunk.

The arguments for glViewport() describe the origin of the available screen 
space within the window—(0, 0) in this example—and the width and 
height of the available screen area, all measured in pixels on the screen. This 
is why this command needs to be called within reshape(): If the window 
changes size, the viewport needs to change accordingly. Note that the width 
and height are specified using the actual width and height of the window; 
often, you want to specify the viewport in this way, rather than give an 
absolute size. (See “Viewport Transformation” on page 158 for more 
information about how to define the viewport.)

Drawing the Scene

Once all the necessary transformations have been specified, you can draw 
the scene (that is, take the photograph). As the scene is drawn, OpenGL 
transforms each vertex of every object in the scene by the modeling and 
viewing transformations. Each vertex is then transformed as specified by 
the projection transformation and clipped if it lies outside the viewing 
volume described by the projection transformation. Finally, the remaining 
transformed vertices are divided by w and mapped onto the viewport. 

General-Purpose Transformation Commands 

This section discusses some OpenGL commands that you might find useful 
as you specify desired transformations. You’ve already seen two of these com-
mands: glMatrixMode() and glLoadIdentity(). Four commands described 
here—glLoadMatrix*(), glLoadTransposeMatrix*(), glMultMatrix*(), and 
glMultTransposeMatrix*()—allow you to specify any transformation matrix 
directly or to multiply the current matrix by that specified matrix. More 
specific transformation commands—such as gluLookAt() and glScale*()—
are described in later sections.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Overview: The Camera Analogy 135

As described in the preceding section, you need to state whether you want 
to modify the modelview or projection matrix before supplying a transfor-
mation command. You choose the matrix with glMatrixMode(). When you 
use nested sets of OpenGL commands that might be called repeatedly, 
remember to reset the matrix mode correctly. (The glMatrixMode() com-
mand can also be used to indicate the texture matrix; texturing is discussed 
in detail in “The Texture Matrix Stack” in Chapter 9.)

You use the glLoadIdentity() command to clear the currently modifiable 
matrix for future transformation commands, as these commands modify 
the current matrix. Typically, you always call this command before specify-
ing projection or viewing transformations, but you might also call it before 
specifying a modeling transformation.

If you want to specify explicitly a particular matrix to be loaded as the 
current matrix, use glLoadMatrix*() or glLoadTransposeMatrix*().
Similarly, use glMultMatrix*() or glMultTransposeMatrix*() to multiply 
the current matrix by the matrix passed in as an argument.

void glMatrixMode(GLenum mode);

Specifies whether the modelview, projection, or texture matrix will be 
modified, using the argument GL_MODELVIEW, GL_PROJECTION, or 
GL_TEXTURE for mode. Subsequent transformation commands affect the 
specified matrix. Note that only one matrix can be modified at a time. By 
default, the modelview matrix is the one that’s modifiable, and all three 
matrices contain the identity matrix.

void glLoadIdentity(void);

Sets the currently modifiable matrix to the 4 4 identity matrix.

void glLoadMatrix{fd}(const TYPE *m);

Sets the 16 values of the current matrix to those specified by m.

void glMultMatrix{fd}(const TYPE *m);

Multiplies the matrix specified by the 16 values pointed to by m by the 
current matrix and stores the result as the current matrix. 

Compatibility 
Extension

glMatrixMode
GL_MODELVIEW
GL_PROJECTION
GL_TEXTURE

Compatibility 
Extension

glLoadIdentity

Compatibility 
Extension

glLoadMatrix
glMultMatrix
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All matrix multiplication with OpenGL occurs as follows. Suppose the cur-
rent matrix is C, and the matrix specified with glMultMatrix*() or any of 
the transformation commands is M. After multiplication, the final matrix is 
always CM. Since matrix multiplication isn’t generally commutative, the 
order makes a difference. 

The argument for glLoadMatrix*() and glMultMatrix*() is a vector of 16 
values (m1, m2, ... , m16) that specifies a matrix M stored in column-major 
order as follows:

If you’re programming in C and you declare a matrix as m[4][4], then the 
element m[i][j] is in the ith column and jth row of the common OpenGL 
transformation matrix. This is the reverse of the standard C convention in 
which m[i][j] is in row i and column j. One way to avoid confusion between 
the column and the row is to declare your matrices as m[16]. 

Another way to avoid possible confusion is to call the OpenGL routines 
glLoadTransposeMatrix*() and glMultTransposeMatrix*(), which use 
row-major (the standard C convention) matrices as arguments.

You might be able to maximize efficiency by using display lists to store fre-
quently used matrices (and their inverses), rather than recomputing them. 

void glLoadTransposeMatrix{fd}(const TYPE *m);

Sets the 16 values of the current matrix to those specified by m, whose 
values are stored in row-major order. glLoadTransposeMatrix*(m) has 
the same effect as glLoadMatrix*(mT).

void glMultTransposeMatrix{fd}(const TYPE *m);

Multiplies the matrix specified by the 16 values pointed to by m
by the current matrix and stores the result as the current matrix. 
glMultTransposeMatrix*(m) has the same effect as glMultMatrix*(mT).

M = 

m1 m5 m9 m13

m2 m6 m10 m14

m3 m7 m11 m15

m4 m8 m12 m16

Compatibility 
Extension

glLoadTranspose
Matrix
glMultTranspose
Matrix
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(See “Display List Design Philosophy” in Chapter 7.) OpenGL implementa-
tions often must compute the inverse of the modelview matrix so that nor-
mals and clipping planes can be correctly transformed to eye coordinates. 

Viewing and Modeling Transformations

Viewing and modeling transformations are inextricably related in OpenGL 
and are, in fact, combined into a single modelview matrix. (See “A Simple 
Example: Drawing a Cube” on page 129.) One of the toughest problems 
newcomers to computer graphics face is understanding the effects of com-
bined three-dimensional transformations. As you’ve already seen, there are 
alternative ways to think about transformations—do you want to move the 
camera in one direction or move the object in the opposite direction? Each 
way of thinking about transformations has advantages and disadvantages, 
but in some cases one way more naturally matches the effect of the 
intended transformation. If you can find a natural approach for your partic-
ular application, it’s easier to visualize the necessary transformations and 
then write the corresponding code to specify the matrix manipulations. The 
first part of this section discusses how to think about transformations; later, 
specific commands are presented. For now, we use only the matrix-manip-
ulation commands you’ve already seen. Finally, keep in mind that you must 
call glMatrixMode() with GL_MODELVIEW as its argument prior to per-
forming modeling or viewing transformations.

Thinking about Transformations

Let’s start with a simple case of two transformations: a 45-degree counter-
clockwise rotation about the origin around the z-axis and a translation 
down the x-axis. Suppose that the object you’re drawing is small compared 
with the translation (so that you can see the effect of the translation) and 
that it’s originally located at the origin. If you rotate the object first and 
then translate it, the rotated object appears on the x-axis. If you translate it 
down the x-axis first, however, and then rotate about the origin, the object 
is on the line y = x, as shown in Figure 3-4. In general, the order of transfor-
mations is critical. If you do transformation A and then transformation B, 
you almost always get something different than if you do them in the oppo-
site order.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


138 Chapter 3: Viewing

Now let’s talk about the order in which you specify a series of transforma-
tions. All viewing and modeling transformations are represented as 4 4
matrices. Each successive glMultMatrix*() or transformation command 
multiplies a new 4 4 matrix M by the current modelview matrix C to yield 
CM. Finally, vertices v are multiplied by the current modelview matrix. This 
process means that the last transformation command called in your pro-
gram is actually the first one applied to the vertices: CMv. Thus, one way of 
looking at it is to say that you have to specify the matrices in the reverse 
order. Like many other things, however, once you’ve gotten used to think-
ing about this correctly, backward will seem like forward.

Consider the following code sequence, which draws a single point using 
three transformations:

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glMultMatrixf(N);                /* apply transformation N */
glMultMatrixf(M);                /* apply transformation M */
glMultMatrixf(L);                /* apply transformation L */
glBegin(GL_POINTS);
glVertex3f(v);                   /* draw transformed vertex v */
glEnd();

With this code, the modelview matrix successively contains I, N, NM, and 
finally NML, where I represents the identity matrix. The transformed vertex 
is NMLv. Thus, the vertex transformation is N(M(Lv))—that is, v is multi-
plied first by L, the resulting Lv is multiplied by M, and the resulting MLv
is multiplied by N. Notice that the transformations to vertex v effectively 
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Figure 3-4 Rotating First or Translating First
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occur in the opposite order than they were specified. (Actually, only a single 
multiplication of a vertex by the modelview matrix occurs; in this example, 
the N, M, and L matrices are already multiplied into a single matrix before 
it’s applied to v.)

Grand, Fixed Coordinate System

Thus, if you like to think in terms of a grand, fixed coordinate system—in 
which matrix multiplications affect the position, orientation, and scaling of 
your model—you have to think of the multiplications as occurring in the 
opposite order from how they appear in the code. Using the simple example 
shown on the left side of Figure 3-4 (a rotation about the origin and a trans-
lation along the x-axis), if you want the object to appear on the axis after 
the operations, the rotation must occur first, followed by the translation. To 
do this, you’ll need to reverse the order of operations, so the code looks 
something like this (where R is the rotation matrix and T is the translation 
matrix):

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glMultMatrixf(T);                /* translation */
glMultMatrixf(R);                /* rotation */
draw_the_object();

Moving a Local Coordinate System

Another way to view matrix multiplications is to forget about a grand, fixed 
coordinate system in which your model is transformed and instead imagine 
that a local coordinate system is tied to the object you’re drawing. All 
operations occur relative to this changing coordinate system. With this 
approach, the matrix multiplications now appear in the natural order in 
the code. (Regardless of which analogy you’re using, the code is the same, 
but how you think about it differs.) To see this in the translation-rotation 
example, begin by visualizing the object with a coordinate system tied to it. 
The translation operation moves the object and its coordinate system down 
the x-axis. Then, the rotation occurs about the (now-translated) origin, so 
the object rotates in place in its position on the axis. 

This approach is what you should use for applications such as articulated 
robot arms, where there are joints at the shoulder, elbow, and wrist, and on 
each of the fingers. To figure out where the tips of the fingers go relative to 
the body, you’d like to start at the shoulder, go down to the wrist, and so 
on, applying the appropriate rotations and translations at each joint. 
Thinking about it in reverse would be far more confusing.
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This second approach can be problematic, however, in cases where scaling 
occurs, and especially so when the scaling is nonuniform (scaling different 
amounts along the different axes). After uniform scaling, translations move 
a vertex by a multiple of what they did before, as the coordinate system is 
stretched. Nonuniform scaling mixed with rotations may make the axes of 
the local coordinate system nonperpendicular. 

As mentioned earlier, you normally issue viewing transformation commands 
in your program before any modeling transformations. In this way, a vertex 
in a model is first transformed into the desired orientation and then trans-
formed by the viewing operation. Since the matrix multiplications must be 
specified in reverse order, the viewing commands need to come first. Note, 
however, that you don’t need to specify either viewing or modeling trans-
formations if you’re satisfied with the default conditions. If there’s no view-
ing transformation, the “camera” is left in the default position at the origin, 
pointing toward the negative z-axis; if there’s no modeling transformation, 
the model isn’t moved, and it retains its specified position, orientation, 
and size. 

Since the commands for performing modeling transformations can be 
used to perform viewing transformations, modeling transformations are 
discussed first, even if viewing transformations are actually issued first. This 
order for discussion also matches the way many programmers think when 
planning their code. Often, they write all the code necessary to compose the 
scene, which involves transformations to position and orient objects cor-
rectly relative to each other. Next, they decide where they want the view-
point to be relative to the scene they’ve composed, and then they write the 
viewing transformations accordingly.

Modeling Transformations 

The three OpenGL routines for modeling transformations are glTranslate*(),
glRotate*(), and glScale*(). As you might suspect, these routines transform 
an object (or coordinate system, if you’re thinking of it in that way) by 
moving, rotating, stretching, shrinking, or reflecting it. All three commands 
are equivalent to producing an appropriate translation, rotation, or scaling 
matrix, and then calling glMultMatrix*() with that matrix as the argu-
ment. However, using these three routines might be faster than using 
glMultMatrix*(). OpenGL automatically computes the matrices for you. 
(See  if you’re interested in the details.)
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In the command summaries that follow, each matrix multiplication is 
described in terms of what it does to the vertices of a geometric object using 
the fixed coordinate system approach, and in terms of what it does to the 
local coordinate system that’s attached to an object.

Translate

Figure 3-5 shows the effect of glTranslate*().

Note that using (0.0, 0.0, 0.0) as the argument for glTranslate*() is the 
identity operation—that is, it has no effect on an object or its local 
coordinate system. 

void glTranslate{fd}(TYPE x, TYPE y, TYPE z);

Multiplies the current matrix by a matrix that moves (translates) an object 
by the given x-, y-, and z-values (or moves the local coordinate system by 
the same amounts).

Compatibility 
Extension

glTranslate

x
z

y

Figure 3-5 Translating an Object

http://lib.ommolketab.ir
http//lib.ommolketab.ir


142 Chapter 3: Viewing

Rotate

The effect of glRotatef(45.0, 0.0, 0.0, 1.0), which is a rotation of 45 degrees 
about the z-axis, is shown in Figure 3-6.

Note that an object that lies farther from the axis of rotation is more dra-
matically rotated (has a larger orbit) than an object drawn near the axis. 
Also, if the angle argument is zero, the glRotate*() command has no effect.

Scale

void glRotate{fd}(TYPE angle, TYPE x, TYPE y, TYPE z);

Multiplies the current matrix by a matrix that rotates an object (or the 
local coordinate system) in a counterclockwise direction about the ray 
from the origin through the point (x, y, z). The angle parameter specifies 
the angle of rotation in degrees. 

void glScale{fd}(TYPE x, TYPE y, TYPE z);

Multiplies the current matrix by a matrix that stretches, shrinks, or reflects 
an object along the axes. Each x-, y-, and z-coordinate of every point in 
the object is multiplied by the corresponding argument x, y, or z. With the 
local coordinate system approach, the local coordinate axes are stretched, 
shrunk, or reflected by the x-, y-, and z-factors, and the associated object 
is transformed with them.

Compatibility 
Extension

glRotate

y

x

z

Figure 3-6 Rotating an Object

Compatibility 
Extension

glScale
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Figure 3-7 shows the effect of glScalef(2.0, –0.5, 1.0).

glScale*() is the only one of the three modeling transformations that changes 
the apparent size of an object: Scaling with values greater than 1.0 stretches 
an object, and using values less than 1.0 shrinks it. Scaling with a 1.0 value 
reflects an object across an axis. The identity values for scaling are (1.0, 1.0, 
1.0). In general, you should limit your use of glScale*() to those cases where 
it is necessary. Using glScale*() decreases the performance of lighting 
calculations, because the normal vectors have to be renormalized after 
transformation. 

Note: A scale value of zero collapses all object coordinates along that axis to 
zero. It’s usually not a good idea to do this, because such an operation 
cannot be undone. Mathematically speaking, the matrix cannot be 
inverted, and inverse matrices are required for certain lighting oper-
ations (see Chapter 5). Sometimes collapsing coordinates does make 
sense; the calculation of shadows on a planar surface is one such 
application (see “Shadows” in Chapter 14). In general, if a coordinate 
system is to be collapsed, the projection matrix should be used, rather 
than the modelview matrix.

A Modeling Transformation Code Example

Example 3-2 is a portion of a program that renders a triangle four times, as 
shown in Figure 3-8. These are the four transformed triangles:

• A solid wireframe triangle is drawn with no modeling 
transformation.

xz

x

z
y

y

Figure 3-7 Scaling and Reflecting an Object
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• The same triangle is drawn again, but with a dashed line stipple, and 
translated (to the left—along the negative x-axis). 

• A triangle is drawn with a long dashed line stipple, with its height 
(y-axis) halved and its width (x-axis) increased by 50 percent. 

• A rotated triangle, made of dotted lines, is drawn. 
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Figure 3-8 Modeling Transformation Example 
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Example 3-2 Using Modeling Transformations: model.c

glLoadIdentity();
glColor3f(1.0, 1.0, 1.0);
draw_triangle();                   /* solid lines */

glEnable(GL_LINE_STIPPLE);         /* dashed lines */
glLineStipple(1, 0xF0F0); 
glLoadIdentity();
glTranslatef(-20.0, 0.0, 0.0);
draw_triangle();

glLineStipple(1, 0xF00F);          /*long dashed lines */
glLoadIdentity();
glScalef(1.5, 0.5, 1.0);
draw_triangle();

glLineStipple(1, 0x8888);          /* dotted lines */
glLoadIdentity();
glRotatef(90.0, 0.0, 0.0, 1.0);
draw_triangle();
glDisable(GL_LINE_STIPPLE);

Note the use of glLoadIdentity() to isolate the effects of modeling transfor-
mations; initializing the matrix values prevents successive transformations 
from having a cumulative effect. Even though using glLoadIdentity()
repeatedly has the desired effect, it may be inefficient, because you may 
have to respecify viewing or modeling transformations. (See “Manipulating 
the Matrix Stacks” on page 164 for a better way to isolate transformations.) 

Note: Sometimes, programmers who want a continuously rotating object 
attempt to achieve this by repeatedly applying a rotation matrix that 
has small values. The problem with this technique is that because of 
round-off errors, the product of thousands of tiny rotations gradually 
drifts away from the value you really want (it might even become 
something that isn’t a rotation). Instead of using this technique, 
increment the angle and issue a new rotation command with the 
new angle at each update step.

Nate Robins’ Transformation Tutorial

If you have downloaded Nate Robins’ suite of tutorial programs, this is an 
opportune time to run the transformation tutorial. (For information on 
how and where to download these programs, see “Errata” on page xlii.) 
With this tutorial, you can experiment with the effects of rotation, 
translation, and scaling.
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Viewing Transformations

A viewing transformation changes the position and orientation of the 
viewpoint. If you recall the camera analogy, the viewing transformation 
positions the camera tripod, pointing the camera toward the model. Just 
as you move the camera to some position and rotate it until it points in 
the desired direction, viewing transformations are generally composed of 
translations and rotations. Also remember that to achieve a certain scene 
composition in the final image or photograph, you can either move the 
camera or move all the objects in the opposite direction. Thus, a modeling 
transformation that rotates an object counterclockwise is equivalent to 
a viewing transformation that rotates the camera clockwise, for example. 
Finally, keep in mind that the viewing transformation commands must be 
called before any modeling transformations are performed, so that the 
modeling transformations take effect on the objects first.

You can manufacture a viewing transformation in any of several ways, 
as described next. You can also choose to use the default location and 
orientation of the viewpoint, which is at the origin, looking down the 
negative z-axis.

• Use one or more modeling transformation commands (that is, 
glTranslate*() and glRotate*()). You can think of the effect of these 
transformations as moving the camera position or as moving all the 
objects in the world, relative to a stationary camera.

• Use the Utility Library routine gluLookAt() to define a line of sight. This 
routine encapsulates a series of rotation and translation commands.

• Create your own utility routine to encapsulate rotations and transla-
tions. Some applications might require custom routines that allow you 
to specify the viewing transformation in a convenient way. For example, 
you might want to specify the roll, pitch, and heading rotation angles 
of a plane in flight, or you might want to specify a transformation in 
terms of polar coordinates for a camera that’s orbiting around an 
object. 

Using glTranslate*() and glRotate*()

When you use modeling transformation commands to emulate viewing 
transformations, you’re trying to move the viewpoint in a desired way 
while keeping the objects in the world stationary. Since the viewpoint 
is initially located at the origin and since objects are often most easily 
constructed there as well (see Figure 3-9), you generally have to perform 
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some transformation so that the objects can be viewed. Note that, as shown 
in the figure, the camera initially points down the negative z-axis. (You’re 
seeing the back of the camera.)

In the simplest case, you can move the viewpoint backward, away from 
the objects; this has the same effect as moving the objects forward, or 
away from the viewpoint. Remember that, by default, forward is down the 
negative z-axis; if you rotate the viewpoint, forward has a different mean-
ing. Therefore, to put five units of distance between the viewpoint and 
the objects by moving the viewpoint, as shown in Figure 3-10, use

glTranslatef(0.0, 0.0, -5.0);

x
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y

Figure 3-9 Object and Viewpoint at the Origin
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Figure 3-10 Separating the Viewpoint and the Object
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This routine moves the objects in the scene –5 units along the z-axis. This 
is also equivalent to moving the camera +5 units along the z-axis.

Now suppose you want to view the objects from the side. Should you issue 
a rotate command before or after the translate command? If you’re thinking 
in terms of a grand, fixed coordinate system, first imagine both the object 
and the camera at the origin. You could rotate the object first and then 
move it away from the camera so that the desired side is visible. You know 
that with the fixed coordinate system approach, commands have to be 
issued in the opposite order in which they should take effect, so you know 
that you need to write the translate command in your code first and follow 
it with the rotate command. 

Now let’s use the local coordinate system approach. In this case, think about 
moving the object and its local coordinate system away from the origin; then, 
the rotate command is carried out using the now-translated coordinate sys-
tem. With this approach, commands are issued in the order in which they’re 
applied, so once again the translate command comes first. Thus, the sequence 
of transformation commands to produce the desired result is

glTranslatef(0.0, 0.0, -5.0);
glRotatef(90.0, 0.0, 1.0, 0.0);

If you’re having trouble keeping track of the effect of successive matrix mul-
tiplications, try using both the fixed and local coordinate system approaches 
and see whether one makes more sense to you. Note that with the fixed 
coordinate system, rotations always occur about the grand origin, whereas 
with the local coordinate system, rotations occur about the origin of the 
local system. You might also try using the gluLookAt() utility routine 
described next.

Using the gluLookAt() Utility Routine

Often, programmers construct a scene around the origin or some other conve-
nient location and then want to look at it from an arbitrary point to get a good 
view of it. As its name suggests, the gluLookAt() utility routine is designed for 
just this purpose. It takes three sets of arguments, which specify the location 
of the viewpoint, define a reference point toward which the camera is aimed, 
and indicate which direction is up. Choose the viewpoint to yield the desired 
view of the scene. The reference point is typically somewhere in the middle of 
the scene. (If you’ve built your scene at the origin, the reference point is prob-
ably the origin.) It might be a little trickier to specify the correct up-vector. 
Again, if you’ve built some real-world scene at or around the origin and if 
you’ve been taking the positive y-axis to point upward, then that’s your up-
vector for gluLookAt(). However, if you’re designing a flight simulator, up is 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Viewing and Modeling Transformations 149

the direction perpendicular to the plane’s wings, from the plane toward the 
sky when the plane is right-side-up on the ground. 

The gluLookAt() routine is particularly useful when you want to pan across 
a landscape, for instance. With a viewing volume that’s symmetric in both 
x and y, the (eyex, eyey, eyez) point specified is always in the center of the 
image on the screen, so you can use a series of commands to move this 
point slightly, thereby panning across the scene.

In the default position, the camera is at the origin, is looking down the 
negative z-axis, and has the positive y-axis as straight up. This is the same 
as calling

gluLookAt(0.0, 0.0, 0.0, 0.0, 0.0, -100.0, 0.0, 1.0, 0.0);

The z-value of the reference point is –100.0, but could be any negative z,
because the line of sight will remain the same. In this case, you don’t actu-
ally want to call gluLookAt(), because this is the default (see Figure 3-11), 

void gluLookAt(GLdouble eyex, GLdouble eyey, GLdouble eyez,
GLdouble centerx, GLdouble centery, GLdouble centerz,
GLdouble upx, GLdouble upy, GLdouble upz);

Defines a viewing matrix and multiplies it to the right of the current 
matrix. The desired viewpoint is specified by eyex, eyey, and eyez. The 
centerx, centery, and centerz arguments specify any point along the desired 
line of sight, but typically they specify some point in the center of the 
scene being looked at. The upx, upy, and upz arguments indicate which 
direction is up (that is, the direction from the bottom to the top of the 
viewing volume).

x

y

z

Up-vector

Figure 3-11 Default Camera Position
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and you are already there. (The lines extending from the camera represent 
the viewing volume, which indicates its field of view.)

Figure 3-12 shows the effect of a typical gluLookAt() routine. The camera 
position (eyex, eyey, eyez) is at (4, 2, 1). In this case, the camera is looking 
right at the model, so the reference point is at (2, 4, –3). An orientation 
vector of (2, 2, –1) is chosen to rotate the viewpoint to this 45-degree angle.

Therefore, to achieve this effect, call

gluLookAt(4.0, 2.0, 1.0, 2.0, 4.0, -3.0, 2.0, 2.0, -1.0);

Note that gluLookAt() is part of the Utility Library, rather than the basic 
OpenGL library. This isn’t because it’s not useful, but because it encapsulates 
several basic OpenGL commands—specifically, glTranslate*() and 
glRotate*(). To see this, imagine a camera located at an arbitrary viewpoint 
and oriented according to a line of sight, both as specified with gluLookAt()
and a scene located at the origin. To “undo” what gluLookAt() does, you 
need to transform the camera so that it sits at the origin and points down 
the negative z-axis, the default position. A simple translate moves the cam-
era to the origin. You can easily imagine a series of rotations about each of 
the three axes of a fixed coordinate system that would orient the camera 
so that it pointed toward negative z-values. Since OpenGL allows rotation 
about an arbitrary axis, you can accomplish any desired rotation of the cam-
era with a single glRotate*() command.

x

y

z

Up-vector

Figure 3-12 Using gluLookAt()
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Note: You can have only one active viewing transformation. You cannot try 
to combine the effects of two viewing transformations, any more 
than a camera can have two tripods. If you want to change the posi-
tion of the camera, make sure you call glLoadIdentity() to erase the 
effects of any current viewing transformation.

Nate Robins’ Projection Tutorial

If you have Nate Robins’ suite of tutorial programs, run the projection
tutorial. With this tutorial, you can see the effects of changes to the 
parameters of gluLookAt().

Advanced

To transform any arbitrary vector so that it’s coincident with another 
arbitrary vector (for instance, the negative z-axis), you need to do a little 
mathematics. The axis about which you want to rotate is given by the cross 
product of the two normalized vectors. To find the angle of rotation, nor-
malize the initial two vectors. The cosine of the desired angle between the 
vectors is equal to the dot product of the normalized vectors. The angle of 
rotation around the axis given by the cross product is always between 0 and 
180 degrees. (See Appendix I, “Built-In OpenGL Shading Language Vari-
ables and Functions,”1 for definitions of cross and dot products.) 

Note that computing the angle between two normalized vectors by taking 
the inverse cosine of their dot product is not very accurate, especially for 
small angles, but it should work well enough to get you started.

Creating a Custom Utility Routine

Advanced

For some specialized applications, you might want to define your own 
transformation routine. Since this is rarely done and is a fairly advanced 
topic, it’s left mostly as an exercise for the reader. The following exercises 
suggest two custom viewing transformations that might be useful.

Try This

• Suppose you’re writing a flight simulator and you’d like to display 
the world from the point of view of the pilot of a plane. The world is 
described in a coordinate system with the origin on the runway and 
the plane at coordinates (x, y, z). Suppose further that the plane has 
some roll, pitch, and heading (these are rotation angles of the plane 
relative to its center of gravity). 

1 This appendix is available online at http://www.opengl-redbook.com/appendices/.

Advanced

Advanced

Try This
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Show that the following routine could serve as the viewing 
transformation:

void pilotView{GLdouble planex, GLdouble planey,
               GLdouble planez, GLdouble roll,
               GLdouble pitch, GLdouble heading)
{
      glRotated(roll, 0.0, 0.0, 1.0);
      glRotated(pitch, 0.0, 1.0, 0.0);
      glRotated(heading, 1.0, 0.0, 0.0);
      glTranslated(-planex, -planey, -planez);
}

• Suppose your application involves orbiting the camera around an 
object that’s centered at the origin. In this case, you’d like to specify 
the viewing transformation by using polar coordinates. Let the distance
variable define the radius of the orbit or how far the camera is from the 
origin. (Initially, the camera is moved distance units along the positive 
z-axis.) The azimuth describes the angle of rotation of the camera about 
the object in the xy-plane, measured from the positive y-axis. Similarly, 
elevation is the angle of rotation of the camera in the yz-plane measured 
from the positive z-axis. Finally, twist represents the rotation of the 
viewing volume around its line of sight.

Show that the following routine could serve as the viewing 
transformation:

void polarView{GLdouble distance, GLdouble twist, 
               GLdouble elevation, GLdouble azimuth)
{
      glTranslated(0.0, 0.0, -distance);
      glRotated(-twist, 0.0, 0.0, 1.0);
      glRotated(-elevation, 1.0, 0.0, 0.0);
      glRotated(azimuth, 0.0, 0.0, 1.0);
}

Projection Transformations

The preceding section described how to compose the desired modelview 
matrix so that the correct modeling and viewing transformations are 
applied. This section explains how to define the desired projection matrix, 
which is also used to transform the vertices in your scene. Before you issue 
any of the transformation commands described in this section, remember 
to call 
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glMatrixMode(GL_PROJECTION);
glLoadIdentity();

so that the commands affect the projection matrix, rather than the model-
view matrix, and so that you avoid compound projection transformations. 
Since each projection transformation command completely describes a par-
ticular transformation, typically you don’t want to combine a projection 
transformation with another transformation. 

The purpose of the projection transformation is to define a viewing volume,
which is used in two ways. The viewing volume determines how an object 
is projected onto the screen (that is, by using a perspective or an orthographic 
projection), and it defines which objects or portions of objects are clipped 
out of the final image. You can think of the viewpoint we’ve been talking 
about as existing at one end of the viewing volume. At this point, you might 
want to reread “A Simple Example: Drawing a Cube” on page 129 for its 
overview of all the transformations, including projection transformations. 

Perspective Projection

The most unmistakable characteristic of perspective projection is fore-
shortening: The farther an object is from the camera, the smaller it appears 
in the final image. This occurs because the viewing volume for a perspective 
projection is a frustum of a pyramid (a truncated pyramid whose top has 
been cut off by a plane parallel to its base). Objects that fall within the view-
ing volume are projected toward the apex of the pyramid, where the camera 
or viewpoint is. Objects that are closer to the viewpoint appear larger 
because they occupy a proportionally larger amount of the viewing volume 
than those that are farther away, in the larger part of the frustum. This 
method of projection is commonly used for animation, visual simulation, 
and any other applications that strive for some degree of realism, because 
it’s similar to how our eye (or a camera) works.

The command to define a frustum, glFrustum(), calculates a matrix that 
accomplishes perspective projection and multiplies the current projection 
matrix (typically the identity matrix) by it. Recall that the viewing volume 
is used to clip objects that lie outside of it; the four sides of the frustum, its 
top, and its base correspond to the six clipping planes of the viewing vol-
ume, as shown in Figure 3-13. Objects or parts of objects outside these 
planes are clipped from the final image. Note that glFrustum() doesn’t 
require you to define a symmetric viewing volume.
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The frustum has a default orientation in three-dimensional space. You can 
perform rotations or translations on the projection matrix to alter this 
orientation, but this is tricky and nearly always avoidable.

Advanced

The frustum doesn’t have to be symmetrical, and its axis isn’t necessarily 
aligned with the z-axis. For example, you can use glFrustum() to draw 
a picture as if you were looking through a rectangular window of a house, 
where the window was above and to the right of you. Photographers use 
such a viewing volume to create false perspectives. You might use it to have 
the hardware calculate images at resolutions much higher than normal, per-
haps for use on a printer. For example, if you want an image that has twice 

void glFrustum(GLdouble left, GLdouble right,
GLdouble bottom, GLdouble top,
GLdouble near, GLdouble far);

Creates a matrix for a perspective-view frustum and multiplies the current 
matrix by it. The frustum’s viewing volume is defined by the parameters: 
(left, bottom, –near) and (right, top, –near) specify the (x, y, z) coordinates of 
the lower left and upper right corners, respectively, of the near clipping 
plane; near and far give the distances from the viewpoint to the near and 
far clipping planes. They should always be positive.

near
far

left

right

top

bottom

Frustum

Figure 3-13 Perspective Viewing Volume Specified by glFrustum()

Compatibility 
Extension

glFrustum

Advanced
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the resolution of your screen, draw the same picture four times, each time 
using the frustum to cover the entire screen with one-quarter of the image. 
After each quarter of the image is rendered, you can read the pixels back to 
collect the data for the higher-resolution image. (See Chapter 8 for more 
information about reading pixel data.) 

Although it’s easy to understand conceptually, glFrustum() isn’t intuitive 
to use. Instead, you might try the Utility Library routine gluPerspective().
This routine creates a viewing volume of the same shape as glFrustum()
does, but you specify it in a different way. Rather than specifying corners of 
the near clipping plane, you specify the angle of the field of view (  or 
theta, in Figure 3-14) in the y-direction and the aspect ratio of the width to 
the height (x/y). (For a square portion of the screen, the aspect ratio is 1.0.) 
These two parameters are enough to determine an untruncated pyramid 
along the line of sight, as shown in Figure 3-14. You also specify the dis-
tance between the viewpoint and the near and far clipping planes, thereby 
truncating the pyramid. Note that gluPerspective() is limited to creating 
frustums that are symmetric in both the x- and y-axes along the line of 
sight, but this is usually what you want. 

Just as with glFrustum(), you can apply rotations or translations to change 
the default orientation of the viewing volume created by gluPerspective().
With no such transformations, the viewpoint remains at the origin, and the 
line of sight points down the negative z-axis.

With gluPerspective(), you need to pick appropriate values for the field of 
view, otherwise the image may look distorted. To get a perfect field of 
view, figure out how far your eye normally is from the screen and how big 

near
far

Aspect =

w

h

w
h

fovy

Figure 3-14 Perspective Viewing Volume Specified by gluPerspective()
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the window is, and calculate the angle the window subtends at that size 
and distance. It’s probably smaller than you would guess. Another way 
to think about it is that a 94-degree field of view with a 35-millimeter 
camera requires a 20-millimeter lens, which is a very wide-angle lens. (See 
“Troubleshooting Transformations” on page 162 for more details on how 
to calculate the desired field of view.)

The preceding paragraph suggests inches and millimeters—do these really 
have anything to do with OpenGL? The answer is, in a word, no. The pro-
jection and other transformations are inherently unitless. If you want to 
think of the near and far clipping planes as located at 1.0 and 20.0 meters, 
inches, kilometers, or leagues, it’s up to you. The only rule is that you have 
to use a consistent unit of measurement. Then the resulting image is drawn 
to scale. 

Orthographic Projection

With an orthographic projection, the viewing volume is a rectangular par-
allelepiped, or, more informally, a box (see Figure 3-15). Unlike perspective 
projection, the size of the viewing volume doesn’t change from one end to 
the other, so distance from the camera doesn’t affect how large an object 
appears. This type of projection is used for applications for architectural 
blueprints and computer-aided design, where it’s crucial to maintain the 
actual sizes of objects and the angles between them as they’re projected.

The command glOrtho() creates an orthographic parallel viewing volume. 
As with glFrustum(), you specify the corners of the near clipping plane and 
the distance to the far clipping plane.

With no other transformations, the direction of projection is parallel to the 
z-axis, and the viewpoint faces toward the negative z-axis.

void gluPerspective(GLdouble fovy, GLdouble aspect,
GLdouble near, GLdouble far);

Creates a matrix for a symmetric perspective-view frustum and multiplies 
the current matrix by it. fovy is the angle of the field of view in the 
yz-plane; its value must be in the range [0.0, 180.0]. aspect is the aspect 
ratio of the frustum, its width divided by its height. near and far values are 
the distances between the viewpoint and the clipping planes, along the 
negative z-axis. They should always be positive. 
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For the special case of projecting a two-dimensional image onto a two-
dimensional screen, use the Utility Library routine gluOrtho2D(). This 
routine is identical to the three-dimensional version, glOrtho(), except that 
all the z coordinates for objects in the scene are assumed to lie between 1.0 
and 1.0. If you’re drawing two-dimensional objects using the two-dimensional 
vertex commands, all the z coordinates are zero; thus, no object is clipped 
because of its z-value.

void glOrtho(GLdouble left, GLdouble right,
GLdouble bottom, GLdouble top,
GLdouble near, GLdouble far);

Creates a matrix for an orthographic parallel viewing volume and multi-
plies the current matrix by it. (left, bottom, –near) and (right, top, –near) are 
points on the near clipping plane that are mapped to the lower left and 
upper right corners of the viewport window, respectively. (left, bottom, 
–far) and (right, top, –far) are points on the far clipping plane that are 
mapped to the same respective corners of the viewport. Both near and 
far may be positive, negative, or even set to zero. However, near and far
should not be the same value.

left

right

far

bottom

top

near

Toward the 
viewpoint

Viewing
volume

Figure 3-15 Orthographic Viewing Volume
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Nate Robins’ Projection Tutorial

If you have Nate Robins’ suite of tutorial programs, run the projection
tutorial once again. This time, experiment with the parameters of the 
gluPerspective(), glOrtho(), and glFrustum() routines.

Viewing Volume Clipping

After the vertices of the objects in the scene have been transformed by 
the modelview and projection matrices, any primitives that lie outside 
the viewing volume are clipped. The six clipping planes used are those 
that define the sides and ends of the viewing volume. You can specify 
additional clipping planes and locate them wherever you choose. (See 
“Additional Clipping Planes” on page 168 for information about this 
relatively advanced topic.) Keep in mind that OpenGL reconstructs the 
edges of polygons that are clipped. 

Viewport Transformation

Recalling the camera analogy, you know that the viewport transformation 
corresponds to the stage where the size of the developed photograph is 
chosen. Do you want a wallet-size or a poster-size photograph? Since this is 
computer graphics, the viewport is the rectangular region of the window 
where the image is drawn. Figure 3-16 shows a viewport that occupies most 
of the screen. The viewport is measured in window coordinates, which 
reflect the positions of pixels on the screen relative to the lower left corner 
of the window. Keep in mind that all vertices have been transformed by the 
modelview and projection matrices by this point, and vertices outside the 
viewing volume have been clipped. 

void gluOrtho2D(GLdouble left, GLdouble right,
GLdouble bottom, GLdouble top);

Creates a matrix for projecting two-dimensional coordinates onto the 
screen and multiplies the current projection matrix by it. The clipping 
region is a rectangle with the lower left corner at (left, bottom) and the 
upper right corner at (right, top).
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Defining the Viewport

The window system, not OpenGL, is responsible for opening a window on 
the screen. However, by default, the viewport is set to the entire pixel rect-
angle of the window that’s opened. You use the glViewport() command to 
choose a smaller drawing region; for example, you can subdivide the win-
dow to create a split-screen effect for multiple views in the same window.

The aspect ratio of a viewport should generally equal the aspect ratio of the 
viewing volume. If the two ratios are different, the projected image will be 
distorted when mapped to the viewport, as shown in Figure 3-17. Note that 
subsequent changes in the size of the window don’t explicitly affect the 
viewport. Your application should detect window resize events and modify 
the viewport appropriately.

In Figure 3-17, the left figure shows a projection that maps a square image 
onto a square viewport using these routines:

gluPerspective(fovy, 1.0, near, far); 
glViewport(0, 0, 400, 400);

void glViewport(GLint x, GLint y, GLsizei width, GLsizei height);

Defines a pixel rectangle in the window into which the final image is 
mapped. The (x, y) parameter specifies the lower left corner of the view-
port, and width and height are the size of the viewport rectangle. By 
default, the initial viewport values are (0, 0, winWidth, winHeight),
where winWidth and winHeight specify the size of the window.

Figure 3-16 Viewport Rectangle
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However, in the right figure, the window has been resized to a nonequilat-
eral rectangular viewport, but the projection is unchanged. The image 
appears compressed along the x-axis:

gluPerspective(fovy, 1.0, near, far);
glViewport(0, 0, 400, 200);

To avoid the distortion, modify the aspect ratio of the projection to match 
the viewport: 

gluPerspective(fovy, 2.0, near, far);
glViewport(0, 0, 400, 200);

Try This

Modify an existing program so that an object is drawn twice, in different 
viewports. You might draw the object with different projection and/or viewing 
transformations for each viewport. To create two side-by-side viewports, you 
might issue these commands, along with the appropriate modeling, viewing, 
and projection transformations:

glViewport(0, 0, sizex/2, sizey); 
                    . 
                    . 
                    . 
glViewport(sizex/2, 0, sizex/2, sizey);

Undistorted Distorted

Figure 3-17 Mapping the Viewing Volume to the Viewport

Try This
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The Transformed Depth Coordinate

The depth (z) coordinate is encoded during the viewport transformation 
(and later stored in the depth buffer). You can scale z-values to lie within a 
desired range with the glDepthRange() command. (Chapter 10 discusses 
the depth buffer and the corresponding uses of the depth coordinate.) 
Unlike x and y window coordinates, z window coordinates are treated by 
OpenGL as though they always range from 0.0 to 1.0. 

In perspective projection, the transformed depth coordinate (like the x- and 
y-coordinates) is subject to perspective division by the w-coordinate. As the 
transformed depth coordinate moves farther away from the near clipping 
plane, its location becomes increasingly less precise. (See Figure 3-18.)

Therefore, perspective division affects the accuracy of operations that rely 
on the transformed depth coordinate, especially depth-buffering, which is 
used for hidden-surface removal.

void glDepthRange(GLclampd near, GLclampd far);

Defines an encoding for z-coordinates that’s performed during the 
viewport transformation. The near and far values represent adjustments 
to the minimum and maximum values that can be stored in the depth 
buffer. By default, they’re 0.0 and 1.0, respectively, which work for most 
applications. These parameters are clamped to lie within [0, 1].

Depth coordinate spacing

Figure 3-18 Perspective Projection and Transformed Depth Coordinates
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Troubleshooting Transformations

It’s pretty easy to get a camera pointed in the right direction, but in com-
puter graphics, you have to specify position and direction with coordinates 
and angles. As we can attest, it’s all too easy to achieve the well-known 
black-screen effect. Although any number of things can go wrong, often 
you get this effect—which results in absolutely nothing being drawn in the 
window you open on the screen—from incorrectly aiming the “camera” 
and taking a picture with the model behind you. A similar problem arises if 
you don’t choose a field of view that’s wide enough to view your objects but 
narrow enough so they appear reasonably large. 

If you find yourself exerting great programming effort only to create a black 
window, try these diagnostic steps:

1. Check the obvious possibilities. Make sure your system is plugged in. 
Make sure you’re drawing your objects with a color that’s different from 
the color with which you’re clearing the screen. Make sure that whatever 
states you’re using (such as lighting, texturing, alpha blending, logical 
operations, or antialiasing) are correctly turned on or off, as desired.

2. Remember that with the projection commands, the near and far coor-
dinates measure distance from the viewpoint and that (by default) you’re 
looking down the negative z-axis. Thus, if the near value is 1.0 and the 
far value is 3.0, objects must have z-coordinates between 1.0 and 3.0 
in order to be visible. To ensure that you haven’t clipped everything 
out of your scene, temporarily set the near and far clipping planes to 
some absurdly inclusive values, such as 0.001 and 1000000.0. This 
alters appearance for operations such as depth-buffering and fog, but 
it might uncover inadvertently clipped objects.

3. Determine where the viewpoint is, in which direction you’re looking, and 
where your objects are. It might help to create a real three-dimensional 
space—using your hands, for instance—to figure these things out.

4. Make sure you know where you’re rotating about. You might be rotat-
ing about some arbitrary location unless you translated back to the ori-
gin first. It’s OK to rotate about any point unless you’re expecting to 
rotate about the origin.

5. Check your aim. Use gluLookAt() to aim the viewing volume at your 
objects, or draw your objects at or near the origin, and use glTranslate*()
as a viewing transformation to move the camera just far enough in the z-
direction so that the objects fall within the viewing volume. Once you’ve 
managed to make your objects visible, try to change the viewing volume 
incrementally to achieve the exact result you want, as described next.
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6. For perspective transformations, be certain the near clipping plane is 
not too close to the viewer (camera), otherwise depth-buffering 
accuracy may be adversely affected. 

Even after you’ve aimed the camera in the correct direction and you can 
see your objects, they might appear too small or too large. If you’re using 
gluPerspective(), you might need to alter the angle defining the field of 
view by changing the value of the first parameter for this command. You 
can use trigonometry to calculate the desired field of view given the size 
of the object and its distance from the viewpoint: The tangent of half the 
desired angle is half the size of the object divided by the distance to the 
object (see Figure 3-19). Thus, you can use an arctangent routine to com-
pute half the desired angle. Example 3-3 assumes such a routine, atan2(),
which calculates the arctangent given the length of the opposite and adja-
cent sides of a right triangle. This result then needs to be converted from 
radians to degrees.

Example 3-3 Calculating Field of View

#define PI 3.1415926535

double calculateAngle(double size, double distance)
{
    double radtheta, degtheta; 

    radtheta = 2.0 * atan2 (size/2.0, distance);
    degtheta = (180.0 * radtheta) / PI;
    return degtheta;
}

Distance

Size

2

Figure 3-19 Using Trigonometry to Calculate the Field of View
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Typically, of course, you don’t know the exact size of an object, and only 
the distance between the viewpoint and a single point in your scene can be 
determined. To obtain a fairly good approximate value, find the bounding 
box for your scene by determining the maximum and minimum x-, y-, and 
z-coordinates of all the objects in your scene. Then calculate the radius of a 
bounding sphere for that box, and use the center of the sphere to determine 
the distance and the radius to determine the size.

For example, suppose all the coordinates in your object satisfy the equations
–1 x 3, 5 y 7, and –5 z 5. The center of the bounding box is (1, 6, 
0), and the radius of a bounding sphere is the distance from the center of 
the box to any corner—say (3, 7, 5)—or

If the viewpoint is at (8, 9, 10), the distance between it and the center is

The tangent of the half-angle is 5.477 divided by 12.570, which equals 
0.4357, so the half-angle is 23.54 degrees.

Remember that the field-of-view angle affects the optimal position for the 
viewpoint, if you’re trying to achieve a realistic image. For example, if your 
calculations indicate that you need a 179-degree field of view, the viewpoint 
must be a fraction of an inch from the screen to achieve realism. If your 
calculated field of view is too large, you might need to move the viewpoint 
farther away from the object.

Manipulating the Matrix Stacks

The modelview and projection matrices you’ve been creating, loading, and 
multiplying have been only the visible tips of their respective icebergs. Each 
of these matrices is actually the topmost member of a stack of matrices (see 
Figure 3-20).

A stack of matrices is useful for constructing hierarchical models, in which 
complicated objects are constructed from simpler ones. For example, sup-
pose you’re drawing an automobile that has four wheels, each of which is 
attached to the car with five bolts. You have a single routine to draw a wheel 
and another to draw a bolt, since all the wheels and all the bolts look the 

3 1– 2 7 6– 2 5 0– 2+ + 30 5.477= =

8 1– 2 9 6– 2 10 0– 2+ + 158 12.570= =
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same. These routines draw a wheel or a bolt in some convenient position 
and orientation; for example, centered at the origin with its axis coincident 
with the z-axis. When you draw the car, including the wheels and bolts, you 
want to call the wheel-drawing routine four times, with different transfor-
mations in effect each time to position the wheels correctly. As you draw 
each wheel, you want to draw the bolts five times, each time translated 
appropriately relative to the wheel. 

Suppose for a minute that all you have to do is draw the car body and the 
wheels. The English description of what you want to do might be 
something like this: 

Draw the car body. Remember where you are, and translate to the right 
front wheel. Draw the wheel and throw away the last translation so 
your current position is back at the origin of the car body. Remember 
where you are, and translate to the left front wheel

Similarly, for each wheel, you want to draw the wheel, remember where you 
are, and successively translate to each of the positions where bolts are 
drawn, throwing away the transformations after each bolt is drawn.

Since the transformations are stored as matrices, a matrix stack provides an 
ideal mechanism for doing this sort of successive remembering, translating, 
and throwing away. All the matrix operations that have been described 
so far (glLoadMatrix(), glLoadTransposeMatrix(), glMultMatrix(),
glMultTransposeMatrix(), glLoadIdentity(), and the commands that 
create specific transformation matrices) deal with the current matrix or 
the top matrix on the stack. You can control which matrix is on top with 
the commands that perform stack operations: glPushMatrix(), which 
copies the current matrix and adds the copy to the top of the stack, and 
glPopMatrix(), which discards the top matrix on the stack, as shown in 
Figure 3-21. (Remember that the current matrix is always the matrix on the 

Modelview
matrix stack
(32 4 x 4 matrices)

Projection
matrix stack
(2 4 x 4 matrices)

a b c d
e f g h

i  j  k  l 
m n o p

a b c d
e f g h

i  j  k  l 
m n o p

q p o n
m l k  j

i h g  f
e d c b

Figure 3-20 Modelview and Projection Matrix Stacks
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top.) In effect, glPushMatrix() means “remember where you are” and 
glPopMatrix() means “go back to where you were.” 

Example 3-4 draws an automobile, assuming the existence of routines that 
draw the car body, a wheel, and a bolt.

Example 3-4 Pushing and Popping the Matrix

draw_wheel_and_bolts()
{
   int i;

   draw_wheel();
   for(i=0;i<5;i++){
      glPushMatrix();
         glRotatef(72.0*i, 0.0, 0.0, 1.0);
         glTranslatef(3.0, 0.0, 0.0);

void glPushMatrix(void);

Pushes all matrices in the current stack down one level. The current stack 
is determined by glMatrixMode(). The topmost matrix is copied, so its 
contents are duplicated in both the top and second-from-the-top matrix. 
If too many matrices are pushed, an error is generated.

void glPopMatrix(void);

Pops the top matrix off the stack, destroying the contents of the popped 
matrix. What was the second-from-the-top matrix becomes the top matrix. 
The current stack is determined by glMatrixMode(). If the stack contains 
a single matrix, calling glPopMatrix() generates an error.

a b c d
e f g h

i  j  k  l 
m n o p

a b c d
e f g h

i  j  k  l 
m n o p

Current
matrix
copy

Add

Figure 3-21 Pushing and Popping the Matrix Stack
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         draw_bolt();
      glPopMatrix();
   }
}

draw_body_and_wheel_and_bolts()
{
   draw_car_body();
   glPushMatrix();
      glTranslatef(40, 0, 30);  /*move to first wheel position*/
      draw_wheel_and_bolts();
   glPopMatrix();
   glPushMatrix();
      glTranslatef(40, 0, -30);   /*move to 2nd wheel position*/
      draw_wheel_and_bolts();
   glPopMatrix();
   ...                    /*draw last two wheels similarly*/
}

This code assumes that the wheel and bolt axes are coincident with the 
z-axis; that the bolts are evenly spaced every 72 degrees, 3 units (maybe 
inches) from the center of the wheel; and that the front wheels are 40 units 
in front of and 30 units to the right and left of the car’s origin.

A stack is more efficient than an individual matrix, especially if the stack 
is implemented in hardware. When you push a matrix, you don’t need to 
copy the current data back to the main process, and the hardware may be 
able to copy more than one element of the matrix at a time. Sometimes you 
might want to keep an identity matrix at the bottom of the stack so that 
you don’t need to call glLoadIdentity() repeatedly. 

The Modelview Matrix Stack

As you’ve seen earlier in “Viewing and Modeling Transformations,” the mod-
elview matrix contains the cumulative product of multiplying viewing and 
modeling transformation matrices. Each viewing or modeling transforma-
tion creates a new matrix that multiplies the current modelview matrix; the 
result, which becomes the new current matrix, represents the composite 
transformation. The modelview matrix stack contains at least 32 4 4 matri-
ces; initially, the topmost matrix is the identity matrix. Some implementa-
tions of OpenGL may support more than 32 matrices on the stack. To find the 
maximum allowable number of matrices, you can use the query command 
glGetIntegerv(GL_MAX_MODELVIEW_STACK_DEPTH, GLint *params).
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The Projection Matrix Stack

The projection matrix contains a matrix for the projection transformation, 
which describes the viewing volume. Generally, you don’t want to compose 
projection matrices, so you issue glLoadIdentity() before performing a 
projection transformation. Also for this reason, the projection matrix 
stack need be only two levels deep; some OpenGL implementations 
may allow more than two 4 4 matrices. To find the stack depth, call 
glGetIntegerv(GL_MAX_PROJECTION_STACK_DEPTH, GLint *params).

One use for a second matrix in the stack would be an application that needs 
to display a help window with text in it, in addition to its normal window 
showing a three-dimensional scene. Since text is most easily positioned 
with an orthographic projection, you could change temporarily to an 
orthographic projection, display the help, and then return to your previous 
projection: 

glMatrixMode(GL_PROJECTION);
glPushMatrix();                  /*save the current projection*/
    glLoadIdentity();
    glOrtho(...);                /*set up for displaying help*/
    display_the_help();
glPopMatrix();

Note that you’d probably also have to change the modelview matrix 
appropriately.

Advanced

If you know enough mathematics, you can create custom projection 
matrices that perform arbitrary projective transformations. For example, 
OpenGL and its Utility Library have no built-in mechanism for two-point 
perspective. If you were trying to emulate the drawings in drafting texts, 
you might need such a projection matrix.

Additional Clipping Planes

In addition to the six clipping planes of the viewing volume (left, right, 
bottom, top, near, and far), you can define up to six additional clipping 
planes for further restriction of the viewing volume, as shown in Figure 3-22. 
This is useful for removing extraneous objects in a scene—for example, if 
you want to display a cutaway view of an object. 

Advanced
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Each plane is specified by the coefficients of its equation: Ax + By + Cz + D = 0. 
The clipping planes are automatically transformed appropriately by model-
ing and viewing transformations. The clipping volume becomes the inter-
section of the viewing volume and all half-spaces defined by the additional 
clipping planes. Remember that polygons that get clipped automatically 
have their edges reconstructed appropriately by OpenGL.

You need to enable each additional clipping plane you define: 

glEnable(GL_CLIP_PLANEi);

You can disable a plane with

glDisable(GL_CLIP_PLANEi);

void glClipPlane(GLenum plane, const GLdouble *equation);

Defines a clipping plane. The equation argument points to the four coeffi-
cients of the plane equation, Ax + By + Cz + D = 0. All points with eye coor-
dinates (xe, ye, ze, we) that satisfy (A B C D)M-1(xe ye ze we)

T  0 lie in the 
half-space defined by the plane, where M is the current modelview matrix 
at the time glClipPlane() is called. All points not in this half-space are 
clipped away. The plane argument is GL_CLIP_DISTANCEi (named GL_
CLIP_PLANEi prior to OpenGL version 3.0), where i is an integer specify-
ing which of the available clipping planes to define. i is a number between 
0 and one less than the maximum number of additional clipping planes.

Figure 3-22 Additional Clipping Planes and the Viewing Volume

Compatibility 
Extension

glClipPlane
GL_CLIP_
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GL_CLIP_PLANEi
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All implementations of OpenGL must support at least six additional 
clipping planes, although some implementations may allow more. You can 
use glGetIntegerv() with GL_MAX_CLIP_PLANES to determine how many 
clipping planes are supported. 

Note: Clipping performed as a result of glClipPlane() is done in eye 
coordinates, not in clip coordinates. This difference is noticeable 
if the projection matrix is singular (that is, a real projection matrix 
that flattens three-dimensional coordinates to two-dimensional 
ones). Clipping performed in eye coordinates continues to take 
place in three dimensions even when the projection matrix is 
singular. 

A Clipping Plane Code Example

Example 3-5 renders a wireframe sphere with two clipping planes that slice 
away three-quarters of the original sphere, as shown in Figure 3-23.

Example 3-5 Wireframe Sphere with Two Clipping Planes: clip.c

void init(void) 
{
   glClearColor(0.0, 0.0, 0.0, 0.0);
   glShadeModel(GL_FLAT);
}
void display(void)
{

Figure 3-23 Clipped Wireframe Sphere
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   GLdouble eqn[4] = {0.0, 1.0, 0.0, 0.0};
   GLdouble eqn2[4] = {1.0, 0.0, 0.0, 0.0};

   glClear(GL_COLOR_BUFFER_BIT);
   glColor3f(1.0, 1.0, 1.0);
   glPushMatrix();
   glTranslatef(0.0, 0.0, -5.0);

/*    clip lower half -- y < 0          */
   glClipPlane(GL_CLIP_PLANE0, eqn);
   glEnable(GL_CLIP_PLANE0);
/*    clip left half -- x < 0           */
   glClipPlane(GL_CLIP_PLANE1, eqn2);
   glEnable(GL_CLIP_PLANE1);

   glRotatef(90.0, 1.0, 0.0, 0.0);
   glutWireSphere(1.0, 20, 16);
   glPopMatrix();
   glFlush();
}

void reshape(int w, int h)
{
   glViewport(0, 0, (GLsizei) w, (GLsizei) h); 
   glMatrixMode(GL_PROJECTION);
   glLoadIdentity();
   gluPerspective(60.0, (GLfloat) w/(GLfloat) h, 1.0, 20.0);
   glMatrixMode(GL_MODELVIEW);
}

int main(int argc, char** argv)
{
   glutInit(&argc, argv);
   glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
   glutInitWindowSize(500, 500); 
   glutInitWindowPosition(100, 100);
   glutCreateWindow(argv[0]);
   init();
   glutDisplayFunc(display); 
   glutReshapeFunc(reshape);
   glutMainLoop();
   return 0;
}
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• Try changing the coefficients that describe the clipping planes in 
Example 3-5. 

• Try calling a modeling transformation, such as glRotate*(), to affect 
glClipPlane(). Make the clipping plane move independently of the 
objects in the scene.

Examples of Composing Several Transformations

This section demonstrates how to combine several transformations to 
achieve a particular result. The two examples discussed are a solar system, 
in which objects need to rotate on their axes as well as in orbit around each 
other, and a robot arm, which has several joints that effectively transform 
coordinate systems as they move relative to each other. 

Building a Solar System

172 Chapter 3: Viewing

The program described in this section draws a simple solar system with a 
planet and a sun, both using the same sphere-drawing routine. To write 
this program, you need to use glRotate*() for the revolution of the planet 
around the sun and for the rotation of the planet around its own axis. You 
also need glTranslate*() to move the planet out to its orbit, away from the 
origin of the solar system. Remember that you can specify the desired sizes 
of the two spheres by supplying the appropriate arguments for the 
glutWireSphere() routine. 

To draw the solar system, you first want to set up a projection and a viewing 
transformation. For this example, gluPerspective() and gluLookAt() are used. 

Drawing the sun is straightforward, since it should be located at the origin 
of the grand, fixed coordinate system, which is where the sphere routine 
places it. Thus, drawing the sun doesn’t require translation; you can use 
glRotate*() to make the sun rotate about an arbitrary axis. Drawing a planet 
rotating around the sun, as shown in Figure 3-24, requires several modeling 
transformations. The planet needs to rotate about its own axis once a day; 
and once a year, the planet completes one revolution around the sun. 

To determine the order of modeling transformations, visualize what hap-
pens to the local coordinate system. An initial glRotate*() rotates the local 
coordinate system that initially coincides with the grand coordinate system. 
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Next, glTranslate*() moves the local coordinate system to a position on the 
planet’s orbit; the distance moved should equal the radius of the orbit. Thus, 
the initial glRotate*() actually determines where along the orbit the planet 
is (or what time of year it is).

A second glRotate*() rotates the local coordinate system around the local 
axes, thus determining the time of day for the planet. Once you’ve issued 
all these transformation commands, the planet can be drawn.

In summary, the following OpenGL commands draw the sun and planet; 
the full program is shown in Example 3-6:

glPushMatrix();
glutWireSphere(1.0, 20, 16);     /* draw sun */
glRotatef((GLfloat) year, 0.0, 1.0, 0.0);
glTranslatef(2.0, 0.0, 0.0);
glRotatef((GLfloat) day, 0.0, 1.0, 0.0);
glutWireSphere(0.2, 10, 8);      /* draw smaller planet */
glPopMatrix();

Example 3-6 Planetary System: planet.c

Figure 3-24 Planet and Sun
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static int year = 0, day = 0;

void init(void) 
{
   glClearColor(0.0, 0.0, 0.0, 0.0);
   glShadeModel(GL_FLAT);
}
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void display(void)
{
   glClear(GL_COLOR_BUFFER_BIT);
   glColor3f(1.0, 1.0, 1.0);

   glPushMatrix();
   glutWireSphere(1.0, 20, 16);   /* draw sun */
   glRotatef((GLfloat) year, 0.0, 1.0, 0.0);
   glTranslatef(2.0, 0.0, 0.0);
   glRotatef((GLfloat) day, 0.0, 1.0, 0.0);
   glutWireSphere(0.2, 10, 8);    /* draw smaller planet */
   glPopMatrix();
   glutSwapBuffers();
}

void reshape(int w, int h)
{
   glViewport(0, 0, (GLsizei) w, (GLsizei) h); 
   glMatrixMode(GL_PROJECTION);
   glLoadIdentity();
   gluPerspective(60.0, (GLfloat) w/(GLfloat) h, 1.0, 20.0);
   glMatrixMode(GL_MODELVIEW);
   glLoadIdentity();
   gluLookAt(0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
}

void keyboard(unsigned char key, int x, int y)
{
   switch (key) {
      case ‘d’:
         day = (day + 10) % 360;
         glutPostRedisplay();
         break;
      case ‘D’:
         day = (day - 10) % 360;
         glutPostRedisplay();
         break;
      case ‘y’:
         year = (year + 5) % 360;
         glutPostRedisplay();
         break;
      case ‘Y’:
         year = (year - 5) % 360;
         glutPostRedisplay();
         break;
      default:
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         break;
   }
}

int main(int argc, char** argv)
{
   glutInit(&argc, argv);
   glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);
   glutInitWindowSize(500, 500); 
   glutInitWindowPosition(100, 100);
   glutCreateWindow(argv[0]);
   init();
   glutDisplayFunc(display); 
   glutReshapeFunc(reshape);
   glutKeyboardFunc(keyboard);
   glutMainLoop();
   return 0;
}

Try This

• Try adding a moon to the planet, or try several moons and additional 
planets. Hint: Use glPushMatrix() and glPopMatrix() to save and restore 
the position and orientation of the coordinate system at appropriate 
moments. If you’re going to draw several moons around a planet, you 
need to save the coordinate system prior to positioning each moon 
and restore the coordinate system after each moon is drawn.

• Try tilting the planet’s axis.

Building an Articulated Robot Arm

This section discusses a program that creates an articulated robot arm with 
two or more segments. The arm should be connected with pivot points at 
the shoulder, elbow, or other joints. Figure 3-25 shows a single joint of such 
an arm.

You can use a scaled cube as a segment of the robot arm, but first you 
must call the appropriate modeling transformations to orient each 
segment. Since the origin of the local coordinate system is initially at the 
center of the cube, you need to move the local coordinate system to one 
edge of the cube. Otherwise, the cube rotates about its center, rather than 
the pivot point. 

Try This
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After you call glTranslate*() to establish the pivot point and glRotate*() to 
pivot the cube, translate back to the center of the cube. Then the cube is 
scaled (flattened and widened) before it is drawn. The glPushMatrix() and 
glPopMatrix() commands restrict the effect of glScale*(). Here’s what your 
code might look like for this first segment of the arm (the entire program is 
shown in Example 3-7): 

glTranslatef(-1.0, 0.0, 0.0);
glRotatef((GLfloat) shoulder, 0.0, 0.0, 1.0);
glTranslatef(1.0, 0.0, 0.0);
glPushMatrix();
glScalef(2.0, 0.4, 1.0);
glutWireCube(1.0);
glPopMatrix();

To build a second segment, you need to move the local coordinate system 
to the next pivot point. Since the coordinate system has previously been 
rotated, the x-axis is already oriented along the length of the rotated arm. 
Therefore, translating along the x-axis moves the local coordinate system to 
the next pivot point. Once it’s at that pivot point, you can use the same 
code to draw the second segment as you used for the first one. This can be 
continued for an indefinite number of segments (shoulder, elbow, wrist, 
fingers):

Figure 3-25 Robot Arm
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glTranslatef(1.0, 0.0, 0.0); 
glRotatef((GLfloat) elbow, 0.0, 0.0, 1.0);
glTranslatef(1.0, 0.0, 0.0);
glPushMatrix();
glScalef(2.0, 0.4, 1.0);
glutWireCube(1.0);
glPopMatrix();

Example 3-7 Robot Arm: robot.c

static int shoulder = 0, elbow = 0;

void init(void) 
{
  glClearColor(0.0, 0.0, 0.0, 0.0);
  glShadeModel(GL_FLAT);
}

void display(void)
{
   glClear(GL_COLOR_BUFFER_BIT);
   glPushMatrix();
   glTranslatef(-1.0, 0.0, 0.0);
   glRotatef((GLfloat) shoulder, 0.0, 0.0, 1.0);
   glTranslatef(1.0, 0.0, 0.0);
   glPushMatrix();
   glScalef(2.0, 0.4, 1.0);
   glutWireCube(1.0);
   glPopMatrix();

   glTranslatef(1.0, 0.0, 0.0);
   glRotatef((GLfloat) elbow, 0.0, 0.0, 1.0);
   glTranslatef(1.0, 0.0, 0.0);
   glPushMatrix();
   glScalef(2.0, 0.4, 1.0);
   glutWireCube(1.0);
   glPopMatrix();

   glPopMatrix();
   glutSwapBuffers();
}

void reshape(int w, int h)
{
   glViewport(0, 0, (GLsizei) w, (GLsizei) h); 
   glMatrixMode(GL_PROJECTION);
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   glLoadIdentity();
   gluPerspective(65.0, (GLfloat) w/(GLfloat) h, 1.0, 20.0);
   glMatrixMode(GL_MODELVIEW);
   glLoadIdentity();
   glTranslatef(0.0, 0.0, -5.0);
}

void keyboard(unsigned char key, int x, int y)
{
   switch (key) {
      case ‘s’:   /*  s key rotates at shoulder  */
         shoulder = (shoulder + 5) % 360;
         glutPostRedisplay();
         break;
      case ‘S’:
         shoulder = (shoulder - 5) % 360;
         glutPostRedisplay();
         break;
      case ‘e’:  /*  e key rotates at elbow  */
         elbow = (elbow + 5) % 360;
         glutPostRedisplay();
         break;
      case ‘E’:
         elbow = (elbow - 5) % 360;
         glutPostRedisplay();
         break;
      default:
         break;
   }
}

int main(int argc, char** argv)
{
   glutInit(&argc, argv);
   glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);
   glutInitWindowSize(500, 500); 
   glutInitWindowPosition(100, 100);
   glutCreateWindow(argv[0]);
   init();
   glutDisplayFunc(display); 
   glutReshapeFunc(reshape);
   glutKeyboardFunc(keyboard);
   glutMainLoop();
   return 0;
}
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Try This

• Modify Example 3-7 to add additional segments to the robot arm.

• Modify Example 3-7 to add additional segments at the same position. 
For example, give the robot arm several “fingers” at the wrist, as shown 
in Figure 3-26. Hint: Use glPushMatrix() and glPopMatrix() to save 
and restore the position and orientation of the coordinate system at 
the wrist. If you’re going to draw fingers at the wrist, you need to save 
the current matrix prior to positioning each finger, and restore the 
current matrix after each finger is drawn.

Nate Robins’ Transformation Tutorial

If you have Nate Robins’ suite of tutorial programs, go back to the transfor-
mation tutorial and run it again. Use the popup menu interface to change 
the order of glRotate*() and glTranslate(), and note the effect of swapping 
the order of these routines.

Reversing or Mimicking Transformations

The geometric processing pipeline is very good at using viewing and projec-
tion matrices and a viewport for clipping to transform the world (or object) 
coordinates of a vertex into window (or screen) coordinates. However, there 
are situations in which you want to reverse that process. A common situa-
tion is when an application user utilizes the mouse to choose a location in 
three dimensions. The mouse returns only a two-dimensional value, which 
is the screen location of the cursor. Therefore, the application will have to 
reverse the transformation process to determine where in three-dimensional 
space this screen location originated.

Try This

Figure 3-26 Robot Arm with Fingers
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The Utility Library routines gluUnProject() and gluUnProject4() perform 
this reversal of the transformations. Given the three-dimensional window 
coordinates for a transformed vertex and all the transformations that affected 
it, gluUnProject() returns the original world coordinates of that vertex. (Use 
gluUnProject4() if the depth range is other than the default [0, 1].)

There are inherent difficulties in trying to reverse the transformation 
process. A two-dimensional screen location could have originated from 
anywhere on an entire line in three-dimensional space. To disambiguate 
the result, gluUnProject() requires that a window depth coordinate (winz)
be provided, specified in terms of glDepthRange(). (For more about depth 
range, see “The Transformed Depth Coordinate” on page 161.) For the 
default values of glDepthRange(), winz at 0.0 will request the world 
coordinates of the transformed point at the near clipping plane, while 
winz at 1.0 will request the point at the far clipping plane.

Example 3-8 demonstrates gluUnProject() by reading the mouse position 
and determining the three-dimensional points at the near and far clipping 
planes from which the mouse position was transformed. The computed 
world coordinates are printed to standard output, but the rendered window 
itself is just black.

Example 3-8 Reversing the Geometric Processing Pipeline: unproject.c

void display(void)
{
   glClear(GL_COLOR_BUFFER_BIT);

int gluUnProject(GLdouble winx, GLdouble winy, GLdouble winz,
const GLdouble modelMatrix[16], 
const GLdouble projMatrix[16], 
const GLint viewport[4], 
GLdouble *objx, GLdouble *objy, GLdouble *objz);

Maps the specified window coordinates (winx, winy, winz) into object 
coordinates, using transformations defined by a modelview matrix 
(modelMatrix), projection matrix (projMatrix), and viewport (viewport). The 
resulting object coordinates are returned in objx, objy, and objz. The func-
tion returns GL_TRUE, indicating success, or GL_FALSE, indicating failure 
(such as a noninvertible matrix). This operation does not attempt to clip 
the coordinates to the viewport or eliminate depth values that fall outside 
of glDepthRange().
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   glFlush();
}

void reshape(int w, int h)
{
   glViewport(0, 0, (GLsizei) w, (GLsizei) h);
   glMatrixMode(GL_PROJECTION);
   glLoadIdentity();
   gluPerspective(45.0, (GLfloat) w/(GLfloat) h, 1.0, 100.0);
   glMatrixMode(GL_MODELVIEW);
   glLoadIdentity();
}

void mouse(int button, int state, int x, int y) 
{
   GLint viewport[4];
   GLdouble mvmatrix[16], projmatrix[16];
   GLint realy;  /*  OpenGL y coordinate position  */
   GLdouble wx, wy, wz;  /*  returned world x, y, z coords  */

   switch (button) {
      case GLUT_LEFT_BUTTON:
         if (state == GLUT_DOWN) {
            glGetIntegerv(GL_VIEWPORT, viewport);
            glGetDoublev(GL_MODELVIEW_MATRIX, mvmatrix);
            glGetDoublev(GL_PROJECTION_MATRIX, projmatrix);
/*  note viewport[3] is height of window in pixels  */
            realy = viewport[3] - (GLint) y - 1;
            printf(“Coordinates at cursor are (%4d, %4d)\n”, 
               x, realy);
            gluUnProject((GLdouble) x, (GLdouble) realy, 0.0,
               mvmatrix, projmatrix, viewport, &wx, &wy, &wz);
            printf(“World coords at z=0.0 are (%f, %f, %f)\n”,
               wx, wy, wz);
            gluUnProject((GLdouble) x, (GLdouble) realy, 1.0,
               mvmatrix, projmatrix, viewport, &wx, &wy, &wz);
            printf(“World coords at z=1.0 are (%f, %f, %f)\n”,     
               wx, wy, wz);
         }
         break;
      case GLUT_RIGHT_BUTTON:
         if (state == GLUT_DOWN)
            exit(0);
         break;
      default:
         break;
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   }
}

int main(int argc, char** argv)
{
   glutInit(&argc, argv);
   glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
   glutInitWindowSize(500, 500); 
   glutInitWindowPosition(100, 100);
   glutCreateWindow(argv[0]);
   glutDisplayFunc(display); 
   glutReshapeFunc(reshape); 
   glutMouseFunc(mouse);
   glutMainLoop();
   return 0;
}

GLU 1.3 introduces a modified version of gluUnProject(). gluUnProject4()
can handle nonstandard glDepthRange() values and also w-coordinate 
values other than 1.

gluProject() is another Utility Library routine, which is related to 
gluUnProject(). gluProject() mimics the actions of the transformation 
pipeline. Given three-dimensional world coordinates and all the transfor-
mations that affect them, gluProject() returns the transformed window 
coordinates.

int gluUnProject4(GLdouble winx, GLdouble winy, GLdouble winz,
GLdouble clipw, const GLdouble modelMatrix[16], 
const GLdouble projMatrix[16], 
const GLint viewport[4], 
GLclampd zNear, GLclampd zFar,
GLdouble *objx, GLdouble *objy,
GLdouble *objz, GLdouble *objw);

Overall, the operation is similar to gluUnProject(). Maps the specified 
window coordinates (winx, winy, winz, clipw) into object coordinates, 
using transformations defined by a modelview matrix (modelMatrix), 
projection matrix (projMatrix), viewport (viewport), and the depth range 
values zNear and zFar. The resulting object coordinates are returned in 
objx, objy, objz, and objw.
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Note: The matrices passed to gluUnProject(), gluUnProject4(), and 
gluProject() are in the OpenGL-standard column-major order. 
You might use glGetDoublev() and glGetIntegerv() to obtain the 
current GL_MODELVIEW_MATRIX, GL_PROJECTION_MATRIX, 
and GL_VIEWPORT values for use with gluUnProject(),
gluUnProject4(), or gluProject().

int gluProject(GLdouble objx, GLdouble objy, GLdouble objz,
const GLdouble modelMatrix[16], 
const GLdouble projMatrix[16], 
const GLint viewport[4], 
GLdouble *winx, GLdouble *winy, GLdouble *winz);

Maps the specified object coordinates (objx, objy, objz) into window 
coordinates, using transformations defined by a modelview matrix 
(modelMatrix), projection matrix (projMatrix), and viewport (viewport). 
The resulting window coordinates are returned in winx, winy, and winz.
The function returns GL_TRUE, indicating success, or GL_FALSE, 
indicating failure.
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Chapter 4

4.Color

Chapter Objectives

After reading this chapter, you’ll be able to do the following:

• Decide between using RGBA or color-index mode for your application

• Specify desired colors for drawing objects

• Use smooth shading to draw a single polygon with more than one 
color

Note: In OpenGL Version 3.1, many of the techniques and functions 
described in this chapter were removed through deprecation. In 
particular, color-index rendering is not supported. The concepts 
relating to RGBA color modes are still relevant, but need to be 
implemented in vertex or fragment shaders, as described in 
Chapter 15.
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The goal of almost all OpenGL applications is to draw color pictures in a 
window on the screen. The window is a rectangular array of pixels, each of 
which contains and displays its own color. Thus, in a sense, the point of all 
the calculations performed by an OpenGL implementation—calculations 
that take into account OpenGL commands, state information, and values 
of parameters—is to determine the final color of every pixel that’s to be 
drawn in the window. This chapter explains the commands for specifying 
colors and how OpenGL interprets them in the following major sections:

• “Color Perception” discusses how the eye perceives color. 

• “Computer Color” describes the relationship between pixels on a 
computer monitor and their colors; it also defines the two display 
modes: RGBA and color index.

• “RGBA versus Color-Index Mode” explains how the two display modes 
use graphics hardware and how to decide which mode to use.

• “Specifying a Color and a Shading Model” describes the OpenGL 
commands you use to specify the desired color or shading model.

Color Perception

Physically, light is composed of photons—tiny particles of light, each trav-
eling along its own path, and each vibrating at its own frequency (or wave-
length or energy—any one of frequency, wavelength, or energy determines 
the others). A photon is completely characterized by its position, direction, 
and frequency/wavelength/energy. Photons with wavelengths ranging 
from about 390 nanometers (nm) (violet) and 720 nm (red) cover the colors 
of the visible spectrum, forming the colors of a rainbow (violet, indigo, 
blue, green, yellow, orange, red). However, your eyes perceive lots of colors 
that aren’t in the rainbow—white, black, brown, and pink, for example. 
How does this happen? 

What your eye actually sees is a mixture of photons of different frequencies. 
Real light sources are characterized by the distribution of photon frequencies 
they emit. Ideal white light consists of an equal amount of light of all 
frequencies. Laser light is usually very pure, and all photons are almost 
identical in frequency (and in direction and phase as well). Light from a 
sodium-vapor lamp has more light in the yellow frequency. Light from most 
stars in space has a distribution that depends heavily on their temperatures 
(black-body radiation). The frequency distribution of light from most 
sources in your immediate environment is more complicated.
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The human eye perceives color when certain cells in the retina (called cone 
cells, or just cones) become excited after being struck by photons. The three 
different kinds of cone cells respond best to three different wavelengths of 
light: One type of cone cell responds best to red light, one to green light, 
and the other to blue light. (A person who is color-blind is usually missing 
one or more types of cone cells.) When a given mixture of photons enters 
the eye, the cone cells in the retina register different degrees of excitation 
depending on their types, and if a different mixture of photons happens to 
excite the three types of cone cells to the same degree, its color is indistin-
guishable from that of the first mixture.

Since each color is recorded by the eye as the levels of excitation of the cone 
cells produced by the incoming photons, the eye can perceive colors that 
aren’t in the spectrum produced by a prism or rainbow. For example, if you 
send a mixture of red and blue photons so that both the red and blue cones 
in the retina are excited, your eye sees it as magenta, which isn’t in the 
spectrum. Other combinations give browns, turquoises, and mauves, none 
of which appears in the color spectrum.

A computer-graphics monitor emulates visible colors by lighting pixels with 
a combination of red, green, and blue light in proportions that excite the 
red-, green-, and blue-sensitive cones in the retina in such a way that it 
matches the excitation levels generated by the photon mix it’s trying to 
emulate. If humans had more types of cone cells, some that were yellow-
sensitive for example, color monitors would probably have a yellow gun as 
well, and we’d use RGBY (red, green, blue, yellow) quadruples to specify 
colors. And if everyone were color-blind in the same way, this chapter 
would be simpler.

To display a particular color, the monitor sends the right amounts of red, 
green, and blue (RGB) light to stimulate appropriately the different types of 
cone cells in your eye. A color monitor can send different proportions of 
red, green, and blue to each of the pixels, and the eye sees a million or so 
pinpoints of light, each with its own color.

Note: There are many other representations of color, or color models, with 
acronyms such as HLS, HSV, and CMYK. If your data needs to be in 
one of these color models, you need to convert to and from RGB. For 
the formulas to perform these conversions, see Foley, van Dam, et al., 
Computer Graphics: Principles and Practice (Addison-Wesley, 1990).

This section considers only how the eye perceives combinations of photons 
that enter it. The situation for light bouncing off materials and entering the 
eye is even more complex—white light bouncing off a red ball will appear 
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red, and yellow light shining through blue glass appears almost black, for 
example. (See “Real-World and OpenGL Lighting” in Chapter 5 for a 
discussion of these effects.)

Computer Color

On a color computer screen, the hardware causes each pixel on the screen 
to emit different amounts of red, green, and blue light. These are called the 
R, G, and B values. They’re often packed together (sometimes with a fourth 
value, called alpha, or A), and the packed value is called the RGB (or RGBA) 
value. (See “Blending” in Chapter 6 for an explanation of the alpha values.) 
The color information at each pixel can be stored either in RGBA mode, in 
which the R, G, B, and possibly A values are kept for each pixel, or in color-
index mode, in which a single number (called the color index) is stored for 
each pixel. Each color index indicates an entry in a table that defines a 
particular set of R, G, and B values. Such a table is called a color map.

In color-index mode, you might want to alter the values in the color map. 
Since color maps are controlled by the window system, there are no OpenGL 
commands to do this. All the examples in this book initialize the color-
display mode at the time the window is opened by using routines from the 
GLUT library. (See Appendix A for details.)

There is a great deal of variation among the different graphics hardware 
platforms in both the size of the pixel array and the number of colors that 
can be displayed at each pixel. On any graphics system, each pixel has the 
same amount of memory for storing its color, and all the memory for all 
the pixels is called the color buffer. The size of a buffer is usually measured 
in bits, so an 8-bit buffer could store 8 bits of data (256 possible different 
colors) for each pixel. The size of the possible buffers varies from machine 
to machine. (See Chapter 10 for more information.)

The R, G, and B values can range from 0.0 (none) to 1.0 (full intensity). For 
example, R = 0.0, G = 0.0, and B = 1.0 represents the brightest possible blue. 
If R, G, and B are all 0.0, the pixel is black; if all are 1.0, the pixel is drawn 
in the brightest white that can be displayed on the screen. Blending green 
and blue creates shades of cyan. Blue and red combine for magenta. Red and 
green create yellow. To help you create the colors you want from the R, G, 
and B components, look at the color cube shown in Plate 12. The axes of 
this cube represent intensities of red, blue, and green. A black-and-white 
version of the cube is shown in Figure 4-1.
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The commands used to specify a color for an object (in this case, a point) 
can be as simple as this:

glColor3f(1.0, 0.0, 0.0);  /* the current RGB color is red: */
                            /* full red, no green, no blue. */
glBegin(GL_POINTS);
    glVertex3fv(point_array);
glEnd();

In certain modes (for example, if lighting or texturing calculations are 
performed), the assigned color might go through other operations before 
arriving in the framebuffer as a value representing a color for a pixel. In fact, 
the color of a pixel is determined by a lengthy sequence of operations. 

Early in a program’s execution, the color-display mode is set to either RGBA 
mode or color-index mode. Once the color-display mode is initialized, it 
can’t be changed. As the program executes, a color (either a color index or 
an RGBA value) is determined on a per-vertex basis for each geometric prim-
itive. This color either is a color you’ve explicitly specified for a vertex or, if 
lighting is enabled, is determined from the interaction of the transformation 
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Figure 4-1 The Color Cube in Black and White
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matrices with the surface normals and other material properties. In other 
words, a red ball with a blue light shining on it looks different from the 
same ball with no light on it. (See Chapter 5 for details.) After the relevant 
lighting calculations have been performed, the chosen shading model is 
applied. As explained in “Specifying a Color and a Shading Model,” you can 
choose flat or smooth shading, each of which has different effects on the 
eventual color of a pixel. 

Next, the primitives are rasterized, or converted to a two-dimensional image. 
Rasterizing involves determining which squares of an integer grid in win-
dow coordinates are occupied by the primitive, and then assigning color 
and other values to each such square. A grid square along with its associated 
values of color, z (depth), and texture coordinates is called a fragment. Pixels 
are elements of the framebuffer; a fragment comes from a primitive and is 
combined with its corresponding pixel to yield a new pixel. Once a frag-
ment has been constructed, texturing, fog, and antialiasing are applied—if 
they’re enabled—to the fragments. After that, any specified alpha blending, 
dithering, and bitwise logical operations are carried out using the fragment 
and the pixel already stored in the framebuffer. Finally, the fragment’s color 
value (either color index or RGBA) is written into the pixel and displayed in 
the window using the window’s color-display mode.

RGBA versus Color-Index Mode

In either color-index or RGBA mode, a certain amount of color data is stored 
at each pixel. This amount is determined by the number of bitplanes in the 
framebuffer. A bitplane contains 1 bit of data for each pixel. If there are 8 
color bitplanes, there are 8 color bits per pixel, and hence 28 = 256 different 
values or colors that can be stored at the pixel. 

Bitplanes are often divided evenly into storage for R, G, and B components 
(that is, a 24-bitplane system devotes 8 bits each to red, green, and blue), 
but this isn’t always true. To find out the number of bitplanes available 
on your system for red, green, blue, alpha, or color-index values, use 
glGetIntegerv() with GL_RED_BITS, GL_GREEN_BITS, GL_BLUE_BITS, 
GL_ALPHA_BITS, and GL_INDEX_BITS. 

Note: Color intensities on most computer screens aren’t perceived as linear 
by the human eye. Consider colors consisting of just a red component, 
with green and blue set at zero. As the intensity varies from 0.0 (off) 
to 1.0 (full on), the number of electrons striking the pixels increases, 
but the question is, does 0.5 appear to be halfway between 0.0 and 
1.0? To test this, write a program that draws alternate pixels in a 
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checkerboard pattern to intensities 0.0 and 1.0, and compare it with 
a region drawn solidly in color 0.5. At a reasonable distance from the 
screen, the two regions should appear to have the same intensity. If 
they look noticeably different, you need to use whatever correction 
mechanism is provided on your particular system. For example, many 
systems have a table to adjust intensities so that 0.5 appears to be 
halfway between 0.0 and 1.0. The mapping generally used is an expo-
nential one, with the exponent referred to as gamma (hence the term 
gamma correction). Using the same gamma for the red, green, and blue 
components gives pretty good results, but three different gamma values 
might give slightly better results. (For more details on this topic, see 
Foley, van Dam, et al., Computer Graphics: Principles and Practice.
Addison-Wesley, 1990.)

RGBA Display Mode

In RGBA mode, the hardware sets aside a certain number of bitplanes for 
each of the R, G, B, and A components (not necessarily the same number 
for each component), as shown in Figure 4-2. The R, G, and B values are 
typically stored as integers, rather than floating-point numbers, and they’re 
scaled to the number of available bits for storage and retrieval. For example, 
if a system has 8 bits available for the R component, integers between 0 and 
255 can be stored; thus, 0, 1, 2, ..., 255 in the bitplanes would correspond 
to R values of 0/255 = 0.0, 1/255, 2/255, ..., 255/255 = 1.0. Regardless of the 
number of bitplanes, 0.0 specifies the minimum intensity, and 1.0 specifies 
the maximum intensity.

Red

Green

Blue

Figure 4-2 RGB Values from the Bitplanes
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Note: The alpha value (the A in RGBA) has no direct effect on the color 
displayed on the screen. It can be used for many things, including 
blending and transparency, and it can have an effect on the values of 
R, G, and B that are written. (See “Blending” in Chapter 6 for more 
information about alpha values.)

The number of distinct colors that can be displayed at a single pixel depends 
on the number of bitplanes and the capacity of the hardware to interpret 
those bitplanes. The number of distinct colors can’t exceed 2n, where n is 
the number of bitplanes. Thus, a machine with 24 bitplanes for RGB can 
display up to 16.77 million distinct colors. 

Dithering

Advanced

Some graphics hardware uses dithering to increase the number of apparent 
colors. Dithering is the technique of using combinations of some colors to 
create the effects of other colors. To illustrate how dithering works, suppose 
your system has only 1 bit each for R, G, and B and thus can display only 
eight colors: black, white, red, blue, green, yellow, cyan, and magenta. To 
display a pink region, the hardware can fill the region in a checkerboard 
manner, alternating red and white pixels. If your eye is far enough away 
from the screen that it can’t distinguish individual pixels, the region appears 
pink—the average of red and white. Redder pinks can be achieved by filling 
a higher proportion of the pixels with red, whiter pinks would use more 
white pixels, and so on. 

With this technique, there are no pink pixels. The only way to achieve the 
effect of “pinkness” is to cover a region consisting of multiple pixels—you 
can’t dither a single pixel. If you specify an RGB value for an unavailable 
color and fill a polygon, the hardware fills the pixels in the interior of the 
polygon with a mixture of nearby colors whose average appears to your eye 
to be the color you want. (Remember, though, that if you’re reading pixel 
information out of the framebuffer, you get the actual red and white pixel 
values, since there aren’t any pink ones. See Chapter 8 for more information 
about reading pixel values.) 

Figure 4-3 illustrates some simple dithering of black and white pixels to 
make shades of gray. From left to right, the 4 4 patterns at the top represent 
dithering patterns for 50 percent, 19 percent, and 69 percent gray. Under 
each pattern, you can see repeated reduced copies of each pattern, but these 
black and white squares are still bigger than most pixels. If you look at them 
from across the room, you can see that they blur together and appear as 
three levels of gray.

Advanced
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With about 8 bits each of R, G, and B, you can get a fairly high-quality image 
without dithering. Just because your machine has 24 color bitplanes, how-
ever, doesn’t mean that dithering won’t be desirable. For example, if you are 
running in double-buffer mode, the bitplanes might be divided into two 
sets of 12, so there are really only 4 bits each per R, G, and B component. 
Without dithering, 4-bit-per-component color can give less than satisfac-
tory results in many situations. 

You enable or disable dithering by passing GL_DITHER to glEnable() or 
glDisable(). Note that dithering, unlike many other features, is enabled by 
default.

Color-Index Display Mode

With color-index mode, OpenGL uses a color map (or lookup table), which 
is similar to using a palette to mix paints to prepare for a paint-by-number 
scene. A painter’s palette provides spaces to mix paints together; similarly, 
a computer’s color map provides indices where the primary red, green, and 
blue values can be mixed, as shown in Figure 4-4.

Figure 4-3 Dithering Black and White to Create Gray
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A painter filling in a paint-by-number scene chooses a color from the color 
palette and fills the corresponding numbered regions with that color. A 
computer stores the color index in the bitplanes for each pixel. Then those 
bitplane values reference the color map, and the screen is painted with the 
corresponding red, green, and blue values from the color map, as shown in 
Figure 4-5.

In color-index mode, the number of simultaneously available colors is lim-
ited by the size of the color map and the number of bitplanes available. The 
size of the color map is determined by the amount of hardware dedicated 
to it. The size of the color map is always a power of 2, and typical sizes range 
from 256 (28) to 4096 (212), where the exponent is the number of bitplanes 

Index
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Figure 4-4 A Color Map 
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Figure 4-5 Using a Color Map to Paint a Picture
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being used. If there are 2n indices in the color map and m available bit-
planes, the number of usable entries is the smaller of 2n and 2m.

With RGBA mode, each pixel’s color is independent of other pixels. How-
ever, in color-index mode, each pixel with the same index stored in its bit-
planes shares the same color-map location. If the contents of an entry in the 
color map change, then all pixels of that color index change their color.

Choosing between RGBA and Color-Index Mode

You should base your decision to use RGBA or color-index mode on what 
hardware is available and on what your application requires. For most 
systems, more colors can be simultaneously represented with RGBA mode 
than with color-index mode. Also, for several effects, such as shading, 
lighting, texture mapping, and fog, RGBA provides more flexibility than 
color-index mode.

You might prefer to use color-index mode in the following cases:

• If you’re porting an existing application that makes significant use of 
color-index mode, it might be easier not to change to RGBA mode. 

• If you have a small number of bitplanes available, RGBA mode may 
produce noticeably coarse shades of colors. For example, if you have 
only 8 bitplanes, in RGBA mode you may have only 3 bits for red, 
3 bits for green, and 2 bits for blue. You’d have only 8 (23) shades of 
red and green, and only 4 shades of blue. The gradients between color 
shades are likely to be very obvious.

In this situation, if you have limited shading requirements, you can 
use the color-lookup table to load more shades of colors. For example, 
if you need only shades of blue, you can use color-index mode and 
store up to 256 (28) shades of blue in the color-lookup table, which is 
much better than the 4 shades you would have in RGBA mode. Of 
course, this example would use up your entire color-lookup table, so 
you would have no shades of red, green, or other combined colors.

• Color-index mode can be useful for various tricks, such as color-map 
animation and drawing in layers. (See Chapter 14 for more information.)

In general, use RGBA mode wherever possible. It works with texture 
mapping and works better with lighting, shading, fog, antialiasing, and 
blending.
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Changing between Display Modes

In the best of all possible worlds, you might want to avoid making a choice 
between RGBA and color-index display mode. For example, you may want 
to use color-index mode for a color-map animation effect and then, when 
needed, immediately change the scene to RGBA mode for texture mapping. 

Similarly, you may desire to switch between single and double buffering. For 
example, you may have very few bitplanes; let’s say 8 bitplanes. In single-
buffer mode, you’ll have 256 (28) colors, but if you are using double-buffer 
mode to eliminate flickering from your animated program, you may have 
only 16 (24) colors. Perhaps you want to draw a moving object without 
flicker and are willing to sacrifice colors for using double-buffer mode 
(maybe the object is moving so fast that the viewer won’t notice the details). 
But when the object comes to rest, you will want to draw it in single-buffer 
mode so that you can use more colors.

Unfortunately, most window systems won’t allow an easy switch. For 
example, with the X Window System, the color-display mode is an attribute 
of the X Visual. An X Visual must be specified before the window is created. 
Once it is specified, it cannot be changed for the life of the window. After 
you create a window with a double-buffered, RGBA display mode, you’re 
stuck with it.

A tricky solution to this problem is to create more than one window, each 
with a different display mode. You must control the visibility of each 
window (for example, mapping or unmapping an X Window, or managing 
or unmanaging a Motif or Athena widget) and draw the object in the 
appropriate, visible window.

Specifying a Color and a Shading Model

OpenGL maintains a current color (in RGBA mode) and a current color 
index (in color-index mode). Unless you’re using a more complicated 
coloring model such as lighting or texture mapping, each object is drawn 
using the current color (or color index). Look at the following pseudocode 
sequence:

set_color(RED);
draw_item(A);
draw_item(B);
set_color(GREEN);
set_color(BLUE);
draw_item(C);
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Items A and B are drawn in red, and item C is drawn in blue. The fourth 
line, which sets the current color to green, has no effect (except to waste 
a bit of time). With no lighting or texturing, when the current color is set, 
all items drawn afterward are drawn in that color until the current color 
is changed.

Specifying a Color in RGBA Mode

In RGBA mode, use the glColor*() command to select a current color.

For the versions of glColor*() that accept floating-point data types, the 
values should typically range between 0.0 and 1.0, the minimum and 
maximum values that can be stored in the framebuffer. Unsigned-integer 
color components, when specified, are linearly mapped to floating-point 
values such that the largest representable value maps to 1.0 (full intensity), 
and zero maps to 0.0 (zero intensity). Signed-integer color components, 
when specified, are linearly mapped to floating-point values such that 
the most positive representable value maps to 1.0, and the most negative 
representable value maps to 1.0 (see Table 4-1).

Neither floating-point nor signed-integer values are clamped to the range 
[0, 1] before updating the current color or current lighting material param-
eters. After lighting calculations, resulting color values outside the range [0, 1] 
are clamped to the range [0, 1] before they are interpolated or written into 

void glColor3{b s i f d ub us ui}(TYPE r, TYPE g, TYPE b);
void glColor4{b s i f d ub us ui}(TYPE r, TYPE g, TYPE b, TYPE a);
void glColor3{b s i f d ub us ui}v(const TYPE *v);
void glColor4{b s i f d ub us ui}v(const TYPE *v);

Sets the current red, green, blue, and alpha values. This command can 
have up to three suffixes, which differentiate variations of the parameters 
accepted. The first suffix is either 3 or 4, to indicate whether you supply 
an alpha value in addition to the red, green, and blue values. If you don’t 
supply an alpha value, it’s automatically set to 1.0. The second suffix 
indicates the data type for parameters: byte, short, integer, float, double, 
unsigned byte, unsigned short, or unsigned integer. The third suffix is an 
optional v, which indicates that the argument is a pointer to an array of 
values of the given data type. 

Compatibility 
Extension

glColor
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a color buffer. Even if lighting is disabled, the color components are clamped 
before rasterization.

The similar routine glSecondaryColor*() is used to specify a color to be 
applied after texture mapping (if lighting is disabled). For more detail, see 
“Applying Secondary Color after Texturing” on page 478.

Color Clamping

OpenGL Version 3.0 introduced floating-point framebuffers, where RGBA 
color components are stored as true floating-point values. Given the greater 
dynamic range of floating-point values, you may want to allow color values 
that fall outside the range of clamped color values originally specified by 
OpenGL: 0.0 to 1.0.

The color-clamping options available in OpenGL Version 3.0 are described 
in Table 4-2.

Suffix Data Type Minimum 
Value

Min Value 
Maps to

Maximum 
Value

Max Value 
Maps to

b 1-byte integer 128 1.0 127 1.0

s 2-byte integer 32,768 1.0 32,767 1.0

i 4-byte integer 2,147,483,648 1.0 2,147,483,647 1.0

ub unsigned 1-byte 
integer

0 0.0 255 1.0

us unsigned 2-byte 
integer

0 0.0 65,535 1.0

ui unsigned 4-byte 
integer

0 0.0 4,294,967,295 1.0

Table 4-1 Converting Color Values to Floating-Point Numbers

void glClampColor(GLenum target, GLenum clamp);

Specify whether the primary and secondary color values are clamped. 
target must be set to GL_CLAMP_VERTEX_COLOR, GL_CLAMP_
FRAGMENT_COLOR, or GL_CLAMP_READ_COLOR, and clamp must be 
one of GL_TRUE, GL_FALSE, or GL_FIXED_ONLY.

Compatibility 
Extension

GL_CLAMP_
VERTEX_COLOR
GL_CLAMP_
FRAGMENT_
COLOR
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Specifying a Color in Color-Index Mode

In color-index mode, use the glIndex*() command to select a single-valued 
color index as the current color index.

In “Clearing the Window” in Chapter 2, you saw the specification of 
glClearColor(). For color-index mode, there is a corresponding glClearIndex().

Note: OpenGL does not have any routines to load values into the color-
lookup table. Window systems typically already have such operations. 
GLUT has the routine glutSetColor() to call the window-system-
specific commands.

Parameter Specifies

GL_TRUE Colors should be clamped to the range [0, 1]

GL_FALSE Colors are not to be clamped

GL_FIXED_ONLY Colors are only clamped if the destination 
framebuffer format is fixed-point

Table 4-2 Values for use with glClampColor()

void glIndex{sifd ub}(TYPE c);
void glIndex{sifd ub}v(const TYPE *c);

Sets the current color index to c. The first suffix for this command 
indicates the data type for parameters: short, integer, float, double, or 
unsigned byte. The second, optional suffix is v, which indicates that the 
argument is an array of values of the given data type (the array contains 
only one value).

void glClearIndex(GLfloat cindex);

Sets the current clearing color in color-index mode. In a color-index mode 
window, a call to glClear(GL_COLOR_BUFFER_BIT) will use cindex to clear 
the buffer. The default clearing index is 0.0.

Compatibility 
Extension

glIndex

Compatibility 
Extension

glClearIndex
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Advanced

The current index is stored as a floating-point value. Integer values are 
converted directly to floating-point values, with no special mapping. Index 
values outside the representable range of the color-index buffer aren’t 
clamped. However, before an index is dithered (if enabled) and written to 
the framebuffer, it’s converted to fixed-point format. Any bits in the integer 
portion of the resulting fixed-point value that don’t correspond to bits in 
the framebuffer are masked out.

Specifying a Shading Model

A line or a filled polygon primitive can be drawn with a single color (flat 
shading) or with many different colors (smooth shading, also called Gouraud 
shading). You specify the desired shading technique with glShadeModel().

With flat shading, the color of one particular vertex of an independent 
primitive is duplicated across all the primitive’s vertices to render that prim-
itive. With smooth shading, the color at each vertex is treated individually. 
For a line primitive, the colors along the line segment are interpolated 
between the vertex colors. For a polygon primitive, the colors for the inte-
rior of the polygon are interpolated between the vertex colors. Example 4-1 
draws a smooth-shaded triangle, as shown in Plate 11. 

Example 4-1 Drawing a Smooth-Shaded Triangle: smooth.c

void init(void) 
{
   glClearColor(0.0, 0.0, 0.0, 0.0);
   glShadeModel(GL_SMOOTH);
}

void triangle(void)
{
   glBegin(GL_TRIANGLES);
   glColor3f(1.0, 0.0, 0.0);
   glVertex2f(5.0, 5.0);
   glColor3f(0.0, 1.0, 0.0);

void glShadeModel(GLenum mode);

Sets the shading model. The mode parameter can be either GL_SMOOTH 
(the default) or GL_FLAT.

Advanced

Compatibility 
Extension

glShadeModel
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   glVertex2f(25.0, 5.0);
   glColor3f(0.0, 0.0, 1.0);
   glVertex2f(5.0, 25.0);
   glEnd();
}

void display(void)
{
   glClear(GL_COLOR_BUFFER_BIT);
   triangle();
   glFlush();
}

void reshape(int w, int h)
{
   glViewport(0, 0, (GLsizei) w, (GLsizei) h);
   glMatrixMode(GL_PROJECTION);
   glLoadIdentity();
   if (w <= h)
      gluOrtho2D(0.0, 30.0, 0.0, 30.0*(GLfloat) h/(GLfloat) w);
   else
      gluOrtho2D(0.0, 30.0*(GLfloat) w/(GLfloat) h, 0.0, 30.0);
   glMatrixMode(GL_MODELVIEW);
}

int main(int argc, char** argv)
{
   glutInit(&argc, argv);
   glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
   glutInitWindowSize(500, 500); 
   glutInitWindowPosition(100, 100);
   glutCreateWindow(argv[0]);
   init();
   glutDisplayFunc(display); 
   glutReshapeFunc(reshape);
   glutMainLoop();
   return 0;
}

With smooth shading, neighboring pixels have slightly different color 
values. In RGBA mode, adjacent pixels with slightly different values look 
similar, so the color changes across a polygon appear gradual. In color-index 
mode, adjacent pixels may reference different locations in the color-index 
table, which may not have similar colors at all. Adjacent color-index entries 
may contain wildly different colors, so a smooth-shaded polygon in color-
index mode can look psychedelic.
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To avoid this problem, you have to create a color ramp of smoothly changing 
colors among a contiguous set of indices in the color map. Remember that 
loading colors into a color map is performed through your window system, 
rather than through OpenGL. If you use GLUT, you can use glutSetColor()
to load a single index in the color map with specified red, green, and blue 
values. The first argument for glutSetColor() is the index, and the others are 
the red, green, and blue values. To load 32 contiguous color indices (color 
indices 16 to 47) with slightly differing shades of yellow, you might call

for (i = 0; i < 32; i++) {
   glutSetColor(16+i, 1.0*(i/32.0), 1.0*(i/32.0), 0.0);
}

Now, if you render smooth-shaded polygons that use only the colors from 
indices 16 to 47, those polygons will have gradually differing shades of 
yellow.

With flat shading, the color of a single vertex defines the color of an entire 
primitive. For a line segment, the color of the line is the current color 
when the second (ending) vertex is specified. For a polygon, the color used 
is the one that’s in effect when a particular vertex is specified, as shown in 
Table 4-3. The table counts vertices and polygons starting from 1. OpenGL 
follows these rules consistently, but the best way to avoid uncertainty 
about how a flat-shaded primitive will be drawn is to specify only one 
color for the primitive. 

Type of Polygon Vertex Used to Select the Color for the 
ith Polygon

single polygon 1

triangle strip i + 2

triangle fan i + 2

independent triangle 3i

quad strip 2i + 2

independent quad 4i

Table 4-3 How OpenGL Selects a Color for the ith Flat-Shaded Polygon
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Chapter 5

5.Lighting

Chapter Objectives

After reading this chapter, you’ll be able to do the following: 

• Understand how real-world lighting conditions are approximated by 
OpenGL

• Render illuminated objects by defining light source, material, and 
lighting model properties

• Define the material properties of the objects being illuminated

• Manipulate the matrix stack to control the positions of light sources

Note: In OpenGL Version 3.1, many of the techniques and functions 
described in this chapter were removed through deprecation. The 
concepts are still relevant, but computing colors through lighting 
must be done in either a vertex or fragment shader. These topics 
are briefly described in Chapter 15, and fully explained in the 
companion text, The OpenGL Shading Language Guide.
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As you saw in Chapter 4, OpenGL computes the color of each pixel in a 
final, displayed scene that’s held in the framebuffer. Part of this computa-
tion depends on what lighting is used in the scene and on how objects in 
the scene reflect or absorb that light. As an example of this, recall that the 
ocean has a different color on a bright, sunny day than it does on a gray, 
cloudy day. The presence of sunlight or clouds determines whether you see 
the ocean as bright turquoise or murky gray-green. In fact, most objects 
don’t even look three-dimensional until they’re lit. Figure 5-1 shows two 
versions of the exact same scene (a single sphere), one with lighting and one 
without.

As you can see, an unlit sphere looks no different from a two-dimensional 
disk. This demonstrates how critical the interaction between objects and 
light is in creating a three-dimensional scene. 

With OpenGL, you can manipulate the lighting and objects in a scene to 
create many different kinds of effects. This chapter begins with a primer on 
hidden-surface removal. Then it explains how to control the lighting in a 
scene, discusses the OpenGL conceptual model of lighting, and describes in 
detail how to set the numerous illumination parameters to achieve certain 
effects. Toward the end of the chapter, the mathematical computations that 
determine how lighting affects color are presented. 

This chapter contains the following major sections:

• “A Hidden-Surface Removal Survival Kit” describes the basics of 
removing hidden surfaces from view.

• “Real-World and OpenGL Lighting” explains in general terms how 
light behaves in the world and how OpenGL models this behavior.

Figure 5-1 A Lit and an Unlit Sphere 
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• “A Simple Example: Rendering a Lit Sphere” introduces the OpenGL 
lighting facility by presenting a short program that renders a lit sphere.

• “Creating Light Sources” explains how to define and position light 
sources.

• “Selecting a Lighting Model” discusses the elements of a lighting 
model and how to specify them.

• “Defining Material Properties” explains how to describe the properties 
of objects so that they interact with light in a desired way.

• “The Mathematics of Lighting” presents the mathematical calculations 
used by OpenGL to determine the effect of lights in a scene.

• “Lighting in Color-Index Mode” discusses the differences between 
using RGBA mode and color-index mode for lighting.

Lighting calculations typically take place prior to texturing. Version 1.2 
introduced a lighting mode (GL_SEPARATE_SPECULAR_COLOR) whereby 
the calculation of the specular color is done separately from the emissive, 
ambient, and diffuse components, and then the application of the specular 
color takes place after texturing. Using a separate specular color often 
enhances a highlight, making it less influenced by the color of the texture 
image.

A Hidden-Surface Removal Survival Kit

With this section, you begin to draw shaded, three-dimensional objects 
in earnest. With shaded polygons, it becomes very important to draw the 
objects that are closer to the viewing position and to eliminate objects 
obscured by others nearer to the eye.

When you draw a scene composed of three-dimensional objects, some of 
them might obscure all or parts of others. Changing your viewpoint can 
change the obscuring relationship. For example, if you view the scene from 
the opposite direction, any object that was previously in front of another is 
now behind it. To draw a realistic scene, these obscuring relationships must 
be maintained. Suppose your code works like this: 

while (1) { 
   get_viewing_point_from_mouse_position(); 
   glClear(GL_COLOR_BUFFER_BIT); 
   draw_3d_object_A(); 
   draw_3d_object_B(); 
}
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For some mouse positions, object A might obscure object B. For others, the 
reverse may hold. If nothing special is done, the preceding code always 
draws object B second (and thus on top of object A) no matter what viewing 
position is selected. In a worst-case scenario, if objects A and B intersect one 
another so that part of object A obscures object B, and part of B obscures A, 
changing the drawing order does not provide a solution.

The elimination of parts of solid objects that are obscured by others is called 
hidden-surface removal. (Hidden-line removal, which does the same job 
for objects represented as wireframe skeletons, is a bit trickier and isn’t 
discussed here. See “Hidden-Line Removal” in Chapter 14 for details.) The 
easiest way to achieve hidden-surface removal is to use the depth buffer 
(sometimes called a z-buffer). (Also see Chapter 10.)

A depth buffer works by associating a depth, or a distance, from the view 
plane (usually the near clipping plane), with each pixel on the window. 
Initially, the depth values for all pixels are set to the largest possible distance 
(usually the far clipping plane) using the glClear() command with GL_
DEPTH_BUFFER_BIT. Then the objects in the scene are drawn in any order. 

Graphical calculations in hardware or software convert each surface that’s 
drawn to a set of pixels on the window where the surface will appear if it 
isn’t obscured by something else. In addition, the distance from the view 
plane is computed. With depth-buffering enabled, before each pixel is drawn 
a comparison is done with the depth value already stored at the pixel. If 
the new pixel is closer than (in front of) what’s there, the new pixel’s color 
and depth values replace those that are currently written into the pixel. If 
the new pixel’s depth is greater than what’s currently there, the new pixel 
is obscured, and the color and depth information for the incoming pixel is 
discarded.

To use depth-buffering, you need to enable it. This has to be done only 
once. Before drawing, each time you draw the scene, you need to clear 
the depth buffer and then draw the objects in the scene in any order.

To convert the preceding code example so that it performs hidden-surface 
removal, modify it to the following:

glutInitDisplayMode(GLUT_DEPTH | .... );
glEnable(GL_DEPTH_TEST); 
...
while (1) { 
   glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); 
   get_viewing_point_from_mouse_position(); 
   draw_3d_object_A(); 
   draw_3d_object_B(); 
}
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The argument for glClear() clears both the depth and color buffers. 

Depth-buffer testing can affect the performance of your application. Since 
information is discarded, rather than used for drawing, hidden-surface 
removal can increase your performance slightly. However, the implementa-
tion of your depth buffer probably has the greatest effect on performance. 
A “software” depth buffer (implemented with processor memory) may be 
much slower than one implemented with a specialized hardware depth 
buffer.

Real-World and OpenGL Lighting

When you look at a physical surface, your eye’s perception of the color 
depends on the distribution of photon energies that arrive and trigger your 
cone cells. (See “Color Perception” in Chapter 4.) Those photons come from 
a light source or combination of sources, some of which are absorbed and 
some of which are reflected by the surface. In addition, different surfaces 
may have very different properties—some are shiny and preferentially 
reflect light in certain directions, while others scatter incoming light 
equally in all directions. Most surfaces are somewhere in between.

OpenGL approximates light and lighting as if light can be broken into red, 
green, and blue components. Thus, the color of a light source is character-
ized by the amounts of red, green, and blue light it emits, and the material 
of a surface is characterized by the percentages of the incoming red, green, 
and blue components that are reflected in various directions. The OpenGL 
lighting equations are just approximations, but ones that work fairly well 
and can be computed relatively quickly. If you want a more accurate (or just 
different) lighting model, you have to do your own calculations in software. 
Such software can be enormously complex, as a few hours of reading any 
optics textbook should convince you.

In the OpenGL lighting model, the light in a scene comes from several light 
sources that can be individually turned on and off. Some light comes from 
a particular direction or position, and some light is generally scattered 
about the scene. For example, when you turn on a lightbulb in a room, most 
of the light comes from the bulb, but some light results from bouncing off 
one, two, three, or more walls. This bounced light (called ambient light) is 
assumed to be so scattered that there is no way to tell its original direction, 
but it disappears if a particular light source is turned off.
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Finally, there might be a general ambient light in the scene that comes from 
no particular source, as if it had been scattered so many times that its orig-
inal source is impossible to determine.

In the OpenGL model, the light sources have effects only when there are 
surfaces that absorb and reflect light. Each surface is assumed to be composed 
of a material with various properties. A material might emit its own light 
(such as headlights on an automobile), it might scatter some incoming light 
in all directions, and it might reflect some portion of the incoming light in a 
preferential direction (such as a mirror or other shiny surface).

The OpenGL lighting model considers the lighting to be divided into four 
independent components: ambient, diffuse, specular, and emissive. All four 
components are computed independently and then added together.

Ambient, Diffuse, Specular, and Emissive Light

Ambient illumination is light that’s been scattered so much by the environ-
ment that its direction is impossible to determine—it seems to come from 
all directions. Backlighting in a room has a large ambient component, since 
most of the light that reaches your eye has first bounced off many surfaces. 
A spotlight outdoors has a tiny ambient component; most of the light trav-
els in the same direction, and since you’re outdoors, very little of the light 
reaches your eye after bouncing off other objects. When ambient light 
strikes a surface, it’s scattered equally in all directions.

The diffuse component is the light that comes from one direction, so it’s 
brighter if it comes squarely down on a surface than if it barely glances off 
the surface. Once it hits a surface, however, it’s scattered equally in all direc-
tions, so it appears equally bright, no matter where the eye is located. Any 
light coming from a particular position or direction probably has a diffuse 
component.

Specular light comes from a particular direction, and it tends to bounce off 
the surface in a preferred direction. A well-collimated laser beam bouncing 
off a high-quality mirror produces almost 100 percent specular reflection. 
Shiny metal or plastic has a high specular component, and chalk or carpet 
has almost none. You can think of specularity as shininess.

In addition to ambient, diffuse, and specular colors, materials may have 
an emissive color, which simulates light originating from an object. In the 
OpenGL lighting model, the emissive color of a surface adds intensity to the 
object, but is unaffected by any light sources. Also, the emissive color does 
not introduce any additional light into the overall scene.
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Although a light source delivers a single distribution of frequencies, the 
ambient, diffuse, and specular components might be different. For example, 
if you have a white light in a room with red walls, the scattered light tends 
to be red, although the light directly striking objects is white. OpenGL 
allows you to set the red, green, and blue values for each component of light 
independently.

Material Colors

The OpenGL lighting model approximates a material’s color from the 
percentages of the incoming red, green, and blue light it reflects. For 
example, a perfectly red ball reflects all the incoming red light and absorbs 
all the green and blue light that strikes it. If you view such a ball in white 
light (composed of equal amounts of red, green, and blue light), all the red 
is reflected, and you see a red ball. If the ball is viewed in pure red light, it 
also appears to be red. If, however, the red ball is viewed in pure green light, 
it appears black (all the green is absorbed and there’s no incoming red, so 
no light is reflected).

Like lights, materials have different ambient, diffuse, and specular colors, 
which determine the ambient, diffuse, and specular reflectances of the 
material. A material’s ambient reflectance is combined with the ambient 
component of each incoming light source, the diffuse reflectance with the 
light’s diffuse component, and similarly for the specular reflectance and 
specular component. Ambient and diffuse reflectances define the color of 
the material and are typically similar if not identical. Specular reflectance is 
usually white or gray, so that specular highlights end up being the color of 
the light source’s specular intensity. If you think of a white light shining on 
a shiny red plastic sphere, most of the sphere appears red, but the shiny 
highlight is white.

RGB Values for Lights and Materials

The color components specified for lights mean something different than 
for materials. For a light, the numbers correspond to a percentage of full 
intensity for each color. If the R, G, and B values for a light’s color are all 1.0, 
the light is the brightest possible white. If the values are 0.5, the color is still 
white, but only at half intensity, so it appears gray. If R = G = 1 and B = 0 
(full red and green with no blue), the light appears yellow.
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For materials, the numbers correspond to the reflected proportions of those 
colors. So if R = 1, G = 0.5, and B = 0 for a material, that material reflects all 
the incoming red light, half the incoming green light, and none of the 
incoming blue light. In other words, if an OpenGL light has components 
(LR, LG, LB), and a material has corresponding components (MR, MG, MB), 
then, ignoring all other reflectivity effects, the light that arrives at the eye 
is given by (LR MR, LG MG, LB MB). 

Similarly, if you have two lights that send (R1, G1, B1) and (R2, G2, B2) to 
the eye, OpenGL adds the components, giving (R1 + R2, G1 + G2, B1 + B2). 
If any of the sums is greater than 1 (corresponding to a color brighter than 
the equipment can display), the component is clamped to 1.

A Simple Example: Rendering a Lit Sphere

These are the steps required to add lighting to your scene:

1. Define normal vectors for each vertex of every object. These normals 
determine the orientation of the object relative to the light sources.

2. Create, select, and position one or more light sources.

3. Create and select a lighting model, which defines the level of global 
ambient light and the effective location of the viewpoint (for the 
purposes of lighting calculations).

4. Define material properties for the objects in the scene.

Example 5-1 accomplishes these tasks. It displays a sphere illuminated by a 
single light source, as shown earlier in Figure 5-1. 

Example 5-1 Drawing a Lit Sphere: light.c 

void init(void) 
{
   GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 };
   GLfloat mat_shininess[] = { 50.0 };
   GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 };
   GLfloat white_light[] = { 1.0, 1.0, 1.0, 1.0 };
   GLfloat lmodel_ambient[] = { 0.1, 0.1, 0.1, 1.0 };
   glClearColor(0.0, 0.0, 0.0, 0.0);
   glShadeModel(GL_SMOOTH);
   glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
   glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess);
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   glLightfv(GL_LIGHT0, GL_POSITION, light_position);
   glLightfv(GL_LIGHT0, GL_DIFFUSE, white_light);
   glLightfv(GL_LIGHT0, GL_SPECULAR, white_light);
   glLightModelfv(GL_LIGHT_MODEL_AMBIENT, lmodel_ambient);

   glEnable(GL_LIGHTING);
   glEnable(GL_LIGHT0);
   glEnable(GL_DEPTH_TEST);
}

void display(void)
{
   glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
   glutSolidSphere(1.0, 20, 16);
   glFlush();
}

void reshape(int w, int h)
{
   glViewport(0, 0, (GLsizei) w, (GLsizei) h);
   glMatrixMode(GL_PROJECTION);
   glLoadIdentity();
   if (w <= h)
      glOrtho(-1.5, 1.5, -1.5*(GLfloat)h/(GLfloat)w,
         1.5*(GLfloat)h/(GLfloat)w, -10.0, 10.0);
   else
      glOrtho(-1.5*(GLfloat)w/(GLfloat)h,
         1.5*(GLfloat)w/(GLfloat)h, -1.5, 1.5, -10.0, 10.0);
   glMatrixMode(GL_MODELVIEW);
   glLoadIdentity();
}

int main(int argc, char** argv)
{
   glutInit(&argc, argv);
   glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
   glutInitWindowSize(500, 500); 
   glutInitWindowPosition(100, 100);
   glutCreateWindow(argv[0]);
   init();
   glutDisplayFunc(display); 
   glutReshapeFunc(reshape);
   glutMainLoop();
   return 0;
}
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The lighting-related calls are in the init() command; they’re discussed 
briefly in the following paragraphs and in more detail later in this chapter. 
One thing to note about Example 5-1 is that it uses RGBA color mode, not 
color-index mode. The OpenGL lighting calculation is different for the two 
modes, and in fact the lighting capabilities are more limited in color-index 
mode. Thus, RGBA is the preferred mode when doing lighting, and all the 
examples in this chapter use it. (See “Lighting in Color-Index Mode” on 
page 246 for more information.)

Define Normal Vectors for Each Vertex of Every Object

An object’s normals determine its orientation relative to the light sources. 
For each vertex, OpenGL uses the assigned normal to determine how much 
light that particular vertex receives from each light source. In this example, 
the normals for the sphere are defined as part of the glutSolidSphere()
routine.

For proper lighting, surface normals must be of unit length. You must 
also be careful that the modelview transformation matrix does not scale 
the surface normal, so that the resulting normal is no longer of unit 
length. To ensure that normals are of unit length, you may need to 
call glEnable() with GL_NORMALIZE or GL_RESCALE_NORMAL as a 
parameter.

GL_RESCALE_NORMAL causes each component in a surface normal to be 
multiplied by the same value, which is determined from the modelview 
transformation matrix. Therefore, it works correctly only if the normal 
was scaled uniformly and was a unit-length vector to begin with. GL_
NORMALIZE is a more thorough operation than GL_RESCALE_NORMAL. 
When GL_NORMALIZE is enabled, the length of the normal vector is cal-
culated, and then each component of the normal is divided by the calcu-
lated length. This operation guarantees that the resulting normal is of 
unit length, but may be more expensive than simply rescaling normals. 
(See “Normal Vectors” in Chapter 2 and Appendix I,  “Built-In OpenGL 
Shading Language Variables and Functions,”1 for more details on how to 
define normals.) 

Note: Some OpenGL implementations may implement GL_RESCALE_
NORMAL by actually normalizing the normal vectors, not just 
scaling them. However, you cannot determine whether your 
implementation does this, nor should you usually rely on this.

1 This appendix is available online at http://www.opengl-redbook.com/appendices/.
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Create, Position, and Enable One or More Light Sources

Example 5-1 uses only one, white light source; its location is specified by 
the glLightfv() call. This example specifies white as the color for light zero 
(GL_LIGHT0) for calculations of diffuse and specular reflection. If you want 
a differently colored light, modify glLight*().

You can also include at least eight different light sources of various colors in 
your scene. (The particular implementation of OpenGL you’re using might 
allow more than eight.) The default color of lights other than GL_LIGHT0 
is black. You can also locate the lights wherever you desire: You can position 
them near the scene, as a desk lamp would be, or infinitely far away to 
simulate sunlight, for example. In addition, you can control whether a light 
produces a narrow, focused beam or a wider beam. Remember that each 
light source adds significantly to the calculations needed to render the 
scene, so performance is affected by the number of lights in the scene. (See 
“Creating Light Sources” on page 214 for more information about how to 
create lights with the desired characteristics.)

After you’ve defined the characteristics of the lights you want, you have to 
turn them on with the glEnable() command. You also need to call glEnable()
with GL_LIGHTING as a parameter to prepare OpenGL to perform lighting 
calculations. (See “Enabling Lighting” on page 231 for more information.) 

Select a Lighting Model

As you might expect, the glLightModel*() command describes the param-
eters of a lighting model. In Example 5-1, the only element of the lighting 
model that’s defined explicitly is the global ambient light. The lighting 
model also defines whether the viewer of the scene should be considered to 
be infinitely far away or local to the scene, and whether lighting calcula-
tions should be performed differently for the front and back surfaces of 
objects in the scene. Example 5-1 uses the default settings for these two 
aspects of the model—a viewer infinitely far away (“infinite viewer” mode) 
and one-sided lighting. Using a local viewer adds significantly to the com-
plexity of the calculations that must be performed, because OpenGL must 
calculate the angle between the viewpoint and each object. With an infinite 
viewer, however, the angle is ignored, and the results are slightly less realis-
tic. Further, since in this example the back surface of the sphere is never 
seen (it’s the inside of the sphere), one-sided lighting is sufficient. (See 
“Selecting a Lighting Model” on page 227 for a more detailed description 
of the elements of an OpenGL lighting model.) 
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Define Material Properties for the Objects in the Scene

An object’s material properties determine how it reflects light and therefore 
of what material it seems to be made. Because the interaction between an 
object’s material surface and incident light is complex, specifying material 
properties so that an object has a certain desired appearance is an art. You 
can specify a material’s ambient, diffuse, and specular colors and how 
shiny it is. In this example, only the last two material properties—the 
specular material color and shininess—are explicitly specified (with the 
glMaterialfv() calls). (See “Defining Material Properties” on page 231 for 
descriptions and examples of all material-property parameters.)

Some Important Notes

As you write your own lighting program, remember that you can use the 
default values for some lighting parameters, whereas others need to be 
changed. Also, don’t forget to enable whatever lights you define and to 
enable lighting calculations. Finally, remember that you might be able to 
use display lists to maximize efficiency as you change lighting conditions. 
(See “Display List Design Philosophy” in Chapter 7.) 

Creating Light Sources

Light sources have several properties, such as color, position, and direction. 
The following sections explain how to control these properties and what 
the resulting light looks like. The command used to specify all properties of 
lights is glLight*(). Its three arguments identify the light whose property is 
being specified, the property, and the desired value for that property. 

void glLight{if}(GLenum light, GLenum pname, TYPE param);
void glLight{if}v(GLenum light, GLenum pname, const TYPE *param);

Creates the light specified by light, which can be GL_LIGHT0, GL_LIGHT1, 
... , or GL_LIGHT7. The characteristic of the light being set is defined by 
pname, which specifies a named parameter (see Table 5-1). param indicates 
the values to which the pname characteristic is set; it’s a pointer to a group 
of values if the vector version is used or the value itself if the nonvector 
version is used. The nonvector version can be used to set only single-valued 
light characteristics.

Compatibility 
Extension

glLight
GL_LIGHTi
GL_AMBIENT
GL_DIFFUSE
GL_SPECULAR
GL_POSITION
GL_SPOT_
DIRECTION
GL_SPOT_
EXPONENT
GL_SPOT_
CUTOFF
GL_CONSTANT_
ATTENUATION
GL_LINEAR_
ATTENUATION
GL_QUADRATIC_
ATTENUATION
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Note: The default values listed for GL_DIFFUSE and GL_SPECULAR in 
Table 5-1 differ from GL_LIGHT0 to other lights (GL_LIGHT1, GL_
LIGHT2, etc.). For GL_LIGHT0, the default value is (1.0, 1.0, 1.0, 1.0) 
for both GL_DIFFUSE and GL_SPECULAR. For other lights, the 
default value is (0.0, 0.0, 0.0, 1.0) for the same light source properties.

Example 5-2 shows how to use glLight*():

Example 5-2 Defining Colors and Position for a Light Source

GLfloat light_ambient[] = { 0.0, 0.0, 0.0, 1.0 };
GLfloat light_diffuse[] = { 1.0, 1.0, 1.0, 1.0 };
GLfloat light_specular[] = { 1.0, 1.0, 1.0, 1.0 };
GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 };

glLightfv(GL_LIGHT0, GL_AMBIENT, light_ambient);
glLightfv(GL_LIGHT0, GL_DIFFUSE, light_diffuse);
glLightfv(GL_LIGHT0, GL_SPECULAR, light_specular);
glLightfv(GL_LIGHT0, GL_POSITION, light_position);

Parameter Name Default Values Meaning

GL_AMBIENT (0.0, 0.0, 0.0, 1.0) ambient intensity of light

GL_DIFFUSE (1.0, 1.0, 1.0, 1.0)
or

(0.0, 0.0, 0.0, 1.0)

diffuse intensity of light 
(default for light 0 is white; 
for other lights, black)

GL_SPECULAR (1.0, 1.0, 1.0, 1.0)
or

(0.0, 0.0, 0.0, 1.0)

specular intensity of light 
(default for light 0 is white; 
for other lights, black)

GL_POSITION (0.0, 0.0, 1.0, 0.0) (x, y, z, w) position of light

GL_SPOT_DIRECTION (0.0, 0.0, 1.0) (x, y, z) direction of 
spotlight

GL_SPOT_EXPONENT 0.0 spotlight exponent

GL_SPOT_CUTOFF 180.0 spotlight cutoff angle

GL_CONSTANT_ATTENUATION 1.0 constant attenuation factor

GL_LINEAR_ATTENUATION 0.0 linear attenuation factor

GL_QUADRATIC_ATTENUATION 0.0 quadratic attenuation 
factor

Table 5-1 Default Values for pname Parameter of glLight*()

http://lib.ommolketab.ir
http//lib.ommolketab.ir


216 Chapter 5: Lighting

As you can see, arrays are defined for the parameter values, and glLightfv()
is called repeatedly to set the various parameters. In this example, the first 
three calls to glLightfv() are superfluous, since they’re being used to specify 
the default values for the GL_AMBIENT, GL_DIFFUSE, and 
GL_SPECULAR parameters.

Note: Remember to turn on each light with glEnable(). (See “Enabling 
Lighting” for more information about how to do this.) 

All the parameters for glLight*() and their possible values are explained in 
the following sections. These parameters interact with those that define the 
overall lighting model for a particular scene and an object’s material prop-
erties. (See “Selecting a Lighting Model” and “Defining Material Properties” 
for more information about these two topics. “The Mathematics of Light-
ing” explains how all these parameters interact mathematically.)

Color

OpenGL allows you to associate three different color-related parameters—
GL_AMBIENT, GL_DIFFUSE, and GL_SPECULAR—with any particular light. 
The GL_AMBIENT parameter refers to the RGBA intensity of the ambient 
light that a particular light source adds to the scene. As you can see in 
Table 5-1, by default there is no ambient light since GL_AMBIENT is (0.0, 
0.0, 0.0, 1.0). This value was used in Example 5-1. If this program had 
specified blue ambient light as

GLfloat light_ambient[] = { 0.0, 0.0, 1.0, 1.0};
glLightfv(GL_LIGHT0, GL_AMBIENT, light_ambient);

the result would have been as shown on the left side of Plate 13. 

The GL_DIFFUSE parameter probably most closely correlates with what you 
naturally think of as “the color of a light.” It defines the RGBA color of 
the diffuse light that a particular light source adds to a scene. By default, 
GL_DIFFUSE is (1.0, 1.0, 1.0, 1.0) for GL_LIGHT0, which produces a bright, 
white light, as shown on the left side of Plate 13. The default value for any 
other light (GL_LIGHT1, ... , GL_LIGHT7) is (0.0, 0.0, 0.0, 0.0). 

The GL_SPECULAR parameter affects the color of the specular highlight on 
an object. Typically, a real-world object such as a glass bottle has a specular 
highlight that’s the color of the light shining on it (which is often white). 
Therefore, if you want to create a realistic effect, set the GL_SPECULAR 
parameter to the same value as the GL_DIFFUSE parameter. By default, 
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GL_SPECULAR is (1.0, 1.0, 1.0, 1.0) for GL_LIGHT0, and (0.0, 0.0, 0.0, 0.0) 
for any other light. 

Note: The alpha component of these colors is not used until blending is 
enabled (see Chapter 6). Until then, the alpha value can be safely 
ignored.

Position and Attenuation

As previously mentioned, you can choose between a light source that’s 
treated as though it’s located infinitely far away from the scene and one 
that’s nearer to the scene. The first type is referred to as a directional light 
source; the effect of an infinite location is that the rays of light can be con-
sidered parallel by the time they reach an object. An example of a real-world 
directional light source is the sun. The second type is called a positional light 
source, since its exact position within the scene determines the effect it has 
on a scene and, specifically, the direction from which the light rays come. 
A desk lamp is an example of a positional light source. You can see the dif-
ference between directional and positional lights in Plate 13. The light used 
in Example 5-1 is a directional one:

GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 };
glLightfv(GL_LIGHT0, GL_POSITION, light_position);

As shown, you supply a vector of four values (x, y, z, w) for the GL_POSITION 
parameter. If the last value, w, is zero, the corresponding light source is a 
directional one, and the (x, y, z) values describe its direction. This direction 
is transformed by the modelview matrix. By default, GL_POSITION is (0, 0, 
1, 0), which defines a directional light that points along the negative z-axis.
(Note that nothing prevents you from creating a directional light with the 
direction of (0, 0, 0), but such a light won’t help you much.) 

If the w–value is nonzero, the light is positional, and the (x, y, z) values 
specify the location of the light in homogeneous object coordinates (see 
Appendix C). This location is transformed by the modelview matrix and 
stored in eye coordinates. (See “Controlling a Light’s Position and Direc-
tion” on page 221 for more information about how to control the transfor-
mation of the light’s location.) Also, by default, a positional light radiates in 
all directions, but you can restrict it to producing a cone of illumination by 
defining the light as a spotlight. (See “Spotlights” on page 219 for an expla-
nation of how to define a light as a spotlight.) 
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Note: Remember that the colors across the face of a smooth-shaded polygon 
are determined by the colors calculated for the vertices. Because of 
this, you probably want to avoid using large polygons with local 
lights. If you locate the light near the middle of the polygon, the 
vertices might be too far away to receive much light, and the whole 
polygon will look darker than you intended. To avoid this problem, 
break up the large polygon into smaller ones.

For real-world lights, the intensity of light decreases as distance from the 
light increases. Since a directional light is infinitely far away, it doesn’t make 
sense to attenuate its intensity over distance, so attenuation is disabled for 
a directional light. However, you might want to attenuate the light from a 
positional light. OpenGL attenuates a light source by multiplying the 
contribution of that source by an attenuation factor:

where 

d = distance between the light’s position and the vertex

kc = GL_CONSTANT_ATTENUATION

kl = GL_LINEAR_ATTENUATION

kq = GL_QUADRATIC_ATTENUATION

By default, kc is 1.0 and both kl and kq are zero, but you can give these 
parameters different values:

glLightf(GL_LIGHT0, GL_CONSTANT_ATTENUATION, 2.0);
glLightf(GL_LIGHT0, GL_LINEAR_ATTENUATION, 1.0);
glLightf(GL_LIGHT0, GL_QUADRATIC_ATTENUATION, 0.5);

Note that the ambient, diffuse, and specular contributions are all attenu-
ated. Only the emission and global ambient values aren’t attenuated. Also 
note that since attenuation requires an additional division (and possibly 
more math) for each calculated color, using attenuated lights may slow 
down application performance.

attenuation factor = 
          1
kc + kld + kqd2
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Spotlights

As previously mentioned, you can have a positional light source act as a 
spotlight by restricting the shape of the light it emits to a cone. To create a 
spotlight, you need to determine the spread of the cone of light you desire. 
(Remember that since spotlights are positional lights, you also have to 
locate them where you want them. Again, note that nothing prevents you 
from creating a directional spotlight, but it won’t give you the result you 
want.) To specify the angle between the axis of the cone and a ray along the 
edge of the cone, use the GL_SPOT_CUTOFF parameter. The angle of the 
cone at the apex is then twice this value, as shown in Figure 5-2.

Note that no light is emitted beyond the edges of the cone. By default, the 
spotlight feature is disabled because the GL_SPOT_CUTOFF parameter is 
180.0. This value means that light is emitted in all directions (the angle 
at the cone’s apex is 360 degrees, so it isn’t a cone at all). The value for 

GL_SPOT_CUTOFF

Figure 5-2 GL_SPOT_CUTOFF Parameter
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GL_SPOT_CUTOFF is restricted to the range [0.0, 90.0] (unless it has the special 
value 180.0). The following line sets the cutoff parameter to 45 degrees:

glLightf(GL_LIGHT0, GL_SPOT_CUTOFF, 45.0);

You also need to specify a spotlight’s direction, which determines the axis 
of the cone of light:

GLfloat spot_direction[] = { -1.0, -1.0, 0.0 };
glLightfv(GL_LIGHT0, GL_SPOT_DIRECTION, spot_direction);

The direction is specified in object coordinates. By default, the direction 
is (0.0, 0.0, 1.0), so if you don’t explicitly set the value of GL_SPOT_
DIRECTION, the light points down the negative z-axis. Also, keep in mind 
that a spotlight’s direction is transformed by the modelview matrix just as 
though it were a normal vector, and the result is stored in eye coordinates. 
(See “Controlling a Light’s Position and Direction” for more information 
about such transformations.)

In addition to the spotlight’s cutoff angle and direction, there are two ways 
you can control the intensity distribution of the light within the cone. First, 
you can set the attenuation factor described earlier, which is multiplied by 
the light’s intensity. You can also set the GL_SPOT_EXPONENT parameter, 
which by default is zero, to control how concentrated the light is. The 
light’s intensity is highest in the center of the cone. It’s attenuated toward 
the edges of the cone by the cosine of the angle between the direction of 
the light and the direction from the light to the vertex being lit, raised to 
the power of the spot exponent. Thus, higher spot exponents result in a 
more focused light source. (See “The Mathematics of Lighting” for more 
details on the equations used to calculate light intensity.)

Multiple Lights

As mentioned, you can have at least eight lights in your scene (possibly 
more, depending on your OpenGL implementation). Since OpenGL needs 
to perform calculations to determine how much light each vertex receives 
from each light source, increasing the number of lights adversely affects per-
formance. The constants used to refer to the eight lights are GL_LIGHT0, 
GL_LIGHT1, GL_LIGHT2, GL_LIGHT3, and so on. In the preceding discus-
sions, parameters related to GL_LIGHT0 were set. If you want an additional 
light, you need to specify its parameters; also, remember that the default 
values are different for these other lights than they are for GL_LIGHT0, as 
explained in Table 5-1. Example 5-3 defines a white attenuated spotlight. 
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Example 5-3 Second Light Source

GLfloat light1_ambient[] = { 0.2, 0.2, 0.2, 1.0 };
GLfloat light1_diffuse[] = { 1.0, 1.0, 1.0, 1.0 };
GLfloat light1_specular[] = { 1.0, 1.0, 1.0, 1.0 };
GLfloat light1_position[] = { -2.0, 2.0, 1.0, 1.0 };
GLfloat spot_direction[] = { -1.0, -1.0, 0.0 };

glLightfv(GL_LIGHT1, GL_AMBIENT, light1_ambient);
glLightfv(GL_LIGHT1, GL_DIFFUSE, light1_diffuse);
glLightfv(GL_LIGHT1, GL_SPECULAR, light1_specular);
glLightfv(GL_LIGHT1, GL_POSITION, light1_position);
glLightf(GL_LIGHT1, GL_CONSTANT_ATTENUATION, 1.5);
glLightf(GL_LIGHT1, GL_LINEAR_ATTENUATION, 0.5);
glLightf(GL_LIGHT1, GL_QUADRATIC_ATTENUATION, 0.2);

glLightf(GL_LIGHT1, GL_SPOT_CUTOFF, 45.0);
glLightfv(GL_LIGHT1, GL_SPOT_DIRECTION, spot_direction);
glLightf(GL_LIGHT1, GL_SPOT_EXPONENT, 2.0);

glEnable(GL_LIGHT1);

If these lines were added to Example 5-1, the sphere would be lit with two 
lights, one directional and one spotlight.

Try This

Modify Example 5-1 in the following manner:

• Change the first light to be a positional colored light, rather than a 
directional white one. 

• Add an additional colored spotlight. Hint: Use some of the code shown 
in the preceding section.

• Measure how these two changes affect performance.

Controlling a Light’s Position and Direction

OpenGL treats the position and direction of a light source just as it treats 
the position of a geometric primitive. In other words, a light source is sub-
ject to the same matrix transformations as a primitive. More specifically, 
when glLight*() is called to specify the position or the direction of a light 
source, the position or direction is transformed by the current modelview 
matrix and stored in eye coordinates. This means you can manipulate a 
light source’s position or direction by changing the contents of the modelview 

Try This
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matrix. (The projection matrix has no effect on a light’s position or direc-
tion.) This section explains how to achieve the following three different 
effects by changing the point in the program at which the light position is 
set, relative to modeling or viewing transformations:

• A light position that remains fixed

• A light that moves around a stationary object

• A light that moves along with the viewpoint

Keeping the Light Stationary

In the simplest example, as in Example 5-1, the light position remains fixed. 
To achieve this effect, you need to set the light position after whatever 
viewing and/or modeling transformation you use. Example 5-4 shows how 
the relevant code from the init() and reshape() routines might look.

Example 5-4 Stationary Light Source

glViewport(0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
if (w <= h) 
    glOrtho(-1.5, 1.5, -1.5*h/w, 1.5*h/w, -10.0, 10.0);
else
    glOrtho(-1.5*w/h, 1.5*w/h, -1.5, 1.5, -10.0, 10.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

/* later in init() */
GLfloat light_position[] = { 1.0, 1.0, 1.0, 1.0 };
glLightfv(GL_LIGHT0, GL_POSITION, position);

As you can see, the viewport and projection matrices are established first. 
Then, the identity matrix is loaded as the modelview matrix, after which 
the light position is set. Since the identity matrix is used, the originally 
specified light position (1.0, 1.0, 1.0) isn’t changed by being multiplied 
by the modelview matrix. Then, since neither the light position nor the 
modelview matrix is modified after this point, the direction of the light 
remains (1.0, 1.0, 1.0).

Independently Moving the Light

Now suppose you want to rotate or translate the light position so that the 
light moves relative to a stationary object. One way to do this is to set 
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the light position after the modeling transformation, which is itself 
changed specifically to modify the light position. You can begin with the 
same series of calls in init() early in the program. Then you need to perform 
the desired modeling transformation (on the modelview stack) and reset the 
light position, probably in display(). Example 5-5 shows what display()
might be.

Example 5-5 Independently Moving Light Source

static GLdouble spin;

void display(void)
{
    GLfloat light_position[] = { 0.0, 0.0, 1.5, 1.0 };
    glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

    glPushMatrix();
        gluLookAt(0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
        glPushMatrix();
            glRotated(spin, 1.0, 0.0, 0.0);
            glLightfv(GL_LIGHT0, GL_POSITION, light_position);
        glPopMatrix();
        glutSolidTorus(0.275, 0.85, 8, 15);
    glPopMatrix();
    glFlush();
}

spin is a global variable and is probably controlled by an input device. 
display() causes the scene to be redrawn with the light rotated spin
degrees around a stationary torus. Note the two pairs of glPushMatrix()
and glPopMatrix() calls, which are used to isolate the viewing and model-
ing transformations, all of which occur on the modelview stack. Since in 
Example 5-5 the viewpoint remains constant, the current matrix is pushed 
down the stack, and then the desired viewing transformation is loaded with 
gluLookAt(). The matrix stack is pushed again before the modeling trans-
formation glRotated() is specified. Then the light position is set in the new, 
rotated coordinate system so that the light itself appears to be rotated from 
its previous position. (Remember that the light position is stored in eye 
coordinates, which are obtained after transformation by the modelview 
matrix.) After the rotated matrix is popped off the stack, the torus is drawn.

Example 5-6 is a program that rotates a light source around an object. When 
the left mouse button is pressed, the light position rotates an additional 
30 degrees. A small, unlit, wireframe cube is drawn to represent the position 
of the light in the scene.
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Example 5-6 Moving a Light with Modeling Transformations: movelight.c

static int spin = 0;

void init(void) 
{
   glClearColor(0.0, 0.0, 0.0, 0.0);
   glShadeModel(GL_SMOOTH);
   glEnable(GL_LIGHTING);
   glEnable(GL_LIGHT0);
   glEnable(GL_DEPTH_TEST);
}

/*  Here is where the light position is reset after the modeling
 *  transformation (glRotated) is called.  This places the
 *  light at a new position in world coordinates.  The cube
 *  represents the position of the light.
 */
void display(void)
{
   GLfloat position[] = { 0.0, 0.0, 1.5, 1.0 };

   glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
   glPushMatrix();
   glTranslatef(0.0, 0.0, -5.0);

   glPushMatrix();
   glRotated((GLdouble) spin, 1.0, 0.0, 0.0);
   glLightfv(GL_LIGHT0, GL_POSITION, position);

   glTranslated(0.0, 0.0, 1.5);
   glDisable(GL_LIGHTING);
   glColor3f(0.0, 1.0, 1.0);
   glutWireCube(0.1);
   glEnable(GL_LIGHTING);
   glPopMatrix();

   glutSolidTorus(0.275, 0.85, 8, 15);
   glPopMatrix();
   glFlush();
}

void reshape(int w, int h)
{
   glViewport(0, 0, (GLsizei) w, (GLsizei) h);
   glMatrixMode(GL_PROJECTION);
   glLoadIdentity();
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   gluPerspective(40.0, (GLfloat) w/(GLfloat) h, 1.0, 20.0);
   glMatrixMode(GL_MODELVIEW);
   glLoadIdentity();
}

void mouse(int button, int state, int x, int y)
{
   switch (button) {
      case GLUT_LEFT_BUTTON:
         if (state == GLUT_DOWN) {
            spin = (spin + 30) % 360;
            glutPostRedisplay();
         }
         break;
      default:
         break;
   }
}
int main(int argc, char** argv)
{
   glutInit(&argc, argv);
   glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
   glutInitWindowSize(500, 500); 
   glutInitWindowPosition(100, 100);
   glutCreateWindow(argv[0]);
   init();
   glutDisplayFunc(display); 
   glutReshapeFunc(reshape);
   glutMouseFunc(mouse);
   glutMainLoop();
   return 0;
}

Moving the Light Source Together with the Viewpoint

To create a light that moves along with the viewpoint, you need to set 
the light position before the viewing transformation. Then the viewing 
transformation affects both the light and the viewpoint in the same way. 
Remember that the light position is stored in eye coordinates, and this is 
one of the few times when eye coordinates are critical. In Example 5-7, the 
light position is defined in init(), which stores the light position at (0, 0, 0) 
in eye coordinates. In other words, the light is shining from the lens of the 
camera.
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Example 5-7 Light Source That Moves with the Viewpoint

GLfloat light_position[] = { 0.0, 0.0, 0.0, 1.0 };

glViewport(0, 0, (GLint) w, (GLint) h);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(40.0, (GLfloat) w/(GLfloat) h, 1.0, 100.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glLightfv(GL_LIGHT0, GL_POSITION, light_position);

If the viewpoint is now moved, the light will move along with it, maintain-
ing (0, 0, 0) distance, relative to the eye. In the continuation of Example 5-7, 
which follows next, the global variables (ex, ey, ez) control the position of 
the viewpoint, and (upx, upy, upz) control the value of the up-vector. The 
display() routine that’s called from the event loop to redraw the scene 
might be as follows:

static GLdouble ex, ey, ez, upx, upy, upz;

void display(void)
{
    glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
    glPushMatrix();
        gluLookAt(ex, ey, ez, 0.0, 0.0, 0.0, upx, upy, upz);
        glutSolidTorus(0.275, 0.85, 8, 15);
    glPopMatrix();
    glFlush();
}

When the lit torus is redrawn, both the light position and the viewpoint are 
moved to the same location. As the values passed to gluLookAt() change 
and the eye moves, the object will never appear dark, because it is always 
being illuminated from the eye position. Even though you haven’t respeci-
fied the light position, the light moves because the eye coordinate system 
has changed.

This method of moving the light can be represented by simulating the illu-
mination from a miner’s hat. Another example would be carrying a candle 
or lantern. The light position specified by the call to glLightfv(GL_LIGHTi, 
GL_POSITION, position) would be the x-, y-, and z-distances from the eye 
position to the illumination source. Then, as the eye position moves, the 
light will remain the same relative distance away.
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Try This

Modify Example 5-6 in the following manner: 

• Make the light translate past the object instead of rotating around it. 
Hint: Use glTranslated() rather than the first glRotated() in display(),
and choose an appropriate value to use instead of spin.

• Change the attenuation so that the light decreases in intensity as it is 
moved away from the object. Hint: Add calls to glLight*() to set the 
desired attenuation parameters.

Nate Robins’ Lightposition Tutorial

If you have downloaded Nate Robins’ suite of tutorial programs, now run 
the lightposition tutorial. (For information on how and where to download 
these programs, see “Errata” on page xlii.) With this tutorial, you can 
experiment with the light source position and the effect of the modelview 
matrix.

Selecting a Lighting Model

The OpenGL notion of a lighting model has four components:

• The global ambient light intensity

• Whether the viewpoint position is local to the scene or should be 
considered to be an infinite distance away

• Whether lighting calculations should be performed differently for both 
the front and back faces of objects

• Whether the specular color should be separated from ambient and 
diffuse colors and applied after the texturing operation

This section explains how to specify a lighting model. It also discusses how 
to enable lighting—that is, how to tell OpenGL that you want lighting 
calculations to be performed.

The command used to specify all properties of the lighting model is 
glLightModel*(). glLightModel*() has two arguments: the lighting model 
property and the desired value for that property.

Try This
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Global Ambient Light

As discussed earlier, each light source can contribute ambient light to a 
scene. In addition, there can be other ambient light that’s not from any 
particular source. To specify the RGBA intensity of such global ambient 
light, use the GL_LIGHT_MODEL_AMBIENT parameter as follows:

GLfloat lmodel_ambient[] = { 0.2, 0.2, 0.2, 1.0 };
glLightModelfv(GL_LIGHT_MODEL_AMBIENT, lmodel_ambient);

void glLightModel{if}(GLenum pname, TYPE param);
void glLightModel{if}v(GLenum pname, const TYPE *param);

Sets properties of the lighting model. The characteristic of the lighting 
model being set is defined by pname, which specifies a named parameter 
(see Table 5-2). param indicates the values to which the pname character-
istic is set; it’s a pointer to a group of values if the vector version is used or 
the value itself if the nonvector version is used. The nonvector version can 
be used to set only single-valued lighting model characteristics, not for 
GL_LIGHT_MODEL_AMBIENT. 

Parameter Name Default Value Meaning

GL_LIGHT_MODEL_AMBIENT (0.2, 0.2, 0.2, 1.0) ambient RGBA 
intensity of the 
entire scene

GL_LIGHT_MODEL_LOCAL_VIEWER 0.0 or GL_FALSE how specular 
reflection angles 
are computed

GL_LIGHT_MODEL_TWO_SIDE 0.0 or GL_FALSE specifies one-
sided or two-
sided lighting 

GL_LIGHT_MODEL_COLOR_CONTROL GL_SINGLE_COLOR whether specular 
color is calculated 
separately from 
ambient and 
diffuse

Table 5-2 Default Values for pname Parameter of glLightModel*()

Compatibility 
Extension

glLightModel
GL_LIGHT_
MODEL_AMBIENT
GL_LIGHT_
MODEL_LOCAL_
VIEWER
GL_LIGHT_
MODEL_TWO_
SIDE
GL_LIGHT_
MODEL_COLOR_
CONTROL
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In this example, the values used for lmodel_ambient are the default values for 
GL_LIGHT_MODEL_AMBIENT. Since these numbers yield a small amount 
of white ambient light, even if you don’t add a specific light source to your 
scene, you can still see the objects in the scene. Plate 14 shows the effects of 
different amounts of global ambient light. 

Local or Infinite Viewpoint

The location of the viewpoint affects the calculations for highlights pro-
duced by specular reflectance. More specifically, the intensity of the high-
light at a particular vertex depends on the normal at that vertex, the 
direction from the vertex to the light source, and the direction from the 
vertex to the viewpoint. Keep in mind that the viewpoint isn’t actually 
being moved by calls to lighting commands (you need to change the pro-
jection transformation, as described in “Projection Transformations” in 
Chapter 3); instead, different assumptions are made for the lighting calcu-
lations, as if the viewpoint were moved. 

With an infinite viewpoint, the direction between it and any vertex in the 
scene remains constant. A local viewpoint tends to yield more realistic 
results, but since the direction has to be calculated for each vertex, overall 
performance is decreased with a local viewpoint. By default, an infinite 
viewpoint is assumed. Here’s how to change to a local viewpoint: 

glLightModeli(GL_LIGHT_MODEL_LOCAL_VIEWER, GL_TRUE);

This call places the viewpoint at (0, 0, 0) in eye coordinates. To switch back 
to an infinite viewpoint, pass in GL_FALSE as the argument.

Two-Sided Lighting

Lighting calculations are performed for all polygons, whether they’re front-
facing or back-facing. Since you usually set up lighting conditions with the 
front-facing polygons in mind, however, the back-facing ones typically 
aren’t correctly illuminated. In Example 5-1, where the object is a sphere, 
only the front faces are ever seen, since they’re the ones on the outside of 
the sphere. Therefore, in this case, it doesn’t matter what the back-facing 
polygons look like. If the sphere is going to be cut away so that its inside 
surface will be visible, however, you might want to have the inside surface 
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fully lit according to the lighting conditions you’ve defined; you might also 
want to supply a different material description for the back faces. When you 
turn on two-sided lighting with

glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE);

OpenGL reverses the surface normals for back-facing polygons; typically, 
this means that the surface normals of visible back- and front-facing 
polygons face, rather than point away from, the viewer. As a result, all 
polygons are illuminated correctly. However, these additional operations 
usually make two-sided lighting perform more slowly than the default one-
sided lighting.

To turn two-sided lighting off, pass in GL_FALSE as the argument in the pre-
ceding call. (See “Defining Material Properties” on page 231 for information 
about how to supply material properties for both faces.) You can also con-
trol which faces OpenGL considers to be front-facing with the command 
glFrontFace(). (See “Reversing and Culling Polygon Faces” on page 61 for 
more information.) 

Secondary Specular Color

For typical lighting calculations, the ambient, diffuse, specular, and 
emissive contributions are calculated and simply added together. By 
default, texture mapping is applied after lighting, so specular highlights 
may appear muted, or texturing may look undesirable in other ways. To 
delay application of the specular color until after texturing, call

glLightModeli(GL_LIGHT_MODEL_COLOR_CONTROL,
              GL_SEPARATE_SPECULAR_COLOR);

In this mode, lighting produces two colors per vertex: a primary color, 
which consists of all nonspecular lighting contributions, and a secondary 
color, which is a sum of all specular lighting contributions. During texture 
mapping, only the primary color is combined with the texture colors. After 
texturing, the secondary color is added to the resulting combination of 
primary and texture colors (see “Applying Secondary Color after Texturing” 
on page 478). Objects that are lit and textured using a separate specular 
color usually have more visible and prominent specular highlights.
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To restore the default, call

glLightModeli(GL_LIGHT_MODEL_COLOR_CONTROL, GL_SINGLE_COLOR);

Once again, the primary color includes all contributing colors: ambient, 
diffuse, specular, and emissive. Lighting contributions are not added after 
texturing. (If you are not performing texture mapping, there isn’t any 
reason to separate the specular color from the other lighting components.)

Enabling Lighting

With OpenGL, you need to enable (or disable) lighting explicitly. If lighting 
isn’t enabled, the current color is simply mapped onto the current vertex, 
and no calculations concerning normals, light sources, the lighting model, 
or material properties are performed. Here’s how to enable lighting:

glEnable(GL_LIGHTING);

To disable lighting, call glDisable() with GL_LIGHTING as the argument. 

You also need explicitly to enable each light source that you define, after 
you’ve specified the parameters for that source. Example 5-1 uses only one 
light, GL_LIGHT0:

glEnable(GL_LIGHT0); 

Defining Material Properties

You’ve seen how to create light sources with certain characteristics and how 
to define the desired lighting model. This section describes how to define 
the material properties of the objects in the scene: the ambient, diffuse, and 
specular color, the shininess, and the color of any emitted light. (See “The 
Mathematics of Lighting” for the equations used in the lighting and mate-
rial-property calculations.) Most of the material properties are conceptually 
similar to ones you’ve already used to create light sources. The mechanism 
for setting them is similar, except that the command used is called 
glMaterial*().

Compatibility 
Extension

GL_LIGHTING
GL_LIGHTi
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As discussed in “Selecting a Lighting Model,” you can choose to have 
lighting calculations performed differently for the front- and back-facing 
polygons of objects. If the back faces might indeed be seen, you can supply 
different material properties for the front and back surfaces by using the face
parameter of glMaterial*(). See Plate 14 for an example of an object drawn 
with different inside and outside material properties.

To give you an idea of the possible effects you can achieve by manipulating 
material properties, see Plate 16. This figure shows the same object drawn 
with several different sets of material properties. The same light source and 

void glMaterial{if}(GLenum face, GLenum pname, TYPE param);
void glMaterial{if}v(GLenum face, GLenum pname, const TYPE *param);

Specifies a current material property for use in lighting calculations. face
can be GL_FRONT, GL_BACK, or GL_FRONT_AND_BACK to indicate to 
which faces of the object the material should be applied. The particular 
material property being set is identified by pname, and the desired values 
for that property are given by param, which is either a pointer to a 
group of values (if the vector version is used) or the actual value (if the 
nonvector version is used). The nonvector version works only for setting 
GL_SHININESS. The possible values for pname are shown in Table 5-3. Note 
that GL_AMBIENT_AND_DIFFUSE allows you to set both the ambient and 
diffuse material colors simultaneously to the same RGBA value. 

Parameter Name Default Value Meaning

GL_AMBIENT (0.2, 0.2, 0.2, 1.0) ambient color of material

GL_DIFFUSE (0.8, 0.8, 0.8, 1.0) diffuse color of material

GL_AMBIENT_AND_DIFFUSE ambient and diffuse color 
of material

GL_SPECULAR (0.0, 0.0, 0.0, 1.0) specular color of material

GL_SHININESS 0.0 specular exponent

GL_EMISSION (0.0, 0.0, 0.0, 1.0) emissive color of material

GL_COLOR_INDEXES (0, 1, 1) ambient, diffuse, and 
specular color indices

Table 5-3 Default Values for pname Parameter of glMaterial*()

Compatibility 
Extension

glMaterial
GL_AMBIENT
GL_DIFFUSE
GL_AMBIENT_
AND_DIFFUSE
GL_SPECULAR
GL_SHININESS
GL_COLOR_
INDEXES
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lighting model are used for the entire figure. The sections that follow 
discuss the specific properties used to draw each of these spheres. 

Note that most of the material properties set with glMaterial*() are (R, G, B, 
A) colors. Regardless of what alpha values are supplied for other parameters, 
the alpha value at any particular vertex is the diffuse-material alpha value 
(that is, the alpha value given to GL_DIFFUSE with the glMaterial*() com-
mand, as described in the next section). (See “Blending” in Chapter 6 for a 
complete discussion of alpha values.) Also, none of the RGBA material prop-
erties apply in color-index mode. (See “Lighting in Color-Index Mode” on 
page 246 for more information about what parameters are relevant in color-
index mode.)

Diffuse and Ambient Reflection

The GL_DIFFUSE and GL_AMBIENT parameters set with glMaterial*()
affect the colors of the diffuse and ambient light reflected by an object. Dif-
fuse reflectance plays the most important role in determining what you per-
ceive the color of an object to be. Your perception is affected by the color of 
the incident diffuse light and the angle of the incident light relative to the 
normal direction. (It’s most intense where the incident light falls perpendic-
ular to the surface.) The position of the viewpoint doesn’t affect diffuse 
reflectance at all. 

Ambient reflectance affects the overall color of the object. Because diffuse 
reflectance is brightest where an object is directly illuminated, ambient 
reflectance is most noticeable where an object receives no direct illumina-
tion. An object’s total ambient reflectance is affected by the global ambient 
light and ambient light from individual light sources. Like diffuse reflec-
tance, ambient reflectance isn’t affected by the position of the viewpoint.

For real-world objects, diffuse and ambient reflectance are normally the 
same color. For this reason, OpenGL provides you with a convenient way of 
assigning the same value to both simultaneously with glMaterial*():

GLfloat mat_amb_diff[] = { 0.1, 0.5, 0.8, 1.0 };
glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE,
             mat_amb_diff);

In this example, the RGBA color (0.1, 0.5, 0.8, 1.0)—a deep blue color—
represents the current ambient and diffuse reflectance for both the front- 
and back-facing polygons. 

In Plate 16, the first row of spheres has no ambient reflectance (0.0, 0.0, 0.0, 
0.0), and the second row has a significant amount of it (0.7, 0.7, 0.7, 1.0). 
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Specular Reflection

Specular reflection from an object produces highlights. Unlike ambient and 
diffuse reflection, the amount of specular reflection seen by a viewer does 
depend on the location of the viewpoint—it is brightest along the direct 
angle of reflection. To see this, imagine looking at a metallic ball outdoors 
in the sunlight. As you move your head, the highlight created by the 
sunlight moves with you to some extent. However, if you move your head 
too much, you lose the highlight entirely. 

OpenGL allows you to set the effect that the material has on reflected light 
(with GL_SPECULAR) and control the size and brightness of the highlight 
(with GL_SHININESS). You can assign a number in the range [0.0, 128.0] 
to GL_SHININESS: the higher the value, the smaller and brighter (more 
focused) the highlight. (See “The Mathematics of Lighting” on page 240 
for details about how specular highlights are calculated.)

In Plate 16, the spheres in the first column have no specular reflection. In 
the second column, GL_SPECULAR and GL_SHININESS are assigned values 
as follows:

GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 };
GLfloat low_shininess[] = { 5.0 };
glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
glMaterialfv(GL_FRONT, GL_SHININESS, low_shininess);

In the third column, the GL_SHININESS parameter is increased to 100.0.

Emission

By specifying an RGBA color for GL_EMISSION, you can make an object 
appear to be giving off light of that color. Since most real-world objects 
(except lights) don’t emit light, you’ll probably use this feature mostly to 
simulate lamps and other light sources in a scene. In Plate 16, the spheres 
in the fourth column have a reddish-gray value for GL_EMISSION:

GLfloat mat_emission[] = {0.3, 0.2, 0.2, 0.0};
glMaterialfv(GL_FRONT, GL_EMISSION, mat_emission);

Notice that the spheres appear to be slightly glowing; however, they’re not 
actually acting as light sources. You would need to create a light source and 
position it at the same location as the sphere to create such an effect. 
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Changing Material Properties 

Example 5-1 uses the same material properties for all vertices of the only 
object in the scene (the sphere). In other situations, you might want to 
assign different material properties for different vertices on the same object. 
More likely, you have more than one object in the scene, and each object 
has different material properties. For example, the code that produced Plate 
16 has to draw 12 different objects (all spheres), each with different material 
properties. Example 5-8 shows a portion of the code in display().

Example 5-8 Different Material Properties: material.c

   GLfloat no_mat[] = { 0.0, 0.0, 0.0, 1.0 };
   GLfloat mat_ambient[] = { 0.7, 0.7, 0.7, 1.0 };
   GLfloat mat_ambient_color[] = { 0.8, 0.8, 0.2, 1.0 };
   GLfloat mat_diffuse[] = { 0.1, 0.5, 0.8, 1.0 };
   GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 };
   GLfloat no_shininess[] = { 0.0 };
   GLfloat low_shininess[] = { 5.0 };
   GLfloat high_shininess[] = { 100.0 };
   GLfloat mat_emission[] = {0.3, 0.2, 0.2, 0.0};

   glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

/*  draw sphere in first row, first column
 *  diffuse reflection only; no ambient or specular  
 */
   glPushMatrix();
   glTranslatef(-3.75, 3.0, 0.0);
   glMaterialfv(GL_FRONT, GL_AMBIENT, no_mat);
   glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_diffuse);
   glMaterialfv(GL_FRONT, GL_SPECULAR, no_mat);
   glMaterialfv(GL_FRONT, GL_SHININESS, no_shininess);
   glMaterialfv(GL_FRONT, GL_EMISSION, no_mat);
   glutSolidSphere(1.0, 16, 16);
   glPopMatrix();

/*  draw sphere in first row, second column
 *  diffuse and specular reflection; low shininess; no ambient
 */
   glPushMatrix();
   glTranslatef(-1.25, 3.0, 0.0);
   glMaterialfv(GL_FRONT, GL_AMBIENT, no_mat);
   glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_diffuse);
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   glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
   glMaterialfv(GL_FRONT, GL_SHININESS, low_shininess);
   glMaterialfv(GL_FRONT, GL_EMISSION, no_mat);
   glutSolidSphere(1.0, 16, 16);
   glPopMatrix();

/*  draw sphere in first row, third column
 *  diffuse and specular reflection; high shininess; no ambient
 */
   glPushMatrix();
   glTranslatef(1.25, 3.0, 0.0);
   glMaterialfv(GL_FRONT, GL_AMBIENT, no_mat);
   glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_diffuse);
   glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
   glMaterialfv(GL_FRONT, GL_SHININESS, high_shininess);
   glMaterialfv(GL_FRONT, GL_EMISSION, no_mat);
   glutSolidSphere(1.0, 16, 16);
   glPopMatrix();

/*  draw sphere in first row, fourth column
 *  diffuse reflection; emission; no ambient or specular refl.
 */
   glPushMatrix();
   glTranslatef(3.75, 3.0, 0.0);
   glMaterialfv(GL_FRONT, GL_AMBIENT, no_mat);
   glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_diffuse);
   glMaterialfv(GL_FRONT, GL_SPECULAR, no_mat);
   glMaterialfv(GL_FRONT, GL_SHININESS, no_shininess);
   glMaterialfv(GL_FRONT, GL_EMISSION, mat_emission);
   glutSolidSphere(1.0, 16, 16);
   glPopMatrix();

As you can see, glMaterialfv() is called repeatedly to set the desired material 
property for each sphere. Note that it needs to be called only to change a 
property that has to be respecified. The second, third, and fourth spheres 
use the same ambient and diffuse properties as the first sphere, so these 
properties do not need to be respecified. Since glMaterial*() has a perfor-
mance cost associated with its use, Example 5-8 could be rewritten to 
minimize material-property changes.

Nate Robins’ Lightmaterial Tutorial

If you have downloaded Nate Robins’ suite of tutorial programs, now run 
the lightmaterial tutorial. With this tutorial, you can experiment with the 
colors of material properties, including ambient, diffuse, and specular 
colors, as well as the shininess exponent.
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Color Material Mode

Another technique for minimizing performance costs associated with 
changing material properties is to use glColorMaterial().

Note that glColorMaterial() specifies two independent values: The first 
determines which face or faces are updated, and the second determines 
which material property or properties of those faces are updated. OpenGL 
does not maintain separate mode variables for each face. 

After calling glColorMaterial(), you need to call glEnable() with GL_
COLOR_MATERIAL as the parameter. Then, you can change the current 
color using glColor*() (or other material properties, using glMaterial*())
as needed as you draw: 

glEnable(GL_COLOR_MATERIAL);
glColorMaterial(GL_FRONT, GL_DIFFUSE);
/* now glColor* changes diffuse reflection  */
glColor3f(0.2, 0.5, 0.8);
/* draw some objects here */
glColorMaterial(GL_FRONT, GL_SPECULAR);
/* glColor* no longer changes diffuse reflection
 * now glColor* changes specular reflection  */
glColor3f(0.9, 0.0, 0.2);
/* draw other objects here */
glDisable(GL_COLOR_MATERIAL);

You should use glColorMaterial() whenever you need to change a single 
material parameter for most vertices in your scene. If you need to change 
more than one material parameter, as was the case for Plate 16, use 
glMaterial*(). When you don’t need the capabilities of glColorMaterial()
anymore, be sure to disable it so that you don’t get undesired material 

void glColorMaterial(GLenum face, GLenum mode);

Causes the material property (or properties) specified by mode of the 
specified material face (or faces) specified by face to track the value of the 
current color at all times. A change to the current color (using glColor*())
immediately updates the specified material properties. The face parameter 
can be GL_FRONT, GL_BACK, or GL_FRONT_AND_BACK (the default). 
The mode parameter can be GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR, 
GL_AMBIENT_AND_DIFFUSE (the default), or GL_EMISSION. At any 
given time, only one mode is active. glColorMaterial() has no effect on 
color-index lighting.

Compatibility 
Extension

glColorMaterial
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properties and don’t incur the performance cost associated with it. The 
performance value in using glColorMaterial() varies, depending on your 
OpenGL implementation. Some implementations may be able to optimize 
the vertex routines so that they can quickly update material properties 
based on the current color. 

Example 5-9 shows an interactive program that uses glColorMaterial() to 
change material parameters. Pressing each of the three mouse buttons 
changes the color of the diffuse reflection.

Example 5-9 Using glColorMaterial(): colormat.c

GLfloat diffuseMaterial[4] = { 0.5, 0.5, 0.5, 1.0 };

void init(void) 
{
   GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 };
   GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 };

   glClearColor(0.0, 0.0, 0.0, 0.0);
   glShadeModel(GL_SMOOTH);
   glEnable(GL_DEPTH_TEST);
   glMaterialfv(GL_FRONT, GL_DIFFUSE, diffuseMaterial);
   glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
   glMaterialf(GL_FRONT, GL_SHININESS, 25.0);
   glLightfv(GL_LIGHT0, GL_POSITION, light_position);
   glEnable(GL_LIGHTING);
   glEnable(GL_LIGHT0);

   glColorMaterial(GL_FRONT, GL_DIFFUSE);
   glEnable(GL_COLOR_MATERIAL);
}

void display(void)
{
   glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
   glutSolidSphere(1.0, 20, 16);
   glFlush();
}

void reshape(int w, int h)
{
   glViewport(0, 0, (GLsizei) w, (GLsizei) h);
   glMatrixMode(GL_PROJECTION);

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Defining Material Properties 239

   glLoadIdentity();
   if (w <= h)
      glOrtho(-1.5, 1.5, -1.5*(GLfloat)h/(GLfloat)w,
         1.5*(GLfloat)h/(GLfloat)w, -10.0, 10.0);
   else
      glOrtho(-1.5*(GLfloat)w/(GLfloat)h,
         1.5*(GLfloat)w/(GLfloat)h, -1.5, 1.5, -10.0, 10.0);
   glMatrixMode(GL_MODELVIEW);
   glLoadIdentity();
}

void mouse(int button, int state, int x, int y)
{
   switch (button) {
      case GLUT_LEFT_BUTTON:
         if (state == GLUT_DOWN) {       /*  change red  */
            diffuseMaterial[0] += 0.1;
            if (diffuseMaterial[0] > 1.0)
               diffuseMaterial[0] = 0.0;
            glColor4fv(diffuseMaterial);
            glutPostRedisplay();
         }
         break;
      case GLUT_MIDDLE_BUTTON:
         if (state == GLUT_DOWN) {       /*  change green  */
            diffuseMaterial[1] += 0.1;
            if (diffuseMaterial[1] > 1.0)
               diffuseMaterial[1] = 0.0;
            glColor4fv(diffuseMaterial);
            glutPostRedisplay();
         }
         break;
      case GLUT_RIGHT_BUTTON:
         if (state == GLUT_DOWN) {      /*  change blue  */
            diffuseMaterial[2] += 0.1;
            if (diffuseMaterial[2] > 1.0)
               diffuseMaterial[2] = 0.0;
            glColor4fv(diffuseMaterial);
            glutPostRedisplay();
         }
         break;
      default:
         break;
   }
}
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int main(int argc, char** argv)
{
   glutInit(&argc, argv);
   glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
   glutInitWindowSize(500, 500); 
   glutInitWindowPosition(100, 100);
   glutCreateWindow(argv[0]);
   init();
   glutDisplayFunc(display); 
   glutReshapeFunc(reshape);
   glutMouseFunc(mouse);
   glutMainLoop();
   return 0;
}

Try This

Modify Example 5-8 in the following manner: 

• Change the global ambient light in the scene. Hint: Alter the value of 
the GL_LIGHT_MODEL_AMBIENT parameter.

• Change the diffuse, ambient, and specular reflection parameters, the 
shininess exponent, and the emission color. Hint: Use the glMaterial*()
command, but avoid making excessive calls.

• Use two-sided materials and add a user-defined clipping plane so that 
you can see the inside and outside of a row or column of spheres. 
(See “Additional Clipping Planes” in Chapter 3, if you need to recall 
user-defined clipping planes.) Hint: Turn on two-sided lighting with 
GL_LIGHT_MODEL_TWO_SIDE, set the desired material properties, 
and add a clipping plane.

• Remove the glMaterialfv() call for setting the GL_DIFFUSE value, and 
use the more efficient glColorMaterial() calls to achieve the same 
lighting.

The Mathematics of Lighting

Advanced

This section presents the equations used by OpenGL to perform lighting cal-
culations to determine colors when in RGBA mode. (See “The Mathematics 

Try This

Advanced
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of Color-Index Mode Lighting” for corresponding calculations for color-index 
mode.) You don’t need to read this section if you’re willing to experiment 
to obtain the lighting conditions you want. Even after reading this section, 
you’ll probably have to experiment, but you’ll have a better idea of how 
the values of parameters affect a vertex’s color. Remember that if lighting 
is not enabled, the color of a vertex is simply the current color; if it is 
enabled, the lighting computations described here are carried out in eye 
coordinates. 

In the following equations, mathematical operations are performed sepa-
rately on the R, G, and B components. Thus, for example, when three 
terms are shown as added together, the R values, the G values, and the 
B values for each term are separately added to form the final RGB color 
(R1 + R2 + R3, G1 + G2 + G3, B1 + B2 + B3). When three terms are multiplied, 
the calculation is (R1R2 R3, G1G2G3, B1B2B3). (Remember that the final A or 
alpha component at a vertex is equal to the material’s diffuse alpha value at 
that vertex.) 

The color produced by lighting a vertex is computed as follows:

vertex color = the material emission at that vertex +   

the global ambient light scaled by the material’s 
ambient property at that vertex   +

the ambient, diffuse, and specular contributions from 
all the light sources, properly attenuated

After lighting calculations are performed, the color values are clamped (in 
RGBA mode) to the range [0, 1]. 

Note that OpenGL lighting calculations don’t take into account the possi-
bility of one object blocking light from another; as a result, shadows aren’t 
automatically created. (See “Shadows” in Chapter 14 for a technique used 
to create shadows.) Also keep in mind that with OpenGL, illuminated 
objects don’t radiate light onto other objects. 

Material Emission

The material emission term is the simplest. It’s the RGB value assigned to 
the GL_EMISSION parameter. 
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Scaled Global Ambient Light

The second term is computed by multiplying the global ambient light (as 
defined by the GL_LIGHT_MODEL_AMBIENT parameter) by the material’s 
ambient property (GL_AMBIENT value as assigned with glMaterial*()):

ambientlight model  ambientmaterial

Each of the R, G, and B values for these two parameters are multiplied 
separately to compute the final RGB value for this term: (R1R2, G1G2, B1B2).

Contributions from Light Sources

Each light source may contribute to a vertex’s color, and these contributions 
are added together. The equation for computing each light source’s 
contribution is as follows:

contribution = attenuation factor  spotlight effect 

(ambient term + diffuse term + specular term)

Attenuation Factor

The attenuation factor was described in “Position and Attenuation”: 

where 

d = distance between the light’s position and the vertex

kc = GL_CONSTANT_ATTENUATION

kl = GL_LINEAR_ATTENUATION

kq = GL_QUADRATIC_ATTENUATION

If the light is a directional one, the attenuation factor is 1. 

Spotlight Effect

The spotlight effect evaluates to one of three possible values, depending on 
whether or not the light is actually a spotlight and whether the vertex lies 
inside or outside the cone of illumination produced by the spotlight:

attenuation factor = 
          1
kc + kld + kqd2
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• 1 if the light isn’t a spotlight (GL_SPOT_CUTOFF is 180.0).

• 0 if the light is a spotlight, but the vertex lies outside the cone of 
illumination produced by the spotlight.

• (max {v · d, 0})GL_SPOT_EXPONENT where: 

v = (vx, vy, vz) is the unit vector that points from the spotlight 
(GL_POSITION) to the vertex. 

d = (dx, dy, dz) is the spotlight’s direction (GL_SPOT_DIRECTION), 
assuming the light is a spotlight and the vertex lies inside the cone 
of illumination produced by the spotlight. 

The dot product of the two vectors v and d varies as the cosine of 
the angle between them; hence, objects directly in line get maximum 
illumination, and objects off the axis have their illumination drop as 
the cosine of the angle.

To determine whether a particular vertex lies within the cone of illumina-
tion, OpenGL evaluates (max {v · d, 0}), where v and d are as defined in the 
preceding discussion. If this value is less than the cosine of the spotlight’s 
cutoff angle (GL_SPOT_CUTOFF), then the vertex lies outside the cone; 
otherwise, it’s inside the cone.

Ambient Term

The ambient term is simply the ambient color of the light scaled by the 
ambient material property:

ambientlight  ambientmaterial

Diffuse Term

The diffuse term needs to take into account whether or not light falls 
directly on the vertex, the diffuse color of the light, and the diffuse material 
property:

(max {L · n, 0})  diffuselight  diffusematerial

where

L = (Lx, Ly, Lz) is the unit vector that points from the vertex to the light 
position (GL_POSITION). 

n = (nx, ny, nz) is the unit normal vector at the vertex.
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Specular Term

The specular term also depends on whether or not light falls directly on the 
vertex. If L · n is less than or equal to zero, there is no specular component 
at the vertex. (If it’s less than zero, the light is on the wrong side of the 
surface.) If there’s a specular component, it depends on the following:

• The unit normal vector at the vertex (nx, ny, nz)

• The sum of the two unit vectors that point between (1) the vertex 
and the light position (or light direction) and (2) the vertex and the 
viewpoint (assuming that GL_LIGHT_MODEL_LOCAL_VIEWER is true; 
if it’s not true, the vector (0, 0, 1) is used as the second vector in the 
sum). This vector sum is normalized (by dividing each component by 
the magnitude of the vector) to yield s = (sx, sy, sz).

• The specular exponent (GL_SHININESS)

• The specular color of the light (GL_SPECULARlight)

• The specular property of the material (GL_SPECULARmaterial)

Using these definitions, here’s how OpenGL calculates the specular term:

(max {s · n, 0})shininess  specularlight  specularmaterial

However, if L · n = 0, the specular term is 0. 

Putting It All Together

Using the definitions of terms described in the preceding paragraphs, the 
following represents the entire lighting calculation in RGBA mode:

vertex color = emissionmaterial + 

ambientlight model  ambientmaterial + 

[ambientlight  ambientmaterial +

(max { L · n , 0} )  diffuselight  diffusematerial + 

(max { s · n , 0} )shininess  specularlight  specularmaterial ] i

(               )
 n-1

            1                * (spotlight effect)i *

 i=0
kc + kld + kqd2

i
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Secondary Specular Color

If GL_SEPARATE_SPECULAR_COLOR is the current lighting model color 
control, then a primary and secondary color are produced for each vertex, 
which are computed as follows:

primary color = the material emission at that vertex +   

the global ambient light scaled by the material’s 
ambient property at that vertex   +

the ambient and diffuse contributions from all the light 
sources, properly attenuated

secondary color = the specular contributions from all the light sources, 
properly attenuated

The following two equations represent the lighting calculations for the 
primary and secondary colors:

primary color = emissionmaterial + 

ambientlight model  ambientmaterial + 

[ambientlight ambientmaterial +

(max { L · n , 0} )  diffuselight  diffusematerial] i

secondary color = 

[(max { s · n , 0} )shininess  specularlight  specularmaterial ] i

During texture mapping, only the primary color is combined with the 
texture colors. After the texturing operation, the secondary color is added 
to the resulting combination of the primary and texture colors.

(               )
  n-1

            1                * (spotlight effect)i *

  i=0
kc + kld + kqd2

i

(               )
  n-1

            1                * (spotlight effect)i *

  i=0
kc + kld + kqd2

i
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Lighting in Color-Index Mode

In color-index mode, the parameters comprising RGBA values either have 
no effect or have a special interpretation. Since it’s much harder to achieve 
certain effects in color-index mode, you should use RGBA whenever 
possible. In fact, the only light-source, lighting-model, or material 
parameters in an RGBA form that are used in color-index mode are the 
light-source parameters GL_DIFFUSE and GL_SPECULAR, and the material 
parameter GL_SHININESS. GL_DIFFUSE and GL_SPECULAR (dl and sl,
respectively) are used to compute color-index diffuse and specular light 
intensities (dci and sci), as follows:

dci = 0.30R(dl) + 0.59G(dl) + 0.11B(dl)

sci = 0.30R(sl) + 0.59G(sl) + 0.11B(sl)

where R(x), G(x), and B(x) refer to the red, green, and blue components, 
respectively, of color x. The weighting values 0.30, 0.59, and 0.11 reflect the 
“perceptual” weights that red, green, and blue have for your eye—your eye 
is most sensitive to green and least sensitive to blue. 

To specify material colors in color-index mode, use glMaterial*() with the 
special parameter GL_COLOR_INDEXES, as follows: 

GLfloat mat_colormap[] = { 16.0, 47.0, 79.0 };
glMaterialfv(GL_FRONT, GL_COLOR_INDEXES, mat_colormap);

The three numbers supplied for GL_COLOR_INDEXES specify the color 
indices for the ambient, diffuse, and specular material colors, respectively. 
In other words, OpenGL regards the color associated with the first index 
(16.0 in this example) as the pure ambient color, with the second index 
(47.0) as the pure diffuse color, and with the third index (79.0) as the pure 
specular color. (By default, the ambient color index is 0.0, and the diffuse 
and specular color indices are both 1.0. Note that glColorMaterial() has no 
effect on color-index lighting.)

As it draws a scene, OpenGL uses colors associated with indices between 
these numbers to shade objects in the scene. Therefore, you must build a 
color ramp between the indicated indices (in this example, between indices 
16 and 47, and then between indices 47 and 79). Often, the color ramp is 
built smoothly, but you might want to use other formulations to achieve 
different effects. Here’s an example of a smooth color ramp that starts with 
a black ambient color and goes through a magenta diffuse color to a white 
specular color:
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for (i = 0; i < 32; i++) {
   glutSetColor(16 + i, 1.0 * (i/32.0), 0.0, 1.0 * (i/32.0));
   glutSetColor(48 + i, 1.0, 1.0 * (i/32.0), 1.0);
}

The GLUT library command glutSetColor() takes four arguments. It 
associates the color index indicated by the first argument with the RGB 
triplet specified by the last three arguments. When i = 0, the color index 16 
is assigned the RGB value (0.0, 0.0, 0.0), or black. The color ramp builds 
smoothly up to the diffuse material color at index 47 (when i = 31), which 
is assigned the pure magenta RGB value (1.0, 0.0, 1.0). The second loop 
builds the ramp between the magenta diffuse color and the white (1.0, 1.0, 
1.0) specular color (index 79). Plate 15 shows the result of using this color 
ramp with a single lit sphere. 

The Mathematics of Color-Index Mode Lighting

Advanced

As you might expect, since the allowable parameters are different for color-
index mode than for RGBA mode, the calculations are different as well. 
Since there’s no material emission and no ambient light, the only terms of 
interest from the RGBA equations are the diffuse and specular contributions 
from the light sources and the shininess. Even these terms need to be 
modified, however, as explained next.

Begin with the diffuse and specular terms from the RGBA equations. In the 
diffuse term, instead of diffuselight  diffusematerial, substitute dci as defined in 
the preceding section for color-index mode. Similarly, in the specular term, 
instead of specularlight  specularmaterial, use sci as defined in the preceding 
section. (Calculate the attenuation, the spotlight effect, and all other 
components of these terms as before.) Call these modified diffuse and specular 
terms d and s, respectively. Now, let s’ = min{ s, 1 }, and then compute

c = am + d(1 – s’)(dm – am) + s’(sm – am)

where am, dm, and sm are the ambient, diffuse, and specular material indices 
specified using GL_COLOR_INDEXES. The final color index is

c’ = min { c, sm }

After lighting calculations are performed, the color-index values are con-
verted to fixed-point (with an unspecified number of bits to the right of 
the binary point). Then the integer portion is masked (bitwise ANDed) with 
2n 1, where n is the number of bits in a color in the color-index buffer.

Advanced
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Chapter 6

6.Blending, Antialiasing, Fog, and
Polygon Offset

Chapter Objectives

After reading this chapter, you’ll be able to do the following:

• Blend colors to achieve such effects as making objects appear 
translucent

• Smooth jagged edges of lines and polygons with antialiasing

• Create scenes with realistic atmospheric effects

• Render rounded (antialiased) points with varying sizes, based upon 
distance from the viewpoint

• Draw geometry at or near the same depth, but avoid unaesthetic 
artifacts from intersecting geometry
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The preceding chapters have given you the basic information you need to 
create a computer-graphics scene; you’ve learned how to do the following:

• Draw geometric shapes

• Transform those geometric shapes so that they can be viewed from 
whatever perspective you wish

• Specify how the geometric shapes in your scene should be colored and 
shaded

• Add lights and indicate how they should affect the shapes in your scene

Now you’re ready to get a little fancier. This chapter discusses five tech-
niques that can add extra detail and polish to your scene. None of these 
techniques is hard to use—in fact, it’s probably harder to explain them than 
to use them. Each of these techniques is described in its own major section:

• “Blending” tells you how to specify a blending function that combines 
color values from a source and a destination. The final effect is that 
parts of your scene appear translucent. 

• “Antialiasing” explains this relatively subtle effect that alters colors so 
that the edges of points, lines, and polygons appear smooth rather 
than angular and jagged. Multisampling is a powerful technique to 
antialias all of the primitives in your entire scene.

• “Fog” describes how to create the illusion of depth by computing the 
color values of an object based on its distance from the viewpoint. 
Thus, objects that are far away appear to fade into the background, just 
as they do in real life.

• “Point Parameters” discusses an efficient technique for rendering point 
primitives with different sizes and color, depending upon distance 
from the viewpoint. Point parameters can be useful for modeling 
particle systems.

• If you’ve tried to draw a wireframe outline atop a shaded object and 
used the same vertices, you’ve probably noticed some ugly visual 
artifacts. “Polygon Offset” shows you how to tweak (offset) depth 
values to make an outlined, shaded object look beautiful.

OpenGL Version 1.1 added the polygon offset capability.

Version 1.2 of OpenGL introduced a selectable blending equation 
(glBlendEquation()), a constant blending color (glBlendColor()), and the 
blending factors: GL_CONSTANT_COLOR, GL_ONE_MINUS_CONSTANT_
COLOR, GL_CONSTANT_ALPHA, and GL_ONE_MINUS_CONSTANT_ALPHA. 
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In Version 1.2 and 1.3, these features were supported only if the OpenGL 
implementation supported the imaging subset. In Version 1.4, the blending 
equation, constant blending color, and constant blending factors became 
mandatory.

In Version 1.3, multisampling became a core feature of OpenGL. 

Version 1.4 also added the following new features, which are covered in this 
chapter:

• Use of GL_SRC_COLOR and GL_ONE_MINUS_SRC_COLOR as 
source blending factors. (Prior to Version 1.4, GL_SRC_COLOR and 
GL_ONE_MINUS_SRC_COLOR had to be destination factors.)

• Use of GL_DST_COLOR and GL_ONE_MINUS_DST_COLOR as 
destination blending factors. (Prior to Version 1.4, GL_DST_COLOR 
and GL_ONE_MINUS_DST_COLOR had to be source factors.)

• Explicit specification of fog coordinates

• Point parameters to control characteristics of point primitives

• Capability to blend RGB and alpha color components with 
separate blending functions

Blending

What’s it all about, alpha? You’ve already seen alpha values (alpha is the A 
in RGBA), but they’ve been ignored until now. Alpha values are specified 
with glColor*() when using glClearColor() to specify a clearing color and 
when specifying certain lighting parameters such as a material property or 
light source intensity. As you learned in Chapter 4, the pixels on a monitor 
screen emit red, green, and blue light, which is controlled by the red, green, 
and blue color values. So how does an alpha value affect what is drawn in a 
window on the screen? 

When blending is enabled, the alpha value is often used to combine the 
color value of the fragment being processed with that of the pixel already 
stored in the framebuffer. Blending occurs after your scene has been 
rasterized and converted to fragments, but just before the final pixels are 
drawn in the framebuffer. Alpha values can also be used in the alpha test to 
accept or reject a fragment based on its alpha value. (See Chapter 10 for 
more information about this process.)
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Without blending, each new fragment overwrites any existing color values 
in the framebuffer, as though the fragment were opaque. With blending, 
you can control how (and how much of) the existing color value should be 
combined with the new fragment’s value. Thus, you can use alpha blending 
to create a translucent fragment that lets some of the previously stored color 
value “show through.” Color blending lies at the heart of techniques such 
as transparency, digital compositing, and painting.

Note: Alpha values aren’t specified in color-index mode, so blending 
operations aren’t performed in color-index mode.

The most natural way to think of blending operations is to think of the RGB 
components of a fragment as representing its color, and the alpha compo-
nent as representing opacity. Transparent or translucent surfaces have lower 
opacity than opaque ones and, therefore, lower alpha values. For example, 
if you’re viewing an object through green glass, the color you see is partly 
green from the glass and partly the color of the object. The percentage varies 
depending on the transmission properties of the glass: If the glass transmits 
80 percent of the light that strikes it (that is, has an opacity of 20 percent), 
the color you see is a combination of 20 percent glass color and 80 percent 
the color of the object behind it. You can easily imagine situations with 
multiple translucent surfaces. If you look at an automobile, for instance, its 
interior has one piece of glass between it and your viewpoint; some objects 
behind the automobile are visible through two pieces of glass. 

The Source and Destination Factors

During blending, color values of the incoming fragment (the source) are 
combined with the color values of the corresponding currently stored pixel 
(the destination) in a two-stage process. First you specify how to compute 
source and destination factors. These factors are RGBA quadruplets that are 
multiplied by each component of the R, G, B, and A values in the source and 
destination, respectively. Then the corresponding components in the two 
sets of RGBA quadruplets are combined. To show this mathematically, let 
the source and destination blending factors be (Sr, Sg, Sb, Sa) and (Dr, Dg, Db,
Da), respectively, and let the RGBA values of the source and destination be 
indicated with a subscript of s or d. Then the final, blended RGBA values are 
given by

(RsSr+RdDr, GsSg+GdDg, BsSb+BdDb, AsSa+AdDa)

Each component of this quadruplet is eventually clamped to [0, 1] (unless 
color clamping is disabled. See “Color Clamping” on page 198).
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The default way to combine the source and destination fragments is to add 
their values together (CsS+CdD). See “Combining Pixels Using Blending 
Equations” on page 255 for information on how to select other 
mathematical operations to combine fragments. 

You have two different ways to choose the source and destination blending 
factors. You may call glBlendFunc() and choose two blending factors: the 
first factor for the source RGBA and the second for the destination RGBA. 
Or, you may use glBlendFuncSeparate() and choose four blending factors, 
which allows you to use one blending operation for RGB and a different one 
for its corresponding alpha.

void glBlendFunc(GLenum srcfactor, GLenum destfactor);

Controls how color values in the fragment being processed (the source) 
are combined with those already stored in the framebuffer (the destina-
tion). The possible values for these arguments are explained in Table 6-1. 
The argument srcfactor indicates how to compute a source blending factor; 
destfactor indicates how to compute a destination blending factor. 

The blend factors are assumed to lie in the range [0, 1]. After the color 
values in the source and destination are combined, they’re clamped to the 
range [0, 1].

void glBlendFuncSeparate(GLenum srcRGB, GLenum destRGB,
GLenum srcAlpha, GLenum destAlpha);

Similar to glBlendFunc(), glBlendFuncSeparate() also controls how 
source color values (fragment) are combined with destination values 
(framebuffer). glBlendFuncSeparate() also accepts the same arguments 
(shown in Table 6-1) as glBlendFunc(). The argument srcRGB indicates 
the source blending factor for color values; destRGB is the destination 
blending factor for color values. The argument srcAlpha indicates the 
source blending factor for alpha values; destAlpha is the destination 
blending factor for alpha values. 

The blend factors are assumed to lie in the range [0, 1]. After the color 
values in the source and destination are combined, they’re clamped to the 
range [0, 1].
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Note: In Table 6-1, the RGBA values of the source, destination, and constant 
colors are indicated with the subscripts s, d, and c, respectively. 
Subtraction of quadruplets means subtracting them componentwise. 
GL_SRC_ALPHA_SATURATE may be used only as a source blend factor.

If you use one of the GL*CONSTANT* blending functions, you need to use 
glBlendColor() to specify a constant color.

Constant RGB 
Blend Factor

Alpha 
Blend Factor

GL_ZERO (0, 0, 0) 0

GL_ONE (1, 1, 1) 1

GL_SRC_COLOR (Rs, Gs, Bs) As

GL_ONE_MINUS_SRC_COLOR (1, 1, 1) (Rs, Gs, Bs) 1  As

GL_DST_COLOR (Rd, Gd, Bd) Ad

GL_ONE_MINUS_DST_COLOR (1, 1, 1) (Rd, Gd, Bd) 1  Ad

GL_SRC_ALPHA (As, As, As) As

GL_ONE_MINUS_SRC_ALPHA (1, 1, 1) (As, As, As) 1  As

GL_DST_ALPHA (Ad, Ad, Ad) Ad

GL_ONE_MINUS_DST_ALPHA (1, 1, 1) (Ad, Ad, Ad) 1  Ad

GL_CONSTANT_COLOR (Rc, Gc, Bc) Ac

GL_ONE_MINUS_CONSTANT_COLOR (1, 1, 1) (Rc, Gc, Bc) 1  Ac

GL_CONSTANT_ALPHA (Ac, Ac, Ac) Ac

GL_ONE_MINUS_CONSTANT_ALPHA (1, 1, 1) (Ac, Ac, Ac) 1  Ac

GL_SRC_ALPHA_SATURATE (f, f, f ); f = min(As, 1 Ad) 1

Table 6-1 Source and Destination Blending Factors

void glBlendColor(GLclampf red, GLclampf green, GLclampf blue,
GLclampf alpha);

Sets the current red, green, blue, and alpha values for use as the constant 
color (Rc, Gc, Bc, Ac) in blending operations. 
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Enabling Blending

No matter how you specify the blending function, you also need to enable 
blending to have it take effect: 

glEnable(GL_BLEND);

Use glDisable() with GL_BLEND to disable blending. Note that using the 
constants GL_ONE (source) and GL_ZERO (destination) gives the same 
results as when blending is disabled; these values are the default.

Advanced

OpenGL Version 2.0 introduced the ability to render into multiple buffers 
simultaneously (see “Selecting Color Buffers for Writing and Reading” on 
page 497 for details). In versions prior to OpenGL Version 3.0, all buffers 
enabled and disabled blending simultaneously (using glEnable() and 
glDisable()). As of Version 3.0, however, blending settings can be managed on 
a per-buffer basis, using glEnablei() and glDisablei() (described on page 516).

Combining Pixels Using Blending Equations

With standard blending, colors in the framebuffer are combined (using 
addition) with incoming fragment colors to produce the new framebuffer 
color. Either glBlendEquation() or glBlendEquationSeparate() may be 
used to select other mathematical operations to compute the difference, 
minimum, or maximum between color fragments and framebuffer pixels.

void glBlendEquation(GLenum mode);

Specifies how framebuffer and source colors are blended together. 
The allowable values for mode are GL_FUNC_ADD (the default), GL_
FUNC_SUBTRACT, GL_FUNC_REVERSE_SUBTRACT, GL_MIN, and GL_
MAX, of GL_LOGIC_OP. The possible modes are described in Table 6-2.

void glBlendEquationSeparate(GLenum modeRGB,
GLenum modeAlpha);

Specifies how framebuffer and source colors are blended together, 
but allows for different blending modes for the rgb and alpha color 
components. The allowable values for modeRGB and modeAlpha are 
identical for the modes accepted by glBlendEquation().

Advanced
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In Table 6-2, Cs and Cd represent the source and destination colors. The S 
and D parameters in the table represent the source and destination blending 
factors as specified with glBlendFunc() or glBlendFuncSeparate(). For 
GL_LOGIC_OP, the logical operator is specified by calling glLogicOp().
(See Table 10-4, “Sixteen Logical Operations,” on page 518 for the list of 
supported logical operations.)

In Example 6-1, the different blending equation modes are demonstrated. 
The ‘a’, ‘s’, ‘r’, ‘m’, and ‘x’ keys are used to select which blending mode to 
use. A blue square is used for the source color, and the yellow background 
is used as the destination color. The blending factor for each color is set to 
GL_ONE using glBlendFunc().

Example 6-1 Demonstrating the Blend Equation Modes: blendeqn.c

/*  The following keys change the selected blend equation mode 
 *
 *      ‘a’  ->  GL_FUNC_ADD
 *      ‘s’  ->  GL_FUNC_SUBTRACT
 *      ‘r’  ->  GL_FUNC_REVERSE_SUBTRACT
 *      ‘m’  ->  GL_MIN
 *      ‘x’  ->  GL_MAX
 */

void init(void)
{
   glClearColor(1.0, 1.0, 0.0, 0.0);

   glBlendFunc(GL_ONE, GL_ONE);
   glEnable(GL_BLEND);
}

Blending Mode Parameter Mathematical Operation

GL_FUNC_ADD CsS + CdD

GL_FUNC_SUBTRACT CsS  CdD

GL_FUNC_REVERSE_SUBTRACT CdD  CsS

GL_MIN min(CsS, CdD)

GL_MAX max(CsS, CdD)

GL_LOGIC_OP CS op CD

Table 6-2 Blending Equation Mathematical Operations
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void display(void)
{
   glClear(GL_COLOR_BUFFER_BIT);
   glColor3f(0.0, 0.0, 1.0);
   glRectf(-0.5, -0.5, 0.5, 0.5);
   glFlush();
}

void keyboard(unsigned char key, int x, int y)
{
   switch (key) {
      case ‘a’: case ‘A’:
       /* Colors are added as: (1,1,0) + (0,0,1) = (1,1,1) which
        * will produce a white square on a yellow background. */
          glBlendEquation(GL_FUNC_ADD);
          break;

      case ‘s’: case ‘S’:
      /* Colors are subtracted as: (0,0,1) - (1,1,0) = (-1,-1,1)
       * which is clamped to (0, 0, 1), producing a blue square
       * on a yellow background. */
          glBlendEquation(GL_FUNC_SUBTRACT);
          break;

      case ‘r’: case ‘R’:
      /* Colors are subtracted as: (1,1,0) - (0,0,1) = (1,1,-1)
       * which is clamped to (1, 1, 0). This produces yellow for
       * both the square and the background. */
          glBlendEquation(GL_FUNC_REVERSE_SUBTRACT);
          break;

      case ‘m’: case ‘M’:
      /* The minimum of each component is computed, as
       * [min(1,0),min(1,0),min(0,1)] which equates to (0,0,0).
       * This will produce a black square on the yellow
       * background. */
          glBlendEquation(GL_MIN);
          break;

      case ‘x’: case ‘X’:
      /* The minimum of each component is computed, as
       * [max(1, 0), max(1, 0), max(0, 1)] which equates to
       * (1, 1, 1).  This will produce a white square on the 
       * yellow background. */
          glBlendEquation(GL_MAX);
          break;
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      case 27:
         exit(0);
   } break;

   glutPostRedisplay();
}

Sample Uses of Blending

Not all combinations of source and destination factors make sense. Most 
applications use a small number of combinations. The following paragraphs 
describe typical uses for particular combinations of source and destination 
factors. Some of these examples use only the incoming alpha value, so they 
work even when alpha values aren’t stored in the framebuffer. Note that 
often there’s more than one way to achieve some of these effects. 

• One way to draw a picture composed half of one image and half of 
another, equally blended, is to set the source factor to GL_ONE and 
the destination factor to GL_ZERO, and draw the first image. Then 
set the source factor to GL_SRC_ALPHA and the destination factor 
to GL_ONE_MINUS_SRC_ALPHA, and draw the second image with 
alpha equal to 0.5. This pair of factors probably represents the most 
commonly used blending operation. If the picture is supposed to be 
blended with 0.75 of the first image and 0.25 of the second, draw the 
first image as before, and draw the second with an alpha of 0.25. 

• To blend three different images equally, set the destination factor to 
GL_ONE and the source factor to GL_SRC_ALPHA. Draw each of the 
images with alpha equal to 0.3333333. With this technique, each 
image is only one-third of its original brightness, which is noticeable 
where the images don’t overlap. 

• Suppose you’re writing a paint program, and you want to have a brush 
that gradually adds color so that each brush stroke blends in a little 
more color with whatever is currently in the image (say, 10 percent 
color with 90 percent image on each pass). To do this, draw the image 
of the brush with alpha of 10 percent and use GL_SRC_ALPHA (source) 
and GL_ONE_MINUS_SRC_ALPHA (destination). Note that you can 
vary the alphas across the brush to make the brush add more of its 
color in the middle and less on the edges, for an antialiased brush 
shape (see “Antialiasing”). Similarly, erasers can be implemented by 
setting the eraser color to the background color.
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• The blending functions that use the source or destination colors—
GL_DST_COLOR or GL_ONE_MINUS_DST_COLOR for the source factor 
and GL_SRC_COLOR or GL_ONE_MINUS_SRC_COLOR for the desti-
nation factor—effectively allow you to modulate each color compo-
nent individually. This operation is equivalent to applying a simple 
filter—for example, multiplying the red component by 80 percent, the 
green component by 40 percent, and the blue component by 72 per-
cent would simulate viewing the scene through a photographic filter 
that blocks 20 percent of red light, 60 percent of green, and 28 percent 
of blue. 

• Suppose you want to draw a picture composed of three translucent 
surfaces, some obscuring others, and all over a solid background. 
Assume the farthest surface transmits 80 percent of the color behind it, 
the next transmits 40 percent, and the closest transmits 90 percent. To 
compose this picture, draw the background first with the default source 
and destination factors, and then change the blending factors to GL_
SRC_ALPHA (source) and GL_ONE_MINUS_SRC_ALPHA (destination). 
Next, draw the farthest surface with an alpha of 0.2, then the middle 
surface with an alpha of 0.6, and finally the closest surface with an 
alpha of 0.1.

• If your system has alpha planes, you can render objects one at a time 
(including their alpha values), read them back, and then perform inter-
esting matting or compositing operations with the fully rendered 
objects. (See “Compositing 3D Rendered Images” by Tom Duff, 
SIGGRAPH 1985 Proceedings, pp. 41–44, for examples of this tech-
nique.) Note that objects used for picture composition can come from 
any source—they can be rendered using OpenGL commands, rendered 
using techniques such as ray-tracing or radiosity that are implemented 
in another graphics library, or obtained by scanning in existing images. 

• You can create the effect of a nonrectangular raster image by assigning 
different alpha values to individual fragments in the image. In most 
cases, you would assign an alpha of 0 to each “invisible” fragment and 
an alpha of 1.0 to each opaque fragment. For example, you can draw a 
polygon in the shape of a tree and apply a texture map of foliage; the 
viewer can see through parts of the rectangular texture that aren’t part 
of the tree if you’ve assigned them alpha values of 0. This method, 
sometimes called billboarding, is much faster than creating the tree out 
of three-dimensional polygons. An example of this technique is shown 
in Figure 6-1, in which the tree is a single rectangular polygon that can 
be rotated about the center of the trunk, as shown by the outlines, so 
that it’s always facing the viewer. (See “Texture Functions” in 
Chapter 9 for more information about blending textures.) 
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• Blending is also used for antialiasing, which is a rendering technique to 
reduce the jagged appearance of primitives drawn on a raster screen. 
(See “Antialiasing” for more information.)

A Blending Example 

Example 6-2 draws two overlapping colored triangles, each with an alpha of 
0.75. Blending is enabled and the source and destination blending factors 
are set to GL_SRC_ALPHA and GL_ONE_MINUS_SRC_ALPHA, respectively.

When the program starts up, a yellow triangle is drawn on the left and then 
a cyan triangle is drawn on the right so that in the center of the window, 
where the triangles overlap, cyan is blended with the original yellow. You 
can change which triangle is drawn first by typing ‘t’ in the window.

Figure 6-1 Creating a Nonrectangular Raster Image
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Example 6-2 Blending Example: alpha.c

static int leftFirst = GL_TRUE;

/*  Initialize alpha blending function.  */
static void init(void)
{
   glEnable(GL_BLEND);
   glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
   glShadeModel(GL_FLAT);
   glClearColor(0.0, 0.0, 0.0, 0.0);
}

static void drawLeftTriangle(void)
{
/* draw yellow triangle on LHS of screen */
   glBegin(GL_TRIANGLES);
      glColor4f(1.0, 1.0, 0.0, 0.75);
      glVertex3f(0.1, 0.9, 0.0); 
      glVertex3f(0.1, 0.1, 0.0); 
      glVertex3f(0.7, 0.5, 0.0); 
   glEnd();
}

static void drawRightTriangle(void)
{
/* draw cyan triangle on RHS of screen */
   glBegin(GL_TRIANGLES);
      glColor4f(0.0, 1.0, 1.0, 0.75);
      glVertex3f(0.9, 0.9, 0.0); 
      glVertex3f(0.3, 0.5, 0.0); 
      glVertex3f(0.9, 0.1, 0.0); 
   glEnd();
}

void display(void)
{
   glClear(GL_COLOR_BUFFER_BIT);

   if (leftFirst) {
      drawLeftTriangle();
      drawRightTriangle();
   }
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   else {
      drawRightTriangle();
      drawLeftTriangle();
   }
   glFlush();
}

void reshape(int w, int h)
{
   glViewport(0, 0, (GLsizei) w, (GLsizei) h);
   glMatrixMode(GL_PROJECTION);
   glLoadIdentity();
   if (w <= h) 
      gluOrtho2D(0.0, 1.0, 0.0, 1.0*(GLfloat)h/(GLfloat)w);
   else 
      gluOrtho2D(0.0, 1.0*(GLfloat)w/(GLfloat)h, 0.0, 1.0);
}

void keyboard(unsigned char key, int x, int y)
{
   switch (key) {
      case ‘t’:
      case ‘T’:
         leftFirst = !leftFirst;
         glutPostRedisplay();   
         break;
      case 27:  /*  Escape key  */
         exit(0);
         break;
      default:
         break;
   }
}

int main(int argc, char** argv)
{
   glutInit(&argc, argv);
   glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
   glutInitWindowSize(200, 200);
   glutCreateWindow(argv[0]);
   init();
   glutReshapeFunc(reshape);
   glutKeyboardFunc(keyboard);
   glutDisplayFunc(display);
   glutMainLoop();
   return 0;
}
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The order in which the triangles are drawn affects the color of the over-
lapping region. When the left triangle is drawn first, cyan fragments (the 
source) are blended with yellow fragments, which are already in the frame-
buffer (the destination). When the right triangle is drawn first, yellow is 
blended with cyan. Because the alpha values are all 0.75, the actual blending 
factors become 0.75 for the source and 1.0  0.75 = 0.25 for the destination. 
In other words, the source fragments are somewhat translucent, but they 
have more effect on the final color than do the destination fragments.

Three-Dimensional Blending with the Depth Buffer

As you saw in the previous example, the order in which polygons are drawn 
greatly affects the blended result. When drawing three-dimensional trans-
lucent objects, you can get different appearances depending on whether 
you draw the polygons from back to front or from front to back. You also 
need to consider the effect of the depth buffer when determining the cor-
rect order. (See “A Hidden-Surface Removal Survival Kit” in Chapter 5 for an 
introduction to the depth buffer. Also see “Depth Test” in Chapter 10 for 
more information.) The depth buffer keeps track of the distance between 
the viewpoint and the portion of the object occupying a given pixel in a 
window on the screen; when another candidate color arrives for that pixel, 
it’s drawn only if its object is closer to the viewpoint, in which case its depth 
value is stored in the depth buffer. With this method, obscured (or hidden) 
portions of surfaces aren’t necessarily drawn and therefore aren’t used for 
blending.

If you want to render both opaque and translucent objects in the same 
scene, then you want to use the depth buffer to perform hidden-surface 
removal for any objects that lie behind the opaque objects. If an opaque 
object hides either a translucent object or another opaque object, you want 
the depth buffer to eliminate the more distant object. If the translucent 
object is closer, however, you want to blend it with the opaque object. You 
can generally figure out the correct order in which to draw the polygons if 
everything in the scene is stationary, but the problem can quickly become 
too hard if either the viewpoint or the object is moving. 

The solution is to enable depth buffering but make the depth buffer read-
only while drawing the translucent objects. First you draw all the opaque 
objects, with the depth buffer in normal operation. Then you preserve these 
depth values by making the depth buffer read-only. When the translucent 
objects are drawn, their depth values are still compared with the values 
established by the opaque objects, so they aren’t drawn if they’re behind the 
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opaque ones. If they’re closer to the viewpoint, however, they don’t elimi-
nate the opaque objects, since the depth-buffer values can’t change. Instead, 
they’re blended with the opaque objects. To control whether the depth 
buffer is writable, use glDepthMask(); if you pass GL_FALSE as the argu-
ment, the buffer becomes read-only, whereas GL_TRUE restores the normal, 
writable operation.

Example 6-3 demonstrates how to use this method to draw opaque and 
translucent three-dimensional objects. In the program, typing ‘a’ triggers an 
animation sequence in which a translucent cube moves through an opaque 
sphere. Pressing the ‘r’ key resets the objects in the scene to their initial 
positions. To get the best results when transparent objects overlap, draw the 
objects from back to front.

Example 6-3 Three-Dimensional Blending: alpha3D.c

#define MAXZ 8.0
#define MINZ -8.0
#define ZINC 0.4
static float solidZ = MAXZ;
static float transparentZ = MINZ;
static GLuint sphereList, cubeList;

static void init(void)
{
   GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 0.15 };
   GLfloat mat_shininess[] = { 100.0 };
   GLfloat position[] = { 0.5, 0.5, 1.0, 0.0 };

   glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
   glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess);
   glLightfv(GL_LIGHT0, GL_POSITION, position);

   glEnable(GL_LIGHTING);
   glEnable(GL_LIGHT0);
   glEnable(GL_DEPTH_TEST);

   sphereList = glGenLists(1);
   glNewList(sphereList, GL_COMPILE);
      glutSolidSphere(0.4, 16, 16);
   glEndList();
   cubeList = glGenLists(1);
   glNewList(cubeList, GL_COMPILE);
      glutSolidCube(0.6);
   glEndList();
}
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void display(void)
{
   GLfloat mat_solid[] = { 0.75, 0.75, 0.0, 1.0 };
   GLfloat mat_zero[] = { 0.0, 0.0, 0.0, 1.0 };
   GLfloat mat_transparent[] = { 0.0, 0.8, 0.8, 0.6 };
   GLfloat mat_emission[] = { 0.0, 0.3, 0.3, 0.6 };

   glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

   glPushMatrix();
      glTranslatef(-0.15, -0.15, solidZ);
      glMaterialfv(GL_FRONT, GL_EMISSION, mat_zero);
      glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_solid);
      glCallList(sphereList);
   glPopMatrix();

   glPushMatrix();
      glTranslatef(0.15, 0.15, transparentZ);
      glRotatef(15.0, 1.0, 1.0, 0.0);
      glRotatef(30.0, 0.0, 1.0, 0.0);
      glMaterialfv(GL_FRONT, GL_EMISSION, mat_emission);
      glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_transparent);
      glEnable(GL_BLEND);
      glDepthMask(GL_FALSE);
      glBlendFunc(GL_SRC_ALPHA, GL_ONE);
      glCallList(cubeList);
      glDepthMask(GL_TRUE);
      glDisable(GL_BLEND);
   glPopMatrix();

   glutSwapBuffers();
}

void reshape(int w, int h)
{
   glViewport(0, 0, (GLint) w, (GLint) h);
   glMatrixMode(GL_PROJECTION);
   glLoadIdentity();
   if (w <= h)
      glOrtho(-1.5, 1.5, -1.5*(GLfloat)h/(GLfloat)w,
             1.5*(GLfloat)h/(GLfloat)w, -10.0, 10.0);
   else
      glOrtho(-1.5*(GLfloat)w/(GLfloat)h,
             1.5*(GLfloat)w/(GLfloat)h, -1.5, 1.5, -10.0, 10.0);
   glMatrixMode(GL_MODELVIEW);
   glLoadIdentity();
}
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void animate(void)
{
   if (solidZ <= MINZ || transparentZ >= MAXZ)
      glutIdleFunc(NULL);
   else {
      solidZ -= ZINC;
      transparentZ += ZINC;
      glutPostRedisplay();
   }
}

void keyboard(unsigned char key, int x, int y)
{
   switch (key) {
      case ‘a’:
      case ‘A’:
         solidZ = MAXZ;
         transparentZ = MINZ;
         glutIdleFunc(animate);
         break;
      case ‘r’:
      case ‘R’:
         solidZ = MAXZ;
         transparentZ = MINZ;
         glutPostRedisplay();
         break;
      case 27:
        exit(0);
    } break;
}

int main(int argc, char** argv)
{
   glutInit(&argc, argv);
   glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);
   glutInitWindowSize(500, 500);
   glutCreateWindow(argv[0]);
   init();
   glutReshapeFunc(reshape);
   glutKeyboardFunc(keyboard);
   glutDisplayFunc(display);
   glutMainLoop();
   return 0;
}
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Antialiasing 

You might have noticed in some of your OpenGL pictures that lines, 
especially nearly horizontal and nearly vertical ones, appear jagged. These 
“jaggies” appear because the ideal line is approximated by a series of pixels 
that must lie on the pixel grid. The jaggedness is called aliasing, and this 
section describes antialiasing techniques for reducing it. Figure 6-2 shows 
two intersecting lines, both aliased and antialiased. The pictures have been 
magnified to show the effect. 

Figure 6-3 shows how a diagonal line 1 pixel wide covers more of some pixel 
squares than others. In fact, when performing antialiasing, OpenGL calculates 
a coverage value for each fragment based on the fraction of the pixel square 
on the screen that it would cover. Figure 6-3 shows these coverage values for 
the line. In RGBA mode, OpenGL multiplies the fragment’s alpha value by 
its coverage. You can then use the resulting alpha value to blend the frag-
ment with the corresponding pixel already in the framebuffer. In color-
index mode, OpenGL sets the least significant 4 bits of the color index based 
on the fragment’s coverage (0000 for no coverage and 1111 for complete 
coverage). It’s up to you to load your color map and apply it appropriately 
to take advantage of this coverage information.

The details of calculating coverage values are complex, are difficult to 
specify in general, and in fact may vary slightly depending on your 
particular implementation of OpenGL. You can use the glHint() command 
to exercise some control over the trade-off between image quality and 
speed, but not all implementations will take the hint.

Figure 6-2 Aliased and Antialiased Lines
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void glHint(GLenum target, GLenum hint);

Controls certain aspects of OpenGL behavior. The target parameter 
indicates which behavior is to be controlled; its possible values are shown 
in Table 6-3. The hint parameter can be GL_FASTEST to indicate that 
the most efficient option should be chosen, GL_NICEST to indicate the 
highest-quality option, or GL_DONT_CARE to indicate no preference. 
The interpretation of hints is implementation-dependent; an OpenGL 
implementation can ignore them entirely. (For more information about 
the relevant topics, see this section for details about sampling and “Fog” 
for details about fog.) 

The GL_PERSPECTIVE_CORRECTION_HINT target parameter refers 
to how color values and texture coordinates are interpolated across a 
primitive: either linearly in screen space (a relatively simple calculation) 
or in a perspective-correct manner (which requires more computation). 
Often, systems perform linear color interpolation because the results, 
while not technically correct, are visually acceptable; however, in most 
cases, textures require perspective-correct interpolation to be visually 
acceptable. Thus, an OpenGL implementation can choose to use this 
parameter to control the method used for interpolation. (See Chapter 3 
for a discussion of perspective projection, Chapter 4 for a discussion of 
color, and Chapter 9 for a discussion of texture mapping.)
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Antialiasing Points or Lines

One way to antialias points or lines is to turn on antialiasing with glEnable(),
passing in GL_POINT_SMOOTH or GL_LINE_SMOOTH, as appropriate. You 
might also want to provide a quality hint with glHint(). (Remember that 
you can set the size of a point or the width of a line. You can also stipple a 
line. See “Line Details” in Chapter 2.) Then follow the procedures described 
in one of the following sections, depending on whether you’re in RGBA or 
color-index mode. 

Another way to antialias points or lines is to use multisampling, as described 
in “Antialiasing Geometric Primitives with Multisampling.”

Antialiasing in RGBA Mode

In RGBA mode, you need to enable blending. The blending factors you most 
likely want to use are GL_SRC_ALPHA (source) and GL_ONE_MINUS_SRC_
ALPHA (destination). Alternatively, you can use GL_ONE for the destination 
factor to make lines a little brighter where they intersect. Now you’re ready 

Parameter Specifies

GL_POINT_SMOOTH_HINT, GL_LINE_
SMOOTH_HINT, GL_POLYGON_
SMOOTH_HINT

sampling quality of points, lines, 
or polygons during antialiasing 
operations

GL_FOG_HINT whether fog calculations are done 
per pixel (GL_NICEST) or per vertex 
(GL_FASTEST)

GL_PERSPECTIVE_CORRECTION_HINT quality of color and texture-
coordinate interpolation

GL_GENERATE_MIPMAP_HINT quality and performance of 
automatic mipmap level generation

GL_TEXTURE_COMPRESSION_HINT quality and performance of 
compressing texture images

GL_FRAGMENT_SHADER_DERIVATIVE_
HINT

derivative accuracy for fragment 
processing for built-in GLSL shader 
functions dFdx, dFdy, and fwidth

Table 6-3 Values for Use with glHint()

http://lib.ommolketab.ir
http//lib.ommolketab.ir


270 Chapter 6: Blending, Antialiasing, Fog, and Polygon Offset

to draw whatever points or lines you want antialiased. The antialiased effect 
is most noticeable if you use a fairly high alpha value. Remember that since 
you’re performing blending, you might need to consider the rendering 
order as described in “Three-Dimensional Blending with the Depth Buffer.” 
However, in most cases, the ordering can be ignored without significant 
adverse effects. Example 6-4 initializes the necessary modes for antialiasing 
and then draws two intersecting diagonal lines. When you run this program, 
press the ‘r’ key to rotate the lines so that you can see the effect of antialiasing 
on lines of different slopes. Note that the depth buffer isn’t enabled in this 
example.

Example 6-4 Antialiased Lines: aargb.c

static float rotAngle = 0.;

/*  Initialize antialiasing for RGBA mode, including alpha
 *  blending, hint, and line width.  Print out implementation-
 *  specific info on line width granularity and width.
 */
void init(void)
{
   GLfloat values[2];
   glGetFloatv(GL_LINE_WIDTH_GRANULARITY, values);
   printf(“GL_LINE_WIDTH_GRANULARITY value is %3.1f\n”,
      values[0]);
   glGetFloatv(GL_LINE_WIDTH_RANGE, values);
   printf(“GL_LINE_WIDTH_RANGE values are %3.1f %3.1f\n”,
      values[0], values[1]);

   glEnable(GL_LINE_SMOOTH);
   glEnable(GL_BLEND);
   glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
   glHint(GL_LINE_SMOOTH_HINT, GL_DONT_CARE);
   glLineWidth(1.5);

   glClearColor(0.0, 0.0, 0.0, 0.0);
}

/* Draw 2 diagonal lines to form an X */
void display(void)
{
   glClear(GL_COLOR_BUFFER_BIT);

   glColor3f(0.0, 1.0, 0.0);
   glPushMatrix();
   glRotatef(-rotAngle, 0.0, 0.0, 0.1);
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   glBegin(GL_LINES);
      glVertex2f(-0.5, 0.5);
      glVertex2f(0.5, -0.5);
   glEnd();
   glPopMatrix();

   glColor3f(0.0, 0.0, 1.0);
   glPushMatrix();
   glRotatef(rotAngle, 0.0, 0.0, 0.1);
   glBegin(GL_LINES);
      glVertex2f(0.5, 0.5);
      glVertex2f(-0.5, -0.5);
   glEnd();
   glPopMatrix();

   glFlush();
}

void reshape(int w, int h)
{
   glViewport(0, 0, (GLint) w, (GLint) h);
   glMatrixMode(GL_PROJECTION);
   glLoadIdentity();
   if (w <= h) 
      gluOrtho2D(-1.0, 1.0, 
         -1.0*(GLfloat)h/(GLfloat)w, 1.0*(GLfloat)h/(GLfloat)w);
   else 
      gluOrtho2D(-1.0*(GLfloat)w/(GLfloat)h, 
         1.0*(GLfloat)w/(GLfloat)h, -1.0, 1.0);
   glMatrixMode(GL_MODELVIEW);
   glLoadIdentity();
}

void keyboard(unsigned char key, int x, int y)
{
   switch (key) {
      case ‘r’:
      case ‘R’:
         rotAngle += 20.;
         if (rotAngle >= 360.) rotAngle = 0.;
         glutPostRedisplay();   
         break;
      case 27:  /*  Escape Key  */
         exit(0);
         break;
      default:
         break;
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    }
}

int main(int argc, char** argv)
{
   glutInit(&argc, argv);
   glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
   glutInitWindowSize(200, 200);
   glutCreateWindow(argv[0]);
   init();
   glutReshapeFunc(reshape);
   glutKeyboardFunc(keyboard);
   glutDisplayFunc(display);
   glutMainLoop();
   return 0;
}

Antialiasing in Color-Index Mode

The tricky part about antialiasing in color-index mode is loading and using 
the color map. Since the last 4 bits of the color index indicate the coverage 
value, you need to load 16 contiguous indices with a color ramp from the 
background color to the object’s color. (The ramp has to start with an index 
value that’s a multiple of 16.) Then you clear the color buffer to the first of 
the 16 colors in the ramp and draw your points or lines using colors in the 
ramp. Example 6-5 demonstrates how to construct the color ramp to draw 
antialiased lines in color-index mode. In this example, two color ramps 
are created: One contains shades of green and the other shades of blue.

Example 6-5 Antialiasing in Color-Index Mode: aaindex.c

#define RAMPSIZE 16
#define RAMP1START 32
#define RAMP2START 48

static float rotAngle = 0.;

/*  Initialize antialiasing for color-index mode,
 *  including loading a green color ramp starting
 *  at RAMP1START and a blue color ramp starting
 *  at RAMP2START. The ramps must be a multiple of 16.
 */
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void init(void)
{
   int i;

   for (i = 0; i < RAMPSIZE; i++) {
      GLfloat shade;
      shade = (GLfloat) i/(GLfloat) RAMPSIZE;
      glutSetColor(RAMP1START+(GLint)i, 0., shade, 0.);
      glutSetColor(RAMP2START+(GLint)i, 0., 0., shade);
   }
   glEnable(GL_LINE_SMOOTH);
   glHint(GL_LINE_SMOOTH_HINT, GL_DONT_CARE);
   glLineWidth(1.5);

   glClearIndex((GLfloat) RAMP1START);
}
/*  Draw 2 diagonal lines to form an X */
void display(void)
{
   glClear(GL_COLOR_BUFFER_BIT);

   glIndexi(RAMP1START);
   glPushMatrix();
   glRotatef(-rotAngle, 0.0, 0.0, 0.1);
   glBegin(GL_LINES);
      glVertex2f(-0.5, 0.5);
      glVertex2f(0.5, -0.5);
   glEnd();
   glPopMatrix();

   glIndexi(RAMP2START);
   glPushMatrix();
   glRotatef(rotAngle, 0.0, 0.0, 0.1);
   glBegin(GL_LINES);
      glVertex2f(0.5, 0.5);
      glVertex2f(-0.5, -0.5);
   glEnd();
   glPopMatrix();

   glFlush();
}

void reshape(int w, int h)
{
   glViewport(0, 0, (GLsizei) w, (GLsizei) h);
   glMatrixMode(GL_PROJECTION);
   glLoadIdentity();
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   if (w <= h) 
      gluOrtho2D(-1.0, 1.0, 
         -1.0*(GLfloat)h/(GLfloat)w, 1.0*(GLfloat)h/(GLfloat)w);
   else 
      gluOrtho2D(-1.0*(GLfloat)w/(GLfloat)h, 
         1.0*(GLfloat)w/(GLfloat)h, -1.0, 1.0);
   glMatrixMode(GL_MODELVIEW);
   glLoadIdentity();
}

void keyboard(unsigned char key, int x, int y)
{
   switch (key) {
      case ‘r’:
      case ‘R’:
         rotAngle += 20.;
         if (rotAngle >= 360.) rotAngle = 0.;
         glutPostRedisplay();   
         break;
      case 27:  /*  Escape Key */
         exit(0);
         break;
      default:
         break;
    }
}

int main(int argc, char** argv)
{
   glutInit(&argc, argv);
   glutInitDisplayMode(GLUT_SINGLE | GLUT_INDEX);
   glutInitWindowSize(200, 200);
   glutCreateWindow(argv[0]);
   init();
   glutReshapeFunc(reshape);
   glutKeyboardFunc(keyboard);
   glutDisplayFunc(display);
   glutMainLoop();
   return 0;
}

Since the color ramp goes from the background color to the object’s color, 
the antialiased lines look correct only in the areas where they are drawn on 
top of the background. When the blue line is drawn, it erases part of the 
green line at the point where the lines intersect. To fix this, you would need 
to redraw the area where the lines intersect using a ramp that goes from 
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green (the color of the line in the framebuffer) to blue (the color of the line 
being drawn). However, this requires additional calculations, and it is 
usually not worth the effort since the intersection area is small. Note that 
this is not a problem in RGBA mode, since the colors of objects being drawn 
are blended with the color already in the framebuffer.

You may also want to enable the depth test when drawing antialiased points 
and lines in color-index mode. In this example, the depth test is disabled 
since both of the lines lie in the same z-plane. However, if you want to draw 
a three-dimensional scene, you should enable the depth buffer so that the 
resulting pixel colors correspond to the “nearest” objects.

The trick described in “Three-Dimensional Blending with the Depth Buffer” 
can also be used to mix antialiased points and lines with aliased, depth-
buffered polygons. To do this, draw the polygons first, then make the depth 
buffer read-only and draw the points and lines. The points and lines 
intersect nicely with each other but will be obscured by nearer polygons. 

Try This

Take a previous program, such as the robot arm or solar system examples 
described in “Examples of Composing Several Transformations” in 
Chapter 3, and draw wireframe objects with antialiasing. Try it in either 
RGBA or color-index mode. Also try different line widths and point sizes to 
see their effects.

Antialiasing Geometric Primitives with Multisampling

Multisampling is a technique that uses additional color, depth, and stencil 
information (samples) to antialias OpenGL primitives: points, lines, poly-
gons, bitmaps, and images. Each fragment, instead of having a single color, 
single depth, and single set of texture coordinates, has multiple colors, 
depths, and texture coordinate sets, based upon the number of subpixel 
samples. Calculations aren’t at the dead center of each pixel (as they typi-
cally are when you have one sample), but are dispersed at several sample 
locations. Instead of using alpha values to represent how much a primitive 
covers a pixel, antialiasing coverage values are calculated from the samples 
saved in a multisample buffer. 

Multisampling is especially good for antialiasing the edges of polygons, 
because sorting isn’t needed. (If you are using alpha values to antialias poly-
gons, the order in which translucent objects are drawn affects the color of 
the results.) Multisampling takes care of traditionally difficult cases, such as 
intersecting or adjacent polygons. 

Try This
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Multisampling is trivial to add to an application. Just follow these three 
steps:

1. Obtain a window that supports multisampling. With GLUT, you can 
ask for one by calling

glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB |
GLUT_MULTISAMPLE);

2. After you’ve opened a window, you will need to verify that multi-
sampling is available. For instance, GLUT may give you a window 
with “almost” what you have asked for. If querying the state variable 
GL_SAMPLE_BUFFERS returns a value of one and GL_SAMPLES returns 
a value greater than one, then you’ll be able to use multisampling. 
(GL_SAMPLES returns the number of subpixel samples. If there is only 
one sample, multisampling is effectively disabled.)

GLint bufs, samples;
glGetIntegerv(GL_SAMPLE_BUFFERS, &bufs);
glGetIntegerv(GL_SAMPLES, &samples);

3. To turn on multisampling, call

glEnable(GL_MULTISAMPLE);

Example 6-6 displays two sets of primitives side-by-side so that you can see 
the difference that multisampling makes. init() checks the multisampling 
state variables and then two display lists are compiled: one list with a “pin-
wheel” of lines of different widths and triangles (filled polygons) and the 
other with a checkerboard background. In display(), the pinwheel is drawn 
both with multisampling (on the left) and without (right). You should com-
pare the aliasing of the two objects. A contrasting background sometimes 
accentuates aliasing, and other times it may obscure it. You can press the ‘b’ 
key to redraw the scene with or without the checkerboard background. 

Example 6-6 Enabling Multisampling: multisamp.c

static int bgtoggle = 1;

/*
 *  Print out state values related to multisampling.
 *  Create display list with "pinwheel" of lines and
 *  triangles. 
 */
void init(void)
{
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   GLint buf, sbuf;
   int i, j;

   glClearColor(0.0, 0.0, 0.0, 0.0);
   glGetIntegerv(GL_SAMPLE_BUFFERS, &buf);
   printf("number of sample buffers is %d\n", buf);
   glGetIntegerv(GL_SAMPLES, &sbuf);
   printf("number of samples is %d\n", sbuf);

   glNewList(1, GL_COMPILE);
   for (i = 0; i < 19; i++) {
      glPushMatrix();
      glRotatef(360.0*(float)i/19.0, 0.0, 0.0, 1.0);
      glColor3f (1.0, 1.0, 1.0);
      glLineWidth((i%3)+1.0);
      glBegin(GL_LINES);
         glVertex2f(0.25, 0.05);
         glVertex2f(0.9, 0.2);
      glEnd();
      glColor3f(0.0, 1.0, 1.0);
      glBegin(GL_TRIANGLES);
         glVertex2f(0.25, 0.0);
         glVertex2f(0.9, 0.0);
         glVertex2f(0.875, 0.10);
      glEnd();
      glPopMatrix();
   }
   glEndList();

   glNewList(2, GL_COMPILE);
   glColor3f(1.0, 0.5, 0.0);
   glBegin(GL_QUADS);
   for (i = 0; i < 16; i++) {
      for (j = 0; j < 16; j++) {
         if (((i + j) % 2) == 0) {
            glVertex2f(-2.0 + (i * 0.25), -2.0 + (j * 0.25));
            glVertex2f(-2.0 + (i * 0.25), -1.75 + (j * 0.25));
            glVertex2f(-1.75 + (i * 0.25), -1.75 + (j * 0.25));
            glVertex2f(-1.75 + (i * 0.25), -2.0 + (j * 0.25));
         }
      }
   }
   glEnd();
   glEndList();
}
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/*  Draw two sets of primitives so that you can 
 *  compare the user of multisampling against its absence.
 *
 *  This code enables antialiasing and draws one display list,
 *  and then it disables and draws the other display list.
 */
void display(void)
{
   glClear(GL_COLOR_BUFFER_BIT);

   if (bgtoggle) 
      glCallList(2);

   glEnable(GL_MULTISAMPLE);
   glPushMatrix();
   glTranslatef(-1.0, 0.0, 0.0);
   glCallList(1);
   glPopMatrix();

   glDisable(GL_MULTISAMPLE);
   glPushMatrix();
   glTranslatef(1.0, 0.0, 0.0);
   glCallList(1);
   glPopMatrix();
   glutSwapBuffers();
}

void keyboard(unsigned char key, int x, int y)
{
   switch (key) {
      case ’b’:
      case ’B’:
         bgtoggle = !bgtoggle;
         glutPostRedisplay();
         break;
      case 27:  /*  Escape Key  */
         exit(0);
         break;
      default:
         break;
    }

}

With a standard implementation, you can’t fine-tune multisampling. You 
can’t change the number of samples or specify (or even query) the subpixel 
sample locations. 
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If multisampling is enabled and there’s also a multisample buffer, then 
points, lines, and polygons generate fragments that are intended for 
antialiasing. For example, a large-sized point primitive is rounded, not 
square, whether GL_POINT_SMOOTH has been enabled or disabled. The 
states of GL_LINE_SMOOTH and GL_POLYGON_SMOOTH are similarly 
ignored. Other primitive attributes, such as point size and line width, are 
supported during multisampling.

Alpha and Multisampling Coverage

By default, multisampling calculates fragment coverage values that are 
independent of alpha. However, if you enable one of the following special 
modes, then a fragment’s alpha value is taken into consideration when 
calculating the coverage. The special modes are as follows:

• GL_SAMPLE_ALPHA_TO_COVERAGE uses the alpha value of the 
fragment to compute the final coverage value.

• GL_SAMPLE_ALPHA_TO_ONE sets the fragment’s alpha value to one, 
the maximum alpha value, and then uses that value in the coverage 
calculation.

• GL_SAMPLE_COVERAGE uses the value set with the glSampleCoverage()
routine, which is combined (ANDed) with the calculated coverage value. 
Additionally, this mode can be inverted by setting the invert flag with 
the glSampleCoverage() routine.

Antialiasing Polygons

Antialiasing the edges of filled polygons is similar to antialiasing points and 
lines. When different polygons have overlapping edges, you need to blend 
the color values appropriately. You can use the method described in this 
section, or you can use the accumulation buffer to perform antialiasing for 
your entire scene. Using the accumulation buffer, which is described in 

void glSampleCoverage(GLclampf value, GLboolean invert);

Sets parameters to be used to interpret alpha values while computing 
multisampling coverage. value is a temporary coverage value that is used 
if GL_SAMPLE_COVERAGE or GL_SAMPLE_ALPHA_TO_COVERAGE has 
been enabled. invert is a Boolean that indicates whether the temporary 
coverage value ought to be bitwise inverted before it is used (ANDed) with 
the fragment coverage.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


280 Chapter 6: Blending, Antialiasing, Fog, and Polygon Offset

Chapter 10, is easier from your point of view, but it’s much more 
computation-intensive and therefore slower. However, as you’ll see, the 
method described here is rather cumbersome. 

Note: If you draw your polygons as points at the vertices or as outlines—
that is, by passing GL_POINT or GL_LINE to glPolygonMode()—
point or line antialiasing is applied, if enabled as described earlier. 
The rest of this section addresses polygon antialiasing when you’re 
using GL_FILL as the polygon mode. 

In theory, you can antialias polygons in either RGBA or color-index mode. 
However, object intersections affect polygon antialiasing more than they 
affect point or line antialiasing, so rendering order and blending accuracy 
become more critical. In fact, they’re so critical that if you’re antialiasing 
more than one polygon, you need to order the polygons from front to back, 
and then use glBlendFunc() with GL_SRC_ALPHA_SATURATE for the 
source factor and GL_ONE for the destination factor. Thus, antialiasing 
polygons in color-index mode normally isn’t practical.

To antialias polygons in RGBA mode, you use the alpha value to represent 
coverage values of polygon edges. You need to enable polygon antialiasing 
by passing GL_POLYGON_SMOOTH to glEnable(). This causes pixels on 
the edges of the polygon to be assigned fractional alpha values based on 
their coverage, as though they were lines being antialiased. Also, if you 
desire, you can supply a value for GL_POLYGON_SMOOTH_HINT. 

Now you need to blend overlapping edges appropriately. First, turn off 
the depth buffer so that you have control over how overlapping pixels 
are drawn. Then set the blending factors to GL_SRC_ALPHA_SATURATE 
(source) and GL_ONE (destination). With this specialized blending function, 
the final color is the sum of the destination color and the scaled source color; 
the scale factor is the smaller of either the incoming source alpha value or 
1 minus the destination alpha value. This means that for a pixel with a large 
alpha value, successive incoming pixels have little effect on the final color 
because 1 minus the destination alpha is almost zero. With this method, a pixel 
on the edge of a polygon might be blended eventually with the colors from 
another polygon that’s drawn later. Finally, you need to sort all the polygons in 
your scene so that they’re ordered from front to back before drawing them. 

Fog

Computer images sometimes seem unrealistically sharp and well defined. 
Antialiasing makes an object appear more realistic by smoothing its edges. 
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Additionally, you can make an entire image appear more natural by adding 
fog, which makes objects fade into the distance. “Fog” is a general term that 
describes similar forms of atmospheric effects; it can be used to simulate 
haze, mist, smoke, or pollution (see Plate 9). Fog is essential in visual-
simulation applications, where limited visibility needs to be approximated. 
It’s often incorporated into flight-simulator displays. 

When fog is enabled, objects that are farther from the viewpoint begin 
to fade into the fog color. You can control the density of the fog, which 
determines the rate at which objects fade as the distance increases, as well 
as the fog’s color. You can also explicitly specify a fog coordinate per-vertex 
for fog distance calculations, rather than use an automatically calculated 
depth value.

Fog is available in both RGBA and color-index modes, although the 
calculations are slightly different in the two modes. Since fog is applied after 
matrix transformations, lighting, and texturing are performed, it affects 
transformed, lit, and textured objects. Note that with large simulation 
programs, fog can improve performance, since you can choose not to draw 
objects that would be too fogged to be visible.

All types of geometric primitives can be fogged, including points and lines. 
Using the fog effect on points and lines is also called depth-cuing (as shown 
in Plate 2) and is popular in molecular modeling and other applications.

Using Fog

Using fog is easy. You enable it by passing GL_FOG to glEnable(), and you 
choose the color and the equation that controls the density with glFog*().
If you want, you can supply a value for GL_FOG_HINT with glHint(),
as described in Table 6-3. Example 6-7 draws five red spheres, each at a 
different distance from the viewpoint. Pressing the ‘f’ key selects among the 
three different fog equations, which are described in the next section.

Example 6-7 Five Fogged Spheres in RGBA Mode: fog.c

static GLint fogMode;

static void init(void)
{
   GLfloat position[] = { 0.5, 0.5, 3.0, 0.0 };

   glEnable(GL_DEPTH_TEST);

   glLightfv(GL_LIGHT0, GL_POSITION, position);
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   glEnable(GL_LIGHTING);
   glEnable(GL_LIGHT0);
   {
      GLfloat mat[3] = {0.1745, 0.01175, 0.01175};      
      glMaterialfv(GL_FRONT, GL_AMBIENT, mat);
      mat[0] = 0.61424; mat[1] = 0.04136; mat[2] = 0.04136;     
      glMaterialfv(GL_FRONT, GL_DIFFUSE, mat);
      mat[0] = 0.727811; mat[1] = 0.626959; mat[2] = 0.626959;
      glMaterialfv(GL_FRONT, GL_SPECULAR, mat);
      glMaterialf(GL_FRONT, GL_SHININESS, 0.6*128.0);
   }

   glEnable(GL_FOG);
   {
      GLfloat fogColor[4] = {0.5, 0.5, 0.5, 1.0};

      fogMode = GL_EXP;
      glFogi(GL_FOG_MODE, fogMode);
      glFogfv(GL_FOG_COLOR, fogColor);
      glFogf(GL_FOG_DENSITY, 0.35);
      glHint(GL_FOG_HINT, GL_DONT_CARE);
      glFogf(GL_FOG_START, 1.0);
      glFogf(GL_FOG_END, 5.0);
   }
   glClearColor(0.5, 0.5, 0.5, 1.0);  /* fog color */
}

static void renderSphere(GLfloat x, GLfloat y, GLfloat z)
{
   glPushMatrix();
   glTranslatef(x, y, z);
   glutSolidSphere(0.4, 16, 16);
   glPopMatrix();
}

/* display() draws 5 spheres at different z positions.
 */
void display(void)
{
   glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
   renderSphere(-2., -0.5, -1.0);
   renderSphere(-1., -0.5, -2.0);
   renderSphere(0., -0.5, -3.0);
   renderSphere(1., -0.5, -4.0);
   renderSphere(2., -0.5, -5.0);
   glFlush();
}
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void reshape(int w, int h)
{
   glViewport(0, 0, (GLsizei) w, (GLsizei) h);
   glMatrixMode(GL_PROJECTION);
   glLoadIdentity();
   if (w <= h)
      glOrtho(-2.5, 2.5, -2.5*(GLfloat)h/(GLfloat)w,
         2.5*(GLfloat)h/(GLfloat)w, -10.0, 10.0);
   else
      glOrtho(-2.5*(GLfloat)w/(GLfloat)h,
         2.5*(GLfloat)w/(GLfloat)h, -2.5, 2.5, -10.0, 10.0);
   glMatrixMode(GL_MODELVIEW);
   glLoadIdentity();
}

void keyboard(unsigned char key, int x, int y)
{
   switch (key) {
      case ‘f’:
      case ‘F’:
         if (fogMode == GL_EXP) {
            fogMode = GL_EXP2;
            printf(“Fog mode is GL_EXP2\n”);
         }
         else if (fogMode == GL_EXP2) {
            fogMode = GL_LINEAR;
            printf(“Fog mode is GL_LINEAR\n”);
         }
         else if (fogMode == GL_LINEAR) {
            fogMode = GL_EXP;
            printf(“Fog mode is GL_EXP\n”);
         }
         glFogi(GL_FOG_MODE, fogMode);
         glutPostRedisplay();
         break;
      case 27:
         exit(0);
         break;
      default:
         break;
   }
}

int main(int argc, char** argv)
{
   glutInit(&argc, argv);
   glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
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   glutInitWindowSize(500, 500);
   glutCreateWindow(argv[0]);
   init();
   glutReshapeFunc(reshape);
   glutKeyboardFunc(keyboard);
   glutDisplayFunc(display);
   glutMainLoop();
   return 0;
}

Fog Equations

Fog blends a fog color with an incoming fragment’s color using a fog blend-
ing factor. This factor, f, is computed with one of these three equations and 
then clamped to the range [0, 1]:

In these three equations, z is the eye-coordinate distance between the view-
point and the fragment center. You may have added control over the z eye-
coordinate distance with per-vertex fog coordinates, which is described in 
“Fog Coordinates.” The values for density, start, and end are all specified with 
glFog*(). The f factor is used differently, depending on whether you’re in 
RGBA mode or color-index mode, as explained in the following subsections.

f = e −(density  z) (GL_EXP)

f = e −(density  z)2 (GL_EXP2)

f = end − z (GL_LINEAR)
end − start

void glFog{if}(GLenum pname, TYPE param); 
void glFog{if}v(GLenum pname, const TYPE *params);

Sets the parameters and function for calculating fog. If pname
MODE, then param is GL_EXP (the default), GL_EXP2, or GL_LINEAR 
to select one of the three fog factors. If pname is GL_FOG_DENSITY, 
GL_FOG_START, or GL_FOG_END, then param is (or points to, with the 
vector version of the command) a value for density, start, or end in the 
equations. (The default values are 1, 0, and 1, respectively.) In RGBA 
mode, pname can be GL_FOG_COLOR, in which case params points to 
four values that specify the fog’s RGBA color values. The corresponding 
value for pname in color-index mode is GL_FOG_INDEX, for which param
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Figure 6-4 plots the fog-density equations for various values of the 
parameters.

Fog in RGBA Mode

In RGBA mode, the fog factor f is used as follows to calculate the final 
fogged color: 

C = f Ci + (1 f ) Cf

where Ci represents the incoming fragment’s RGBA values and Cf the fog-
color values assigned with GL_FOG_COLOR.

Fog in Color-Index Mode

In color-index mode, the final fogged color index is computed as follows:

I = Ii + (1 f ) If

where Ii is the incoming fragment’s color index and If is the fog’s color index 
as specified with GL_FOG_INDEX. 

To use fog in color-index mode, you have to load appropriate values in a 
color ramp. The first color in the ramp is the color of the object without fog, 
and the last color in the ramp is the color of the completely fogged object. 
You probably want to use glClearIndex() to initialize the background color 
index so that it corresponds to the last color in the ramp; this way, totally 

Figure 6-4 Fog-Density Equations
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fogged objects blend into the background. Similarly, before objects are 
drawn, you should call glIndex*() and pass in the index of the first color 
in the ramp (the unfogged color). Finally, to apply fog to different colored 
objects in the scene, you need to create several color ramps and call 
glIndex*() before each object is drawn to set the current color index to 
the start of each color ramp. Example 6-8 illustrates how to initialize 
appropriate conditions and then apply fog in color-index mode.

Example 6-8 Fog in Color-Index Mode: fogindex.c

/*  Initialize color map and fog.  Set screen clear color
 *  to end of color ramp.
 */
#define NUMCOLORS 32
#define RAMPSTART 16

static void init(void)
{
   int i;

   glEnable(GL_DEPTH_TEST);

   for (i = 0; i < NUMCOLORS; i++) {
      GLfloat shade;
      shade = (GLfloat) (NUMCOLORS-i)/(GLfloat) NUMCOLORS;
      glutSetColor(RAMPSTART + i, shade, shade, shade);
   }
   glEnable(GL_FOG);

   glFogi(GL_FOG_MODE, GL_LINEAR);
   glFogi(GL_FOG_INDEX, NUMCOLORS);
   glFogf(GL_FOG_START, 1.0);
   glFogf(GL_FOG_END, 6.0);
   glHint(GL_FOG_HINT, GL_NICEST);
   glClearIndex((GLfloat) (NUMCOLORS+RAMPSTART-1));
}

static void renderSphere(GLfloat x, GLfloat y, GLfloat z)
{
   glPushMatrix();
   glTranslatef(x, y, z);
   glutWireSphere(0.4, 16, 16);
   glPopMatrix();
}
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/*  display() draws 5 spheres at different z positions.
 */
void display(void)
{
   glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
   glIndexi(RAMPSTART);

   renderSphere(-2., -0.5, -1.0);
   renderSphere(-1., -0.5, -2.0);
   renderSphere(0., -0.5, -3.0);
   renderSphere(1., -0.5, -4.0);
   renderSphere(2., -0.5, -5.0);

   glFlush();
}

void reshape(int w, int h)
{
   glViewport(0, 0, w, h);
   glMatrixMode(GL_PROJECTION);
   glLoadIdentity();
   if (w <= h)
      glOrtho(-2.5, 2.5, -2.5*(GLfloat)h/(GLfloat)w,
         2.5*(GLfloat)h/(GLfloat)w, -10.0, 10.0);
   else
      glOrtho(-2.5*(GLfloat)w/(GLfloat)h,
         2.5*(GLfloat)w/(GLfloat)h, -2.5, 2.5, -10.0, 10.0);
   glMatrixMode(GL_MODELVIEW);
   glLoadIdentity();
}

void keyboard(unsigned char key, int x, int y)
{

   switch (key) {
      case 27:
         exit(0);
   }
}

int main(int argc, char** argv)
{
   glutInit(&argc, argv);
   glutInitDisplayMode(GLUT_SINGLE | GLUT_INDEX | GLUT_DEPTH);
   glutInitWindowSize(500, 500);
   glutCreateWindow(argv[0]);
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   init();
   glutReshapeFunc(reshape);
   glutKeyboardFunc(keyboard);
   glutDisplayFunc(display);
   glutMainLoop();
   return 0;
}

Fog Coordinates

As discussed earlier, the fog equations use a fog coordinate, z, to calculate a 
color value:

By default, z is automatically calculated as the distance from the eye to a 
fragment, but you may want greater control over how fog is calculated. You 
may want to simulate a fog equation other than those offered by OpenGL. 
For example, you might want a flight simulation with “ground-based” fog, 
so you’ll use denser fog closer to sea level.

In OpenGL Version 1.4, you can explicitly specify values for z on a per-vertex 
basis by calling glFog(GL_FOG_COORD_SRC, GL_FOG_COORD). In 
explicit fog coordinate mode, you may specify the fog coordinate at each 
vertex with glFogCoord*().

Within a geometric primitive, the fog coordinates may be interpolated for 
each fragment.

void glFogCoord{fd}(TYPE z);
void glFogCoord{fd}v(const TYPE *z);

Sets the current fog coordinate to z. If GL_FOG_COORD is the current fog 
coordinate source, the current fog coordinate is used by the current fog 
equation (GL_LINEAR, GL_EXP, or GL_EXP2) to calculate fog.

Values of z should be positive, representing eye-coordinate distance. 
You should avoid using negative values for fog coordinates, because the 
calculations may result in strange colors.

f = e −(density  z) (GL_EXP)

f = e −(density  z)2 (GL_EXP2)

f = end − z (GL_LINEAR)
end − start

Compatibility 
Extension

glFogCoord
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The sample program in Example 6-9 renders a triangle and allows you to 
change the fog coordinate at each vertex by pressing several numerical keys. 
While in explicit fog coordinate mode, moving the viewpoint forward and 
backward (pressing the ‘f’ and ‘b’ keys) does not transform the fog coordi-
nates and therefore does not affect the colors of the vertices. If you stop 
using explicit fog coordinates (pressing the ‘c’ key), moving the viewpoint 
once again dramatically affects colors calculated for fog.

Example 6-9 Fog Coordinates: fogcoord.c

static GLfloat f1, f2, f3;

/*  Initialize fog
 */
static void init(void)
{
   GLfloat fogColor[4] = {0.0, 0.25, 0.25, 1.0};
   f1 = 1.0f;
   f2 = 5.0f;
   f3 = 10.0f;

   glEnable(GL_FOG);
   glFogi (GL_FOG_MODE, GL_EXP);
   glFogfv (GL_FOG_COLOR, fogColor);
   glFogf (GL_FOG_DENSITY, 0.25);
   glHint (GL_FOG_HINT, GL_DONT_CARE);
   glFogi(GL_FOG_COORD_SRC, GL_FOG_COORD);
   glClearColor(0.0, 0.25, 0.25, 1.0);  /* fog color */
}
   /* display() draws a triangle at an angle.
 */
void display(void)
{
   glClear(GL_COLOR_BUFFER_BIT);

   glColor3f(1.0f, 0.75f, 0.0f);
   glBegin(GL_TRIANGLES);
   glFogCoordf(f1);
   glVertex3f(2.0f, -2.0f, 0.0f);
   glFogCoordf(f2);
   glVertex3f(-2.0f, 0.0f, -5.0f);
   glFogCoordf(f3);
   glVertex3f(0.0f, 2.0f, -10.0f);
   glEnd();
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   glutSwapBuffers();
}

void keyboard(unsigned char key, int x, int y)
{
   switch (key) {
      case ’c’:
         glFogi(GL_FOG_COORD_SRC, GL_FRAGMENT_DEPTH);
         glutPostRedisplay();
         break;
      case ’C’:
         glFogi(GL_FOG_COORD_SRC, GL_FOG_COORD);
         glutPostRedisplay();
         break;
      case ’1’:
         f1 = f1 + 0.25;
         glutPostRedisplay();
         break;
      case ’2’:
         f2 = f2 + 0.25;
         glutPostRedisplay();
         break;
      case ’3’:
         f3 = f3 + 0.25;
         glutPostRedisplay();
         break;
      case ’8’:
         if (f1 > 0.25) {
            f1 = f1 - 0.25;
            glutPostRedisplay();
         }
         break;
      case ’9’:
         if (f2 > 0.25) {
            f2 = f2 - 0.25;
            glutPostRedisplay();
         }
         break;
      case ’0’:
         if (f3 > 0.25) {
            f3 = f3 - 0.25;
            glutPostRedisplay();
         }
         break;
      case ’b’:
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         glMatrixMode(GL_MODELVIEW);
         glTranslatef(0.0, 0.0, -0.25);
         glutPostRedisplay();
         break;
      case ’f’:
         glMatrixMode(GL_MODELVIEW);
         glTranslatef(0.0, 0.0, 0.25);
         glutPostRedisplay();
         break;
      case 27:
         exit(0);
         break;
      default:
         break;
   }
}

Point Parameters

In some situations, you may want to render objects that resemble small cir-
cles or spheres, but you don’t want to use inefficient, multisided polygonal 
models. For example, in a flight-simulation application, you may want to 
model runway landing lights—so as an aircraft approaches a runway, the 
landing lights appear larger and possibly also brighter. Or, when rendering 
liquid droplets (such as rain or, for you videogamers, splattered blood), you 
want to simulate the phenomena using a particle system. 

The landing lights or drops of liquid may be rendered as point primitives, 
but the points may need to be able to change apparent size and brightness. 
Using glPointSize() and glEnable(GL_POINT_SMOOTH) to make larger, 
rounded points is a step toward a solution, possibly using fog to suggest 
distance. However, glPointSize() can’t be called within glBegin() and 
glEnd(), so it’s hard to vary the size of different points. You would have 
to recalculate the point sizes on the fly and then, for best performance, 
regroup them by size.

Point parameters are an automated, elegant solution, attenuating the size of 
point primitives and optionally their brightness, based upon distance to the 
view point. You use glPointParameterf*() to specify the coefficients of the 
attenuation equation and the alpha component of points (which controls 
brightness).
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The GL_POINT_DISTANCE_ATTENUATION distance calculation is similar 
to the math used with the coefficients for attenuated local light sources. In 
Example 6-10, pressing the ‘c’, ‘l’, or ‘q’ key switches the attenuation equa-
tion among constant, linear, and quadratic attenuation. Pressing the ‘f’ or 
‘b’ key moves the viewer forward or backward, which makes the points 
appear larger or smaller for the linear and quadratic attenuation modes. 

Example 6-10 Point Parameters: pointp.c

static GLfloat constant[3] = {1.0, 0.0, 0.0};
static GLfloat linear[3] = {0.0, 0.12, 0.0};
static GLfloat quadratic[3] = {0.0, 0.0, 0.01};
...

void glPointParameter{if}(GLenum pname, GLfloat param);
void glPointParameter{if}v(GLenum pname, const TYPE *param);

Sets values related to rendering point primitives.

If pname is GL_POINT_DISTANCE_ATTENUATION, then param is an array 
of three floating-point values (a, b, c), containing the constant, linear, and 
quadratic coefficients for deriving the size and brightness of a point, based 
upon eye-coordinate distance, d:

If pname is set to GL_POINT_SIZE_MIN or GL_POINT_SIZE_MAX, param is
an absolute limit (either lower or upper bound, respectively) used in the 
previous equation to clamp the derived point size. 

If multisampling is enabled and pname is GL_POINT_FADE_THRESHOLD_
SIZE, then param specifies a different lower limit (threshold) for the size of 
a point. If derivedSize < threshold, then the factor fade is computed to 
modulate the point’s alpha, thus diminishing its brightness:

If pname is GL_POINT_SPRITE_COORD_ORIGIN, and param is GL_
LOWER_LEFT, then the origin for iterated texture coordinates on point 
sprites is the lower-left fragment, with the t texture coordinate increasing 
vertically from bottom to top across the fragments. Alternatively, if param
is set to GL_UPPER_LEFT, the t texture coordinate decreases from top to 
bottom vertically.

Compatibility 
Extension

GL_POINT_SIZE_
MIN
GL_POINT_SIZE_
MAX
GL_POINT_
DISTANCE_
ATTENUATION

derivedSize clamp size 1
a b d c d2+ +
-----------------------------------------=

fade derivedSize
threshold

-------------------------------
2

=

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Polygon Offset 293

void keyboard(unsigned char key, int x, int y) {
 switch (key) {
 case ’c’:
  glPointParameterfv (GL_POINT_DISTANCE_ATTENUATION, constant);
  glutPostRedisplay();
 break;
 case ’l’:
  glPointParameterfv (GL_POINT_DISTANCE_ATTENUATION, linear);
  glutPostRedisplay();
 break;
 case ’q’:
  glPointParameterfv (GL_POINT_DISTANCE_ATTENUATION, quadratic);
  glutPostRedisplay();
 break;
 case ’b’:
  glMatrixMode (GL_MODELVIEW);
  glTranslatef (0.0, 0.0, -0.5);
  glutPostRedisplay();
 break;
 case ’f’:
  glMatrixMode (GL_MODELVIEW);
  glTranslatef (0.0, 0.0, 0.5);
  glutPostRedisplay();
break;
...

With the chosen linear and quadratic attenuation coefficients in 
Example 6-10, moving the eye very close to a point may actually increase 
the derived point size, by dividing the original point size by a proper frac-
tion. To lessen or prevent this, you can increase the constant attenuation 
coefficient or add a size limiting value with GL_POINT_SIZE_MAX.

With point parameters, you almost certainly want round, rather than 
square, points, so you’ll have to enable point antialiasing, as described in 
“Antialiasing Points or Lines” on page 269. These lines of code will do
the trick:

   glEnable(GL_POINT_SMOOTH);
   glEnable(GL_BLEND);
   glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

Polygon Offset

If you want to highlight the edges of a solid object, you might draw the 
object with polygon mode set to GL_FILL, and then draw it again, but in 
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a different color and with the polygon mode set to GL_LINE. However, 
because lines and filled polygons are not rasterized in exactly the same way, 
the depth values generated for the line and polygon edge are usually not the 
same, even between the same two vertices. The highlighting lines may fade 
in and out of the coincident polygons, which is sometimes called 
“stitching” and is visually unpleasant.

This undesirable effect can be eliminated by using polygon offset, which 
adds an appropriate offset to force coincident z-values apart, separating 
a polygon edge from its highlighting line. (The stencil buffer, described 
in “Stencil Test” in Chapter 10, can also be used to eliminate stitching. 
However, polygon offset is almost always faster than stenciling.) Polygon 
offset is also useful for applying decals to surfaces by rendering images with 
hidden-line removal. In addition to lines and filled polygons, this 
technique can also be used with points.

There are three different ways to turn on polygon offset, one for each type of 
polygon rasterization mode: GL_FILL, GL_LINE, and GL_POINT. You enable 
the polygon offset by passing the appropriate parameter to glEnable()—
either GL_POLYGON_OFFSET_FILL, GL_POLYGON_OFFSET_LINE, or 
GL_POLYGON_OFFSET_POINT. You must also call glPolygonMode() to 
set the current polygon rasterization method.

To achieve a nice rendering of the highlighted solid object without visual 
artifacts, you can add either a positive offset to the solid object (push it away 
from you) or a negative offset to the wireframe (pull it toward you). The big 
question is: How much offset is enough? Unfortunately, the offset required 
depends on various factors, including the depth slope of each polygon and 
the width of the lines in the wireframe.

void glPolygonOffset(GLfloat factor, GLfloat units);

When enabled, the depth value of each fragment is modified by adding a 
calculated offset value before the depth test is performed. The offset value 
offset is calculated by

offset = m factor + r units

where m is the maximum depth slope of the polygon (computed during 
rasterization), and r is the smallest value guaranteed to produce a resolvable 
difference in depth values and is an implementation-specific constant. 
Both factor and units may be negative.
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OpenGL calculates the depth slope (see Figure 6-5), which is the z- (depth) 
value divided by the change in either x- or y-coordinates as you traverse the 
polygon. The depth values are clamped to the range [0, 1], and the x- and 
y-coordinates are in window coordinates. To estimate the maximum depth 
slope of a polygon (m in the offset equation), use the formula 

 (or an implementation may use the approximation ).

For polygons that are parallel to the near and far clipping planes, the 
depth slope is zero. Those polygons can use a small constant offset, which 
you can specify by setting factor = 0.0 and units = 1.0 in your call to 
glPolygonOffset().

For polygons that are at a great angle to the clipping planes, the depth slope 
can be significantly greater than zero, and a larger offset may be needed. A 
small, nonzero value for factor, such as 0.75 or 1.0, is probably enough to 
generate distinct depth values and eliminate the unpleasant visual artifacts.

Example 6-11 shows a portion of code where a display list (which presum-
ably draws a solid object) is first rendered with lighting, the default polygon 
mode of GL_FILL, and polygon offset with a factor value of 1.0 and a units
value of 1.0. These values ensure that the offset is enough for all polygons 
in your scene, regardless of depth slope. (These values may actually be a lit-
tle more offset than the minimum needed, but too much offset is less 
noticeable than too little.) Then, to highlight the edges of the first object, 
the object is rendered as an unlit wireframe with the offset disabled.
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Figure 6-5 Polygons and Their Depth Slopes
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Example 6-11 Polygon Offset to Eliminate Visual Artifacts: polyoff.c

glEnable(GL_LIGHT0);
glEnable(GL_LIGHTING);
glPolygonOffset(1.0, 1.0);

glEnable(GL_POLYGON_OFFSET_FILL);
glCallList(list);
glDisable(GL_POLYGON_OFFSET_FILL);

glDisable(GL_LIGHTING);
glDisable(GL_LIGHT0);
glColor3f(1.0, 1.0, 1.0);
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
glCallList(list);
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);

In some situations, the simplest values for factor and units (1.0 and 1.0) 
aren’t the answer. For instance, if the widths of the lines that are highlight-
ing the edges are greater than 1, then increasing the value of factor may be 
necessary. Also, since depth values while using a perspective projection are 
unevenly transformed into window coordinates (see “The Transformed 
Depth Coordinate” in Chapter 3), less offset is needed for polygons that 
are closer to the near clipping plane, and more offset is needed for polygons 
that are farther away. You may need to experiment with the values you pass 
to glPolygonOffset() to get the result you’re looking for. 
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Chapter 7

7.Display Lists

Chapter Objectives

After reading this chapter, you’ll be able to do the following: 

• Understand how display lists can be used along with commands in 
immediate mode to organize your data and improve performance

• Maximize performance by knowing how and when to use display lists

Note: In OpenGL Version 3.1, all of the techniques and functions described 
in this chapter were removed through deprecation.
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A display list is a group of OpenGL commands that have been stored for later 
execution. When a display list is invoked, the commands in it are executed 
in the order in which they were issued. Most OpenGL commands can be 
either stored in a display list or issued in immediate mode, which causes them 
to be executed immediately. You can freely mix immediate-mode program-
ming and display lists within a single program. The programming examples 
you’ve seen so far have used immediate mode. This chapter discusses what 
display lists are and how best to use them. It has the following major 
sections: 

• “Why Use Display Lists?” explains when to use display lists.

• “An Example of Using a Display List” gives a brief example, showing 
the basic commands for using display lists. 

• “Display List Design Philosophy” explains why certain design choices 
were made (such as making display lists uneditable) and what perfor-
mance optimizations you might expect to see when using display lists.

• “Creating and Executing a Display List” discusses in detail the com-
mands for creating, executing, and deleting display lists.

• “Executing Multiple Display Lists” shows how to execute several 
display lists in succession, using a small character set as an example. 

• “Managing State Variables with Display Lists” illustrates how to use 
display lists to save and restore OpenGL commands that set state 
variables.

Why Use Display Lists?

Display lists may improve performance since you can use them to store 
OpenGL commands for later execution. It is often a good idea to cache com-
mands in a display list if you plan to redraw the same geometry multiple 
times, or if you have a set of state changes that need to be applied multiple 
times. Using display lists, you can define the geometry and/or state changes 
once and execute them multiple times.

To see how you can use display lists to store geometry just once, consider 
drawing a tricycle. The two wheels on the back are the same size but are 
offset from each other. The front wheel is larger than the back wheels and 
also in a different location. An efficient way to render the wheels on the 
tricycle would be to store the geometry for one wheel in a display list and 
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then execute the list three times. You would need to set the modelview 
matrix appropriately each time before executing the list to calculate the 
correct size and location of each wheel.

When running OpenGL programs remotely to another machine on the 
network, it is especially important to cache commands in a display list. 
In this case, the server is a machine other than the host. (See “What Is 
OpenGL?” in Chapter 1 for a discussion of the OpenGL client-server model.) 
Since display lists are part of the server state and therefore reside on the 
server machine, you can reduce the cost of repeatedly transmitting that data 
over a network if you store repeatedly used commands in a display list.

When running locally, you can often improve performance by storing fre-
quently used commands in a display list. Some graphics hardware may store 
display lists in dedicated memory or may store the data in an optimized 
form that is more compatible with the graphics hardware or software. 
(See “Display List Design Philosophy” for a detailed discussion of these 
optimizations.)

An Example of Using a Display List

A display list is a convenient and efficient way to name and organize a set 
of OpenGL commands. For example, suppose you want to draw a torus and 
view it from different angles. The most efficient way to do this would be to 
store the torus in a display list. Then, whenever you want to change the 
view, you would change the modelview matrix and execute the display list 
to draw the torus. Example 7-1 illustrates this. 

Example 7-1  Creating a Display List: torus.c

GLuint theTorus;

/* Draw a torus */
static void torus(int numc, int numt)
{
   int i, j, k;
   double s, t, x, y, z, twopi;

   twopi = 2 * (double)M_PI;
   for (i = 0; i < numc; i++) {
      glBegin(GL_QUAD_STRIP);
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      for (j = 0; j <= numt; j++) {
         for (k = 1; k >= 0; k--) {
            s = (i + k) % numc + 0.5;
            t = j % numt;

            x = (1+.1*cos(s*twopi/numc))*cos(t*twopi/numt);
            y = (1+.1*cos(s*twopi/numc))*sin(t*twopi/numt);
            z = .1 * sin(s * twopi / numc);
            glVertex3f(x, y, z);
         }
      }
      glEnd();
   }
}

/* Create display list with Torus and initialize state */
static void init(void)
{
   theTorus = glGenLists(1);
   glNewList(theTorus, GL_COMPILE);
   torus(8, 25);
   glEndList();

   glShadeModel(GL_FLAT);
   glClearColor(0.0, 0.0, 0.0, 0.0);
}

void display(void)
{
   glClear(GL_COLOR_BUFFER_BIT);
   glColor3f(1.0, 1.0, 1.0);
   glCallList(theTorus);
   glFlush();
}

void reshape(int w, int h)
{
   glViewport(0, 0, (GLsizei) w, (GLsizei) h);
   glMatrixMode(GL_PROJECTION);
   glLoadIdentity();
   gluPerspective(30, (GLfloat) w/(GLfloat) h, 1.0, 100.0);
   glMatrixMode(GL_MODELVIEW);
   glLoadIdentity();
   gluLookAt(0, 0, 10, 0, 0, 0, 0, 1, 0);
}
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/* Rotate about x-axis when “x” typed; rotate about y-axis
   when “y” typed; “i” returns torus to original view */
void keyboard(unsigned char key, int x, int y)
{
   switch (key) {
   case ‘x’:
   case ‘X’:
      glRotatef(30., 1.0, 0.0, 0.0);
      glutPostRedisplay();
      break;
   case ‘y’:
   case ‘Y’:
      glRotatef(30., 0.0, 1.0, 0.0);
      glutPostRedisplay();
      break;
   case ‘i’:
   case ‘I’:
      glLoadIdentity();
      gluLookAt(0, 0, 10, 0, 0, 0, 0, 1, 0);
      glutPostRedisplay();
      break;
   case 27:
      exit(0);
      break;
   }
}

int main(int argc, char **argv)
{
   glutInitWindowSize(200, 200);
   glutInit(&argc, argv);
   glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
   glutCreateWindow(argv[0]);
   init();
   glutReshapeFunc(reshape);
   glutKeyboardFunc(keyboard);
   glutDisplayFunc(display);
   glutMainLoop();
   return 0;
}

Let’s start by looking at init(). It creates a display list for the torus and 
initializes the OpenGL rendering state. Note that the routine for drawing a 
torus (torus()) is bracketed by glNewList() and glEndList(), which defines 
a display list. The argument listName for glNewList() is an integer index, 
generated by glGenLists(), that uniquely identifies this display list.
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The user can rotate the torus about the x- or y-axis by pressing the ‘x’ or ‘y’ 
key when the window has focus. Whenever this happens, the callback 
function keyboard() is called, which concatenates a 30-degree rotation 
matrix (about the x- or y-axis) with the current modelview matrix. Then 
glutPostRedisplay() is called, which will cause glutMainLoop() to call 
display() and render the torus after other events have been processed. 
When the ‘i’ key is pressed, keyboard() restores the initial modelview 
matrix and returns the torus to its original location. 

The display() function is very simple. It clears the window and then calls 
glCallList() to execute the commands in the display list. If we hadn’t used 
display lists, display() would have to reissue the commands to draw the 
torus each time it was called.

A display list contains only OpenGL commands. In Example 7-1, only the 
glBegin(), glVertex(), and glEnd() calls are stored in the display list. Their 
parameters are evaluated, and the resulting values are copied into the display 
list when it is created. All the trigonometry to create the torus is done only 
once, which should increase rendering performance. However, the values in 
the display list can’t be changed later, and once a command has been stored 
in a list it is not possible to remove it. Neither can you add any new com-
mands to the list after it has been defined. You can delete the entire display 
list and create a new one, but you can’t edit it.

Note: Display lists also work well with GLU commands, since those opera-
tions are ultimately broken down into low-level OpenGL commands, 
which can easily be stored in display lists. Use of display lists with 
GLU is particularly important for optimizing performance of GLU 
tessellators (see Chapter 11) and NURBS (see Chapter 12).

Display List Design Philosophy

To optimize performance, an OpenGL display list is a cache of commands, 
rather than a dynamic database. In other words, once a display list is 
created, it can’t be modified. If a display list were modifiable, performance 
could be reduced by the overhead required to search through the display 
list and perform memory management. As portions of a modifiable 
display list were changed, memory allocation and deallocation might 
lead to memory fragmentation. Any modifications that the OpenGL 
implementation made to the display list commands in order to make 
them more efficient to render would need to be redone. Also, the display 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Display List Design Philosophy 303

list might be difficult to access, cached somewhere over a network or a 
system bus.

The way in which the commands in a display list are optimized may vary 
from implementation to implementation. For example, a command as 
simple as glRotate*() might show a significant improvement if it’s in a 
display list, since the calculations to produce the rotation matrix aren’t 
trivial (they can involve square roots and trigonometric functions). In the 
display list, however, only the final rotation matrix needs to be stored, so a 
display list rotation command can be executed as fast as the hardware can 
execute glMultMatrix*(). A sophisticated OpenGL implementation might 
even concatenate adjacent transformation commands into a single matrix 
multiplication.

Although you’re not guaranteed that your OpenGL implementation opti-
mizes display lists for any particular uses, executing display lists is no slower 
than executing the commands contained within them individually. There 
is some overhead, however, involved in jumping to a display list. If a partic-
ular list is small, this overhead could exceed any execution advantage. The 
most likely possibilities for optimization are listed next, with references to 
the chapters in which the topics are discussed:

• Matrix operations (Chapter 3). Most matrix operations require OpenGL 
to compute inverses. Both the computed matrix and its inverse might 
be stored by a particular OpenGL implementation in a display list.

• Raster bitmaps and images (Chapter 8). The format in which you spec-
ify raster data isn’t likely to be one that’s ideal for the hardware. When 
a display list is compiled, OpenGL might transform the data into the 
representation preferred by the hardware. This can have a significant 
effect on the speed of raster character drawing, since character strings 
usually consist of a series of small bitmaps. 

• Lights, material properties, and lighting models (Chapter 5). When 
you draw a scene with complex lighting conditions, you might change 
the materials for each item in the scene. Setting the materials can be 
slow, since it might involve significant calculations. If you put the 
material definitions in display lists, these calculations don’t have to 
be done each time you switch materials, since only the results of the 
calculations need to be stored; as a result, rendering lit scenes might be 
faster. (See “Encapsulating Mode Changes” for more details on using 
display lists to change such values as lighting conditions.)

• Polygon stipple patterns (Chapter 2). 
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Note: To optimize texture images, you should store texture data in texture 
objects instead of display lists. 

Some of the commands used for specifying the properties listed here are 
context-sensitive, so you need to take this into account to ensure optimum 
performance. For example, when GL_COLOR_MATERIAL is enabled, some 
of the material properties will track the current color (see Chapter 5). Any 
glMaterial*() calls that set the same material properties are ignored.

It may improve performance to store state settings with geometry. For 
example, suppose you want to apply a transformation to some geometric 
objects and then draw the results. Your code may look like this:

glNewList(1, GL_COMPILE); 
draw_some_geometric_objects(); 
glEndList();

glLoadMatrix(M);
glCallList(1);

However, if the geometric objects are to be transformed in the same way 
each time, it is better to store the matrix in the display list. For example, 
if you write your code as follows, some implementations may be able to 
improve performance by transforming the objects when they are defined 
instead of each time they are drawn:

glNewList(1, GL_COMPILE);
glLoadMatrix(M);
draw_some_geometric_objects(); 
glEndList();
glCallList(1);

A more likely situation occurs during rendering of images. As you will see 
in Chapter 8, you can modify pixel-transfer state variables and control the 
way images and bitmaps are rasterized. If the commands that set these state 
variables precede the definition of the image or bitmap in the display list, 
the implementation may be able to perform some of the operations ahead 
of time and cache the results.

Remember that display lists have some disadvantages. Very small lists 
may not perform well since there is some overhead when executing a list. 
Another disadvantage is the immutability of the contents of a display list. 
To optimize performance, an OpenGL display list can’t be changed, and its 
contents can’t be read. If the application needs to maintain data separately 
from the display list (for example, for continued data processing), then a lot 
of additional memory may be required.
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Creating and Executing a Display List

As you’ve already seen, glNewList() and glEndList() are used to begin and 
end the definition of a display list, which is then invoked by supplying its 
identifying index with glCallList(). In Example 7-2, a display list is created 
in the init() routine. This display list contains OpenGL commands to draw 
a red triangle. Then, in the display() routine, the display list is executed 
10 times. In addition, a line is drawn in immediate mode. Note that the 
display list allocates memory to store the commands and the values of any 
necessary variables.

Example 7-2 Using a Display List: list.c

GLuint listName;

static void init(void)
{
   listName = glGenLists(1);
   glNewList(listName, GL_COMPILE);
      glColor3f(1.0, 0.0, 0.0);  /*  current color red  */
      glBegin(GL_TRIANGLES);
      glVertex2f(0.0, 0.0);
      glVertex2f(1.0, 0.0);
      glVertex2f(0.0, 1.0);
      glEnd();
      glTranslatef(1.5, 0.0, 0.0); /*  move position  */
   glEndList();
   glShadeModel(GL_FLAT);
}

static void drawLine(void)
{
   glBegin(GL_LINES);
   glVertex2f(0.0, 0.5);
   glVertex2f(15.0, 0.5);
   glEnd();
}

void display(void)
{
   GLuint i;
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   glClear(GL_COLOR_BUFFER_BIT);
   glColor3f(0.0, 1.0, 0.0);  /*  current color green  */
   for (i = 0; i < 10; i++)    /*  draw 10 triangles    */
      glCallList(listName);
   drawLine(); /* Is this line green?  NO!  */
                 /* Where is the line drawn?  */
   glFlush();
}

The glTranslatef() routine in the display list alters the position of the next 
object to be drawn. Without it, calling the display list twice would just draw 
the triangle on top of itself. The drawLine() routine, which is called in 
immediate mode, is also affected by the 10 glTranslatef() calls that precede 
it. Therefore, if you call transformation commands within a display list, 
don’t forget to take into account the effect those commands will have later 
in your program.

Only one display list can be created at a time. In other words, you must 
eventually follow glNewList() with glEndList() to end the creation of 
a display list before starting another one. As you might expect, calling 
glEndList() without having started a display list generates the error 
GL_INVALID_OPERATION. (See “Error Handling” in Chapter 14 for 
more information about processing errors.)

Naming and Creating a Display List

Each display list is identified by an integer index. When creating a display 
list, you want to be careful that you don’t accidentally choose an index 
that’s already in use, thereby overwriting an existing display list. To avoid 
accidental deletions, use glGenLists() to generate one or more unused 
indices.

GLuint glGenLists(GLsizei range);

Allocates range number of contiguous, previously unallocated display list 
indices. The integer returned is the index that marks the beginning of a 
contiguous block of empty display list indices. The returned indices are 
all marked as empty and used, so subsequent calls to glGenLists() don’t 
return these indices until they’re deleted. Zero is returned if the requested 
number of indices isn’t available, or if range is zero. 

Compatibility 
Extension

glGenLists
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In the following example, a single index is requested, and if it proves to be 
available it’s used to create a new display list:

listIndex = glGenLists(1);
if (listIndex != 0) {
   glNewList(listIndex,GL_COMPILE);
      ...
   glEndList();
}

Note: Zero is not a valid display list index.

When a display list is created, it is stored with the current OpenGL context. 
Thus, when the context is destroyed, the display list is also destroyed. Some 
windowing systems allow multiple contexts to share display lists. In this 
case, the display list is destroyed when the last context in the share group is 
destroyed. 

What’s Stored in a Display List?

When you’re building a display list, only the values for expressions are 
stored in the list. If values in an array are subsequently changed, the display 
list values don’t change. In the following code fragment, the display list 

void glNewList(GLuint list, GLenum mode);

Specifies the start of a display list. OpenGL routines that are called 
subsequently (until glEndList() is called to end the display list) are stored 
in a display list, except for a few restricted OpenGL routines that can’t be 
stored. (Those restricted routines are executed immediately, during the 
creation of the display list.) list is a nonzero positive integer that uniquely 
identifies the display list. The possible values for mode are GL_COMPILE 
and GL_COMPILE_AND_EXECUTE. Use GL_COMPILE if you don’t want 
the OpenGL commands executed as they’re placed in the display list; to 
cause the commands to be both executed immediately and placed in the 
display list for later use, specify GL_COMPILE_AND_EXECUTE.

void glEndList(void);

Marks the end of a display list.

Compatibility 
Extension

glNewList
glEndList
GL_COMPILE
GL_COMPILE_
AND_EXECUTE
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contains a command to set the current RGBA color to black (0.0, 0.0, 0.0). 
The subsequent change of the value of the color_vector array to red (1.0, 0.0, 
0.0) has no effect on the display list because the display list contains the 
values that were in effect when it was created:

GLfloat color_vector[3] = {0.0, 0.0, 0.0};
glNewList(1, GL_COMPILE);
   glColor3fv(color_vector);
glEndList();
color_vector[0] = 1.0;

Not all OpenGL commands can be stored and executed from within a 
display list. For example, commands that set client state and commands 
that retrieve state values aren’t stored in a display list. (Many of these 
commands are easily identifiable because they return values in parameters 
passed by reference or return a value directly.) If these commands are called 
when making a display list, they’re executed immediately. 

Table 7-1 enumerates OpenGL commands that cannot be stored in a display 
list. (Note also that glNewList() itself generates an error if it’s called while 
already creating a display list.) Some of these commands haven’t been 
described yet; you can look in the index to see where they’re discussed.

glAreTexturesResident glEdgeFlagPointer glIsShader

glAttachShader glEnableClientState glIsTexture

glBindAttribLocation glEnableVertexAttribArray glLinkProgram

glBindBuffer glFeedbackBuffer glMapBuffer

glBufferData glFinish glNormalPointer

glBufferSubData glFlush glPixelStore

glClientActiveTexture glFogCoordPointer glPopClientAttrib

glColorPointer glFogCoordPointer glPushClientAttrib

glCompileShader glGenBuffers glReadPixels

glCreateProgram glGenLists glRenderMode

glCreateShader glGenQueries glSecondaryColorPointer

glDeleteBuffers glGenTextures glSecondaryColorPointer

glDeleteLists glGet* glSelectBuffer

glDeleteProgram glIndexPointer glShaderSource

glDeleteQueries glInterleavedArrays glTexCoordPointer

glDeleteShader glIsBuffer glUnmapBuffer

glDeleteTextures glIsEnabled glValidateProgram

Table 7-1 OpenGL Functions That Cannot Be Stored in Display Lists
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To understand more clearly why these commands can’t be stored in a 
display list, remember that when you’re using OpenGL across a network, 
the client may be on one machine and the server on another. After a display 
list is created, it resides with the server, so the server can’t rely on the client 
for any information related to the display list. If querying commands, such 
as glGet*() or glIs*(), were allowed in a display list, the calling program 
would be surprised at random times by data returned over the network. 
Without parsing the display list as it was sent, the calling program wouldn’t 
know where to put the data. Therefore, any command that returns a value 
can’t be stored in a display list. 

Commands that change client state, such as glPixelStore(), glSelectBuffer(),
and the commands to define vertex arrays, can’t be stored in a display list. 
For example, the vertex-array specification routines (such as glVertexPointer(),
glColorPointer(), and glInterleavedArrays()) set client state pointers and 
cannot be stored in a display list. glArrayElement(), glDrawArrays(), and 
glDrawElements() send data to the server state to construct primitives from 
elements in the enabled arrays, so these operations can be stored in a display 
list. (See “Vertex Arrays” in Chapter 2.) The vertex-array data stored in this 
display list is obtained by dereferencing data from the pointers, not by 
storing the pointers themselves. Therefore, subsequent changes to the data 
in the vertex arrays will not affect the definition of the primitive in the 
display list.

In addition, any commands that use the pixel-storage modes use the modes 
that are in effect when they are placed in the display list. (See “Controlling 
Pixel-Storage Modes” in Chapter 8.) Other routines that rely upon client 
state—such as glFlush() and glFinish()—can’t be stored in a display list 
because they depend on the client state that is in effect when they are 
executed.

Executing a Display List

After you’ve created a display list, you can execute it by calling glCallList().
Naturally, you can execute the same display list many times, and you can 

glDetachShader glIsList glVertexAttribPointer

glDisableClientState glIsProgram glVertexPointer

glDisableVertexAttribArray glIsQuery

Table 7-1 (continued)        OpenGL Functions That Cannot Be Stored in Display Lists
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mix calls to execute display lists with calls to perform immediate-mode 
graphics, as you’ve already seen.

You can call glCallList() from anywhere within a program, as long as an 
OpenGL context that can access the display list is active (that is, the context 
that was active when the display list was created or a context in the same 
share group). A display list can be created in one routine and executed in a 
different one, since its index uniquely identifies it. Also, there is no facility 
for saving the contents of a display list into a data file, nor a facility for 
creating a display list from a file. In this sense, a display list is designed for 
temporary use.

Hierarchical Display Lists

You can create a hierarchical display list, which is a display list that executes 
another display list by calling glCallList() between a glNewList() and 
glEndList() pair. A hierarchical display list is useful for an object made of 
components, especially if some of those components are used more than 
once. For example, this is a display list that renders a bicycle by calling other 
display lists to render parts of the bicycle:

glNewList(listIndex,GL_COMPILE);
   glCallList(handlebars);
   glCallList(frame);
   glTranslatef(1.0, 0.0, 0.0);
   glCallList(wheel);
   glTranslatef(3.0, 0.0, 0.0);
   glCallList(wheel);
glEndList();

To avoid infinite recursion, there’s a limit on the nesting level of display 
lists; the limit is at least 64, but it might be higher, depending on the 
implementation. To determine the nesting limit for your implementation 
of OpenGL, call

glGetIntegerv(GL_MAX_LIST_NESTING, GLint *data);

void glCallList(GLuint list);

This routine executes the display list specified by list. The commands in 
the display list are executed in the order they were saved, just as if they 
were issued without using a display list. If list hasn’t been defined, 
nothing happens. 

Compatibility 
Extension

glCallList
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OpenGL allows you to create a display list that calls another list that hasn’t 
been created yet. Nothing happens when the first list calls the second, 
undefined one. 

You can use a hierarchical display list to approximate an editable display list 
by wrapping a list around several lower-level lists. For example, to put a 
polygon in a display list while allowing yourself to be able to edit its vertices 
easily, you could use the code in Example 7-3. 

Example 7-3 Hierarchical Display List

glNewList(1,GL_COMPILE); 
   glVertex3fv(v1); 
glEndList();
glNewList(2,GL_COMPILE); 
   glVertex3fv(v2); 
glEndList();
glNewList(3,GL_COMPILE); 
   glVertex3fv(v3); 
glEndList();

glNewList(4,GL_COMPILE);
   glBegin(GL_POLYGON);
      glCallList(1); 
      glCallList(2); 
      glCallList(3);
   glEnd();
glEndList();

To render the polygon, call display list number 4. To edit a vertex, you need 
only re-create the single display list corresponding to that vertex. Since an 
index number uniquely identifies a display list, creating one with the same 
index as an existing one automatically deletes the old one. Keep in mind 
that this technique doesn’t necessarily provide optimal memory usage or 
peak performance, but it’s acceptable and useful in some cases.

Managing Display List Indices

So far, we’ve recommended the use of glGenLists() to obtain unused display 
list indices. If you insist on avoiding glGenLists(), then be sure to use 
glIsList() to determine whether a specific index is in use. 

You can explicitly delete a specific display list or a contiguous range of lists 
with glDeleteLists(). Using glDeleteLists() makes those indices available 
again. 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


312 Chapter 7: Display Lists

Executing Multiple Display Lists

OpenGL provides an efficient mechanism for executing several display lists 
in succession. This mechanism requires that you put the display list indices 
in an array and call glCallLists(). An obvious use for such a mechanism 
occurs when display list indices correspond to meaningful values. For 
example, if you’re creating a font, each display list index might correspond 
to the ASCII value of a character in that font. To have several such fonts, you 
would need to establish a different initial display list index for each font. 
You can specify this initial index by using glListBase() before calling 
glCallLists().

The type parameter indicates the data type of the values in lists. It can be set 
to GL_BYTE, GL_UNSIGNED_BYTE, GL_SHORT, GL_UNSIGNED_SHORT, 
GL_INT, GL_UNSIGNED_INT, or GL_FLOAT, indicating that lists should be 

GLboolean glIsList(GLuint list);

Returns GL_TRUE if list is already used for a display list, and GL_FALSE 
otherwise. 

void glDeleteLists(GLuint list, GLsizei range);

Deletes range display lists, starting at the index specified by list. An 
attempt to delete a list that has never been created is ignored.

void glListBase(GLuint base);

Specifies the offset that’s added to the display list indices in glCallLists()
to obtain the final display list indices. The default display list base is 0. The 
list base has no effect on glCallList(), which executes only one display list, 
or on glNewList().

void glCallLists(GLsizei n, GLenum type, const GLvoid *lists);

Executes n display lists. The indices of the lists to be executed are 
computed by adding the offset indicated by the current display list base 
(specified with glListBase()) to the signed integer values in the array 
pointed to by lists.

Compatibility 
Extension

glIsList

Compatibility 
Extension

glDeleteLists

Compatibility 
Extension

glListBase
glCallLists
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treated as an array of bytes, unsigned bytes, shorts, unsigned shorts, inte-
gers, unsigned integers, or floats, respectively. Type can also be GL_2_BYTES, 
GL_3_BYTES, or GL_4_BYTES, in which case sequences of 2, 3, or 4 bytes are 
read from lists and then shifted and added together, byte by byte, to calcu-
late the display list offset. The following algorithm is used (where byte[0] is 
the start of a byte sequence):

 /* b = 2, 3, or 4; bytes are numbered 0, 1, 2, 3 in array */ 
 offset = 0; 
 for (i = 0; i < b; i++) { 
    offset = offset << 8; 
    offset += byte[i]; 
 }
 index = offset + listbase; 

For multiple-byte data, the highest-order data comes first, as bytes are taken 
from the array in order. 

As an example of the use of multiple display lists, look at the program frag-
ments in Example 7-4 taken from the full program in Example 7-5. This 
program draws characters with a stroked font (a set of letters made from line 
segments). The routine initStrokedFont() sets up the display list indices for 
each letter so that they correspond with their ASCII values.

Example 7-4 Defining Multiple Display Lists

void initStrokedFont(void)
{
   GLuint base;

   base = glGenLists(128);
   glListBase(base);
   glNewList(base+’A’, GL_COMPILE); 
      drawLetter(Adata); glEndList();
   glNewList(base+’E’, GL_COMPILE); 
      drawLetter(Edata); glEndList();
   glNewList(base+’P’, GL_COMPILE); 
      drawLetter(Pdata); glEndList();
   glNewList(base+’R’, GL_COMPILE); 
      drawLetter(Rdata); glEndList();
   glNewList(base+’S’, GL_COMPILE); 
      drawLetter(Sdata); glEndList();
   glNewList(base+’ ’, GL_COMPILE);    /* space character */
      glTranslatef(8.0, 0.0, 0.0);
   glEndList();
}
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The glGenLists() command allocates 128 contiguous display list indices. 
The first of the contiguous indices becomes the display list base. A display 
list is made for each letter; each display list index is the sum of the base and 
the ASCII value of that letter. In this example, only a few letters and the 
space character are created. 

After the display lists have been created, glCallLists() can be called to 
execute the display lists. For example, you can pass a character string to the 
subroutine printStrokedString():

void printStrokedString(GLbyte *s)
{
   GLint len = strlen(s);
   glCallLists(len, GL_BYTE, s);
}

The ASCII value for each letter in the string is used as the offset into the 
display list indices. The current list base is added to the ASCII value of each 
letter to determine the final display list index to be executed. The output 
produced by Example 7-5 is shown in Figure 7-1.

Example 7-5 Multiple Display Lists to Define a Stroked Font: stroke.c

#define PT 1
#define STROKE 2
#define END 3

typedef struct charpoint {
   GLfloat   x, y;
   int    type;
} CP;

CP Adata[] = {
   { 0, 0, PT}, {0, 9, PT}, {1, 10, PT}, {4, 10, PT}, 
   {5, 9, PT}, {5, 0, STROKE}, {0, 5, PT}, {5, 5, END}
};

Figure 7-1 Stroked Font That Defines the Characters A, E, P, R, S
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CP Edata[] = {
   {5, 0, PT}, {0, 0, PT}, {0, 10, PT}, {5, 10, STROKE},
   {0, 5, PT}, {4, 5, END}
};

CP Pdata[] = {
   {0, 0, PT}, {0, 10, PT}, {4, 10, PT}, {5, 9, PT}, {5, 6, PT}, 
   {4, 5, PT}, {0, 5, END}
};

CP Rdata[] = {
   {0, 0, PT}, {0, 10, PT}, {4, 10, PT}, {5, 9, PT}, {5, 6, PT}, 
   {4, 5, PT}, {0, 5, STROKE}, {3, 5, PT}, {5, 0, END}
};

CP Sdata[] = {
   {0, 1, PT}, {1, 0, PT}, {4, 0, PT}, {5, 1, PT}, {5, 4, PT}, 
   {4, 5, PT}, {1, 5, PT}, {0, 6, PT}, {0, 9, PT}, {1, 10, PT}, 
   {4, 10, PT}, {5, 9, END}
};

/*  drawLetter() interprets the instructions from the array
 *  for that letter and renders the letter with line segments.
 */
static void drawLetter(CP *l)
{
   glBegin(GL_LINE_STRIP);
   while (1) {
      switch (l->type) {
         case PT:
            glVertex2fv(&l->x);
            break;
         case STROKE:
            glVertex2fv(&l->x);
            glEnd();
            glBegin(GL_LINE_STRIP);
            break;
         case END:
            glVertex2fv(&l->x);
            glEnd();
            glTranslatef(8.0, 0.0, 0.0);
            return;
      }
      l++;
   }
}
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/*  Create a display list for each of 6 characters. */
static void init(void)
{
   GLuint base;

   glShadeModel(GL_FLAT);

   base = glGenLists(128);
   glListBase(base);
   glNewList(base+’A’, GL_COMPILE); 
   drawLetter(Adata);
   glEndList();
   glNewList(base+’E’, GL_COMPILE); 
   drawLetter(Edata);
   glEndList();
   glNewList(base+’P’, GL_COMPILE); 
   drawLetter(Pdata);
   glEndList();
   glNewList(base+’R’, GL_COMPILE); 
   drawLetter(Rdata);
   glEndList();
   glNewList(base+’S’, GL_COMPILE); 
   drawLetter(Sdata);
   glEndList();
   glNewList(base+’ ’, GL_COMPILE); 
   glTranslatef(8.0, 0.0, 0.0); 
   glEndList();
}

char *test1 = “A SPARE SERAPE APPEARS AS”;
char *test2 = “APES PREPARE RARE PEPPERS”;

static void printStrokedString(char *s)
{
   GLsizei len = strlen(s);
   glCallLists(len, GL_BYTE, (GLbyte *)s);
}

void display(void)
{
   glClear(GL_COLOR_BUFFER_BIT);
   glColor3f(1.0, 1.0, 1.0);
   glPushMatrix();
   glScalef(2.0, 2.0, 2.0);
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   glTranslatef(10.0, 30.0, 0.0);
   printStrokedString(test1);
   glPopMatrix();
   glPushMatrix();
   glScalef(2.0, 2.0, 2.0);
   glTranslatef(10.0, 13.0, 0.0);
   printStrokedString(test2);
   glPopMatrix();
   glFlush();
}

void reshape(int w, int h)
{
   glViewport(0, 0, (GLsizei) w, (GLsizei) h);
   glMatrixMode(GL_PROJECTION);
   glLoadIdentity();
   gluOrtho2D(0.0, (GLdouble) w, 0.0, (GLdouble) h);
}

void keyboard(unsigned char key, int x, int y)
{
   switch (key) {
      case ’ ’:
         glutPostRedisplay();
         break;
      case 27:
         exit(0);

break;
   }
}

int main(int argc, char** argv)
{
   glutInit(&argc, argv);
   glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
   glutInitWindowSize(440, 120);
   glutCreateWindow(argv[0]);
   init();
   glutReshapeFunc(reshape);
   glutKeyboardFunc(keyboard);
   glutDisplayFunc(display);
   glutMainLoop();
   return 0;
}
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Managing State Variables with Display Lists

A display list can contain calls that change the values of OpenGL state 
variables. These values change as the display list is executed, just as if the 
commands were called in immediate mode, and the changes persist after 
execution of the display list is completed. As previously seen in Example 7-2, 
and as shown in Example 7-6, which follows, the changes in the current 
color and current matrix made during the execution of the display list 
remain in effect after it has been called.

Example 7-6 Persistence of State Changes after Execution of a Display List

glNewList(listIndex,GL_COMPILE);
   glColor3f(1.0, 0.0, 0.0);
   glBegin(GL_POLYGON);
      glVertex2f(0.0, 0.0);
      glVertex2f(1.0, 0.0);
      glVertex2f(0.0, 1.0);
   glEnd();
   glTranslatef(1.5, 0.0, 0.0);
glEndList();

If you now call the following sequence, the line drawn after the display list 
is drawn with red as the current color and translated by an additional (1.5, 
0.0, 0.0):

glCallList(listIndex);
glBegin(GL_LINES);
   glVertex2f(2.0,-1.0);
   glVertex2f(1.0, 0.0);
glEnd();

Sometimes you want state changes to persist, but other times you want to 
save the values of state variables before executing a display list and then 
restore these values after the list has been executed. Remember that you 
cannot use glGet*() in a display list, so you must use another way to query 
and store the values of state variables. 

You can use glPushAttrib() to save a group of state variables and glPopAttrib()
to restore the values when you’re ready for them. To save and restore the 
current matrix, use glPushMatrix() and glPopMatrix() as described in 
“Manipulating the Matrix Stacks” in Chapter 3. These push and pop 
routines can be legally cached in a display list. To restore the state variables 
in Example 7-6, you might use the code shown in Example 7-7.
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Example 7-7 Restoring State Variables within a Display List

glNewList(listIndex,GL_COMPILE);
   glPushMatrix();
   glPushAttrib(GL_CURRENT_BIT);
   glColor3f(1.0, 0.0, 0.0);
   glBegin(GL_POLYGON);
      glVertex2f(0.0, 0.0);
      glVertex2f(1.0, 0.0);
      glVertex2f(0.0, 1.0);
   glEnd();
   glTranslatef(1.5, 0.0, 0.0);
   glPopAttrib();
   glPopMatrix();
glEndList();

If you use the display list from Example 7-7, which restores values, the code 
in Example 7-8 draws a green, untranslated line. With the display list in 
Example 7-6, which doesn’t save and restore values, the line is drawn red, 
and its position is translated 10 times (1.5, 0.0, 0.0).

Example 7-8 The Display List May or May Not Affect drawLine()

void display(void)
{
   GLint i;

   glClear(GL_COLOR_BUFFER_BIT);
   glColor3f(0.0, 1.0, 0.0);  /* set current color to green   */
   for (i = 0; i < 10; i++)
      glCallList(listIndex);  /* display list called 10 times */
   drawLine();        /* how and where does this line appear? */
   glFlush();
}

Encapsulating Mode Changes

You can use display lists to organize and store groups of commands to 
change various modes or set various parameters. When you want to switch 
from one group of settings to another, using display lists might be more 
efficient than making the calls directly, since the settings might be cached 
in a format that matches the requirements of your graphics system.

Display lists may be more efficient than immediate mode for switching 
among various lighting, lighting-model, and material-parameter settings. 
You might also use display lists for stipple patterns, fog parameters, and 
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clipping-plane equations. In general, you’ll find that executing display lists 
is at least as fast as making the relevant calls directly, but remember that 
some overhead is involved in jumping to a display list. 

Example 7-9 shows how to use display lists to switch among three different 
line stipples. First, you call glGenLists() to allocate a display list for each 
stipple pattern and create a display list for each pattern. Then, you use 
glCallList() to switch from one stipple pattern to another. 

Example 7-9 Display Lists for Mode Changes

GLuint offset;
offset = glGenLists(3);

glNewList(offset, GL_COMPILE);
    glDisable(GL_LINE_STIPPLE);
glEndList();

glNewList(offset+1, GL_COMPILE);
    glEnable(GL_LINE_STIPPLE);
    glLineStipple(1, 0x0F0F);
glEndList();

glNewList(offset+2, GL_COMPILE);
    glEnable(GL_LINE_STIPPLE);
    glLineStipple(1, 0x1111);
glEndList();

#define drawOneLine(x1,y1,x2,y2) glBegin(GL_LINES); \ 
    glVertex2f((x1),(y1)); glVertex2f((x2),(y2)); glEnd();

glCallList(offset);
drawOneLine(50.0, 125.0, 350.0, 125.0);

glCallList(offset+1);
drawOneLine(50.0, 100.0, 350.0, 100.0);

glCallList(offset+2);
drawOneLine(50.0, 75.0, 350.0, 75.0);
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Chapter 8

8.Drawing Pixels, Bitmaps, Fonts,
and Images

Chapter Objectives

After reading this chapter, you’ll be able to do the following:

• Position and draw bitmapped data

• Read pixel data (bitmaps and images) from the framebuffer into 
processor memory and from memory into the framebuffer

• Copy pixel data from one color buffer to another, or to another 
location in the same buffer

• Magnify or reduce an image as it’s written to the framebuffer

• Control pixel data formatting and perform other transformations as 
the data is moved to and from the framebuffer

• Perform pixel processing using the Imaging Subset

• Use buffer objects for storing pixel data

Note: Much of the functionality discussed in this chapter was deprecated in 
OpenGL Version 3.0, and was removed from Version 3.1. It was 
replaced with more capable functionality using framebuffer objects, 
which are described in Chapter 10.
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So far, most of the discussion in this guide has concerned the rendering of 
geometric data—points, lines, and polygons. Two other important classes of 
data can be rendered by OpenGL:

• Bitmaps, typically used for characters in fonts 

• Image data, which might have been scanned in or calculated

Both bitmaps and image data take the form of rectangular arrays of pixels. 
One difference between them is that a bitmap consists of a single bit of 
information about each pixel, and image data typically includes several 
pieces of data per pixel (the complete red, green, blue, and alpha color 
components, for example). Also, bitmaps are like masks in that they’re used 
to overlay another image, but image data simply overwrites or is blended 
with whatever data is in the framebuffer.

This chapter describes first how to draw pixel data (bitmaps and images) 
from processor memory to the framebuffer and how to read pixel data from 
the framebuffer into processor memory. It also describes how to copy pixel 
data from one position to another, either from one buffer to another or 
within a single buffer. 

Note: OpenGL does not support reading or saving pixels and images to files.

This chapter contains the following major sections:

• “Bitmaps and Fonts” describes the commands for positioning and 
drawing bitmapped data. Such data may describe a font.

• “Images” presents basic information about drawing, reading, and 
copying pixel data. 

• “Imaging Pipeline” describes the operations that are performed on 
images and bitmaps when they are read from the framebuffer and 
when they are written to the framebuffer. 

• “Reading and Drawing Pixel Rectangles” covers all the details about 
how pixel data is stored in memory and how to transform it as it’s 
moved into or out of memory.

• “Using Buffer Objects with Pixel Rectangle Data” discusses using server-
side buffer objects to store and retrieve pixel data more efficiently.

• “Tips for Improving Pixel Drawing Rates” lists tips for getting better 
performance when drawing pixel rectangles.

• “Imaging Subset” presents additional pixel processing operations 
found in this OpenGL extension.
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In most cases, the necessary pixel operations are simple, so the first three 
sections might be all you need to read for your application. However, pixel 
manipulation can be complex—there are many ways to store pixel data in 
memory, and you can apply any of several operations to pixels as they’re 
moved to and from the framebuffer. These details are the subject of the 
fourth section of this chapter. Most likely, you’ll want to read this section 
only when you actually need to make use of the information. “Tips for 
Improving Pixel Drawing Rates” provides useful tips to get the best 
performance when rendering bitmaps and images.

OpenGL Version 1.2 added packed data types (such as GL_UNSIGNED_
BYTE_3_3_2 and GL_UNSIGNED_INT_10_10_10_2) and swizzled pixel 
formats (such as BGR and BGRA), which match some windowing-system 
formats better. 

Also in Version 1.2, a set of imaging operations, including color matrix 
transformations, color lookup tables, histograms, and new blending oper-
ations (glBlendEquation(), glBlendColor(), and several constant blend-
ing modes), became an ARB-approved extension named the Imaging 
Subset. In Version 1.4, the blending operations of the Imaging Subset were 
promoted to the core OpenGL feature set, and are no longer optional 
functionality.

Version 1.4 introduced use of GL_SRC_COLOR and GL_ONE_MINUS_SRC_
COLOR as source blending functions as well as use of GL_DST_COLOR and 
GL_ONE_MINUS_DST_COLOR as destination blending functions. Also 
introduced in Version 1.4 was glWindowPos*() for specifying the raster 
position in window coordinates.

Version 3.0 introduced numerous additional data types and pixel formats 
described in this chapter. Many of these formats are more useful as texture 
formats (see Chapter 9, “Texture Mapping,” for details) and as renderbuffer 
formats, which are part of the new functionality of framebuffer objects 
(details are discussed in “Framebuffer Objects” in Chapter 10).

Bitmaps and Fonts

A bitmap is a rectangular array of 0s and 1s that serves as a drawing mask for a 
rectangular portion of the window. Suppose you’re drawing a bitmap and the 
current raster color is red. Wherever there’s a 1 in the bitmap, the correspond-
ing pixel in the framebuffer is replaced by a red pixel (or combined with a red 
pixel, depending on which per-fragment operations are in effect). (See “Testing 
and Operating on Fragments” in Chapter 10.) If there’s a 0 in the bitmap, no 
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fragments are generated, and the contents of the pixel are unaffected. The 
most common use of bitmaps is for drawing characters on the screen.

OpenGL provides only the lowest level of support for drawing strings of 
characters and manipulating fonts. The commands glRasterPos*() (or alter-
natively glWindowPos*()) and glBitmap() position and draw a single bit-
map on the screen. In addition, through the display-list mechanism, you 
can use a sequence of character codes to index into a corresponding series 
of bitmaps representing those characters. (See Chapter 7 for more informa-
tion about display lists.) You’ll have to write your own routines to provide 
any other support you need for manipulating bitmaps, fonts, and strings of 
characters.

Consider Example 8-1, which draws the character F three times on the screen. 
Figure 8-1 shows the F as a bitmap and its corresponding bitmap data. 

Example 8-1 Drawing a Bitmapped Character: drawf.c

GLubyte rasters[24] = {
   0xc0, 0x00, 0xc0, 0x00, 0xc0, 0x00, 0xc0, 0x00, 0xc0, 0x00,
   0xff, 0x00, 0xff, 0x00, 0xc0, 0x00, 0xc0, 0x00, 0xc0, 0x00,
   0xff, 0xc0, 0xff, 0xc0};

void init(void)
{
   glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
   glClearColor(0.0, 0.0, 0.0, 0.0);
}

void display(void)

0xff, 0xc0
0xff, 0xc0
0xc0, 0x00
0xc0, 0x00
0xc0, 0x00
0xff, 0x00
0xff, 0x00
0xc0, 0x00
0xc0, 0x00
0xc0, 0x00
0xc0, 0x00
0xc0, 0x00

Figure 8-1 Bitmapped F and Its Data
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{
   glClear(GL_COLOR_BUFFER_BIT);
   glColor3f(1.0, 1.0, 1.0);
   glRasterPos2i(20, 20);
   glBitmap(10, 12, 0.0, 0.0, 11.0, 0.0, rasters);
   glBitmap(10, 12, 0.0, 0.0, 11.0, 0.0, rasters);
   glBitmap(10, 12, 0.0, 0.0, 11.0, 0.0, rasters);
   glFlush();
}

In Figure 8-1, note that the visible part of the F character is at most 10 bits 
wide. Bitmap data is always stored in chunks that are multiples of 8 bits, but 
the width of the actual bitmap doesn’t have to be a multiple of 8. The bits 
making up a bitmap are drawn starting from the lower left corner: First, the 
bottom row is drawn, then the next row above it, and so on. As you can tell 
from the code, the bitmap is stored in memory in this order—the array of 
rasters begins with 0xc0, 0x00, 0xc0, 0x00 for the bottom two rows of the F 
and continues to 0xff, 0xc0, 0xff, 0xc0 for the top two rows.

The commands of interest in this example are glRasterPos2i() and 
glBitmap(); they’re discussed in detail in the next section. For now, ignore 
the call to glPixelStorei(); it describes how the bitmap data is stored in 
computer memory. (See “Controlling Pixel-Storage Modes” for more 
information.)

The Current Raster Position

The current raster position is the screen position where the next bitmap (or 
image) is to be drawn. In the F example, the raster position was set by calling 
glRasterPos*() with coordinates (20, 20), which is where the lower left 
corner of the F was drawn:

glRasterPos2i(20, 20); 

void glRasterPos{234}{sifd}(TYPE x, TYPE y, TYPE z, TYPE w);
void glRasterPos{234}{sifd}v(const TYPE *coords);

Sets the current raster position. The x, y, z, and w arguments specify the 
coordinates of the raster position. If the vector form of the function is 
used, the coords array contains the coordinates of the raster position. If 
glRasterPos2*() is used, z is implicitly set to zero and w is implicitly set 
to 1; similarly, with glRasterPos3*(), w is set to 1. 

Compatibility 
Extension

glRasterPos
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The coordinates of the raster position are transformed to screen coordinates 
in exactly the same way as coordinates supplied with a glVertex*() com-
mand (that is, with the modelview and perspective matrices). After transfor-
mation, either they define a valid spot in the viewport, or they’re clipped 
because the coordinates were outside the viewing volume. If the trans-
formed point is clipped out, the current raster position is invalid. 

Prior to Version 1.4, if you wanted to specify the raster position in window 
(screen) coordinates, you had to set up the modelview and projection 
matrices for simple 2D rendering, with something like the following 
sequence of commands, where width and height are also the size (in pixels) 
of the viewport:

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(0.0, (GLfloat) width, 0.0, (GLfloat) height);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

In Version 1.4, glWindowPos*() was introduced as an alternative to 
glRasterPos*(). glWindowPos*() specifies the current raster position in 
window coordinates, without the transformation of its x and y coordinates 
by the modelview or projection matrices, nor clipping to the viewport. 
glWindowPos*() makes it much easier to intermix 2D text and 3D graphics 
at the same time without the repetitious switching of transformation state.

To obtain the current raster position (whether set by glRasterPos*() or 
glWindowPos*()), you can use the query command glGetFloatv() with 
GL_CURRENT_RASTER_POSITION as the first argument. The second 
argument should be a pointer to an array that can hold the (x, y, z, w) values 
as floating-point numbers. Call glGetBooleanv() with GL_CURRENT_
RASTER_POSITION_VALID as the first argument to determine whether 
the current raster position is valid. 

void glWindowPos{23}{sifd}(TYPE x, TYPE y, TYPE z);
void glWindowPos{23}{sifd}v(const TYPE *coords);

Sets the current raster position using the x and y arguments as window 
coordinates without matrix transformation, clipping, lighting, or texture 
coordinate generation. The z value is transformed by (and clamped to) the 
current near and far values set by glDepthRange(). If the vector form of 
the function is used, the coords array contains the coordinates of the raster 
position. If glWindowPos2*() is used, z is implicitly set to zero.

Compatibility 
Extension

glWindowPos

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Bitmaps and Fonts 327

Drawing the Bitmap

Once you’ve set the desired raster position, you can use the glBitmap()
command to draw the data. 

Allowing the origin of the bitmap to be placed arbitrarily makes it easy for 
characters to extend below the origin (typically used for characters with 
descenders, such as g, j, and y), or to extend beyond the left of the origin 

void glBitmap(GLsizei width, GLsizei height,
GLfloat xbo, GLfloat ybo,
GLfloat xbi, GLfloat ybi,
const GLubyte *bitmap);

Draws the bitmap specified by bitmap, which is a pointer to the bitmap 
image. The origin of the bitmap is placed at the current raster position. 
If the current raster position is invalid, nothing is drawn, and the raster 
position remains invalid. The width and height arguments indicate the 
width and height, in pixels, of the bitmap. The width need not be a 
multiple of 8, although the data is stored in unsigned characters of 8 bits 
each. (In the F example, it wouldn’t matter if there were garbage bits in 
the data beyond the tenth bit; since glBitmap() was called with a width 
of 10, only 10 bits of the row are rendered.) Use xbo and ybo to define the 
origin of the bitmap, which is positioned at the current raster position 
(positive values move the origin up and to the right of the raster position; 
negative values move it down and to the left); xbi and ybi indicate the x
and y increments that are added to the raster position after the bitmap is 
rasterized (see Figure 8-2).

Compatibility 
Extension

glBitmap

(xbo, ybo) = (0, 0)

(xbi, ybi) = (11, 0)

w = 10

h = 12

0, 0 11, 0

Figure 8-2 Bitmap and Its Associated Parameters
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(used for various swash characters, which have extended flourishes, or for 
characters in fonts that lean to the left).

After the bitmap is drawn, the current raster position is advanced by xbi and 
ybi in the x- and y-directions, respectively. (If you just want to advance the 
current raster position without drawing anything, call glBitmap() with the 
bitmap parameter set to NULL and the width and height parameters set to 
zero.) For standard Latin fonts, ybi is typically 0.0 and xbi is positive (since 
successive characters are drawn from left to right). For Hebrew, where char-
acters go from right to left, the xbi values would typically be negative. Fonts 
that draw successive characters vertically in columns would use zero for xbi
and nonzero values for ybi. In Figure 8-2, each time the F is drawn, the cur-
rent raster position advances by 11 pixels, allowing a 1-pixel space between 
successive characters.

Since xbo, ybo, xbi, and ybi are floating-point values, characters need not be 
an integral number of pixels apart. Actual characters are drawn on exact 
pixel boundaries, but the current raster position is kept in floating point so 
that each character is drawn as close as possible to where it belongs. For 
example, if the code in the F example were modified such that xbi was 11.5 
instead of 12, and if more characters were drawn, the space between letters 
would alternate between 1 and 2 pixels, giving the best approximation to 
the requested 1.5-pixel space. 

Note: You can’t rotate bitmap fonts because the bitmap is always drawn 
aligned to the x and y framebuffer axes. Additionally, bitmaps can’t 
be zoomed.

Choosing a Color for the Bitmap

You are familiar with using glColor*() and glIndex*() to set the current 
color or index for drawing geometric primitives. The same commands are 
used to set different state variables, GL_CURRENT_RASTER_COLOR and 
GL_CURRENT_RASTER_INDEX, for rendering bitmaps. The raster color 
state variables are set from the current color when glRasterPos*() is called, 
which can lead to a trap. In the following sequence of code, what is the 
color of the bitmap?

glColor3f(1.0, 1.0, 1.0);  /* white */
glRasterPos3fv(position);
glColor3f(1.0, 0.0, 0.0);  /* red  */
glBitmap(....);
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Are you surprised to learn that the bitmap is white? The GL_CURRENT_
RASTER_COLOR is set to white when glRasterPos3fv() is called. The 
second call to glColor3f() changes the value of GL_CURRENT_COLOR for 
future geometric rendering, but the color used to render the bitmap is 
unchanged.

To obtain the current raster color or index, you can use the query commands 
glGetFloatv() or glGetIntegerv() with GL_CURRENT_RASTER_COLOR or 
GL_CURRENT_RASTER_INDEX as the first argument.

Fonts and Display Lists

Display lists are discussed in general terms in Chapter 7. However, a few of 
the display-list management commands have special relevance for drawing 
strings of characters. As you read this section, keep in mind that the ideas 
presented here apply equally well to characters that are drawn using bitmap 
data and those drawn using geometric primitives (points, lines, and poly-
gons). (See “Executing Multiple Display Lists” in Chapter 7 for an example 
of a geometric font.) 

A font typically consists of a set of characters, where each character has an 
identifying number (usually the ASCII code) and a drawing method. For a 
standard ASCII character set, the capital letter A is number 65, B is 66, and 
so on. The string “DAB” would be represented by the three indices 68, 65, 
66. In the simplest approach, display-list number 65 draws an A, number 66 
draws a B, and so on. To draw the string 68, 65, 66, just execute the corre-
sponding display lists.

You can use the command glCallLists() in just this way:

void glCallLists(GLsizei n, GLenum type, const GLvoid *lists);

The first argument, n, indicates the number of characters to be drawn, type
is usually GL_BYTE, and lists is an array of character codes.

Since many applications need to draw character strings in multiple fonts 
and sizes, this simplest approach isn’t convenient. Instead, you’d like to use 
65 as A no matter what font is currently active. You could force font 1 to 
encode A, B, and C as 1065, 1066, 1067, and font 2 as 2065, 2066, 2067, but 
then any numbers larger than 256 would no longer fit in an 8-bit byte. A 
better solution is to add an offset to every entry in the string before choosing 
the display list. In this case, font 1 has A, B, and C represented by 1065, 
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1066, and 1067, and in font 2, they might be 2065, 2066, and 2067. To draw 
characters in font 1, set the offset to 1000 and draw display lists 65, 66, and 
67. To draw that same string in font 2, set the offset to 2000 and draw the 
same lists.

To set the offset, use the command glListBase(). For the preceding 
examples, it should be called with 1000 or 2000 as the (only) argument. 
Now what you need is a contiguous list of unused display-list numbers, 
which you can obtain from glGenLists():

GLuint glGenLists(GLsizei range); 

This function returns a block of range display-list identifiers. The returned 
lists are all marked as “used” even though they’re empty, so that subsequent 
calls to glGenLists() never return the same lists (unless you’ve explicitly 
deleted them previously). Therefore, if you use 4 as the argument and if 
glGenLists() returns 81, you can use display-list identifiers 81, 82, 83, 
and 84 for your characters. If glGenLists() can’t find a block of unused 
identifiers of the requested length, it returns 0. (Note that the command 
glDeleteLists() makes it easy to delete all the lists associated with a font in 
a single operation.)

Most American and European fonts have a small number of characters 
(fewer than 256), so it’s easy to represent each character with a different 
code that can be stored in a single byte. Asian fonts, among others, may 
require much larger character sets, so a byte-per-character encoding is 
impossible. OpenGL allows strings to be composed of 1-, 2-, 3-, or 4-byte 
characters through the type parameter in glCallLists(). This parameter can 
have any of the following values: 

GL_BYTE GL_UNSIGNED_BYTE

GL_SHORT GL_UNSIGNED_SHORT

GL_INT GL_UNSIGNED_INT

GL_FLOAT GL_2_BYTES

GL_3_BYTES GL_4_BYTES

(See “Executing Multiple Display Lists” in Chapter 7 for more information 
about these values.)
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Defining and Using a Complete Font

The glBitmap() command and the display-list mechanism described in 
the preceding section make it easy to define a raster font. In Example 8-2, the 
upper-case characters of an ASCII font are defined. In this example, each 
character has the same width, but this is not always the case. Once the char-
acters are defined, the program prints the message “THE QUICK BROWN 
FOX JUMPS OVER A LAZY DOG.”

The code in Example 8-2 is similar to the F example, except that each 
character’s bitmap is stored in its own display list. When combined with the 
offset returned by glGenLists(), the display list identifier is equal to the 
ASCII code for the character.

Example 8-2 Drawing a Complete Font: font.c

GLubyte space[] =
    {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

GLubyte letters[][13] = {
    {0x00, 0x00, 0xc3, 0xc3, 0xc3, 0xc3, 0xff, 0xc3, 0xc3, 0xc3, 0x66, 0x3c, 0x18},
    {0x00, 0x00, 0xfe, 0xc7, 0xc3, 0xc3, 0xc7, 0xfe, 0xc7, 0xc3, 0xc3, 0xc7, 0xfe},
    {0x00, 0x00, 0x7e, 0xe7, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xe7, 0x7e},
    {0x00, 0x00, 0xfc, 0xce, 0xc7, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xc7, 0xce, 0xfc},
    {0x00, 0x00, 0xff, 0xc0, 0xc0, 0xc0, 0xc0, 0xfc, 0xc0, 0xc0, 0xc0, 0xc0, 0xff},
    {0x00, 0x00, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xfc, 0xc0, 0xc0, 0xc0, 0xff},
    {0x00, 0x00, 0x7e, 0xe7, 0xc3, 0xc3, 0xcf, 0xc0, 0xc0, 0xc0, 0xc0, 0xe7, 0x7e},
    {0x00, 0x00, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xff, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3},
    {0x00, 0x00, 0x7e, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x7e},
    {0x00, 0x00, 0x7c, 0xee, 0xc6, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06},
    {0x00, 0x00, 0xc3, 0xc6, 0xcc, 0xd8, 0xf0, 0xe0, 0xf0, 0xd8, 0xcc, 0xc6, 0xc3},
    {0x00, 0x00, 0xff, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0},
    {0x00, 0x00, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xdb, 0xff, 0xff, 0xe7, 0xc3},
    {0x00, 0x00, 0xc7, 0xc7, 0xcf, 0xcf, 0xdf, 0xdb, 0xfb, 0xf3, 0xf3, 0xe3, 0xe3},
    {0x00, 0x00, 0x7e, 0xe7, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xe7, 0x7e},
    {0x00, 0x00, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xfe, 0xc7, 0xc3, 0xc3, 0xc7, 0xfe},
    {0x00, 0x00, 0x3f, 0x6e, 0xdf, 0xdb, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0x66, 0x3c},
    {0x00, 0x00, 0xc3, 0xc6, 0xcc, 0xd8, 0xf0, 0xfe, 0xc7, 0xc3, 0xc3, 0xc7, 0xfe},
    {0x00, 0x00, 0x7e, 0xe7, 0x03, 0x03, 0x07, 0x7e, 0xe0, 0xc0, 0xc0, 0xe7, 0x7e},
    {0x00, 0x00, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0xff},
    {0x00, 0x00, 0x7e, 0xe7, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3},
    {0x00, 0x00, 0x18, 0x3c, 0x3c, 0x66, 0x66, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3},
    {0x00, 0x00, 0xc3, 0xe7, 0xff, 0xff, 0xdb, 0xdb, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3},
    {0x00, 0x00, 0xc3, 0x66, 0x66, 0x3c, 0x3c, 0x18, 0x3c, 0x3c, 0x66, 0x66, 0xc3},
    {0x00, 0x00, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x3c, 0x3c, 0x66, 0x66, 0xc3},
    {0x00, 0x00, 0xff, 0xc0, 0xc0, 0x60, 0x30, 0x7e, 0x0c, 0x06, 0x03, 0x03, 0xff}

};
GLuint fontOffset;
void makeRasterFont(void)
{
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   GLuint i, j;
   glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
   fontOffset = glGenLists(128);
   for (i = 0,j = ‘A’; i < 26; i++,j++) {
      glNewList(fontOffset + j, GL_COMPILE);
      glBitmap(8, 13, 0.0, 2.0, 10.0, 0.0, letters[i]);
      glEndList();
   }
   glNewList(fontOffset + ‘ ‘, GL_COMPILE);
   glBitmap(8, 13, 0.0, 2.0, 10.0, 0.0, space);
   glEndList();
}
void init(void)
{
   glShadeModel(GL_FLAT);
   makeRasterFont();
}

void printString(char *s)
{
   glPushAttrib(GL_LIST_BIT);
   glListBase(fontOffset);
   glCallLists(strlen(s), GL_UNSIGNED_BYTE, (GLubyte *) s);
   glPopAttrib();
}

/* Everything above this line could be in a library 
 * that defines a font.  To make it work, you’ve got 
 * to call makeRasterFont() before you start making 
 * calls to printString().
 */
void display(void)
{
   GLfloat white[3] = { 1.0, 1.0, 1.0 };

   glClear(GL_COLOR_BUFFER_BIT);
   glColor3fv(white);

   glRasterPos2i(20, 60);
   printString(“THE QUICK BROWN FOX JUMPS”);
   glRasterPos2i(20, 40);
   printString(“OVER A LAZY DOG”);
   glFlush();
}
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Images

An image—or more precisely, a pixel rectangle—is similar to a bitmap. 
Instead of containing only a single bit for each pixel in a rectangular region 
of the screen, however, an image can contain much more information. For 
example, an image can contain a complete (R, G, B, A) color stored at each 
pixel. Images can come from several sources, such as 

• A photograph that’s digitized with a scanner

• An image that was first generated on the screen by a graphics program 
using the graphics hardware and then read back pixel by pixel

• A software program that generated the image in memory pixel by 
pixel

The images you normally think of as pictures come from the color buffers. 
However, you can read or write rectangular regions of pixel data from or to 
the depth buffer or the stencil buffer. (See Chapter 10 for an explanation of 
these other buffers.) 

In addition to simply being displayed on the screen, images can be used for 
texture maps, in which case they’re essentially pasted onto polygons that 
are rendered on the screen in the normal way. (See Chapter 9 for more 
information about this technique.) 

Reading, Writing, and Copying Pixel Data

OpenGL provides three basic commands that manipulate image data:

• glReadPixels()—Reads a rectangular array of pixels from the 
framebuffer and stores the data in processor memory.

• glDrawPixels()—Writes a rectangular array of pixels from data kept in 
processor memory into the framebuffer at the current raster position 
specified by glRasterPos*().

• glCopyPixels()—Copies a rectangular array of pixels from one part of 
the framebuffer to another. This command behaves similarly to a call 
to glReadPixels() followed by a call to glDrawPixels(), but the data is 
never written into processor memory. 

For the aforementioned commands, the order of pixel data processing 
operations is shown in Figure 8-3.
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Figure 8-3 presents the basic flow of pixels as they are processed. The coor-
dinates of glRasterPos*(), which specify the current raster position used by 
glDrawPixels() and glCopyPixels(), are transformed by the geometric pro-
cessing pipeline. Both glDrawPixels() and glCopyPixels() are affected by 
rasterization and per-fragment operations. (But when drawing or copying 
a pixel rectangle, there’s almost never a reason to have fog or texture 
enabled.)

However, complications arise because there are many kinds of framebuffer 
data, many ways to store pixel information in computer memory, and var-
ious data conversions that can be performed during the reading, writing, 
and copying operations. These possibilities translate to many different 
modes of operation. If all your program does is copy images on the screen 
or read them into memory temporarily so that they can be copied out later, 
you can ignore most of these modes. However, if you want your program to 
modify the data while it’s in memory—for example, if you have an image 
stored in one format but the window requires a different format, or if you 
want to save image data to a file for future restoration in another session or 
on another kind of machine with significantly different graphical capabili-
ties—you have to understand the various modes.

The rest of this section describes the basic commands in detail. The follow-
ing sections discuss the details of the series of imaging operations that 

Per-fra
gment

operations

Per-vertex

operations

and prim
itive 

assembly

Rasterization

(fog, te
xture)

Framebuffer

glCopyPixels

glReadPixels

glDrawPixels
Processor

memory

glRasterPos*

Figure 8-3 Simplistic Diagram of Pixel Data Flow
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comprise the Imaging Pipeline: pixel-storage modes, pixel-transfer opera-
tions, and pixel-mapping operations. 

Reading Pixel Data from Framebuffer to Processor Memory

If you are using glReadPixels() to obtain RGBA or color-index information, 
you may need to clarify which buffer you are trying to access. For example, 
if you have a double-buffered window, you need to specify whether you are 
reading data from the front buffer or back buffer. To control the current 
read source buffer, call glReadBuffer(). (See “Selecting Color Buffers for 
Writing and Reading” in Chapter 10.)

void glReadPixels(GLint x, GLint y, GLsizei width, GLsizei height,
GLenum format, GLenum type, GLvoid *pixels);

Reads pixel data from the framebuffer rectangle whose lower-left corner
is at (x, y) in window coordinates and whose dimensions are width and 
height, and then stores the data in the array pointed to by pixels. format
indicates the kind of pixel data elements that are read (a color-index, 
depth, or stencil value or an R, G, B, or A component value, as listed 
in Table 8-1), and type indicates the data type of each element (see 
Table 8-2).

glReadPixels() can generate a few OpenGL errors: A GL_INVALID_
OPERATION error will be generated if format is set to GL_DEPTH, and 
there is no depth buffer; or if format is GL_STENCIL, and there is no stencil 
buffer; or if format is set to GL_DEPTH_STENCIL, and there are not both a 
depth and a stencil buffer associated with the framebuffer, or if type is 
neither GL_UNSIGNED_INT_24_8, nor GL_FLOAT_32_UNSIGNED_INT_
24_8_REV, then GL_INVALID_ENUM is set.

format Constant Pixel Format

GL_COLOR_INDEX a single color index 

GL_RG or
GL_RG_INTEGER

a red color component, followed by a green color 
component

GL_RGB or
GL_RGB_INTEGER

a red color component, followed by green and blue 
color components

GL_RGBA or
GL_RGBA_INTEGER

a red color component, followed by green, blue, 
and alpha color components

Table 8-1 Pixel Formats for glReadPixels() or glDrawPixels()
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GL_BGR or
GL_BGR_INTEGER

a blue color component, followed by green and red 
color components

GL_BGRA or
GL_BGRA_INTEGER

a blue color component, followed by green, red, 
and alpha color components

GL_RED or
GL_RED_INTEGER

a single red color component

GL_GREEN or
GL_GREEN_INTEGER

a single green color component

GL_BLUE or
GL_BLUE_INTEGER

a single blue color component

GL_ALPHA or
GL_ALPHA_INTEGER

a single alpha color component

GL_LUMINANCE a single luminance component 

GL_LUMINANCE_ALPHA a luminance component followed by an alpha color 
component 

GL_STENCIL_INDEX a single stencil index 

GL_DEPTH_COMPONENT a single depth component 

GL_DEPTH_STENCIL combined depth and stencil components

type Constant Data Type

GL_UNSIGNED_BYTE unsigned 8-bit integer

GL_BYTE signed 8-bit integer

GL_BITMAP single bits in unsigned 8-bit integers 
using the same format as glBitmap()

GL_UNSIGNED_SHORT unsigned 16-bit integer

GL_SHORT signed 16-bit integer

GL_UNSIGNED_INT unsigned 32-bit integer

GL_INT signed 32-bit integer

Table 8-2 Data Types for glReadPixels() or glDrawPixels()

format Constant Pixel Format

Table 8-1 (continued)        Pixel Formats for glReadPixels() or glDrawPixels()
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Note: The GL_*_REV pixel formats are particularly useful on Microsoft’s 
Windows operating systems.

GL_FLOAT single-precision floating point

GL_HALF_FLOAT a 16-bit floating-point value

GL_UNSIGNED_BYTE_3_3_2 packed into unsigned 8-bit integer

GL_UNSIGNED_BYTE_2_3_3_REV packed into unsigned 8-bit integer

GL_UNSIGNED_SHORT_5_6_5 packed into unsigned 16-bit integer

GL_UNSIGNED_SHORT_5_6_5_REV packed into unsigned 16-bit integer

GL_UNSIGNED_SHORT_4_4_4_4 packed into unsigned 16-bit integer

GL_UNSIGNED_SHORT_4_4_4_4_REV packed into unsigned 16-bit integer

GL_UNSIGNED_SHORT_5_5_5_1 packed into unsigned 16-bit integer

GL_UNSIGNED_SHORT_1_5_5_5_REV packed into unsigned 16-bit integer

GL_UNSIGNED_INT_8_8_8_8 packed into unsigned 32-bit integer

GL_UNSIGNED_INT_8_8_8_8_REV packed into unsigned 32-bit integer

GL_UNSIGNED_INT_10_10_10_2 packed into unsigned 32-bit integer

GL_UNSIGNED_INT_2_10_10_10_REV packed into unsigned 32-bit integer

GL_UNSIGNED_INT_24_8 packed into unsigned 32-bit integer. 
(For use exclusively with a format of 
GL_DEPTH_STENCIL)

GL_UNSIGNED_INT_10F_11F_10F_
11F_REV

10- and 11-bit floating-point values 
packed into unsigned 32-bit integer

GL_UNSIGNED_INT_5_9_9_9_REV three 9-bit floating-poing values sharing 
their exponent 5-bit value packed into an 
unsigned 32-bit integer

GL_FLOAT_32_ UNSIGNED_INT_
24_8_REV

depth and stencil values packed into two 
32-bit quantities: 32-bit floating-point 
depth value, and an 8-bit unsigned 
stencil value. (The “middle” 24 bits are 
unused.)

type Constant Data Type

Table 8-2 (continued)        Data Types for glReadPixels() or glDrawPixels()
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Remember that, depending on the format, anywhere from one to four ele-
ments are read (or written). For example, if the format is GL_RGBA and 
you’re reading into 32-bit integers (that is, if type is equal to GL_UNSIGNED_
INT or GL_INT), then every pixel read requires 16 bytes of storage (four com-
ponents  four bytes/component).

Each element of the image is stored in memory, as indicated in Table 8-2. If 
the element represents a continuous value, such as a red, green, blue, or 
luminance component, each value is scaled to fit into the available number 
of bits. For example, assume the red component is initially specified as a 
floating-point value between 0.0 and 1.0. If it needs to be packed into an 
unsigned byte, only 8 bits of precision are kept, even if more bits are allo-
cated to the red component in the framebuffer. GL_UNSIGNED_SHORT and 
GL_UNSIGNED_INT give 16 and 32 bits of precision, respectively. The 
signed versions of GL_BYTE, GL_SHORT, and GL_INT have 7, 15, and 31 
bits of precision, since the negative values are typically not used. 

If the element is an index (a color index or a stencil index, for example), and 
the type is not GL_FLOAT, the value is simply masked against the available 
bits in the type. The signed versions—GL_BYTE, GL_SHORT, and GL_INT—
have masks with one fewer bit. For example, if a color index is to be stored 
in a signed 8-bit integer, it’s first masked against 0x7f. If the type is GL_
FLOAT, the index is simply converted into a single-precision floating-point 
number (for example, the index 17 is converted to the float 17.0).

For integer-based packed data types (denoted by constants that begin with 
GL_UNSIGNED_BYTE_*, GL_UNSIGNED_SHORT_*, or GL_UNSIGNED_
INT_*), color components of each pixel are squeezed into a single unsigned 
data type: one of byte, short integer, or standard integer. Valid formats are 
limited for each type, as indicated in Table 8-3. If an invalid pixel format is 
used for a packed pixel data type, a GL_INVALID_OPERATION error is 
generated.

Packed type Constants Valid Pixel Formats

GL_UNSIGNED_BYTE_3_3_2 GL_RGB

GL_UNSIGNED_BYTE_2_3_3_REV GL_RGB

GL_UNSIGNED_SHORT_5_6_5 GL_RGB

GL_UNSIGNED_SHORT_5_6_5_REV GL_RGB

Table 8-3 Valid Pixel Formats for Packed Data Types
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The order of color values in bitfield locations of packed pixel data is deter-
mined by both the pixel format and whether the type constant contains 
_REV. Without the _REV suffix, the color components are normally assigned 
with the first color component occupying the most significant locations. 
With the _REV suffix, the component packing order is reversed, with the 
first color component starting with the least significant locations.

To illustrate this, Figure 8-4 shows the bitfield ordering of GL_UNSIGNED_
BYTE_3_3_2, GL_UNSIGNED_BYTE_2_3_3_REV, and four valid combina-
tions of GL_UNSIGNED_SHORT_4_4_4_4 (and _REV) data types and the 
RGBA/BGRA pixel formats. The bitfield organizations for the other 14 valid 
combinations of packed pixel data types and pixel formats follow similar 
patterns.

The most significant bit of each color component is always packed in the 
most significant bit location. Storage of a single component is not affected 
by any pixel storage modes, although storage of an entire pixel may be 
affected by the byte swapping mode. (For details on byte swapping, see 
“Controlling Pixel-Storage Modes” on page 347.)

GL_UNSIGNED_SHORT_4_4_4_4 GL_RGBA, GL_BGRA

GL_UNSIGNED_SHORT_4_4_4_4_REV GL_RGBA, GL_BGRA

GL_UNSIGNED_SHORT_5_5_5_1 GL_RGBA, GL_BGRA

GL_UNSIGNED_SHORT_1_5_5_5_REV GL_RGBA, GL_BGRA

GL_UNSIGNED_INT_8_8_8_8 GL_RGBA, GL_BGRA

GL_UNSIGNED_INT_8_8_8_8_REV GL_RGBA, GL_BGRA

GL_UNSIGNED_INT_10_10_10_2 GL_RGBA, GL_BGRA

GL_UNSIGNED_INT_2_10_10_10_REV GL_RGBA, GL_BGRA

GL_UNSIGNED_INT_24_8 GL_DEPTH_STENCIL

GL_UNSIGNED_INT_10F_11F_11F GL_RGB

GL_UNSIGNED_INT_5_9_9_9_REV GL_RGB

GL_FLOAT_32_UNSIGNED_INT_24_8_REV GL_DEPTH_STENCIL

Packed type Constants Valid Pixel Formats

Table 8-3 (continued)        Valid Pixel Formats for Packed Data Types
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Writing Pixel Data from Processor Memory to Framebuffer

void glDrawPixels(GLsizei width, GLsizei height, GLenum format,
GLenum type, const GLvoid *pixels);

Draws a rectangle of pixel data with dimensions width and height. The 
pixel rectangle is drawn with its lower-left corner at the current raster 
position. format and type have the same meaning as with glReadPixels().
(For legal values for format and type, see Tables 8-1 and 8-2.) The array 
pointed to by pixels contains the pixel data to be drawn. If the current 
raster position is invalid, nothing is drawn, and the raster position 
remains invalid.

A GL_INVALID_OPERATION is generated if format is GL_STENCIL and 
there isn’t a stencil buffer associated with the framebuffer, or likewise, if 
format is GL_DEPTH_STENCIL, and there is not both a depth and stencil 
buffer.

Red Green Blue
7  6  5  4  3  2  1  0

Blue Green Red

7  6  5  4  3  2  1  0

GL_UNSIGNED_BYTE_3_3_2 with GL_RGB

Red Green Blue Alpha
15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0

GL_UNSIGNED_SHORT_4_4_4_4 with GL_RGBA

Blue Green Red Alpha
15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0

GL_UNSIGNED_SHORT_4_4_4_4 with GL_BGRA

Alpha Blue Green Red
15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0

GL_UNSIGNED_SHORT_4_4_4_4_REV with GL_RGBA

Alpha Red Green Blue
15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0

GL_UNSIGNED_SHORT_4_4_4_4_REV with GL_BGRA

GL_UNSIGNED_BYTE_2_3_3_REV with GL_RGB

Figure 8-4 Component Ordering for Some Data Types and Pixel Formats

Compatibility 
Extension

glDrawPixels
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Example 8-3 is a portion of a program that uses glDrawPixels() to draw a 
pixel rectangle in the lower left corner of a window. makeCheckImage()
creates a 64 64 RGB array of a black-and-white checkerboard image. 
glRasterPos2i(0, 0) positions the lower left corner of the image. For now, 
ignore glPixelStorei().

Example 8-3 Use of glDrawPixels(): image.c

#define checkImageWidth 64
#define checkImageHeight 64
GLubyte checkImage[checkImageHeight][checkImageWidth][3];

void makeCheckImage(void)
{
   int i, j, c;

   for (i = 0; i < checkImageHeight; i++) {
      for (j = 0; j < checkImageWidth; j++) {
         c = (((i&0x8)==0)^((j&0x8)==0))*255;
         checkImage[i][j][0] = (GLubyte) c;
         checkImage[i][j][1] = (GLubyte) c;
         checkImage[i][j][2] = (GLubyte) c;
      }
   }
}

void init(void)
{
   glClearColor(0.0, 0.0, 0.0, 0.0);
   glShadeModel(GL_FLAT);
   makeCheckImage();
   glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
}
void display(void)
{
   glClear(GL_COLOR_BUFFER_BIT);
   glRasterPos2i(0, 0);
   glDrawPixels(checkImageWidth, checkImageHeight, GL_RGB,
                GL_UNSIGNED_BYTE, checkImage);
   glFlush();
}

When using glDrawPixels() to write RGBA or color-index information, you 
may need to control the current drawing buffers with glDrawBuffer(),
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which, along with glReadBuffer(), is also described in “Selecting Color 
Buffers for Writing and Reading” in Chapter 10.

glDrawPixels() operates slightly differently when the format parameter is 
set to GL_STENCIL or GL_DEPTH_STENCIL. In the cases where the stencil 
buffer is affected, the window positions that would be written have their 
stencil values updated (subject to the current front stencil mask), but 
no values in the color buffer are generated or affected (i.e., no fragments 
are generated; if a fragment shader is bound, it is not executed for those 
positions during that drawing operation). Likewise, if a depth is also 
provided, and you can write to the depth buffer (i.e., the depth mask is 
GL_TRUE), then the depth values are written directly to the depth buffer, 
which remains unaffected by the settings of the depth test.

Copying Pixel Data within the Framebuffer

Note that there’s no need for a format or data parameter for glCopyPixels(),
since the data is never copied into processor memory. The read source buffer 
and the destination buffer of glCopyPixels() are specified by glReadBuffer()

void glCopyPixels(GLint x, GLint y, GLsizei width, GLsizei height,
GLenum buffer);

Copies pixel data from the read framebuffer rectangle whose lower left 
corner is at (x, y) and whose dimensions are width and height. The data 
is copied to a new position in the write framebuffer whose lower left 
corner is given by the current raster position. buffer is either GL_COLOR, 
GL_STENCIL, GL_DEPTH, or GL_DEPTH_STENCIL specifying the frame-
buffer that is used. glCopyPixels() behaves similarly to a glReadPixels()
followed by a glDrawPixels(), with the following translation for the buffer
to format parameter:

• If buffer is GL_DEPTH or GL_STENCIL, then GL_DEPTH_
COMPONENT or GL_STENCIL_INDEX is used, respectively. If 
GL_DEPTH_STENCIL is specified for buffer and any of those buffers 
are not present (e.g., there’s no stencil buffer associated with the 
framebuffer), then it’s as if there were zeroes in the channel for the 
data for the missing buffer.

• If GL_COLOR is specified, GL_RGBA or GL_COLOR_INDEX is used, 
depending on whether the system is in RGBA or color-index mode. 

Compatibility 
Extension

glCopyPixels

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Imaging Pipeline 343

and glDrawBuffer(), respectively. Both glDrawPixels() and glCopyPixels()
are used in Example 8-4.

For all three functions, the exact conversions of the data going to or coming 
from the framebuffer depend on the modes in effect at the time. See the 
next section for details.

OpenGL Version 3.0 introduced a new pixel copy command called 
glBlitFramebuffer(), which subsumes the functionality of glCopyPixels()
and glPixelZoom(). It is described in full detail at “Copying Pixel 
Rectangles” on page 539, as it leverages some of the functionality of 
framebuffer objects.

Imaging Pipeline

This section discusses the complete Imaging Pipeline: the pixel-storage 
modes and pixel-transfer operations, which include how to set up an 
arbitrary mapping to convert pixel data. You can also magnify or reduce 
a pixel rectangle before it’s drawn by calling glPixelZoom(). The order of 
these operations is shown in Figure 8-5.

Per-fra
gment

operations

Texture

memory

Pixel-tra
nsfer

operations

(and pixel m
ap)

Rasterization

(including

pixel zoom)

Framebuffer

Processor

memory

Pixel

storage

modes

Unpack

Pack

Figure 8-5 Imaging Pipeline
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When glDrawPixels() is called, the data is first unpacked from processor 
memory according to the pixel-storage modes that are in effect, and then 
the pixel-transfer operations are applied. The resulting pixels are then 
rasterized. During rasterization, the pixel rectangle may be zoomed up or 
down, depending on the current state. Finally, the fragment operations are 
applied, and the pixels are written into the framebuffer. (See “Testing and 
Operating on Fragments” in Chapter 10 for a discussion of the fragment 
operations.)

When glReadPixels() is called, data is read from the framebuffer, the pixel-
transfer operations are performed, and then the resulting data is packed 
into processor memory. 

glCopyPixels() applies all the pixel-transfer operations during what would 
be the glReadPixels() activity. The resulting data is written as it would be 
by glDrawPixels(), but the transformations aren’t applied a second time. 
Figure 8-6 shows how glCopyPixels() moves pixel data, starting from the 
framebuffer.

From “Drawing the Bitmap” and Figure 8-7, you can see that rendering 
bitmaps is simpler than rendering images. Neither the pixel-transfer 
operations nor the pixel-zoom operation are applied.

Per-fra
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Figure 8-6 glCopyPixels() Pixel Path

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Imaging Pipeline 345

Note that the pixel-storage modes and pixel-transfer operations are 
applied to textures as they are read from or written to texture memory. 
Figure 8-8 shows the effect on glTexImage*(), glTexSubImage*(), and 
glGetTexImage().

As shown in Figure 8-9, when pixel data is copied from the framebuffer into 
texture memory (glCopyTexImage*() or glCopyTexSubImage*()), only 
pixel-transfer operations are applied. (See Chapter 9 for more information 
on textures.)
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Figure 8-7 glBitmap() Pixel Path
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Figure 8-8 glTexImage*(), glTexSubImage*(), and glGetTexImage() Pixel Paths
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Pixel Packing and Unpacking

Packing and unpacking refer to the way in which pixel data is written to and 
read from processor memory.

An image stored in memory has between one and four chunks of data, 
called elements. The data might consist of just the color index or the lumi-
nance (luminance is the weighted sum of the red, green, and blue values), 
or it might consist of the red, green, blue, and alpha components for each 
pixel. The possible arrangements of pixel data, or formats, determine the 
number of elements stored for each pixel and their order.

Some elements (such as a color index or a stencil index) are integers, and 
others (such as the red, green, blue, and alpha components, or the depth 
component) are floating-point values, typically ranging between 0.0 and 1.0. 
Floating-point components are usually stored in the framebuffer with lower 
resolution than a full floating-point number would require (for example, 
color components may be stored in 8 bits). The exact number of bits used to 
represent the components depends on the particular hardware being used. 
Thus, it’s often wasteful to store each component as a full 32-bit floating-
point number, especially since images can easily contain a million pixels.

Elements can be stored in memory as various data types, ranging from 8-bit 
bytes to 32-bit integers or floating-point numbers. OpenGL explicitly defines 
the conversion of each component in each format to each of the possible 
data types. Keep in mind that you may lose data if you try to store a high-
resolution component in a type represented by a small number of bits.
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memory
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Framebuffer

(start)

Figure 8-9 glCopyTexImage*() and glCopyTexSubImage*() Pixel Paths
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Controlling Pixel-Storage Modes

Image data is typically stored in processor memory in rectangular two- or 
three-dimensional arrays. Often, you want to display or store a subimage that 
corresponds to a subrectangle of the array. In addition, you might need to 
take into account that different machines have different byte-ordering con-
ventions. Finally, some machines have hardware that is far more efficient 
at moving data to and from the framebuffer if the data is aligned on 2-byte, 
4-byte, or 8-byte boundaries in processor memory. For such machines, you 
probably want to control the byte alignment. All the issues raised in this para-
graph are controlled as pixel-storage modes, which are discussed in the next 
subsection. You specify these modes by using glPixelStore*(), which you’ve 
already seen used in a couple of example programs.

All pixel-storage modes that OpenGL supports are controlled with the 
glPixelStore*() command. Typically, several successive calls are made with 
this command to set several parameter values. 

void glPixelStore{if}(GLenum pname, TYPE param);

Sets the pixel-storage modes, which affect the operation of glDrawPixels(),
glReadPixels(), glBitmap(), glPolygonStipple(), glTexImage1D(),
glTexImage2D(), glTexImage3D(), glTexSubImage1D(),
glTexSubImage2D(), glTexSubImage3D(), glGetTexImage(), and, if 
the Imaging Subset is available (see “Imaging Subset” on page 367), also 
glGetColorTable(), glGetConvolutionFilter(), glGetSeparableFilter(),
glGetHistogram(), and glGetMinmax().

The possible parameter names for pname are shown in Table 8-4, along 
with their data types, initial values, and valid ranges of values. The 
GL_UNPACK* parameters control how data is unpacked from memory 
by glDrawPixels(), glBitmap(), glPolygonStipple(), glTexImage1D(),
glTexImage2D(), glTexImage3D(), glTexSubImage1D(),
glTexSubImage2D(), and glTexSubImage3D(). The GL_PACK* 
parameters control how data is packed into memory by glReadPixels()
and glGetTexImage(), and, if the Imaging Subset is available, also 
glGetColorTable(), glGetConvolutionFilter(), glGetSeparableFilter(),
glGetHistogram(), and glGetMinmax().

GL_UNPACK_IMAGE_HEIGHT, GL_PACK_IMAGE_HEIGHT, GL_UNPACK_
SKIP_IMAGES, and GL_PACK_SKIP_IMAGES affect only 3D texturing 
(glTexImage3D(), glTexSubImage3D(), and glGetTexImage(GL_
TEXTURE_3D,...)).
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Since the corresponding parameters for packing and unpacking have 
the same meanings, they’re discussed together in the rest of this section 
and referred to without the GL_PACK or GL_UNPACK prefix. For example, 
*SWAP_BYTES refers to GL_PACK_SWAP_BYTES and GL_UNPACK_SWAP_
BYTES.

If the *SWAP_BYTES parameter is FALSE (the default), the ordering of the 
bytes in memory is whatever is native for the OpenGL client; otherwise, the 
bytes are reversed. The byte reversal applies to any size element, but has a 
meaningful effect only for multibyte elements. 

The effect of swapping bytes may differ among OpenGL implementations. 
If on an implementation, GLubyte has 8 bits, GLushort has 16 bits, and 
GLuint has 32 bits, then Figure 8-10 illustrates how bytes are swapped 
for different data types. Note that byte swapping has no effect on single-
byte data.

Parameter Name Type Initial Value Valid Range 

GL_UNPACK_SWAP_BYTES, 
GL_PACK_SWAP_BYTES

GLboolean FALSE TRUE/FALSE

GL_UNPACK_LSB_FIRST, 
GL_PACK_LSB_FIRST

GLboolean FALSE TRUE/FALSE

GL_UNPACK_ROW_LENGTH, 
GL_PACK_ROW_LENGTH

GLint 0 any non-negative 
integer

GL_UNPACK_SKIP_ROWS, 
GL_PACK_SKIP_ROWS

GLint 0 any non-negative 
integer

GL_UNPACK_SKIP_PIXELS, 
GL_PACK_SKIP_PIXELS

GLint 0 any non-negative 
integer

GL_UNPACK_ALIGNMENT, 
GL_PACK_ALIGNMENT

GLint 4 1, 2, 4, 8

GL_UNPACK_IMAGE_HEIGHT, 
GL_PACK_IMAGE_HEIGHT

GLint 0 any non-negative 
integer

GL_UNPACK_SKIP_IMAGES, 
GL_PACK_SKIP_IMAGES

GLint 0 any non-negative 
integer

Table 8-4 glPixelStore() Parameters
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Note: As long as your OpenGL application doesn’t share images with other 
machines, you can ignore the issue of byte ordering. If your applica-
tion must render an OpenGL image that was created on a different 
machine and the two machines have different byte orders, byte 
ordering can be swapped using *SWAP_BYTES. However, *SWAP_
BYTES does not allow you to reorder elements (for example, to 
swap red and green).

The *LSB_FIRST parameter applies only when drawing or reading 1-bit 
images or bitmaps for which a single bit of data is saved or restored for each 
pixel. If *LSB_FIRST is FALSE (the default), the bits are taken from the bytes 
starting with the most significant bit; otherwise, they’re taken in the oppo-
site order. For example, if *LSB_FIRST is FALSE, and the byte in question is 
0x31, the bits, in order, are {0, 0, 1, 1, 0, 0, 0, 1}. If *LSB_FIRST is TRUE, the 
order is {1, 0, 0, 0, 1, 1, 0, 0}. 

Sometimes you want to draw or read only a subrectangle of the entire 
rectangle of image data stored in memory. If the rectangle in memory is 
larger than the subrectangle that’s being drawn or read, you need to spec-
ify the actual length (measured in pixels) of the larger rectangle with 
*ROW_LENGTH. If *ROW_LENGTH is zero (which it is by default), the 
row length is understood to be the same as the width that’s specified with 
glReadPixels(), glDrawPixels(), or glCopyPixels(). You also need to 
specify the number of rows and pixels to skip before starting to copy the 

Short (byte 0) Short (byte 1)

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

15  14  13  12  11  10  9   8 15  14  13  12  11  10  9   8 7   6   5   4   3   2   1   0

Integer (byte 0) Integer (byte 1)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Integer (byte 2) Integer (byte 3)
15  14  13  12  11  10  9   8 7   6   5   4   3   2   1   0

Integer (byte 0)Integer (byte 1)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Integer (byte 2)Integer (byte 3)
15  14  13  12  11  10  9   8 7   6   5   4   3   2   1   0

7   6   5   4   3   2   1   0
Short (byte 1) Short (byte 0)

Byte Byte

Figure 8-10 Byte Swap Effect on Byte, Short, and Integer Data

http://lib.ommolketab.ir
http//lib.ommolketab.ir


350 Chapter 8: Drawing Pixels, Bitmaps, Fonts, and Images

data for the subrectangle. These numbers are set using the parameters 
*SKIP_ROWS and *SKIP_PIXELS, as shown in Figure 8-11. By default, both 
parameters are 0, so you start at the lower left corner.

Often a particular machine’s hardware is optimized for moving pixel data 
to and from memory, if the data is saved in memory with a particular byte 
alignment. For example, in a machine with 32-bit words, hardware can 
often retrieve data much faster if it’s initially aligned on a 32-bit boundary, 
which typically has an address that is a multiple of 4. Likewise, 64-bit archi-
tectures might work better when the data is aligned to 8-byte boundaries. 
On some machines, however, byte alignment makes no difference. 

As an example, suppose your machine works better with pixel data aligned 
to a 4-byte boundary. Images are most efficiently saved by forcing the data 
for each row of the image to begin on a 4-byte boundary. If the image is 
5 pixels wide and each pixel consists of 1 byte each of red, green, and blue 
information, a row requires 5  3 = 15 bytes of data. Maximum display 
efficiency can be achieved if the first row, and each successive row, begins 
on a 4-byte boundary, so there is 1 byte of waste in the memory storage for 

Image

Subimage

*SKIP_PIXELS

*ROW_LENGTH

*SKIP_ROWS

Figure 8-11 *SKIP_ROWS, *SKIP_PIXELS, and *ROW_LENGTH Parameters
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each row. If your data is stored in this way, set the *ALIGNMENT parameter 
appropriately (to 4, in this case). 

If *ALIGNMENT is set to 1, the next available byte is used. If it’s 2, a byte is 
skipped if necessary at the end of each row so that the first byte of the next 
row has an address that’s a multiple of 2. In the case of bitmaps (or 1-bit 
images), where a single bit is saved for each pixel, the same byte alignment 
works, although you have to count individual bits. For example, if you’re 
saving a single bit per pixel, if the row length is 75, and if the alignment is 
4, then each row requires 75/8, or 9 3/8 bytes. Since 12 is the smallest mul-
tiple of 4 that is bigger than 9 3/8, 12 bytes of memory are used for each row. 
If the alignment is 1, then 10 bytes are used for each row, as 9 3/8 is rounded 
up to the next byte. (There is a simple use of glPixelStorei() shown in 
Example 8-4.)

Note: The default value for *ALIGNMENT is 4. A common programming 
mistake is assuming that image data is tightly packed and byte 
aligned (which assumes that *ALIGNMENT is set to 1).

The parameters *IMAGE_HEIGHT and *SKIP_IMAGES affect only the 
defining and querying of three-dimensional textures. For details on these 
pixel-storage modes, see “Pixel-Storage Modes for Three-Dimensional 
Textures” on page 417.

Pixel-Transfer Operations

As image data is transferred from memory into the framebuffer, or from the 
framebuffer into memory, OpenGL can perform several operations on it. 
For example, the ranges of components can be altered—normally, the red 
component is between 0.0 and 1.0, but you might prefer to keep it in some 
other range; or perhaps the data you’re using from a different graphics 
system stores the red component in a different range. You can even create 
maps to perform arbitrary conversions of color indices or color components 
during pixel transfer. Such conversions performed during the transfer of 
pixels to and from the framebuffer are called pixel-transfer operations. They’re 
controlled with the glPixelTransfer*() and glPixelMap*() commands.

Be aware that although color, depth, and stencil buffers have many 
similarities, they don’t behave identically, and a few of the modes have 
special cases. All the mode details are covered in this section and the 
sections that follow, including all the special cases.
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Some of the pixel-transfer function characteristics are set with 
glPixelTransfer*(). The other characteristics are specified with glPixelMap*(),
which is described in the next section.

void glPixelTransfer{if}(GLenum pname, TYPE param);

Sets pixel-transfer modes that affect the operation of glDrawPixels(),
glReadPixels(), glCopyPixels(), glTexImage1D(), glTexImage2D(),
glTexImage3D(), glCopyTexImage1D(), glCopyTexImage2D(),
glTexSubImage1D(), glTexSubImage2D(), glTexSubImage3D(),
glCopyTexSubImage1D(), glCopyTexSubImage2D(),
glCopyTexSubImage3D(), and glGetTexImage(). The parameter 
pname must be one of those listed in the first column of Table 8-5, 
and its value, param, must be in the valid range shown.

Parameter Name  Type Initial
Value

 Valid Range

GL_MAP_COLOR GLboolean FALSE TRUE/FALSE

GL_MAP_STENCIL GLboolean FALSE TRUE/FALSE

GL_INDEX_SHIFT GLint 0 ( , )

GL_INDEX_OFFSET GLint 0 ( , )

GL_RED_SCALE GLfloat 1.0 ( , )

GL_GREEN_SCALE GLfloat 1.0 ( , )

GL_BLUE_SCALE GLfloat 1.0 ( , )

GL_ALPHA_SCALE GLfloat 1.0 ( , )

GL_DEPTH_SCALE GLfloat 1.0 ( , )

GL_RED_BIAS GLfloat 0.0 ( , )

GL_GREEN_BIAS GLfloat 0.0 ( , )

GL_BLUE_BIAS GLfloat 0.0 ( , )

GL_ALPHA_BIAS GLfloat 0.0 ( , )

GL_DEPTH_BIAS GLfloat 0.0 ( , )

Table 8-5 glPixelTransfer*() Parameters 

Compatibility 
Extension

glPixelTransfer 
and any accepted 
tokens
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Caution:  GL_POST_CONVOLUTION_* and GL_POST_COLOR_MATRIX_* 
parameters are present only if the Imaging Subset is supported by 
your OpenGL implementation. See “Imaging Subset” on 
page 367 for more details.

If the GL_MAP_COLOR or GL_MAP_STENCIL parameter is TRUE, then 
mapping is enabled. See the next subsection to learn how the mapping is 
done and how to change the contents of the maps. All the other parameters 
directly affect the pixel component values.

A scale and bias can be applied to the red, green, blue, alpha, and depth 
components. For example, you may wish to scale red, green, and blue 

GL_POST_CONVOLUTION_RED_SCALE GLfloat 1.0 ( , )

GL_POST_CONVOLUTION_GREEN_SCALE GLfloat 1.0 ( , )

GL_POST_CONVOLUTION_BLUE_SCALE GLfloat 1.0 ( , )

GL_POST_CONVOLUTION_ALPHA_SCALE GLfloat 1.0 ( , )

GL_POST_CONVOLUTION_RED_BIAS GLfloat 0.0 ( , )

GL_POST_CONVOLUTION_GREEN_BIAS GLfloat 0.0 ( , )

GL_POST_CONVOLUTION_BLUE_BIAS GLfloat 0.0 ( , )

GL_POST_CONVOLUTION_ALPHA_BIAS GLfloat 0.0 ( , )

GL_POST_COLOR_MATRIX_RED_SCALE GLfloat 1.0 ( , )

GL_POST_COLOR_MATRIX_GREEN_SCALE GLfloat 1.0 ( , )

GL_POST_COLOR_MATRIX_BLUE_SCALE GLfloat 1.0 ( , )

GL_POST_COLOR_MATRIX_ALPHA_SCALE GLfloat 1.0 ( , )

GL_POST_COLOR_MATRIX_RED_BIAS GLfloat 0.0 ( , )

GL_POST_COLOR_MATRIX_GREEN_BIAS GLfloat 0.0 ( , )

GL_POST_COLOR_MATRIX_BLUE_BIAS GLfloat 0.0 ( , )

GL_POST_COLOR_MATRIX_ALPHA_BIAS GLfloat 0.0 ( , )

Parameter Name  Type Initial
Value

 Valid Range

Table 8-5 (continued)        glPixelTransfer*() Parameters 
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components that were read from the framebuffer before converting them to 
a luminance format in processor memory. Luminance is computed as the 
sum of the red, green, and blue components, so if you use the default value 
for GL_RED_SCALE, GL_GREEN_SCALE, and GL_BLUE_SCALE, the compo-
nents all contribute equally to the final intensity or luminance value. If you 
want to convert RGB to luminance, according to the NTSC standard, you 
set GL_RED_SCALE to .30, GL_GREEN_SCALE to .59, and GL_BLUE_SCALE 
to .11. 

Indices (color and stencil) can also be transformed. In the case of indices, a 
shift and an offset are applied. This is useful if you need to control which 
portion of the color table is used during rendering. 

Pixel Mapping

All the color components, color indices, and stencil indices can be modified 
by means of a table lookup before they are placed in screen memory. The 
command for controlling this mapping is glPixelMap*().

void glPixelMap{ui us f}v(GLenum map, GLint mapsize,
const TYPE *values);

Loads the pixel map indicated by map with mapsize entries, whose values 
are pointed to by values. Table 8-6 lists the map names and values; the 
default sizes are all 1, and the default values are all 0. Each map’s size must 
be a power of 2.

Map Name Address Value

GL_PIXEL_MAP_I_TO_I color index color index 

GL_PIXEL_MAP_S_TO_S stencil index stencil index 

GL_PIXEL_MAP_I_TO_R color index  R

GL_PIXEL_MAP_I_TO_G color index  G

GL_PIXEL_MAP_I_TO_B color index  B

Table 8-6 glPixelMap*() Parameter Names and Values

Compatibility 
Extension

glPixelMap and
any accepted 
tokens
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The maximum size of the maps is machine-dependent. You can find the 
sizes of the pixel maps supported on your machine with glGetIntegerv().
Use the query argument GL_MAX_PIXEL_MAP_TABLE to obtain the maxi-
mum size for all the pixel map tables, and use GL_PIXEL_MAP_*_TO_*_SIZE 
to obtain the current size of the specified map. The six maps whose address 
is a color index or stencil index must always be sized to an integral power 
of 2. The four RGBA maps can be any size from 1 through GL_MAX_PIXEL_
MAP_TABLE. 

To understand how a table works, consider a simple example. Suppose that 
you want to create a 256-entry table that maps color indices to color 
indices using GL_PIXEL_MAP_I_TO_I. You create a table with an entry 
for each of the values between 0 and 255 and initialize the table with 
glPixelMap*(). Assume you’re using the table for thresholding and want 
to map indices below 101 (indices 0 to 100) to 0, and all indices 101 and 
above to 255. In this case, your table consists of 101 0s and 155 255s. The 
pixel map is enabled using the routine glPixelTransfer*() to set the 
parameter GL_MAP_COLOR to TRUE. Once the pixel map is loaded and 
enabled, incoming color indices below 101 come out as 0, and incoming 
pixels from 101 to 255 are mapped to 255. If the incoming pixel is larger 
than 255, it’s first masked by 255, throwing out all the bits above the 
eighth, and the resulting masked value is looked up in the table. If the 
incoming index is a floating-point value (say 88.14585), it’s rounded to 
the nearest integer value (giving 88), and that number is looked up in the 
table (giving 0).

Using pixel maps, you can also map stencil indices or convert color indices 
to RGB. (See “Reading and Drawing Pixel Rectangles” for information about 
the conversion of indices.)

GL_PIXEL_MAP_I_TO_A color index  A

GL_PIXEL_MAP_R_TO_R  R  R

GL_PIXEL_MAP_G_TO_G  G  G

GL_PIXEL_MAP_B_TO_B  B  B

GL_PIXEL_MAP_A_TO_A  A  A

Map Name Address Value

Table 8-6 (continued)        glPixelMap*() Parameter Names and Values
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Magnifying, Reducing, or Flipping an Image

After the pixel-storage modes and pixel-transfer operations are applied, 
images and bitmaps are rasterized. Normally, each pixel in an image 
is written to a single pixel on the screen. However, you can arbitrarily 
magnify, reduce, or even flip (reflect) an image by using glPixelZoom().

During rasterization, each image pixel is treated as a zoomx zoomy
rectangle, and fragments are generated for all the pixels whose centers lie 
within the rectangle. More specifically, let (xrp, yrp) be the current raster 
position. If a particular group of elements (indices or components) is the 
nth in a row and belongs to the mth column, consider the region in window 
coordinates bounded by the rectangle with corners at

(xrp + zoomx  n, yrp + zoomy  m) and (xrp + zoomx(n+1), yrp + zoomy(m+1))

Any fragments whose centers lie inside this rectangle (or on its bottom or 
left boundaries) are produced in correspondence with this particular group 
of elements.

A negative zoom can be useful for flipping an image. OpenGL describes 
images from the bottom row of pixels to the top (and from left to right). If 
you have a “top to bottom” image, such as a frame of video, you may want 
to use glPixelZoom(1.0, 1.0) to make the image right side up for OpenGL. 
Be sure that you reset the current raster position appropriately, if needed.

Example 8-4 shows the use of glPixelZoom(). A checkerboard image is 
initially drawn in the lower left corner of the window. By pressing a mouse 
button and moving the mouse, you can use glCopyPixels() to copy the 
lower left corner of the window to the current cursor location. (If you copy 
the image onto itself, it looks wacky!) The copied image is zoomed, but 
initially it is zoomed by the default value of 1.0, so you won’t notice. The 
‘z’ and ‘Z’ keys increase and decrease the zoom factors by 0.5. Any window 
damage causes the contents of the window to be redrawn. Pressing the ‘r’ 
key resets the image and zoom factors.

void glPixelZoom(GLfloat zoomx, GLfloat zoomy);

Sets the magnification or reduction factors for pixel-write operations 
(glDrawPixels() and glCopyPixels()) in the x- and y-dimensions. By 
default, zoomx and zoomy are 1.0. If they’re both 2.0, each image pixel is 
drawn to 4 screen pixels. Note that fractional magnification or reduction 
factors are allowed, as are negative factors. Negative zoom factors reflect 
the resulting image about the current raster position.

Compatibility 
Extension

glPixelZoom
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Example 8-4 Drawing, Copying, and Zooming Pixel Data: image.c

#define checkImageWidth 64
#define checkImageHeight 64
GLubyte checkImage[checkImageHeight][checkImageWidth][3];

static GLdouble zoomFactor = 1.0;
static GLint height;

void makeCheckImage(void)
{
   int i, j, c;
    
   for (i = 0; i < checkImageHeight; i++) {
      for (j = 0; j < checkImageWidth; j++) {
         c = (((i&0x8)==0)^((j&0x8)==0))*255;
         checkImage[i][j][0] = (GLubyte) c;
         checkImage[i][j][1] = (GLubyte) c;
         checkImage[i][j][2] = (GLubyte) c;
      }
   }
}

void init(void)
{    
   glClearColor(0.0, 0.0, 0.0, 0.0);
   glShadeModel(GL_FLAT);
   makeCheckImage();
   glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
}

void display(void)
{
   glClear(GL_COLOR_BUFFER_BIT);
   glRasterPos2i(0, 0);
   glDrawPixels(checkImageWidth, checkImageHeight, GL_RGB, 
                GL_UNSIGNED_BYTE, checkImage);
   glFlush();
}

void reshape(int w, int h)
{
   glViewport(0, 0, (GLsizei) w, (GLsizei) h);
   height = (GLint) h;
   glMatrixMode(GL_PROJECTION);
   glLoadIdentity();
   gluOrtho2D(0.0, (GLdouble) w, 0.0, (GLdouble) h);
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   glMatrixMode(GL_MODELVIEW);
   glLoadIdentity();
}

void motion(int x, int y)
{
   static GLint screeny;

   screeny = height - (GLint) y;
   glRasterPos2i(x, screeny);
   glPixelZoom(zoomFactor, zoomFactor);
   glCopyPixels(0, 0, checkImageWidth, checkImageHeight,
                 GL_COLOR);
   glPixelZoom(1.0, 1.0);
   glFlush();
}

void keyboard(unsigned char key, int x, int y)
{
   switch (key) {
      case ‘r’:
      case ‘R’:
         zoomFactor = 1.0;
         glutPostRedisplay();
         printf(“zoomFactor reset to 1.0\n”);
         break;
      case ‘z’:
         zoomFactor += 0.5;
         if (zoomFactor >= 3.0) 
            zoomFactor = 3.0;
         printf(“zoomFactor is now %4.1f\n”, zoomFactor);
         break;
      case ‘Z’:
         zoomFactor -= 0.5;
         if (zoomFactor <= 0.5) 
            zoomFactor = 0.5;
         printf(“zoomFactor is now %4.1f\n”, zoomFactor);
         break;
      case 27:
         exit(0);
         break;
      default:
         break;
   }
}
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Reading and Drawing Pixel Rectangles

This section describes the reading and drawing processes in detail. The pixel 
conversions performed when going from framebuffer to memory (reading) 
are similar but not identical to the conversions performed when going in 
the opposite direction (drawing), as explained in the following sections. 
You may wish to skip this section the first time through, especially if you 
do not plan to use the pixel-transfer operations right away.

The Pixel Rectangle Drawing Process

Figure 8-12 and the following list describe the operation of drawing pixels 
into the framebuffer. 
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Figure 8-12 Drawing Pixels with glDrawPixels()
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1. If the pixels are not indices (that is, if the format isn’t GL_COLOR_
INDEX or GL_STENCIL_INDEX), the first step is to convert the compo-
nents to floating-point format if necessary. (See Table 4-1 for the details 
of the conversion.)

2. If the format is GL_LUMINANCE or GL_LUMINANCE_ALPHA, 
the luminance element is converted into R, G, and B by using the 
luminance value for each of the R, G, and B components. In GL_
LUMINANCE_ALPHA format, the alpha value becomes the A value. 
If GL_LUMINANCE is specified, the A value is set to 1.0.

3. Each component (R, G, B, A, or depth) is multiplied by the appropriate 
scale, and the appropriate bias is added. For example, the R component 
is multiplied by the value corresponding to GL_RED_SCALE and added 
to the value corresponding to GL_RED_BIAS. 

4. If GL_MAP_COLOR is TRUE, each of the R, G, B, and A components is 
clamped to the range [0.0, 1.0], multiplied by an integer 1 less than the 
table size, truncated, and looked up in the table. (See “Tips for Improv-
ing Pixel Drawing Rates” for more details.)

5. Next, the R, G, B, and A components are clamped to [0.0, 1.0], if they 
weren’t already, and are converted to fixed-point with as many bits to 
the left of the binary point as there are in the corresponding 
framebuffer component.

6. If you’re working with index values (stencil or color indices), then the 
values are first converted to fixed-point (if they were initially floating-
point numbers), with some unspecified bits to the right of the binary 
point. Indices that were initially fixed-point remain so, and any bits to 
the right of the binary point are set to zero.

The resulting index value is then shifted right or left by the absolute 
value of GL_INDEX_SHIFT bits; the value is shifted left if GL_INDEX_
SHIFT > 0, and right otherwise. Finally, GL_INDEX_OFFSET is added to 
the index.

7. The next step with indices depends on whether you’re using RGBA 
mode or color-index mode. In RGBA mode, a color index is converted 
to RGBA using the color components specified by GL_PIXEL_MAP_
I_TO_R, GL_PIXEL_MAP_I_TO_G, GL_PIXEL_MAP_I_TO_B, and GL_
PIXEL_MAP_I_TO_A (see “Pixel Mapping” for details). Otherwise, if 
GL_MAP_COLOR is GL_TRUE, a color index is looked up through the 
table GL_PIXEL_MAP_I_TO_I. (If GL_MAP_COLOR is GL_FALSE, the 
index is unchanged). If the image is made up of stencil indices rather 
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than color indices, and if GL_MAP_STENCIL is GL_TRUE, the index is 
looked up in the table corresponding to GL_PIXEL_MAP_S_TO_S. If 
GL_MAP_STENCIL is FALSE, the stencil index is unchanged.

8. Finally, if the indices haven’t been converted to RGBA, the indices are 
then masked to the number of bits of either the color-index or stencil 
buffer, whichever is appropriate.

The Pixel Rectangle Reading Process

Many of the conversions done during the pixel rectangle drawing process 
are also done during the pixel rectangle reading process. The pixel reading 
process is shown in Figure 8-13 and described in the following list. 
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Figure 8-13 Reading Pixels with glReadPixels()
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1. If the pixels to be read aren’t indices (that is, if the format isn’t GL_
COLOR_INDEX or GL_STENCIL_INDEX), the components are mapped to 
[0.0, 1.0]—that is, in exactly the opposite way that they are when written. 

2. Next, the scales and biases are applied to each component. If GL_MAP_
COLOR is GL_TRUE, they’re mapped and again clamped to [0.0, 1.0]. If 
luminance is desired instead of RGB, the R, G, and B components are 
added (L = R + G + B). 

3. If the pixels are indices (color or stencil), they’re shifted, offset, and, if 
GL_MAP_COLOR is GL_TRUE, also mapped. 

4. If the storage format is either GL_COLOR_INDEX or GL_STENCIL_
INDEX, the pixel indices are masked to the number of bits of the storage 
type (1, 8, 16, or 32) and packed into memory as previously described.

5. If the storage format is one of the component types (such as luminance 
or RGB), the pixels are always mapped by the index-to-RGBA maps. 
Then, they’re treated as though they had been RGBA pixels in the first 
place (including potential conversion to luminance).

6. Finally, for both index and component data, the results are packed into 
memory according to the GL_PACK* modes set with glPixelStore*().

The scaling, bias, shift, and offset values are the same as those used in 
drawing pixels, so if you’re both reading and drawing pixels, be sure to reset 
these components to the appropriate values before doing a read or a draw. 
Similarly, the various maps must be properly reset if you intend to use maps 
for both reading and drawing.

Note: It might seem that luminance is handled incorrectly in both the read-
ing and drawing operations. For example, luminance is not usually 
equally dependent on the R, G, and B components as it may be 
assumed from both Figure 8-12 and Figure 8-13. For example, if you 
want your luminance to be calculated such that the R, G, and B com-
ponents contribute 30, 59, and 11 percent, respectively, you can set 
GL_RED_SCALE to 0.30, GL_RED_BIAS to 0.0, and so on. The com-
puted L is then .30R + .59G + .11B. 

Using Buffer Objects with Pixel Rectangle Data

Advanced

In the same way that storing vertex-array data in buffer objects, as described 
in “Using Buffer Objects with Vertex-Array Data” in Chapter 2, can increase Advanced

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Using Buffer Objects with Pixel Rectangle Data 363

application performance, storing pixel data in buffer objects can yield 
similar performance benefits.

By storing pixel rectangles in server-side buffer objects, you can eliminate 
the need to transfer data from the client’s memory to the OpenGL server 
each frame. You might do this if you render an image as the background, 
instead of calling glClear(), for example.

Compared to vertex-array data in buffer objects, pixel buffer objects can be 
both read from (just like their vertex counterparts) and written to. Writing 
to a buffer object occurs when you retrieve pixel data from OpenGL, like 
when you call glReadPixels() or when you retrieve a texture’s texels with 
glGetTexImage().

Using Buffer Objects to Transfer Pixel Data 

OpenGL functions that transfer data from the client application’s 
memory to the OpenGL server, such as glDrawPixels(), glTexImage*D(),
glCompressedTexImage*D(), glPixelMap*(), and similar functions in 
the Imaging Subset that take an array of pixels, can use buffer objects for 
storing pixel data on the server.

To store your pixel rectangle data in buffer objects, you will need to add a 
few steps to your application.

1. (Optional) Generate buffer object identifiers by calling glGenBuffers().

2. Bind a buffer object for pixel unpacking by calling glBindBuffer() with 
a GL_PIXEL_UNPACK_BUFFER.

3. Request storage for your data and optionally initialize those data 
elements using glBufferData(), once again specifying GL_PIXEL_
UNPACK_BUFFER as the target parameter.

4. Bind the appropriate buffer object to be used during rendering by once 
again calling glBindBuffer().

5. Use the data by calling the appropriate function, such as 
glDrawPixels() or glTexImage2D().

If you need to initialize multiple buffer objects, you will repeat steps 2 
and 3 for each buffer object.

Example 8-5 modifies the image.c program (shown in Example 8-4) to use 
pixel buffer objects.
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Example 8-5 Drawing, Copying, and Zooming Pixel Data Stored in a Buffer 
Object: pboimage.c

#define BUFFER_OFFSET(bytes)  ((GLubyte*) NULL + (bytes))

/*Create checkerboard image*/
#definecheckImageWidth 64
#definecheckImageHeight 64
GLubyte checkImage[checkImageHeight][checkImageWidth][3];

static GLdouble zoomFactor = 1.0;
static GLint height;
static GLuint pixelBuffer;

void makeCheckImage(void)
{
   int i, j, c;

   for (i = 0; i < checkImageHeight; i++) {
      for (j = 0; j < checkImageWidth; j++) {
         c = (((i&0x8)==0)^((j&0x8)==0))*255;
         checkImage[i][j][0] = (GLubyte) c;
         checkImage[i][j][1] = (GLubyte) c;
         checkImage[i][j][2] = (GLubyte) c;
      }
   }
}

void init(void)
{
   glewInit();
   glClearColor (0.0, 0.0, 0.0, 0.0);
   glShadeModel(GL_FLAT);
   makeCheckImage();
   glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

   glGenBuffers(1, &pixelBuffer);
   glBindBuffer(GL_PIXEL_UNPACK_BUFFER, pixelBuffer);
   glBufferData(GL_PIXEL_UNPACK_BUFFER, 

3*checkImageWidth*checkImageHeight,
 checkImage, GL_STATIC_DRAW);
}

void display(void)
{
   glClear(GL_COLOR_BUFFER_BIT);
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glRasterPos2i(0, 0);
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, pixelBuffer);
glDrawPixels(checkImageWidth, checkImageHeight, GL_RGB, 

                GL_UNSIGNED_BYTE, BUFFER_OFFSET(0));
   glFlush();
}

Using Buffer Objects to Retrieve Pixel Data

Pixel buffer objects can also be used as destinations for operations that read 
pixels from OpenGL buffers and pass those pixels back to the application. 
Functions like glReadPixels() and glGetTexImage() can be provided an 
offset into a currently bound pixel buffer and update the data values in the 
buffer objects with the retrieved pixels.

Initializing and using a buffer object as the destination for pixel retrieval 
operations is almost identical to those steps described in “Using Buffer 
Objects to Transfer Pixel Data,” except that the buffer target parameter for 
all buffer object-related calls needs to be GL_PIXEL_PACK_BUFFER.

After the completion of the OpenGL function retrieving the pixels, 
you can access the data values in the buffer object either by using the 
glMapBuffer() function (described in “Buffer Objects” in Chapter 2) or by 
glGetBufferSubData(). In some cases, glGetBufferSubData() may result 
in a more efficient transfer of data than glMapBuffer().

Example 8-6 demonstrates using a pixel buffer object to store and access the 
pixels rendered after retrieving the image by calling glReadPixels().

Example 8-6 Retrieving Pixel Data Using Buffer Objects

#define BUFFER_OFFSET(bytes) ((GLubyte*) NULL + (bytes))

GLuint pixelBuffer;
GLsizei imageWidth;
GLsizei imageHeight;
GLsizei numComponents = 4; /* four components for GL_RGBA */
GLsizei bufferSize;

void
init(void)
{

bufferSize = imageWidth * imageHeight * numComponents 
* sizeof(GLfloat); /* machine storage size */

glGenBuffers(1, &pixelBuffer);
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glBindBuffer(GL_PIXEL_PACK_BUFFER, pixelBuffer);
glBufferData(GL_PIXEL_PACK_BUFFER, bufferSize,

NULL, /* allocate but don’t initialize data */
GL_STREAM_READ);

}

void
display(void)
{

int i;
GLsizei numPixels = imageWidth * imageHeight;

/* Draw frame */

glReadPixels(0, 0, imageWidth, imageHeight, GL_RGBA,
GL_FLOAT, BUFFER_OFFSET(0));

GLfloat *pixels = glMapBuffer(GL_PIXEL_PACK_BUFFER,
GL_READ_ONLY);

for ( i = 0; i < numPixels; ++i ) {
/* insert your pixel processing here 

process( &pixels[i*numComponents] );
*/

}
glUnmapBuffer(GL_PIXEL_PACK_BUFFER);

}

Tips for Improving Pixel Drawing Rates

As you can see, OpenGL has a rich set of features for reading, drawing, and 
manipulating pixel data. Although these features are often very useful, 
they can also decrease performance. Here are some tips for improving pixel 
draw rates:

• For best performance, set all pixel-transfer parameters to their default 
values, and set pixel zoom to (1.0, 1.0).

• A series of fragment operations is applied to pixels as they are drawn 
into the framebuffer. (See “Testing and Operating on Fragments” in 
Chapter 10.) For optimum performance, disable all necessary fragment 
operations.

• While performing pixel operations, disable other costly states, such as 
texture mapping or blending.
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• If you use a pixel format and type that match those of the framebuffer, 
your OpenGL implementation doesn’t need to convert the pixels 
into the format that matches the framebuffer. For example, if you 
are writing images to an RGB framebuffer with 8 bits per component, 
call glDrawPixels() with format set to RGB and type set to GL_
UNSIGNED_BYTE.

• For many implementations, unsigned image formats are faster to use 
than signed image formats.

• It is usually faster to draw a large pixel rectangle than to draw several 
small ones, since the cost of transferring the pixel data can be 
amortized over many pixels.

• If possible, reduce the amount of data that needs to be copied by using 
small data types (for example, use GL_UNSIGNED_BYTE) and fewer 
components (for example, use format GL_LUMINANCE_ALPHA).

• Pixel-transfer operations, including pixel mapping and values for scale, 
bias, offset, and shift other than the defaults, may decrease 
performance.

• If you need to render the same image each frame (as a background, for 
example), render it as a textured quadrilateral, as compared to calling 
glDrawPixels(). Having it stored as a texture requires that the data be 
downloaded into OpenGL once. See Chapter 9 for a discussion of 
texture mapping.

Imaging Subset

The Imaging Subset is a collection of routines that provide additional pixel 
processing capabilities. With it, you can:

• Use color lookup tables to replace pixel values.

• Use convolutions to filter images.

• Use color matrix transformations to do color space conversions and 
other linear transformations.

• Collect histogram statistics and minimum and maximum color 
component information about images.

You should use the Imaging Subset if you need more pixel processing 
capabilities than those provided by glPixelTransfer*() and glPixelMap*().
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The Imaging Subset is an extension to OpenGL. If the token GL_ARB_
imaging is defined in the strings returned when querying extensions, then 
the subset is present, and all the functionality that is described in the 
following sections is available for you to use. If the token is not defined, 
none of the functionality is present in your implementation. To see if your 
implementation supports the Imaging Subset, see “Extensions to the 
Standard” on page 641.

Note: Although the Imaging Subset has always been an OpenGL extension, 
its functionality was deprecated in OpenGL Version 3.0, and was 
removed from Version 3.1 of the OpenGL specification.

Whenever pixels are passed to or read from OpenGL, they are processed by 
any of the enabled features of the subset. Routines that are affected by the 
Imaging Subset include functions that

• Draw and read pixel rectangles: glReadPixels(), glDrawPixels(),
glCopyPixels().

• Define textures: glTexImage1D(), glTexImage2D(),
glCopyTexImage*D(), glTexSubImage1D(), glTexSubImage2d() and
glCopyTexSubImage*D().

Figure 8-14 illustrates the operations that the Imaging Subset performs on 
pixels that are passed into or read from OpenGL. Most of the features of the 
Imaging Subset may be enabled and disabled, with the exception of the 
color matrix transformation, which is always enabled.
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okup table
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Figure 8-14 Imaging Subset Operations
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Color Tables

Color tables are lookup tables used to replace a pixel’s color. In applications, 
color tables may be used for contrast enhancement, filtering, and image 
equalization.

There are three different color lookup tables available, which operate at 
different stages of the pixel pipeline. Table 8-7 shows where in the pipeline 
pixels may be replaced by the respective color table. 

Each color table can be enabled separately using glEnable() with the 
respective parameter from Table 8-7.

Specifying Color Tables

Color tables are specified similarly to one-dimensional images. As shown in 
Figure 8-14, there are three color tables available for updating pixel values. 
glColorTable() is used to define each color table.

Color Table Parameter Operates on Pixels

GL_COLOR_TABLE when they enter the imaging 
pipeline

GL_POST_CONVOLUTION_COLOR_TABLE after convolution

GL_POST_COLOR_MATRIX_COLOR_TABLE after the color matrix 
transformation 

Table 8-7 When Color Table Operations Occur in the Imaging Pipeline

void glColorTable(GLenum target, GLenum internalFormat,
GLsizei width, GLenum format, GLenum type,
const GLvoid *data);

Defines the specified color table when target is set to GL_COLOR_TABLE, 
GL_POST_CONVOLUTION_COLOR_TABLE, or GL_POST_COLOR_
MATRIX_COLOR_TABLE. If target is set to GL_PROXY_COLOR_TABLE,   
GL_PROXY_POST_CONVOLUTION_COLOR_TABLE, or GL_PROXY_
POST_COLOR_MATRIX_COLOR_TABLE, then glColorTable() verifies 
that the specified color table fits into the available resources.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


370 Chapter 8: Drawing Pixels, Bitmaps, Fonts, and Images

The internal format of the table determines which components of the 
image’s pixels are replaced. For example, if you specify the format to be 
GL_RGB, then the red, green, and blue components of each incoming 
pixel are looked up in the appropriate color table and replaced. Table 8-8 
describes which pixel components are replaced for a given base internal 
format.

The internalFormat variable is used to determine the internal OpenGL 
representation of data. It can be one of the following symbolic 
constants: GL_ALPHA, GL_ALPHA4, GL_ALPHA8, GL_ALPHA12, 
GL_ALPHA16, GL_LUMINANCE, GL_LUMINANCE4, GL_LUMINANCE8, 
GL_LUMINANCE12, GL_LUMINANCE16, GL_LUMINANCE_ALPHA, 
GL_LUMINANCE4_ALPHA4, GL_LUMINANCE6_ALPHA2, GL_
LUMINANCE8_ALPHA8, GL_LUMINANCE12_ALPHA4, GL_
LUMINANCE12_ALPHA12, GL_LUMINANCE16_ALPHA16, GL_INTENSITY, 
GL_INTENSITY4, GL_INTENSITY8, GL_INTENSITY12, GL_INTENSITY16, 
GL_RGB, GL_R3_G3_B2, GL_RGB4, GL_RGB5, GL_RGB8, GL_RGB10, 
GL_RGB12, GL_RGB16, GL_RGBA, GL_RGBA2, GL_RGBA4, GL_RGB5_A1, 
GL_RGBA8, GL_RGB10_A2, GL_RGBA12, and GL_RGBA16.

The width parameter, which must be a power of 2, indicates the number 
of pixels in the color table. The format and type describe the format and 
data type of the color table data. They have the same meaning as 
equivalent parameters of glDrawPixels().

Base Internal Format Red 
Component

Green
Component

Blue
Component

Alpha 
Component

GL_ALPHA Unchanged Unchanged Unchanged At

GL_LUMINANCE Lt Lt Lt Unchanged

GL_LUMINANCE_ALPHA Lt Lt Lt At

GL_INTENSITY It It It It

GL_RGB Rt Gt Bt Unchanged

GL_RGBA Rt Gt Bt At

Table 8-8 Color Table Pixel Replacement

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Imaging Subset 371

In Table 8-8, Lt represents luminance entries in the defined color table, 
which affect only red, green, and blue components. It represents intensity 
entries, which affect red, green, blue, and alpha identically.

After the appropriate color table has been applied to the image, the pixels 
can be scaled and biased, after which their values are clamped to the range 
[0, 1]. The GL_COLOR_TABLE_SCALE and GL_COLOR_TABLE_BIAS factors 
are set for each color table with the glColorTableParameter*() routine.

Example 8-7 shows how an image can be inverted using color tables. The 
color table is set up to replace each color component with its inverse color.

Example 8-7 Pixel Replacement Using Color Tables: colortable.c

extern GLubyte*  readImage(const char*, GLsizei*, GLsizei* );

GLubyte  *pixels;
GLsizei   width, height;

void init(void)
{
   int   i;
   GLubyte  colorTable[256][3];

   pixels = readImage(“Data/leeds.bin”, &width, &height);    
   glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
   glClearColor(0, 0, 0, 0);

void glColorTableParameter{if}v(GLenum target, GLenum pname,
TYPE *param);

Sets the GL_COLOR_TABLE_SCALE and GL_COLOR_TABLE_BIAS param-
eters for each color table. The target parameter is one of GL_COLOR_
TABLE, GL_POST_CONVOLUTION_COLOR_TABLE, or GL_POST_
COLOR_MATRIX_COLOR_TABLE, and it specifies which color table’s 
scale and bias values to set.

The possible values for pname are GL_COLOR_TABLE_SCALE and 
GL_COLOR_TABLE_BIAS. 

The value for param points to an array of four values, representing the red, 
green, blue, and alpha modifiers, respectively.
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   /* Set up an inverting color table */
   for (i = 0; i < 256; ++i) {
       colorTable[i][0] = 255 - i;
       colorTable[i][1] = 255 - i;
       colorTable[i][2] = 255 - i;
   }

   glColorTable(GL_COLOR_TABLE, GL_RGB, 256, GL_RGB,
      GL_UNSIGNED_BYTE, colorTable);
   glEnable(GL_COLOR_TABLE);
}

void display(void)
{
   glClear(GL_COLOR_BUFFER_BIT);
   glRasterPos2i(1, 1);
   glDrawPixels(width, height, GL_RGB, GL_UNSIGNED_BYTE,
      pixels);
   glFlush();
}

Note: Example 8-7 introduces a new function, readImage(), which is 
presented to simplify the example programs. In general, you need to 
use a routine that can read the image file format that you require. The 
file format that readImage() understands is listed below. The data is 
listed sequentially in the file.

• Width of the image, stored as a GLsizei

• Height of the image, stored as a GLsizei

•  RGB triples, stored with a GLubyte per color 
component

In addition to specifying a color table explicitly from your application, you 
may want to use an image created in the framebuffer as the definition for a 
color table. The glCopyColorTable() routine lets you specify a single row of 
pixels that are read from the framebuffer and used to define a color table.

void glCopyColorTable(GLenum target, GLenum internalFormat,
GLint x, GLint y, GLsizei width);

Creates a color table using framebuffer data to define the elements of the 
color table. The pixels are read from the current GL_READ_BUFFER and 
are processed exactly as if glCopyPixels() had been called but stopped 
before final conversion. The glPixelTransfer*() settings are applied.

width height
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Replacing All or Part of a Color Table

If you would like to replace a part of a color table, then color subtable 
commands let you reload an arbitrary section of a color table with new 
values.

Querying a Color Table’s Values

The pixel values stored in the color tables can be retrieved using the 
glGetColorTable() function. Refer to “The Query Commands” on page 740 
for more details.

The target parameter must be set to one of the targets of glColorTable().
The internalFormat parameter uses the same symbolic constants as the 
internalFormat parameter of glColorTable(). The color array is defined by 
the width pixels in the row starting at (x, y) in the framebuffer.

void glColorSubTable(GLenum target, GLsizei start, GLsizei count,
GLenum format, GLenum type,
const GLvoid *data);

Replaces color table entries start to start + count  1 with values stored 
in data.

The target parameter is GL_COLOR_TABLE, GL_POST_CONVOLUTION_
COLOR_TABLE, or GL_POST_COLOR_MATRIX_COLOR_TABLE. The 
format and type parameters are identical to those of glColorTable() and 
describe the pixel values stored in data.

void glCopyColorSubTable(GLenum target, GLsizei start, GLint x,
GLint y, GLsizei count);

Replaces color table entries start to start + count  1 with count color pixel 
values from the row in the framebuffer starting at position (x, y). The 
pixels are converted into the internalFormat of the original color table.
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Color Table Proxies

Color table proxies provide a way to query OpenGL to see if there are 
enough resources available to store your color table. If glColorTable() is 
called with one of the following proxy targets: 

• GL_PROXY_COLOR_TABLE

• GL_PROXY_POST_CONVOLUTION_COLOR_TABLE

• GL_PROXY_POST_COLOR_MATRIX_COLOR_TABLE

then OpenGL determines if the required color table resources are available. 
If the color table does not fit, the width, format, and component resolution 
values are all set to zero. To check if your color table fits, query one of the 
state values mentioned above. For example:

glColorTable(GL_PROXY_COLOR_TABLE, GL_RGB, 1024, GL_RGB,
   GL_UNSIGNED_BYTE, null);
glGetColorTableParameteriv(GL_PROXY_COLOR_TABLE,
   GL_COLOR_TABLE_WIDTH, &width);
if (width == 0)
   /* color table didn’t fit as requested */

For more details on glGetColorTableParameter*(), see “The Query Com-
mands” on page 740.

Convolutions

Convolutions are pixel filters that replace each pixel with a weighted aver-
age of its neighboring pixels and itself. Blurring and sharpening images, 
finding edges, and adjusting image contrast are examples of how convolu-
tions are used.

Figure 8-15 shows how pixel P00 and related pixels are processed by the 
3 3 convolution filter to produce pixel P’11.

Convolutions are arrays of pixel weights and operate only on RGBA pixels. 
A filter, which is also known as a kernel, is simply a two-dimensional array 
of pixel weights. Each pixel in the output image of the convolution process 
is created by multiplying a set of the input image’s pixels by the pixel 
weights in the convolution kernel and summing the results. For example, 
in Figure 8-15, pixel P’11 is computed by summing the products of the nine 
pixels from the input image and the nine pixel weights in the convolution 
filter.
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void glConvolutionFilter2D(GLenum target, GLenum internalFormat,
GLsizei width, GLsizei height,
GLenum format, GLenum type,
const GLvoid *image);

Defines a two-dimensional convolution filter where the target parameter 
must be GL_CONVOLUTION_2D.

The internalFormat parameter defines which pixel components the 
convolution operation is performed on, and can be one of the 38 symbolic 
constants that are used for the internalFormat parameter for glColorTable().

The width and height parameters specify the size of the filter in pixels. The 
maximum width and height for convolution filters may be queried with 
glGetConvolutionParameter*(). Refer to “The Query Commands” on 
page 740 for more details.

As with glDrawPixels(), the format and type parameters specify the format 
of the pixels stored in image.
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Figure 8-15 The Pixel Convolution Operation
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Similar to color tables, the internal format of the convolution filter deter-
mines which components of the image are operated on. Table 8-9 describes 
how the different base filter formats affect pixels. Rs, Gs, Bs, and As represent 
the color components of the source pixels. Lf represents the luminance 
value of a GL_LUMINANCE filter, and If corresponds to the intensity value 
of a GL_INTENSITY filter. Finally, Rf, Gf, Bf, and Af represent the red, green, 
blue, and alpha components of the convolution filter. 

Use glEnable(GL_CONVOLUTION_2D) to enable 2D convolution 
processing. 

Example 8-8 demonstrates the use of several 3 3 GL_LUMINANCE convo-
lution filters to find edges in an RGB image. The ‘h’, ‘l’, and ‘v’ keys change 
among the various filters.

Example 8-8 Using Two-Dimensional Convolution Filters: convolution.c

extern GLubyte*  readImage(const char*, GLsizei*, GLsizei*);

GLubyte  *pixels;
GLsizei   width, height;

/* Define convolution filters */
GLfloat  horizontal[3][3] = {
   { 0, -1, 0 },
   { 0,  1, 0 },
   { 0,  0, 0 }
};

Base Filter Format Red Result Green Result Blue Result Alpha Result

GL_ALPHA Unchanged Unchanged Unchanged As  Af

GL_LUMINANCE Rs  Lf Gs  Lf Bs  Lf Unchanged

GL_LUMINANCE_ALPHA Rs  Lf Gs  Lf Bs  Lf As  Af

GL_INTENSITY Rs  If Gs  If Bs  If As  If

GL_RGB Rs  Rf Gs  Gf Bs  Bf Unchanged

GL_RGBA Rs  Rf Gs  Gf Bs  Bf As  Af

Table 8-9 How Convolution Filters Affect RGBA Pixel Components
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GLfloat  vertical[3][3] = {
   {  0, 0, 0 },
   { -1, 1, 0 },
   {  0, 0, 0 }
};

GLfloat  laplacian[3][3] = {
   { -0.125, -0.125, -0.125 },
   { -0.125,  1.0,   -0.125 },
   { -0.125, -0.125, -0.125 }
};

void display(void)
{
   glClear(GL_COLOR_BUFFER_BIT);
   glRasterPos2i(1, 1);
   glDrawPixels(width, height, GL_RGB, GL_UNSIGNED_BYTE,
      pixels);
   glFlush();
}

void init(void)
{
   pixels = readImage(“Data/leeds.bin”, &width, &height);
   glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
   glClearColor(0.0, 0.0, 0.0, 0.0);

   printf(“Using horizontal filter\n”);
   glConvolutionFilter2D(GL_CONVOLUTION_2D, GL_LUMINANCE, 3, 3,
      GL_LUMINANCE, GL_FLOAT, horizontal);
   glEnable(GL_CONVOLUTION_2D);
}

void keyboard(unsigned char key, int x, int y)
{
   switch (key) {
      case ‘h’ :
         printf(“Using horizontal filter\n”);
         glConvolutionFilter2D(GL_CONVOLUTION_2D, GL_LUMINANCE,
            3, 3, GL_LUMINANCE, GL_FLOAT, horizontal );
         break;

      case ‘v’ :
         printf(“Using vertical filter\n” );
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         glConvolutionFilter2D( GL_CONVOLUTION_2D, GL_LUMINANCE,
            3, 3, GL_LUMINANCE, GL_FLOAT, vertical );
         break;

      case ‘l’ :
         printf(“Using laplacian filter\n”);
         glConvolutionFilter2D(GL_CONVOLUTION_2D, GL_LUMINANCE,
             3, 3, GL_LUMINANCE, GL_FLOAT, laplacian );

break;

      case 27: /* Escape Key */
         exit(0)

break;
}
   glutPostRedisplay();
}

As with color tables, you may want to specify a convolution filter with pixel 
values from the framebuffer. glCopyConvolutionFilter2D() copies a 
rectangle of pixels from the current GL_READ_BUFFER to use as the 
definition of the convolution filter. If GL_LUMINANCE or GL_INTENSITY 
is specified for the internalFormat, the red component of the pixel is used to 
define the convolution filter’s value.

Specifying Separable Two-Dimensional Convolution Filters

Convolution filters are separable if they can be represented by the outer
product of two one-dimensional filters.

glSeparableFilter2D() is used to specify the two one-dimensional filters 
that represent the separable two-dimensional convolution filter. As with 

void glCopyConvolutionFilter2D(GLenum target,
GLenum internalFormat,
GLint x, GLint y,
GLsizei width, GLsizei height);

Defines a two-dimensional convolution filter initialized with pixels
from the color framebuffer. target must be GL_CONVOLUTION_2D, and 
internalFormat must be set to one of the internal formats defined for 
glConvolutionFilter2D().

The pixel rectangle with lower left pixel (x, y) and size width by height is 
read from the framebuffer and converted into the specified internalFormat.
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glConvolutionFilter2D(), the internal format of the convolution filter 
determines how an image’s pixels are processed.

For example, you might construct a 3 3 convolution filter by specifying 
the one-dimensional filter  for both row and column for a 
GL_LUMINANCE separable convolution filter. OpenGL would compute the 
convolution of the source image using the two one-dimensional filters in 
the same manner as if it computed a complete two-dimensional filter by 
computing the following outer product:

Using separable convolution filters is computationally more efficient than 
using a nonseparable two-dimensional convolution filter.

void glSeparableFilter2D(GLenum target, GLenum internalFormat,
GLsizei width, GLsizei height, GLenum format,
GLenum type, const GLvoid *row,
const GLvoid *column);

Defines a two-dimensional separable convolution filter. target must be set 
to GL_SEPARABLE_2D. The internalFormat parameter uses the same values 
that are used for glConvolutionFilter2D().

width specifies the number of pixels in the row array. Likewise, height
specifies the number of pixels in the column array. type and format define 
the storage format for row and column in the same manner as 
glConvolutionFilter2D().

Use glEnable(GL_SEPARABLE_2D) to enable convolutions using a two-
dimensional separable convolution filter. GL_CONVOLUTION_2D takes 
precedence if both GL_CONVOLUTION_2D and GL_SEPARABLE_2D are 
specified.

A GL_INVALID_OPERATION error is set if an unpack pixel buffer object 
is bound and the combination of width, height, format, and type, plus the 
specified offsets into the bound buffer object would cause a memory access 
outside of the memory allocated when the buffer object was created.
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One-Dimensional Convolution Filters

One-dimensional convolutions are identical to the two-dimensional ver-
sion except that the filter’s height parameter is assumed to be 1. However, 
they affect only the specification of one-dimensional textures (see “Texture 
Rectangles” on page 412 for details).

When a convolution filter is specified, it can be scaled and biased. The scale 
and bias values are specified with the glConvolutionParameter*(). No 
clamping of the convolution filter occurs after scaling or biasing.

void glConvolutionFilter1D(GLenum target, GLenum internalFormat,
GLsizei width, GLenum format,
GLenum type, const GLvoid *image);

Specifies a one-dimensional convolution filter. target must be set to 
GL_CONVOLUTION_1D. width specifies the number of pixels in the filter. 
The internalFormat, format, and type have the same meanings as they do 
for the respective parameters to glConvolutionFilter2D(). image points to 
the one-dimensional image to be used as the convolution filter.

Use glEnable(GL_CONVOLUTION_1D) to enable one-dimensional 
convolutions.

You may want to specify the convolution filter with values generated from 
the framebuffer. glCopyConvolutionFilter1D() copies a row of pixels 
from the current GL_READ_BUFFER, converts them into the specified 
internalFormat, and uses them to define the convolution filter.

A GL_INVALID_OPERATION error is set if an unpack pixel buffer object is 
bound and the combination of width, format, and type, plus the specified 
offset into the bound buffer object would cause a memory access outside 
of the memory allocated when the buffer object was created.

void glCopyConvolutionFilter1D(GLenum target,
GLenum internalFormat, GLint x,
GLint y, GLsizei width);

Defines a one-dimensional convolution filter with pixel values from the 
framebuffer. glCopyConvolutionFilter1D() copies width pixels starting at 
(x, y) and converts the pixels into the specified internalFormat.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Imaging Subset 381

Convolution Border Modes

The convolutions of pixels at the edges of an image are handled differently 
from the interior pixels. Their convolutions are modified by the 
convolution border mode. There are three options for computing border 
convolutions:

• GL_REDUCE mode causes the resulting image to shrink in each 
dimension by the size of the convolution filter. The width of the 
resulting image is (width  Wf), and the height of the resulting image is 
(height  Hf), where Wf and Hf are the width and height of the convolu-
tion filter, respectively. If this produces an image with zero or negative 
width or height, no output is generated, nor are any errors.

• GL_CONSTANT_BORDER computes the convolutions of border pixels 
by using a constant pixel value for pixels outside of the source image. 
The constant pixel value is set using the glConvolutionParameter*()
function. The resulting image’s size matches that of the source image.

• GL_REPLICATE_BORDER computes the convolution in the same 
manner as in GL_CONSTANT_BORDER mode, except the outermost 
row or column of pixels is used for the pixels that lie outside of the 
source image. The resulting image’s size matches that of the source 
image.

void glConvolutionParameter{if}(GLenum target, GLenum pname,
TYPE param);

void glConvolutionParameter{if}v(GLenum target, GLenum pname,
const TYPE *params);

Sets parameters that control how a convolution is performed. target
must be GL_CONVOLUTION_1D, GL_CONVOLUTION_2D, or 
GL_SEPARABLE_2D.

pname must be GL_CONVOLUTION_BORDER_MODE, 
GL_CONVOLUTION_FILTER_SCALE, or GL_CONVOLUTION_FILTER_
BIAS. Specifying pname as GL_CONVOLUTION_BORDER_MODE defines 
the convolution border mode. In this case, params must be GL_REDUCE, 
GL_CONSTANT_BORDER, or GL_REPLICATE_BORDER. If pname is set to 
either GL_CONVOLUTION_FILTER_SCALE or GL_CONVOLUTION_
FILTER_BIAS, then params points to an array of four color values for red, 
green, blue, and alpha, respectively.
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Post-Convolution Operations

After the convolution operation is completed, the pixels of the resulting image 
may be scaled and biased, and are clamped to the range [0, 1]. The scale and 
bias values are specified by calling glPixelTransfer*(), with either GL_POST_
CONVOLUTION_*_SCALE or GL_POST_CONVOLUTION_*_BIAS, respectively. 
Specifying a GL_POST_CONVOLUTION_COLOR_TABLE with glColorTable()
allows pixel components to be replaced using a color lookup table.

Color Matrix

For color space conversions and linear transformations on pixel values, 
the Imaging Subset supports a 4 4 matrix stack, selected by setting 
glMatrixMode(GL_COLOR). For example, to convert from RGB color space 
to CMY (cyan, magenta, yellow) color space, you might call

GLfloat rgb2cmy[16] = {
   -1,  0,  0, 0,
    0, -1,  0, 0,
    0,  0, -1, 0,
    1,  1,  1, 1
};

glMatrixMode(GL_COLOR);  /* enter color matrix mode */
glLoadMatrixf(rgb2cmy);
glMatrixMode(GL_MODELVIEW);  /* back to modelview mode */

Note: Recall that OpenGL matrices are stored in a column-major format. See 
“General-Purpose Transformation Commands” on page 134 for more 
detail about using matrices with OpenGL.

The color matrix stack has at least two matrix entries. (See “The Query 
Commands” on page 740 for details on determining the depth of the color 
matrix stack.) Unlike the other parts of the Imaging Subset, the color matrix 
transformation is always performed and cannot be disabled.

Example 8-9 illustrates using the color matrix to exchange the red and 
green color components of an image.

Example 8-9 Exchanging Color Components Using the Color Matrix: 
colormatrix.c

extern GLubyte*  readImage(const char*, GLsizei*, GLsizei*);

GLubyte  *pixels;
GLsizei   width, height;
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void init(void)
{
   /* Specify a color matrix to reorder a pixel’s components
    * from RGB to GBR */
   GLfloat  m[16] = {
      0.0, 1.0, 0.0, 0.0,
      0.0, 0.0, 1.0, 0.0,
      1.0, 0.0, 0.0, 0.0,
      0.0, 0.0, 0.0, 1.0
   };

   pixels = readImage(“Data/leeds.bin”, &width, &height);    
   glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
   glClearColor(0.0, 0.0, 0.0, 0.0);

   glMatrixMode(GL_COLOR);
   glLoadMatrixf(m);
   glMatrixMode(GL_MODELVIEW);
}

void display(void)
{
   glClear(GL_COLOR_BUFFER_BIT);
   glRasterPos2i(1, 1);
   glDrawPixels(width, height, GL_RGB, GL_UNSIGNED_BYTE,
      pixels);
   glFlush();
}

Post-Color Matrix Transformation Operations

Similar to the post-convolution operations, pixels can be scaled and biased 
after the color matrix step. Calling glPixelTransfer*() with either GL_POST_
COLOR_MATRIX_*_SCALE or GL_POST_COLOR_MATRIX_*_BIAS defines the 
scale and bias values for the post color matrix operation. Pixel values after 
scaling and biasing are clamped to the range [0, 1].

Histogram

Using the Imaging Subset, you can collect statistics about images. 
Histogramming determines the distribution of color values in an image, 
which can be used to determine how to balance an image’s contrast, for 
example.
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glHistogram() specifies what components of the image you want to 
histogram, and whether you want only to collect statistics or to continue 
processing the image. To collect histogram statistics, you must call 
glEnable(GL_HISTOGRAM).

Similar to the color tables described in “Color Tables” on page 369, a 
proxy mechanism is available with glHistogram() to determine if there 
are enough resources to store the requested histogram. If resources are not 
available, the histogram’s width, format, and component resolutions 
are set to zero. You can query the results of a histogram proxy using 
glGetHistogramParameter(), described in “The Query Commands” on 
page 740.

void glHistogram(GLenum target, GLsizei width,
GLenum internalFormat, GLboolean sink);

Defines how an image’s histogram data should be stored. The target
parameter must be set to either GL_HISTOGRAM or GL_PROXY_
HISTOGRAM. The width parameter specifies the number of entries in the 
histogram table. Its value must be a power of 2.

The internalFormat parameter defines how the histogram data should be 
stored. The allowable values are GL_ALPHA, GL_ALPHA4, GL_ALPHA8, 
GL_ALPHA12, GL_ALPHA16, GL_LUMINANCE, GL_LUMINANCE4, 
GL_LUMINANCE8, GL_LUMINANCE12, GL_LUMINANCE16, GL_
LUMINANCE_ALPHA, GL_LUMINANCE4_ALPHA4, GL_LUMINANCE6_
ALPHA2, GL_LUMINANCE8_ALPHA8, GL_LUMINANCE12_ALPHA4, 
GL_LUMINANCE12_ALPHA12, GL_LUMINANCE16_ALPHA16, GL_RGB, 
GL_RGB2, GL_RGB4, GL_RGB5, GL_RGB8, GL_RGB10, GL_RGB12, 
GL_RGB16, GL_RGBA, GL_RGBA2, GL_RGBA4, GL_RGB5_A1, GL_RGBA8, 
GL_RGB10_A2, GL_RGBA12, and GL_RGBA16. This list does not include 
GL_INTENSITY* values. This differs from the list of values accepted by 
glColorTable().

The sink parameter indicates whether the pixels should continue to the 
minmax stage of the pipeline or be discarded.

After you’ve passed the pixels to the imaging pipeline using 
glDrawPixels(), you can retrieve the results of the histogram using 
glGetHistogram(). In addition to returning the histogram’s values, 
glGetHistogram() can be used to reset the histogram’s internal storage. 
The internal storage can also be reset using glResetHistogram(), which is 
described on page 386.
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Example 8-10 Computing and Diagramming an Image’s Histogram: histogram.c

#define HISTOGRAM_SIZE  256   /* Must be a power of 2 */

extern GLubyte*  readImage(const char*, GLsizei*, GLsizei*);

GLubyte  *pixels;
GLsizei   width, height;

void init(void)
{
   pixels = readImage(“Data/leeds.bin”, &width, &height);    
   glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
   glClearColor(0.0, 0.0, 0.0, 0.0);

   glHistogram(GL_HISTOGRAM, HISTOGRAM_SIZE, GL_RGB, GL_FALSE);
   glEnable(GL_HISTOGRAM);
}

void display(void)
{
   int i;
   GLushort values[HISTOGRAM_SIZE][3];

   glClear(GL_COLOR_BUFFER_BIT);
   glRasterPos2i(1, 1);
   glDrawPixels(width, height, GL_RGB, GL_UNSIGNED_BYTE,
      pixels);
   glGetHistogram(GL_HISTOGRAM, GL_TRUE, GL_RGB, 
      GL_UNSIGNED_SHORT, values);

void glGetHistogram(GLenum target, GLboolean reset, GLenum format,
GLenum type, GLvoid *values);

Returns the collected histogram statistics. target must be GL_HISTOGRAM. 
reset specifies if the internal histogram tables should be cleared.

The format and type parameters specify the storage type of values, and how 
the histogram data should be returned to the application. They accept the 
same values at their respective parameters in glDrawPixels().

In Example 8-10, the program computes the histogram of an image and 
plots resulting distributions in the window. The ‘s’ key in the example 
shows the effect of the sink parameter, which controls whether the pixels 
are passed to the subsequent imaging pipeline operations.
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   /* Plot histogram */

   glBegin(GL_LINE_STRIP);
   glColor3f(1.0, 0.0, 0.0);
   for (i = 0; i < HISTOGRAM_SIZE; i++)
       glVertex2s(i, values[i][0]);
   glEnd();

   glBegin(GL_LINE_STRIP);
   glColor3f(0.0, 1.0, 0.0);
   for (i = 0; i < HISTOGRAM_SIZE; i++)
       glVertex2s(i, values[i][1]);
   glEnd();

   glBegin(GL_LINE_STRIP);
   glColor3f(0.0, 0.0, 1.0);
   for (i = 0; i < HISTOGRAM_SIZE; i++)
       glVertex2s(i, values[i][2]);
   glEnd();
   glFlush();
}

void keyboard(unsigned char key, int x, int y)
{
   static GLboolean sink = GL_FALSE;

   switch (key) {
      case ‘s’ :
         sink = !sink;
         glHistogram(GL_HISTOGRAM, HISTOGRAM_SIZE, GL_RGB, 
            sink);
         break;

      case 27: /* Escape Key */
         exit(0);

break;
}
   glutPostRedisplay();
}

glResetHistogram() will discard the histogram without retrieving the values.

void glResetHistogram(GLenum target);

Resets the histogram counters to zero. The target parameter must be 
GL_HISTOGRAM.
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Minmax

glMinmax() computes the minimum and maximum pixel component 
values for a pixel rectangle. As with glHistogram(), you can compute the 
minimum and maximum values and either render the image or discard the 
pixels.

glGetMinmax() is used to retrieve the computed minimum and maximum 
values. Similar to glHistogram(), the internal values for the minimum and 
maximum can be reset when they are accessed.

Example 8-11 demonstrates the use of glMinmax() to compute the mini-
mum and maximum pixel values in GL_RGB format. The minmax opera-
tion must be enabled with glEnable(GL_MINMAX).

The minimum and maximum values returned in the array values from 
glMinmax() command are grouped by component. For example, if you 
request GL_RGB values as the format, the first three values in the values
array represent the minimum red, green, and blue values, followed by the 
maximum red, green, and blue values for the processed pixels.

void glMinmax(GLenum target, GLenum internalFormat,
GLboolean sink);

Computes the minimum and maximum pixel values for an image. target
must be GL_MINMAX.

internalFormat specifies for which color components the minimum and 
maximum values should be computed. glMinmax() accepts the same 
values for internalFormat as glHistogram() accepts.

If GL_TRUE is specified for sink, then the pixels are discarded and not 
written to the framebuffer. GL_FALSE renders the image.

void glGetMinmax(GLenum target, GLboolean reset, GLenum format,
GLenum type, GLvoid *values);

Returns the results of the minmax operation. target must be GL_MINMAX. 
If the reset parameter is set to GL_TRUE, the minimum and maximum 
values are reset to their initial values. The format and type parameters 
describe the format of the minmax data returned in values, and use the 
same values as glDrawPixels().
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Example 8-11 Computing Minimum and Maximum Pixel Values: minmax.c

extern GLubyte*  readImage(const char*, GLsizei*, GLsizei*);

GLubyte  *pixels;
GLsizei   width, height;

void init(void)
{
   pixels = readImage(“Data/leeds.bin”, &width, &height);    
   glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
   glClearColor(0.0, 0.0, 0.0, 0.0);

   glMinmax(GL_MINMAX, GL_RGB, GL_FALSE);
   glEnable(GL_MINMAX);
}

void display(void)
{
   GLubyte  values[6];

   glClear(GL_COLOR_BUFFER_BIT);
   glRasterPos2i(1, 1);
   glDrawPixels(width, height, GL_RGB, GL_UNSIGNED_BYTE,
      pixels);
   glGetMinmax(GL_MINMAX, GL_TRUE, GL_RGB, GL_UNSIGNED_BYTE,
      values);
   glFlush();
   printf(“Red  : min = %d  max = %d\n”, values[0], values[3]);
   printf(“Green: min = %d  max = %d\n”, values[1], values[4]);
   printf(“Blue : min = %d  max = %d\n”, values[2], values[5]);
}

Even though glGetMinmax() can reset the minmax values when they are 
retrieved, you can explicitly reset the internal tables at any time by calling 
glResetMinmax().

void glResetMinmax(GLenum target);

Resets the minimum and maximum values to their initial values. The 
target parameter must be GL_MINMAX.
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Chapter 9

9.Texture Mapping

Chapter Objectives

After reading this chapter, you’ll be able to do the following:

• Understand what texture mapping can add to your scene

• Specify texture images in compressed and uncompressed formats

• Control how a texture image is filtered as it is applied to a fragment

• Create and manage texture images in texture objects, and control a 
high-performance working set of those texture objects

• Specify how the texture and fragment colors are combined

• Supply texture coordinates describing how the texture image should be 
mapped onto objects in your scene

• Generate texture coordinates automatically to produce effects such as 
contour maps and environment maps

• Perform complex texture operations in a single pass with 
multitexturing (sequential texture units)

• Use texture combiner functions to mathematically operate on texture, 
fragment, and constant color values

• After texturing, process fragments with secondary colors

• Specify textures to be used for processing point sprites

• Transform texture coordinates using the texture matrix

• Render shadowed objects, using depth textures
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So far, every geometric primitive has been drawn as either a solid color or 
smoothly shaded between the colors at its vertices—that is, they’ve been 
drawn without texture mapping. If you want to draw a large brick wall 
without texture mapping, for example, each brick must be drawn as a 
separate polygon. Without texturing, a large flat wall—which is really a 
single rectangle—might require thousands of individual bricks, and even 
then the bricks may appear too smooth and regular to be realistic. 

Texture mapping allows you to glue an image of a brick wall (obtained, 
perhaps, by taking a photograph of a real wall) to a polygon and to draw the 
entire wall as a single polygon. Texture mapping ensures that all the right 
things happen as the polygon is transformed and rendered. For example, 
when the wall is viewed in perspective, the bricks may appear smaller as the 
wall gets farther from the viewpoint. Other uses for texture mapping 
include depicting vegetation on large polygons representing the ground in 
flight simulation; wallpaper patterns; and textures that make polygons look 
like natural substances such as marble, wood, and cloth. The possibilities 
are endless. Although it’s most natural to think of applying textures to 
polygons, textures can be applied to all primitives—points, lines, polygons, 
bitmaps, and images. Plates 6, 8, 18–21, and 24–32 all demonstrate the use 
of textures. 

Because there are so many possibilities, texture mapping is a fairly large, 
complex subject, and you must make several programming choices when 
using it. For starters, most people intuitively understand a two-dimensional 
texture, but a texture may be one-dimensional or even three-dimensional. 
You can map textures to surfaces made of a set of polygons or to curved 
surfaces, and you can repeat a texture in one, two, or three directions 
(depending on how many dimensions the texture is described in) to cover 
the surface. In addition, you can automatically map a texture onto an object 
in such a way that the texture indicates contours or other properties of the 
item being viewed. Shiny objects can be textured so that they appear to be 
in the center of a room or other environment, reflecting the surroundings 
from their surfaces. Finally, a texture can be applied to a surface in different 
ways. It can be painted on directly (like a decal placed on a surface), used to 
modulate the color the surface would have been painted otherwise, or used 
to blend a texture color with the surface color. If this is your first exposure 
to texture mapping, you might find that the discussion in this chapter 
moves fairly quickly. As an additional reference, you might look at the 
chapter on texture mapping in 3D Computer Graphics by Alan Watt 
(Addison-Wesley, 1999).

Textures are simply rectangular arrays of data—for example, color data, 
luminance data, or color and alpha data. The individual values in a texture 
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array are often called texels. What makes texture mapping tricky is that a 
rectangular texture can be mapped to nonrectangular regions, and this 
must be done in a reasonable way.

Figure 9-1 illustrates the texture-mapping process. The left side of the figure 
represents the entire texture, and the black outline represents a quadrilateral 
shape whose corners are mapped to those spots on the texture. When the 
quadrilateral is displayed on the screen, it might be distorted by applying 
various transformations—rotations, translations, scaling, and projections. The 
right side of the figure shows how the texture-mapped quadrilateral might 
appear on your screen after these transformations. (Note that this quadrilat-
eral is concave and might not be rendered correctly by OpenGL without 
prior tessellation. See Chapter 11 for more information about tessellating 
polygons.)

Notice how the texture is distorted to match the distortion of the quadrilat-
eral. In this case, it’s stretched in the x-direction and compressed in the 
y-direction; there’s a bit of rotation and shearing going on as well. Depend-
ing on the texture size, the quadrilateral’s distortion, and the size of the 
screen image, some of the texels might be mapped to more than one frag-
ment, and some fragments might be covered by multiple texels. Since the 
texture is made up of discrete texels (in this case, 256 256 of them), filter-
ing operations must be performed to map texels to fragments. For example, 
if many texels correspond to a fragment, they’re averaged down to fit; if 
texel boundaries fall across fragment boundaries, a weighted average of the 
applicable texels is performed. Because of these calculations, texturing is 
computationally expensive, which is why many specialized graphics sys-
tems include hardware support for texture mapping.

Figure 9-1 Texture-Mapping Process
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An application may establish texture objects, with each texture object rep-
resenting a single texture (and possible associated mipmaps). Some imple-
mentations of OpenGL can support a special working set of texture objects 
that have better performance than texture objects outside the working set. 
These high-performance texture objects are said to be resident and may 
have special hardware and/or software acceleration available. You may use 
OpenGL to create and delete texture objects and to determine which tex-
tures constitute your working set.

This chapter covers the OpenGL’s texture-mapping facility in the following 
major sections.

• “An Overview and an Example” gives a brief, broad look at the steps 
required to perform texture mapping. It also presents a relatively 
simple example of texture mapping.

• “Specifying the Texture” explains how to specify one-, two-, or three-
dimensional textures. It also discusses how to use a texture’s borders, 
how to supply a series of related textures of different sizes, and how 
to control the filtering methods used to determine how an applied 
texture is mapped to screen coordinates.

• “Filtering” details how textures are either magnified or minified as they 
are applied to the pixels of polygons. Minification using special mipmap 
textures is also explained.

• “Texture Objects” describes how to put texture images into objects so 
that you can control several textures at one time. With texture objects, 
you may be able to create a working set of high-performance textures, 
which are said to be resident. You may also prioritize texture objects to 
increase or decrease the likelihood that a texture object is resident.

• “Texture Functions” discusses the methods used for painting a texture 
onto a surface. You can choose to have the texture color values replace 
those that would be used if texturing were not in effect, or you can 
have the final color be a combination of the two. 

• “Assigning Texture Coordinates” describes how to compute and assign 
appropriate texture coordinates to the vertices of an object. It also 
explains how to control the behavior of coordinates that lie outside the 
default range—that is, how to repeat or clamp textures across a surface.

• “Automatic Texture-Coordinate Generation” shows how to have 
OpenGL automatically generate texture coordinates so that you can 
achieve such effects as contour and environment maps.
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• “Multitexturing” details how textures may be applied in a serial pipe-
line of successive texturing operations.

• “Texture Combiner Functions” explains how you can control mathe-
matical operations (multiplication, addition, subtraction, interpolation, 
and even dot products) on the RGB and alpha values of textures, con-
stant colors, and incoming fragments. Combiner functions expose 
flexible, programmable fragment processing.

• “Applying Secondary Color after Texturing” shows how secondary 
colors are applied to fragments after texturing.

• “Point Sprites” discusses how textures can be applied to large points to 
improve their visual quality. 

• “The Texture Matrix Stack” explains how to manipulate the texture 
matrix stack and use the q texture coordinate.

• “Depth Textures” describes the process for using the values stored in the 
depth buffer as a texture for use in determining shadowing for a scene.

Version 1.1 of OpenGL introduced several texture-mapping operations:

• Additional internal texture image formats

• Texture proxy, to query whether there are enough resources to 
accommodate a given texture image

• Texture subimage, to replace all or part of an existing texture 
image, rather than completely delete and create a texture to 
achieve the same effect

• Specifying texture data from framebuffer memory (as well as from 
system memory)

• Texture objects, including resident textures and prioritizing

Version 1.2 added:

• 3D texture images

• A new texture-coordinate wrapping mode, GL_CLAMP_TO_EDGE, 
which derives texels from the edge of a texture image, not its border

• Greater control over mipmapped textures to represent different 
levels of detail (LOD)

• Calculating specular highlights (from lighting) after texturing 
operations

Chapter 9: Texture Mapping
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Version 1.3 granted more texture-mapping operations:

• Compressed textures

• Cube map textures

• Multitexturing, which is applying several textures to render a 
single primitive

• Texture-wrapping mode, GL_CLAMP_TO_BORDER

• Texture environment modes: GL_ADD and GL_COMBINE 
(including the dot product combination function)

Version 1.4 supplied these texture capabilities:

• Texture-wrapping mode, GL_MIRRORED_REPEAT

• Automatic mipmap generation with GL_GENERATE_MIPMAP

• Texture parameter GL_TEXTURE_LOD_BIAS, which alters selection 
of the mipmap level of detail

• Application of a secondary color (specified by glSecondaryColor*())
after texturing

• During the texture combine environment mode, the ability to use 
texture color from different texture units as sources for the texture 
combine function

• Use of depth (r coordinate) as an internal texture format and 
texturing modes that compare depth texels to decide upon texture 
application

Version 1.5 added support for:

• Additional texture-comparison modes for use of textures for shadow 
mapping

Version 2.0 modified texture capabilities by:

• Removing the power-of-two restriction on texture maps

• Iterated texture coordinates across point sprites

Version 2.1 added the following enhancements:

• Specifying textures in sRGB format, which accepts gamma-corrected 
red, green, and blue texture components

• Specifying and retrieving pixel rectangle data in server-side buffer 
objects. See “Using Buffer Objects with Pixel Rectangle Data” in 
Chapter 8 for details on using pixel buffer objects.
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Version 3.0 contributed even more texturing features:

• Storing texels in floating-point, signed integer, and unsigned integer 
formats without being normalized (mapped into the range [-1,1] or 
[0,1] respectively)

• One- and two-dimensional texture arrays, which allow indexing into 
an array of one- or two-dimensional texture maps using the next-
higher-dimension texture coordinate

• A standardized texture format, RGTC, for one- and two-component 
textures

If you try to use one of these texture-mapping operations and can’t find it, 
check the version number of your implementation of OpenGL to see if it 
actually supports it. (See “Which Version Am I Using?” in Chapter 14.) In 
some implementations, a particular feature may be available only as an 
extension. 

For example, in OpenGL Version 1.2, multitexturing was approved by the 
Khronos OpenGL ARB Working Group, the governing body for OpenGL, 
as an optional extension. An implementation of OpenGL 1.2 supporting 
multitexturing would have function and constant names suffixed with 
ARB, such as glActiveTextureARB(GL_TEXTURE1_ARB). In OpenGL 1.3, 
multitexturing became mandatory, and the ARB suffix was removed.

An Overview and an Example

This section gives an overview of the steps necessary to perform texture 
mapping. It also presents a relatively simple texture-mapping program. Of 
course, you know that texture mapping can be a very involved process.

Steps in Texture Mapping

To use texture mapping, you perform the following steps:

1. Create a texture object and specify a texture for that object.

2. Indicate how the texture is to be applied to each pixel. 

3. Enable texture mapping.

4. Draw the scene, supplying both texture and geometric coordinates.
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Keep in mind that texture mapping works only in RGBA mode. Texture 
mapping results in color-index mode are undefined. 

Create a Texture Object and Specify a Texture for That Object

A texture is usually thought of as being two-dimensional, like most images, 
but it can also be one-dimensional or three-dimensional. The data describ-
ing a texture may consist of one, two, three, or four elements per texel and 
may represent an (R, G, B, A) quadruple, a modulation constant, or a depth 
component.

In Example 9-1, which is very simple, a single texture object is created to 
maintain a single uncompressed, two-dimensional texture. This example 
does not find out how much memory is available. Since only one texture is 
created, there is no attempt to prioritize or otherwise manage a working set 
of texture objects. Other advanced techniques, such as texture borders, 
mipmaps, or cube maps, are not used in this simple example.

Indicate How the Texture Is to Be Applied to Each Pixel

You can choose any of four possible functions for computing the final 
RGBA value from the fragment color and the texture image data. One 
possibility is simply to use the texture color as the final color; this is the 
replace mode, in which the texture is painted on top of the fragment, just 
as a decal would be applied. (Example 9-1 uses replace mode.) Another 
method is to use the texture to modulate, or scale, the fragment’s color; this 
technique is useful for combining the effects of lighting with texturing. 
Finally, a constant color can be blended with that of the fragment, based 
on the texture value. 

Enable Texture Mapping

You need to enable texturing before drawing your scene. Texturing is 
enabled or disabled using glEnable() or glDisable(), with the symbolic 
constant GL_TEXTURE_1D, GL_TEXTURE_2D, GL_TEXTURE_3D, or 
GL_TEXTURE_CUBE_MAP for one-, two-, three-dimensional, or cube map 
texturing, respectively. (If two or all three of the dimensional texturing 
modes are enabled, the largest dimension enabled is used. If cube map 
textures are enabled, it trumps all the others. For the sake of clean programs, 
you should enable only the one you want to use.)
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Draw the Scene, Supplying Both Texture and Geometric Coordinates

You need to indicate how the texture should be aligned relative to the frag-
ments to which it’s to be applied before it’s “glued on.” That is, you need to 
specify both texture coordinates and geometric coordinates as you specify 
the objects in your scene. For a two-dimensional texture map, for example, 
the texture coordinates range from 0.0 to 1.0 in both directions, but the 
coordinates of the items being textured can be anything. To apply the brick 
texture to a wall, for example, assuming the wall is square and meant to rep-
resent one copy of the texture, the code would probably assign texture coor-
dinates (0, 0), (1, 0), (1, 1), and (0, 1) to the four corners of the wall. If the 
wall is large, you might want to paint several copies of the texture map on 
it. If you do so, the texture map must be designed so that the bricks at the 
left edge match up nicely with the bricks at the right edge, and similarly for 
the bricks at the top and bottom. 

You must also indicate how texture coordinates outside the range [0.0, 1.0] 
should be treated. Do the textures repeat to cover the object, or are they 
clamped to a boundary value?

A Sample Program

One of the problems with showing sample programs to illustrate texture 
mapping is that interesting textures are large. Typically, textures are read 
from an image file, since specifying a texture programmatically could take 
hundreds of lines of code. In Example 9-1, the texture—which consists of 
alternating white and black squares, like a checkerboard—is generated by 
the program. The program applies this texture to two squares, which are 
then rendered in perspective, one of them facing the viewer squarely and 
the other tilting back at 45 degrees, as shown in Figure 9-2. In object 
coordinates, both squares are the same size. 

Figure 9-2 Texture-Mapped Squares
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Example 9-1 Texture-Mapped Checkerboard: checker.c

/*  Create checkerboard texture  */
#define checkImageWidth 64
#define checkImageHeight 64
static GLubyte checkImage[checkImageHeight][checkImageWidth][4];

static GLuint texName;

void makeCheckImage(void)
{
   int i, j, c;

   for (i = 0; i < checkImageHeight; i++) {
      for (j = 0; j < checkImageWidth; j++) {
         c = (((i&0x8)==0)^((j&0x8))==0)*255;
         checkImage[i][j][0] = (GLubyte) c;
         checkImage[i][j][1] = (GLubyte) c;
         checkImage[i][j][2] = (GLubyte) c;
         checkImage[i][j][3] = (GLubyte) 255;
      }
   }
}

void init(void)
{
   glClearColor(0.0, 0.0, 0.0, 0.0);
   glShadeModel(GL_FLAT);
   glEnable(GL_DEPTH_TEST);
   makeCheckImage();
   glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

   glGenTextures(1, &texName);
   glBindTexture(GL_TEXTURE_2D, texName);

   glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
   glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
   glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, 
                   GL_NEAREST);
   glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, 
                   GL_NEAREST);
   glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, checkImageWidth, 
                checkImageHeight, 0, GL_RGBA, GL_UNSIGNED_BYTE, 
                checkImage);
}

void display(void)
{
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   glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
   glEnable(GL_TEXTURE_2D);
   glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
   glBindTexture(GL_TEXTURE_2D, texName);
   glBegin(GL_QUADS);
   glTexCoord2f(0.0, 0.0); glVertex3f(-2.0, -1.0, 0.0);
   glTexCoord2f(0.0, 1.0); glVertex3f(-2.0, 1.0, 0.0);
   glTexCoord2f(1.0, 1.0); glVertex3f(0.0, 1.0, 0.0);
   glTexCoord2f(1.0, 0.0); glVertex3f(0.0, -1.0, 0.0);

   glTexCoord2f(0.0, 0.0); glVertex3f(1.0, -1.0, 0.0);
   glTexCoord2f(0.0, 1.0); glVertex3f(1.0, 1.0, 0.0);
   glTexCoord2f(1.0, 1.0); glVertex3f(2.41421, 1.0, -1.41421);
   glTexCoord2f(1.0, 0.0); glVertex3f(2.41421, -1.0, -1.41421);
   glEnd();
   glFlush();
   glDisable(GL_TEXTURE_2D);
}

void reshape(int w, int h)
{
   glViewport(0, 0, (GLsizei) w, (GLsizei) h);
   glMatrixMode(GL_PROJECTION);
   glLoadIdentity();
   gluPerspective(60.0, (GLfloat) w/(GLfloat) h, 1.0, 30.0);
   glMatrixMode(GL_MODELVIEW);
   glLoadIdentity();
   glTranslatef(0.0, 0.0, -3.6);
}
/*  keyboard() and main() deleted to reduce printing  */

The checkerboard texture is generated in the routine makeCheckImage(),
and all the texture-mapping initialization occurs in the routine init().
glGenTextures() and glBindTexture() name and create a texture object for a 
texture image. (See “Texture Objects” on page 437.) The single, full-resolution 
texture map is specified by glTexImage2D(), whose parameters indicate the 
size, type, location, and other properties of the texture image. (See “Specifying 
the Texture” below for more information about glTexImage2D().)

The four calls to glTexParameter*() specify how the texture is to be wrapped 
and how the colors are to be filtered if there isn’t an exact match between 
texels in the texture and pixels on the screen. (See “Filtering” on page 434 
and “Repeating and Clamping Textures” on page 452.)

In display(), glEnable() turns on texturing. glTexEnv*() sets the drawing 
mode to GL_REPLACE so that the textured polygons are drawn using the 
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colors from the texture map (rather than taking into account the color in 
which the polygons would have been drawn without the texture). 

Then, two polygons are drawn. Note that texture coordinates are specified 
along with vertex coordinates. The glTexCoord*() command behaves simi-
larly to the glNormal() command. glTexCoord*() sets the current texture 
coordinates; any subsequent vertex command has those texture coordinates 
associated with it until glTexCoord*() is called again.

Note: The checkerboard image on the tilted polygon might look wrong 
when you compile and run it on your machine—for example, 
it might look like two triangles with different projections of the 
checkerboard image on them. If so, try setting the parameter 
GL_PERSPECTIVE_CORRECTION_HINT to GL_NICEST and 
running the example again. To do this, use glHint().

Specifying the Texture

The command glTexImage2D() defines a two-dimensional texture. It takes 
several arguments, which are described briefly here and in more detail in 
the subsections that follow. The related commands for one- and three-
dimensional textures, glTexImage1D() and glTexImage3D(), are described 
in “Texture Rectangles” and “Three-Dimensional Textures,” respectively.

void glTexImage2D(GLenum target, GLint level, GLint internalFormat,
GLsizei width, GLsizei height, GLint border,
GLenum format, GLenum type, const GLvoid *texels);

Defines a two-dimensional texture, or a one-dimensional texture array. 
The target parameter is set to one of the constants: GL_TEXTURE_2D, 
GL_PROXY_TEXTURE_2D, GL_TEXTURE_CUBE_MAP_POSITIVE_X, 
GL_TEXTURE_CUBE_MAP_NEGATIVE_X, GL_TEXTURE_CUBE_MAP_
POSITIVE_Y, GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, GL_TEXTURE_
CUBE_MAP_POSITIVE_Z, GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, 
or GL_PROXY_TEXTURE_CUBE_MAP for defining two-dimensional 
textures, (See “Cube Map Textures” for information about use of the 
GL_*CUBE_MAP* constants with glTexImage2D and related functions), 
and GL_TEXTURE_1D_ARRAY and GL_PROXY_TEXTURE_1D_ARRAY for 
defining a one-dimensional texture array (which are only available if the 
OpenGL version is 3.0 or greater. See “Texture Arrays” on page 419.), or 
GL_TEXTURE_RECTANGLE and GL_PROXY_TEXTURE_RECTANGLE.
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You use the level parameter if you’re supplying multiple resolutions of the 
texture map; with only one resolution, level should be 0. (See “Mipmaps: 
Multiple Levels of Detail” for more information about using multiple 
resolutions.)

The next parameter, internalFormat, indicates which components 
(RGBA, depth, luminance, or intensity) are selected for the texels of an 
image. There are three groups of internal formats. First, the following 
symbolic constants for internalFormat specify that texel values should be 
normalized (mapped into the range [0,1]) and stored in a fixed-point 
representation (of the number of bits specified if there’s a numeric value 
included in the token name): GL_ALPHA, GL_ALPHA4, GL_ALPHA8, 
GL_ALPHA12, GL_ALPHA16, GL_COMPRESSED_ALPHA, 
GL_COMPRESSED_LUMINANCE, GL_COMPRESSED_LUMINANCE_
ALPHA, GL_COMPRESSED_INTENSITY, GL_COMPRESSED_RGB, 
GL_COMPRESSED_RGBA, GL_DEPTH_COMPONENT, GL_DEPTH_
COMPONENT16, GL_DEPTH_COMPONENT24, GL_DEPTH_
COMPONENT32, GL_DEPTH_STENCIL, GL_INTENSITY, 
GL_INTENSITY4, GL_INTENSITY8, GL_INTENSITY12, GL_INTENSITY16, 
GL_LUMINANCE, GL_LUMINANCE4, GL_LUMINANCE8, 
GL_LUMINANCE12, GL_LUMINANCE16, GL_LUMINANCE_ALPHA, 
GL_LUMINANCE4_ALPHA4, GL_LUMINANCE6_ALPHA2, 
GL_LUMINANCE8_ALPHA8, GL_LUMINANCE12_ALPHA4, 
GL_LUMINANCE12_ALPHA12,  GL_LUMINANCE16_ALPHA16, GL_RED, 
GL_R8, GL_R16, GL_RG, GL_RG8, GL_RG16, GL_RGB, GL_R3_G3_B2, 
GL_RGB4,  GL_RGB5, GL_RGB8, GL_RGB10, GL_RGB12, GL_RGB16, 
GL_RGBA, GL_RGBA2, GL_RGBA4, GL_RGB5_A1, GL_RGBA8, GL_RGB10_A2, 
GL_RGBA12, GL_RGBA16, GL_SRGB, GL_SRGB8, GL_SRGB_ALPHA, 
GL_SRGB8_ALPHA8, GL_SLUMINANCE_ALPHA, GL_SLUMINANCE8_
ALPHA8, GL_SLUMINANCE, GL_SLUMINANCE8, GL_COMPRESSED_
SRGB, GL_COMPRESSED_SRGB_ALPHA, GL_COMPRESSED_
SLUMINANCE, or GL_COMPRESSED_SLUMINANCE_ALPHA. (See 
“Texture Functions” for a discussion of how these selected components 
are applied, and see “Compressed Texture Images” for a discussion of how 
compressed textures are handled.) 

The next sets of symbolic constants for internalFormat were added in 
OpenGL version 3.0, and specify floating-point pixel formats, which are 
not normalized (and stored in floating-point values of the specified 
number of bits): GL_R16F, GL_R32F, GL_RG16F, GL_RG32F, GL_RGB16F, 
GL_RGB32F, GL_RGBA16F, GL_RGBA32F, GL_R11F_G11F_B10F, and 
GL_RGB9_E5. Another set of symbolic constants accepted represent signed- 
and unsigned-integer (denoted with the additional “U” in the token) 
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formats (stored in the respective integer types of the specified bitwidth): 
GL_R8I, GL_R8UI, GL_R16I, GL_R16UI, GL_R32I, GL_R32UI, GL_RG8I, 
GL_RG8UI, GL_RG16I, GL_RG16UI, GL_RG32I, GL_RG32UI, GL_RGB8I, 
GL_RGB8UI, GL_RGB16I, GL_RGB16UI, GL_RGB32I, GL_RGB32UI, 
GL_RGBA8I, GL_RGBA8UI, GL_RGBA16I, GL_RGBA16UI, GL_RGBA32I, 
and GL_RGBA32UI. Additionally, textures can be stored in a compressed 
form if internalFormat is one of: GL_COMPRESSED_RED, GL_COMPRESSED_
RG, and in the specific compressed texture formats: GL_COMPRESSED_
RED_RGTC1, GL_COMPRESSED_SIGNED_RED_RGTC1, GL_
COMPRESSED_RG_RGTC2, and GL_COMPRESSED_SIGNED_RG_RGTC2, 
and for sized depth and stencil formats, OpenGL version 3.0 added: 
GL_DEPTH_COMPONENT16, GL_DEPTH_COMPONENT24, GL_DEPTH_
COMPONENT32F, and GL_DEPTH24_STENCIL8, and GL_DEPTH32F_
STENCIL8 for packed stencil-depth dual-channel texels.

OpenGL version 3.1 added support for signed normalized values (which 
are mapped the range [-1,1]), and are specified for internalFormat with the 
tokens: GL_R8_SNORM, GL_R16_SNORM, GL_RG8_SNORM, GL_RG16_
SNORM, GL_RGB8_SNORM, GL_RGB16_SNORM, GL_RGBA8_SNORM, 
GL_RGBA16_SNORM.

The internalFormat may request a specific resolution of components. For 
example, if internalFormat is GL_R3_G3_B2, you are asking that texels be 3 
bits of red, 3 bits of green, and 2 bits of blue. By definition, GL_INTENSITY, 
GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_DEPTH_COMPONENT, 
GL_RGB, GL_RGBA, GL_SRGB, GL_SRGB_ALPHA, GL_SLUMINANCE, 
GL_SLUMINANCE_ALPHA, and the compressed forms of the above 
tokens are lenient, because they do not ask for a specific resolution. (For 
compatibility with the OpenGL release 1.0, the numeric values 1, 2, 3, and 4 
for internalFormat are equivalent to the symbolic constants GL_LUMINANCE, 
GL_LUMINANCE_ALPHA, GL_RGB, and GL_RGBA, respectively.)

The width and height parameters give the dimensions of the texture image; 
border indicates the width of the border, which is either 0 (no border) 
or 1 (and must be 0 for version 3.1 implementations). For OpenGL 
implementations that do not support version 2.0 or greater, both width
and height must have the form 2m + 2b, where m is a non-negative integer 
(which can have a different value for width than for height) and b is the 
value of border. The maximum size of a texture map depends on the 
implementation of OpenGL, but it must be at least 64 64 (or 66 66
with borders). For OpenGL implementations supporting version 2.0 
and greater, textures may be of any size. The format and type parameters 
describe the format and data type of the texture image data. They have the 
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As you can see by the myriad of accepted values, the internal format of a tex-
ture image may affect the performance of texture operations. For example, 
some implementations perform texturing faster with GL_RGBA than with 
GL_RGB, because the color components align to processor memory better. 
Since this varies, you should check specific information about your imple-
mentation of OpenGL.

The internal format of a texture image also may control how much 
memory a texture image consumes. For example, a texture of internal 
format GL_RGBA8 uses 32 bits per texel, while a texture of internal format 
GL_R3_G3_B2 uses only 8 bits per texel. Of course, there is a corresponding 
trade-off between memory consumption and color resolution.

A GL_DEPTH_COMPONENT texture stores depth values, as compared to 
colors, and is most often used for rendering shadows (as described in 
“Depth Textures” on page 483). Similarly a GL_DEPTH_STENCIL texture 
stores depth and stencil values in the same texture.

Textures specified with an internal format of GL_SRGB, GL_SRGB8, 
GL_SRGB_ALPHA, GL_SRGB8_ALPHA8, GL_SLUMINANCE_ALPHA, 

same meaning as they do for glDrawPixels(). (See “Imaging Pipeline” in 
Chapter 8.) In fact, texture data is in the same format as the data used by 
glDrawPixels(), so the settings of glPixelStore*() and glPixelTransfer*()
are applied. (In Example 9-1, the call 

glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

is made because the data in the example isn’t padded at the end of each 
texel row.) The format parameter can be GL_COLOR_INDEX, GL_DEPTH_
COMPONENT, GL_RGB, GL_RGBA, GL_RED, GL_GREEN, GL_BLUE, 
GL_ALPHA, GL_LUMINANCE, or GL_LUMINANCE_ALPHA—that is, 
the same formats available for glDrawPixels() with the exception of 
GL_STENCIL_INDEX. OpenGL version 3.0 additionally permits the 
following formats: GL_DEPTH_STENCIL, GL_RG, GL_RED_INTEGER, 
GL_GREEN_INTEGER, GL_BLUE_INTEGER, GL_ALPHA_INTEGER, 
GL_RG_INTEGER, GL_RGB_INTEGER, GL_RGBA_INTEGER, GL_BGR_
INTEGER, and GL_BGRA_INTEGER. 

Similarly, the type parameter can be GL_BYTE, GL_UNSIGNED_BYTE, 
GL_SHORT, GL_UNSIGNED_SHORT, GL_INT, GL_UNSIGNED_INT, 
GL_FLOAT, GL_BITMAP, or one of the packed pixel data types. 

Finally, texels contains the texture image data. This data describes the 
texture image itself as well as its border.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


404 Chapter 9: Texture Mapping

GL_SLUMINANCE8_ALPHA8, GL_SLUMINANCE, GL_SLUMINANCE8, 
GL_COMPRESSED_SRGB, GL_COMPRESSED_SRGB_ALPHA, 
GL_COMPRESSED_SLUMINANCE, or GL_COMPRESSED_SLUMINANCE_
ALPHA) are expected to have their red, green, and blue color components 
specified in the sRGB color space (officially known as the International 
Electrotechnical Commission IEC standard 61966-2-1). The sRGB color 
space is approximately the same as the 2.2 gamma-corrected linear RGB 
color space. For sRGB textures, the alpha values in the texture should not 
be gamma corrected.

For internal formats with the suffixes of “F”, “I”, or “UI”, the format of a 
texel is stored in a floating-point value, signed integer, or unsigned integer, 
respectively, of the specified number of bits (e.g., GL_R16F would store a single 
channel texture with each texel being a 16-bit floating-point value). All of these 
formats were added in OpenGL Version 3.0. For these formats, the values are 
not mapped into the range [0,1], but rather are allowed their full numeric 
precision. One other special format that involves floating-point values is the 
packed shared-exponent format, which specifies the red, green, and blue values 
as floating-point values, all of which have the same exponent value. All of these 
formats are described in the online appendix Appendix J, “Floating-Point 
Formats for Textures, Framebuffers, and Renderbuffers.”1

Integer internal texture formats (those with an “I” or “UI” suffix) require 
their input data to match the specified integer size.

Signed-normalized values specified with internal formats including 
GL_*_SNORM are converted into the range [-1,1]. 

Although texture mapping results in color-index mode are undefined, you 
can still specify a texture with a GL_COLOR_INDEX image. In that case, 
pixel-transfer operations are applied to convert the indices to RGBA values 
by table lookup before they’re used to form the texture image.

If your OpenGL implementation supports the Imaging Subset and any of its 
features are enabled, the texture image will be affected by those features. For 
example, if the two-dimensional convolution filter is enabled, then the 
convolution will be performed on the texture image. (The convolution may 
change the image’s width and/or height.)

For OpenGL versions prior to Version 2.0, the number of texels for both the 
width and the height of a texture image, not including the optional border, 
must be a power of 2. If your original image does not have dimensions that 
fit that limitation, you can use the OpenGL Utility Library routine 
gluScaleImage() to alter the sizes of your textures.

1 This appendix is available online at http://www.opengl-redbook.com/appendices/.
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Note: In GLU 1.3, gluScaleImage() supports packed pixel formats (and 
their related data types), but likely does not support those of OpenGL 
Version 3.0 and later.

The framebuffer itself can also be used as a source for texture data. 
glCopyTexImage2D() reads a rectangle of pixels from the framebuffer and 
uses that rectangle as texels for a new texture.

int gluScaleImage(GLenum format, GLint widthin, GLint heightin,
GLenum typein, const void *datain, GLint widthout,
GLint heightout, GLenum typeout, void *dataout);

Scales an image using the appropriate pixel-storage modes to unpack the 
data from datain. The format, typein, and typeout parameters can refer to 
any of the formats or data types supported by glDrawPixels(). The image 
is scaled using linear interpolation and box filtering (from the size 
indicated by widthin and heightin to widthout and heightout), and the 
resulting image is written to dataout, using the pixel GL_PACK* storage 
modes. The caller of gluScaleImage() must allocate sufficient space for 
the output buffer. A value of 0 is returned on success, and a GLU error 
code is returned on failure.

void glCopyTexImage2D(GLenum target, GLint level,
GLint internalFormat, GLint x, GLint y,
GLsizei width, GLsizei height, GLint border);

Creates a two-dimensional texture, using framebuffer data to define the 
texels. The pixels are read from the current GL_READ_BUFFER and are 
processed exactly as if glCopyPixels() had been called, but instead of going 
to the framebuffer, the pixels are placed into texture memory. The settings 
of glPixelTransfer*() and other pixel-transfer operations are applied.

The target parameter must be one of the constants GL_TEXTURE_2D, 
GL_TEXTURE_CUBE_MAP_POSITIVE_X, GL_TEXTURE_CUBE_MAP_
NEGATIVE_X, GL_TEXTURE_CUBE_MAP_POSITIVE_Y, GL_TEXTURE_
CUBE_MAP_NEGATIVE_Y, GL_TEXTURE_CUBE_MAP_POSITIVE_Z, or 
GL_TEXTURE_CUBE_MAP_NEGATIVE_Z (see “Cube Map Textures” on 
page 465 for information about use of the *CUBE_MAP* constants), or 
GL_TEXTURE_1D_ARRAY (see “Texture Arrays” on page 419). The level,
internalFormat, and border parameters have the same effects that they have 
for glTexImage2D(). The texture array is taken from a screen-aligned pixel 
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If your OpenGL implementation is Version 3.0 or later, you can use 
framebuffer objects to effectively perform the same operation as 
glCopyPixels2D() by rendering directly into texture memory. This 
process is described in detail in “Framebuffer Objects” in Chapter 10.

The next sections give more detail about texturing, including the use of 
the target, border, and level parameters. The target parameter can be used 
to query accurately the size of a texture (by creating a texture proxy with 
glTexImage*D()) and whether a texture possibly can be used within the 
texture resources of an OpenGL implementation. Redefining a portion of a 
texture is described in “Replacing All or Part of a Texture Image” on page 408. 
One- and three-dimensional textures are discussed in “Texture Rectangles” on 
page 412 and “Three-Dimensional Textures” on page 414, respectively. The 
texture border, which has its size controlled by the border parameter, is 
detailed in “Compressed Texture Images” on page 420. The level parameter is 
used to specify textures of different resolutions and is incorporated into the 
special technique of mipmapping, which is explained in “Mipmaps: Multiple 
Levels of Detail” on page 423. Mipmapping requires understanding how to 
filter textures as they are applied; filtering is covered on page 434.

Texture Proxy

To an OpenGL programmer who uses textures, size is important. Texture 
resources are typically limited, and texture format restrictions vary among 
OpenGL implementations. There is a special texture proxy target to evalu-
ate whether your OpenGL implementation is capable of supporting a par-
ticular texture format at a particular texture size.

glGetIntegerv(GL_MAX_TEXTURE_SIZE,...) tells you a lower bound on the 
largest width or height (without borders) of a texture image; typically, the 
size of the largest square texture supported. For 3D textures, GL_MAX_3D_
TEXTURE_SIZE may be used to query the largest allowable dimension (width, 
height, or depth, without borders) of a 3D texture image. For cube map 
textures, GL_MAX_CUBE_MAP_TEXTURE_SIZE is similarly used.

rectangle with the lower left corner at coordinates specified by the (x, y)
parameters. The width and height parameters specify the size of this pixel 
rectangle. For OpenGL implementations that do not support Version 2.0, 
both width and height must have the form 2m+2b, where m is a non-
negative integer (which can have a different value for width than for height)
and b is the value of border. For implementations supporting OpenGL 
Version 2.0 and greater, textures may be of any size.
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However, use of any of the GL_MAX*TEXTURE_SIZE queries does not 
consider the effect of the internal format or other factors. A texture image 
that stores texels using the GL_RGBA16 internal format may be using 
64 bits per texel, so its image may have to be 16 times smaller than an image 
with the GL_LUMINANCE4 internal format. Textures requiring borders or 
mipmaps further reduce the amount of available memory.

A special placeholder, or proxy, for a texture image allows the program to 
query more accurately whether OpenGL can accommodate a texture of a 
desired internal format. 

For instance, to find out whether there are enough resources available for 
a standard 2D texture, call glTexImage2D() with a target parameter of 
GL_PROXY_TEXTURE_2D and the given level, internalFormat, width, height, 
border, format, and type. For a proxy, you should pass NULL as the pointer 
for the texels array. (For a cube map, use glTexImage2D() with the target 
GL_PROXY_TEXTURE_CUBE_MAP. For one- or three-dimensional textures, 
texture rectangles, and texture arrays, use the corresponding routines and 
symbolic constants.) 

After the texture proxy has been created, query the texture state variables 
with glGetTexLevelParameter*(). If there aren’t enough resources to 
accommodate the texture proxy, the texture state variables for width, 
height, border width, and component resolutions are set to 0.

void glGetTexLevelParameter{if}v(GLenum target, GLint level,
GLenum pname, TYPE *params); 

Returns in params texture parameter values for a specific level of detail, 
specified as level. target defines the target texture and is GL_TEXTURE_1D, 
GL_TEXTURE_2D, GL_TEXTURE_3D, GL_TEXTURE_CUBE_MAP_
POSITIVE_X, GL_TEXTURE_CUBE_MAP_NEGATIVE_X, GL_TEXTURE_
CUBE_MAP_POSITIVE_Y, GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, 
GL_TEXTURE_CUBE_MAP_POSITIVE_Z, GL_TEXTURE_CUBE_MAP_
NEGATIVE_Z, GL_TEXTURE_1D_ARRAY, GL_TEXTURE_2D_ARRAY, 
GL_TEXTURE_RECTANGLE, GL_PROXY_TEXTURE_1D, GL_PROXY_
TEXTURE_1D_ARRAY, GL_PROXY_TEXTURE_2D, GL_PROXY_TEXTURE_
2D_ARRAY, GL_PROXY_TEXTURE_3D, GL_PROXY_TEXTURE_CUBE_
MAP, or GL_PROXY_TEXTURE_RECTANGLE. (GL_TEXTURE_CUBE_MAP 
is not valid, because it does not specify a particular face of a cube map.) 
Accepted values for pname are GL_TEXTURE_WIDTH, GL_TEXTURE_
HEIGHT, GL_TEXTURE_DEPTH, GL_TEXTURE_BORDER, GL_TEXTURE_
INTERNAL_FORMAT, GL_TEXTURE_RED_SIZE, GL_TEXTURE_GREEN_
SIZE, GL_TEXTURE_BLUE_SIZE, GL_TEXTURE_ALPHA_SIZE, GL_
TEXTURE_LUMINANCE_SIZE, and GL_TEXTURE_INTENSITY_SIZE. 
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Example 9-2 demonstrates how to use the texture proxy to find out if there 
are enough resources to create a 64 64 texel texture with RGBA components 
with 8 bits of resolution. If this succeeds, then glGetTexLevelParameteriv()
stores the internal format (in this case, GL_RGBA8) into the variable format.

Example 9-2 Querying Texture Resources with a Texture Proxy

  GLint width;

  glTexImage2D(GL_PROXY_TEXTURE_2D, 0, GL_RGBA8,
               64, 64, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
  glGetTexLevelParameteriv(GL_PROXY_TEXTURE_2D, 0,
                           GL_TEXTURE_WIDTH, &width);

Note: There is one major limitation with texture proxies: The texture proxy 
answers the question of whether a texture is capable of being loaded 
into texture memory. The texture proxy provides the same answer, 
regardless of how texture resources are currently being used. If other 
textures are using resources, then the texture proxy query may respond 
affirmatively, but there may not be enough resources to make your 
texture resident (that is, part of a possibly high-performance working 
set of textures). The texture proxy does not answer the question of 
whether there is sufficient capacity to handle the requested texture. 
(See “Texture Objects” for more information about managing resident 
textures.)

Replacing All or Part of a Texture Image

Creating a texture may be more computationally expensive than modify-
ing an existing one. Often it is better to replace all or part of a texture 
image with new information, rather than create a new one. This can be 
helpful for certain applications, such as using real-time, captured video 
images as texture images. For that application, it makes sense to create a 
single texture and use glTexSubImage2D() to replace repeatedly the tex-
ture data with new video images. Also, there are no size restrictions for 
glTexSubImage2D() that force the height or width to be a power of 2. 
(This is helpful for processing video images, which generally do not have 
sizes that are powers of 2. However, you must load the video images into 
an initial, larger image that must have 2n texels for each dimension, and 
adjust texture coordinates for the subimages.)
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In Example 9-3, some of the code from Example 9-1 has been modified 
so that pressing the ‘s’ key drops a smaller checkered subimage into the 
existing image. (The resulting texture is shown in Figure 9-3.) Pressing 
the ‘r’ key restores the original image. Example 9-3 shows the two routines, 
makeCheckImages() and keyboard(), that have been substantially changed. 
(See “Texture Objects” for more information about glBindTexture().)

void glTexSubImage2D(GLenum target, GLint level, GLint xoffset,
GLint yoffset, GLsizei width, GLsizei height,
GLenum format, GLenum type,
const GLvoid *texels);

Defines a two-dimensional texture image that replaces all or part of 
a contiguous subregion (in 2D, it’s simply a rectangle) of the current, 
existing two-dimensional texture image. The target parameter must be set 
to one of the same options that are available for glCopyTexImage2D.

The level, format, and type parameters are similar to the ones used for 
glTexImage2D(). level is the mipmap level-of-detail number. It is not 
an error to specify a width or height of 0, but the subimage will have no 
effect. format and type describe the format and data type of the texture 
image data. The subimage is also affected by modes set by glPixelStore*()
and glPixelTransfer*() and other pixel-transfer operations.

texels contains the texture data for the subimage. width and height are the 
dimensions of the subregion that is replacing all or part of the current 
texture image. xoffset and yoffset specify the texel offset in the x- and 
y-directions—with (0, 0) at the lower left corner of the texture—and 
specify where in the existing texture array the subimage should be placed. 
This region may not include any texels outside the range of the originally 
defined texture array.

Figure 9-3 Texture with Subimage Added
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Example 9-3 Replacing a Texture Subimage: texsub.c

/*  Create checkerboard textures  */
#define checkImageWidth 64
#define checkImageHeight 64
#define subImageWidth 16
#define subImageHeight 16
static GLubyte checkImage[checkImageHeight][checkImageWidth][4];
static GLubyte subImage[subImageHeight][subImageWidth][4];

void makeCheckImages(void)
{
   int i, j, c;

   for (i = 0; i < checkImageHeight; i++) {
      for (j = 0; j < checkImageWidth; j++) {
         c = (((i&0x8)==0) ^ ((j&0x8)==0))*255;
         checkImage[i][j][0] = (GLubyte) c;
         checkImage[i][j][1] = (GLubyte) c;
         checkImage[i][j][2] = (GLubyte) c;
         checkImage[i][j][3] = (GLubyte) 255;
      }
   }
   for (i = 0; i < subImageHeight; i++) {
      for (j = 0; j < subImageWidth; j++) {
         c = (((i&0x4)==0) ^ ((j&0x4)==0))*255;
         subImage[i][j][0] = (GLubyte) c;
         subImage[i][j][1] = (GLubyte) 0;
         subImage[i][j][2] = (GLubyte) 0;
         subImage[i][j][3] = (GLubyte) 255;
      }
   }
}

void keyboard(unsigned char key, int x, int y)
{
   switch (key) {
      case ‘s’:
      case ‘S’:
         glBindTexture(GL_TEXTURE_2D, texName);
         glTexSubImage2D(GL_TEXTURE_2D, 0, 12, 44, 
                         subImageWidth, subImageHeight, GL_RGBA,
                         GL_UNSIGNED_BYTE, subImage);
         glutPostRedisplay();
         break;
      case ‘r’:
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      case ‘R’:
         glBindTexture(GL_TEXTURE_2D, texName);
         glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, 
                      checkImageWidth, checkImageHeight, 0,
                      GL_RGBA, GL_UNSIGNED_BYTE, checkImage);
         glutPostRedisplay();
         break;
      case 27:
         exit(0);
         break;
      default:
         break;
   }
}

Once again, the framebuffer itself can be used as a source for texture data— 
this time, a texture subimage. glCopyTexSubImage2D() reads a rectangle 
of pixels from the framebuffer and replaces a portion of an existing texture 
array. (glCopyTexSubImage2D() is something of a cross between 
glCopyTexImage2D() and glTexSubImage2D().)

void glCopyTexSubImage2D(GLenum target, GLint level, GLint xoffset,
GLint yoffset, GLint x, GLint y,
GLsizei width, GLsizei height);

Uses image data from the framebuffer to replace all or part of a contiguous 
subregion of the current, existing two-dimensional texture image. The 
pixels are read from the current GL_READ_BUFFER and are processed 
exactly as if glCopyPixels() had been called, but instead of going to the 
framebuffer, the pixels are placed into texture memory. The settings of 
glPixelTransfer*() and other pixel-transfer operations are applied.

The target parameter must be set to one of the same options that are avail-
able for glCopyTexImage2D. level is the mipmap level-of-detail number. 
xoffset and yoffset specify the texel offset in the x- and y-directions—with 
(0, 0) at the lower left corner of the texture—and specify where in the 
existing texture array the subimage should be placed. The subimage tex-
ture array is taken from a screen-aligned pixel rectangle with the lower left 
corner at coordinates specified by the (x, y) parameters. The width and 
height parameters specify the size of this subimage rectangle.

For OpenGL Version 3.1, a GL_INVALID_VALUE error is generated if target
is GL_TEXTURE_RECTANGLE, and level is not zero. 
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Texture Rectangles

OpenGL Version 3.1 added textures that are addressed by their texel 
locations, and not normalized texture coordinates. These textures, specified 
by a target of GL_TEXTURE_RECTANGLE, are very useful when you want a 
direct mapping of texels to pixels during rendering. A few restrictions apply 
when using texture rectangles, as they are called: No mipmap-based filtering 
is done (e.g,. texture rectangles may not have mipmaps), nor can they be 
compressed.

One-Dimensional Textures

Sometimes a one-dimensional texture is sufficient—for example, if you’re 
drawing textured bands where all the variation is in one direction. A one-
dimensional texture behaves as a two-dimensional one with height = 1, and 
without borders along the top and bottom. All the two-dimensional texture 
and subtexture definition routines have corresponding one-dimensional 
routines. To create a simple one-dimensional texture, use glTexImage1D().

For a sample program that uses a one-dimensional texture map, see 
Example 9-8.

If your OpenGL implementation supports the Imaging Subset and if the one-
dimensional convolution filter is enabled (GL_CONVOLUTION_1D), then 
the convolution is performed on the texture image. (The convolution may 
change the width of the texture image.) Other pixel operations may also be 
applied.

To replace all or some of the texels of a one-dimensional texture, use 
glTexSubImage1D().

void glTexImage1D(GLenum target, GLint level, GLint internalFormat,
GLsizei width, GLint border, GLenum format,
GLenum type, const GLvoid *texels);

Defines a one-dimensional texture. All the parameters have the same meanings 
as for glTexImage2D(), except that texels is now a one-dimensional array. As 
before, for OpenGL implementations that do not support OpenGL Version 2.0 
or greater, the value of width is 2m (or 2m + 2, if there’s a border), where m is a 
non-negative integer. You can supply mipmaps and proxies (set target to GL_
PROXY_TEXTURE_1D), and the same filtering options are available as well.
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To use the framebuffer as the source of a new one-dimensional texture 
or a replacement for an old one-dimensional texture, use either 
glCopyTexImage1D() or glCopyTexSubImage1D().

void glTexSubImage1D(GLenum target, GLint level, GLint xoffset,
GLsizei width, GLenum format,
GLenum type, const GLvoid *texels);

Defines a one-dimensional texture array that replaces all or part of 
a contiguous subregion (in 1D, a row) of the current, existing one-
dimensional texture image. The target parameter must be set to 
GL_TEXTURE_1D.

The level, format, and type parameters are similar to the ones used for 
glTexImage1D(). level is the mipmap level-of-detail number. format
and type describe the format and data type of the texture image data. 
The subimage is also affected by modes set by glPixelStore*(),
glPixelTransfer*(), or other pixel-transfer operations.

texels contains the texture data for the subimage. width is the number of 
texels that replace part or all of the current texture image. xoffset specifies 
the texel offset in the existing texture array where the subimage should be 
placed. 

void glCopyTexImage1D(GLenum target, GLint level,
GLint internalFormat, GLivnt x, GLint y,
GLsizei width, GLint border);

Creates a one-dimensional texture using framebuffer data to define the 
texels. The pixels are read from the current GL_READ_BUFFER and are 
processed exactly as if glCopyPixels() had been called, but instead of 
going to the framebuffer, the pixels are placed into texture memory. 
The settings of glPixelStore*() and glPixelTransfer*() are applied.

The target parameter must be set to the constant GL_TEXTURE_1D. The 
level, internalFormat, and border parameters have the same effects that they 
have for glCopyTexImage2D(). The texture array is taken from a row of 
pixels with the lower left corner at coordinates specified by the (x, y)
parameters. The width parameter specifies the number of pixels in this 
row. For OpenGL implementations that do not support Version 2.0, the 
value of width is 2m (or 2m + 2 if there’s a border), where m is a non-
negative integer. 
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Three-Dimensional Textures

Advanced

Three-dimensional textures are most often used for rendering in medical 
and geoscience applications. In a medical application, a three-dimensional 
texture may represent a series of layered computed tomography (CT) or 
magnetic resonance imaging (MRI) images. To an oil and gas researcher, 
a three-dimensional texture may model rock strata. (Three-dimensional 
texturing is part of an overall category of applications, called volume
rendering. Some advanced volume rendering applications deal with voxels,
which represent data as volume-based entities.)

Due to their size, three-dimensional textures may consume a lot of texture 
resources. Even a relatively coarse three-dimensional texture may use 16 or 
32 times the amount of texture memory that a single two-dimensional tex-
ture uses. (Most of the two-dimensional texture and subtexture definition 
routines have corresponding three-dimensional routines.)

A three-dimensional texture image can be thought of as layers of two-
dimensional subimage rectangles. In memory, the rectangles are arranged in a 
sequence. To create a simple three-dimensional texture, use glTexImage3D().

Note: There are no three-dimensional convolutions in the Imaging Subset.
However, 2D convolution filters may be used to affect three-
dimensional texture images.

void glCopyTexSubImage1D(GLenum target, GLint level, GLint xoffset,
GLint x, GLint y, GLsizei width);

Uses image data from the framebuffer to replace all or part of a contiguous 
subregion of the current, existing one-dimensional texture image. The 
pixels are read from the current GL_READ_BUFFER and are processed 
exactly as if glCopyPixels() had been called, but instead of going to the 
framebuffer, the pixels are placed into texture memory. The settings of 
glPixelTransfer*() and other pixel-transfer operations are applied.

The target parameter must be set to GL_TEXTURE_1D. level is the mipmap 
level-of-detail number. xoffset specifies the texel offset and where to put 
the subimage within the existing texture array. The subimage texture 
array is taken from a row of pixels with the lower left corner at coordinates 
specified by the (x, y) parameters. The width parameter specifies the 
number of pixels in this row.

Advanced
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For a portion of a program that uses a three-dimensional texture map, see 
Example 9-4.

Example 9-4 Three-Dimensional Texturing: texture3d.c
#define iWidth 16
#define iHeight 16
#define iDepth 16

static GLubyte image [iDepth][iHeight][iWidth][3];
static GLuint texName;

/*  Create a 16x16x16x3 array with different color values in
 *  each array element [r, g, b]. Values range from 0 to 255.
 */
void makeImage(void)
{
   int s, t, r;

   for (s = 0 ; s < 16 ; s++)
      for (t = 0 ; t < 16 ; t++)
         for (r = 0 ; r < 16 ; r++) {
            image[r][t][s][0] = s * 17;
            image[r][t][s][1] = t * 17;
            image[r][t][s][2] = r * 17;
         }
}

void glTexImage3D(GLenum target, GLint level, GLint internalFormat,
GLsizei width, GLsizei height, GLsizei depth,
GLint border, GLenum format, GLenum type,
const GLvoid *texels);

Defines either a three-dimensional texture or an array of two-dimensional 
textures. All the parameters have the same meanings as for glTexImage2D(),
except that texels is now a three-dimensional array, and the parameter depth
has been added for 3D textures. For GL_TEXTURE_2D_ARRAY, depth
represents the length of the texture array. If the OpenGL implementation does 
not support Version 2.0, the value of depth is 2m (or 2m + 2, if there’s a border), 
where m is a non-negative integer. For OpenGL 2.0 implementations, the 
power-of-two dimension requirement has been eliminated. You can supply 
mipmaps and proxies (set target to GL_PROXY_TEXTURE_3D), and the same 
filtering options are available as well.
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/*  Initialize state: the 3D texture object and its image
 */
void init(void)
{
   glClearColor(0.0, 0.0, 0.0, 0.0);
   glShadeModel(GL_FLAT);
   glEnable(GL_DEPTH_TEST);

   makeImage();
   glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

   glGenTextures(1, &texName);
   glBindTexture(GL_TEXTURE_3D, texName);

   glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_S, GL_CLAMP);
   glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_T, GL_CLAMP);
   glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_R, GL_CLAMP);

   glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MAG_FILTER,
                   GL_NEAREST);
   glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MIN_FILTER,
                   GL_NEAREST);
   glTexImage3D(GL_TEXTURE_3D, 0, GL_RGB, iWidth, iHeight,
                iDepth, 0, GL_RGB, GL_UNSIGNED_BYTE, image);
}

To replace all or some of the texels of a three-dimensional texture, use 
glTexSubImage3D().

texels contains the texture data for the subimage. width, height, and depth
specify the size of the subimage in texels. xoffset, yoffset, and zoffset specify 

void glTexSubImage3D(GLenum target, GLint level, GLint xoffset,
GLint yoffset, GLint zoffset, GLsizei width,
GLsizei height, GLsizei depth, GLenum format,
GLenum type, const GLvoid *texels);

Defines a three-dimensional texture array that replaces all or part of a 
contiguous subregion of the current, existing three-dimensional texture 
image. The target parameter must be set to GL_TEXTURE_3D.

The level, format, and type parameters are similar to the ones used for 
glTexImage3D(). level is the mipmap level-of-detail number. format
and type describe the format and data type of the texture image 
data. The subimage is also affected by modes set by glPixelStore*(),
glPixelTransfer*(), and other pixel-transfer operations.
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the texel offset indicating where to put the subimage within the existing 
texture array. 

To use the framebuffer as the source of replacement for a portion of an 
existing three-dimensional texture, use glCopyTexSubImage3D().

Pixel-Storage Modes for Three-Dimensional Textures

Pixel-storage values control the row-to-row spacing of each layer (in other 
words, of one 2D rectangle). glPixelStore*() sets pixel-storage modes, with 
parameters such as *ROW_LENGTH, *ALIGNMENT, *SKIP_PIXELS, and 
*SKIP_ROWS (where * is either GL_UNPACK_ or GL_PACK_), which control 
referencing of a subrectangle of an entire rectangle of pixel or texel data. 
(These modes were previously described in “Controlling Pixel-Storage 
Modes” on page 347.) 

The aforementioned pixel-storage modes remain useful for describing two 
of the three dimensions, but additional pixel-storage modes are needed 
to support referencing of subvolumes of three-dimensional texture image 
data. New parameters, *IMAGE_HEIGHT and *SKIP_IMAGES, allow the 
routines glTexImage3D(), glTexSubImage3D(), and glGetTexImage()
to delimit and access any desired subvolume.

void glCopyTexSubImage3D(GLenum target, GLint level, GLint xoffset,
GLint yoffset, GLint zoffset, GLint x,
GLint y, GLsizei width, GLsizei height);

Uses image data from the framebuffer to replace part of a contiguous 
subregion of the current, existing three-dimensional texture image. The 
pixels are read from the current GL_READ_BUFFER and are processed 
exactly as if glCopyPixels() had been called, but instead of going to the 
framebuffer, the pixels are placed into texture memory. The settings of 
glPixelTransfer*() and other pixel-transfer operations are applied.

The target parameter must be set to GL_TEXTURE_3D. level is the mipmap 
level-of-detail number. The subimage texture array is taken from a screen-
aligned pixel rectangle with the lower left corner at coordinates specified 
by the (x, y) parameters. The width and height parameters specify the size 
of this subimage rectangle. xoffset, yoffset, and zoffset specify the texel 
offset indicating where to put the subimage within the existing texture 
array. Since the subimage is a two-dimensional rectangle, only a single 
slice of the three-dimensional texture (the slice at zoffset) is replaced.
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If the three-dimensional texture in memory is larger than the subvolume 
that is defined, you need to specify the height of a single subimage with the 
*IMAGE_HEIGHT parameter. Also, if the subvolume does not start with 
the very first layer, the *SKIP_IMAGES parameter needs to be set.

*IMAGE_HEIGHT is a pixel-storage parameter that defines the height (num-
ber of rows) of a single layer of a three-dimensional texture image. If the 
*IMAGE_HEIGHT value is zero (a negative number is invalid), then the 
number of rows in each two-dimensional rectangle is the value of height,
which is the parameter passed to glTexImage3D() or glTexSubImage3D().
(This is commonplace because *IMAGE_HEIGHT is zero, by default.) Other-
wise, the height of a single layer is the *IMAGE_HEIGHT value.

Figure 9-4 shows how *IMAGE_HEIGHT determines the height of an image 
(when the parameter height determines only the height of the subimage.) 
This figure shows a three-dimensional texture with only two layers.  

*SKIP_IMAGES defines how many layers to bypass before accessing the first 
data of the subvolume. If the *SKIP_IMAGES value is a positive integer (call 
the value n), then the pointer in the texture image data is advanced that 
many layers (n * the size of one layer of texels). The resulting subvolume starts 
at layer n and is several layers deep—how many layers deep is determined by 
the depth parameter passed to glTexImage3D() or glTexSubImage3D(). If the 

Layer 1

Subimage
in Layer 1

*SKIP_PIXELS

*ROW_LENGTH

*SKIP_ROWS

Height

Layer 0

Subimage
in Layer 0

*SKIP_PIXELS
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*SKIP_ROWS

Height

*IMAGE_HEIGHT

Figure 9-4 *IMAGE_HEIGHT Pixel-Storage Mode
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*SKIP_IMAGES value is zero (the default), then accessing the texel data begins 
with the very first layer described in the texel array.

Figure 9-5 shows how the *SKIP_IMAGES parameter can bypass several 
layers to get to where the subvolume is actually located. In this example, 
*SKIP_IMAGES == 3, and the subvolume begins at layer 3. 

Texture Arrays

Advanced

For certain applications, you may have a number of one- or two-
dimensional textures that you might like to access simultaneously within 
the confines of a draw call. For instance, suppose you’re authoring a game 
that features multiple characters of basically the same geometry, but each of 
which has its own costume. Without the OpenGL Version 3.0 feature of 
texture arrays, you would probably use a set of calls similar to the technique 
used in Example 9-5.

The call to glBindTexture() for each draw call could have performance 
implications for the application if the texture objects needed to be updated 
in the OpenGL server (due to perhaps a shortage of texture storage resources).

Layer 4Subimage
in Layer 4

Layer 3

Layer 2

Layer 1

Layer 0

Subimage
in Layer 3

*SKIP_IMAGES

Figure 9-5 *SKIP_IMAGES Pixel-Storage Mode 

Advanced
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Texture arrays allow you to combine a collection of one- or two-dimensional 
textures, all of the same size, in a texture of the next higher dimension 
(e.g., an array of two-dimensional textures becomes something of a three-
dimensional texture). If you were to try using a three-dimensional texture 
to store a collection of two-dimensional textures, you would encounter a 
few inconveniences: The indexing texture coordinate—r in this case—is 
normalized to the range [0,1]. To access the third texture in a stack of seven, 
you would need to pass .35714 (or thereabouts) to access what you would 
probably like to access as “2” (textures are indexed from zero, just like “C”). 
Texture arrays permit this type of texture selection.

Additionally, texture arrays allow suitable mipmap filtering within the 
texture accessed by the index. In comparison, a three-dimensional texture 
would filter between the texture “slices,” likely in a way that doesn’t return 
the results you were hoping for.

Compressed Texture Images

Texture maps can be stored internally in a compressed format to possibly 
reduce the amount of texture memory used. A texture image can either be 
compressed as it is being loaded or loaded directly in its compressed form.

Compressing a Texture Image While Loading

To have OpenGL compress a texture image while it’s being downloaded, 
specify one of the GL_COMPRESSED_* enumerants for the internalformat
parameter. The image will automatically be compressed after the texels have 
been processed by any active pixel-store (See “Controlling Pixel-Storage 
Modes”) or pixel-transfer modes (See “Pixel-Transfer Operations”).

Once the image has been loaded, you can determine if it was compressed, 
and into which format, using the following:

GLboolean compressed;
GLenum textureFormat;
GLsizei  imageSize;

glGetTexLevelParameteriv(GL_TEXTURE_2D, GL_TEXTURE_COMPRESSED,
&compressed);

if (compressed == GL_TRUE) {
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glGetTexLevelParameteriv(GL_TEXTURE_2D,
GL_TEXTURE_INTERNAL_FORMAT, &textureFormat);

glGetTexLevelParameteriv(GL_TEXTURE_2D,
GL_TEXTURE_COMPRESSED_IMAGE_SIZE, &imageSize);

}

Loading a Compressed Texture Images

OpenGL doesn’t specify the internal format that should be used for 
compressed textures; each OpenGL implementation is allowed to specify a 
set of OpenGL extensions that implement a particular texture compression 
format. For compressed textures that are to be loaded directly, it’s important 
to know their storage format and to verify that the texture’s format is 
available in your OpenGL implementation.

To load a texture stored in a compressed format, use the 
glCompressedTexImage*D() calls.

void glCompressedTexImage1D(GLenum target, GLint level,
GLenum internalformat, GLsizei width,
GLint border, GLsizei imageSize,
const GLvoid *texels);

void glCompressedTexImage2D(GLenum target, GLint level,
GLenum internalformat, GLsizei width,
GLsizei height, GLint border,
GLsizei imageSize, const GLvoid *texels);

void glCompressedTexImage3D(GLenum target, GLint level,
GLenum internalformat, GLsizei width,
GLsizei height, GLsizei depth,
GLint border, GLsizei imageSize,
const GLvoid *texels);

Defines a one-, two-, or three-dimensional texture from a previously 
compressed texture image.

Use the level parameter if you’re supplying multiple resolutions of 
the texture map; with only one resolution, level should be 0. (See 
“Mipmaps: Multiple Levels of Detail” for more information about using 
multiple resolutions.)

internalformat specifies the format of the compressed texture image. It 
must be a supported compression format of the implementation loading 
the texture, otherwise a GL_INVALID_ENUM error is specified. To deter-
mine supported compressed texture formats, see Appendix B for details.
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Additionally, compressed textures can be used, just like uncompressed 
texture images, to replace all or part of an already loaded texture. Use the 
glCompressedTexSubImage*D() calls.

width, height, and depth represent the dimensions of the texture image for 
one-, two-, and three-dimensional texture images, respectively. As with 
uncompressed textures, border indicates the width of the border, which is either 
0 (no border) or 1. Each value must have the form 2m + 2b, where m is a non-
negative integer and b is the value of border. For OpenGL 2.0 implementations, 
the power-of-two dimension requirement has been eliminated. 

For OpenGL Version 3.1, a GL_INVALID_ENUM error is generated if target
is GL_TEXTURE_RECTANGLE, or GL_PROXY_TEXTURE_RECTANGLE for 
glCompressedTexImage2D().

void glCompressedTexSubImage1D(GLenum target, GLint level,
GLint xoffset, GLsizei width,
GLenum format, GLsizei imageSize,
const GLvoid *texels);

void glCompressedTexSubImage2D(GLenum target, GLint level,
GLint xoffset, GLint yoffet,
GLsizei width, GLsizei height,
GLsizei imageSize,
const GLvoid *texels);

void glCompressedTexSubImage3D(GLenum target, GLint level,
GLint xoffset GLint yoffset,
GLint zoffset, GLsizei width,
GLsizei height, GLsizei depth,
GLsizei imageSize,
const GLvoid *texels);

Defines a one-, two-, or three-dimensional texture from a previously 
compressed texture image.

The xoffset, yoffset, and zoffset parameters specify the pixel offsets for 
the respective texture dimension where to place the new image inside 
of the texture array.

width, height, and depth specify the size of the one-, two-, or three-
dimensional texture image to be used to update the texture image.

imageSize specifies the number of bytes stored in the texels array.
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Using a Texture’s Borders

Advanced

If you need to apply a larger texture map than your implementation of 
OpenGL allows, you can, with a little care, effectively make larger textures by 
tiling with several different textures. For example, if you need a texture twice 
as large as the maximum allowed size mapped to a square, draw the square as 
four subsquares, and load a different texture before drawing each piece. 

Since only a single texture map is available at one time, this approach might 
lead to problems at the edges of the textures, especially if some form of linear 
filtering is enabled. The texture value to be used for pixels at the edges must be 
averaged with something beyond the edge, which, ideally, should come from 
the adjacent texture map. If you define a border for each texture whose texel 
values are equal to the values of the texels at the edge of the adjacent texture 
map, then the correct behavior results when linear filtering takes place. 

To do this correctly, notice that each map can have eight neighbors—one 
adjacent to each edge and one touching each corner. The values of the 
texels in the corner of the border need to correspond with the texels in the 
texture maps that touch the corners. If your texture is an edge or corner of 
the whole tiling, you need to decide what values would be reasonable to put 
in the borders. The easiest reasonable thing to do is to copy the value of the 
adjacent texel in the texture map with glTexSubImage2D().

A texture’s border color is also used if the texture is applied in such a way 
that it only partially covers a primitive. (See “Repeating and Clamping 
Textures” on page 452 for more information about this situation.)

Note: Texture borders are not supported in OpenGL Version 3.1 and later. 
When specifying a texture in those implementations, the value of the 
border must be 0.

Mipmaps: Multiple Levels of Detail

Advanced

Textured objects can be viewed, like any other objects in a scene, at different 
distances from the viewpoint. In a dynamic scene, as a textured object 
moves farther from the viewpoint, the texture map must decrease in size 
along with the size of the projected image. To accomplish this, OpenGL 
has to filter the texture map down to an appropriate size for mapping onto 
the object, without introducing visually disturbing artifacts, such as 

Advanced

Advanced

http://lib.ommolketab.ir
http//lib.ommolketab.ir


424 Chapter 9: Texture Mapping

shimmering, flashing, and scintillation. For example, to render a brick wall, 
you may use a large texture image (say 128 128 texels) when the wall is 
close to the viewer. But if the wall is moved farther away from the viewer 
until it appears on the screen as a single pixel, then the filtered textures may 
appear to change abruptly at certain transition points.

To avoid such artifacts, you can specify a series of prefiltered texture maps 
of decreasing resolutions, called mipmaps, as shown in Figure 9-6. The term 
mipmap was coined by Lance Williams, when he introduced the idea in his 
paper “Pyramidal Parametrics” (SIGGRAPH 1983 Proceedings). Mip stands 
for the Latin multum in parvo, meaning “many things in a small place.” 
Mipmapping uses some clever methods to pack image data into memory.

Original texture

Prefiltered images

1/4

1/16 1/64

etc

1 pixel

Figure 9-6 Mipmaps
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Note: To acquire a full understanding of mipmaps, you need to understand 
minification filters, which are described in “Filtering” on page 434.

When using mipmapping, OpenGL automatically determines which tex-
ture map to use based on the size (in pixels) of the object being mapped. 
With this approach, the level of detail in the texture map is appropriate 
for the image that’s drawn on the screen—as the image of the object gets 
smaller, the size of the texture map decreases. Mipmapping requires some 
extra computation and texture storage area; however, when it’s not used, 
textures that are mapped onto smaller objects might shimmer and flash as 
the objects move.

To use mipmapping, you must provide all sizes of your texture in powers of 
2 between the largest size and a 1 1 map. For example, if your highest-
resolution map is 64 16, you must also provide maps of size 32 8, 16 4,
8 2, 4 1, 2 1, and 1 1. The smaller maps are typically filtered and 
averaged-down versions of the largest map in which each texel in a smaller 
texture is an average of the corresponding 4 texels in the higher-resolution 
texture. (Since OpenGL doesn’t require any particular method for calculat-
ing the lower-resolution maps, the differently sized textures could be totally 
unrelated. In practice, unrelated textures would make the transitions 
between mipmaps extremely noticeable, as in Plate 20.)

To specify these textures, call glTexImage2D() once for each resolution of 
the texture map, with different values for the level, width, height, and image
parameters. Starting with zero, level identifies which texture in the series is 
specified; with the previous example, the highest-resolution texture of size 
64 16 would be declared with level = 0, the 32 8 texture with level = 1, 
and so on. In addition, for the mipmapped textures to take effect, you need 
to choose the appropriate filtering method as described in “Filtering” on 
page 434.

Note: This description of OpenGL mipmapping avoids detailed discussion 
of the scale factor (known as ) between texel size and polygon size. 
This description also assumes default values for parameters related to 
mipmapping. To see an explanation of  and the effects of mipmap-
ping parameters, see “Calculating the Mipmap Level” on page 430 
and “Mipmap Level of Detail Control” on page 431.

Example 9-5 illustrates the use of a series of six texture maps decreasing in 
size from 32 32 to 1 1. This program draws a rectangle that extends from 
the foreground far back in the distance, eventually disappearing at a point, 
as shown in Plate 20. Note that the texture coordinates range from 0.0 to 
8.0, so 64 copies of the texture map are required to tile the rectangle—eight 
in each direction. To illustrate how one texture map succeeds another, each 
map has a different color.
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Example 9-5 Mipmap Textures: mipmap.c

GLubyte mipmapImage32[32][32][4];
GLubyte mipmapImage16[16][16][4];
GLubyte mipmapImage8[8][8][4];
GLubyte mipmapImage4[4][4][4];
GLubyte mipmapImage2[2][2][4];
GLubyte mipmapImage1[1][1][4];

static GLuint texName;

void makeImages(void)
{
   int i, j;

   for (i = 0; i < 32; i++) {
      for (j = 0; j < 32; j++) {
         mipmapImage32[i][j][0] = 255;
         mipmapImage32[i][j][1] = 255;
         mipmapImage32[i][j][2] = 0;
         mipmapImage32[i][j][3] = 255;
      }
   }
   for (i = 0; i < 16; i++) {
      for (j = 0; j < 16; j++) {
         mipmapImage16[i][j][0] = 255;
         mipmapImage16[i][j][1] = 0;
         mipmapImage16[i][j][2] = 255;
         mipmapImage16[i][j][3] = 255;
      }
   }
   for (i = 0; i < 8; i++) {
      for (j = 0; j < 8; j++) {
         mipmapImage8[i][j][0] = 255;
         mipmapImage8[i][j][1] = 0;
         mipmapImage8[i][j][2] = 0;
         mipmapImage8[i][j][3] = 255;
      }
   }
   for (i = 0; i < 4; i++) {
      for (j = 0; j < 4; j++) {
         mipmapImage4[i][j][0] = 0;
         mipmapImage4[i][j][1] = 255;
         mipmapImage4[i][j][2] = 0;
         mipmapImage4[i][j][3] = 255;
      }
   }
   for (i = 0; i < 2; i++) {
      for (j = 0; j < 2; j++) {
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         mipmapImage2[i][j][0] = 0;
         mipmapImage2[i][j][1] = 0;
         mipmapImage2[i][j][2] = 255;
         mipmapImage2[i][j][3] = 255;
      }
   }
   mipmapImage1[0][0][0] = 255;
   mipmapImage1[0][0][1] = 255;
   mipmapImage1[0][0][2] = 255;
   mipmapImage1[0][0][3] = 255;
}

void init(void)
{    
   glEnable(GL_DEPTH_TEST);
   glShadeModel(GL_FLAT);

   glTranslatef(0.0, 0.0, -3.6);
   makeImages();
   glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

   glGenTextures(1, &texName);
   glBindTexture(GL_TEXTURE_2D, texName);
   glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
   glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
   glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
                   GL_NEAREST);
   glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, 
                   GL_NEAREST_MIPMAP_NEAREST);
   glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, 32, 32, 0,
                GL_RGBA, GL_UNSIGNED_BYTE, mipmapImage32);
   glTexImage2D(GL_TEXTURE_2D, 1, GL_RGBA, 16, 16, 0,
                GL_RGBA, GL_UNSIGNED_BYTE, mipmapImage16);
   glTexImage2D(GL_TEXTURE_2D, 2, GL_RGBA, 8, 8, 0,
                GL_RGBA, GL_UNSIGNED_BYTE, mipmapImage8);
   glTexImage2D(GL_TEXTURE_2D, 3, GL_RGBA, 4, 4, 0,
                GL_RGBA, GL_UNSIGNED_BYTE, mipmapImage4);
   glTexImage2D(GL_TEXTURE_2D, 4, GL_RGBA, 2, 2, 0,
                GL_RGBA, GL_UNSIGNED_BYTE, mipmapImage2);
   glTexImage2D(GL_TEXTURE_2D, 5, GL_RGBA, 1, 1, 0,
                GL_RGBA, GL_UNSIGNED_BYTE, mipmapImage1);

   glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
   glEnable(GL_TEXTURE_2D);
}

void display(void)
{
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   glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
   glBindTexture(GL_TEXTURE_2D, texName);
   glBegin(GL_QUADS);
   glTexCoord2f(0.0, 0.0); glVertex3f(-2.0, -1.0, 0.0);
   glTexCoord2f(0.0, 8.0); glVertex3f(-2.0, 1.0, 0.0);
   glTexCoord2f(8.0, 8.0); glVertex3f(2000.0, 1.0, -6000.0);
   glTexCoord2f(8.0, 0.0); glVertex3f(2000.0, -1.0, -6000.0);
   glEnd();
   glFlush();
}

Building Mipmaps in Real Applications

Example 9-5 illustrates mipmapping by making each mipmap a different 
color so that it’s obvious when one map is replaced by another. In a real 
situation, you define mipmaps such that the transition is as smooth as 
possible. Thus, the maps of lower resolution are usually filtered versions 
of an original, high-resolution texture map. 

There are several ways to create mipmaps using OpenGL features. In the 
most modern versions of OpenGL (i.e., Version 3.0 and later), you can use 
glGenerateMipmap(), which will build the mipmap stack for the current 
texture image (see “Texture Objects” and its discussion of glBindTexture())
bound to a specific texture target.

The use of glGenerateMipmap() makes explicit which mipmaps you would 
like, and puts them under the control of the OpenGL implementation. If 
you don’t have access to a Version 3.0 or later implementation, you can still 

int glGenerateMipmap(GLenum target);

Generates a complete set of mipmaps for the texture image associated 
with target, which must be one of: GL_TEXTURE_1D, GL_TEXTURE_2D, 
GL_TEXTURE_3D, GL_TEXTURE_1D_ARRAY, GL_TEXTURE_2D_ARRAY, 
or GL_TEXTURE_CUBE_MAP.

The mipmap levels constructed are controlled by the GL_TEXTURE_
BASE_LEVEL, and GL_TEXTURE_MAX_LEVEL (see “Mipmap Level of 
Detail Control” on page 431 for details describing these values). If those 
values are left to their defaults, an entire mipmap stack down to a single-
texel texture map is created. The filtering method used in creating each 
successive level is implementation dependent.

A GL_INVALID_OPERATION error will be generated if target is GL_TEXTURE_
CUBE_MAP, and not all cube map faces are initialized and consistent.
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have OpenGL generate mipmaps for you. Use glTexParameter*() to set GL_
GENERATE_MIPMAP to GL_TRUE; then any change to the texels (interior 
or border) of a BASE_LEVEL mipmap will automatically cause all textures at 
all mipmap levels from BASE_LEVEL+1 to MAX_LEVEL to be recomputed 
and replaced. Textures at all other mipmap levels, including at BASE_LEVEL, 
remain unchanged. 

Note: In OpenGL Version 3.1 and later, use of GL_GENERATE_MIPMAP has 
been replaced with the more explicit glGenerateMipmap() routine. 
Trying to set GL_GENERATE_MIPMAP on a texture object in Version 
3.1 will generate a GL_INVALID_OPERATION error. 

Finally, if you are using an older OpenGL implementation (any version 
prior to 1.4), you would need to construct the mipmap stack manually, 
without OpenGL’s aid. However, because mipmap construction is such an 
important operation, the OpenGL Utility Library contains routines that can 
help you manipulate of images to be used as mipmapped textures.

Assuming you have constructed the level 0, or highest-resolution, 
map, the routines gluBuild1DMipmaps(), gluBuild2DMipmaps(), and 
gluBuild3DMipmaps() construct and define the pyramid of mipmaps 
down to a resolution of 1  1 (or 1, for one-dimensional, or 1  1  1, for 
three-dimensional). If your original image has dimensions that are not 
exact powers of 2, gluBuild*DMipmaps() helpfully scales the image to the 
nearest power of 2. Also, if your texture is too large, gluBuild*DMipmaps()
reduces the size of the image until it fits (as measured by the GL_PROXY_
TEXTURE mechanism).

int gluBuild1DMipmaps(GLenum target, GLint internalFormat,
GLint width, GLenum format, GLenum type,
const void *texels);

int gluBuild2DMipmaps(GLenum target, GLint internalFormat,
GLint width, GLint height, GLenum format,
GLenum type, const void *texels);

int gluBuild3DMipmaps(GLenum target, GLint internalFormat,
GLint width, GLint height, GLint depth,
GLenum format, GLenum type, const void *texels);

Constructs a series of mipmaps and calls glTexImage*D() to load the images. 
The parameters for target, internalFormat, width, height, depth, format, type, and 
texels are exactly the same as those for glTexImage1D(), glTexImage2D(), 
and glTexImage3D(). A value of 0 is returned if all the mipmaps are 
constructed successfully; otherwise, a GLU error code is returned.
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With increased control over level of detail (using BASE_LEVEL, MAX_
LEVEL, MIN_LOD, and MAX_LOD), you may need to create only a subset 
of the mipmaps defined by gluBuild*DMipmaps(). For example, you may 
want to stop at a 4 4 texel image, rather than go all the way to the smallest 
1 1 texel image. To calculate and load a subset of mipmap levels, call 
gluBuild*DMipmapLevels().

Calculating the Mipmap Level

Computing which level of mipmap to texture a particular polygon depends 
on the scale factor between the texture image and the size of the polygon 
to be textured (in pixels). Let’s call this scale factor  and also define a sec-
ond value, , where = log2  + lodbias. (Since texture images can be multi-
dimensional, it is important to clarify that  is the maximum scale factor of 
all dimensions.) 

lodbias is the level-of-detail bias, a constant value set by glTexEnv*() to 
adjust . (For information about how to use glTexEnv*() to set level-of-
detail bias, see “Texture Functions” on page 444.) By default, lodbias = 0.0, 
which has no effect. It’s best to start with this default value and adjust in 
small amounts, if needed.

int gluBuild1DMipmapLevels(GLenum target, GLint internalFormat,
GLint width, GLenum format,
GLenum type, GLint level, GLint base,
GLint max, const void *texels);

int gluBuild2DMipmapLevels(GLenum target, GLint internalFormat,
GLint width, GLint height, GLenum format,
GLenum type, GLint level, GLint base,
GLint max, const void *texels);

int gluBuild3DMipmapLevels(GLenum target, GLint internalFormat,
GLint width, GLint height, GLint depth,
GLenum format, GLenum type,
GLint level, GLint base, GLint max,
const void *texels);

Constructs a series of mipmaps and calls glTexImage*D() to load the 
images. level indicates the mipmap level of the texels image. base and max
determine which mipmap levels will be derived from texels. Otherwise, 
the parameters for target, internalFormat, width, height, depth, format, type, and 
texels are exactly the same as those for glTexImage1D(), glTexImage2D(), 
and glTexImage3D(). A value of 0 is returned if all the mipmaps are 
constructed successfully; otherwise, a GLU error code is returned.
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If 0.0, then the texture is smaller than the polygon, so a magnification 
filter is used. If > 0.0, then a minification filter is used. If the 
minification filter selected uses mipmapping, then  indicates the 
mipmap level. (The minification-to-magnification switchover point is 
usually at = 0.0, but not always. The choice of mipmapping filter may 
shift the switchover point.)

For example, if the texture image is 64 64 texels and the polygon size is 
32 32 pixels, then = 2.0 (not 4.0), and therefore = 1.0. If the texture 
image is 64 32 texels and the polygon size is 8 16 pixels, then = 8.0 
(x scales by 8.0, y by 2.0; use the maximum value) and therefore = 3.0. 

Mipmap Level of Detail Control

By default, you must provide a mipmap for every level of resolution, down 
to 1 texel in every dimension. For some techniques, you want to avoid rep-
resenting your data with very small mipmaps. For instance, you might use 
a technique called mosaicing, where several smaller images are combined on 
a single texture. One example of mosaicing is shown in Figure 9-7, where 
many characters are on a single texture, which may be more efficient than 
creating a texture image for each character. To map only a single letter from 
the texture, you make smart use of texture coordinates to isolate the letter 
you want.

If you have to supply very small mipmaps, the lower-resolution mipmaps of 
the mosaic crush together detail from many different letters. Therefore, you 
may want to set restrictions on how low your resolution can go. Generally, 
you want the capability to add or remove levels of mipmaps as needed. 

Another visible mipmapping problem is popping—the sudden transition 
from using one mipmap to using a radically higher- or lower-resolution 
mipmap, as a mipmapped polygon becomes larger or smaller. 
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Figure 9-7 Using a Mosaic Texture
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Note: Many mipmapping features were introduced in later versions of 
OpenGL. Check the version of your implementation to see if a 
particular feature is supported. In some versions, a particular feature 
may be available as an extension.

To control mipmapping levels, the constants GL_TEXTURE_BASE_LEVEL, 
GL_TEXTURE_MAX_LEVEL, GL_TEXTURE_MIN_LOD, and GL_TEXTURE_
MAX_LOD are passed to glTexParameter*(). The first two constants (for 
brevity, shortened to BASE_LEVEL and MAX_LEVEL in the remainder of this 
section) control which mipmap levels are used and therefore which levels 
need to be specified. The other two constants (shortened to MIN_LOD and 
MAX_LOD) control the active range of the aforementioned scale factor 

These texture parameters address several of the previously described prob-
lems. Effective use of BASE_LEVEL and MAX_LEVEL may reduce the num-
ber of mipmaps that need to be specified and thereby streamline texture 
resource usage. Selective use of MAX_LOD may preserve the legibility of a 
mosaic texture, and MIN_LOD may reduce the popping effect with higher-
resolution textures. 

BASE_LEVEL and MAX_LEVEL are used to set the boundaries for which 
mipmap levels are used. BASE_LEVEL is the level of the highest-resolution 
(largest texture) mipmap level that is used. The default value for BASE_
LEVEL is 0. However, you may later change the value for BASE_LEVEL, so 
that you add additional higher-resolution textures “on the fly.” Similarly, 
MAX_LEVEL limits the lowest-resolution mipmap to be used. The default 
value for MAX_LEVEL is 1000, which almost always means that the 
smallest-resolution texture is 1 texel.

To set the base and maximum mipmap levels, use glTexParameter*()
with the first argument set to GL_TEXTURE_1D, GL_TEXTURE_2D, GL_
TEXTURE_3D, or GL_TEXTURE_CUBE_MAP, depending on your textures. 
The second argument is one of the parameters described in Table 9-1. The 
third argument denotes the value for the parameter.

Parameter Description Values

GL_TEXTURE_BASE_
LEVEL

level for highest-resolution texture 
(lowest numbered mipmap level) in use

any non-
negative integer

GL_TEXTURE_MAX_
LEVEL

level for smallest-resolution texture 
(highest numbered mipmap level) in use

any non-
negative integer

Table 9-1 Mipmapping Level Parameter Controls
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The code in Example 9-6 sets the base and maximum mipmap levels to 2 and 
5, respectively. Since the image at the base level (level 2) has a 64 32 texel 
resolution, the mipmaps at levels 3, 4, and 5 must have the appropriate 
lower resolution.

Example 9-6 Setting Base and Maximum Mipmap Levels

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_BASE_LEVEL, 2);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 5);
glTexImage2D(GL_TEXTURE_2D, 2, GL_RGBA, 64, 32, 0, GL_RGBA,
             GL_UNSIGNED_BYTE, image1);
glTexImage2D(GL_TEXTURE_2D, 3, GL_RGBA, 32, 16, 0, GL_RGBA,
             GL_UNSIGNED_BYTE, image2);
glTexImage2D(GL_TEXTURE_2D, 4, GL_RGBA, 16, 8, 0, GL_RGBA,
             GL_UNSIGNED_BYTE, image3);
glTexImage2D(GL_TEXTURE_2D, 5, GL_RGBA, 8, 4, 0, GL_RGBA,
             GL_UNSIGNED_BYTE, image4);

Later on, you may decide to add additional higher-or lower-resolution 
mipmaps. For example, you may add a 128 64 texel texture to this set 
of mipmaps at level 1, but you must remember to reset BASE_LEVEL.

Note: For mipmapping to work, all mipmaps between BASE_LEVEL and the 
largest possible level, inclusive, must be loaded. The largest possible 
level is the smaller of either the value for MAX_LEVEL or the level 
at which the size of the mipmap is only 1 texel (either 1, 1 1, or 
1 1 1). If you fail to load a necessary mipmap level, then texturing 
may be mysteriously disabled. If you are mipmapping and texturing 
does not appear, ensure that each required mipmap level has been 
loaded with a legal texture.

As with BASE_LEVEL and MAX_LEVEL, glTexParameter*() sets MIN_LOD 
and MAX_LOD. Table 9-2 lists possible values.

Parameter Description Values

GL_TEXTURE_MIN_LOD minimum value for (scale
factor of texture image versus 
polygon size)

any value

GL_TEXTURE_MAX_LOD maximum value for any value

Table 9-2 Mipmapping Level-of-Detail Parameter Controls
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The following code is an example of using glTexParameter*() to specify the 
level-of-detail parameters:

glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_LOD, 2.5);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_LOD, 4.5);

MIN_LOD and MAX_LOD provide minimum and maximum values for 
(the scale factor from texture image to polygon) for mipmapped minification, 
which indirectly specifies which mipmap levels are used. 

If you have a 64 64 pixel polygon and MIN_LOD is the default value of 
0.0, then a level 0 64 64 texel texture map may be used for minification 
(provided BASE_LEVEL = 0; as a rule, BASE_LEVEL MIN_LOD). However, 
if MIN_LOD is set to 2.0, then the largest texture map that may be used for 
minification is 16 16 texels, which corresponds to = 2.0. 

MAX_LOD has influence only if it is less than the maximum  (which is 
either MAX_LEVEL or where the mipmap is reduced to 1 texel). In the case 
of a 64 64 texel texture map, = 6.0 corresponds to a 1 1 texel mipmap. 
In the same case, if MAX_LOD is 4.0, then no mipmap smaller than 4 4
texels will be used for minification.

You may find that a MIN_LOD that is fractionally greater than BASE_LEVEL 
or a MAX_LOD that is fractionally less than MAX_LEVEL is best for reducing 
visual effects (such as popping) related to transitions between mipmaps.

Filtering

Texture maps are square or rectangular, but after being mapped to a polygon 
or surface and transformed into screen coordinates, the individual texels of 
a texture rarely correspond to individual pixels of the final screen image. 
Depending on the transformations used and the texture mapping applied, 
a single pixel on the screen can correspond to anything from a tiny portion 
of a texel (magnification) to a large collection of texels (minification), as 
shown in Figure 9-8. In either case, it’s unclear exactly which texel values 
should be used and how they should be averaged or interpolated. Conse-
quently, OpenGL allows you to specify any of several filtering options to 
determine these calculations. The options provide different trade-offs 
between speed and image quality. Also, you can specify independently 
the filtering methods for magnification and minification. 

In some cases, it isn’t obvious whether magnification or minification is 
called for. If the texture map needs to be stretched (or shrunk) in both the 
x- and y- directions, then magnification (or minification) is needed. If the 
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texture map needs to be stretched in one direction and shrunk in the other, 
OpenGL makes a choice between magnification and minification that in 
most cases gives the best result possible. It’s best to try to avoid these situa-
tions by using texture coordinates that map without such distortion. (See 
“Computing Appropriate Texture Coordinates” on page 450.) 

The following lines are examples of how to use glTexParameter*() to 
specify the magnification and minification filtering methods:

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
                GL_NEAREST); 
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, 
                GL_NEAREST);

The first argument to glTexParameter*() is GL_TEXTURE_1D, GL_
TEXTURE_2D, GL_TEXTURE_3D, or GL_TEXTURE_CUBE_MAP, whichever 
is appropriate. For the purposes of this discussion, the second argument is 
either GL_TEXTURE_MAG_FILTER, or GL_TEXTURE_MIN_FILTER, to indi-
cate whether you’re specifying the filtering method for magnification or 
minification. The third argument specifies the filtering method; Table 9-3 
lists the possible values.

Parameter Values

GL_TEXTURE_MAG_FILTER GL_NEAREST or GL_LINEAR

GL_TEXTURE_MIN_FILTER GL_NEAREST, GL_LINEAR, 
GL_NEAREST_MIPMAP_NEAREST, 
GL_NEAREST_MIPMAP_LINEAR, 
GL_LINEAR_MIPMAP_NEAREST, or 
GL_LINEAR_MIPMAP_LINEAR

Table 9-3 Filtering Methods for Magnification and Minification

Magnification

Texture

Polygon
Polygon

Minification

PixelsTexel

Figure 9-8 Texture Magnification and Minification
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If you choose GL_NEAREST, the texel with coordinates nearest the center of 
the pixel is used for both magnification and minification. This can result in 
aliasing artifacts (sometimes severe). If you choose GL_LINEAR, a weighted 
linear average of the 2 2 array of texels that lie nearest to the center of the 
pixel is used, again for both magnification and minification. (For three-
dimensional textures, it’s a 2 2 2 array; for one-dimensional, it’s an 
average of 2 texels.) When the texture coordinates are near the edge of the 
texture map, the nearest 2 2 array of texels might include some that are 
outside the texture map. In these cases, the texel values used depend on 
which wrapping mode is in effect and whether you’ve assigned a border 
for the texture. (See “Repeating and Clamping Textures” on page 452.) 
GL_NEAREST requires less computation than GL_LINEAR and therefore 
might execute more quickly, but GL_LINEAR provides smoother results. 

With magnification, even if you’ve supplied mipmaps, only the base level 
texture map is used. With minification, you can choose a filtering method 
that uses the most appropriate one or two mipmaps, as described in the next 
paragraph. (If GL_NEAREST or GL_LINEAR is specified with minification, 
only the base level texture map is used.) 

As shown in Table 9-3, four additional filtering options are available when 
minifying with mipmaps. Within an individual mipmap, you can choose 
the nearest texel value with GL_NEAREST_MIPMAP_NEAREST, or you can 
interpolate linearly by specifying GL_LINEAR_MIPMAP_NEAREST. Using 
the nearest texels is faster but yields less desirable results. The particular 
mipmap chosen is a function of the amount of minification required, and 
there’s a cutoff point from the use of one particular mipmap to the next. 
To avoid a sudden transition, use GL_NEAREST_MIPMAP_LINEAR or 
GL_LINEAR_MIPMAP_LINEAR for linear interpolation of texel values from 
the two nearest best choices of mipmaps. GL_NEAREST_MIPMAP_LINEAR 
selects the nearest texel in each of the two maps and then interpolates 
linearly between these two values. GL_LINEAR_MIPMAP_LINEAR uses 
linear interpolation to compute the value in each of two maps and then 
interpolates linearly between these two values. As you might expect, GL_
LINEAR_MIPMAP_LINEAR generally produces the highest-quality results, 
but it requires the most computation and therefore might be the slowest.

Caution:  If you request a mipmapped texture filter, but you have not supplied 
a full and consistent set of mipmaps (all correct-sized texture images 
between GL_TEXTURE_BASE_LEVEL and GL_TEXTURE_MAX_
LEVEL), OpenGL will, without any error, implicitly disable 
texturing. If you are trying to use mipmaps and no texturing 
appears at all, check the texture images at all your mipmap levels.
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Some of these texture filters are known by more popular names. GL_NEAREST 
is often called point sampling. GL_LINEAR is known as bilinear sampling,
because for two-dimensional textures, a 2 2 array of texels is sampled. 
GL_LINEAR_MIPMAP_LINEAR is sometimes known as trilinear sampling,
because it is a linear average between two bilinearly sampled mipmaps.

Note: The minification-to-magnification switchover point is usually at 
= 0.0, but is affected by the type of minification filter you choose. 

If the current magnification filter is GL_LINEAR and the minification 
filter is GL_NEAREST_MIPMAP_NEAREST or GL_NEAREST_MIPMAP_

LINEAR, then the switch between filters occurs at = 0.5. This pre-
vents the minified texture from looking sharper than its magnified 
counterpart.

Nate Robins’ Texture Tutorial

If you have downloaded Nate Robins’ suite of tutorial programs, now 
run the texture tutorial. (For information on how and where to download 
these programs, see “Errata” on page xlii.) With this tutorial, you can 
experiment with the texture-mapping filtering method, switching between 
GL_NEAREST and GL_LINEAR.

Texture Objects

A texture object stores texture data and makes it readily available. You may 
control many textures and go back to textures that have been previously 
loaded into your texture resources. Using texture objects is usually the 
fastest way to apply textures, resulting in big performance gains, because it 
is almost always much faster to bind (reuse) an existing texture object than 
it is to reload a texture image using glTexImage*D().

Also, some implementations support a limited working set of high-
performance textures. You can use texture objects to load your most 
often used textures into this limited area.

To use texture objects for your texture data, take these steps:

1. Generate texture names.

2. Initially bind (create) texture objects to texture data, including the 
image arrays and texture properties.

3. If your implementation supports a working set of high-performance 
textures, see if you have enough space for all your texture objects. If 
there isn’t enough space, you may wish to establish priorities for each 
texture object so that more often used textures stay in the working set.
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4. Bind and rebind texture objects, making their data currently available 
for rendering textured models.

Naming a Texture Object

Any nonzero unsigned integer may be used as a texture name. To avoid 
accidentally reusing names, consistently use glGenTextures() to provide 
unused texture names.

glIsTexture() determines if a texture name is actually in use. If a texture 
name was returned by glGenTextures() but has not yet been bound (calling 
glBindTexture() with the name at least once), then glIsTexture() returns 
GL_FALSE.

Creating and Using Texture Objects

The same routine, glBindTexture(), both creates and uses texture objects. 
When a texture name is initially bound (used with glBindTexture()), a new 
texture object is created with default values for the texture image and tex-
ture properties. Subsequent calls to glTexImage*(), glTexSubImage*(),
glCopyTexImage*(), glCopyTexSubImage*(), glTexParameter*(), and 

void glGenTextures(GLsizei n, GLuint *textureNames);

Returns n currently unused names for texture objects in the array 
textureNames. The names returned in textureNames do not have to be a 
contiguous set of integers.

The names in textureNames are marked as used, but they acquire texture 
state and dimensionality (1D, 2D, or 3D) only when they are first bound.

Zero is a reserved texture name and is never returned as a texture name by 
glGenTextures().

GLboolean glIsTexture(GLuint textureName);

Returns GL_TRUE if textureName is the name of a texture that has been 
bound and has not been subsequently deleted, and returns GL_FALSE if 
textureName is zero or textureName is a nonzero value that is not the name 
of an existing texture.
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glPrioritizeTextures() store data in the texture object. The texture object 
may contain a texture image and associated mipmap images (if any), 
including associated data such as width, height, border width, internal 
format, resolution of components, and texture properties. Saved texture 
properties include minification and magnification filters, wrapping modes, 
border color, and texture priority.

When a texture object is subsequently bound once again, its data becomes 
the current texture state. (The state of the previously bound texture is 
replaced.)

In Example 9-7, two texture objects are created in init(). In display(), each 
texture object is used to render a different four-sided polygon.

Example 9-7 Binding Texture Objects: texbind.c

#define checkImageWidth 64
#define checkImageHeight 64
static GLubyte checkImage[checkImageHeight][checkImageWidth][4];
static GLubyte otherImage[checkImageHeight][checkImageWidth][4];

static GLuint texName[2];

void makeCheckImages(void)
{

void glBindTexture(GLenum target, GLuint textureName);

glBindTexture() does three things. When using the textureName of an 
unsigned integer other than zero for the first time, a new texture object is 
created and assigned that name. When binding to a previously created 
texture object, that texture object becomes active. When binding to a 
textureName value of zero, OpenGL stops using texture objects and returns 
to the unnamed default texture.

When a texture object is initially bound (that is, created), it assumes the 
dimensionality of target, which is GL_TEXTURE_1D, GL_TEXTURE_2D, 
GL_TEXTURE_3D, GL_TEXTURE_CUBE_MAP, GL_TEXTURE_1D_ARRAY, 
GL_TEXTURE_2D_ARRAY, GL_TEXTURE_RECTANGLE, or GL_TEXTURE_
BUFFER. Immediately on its initial binding, the state of the texture object 
is equivalent to the state of the default target dimensionality at the 
initialization of OpenGL. In this initial state, texture properties such as 
minification and magnification filters, wrapping modes, border color, and 
texture priority are set to their default values.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


440 Chapter 9: Texture Mapping

   int i, j, c;

   for (i = 0; i < checkImageHeight; i++) {
      for (j = 0; j < checkImageWidth; j++) {
         c = (((i&0x8)==0)^((j&0x8)==0))*255;
         checkImage[i][j][0] = (GLubyte) c;
         checkImage[i][j][1] = (GLubyte) c;
         checkImage[i][j][2] = (GLubyte) c;
         checkImage[i][j][3] = (GLubyte) 255;
         c = (((i&0x10)==0)^((j&0x10)==0))*255;
         otherImage[i][j][0] = (GLubyte) c;
         otherImage[i][j][1] = (GLubyte) 0;
         otherImage[i][j][2] = (GLubyte) 0;
         otherImage[i][j][3] = (GLubyte) 255;
      }
   }
}

void init(void)
{
   glClearColor(0.0, 0.0, 0.0, 0.0);
   glShadeModel(GL_FLAT);
   glEnable(GL_DEPTH_TEST);

   makeCheckImages();
   glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

   glGenTextures(2, texName);
   glBindTexture(GL_TEXTURE_2D, texName[0]);
   glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);
   glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);
   glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
                   GL_NEAREST);
   glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
                   GL_NEAREST);
   glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, checkImageWidth,
                checkImageHeight, 0, GL_RGBA, GL_UNSIGNED_BYTE,
                checkImage);

   glBindTexture(GL_TEXTURE_2D, texName[1]);
   glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);
   glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);
   glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
                   GL_NEAREST);
   glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
                   GL_NEAREST);
   glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);   
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   glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, checkImageWidth, 
                checkImageHeight, 0, GL_RGBA, GL_UNSIGNED_BYTE, 
                otherImage);
   glEnable(GL_TEXTURE_2D);
}

void display(void)
{
   glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
   glBindTexture(GL_TEXTURE_2D, texName[0]);
   glBegin(GL_QUADS);
   glTexCoord2f(0.0, 0.0); glVertex3f(-2.0, -1.0, 0.0);
   glTexCoord2f(0.0, 1.0); glVertex3f(-2.0, 1.0, 0.0);
   glTexCoord2f(1.0, 1.0); glVertex3f(0.0, 1.0, 0.0);
   glTexCoord2f(1.0, 0.0); glVertex3f(0.0, -1.0, 0.0);
   glEnd();
   glBindTexture(GL_TEXTURE_2D, texName[1]);
   glBegin(GL_QUADS);
   glTexCoord2f(0.0, 0.0); glVertex3f(1.0, -1.0, 0.0);
   glTexCoord2f(0.0, 1.0); glVertex3f(1.0, 1.0, 0.0);
   glTexCoord2f(1.0, 1.0); glVertex3f(2.41421, 1.0, -1.41421);
   glTexCoord2f(1.0, 0.0); glVertex3f(2.41421, -1.0, -1.41421);
   glEnd();
   glFlush();
}

Whenever a texture object is bound once again, you may edit the contents 
of the bound texture object. Any commands you call that change the 
texture image or other properties change the contents of the currently 
bound texture object as well as the current texture state.

In Example 9-7, after completion of display(), you are still bound to the 
texture named by the contents of texName[1]. Be careful that you don’t call 
a spurious texture routine that changes the data in that texture object.

When mipmaps are used, all related mipmaps of a single texture image must 
be put into a single texture object. In Example 9-5, levels 0–5 of a mip-
mapped texture image are put into a single texture object named texName.

Cleaning Up Texture Objects

As you bind and unbind texture objects, their data still sits around some-
where among your texture resources. If texture resources are limited, deleting 
textures may be one way to free up resources.
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A Working Set of Resident Textures

Some OpenGL implementations support a working set of high-performance 
textures, which are said to be resident. Typically, these implementations 
have specialized hardware to perform texture operations and a limited 
hardware cache to store texture images. In this case, using texture objects is 
recommended, because you are able to load many textures into the working 
set and then control them.

If all the textures required by the application exceed the size of the cache, 
some textures cannot be resident. If you want to find out if a single texture 
is currently resident, bind its object, and then call glGetTexParameter*v()
to determine the value associated with the GL_TEXTURE_RESIDENT state. 
If you want to know about the texture residence status of many textures, use 
glAreTexturesResident().

Note that glAreTexturesResident() returns the current residence status. 
Texture resources are very dynamic, and texture residence status may change 

void glDeleteTextures(GLsizei n, const GLuint *textureNames);

Deletes n texture objects, named by elements in the array textureNames.
The freed texture names may now be reused (for example, by 
glGenTextures()).

If a texture that is currently bound is deleted, the binding reverts to the 
default texture, as if glBindTexture() were called with zero for the value 
of textureName. Attempts to delete nonexistent texture names or the 
texture name of zero are ignored without generating an error.

GLboolean glAreTexturesResident(GLsizei n,
const GLuint *textureNames,
GLboolean *residences);

Queries the texture residence status of the n texture objects, named in 
the array textureNames. residences is an array in which texture residence 
status is returned for the corresponding texture objects in the array 
textureNames. If all the named textures in textureNames are resident, the 
glAreTexturesResident() function returns GL_TRUE, and the contents 
of the array residences are undisturbed. If any texture in textureNames is 
not resident, then glAreTexturesResident() returns GL_FALSE, and the 
elements in residences, which correspond to nonresident texture objects 
in textureNames, are also set to GL_FALSE.

Compatibility 
Extension

glAreTextures
Resident
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at any time. Some implementations cache textures when they are first used. 
It may be necessary to draw with the texture before checking residency.

If your OpenGL implementation does not establish a working set of high-
performance textures, then the texture objects are always considered 
resident. In that case, glAreTexturesResident() always returns GL_TRUE 
and basically provides no information.

Texture Residence Strategies

If you can create a working set of textures and want to get the best texture 
performance possible, you really have to know the specifics of your imple-
mentation and application. For example, with a visual simulation or video 
game, you have to maintain performance in all situations. In that case, you 
should never access a nonresident texture. For these applications, you want 
to load up all your textures on initialization and make them all resident. If 
you don’t have enough texture memory available, you may need to reduce 
the size, resolution, and levels of mipmaps for your texture images, or you 
may use glTexSubImage*() to repeatedly reuse the same texture memory.

Note: If you have several short-lived textures of the same size, you can use 
glTexSubImage*() to reload existing texture objects with different 
images. This technique may be more efficient than deleting textures 
and reestablishing new textures from scratch.

For applications that create textures “on the fly,” nonresident textures 
may be unavoidable. If some textures are used more frequently than others, 
you may assign a higher priority to those texture objects to increase their 
likelihood of being resident. Deleting texture objects also frees up space. 
Short of that, assigning a lower priority to a texture object may make it first 
in line for being moved out of the working set, as resources dwindle. 
glPrioritizeTextures() is used to assign priorities to texture objects.

void glPrioritizeTextures(GLsizei n, const GLuint *textureNames,
const GLclampf *priorities);

Assigns the n texture objects, named in the array textureNames, the texture 
residence priorities in the corresponding elements of the array priorities.
The priority values in the array priorities are clamped to the range [0.0, 1.0] 
before being assigned. Zero indicates the lowest priority (textures least 
likely to be resident), and 1 indicates the highest priority.

glPrioritizeTextures() does not require that any of the textures in 
textureNames be bound. However, the priority might not have any effect 
on a texture object until it is initially bound.

Compatibility 
Extension

glPrioritizeTextures
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glTexParameter*() also may be used to set a single texture’s priority, but 
only if the texture is currently bound. In fact, use of glTexParameter*() is 
the only way to set the priority of a default texture.

If texture objects have equal priority, typical implementations of OpenGL 
apply a least recently used (LRU) strategy to decide which texture objects to 
move out of the working set. If you know that your OpenGL implementa-
tion uses this algorithm, then having equal priorities for all texture objects 
creates a reasonable LRU system for reallocating texture resources. 

If your implementation of OpenGL doesn’t use an LRU strategy for texture 
objects of equal priority (or if you don’t know how it decides), you can 
implement your own LRU strategy by carefully maintaining the texture 
object priorities. When a texture is used (bound), you can maximize its 
priority, which reflects its recent use. Then, at regular (time) intervals, you 
can degrade the priorities of all texture objects.

Note: Fragmentation of texture memory can be a problem, especially if 
you’re deleting and creating numerous new textures. Although it 
may be possible to load all the texture objects into a working set by 
binding them in one sequence, binding them in a different sequence 
may leave some textures nonresident.

Texture Functions

In each of the examples presented so far in this chapter, the values in the 
texture map have been used directly as colors to be painted on the surface 
being rendered. You can also use the values in the texture map to modulate 
the color in which the surface would be rendered without texturing or to 
combine the color in the texture map with the original color of the surface. 
You choose texturing functions by supplying the appropriate arguments to 
glTexEnv*().

void glTexEnv{if}(GLenum target, GLenum pname, TYPE param);
void glTexEnv{if}v(GLenum target, GLenum pname, const TYPE *param);

Sets the current texturing function. target must be either GL_TEXTURE_
FILTER_CONTROL or GL_TEXTURE_ENV. 

If target is GL_TEXTURE_FILTER_CONTROL, then pname must be 
GL_TEXTURE_LOD_BIAS, and param is a single, floating-point value used 
to bias the mipmapping level-of-detail parameter.

Compatibility 
Extension

glTexEnv and all 
associated tokens
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Note: This is only a partial list of acceptable values for glTexEnv*(),
excluding texture combiner functions. For complete details about 
GL_COMBINE  and a complete list of options for pname and param
for glTexEnv*(), see “Texture Combiner Functions” on page 472 and 
Table 9-8.

The combination of the texturing function and the base internal format 
determines how the textures are applied for each component of the texture. 
The texturing function operates on selected components of the texture 
and the color values that would be used with no texturing. (Note that the 
selection is performed after the pixel-transfer function has been applied.) 
Recall that when you specify your texture map with glTexImage*D(), the 
third argument is the internal format to be selected for each texel. 

There are six base internal formats: GL_ALPHA, GL_LUMINANCE, GL_
LUMINANCE_ALPHA, GL_INTENSITY, GL_RGB, and GL_RGBA. Other 
internal formats (such as GL_LUMINANCE6_ALPHA2 or GL_R3_G3_B2) 
specify desired resolutions of the texture components and can be matched 
to one of these six base internal formats.

Texturing calculations are ultimately in RGBA, but some internal formats 
are not in RGB. Table 9-4 shows how the RGBA color values are derived 
from different texture formats, including the less obvious derivations.  

If target is GL_TEXTURE_ENV and if pname is GL_TEXTURE_ENV_MODE, 
then param is one of GL_DECAL, GL_REPLACE, GL_MODULATE, 
GL_BLEND, GL_ADD, or GL_COMBINE, which specifies how texture 
values are combined with the color values of the fragment being processed. 
If pname is GL_TEXTURE_ENV_COLOR, then param is an array of 4 
floating-point numbers (R, G, B, A) which denotes a color to be used 
for GL_BLEND operations.

If target is GL_POINT_SPRITE and if pname is GL_COORD_REPLACE, then 
setting param to GL_TRUE will enable the iteration of texture coordinates 
across a point sprite. Texture coordinates will remain constant across the 
primitive if param is set to GL_FALSE.

Base Internal Format Derived Source Color (R, G, B, A)

GL_ALPHA (0, 0, 0, A)

GL_LUMINANCE (L, L, L, 1)

Table 9-4 Deriving Color Values from Different Texture Formats
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Table 9-5 and Table 9-6 show how a texturing function (except for GL_
COMBINE) and base internal format determine the texturing application 
formula used for each component of the texture. 

In Table 9-5 and Table 9-6, note the following use of subscripts:

• s indicates a texture source color, as determined in Table 9-4.

• f indicates an incoming fragment value.

• c indicates values assigned with GL_TEXTURE_ENV_COLOR.

• No subscript indicates a final, computed value.

In these tables, multiplication of a color triple by a scalar means multiplying 
each of the R, G, and B components by the scalar; multiplying (or adding) 
two color triples means multiplying (or adding) each component of the 
second by (or to) the corresponding component of the first.  

GL_LUMINANCE_ALPHA (L, L, L, A)

GL_INTENSITY (I, I, I, I)

GL_RGB (R, G, B, 1)

GL_RGBA (R, G, B, A)

Base Internal Format GL_REPLACE 
Function

GL_MODULATE 
Function

GL_DECAL 
Function

GL_ALPHA C = Cf
A = As

C = Cf
A = Af As

undefined

GL_LUMINANCE C = Cs
A = Af

C = Cf Cs
A = Af

undefined

GL_LUMINANCE_ALPHA C = Cs
A = As

C = Cf Cs
A = Af As

undefined

GL_INTENSITY C = Cs
A = Cs

C = Cf Cs
A = Af Cs

undefined

Table 9-5 Replace, Modulate, and Decal Texture Functions

Base Internal Format Derived Source Color (R, G, B, A)

Table 9-4 (continued)        Deriving Color Values from Different Texture Formats
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The replacement texture function simply takes the color that would have 
been painted in the absence of any texture mapping (the fragment’s color), 
tosses it away, and replaces it with the texture color. You use the replace-
ment texture function in situations where you want to apply an opaque 
texture to an object—such as, for example, if you were drawing a soup can 
with an opaque label.

The decal texture function is similar to replacement, except that it works for 
only the RGB and RGBA internal formats, and it processes alpha differently. 
With the RGBA internal format, the fragment’s color is blended with the 
texture color in a ratio determined by the texture alpha, and the fragment’s 
alpha is unchanged. The decal texture function may be used to apply an 
alpha blended texture, such as an insignia on an airplane wing.

GL_RGB C = Cs
A = Af

C = Cf Cs
A = Af

C = Cs
A = Af

GL_RGBA C = Cs
A = As

C = Cf Cs
A = Af As

C = Cf (1 As) + Cs As
A = Af

Base Internal Format GL_BLEND Function GL_ADD Function

GL_ALPHA C = Cf
A = Af As

C = Cf
A = Af As

GL_LUMINANCE C = Cf (1 Cs) + Cc Cs
A = Af

C = Cf  + Cs
A = Af

GL_LUMINANCE_ALPHA C = Cf (1 Cs) + Cc Cs
A = Af As

C = Cf  + Cs
A = Af As

GL_INTENSITY C = Cf (1  Cs) + Cc Cs
A = Af (1  As) + Ac As

C = Cf  + Cs
A = Af  + As

GL_RGB C = Cf (1  Cs) + Cc Cs
A = Af

C = Cf  + Cs
A = Af

GL_RGBA C = Cf (1 Cs) + Cc Cs
A = Af As

C = Cf  + Cs
A = Af As

Table 9-6 Blend and Add Texture Functions

Base Internal Format GL_REPLACE 
Function

GL_MODULATE 
Function

GL_DECAL 
Function

Table 9-5 (continued)        Replace, Modulate, and Decal Texture Functions
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For modulation, the fragment’s color is modulated by the contents of 
the texture map. If the base internal format is GL_LUMINANCE, GL_
LUMINANCE_ALPHA, or GL_INTENSITY, the color values are multiplied by 
the same value, so the texture map modulates between the fragment’s color 
(if the luminance or intensity is 1) to black (if it’s 0). For the GL_RGB and 
GL_RGBA internal formats, each of the incoming color components is 
multiplied by a corresponding (possibly different) value in the texture. If 
there’s an alpha value, it’s multiplied by the fragment’s alpha. Modulation 
is a good texture function for use with lighting, since the lit polygon color 
can be used to attenuate the texture color. Most of the texture-mapping 
examples in the color plates use modulation for this reason. White, specular 
polygons are often used to render lit, textured objects, and the texture 
image provides the diffuse color.

The additive texture function simply adds the texture color to the fragment 
color. If there’s an alpha value, it’s multiplied by the fragment alpha, except 
for the GL_INTENSITY format, where the texture’s intensity is added to 
the fragment alpha. Unless the texture and fragment colors are carefully 
chosen, the additive texture function easily results in oversaturated or 
clamped colors.

The blending texture function is the only function that uses the color 
specified by GL_TEXTURE_ENV_COLOR. The luminance, intensity, or color 
value is used somewhat like an alpha value to blend the fragment’s color 
with the GL_TEXTURE_ENV_COLOR. (See “Sample Uses of Blending” in 
Chapter 6 for the billboarding example, which uses a blended texture.)

Nate Robins’ Texture Tutorial

If you have downloaded Nate Robins’ suite of tutorial programs, run the 
texture tutorial. Change the texture-mapping environment attribute and 
see the effects of several texture functions. If you use GL_MODULATE, note 
the effect of the color specified by glColor4f(). If you choose GL_BLEND, 
see what happens if you change the color specified by the env_color array.

Assigning Texture Coordinates

As you draw your texture-mapped scene, you must provide both object 
coordinates and texture coordinates for each vertex. After transformation, 
the object’s coordinates determine where on the screen that particular 
vertex is rendered. The texture coordinates determine which texel in the 
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texture map is assigned to that vertex. In exactly the same way that colors 
are interpolated between two vertices of shaded polygons and lines, texture 
coordinates are interpolated between vertices. (Remember that textures are 
rectangular arrays of data.)

Texture coordinates can comprise one, two, three, or four coordinates. 
They’re usually referred to as the s-, t-, r-, and q-coordinates to distinguish 
them from object coordinates (x, y, z, and w) and from evaluator coordi-
nates (u and v; see Chapter 12). For one-dimensional textures, you use the 
s-coordinate; for two-dimensional textures, you use s and t; and for three-
dimensional textures, you use s, t, and r. The q-coordinate, like w, is typically 
given the value 1 and can be used to create homogeneous coordinates; it’s 
described as an advanced feature in “The q-Coordinate.” The command 
to specify texture coordinates, glTexCoord*(), is similar to glVertex*(),
glColor*(), and glNormal*()—it comes in similar variations and is used 
the same way between glBegin() and glEnd() pairs. Usually, texture-
coordinate values range from 0 to 1; values can be assigned outside this 
range, however, with the results described in “Repeating and Clamping 
Textures.”

The next subsection discusses how to calculate appropriate texture coordi-
nates. Instead of explicitly assigning them yourself, you can choose to have 
texture coordinates calculated automatically by OpenGL as a function of 

void glTexCoord{1234}{sifd}(TYPE coords);
void glTexCoord{1234}{sifd}v(const TYPE *coords);

Sets the current texture coordinates (s, t, r, q). Subsequent calls to 
glVertex*() result in those vertices being assigned the current texture 
coordinates. With glTexCoord1*(), the s-coordinate is set to the specified 
value, t and r are set to 0, and q is set to 1. Using glTexCoord2*() allows 
you to specify s and t; r and q are set to 0 and 1, respectively. With 
glTexCoord3*(), q is set to 1 and the other coordinates are set as specified. 
You can specify all coordinates with glTexCoord4*(). Use the appropriate 
suffix (s, i, f, or d) and the corresponding value for TYPE (GLshort, GLint, 
GLfloat, or GLdouble) to specify the coordinates’ data type. You can 
supply the coordinates individually, or you can use the vector version of 
the command to supply them in a single array. Texture coordinates are 
multiplied by the 4 4 texture matrix before any texture mapping occurs. 
(See “The Texture Matrix Stack” on page 481.) Note that integer texture 
coordinates are interpreted directly, rather than being mapped to the 
range [ 1, 1] as normal coordinates are.

Compatibility 
Extension

glTexCoord
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the vertex coordinates. (See “Automatic Texture-Coordinate Generation” 
on page 457.)

Nate Robins’ Texture Tutorial

If you have Nate Robins’ texture tutorial, run it, and experiment with the 
parameters of glTexCoord2f() for the four different vertices. See how you 
can map from a portion of the entire texture. (What happens if you make a 
texture coordinate less than 0 or greater than 1?)

Computing Appropriate Texture Coordinates

Two-dimensional textures are square or rectangular images that are typically 
mapped to the polygons that make up a polygonal model. In the simplest 
case, you’re mapping a rectangular texture onto a model that’s also rectan-
gular—for example, your texture is a scanned image of a brick wall, and 
your rectangle represents a brick wall of a building. Suppose the brick wall 
is square and the texture is square, and you want to map the whole texture 
to the whole wall. The texture coordinates of the texture square are (0, 0), 
(1, 0), (1, 1), and (0, 1) in counterclockwise order. When you’re drawing the 
wall, just give those four coordinate sets as the texture coordinates as you 
specify the wall’s vertices in counterclockwise order.

Now suppose that the wall is two-thirds as high as it is wide, and that the 
texture is again square. To avoid distorting the texture, you need to map the 
wall to a portion of the texture map so that the aspect ratio of the texture 
is preserved. Suppose that you decide to use the lower two-thirds of the 
texture map to texture the wall. In this case, use texture coordinates of 
(0, 0), (1, 0), (1, 2/3), and (0, 2/3) for the texture coordinates, as the wall 
vertices are traversed in a counterclockwise order. 

As a slightly more complicated example, suppose you’d like to display a tin 
can with a label wrapped around it on the screen. To obtain the texture, you 
purchase a can, remove the label, and scan it in. Suppose the label is 4 units 
tall and 12 units around, which yields an aspect ratio of 3 to 1. Since tex-
tures must have aspect ratios of 2n to 1, you can either simply not use the 
top third of the texture, or you can cut and paste the texture until it has the 
necessary aspect ratio. Suppose you decide not to use the top third. Now 
suppose the tin can is a cylinder approximated by 30 polygons of length 
4 units (the height of the can) and width 12/30 (1/30 of the circumference 
of the can). You can use the following texture coordinates for each of the 
30 approximating rectangles: 
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1: (0, 0), (1/30, 0), (1/30, 2/3), (0, 2/3)

2: (1/30, 0), (2/30, 0), (2/30, 2/3), (1/30, 2/3)

3: (2/30, 0), (3/30, 0), (3/30, 2/3), (2/30, 2/3)

. . . 

30: (29/30, 0), (1, 0), (1, 2/3), (29/30, 2/3)

Only a few curved surfaces such as cones and cylinders can be mapped to a 
flat surface without geodesic distortion. Any other shape requires some 
distortion. In general, the higher the curvature of the surface, the more 
distortion of the texture is required. 

If you don’t care about texture distortion, it’s often quite easy to find a rea-
sonable mapping. For example, consider a sphere whose surface coordinates 
are given by (cos  cos , cos sin , sin ), where 0 2  and 0 .
The -  rectangle can be mapped directly to a rectangular texture map, but 
the closer you get to the poles, the more distorted the texture is. The entire 
top edge of the texture map is mapped to the north pole, and the entire 
bottom edge to the south pole. For other surfaces, such as that of a torus 
(doughnut) with a large hole, the natural surface coordinates map to the 
texture coordinates in a way that produces only a little distortion, so it 
might be suitable for many applications. Figure 9-9 shows two toruses, one 
with a small hole (and therefore a lot of distortion near the center) and one 
with a large hole (and only a little distortion).

If you’re texturing spline surfaces generated with evaluators (see Chapter 12), 
the u and v parameters for the surface can sometimes be used as texture 
coordinates. In general, however, there’s a large artistic component to 
successful mapping of textures to polygonal approximations of curved 
surfaces.

Figure 9-9 Texture-Map Distortion
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Repeating and Clamping Textures

You can assign texture coordinates outside the range [0, 1] and have them 
either clamp or repeat in the texture map. With repeating textures, if you 
have a large plane with texture coordinates running from 0.0 to 10.0 in 
both directions, for example, you’ll get 100 copies of the texture tiled 
together on the screen. During repeating, the integer parts of texture coor-
dinates are ignored, and copies of the texture map tile the surface. For most 
applications in which the texture is to be repeated, the texels at the top of 
the texture should match those at the bottom, and similarly for the left and 
right edges. 

A “mirrored” repeat is available, where the surface tiles “flip-flop.” For 
instance, within texture coordinate range [0, 1], a texture may appear 
oriented from left-to-right (or top-to-bottom or near-to-far), but the 
“mirrored” repeat wrapping reorients the texture from right-to-left for 
texture coordinate range [1, 2], then back again to left-to-right for coordi-
nates [2, 3], and so on.

Another possibility is to clamp the texture coordinates: Any values greater 
than 1.0 are set to 1.0, and any values less than 0.0 are set to 0.0. Clamping 
is useful for applications in which you want a single copy of the texture to 
appear on a large surface. If the texture coordinates of the surface range 
from 0.0 to 10.0 in both directions, one copy of the texture appears in the 
lower left corner of the surface. 

If you are using textures with borders or have specified a texture border 
color, both the wrapping mode and the filtering method (see “Filtering” on 
page 434) influence whether and how the border information is used. 

If you’re using the filtering method GL_NEAREST, the closest texel in the 
texture is used. For most wrapping modes, the border (or border color) is 
ignored. However, if the texture coordinate is outside the range [0, 1] and 
the wrapping mode is GL_CLAMP_TO_BORDER, then the nearest border 
texel is chosen. (If no border is present, the constant border color is used.)  

If you’ve chosen GL_LINEAR as the filtering method, a weighted combi-
nation in a 2 2 array (for two-dimensional textures) of color data is used 
for texture application. If there is a border or border color, the texture and 
border colors are used together, as follows:

• For the wrapping mode GL_REPEAT, the border is always ignored. The 
2 2 array of weighted texels wraps to the opposite edge of the texture. 
Thus, texels at the right edge are averaged with those at the left edge, 
and top and bottom texels are also averaged.
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• For the wrapping mode GL_CLAMP, the texel from the border (or 
GL_TEXTURE_BORDER_COLOR) is used in the 2 2 array of weighted 
texels.

• For the wrapping mode GL_CLAMP_TO_EDGE, the border is always 
ignored. Texels at or near the edge of the texture are used for texturing 
calculations, but not the border. 

• For the wrapping mode GL_CLAMP_TO_BORDER, if the texture coor-
dinate is outside the range [0, 1], then only border texels (or if no 
border is present, the constant border color) are used for texture appli-
cation. Near the edge of texture coordinates, texels from both the bor-
der and the interior texture may be sampled in a 2 2 array. 

If you are using clamping, you can avoid having the rest of the surface 
affected by the texture. To do this, use alpha values of 0 for the edges (or 
borders, if they are specified) of the texture. The decal texture function 
directly uses the texture’s alpha value in its calculations. If you are using one 
of the other texture functions, you may also need to enable blending with 
good source and destination factors. (See “Blending” in Chapter 6.)

To see the effects of wrapping, you must have texture coordinates that 
venture beyond [0.0, 1.0]. Start with Example 9-1, and modify the texture 
coordinates for the squares by mapping the texture coordinates from 0.0 to 
4.0, as follows:

glBegin(GL_QUADS); 
  glTexCoord2f(0.0, 0.0); glVertex3f(-2.0, -1.0, 0.0);
  glTexCoord2f(0.0, 4.0); glVertex3f(-2.0, 1.0, 0.0); 
  glTexCoord2f(4.0, 4.0); glVertex3f(0.0, 1.0, 0.0); 
  glTexCoord2f(4.0, 0.0); glVertex3f(0.0, -1.0, 0.0); 

  glTexCoord2f(0.0, 0.0); glVertex3f(1.0, -1.0, 0.0); 
  glTexCoord2f(0.0, 4.0); glVertex3f(1.0, 1.0, 0.0);  
  glTexCoord2f(4.0, 4.0); glVertex3f(2.41421, 1.0, -1.41421);
  glTexCoord2f(4.0, 0.0); glVertex3f(2.41421, -1.0, -1.41421);
glEnd();

With GL_REPEAT wrapping, the result is as shown in Figure 9-10.

Figure 9-10 Repeating a Texture
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In this case, the texture is repeated in both the s- and t- directions, since the 
following calls are made to glTexParameter*():

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); 
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);

Some OpenGL implementations support GL_MIRRORED_REPEAT wrapping, 
which reverses orientation at every integer texture coordinate boundary. 
Figure 9-11 shows the contrast between ordinary repeat wrapping (left) and 
the mirrored repeat (right).

In Figure 9-12, GL_CLAMP is used for each direction. Where the texture 
coordinate s or t is greater than one, the texel used is from where each 
texture coordinate is exactly one.

Wrapping modes are independent for each direction. You can also clamp in 
one direction and repeat in the other, as shown in Figure 9-13.

Figure 9-11 Comparing GL_REPEAT to GL_MIRRORED_REPEAT

Figure 9-12 Clamping a Texture

Figure 9-13 Repeating and Clamping a Texture
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You’ve now seen several arguments for glTexParameter*(), which are 
summarized as follows.

void glTexParameter{if}(GLenum target, GLenum pname, TYPE param);
void glTexParameter{if}v(GLenum target, GLenum pname,

const TYPE *param);
void glTexParameterI{i ui}v(GLenum target, GLenum pname,

const TYPE *param);

Sets various parameters that control how a texture is treated as it’s applied 
to a fragment or stored in a texture object. The target parameter is GL_
TEXTURE_1D, GL_TEXTURE_2D, GL_TEXTURE_3D, GL_TEXTURE_1D_
ARRAY, GL_TEXTURE_2D_ARRAY, GL_TEXTURE_CUBE_MAP, and GL_
TEXTURE_RECTANGLE to match the intended texture. The possible 
values for pname and param are shown in Table 9-7. You can use the vector 
version of the command to supply an array of values for GL_TEXTURE_
BORDER_COLOR, or you can supply individual values for other 
parameters using the nonvector version. If values are supplied as integers 
using glTexParameterf*(), they’re converted to floating-point numbers 
according to Table 4-1; they’re also clamped to the range [0, 1]. Integer 
values passed into glTexParameterI*() are not converted. Likewise, if 
integer values are supplied using glTexParameterI*() to set floating-point 
parameters, they are converted as described in Table 4-1.

Parameter Values

GL_TEXTURE_WRAP_S GL_CLAMP, GL_CLAMP_TO_EDGE, 
GL_CLAMP_TO_BORDER, GL_REPEAT, 
GL_MIRRORED_REPEAT

GL_TEXTURE_WRAP_T GL_CLAMP, GL_CLAMP_TO_EDGE, 
GL_CLAMP_TO_BORDER, GL_REPEAT, 
GL_MIRRORED_REPEAT

GL_TEXTURE_WRAP_R GL_CLAMP, GL_CLAMP_TO_EDGE, 
GL_CLAMP_TO_BORDER, GL_REPEAT, 
GL_MIRRORED_REPEAT

GL_TEXTURE_MAG_FILTER GL_NEAREST, GL_LINEAR

Table 9-7 glTexParameter*() Parameters

Compatibility 
Extension

GL_CLAMP
GL_TEXTURE_
BORDER_COLOR
GL_GENERATE_
MIPMAP
GL_TEXTURE_
PRIORITY
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Try This

Figures 9-12 and 9-13 are drawn using GL_NEAREST for the minification 
and magnification filters. What happens if you change the filter values to 
GL_LINEAR? The resulting image should look more blurred.

Border information may be used while calculating texturing. For the 
simplest demonstration of this, set GL_TEXTURE_BORDER_COLOR to 

GL_TEXTURE_MIN_FILTER GL_NEAREST, GL_LINEAR, 
GL_NEAREST_MIPMAP_NEAREST,
GL_NEAREST_MIPMAP_LINEAR,
GL_LINEAR_MIPMAP_NEAREST,
GL_LINEAR_MIPMAP_LINEAR

GL_TEXTURE_BORDER_COLOR any four values in [0.0, 1.0] (for non-integer 
texture formats), or signed or unsigned integer 
values (for integer texture formats) 

GL_TEXTURE_PRIORITY [0.0, 1.0] for the current texture object

GL_TEXTURE_MIN_LOD any floating-point value

GL_TEXTURE_MAX_LOD any floating-point value

GL_TEXTURE_BASE_LEVEL any non-negative integer

GL_TEXTURE_MAX_LEVEL any non-negative integer

GL_TEXTURE_LOD_BIAS any floating-point value

GL_DEPTH_TEXTURE_MODE GL_RED, GL_LUMINANCE, GL_INTENSITY, 
GL_ALPHA

GL_TEXTURE_COMPARE_MODE GL_NONE, GL_COMPARE_REF_TO_TEXTURE 
(for Version 3.0 and later), or
GL_COMPARE_R_TO_TEXTURE (for versions 
up to and including Version 2.1)

GL_TEXTURE_COMPARE_FUNC GL_LEQUAL, GL_GEQUAL, GL_LESS,
GL_GREATER, GL_EQUAL, GL_NOTEQUAL,
GL_ALWAYS, GL_NEVER

GL_GENERATE_MIPMAP GL_TRUE, GL_FALSE

Parameter Values

Table 9-7 (continued)        glTexParameter*() Parameters

Try This
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a noticeable color. With the filters set to GL_NEAREST and the wrapping 
mode set to GL_CLAMP_TO_BORDER, the border color affects the textured 
object (for texture coordinates beyond the range [0, 1]). The border also 
affects the texturing with the filters set to GL_LINEAR and the wrapping 
mode set to GL_CLAMP. 

What happens if you switch the wrapping mode to GL_CLAMP_TO_EDGE 
or GL_REPEAT? In both cases, the border color is ignored.

Nate Robins’ Texture Tutorial

Run the Nate Robins’ texture tutorial and see the effects of the wrapping 
parameters GL_REPEAT and GL_CLAMP. You will need to make the texture 
coordinates at the vertices (parameters to glTexCoord2f()) less than 0 
and/or greater than 1 to see any repeating or clamping effect.

Automatic Texture-Coordinate Generation

You can use texture mapping to make contours on your models or to simu-
late the reflections from an arbitrary environment on a shiny model. To 
achieve these effects, let OpenGL automatically generate the texture coordi-
nates for you, rather than explicitly assign them with glTexCoord*(). To gen-
erate texture coordinates automatically, use the command glTexGen().

void glTexGen{ifd}(GLenum coord, GLenum pname, TYPE param);
void glTexGen{ifd}v(GLenum coord, GLenum pname, const TYPE *param);

Specifies the functions for automatically generating texture coordinates. 
The first parameter, coord, must be GL_S, GL_T, GL_R, or GL_Q to indicate 
whether texture coordinate s, t, r, or q is to be generated. The pname
parameter is GL_TEXTURE_GEN_MODE, GL_OBJECT_PLANE, or 
GL_EYE_PLANE. If it’s GL_TEXTURE_GEN_MODE, param is an integer 
(or, in the vector version of the command, points to an integer) that
is one of GL_OBJECT_LINEAR, GL_EYE_LINEAR, GL_SPHERE_MAP, 
GL_REFLECTION_MAP, or GL_NORMAL_MAP. These symbolic constants 
determine which function is used to generate the texture coordinate. 
With either of the other possible values for pname, param is a pointer to 
an array of values (for the vector version) specifying parameters for the 
texture-generation function.

Compatibility 
Extension

glTexGen and all 
accpted tokens.
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The different methods of texture-coordinate generation have different uses. 
Specifying the reference plane in object coordinates is best when a texture 
image remains fixed to a moving object. Thus, GL_OBJECT_LINEAR would 
be used for putting a wood grain on a tabletop. Specifying the reference 
plane in eye coordinates (GL_EYE_LINEAR) is best for producing dynamic 
contour lines on moving objects. GL_EYE_LINEAR may be used by special-
ists in the geosciences who are drilling for oil or gas. As the drill goes deeper 
into the ground, the drill may be rendered with different colors to repre-
sent the layers of rock at increasing depths. GL_SPHERE_MAP and GL_
REFLECTION_MAP are used mainly for spherical environment mapping, 
and GL_NORMAL_MAP is used for cube maps. (See “Sphere Map” on 
page 463 and “Cube Map Textures” on page 465.) 

Creating Contours

When GL_TEXTURE_GEN_MODE and GL_OBJECT_LINEAR are specified, 
the generation function is a linear combination of the object coordinates of 
the vertex (xo, yo, zo, wo):

generated coordinate = p1 x0 + p2y0 + p3z0 + p4w0

The p1, ..., p4 values are supplied as the param argument to glTexGen*v(),
with pname set to GL_OBJECT_PLANE. With p1, ..., p4 correctly normalized, 
this function gives the distance from the vertex to a plane. For example, if 
p2 = p3 = p4 = 0 and p1 = 1, the function gives the distance between the ver-
tex and the plane x = 0. The distance is positive on one side of the plane, 
negative on the other, and zero if the vertex lies on the plane.

Initially, in Example 9-8, equally spaced contour lines are drawn on a teapot; 
the lines indicate the distance from the plane x = 0. The coefficients for the 
plane x = 0 are in this array:

static GLfloat xequalzero[] = {1.0, 0.0, 0.0, 0.0};

Since only one property is being shown (the distance from the plane), a 
one-dimensional texture map suffices. The texture map is a constant green 
color, except that at equally spaced intervals it includes a red mark. Since 
the teapot is sitting on the xy-plane, the contours are all perpendicular to its 
base. Plate 18 shows the picture drawn by the program.

In the same example, pressing the ‘s’ key changes the parameters of the 
reference plane to

static GLfloat slanted[] = {1.0, 1.0, 1.0, 0.0};
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The contour stripes are parallel to the plane x + y + z = 0, slicing across the 
teapot at an angle, as shown in Plate 18. To restore the reference plane to its 
initial value, x = 0, press the ‘x’ key.

Example 9-8 Automatic Texture-Coordinate Generation: texgen.c

#define stripeImageWidth 32
GLubyte stripeImage[4*stripeImageWidth];

static GLuint texName;

void makeStripeImage(void)
{
   int j;
    
   for (j = 0; j < stripeImageWidth; j++) {
      stripeImage[4*j]   = (GLubyte) ((j<=4) ? 255 : 0);
      stripeImage[4*j+1] = (GLubyte) ((j>4) ? 255 : 0);
      stripeImage[4*j+2] = (GLubyte) 0;
      stripeImage[4*j+3] = (GLubyte) 255;
   }
}

/*  planes for texture-coordinate generation  */
static GLfloat xequalzero[] = {1.0, 0.0, 0.0, 0.0};
static GLfloat slanted[] = {1.0, 1.0, 1.0, 0.0};
static GLfloat *currentCoeff;
static GLenum currentPlane;
static GLint currentGenMode;

void init(void)
{
   glClearColor(0.0, 0.0, 0.0, 0.0);
   glEnable(GL_DEPTH_TEST);
   glShadeModel(GL_SMOOTH);

   makeStripeImage();
   glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

   glGenTextures(1, &texName);
   glBindTexture(GL_TEXTURE_1D, texName);
   glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_WRAP_S, GL_REPEAT);
   glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER,
                   GL_LINEAR);
   glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER,
                   GL_LINEAR);
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   glTexImage1D(GL_TEXTURE_1D, 0, GL_RGBA, stripeImageWidth, 0,
                GL_RGBA, GL_UNSIGNED_BYTE, stripeImage);

   glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
   currentCoeff = xequalzero;
   currentGenMode = GL_OBJECT_LINEAR;
   currentPlane = GL_OBJECT_PLANE;
   glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, currentGenMode);
   glTexGenfv(GL_S, currentPlane, currentCoeff);

   glEnable(GL_TEXTURE_GEN_S);
   glEnable(GL_TEXTURE_1D);
   glEnable(GL_CULL_FACE);
   glEnable(GL_LIGHTING);
   glEnable(GL_LIGHT0);
   glEnable(GL_AUTO_NORMAL);
   glEnable(GL_NORMALIZE);
   glFrontFace(GL_CW);
   glCullFace(GL_BACK);
   glMaterialf(GL_FRONT, GL_SHININESS, 64.0);
}

void display(void)
{
   glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

   glPushMatrix();
   glRotatef(45.0, 0.0, 0.0, 1.0);
   glBindTexture(GL_TEXTURE_1D, texName);
   glutSolidTeapot(2.0);
   glPopMatrix();
   glFlush();
}

void reshape(int w, int h)
{
   glViewport(0, 0, (GLsizei) w, (GLsizei) h);
   glMatrixMode(GL_PROJECTION);
   glLoadIdentity();
   if (w <= h)
      glOrtho(-3.5, 3.5, -3.5*(GLfloat)h/(GLfloat)w, 
               3.5*(GLfloat)h/(GLfloat)w, -3.5, 3.5);
   else
      glOrtho(-3.5*(GLfloat)w/(GLfloat)h, 
               3.5*(GLfloat)w/(GLfloat)h, -3.5, 3.5, -3.5, 3.5);
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   glMatrixMode(GL_MODELVIEW);
   glLoadIdentity();
}

void keyboard(unsigned char key, int x, int y)
{
   switch (key) {
      case ‘e’:
      case ‘E’:
         currentGenMode = GL_EYE_LINEAR;
         currentPlane = GL_EYE_PLANE;
         glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, currentGenMode);
         glTexGenfv(GL_S, currentPlane, currentCoeff);
         glutPostRedisplay();
         break;
      case ‘o’:
      case ‘O’:
         currentGenMode = GL_OBJECT_LINEAR;
         currentPlane = GL_OBJECT_PLANE;
         glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, currentGenMode);
         glTexGenfv(GL_S, currentPlane, currentCoeff);
         glutPostRedisplay();
         break;
      case ‘s’:
      case ‘S’:
         currentCoeff = slanted;
         glTexGenfv(GL_S, currentPlane, currentCoeff);
         glutPostRedisplay();
         break;
      case ‘x’:
      case ‘X’:
         currentCoeff = xequalzero;
         glTexGenfv(GL_S, currentPlane, currentCoeff);
         glutPostRedisplay();
         break;
      case 27:
         exit(0);
         break;
      default:
         break;
   }
}

int main(int argc, char** argv)
{
   glutInit(&argc, argv);
   glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
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   glutInitWindowSize(256, 256);
   glutInitWindowPosition(100, 100);
   glutCreateWindow(argv[0]);
   init();
   glutDisplayFunc(display);
   glutReshapeFunc(reshape);
   glutKeyboardFunc(keyboard);
   glutMainLoop();
   return 0;
}

You enable texture-coordinate generation for the s-coordinate by passing 
GL_TEXTURE_GEN_S to glEnable(). To generate other coordinates, enable 
them with GL_TEXTURE_GEN_T, GL_TEXTURE_GEN_R, or GL_TEXTURE_
GEN_Q. Use glDisable() with the appropriate constant to disable coordi-
nate generation. Also note the use of GL_REPEAT to cause the contour lines 
to be repeated across the teapot. 

The GL_OBJECT_LINEAR function calculates the texture coordinates in 
the model’s coordinate system. Initially, in Example 9-8, the GL_OBJECT_
LINEAR function is used, so the contour lines remain perpendicular to the 
base of the teapot, no matter how the teapot is rotated or viewed. However, 
if you press the ‘e’ key, the texture-generation mode is changed from 
GL_OBJECT_LINEAR to GL_EYE_LINEAR, and the contour lines are calcu-
lated relative to the eye coordinate system. (Pressing the ‘o’ key restores 
GL_OBJECT_LINEAR as the texture-generation mode.) If the reference plane 
is x = 0, the result is a teapot with red stripes parallel to the yz-plane from 
the eye’s point of view, as shown in Plate 18. Mathematically, you are mul-
tiplying the vector (p1 p2 p3 p4) by the inverse of the modelview matrix to 
obtain the values used to calculate the distance to the plane. The texture 
coordinate is generated with the following function:

generated coordinate = p1’xe + p2’ye + p3’ze + p4’we

where (p1’ p2’ p3’ p4’) = (p1 p2 p3 p4)M 1

In this case, (xe, ye, ze, we) are the eye coordinates of the vertex, and p1, ..., 
p4 are supplied as the param argument to glTexGen*(), with pname set to 
GL_EYE_PLANE. The primed values are calculated only at the time they’re 
specified, so this operation isn’t as computationally expensive as it looks. 

In all these examples, a single texture coordinate is used to generate con-
tours. s, t, and (if needed) r texture coordinates can be generated indepen-
dently, however, to indicate the distances to two or three different planes. 
With a properly constructed two- or three-dimensional texture map, the 
resulting two or three sets of contours can be viewed simultaneously. For an 
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added level of complexity, you can mix generation functions. For example, 
you can calculate the s-coordinate using GL_OBJECT_LINEAR, and the 
t-coordinate using GL_EYE_LINEAR.

Sphere Map

Advanced

The goal of environment mapping is to render an object as if it were 
perfectly reflective, so that the colors on its surface are those reflected to 
the eye from its surroundings. In other words, if you look at a perfectly 
polished, perfectly reflective silver object in a room, you see the reflections 
of the walls, floor, and other items in the room from the object. (A classic 
example of using environment mapping is the evil, morphing cyborg in the 
film Terminator 2.) The objects whose reflections you see depend on the 
position of your eye and on the position and surface angles of the silver 
object. To perform environment mapping, all you have to do is create an 
appropriate texture map and then have OpenGL generate the texture 
coordinates for you.

Environment mapping is an approximation based on the assumption that 
the items in the environment are far away in comparison with the surfaces 
of the shiny object—that is, it’s a small object in a large room. With this 
assumption, to find the color of a point on the surface, take the ray from 
the eye to the surface, and reflect the ray off the surface. The direction of 
the reflected ray completely determines the color to be painted there. 
Encoding a color for each direction on a flat texture map is equivalent to 
putting a polished perfect sphere in the middle of the environment and 
taking a picture of it with a camera that has a lens with a very long focal 
length placed far away. Mathematically, the lens has an infinite focal length 
and the camera is infinitely far away. The encoding therefore covers a 
circular region of the texture map, tangent to the top, bottom, left, and 
right edges of the map. The texture values outside the circle make no 
difference, because they are never accessed in environment mapping.

To make a perfectly correct environment texture map, you need to obtain 
a large silvered sphere, take a photograph of it in some environment with 
a camera located an infinite distance away and with a lens that has an infinite 
focal length, and scan in the photograph. To approximate this result, you can 
use a scanned-in photograph of an environment taken with an extremely 
wide-angle (or fish-eye) lens. Plate 21 shows a photograph taken with such a 
lens and the results when that image is used as an environment map. 

Advanced
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Once you’ve created a texture designed for environment mapping, you 
need to invoke OpenGL’s environment-mapping algorithm. This algorithm 
finds the point on the surface of the sphere with the same tangent surface 
as that of the point on the object being rendered, and it paints the object’s 
point with the color visible on the sphere at the corresponding point.

To generate automatically the texture coordinates to support environment 
mapping, use this code in your program:

glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_SPHERE_MAP);
glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_SPHERE_MAP);
glEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_GEN_T);

The GL_SPHERE_MAP constant creates the proper texture coordinates for 
the environment mapping. As shown, you need to specify it for both the 
s- and t-directions. However, you don’t have to specify any parameters for 
the texture-coordinate generation function.

The GL_SPHERE_MAP texture function generates texture coordinates using 
the following mathematical steps:

1. u is the unit vector pointing from the origin to the vertex (in eye 
coordinates).

2. n’ is the current normal vector, after transformation to eye 
coordinates.

3. r is the reflection vector, (rx  ry  rz)
T, which is calculated by u – 2n’n’Tu.

4. An interim value, m, is calculated by

5. Finally, the s and t texture coordinates are calculated by

and

.

m = 2 r2 + r2 + (rz + 1) 2
 x         y

s = r  /m + 1x 2

t = r  /m + 1y 2
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Cube Map Textures

Advanced

Cube map textures are a special technique that uses a set of six two-
dimensional texture images to form a texture cube centered at the origin. 
For each fragment, the texture coordinates (s, t, r) are treated as a direction 
vector, with each texel representing what on the texture cube is “seen” from 
the origin. Cube maps are ideal for environment, reflection, and lighting 
effects. Cube maps can also wrap a spherical object with textures, 
distributing texels relatively evenly on all its sides.

The cube map textures are supplied by calling glTexImage2D() six times, 
with the target argument indicating the face of the cube (+X, X, +Y, Y, +Z, 
or Z). As the name implies, each cube map texture must have the same 
dimensions so that a cube is formed with the same number of texels on each 
side, as shown in this code, where imageSize has been set to a power of 2:

glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X, 0, GL_RGBA,
 imageSize, imageSize, 0, GL_RGBA, GL_UNSIGNED_BYTE, image1);
glTexImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_X, 0, GL_RGBA,
 imageSize, imageSize, 0, GL_RGBA, GL_UNSIGNED_BYTE, image4);
glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_Y, 0, GL_RGBA,
 imageSize, imageSize, 0, GL_RGBA, GL_UNSIGNED_BYTE, image2);
glTexImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, 0, GL_RGBA,
 imageSize, imageSize, 0, GL_RGBA, GL_UNSIGNED_BYTE, image5);
glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_Z, 0, GL_RGBA,
 imageSize, imageSize, 0, GL_RGBA, GL_UNSIGNED_BYTE, image3);
glTexImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, 0, GL_RGBA,
 imageSize, imageSize, 0, GL_RGBA, GL_UNSIGNED_BYTE, image6);

Useful cube map texture images may be generated by setting up a (real or 
synthetic) camera at the origin of a scene and taking six “snapshots” with 
90-degree field-of-view, oriented along the positive and negative axes. The 
“snapshots” break up the entire 3D space into six frustums, which intersect 
at the origin.

Cube map functionality is orthogonal to many other texturing operations, 
so cube maps work with standard texturing features, such as texture 
borders, mipmaps, copying images, subimages, and multitexturing. There is 
a special proxy texture target for cube maps (GL_PROXY_TEXTURE_CUBE_
MAP) because a cube map generally uses six times as much memory as an 
ordinary 2D texture. Texture parameters and texture objects should be 
established for the entire cube map as a whole, not for the six individual 

Advanced
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cube faces. The following code is an example of setting wrapping and 
filtering methods with the target GL_TEXTURE_CUBE_MAP:

glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S,
                GL_REPEAT);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T,
                GL_REPEAT);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R,
                GL_REPEAT);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER,
                GL_NEAREST);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER,
                GL_NEAREST);

To determine which texture (and texels) to use for a given fragment, the 
current texture coordinates (s, t, r) first select one of the six textures, based 
upon which of s, t, and r has the largest absolute value (major axis) and 
its sign (orientation). The remaining two coordinates are divided by the 
coordinate with the largest value to determine a new (s’, t’), which is used to 
look up the corresponding texel(s) in the selected texture of the cube map.

Although you can calculate and specify the texture coordinates explicitly, 
this is generally laborious and unnecessary. Almost always, you’ll want to 
use glTexGen*() to automatically generate cube map texture coordinates, 
using one of the two special texture coordinate generation modes: 
GL_REFLECTION_MAP or GL_NORMAL_MAP. 

GL_REFLECTION_MAP uses the same calculations (until step 3 of the 
sphere-mapping coordinate computation described in “Sphere Map” 
on page 463) as the GL_SPHERE_MAP texture coordinate generation to 
determine (rx  ry  rz) for use as (s, t, r). The reflection map mode is well-suited 
for environment mapping as an alternative to sphere mapping.

GL_NORMAL_MAP is particularly useful for rendering scenes with infinite 
(or distant local) light sources and diffuse reflection. GL_NORMAL_MAP 
uses the model-view matrix to transform the vertex’s normal into eye 
coordinates. The resulting (nx  ny  nz) becomes texture coordinates (s, t, r).
In Example 9-9, the normal map mode is used for texture generation and 
cube map texturing is also enabled.

Example 9-9 Generating Cube Map Texture Coordinates: cubemap.c

glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_NORMAL_MAP);
glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_NORMAL_MAP);
glTexGeni(GL_R, GL_TEXTURE_GEN_MODE, GL_NORMAL_MAP);
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glEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_GEN_T);
glEnable(GL_TEXTURE_GEN_R);
/*  turn on cube map texturing  */
glEnable(GL_TEXTURE_CUBE_MAP);

Multitexturing

During standard texturing, a single texture image is applied once to a poly-
gon. Multitexturing allows several textures to be applied, one by one in a 
pipeline of texture operations, to the same polygon. There is a series of 
texture units, where each texture unit performs a single texturing operation 
and successively passes its result onto the next texture unit, until all defined 
units are completed. Figure 9-14 shows how a fragment might undergo four 
texturing operations—one for each of four texture units. 

Multitexturing enables advanced rendering techniques, such as lighting 
effects, decals, compositing, and detail textures.

Texture

unit 0

Texture

image 0 Texture

unit 1

Texture

image 1 Texture

unit 2

Texture

image 2 Texture

unit 3

Texture

image 3

Fragment

color in
put

to texturing
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Figure 9-14 Multitexture Processing Pipeline
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Steps in Multitexturing

To write code that uses multitexturing, perform the following steps:

Note: In feedback mode, multitexturing is undefined beyond the first 
texture unit.

1. For each texturing unit, establish the texturing state, including texture 
image, filter, environment, coordinate generation, and matrix. Use 
glActiveTexture() to change the current texture unit. This is discussed 
further in the next subsection, “Establishing Texture Units.” You may 
also call glGetIntegerv(GL_MAX_TEXTURE_UNITS,...) to see how 
many texturing units are available on your implementation. In a 
worst-case scenario, there are at least two texture units.

2. During vertex specification, use glMultiTexCoord*() to specify more 
than one texture coordinate per vertex. A different texture coordinate 
may be used for each texturing unit. Each texture coordinate will be 
used during a different texturing pass. Automatic texture-coordinate 
generation and specification of texture coordinates in vertex arrays are 
special cases of this situation. The special cases are described in “Other 
Methods of Texture-Coordinate Specification” on page 471.

Establishing Texture Units

Multitexturing introduces multiple texture units, which are additional 
texture application passes. Each texture unit has identical capabilities and 
houses its own texturing state, including the following: 

• Texture image

• Filtering parameters

• Environment application

• Texture matrix stack

• Automatic texture-coordinate generation

• Vertex-array specification (if needed)

Each texture unit combines the previous fragment color with its texture 
image, according to its texture state. The resulting fragment color is passed 
onto the next texture unit, if it is active. 

To assign texture information to each texture unit, the routine 
glActiveTexture() selects the current texture unit to be modified. After 
that, calls to glTexImage*(), glTexParameter*(), glTexEnv*(), glTexGen*(),
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and glBindTexture() affect only the current texture unit. Queries of these 
texture states also apply to the current texture unit, as well as queries of the 
current texture coordinates and current raster texture coordinates.

If you use texture objects, you can bind a texture to the current texture unit. 
The current texture unit has the values of the texture state contained within 
the texture object (including the texture image).

The following code fragment, Example 9-10, has two distinct parts. In the 
first part, two ordinary texture objects are created (assume the arrays texels0
and texels1 define texture images). In the second part, the two texture 
objects are used to set up two texture units.

Example 9-10 Initializing Texture Units for Multitexturing: multitex.c

/*  Two ordinary texture objects are created  */
GLuint texNames[2];
glGenTextures(2, texNames);
glBindTexture(GL_TEXTURE_2D, texNames[0]);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, 32, 32, 0, GL_RGBA,
              GL_UNSIGNED_BYTE, texels0);
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glBindTexture(GL_TEXTURE_2D, texNames[1]);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, 16, 16, 0, GL_RGBA,
             GL_UNSIGNED_BYTE, texels1);
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, 
                GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, 
                GL_CLAMP_TO_EDGE);
/*  Use the two texture objects to define two texture units 
 *  for use in multitexturing.  */
glActiveTexture(GL_TEXTURE0);
glEnable(GL_TEXTURE_2D);

void glActiveTexture(GLenum texUnit);

Selects the texture unit that is currently modified by texturing routines. 
texUnit is a symbolic constant of the form GL_TEXTUREi, where i is in the 
range from 0 to k 1, and k is the maximum number of texture units. 
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glBindTexture(GL_TEXTURE_2D, texNames[0]);
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
glMatrixMode(GL_TEXTURE);
   glLoadIdentity();
   glTranslatef(0.5f, 0.5f, 0.0f);
   glRotatef(45.0f, 0.0f, 0.0f, 1.0f);
   glTranslatef(-0.5f, -0.5f, 0.0f);
glMatrixMode(GL_MODELVIEW);
glActiveTexture(GL_TEXTURE1);
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, texNames[1]);
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);

When a textured polygon is now rendered, it is rendered with two texturing 
units. In the first unit, the texels0 texture image is applied with nearest texel 
filtering, repeat wrapping, replacement texture environment, and a texture 
matrix that rotates the texture image. After the first unit is completed, the 
newly textured polygon is sent onto the second texture unit (GL_TEXTURE1), 
where it is processed with the texels1 texture image with linear filtering, 
edge clamping, modulation texture environment, and the default identity 
texture matrix.

Note: Operations to a texture attribute group (using glPushAttrib(),
glPushClientAttrib(), glPopAttrib(), or glPopClientAttrib()) save 
or restore the texture state of all texture units (except for the texture 
matrix stack).

Specifying Vertices and Their Texture Coordinates

With multitexturing, it isn’t enough to have one set of texture coordinates 
per vertex. You need to have one set for each texture unit for each vertex. 
Instead of using glTexCoord*(), you must use glMultiTexCoord*(), which 
specifies the texture unit, as well as the texture coordinates.

In Example 9-11, a triangle is given the two sets of texture coordinates 
necessary for multitexturing with two active texture units.

void glMultiTexCoord{1234}{sifd}(GLenum texUnit, TYPE coords);
void glMultiTexCoord{1234}{sifd}v(GLenum texUnit, const TYPE *coords);

Sets the texture-coordinate data (s, t, r, q) in coords for use with the texture 
unit texUnit. The enumerated values for texUnit are the same as for 
glActiveTexture().

Compatibility 
Extension

glMultiTexCoord
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Example 9-11 Specifying Vertices for Multitexturing

   glBegin(GL_TRIANGLES);
   glMultiTexCoord2f(GL_TEXTURE0, 0.0, 0.0);
   glMultiTexCoord2f(GL_TEXTURE1, 1.0, 0.0);
   glVertex2f(0.0, 0.0);
   glMultiTexCoord2f(GL_TEXTURE0, 0.5, 1.0);
   glMultiTexCoord2f(GL_TEXTURE1, 0.5, 0.0);
   glVertex2f(50.0, 100.0);
   glMultiTexCoord2f(GL_TEXTURE0, 1.0, 0.0);
   glMultiTexCoord2f(GL_TEXTURE1, 1.0, 1.0);
   glVertex2f(100.0, 0.0);
   glEnd();

Note: If you are multitexturing and you use glTexCoord*(), you are setting 
the texture coordinates for the first texture unit. In other words, 
using glTexCoord*() is equivalent to using glMultiTexCoord*
(GL_TEXTURE0,...).

In the rare case that you are multitexturing a bitmap or image rectangle, you 
need to associate several texture coordinates with each raster position. 
Therefore, you must call glMultiTexCoord*() several times, once for each 
active texture unit, for each glRasterPos*() or glWindowPos*() call. (Since 
there is only one current raster position for the entire bitmap or image 
rectangle, there is only one corresponding texture coordinate per unit, so 
the aesthetic possibilities are extremely limited.)

Other Methods of Texture-Coordinate Specification

Explicitly calling glMultiTexCoord*() is only one of three ways to specify 
texture coordinates when multitexturing. The other two ways are to use 
automatic texture-coordinate generation (with glTexGen*()) or vertex 
arrays (with glTexCoordPointer()).

If you are multitexturing and using automatic texture-coordinate genera-
tion, then glActiveTexture() directs which texture unit is affected by the 
following automatic texture-coordinate generation routines: 

• glTexGen*(...) 

• glEnable(GL_TEXTURE_GEN_*) 

• glDisable(GL_TEXTURE_GEN_*)

If you are multitexturing and specifying texture coordinates in vertex 
arrays, then glClientActiveTexture() directs the texture unit for which 
glTexCoordPointer() specifies its texture-coordinate data.
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Reverting to a Single Texture Unit

If you are using multitexturing and want to return to a single texture unit, 
then you need to disable texturing for all units, except for texture unit 0, 
with code as shown in Example 9-12.

Example 9-12 Reverting to Texture Unit 0

   /*  disable texturing for other texture units  */
   glActiveTexture (GL_TEXTURE1);  
   glDisable (GL_TEXTURE_2D);
   glActiveTexture (GL_TEXTURE2);  
   glDisable (GL_TEXTURE_2D);
   /*  make texture unit 0 current  */
   glActiveTexture (GL_TEXTURE0); 

Texture Combiner Functions

Advanced

OpenGL has evolved from its early focus on vertex processing (transforma-
tion, clipping) toward more concern with rasterization and fragment oper-
ations. Texturing functionality is increasingly exposed to the programmer 
to improve fragment processing. 

In addition to multipass texture techniques, flexible texture combiner func-
tions provide the programmer with finer control over mixing fragments 
with texture or other color values. Texture combiner functions support 
high-quality texture effects, such as bump mapping, more realistic specular 
lighting, and texture fade effects (such as interpolating between two tex-
tures). A combiner function takes color and alpha data from up to three 
sources and processes them, generating RGBA values as output for subse-
quent operations.

glTexEnv*() is used extensively to configure combiner functions. In 
“Texture Functions,” you encountered an abbreviated description of 
glTexEnv*(), and now here’s the complete description:

void glClientActiveTexture(GLenum texUnit);

Selects the current texture unit for specifying texture-coordinate data with 
vertex arrays. texUnit is a symbolic constant of the form GL_TEXTUREi,
with the same values that are used for glActiveTexture().

Compatibility 
Extension

glClientActive
Texture

Advanced
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void glTexEnv{if}(GLenum target, GLenum pname, TYPE param);
void glTexEnv{if}v(GLenum target, GLenum pname, const TYPE *param);

Sets the current texturing function. target must be either GL_TEXTURE_
FILTER_CONTROL or GL_TEXTURE_ENV. 

If target is GL_TEXTURE_FILTER_CONTROL, then pname must be 
GL_TEXTURE_LOD_BIAS, and param is a single, floating-point value 
used to bias the mipmapping level-of-detail parameter.

If target is GL_TEXTURE_ENV, acceptable values for the second and 
third arguments (pname and param) are listed in Table 9-8. If pname is 
GL_TEXTURE_ENV_MODE, param specifies how texture values are com-
bined with the color values of the fragment being processed. Several envi-
ronment modes (GL_BLEND, GL_COMBINE, GL_COMBINE_RGB, and 
GL_COMBINE_ALPHA) determine whether other environment modes are 
useful.

If the texture environment mode is GL_BLEND, then the GL_TEXTURE_
ENV_COLOR setting is used.

If the texture environment mode is GL_COMBINE, then the GL_COMBINE_
RGB, GL_COMBINE_ALPHA, GL_RGB_SCALE, or GL_ALPHA_SCALE 
parameters are also used. For the GL_COMBINE_RGB function, the 
GL_SOURCEi_RGB and GL_OPERANDi_RGB parameters (where i is 0, 1, 
or 2) also may be specified. Similarly for the GL_COMBINE_ALPHA 
function, GL_SOURCEi_ALPHA and GL_OPERANDi_ALPHA may be 
specified.

glTexEnv pname glTexEnv param

GL_TEXTURE_ENV_MODE GL_DECAL, GL_REPLACE, GL_MODULATE, 
GL_BLEND, GL_ADD, or GL_COMBINE

GL_TEXTURE_ENV_COLOR array of 4 floating-point numbers: (R, G, B, A)

GL_COMBINE_RGB GL_REPLACE, GL_MODULATE, GL_ADD, 
GL_ADD_SIGNED, GL_INTERPOLATE,  
GL_SUBTRACT, GL_DOT3_RGB, or GL_DOT3_RGBA

GL_COMBINE_ALPHA GL_REPLACE, GL_MODULATE, GL_ADD, 
GL_ADD_SIGNED, GL_INTERPOLATE, or 
GL_SUBTRACT

Table 9-8 Texture Environment Parameters If target Is GL_TEXTURE_ENV

Compatibility 
Extension

glTexEnv and all 
accepted tokens
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Here are the steps for using combiner functions. If you are multitexturing, 
you may use a different combiner function for every texture unit and thus 
repeat these steps for each unit.

• To use any combiner function, you must call

glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE);

• You should specify how you want RGB or alpha values to be combined 
(see Table 9-9). For instance, Example 9-13 directs the current texture 
unit to subtract RGB and alpha values of one source from another 
source.

Example 9-13 Setting the Programmable Combiner Functions

glTexEnvf(GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_SUBTRACT);
glTexEnvf(GL_TEXTURE_ENV, GL_COMBINE_ALPHA, GL_SUBTRACT); 

GL_SRCi_RGB or
GL_SRCi_ALPHA
(where i is 0, 1, or 2)

GL_TEXTURE, GL_TEXTUREn (where n denotes 
the nth texture unit and multitexturing is enabled), 
GL_CONSTANT, GL_PRIMARY_COLOR, or 
GL_PREVIOUS

GL_OPERANDi_RGB
(where i is 0, 1, or 2)

GL_SRC_COLOR, GL_ONE_MINUS_SRC_COLOR, 
GL_SRC_ALPHA, or GL_ONE_MINUS_SRC_ALPHA

GL_OPERANDi_ALPHA
(where i is 0, 1, or 2)

GL_SRC_ALPHA, or GL_ONE_MINUS_SRC_ALPHA

GL_RGB_SCALE floating-point color scaling factor

GL_ALPHA_SCALE floating-point alpha scaling factor

glTexEnv param Combiner Function

GL_REPLACE Arg0

GL_MODULATE (default) Arg0 * Arg1

GL_ADD Arg0 + Arg1

GL_ADD_SIGNED Arg0 + Arg1 – 0.5

GL_INTERPOLATE Arg0 * Arg2 + Arg1 * (1 – Arg2)

Table 9-9 GL_COMBINE_RGB and GL_COMBINE_ALPHA Functions

glTexEnv pname glTexEnv param

Table 9-8 (continued)        Texture Environment Parameters If target Is GL_TEXTURE_
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Note: GL_DOT3_RGB and GL_DOT3_RGBA are used only for 
GL_COMBINE_RGB and not used for GL_COMBINE_ALPHA.

The GL_DOT3_RGB and GL_DOT3_RGBA modes differ subtly. With 
GL_DOT3_RGB, the same dot product is placed into all three (R, G, B) 
values. For GL_DOT3_RGBA, the result is placed into all four (R, G, B, A).

• Specify the source for the ith argument of the combiner function with 
the constant GL_SOURCEi_RGB. The number of arguments (up to three) 
depends upon the type of function chosen. As shown in Table 9-9, 
GL_SUBTRACT requires two arguments, which may be set with the 
following code:

Example 9-14 Setting the Combiner Function Sources

glTexEnvf(GL_TEXTURE_ENV, GL_SRC0_RGB, GL_TEXTURE);
glTexEnvf(GL_TEXTURE_ENV, GL_SRC1_RGB, GL_PREVIOUS);

When pname is GL_SOURCEi_RGB, these are your options for param along 
with how the source is determined:

– GL_TEXTURE—the source for the ith argument is the texture of the 
current texture unit

– GL_TEXTUREn—the texture associated with texture unit n. (If you 
use this source, texture unit n must be enabled and valid, or the 
result will be undefined.)

– GL_CONSTANT—the constant color set with GL_TEXTURE_
ENV_COLOR

– GL_PRIMARY_COLOR—the incoming fragment to texture unit 0, 
which is the fragment color, prior to texturing

– GL_PREVIOUS—the incoming fragment from the previous texture 
unit (for texture unit 0, this is the same as GL_PRIMARY_COLOR)

GL_SUBTRACT Arg0 – Arg1

GL_DOT3_RGB
GL_DOT3_RGBA

4 * ((Arg0r – 0.5) * (Arg1r – 0.5) + 
(Arg0g – 0.5) * (Arg1g – 0.5) + 
(Arg0b – 0.5) * (Arg1b – 0.5))

glTexEnv param Combiner Function

Table 9-9 (continued)        GL_COMBINE_RGB and GL_COMBINE_ALPHA Functions

http://lib.ommolketab.ir
http//lib.ommolketab.ir


476 Chapter 9: Texture Mapping

If you suppose that the GL_SUBTRACT combiner code in Example 9-14 is 
set for texture unit 2, then the output from texture unit 1 (GL_PREVIOUS, 
Arg1) is subtracted from texture unit 2 (GL_TEXTURE, Arg0).

• Specify which values (RGB or alpha) of the sources are used and how 
they are used:

– GL_OPERANDi_RGB matches the corresponding GL_SOURCEi_RGB 
and determines the color values for the current GL_COMBINE_
RGB function. If GL_OPERANDi_RGB is pname, then param must 
be one of GL_SRC_COLOR, GL_ONE_MINUS_SRC_COLOR, 
GL_SRC_ALPHA, or GL_ONE_MINUS_SRC_ALPHA. 

– Similarly, GL_OPERANDi_ALPHA matches the corresponding 
GL_SOURCEi_ALPHA and determines the alpha values for the 
current GL_COMBINE_ALPHA function. However, param is limited 
to either GL_SRC_ALPHA or GL_ONE_MINUS_SRC_ALPHA.

When GL_SRC_ALPHA is used for the GL_COMBINE_RGB function, the 
alpha values for the combiner source are interpreted as R, G, B values. In 
Example 9-15, the three R, G, B components for Arg2 are (0.4, 0.4, 0.4). 

Example 9-15 Using an Alpha Value for RGB Combiner Operations

static GLfloat constColor[4] = {0.1, 0.2, 0.3, 0.4};  
glTexEnvfv(GL_TEXTURE_ENV, GL_TEXTURE_ENV_COLOR, constColor);
glTexEnvf(GL_TEXTURE_ENV, GL_SRC2_RGB, GL_CONSTANT);
glTexEnvf(GL_TEXTURE_ENV, GL_OPERAND2_RGB, GL_SRC_ALPHA);

In Example 9-15, if the operand had instead been GL_SRC_COLOR, the 
RGB components would be (0.1, 0.2, 0.3). For GL_ONE_MINUS* modes, 
a value’s complement (either 1–color or 1–alpha) is used for combiner 
calculations. In Example 9-15, if the operand is GL_ONE_MINUS_SRC_
COLOR, the RGB components are (0.9, 0.8, 0.7). For GL_ONE_MINUS_
SRC_ALPHA, the result is (0.6, 0.6, 0.6).

• Optionally choose RGB or alpha scaling factors. The defaults are

glTexEnvf(GL_TEXTURE_ENV, GL_RGB_SCALE, 1.0);
glTexEnvf(GL_TEXTURE_ENV, GL_ALPHA_SCALE, 1.0);

• Finally draw the geometry, ensuring vertices have associated texture 
coordinates.
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The Interpolation Combiner Function

The interpolation function helps illustrate texture combiners, because it 
uses the maximum number of arguments and several source and operand 
modes. Example 9-16 is a portion of the sample program combiner.c.

Example 9-16 Interpolation Combiner Function: combiner.c

/* for use as constant texture color */
static GLfloat constColor[4] = {0.0, 0.0, 0.0, 0.0};  

constColor[3] = 0.2;
glTexEnvfv(GL_TEXTURE_ENV, GL_TEXTURE_ENV_COLOR, constColor);
glBindTexture(GL_TEXTURE_2D, texName[0]);
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE);
glTexEnvf(GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_INTERPOLATE);
glTexEnvf(GL_TEXTURE_ENV, GL_SRC0_RGB, GL_TEXTURE);
glTexEnvf(GL_TEXTURE_ENV, GL_OPERAND0_RGB, GL_SRC_COLOR);
glTexEnvf(GL_TEXTURE_ENV, GL_SRC1_RGB, GL_PREVIOUS);
glTexEnvf(GL_TEXTURE_ENV, GL_OPERAND1_RGB, GL_SRC_COLOR);
glTexEnvf(GL_TEXTURE_ENV, GL_SRC2_RGB, GL_CONSTANT);
glTexEnvf(GL_TEXTURE_ENV, GL_OPERAND2_RGB, GL_SRC_ALPHA);

/* geometry is now rendered */

In Example 9-16, there is only one active texture unit. Since GL_
INTERPOLATE is the combiner function, there are three arguments, and 
they are combined with the following formula: (Arg0 * Arg2) + (Arg1 * 
(1 – Arg2)). The three arguments are as follows:

• Arg0, GL_TEXTURE, the texture image associated with the 
currently bound texture object (texName[0])

• Arg1, GL_PREVIOUS, the result of the previous texture unit, but 
since this is texture unit 0, GL_PREVIOUS is the fragment prior to 
texturing

• Arg2, GL_CONSTANT, a constant color; currently (0.0, 0.0, 0.0, 0.2)

The interpolated result you get is a weighted blending of the texture image 
and the untextured fragment. Because GL_SRC_ALPHA is specified for 
GL_OPERAND2_RGB, the alpha value of the constant color (Arg2) serves 
as the weighting. 

If you run the sample program combiner.c, you’ll see 20 percent of the 
texture blended with 80 percent of a smooth-shaded polygon. combiner.c 
also varies the alpha value of the constant color, so you’ll see the results of 
different weightings.
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Examining the interpolation function explains why several of the OpenGL 
default values were chosen. The third argument for interpolation is 
intended as weight for the two other sources. Since interpolation is the only 
combiner function to use three arguments, it’s safe to make GL_CONSTANT 
the default for Arg2. At first glance, it may seem odd that the default value 
for GL_OPERAND2_RGB is GL_SRC_ALPHA. But the interpolation weight is 
usually the same for all three color components, so using a single value 
makes sense, and taking it from the alpha value of the constant is 
convenient. 

Applying Secondary Color after Texturing

While applying a texture to a typical fragment, only a primary color is 
combined with the texel colors. The primary color may be the result of 
lighting calculations or glColor*().

After texturing, but before fog calculations, sometimes a secondary color is 
also applied to a fragment. Application of a secondary color may result in a 
more realistic highlight on a textured object.

Secondary Color When Lighting Is Disabled

If lighting is not enabled and the color sum mode is enabled (by 
glEnable(GL_COLOR_SUM)), then the current secondary color (set by 
glSecondaryColor*()) is added to the post-texturing fragment color.

glTexEnv pname Initial Value for param

GL_SRC0_RGB GL_TEXTURE

GL_SRC1_RGB GL_PREVIOUS

GL_SRC2_RGB GL_CONSTANT

GL_OPERAND0_RGB GL_SRC_COLOR

GL_OPERAND1_RGB GL_SRC_COLOR

GL_OPERAND2_RGB GL_SRC_ALPHA

Table 9-10 Default Values for Some Texture Environment Modes
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glSecondaryColor*() accepts the same data types and interprets values the 
same way that glColor*() does. (See Table 4-1 on page 198.) Secondary 
colors may also be specified in vertex arrays.

Secondary Specular Color When Lighting Is Enabled

Texturing operations are applied after lighting, but blending specular 
highlights with a texture’s colors usually lessens the effect of lighting. As 
discussed earlier (in “Selecting a Lighting Model” on page 227), you can cal-
culate two colors per vertex: a primary color, which consists of all nonspec-
ular contributions, and a secondary color, which is a sum of all specular 
contributions. If specular color is separated, the secondary (specular) color 
is added to the fragment after the texturing calculation. 

Note: If lighting is enabled, the secondary specular color is applied, 
regardless of the GL_COLOR_SUM mode, and any secondary color 
set by glSecondaryColor*() is ignored.

Point Sprites

While OpenGL supports antialiasing of points with a point size greater than 
one (as set with glPointSize()), the visual results may not be precisely what 
your application requires. Point sprites allow better control over the shading 
of large points. By default, when point sprites are enabled, every fragment 
in the sprite is assigned the same state as the vertex that initiated the point’s 
rendering. Point sprites modify how fragment data is generated by iterating 
texture coordinates across the fragments of the expanded point.

void glSecondaryColor3{b s i f d ub us ui}(TYPE r, TYPE g, TYPE b);
void glSecondaryColor3{b s i f d ub us ui}v(const TYPE *values);

Sets the red, green, and blue values for the current secondary color. The 
first suffix indicates the data type for parameters: byte, short, integer, 
float, double, unsigned byte, unsigned short, or unsigned integer. If there 
is a second suffix, v, then values is a pointer to an array of values of the 
given data type.

Compatibility 
Extension

glSecondaryColor
GL_COLOR_SUM
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To enable point sprites, call glEnable() with a parameter of GL_POINT_
SPRITE. This will cause OpenGL to ignore the current settings for point 
antialiasing. Each fragment in the point will be assigned the associated 
vertex data, and those values will be used in shading.

Note: OpenGL Version 3.1 renders all points as if point sprites were enabled. 
glTexEnv() and all of the parameters associated with point sprites 
have been removed.

To enable the iteration of texture coordinates across the point sprite, 
you need to call glTexEnv*(GL_POINT_SPRITE, GL_COORD_REPLACE, 
GL_TRUE). This needs to be done for each texture unit with a texture map 
that you want applied to the sprite. Figure 9-15 illustrates the differences 
between antialiased points and texture-mapped point sprites. On the left 
is an image of a 10-pixel antialiased point. The right image is a 10-pixel 
texture-mapped point sprite.

Figure 9-15 Comparison of Antialiased Points and Textured Point Sprites

The texture coordinates for point sprites are automatically assigned by 
OpenGL during rasterization. Figure 9-16 illustrates how texture coordinates 
are assigned to the point sprite. The s texture coordinate increases from zero 
to one from left to right across the fragments of the sprite. However, for t
texture coordinates, values are controlled by where the sprite’s texture-
coordinate origin is specified. Control of the origin is specified by calling 
glPointParameter() with  GL_POINT_SPRITE_COORD_ORIGIN and setting 
the value to either GL_LOWER_LEFT or GL_UPPER_LEFT.

When the sprite origin is specified to be the GL_LOWER_LEFT, the
t-coordinate increases from zero to one going from bottom to top of the 
sprite. Conversely, when the value is specified to be GL_UPPER_LEFT, the
t-coordinate increases from zero to one going from top to bottom.

Example 9-17 demonstrates a 10-pixel-wide point sprite with an applied 
texture map.
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Example 9-17 Configuring a Point Sprite for Texture Mapping: sprite.c

glPointSize(10.0);
glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE);
glPointParameteri(GL_POINT_SPRITE_COORD_ORIGIN, GL_LOWER_LEFT);
glEnable(GL_POINT_SPRITE);

The Texture Matrix Stack

Advanced

Just as your model coordinates are transformed by a matrix before being 
rendered, texture coordinates are multiplied by a 4 4 matrix before any 
texture mapping occurs. By default, the texture matrix is the identity, so the 
texture coordinates you explicitly assign or those that are automatically 
generated remain unchanged. By modifying the texture matrix while 
redrawing an object, however, you can make the texture slide over the 
surface, rotate around it, stretch and shrink, or any combination of the 
three. In fact, since the texture matrix is a completely general 4 4 matrix, 
effects such as perspective can be achieved. 

The texture matrix is actually the top matrix on a stack, which must have a 
stack depth of at least two matrices. All the standard matrix-manipulation 

GL_LOWER_LEFT
(0,0)

(1,1)

GL_UPPER_LEFT

(0,0)

(1,1)

F

F

Figure 9-16 Assignment of Texture Coordinates Based on the Setting of
GL_POINT_SPRITE_COORD_ORIGIN

Advanced
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commands such as glPushMatrix(), glPopMatrix(), glMultMatrix(), and 
glRotate*() can be applied to the texture matrix. To modify the current 
texture matrix, you need to set the matrix mode to GL_TEXTURE, as 
follows: 

glMatrixMode(GL_TEXTURE); /* enter texture matrix mode */
glRotated(...); 
/* ... other matrix manipulations ... */
glMatrixMode(GL_MODELVIEW); /* back to modelview mode */

The q-Coordinate

The mathematics of the fourth texture coordinate, q, are similar to the 
w-coordinate of the (x, y, z, w) object coordinates. When the four texture 
coordinates (s, t, r, q) are multiplied by the texture matrix, the resulting 
vector (s’, t’, r’, q’) is interpreted as homogeneous texture coordinates. In 
other words, the texture map is indexed by s’/q’, t’/q’, and r’/q’.

You can make use of q in cases where more than one projection or perspec-
tive transformation is needed. For example, suppose you want to model a 
spotlight that has some nonuniform pattern—brighter in the center, per-
haps, or noncircular, because of flaps or lenses that modify the shape of the 
beam. You can emulate shining such a light onto a flat surface by making a 
texture map that corresponds to the shape and intensity of a light, and then 
projecting it onto the surface in question using projection transformations. 
Projecting the cone of light onto surfaces in the scene requires a perspective 
transformation (q  1), since the lights might shine on surfaces that aren’t 
perpendicular to them. A second perspective transformation occurs because 
the viewer sees the scene from a different (but perspective) point of view. 
(See Plate 28 for an example; and see “Fast Shadows and Lighting Effects 
Using Texture Mapping” by Mark Segal, Carl Korobkin, Rolf van Widenfelt, 
Jim Foran, and Paul Haeberli, SIGGRAPH 1992 Proceedings [Computer
Graphics, 26:2, July 1992, pp. 249–252] for more details.)

Another example might arise if the texture map to be applied comes from a 
photograph that itself was taken in perspective. As with spotlights, the final 
view depends on the combination of two perspective transformations.

Nate Robins’ Texture Tutorial

In Nate Robins’ texture tutorial, you can use the popup menu to view the 
4 4 texture matrix, make changes in matrix values, and then see their 
effects.

Compatibility 
Extension

GL_TEXTURE
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Depth Textures

Advanced

After lighting a surface (see Chapter 5), you’ll soon notice that OpenGL 
light sources don’t cast shadows. The color at each vertex is calculated 
without regard to any other objects in the scene. To have shadows, you need 
to determine and record which surfaces (or portions of the surfaces) are 
occluded from a direct path to a light source.

A multipass technique using depth textures provides a solution to render-
ing shadows. If you temporarily move the viewpoint to the light source 
position, you notice that everything you see is lit—there are no shadows 
from that perspective. A depth texture provides the mechanism to save the 
depth values for all “unshadowed” fragments in a shadow map. As you ren-
der your scene, if you compare each incoming fragment to the correspond-
ing depth value in the shadow map, you can choose what to render, 
depending upon whether it is or isn’t shadowed. The idea is similar to the 
depth test, except that it’s done from the point of view of the light source.

The condensed description is as follows:

1. Render the scene from the point of view of the light source. It doesn’t 
matter how the scene looks; you only want the depth values. Create a 
shadow map by capturing the depth buffer values and storing them in 
a texture map (shadow map).

2. Generate texture coordinates with (s, t) coordinates referencing loca-
tions within the shadow map, with the third texture coordinate (r), as 
the distance from the light source. Then draw the scene a second time, 
comparing the r value with the corresponding depth texture value to 
determine whether the fragment is lit or in shadow.

The following sections provide a more detailed discussion, along with 
sample code illustrating each of the steps.

Creating a Shadow Map

The first step is to create a texture map of depth values. You create this by 
rendering the scene with the viewpoint positioned at the light source’s 
position. Example 9-18 calls glGetLightfv() to obtain the current light 
source position, calculates an up-vector, and then uses it as the viewing 
transformation. 

Advanced
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Example 9-18 begins by setting the viewport size to match that of the 
texture map. It then sets up the appropriate projection and viewing 
matrices. The objects for the scene are rendered, and the resulting depth 
image is copied into texture memory for use as a shadow map. Finally, the 
viewport is reset to it’s original size and position.

Note a few more points:

• The projection matrix controls the shape of the light’s “lampshade.” 
The variables lightFovy and lightAspect in the gluPerspective() control 
the size of the lampshade. A small lightFovy value will be more like a 
spotlight, and a larger value will be more like a floodlight.

• The near and far clipping planes for the light (lightNearPlane and 
lightFarPlane) are used to control the precision of the depth values. 
Try to keep the separation between the near and far planes as small 
as possible to maximize the precision of the values.

• After the depth values have been established in the depth buffer, you 
want to capture them and put them into a GL_DEPTH_COMPONENT 
format texture map. Example 9-18 uses glCopyTexImage2D() to make 
a texture image from the depth buffer contents. As with any texture, 
ensure that the image width and height are powers of two. 

Example 9-18 Rendering Scene with Viewpoint at Light Source: shadowmap.c 

GLint    viewport[4];
GLfloat  lightPos[4];

glGetLightfv(GL_LIGHT0, GL_POSITION, lightPos);
glGetIntegerv(GL_VIEWPORT, viewport);

glViewport(0, 0, SHADOW_MAP_WIDTH, SHADOW_MAP_HEIGHT);

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glMatrixMode(GL_PROJECTION);
glPushMatrix();
glLoadIdentity();
gluPerspective(lightFovy, lightAspect, lightNearPlane,
                 lightFarPlane);
glMatrixMode(GL_MODELVIEW);

glPushMatrix();
glLoadIdentity();
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gluLookAt(lightPos[0], lightPos[1], lightPos[2],
    lookat[0], lookat[1], lookat[2],
    up[0], up[1], up[2]);
drawObjects();
glPopMatrix();

glMatrixMode(GL_PROJECTION);
glPopMatrix();
glMatrixMode(GL_MODELVIEW);

glCopyTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, 0, 0,
    SHADOW_MAP_WIDTH, SHADOW_MAP_HEIGHT, 0);

glViewport(viewport[0], viewport[1],
    viewport[2], viewport[3]);

Generating Texture Coordinates and Rendering

Now use glTexGen*() to automatically generate texture coordinates that 
compute the eye-space distance from the light source position. The value of 
the r coordinate should correspond to the distance from the primitives to 
the light source. You can do this by using the same projection and viewing 
transformations that you used to create the shadow map. Example 9-19 uses 
the GL_MODELVIEW matrix stack to do all the matrix computations.

Note that the generated (s, t, r, q) texture coordinates and the depth values 
in the shadow map are not similarly scaled. The texture coordinates are 
generated in eye coordinates, so they fall in the range [ 1, 1]. The depth 
values in the texels are within [0, 1]. Therefore, an initial translation and 
scaling maps the texture coordinates into the same range of values as the 
shadow map.

Example 9-19 Calculating Texture Coordinates: shadowmap.c

GLfloat  tmpMatrix[16];

glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glLoadIdentity();
glTranslatef(0.5, 0.5, 0.0);
glScalef(0.5, 0.5, 1.0);
gluPerspective(lightFovy, lightAspect,
    lightNearPlane, lightFarPlane);
gluLookAt(lightPos[0], lightPos[1], lightPos[2],
     lookat[0], lookat[1], lookat[2],
     up[0], up[1], up[2]);

http://lib.ommolketab.ir
http//lib.ommolketab.ir


486 Chapter 9: Texture Mapping

glGetFloatv(GL_MODELVIEW_MATRIX, tmpMatrix);
glPopMatrix();

transposeMatrix(tmpMatrix);

glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR);
glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR);
glTexGeni(GL_R, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR);
glTexGeni(GL_Q, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR);

glTexGenfv(GL_S, GL_OBJECT_PLANE, &tmpMatrix[0]);
glTexGenfv(GL_T, GL_OBJECT_PLANE, &tmpMatrix[4]);
glTexGenfv(GL_R, GL_OBJECT_PLANE, &tmpMatrix[8]);
glTexGenfv(GL_Q, GL_OBJECT_PLANE, &tmpMatrix[12]);

glEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_GEN_T);
glEnable(GL_TEXTURE_GEN_R);
glEnable(GL_TEXTURE_GEN_Q);

In Example 9-20, before the scene is rendered for the second and final time, 
the texture comparison mode GL_COMPARE_R_TO_TEXTURE instructs 
OpenGL to compare the fragment’s r-coordiate with the texel value. If the 
r distance is less than or equal to (the comparison function GL_LEQUAL) 
the texel value, there is nothing between this fragment and the light source, 
and it is effectively treated as having a luminance value of one. If the com-
parison fails, then there is another primitive between this fragment and the 
light source, so this fragment is shadowed and has an effective luminance 
of zero. 

Example 9-20 Rendering Scene Comparing r Coordinate: shadowmap.c 

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S,
    GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T,
    GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
    GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
    GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC,
    GL_LEQUAL);
glTexParameteri(GL_TEXTURE_2D, GL_DEPTH_TEXTURE_MODE,
    GL_LUMINANCE);
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE,
     GL_COMPARE_R_TO_TEXTURE);
glEnable(GL_TEXTURE_2D);
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This technique can produce some unintended visual artifacts: 

• Self-shadowing, whereby an object incorrectly casts a shadow upon 
itself, is a common problem.

• Aliasing of the projected texture, particularly in the regions farthest 
from the light sources, can occur. Using higher resolution shadow 
maps can help reduce the aliasing.

• GL_MODULATE mode, when used with depth texturing, may cause 
sharp transitions between shadowed and unshadowed regions.

Unfortunately, there are no steadfast rules for overcoming these issues.  
Some experimentation may be required to produce the best-looking image.
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Chapter 10

10.The Framebuffer

Chapter Objectives

After reading this chapter, you’ll be able to do the following:

• Understand the buffers that make up the framebuffer and how 
they’re used

• Clear selected buffers and enable them for writing

• Control the parameters of the scissor, alpha, stencil, and depth tests 
that are applied to pixels

• Use occlusion queries to determine if objects will be visible

• Perform dithering and logical operations

• Use the accumulation buffer for such purposes as scene antialiasing

• Create and use framebuffer objects for advanced techniques, and to 
minimizing copying of data between buffers

Note: In OpenGL Version 3.1, some of the techniques and functions 
described in this chapter were removed through deprecation. The 
concepts are still relevant, but are available using more modern 
features.
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An important goal of almost every graphics program is to draw pictures on 
the screen. The screen is composed of a rectangular array of pixels, each 
capable of displaying a tiny square of color at that point in the image. After 
the rasterization stage (including texturing and fog), the data is not yet 
pixels—just fragments. Each fragment has coordinate data that corresponds 
to a pixel, as well as color and depth values. Then each fragment undergoes 
a series of tests and operations, some of which have been previously 
described (see “Blending” in Chapter 6), and others that are discussed in 
this chapter.

If the tests and operations are survived, the fragment values are ready to 
become pixels. To draw these pixels, you need to know what color they are, 
which is the information that’s stored in the color buffer. Whenever data is 
stored uniformly for each pixel, such storage for all the pixels is called a 
buffer. Different buffers might contain different amounts of data per pixel, 
but within a given buffer, each pixel is assigned the same amount of data. 
A buffer that stores a single bit of information about pixels is called a 
bitplane, and the number of bitplanes in a buffer is usually called its “depth” 
(not to be confused with a pixel’s depth value, which is used in depth-buffer 
testing, as described in “Depth Test” later in this chapter). 

As shown in Figure 10-1, the lower left pixel in an OpenGL window is pixel 
(0, 0), corresponding to the window coordinates of the lower left corner of 
the 1 1 region occupied by this pixel. In general, pixel (x, y) fills the region 
bounded by x on the left, x + 1 on the right, y on the bottom, and y + 1 on 
the top.

3.0

2.0

1.0

0.0

0.0 1.0 2.0 3.0

Pixel
(2, 1)

Lower left corner
of the window

x window coordinate

y window
coordinate

Figure 10-1 Region Occupied by a Pixel
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As an example of a buffer, let’s look more closely at the color buffer, which 
holds the color information that’s to be displayed on the screen. Assume 
that the screen is 1280 pixels wide and 1024 pixels high and that it’s a full 
24-bit color screen—in other words, that there are 224 (or 16,777,216) dif-
ferent colors that can be displayed. Since 24 bits translates to 3 bytes (8 bits 
per byte), the color buffer in this example has to store at least 3 bytes of data 
for each of the 1,310,720 (1280*1024) pixels on the screen. A particular 
hardware system might have more or fewer pixels on the physical screen as 
well as more or less color data per pixel. Any particular color buffer, how-
ever, has the same amount of data saved for each pixel on the screen.

The color buffer is only one of several buffers that hold information about a 
pixel. For example, in “A Hidden-Surface Removal Survival Kit” on page 205, 
you learned that the depth buffer holds depth information for each pixel. 
The color buffer itself can consist of several subbuffers. The framebuffer on 
a system comprises all of these buffers. With the exception of the color 
buffer(s), you don’t view these other buffers directly; instead, you use them 
to perform such tasks as hidden-surface elimination, antialiasing of an 
entire scene, stenciling, drawing smooth motion, and other operations. 

This chapter describes all the buffers that can exist in an OpenGL imple-
mentation and explains how they’re used. It also discusses the series of tests 
and pixel operations that are performed before any data is written to the 
viewable color buffer. Finally, for completeness, the chapter concludes by 
explaining how to use the accumulation buffer, which holds images that are 
drawn into the color buffer. Originally, the accumulation buffer was mar-
ginally more capable of storing higher-precision color values. With OpenGL 
Version 3.0, color buffers that support native floating-point values were 
introduced, which effectively makes the accumulation buffer obsolete, 
though not necessarily the techniques that were enabled by it. These can 
easily be implemented on floating-point buffers.

This chapter has the following major sections.

• “Buffers and Their Uses” describes the possible buffers, what they’re 
for, and how to clear them and enable them for writing.

• “Testing and Operating on Fragments” explains the scissor, alpha, 
stencil, and depth tests that occur after a pixel’s position and color have 
been calculated but before this information is drawn on the screen. 
Several operations—blending, dithering, and logical operations—can 
also be performed before a fragment updates the screen.

• “The Accumulation Buffer” describes how to perform several advanced 
techniques using the accumulation buffer. These techniques include 
antialiasing an entire scene, using motion blur, and simulating photo-
graphic depth of field.

Chapter 10: The Framebuffer
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• “Framebuffer Objects” discusses a new type of object in OpenGL 
Version 3.0 that enables rendering to occur in buffers other than the 
color buffer displayed on the screen. They enable off-screen rendering
and the ability to update texture maps using render-to-texture.

Version 1.4 of OpenGL added

• Stencil operations GL_INCR_WRAP and GL_DECR_WRAP.

Version 3.0 enhanced support by adding

• Framebuffer objects for off-screen and render-to-texture capabilities.

• sRGB-formatted framebuffers for rendering.

Version 3.1 modified the feature set by

• Removing support for the accumulation and auxiliary buffers.

Buffers and Their Uses

An OpenGL system can manipulate the following buffers: 

• Color buffers: front-left, front-right, back-left, back-right, and any 
number of auxiliary color buffers 

• Depth buffer 

• Stencil buffer 

• Accumulation buffer 

Your particular OpenGL implementation determines which buffers are 
available and how many bits per pixel each buffer holds. Additionally, you 
can have multiple visuals, or window types, that have different buffers 
available. Table 10-1 lists the parameters to use with glGetIntegerv() to query 
your OpenGL system about per-pixel buffer storage for a particular visual. 

Note: If you’re using the X Window System, you’re guaranteed, at a mini-
mum, to have a visual with one color buffer for use in RGBA mode, 
with associated stencil, depth, and accumulation buffers that have 
color components of nonzero size. Also, if your X Window System 
implementation supports a Pseudo-Color visual, you are also guaran-
teed to have one OpenGL visual that has a color buffer for use in 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Buffers and Their Uses 493

color-index mode, with associated depth and stencil buffers. You’ll 
probably want to use glXGetConfig() to query your visuals; see 
Appendix C for more information about this routine. 

Color Buffers

The color buffers are the ones to which you usually draw. They contain 
either color-index or RGB color data and may also contain alpha values. An 
OpenGL implementation that supports stereoscopic viewing has left and 
right color buffers for the left and right stereo images. If stereo isn’t sup-
ported, only the left buffers are used. Similarly, double-buffered systems 
have front and back buffers, and a single-buffered system has the front 
buffers only. Every OpenGL implementation must provide a front-left 
color buffer.

Optional, nondisplayable auxiliary color buffers may also be supported. 
OpenGL doesn’t specify any particular uses for these buffers, so you can 
define and use them however you please. For example, you might use them 
for saving an image that you use repeatedly. Then, rather than redrawing 
the image, you can just copy it from an auxiliary buffer into the usual color 
buffers. (See the description of glCopyPixels() in “Reading, Writing, and 
Copying Pixel Data” on page 333 for more information about how to 
do this.)

Parameter Meaning

GL_RED_BITS, GL_GREEN_BITS,
GL_BLUE_BITS, GL_ALPHA_BITS

number of bits per R, G, B, or A component in 
the color buffers

GL_INDEX_BITS number of bits per index in the color buffers

GL_DEPTH_BITS number of bits per pixel in the depth buffer

GL_STENCIL_BITS number of bits per pixel in the stencil buffer

GL_ACCUM_RED_BITS,
GL_ACCUM_GREEN_BITS,
GL_ACCUM_BLUE_BITS,
GL_ACCUM_ALPHA_BITS

number of bits per R, G, B, or A component in 
the accumulation buffer

Table 10-1 Query Parameters for Per-Pixel Buffer Storage
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Note: In OpenGL Version 3.0, color-index mode rendering and auxiliary 
buffers were deprecated; these features were entirely removed from 
OpenGL in Version 3.1. They are available as part of the GL_ARB_
compatibility extension, if your OpenGL implementation supports 
this extension.

You can use GL_STEREO or GL_DOUBLEBUFFER with glGetBooleanv()
to find out if your system supports stereo (that is, has left and right 
buffers) or double-buffering (front and back buffers). To find out how 
many, if any, auxiliary buffers are present, use glGetIntegerv() with 
GL_AUX_BUFFERS.

Depth Buffer

The depth buffer stores a depth value for each pixel. As described in 
“A Hidden-Surface Removal Survival Kit” on page 205, depth is usually 
measured in terms of distance to the eye, so pixels with larger depth-buffer 
values are overwritten by pixels with smaller values. This is just a useful 
convention, however, and the depth buffer’s behavior can be modified as 
described in “Depth Test” on page 510. The depth buffer is sometimes called 
the z buffer (the z comes from the fact that x- and y-values measure horizon-
tal and vertical displacement on the screen, and the z-value measures dis-
tance perpendicular to the screen).

Stencil Buffer

One use for the stencil buffer is to restrict drawing to certain portions of the 
screen, just as a cardboard stencil can be used with a can of spray paint to 
make fairly precise painted images. For example, if you want to draw an 
image as it would appear through an odd-shaped windshield, you can store 
an image of the windshield’s shape in the stencil buffer, and then draw the 
entire scene. The stencil buffer prevents anything that wouldn’t be visible 
through the windshield from being drawn. Thus, if your application is a 
driving simulation, you can draw all the instruments and other items inside 
the automobile once, and as the car moves, only the outside scene need be 
updated.

Accumulation Buffer

The accumulation buffer holds RGBA color data just as the color buffers do 
in RGBA mode. (The results of using the accumulation buffer in color-index 
mode are undefined.) It’s typically used for accumulating a series of images 
into a final, composite image. With this method, you can perform 
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operations such as scene antialiasing by supersampling an image and then 
averaging the samples to produce the values that are finally painted into the 
pixels of the color buffers. You don’t draw directly into the accumulation 
buffer; accumulation operations are always performed in rectangular blocks, 
which are usually transfers of data to or from a color buffer.

Clearing Buffers

In graphics programs, clearing the screen (or any of the buffers) is typically 
one of the most expensive operations you can perform—on a 1280 1024 
monitor, it requires touching well over a million pixels. For simple graphics 
applications, the clear operation can take more time than the rest of the 
drawing. If you need to clear not only the color buffer but also the depth 
and stencil buffers, the clear operation can be three times as expensive. 

To address this problem, some machines have hardware that can clear more 
than one buffer at once. The OpenGL clearing commands are structured 
to take advantage of such architectures. First, you specify the values to be 
written into each buffer to be cleared. Then you issue a single command to 
perform the clear operation, passing in a list of all the buffers to be cleared. 
If the hardware is capable of simultaneous clears, they all occur at once; 
otherwise, the buffers are cleared sequentially.

The following commands set the clearing values for each buffer:

void glClearColor(GLclampf red, GLclampf green, GLclampf blue,
GLclampf alpha);

void glClearIndex(GLfloat index);
void glClearDepth(GLclampd depth);
void glClearStencil(GLint s);
void glClearAccum(GLfloat red, GLfloat green, GLfloat blue,

GLfloat alpha);

Specifies the current clearing values for the color buffer (in RGBA mode), 
the color buffer (in color-index mode), the depth buffer, the stencil buffer, 
and the accumulation buffer. The GLclampf and GLclampd types (clamped 
GLfloat and clamped GLdouble) are clamped to be between 0.0 and 1.0. 
The default depth-clearing value is 1.0; all the other default clearing 
values are 0. The values set with the clear commands remain in effect until 
they’re changed by another call to the same command.

Compatibility 
Extension

glClearIndex
glClearAccum
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After you’ve selected your clearing values and you’re ready to clear the 
buffers, use glClear();

Advanced

If you’re using multiple draw buffers—particularly those that have floating-
point or non-normalized integer pixel formats—you can clear each 
individually bound buffer using glClearBuffer*() functions, which were 
introduced in OpenGL Version 3.0. Unlike functions such as glClearColor()
and glClearDepth(), which set a clear value within OpenGL that’s used 
when glClear() is called, glClearBuffer*() uses the values passed to it to 
immediately clear the bound drawing buffers.

void glClear(GLbitfield mask);

Clears the specified buffers. The value of mask is the bitwise logical OR of 
some combination of GL_COLOR_BUFFER_BIT, GL_DEPTH_BUFFER_BIT, 
GL_STENCIL_BUFFER_BIT, and GL_ACCUM_BUFFER_BIT to identify 
which buffers are to be cleared. GL_COLOR_BUFFER_BIT clears either the 
RGBA color buffer or the color-index buffer, depending on the mode of 
the system at the time. When you clear the color or color-index buffer, all 
the color buffers that are enabled for writing (see the next section) are 
cleared. The pixel ownership test, scissor test, and dithering, if enabled, 
are applied to the clearing operation. Masking operations, such as 
glColorMask() and glIndexMask(), are also effective. The alpha test, 
stencil test, and depth test do not affect the operation of glClear().

void glClearBuffer{fi ui}v(GLenum buffer, GLint drawbuffer,
const TYPE *value);

Clears the buffer indexed by drawbuffer associated with buffer to value.
buffer must be one of GL_COLOR, GL_DEPTH, or GL_STENCIL.

If buffer is GL_COLOR, drawbuffer specifies an index to a particular draw 
buffer, and value is a four-element array containing for clear color. If the 
buffer indexed by drawbuffer has multiple draw buffers (as specified by a 
call to glDrawBuffers()), all draw buffers are cleared to value.

If buffer is GL_DEPTH or GL_STENCIL, drawbuffer must be zero, and value
is a single-element array containing an appropriate clear value (subject to 
clamping and type conversion for depth values, and masking and type 
conversion for stencil values).

Compatibility 
Extension

GL_ACCUM_
BUFFER_BIT

Advanced
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To reduce the number of functions calls associated with using multiple 
draw buffers, you can call glClearBufferfi() to simultaneously clear the 
depth and stencil buffers (which is effectively equivalent to calling 
glClearBuffer*() twice—once for the depth buffer and once for the stencil 
buffer):

Selecting Color Buffers for Writing and Reading

The results of a drawing or reading operation can go into or come from any 
of the color buffers: front, back, front-left, back-left, front-right, back-right, 
or any of the auxiliary buffers. You can choose an individual buffer to be the 
drawing or reading target. For drawing, you can also set the target to draw 
into more than one buffer at the same time. You use glDrawBuffer() to 
select the buffers to be written and glReadBuffer() to select the buffer as 
the source for glReadPixels(), glCopyPixels(), glCopyTexImage*(), and 
glCopyTexSubImage*().

If you are using double-buffering, you usually want to draw only in the back 
buffer (and swap the buffers when you’re finished drawing). In some situa-
tions, you might want to treat a double-buffered window as though it were 
single-buffered by calling glDrawBuffer(GL_FRONT_AND_BACK) to 
enable you to draw to both front and back buffers at the same time. 

A GL_INVALID_ENUM is generated if buffer is not one of the accepted 
values listed above. GL_INVALID_VALUE is generated if buffer is GL_
COLOR, and drawbuffer is less than zero, or greater than or equal to GL_
MAX_DRAW_BUFFERS; or if buffer is GL_DEPTH, or GL_STENCIL, and 
drawbuffer is not zero. Finally, a GL_INVALID_OPERATION is set if buffer
is GL_COLOR, and applied to a color-index mode buffer.

void glClearBufferfi(GLenum buffer, GLint drawbuffer,
GLfloat depth, GLint stencil);

Clear both the depth and stencil buffers of the currently bound framebuffer 
simultaneously (which may be faster on some implementations). buffer
must be GL_DEPTH_STENCIL, and drawbuffer must be zero. depth and 
stencil will be used as the clear values for the respective buffers.

A GL_INVALID_ENUM is generated if buffer is not GL_DEPTH_STENCIL. 
and a GL_INVALID_VALUE is generated if drawbuffer is not zero.
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glDrawBuffer() is also used to select buffers to render stereo images 
(GL*LEFT and GL*RIGHT) and to render into auxiliary buffers (GL_AUXi).

Note: You can enable drawing to nonexistent buffers as long as you enable 
drawing to at least one buffer that does exist. If none of the specified 
buffers exists, an error results.

void glDrawBuffer(GLenum mode);
void glDrawBuffers(GLsizei n, const GLenum *buffers);

Selects the color buffers enabled for writing or clearing and disables 
buffers enabled by previous calls to glDrawBuffer(). More than one buffer 
may be enabled at one time. The value of mode can be one of the 
following:

GL_FRONT GL_FRONT_LEFT GL_AUXi

GL_BACK GL_FRONT_RIGHT GL_FRONT_AND_BACK
GL_LEFT GL_BACK_LEFT GL_NONE
GL_RIGHT GL_BACK_RIGHT GL_COLOR_

ATTACHMENTi

Arguments that omit LEFT or RIGHT refer to both the left and right stereo 
buffers; similarly, arguments that omit FRONT or BACK refer to both. The 
i in GL_AUXi is a digit identifying a particular auxiliary buffer.

By default, mode is GL_FRONT for single-buffered contexts and GL_BACK 
for double-buffered contexts.

OpenGL Version 2.0 added the glDrawBuffers() routine, which specifies 
multiple color buffers capable of receiving color values. buffers is an 
array of buffer enumerates. Only GL_NONE, GL_FRONT_LEFT,
GL_FRONT_RIGHT, GL_BACK_LEFT, GL_BACK_RIGHT, and GL_AUXi
are accepted.

With OpenGL Version 3.0’s addition of framebuffer objects, GL_COLOR_
ATTACHMENTi was added to specify which color renderbuffers are draw 
targets when OpenGL is bound to a user-defined framebuffer object.

If the fixed-function OpenGL pipeline is used for generating fragment 
colors, each of the specified buffers receives the same color value. If a 
fragment shader is employed and specifies output to multiple buffers, then 
each buffer will be written with the color specified in the shader’s output. 
See “Rendering to Multiple Output Buffers” in Chapter 15 for details.

Compatibility 
Extension

GL_AUXi
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Note: You must enable reading from a buffer that exists or an error results.

Masking Buffers

Before OpenGL writes data into the enabled color, depth, or stencil buffers, 
a masking operation is applied to the data, as specified with one of the 
following commands. A bitwise logical AND is performed with each mask 
and the corresponding data to be written. 

void glReadBuffer(GLenum mode);

Selects the color buffer enabled as the source for reading pixels for 
subsequent calls to glReadPixels(), glCopyPixels(), glCopyTexImage*(),
glCopyTexSubImage*(), and glCopyConvolutionFilter*(), and disables 
buffers enabled by previous calls to glReadBuffer(). The value of mode can 
be one of the following:

GL_FRONT GL_FRONT_LEFT GL_AUXi

GL_BACK GL_FRONT_RIGHT GL_COLOR_ATTACHMENTi

GL_LEFT GL_BACK_LEFT
GL_RIGHT GL_BACK_RIGHT

The buffers for glReadBuffer() are the same as those described for 
glDrawBuffer(). By default, mode is GL_FRONT for single-buffered 
contexts and GL_BACK for double-buffered contexts.

Use GL_COLOR_ATTACHMENTi with OpenGL Versions 3.0 and later 
when reading from a user-defined framebuffer object. The value of i must 
be between 0 and GL_MAX_COLOR_ATTACHMENTS (as returned by 
calling glGetIntegerv())

void glIndexMask(GLuint mask);
void glColorMask(GLboolean red, GLboolean green, GLboolean blue,

GLboolean alpha);
void glColorMaski(GLuint buf, GLboolean red, GLboolean green,

GLboolean blue, GLboolean alpha);
void glDepthMask(GLboolean flag);
void glStencilMask(GLuint mask);
void glStencilMaskSeparate(GLenum face, GLuint mask);

Sets the masks used to control writing into the indicated buffers. The mask 
set by glIndexMask() applies only in color-index mode. If a 1 appears

Compatibility 
Extension

GL_AUXi

Compatibility 
Extension

glIndexMask
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You can do plenty of tricks with color masking in color-index mode. For 
example, you can use each bit in the index as a different layer and set up 
interactions between arbitrary layers with appropriate settings of the color 
map. You can create overlays and underlays, and do so-called color-map 
animations. (See Chapter 14 for examples of using color masking.) Masking 
in RGBA mode is useful less often, but you can use it for loading separate 
image files into the red, green, and blue bitplanes, for example. 

You’ve seen one use for disabling the depth buffer in “Three-Dimensional 
Blending with the Depth Buffer” on page 263. Disabling the depth buffer 
for writing can also be useful if a common background is desired for a series 
of frames, and you want to add some features that may be obscured by parts 
of the background. For example, suppose your background is a forest, and 
you would like to draw repeated frames with the same trees, but with 
objects moving among them. After the trees are drawn and their depths 
recorded in the depth buffer, the image of the trees is saved, and the new 
items are drawn with the depth buffer disabled for writing. As long as the 
new items don’t overlap each other, the picture is correct. To draw the next 
frame, restore the image of the trees and continue. You don’t need to restore 
the values in the depth buffer. This trick is most useful if the background is 
extremely complex—so complex that it’s much faster just to recopy the 
image into the color buffer than to recompute it from the geometry.

Masking the stencil buffer can allow you to use a multiple-bit stencil buffer 
to hold multiple stencils (one per bit). You might use this technique to 

 in mask, the corresponding bit in the color-index buffer is written; if a 0 
appears, the bit isn’t written. Similarly, glColorMask() affects drawing in 
RGBA mode only. The red, green, blue, and alpha values control whether 
the corresponding component is written. (GL_TRUE means it is written.

If flag is GL_TRUE for glDepthMask(), the depth buffer is enabled for writ-
ing; otherwise, it’s disabled. The mask for glStencilMask() is used for 
stencil data in the same way as the mask is used for color-index data in 
glIndexMask(). The default values of all the GLboolean masks are 
GL_TRUE, and the default values for the two GLuint masks are all 1’s.

OpenGL Version 2.0 includes the glStencilMaskSeparate() function that 
allows separate mask values for front- and back-facing polygons.

OpenGL Version 3.0 added the glColorMaski() function to allow setting 
of the color mask for an individual buffer specified by buf when rendering 
to multiple color buffers (see “Selecting Color Buffers for Writing and 
Reading” on page 497 for more details on using multiple buffers).
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perform capping as explained in “Stencil Test” on page 504 or to implement 
the Game of Life as described in “Life in the Stencil Buffer” on page 664.

Note: The mask specified by glStencilMask() controls which stencil bit-
planes are written. This mask isn’t related to the mask that’s specified 
as the third parameter of glStencilFunc(), which specifies which bit-
planes are considered by the stencil function. 

Testing and Operating on Fragments

When you draw geometry, text, or images on the screen, OpenGL per-
forms several calculations to rotate, translate, scale, determine the lighting, 
project the object(s) into perspective, execute a vertex shader, figure out 
which pixels in the window are affected, and determine the colors in which 
those pixels should be drawn. Many of the earlier chapters in this book pro-
vide some information about how to control these operations. After 
OpenGL determines that an individual fragment should be generated and 
what its color should be, several processing stages remain that control how 
and whether the fragment is drawn as a pixel into the framebuffer. For 
example, if it’s outside a rectangular region or if it’s farther from the view-
point than the pixel that’s already in the framebuffer, it isn’t drawn. In 
another stage, the fragment’s color is blended with the color of the pixel 
already in the framebuffer.

This section describes both the complete set of tests that a fragment must 
pass before it goes into the framebuffer and the possible final operations 
that can be performed on the fragment as it’s written. The tests and opera-
tions occur in the following order; if a fragment is eliminated in an early 
test, none of the later tests or operations takes place:

1. Scissor test

2. Alpha test

3. Stencil test

4. Depth test

5. Blending

6. Dithering

7. Logical operations

All of these tests and operations are described in detail in the following 
subsections.
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Scissor Test

You can define a rectangular portion of your window and restrict drawing 
to take place within it by using the glScissor() command. If a fragment lies 
inside the rectangle, it passes the scissor test. 

The scissor test is just a version of a stencil test using a rectangular region 
of the screen. It’s fairly easy to create a blindingly fast hardware imple-
mentation of scissoring, while a given system might be much slower at 
stenciling—perhaps because the stenciling is performed in software. 

Advanced

An advanced use of scissoring is performing nonlinear projection. First 
divide the window into a regular grid of subregions, specifying viewport 
and scissor parameters that limit rendering to one region at a time. Then 
project the entire scene to each region using a different projection matrix.

To determine whether scissoring is enabled and to obtain the values 
that define the scissor rectangle, you can use GL_SCISSOR_TEST with 
glIsEnabled() and GL_SCISSOR_BOX with glGetIntegerv().

Alpha Test

In RGBA mode, the alpha test allows you to accept or reject a fragment 
based on its alpha value. The alpha test is enabled and disabled by passing 
GL_ALPHA_TEST to glEnable() and glDisable(). To determine whether the 
alpha test is enabled, use GL_ALPHA_TEST with glIsEnabled().

Note: The alpha fragment test was deprecated in OpenGL Version 3.0, 
and replaced in OpenGL Version 3.1 by discarding fragments in a 
fragment shader using the discard operation. See the description of 
discard in “Flow Control Statements” on page 705.

void glScissor(GLint x, GLint y, GLsizei width, GLsizei height);

Sets the location and size of the scissor rectangle (also known as the scissor 
box). The parameters define the lower left corner (x, y) and the width and 
height of the rectangle. Pixels that lie inside the rectangle pass the scissor 
test. Scissoring is enabled and disabled by passing GL_SCISSOR_TEST to 
glEnable() and glDisable(). By default, the rectangle matches the size of 
the window and scissoring is disabled.

Advanced

Compatibility 
Extension

GL_ALPHA_TEST

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Testing and Operating on Fragments 503

If enabled, the test compares the incoming alpha value with a reference 
value. The fragment is accepted or rejected depending on the result of the 
comparison. Both the reference value and the comparison function are set 
with glAlphaFunc(). By default, the reference value is 0, the comparison 
function is GL_ALWAYS, and the alpha test is disabled. To obtain the alpha 
comparison function or reference value, use GL_ALPHA_TEST_FUNC or 
GL_ALPHA_TEST_REF with glGetIntegerv().

One application for the alpha test is implementation of a transparency 
algorithm. Render your entire scene twice, the first time accepting only 
fragments with alpha values of 1, and the second time accepting fragments 
with alpha values that aren’t equal to 1. Turn the depth buffer on during 
both passes, but disable depth buffer writing during the second pass.

Another use might be to make decals with texture maps whereby you can 
see through certain parts of the decals. Set the alphas in the decals to 0.0 

void glAlphaFunc(GLenum func, GLclampf ref);

Sets the reference value and comparison function for the alpha test. The 
reference value ref is clamped to be between 0 and 1. The possible values 
for func and their meanings are listed in Table 10-2.

Parameter Meaning

GL_NEVER never accept the fragment 

GL_ALWAYS always accept the fragment 

GL_LESS accept fragment if fragment alpha < reference alpha 

GL_LEQUAL accept fragment if fragment alpha  reference alpha

GL_EQUAL accept fragment if fragment alpha = reference alpha

GL_GEQUAL accept fragment if fragment alpha   reference alpha

GL_GREATER accept fragment if fragment alpha > reference alpha

GL_NOTEQUAL accept fragment if fragment alpha  reference alpha

Table 10-2 glAlphaFunc() Parameter Values 

Compatibility 
Extension

glAlphaFunc
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where you want to see through, set them to 1.0 otherwise, set the reference 
value to 0.5 (or anything between 0.0 and 1.0), and set the comparison 
function to GL_GREATER. The decal has see-through parts, and the values 
in the depth buffer aren’t affected. This technique, called billboarding, is 
described in “Sample Uses of Blending” on page 258.

Stencil Test

The stencil test takes place only if there is a stencil buffer. (If there is no 
stencil buffer, the stencil test always passes.) Stenciling applies a test that 
compares a reference value with the value stored at a pixel in the stencil 
buffer. Depending on the result of the test, the value in the stencil buffer is 
modified. You can choose the particular comparison function used, the 
reference value, and the modification performed with the glStencilFunc()
and glStencilOp() commands.

void glStencilFunc(GLenum func, GLint ref, GLuint mask);
void glStencilFuncSeparate(GLenum face,

GLenum func, GLint ref, GLuint mask);

Sets the comparison function (func), the reference value (ref), and a mask 
(mask) for use with the stencil test. The reference value is compared 
with the value in the stencil buffer using the comparison function, but 
the comparison applies only to those bits for which the corresponding 
bits of the mask are 1. The function can be GL_NEVER, GL_ALWAYS, 
GL_LESS, GL_LEQUAL, GL_EQUAL, GL_GEQUAL, GL_GREATER, or 
GL_NOTEQUAL. If it’s GL_LESS, for example, then the fragment passes if 
ref is less than the value in the stencil buffer. If the stencil buffer contains 
s bitplanes, the low-order s bits of mask are bitwise ANDed with the value 
in the stencil buffer and with the reference value before the comparison 
is performed. The masked values are all interpreted as non-negative val-
ues. The stencil test is enabled and disabled by passing GL_STENCIL_TEST 
to glEnable() and glDisable(). By default, func is GL_ALWAYS, ref is 0, 
mask is all 1s, and stenciling is disabled.

OpenGL 2.0 includes the glStencilFuncSeparate() function that allows 
separate stencil function parameters to be specified for front- and back-
facing polygons.
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“With saturation” means that the stencil value will clamp to extreme 
values. If you try to decrement zero with saturation, the stencil value 
remains zero. “Without saturation” means that going outside the 
indicated range wraps around. If you try to decrement zero without 
saturation, the stencil value becomes the maximum unsigned integer 
value (quite large!).

Stencil Queries

You can obtain the values for all six stencil-related parameters by using the 
query function glGetIntegerv() and one of the values shown in Table 10-3. 
You can also determine whether the stencil test is enabled by passing 
GL_STENCIL_TEST to glIsEnabled().

void glStencilOp(GLenum fail, GLenum zfail, GLenum zpass);
void glStencilOpSeparate(GLenum face, GLenum fail, GLenum zfail,

GLenum zpass);

Specifies how the data in the stencil buffer is modified when a fragment 
passes or fails the stencil test. The three functions fail, zfail, and zpass
can be GL_KEEP, GL_ZERO, GL_REPLACE, GL_INCR, GL_INCR_WRAP, 
GL_DECR, GL_DECR_WRAP, or GL_INVERT. They correspond to 
keeping the current value, replacing it with zero, replacing it with the 
reference value, incrementing it with saturation, incrementing it without 
saturation, decrementing it with saturation, decrementing it without 
saturation, and bitwise-inverting it. The result of the increment and 
decrement functions is clamped to lie between zero and the maximum 
unsigned integer value (2s  1 if the stencil buffer holds s bits).

The fail function is applied if the fragment fails the stencil test; if it passes, 
then zfail is applied if the depth test fails and zpass is applied if the depth 
test passes, or if no depth test is performed. (See “Depth Test” on 
page 510.) By default, all three stencil operations are GL_KEEP.

OpenGL 2.0 includes the glStencilOpSeparate() function that allows 
separate stencil tests to be specified for front- and back-facing polygons.
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Stencil Examples

Probably the most typical use of the stencil test is to mask out an irregularly 
shaped region of the screen to prevent drawing from occurring within it (as 
in the windshield example in “Buffers and Their Uses”). To do this, fill the 
stencil mask with 0’s, and then draw the desired shape in the stencil buffer 
with 1’s. You can’t draw geometry directly into the stencil buffer, but you 
can achieve the same result by drawing into the color buffer and choosing 
a suitable value for the zpass function (such as GL_REPLACE). (You can use 
glDrawPixels() to draw pixel data directly into the stencil buffer.) When-
ever drawing occurs, a value is also written into the stencil buffer (in this 
case, the reference value). To prevent the stencil-buffer drawing from affecting 
the contents of the color buffer, set the color mask to zero (or GL_FALSE). 
You might also want to disable writing into the depth buffer.

After you’ve defined the stencil area, set the reference value to 1, and set the 
comparison function such that the fragment passes if the reference value is 
equal to the stencil-plane value. During drawing, don’t modify the contents 
of the stencil planes.

Example 10-1 demonstrates how to use the stencil test in this way. Two 
toruses are drawn, with a diamond-shaped cutout in the center of the scene. 
Within the diamond-shaped stencil mask, a sphere is drawn. In this example, 
drawing into the stencil buffer takes place only when the window is re-
drawn, so the color buffer is cleared after the stencil mask has been created.

Query Value Meaning

GL_STENCIL_FUNC stencil function

GL_STENCIL_REF stencil reference value

GL_STENCIL_VALUE_MASK stencil mask

GL_STENCIL_FAIL stencil fail action

GL_STENCIL_PASS_DEPTH_FAIL stencil pass and depth buffer fail action

GL_STENCIL_PASS_DEPTH_PASS stencil pass and depth buffer pass action

Table 10-3 Query Values for the Stencil Test 
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Example 10-1 Using the Stencil Test: stencil.c
#define YELLOWMAT   1
#define BLUEMAT     2

void init(void) 
{
   GLfloat yellow_diffuse[] = { 0.7, 0.7, 0.0, 1.0 };
   GLfloat yellow_specular[] = { 1.0, 1.0, 1.0, 1.0 };

   GLfloat blue_diffuse[] = { 0.1, 0.1, 0.7, 1.0 };
   GLfloat blue_specular[] = { 0.1, 1.0, 1.0, 1.0 };

   GLfloat position_one[] = { 1.0, 1.0, 1.0, 0.0 };

   glNewList(YELLOWMAT, GL_COMPILE);
   glMaterialfv(GL_FRONT, GL_DIFFUSE, yellow_diffuse);
   glMaterialfv(GL_FRONT, GL_SPECULAR, yellow_specular);
   glMaterialf(GL_FRONT, GL_SHININESS, 64.0);
   glEndList();

   glNewList(BLUEMAT, GL_COMPILE);
   glMaterialfv(GL_FRONT, GL_DIFFUSE, blue_diffuse);
   glMaterialfv(GL_FRONT, GL_SPECULAR, blue_specular);
   glMaterialf(GL_FRONT, GL_SHININESS, 45.0);
   glEndList();

   glLightfv(GL_LIGHT0, GL_POSITION, position_one);

   glEnable(GL_LIGHT0);
   glEnable(GL_LIGHTING);
   glEnable(GL_DEPTH_TEST);

   glClearStencil(0x0);
   glEnable(GL_STENCIL_TEST);
}

/* Draw a sphere in a diamond-shaped section in the
 * middle of a window with 2 tori.
 */
void display(void)
{
   glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

/* draw blue sphere where the stencil is 1 */
   glStencilFunc(GL_EQUAL, 0x1, 0x1);
   glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);
   glCallList(BLUEMAT);
   glutSolidSphere(0.5, 15, 15);
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/* draw the tori where the stencil is not 1 */
   glStencilFunc(GL_NOTEQUAL, 0x1, 0x1);
   glPushMatrix();
      glRotatef(45.0, 0.0, 0.0, 1.0);
      glRotatef(45.0, 0.0, 1.0, 0.0);
      glCallList(YELLOWMAT);
      glutSolidTorus(0.275, 0.85, 15, 15);
      glPushMatrix();
         glRotatef(90.0, 1.0, 0.0, 0.0);
         glutSolidTorus(0.275, 0.85, 15, 15);
      glPopMatrix();
   glPopMatrix();
}

/*  Whenever the window is reshaped, redefine the 
 *  coordinate system and redraw the stencil area.
 */
void reshape(int w, int h)
{
   glViewport(0, 0, (GLsizei) w, (GLsizei) h);

/* create a diamond shaped stencil area */
   glMatrixMode(GL_PROJECTION);
   glLoadIdentity();
   if (w <= h)
      gluOrtho2D(-3.0, 3.0, -3.0*(GLfloat)h/(GLfloat)w,
                 3.0*(GLfloat)h/(GLfloat)w);
   else
      gluOrtho2D(-3.0*(GLfloat)w/(GLfloat)h,
                 3.0*(GLfloat)w/(GLfloat)h, -3.0, 3.0);
   glMatrixMode(GL_MODELVIEW);
   glLoadIdentity();

   glClear(GL_STENCIL_BUFFER_BIT);
   glStencilFunc(GL_ALWAYS, 0x1, 0x1);
   glStencilOp(GL_REPLACE, GL_REPLACE, GL_REPLACE);
   glBegin(GL_QUADS);
      glVertex2f(-1.0, 0.0);
      glVertex2f(0.0, 1.0);
      glVertex2f(1.0, 0.0);
      glVertex2f(0.0, -1.0);
   glEnd();

   glMatrixMode(GL_PROJECTION);
   glLoadIdentity();
   gluPerspective(45.0, (GLfloat) w/(GLfloat) h, 3.0, 7.0);
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   glMatrixMode(GL_MODELVIEW);
   glLoadIdentity();
   glTranslatef(0.0, 0.0, -5.0);
}

/* Main Loop
 * Be certain to request stencil bits.
 */
int main(int argc, char** argv)
{
   glutInit(&argc, argv);
   glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB |
                       GLUT_DEPTH | GLUT_STENCIL);
   glutInitWindowSize(400, 400);
   glutInitWindowPosition(100, 100);
   glutCreateWindow(argv[0]);
   init();
   glutReshapeFunc(reshape);
   glutDisplayFunc(display);
   glutMainLoop();
   return 0;
}

The following examples illustrate other uses of the stencil test. (See 
Chapter 14 for additional ideas.) 

• Capping—Suppose you’re drawing a closed convex object (or several of 
them, as long as they don’t intersect or enclose each other) made up of 
several polygons, and you have a clipping plane that may or may not 
slice off a piece of it. Suppose that if the plane does intersect the object, 
you want to cap the object with some constant-colored surface, rather 
than see the inside of it. To do this, clear the stencil buffer to zeros, and 
begin drawing with stenciling enabled and the stencil comparison 
function set always to accept fragments. Invert the value in the stencil 
planes each time a fragment is accepted. After all the objects are drawn, 
regions of the screen where no capping is required have zeros in the 
stencil planes, and regions requiring capping are nonzero. Reset the 
stencil function so that it draws only where the stencil value is nonzero, 
and draw a large polygon of the capping color across the entire screen.

• Overlapping translucent polygons—Suppose you have a translucent 
surface that’s made up of polygons that overlap slightly. If you simply 
use alpha blending, portions of the underlying objects are covered by 
more than one transparent surface, which doesn’t look right. Use the 
stencil planes to make sure that each fragment is covered by at most 
one portion of the transparent surface. Do this by clearing the stencil 
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planes to zeros, drawing only when the stencil plane is zero, and 
incrementing the value in the stencil plane when you draw.

• Stippling—Suppose you want to draw an image with a stipple pattern. 
(See “Displaying Points, Lines, and Polygons” on page 55 for more 
information about stippling.) You can do this by writing the stipple 
pattern into the stencil buffer and then drawing conditionally on 
the contents of the stencil buffer. After the original stipple pattern is 
drawn, the stencil buffer isn’t altered while drawing the image, so the 
object is stippled by the pattern in the stencil planes. 

Depth Test

For each pixel on the screen, the depth buffer keeps track of the distance 
between the viewpoint and the object occupying that pixel. Then, if the 
specified depth test passes, the incoming depth value replaces the value 
already in the depth buffer. 

The depth buffer is generally used for hidden-surface elimination. If a new 
candidate color for that pixel appears, it’s drawn only if the corresponding 
object is closer than the previous object. In this way, after the entire scene 
has been rendered, only objects that aren’t obscured by other items remain. 
Initially, the clearing value for the depth buffer is a value that’s as far from 
the viewpoint as possible, so the depth of any object is nearer than that 
value. If this is how you want to use the depth buffer, you simply have to 
enable it by passing GL_DEPTH_TEST to glEnable() and remember to clear 
the depth buffer before you redraw each frame. (See “Clearing Buffers” on 
page 495.) You can also choose a different comparison function for the 
depth test with glDepthFunc().

void glDepthFunc(GLenum func);

Sets the comparison function for the depth test. The value for func
must be GL_NEVER, GL_ALWAYS, GL_LESS, GL_LEQUAL, GL_EQUAL, 
GL_GEQUAL, GL_GREATER, or GL_NOTEQUAL. An incoming fragment 
passes the depth test if its z-value has the specified relation to the value 
already stored in the depth buffer. The default is GL_LESS, which means 
that an incoming fragment passes the test if its z-value is less than that 
already stored in the depth buffer. In this case, the z-value represents the 
distance from the object to the viewpoint, and smaller values mean that 
the corresponding objects are closer to the viewpoint. 
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Occlusion Query

Advanced

The depth buffer determines visibility on a per-pixel basis. For performance 
reasons, it would be nice to be able to determine if a geometric object is 
visible before sending all of its (perhaps complex) geometry for rendering. 
Occlusion queries enable you to determine if a representative set of geometry 
will be visible after depth testing.

This is particularly useful for complex geometric objects with many 
polygons. Instead of rendering all of the geometry for a complex object, you 
might render its bounding box or another simplified representation that 
require less rendering resources. If OpenGL returns that no fragments or 
samples would have been modified by rendering that piece of geometry, 
you know that none of your complex object will be visible for that frame, 
and you can skip rendering that object for the frame.

The following steps are required to utilize occlusion queries:

1. (Optional) Generate a query id for each occlusion query that you need.

2. Specify the start of an occlusion query by calling glBeginQuery().

3. Render the geometry for the occlusion test. 

4. Specify that you’ve completed the occlusion query by calling 
glEndQuery().

5. Retrieve the number of samples that passed the depth test.

In order to make the occlusion query process as efficient as possible, you’ll 
want to disable all rendering modes that will increase the rendering time 
but won’t change the visibility of a pixel. 

Generating Query Objects

An occlusion query object identifier is just an unsigned integer. While not 
strictly necessary, it’s a good practice to have OpenGL generate a set of ids 
for your use. glGenQueries() will generate the requested number of unused 
query ids for your subsequent use.

Advanced
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You can also determine if an identifier is currently being used as an 
occlusion query by calling glIsQuery().

Initiating an Occlusion Query Test

To specify geometry that’s to be used in an occlusion query, merely bracket 
the rendering operations between calls to glBeginQuery() and glEndQuery(),
as demonstrated in Example 10-2.

Example 10-2 Rendering Geometry with Occlusion Query: occquery.c

glBeginQuery(GL_SAMPLES_PASSED, Query);
glBegin(GL_TRIANGLES);
glVertex3f( 0.0, 0.0, 1.0);
glVertex3f(-1.0, 0.0, 0.0);
glVertex3f( 1.0, 0.0, 0.0);
glEnd();
glEndQuery(GL_SAMPLES_PASSED);

All OpenGL operations are available while an occlusion query is active, with 
the exception of glGenQueries() and glDeleteQueries(), which will raise a 
GL_INVALID_OPERATION error.

void glGenQueries(GLsizei n, GLuint *ids);

Returns n currently unused names for occlusion query objects in the array 
ids The names returned in ids do not have to be a contiguous set of 
integers.

The names returned are marked as used for the purposes of allocating 
additional query objects, but only acquire valid state once they have been 
specified in a call to glBeginQuery().

Zero is a reserved occlusion query object name and is never returned as a 
valid value by glGenQueries().

GLboolean glIsQuery(GLuint id);

Returns GL_TRUE if id is the name of an occlusion query object. Returns 
GL_FALSE if id is zero or if id is a nonzero value that is not the name of a 
buffer object.
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Determining the Results of an Occlusion Query

Once you’ve completed rendering the geometry for the occlusion 
query, you need to retrieve the results. This is done with a call to 
glGetQueryObject[u]iv(), as shown in Example 10-3, which will return 
the number of fragments, or samples, if you’re using multisampling (see 
“Alpha and Multisampling Coverage” on page 279 for details).

Example 10-3 Retrieving the Results of an Occlusion Query: occquery.c

count = 1000; /* counter to avoid a possible infinite loop */
while (!queryReady && count--) {

glGetQueryObjectiv(Query, GL_QUERY_RESULT_AVAILABLE,
&queryReady);

}

void glBeginQuery(GLenum target, GLuint id);

Specifies the start of an occlusion query operation. target must be 
GL_SAMPLES_PASSED. id is an unsigned integer identifier for this 
occlusion query operation.

void glEndQuery(GLenum target);

Ends an occlusion query. target must be GL_SAMPLES_PASSED.

void glGetQueryObjectiv(GLenum id, GLenum pname,
GLint *params);

void glGetQueryObjectuiv(GLenum id, GLenum pname,
GLuint *params);

Queries the state of an occlusion query object. id is the name of a query 
object. If pname is GL_QUERY_RESULT, then params will contain the 
number of fragments or samples (if multisampling is enabled) that passed 
the depth test, with a value of zero representing the object being entirely 
occluded.

There may be a delay in completing the occlusion query operation. If 
pname is GL_QUERY_RESULT_AVAILABLE, params will contain GL_TRUE 
if the results for query id are available, or GL_FALSE otherwise. 
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if (queryReady) {
glGetQueryObjectiv(Query, GL_QUERY_RESULT, &samples);
fprintf(stderr, "   Samples rendered: %d\n", samples);

}
else {

fprintf(stderr, "   Result not ready ... rendering 
anyways\n");

samples = 1; /* make sure we render */
}

if (samples > 0)
glDrawArrays(GL_TRIANGLE_FAN, 0, NumVertices);

Cleaning Up Occlusion Query Objects

After you’ve completed your occlusion query tests, you can release the 
resources related to those queries by calling glDeleteQueries().

Conditional Rendering

Advanced

One of the issues with occlusion queries is that they require OpenGL to 
pause processing geometry and fragments, count the number of affected 
samples in the depth buffer, and return the value to your application. 
Stopping modern graphics hardware in this manner usually 
catastrophically affects performance in performance-sensitive 
applications. To eliminate the need to pause OpenGL’s operation, 
conditional rendering allows the graphics server (hardware) to decide if 
an occlusion query yielded any fragments, and to render the intervening 
commands. Conditional rendering is enabled by surrounding the 
rendering operations you would have conditionally executed using the 
results of glGetQuery*().

void glDeleteQueries(GLsizei n, const GLuint *ids);

Deletes n occlusion query objects, named by elements in the array ids. The 
freed query objects may now be reused (for example, by glGenQueries()).

Advanced
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The code shown in Example 10-4 completely replaces the sequence of code 
in Example 10-3. Not only it the code more compact, it is far more efficient 
as it completely removes the results query to the OpenGL server, which is a 
major performance inhibitor.

Example 10-4 Rendering Using Conditional Rendering: condrender.c

glBeginConditionalRender(Query, GL_QUERY_WAIT);
glDrawArrays(GL_TRIANGLE_FAN, 0, NumVertices);
glEndConditionalRender();

Blending, Dithering, and Logical Operations

Once an incoming fragment has passed all the tests described in “Testing 
and Operating on Fragments,” it can be combined with the current con-
tents of the color buffer in one of several ways. The simplest way, which is 
also the default, is to overwrite the existing values. Alternatively, if you’re 
using RGBA mode and you want the fragment to be translucent or anti-
aliased, you might average its value with the value already in the buffer 
(blending). On systems with a small number of available colors, you might 
want to dither color values to increase the number of colors available at the 
cost of a loss in resolution. In the final stage, you can use arbitrary bitwise 
logical operations to combine the incoming fragment and the pixel that’s 
already written.

void glBeginConditionalRender(GLuint id, GLenum mode);
void glEndConditionalRender(void);

Delineates a sequence of OpenGL rendering commands that may be 
discarded based on the results of the occlusion query object id. mode
specifies how the OpenGL implementation uses the results of the occlusion 
query, and must be one of: GL_QUERY_WAIT, GL_QUERY_NO_WAIT, 
GL_QUERY_BY_REGION_WAIT, or GL_QUERY_BY_REGION_NO_WAIT.

A GL_INVALID_VALUE is set if id is not an existing occlusion query. A 
GL_INVALID_OPERATION is generated if glBeginConditionalRender()
is called while a conditional rendering sequence is in operation; if 
glEndConditionalRender() is called when no conditional render is 
underway; if id is the name of a occlusion query object with a target 
different than GL_SAMPLES_PASSED; or if id is the name of an occlusion 
query in progress.
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Blending

Blending combines the incoming fragment’s R, G, B, and alpha values with 
those of the pixel already stored at the location. Different blending opera-
tions can be applied, and the blending that occurs depends on the values of 
the incoming alpha value and the alpha value (if any) stored at the pixel. 
(See “Blending” on page 251 for an extensive discussion of this topic.)

Control of blending is available on a per-buffer basis starting with OpenGL 
Version 3.0, using the following commands:

To determine if blending is enabled for a particular buffer, use 
glIsEnabledi().

Dithering

On systems with a small number of color bitplanes, you can improve the 
color resolution at the expense of spatial resolution by dithering the color 
in the image. Dithering is like halftoning in newspapers. Although The New 
York Times has only two colors—black and white—it can show photographs 
by representing the shades of gray with combinations of black and white 
dots. Comparing a newspaper image of a photo (having no shades of gray) 
with the original photo (with grayscale) makes the loss of spatial resolution 
obvious. Similarly, systems with a small number of color bitplanes may 
dither values of red, green, and blue on neighboring pixels for the 
appearance of a wider range of colors. 

void glEnablei(GLenum target, GLuint index);
void glDisablei(GLenum target, GLuint index);

Enables or disables blending for buffer index. target must be GL_BLEND.

A GL_INVALID_VALUE is generated if index is greater than or equal to 
GL_MAX_DRAW_BUFFERS.

GLboolean glIsEnabledi(GLenum target, GLuint index);

Specifies whether target is enabled for buffer index.

For OpenGL Version 3.0, target must be GL_BLEND, or a GL_INVALID_
ENUM is generated.

A GL_INVALID_VALUE is generated if index is outside of the range 
supported for target.
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The dithering operation that takes place is hardware-dependent; all OpenGL 
allows you to do is to turn it on and off. In fact, on some machines, enabling 
dithering might do nothing at all, which makes sense if the machine already 
has high color resolution. To enable and disable dithering, pass GL_DITHER 
to glEnable() and glDisable(). Dithering is enabled by default.

Dithering applies in both RGBA and color-index mode. The colors or color 
indices alternate in some hardware-dependent way between the two nearest 
possibilities. For example, in color-index mode, if dithering is enabled and 
the color index to be painted is 4.4, then 60 percent of the pixels may be 
painted with index 4, and 40 percent of the pixels with index 5. (Many dith-
ering algorithms are possible, but a dithered value produced by any algo-
rithm must depend on only the incoming value and the fragment’s x- and 
y-coordinates.) In RGBA mode, dithering is performed separately for each 
component (including alpha). To use dithering in color-index mode, you 
generally need to arrange the colors in the color map appropriately in ramps; 
otherwise, bizarre images might result. 

Logical Operations

The final operation on a fragment is the logical operation, such as an OR, 
XOR, or INVERT, which is applied to the incoming fragment values (source) 
and/or those currently in the color buffer (destination). Such fragment 
operations are especially useful on bit-blt-type machines, on which the pri-
mary graphics operation is copying a rectangle of data from one place in the 
window to another, from the window to processor memory, or from mem-
ory to the window. Typically, the copy doesn’t write the data directly into 
memory but instead allows you to perform an arbitrary logical operation on 
the incoming data and the data already present; then it replaces the existing 
data with the results of the operation. 

Since this process can be implemented fairly cheaply in hardware, many 
such machines are available. As an example of using a logical operation, 
XOR can be used to draw on an image in an undoable way; simply XOR the 
same drawing again, and the original image is restored. As another example, 
when using color-index mode, the color indices can be interpreted as bit 
patterns. Then you can compose an image as combinations of drawings on 
different layers, use writemasks to limit drawing to different sets of 
bitplanes, and perform logical operations to modify different layers.

You enable and disable logical operations by passing GL_INDEX_LOGIC_
OP or GL_COLOR_LOGIC_OP to glEnable() and glDisable() for color-
index mode or RGBA mode, respectively. You also must choose among 
the 16 logical operations with glLogicOp(), or you’ll just get the effect of 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


518 Chapter 10: The Framebuffer

the default value, GL_COPY. (For backward compatibility with OpenGL 
Version 1.0, glEnable(GL_LOGIC_OP) also enables logical operation in 
color-index mode.)

The Accumulation Buffer

Note: The accumulation buffer was removed through deprecation from 
OpenGL Version 3.1. Some of the techniques described in this 
chapter in prior editions—full-scene antialiasing, principally—have 
been replaced by other techniques (see “Alpha and Multisampling 
Coverage” on page 279). The remaining techniques are easy to 
implement using floating-point pixel formats in the framebuffer—a 
feature added in OpenGL Version 3.0. The concepts of these 
techniques are similar to those mentioned here.

void glLogicOp(GLenum opcode);

Selects the logical operation to be performed, given an incoming (source) 
fragment and the pixel currently stored in the color buffer (destination). 
Table 10-4 shows the possible values for opcode and their meaning (s
represents source and d destination). The default value is GL_COPY.

Parameter Operation Parameter Operation

GL_CLEAR 0 GL_AND s  d

GL_COPY s GL_OR s  d

GL_NOOP d GL_NAND ¬(s  d)

GL_SET 1 GL_NOR ¬(s  d)

GL_COPY_INVERTED ¬s GL_XOR s XOR d

GL_INVERT ¬d GL_EQUIV ¬(s XOR d)

GL_AND_REVERSE s  ¬d GL_AND_INVERTED ¬s  d

GL_OR_REVERSE s  ¬d GL_OR_INVERTED ¬s  d

Table 10-4 Sixteen Logical Operations
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Advanced

The accumulation buffer can be used for such things as scene antialiasing, 
motion blur, simulating photographic depth of field, and calculating the 
soft shadows that result from multiple light sources. Other techniques are 
possible, especially in combination with some of the other buffers. (See The 
Accumulation Buffer: Hardware Support for High-Quality Rendering by Paul 
Haeberli and Kurt Akeley [SIGGRAPH 1990 Proceedings, pp. 309–318] for 
more information about uses for the accumulation buffer.)

OpenGL graphics operations don’t write directly into the accumulation 
buffer. Typically, a series of images is generated in one of the standard color 
buffers, and these images are accumulated, one at a time, into the accumu-
lation buffer. When the accumulation is finished, the result is copied back 
into a color buffer for viewing. To reduce rounding errors, the accumulation 
buffer may have higher precision (more bits per color) than the standard 
color buffers. Rendering a scene several times obviously takes longer than 
rendering it once, but the result is higher quality. You can decide what 
trade-off between quality and rendering time is appropriate for your 
application. 

You can use the accumulation buffer the same way a photographer can use 
film for multiple exposures. A photographer typically creates a multiple 
exposure by taking several pictures of the same scene without advancing 
the film. If anything in the scene moves, that object appears blurred. Not 
surprisingly, a computer can do more with an image than a photographer 
can do with a camera. For example, a computer has exquisite control over 
the viewpoint, but a photographer can’t shake a camera a predictable and 
controlled amount. (See “Clearing Buffers” on page 495 for information 
about how to clear the accumulation buffer; use glAccum() to control it.)

void glAccum(GLenum op, GLfloat value);

Controls the accumulation buffer. The op parameter selects the operation, 
and value is a number to be used in that operation. The possible operations 
are GL_ACCUM, GL_LOAD, GL_RETURN, GL_ADD, and GL_MULT:

• GL_ACCUM reads each pixel from the buffer currently selected for 
reading with glReadBuffer(), multiplies the R, G, B, and alpha 
values by value, and adds the resulting values to the accumulation 
buffer.

Advanced

Compatibility 
Extension

glAccum and all 
accepted tokens
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• GL_LOAD is the same as GL_ACCUM, except that the values replace 
those in the accumulation buffer, rather than being added to them.

• GL_RETURN takes values from the accumulation buffer, multiplies 
them by value, and places the results in the color buffer(s) enabled 
for writing.

• GL_ADD and GL_MULT simply add and multiply, respectively, the 
value of each pixel in the accumulation buffer to or by value and then 
return it to the accumulation buffer. For GL_MULT, value is clamped 
to be in the range [ 1.0, 1.0]. For GL_ADD, no clamping occurs.

Motion Blur

Similar methods can be used to simulate motion blur, as shown in Plate 7 
and Figure 10-2. Suppose your scene has some stationary and some moving 
objects in it, and you want to make a motion-blurred image extending over 
a small interval of time. Set up the accumulation buffer in the same way, but 
instead of jittering the images spatially, jitter them temporally. The entire 
scene can be made successively dimmer by calling 

glAccum(GL_MULT, decayFactor);

as the scene is drawn into the accumulation buffer, where decayFactor is a 
number from 0.0 to 1.0. Smaller numbers for decayFactor cause the object to 
appear to be moving faster. You can transfer the completed scene, with the 
object’s current position and a “vapor trail” of previous positions, from the 
accumulation buffer to the standard color buffer with

glAccum(GL_RETURN, 1.0);

The image looks correct even if the items move at different speeds or if some 
of them are accelerated. As before, the more jitter points (temporal, in this 
case) you use, the better the final image, at least up to the point where you 
begin to lose resolution because of the finite precision in the accumulation 
buffer. You can combine motion blur with antialiasing by jittering in both 
the spatial and temporal domains, but you pay for higher quality with 
longer rendering times.
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Depth of Field

A photograph made with a camera is in perfect focus only for items lying in 
a single plane a certain distance from the film. The farther an item is from 
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d efgeh
this plane, the more out of focus it is. The depth of field for a camera is a 
region about the plane of perfect focus where items are out of focus by a 
small enough amount. 

Under normal conditions, everything you draw with OpenGL is in focus 
(unless your monitor is bad; in which case, everything is out of focus). The 
accumulation buffer can be used to approximate what you would see in a 
photograph, where items are increasingly blurred as their distance from 
the plane of perfect focus increases. It isn’t an exact simulation of the 
effects produced in a camera, but the result looks similar to what a camera 
would produce.

Figure 10-2 Motion-Blurred Object
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To achieve this result, draw the scene repeatedly using calls with different 
argument values to glFrustum(). Choose the arguments so that the position 
of the viewpoint varies slightly around its true position and so that each 
frustum shares a common rectangle that lies in the plane of perfect focus, 
as shown in Figure 10-3. The results of all the renderings should be averaged 
in the usual way using the accumulation buffer.

Plate 10 shows an image of five teapots drawn using the depth-of-field 
effect. The gold teapot (second from the left) is in focus, and the other 
teapots get progressively blurrier, depending on their distance from the 
focal plane (gold teapot). The code used to draw this image is shown in 
Example 10-5 (which assumes that accPerspective() and accFrustum() are 
defined as described in Example 10-5). The scene is drawn eight times, each 
with a slightly jittered viewing volume, by calling accPerspective(). As 
you recall, with scene antialiasing, the fifth and sixth parameters jitter the 
viewing volumes in the x- and y-directions. For the depth-of-field effect, 
however, you want to jitter the volume while holding it stationary at the 
focal plane. The focal plane is the depth value defined by the ninth (last) 
parameter to accPerspective(), which is z = 5.0 in this example. The amount 
of blur is determined by multiplying the x and y jitter values (seventh and 
eighth parameters of accPerspective()) by a constant. Determining the con-
stant is not a science; experiment with values until the depth of field is as 
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pronounced as you want. (Note that in Example 10-5, the fifth and sixth 
parameters to accPerspective() are set to 0.0, so scene antialiasing is 
turned off.)

Example 10-5 Depth-of-Field Effect: dof.c

void init(void)
{
   GLfloat ambient[] = { 0.0, 0.0, 0.0, 1.0 };
   GLfloat diffuse[] = { 1.0, 1.0, 1.0, 1.0 };
   GLfloat specular[] = { 1.0, 1.0, 1.0, 1.0 };
   GLfloat position[] = { 0.0, 3.0, 3.0, 0.0 };

A

B Normal (nonjittered) view

Plane in focus

A

B Jittered at point A

A

B Jittered at point B

Figure 10-3 Jittered Viewing Volume for Depth-of-Field Effects
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   GLfloat lmodel_ambient[] = { 0.2, 0.2, 0.2, 1.0 };
   GLfloat local_view[] = { 0.0 };

   glLightfv(GL_LIGHT0, GL_AMBIENT, ambient);
   glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuse);
   glLightfv(GL_LIGHT0, GL_POSITION, position);
    
   glLightModelfv(GL_LIGHT_MODEL_AMBIENT, lmodel_ambient);
   glLightModelfv(GL_LIGHT_MODEL_LOCAL_VIEWER, local_view);

   glFrontFace(GL_CW);
   glEnable(GL_LIGHTING);
   glEnable(GL_LIGHT0);
   glEnable(GL_AUTO_NORMAL);
   glEnable(GL_NORMALIZE);
   glEnable(GL_DEPTH_TEST);

   glClearColor(0.0, 0.0, 0.0, 0.0);
   glClearAccum(0.0, 0.0, 0.0, 0.0); 
/*  make teapot display list */
   teapotList = glGenLists(1);
   glNewList(teapotList, GL_COMPILE);
   glutSolidTeapot(0.5);
   glEndList();
}

void renderTeapot(GLfloat x, GLfloat y, GLfloat z, 
   GLfloat ambr, GLfloat ambg, GLfloat ambb, 
   GLfloat difr, GLfloat difg, GLfloat difb, 
   GLfloat specr, GLfloat specg, GLfloat specb, GLfloat shine)
{
   GLfloat mat[4];

   glPushMatrix();
   glTranslatef(x, y, z);
   mat[0] = ambr; mat[1] = ambg; mat[2] = ambb; mat[3] = 1.0;   
   glMaterialfv(GL_FRONT, GL_AMBIENT, mat);
   mat[0] = difr; mat[1] = difg; mat[2] = difb; 
   glMaterialfv(GL_FRONT, GL_DIFFUSE, mat);
   mat[0] = specr; mat[1] = specg; mat[2] = specb;
   glMaterialfv(GL_FRONT, GL_SPECULAR, mat);
   glMaterialf(GL_FRONT, GL_SHININESS, shine*128.0);
   glCallList(teapotList);
   glPopMatrix();
}
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void display(void)
{
   int jitter;
   GLint viewport[4];

   glGetIntegerv(GL_VIEWPORT, viewport);
   glClear(GL_ACCUM_BUFFER_BIT);

   for (jitter = 0; jitter < 8; jitter++) {
      glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
      accPerspective(45.0, 
         (GLdouble) viewport[2]/(GLdouble) viewport[3], 
         1.0, 15.0, 0.0, 0.0,
         0.33*j8[jitter].x, 0.33*j8[jitter].y, 5.0);

/*      ruby, gold, silver, emerald, and cyan teapots   */
      renderTeapot(-1.1, -0.5, -4.5, 0.1745, 0.01175, 
                    0.01175, 0.61424, 0.04136, 0.04136, 
                    0.727811, 0.626959, 0.626959, 0.6);
      renderTeapot(-0.5, -0.5, -5.0, 0.24725, 0.1995, 
                    0.0745, 0.75164, 0.60648, 0.22648, 
                    0.628281, 0.555802, 0.366065, 0.4);
      renderTeapot(0.2, -0.5, -5.5, 0.19225, 0.19225, 
                   0.19225, 0.50754, 0.50754, 0.50754, 
                   0.508273, 0.508273, 0.508273, 0.4);
      renderTeapot(1.0, -0.5, -6.0, 0.0215, 0.1745, 0.0215, 
                   0.07568, 0.61424, 0.07568, 0.633, 
                   0.727811, 0.633, 0.6);
      renderTeapot(1.8, -0.5, -6.5, 0.0, 0.1, 0.06, 0.0, 
                   0.50980392, 0.50980392, 0.50196078, 
                   0.50196078, 0.50196078, .25);
      glAccum(GL_ACCUM, 0.125);
   }
   glAccum(GL_RETURN, 1.0);
   glFlush();
}

void reshape(int w, int h)
{
   glViewport(0, 0, (GLsizei) w, (GLsizei) h);
}

/*  Main Loop
 *  Be certain you request an accumulation buffer.
 */
int main(int argc, char** argv)
{
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   glutInit(&argc, argv);
   glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB |
                       GLUT_ACCUM | GLUT_DEPTH); 
   glutInitWindowSize(400, 400);
   glutInitWindowPosition(100, 100);
   glutCreateWindow(argv[0]);
   init();
   glutReshapeFunc(reshape);
   glutDisplayFunc(display);
   glutMainLoop();
   return 0;
}

Soft Shadows

To accumulate soft shadows resulting from multiple light sources, render 
the shadows with one light turned on at a time, and accumulate them 
together. This can be combined with spatial jittering to antialias the scene 
at the same time. (See “Shadows” on page 658 for more information about 
drawing shadows.) 

Jittering

If you need to take 9 or 16 samples to antialias an image, you might think 
that the best choice of points is an equally spaced grid across the pixel. Sur-
prisingly, this is not necessarily true. In fact, sometimes it’s a good idea to 
take points that lie in adjacent pixels. You might want a uniform distribu-
tion or a normalized distribution, clustering toward the center of the pixel. 
In addition, Table 10-5 shows a few sets of reasonable jittering values to be 
used for some selected sample counts. Most of the examples in this table are 
uniformly distributed in the pixel, and all lie within the pixel.

Count Values

2 {0.25, 0.75}, {0.75, 0.25}

3 {0.5033922635, 0.8317967229}, {0.7806016275, 0.2504380877},

{0.2261828938, 0.4131553612}

4 {0.375, 0.25}, {0.125, 0.75}, {0.875, 0.25}, {0.625, 0.75}

Table 10-5 Sample Jittering Values
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Framebuffer Objects

Advanced

Up to this point, all of our discussion regarding buffers has focused 
on the buffers provided by the windowing system, as you requested 
when you called glutCreateWindow() (and configured by your call to 
glutInitDisplayMode()). Although you can quite successfully use any 
technique with just those buffers, quite often various operations require 
moving data between buffers superfluously. This is where framebuffer 

5 {0.5, 0.5}, {0.3, 0.1}, {0.7, 0.9}, {0.9, 0.3}, {0.1, 0.7}

6 {0.4646464646, 0.4646464646}, {0.1313131313, 0.7979797979},

{0.5353535353, 0.8686868686}, {0.8686868686, 0.5353535353},

{0.7979797979, 0.1313131313}, {0.2020202020, 0.2020202020}

8 {0.5625, 0.4375}, {0.0625, 0.9375}, {0.3125, 0.6875}, {0.6875, 0.8125}, 
{0.8125, 0.1875}, {0.9375, 0.5625}, {0.4375, 0.0625}, {0.1875, 0.3125}

9 {0.5, 0.5}, {0.1666666666, 0.9444444444}, {0.5, 0.1666666666}, 

{0.5, 0.8333333333}, {0.1666666666, 0.2777777777}, 

{0.8333333333, 0.3888888888}, {0.1666666666, 0.6111111111},

{0.8333333333, 0.7222222222}, {0.8333333333, 0.0555555555}

12 {0.4166666666, 0.625}, {0.9166666666, 0.875}, {0.25, 0.375},

{0.4166666666, 0.125}, {0.75, 0.125}, {0.0833333333, 0.125}, {0.75, 0.625},

{0.25, 0.875}, {0.5833333333, 0.375}, {0.9166666666, 0.375},

{0.0833333333, 0.625}, {0.583333333, 0.875}

16 {0.375, 0.4375}, {0.625, 0.0625}, {0.875, 0.1875}, {0.125, 0.0625}, 

{0.375, 0.6875}, {0.875, 0.4375}, {0.625, 0.5625}, {0.375, 0.9375}, 

{0.625, 0.3125}, {0.125, 0.5625}, {0.125, 0.8125}, {0.375, 0.1875}, 

{0.875, 0.9375}, {0.875, 0.6875}, {0.125, 0.3125}, {0.625, 0.8125}

Count Values

Table 10-5 (continued)        Sample Jittering Values
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objects enter the picture (as part of OpenGL Version 3.0). Using framebuffer 
objects, you can create our own framebuffers and use their attached 
renderbuffers to minimize data copies and optimize performance.

Framebuffer objects are quite useful for performing off-screen-rendering,
updating texture maps, and engaging in buffer ping-ponging (a data-transfer 
techniques used in GPGPU).

The framebuffer that is provided by the windowing system is the only 
framebuffer that is available to the display system of your graphics server—
that is, it is the only one you can see on your screen. It also places 
restrictions on the use of the buffers that were created when your window 
opened. By comparison, the framebuffers that your application creates 
cannot be displayed on your monitor; they support only off-screen rendering.

Another difference between window-system-provided framebuffers and 
framebuffers you create is that those managed by the window system 
allocate their buffers—color, depth, stencil, and accumulation—when your 
window is created. When you create an application-managed framebuffer 
object, you need to create additional renderbuffers that you associate with 
the framebuffer objects you created. The buffers with the window-system-
provided buffers can never be associated with an application-created 
framebuffer object, and vice versa.

To allocate an application-generated framebuffer object name, you need to 
call glGenFramebuffers() which will allocate an unused identifier for the 
framebuffer object. As compared to some other objects within OpenGL 
(e.g., texture objects and display lists), you always need to use an name 
returned from glGenFramebuffers().

Allocating a framebuffer object name doesn’t actually create the 
framebuffer object or allocate any storage for it. Those tasks are handled 
through a call to glBindFramebuffer(). glBindFramebuffer() operates in a 
similar manner to many of the other glBind*() routines you’ve seen in 
OpenGL. The first time it is called for a particular framebuffer, it causes 

void glGenFramebuffers(GLsize n, GLuint *ids);

Allocate n unused framebuffer object names, and return those names in ids.
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storage for the object to be allocated and initialized. Any subsequent calls 
will bind the provided framebuffer object name as the active one.

As with all of the other objects you have encountered in OpenGL, 
you can release an application-allocated framebuffer by calling 
glDeleteFramebuffers(). That function will mark the framebuffer object’s 
name as unallocated and release any resources associated with the 
framebuffer object.

For completeness, you can determine whether a particular unsigned integer 
is an application-allocated framebuffer object by calling glIsFramebuffer():.

void glBindFramebuffer(GLenum target, GLuint framebuffer);

Specifies either a framebuffer for either reading or writing. When target
is GL_DRAW_FRAMEBUFFER, framebuffer specifies the destination 
framebuffer for rendering. Similarly, when target is set to GL_READ_
FRAMEBUFFER, framebuffer specifies the source of read operations. Passing 
GL_FRAMEBUFFER for target sets both the read and write framebuffer 
bindings to framebuffer.

framebuffer must either be zero, which binds target to the default; a 
window-system provided framebuffer; or a framebuffer object generated 
by a call to glGenFramebuffers().

A GL_INVALID_OPERATION error is generated if framebuffer is neither 
zero nor a valid framebuffer object previously generated by calling 
glGenFramebuffers(), but not deleted by calling glDeleteFramebuffers().

void glDeleteFramebuffers(GLsize n, const GLuint *ids);

Deallocates the n framebuffer objects associated with the names provided 
in ids. If a framebuffer object is currently bound (i.e., its name was passed 
to the most recent call to glBindFramebuffer()), and is deleted, the 
framebuffer target is immediately bound to id zero (the window-system 
provided framebuffer), and the framebuffer object is released.

No errors are generated by glDeleteFramebuffers(). Unused names or 
zero are simply ignored.

GLboolean glIsFramebuffer(GLuint framebuffer);
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Once a framebuffer object is created, you still can’t do much with it. You 
need to provide a place for drawing to go and reading to come from; those 
places are called framebuffer attachments. We’ll discuss those in more detail 
after we examine renderbuffers, which are one type of buffer you can attach 
to a framebuffer object.

Renderbuffers

Renderbuffers are effectively memory managed by OpenGL that contains 
formatted image data. The data that a renderbuffer holds takes meaning 
once it is attached to a framebuffer object, assuming that the format of the 
image buffer matches what OpenGL is expecting to render into (e.g., you 
can’t render colors into the depth buffer).

As with many other buffers in OpenGL, the process of allocating and 
deleting buffers is similar to what you’ve seen before. To create a new 
renderbuffer, you would call glGenRenderbuffers().

Likewise, a call to glDeleteRenderbuffers() will release the storage 
associated with a renderbuffer.

Returns GL_TRUE if framebuffer is the name of a framebuffer returned 
from glGenFramebuffers(). Returns GL_FALSE if framebuffer is zero (the 
window-system default framebuffer) or a value that’s either unallocated or 
been deleted by a call to glDeleteFramebuffers().

void glGenRenderbuffers(GLsizei n, GLuint *ids);

Allocate n unused renderbuffer object names, and return those names in 
ids. Names are unused until bound with a call to glBindRenderbuffer().

void glDeleteRenderbuffers(GLsizei n, const GLuint *ids);

Deallocates the n renderbuffer objects associated with the names provided 
in ids. If one of the renderbuffers is currently bound and passed to 
glDeleteRenderbuffers(), a binding of zero replaces the binding at the 
current framebuffer attachment point, in addition to the renderbuffer 
being released.

No errors are generated by glDeleteRenderbuffers(). Unused names or 
zero are simply ignored.
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Likewise, you can determine whether a name represents a valid renderbuffer 
by calling glIsRenderbuffer().

Similar to the process of binding a framebuffer object so that you can 
modify its state, you call glBindRenderbuffer() to affect a renderbuffer’s 
creation and to modify the state associated with it, which includes the 
format of the image data that it contains.

Creating Renderbuffer Storage

When you first call glBindRenderbuffer() with an unused renderbuffer 
name, the OpenGL server creates a renderbuffer with all its state 
information set to the default values. In this configuration, no storage has 
been allocated to store image data. Before you can attach a renderbuffer to 
a framebuffer and render into it, you need to allocate storage and specify its 
image format. This is done by calling either glRenderbufferStorage() or 
glRenderbufferStorageMultisample().

void glIsRenderbuffer(GLuint renderbuffer);

Returns GL_TRUE if renderbuffer is the name of a renderbuffer returned 
from glGenRenderbuffers(). Returns GL_FALSE if renderbuffer is zero (the 
window-system default framebuffer) or a value that’s either unallocated or 
been deleted by a call to glDeleteRenderbuffers().

void glBindRenderbuffer(GLenum target, GLuint renderbuffer);

Creates a renderbuffer and associates it with the name renderbuffer. target
must be GL_RENDERBUFFER. renderbuffer must either be zero, which 
removes any renderbuffer binding, or a name that was generated by a call 
to glGenRenderbuffers(); otherwise, a GL_INVALID_OPERATION error 
will be generated.

void glRenderbufferStorage(GLenum target, GLenum internalformat,
GLsizei width, GLsizei height);

void glRenderbufferStorageMultisample(GLenum target,
GLsizei samples, GLenum internalformat, GLsizei width,
GLsizei height);
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Allocates storage for image data for the bound renderbuffer. target must be 
GL_RENDERBUFFER. For a color-renderable buffer, internalformat must be 
one of: GL_RED, GL_R8, GL_R16, GL_RG, GL_RG8, GL_RG16, GL_RGB, 
GL_R3_G3_B2, GL_RGB4, GL_RGB5, GL_RGB8, GL_RGB10, GL_RGB12, 
GL_RGB16, GL_RGBA, GL_RGBA2, GL_RGBA4, GL_RGB5_A1, GL_RGBA8, 
GL_RGB10_A2, GL_RGBA12, GL_RGBA16, GL_SRGB, GL_SRGB8, 
GL_SRGB_ALPHA, GL_SRGB8_ALPHA8,GL_R16F, GL_R32F, GL_RG16F, 
GL_RG32F, GL_RGB16F, GL_RGB32F, GL_RGBA16F, GL_RGBA32F, 
GL_R11F_G11F_B10F, GL_RGB9_E5, GL_R8I, GL_R8UI, GL_R16I, 
GL_R16UI, GL_R32I, GL_R32UI, GL_RG8I, GL_RG8UI, GL_RG16I, 
GL_RG16UI, GL_RG32I, GL_RG32UI, GL_RGB8I, GL_RGB8UI, 
GL_RGB16I, GL_RGB16UI, GL_RGB32I, GL_RGB32UI, GL_RGBA8I, 
GL_RGBA8UI, GL_RGBA16I, GL_RGBA16UI, GL_RGBA32I. OpenGL 
version 3.1 adds the additional following formats: GL_R8_SNORM, 
GL_R16_SNORM, GL_RG8_SNORM, GL_RG16_SNORM, GL_RGB8_
SNORM, GL_RGB16_SNORM, GL_RGBA8_SNORM, GL_RGBA16_SNORM.

To use a renderbuffer as a depth buffer, it must be depth-renderable, which 
is specified by setting internalformat to either GL_DEPTH_COMPONENT, 
GL_DEPTH_COMPONENT16, GL_DEPTH_COMPONENT32, GL_DEPTH_
COMPONENT32, or GL_DEPTH_COMPONENT32F.

For use exclusively as a stencil buffer, internalformat should be specified 
as either GL_STENCIL_INDEX, GL_STENCIL_INDEX1, GL_STENCIL_
INDEX4, GL_STENCIL_INDEX8, or GL_STENCIL_INDEX16.

For packed depth-stencil storage, internalformat must be GL_DEPTH_
STENCIL, which allows the renderbuffer to be attached as the depth 
buffer, stencil buffer, or at the combined depth-stencil attachment point.

width and height specify the size of the renderbuffer in pixels, and samples
specifies the number of multisample samples per pixel. Setting samples to 
zero in a call to glRenderbufferStorageMultisample() is identical to 
calling glRenderbufferStorage().

A GL_INVALID_VALUE is generated if width or height is greater than the 
value returned when querying GL_MAX_RENDERBUFFER_SIZE, or if 
samples is greater than the value returned when querying GL_MAX_
SAMPLES. A GL_INVALID_OPERATION is generated if internalformat is a 
signed- or unsigned-integer format (e.g., a format containing a “I”, or “UI” 
in its token), and samples is not zero, and the implementation doesn’t 
support multisampled integer buffers. Finally, if the renderbuffer size and 
format combined exceed the available memory able to be allocated, then 
a GL_OUT_OF_MEMORY error is generated.
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Example 10-6 Creating an RGBA Color Renderbuffer: fbo.c

glGenRenderbuffers( 1, &color );
glBindRenderbuffer( GL_RENDERBUFFER, color );
glRenderbufferStorage( GL_RENDERBUFFER, GL_RGBA, 256, 256 );

Once you have created storage for your renderbuffer, you need to attach it 
to a framebuffer object before you can render into it. 

Framebuffer Attachments

When you render, you can send the results of that rendering to a number 
of places:

• The color buffer to create an image, or even multiple color buffers if 
you’re using multiple render targets (see “Special Output Values” in 
Chapter 15)

• The depth buffer to store occlusion information

• The stencil buffer for storing per-pixel masks to control rendering

Each of those buffers represents a framebuffer attachment, to which you 
can attach suitable image buffers that you later render into, or read from. 
The possible framebuffer attachment points are listed in Table 10-6.

Currently, there are two types of rendering surfaces you can associate with 
one of those attachments: renderbuffers and a level of a texture image.

Attachment Name Description

GL_COLOR_ATTACHMENTi The ith color buffer. i can range from 
zero (the default color buffer) to 
GL_MAX_COLOR_ATTACHMENTS–1

GL_DEPTH_ATTACHMENT The depth buffer

GL_STENCIL_ATTACHMENT The stencil buffer

GL_DEPTH_STENCIL_ATTACHMENT A special attachment for packed depth-
stencil buffers (which require the 
renderbuffer to have been allocated as a 
GL_DEPTH_STENCIL pixel format)

Table 10-6 Framebuffer Attachments
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We’ll first discuss attaching a renderbuffer to a framebuffer object, which is 
done by calling glFramebufferRenderbuffer().

In Example 10-7, we create and attach two renderbuffers: one for color, and 
the other for depth. We then proceed to render, and finally copy the results 
back to the window-system-provided framebuffer to display the results. You 
might use this technique to generate frames for a movie rendering off-
screen, where you don’t have to worry about the visible framebuffer being 
corrupted by overlapping windows or someone resizing the window and 
interrupting rendering.

One important point to remember is that you might need to reset the 
viewport for each framebuffer before rendering, particularly if the size of 
your application-defined framebuffers differs from the window-system 
provided framebuffer.

Example 10-7 Attaching a Renderbuffer for Rendering: fbo.c

enum { Color, Depth, NumRenderbuffers };
GLuint framebuffer, renderbuffer[NumRenderbuffers]

void
init()
{

glGenRenderbuffers( NumRenderbuffers, renderbuffer );
glBindRenderbuffer( GL_RENDERBUFFER, renderbuffer[Color] );
glRenderbufferStorage( GL_RENDERBUFFER, GL_RGBA, 256, 256 );

void glFramebufferRenderbuffer(GLenum target, GLenum attachment,
GLenum renderbuffertarget, GLuint renderbuffer);

Attaches renderbuffer to attachment of the currently bound framebuffer 
object. target must either be GL_READ_FRAMEBUFFER, GL_DRAW_
FRAMEBUFFER, or GL_FRAMEBUFFER (which is equivalent to GL_DRAW_
FRAMEBUFFER).

attachment is one of GL_COLOR_ATTACHMENTi, GL_DEPTH_
ATTACHMENT, GL_STENCIL_ATTACHMENT, or GL_DEPTH_STENCIL_
ATTACHMENT.

renderbuffertarget must be GL_RENDERBUFFER, and renderbuffer must 
either be zero, which removes any renderbuffer attachment at attachment,
or a renderbuffer name returned from glGenRenderbuffers(), or a GL_
INVALID_OPERATION error is generated.
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glBindRenderbuffer( GL_RENDERBUFFER, renderbuffer[Depth] );
glRenderbufferStorage( GL_RENDERBUFFER, GL_DEPTH_COMPONENT24,

256, 256 );

glGenFramebuffers( 1, &framebuffer );
glBindFramebuffer( GL_DRAW_FRAMEBUFFER, framebuffer );
glFramebufferRenderbuffer( GL_DRAW_FRAMEBUFFER,

GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER,
renderbuffer[Color] );

glFramebufferRenderbuffer( GL_DRAW_FRAMEBUFFER,
GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER,
renderbuffer[Depth] );

glEnable( GL_DEPTH_TEST );
}

void
display()
{

/* Prepare to render into the renderbuffer */
glBindFramebuffer( GL_DRAW_FRAMEBUFFER, framebuffer );
glViewport( 0, 0, 256, 256 );

/* Render into renderbuffer */
glClearColor( 1.0, 0.0, 0.0, 1.0 );
glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT );
/* Do other rendering */

/* Set up to read from the renderbuffer and draw to
** window-system framebuffer */
glBindFramebuffer( GL_READ_FRAMEBUFFER, framebuffer );
glBindFramebuffer( GL_DRAW_FRAMEBUFFER, 0 );
glViewport(0, 0, windowWidth, windowHeight);
glClearColor( 0.0, 0.0, 1.0, 1.0 );
glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT );

/* Do the copy */
glBlitFramebuffer( 0, 0, 255, 255, 0, 0, 255, 255,

GL_COLOR_BUFFER_BIT, GL_NEAREST );

glutSwapBuffers();
}
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Another very common use for framebuffer objects is to update textures 
dynamically. You might do this to indicate changes in a surface’s 
appearance (such as bullet holes in a wall in a game) or to update values in 
a lookup table if you’re doing GPGPU-like computations. In these cases, you 
bind a level of a texture map as the framebuffer attachment, as compared to 
a renderbuffer. After rendering, the texture map can be detached from the 
framebuffer so that it can be used in subsequent rendering.

Note: Nothing prevents you from reading from a texture that is 
simultaneously bound as a framebuffer attachment for writing. In 
this scenario, called a framebuffer rendering loop, the results are 
undefined for both operations. That is, the values returned from 
sampling the bound texture map, as well as the values written into 
the texture level while bound, will likely be incorrect.

void glFramebufferTexture1D(GLenum target, GLenum attachment,
GLenum texturetarget, GLuint texture, GLint level);

void glFramebufferTexture2D(GLenum target, GLenum attachment,
GLenum texturetarget, GLuint texture, GLint level);

void glFramebufferTexture3D(GLenum target, GLenum attachment,
GLenum texturetarget, GLuint texture, GLint level,
GLint layer);

Attaches a level of a texture objects as a rendering attachment to a 
framebuffer object. target must be either GL_READ_FRAMEBUFFER, 
GL_DRAW_FRAMEBUFFER, or GL_FRAMEBUFFER (which is equivalent to 
GL_DRAW_FRAMEBUFFER). attachment must be one of the framebuffer 
attachment points: GL_COLOR_ATTACHMENTi, GL_DEPTH_
ATTACHMENT, GL_STENCIL_ATTACHMENT, or GL_DEPTH_STENCIL_
ATTACHMENT (in which case, the internal format of the texture must be 
GL_DEPTH_STENCIL).

For glFramebufferTexture1D(), texturetarget must be GL_TEXTURE_1D, 
if texture is not zero. For glFramebufferTexture2D(), texturetarget must 
be GL_TEXTURE_2D, GL_TEXTURE_RECTANGLE, GL_TEXTURE_CUBE_
MAP_POSITIVE_X, GL_TEXTURE_CUBE_MAP_POSITIVE_Y, GL_
TEXTURE_CUBE_MAP_POSITIVE_Z, GL_TEXTURE_CUBE_MAP_
NEGATIVE_X, GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, GL_TEXTURE_
CUBE_MAP_NEGATIVE_Z, and for glFramebufferTexture3D()
texturetarget must be GL_TEXTURE_3D.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


536 Chapter 10: The Framebuffer

Similar to the previous example, Example 10-8 demonstrates the process 
of dynamically updating a texture, using the texture after its update is 
completed, and then rendering with it later.

Example 10-8 Attaching a Texture Level as a Framebuffer Attachment: fbotexture.c

GLuint framebuffer, texture;

void
init()
{

GLuint renderbuffer;

/* Create an empty texture */
glGenTextures( 1, &texture );
glBindTexture( GL_TEXTURE_2D, texture );
glTexImage2D( GL_TEXTURE_2D, 0, GL_RGBA8, TexWidth, 

TexHeight, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL );

/* Create a depth buffer for our framebuffer */
glGenRenderbuffers( 1, &renderbuffer );
glBindRenderbuffer( GL_RENDERBUFFER, renderbuffer );

If texture is zero, indicating that any texture bound to attachment is 
released, and no subsequent bind to attachment is made. In this case, 
texturetarget, level, and layer are ignored.

If texture is not zero, it must be the name of an existing texture object 
(created with glGenTextures()), with texturetarget matching the texture 
type (e.g., GL_TEXTURE_1D, etc.) associated with the texture object, or if 
texture is a cube map, then texturetarget must be one of the cube map face 
targets: GL_TEXTURE_CUBE_MAP_POSITIVE_X, GL_TEXTURE_CUBE_
MAP_POSITIVE_Y, GL_TEXTURE_CUBE_MAP_POSITIVE_Z, GL_
TEXTURE_CUBE_MAP_NEGATIVE_X, GL_TEXTURE_CUBE_MAP_
NEGATIVE_Y, GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, otherwise, a GL_
INVALID_OPERATION error is generated.

level represents the mipmap level of the associated texture image to be 
attached as a render target, and for three-dimensional textures, layer
represents the layer of the texture to be used. If texturetarget is GL_
TEXTURE_RECTANGLE (from OpenGL version 3.1), then level must 
be zero.
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glRenderbufferStorage( GL_RENDERBUFFER, GL_DEPTH_COMPONENT24,
TexWidth, TexHeight );

/* Attach the texture and depth buffer to the framebuffer */
glGenFramebuffers( 1, &framebuffer );
glBindFramebuffer( GL_DRAW_FRAMEBUFFER, framebuffer );
glFramebufferTexture2D( GL_DRAW_FRAMEBUFFER,

GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, texture, 0 );
glFramebufferRenderbuffer( GL_DRAW_FRAMEBUFFER,

GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, renderbuffer );

glEnable( GL_DEPTH_TEST );
}

void
display()
{

/* Render into the renderbuffer */
glBindFramebuffer( GL_DRAW_FRAMEBUFFER, framebuffer );
glViewport( 0, 0, TexWidth, TexHeight );
glClearColor( 1.0, 0.0, 1.0, 1.0 );
glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT );
/* Do other rendering */

/* Generate mipmaps of our texture */
glGenerateMipmap( GL_TEXTURE_2D );

/* Bind to the window-system framebuffer, unbinding from
** the texture, which we can use to texture other objects */
glBindFramebuffer( GL_FRAMEBUFFER, 0 );
glViewport( 0, 0, windowWidth, windowHeight );
glClearColor( 0.0, 0.0, 1.0, 1.0 );
glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT );

/* Render using the texture */
glEnable( GL_TEXTURE_2D );
...

glutSwapBuffers();
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir


538 Chapter 10: The Framebuffer

Framebuffer Completeness

Given the myriad of combinations between texture and buffer formats, 
and between framebuffer attachments, various situations can arise that 
prevent the completion of rendering when you are using application-
defined framebuffer objects. After modifying the attachments to a 
framebuffer object, it’s best to check the framebuffer’s status by calling 
glCheckFramebufferStatus().

The errors representing the various violations of framebuffer configurations 
are listed in Table 10-7.

Of the listed errors, GL_FRAMEBUFFER_UNSUPPORTED is very 
implementation dependent, and may be the most complicated to debug. 

void glFramebufferTextureLayer(GLenum target, GLenum attachment,
GLuint texture, GLint level, GLint layer);

Attaches a layer of a three-dimensional texture, or a one- or two-
dimensional array texture as a framebuffer attachment, in a similar 
manner to glFramebufferTexture3D().

target must be one of GL_READ_FRAMEBUFFER, GL_DRAW_
FRAMEBUFFER, or GL_FRAMEBUFFER (which is equivalent to GL_DRAW_
FRAMEBUFFER). attachment must be one of GL_COLOR_ATTACHMENTi,
GL_DEPTH_ATTACHMENT, GL_STENCIL_ATTACHMENT, or GL_DEPTH_
STENCIL_ATTACHMENT.

texture must be either zero, indicating that the current binding for the 
attachment should be released, or a texture object name (as returned from 
glGenTextures()). level indicates the mipmap level of the texture object, 
and layer represents which layer of the texture (or array element) should 
be bound as an attachment.

GLenum glCheckFramebufferStatus(GLenum target);

Returns one of the framebuffer completeness status enums listed in 
Table 10-7. target must be one of GL_READ_FRAMEBUFFER, GL_DRAW_
FRAMEBUFFER, or GL_FRAMEBUFFER (which is equivalent to GL_DRAW_
FRAMEBUFFER).

If glCheckFramebufferStatus() generates an error, zero is returned.
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Copying Pixel Rectangles

While glCopyPixels() has been the default routine for replicating blocks of 
pixels since OpenGL Version 1.0, as OpenGL expanded its rendering facilities, 
a more substantial pixel-copying routine was required. glBlitFramebuffer(),
described below, subsumes the operations of glCopyPixels() and 
glPixelZoom() in a single, enhanced call. glBlitFramebuffer() allows greater 
pixel filtering during the copy operation, much in the same manner as 
texture mapping (in fact, the same filtering operations, GL_NEAREST and 
GL_LINEAR are used during the copy). Additionally, this routine is aware of 
multisampled buffers, and supports copying between different framebuffers 
(as controlled by framebuffer objects). 

Framebuffer Completeness 
Status Enum Description

GL_FRAMEBUFFER_COMPLETE The framebuffer and its attachments match the 
rendering or reading state required.

GL_FRAMEBUFFER_UNDEFINED The bound framebuffer is specified to be the 
default framebuffer (i.e., glBindFramebuffer()
with zero specified as the framebuffer), and the 
default framebuffer doesn’t exist.

GL_FRAMEBUFFER_
INCOMPLETE_ATTACHMENT

A necessary attachment to the bound 
framebuffer is uninitialized

GL_FRAMEBUFFER_
INCOMPLETE_MISSING_
ATTACHMENT

There are no images (e.g., texture layers or 
renderbuffers) attached to the framebuffer.

GL_FRAMEBUFFER_
INCOMPLETE_DRAW_BUFFER

Every drawing buffer (e.g., GL_DRAW_BUFFERi
as specified by glDrawBuffers()) has an 
attachment.

GL_FRAMEBUFFER_
INCOMPLETE_READ_BUFFER

An attachment exists for the buffer specified 
for the buffer specified by glReadBuffer().

GL_FRAMEBUFFER_
UNSUPPORTED

The combination of images attached to the 
framebuffer object is incompatible with the 
requirements of the OpenGL implementation.

GL_FRAMEBUFFER_
INCOMPLETE_MULTISAMPLE

The number of samples for all images across 
the framebuffer’s attachments do not match.

Table 10-7 Errors returned by glCheckFramebufferStatus()
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void glBlitFramebuffer(GLint srcX0, GLint srcY0,
GLint srcX1, GLint srcY1, GLint dstX0, GLint dstY0,
GLint dstX1, GLint dstY1, GLbitfield buffers,
GLenum filter);

Copies a rectangle of pixel values from one region of the read framebuffer 
to another region of the draw framebuffer, potentially resizing, reversing, 
converting, and filtering the pixels in the process. srcX0, srcY0, srcX1,
srcY1 represent the source region where pixels are sourced from, and 
written to the rectangular region specified by dstX0, dstY0, dstX1, dstY1.
buffers is the bitwise-or of GL_COLOR_BUFFER_BIT, GL_DEPTH_BUFFER_
BIT, and GL_STENCIL_BUFFER_BIT, which represent the buffers in which 
the copy should occur. Finally, filter specifies the method of interpolation 
done if the two rectangular regions are different sizes, and must be one of 
GL_NEAREST or GL_LINEAR; no filtering is applied if the regions are the 
same size.

If there are multiple color draw buffers (See “Rendering to Multiple Output 
Buffers” on page 729), each buffer receives a copy of the source region.

If srcX1 < srcX0, or dstX1 < dstX0, the image is reversed in the horizontal 
direction. Likewise, if srcY1 < srcY0 or dstY1 < dstY0, the image is reverse 
in the vertical direction. However, If both the source and destination sizes 
are negative in the same direction, no reversal is done.

If the source and destination buffers are of different formats, conversion of 
the pixel values is done in most situations. However, if the read color buffer 
is a floating-point format, and any of the write color buffers are not, or vice 
verse; and if the read color buffer is a signed (unsigned) integer format and 
not all of the draw buffers are signed (unsigned) integer values, the call will 
generate a GL_INVALID_OPERATION, and no pixels will be copied.

Multisampled buffers also have an effect on the copying of pixels. If the 
source buffer is multisampled, and the destination is not, the samples are 
resolved to a single pixel value for the destination buffer. Conversely, if 
the source buffer is not multisampled, and the destination is, the source 
pixel’s data is replicated for each sample. Finally, if both buffers are 
multisampled and the number of samples for each buffer is the same, the 
samples are copied without modification. However, if the buffers have a 
different number of samples, no pixels are copied, and a GL_INVALID_
OPERATION error is generated.

A GL_INVALID_VALUE error is generated if buffers has other bits set than 
those permitted, or if filter is other than GL_LINEAR or GL_NEAREST.
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Chapter 11

11.Tessellators and Quadrics

Chapter Objectives

After reading this chapter, you’ll be able to do the following:

• Render concave filled polygons by first tessellating them into convex 
polygons, which can be rendered using standard OpenGL routines

• Use the OpenGL Utility Library to create quadrics objects to render and 
model the surfaces of spheres and cylinders, and to tessellate disks 
(circles) and partial disks (arcs)

Note: In OpenGL Version 3.1, some of the techniques and functions 
described in this chapter—particularly those relating to quadric 
objects—were likely affected by deprecation. While many of these 
features can be found in the GLU library, they rely on OpenGL 
functions that were removed.
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The OpenGL Library (GL) is designed for low-level operations, both stream-
lined and accessible to hardware acceleration. The OpenGL Utility Library 
(GLU) complements the OpenGL library, supporting higher-level operations. 
Some of the GLU operations are covered in other chapters. Mipmapping 
(gluBuild*DMipmaps()) and image scaling (gluScaleImage()) are discussed 
along with other facets of texture mapping in Chapter 9. Several matrix trans-
formation GLU routines (gluOrtho2D(), gluPerspective(), gluLookAt(),
gluProject(), gluUnProject(), and gluUnProject4()) are described in 
Chapter 3. The use of gluPickMatrix() is explained in Chapter 13. The 
GLU NURBS facilities, which are built atop OpenGL evaluators, are covered 
in Chapter 12. Only two GLU topics remain: polygon tessellators and quad-
ric surfaces; these topics are discussed in this chapter.

To optimize performance, the basic OpenGL renders only convex polygons, 
but the GLU contains routines for tessellating concave polygons into con-
vex ones, which the basic OpenGL can handle. Where the basic OpenGL 
operates on simple primitives, such as points, lines, and filled polygons, the 
GLU can create higher-level objects, such as the surfaces of spheres, cylin-
ders, and cones.

This chapter has the following major sections.

• “Polygon Tessellation” explains how to tessellate concave polygons 
into easier-to-render convex polygons.

• “Quadrics: Rendering Spheres, Cylinders, and Disks” describes how to 
generate spheres, cylinders, circles and arcs, including data such as 
surface normals and texture coordinates.

Polygon Tessellation

As discussed in “Describing Points, Lines, and Polygons” in Chapter 2, 
OpenGL can directly display only simple convex polygons. A polygon is 
simple if the edges intersect only at vertices, there are no duplicate vertices, 
and exactly two edges meet at any vertex. If your application requires the 
display of concave polygons, polygons containing holes, or polygons with 
intersecting edges, these polygons must first be subdivided into simple 
convex polygons before they can be displayed. Such subdivision is called 
tessellation, and the GLU provides a collection of routines that perform 
tessellation. These routines take as input arbitrary contours, which describe 
hard-to-render polygons, and they return some combination of triangles, 
triangle meshes, triangle fans, and lines.
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Figure 11-1 shows some contours of polygons that require tessellation: 
from left to right, a concave polygon, a polygon with a hole, and a self-
intersecting polygon.

If you think a polygon may need tessellation, follow these typical steps:

1. Create a new tessellation object with gluNewTess().

2. Use gluTessCallback() several times to register callback functions 
to perform operations during the tessellation. The trickiest case 
for a callback function is when the tessellation algorithm detects an 
intersection and must call the function registered for the GLU_TESS_
COMBINE callback.

3. Specify tessellation properties by calling gluTessProperty(). The most 
important property is the winding rule, which determines the regions 
that should be filled and those that should remain unshaded.

4. Create and render tessellated polygons by specifying the contours 
of one or more closed polygons. If the data for the object is static, 
encapsulate the tessellated polygons in a display list. (If you don’t have 
to recalculate the tessellation repeatedly, using display lists is more 
efficient.)

5. If you need to tessellate something else, you may reuse your 
tessellation object. If you are forever finished with your tessellation 
object, you may delete it with gluDeleteTess().

Note: The tessellator described here was introduced in Version 1.2 of the 
GLU. If you are using an older version of the GLU, you must use 
routines described in “Describing GLU Errors” on page 557. To query 
which version of GLU you have, use gluGetString(GLU_VERSION),

Figure 11-1 Contours That Require Tessellation
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which returns a string with your GLU version number. If you don’t 
seem to have gluGetString() in your GLU, then you have GLU 1.0, 
which did not yet have the gluGetString() routine.

Creating a Tessellation Object

As a complex polygon is being described and tessellated, it has associated 
data, such as the vertices, edges, and callback functions. All this data is tied 
to a single tessellation object. To perform tessellation, your program first 
has to create a tessellation object using the routine gluNewTess().

A single tessellation object can be reused for all your tessellations. This 
object is required only because library routines might need to do their own 
tessellations, and they should be able to do so without interfering with 
any tessellation that your program is doing. It might also be useful to have 
multiple tessellation objects if you want to use different sets of callbacks 
for different tessellations. A typical program, however, allocates a single 
tessellation object and uses it for all its tessellations. There’s no real need to 
free it, because it uses a small amount of memory. On the other hand, it 
never hurts to be tidy.

Tessellation Callback Routines

After you create a tessellation object, you must provide a series of callback 
routines to be called at appropriate times during the tessellation. After 
specifying the callbacks, you describe the contours of one or more polygons 
using GLU routines. When the description of the contours is complete, the 
tessellation facility invokes your callback routines as necessary.

Any functions that are omitted are simply not called during the tessellation, 
and any information they might have returned to your program is lost. All 
are specified by the single routine gluTessCallback().

GLUtesselator* gluNewTess(void);

Creates a new tessellation object and returns a pointer to it. A null pointer 
is returned if the creation fails. 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Polygon Tessellation 545

void gluTessCallback(GLUtesselator *tessobj, GLenum type, void (*fn)());

Associates the callback function fn with the tessellation object tessobj. The 
type of the callback is determined by the parameter type, which can be 
GLU_TESS_BEGIN, GLU_TESS_BEGIN_DATA, GLU_TESS_EDGE_FLAG, 
GLU_TESS_EDGE_FLAG_DATA, GLU_TESS_VERTEX, GLU_TESS_VERTEX_
DATA, GLU_TESS_END, GLU_TESS_END_DATA, GLU_TESS_COMBINE, 
GLU_TESS_COMBINE_DATA, GLU_TESS_ERROR, or GLU_TESS_ERROR_
DATA. The 12 possible callback functions have the following prototypes:

GLU_TESS_BEGIN void begin(GLenum type);

GLU_TESS_BEGIN_DATA void begin(GLenum type,
void *user_data);

GLU_TESS_EDGE_FLAG void edgeFlag(GLboolean flag);

GLU_TESS_EDGE_FLAG_DATA void edgeFlag(GLboolean flag,
void *user_data);

GLU_TESS_VERTEX void vertex(void *vertex_data);

GLU_TESS_VERTEX_DATA void vertex(void *vertex_data,
void *user_data);

GLU_TESS_END void end(void);

GLU_TESS_END_DATA void end(void *user_data);

GLU_TESS_COMBINE void combine(
GLdouble coords[3],
void*vertex_data[4], 
GLfloat weight[4], 
void **outData);

GLU_TESS_COMBINE_DATA void combine(
GLdouble coords[3],
void*vertex_data[4], 
GLfloat weight[4], 
void **outData,
void *user_data);

GLU_TESS_ERROR void error(GLenum errno);

GLU_TESS_ERROR_DATA void error(GLenum errno,
void *user_data);
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To change a callback routine, simply call gluTessCallback() with the new 
routine. To eliminate a callback routine without replacing it with a new one, 
pass gluTessCallback() a null pointer for the appropriate function.

As tessellation proceeds, the callback routines are called in a manner 
similar to how you use the OpenGL commands glBegin(), glEdgeFlag*(),
glVertex*(), and glEnd(). (See “Marking Polygon Boundary Edges” in 
Chapter 2 for more information about glEdgeFlag*().) The combine call-
back is used to create new vertices where edges intersect. The error callback 
is invoked during the tessellation only if something goes wrong.

For every tessellator object created, a GLU_TESS_BEGIN callback is invoked 
with one of four possible parameters: GL_TRIANGLE_FAN, GL_TRIANGLE_
STRIP, GL_TRIANGLES, or GL_LINE_LOOP. When the tessellator decom-
poses the polygons, the tessellation algorithm decides which type of trian-
gle primitive is most efficient to use. (If the GLU_TESS_BOUNDARY_ONLY 
property is enabled, then GL_LINE_LOOP is used for rendering.)

Since edge flags make no sense in a triangle fan or triangle strip, if there is 
a callback associated with GLU_TESS_EDGE_FLAG that enables edge flags, 
the GLU_TESS_BEGIN callback is called only with GL_TRIANGLES. The 
GLU_TESS_EDGE_FLAG callback works exactly analogously to the OpenGL 
glEdgeFlag*() call.

After the GLU_TESS_BEGIN callback routine is called and before the call-
back associated with GLU_TESS_END is called, some combination of the 
GLU_TESS_EDGE_FLAG and GLU_TESS_VERTEX callbacks is invoked (usually 
by calls to gluTessVertex(), which is described on page 555). The associated 
edge flags and vertices are interpreted exactly as they are in OpenGL 
between glBegin() and the matching glEnd().

If something goes wrong, the error callback is passed a GLU error number. 
A character string describing the error is obtained using the routine 
gluErrorString(). (See “Describing GLU Errors” on page 557 for more 
information about this routine.) 

Example 11-1 shows a portion of tess.c, in which a tessellation object is 
created and several callbacks are registered.

Example 11-1 Registering Tessellation Callbacks: tess.c

#ifndef CALLBACK
#define CALLBACK
#endif
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/*  a portion of init() */

tobj = gluNewTess();
gluTessCallback(tobj, GLU_TESS_VERTEX, glVertex3dv);
gluTessCallback(tobj, GLU_TESS_BEGIN, beginCallback);
gluTessCallback(tobj, GLU_TESS_END, endCallback);
gluTessCallback(tobj, GLU_TESS_ERROR, errorCallback);

/*  the callback routines registered by gluTessCallback() */
void CALLBACK beginCallback(GLenum which)
{
   glBegin(which);
}

void CALLBACK endCallback(void)
{
   glEnd();
}

void CALLBACK errorCallback(GLenum errorCode)
{
   const GLubyte *estring;

   estring = gluErrorString(errorCode);
   fprintf(stderr, "Tessellation Error: %s\n", estring);
   exit(0);
}

Note: Type casting of callback functions is tricky, especially if you wish to 
make code that runs equally well on Microsoft Windows and UNIX. 
To run on Microsoft Windows, programs that declare callback func-
tions, such as tess.c, need the symbol CALLBACK in the declarations 
of functions. The trick of using an empty definition for CALLBACK 
(as demonstrated below) allows the code to run well on both 
Microsoft Windows and UNIX:

#ifndef CALLBACK
#define CALLBACK
#endif

void CALLBACK callbackFunction(...) {
....

}

In Example 11-1, the registered GLU_TESS_VERTEX callback is simply 
glVertex3dv(), and only the coordinates at each vertex are passed along. 
However, if you want to specify more information at every vertex, such as 
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a color value, a surface normal vector, or a texture coordinate, you’ll have 
to make a more complex callback routine. Example 11-2 shows the start of 
another tessellated object, further along in program tess.c. The registered 
function vertexCallback() expects to receive a parameter that is a pointer 
to six double-length floating-point values: the x-, y-, and z-coordinates and 
the red, green, and blue color values for that vertex.

Example 11-2 Vertex and Combine Callbacks: tess.c

/*  a different portion of init() */
   gluTessCallback(tobj, GLU_TESS_VERTEX, vertexCallback);
   gluTessCallback(tobj, GLU_TESS_BEGIN, beginCallback);
   gluTessCallback(tobj, GLU_TESS_END, endCallback);
   gluTessCallback(tobj, GLU_TESS_ERROR, errorCallback);
   gluTessCallback(tobj, GLU_TESS_COMBINE, combineCallback);

/*  new callback routines registered by these calls */
void CALLBACK vertexCallback(GLvoid *vertex)
{
   const GLdouble *pointer;

   pointer = (GLdouble *) vertex;
   glColor3dv(pointer+3);
   glVertex3dv(vertex);
}

void CALLBACK combineCallback(GLdouble coords[3], 
                     GLdouble *vertex_data[4],
                     GLfloat weight[4], GLdouble **dataOut )
{
   GLdouble *vertex;
   int i;

   vertex = (GLdouble *) malloc(6 * sizeof(GLdouble));
   vertex[0] = coords[0];
   vertex[1] = coords[1];
   vertex[2] = coords[2];
   for (i = 3; i < 6; i++)
      vertex[i] = weight[0] * vertex_data[0][i] 
                  + weight[1] * vertex_data[1][i]
                  + weight[2] * vertex_data[2][i] 
                  + weight[3] * vertex_data[3][i];
   *dataOut = vertex;
}
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Example 11-2 also shows the use of the GLU_TESS_COMBINE callback. 
Whenever the tessellation algorithm examines the input contours, detects 
an intersection, and decides it must create a new vertex, the GLU_TESS_
COMBINE callback is invoked. The callback is also called when the tessellator 
decides to merge features of two vertices that are very close to one another. 
The newly created vertex is a linear combination of up to four existing 
vertices, referenced by vertex_data[0..3] in Example 11-2. The coefficients 
of the linear combination are given by weight[0..3]; these weights sum to 
1.0. coords gives the location of the new vertex. 

The registered callback routine must allocate memory for another vertex, per-
form a weighted interpolation of data using vertex_data and weight, and return 
the new vertex pointer as dataOut. combineCallback() in Example 11-2 inter-
polates the RGB color value. The function allocates a six-element array, puts 
the x-, y-, and z-coordinates in the first three elements, and then puts the 
weighted average of the RGB color values in the last three elements.

User-Specified Data

Six kinds of callbacks can be registered. Since there are two versions of each 
kind of callback, there are 12 callbacks in all. For each kind of callback, there 
is one with user-specified data and one without. The user-specified data is 
given by the application to gluTessBeginPolygon() and is then passed, 
unaltered, to each *DATA callback routine. With GLU_TESS_BEGIN_DATA, 
the user-specified data may be used for “per-polygon” data. If you specify 
both versions of a particular callback, the callback with user_data is used, 
and the other is ignored. Therefore, although there are 12 callbacks, you can 
have a maximum of six callback functions active at any one time.

For instance, Example 11-2 uses smooth shading, so vertexCallback()
specifies an RGB color for every vertex. If you want to do lighting and 
smooth shading, the callback would specify a surface normal for every 
vertex. However, if you want lighting and flat shading, you might specify 
only one surface normal for every polygon, not for every vertex. In that 
case, you might choose to use the GLU_TESS_BEGIN_DATA callback and 
pass the vertex coordinates and surface normal in the user_data pointer.

Tessellation Properties

Prior to tessellation and rendering, you may use gluTessProperty() to set 
several properties to affect the tessellation algorithm. The most important 
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and complicated of these properties is the winding rule, which determines 
what is considered “interior” and “exterior.”

Winding Numbers and Winding Rules

For a single contour, the winding number of a point is the signed number 
of revolutions we make around that point while traveling once around the 
contour (where a counterclockwise revolution is positive and a clockwise 
revolution is negative). When there are several contours, the individual 
winding numbers are summed. This procedure associates a signed integer 
value with each point in the plane. Note that the winding number is the 
same for all points in a single region.

void gluTessProperty(GLUtesselator *tessobj, GLenum property,
GLdouble value);

For the tessellation object tessobj, the current value of property is set to 
value. property is GLU_TESS_BOUNDARY_ONLY, GLU_TESS_TOLERANCE, 
or GLU_TESS_WINDING_RULE.

If property is GLU_TESS_BOUNDARY_ONLY, value is either GL_TRUE or 
GL_FALSE. When it is set to GL_TRUE, polygons are no longer tessellated 
into filled polygons; line loops are drawn to outline the contours that 
separate the polygon interior and exterior. The default value is GL_FALSE. 
(See gluTessNormal() to see how to control the winding direction of the 
contours.)

If property is GLU_TESS_TOLERANCE, value is a distance used to calculate 
whether two vertices are close enough together to be merged by the 
GLU_TESS_COMBINE callback. The tolerance value is multiplied by 
the largest coordinate magnitude of an input vertex to determine the 
maximum distance any feature can move as a result of a single merge 
operation. Feature merging may not be supported by your implementa-
tion, and the tolerance value is only a hint. The default tolerance value 
is zero.

The GLU_TESS_WINDING_RULE property determines which parts of the 
polygon are on the interior and which are on the exterior and should not 
be filled. value can be GLU_TESS_WINDING_ODD (the default), GLU_
TESS_WINDING_NONZERO, GLU_TESS_WINDING_POSITIVE, GLU_
TESS_WINDING_NEGATIVE, or GLU_TESS_WINDING_ABS_GEQ_TWO.
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Figure 11-2 shows three sets of contours and winding numbers for points 
inside those contours. In the set at the left, all three contours are counter-
clockwise, so each nested interior region adds 1 to the winding number. In 
the middle set, the two interior contours are drawn clockwise, so the wind-
ing number decreases and actually becomes negative.

The winding rule classifies a region as inside if its winding number belongs 
to the chosen category (odd, nonzero, positive, negative, or “absolute value 
greater than or equal to 2”). The odd and nonzero rules are common ways 
to define the interior. The positive, negative, and “absolute value  2” wind-
ing rules have some limited use for polygon CSG (computational solid 
geometry) operations.

The program tesswind.c demonstrates the effects of winding rules. The four 
sets of contours shown in Figure 11-3 are rendered. The user can then cycle 
through the different winding rule properties to see their effects. For each 
winding rule, the dark areas represent interiors. Note the effects of clockwise 
and counterclockwise winding.

CSG Uses for Winding Rules

GLU_TESS_WINDING_ODD and GLU_TESS_WINDING_NONZERO are the 
most commonly used winding rules. They work for the most typical cases 
of shading. 

The winding rules are also designed for CSG operations, making it easy to 
find the union, difference, or intersection (Boolean operations) of several 
contours.
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Figure 11-2 Winding Numbers for Sample Contours
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First, assume that each contour is defined so that the winding number is 0 
for each exterior region and 1 for each interior region. (Each contour must 
not intersect itself.) Under this model, counterclockwise contours define 
the outer boundary of the polygon, and clockwise contours define holes. 
Contours may be nested, but a nested contour must be oriented oppositely 
from the contour that contains it.
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Figure 11-3 How Winding Rules Define Interiors
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If the original polygons do not satisfy this description, they can be con-
verted to this form by first running the tessellator with the GLU_TESS_
BOUNDARY_ONLY property turned on. This returns a list of contours satis-
fying the restriction just described. By creating two tessellator objects, the 
callbacks from one tessellator can be fed directly as input to the other.

Given two or more polygons of the preceding form, CSG operations can be 
implemented as follows:

• UNION—To calculate the union of several contours, draw all input 
contours as a single polygon. The winding number of each resulting 
region is the number of original polygons that cover it. The union 
can be extracted by using the GLU_TESS_WINDING_NONZERO or 
GLU_TESS_WINDING_POSITIVE winding rule. Note that with the 
nonzero winding rule, we would get the same result if all contour 
orientations were reversed.

• INTERSECTION—This works only for two contours at a time. Draw a 
single polygon using two contours. Extract the result using GLU_TESS_
WINDING_ABS_GEQ_TWO.

• DIFFERENCE—Suppose you want to compute A diff (B union C union 
D). Draw a single polygon consisting of the unmodified contours from 
A, followed by the contours of B, C, and D, with their vertex order 
reversed. To extract the result, use the GLU_TESS_WINDING_POSITIVE 
winding rule. (If B, C, and D are the result of a GLU_TESS_BOUNDARY_
ONLY operation, an alternative to reversing the vertex order is to use 
gluTessNormal() to reverse the sign of the supplied normal.)

Other Tessellation Property Routines

There are also complementary routines, which work alongside 
gluTessProperty(). gluGetTessProperty() retrieves the current values of 
tessellator properties. If the tessellator is being used to generate wireframe 
outlines instead of filled polygons, gluTessNormal() can be used to 
determine the winding direction of the tessellated polygons.

void gluGetTessProperty(GLUtesselator *tessobj, GLenum property,
GLdouble *value);

For the tessellation object tessobj, the current value of property is returned to 
value. Values for property and value are the same as for gluTessProperty().
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If you have some knowledge about the location and orientation of the input 
data, then using gluTessNormal() can increase the speed of the tessellation. 
For example, if you know that all polygons lie on the xy-plane, call 
gluTessNormal(tessobj, 0, 0, 1).

As stated above, the default normal is (0, 0, 0), and its effect is not immedi-
ately obvious. In this case, it is expected that the input data lies approximately 
in a plane, and a plane is fitted to the vertices, no matter how they are truly 
connected. The sign of the normal is chosen so that the sum of the signed 
areas of all input contours is non-negative (where a counterclockwise con-
tour has a positive area). Note that if the input data does not lie approxi-
mately in a plane, then projection perpendicular to the computed normal 
may substantially change the geometry.

Polygon Definition

After all the tessellation properties have been set and the callback actions 
have been registered, it is finally time to describe the vertices that comprise 
input contours and tessellate the polygons.

Calls to gluTessBeginPolygon() and gluTessEndPolygon() surround the 
definition of one or more contours. When gluTessEndPolygon() is called, 
the tessellation algorithm is implemented, and the tessellated polygons are 

void gluTessNormal(GLUtesselator *tessobj, GLdouble x, GLdouble y,
GLdouble z);

For the tessellation object tessobj, gluTessNormal() defines a normal vec-
tor, which controls the winding direction of generated polygons. Before 
tessellation, all input data is projected into a plane perpendicular to the 
normal. Then, all output triangles are oriented counterclockwise, with 
respect to the normal. (Clockwise orientation can be obtained by revers-
ing the sign of the supplied normal.) The default normal is (0, 0, 0).

void gluTessBeginPolygon(GLUtesselator *tessobj, void *user_data);
void gluTessEndPolygon(GLUtesselator *tessobj);

Begins and ends the specification of a polygon to be tessellated and 
associates a tessellation object, tessobj, with it. user_data points to a user-
defined data structure, which is passed along all the GLU_TESS_*_DATA 
callback functions that have been bound.
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generated and rendered. The callback functions and tessellation properties 
that were bound and set to the tessellation object using gluTessCallback() 
and gluTessProperty() are used.

In practice, a minimum of three vertices is needed for a meaningful contour. 

In the program tess.c, a portion of which is shown in Example 11-3, two 
polygons are defined. One polygon is a rectangular contour with a triangular 
hole inside, and the other is a smooth-shaded, self-intersecting, five-pointed 
star. For efficiency, both polygons are stored in display lists. The first poly-
gon consists of two contours; the outer one is wound counterclockwise, 
and the “hole” is wound clockwise. For the second polygon, the star array 
contains both the coordinate and color data, and its tessellation callback, 
vertexCallback(), uses both.

It is important that each vertex is in a different memory location because 
the vertex data is not copied by gluTessVertex(); only the pointer (vertex_
data) is saved. A program that reuses the same memory for several vertices 
may not get the desired result.

Note: In gluTessVertex(), it may seem redundant to specify the vertex coor-
dinate data twice, for both the coords and vertex_data parameters; 
however, both are necessary. coords refers only to the vertex coordi-
nates. vertex_data uses the coordinate data, but may also use other 
information for each vertex.

void gluTessBeginContour(GLUtesselator *tessobj);
void gluTessEndContour(GLUtesselator *tessobj);

Begins and ends the specification of a closed contour, which is a portion of 
a polygon. A closed contour consists of zero or more calls to gluTessVertex(),
which defines the vertices. The last vertex of each contour is 
automatically linked to the first.

void gluTessVertex(GLUtesselator *tessobj, GLdouble coords[3], 
void *vertex_data);

Specifies a vertex in the current contour for the tessellation object. coords
contains the three-dimensional vertex coordinates, and vertex_data is a 
pointer that’s sent to the callback associated with GLU_TESS_VERTEX or 
GLU_TESS_VERTEX_DATA. Typically, vertex_data contains vertex coordi-
nates, surface normals, texture coordinates, color information, or what-
ever else the application may find useful.
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Example 11-3 Polygon Definition: tess.c

   GLdouble rect[4][3] = {50.0, 50.0, 0.0,
                          200.0, 50.0, 0.0,
                          200.0, 200.0, 0.0,
                          50.0, 200.0, 0.0};
   GLdouble tri[3][3] = {75.0, 75.0, 0.0,
                         125.0, 175.0, 0.0,
                         175.0, 75.0, 0.0};
   GLdouble star[5][6] = {250.0, 50.0, 0.0, 1.0, 0.0, 1.0,
                          325.0, 200.0, 0.0, 1.0, 1.0, 0.0,
                          400.0, 50.0, 0.0, 0.0, 1.0, 1.0,
                          250.0, 150.0, 0.0, 1.0, 0.0, 0.0,
                          400.0, 150.0, 0.0, 0.0, 1.0, 0.0};

   startList = glGenLists(2);
   tobj = gluNewTess();
   gluTessCallback(tobj, GLU_TESS_VERTEX, glVertex3dv);
   gluTessCallback(tobj, GLU_TESS_BEGIN, beginCallback);
   gluTessCallback(tobj, GLU_TESS_END, endCallback);
   gluTessCallback(tobj, GLU_TESS_ERROR, errorCallback);

   glNewList(startList, GL_COMPILE);
   glShadeModel(GL_FLAT);
   gluTessBeginPolygon(tobj, NULL);
      gluTessBeginContour(tobj);
         gluTessVertex(tobj, rect[0], rect[0]);
         gluTessVertex(tobj, rect[1], rect[1]);
         gluTessVertex(tobj, rect[2], rect[2]);
         gluTessVertex(tobj, rect[3], rect[3]);
      gluTessEndContour(tobj);
      gluTessBeginContour(tobj);
         gluTessVertex(tobj, tri[0], tri[0]);
         gluTessVertex(tobj, tri[1], tri[1]);
         gluTessVertex(tobj, tri[2], tri[2]);
      gluTessEndContour(tobj);
   gluTessEndPolygon(tobj);
   glEndList();

   gluTessCallback(tobj, GLU_TESS_VERTEX, vertexCallback);
   gluTessCallback(tobj, GLU_TESS_BEGIN, beginCallback);
   gluTessCallback(tobj, GLU_TESS_END, endCallback);
   gluTessCallback(tobj, GLU_TESS_ERROR, errorCallback);
   gluTessCallback(tobj, GLU_TESS_COMBINE, combineCallback);

   glNewList(startList + 1, GL_COMPILE);
   glShadeModel(GL_SMOOTH);
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   gluTessProperty(tobj, GLU_TESS_WINDING_RULE,
                   GLU_TESS_WINDING_POSITIVE);
   gluTessBeginPolygon(tobj, NULL);
      gluTessBeginContour(tobj);
         gluTessVertex(tobj, star[0], star[0]);
         gluTessVertex(tobj, star[1], star[1]);
         gluTessVertex(tobj, star[2], star[2]);
         gluTessVertex(tobj, star[3], star[3]);
         gluTessVertex(tobj, star[4], star[4]);
      gluTessEndContour(tobj);
   gluTessEndPolygon(tobj);
   glEndList();

Deleting a Tessellation Object

If you no longer need a tessellation object, you can delete it and free all 
associated memory with gluDeleteTess().

Tessellation Performance Tips

For best performance, remember these rules:

• Cache the output of the tessellator in a display list or other user 
structure. To obtain the post-tessellation vertex coordinates, tessellate 
the polygons while in feedback mode. (See “Feedback” in Chapter 13.)

• Use gluTessNormal() to supply the polygon normal.

• Use the same tessellator object to render many polygons, rather than 
allocate a new tessellator for each one. (In a multithreaded, multi-
processor environment, you may get better performance using several 
tessellators.)

Describing GLU Errors

The GLU provides a routine for obtaining a descriptive string for an error 
code. This routine is not limited to tessellation but is also used for NURBS 
and quadrics errors, as well as for errors in the base GL. (See “Error 

void gluDeleteTess(GLUtesselator *tessobj);

Deletes the specified tessellation object, tessobj, and frees all associated 
memory.
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Handling” in Chapter 14 for information about OpenGL’s error-handling 
facility.)

Backward Compatibility

If you are using the 1.0 or 1.1 version of GLU, you have a much less power-
ful tessellator. The 1.0/1.1 tessellator handles only simple nonconvex poly-
gons or simple polygons containing holes. It does not properly tessellate 
intersecting contours (no COMBINE callback) or process per-polygon data. 
The 1.0/1.1 tessellator still works in either GLU 1.2 or 1.3, but its use is no 
longer recommended.

The 1.0/1.1 tessellator has some similarities to the current tessellator. 
gluNewTess() and gluDeleteTess() are used for both tessellators. The main 
vertex specification routine remains gluTessVertex(). The callback mecha-
nism is controlled by gluTessCallback(), although only five callback func-
tions can be registered, a subset of the current 12. 

Here are the prototypes for the 1.0/1.1 tessellator:

void gluBeginPolygon(GLUtriangulatorObj *tessobj);
void gluNextContour(GLUtriangulatorObj *tessobj, GLenum type);
void gluEndPolygon(GLUtriangulatorObj *tessobj);

The outermost contour must be specified first, and it does not require an 
initial call to gluNextContour(). For polygons without holes, only one 
contour is defined, and gluNextContour() is not used. If a polygon has 
multiple contours (that is, holes or holes within holes), the contours 
are specified one after the other, each preceded by gluNextContour().
gluTessVertex() is called for each vertex of a contour.

For gluNextContour(), type can be GLU_EXTERIOR, GLU_INTERIOR, 
GLU_CCW, GLU_CW, or GLU_UNKNOWN. These serve only as hints to 
the tessellation. If you get them right, the tessellation might go faster. If 
you get them wrong, they’re ignored, and the tessellation still works. For 
polygons with holes, one contour is the exterior contour and the other is 
the interior. The first contour is assumed to be of type GLU_EXTERIOR. 
Choosing clockwise or counterclockwise orientation is arbitrary in three 
dimensions; however, there are two different orientations in any plane, 
and the GLU_CCW and GLU_CW types should be used consistently. Use 
GLU_UNKNOWN if you don’t have a clue.
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It is highly recommended that you convert GLU 1.0/1.1 code to the new 
tessellation interface for GLU 1.2 by following these steps:

1. Change references to the major data structure type from 
GLUtriangulatorObj to GLUtesselator. In GLU 1.2, GLUtriangulatorObj 
and GLUtesselator are defined to be the same type.

2. Convert gluBeginPolygon() to two commands: gluTessBeginPolygon()
and gluTessBeginContour(). All contours must be explicitly started, 
including the first one.

3. Convert gluNextContour() to both gluTessEndContour() and 
gluTessBeginContour(). You have to end the previous contour before 
starting the next one.

4. Convert gluEndPolygon() to both gluTessEndContour() and 
gluTessEndPolygon(). The final contour must be closed.

5. Change references to constants to gluTessCallback(). In GLU 1.2, 
GLU_BEGIN, GLU_VERTEX, GLU_END, GLU_ERROR, and 
GLU_EDGE_FLAG are defined as synonyms for GLU_TESS_BEGIN, 
GLU_TESS_VERTEX, GLU_TESS_END, GLU_TESS_ERROR, and 
GLU_TESS_EDGE_FLAG.

Quadrics: Rendering Spheres, Cylinders, and Disks

The base OpenGL Library provides support only for modeling and 
rendering simple points, lines, and convex filled polygons. Neither 3D 
objects nor commonly used 2D objects such as circles are directly available.

Throughout this book, you’ve been using GLUT to create some 3D objects. 
The GLU also provides routines to model and render tessellated, polygonal 
approximations for a variety of 2D and 3D shapes (spheres, cylinders, disks, 
and parts of disks), which can be calculated with quadric equations. This 
includes routines for drawing the quadric surfaces in a variety of styles and 
orientations. Quadric surfaces are defined by the following general 
quadratic equation:

a1x2 + a2y2 + a3z2 + a4xy + a5yz + a6xz + a7x + a8y + a9z + a10 = 0
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(See David Rogers’ Procedural Elements for Computer Graphics, New York, NY: 
McGraw-Hill, 1985.) Creating and rendering a quadric surface is similar to 
using the tessellator. To use a quadrics object, follow these steps:

1. To create a quadrics object, use gluNewQuadric().

2. Specify the rendering attributes for the quadrics object (unless you’re 
satisfied with the default values). 

a. Use gluQuadricOrientation() to control the winding direction 
and differentiate the interior from the exterior.

b. Use gluQuadricDrawStyle() to choose between rendering the 
object as points, lines, or filled polygons. 

c. For lit quadrics objects, use gluQuadricNormals() to specify one 
normal per vertex or one normal per face. The default specifies that 
no normals are generated at all.

d. For textured quadrics objects, use gluQuadricTexture() if you want 
to generate texture coordinates.

3. Prepare for problems by registering an error-handling routine with 
gluQuadricCallback(). Then, if an error occurs during rendering, the 
routine you’ve specified is invoked.

4. Now invoke the rendering routine for the desired type of quadrics 
object: gluSphere(), gluCylinder(), gluDisk(), or gluPartialDisk(). For 
best performance for static data, encapsulate the quadrics object in a 
display list.

5. When you’re completely finished with it, destroy this object with 
gluDeleteQuadric(). If you need to create another quadric, it’s best to 
reuse your quadrics object.

Managing Quadrics Objects

A quadrics object consists of parameters, attributes, and callbacks that are 
stored in a data structure of type GLUquadricObj. A quadrics object may 
generate vertices, normals, texture coordinates, and other data, all of which 
may be used immediately or stored in a display list for later use. The follow-
ing routines create, destroy, and report errors in a quadrics object.
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For GLU_ERROR, fn is called with one parameter, which is the error code. 
gluErrorString() can be used to convert the error code into an ASCII string.

Controlling Quadrics Attributes

The following routines affect the kinds of data generated by the quadrics 
routines. Use these routines before you actually specify the primitives.

Example 11-4, quadric.c, on page 565, demonstrates changing the drawing 
style and the kinds of normals generated as well as creation of quadrics 
objects, error handling, and drawing the primitives.

GLU_POINT and GLU_LINE specify that primitives should be rendered as 
a point at every vertex or a line between each pair of connected vertices. 

GLUquadricObj* gluNewQuadric(void);

Creates a new quadrics object and returns a pointer to it. A null pointer is 
returned if the routine fails.

void gluDeleteQuadric(GLUquadricObj *qobj);

Destroys the quadrics object qobj and frees up any memory used by it.

void gluQuadricCallback(GLUquadricObj *qobj, GLenum which,
void (*fn)());

Defines a function fn to be called in special circumstances. GLU_ERROR is 
the only legal value for which, so fn is called when an error occurs. If fn is 
NULL, any existing callback is erased.

void gluQuadricDrawStyle(GLUquadricObj *qobj, GLenum drawStyle);

For the quadrics object qobj, drawStyle controls the rendering style. Legal 
values for drawStyle are GLU_POINT, GLU_LINE, GLU_SILHOUETTE, and 
GLU_FILL.
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GLU_SILHOUETTE specifies that primitives are rendered as lines, except 
that edges separating coplanar faces are not drawn. This is most often used 
for gluDisk() and gluPartialDisk().

GLU_FILL specifies rendering by filled polygons, where the polygons are 
drawn in a counterclockwise fashion with respect to their normals. This 
may be affected by gluQuadricOrientation().

For gluSphere() and gluCylinder(), the definitions of outside and inside are 
obvious. For gluDisk() and gluPartialDisk(), the positive z side of the disk 
is considered to be outside.

gluQuadricNormals() is used to specify when to generate normal vectors. 
GLU_NONE means that no normals are generated, and is intended for use 
without lighting. GLU_FLAT generates one normal for each facet, which is 
often best for lighting with flat shading. GLU_SMOOTH generates one 
normal for every vertex of the quadric, which is usually best for lighting 
with smooth shading.

void gluQuadricOrientation(GLUquadricObj *qobj, GLenum orientation);

For the quadrics object qobj, orientation is either GLU_OUTSIDE (the 
default) or GLU_INSIDE, which controls the direction in which normals 
are pointing. 

void gluQuadricNormals(GLUquadricObj *qobj, GLenum normals);

For the quadrics object qobj, normals is GLU_NONE (the default), 
GLU_FLAT, or GLU_SMOOTH.

void gluQuadricTexture(GLUquadricObj *qobj,
GLboolean textureCoords);

For the quadrics object qobj, textureCoords is either GL_FALSE (the default) 
or GL_TRUE. If the value of textureCoords is GL_TRUE, then texture coor-
dinates are generated for the quadrics object. The manner in which the 
texture coordinates are generated varies, depending on the type of quad-
rics object rendered.
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Quadrics Primitives

The following routines actually generate the vertices and other data that 
constitute a quadrics object. In each case, qobj refers to a quadrics object 
created by gluNewQuadric().

Note: The cylinder is not closed at the top or bottom. The disks at the base 
and at the top are not drawn.

void gluSphere(GLUquadricObj *qobj, GLdouble radius, GLint slices,
GLint stacks);

Draws a sphere of the given radius, centered around the origin, (0, 0, 0). 
The sphere is subdivided around the z-axis into a number of slices (similar 
to longitude) and along the z-axis into a number of stacks (latitude).

If texture coordinates are also generated by the quadrics facility, the 
t-coordinate ranges from 0.0 at z = radius to 1.0 at z = radius, with t
increasing linearly along longitudinal lines. Meanwhile, s ranges from 0.0 
at the +y axis, to 0.25 at the +x axis, to 0.5 at the y axis, to 0.75 at the 
x axis, and back to 1.0 at the +y axis.

void gluCylinder(GLUquadricObj *qobj, GLdouble baseRadius,
GLdouble topRadius, GLdouble height,
GLint slices, GLint stacks);

Draws a cylinder oriented along the z-axis, with the base of the cylinder 
at z = 0 and the top at z = height. Like a sphere, the cylinder is subdivided 
around the z-axis into a number of slices and along the z-axis into a 
number of stacks. baseRadius is the radius of the cylinder at z = 0. topRadius
is the radius of the cylinder at z = height. If topRadius is set to 0, then a 
cone is generated.

If texture coordinates are generated by the quadrics facility, then the 
t-coordinate ranges linearly from 0.0 at z = 0 to 1.0 at z = height. The s
texture coordinates are generated the same way as they are for a sphere.
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Note: For all quadrics objects, it’s better to use the *Radius, height, and 
similar arguments to scale them, rather than the glScale*() com-
mand, so that the unit-length normals that are generated don’t have 
to be renormalized. Set the rings and stacks arguments to values other 
than 1 to force lighting calculations at a finer granularity, especially 
if the material specularity is high.

Example 11-4 shows each of the quadrics primitives being drawn, as well as 
the effects of different drawing styles.

void gluDisk(GLUquadricObj *qobj, GLdouble innerRadius,
GLdouble outerRadius, GLint slices, GLint rings);

Draws a disk on the z = 0 plane, with a radius of outerRadius and a concen-
tric circular hole with a radius of innerRadius. If innerRadius is 0, then no 
hole is created. The disk is subdivided around the z-axis into a number of 
slices (like slices of pizza) and also about the z-axis into a number of con-
centric rings.

With respect to orientation, the +z side of the disk is considered to be 
“outside”; that is, any normals generated point along the +z axis. Other-
wise, the normals point along the z axis.

If texture coordinates are generated by the quadrics facility, then the 
texture coordinates are generated linearly such that where R = outerRadius,
the values for s and t at (R, 0, 0) are (1, 0.5), at (0, R, 0) they are (0.5, 1), at 
( R, 0, 0) they are (0, 0.5), and at (0, R, 0) they are (0.5, 0).

void gluPartialDisk(GLUquadricObj *qobj, GLdouble innerRadius,
GLdouble outerRadius, GLint slices, GLint rings,
GLdouble startAngle, GLdouble sweepAngle);

Draws a partial disk on the z = 0 plane. A partial disk is similar to a 
complete disk, in terms of outerRadius, innerRadius, slices, and rings. The 
difference is that only a portion of a partial disk is drawn, starting from 
startAngle through startAngle + sweepAngle (where startAngle and sweepAngle
are measured in degrees, where 0 degrees is along the +y axis, 90 degrees 
along the +x axis, 180 along the y axis, and 270 along the x axis).

A partial disk handles orientation and texture coordinates in the same way 
as a complete disk.
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Example 11-4 Quadrics Objects: quadric.c

#ifndef CALLBACK
#define CALLBACK
#endif

GLuint startList;

void CALLBACK errorCallback(GLenum errorCode)
{
   const GLubyte *estring;

   estring = gluErrorString(errorCode);
   fprintf(stderr, “Quadric Error: %s\n”, estring);
   exit(0);
}

void init(void) 
{
   GLUquadricObj *qobj;
   GLfloat mat_ambient[] = { 0.5, 0.5, 0.5, 1.0 };
   GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 };
   GLfloat mat_shininess[] = { 50.0 };
   GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 };
   GLfloat model_ambient[] = { 0.5, 0.5, 0.5, 1.0 };

   glClearColor(0.0, 0.0, 0.0, 0.0);

   glMaterialfv(GL_FRONT, GL_AMBIENT, mat_ambient);
   glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
   glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess);
   glLightfv(GL_LIGHT0, GL_POSITION, light_position);
   glLightModelfv(GL_LIGHT_MODEL_AMBIENT, model_ambient);

   glEnable(GL_LIGHTING);
   glEnable(GL_LIGHT0);
   glEnable(GL_DEPTH_TEST);

/* Create 4 display lists, each with a different quadric object.
 * Different drawing styles and surface normal specifications
 * are demonstrated.
 */
   startList = glGenLists(4);
   qobj = gluNewQuadric();
   gluQuadricCallback(qobj, GLU_ERROR, errorCallback);

   gluQuadricDrawStyle(qobj, GLU_FILL); /* smooth shaded */
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   gluQuadricNormals(qobj, GLU_SMOOTH);
   glNewList(startList, GL_COMPILE);
      gluSphere(qobj, 0.75, 15, 10);
   glEndList();

   gluQuadricDrawStyle(qobj, GLU_FILL); /* flat shaded */
   gluQuadricNormals(qobj, GLU_FLAT);
   glNewList(startList+1, GL_COMPILE);
      gluCylinder(qobj, 0.5, 0.3, 1.0, 15, 5);
   glEndList();

   gluQuadricDrawStyle(qobj, GLU_LINE); /* wireframe */
   gluQuadricNormals(qobj, GLU_NONE);
   glNewList(startList+2, GL_COMPILE);
      gluDisk(qobj, 0.25, 1.0, 20, 4);
   glEndList();

   gluQuadricDrawStyle(qobj, GLU_SILHOUETTE);
   gluQuadricNormals(qobj, GLU_NONE);
   glNewList(startList+3, GL_COMPILE);
      gluPartialDisk(qobj, 0.0, 1.0, 20, 4, 0.0, 225.0);
   glEndList();
}

void display(void)
{
   glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
   glPushMatrix();

   glEnable(GL_LIGHTING);
   glShadeModel(GL_SMOOTH);
   glTranslatef(-1.0, -1.0, 0.0);
   glCallList(startList);

   glShadeModel(GL_FLAT);
   glTranslatef(0.0, 2.0, 0.0);
   glPushMatrix();
   glRotatef(300.0, 1.0, 0.0, 0.0);
   glCallList(startList+1);
   glPopMatrix();

   glDisable(GL_LIGHTING);
   glColor3f(0.0, 1.0, 1.0);
   glTranslatef(2.0, -2.0, 0.0);
   glCallList(startList+2);

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Quadrics: Rendering Spheres, Cylinders, and Disks 567

   glColor3f(1.0, 1.0, 0.0);
   glTranslatef(0.0, 2.0, 0.0);
   glCallList(startList+3);

   glPopMatrix();
   glFlush();
}

void reshape(int w, int h)
{
   glViewport(0, 0, (GLsizei) w, (GLsizei) h);
   glMatrixMode(GL_PROJECTION);
   glLoadIdentity();
   if (w <= h)
      glOrtho(-2.5, 2.5, -2.5*(GLfloat)h/(GLfloat)w,
         2.5*(GLfloat)h/(GLfloat)w, -10.0, 10.0);
   else
      glOrtho(-2.5*(GLfloat)w/(GLfloat)h,
         2.5*(GLfloat)w/(GLfloat)h, -2.5, 2.5, -10.0, 10.0);
   glMatrixMode(GL_MODELVIEW);
   glLoadIdentity();
}

void keyboard(unsigned char key, int x, int y)
{
   switch (key) {
      case 27:
         exit(0);
         break;
   }
}

int main(int argc, char** argv)
{
   glutInit(&argc, argv);
   glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
   glutInitWindowSize(500, 500); 
   glutInitWindowPosition(100, 100);
   glutCreateWindow(argv[0]);
   init();
   glutDisplayFunc(display); 
   glutReshapeFunc(reshape);
   glutKeyboardFunc(keyboard);
   glutMainLoop();
   return 0;
}
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Chapter 12

12.Evaluators and NURBS

Chapter Objectives

Advanced

After reading this chapter, you’ll be able to do the following:

• Use OpenGL evaluator commands to draw basic curves and surfaces

• Use the GLU’s higher-level NURBS facility to draw more complex 
curves and surfaces and to return data on the vertices of geometric 
objects, which result from the tessellation of the curves and surfaces

Note that this chapter presumes a number of prerequisites; they’re listed in 
“Prerequisites” on page 571.

Note: In OpenGL Version 3.1, all of the techniques and functions described 
in this chapter were removed through deprecation. Even though 
some of this functionality is part of the GLU library, it relies on 
functionality that has been removed from the core OpenGL library.

Advanced
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At the lowest level, graphics hardware draws points, line segments, and 
polygons, which are usually triangles and quadrilaterals. Smooth curves 
and surfaces are drawn by approximating them with large numbers of small 
line segments or polygons. However, many useful curves and surfaces can 
be described mathematically by a small number of parameters such as a few 
control points. Saving the 16 control points for a surface requires much less 
storage than saving 1000 triangles together with the normal vector infor-
mation at each vertex. In addition, the 1000 triangles only approximate the 
true surface, but the control points accurately describe the real surface.

Evaluators provide a way to specify points on a curve or surface (or part 
of one) using only the control points. The curve or surface can then be 
rendered at any precision. In addition, normal vectors can be calculated for 
surfaces automatically. You can use the points generated by an evaluator 
in many ways—to draw dots where the surface would be; to draw a 
wireframe version of the surface; or to draw a fully lighted, shaded, and 
even textured version. 

You can use evaluators to describe any polynomial or rational polynomial 
splines or surfaces of any degree. These include almost all splines and spline 
surfaces in use today, including B-splines, NURBS (Non-Uniform Rational 
B-Spline) surfaces, Bézier curves and surfaces, and Hermite splines. Since 
evaluators provide only a low-level description of the points on a curve or 
surface, they’re typically used underneath utility libraries that provide a 
higher-level interface to the programmer. The GLU’s NURBS facility is such 
a higher-level interface—the NURBS routines encapsulate extensive compli-
cated code. Much of the final rendering is done with evaluators, but for 
some conditions (trimming curves, for example) the NURBS routines use 
planar polygons for rendering.

This chapter contains the following major sections:

• “Prerequisites” discusses what knowledge is assumed for this chapter. It 
also gives several references where you can obtain this information.

• “Evaluators” explains how evaluators work and how to control them 
using the appropriate OpenGL commands.

• “The GLU NURBS Interface” describes the GLU routines for creating, 
rendering, and returning the tessellated vertices of NURBS curves and 
surfaces.
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Prerequisites

Evaluators make splines and surfaces that are based on a Bézier (or Bernstein) 
basis. The defining formulas for the functions in this basis are given in this 
chapter, but the discussion doesn’t include derivations or even lists of all 
their interesting mathematical properties. If you want to use evaluators to 
draw curves and surfaces using other bases, you must know how to convert 
your basis to a Bézier basis. In addition, when you render a Bézier surface or 
part of it using evaluators, you need to determine the granularity of your 
subdivision. Your decision needs to take into account the trade-off between 
high-quality (highly subdivided) images and high speed. Determining an 
appropriate subdivision strategy can be quite complicated—too complicated 
to be discussed here.

Similarly, a complete discussion of NURBS is beyond the scope of this book. 
The GLU NURBS interface is documented here, and programming examples 
are provided for readers who already understand the subject. In what 
follows, you already should know about NURBS control points, knot 
sequences, and trimming curves. 

If you lack some of these prerequisites, the following references will help:

• Farin, Gerald E., Curves and Surfaces for Computer-Aided Geometric 
Design, Fourth Edition. San Diego, CA: Academic Press, 1996.

• Farin, Gerald E., NURB Curves and Surfaces: From Projective Geometry to 
Practical Use. Wellesley, MA: A. K. Peters Ltd., 1995.

• Farin, Gerald E., editor, NURBS for Curve and Surface Design, Society for 
Industrial and Applied Mathematics, Philadelphia, PA, 1991.

• Hoschek, Josef, and Dieter Lasser, Fundamentals of Computer Aided 
Geometric Design. Wellesley, MA: A. K. Peters Ltd., 1993.

• Piegl, Les, and Wayne Tiller, The NURBS Book. New York, NY: Springer-
Verlag, 1995.

Note: Some terms used in this chapter might have slightly different 
meanings in other books on spline curves and surfaces, since there 
isn’t total agreement among the practitioners of this art. Generally, 
the OpenGL meanings are a bit more restrictive. For example, OpenGL 
evaluators always use Bézier bases; in other contexts, evaluators 
might refer to the same concept, but with an arbitrary basis.
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Evaluators

A Bézier curve is a vector-valued function of one variable 

C(u) = [X(u) Y(u) Z(u)] 

where u varies in some domain (say [0, 1]). A Bézier surface patch is a vector-
valued function of two variables

S(u,v) = [X(u,v) Y(u,v) Z(u,v)]

where u and v can both vary in some domain. The range isn’t necessarily 
three-dimensional as shown here. You might want two-dimensional output 
for curves on a plane or texture coordinates, or you might want four-
dimensional output to specify RGBA information. Even one-dimensional 
output may make sense for gray levels.

For each u (or u and v, in the case of a surface), the formula for C() (or S())
calculates a point on the curve (or surface). To use an evaluator, first define 
the function C() or S(), enable it, and then use the glEvalCoord1() or 
glEvalCoord2() command instead of glVertex*(). This way, the curve or 
surface vertices can be used just as any other vertices are used—to form 
points or lines, for example. In addition, other commands automatically 
generate a series of vertices that produce a regular mesh uniformly spaced 
in u (or in u and v). One- and two-dimensional evaluators are similar, but 
the description is somewhat simpler in one dimension, so that case is 
discussed first.

One-Dimensional Evaluators

This subsection presents an example of using one-dimensional evaluators to 
draw a curve. It then describes the commands and equations that control 
evaluators. 

One-Dimensional Example: A Simple Bézier Curve

The program shown in Example 12-1 draws a cubic Bézier curve using four 
control points, as shown in Figure 12-1.
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Example 12-1 Bézier Curve with Four Control Points: bezcurve.c

GLfloat ctrlpoints[4][3] = {
        { -4.0, -4.0, 0.0}, { -2.0, 4.0, 0.0}, 
        {2.0, -4.0, 0.0}, {4.0, 4.0, 0.0}};

void init(void)
{
   glClearColor(0.0, 0.0, 0.0, 0.0);
   glShadeModel(GL_FLAT);
   glMap1f(GL_MAP1_VERTEX_3, 0.0, 1.0, 3, 4, &ctrlpoints[0][0]);
   glEnable(GL_MAP1_VERTEX_3);
}

void display(void)
{
   int i;

   glClear(GL_COLOR_BUFFER_BIT);
   glColor3f(1.0, 1.0, 1.0);
   glBegin(GL_LINE_STRIP);
      for (i = 0; i <= 30; i++) 
         glEvalCoord1f((GLfloat) i/30.0);
   glEnd();
   /* The following code displays the control points as dots. */
   glPointSize(5.0);
   glColor3f(1.0, 1.0, 0.0);
   glBegin(GL_POINTS);
      for (i = 0; i < 4; i++) 
         glVertex3fv(&ctrlpoints[i][0]);
   glEnd();
   glFlush();
}

Figure 12-1 Bézier Curve
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void reshape(int w, int h)
{
   glViewport(0, 0, (GLsizei) w, (GLsizei) h);
   glMatrixMode(GL_PROJECTION);
   glLoadIdentity();
   if (w <= h)
      glOrtho(-5.0, 5.0, -5.0*(GLfloat)h/(GLfloat)w, 
               5.0*(GLfloat)h/(GLfloat)w, -5.0, 5.0);
   else
      glOrtho(-5.0*(GLfloat)w/(GLfloat)h, 
               5.0*(GLfloat)w/(GLfloat)h, -5.0, 5.0, -5.0, 5.0);
   glMatrixMode(GL_MODELVIEW);
   glLoadIdentity();
}

int main(int argc, char** argv)
{
   glutInit(&argc, argv);
   glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
   glutInitWindowSize(500, 500);
   glutInitWindowPosition(100, 100);
   glutCreateWindow(argv[0]);
   init();
   glutDisplayFunc(display);
   glutReshapeFunc(reshape);
   glutMainLoop();
   return 0;
}

A cubic Bézier curve is described by four control points, which appear in this 
example in the ctrlpoints[][] array. This array is one of the arguments for 
glMap1f(). The other arguments for this command are:

GL_MAP1_VERTEX_3 Specifies that three-dimensional control points 
are provided and that three-dimensional vertices 
should be produced

0.0 Low value of parameter u

1.0 High value of parameter u

3 The number of floating-point values to advance in 
the data between one control point and the next

4 The order of the spline, which is the degree plus 1: in 
this case, the degree is 3 (since this is a cubic curve)

&ctrlpoints[0][0] Pointer to the first control point’s data
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Note that the second and third arguments control the parameterization of 
the curve—as the variable u ranges from 0.0 to 1.0, the curve goes from one 
end to the other. The call to glEnable() enables the one-dimensional 
evaluator for three-dimensional vertices.

The curve is drawn in the routine display() between the glBegin() and glEnd()
calls. Since the evaluator is enabled, giving the command glEvalCoord1f()
is just like issuing a glVertex() command with the coordinates of a vertex 
on the curve corresponding to the input parameter u.

Defining and Evaluating a One-Dimensional Evaluator 

The Bernstein polynomial of degree n (or order n + 1) is given by

If Pi represents a set of control points (one-, two-, three-, or even four-
dimensional), then the equation

represents a Bézier curve as u varies from 0.0 to 1.0. To represent the same 
curve but allowing u to vary between u1 and u2 instead of 0.0 and 1.0, 
evaluate

The command glMap1() defines a one-dimensional evaluator that uses 
these equations.

Bn (u) = (n) ui (1−u)n − i
i i

C (u) = Bn (u) Pi           i
i = 0

n

C ( u − u1 )u2 − u1
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void glMap1{fd}(GLenum target, TYPE u1, TYPE u2, GLint stride,
GLint order, const TYPE *points);

Defines a one-dimensional evaluator. The target parameter specifies what 
the control points represent, as shown in Table 12-1, and therefore how 
many values need to be supplied in points. The points can represent 
vertices, RGBA color data, normal vectors, or texture coordinates. For 
example, with GL_MAP1_COLOR_4, the evaluator generates color data 
along a curve in four-dimensional (RGBA) color space. You also use the 
parameter values listed in Table 12-1 to enable each defined evaluator 
before you invoke it. Pass the appropriate value to glEnable() or 
glDisable() to enable or disable the evaluator.

The second two parameters for glMap1*(), u1 and u2, indicate the range 
for the variable u. The variable stride is the number of single- or double-
precision values (as appropriate) in each block of storage. Thus, it’s an 
offset value between the beginning of one control point and the 
beginning of the next. 

The order is the degree plus 1, and it should agree with the number of 
control points. The points parameter points to the first coordinate of the 
first control point. Using the example data structure for glMap1*(), use 
the following for points:

(GLfloat *)(&ctlpoints[0].x)

Parameter Meaning

GL_MAP1_VERTEX_3 x, y, z vertex coordinates

GL_MAP1_VERTEX_4 x, y, z, w vertex coordinates

GL_MAP1_INDEX color index

GL_MAP1_COLOR_4 R, G, B, A

GL_MAP1_NORMAL normal coordinates

GL_MAP1_TEXTURE_COORD_1 s texture coordinates

GL_MAP1_TEXTURE_COORD_2 s, t texture coordinates

GL_MAP1_TEXTURE_COORD_3 s, t, r texture coordinates

GL_MAP1_TEXTURE_COORD_4 s, t, r, q texture coordinates

Table 12-1 Types of Control Points for glMap1*()

Compatibility 
Extension

glMap1 and any 
tokens accepted 
by it
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More than one evaluator can be evaluated at a time. If you have both a 
GL_MAP1_VERTEX_3 and a GL_MAP1_COLOR_4 evaluator defined and 
enabled, for example, then calls to glEvalCoord1() generate both a position 
and a color. Only one of the vertex evaluators can be enabled at a time, 
although you might have defined both of them. Similarly, only one of the 
texture evaluators can be active. Otherwise, however, evaluators can be used 
to generate any combination of vertex, normal, color, and texture-coordinate 
data. If you define and enable more than one evaluator of the same type, 
the one of highest dimension is used.

Use glEvalCoord1*() to evaluate a defined and enabled one-
dimensional map.

For evaluated vertices, generation of values for color, color index, 
normal vectors, and texture coordinates is done by evaluation. Calls 
to glEvalCoord*() do not use the current values for color, color index, 
normal vectors, and texture coordinates. glEvalCoord*() also leaves those 
values unchanged.

Defining Evenly Spaced Coordinate Values in One Dimension

You can use glEvalCoord1() with any values of u, but by far the most 
common practice is to use evenly spaced values, as shown previously in 
Example 12-1. To obtain evenly spaced values, define a one-dimensional 
grid using glMapGrid1*() and then apply it using glEvalMesh1().

void glEvalCoord1{fd}(TYPE u);
void glEvalCoord1{fd}v(const TYPE *u);

Causes evaluation of the enabled one-dimensional maps. The argument u
is the value (or a pointer to the value, in the vector version of the 
command) of the domain coordinate.

void glMapGrid1{fd}(GLint n, TYPE u1, TYPE u2);

Defines a grid that goes from u1 to u2 in n steps, which are evenly 
spaced.

Compatibility 
Extension

glEvalCoord1

Compatibility 
Extension

glMapGrid1
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Two-Dimensional Evaluators

In two dimensions, everything is similar to the one-dimensional case, except 
that all the commands must take two parameters, u and v, into account. 
Points, colors, normals, or texture coordinates must be supplied over a 
surface instead of a curve. Mathematically, the definition of a Bézier surface 
patch is given by

where the Pij values are a set of m n control points, and the Bi functions are 
the same Bernstein polynomials for one dimension. As before, the Pij values 
can represent vertices, normals, colors, or texture coordinates.

The procedure for using two-dimensional evaluators is similar to the 
procedure for one dimension:

1. Define the evaluator(s) with glMap2*().

2. Enable them by passing the appropriate value to glEnable().

3. Invoke them either by calling glEvalCoord2() between a glBegin()
and glEnd() pair or by specifying and then applying a mesh with 
glMapGrid2() and glEvalMesh2().

void glEvalMesh1(GLenum mode, GLint p1, GLint p2);

Applies the currently defined map grid to all enabled evaluators. The mode
can be either GL_POINT or GL_LINE, depending on whether you want to 
draw points or a connected line along the curve. The call has exactly the 
same effect as issuing a glEvalCoord1() for each of the steps from p1 to 
p2, inclusive, where 0 p1, p2 n. Programmatically, it’s equivalent to

glBegin(GL_POINTS);    /* OR glBegin(GL_LINE_STRIP); */
 for (i = p1; i <= p2; i++) 
    glEvalCoord1(u1 + i*(u2-u1)/n);
glEnd();

except that if i = 0 or i = n, then glEvalCoord1() is called with exactly u1
or u2 as its parameter.

Compatibility 
Extension

glEvalMesh1

S (u, v) =    Bn (u) Bm (v) Pi            j           ij

n

i = 0

m

j = 0
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Defining and Evaluating a Two-Dimensional Evaluator 

Use glMap2*() and glEvalCoord2*() to define and then invoke a two-
dimensional evaluator.

void glMap2{fd}(GLenum target, TYPE u1, TYPE u2, GLint ustride,
GLint uorder, TYPE v1, TYPE v2, GLint vstride,
GLint vorder, TYPE points);

The target parameter can have any of the values in Table 12-1, except that 
the string MAP1 is replaced with MAP2. As before, these values are also 
used with glEnable() to enable the corresponding evaluator. Minimum 
and maximum values for both u and v are provided as u1, u2, v1, and v2.
The parameters ustride and vstride indicate the numbers of single- and 
double-precision values (as appropriate) between independent settings for 
these values, allowing users to select a subrectangle of control points out 
of a much larger array. For example, if the data appears in the form

GLfloat ctlpoints[100][100][3];

and you want to use the 4 4 subset beginning at ctlpoints[20][30], 
choose ustride to be 100*3 and vstride to be 3. The starting point, points,
should be set to &ctlpoints[20][30][0]. Finally, the order parameters, uorder
and vorder, can be different—allowing patches that are cubic in one 
direction and quadratic in the other, for example. 

void glEvalCoord2{fd}(TYPE u, TYPE v);
void glEvalCoord2{fd}v(const TYPE *values);

Causes evaluation of the enabled two-dimensional maps. The arguments 
u and v are the values (or a pointer to the values u and v, in the vector 
version of the command) for the domain coordinates. If either of the 
vertex evaluators is enabled (GL_MAP2_VERTEX_3 or GL_MAP2_
VERTEX_4), then the normal to the surface is computed analytically. 
This normal is associated with the generated vertex if automatic normal 
generation has been enabled by passing GL_AUTO_NORMAL to 
glEnable(). If it’s disabled, the corresponding enabled normal map is 
used to produce a normal. If no such map exists, the current normal 
is used. 

Compatibility 
Extension

glMap2 and any 
tokens accepted 
by it

Compatibility 
Extension

glEvalCoord2
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Two-Dimensional Example: A Bézier Surface

Example 12-2 draws a wireframe Bézier surface using evaluators, as shown 
in Figure 12-2. In this example, the surface is drawn with nine curved lines 
in each direction. Each curve is drawn as 30 segments. To get the whole 
program, add the reshape() and main() routines from Example 12-1.

Example 12-2 Bézier Surface: bezsurf.c

GLfloat ctrlpoints[4][4][3] = {
   {{-1.5, -1.5, 4.0}, {-0.5, -1.5, 2.0}, 
    {0.5, -1.5, -1.0}, {1.5, -1.5, 2.0}}, 
   {{-1.5, -0.5, 1.0}, {-0.5, -0.5, 3.0}, 
    {0.5, -0.5, 0.0}, {1.5, -0.5, -1.0}}, 
   {{-1.5, 0.5, 4.0}, {-0.5, 0.5, 0.0}, 
    {0.5, 0.5, 3.0}, {1.5, 0.5, 4.0}}, 
   {{-1.5, 1.5, -2.0}, {-0.5, 1.5, -2.0}, 
    {0.5, 1.5, 0.0}, {1.5, 1.5, -1.0}}
};

void display(void)
{
   int i, j;

   glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
   glColor3f(1.0, 1.0, 1.0);
   glPushMatrix();
   glRotatef(85.0, 1.0, 1.0, 1.0);
   for (j = 0; j <= 8; j++) {
      glBegin(GL_LINE_STRIP);

Figure 12-2 Bézier Surface
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      for (i = 0; i <= 30; i++)
         glEvalCoord2f((GLfloat)i/30.0, (GLfloat)j/8.0);
      glEnd();
      glBegin(GL_LINE_STRIP);
      for (i = 0; i <= 30; i++)
         glEvalCoord2f((GLfloat)j/8.0, (GLfloat)i/30.0);
      glEnd();
   }
   glPopMatrix();
   glFlush();
}

void init(void)
{
   glClearColor(0.0, 0.0, 0.0, 0.0);
   glMap2f(GL_MAP2_VERTEX_3, 0, 1, 3, 4,
           0, 1, 12, 4, &ctrlpoints[0][0][0]);
   glEnable(GL_MAP2_VERTEX_3);
   glMapGrid2f(20, 0.0, 1.0, 20, 0.0, 1.0);
   glEnable(GL_DEPTH_TEST);
   glShadeModel(GL_FLAT);
}

Defining Evenly Spaced Coordinate Values in Two Dimensions

In two dimensions, the glMapGrid2*() and glEvalMesh2() commands 
are similar to the one-dimensional versions, except that both u and v
information must be included.

void glMapGrid2{fd}(GLint nu, TYPE u1, TYPE u2,
GLint nv, TYPE v1, TYPE v2);

void glEvalMesh2(GLenum mode, GLint i1,
GLint i2, GLint j1, GLint j2);

Defines a two-dimensional map grid that goes from u1 to u2 in nu evenly 
spaced steps, goes from v1 to v2 in nv steps (glMapGrid2*()), and then 
applies this grid to all enabled evaluators (glEvalMesh2()). The only sig-
nificant difference from the one-dimensional versions of these two com-
mands is that in glEvalMesh2(), the mode parameter can be GL_FILL as 
well as GL_POINT or GL_LINE. GL_FILL generates filled polygons using 
the quad-mesh primitive. Stated precisely, glEvalMesh2() is nearly equiv-
alent to one of the following three code fragments. (It’s nearly equivalent 
because when i is equal to nu, or j to nv, the parameter is exactly equal to 
u2 or v2, not to u1 + nu (u2 u1)/nu, which might be slightly different 
due to round-off error.)

Compatibility 
Extension

glMapGrid2
glEvalMesh2
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glBegin(GL_POINTS);                /* mode == GL_POINT */ 
for (i = nu1; i <= nu2; i++) 
    for (j = nv1; j <= nv2; j++) 
        glEvalCoord2(u1 + i*(u2-u1)/nu, v1+j*(v2-v1)/nv);
glEnd();

or

for (i = nu1; i <= nu2; i++) {     /* mode == GL_LINE */
    glBegin(GL_LINES); 
        for (j = nv1; j <= nv2; j++) 
            glEvalCoord2(u1 + i*(u2-u1)/nu, v1+j*(v2-v1)/nv); 
    glEnd(); 
}
for (j = nv1; j <= nv2; j++) { 
    glBegin(GL_LINES); 
    for (i = nu1; i <= nu2; i++)  
        glEvalCoord2(u1 + i*(u2-u1)/nu, v1+j*(v2-v1)/nv); 
    glEnd(); 
}

or

for (i = nu1; i < nu2; i++) {     /* mode == GL_FILL */ 
    glBegin(GL_QUAD_STRIP);
    for (j = nv1; j <= nv2; j++) { 
        glEvalCoord2(u1 + i*(u2-u1)/nu, v1+j*(v2-v1)/nv);
        glEvalCoord2(u1 + (i+1)*(u2-u1)/nu, v1+j*(v2-v1)/nv);
    glEnd(); 
}

Example 12-3 shows the differences necessary to draw the same Bézier 
surface as in Example 12-2, but using glMapGrid2() and glEvalMesh2() to 
subdivide the square domain into a uniform 8 8 grid. This program also 
adds lighting and shading, as shown in Figure 12-3. 

Example 12-3 Lit, Shaded Bézier Surface Using a Mesh: bezmesh.c

void initlights(void)
{
   GLfloat ambient[] = {0.2, 0.2, 0.2, 1.0};
   GLfloat position[] = {0.0, 0.0, 2.0, 1.0};
   GLfloat mat_diffuse[] = {0.6, 0.6, 0.6, 1.0};
   GLfloat mat_specular[] = {1.0, 1.0, 1.0, 1.0};
   GLfloat mat_shininess[] = {50.0};

   glEnable(GL_LIGHTING);
   glEnable(GL_LIGHT0);
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   glLightfv(GL_LIGHT0, GL_AMBIENT, ambient);
   glLightfv(GL_LIGHT0, GL_POSITION, position);

   glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_diffuse);
   glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
   glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess);
}

void display(void)
{
   glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
   glPushMatrix();
   glRotatef(85.0, 1.0, 1.0, 1.0);
   glEvalMesh2(GL_FILL, 0, 20, 0, 20);
   glPopMatrix();
   glFlush();
}

void init(void)
{
   glClearColor(0.0, 0.0, 0.0, 0.0);
   glEnable(GL_DEPTH_TEST);
   glMap2f(GL_MAP2_VERTEX_3, 0, 1, 3, 4,
           0, 1, 12, 4, &ctrlpoints[0][0][0]);
   glEnable(GL_MAP2_VERTEX_3);
   glEnable(GL_AUTO_NORMAL);
   glMapGrid2f(20, 0.0, 1.0, 20, 0.0, 1.0);
   initlights();
}

Figure 12-3 Lit, Shaded Bézier Surface Drawn with a Mesh
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Using Evaluators for Textures 

Example 12-4 enables two evaluators at the same time: The first generates 
three-dimensional points on the same Bézier surface as in Example 12-3, 
and the second generates texture coordinates. In this case, the texture 
coordinates are the same as the u- and v-coordinates of the surface, but a 
special flat Bézier patch must be created to do this. 

The flat patch is defined over a square with corners at (0, 0), (0, 1), (1, 0), 
and (1, 1); it generates (0, 0) at corner (0, 0), (0, 1) at corner (0, 1), and so 
on. Since it’s of order 2 (linear degree plus 1), evaluating this texture at the 
point (u, v) generates texture coordinates (s, t). It’s enabled at the same 
time as the vertex evaluator, so both take effect when the surface is drawn 
(see Plate 19). If you want the texture to repeat three times in each 
direction, change every 1.0 in the array texpts[][][] to 3.0. Since the texture 
wraps in this example, the surface is rendered with nine copies of the 
texture map.

Example 12-4 Using Evaluators for Textures: texturesurf.c

GLfloat ctrlpoints[4][4][3] = {
   {{ -1.5, -1.5, 4.0}, { -0.5, -1.5, 2.0}, 
    {0.5, -1.5, -1.0}, {1.5, -1.5, 2.0}}, 
   {{ -1.5, -0.5, 1.0}, { -0.5, -0.5, 3.0}, 
    {0.5, -0.5, 0.0}, {1.5, -0.5, -1.0}}, 
   {{ -1.5, 0.5, 4.0}, { -0.5, 0.5, 0.0}, 
    {0.5, 0.5, 3.0}, {1.5, 0.5, 4.0}}, 
   {{ -1.5, 1.5, -2.0}, { -0.5, 1.5, -2.0}, 
    {0.5, 1.5, 0.0}, {1.5, 1.5, -1.0}}
};
GLfloat texpts[2][2][2] = {{{0.0, 0.0}, {0.0, 1.0}}, 
                        {{1.0, 0.0}, {1.0, 1.0}}};

void display(void)
{
   glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
   glColor3f(1.0, 1.0, 1.0);
   glEvalMesh2(GL_FILL, 0, 20, 0, 20);
   glFlush();
}
#define imageWidth 64
#define imageHeight 64
GLubyte image[3*imageWidth*imageHeight];
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void makeImage(void)
{
   int i, j;
   float ti, tj;

   for (i = 0; i < imageWidth; i++) {
      ti = 2.0*3.14159265*i/imageWidth;
      for (j = 0; j < imageHeight; j++) {
         tj = 2.0*3.14159265*j/imageHeight;
         image[3*(imageHeight*i+j)] = 
              (GLubyte) 127*(1.0+sin(ti));
         image[3*(imageHeight*i+j)+1] = 
              (GLubyte) 127*(1.0+cos(2*tj));
         image[3*(imageHeight*i+j)+2] = 
              (GLubyte) 127*(1.0+cos(ti+tj));
      }
   }
}

void init(void)
{
   glMap2f(GL_MAP2_VERTEX_3, 0, 1, 3, 4,
           0, 1, 12, 4, &ctrlpoints[0][0][0]);
   glMap2f(GL_MAP2_TEXTURE_COORD_2, 0, 1, 2, 2, 
           0, 1, 4, 2, &texpts[0][0][0]);
   glEnable(GL_MAP2_TEXTURE_COORD_2);
   glEnable(GL_MAP2_VERTEX_3);
   glMapGrid2f(20, 0.0, 1.0, 20, 0.0, 1.0);
   makeImage();
   glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL);
   glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
   glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
   glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, 
                   GL_NEAREST);
   glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, 
                   GL_NEAREST);
   glTexImage2D(GL_TEXTURE_2D, 0, 3, imageWidth, imageHeight, 0,
                GL_RGB, GL_UNSIGNED_BYTE, image);
   glEnable(GL_TEXTURE_2D);
   glEnable(GL_DEPTH_TEST);
   glShadeModel(GL_FLAT);
}
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void reshape(int w, int h)
{
   glViewport(0, 0, (GLsizei) w, (GLsizei) h);
   glMatrixMode(GL_PROJECTION);
   glLoadIdentity();
   if (w <= h)
      glOrtho(-4.0, 4.0, -4.0*(GLfloat)h/(GLfloat)w, 
              4.0*(GLfloat)h/(GLfloat)w, -4.0, 4.0);
   else
      glOrtho(-4.0*(GLfloat)w/(GLfloat)h, 
              4.0*(GLfloat)w/(GLfloat)h, -4.0, 4.0, -4.0, 4.0);
   glMatrixMode(GL_MODELVIEW);
   glLoadIdentity();
   glRotatef(85.0, 1.0, 1.0, 1.0);
}

int main(int argc, char** argv)
{
   glutInit(&argc, argv);
   glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
   glutInitWindowSize(500, 500);
   glutInitWindowPosition(100, 100);
   glutCreateWindow(argv[0]);
   init();
   glutDisplayFunc(display);
   glutReshapeFunc(reshape);
   glutMainLoop();
   return 0;
}

The GLU NURBS Interface

Although evaluators are the only OpenGL primitives available to draw 
curves and surfaces directly, and even though they can be implemented 
very efficiently in hardware, they’re often accessed by applications through 
higher-level libraries. The GLU provides a NURBS interface built on top of 
the OpenGL evaluator commands.
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A Simple NURBS Example

If you understand NURBS, writing OpenGL code to manipulate NURBS 
curves and surfaces is relatively easy, even with lighting and texture mapping. 
Perform the following steps to draw NURBS curves or untrimmed NURBS 
surfaces. (See “Trimming a NURBS Surface” on page 601 for information 
about trimmed surfaces.) 

1. If you intend to use lighting with a NURBS surface, call glEnable()
with GL_AUTO_NORMAL to generate surface normals automatically. 
(Or you can calculate your own.) 

2. Use gluNewNurbsRenderer() to create a pointer to a NURBS object, 
which is referred to when creating your NURBS curve or surface.

3. If desired, call gluNurbsProperty() to choose rendering values, such as 
the maximum size of lines or polygons that are used to render your 
NURBS object. gluNurbsProperty() can also enable a mode, where 
the tessellated geometric data can be retrieved through the callback 
interface.

4. Call gluNurbsCallback() if you want to be notified when an error is 
encountered. (Error checking may slightly degrade performance but is 
still highly recommended.) gluNurbsCallback() may also be used to 
register the functions to call to retrieve the tessellated geometric data.

5. Start your curve or surface by calling gluBeginCurve() or 
gluBeginSurface().

6. Generate and render your curve or surface. Call gluNurbsCurve() or 
gluNurbsSurface() at least once with the control points (rational or 
nonrational), knot sequence, and order of the polynomial basis func-
tion for your NURBS object. You might call these functions additional 
times to specify surface normals and/or texture coordinates.

7. Call gluEndCurve() or gluEndSurface() to complete the curve or 
surface.

Example 12-5 renders a NURBS surface in the shape of a symmetrical hill, 
with control points ranging from 3.0 to 3.0. The basis function is a cubic 
B-spline, but the knot sequence is nonuniform, with a multiplicity of 4 at 
each endpoint, causing the basis function to behave as a Bézier curve in 
each direction. The surface is lighted, with a dark gray diffuse reflection 
and white specular highlights. Figure 12-4 shows the surface as a lit 
wireframe. 
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Example 12-5 NURBS Surface: surface.c

#ifndef CALLBACK
#define CALLBACK
#endif

GLfloat ctlpoints[4][4][3];
int showPoints = 0;

GLUnurbsObj *theNurb;

void init_surface(void)
{
   int u, v;
   for (u = 0; u < 4; u++) {
      for (v = 0; v < 4; v++) {
         ctlpoints[u][v][0] = 2.0*((GLfloat)u - 1.5);
         ctlpoints[u][v][1] = 2.0*((GLfloat)v - 1.5);

         if ( (u == 1 || u == 2) && (v == 1 || v == 2))
            ctlpoints[u][v][2] = 3.0;
         else
            ctlpoints[u][v][2] = -3.0;
      }
   }
}

void CALLBACK nurbsError(GLenum errorCode)
{
   const GLubyte *estring;

Figure 12-4 NURBS Surface
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   estring = gluErrorString(errorCode);
   fprintf(stderr, “Nurbs Error: %s\n”, estring);
   exit(0);
}

void init(void)
{
   GLfloat mat_diffuse[] = { 0.7, 0.7, 0.7, 1.0 };
   GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 };
   GLfloat mat_shininess[] = { 100.0 };

   glClearColor(0.0, 0.0, 0.0, 0.0);
   glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_diffuse);
   glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
   glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess);

   glEnable(GL_LIGHTING);
   glEnable(GL_LIGHT0);
   glEnable(GL_DEPTH_TEST);
   glEnable(GL_AUTO_NORMAL);
   glEnable(GL_NORMALIZE);

   init_surface();

   theNurb = gluNewNurbsRenderer();
   gluNurbsProperty(theNurb, GLU_SAMPLING_TOLERANCE, 25.0);
   gluNurbsProperty(theNurb, GLU_DISPLAY_MODE, GLU_FILL);
   gluNurbsCallback(theNurb, GLU_ERROR, nurbsError);
}

void display(void)
{
   GLfloat knots[8] = {0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0};
   int i, j;

   glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

   glPushMatrix();
   glRotatef(330.0, 1., 0., 0.);
   glScalef(0.5, 0.5, 0.5);

   gluBeginSurface(theNurb);
   gluNurbsSurface(theNurb, 
                   8, knots, 8, knots,
                   4 * 3, 3, &ctlpoints[0][0][0], 
                   4, 4, GL_MAP2_VERTEX_3);
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   gluEndSurface(theNurb);

   if (showPoints) {
      glPointSize(5.0);
      glDisable(GL_LIGHTING);
      glColor3f(1.0, 1.0, 0.0);
      glBegin(GL_POINTS);
      for (i = 0; i < 4; i++) {
         for (j = 0; j < 4; j++) {
            glVertex3f(ctlpoints[i][j][0], 
                       ctlpoints[i][j][1], ctlpoints[i][j][2]);
         }
      }
      glEnd();
      glEnable(GL_LIGHTING);
   }
   glPopMatrix();
   glFlush();
}

void reshape(int w, int h)
{
   glViewport(0, 0, (GLsizei) w, (GLsizei) h);
   glMatrixMode(GL_PROJECTION);
   glLoadIdentity();
   gluPerspective(45.0, (GLdouble)w/(GLdouble)h, 3.0, 8.0);
   glMatrixMode(GL_MODELVIEW);
   glLoadIdentity();
   glTranslatef(0.0, 0.0, -5.0);
}
void keyboard(unsigned char key, int x, int y)
{
   switch (key) {
      case ‘c’:
      case ‘C’:
         showPoints = !showPoints;
         glutPostRedisplay();
         break;
      case 27:
         exit(0);
         break;
      default:
         break;
   }
}
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int main(int argc, char** argv)
{
   glutInit(&argc, argv);
   glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
   glutInitWindowSize(500, 500);
   glutInitWindowPosition(100, 100);
   glutCreateWindow(argv[0]);
   init();
   glutReshapeFunc(reshape);
   glutDisplayFunc(display);
   glutKeyboardFunc(keyboard);
   glutMainLoop();
   return 0; 
}

Managing a NURBS Object

As shown in Example 12-5, gluNewNurbsRenderer() returns a new NURBS 
object, whose type is a pointer to a GLUnurbsObj structure. You must make 
this object before using any other NURBS routine. When you’re done with 
a NURBS object, you may use gluDeleteNurbsRenderer() to free up the 
memory that was used.

Controlling NURBS Rendering Properties

A set of properties associated with a NURBS object affects the way the object 
is rendered. These properties include how the surface is rasterized (for 
example, filled or wireframe), whether the tessellated vertices are displayed 
or returned, and the precision of tessellation.

GLUnurbsObj* gluNewNurbsRenderer(void);

Creates a new NURBS object, nobj, and returns a pointer to the new object, 
or zero, if OpenGL cannot allocate memory for a new NURBS object.

void gluDeleteNurbsRenderer(GLUnurbsObj *nobj);

Destroys the NURBS object nobj.
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void gluNurbsProperty(GLUnurbsObj *nobj, GLenum property,
GLfloat value);

Controls attributes of a NURBS object, nobj. The property argument 
specifies the property and can be GLU_DISPLAY_MODE, GLU_NURBS_
MODE, GLU_CULLING, GLU_SAMPLING_METHOD, GLU_SAMPLING_
TOLERANCE, GLU_PARAMETRIC_TOLERANCE, GLU_U_STEP, GLU_V_
STEP, or GLU_AUTO_LOAD_MATRIX. The value argument indicates what 
the property should be.

For the property GLU_DISPLAY_MODE, the default value is GLU_FILL, 
which causes the surface to be rendered as polygons. If GLU_OUTLINE_
POLYGON is used for the display-mode property, only the outlines of 
polygons created by tessellation are rendered. GLU_OUTLINE_PATCH 
renders the outlines of patches and trimming curves. (See “Creating a 
NURBS Curve or Surface” on page 595.)

The property GLU_NURBS_MODE controls whether the tessellated vertices 
are simply rendered (the default value, GLU_NURBS_RENDERER) or 
whether the callback interface is activated to allow the tessellated data 
to be returned (if value is GLU_NURBS_TESSELLATOR). For details, see 
“Getting Primitives Back from the NURBS Tessellator” on page 597.

GLU_CULLING can speed up performance by not performing tessellation 
if the NURBS object falls completely outside the viewing volume; set this 
property to GL_TRUE to enable culling (the default is GL_FALSE).

Since a NURBS object is rendered as primitives, it’s sampled at different 
values of its parameter(s) (u and v) and broken down into small line 
segments or polygons for rendering. If property is GLU_SAMPLING_
METHOD, then value is set to GLU_PATH_LENGTH (which is the default), 
GLU_PARAMETRIC_ERROR, GLU_DOMAIN_DISTANCE, GLU_OBJECT_
PATH_LENGTH, or GLU_OBJECT_PARAMETRIC_ERROR, which specifies 
how a NURBS curve or surface should be tessellated. When value is set 
to GLU_PATH_LENGTH, the surface is rendered so that the maximum 
length, in pixels, of the edges of tessellated polygons is no greater than 
that specified by GLU_SAMPLING_TOLERANCE. When value is set to 
GLU_PARAMETRIC_ERROR, then the quantity specified by GLU_
PARAMETRIC_TOLERANCE is the maximum distance, in pixels, between 
tessellated polygons and the surfaces they approximate. 
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A value of GLU_OBJECT_PATH_LENGTH is similar to GLU_PATH_LENGTH, 
except that the maximum length (the value of GLU_SAMPLING_
TOLERANCE) of a tessellated primitive is measured in object space, not 
pixels. Similarly, GLU_OBJECT_PARAMETRIC_ERROR is related to 
GLU_PARAMETRIC_ERROR, except that GLU_PARAMETRIC_
TOLERANCE measures the maximum distance between tessellated 
polygons and the surfaces they approximate, in object space, not in pixels.

When value is set to GLU_DOMAIN_DISTANCE, the application specifies, 
in parametric coordinates, how many sample points per unit length are 
taken in the u- and v-dimensions, using the values for GLU_U_STEP and 
GLU_V_STEP.

If property is GLU_SAMPLING_TOLERANCE and the sampling method is 
GLU_PATH_LENGTH or GLU_OBJECT_PATH_LENGTH, value controls the 
maximum length, in pixels or object space units, respectively, that should 
be used for tessellated polygons. For example, the default value of 50.0 
makes the largest sampled line segment or polygon edge 50.0 pixels long 
or 50.0 units long in object space. If property is GLU_PARAMETRIC_
TOLERANCE and the sampling method is GLU_PARAMETRIC_ERROR 
or GLU_OBJECT_PARAMETRIC_ERROR, value controls the maximum 
distance, in pixels or object space, respectively, between the tessellated 
polygons and the surfaces they approximate. For either sampling method, 
the default value for GLU_PARAMETRIC_TOLERANCE is 0.5. For 
GLU_PARAMETRIC_ERROR, this value makes the tessellated polygons 
within one-half pixel of the approximated surface. (For GLU_OBJECT_
PARAMETRIC_ERROR, the default value of 0.5 doesn’t have the same 
obvious meaning.)

If the sampling method is GLU_DOMAIN_DISTANCE and property is 
either GLU_U_STEP or GLU_V_STEP, then value is the number of sample 
points per unit length taken along the u- or v-dimension, respectively, in 
parametric coordinates. The default for both GLU_U_STEP and GLU_V_
STEP is 100.

The GLU_AUTO_LOAD_MATRIX property determines whether the pro-
jection matrix, modelview matrix, and viewport are downloaded from the 
OpenGL server (GL_TRUE, the default), or whether the application must 
supply these matrices with gluLoadSamplingMatrices() (GL_FALSE).
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Note: Several of the NURBS properties (the GLU_NURBS_MODE and 
its nondefault value GLU_NURBS_TESSELLATOR, and the object 
space sampling methods GLU_OBJECT_PATH_LENGTH and GLU_
OBJECT_PARAMETRIC_ERROR) are introduced in GLU Version 1.3. 
Prior to GLU 1.3, these NURBS properties existed as vendor-specific 
extensions, if at all. Make sure you check the GLU version before you 
attempt to use these properties.

If you need to query the current value of a NURBS property, you may use 
gluGetNurbsProperty().

Handling NURBS Errors

Since there are 37 different errors specific to NURBS functions, it’s a good 
idea to register an error callback to let you know if you’ve stumbled into one 
of them. In Example 12-5, the callback function was registered with

gluNurbsCallback(theNurb, GLU_ERROR, (GLvoid (*)()) nurbsError);

void gluLoadSamplingMatrices(GLUnurbsObj *nobj,
const GLfloat modelMatrix[16], 
const GLfloat projMatrix[16], 
const GLint viewport[4]);

If the GLU_AUTO_LOAD_MATRIX is turned off, the modelview and projec-
tion matrices and the viewport specified in gluLoadSamplingMatrices()
are used to compute sampling and culling matrices for each NURBS curve 
or surface.

void gluGetNurbsProperty(GLUnurbsObj *nobj, GLenum property,
GLfloat *value);

Given the property to be queried for the NURBS object nobj, returns its 
current value.
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In Example 12-5, the nurbsError() routine was registered as the error 
callback function:

void CALLBACK nurbsError(GLenum errorCode)
{
   const GLubyte *estring;

   estring = gluErrorString(errorCode);
   fprintf(stderr, “Nurbs Error: %s\n”, estring);
   exit(0);
}

In GLU 1.3, additional NURBS callback functions have been added to return 
post-tessellation values back to the program (instead of rendering them). 
For more information on these new callbacks, see “Getting Primitives Back 
from the NURBS Tessellator” on page 597.

Creating a NURBS Curve or Surface

To render a NURBS surface, gluNurbsSurface() is bracketed by 
gluBeginSurface() and gluEndSurface(). The bracketing routines save and 
restore the evaluator state.

void gluNurbsCallback(GLUnurbsObj *nobj, GLenum which,
void (*fn)(GLenum errorCode));

which is the type of callback; for error checking, it must be GLU_ERROR. 
When a NURBS function detects an error condition, fn is invoked with the 
error code as its only argument. errorCode is one of 37 error conditions, 
named GLU_NURBS_ERROR1 through GLU_NURBS_ERROR37. Use 
gluErrorString() to describe the meaning of these error codes.

void gluBeginSurface(GLUnurbsObj *nobj);
void gluEndSurface(GLUnurbsObj *nobj);

After gluBeginSurface(), one or more calls to gluNurbsSurface() defines 
the attributes of the surface. Exactly one of these calls must have a surface 
type of GL_MAP2_VERTEX_3 or GL_MAP2_VERTEX_4 to generate 
vertices. Use gluEndSurface() to end the definition of a surface. Trimming 
of NURBS surfaces is also supported between gluBeginSurface() and 
gluEndSurface(). (See “Trimming a NURBS Surface” on page 601.)
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 void gluNurbsSurface(GLUnurbsObj *nobj, GLint uknot_count,
GLfloat *uknot, GLint vknot_count, GLfloat *vknot,
GLint u_stride, GLint v_stride, GLfloat *ctlarray,
GLint uorder, GLint vorder, GLenum type);

Describes the vertices (or surface normals or texture coordinates) of a 
NURBS surface, nobj. Several of the values must be specified for both u
and v parametric directions, such as the knot sequences (uknot and 
vknot), knot counts (uknot_count and vknot_count), and the order of 
the polynomial (uorder and vorder) for the NURBS surface. Note that 
the number of control points isn’t specified. Instead, it’s derived by 
determining the number of control points along each parameter as 
the number of knots minus the order. Then, the number of control 
points for the surface is equal to the number of control points in each 
parametric direction, multiplied by one another. The ctlarray argument 
points to an array of control points.

The last parameter, type, is one of the two-dimensional evaluator types. 
Commonly, you might use GL_MAP2_VERTEX_3 for nonrational or GL_
MAP2_VERTEX_4 for rational control points, respectively. You might also 
use other types, such as GL_MAP2_TEXTURE_COORD_* or GL_MAP2_
NORMAL to calculate and assign texture coordinates or surface normals. 
For example, to create a lighted (with surface normals) and textured 
NURBS surface, you may need to call this sequence:

gluBeginSurface(nobj);
   gluNurbsSurface(nobj, ..., GL_MAP2_TEXTURE_COORD_2);
   gluNurbsSurface(nobj, ..., GL_MAP2_NORMAL);
   gluNurbsSurface(nobj, ..., GL_MAP2_VERTEX_3);
gluEndSurface(nobj);

The u_stride and v_stride arguments represent the number of floating-
point values between control points in each parametric direction. The 
evaluator type, as well as its order, affects the u_stride and v_stride values. 
In Example 12-5, u_stride is 12 (4*3) because there are three coordinates 
for each vertex (set by GL_MAP2_VERTEX_3) and four control points in 
the parametric v-direction; v_stride is 3 because each vertex has three 
coordinates, and the v control points are adjacent to one another in 
memory.
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Drawing a NURBS curve is similar to drawing a surface, except that all cal-
culations are done with one parameter, u, rather than two. Also, for curves, 
gluBeginCurve() and gluEndCurve() are the bracketing routines.

Getting Primitives Back from the NURBS Tessellator

By default, the NURBS tessellator breaks down a NURBS object into geometric 
lines and polygons, and then renders them. In GLU 1.3, additional callback 
functions have been added, so instead of rendering the post-tessellation 
values, they can be returned for use by the application. 

To do this, call gluNurbsProperty() to set the GLU_NURBS_MODE property
to the value GLU_NURBS_TESSELLATOR. The other necessary step is to call 
gluNurbsCallback() several times to register callback functions, which the 
NURBS tessellator will now call.

void gluBeginCurve(GLUnurbsObj *nobj);
void gluEndCurve(GLUnurbsObj *nobj);

After gluBeginCurve(), one or more calls to gluNurbsCurve() define the 
attributes of the surface. Exactly one of these calls must have a surface 
type of GL_MAP1_VERTEX_3 or GL_MAP1_VERTEX_4 to generate 
vertices. Use gluEndCurve() to end the definition of a surface. 

void gluNurbsCurve(GLUnurbsObj *nobj, GLint uknot_count,
GLfloat *uknot, GLint u_stride, GLfloat *ctlarray,
GLint uorder, GLenum type);

Defines a NURBS curve for the object nobj. The arguments have the 
same meaning as those for gluNurbsSurface(). Note that this routine 
requires only one knot sequence and one declaration of the order of
the NURBS object. If this curve is defined within a gluBeginCurve()/ 
gluEndCurve() pair, then the type can be any of the valid one-
dimensional evaluator types (such as GL_MAP1_VERTEX_3 or 
GL_MAP1_VERTEX_4). 
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To change a callback routine, call gluNurbsCallback() with the new routine. 
To eliminate a callback routine without replacing it, pass gluNurbsCallback()
a null pointer for the appropriate function.

void gluNurbsCallback(GLUnurbsObj *nobj, GLenum which,
void (*fn)());

nobj is the NURBS object to be tessellated. which is the enumerant 
identifying the callback function. If the property GLU_NURBS_MODE is set 
to GLU_NURBS_TESSELLATOR, then 12 possible callback functions (in 
addition to GLU_ERROR) are available. (If GLU_NURBS_MODE is set to 
the default GLU_NURBS_RENDERER value, then only GLU_ERROR is 
active.) The 12 callbacks have the following enumerants and prototypes:

GLU_NURBS_BEGIN void begin(GLenum type);

GLU_NURBS_BEGIN_DATA void begin(GLenum type,
void *userData);

GLU_NURBS_TEXTURE_COORD void texCoord(
GLfloat *tCrd);

GLU_NURBS_TEXTURE_COORD_DATA void texCoord(
GLfloat  *tCrd,
void *userData);

GLU_NURBS_COLOR void color(GLfloat *color);

GLU_NURBS_COLOR_DATA void color(GLfloat *color,
void *userData);

GLU_NURBS_NORMAL void normal(GLfloat *nml);

GLU_NURBS_NORMAL_DATA void normal(GLfloat *nml,
void *userData);

GLU_NURBS_VERTEX void vertex(GLfloat *vertex);

GLU_NURBS_VERTEX_DATA void vertex(GLfloat *vertex,
void *userData);

GLU_NURBS_END void end(void);

GLU_NURBS_END_DATA void end(void *userData);
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Six of the callback functions allow the user to pass some data to it. To specify 
that user data, you must call gluNurbsCallbackData().

As tessellation proceeds, the callback routines are called in a manner similar 
to that in which you use the OpenGL commands glBegin(), glTexCoord*(),
glColor*(), glNormal*(), glVertex*(), and glEnd(). During the GLU_NURBS_
TESSELLATOR mode, the curve or surface is not directly rendered, but you 
can capture the vertex data passed as parameters to the callback functions.

To demonstrate these new callbacks, Example 12-6 and Example 12-7 show 
portions of surfpoints.c, which is a modification of the earlier surface.c 
program. Example 12-6 shows part of the init() subroutine, where the 
NURBS object is created, GLU_NURBS_MODE is set to perform the 
tessellation, and the callback functions are registered.

Example 12-6 Registering NURBS Tessellation Callbacks: surfpoints.c

void init(void)
{
/* only a portion of init() shown here--several lines deleted */

   theNurb = gluNewNurbsRenderer();
   gluNurbsProperty(theNurb, GLU_NURBS_MODE,
                    GLU_NURBS_TESSELLATOR);
   gluNurbsProperty(theNurb, GLU_SAMPLING_TOLERANCE, 100.0);
   gluNurbsProperty(theNurb, GLU_DISPLAY_MODE, GLU_FILL);
   gluNurbsCallback(theNurb, GLU_ERROR, nurbsError);
   gluNurbsCallback(theNurb, GLU_NURBS_BEGIN, beginCallback);
   gluNurbsCallback(theNurb, GLU_NURBS_VERTEX, vertexCallback);
   gluNurbsCallback(theNurb, GLU_NURBS_NORMAL, normalCallback);
   gluNurbsCallback(theNurb, GLU_NURBS_END, endCallback);
}

Example 12-7 shows the callback functions of surfpoints.c. In these 
callbacks, printf() statements act as diagnostics to show what rendering 
directives and vertex data are returned from the tessellator. In addition, 
the post-tessellation data is resubmitted to the pipeline for ordinary 
rendering.

void gluNurbsCallbackData(GLUnurbsObj *nobj,
void *userData);

nobj is the NURBS object to be tessellated. userData is the data to be passed 
to the callback functions.
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Example 12-7 The NURBS Tessellation Callbacks: surfpoints.c

void CALLBACK beginCallback(GLenum whichType)
{
   glBegin(whichType);  /*  resubmit rendering directive */
   printf("glBegin(");
   switch (whichType) {  /*  print diagnostic message  */
      case GL_LINES:
         printf("GL_LINES)\n"); break;
      case GL_LINE_LOOP:
         printf("GL_LINE_LOOP)\n"); break;
      case GL_LINE_STRIP:
         printf("GL_LINE_STRIP)\n"); break;
      case GL_TRIANGLES:
         printf("GL_TRIANGLES)\n"); break;
      case GL_TRIANGLE_STRIP:
         printf("GL_TRIANGLE_STRIP)\n"); break;
      case GL_TRIANGLE_FAN:
         printf("GL_TRIANGLE_FAN)\n"); break;
      case GL_QUADS:
         printf("GL_QUADS)\n"); break;
      case GL_QUAD_STRIP:
         printf("GL_QUAD_STRIP)\n"); break;
      case GL_POLYGON:
         printf("GL_POLYGON)\n"); break;
      default:
         break;
   }
}
void CALLBACK endCallback()
{
   glEnd();  /*  resubmit rendering directive */
   printf("glEnd()\n");
}

void CALLBACK vertexCallback(GLfloat *vertex)
{
   glVertex3fv(vertex);  /*  resubmit tessellated vertex */
   printf("glVertex3f (%5.3f, %5.3f, %5.3f)\n",
          vertex[0], vertex[1], vertex[2]);
}

void CALLBACK normalCallback(GLfloat *normal)
{
   glNormal3fv(normal);  /*  resubmit tessellated normal */
   printf("glNormal3f (%5.3f, %5.3f, %5.3f) ",
          normal[0], normal[1], normal[2]);
}
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Trimming a NURBS Surface

To create a trimmed NURBS surface with OpenGL, start as if you were 
creating an untrimmed surface. After calling gluBeginSurface() and 
gluNurbsSurface() but before calling gluEndSurface(), start a trim by 
calling gluBeginTrim().

You can create two kinds of trimming curves: a piecewise linear curve with 
gluPwlCurve() or a NURBS curve with gluNurbsCurve(). A piecewise linear 
curve doesn’t look like what is conventionally called a curve, because it’s a 
series of straight lines. A NURBS curve for trimming must lie within the unit 
square of parametric (u, v) space. The type for a NURBS trimming curve is 
usually GLU_MAP1_TRIM2. Less often, the type is GLU_MAP1_TRIM3, 
where the curve is described in a two-dimensional homogeneous space     
(u’, v’, w’) by (u, v) = (u’/w’, v’/w’).

You need to consider the orientation of trimming curves—that is, whether 
they’re counterclockwise or clockwise—to make sure you include the desired 
part of the surface. If you imagine walking along a curve, everything to the 
left is included and everything to the right is trimmed away. For example, 
if your trim consists of a single counterclockwise loop, everything inside the 
loop is included. If the trim consists of two nonintersecting counterclock-
wise loops with nonintersecting interiors, everything inside either of them 

void gluBeginTrim(GLUnurbsObj *nobj);
void gluEndTrim(GLUnurbsObj *nobj);

Marks the beginning and end of the definition of a trimming loop. A 
trimming loop is a set of oriented, trimming curve segments (forming a 
closed curve) that defines the boundaries of a NURBS surface.

void gluPwlCurve(GLUnurbsObj *nobj, GLint count, GLfloat *array,
GLint stride, GLenum type);

Describes a piecewise linear trimming curve for the NURBS object nobj.
There are count points on the curve, and they’re given by array. The type
can be either GLU_MAP1_TRIM_2 (the most common) or GLU_MAP1_
TRIM_3 ((u, v, w) homogeneous parameter space). The value of type
determines whether stride is 2 or 3. stride represents the number of 
floating-point values to the next vertex in array.
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is included. If it consists of a counterclockwise loop with two clockwise 
loops inside it, the trimming region has two holes in it. The outermost trim-
ming curve must be counterclockwise. Often, you run a trimming curve 
around the entire unit square to include everything within it, which is what 
you get by default by not specifying any trimming curves.

Trimming curves must be closed and nonintersecting. You can combine 
trimming curves, as long as the endpoints of the trimming curves meet to 
form a closed curve. You can nest curves, creating islands that float in space. 
Be sure to get the curve orientations right. For example, an error results if 
you specify a trimming region with two counterclockwise curves, one 
enclosed within the other: the region between the curves is to the left of one 
and to the right of the other, so it must be both included and excluded, 
which is impossible. Figure 12-5 illustrates a few valid possibilities.

Figure 12-6 shows the same small hill shown in Figure 12-4, but with 
a trimming curve that’s a combination of a piecewise linear curve and 
a NURBS curve. The program that creates this figure is similar to the one 
shown in Example 12-5; the differences are in the routines shown in 
Example 12-8.

A

B

C

D

E

gluBeginSurface();
gluNurbsSurface(...);
gluBeginTrim();
gluPwlCurve(...); /* A */
gluEndTrim();
gluBeginTrim();
gluPwlCurve(...); /* B */
gluEndTrim();
gluBeginTrim();
gluNurbsCurve(...); */ C */
gluEndTrim();
gluBeginTrim();
gluNurbsCurve(...); */ D */
gluPwlCurve(...); /* D */
gluEndTrim();
gluBeginTrim();
gluPwlCurve(...); /* E */
gluEndTrim();
gluEndSurface();

Figure 12-5 Parametric Trimming Curves
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Example 12-8 Trimming a NURBS Surface: trim.c

void display(void)
{
   GLfloat knots[8] = {0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0};
   GLfloat edgePt[5][2] = /* counter clockwise */
      {{0.0, 0.0}, {1.0, 0.0}, {1.0, 1.0}, {0.0, 1.0}, 
       {0.0, 0.0}};
   GLfloat curvePt[4][2] = /* clockwise */ 
      {{0.25, 0.5}, {0.25, 0.75}, {0.75, 0.75}, {0.75, 0.5}};
   GLfloat curveKnots[8] = 
      {0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0};
   GLfloat pwlPt[3][2] = /* clockwise */ 
      {{0.75, 0.5}, {0.5, 0.25}, {0.25, 0.5}};

   glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
   glPushMatrix();
   glRotatef(330.0, 1., 0., 0.);
   glScalef(0.5, 0.5, 0.5);

   gluBeginSurface(theNurb);
   gluNurbsSurface(theNurb, 8, knots, 8, knots,
                   4 * 3, 3, &ctlpoints[0][0][0], 
                   4, 4, GL_MAP2_VERTEX_3);
   gluBeginTrim(theNurb);
      gluPwlCurve(theNurb, 5, &edgePt[0][0], 2,
                  GLU_MAP1_TRIM_2);
   gluEndTrim(theNurb);
   gluBeginTrim(theNurb);
      gluNurbsCurve(theNurb, 8, curveKnots, 2, 
                    &curvePt[0][0], 4, GLU_MAP1_TRIM_2);

Figure 12-6 Trimmed NURBS Surface
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      gluPwlCurve(theNurb, 3, &pwlPt[0][0], 2,
                  GLU_MAP1_TRIM_2);
   gluEndTrim(theNurb);
   gluEndSurface(theNurb);
        
   glPopMatrix();
   glFlush();
}

In Example 12-8, gluBeginTrim() and gluEndTrim() bracket each trim-
ming curve. The first trim, with vertices defined by the array edgePt[][], goes 
counterclockwise around the entire unit square of parametric space. This 
ensures that everything is drawn, provided it isn’t removed by a clockwise 
trimming curve inside of it. The second trim is a combination of a NURBS 
trimming curve and a piecewise linear trimming curve. The NURBS curve 
ends at the points (0.9, 0.5) and (0.1, 0.5), where it is met by the piecewise 
linear curve, forming a closed clockwise curve.
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Chapter 13

13.Selection and Feedback

Chapter Objectives

After reading this chapter, you’ll be able to do the following: 

• Create applications that allow the user to select a region of the screen 
or pick an object drawn on the screen

• Use the OpenGL feedback mode to obtain the results of rendering 
calculations

Note: In OpenGL Version 3.1, all of the techniques and functions described 
in this chapter were removed through deprecation. Even though 
some of this functionality is part of the GLU library, it relies on 
functionality that has been removed from the core OpenGL library
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Some graphics applications simply draw static images of two- and three-
dimensional objects. Other applications allow the user to identify objects 
on the screen and then to move, modify, delete, or otherwise manipulate 
those objects. OpenGL is designed to support exactly such interactive appli-
cations. Since objects drawn on the screen typically undergo multiple rota-
tions, translations, and perspective transformations, it can be difficult for 
you to determine which object a user is selecting in a three-dimensional 
scene. To help you, OpenGL provides a selection mechanism that automat-
ically tells you which objects are drawn inside a specified region of the win-
dow. You can use this mechanism together with a special utility routine to 
determine which object within the region the user is specifying, or picking,
with the cursor.

Selection is actually a mode of operation for OpenGL; feedback is another 
such mode. In feedback mode, you use your graphics hardware and OpenGL 
to perform the usual rendering calculations. Instead of using the calculated 
results to draw an image on the screen, however, OpenGL returns (or feeds 
back) the drawing information to you. For example, if you want to draw 
three-dimensional objects on a plotter rather than the screen, you would 
draw the items in feedback mode, collect the drawing instructions, and 
then convert them to commands the plotter can understand.

In both selection and feedback modes, drawing information is returned to 
the application rather than being sent to the framebuffer, as it is in render-
ing mode. Thus, the screen remains frozen—no drawing occurs—while 
OpenGL is in selection or feedback mode. In these modes, the contents of 
the color, depth, stencil, and accumulation buffers are not affected. This 
chapter explains each of these modes in its own section:

• “Selection” discusses how to use selection mode and related routines to 
allow a user of your application to pick an object drawn on the screen.

• “Feedback” describes how to obtain information about what would be 
drawn on the screen and how that information is formatted.

Selection

Typically, when you’re planning to use OpenGL’s selection mechanism, you 
first draw your scene into the framebuffer, and then you enter selection 
mode and redraw the scene. However, once you’re in selection mode, the 
contents of the framebuffer don’t change until you exit selection mode. 
When you exit selection mode, OpenGL returns a list of the primitives that 
intersect the viewing volume. (Remember that the viewing volume is 
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defined by the current modelview and projection matrices and any 
additional clipping planes, as explained in Chapter 3.) Each primitive that 
intersects the viewing volume causes a selection hit. The list of primitives is 
actually returned as an array of integer-valued names and related data—the 
hit records—that correspond to the current contents of the name stack. You 
construct the name stack by loading names onto it as you issue primitive 
drawing commands while in selection mode. Thus, when the list of names 
is returned, you can use it to determine which primitives might have been 
selected on the screen by the user. 

In addition to this selection mechanism, OpenGL provides a utility routine 
designed to simplify selection in some cases by restricting drawing to a 
small region of the viewport. Typically, you use this routine to determine 
which objects are drawn near the cursor, so that you can identify which 
object the user is picking. (You can also delimit a selection region by 
specifying additional clipping planes. Remember that these planes act in 
world space, not in screen space.) Since picking is a special case of selection, 
selection is described first in this chapter, and then picking.

The Basic Steps

To use the selection mechanism, you need to perform the following steps:

1. Specify the array to be used for the returned hit records with 
glSelectBuffer().

2. Enter selection mode by specifying GL_SELECT with glRenderMode().

3. Initialize the name stack using glInitNames() and glPushName().

4. Define the viewing volume you want to use for selection. Usually this 
is different from the viewing volume you originally used to draw the 
scene, so you probably want to save and then restore the current 
transformation state with glPushMatrix() and glPopMatrix().

5. Alternately issue primitive drawing commands and commands to 
manipulate the name stack so that each primitive of interest is 
assigned an appropriate name.

6. Exit selection mode and process the returned selection data (the hit 
records).

The following two paragraphs describe glSelectBuffer() and glRenderMode().
In the next subsection, the commands for manipulating the name stack are 
described. 
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Creating the Name Stack

As mentioned in the preceding subsection, the name stack forms the basis 
for the selection information that’s returned to you. To create the name 
stack, first initialize it with glInitNames(), which simply clears the stack, 
and then add integer names to it while issuing corresponding drawing 
commands. As you might expect, the commands to manipulate the stack 
allow you to push a name onto it (glPushName()), pop a name off of it 
(glPopName()), and replace the name at the top of the stack with a different 
one (glLoadName()). Example 13-1 shows what your name-stack manipu-
lation code might look like with these commands. 

void glSelectBuffer(GLsizei size, GLuint *buffer);

Specifies the array to be used for the returned selection data. The buffer
argument is a pointer to an array of unsigned integers into which the data 
is put, and size indicates the maximum number of values that can be 
stored in the array. You need to call glSelectBuffer() before entering 
selection mode.

GLint glRenderMode(GLenum mode);

Controls whether the application is in rendering, selection, or feedback 
mode. The mode argument can be GL_RENDER (the default), GL_
SELECT, or GL_FEEDBACK. The application remains in a given mode 
until glRenderMode() is called again with a different argument. Before 
selection mode is entered, glSelectBuffer() must be called to specify 
the selection array. Similarly, before feedback mode is entered, 
glFeedbackBuffer() must be called to specify the feedback array. The 
return value for glRenderMode() has meaning if the current render 
mode (that is, not the mode parameter) is either GL_SELECT or GL_
FEEDBACK. The return value is the number of selection hits or the 
number of values placed in the feedback array when either mode is 
exited; a negative value means that the selection or feedback array has 
overflowed. You can use GL_RENDER_MODE with glGetIntegerv() to 
obtain the current mode.

Compatibility 
Extension

glSelectBuffer
glRenderMode
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Example 13-1 Creating a Name Stack

glInitNames();
glPushName(0);

glPushMatrix();   /* save the current transformation state */

    /* create your desired viewing volume here */

    glLoadName(1);
    drawSomeObject();
    glLoadName(2);
    drawAnotherObject();
    glLoadName(3);
    drawYetAnotherObject();
    drawJustOneMoreObject();

glPopMatrix();   /* restore the previous transformation state*/

In this example, the first two objects to be drawn have their own names, 
and the third and fourth objects share a single name. With this setup, if 
either or both of the third and fourth objects cause a selection hit, only one 
hit record is returned to you. You can have multiple objects share the same 
name if you don’t need to differentiate between them when processing the 
hit records.

void glInitNames(void);

Clears the name stack so that it’s empty.

void glPushName(GLuint name);

Pushes name onto the name stack. Pushing a name beyond the capacity 
of the stack generates the error GL_STACK_OVERFLOW. The name 
stack’s depth can vary among different OpenGL implementations, but 
it must be able to contain at least 64 names. You can use the parameter 
GL_NAME_STACK_DEPTH with glGetIntegerv() to obtain the depth of 
the name stack.

void glPopName(void); 

Pops one name off the top of the name stack. Popping an empty stack 
generates the error GL_STACK_UNDERFLOW.

Compatibility 
Extension

glInitNames
glPushName
glPopName
glLoadName
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Calls to glPushName(), glPopName(), and glLoadName() are ignored if 
you’re not in selection mode. You might find that it simplifies your code to 
use these calls throughout your drawing code, and then use the same drawing 
code for both selection and normal rendering modes.

The Hit Record

In selection mode, a primitive that intersects the viewing volume causes a 
selection hit. Whenever a name-stack manipulation command is executed 
or glRenderMode() is called, OpenGL writes a hit record into the selection 
array if there’s been a hit since the last time the stack was manipulated or 
glRenderMode() was called. With this process, objects that share the same 
name—for example, an object composed of more than one primitive—
don’t generate multiple hit records. Also, hit records aren’t guaranteed to 
be written into the array until glRenderMode() is called. 

Note: In addition to geometric primitives, valid raster position coordinates 
produced by glRasterPos() or glWindowPos() cause a selection hit. 
Also, during selection mode, if culling is enabled and a polygon is 
processed and culled, then no hit occurs. 

Each hit record consists of the following four items, in the order shown:

• The number of names on the name stack when the hit occurred. 

• Both the minimum and maximum window-coordinate z-values of all 
vertices of the primitives that have intersected the viewing volume 
since the last recorded hit. These two values, which lie in the range 
[0, 1], are each multiplied by 232  1 and rounded to the nearest 
unsigned integer. 

• The contents of the name stack at the time of the hit, with the 
bottommost element first.

void glLoadName(GLuint name);

Replaces the value at the top of the name stack with name. If the stack 
is empty, which it is right after glInitNames() is called, glLoadName()
generates the error GL_INVALID_OPERATION. To avoid this, if the stack 
is initially empty, call glPushName() at least once to put something on 
the name stack before calling glLoadName().
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When you enter selection mode, OpenGL initializes a pointer to the beginning 
of the selection array. Each time a hit record is written into the array, the 
pointer is updated accordingly. If writing a hit record would cause the 
number of values in the array to exceed the size argument specified with 
glSelectBuffer(), OpenGL writes as much of the record as will fit in the 
array and sets an overflow flag. When you exit selection mode with 
glRenderMode(), this command returns the number of hit records that 
were written (including a partial record if there was one), clears the name 
stack, resets the overflow flag, and resets the stack pointer. If the overflow 
flag has been set, the return value is 1.

A Selection Example

In Example 13-2, four triangles (a green, a red, and two yellow triangles, 
created by calling drawTriangle()) and a wireframe box representing the 
viewing volume (drawViewVolume()) are drawn on the screen. Then 
the triangles are rendered again (selectObjects()), but this time in selection 
mode. The corresponding hit records are processed in processHits(), and 
the selection array is printed out. The first triangle generates a hit, the 
second one doesn’t, and the third and fourth ones together generate a 
single hit. 

Example 13-2 Selection Example: select.c

void drawTriangle(GLfloat x1, GLfloat y1, GLfloat x2, 
    GLfloat y2, GLfloat x3, GLfloat y3, GLfloat z)
{
   glBegin(GL_TRIANGLES);
   glVertex3f(x1, y1, z);
   glVertex3f(x2, y2, z);
   glVertex3f(x3, y3, z);
   glEnd();
}

void drawViewVolume(GLfloat x1, GLfloat x2, GLfloat y1, 
                    GLfloat y2, GLfloat z1, GLfloat z2)
{
   glColor3f(1.0, 1.0, 1.0);
   glBegin(GL_LINE_LOOP);
   glVertex3f(x1, y1, -z1);
   glVertex3f(x2, y1, -z1);
   glVertex3f(x2, y2, -z1);
   glVertex3f(x1, y2, -z1);
   glEnd();
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   glBegin(GL_LINE_LOOP);
   glVertex3f(x1, y1, -z2);
   glVertex3f(x2, y1, -z2);
   glVertex3f(x2, y2, -z2);
   glVertex3f(x1, y2, -z2);
   glEnd();

   glBegin(GL_LINES);  /*  4 lines     */
   glVertex3f(x1, y1, -z1);
   glVertex3f(x1, y1, -z2);
   glVertex3f(x1, y2, -z1);
   glVertex3f(x1, y2, -z2);
   glVertex3f(x2, y1, -z1);
   glVertex3f(x2, y1, -z2);
   glVertex3f(x2, y2, -z1);
   glVertex3f(x2, y2, -z2);
   glEnd();
}

void drawScene(void)
{
   glMatrixMode(GL_PROJECTION);
   glLoadIdentity();
   gluPerspective(40.0, 4.0/3.0, 1.0, 100.0);

   glMatrixMode(GL_MODELVIEW);
   glLoadIdentity();
   gluLookAt(7.5, 7.5, 12.5, 2.5, 2.5, -5.0, 0.0, 1.0, 0.0);
   glColor3f(0.0, 1.0, 0.0);   /*  green triangle      */
   drawTriangle(2.0, 2.0, 3.0, 2.0, 2.5, 3.0, -5.0);
   glColor3f(1.0, 0.0, 0.0);   /*  red triangle        */
   drawTriangle(2.0, 7.0, 3.0, 7.0, 2.5, 8.0, -5.0);
   glColor3f(1.0, 1.0, 0.0);   /*  yellow triangles    */
   drawTriangle(2.0, 2.0, 3.0, 2.0, 2.5, 3.0, 0.0);
   drawTriangle(2.0, 2.0, 3.0, 2.0, 2.5, 3.0, -10.0);
   drawViewVolume(0.0, 5.0, 0.0, 5.0, 0.0, 10.0);
}

void processHits(GLint hits, GLuint buffer[])
{
   unsigned int i, j;
   GLuint names, *ptr;

   printf(“hits = %d\n”, hits);
   ptr = (GLuint *) buffer;
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   for (i = 0; i < hits; i++) { /*  for each hit  */
      names = *ptr;
      printf(“ number of names for hit = %d\n”, names); ptr++;
      printf(“  z1 is %g;”, (float) *ptr/0x7fffffff); ptr++;
      printf(“ z2 is %g\n”, (float) *ptr/0x7fffffff); ptr++;
      printf(“   the name is “);
      for (j = 0; j < names; j++) {     /*  for each name */
         printf(“%d “, *ptr); ptr++;
      }
      printf(“\n”);
   }
}

#define BUFSIZE 512

void selectObjects(void)
{
   GLuint selectBuf[BUFSIZE];
   GLint hits;

   glSelectBuffer(BUFSIZE, selectBuf);
   (void) glRenderMode(GL_SELECT);

   glInitNames();
   glPushName(0);

   glPushMatrix();
   glMatrixMode(GL_PROJECTION);
   glLoadIdentity();
   glOrtho(0.0, 5.0, 0.0, 5.0, 0.0, 10.0);
   glMatrixMode(GL_MODELVIEW);
   glLoadIdentity();
   glLoadName(1);
   drawTriangle(2.0, 2.0, 3.0, 2.0, 2.5, 3.0, -5.0);
   glLoadName(2);
   drawTriangle(2.0, 7.0, 3.0, 7.0, 2.5, 8.0, -5.0);
   glLoadName(3);
   drawTriangle(2.0, 2.0, 3.0, 2.0, 2.5, 3.0, 0.0);
   drawTriangle(2.0, 2.0, 3.0, 2.0, 2.5, 3.0, -10.0);
   glPopMatrix();
   glFlush();

   hits = glRenderMode(GL_RENDER);
   processHits(hits, selectBuf);
}
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void init(void) 
{
   glEnable(GL_DEPTH_TEST);
   glShadeModel(GL_FLAT);
}

void display(void)
{
   glClearColor(0.0, 0.0, 0.0, 0.0);
   glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
   drawScene();
   selectObjects();
   glFlush();
}

int main(int argc, char** argv)
{
   glutInit(&argc, argv);
   glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
   glutInitWindowSize(200, 200);
   glutInitWindowPosition(100, 100);
   glutCreateWindow(argv[0]);
   init();
   glutDisplayFunc(display);
   glutMainLoop();
   return 0; 
}

Picking

As an extension of the process described in the preceding section, you can 
use selection mode to determine if objects are picked. To do this, you use a 
special picking matrix in conjunction with the projection matrix to restrict 
drawing to a small region of the viewport, typically near the cursor. Then 
you allow some form of input, such as clicking a mouse button, to initiate 
selection mode. With selection mode established and with the special 
picking matrix used, objects that are drawn near the cursor cause selection 
hits. Thus, during picking, you’re typically determining which objects are 
drawn near the cursor. 
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Picking is set up almost exactly the same as regular selection mode with the 
following major differences:

• Picking is usually triggered by an input device. In the following code 
examples, pressing the left mouse button invokes a function that 
performs picking. 

• You use the utility routine gluPickMatrix() to multiply the current 
projection matrix by a special picking matrix. This routine should 
be called prior to multiplying a standard projection matrix (such as 
gluPerspective() or glOrtho()). You’ll probably want to save the 
contents of the projection matrix first, so the sequence of operations 
may look like this:

glMatrixMode(GL_PROJECTION);
glPushMatrix();
glLoadIdentity();
gluPickMatrix(...);
gluPerspective, glOrtho, gluOrtho2D, or glFrustum
   /* ... draw scene for picking ; perform picking ... */
glPopMatrix();

Another completely different way to perform picking is described in 
“Object Selection Using the Back Buffer” in Chapter 14. This technique uses 
color values to identify different components of an object.

void gluPickMatrix(GLdouble x, GLdouble y, GLdouble width,
GLdouble height, GLint viewport[4]);

Creates a projection matrix that restricts drawing to a small region of 
the viewport and multiplies that matrix onto the current matrix stack. 
The center of the picking region is (x, y) in window coordinates, typically 
the cursor location. width and height define the size of the picking region 
in screen coordinates. (You can think of the width and height as the 
sensitivity of the picking device.) viewport[] indicates the current viewport 
boundaries, which can be obtained by calling

glGetIntegerv(GL_VIEWPORT, GLint *viewport);
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Advanced

The net result of the matrix created by gluPickMatrix() transforms the 
clipping region into the unit cube 1  (x, y, z)  1 (or w  (wx, wy, wz) w).
The picking matrix effectively performs an orthogonal transformation that 
maps the clipping region to the unit cube. Since the transformation is 
arbitrary, you can make picking work for different sorts of regions—for 
example, for rotated rectangular portions of the window. In certain situations, 
you might find it easier to specify additional clipping planes to define the 
picking region.

Example 13-3 illustrates simple picking. It also demonstrates how to use 
multiple names to identify different components of a primitive; in this case, 
the row and column of a selected object. A 3 3 grid of squares is drawn, 
with each square a different color. The board[3][3] array maintains the 
current amount of blue for each square. When the left mouse button is 
pressed, the pickSquares() routine is called to identify which squares were 
picked by the mouse. Two names identify each square in the grid—one 
identifies the row, and the other the column. Also, when the left mouse   
button is pressed, the colors of all squares under the cursor position change. 

Example 13-3 Picking Example: picksquare.c

int board[3][3];   /*  amount of color for each square  */

/*  Clear color value for every square on the board   */
void init(void)
{
   int i, j;
   for (i = 0; i < 3; i++) 
      for (j = 0; j < 3; j ++)
         board[i][j] = 0;
   glClearColor(0.0, 0.0, 0.0, 0.0);
}

void drawSquares(GLenum mode)
{
   GLuint i, j;
   for (i = 0; i < 3; i++) {
      if (mode == GL_SELECT)
         glLoadName(i);
      for (j = 0; j < 3; j ++) {
         if (mode == GL_SELECT)
            glPushName(j);
         glColor3f((GLfloat) i/3.0, (GLfloat) j/3.0, 
                   (GLfloat) board[i][j]/3.0);

Advanced
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         glRecti(i, j, i+1, j+1);
         if (mode == GL_SELECT)
            glPopName();
      }
   }
}

/*  processHits prints out the contents of the 
 *  selection array.
 */
void processHits(GLint hits, GLuint buffer[])
{
   unsigned int i, j;
   GLuint ii, jj, names, *ptr;

   printf(“hits = %d\n”, hits);
   ptr = (GLuint *) buffer;
   for (i = 0; i < hits; i++) { /*  for each hit  */
      names = *ptr;
      printf(“ number of names for this hit = %d\n”, names);
         ptr++;
      printf(“ z1 is %g;”, (float) *ptr/0x7fffffff); ptr++;
      printf(“ z2 is %g\n”, (float) *ptr/0x7fffffff); ptr++;
      printf(“   names are “);
      for (j = 0; j < names; j++) { /*  for each name */
         printf(“%d “, *ptr);
         if (j == 0)  /*  set row and column  */
            ii = *ptr;
         else if (j == 1)
            jj = *ptr;
         ptr++;
      }
      printf(“\n”);
      board[ii][jj] = (board[ii][jj] + 1) % 3;
   }
}

#define BUFSIZE 512

void pickSquares(int button, int state, int x, int y)
{
   GLuint selectBuf[BUFSIZE];
   GLint hits;
   GLint viewport[4];
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   if (button != GLUT_LEFT_BUTTON || state != GLUT_DOWN)
      return;

   glGetIntegerv(GL_VIEWPORT, viewport);

   glSelectBuffer(BUFSIZE, selectBuf);
   (void) glRenderMode(GL_SELECT);

   glInitNames();
   glPushName(0);

   glMatrixMode(GL_PROJECTION);
   glPushMatrix();
   glLoadIdentity();
/*  create 5x5 pixel picking region near cursor location      */
   gluPickMatrix((GLdouble) x, (GLdouble) (viewport[3] - y), 
                  5.0, 5.0, viewport);
   gluOrtho2D(0.0, 3.0, 0.0, 3.0);
   drawSquares(GL_SELECT);

   glMatrixMode(GL_PROJECTION);
   glPopMatrix();
   glFlush();

   hits = glRenderMode(GL_RENDER);
   processHits(hits, selectBuf);
   glutPostRedisplay();
}

void display(void)
{
   glClear(GL_COLOR_BUFFER_BIT);
   drawSquares(GL_RENDER);
   glFlush();
}

void reshape(int w, int h)
{
   glViewport(0, 0, w, h);
   glMatrixMode(GL_PROJECTION);
   glLoadIdentity();
   gluOrtho2D(0.0, 3.0, 0.0, 3.0);
   glMatrixMode(GL_MODELVIEW);
   glLoadIdentity();
}

int main(int argc, char** argv)
{

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Selection 619

   glutInit(&argc, argv);
   glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
   glutInitWindowSize(100, 100);
   glutInitWindowPosition(100, 100);
   glutCreateWindow(argv[0]);
   init();
   glutMouseFunc(pickSquares);
   glutReshapeFunc(reshape);
   glutDisplayFunc(display); 
   glutMainLoop();
   return 0; 
}

Picking with Multiple Names and a Hierarchical Model

Multiple names can also be used to choose parts of a hierarchical object in 
a scene. For example, if you were rendering an assembly line of automobiles, 
you might want the user to move the mouse to pick the third bolt on the 
left front wheel of the third car in line. A different name can be used to 
identify each level of hierarchy: which car, which wheel, and finally which 
bolt. As another example, one name can be used to describe a single molecule 
among other molecules, and additional names can differentiate individual 
atoms within that molecule.

Example 13-4 is a modification of Figure 3-4, which draws an automobile 
with four identical wheels, each of which has five identical bolts. Code has 
been added to manipulate the name stack with the object hierarchy.

Example 13-4 Creating Multiple Names

draw_wheel_and_bolts()
{
    long i;

    draw_wheel_body();
    for (i = 0; i < 5; i++) {
        glPushMatrix();
            glRotate(72.0*i, 0.0, 0.0, 1.0);
            glTranslatef(3.0, 0.0, 0.0);
            glPushName(i);
                draw_bolt_body();
            glPopName();
        glPopMatrix();
    }
 }
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draw_body_and_wheel_and_bolts()
{
    draw_car_body();
    glPushMatrix();
        glTranslate(40, 0, 20);  /* first wheel position*/
        glPushName(1);           /* name of wheel number 1 */
            draw_wheel_and_bolts();
        glPopName();
    glPopMatrix();
    glPushMatrix();
        glTranslate(40, 0, -20); /* second wheel position */
        glPushName(2);           /* name of wheel number 2 */
            draw_wheel_and_bolts();
        glPopName();
    glPopMatrix();

    /* draw last two wheels similarly */
 }

Example 13-5 uses the routines in Example 13-4 to draw three different 
cars, numbered 1, 2, and 3. 

Example 13-5 Using Multiple Names

draw_three_cars()
{
    glInitNames();
    glPushMatrix();
        translate_to_first_car_position();
        glPushName(1);
            draw_body_and_wheel_and_bolts();
        glPopName();
    glPopMatrix();

    glPushMatrix();
        translate_to_second_car_position();
        glPushName(2);
            draw_body_and_wheel_and_bolts();
        glPopName();
    glPopMatrix();

    glPushMatrix();
        translate_to_third_car_position();
        glPushName(3);
            draw_body_and_wheel_and_bolts();
        glPopName();
    glPopMatrix();
}
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Assuming that picking is performed, the following are some possible name-
stack return values and their interpretations. In these examples, at most one 
hit record is returned; also, d1 and d2 are depth values. 

2 d1 d2 2 1 Car 2, wheel 1
1 d1 d2 3 Car 3 body

3 d1 d2 1 1 0 Bolt 0 on wheel 1 on car 1

empty The pick was outside all cars

The last interpretation assumes that the bolt and wheel don’t occupy the 
same picking region. A user might well pick both the wheel and the bolt, 
yielding two hits. If you receive multiple hits, you have to decide which hit 
to process, perhaps by using the depth values to determine which picked 
object is closest to the viewpoint. The use of depth values is explored further 
in the next subsection.

Picking and Depth Values

Example 13-6 demonstrates how to use depth values when picking to 
determine which object is picked. This program draws three overlapping 
rectangles in normal rendering mode. When the left mouse button is 
pressed, the pickRects() routine is called. This routine returns the cursor 
position, enters selection mode, initializes the name stack, and multiplies 
the picking matrix with the current orthographic projection matrix. A 
selection hit occurs for each rectangle the cursor is over when the left mouse 
button is clicked. Finally, the contents of the selection buffer are examined 
to identify which named objects were within the picking region near the 
cursor. 

The rectangles in this program are drawn at different depth, or z-, values. 
Since only one name is used to identify all three rectangles, only one hit can 
be recorded. However, if more than one rectangle is picked, that single hit 
has different minimum and maximum z-values.

Example 13-6 Picking with Depth Values: pickdepth.c

void init(void)
{
   glClearColor(0.0, 0.0, 0.0, 0.0);
   glEnable(GL_DEPTH_TEST);
   glShadeModel(GL_FLAT);
   glDepthRange(0.0, 1.0);  /* The default z mapping */
}
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void drawRects(GLenum mode)
{
   if (mode == GL_SELECT)
      glLoadName(1);
   glBegin(GL_QUADS);
   glColor3f(1.0, 1.0, 0.0);
   glVertex3i(2, 0, 0);
   glVertex3i(2, 6, 0);
   glVertex3i(6, 6, 0);
   glVertex3i(6, 0, 0);
   glEnd();
   if (mode == GL_SELECT)
      glLoadName(2);
   glBegin(GL_QUADS);
   glColor3f(0.0, 1.0, 1.0);
   glVertex3i(3, 2, -1);
   glVertex3i(3, 8, -1);
   glVertex3i(8, 8, -1);
   glVertex3i(8, 2, -1);
   glEnd();
   if (mode == GL_SELECT)
      glLoadName(3);
   glBegin(GL_QUADS);
   glColor3f(1.0, 0.0, 1.0);
   glVertex3i(0, 2, -2);
   glVertex3i(0, 7, -2);
   glVertex3i(5, 7, -2);
   glVertex3i(5, 2, -2);
   glEnd();
}

void processHits(GLint hits, GLuint buffer[])
{
   unsigned int i, j;
   GLuint names, *ptr;

   printf(“hits = %d\n”, hits);
   ptr = (GLuint *) buffer;
   for (i = 0; i < hits; i++) {  /* for each hit  */
      names = *ptr;
      printf(“ number of names for hit = %d\n”, names); ptr++;
      printf(“ z1 is %g;”, (float) *ptr/0x7fffffff); ptr++;
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      printf(“ z2 is %g\n”, (float) *ptr/0x7fffffff); ptr++;
      printf(“   the name is “);
      for (j = 0; j < names; j++) {  /* for each name */
         printf(“%d “, *ptr); ptr++;
      }
      printf(“\n”);
   }
}

#define BUFSIZE 512

void pickRects(int button, int state, int x, int y)
{
   GLuint selectBuf[BUFSIZE];
   GLint hits;
   GLint viewport[4];

   if (button != GLUT_LEFT_BUTTON || state != GLUT_DOWN)
      return;
   glGetIntegerv(GL_VIEWPORT, viewport);

   glSelectBuffer(BUFSIZE, selectBuf);
   (void) glRenderMode(GL_SELECT);

   glInitNames();
   glPushName(0);

   glMatrixMode(GL_PROJECTION);
   glPushMatrix();
   glLoadIdentity();
/*  create 5x5 pixel picking region near cursor location */
   gluPickMatrix((GLdouble) x, (GLdouble) (viewport[3] - y),
                 5.0, 5.0, viewport);
   glOrtho(0.0, 8.0, 0.0, 8.0, -0.5, 2.5);
   drawRects(GL_SELECT);
   glPopMatrix();
   glFlush();

   hits = glRenderMode(GL_RENDER);
   processHits(hits, selectBuf);
}
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void display(void)
{
   glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
   drawRects(GL_RENDER);
   glFlush();
}

void reshape(int w, int h)
{
   glViewport(0, 0, (GLsizei) w, (GLsizei) h);
   glMatrixMode(GL_PROJECTION);
   glLoadIdentity();
   glOrtho(0.0, 8.0, 0.0, 8.0, -0.5, 2.5);
   glMatrixMode(GL_MODELVIEW);
   glLoadIdentity();
}

int main(int argc, char **argv)
{
   glutInit(&argc, argv);
   glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
   glutInitWindowSize(200, 200);
   glutInitWindowPosition(100, 100);
   glutCreateWindow(argv[0]);
   init();
   glutMouseFunc(pickRects);
   glutReshapeFunc(reshape);
   glutDisplayFunc(display);
   glutMainLoop();
   return 0; 
}

Try This

• Modify Example 13-6 to add additional calls to glPushName() so that 
multiple names are on the stack when the selection hit occurs. What 
will the contents of the selection buffer be?

• By default, glDepthRange() sets the mapping of the z-values to 
[0.0, 1.0]. Try modifying the glDepthRange() values and see how these 
modifications affect the z-values that are returned in the selection 
array.

Try This
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Hints for Writing a Program That Uses Selection

Most programs that allow a user to edit geometric objects interactively 
provide a mechanism for the user to pick items or groups of items for 
editing. For two-dimensional drawing programs (for example, text editors, 
page-layout programs, and circuit-design programs), it might be easier to 
do your own picking calculations instead of using the OpenGL picking 
mechanism. Often, it’s easy to find bounding boxes for two-dimensional 
objects and to organize them in some hierarchical data structure to speed 
up searches. For example, picking that uses the OpenGL style in a VLSI 
layout program containing millions of rectangles can be relatively slow. 
However, using simple bounding-box information when rectangles are 
typically aligned with the screen could make picking in such a program 
extremely fast. The code is probably simpler to write, too. 

As another example, since only geometric objects cause hits, you might 
want to create your own method for picking text. Setting the current raster 
position is a geometric operation, but it effectively creates only a single 
pickable point at the current raster position, which is typically at the lower 
left corner of the text. If your editor needs to manipulate individual 
characters within a text string, some other picking mechanism must be 
used. You could draw little rectangles around each character during picking 
mode, but it’s almost certainly easier to handle text as a special case.

If you decide to use OpenGL picking, organize your program and its data 
structures so that it’s easy to draw appropriate lists of objects in either selec-
tion or normal drawing mode. This way, when the user picks something, 
you can use the same data structures for the pick operation that you use to 
display the items on the screen. Also, consider whether you want to allow 
the user to select multiple objects. One way to do this is to store a bit for 
each item, indicating whether it’s selected (this method, however, requires 
you to traverse your entire list of items to find the selected items). You 
might find it useful to maintain a list of pointers to selected items to speed 
up this search. It’s probably a good idea to keep the selection bit for each 
item as well, because when you’re drawing the entire picture, you might 
want to draw selected items differently (for example, in a different color or 
within a selection box). Finally, consider the selection user interface. You 
might want to allow the user to

• Select an item

• Sweep-select a group of items
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• Add an item to the selection

• Add a sweep selection to the current selections

• Delete an item from a selection

• Choose a single item from a group of overlapping items

A typical solution for a two-dimensional drawing program might work as 
follows:

1. All selection is done by pointing with the mouse cursor and using the 
left mouse button. In the steps that follow, cursor means the cursor tied 
to the mouse, and button means the left mouse button.

2. Clicking on an item selects it and deselects all other currently selected 
items. If the cursor is on top of multiple items, the smallest is selected. 
(In three dimensions, there are many other strategies for disambiguat-
ing a selection.)

3. Clicking down where there is no item, holding the button down while 
dragging the cursor, and then releasing the button selects all the items 
in a screen-aligned rectangle whose corners are determined by the cursor 
positions when the button went down and where it came up. This is 
called a sweep selection. All items not in the swept-out region are dese-
lected. (You must decide whether an item is selected only if it’s completely 
within the sweep region, or if any part of it falls within the region. The 
“completely within” strategy usually works best.)

4. If the Shift key is held down and the user clicks on an item that isn’t 
currently selected, that item is added to the selected list. If the clicked-
on item is selected, it’s deleted from the selection list.

5. If a sweep selection is performed with the Shift key pressed, the items 
swept out are added to the current selection.

6. In an extremely cluttered region, it’s often hard to do a sweep 
selection. When the button goes down, the cursor might lie on top of 
some item, and normally that item would be selected. You can make 
any operation a sweep selection, but a typical user interface interprets a 
button down on an item plus a mouse motion as a select-plus-drag 
operation. To solve this problem, you can have an enforced sweep 
selection by holding down, say, the Alt key. With this procedure, the 
following set of operations constitutes a sweep selection: Alt button 
down, sweep, button up. Items under the cursor when the button goes 
down are ignored.
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7. If the Shift key is held during this sweep selection, the items enclosed 
in the sweep region are added to the current selection.

8. Finally, if the user clicks on multiple items, select just one of them. If 
the cursor isn’t moved (or maybe not moved more than a pixel), and 
the user clicks again in the same place, deselect the item originally 
selected, and select a different item under the cursor. Use repeated 
clicks at the same point to cycle through all the possibilities.

Different rules can apply in particular situations. In a text editor, you 
probably don’t have to worry about characters on top of each other, and 
selections of multiple characters are always contiguous characters in the 
document. Thus, you need to mark only the first and last selected characters 
to identify the complete selection. With text, often the best way to handle 
selection is to identify the positions between characters, rather than the 
characters themselves. This allows you to have an empty selection when the 
beginning and end of the selection are between the same pair of characters; 
it also allows you to put the cursor before the first character in the 
document or after the final one with no special-case code.

In a three-dimensional editor, you might provide ways to rotate and zoom 
between selections, so sophisticated schemes for cycling through the 
possible selections might be unnecessary. On the other hand, selection in 
three dimensions is difficult because the cursor’s position on the screen 
usually gives no indication of its depth.

Feedback

Feedback is similar to selection in that once you’re in either mode, no pixels 
are produced and the screen is frozen. Drawing does not occur; instead, 
information about primitives that would have been rendered is sent back to 
the application. The key difference between selection and feedback modes 
is the information that is sent back. In selection mode, assigned names are 
returned to an array of integer values. In feedback mode, information about 
transformed primitives is sent back to an array of floating-point values. 
The values sent back to the feedback array consist of tokens that specify 
what type of primitive (point, line, polygon, image, or bitmap) has been 
processed and transformed, followed by vertex, color, or other data for 
that primitive. The values returned are fully transformed by lighting and 
viewing operations. Feedback mode is initiated by calling glRenderMode()
with GL_FEEDBACK as the argument. 
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Here’s how you enter and exit feedback mode:

1. Call glFeedbackBuffer() to specify the array to hold the feedback 
information. The arguments for this command describe what type of 
data and how much of it is written into the array. 

2. Call glRenderMode() with GL_FEEDBACK as the argument to enter 
feedback mode. (For this step, you can ignore the value returned by 
glRenderMode().) After this point, primitives aren’t rasterized to 
produce pixels until you exit feedback mode, and the contents of the 
framebuffer don’t change.

3. Draw your primitives. While issuing drawing commands, you can 
make several calls to glPassThrough() to insert markers into the 
returned feedback data and thus facilitate parsing.

4. Exit feedback mode by calling glRenderMode() with GL_RENDER as 
the argument if you want to return to normal drawing mode. The 
integer value returned by glRenderMode() is the number of values 
stored in the feedback array. 

5. Parse the data in the feedback array.  

void glFeedbackBuffer(GLsizei size, GLenum type, GLfloat *buffer);

Establishes a buffer for the feedback data: buffer is a pointer to an array 
where the data is stored. The size argument indicates the maximum 
number of values that can be stored in the array. The type argument 
describes the information fed back for each vertex in the feedback 
array; its possible values and their meanings are shown in Table 13-1. 
glFeedbackBuffer() must be called before feedback mode is entered. In 
the table, k is 1 in color-index mode and 4 in RGBA mode.

type Argument Coordinates Color Texture Total Values

GL_2D x, y - - 2

GL_3D x, y, z - - 3

GL_3D_COLOR x, y, z k - 3 + k

GL_3D_COLOR_TEXTURE x, y, z k 4 7 + k

GL_4D_COLOR_TEXTURE x, y, z, w k 4 8 + k

Table 13-1 glFeedbackBuffer() type Values

Compatibility 
Extension

glFeedbackBuffer 
and all associated 
tokens
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Note: When multitexturing is supported, feedback returns only the texture 
coordinates of texture unit 0.

The Feedback Array

In feedback mode, each primitive that would be rasterized (or each call to 
glBitmap(), glDrawPixels(), or glCopyPixels(), if the raster position is 
valid) generates a block of values that’s copied into the feedback array. The 
number of values is determined by the type argument of glFeedbackBuffer(),
as listed in Table 13-1. Use the appropriate value for the type of primitives 
you’re drawing: GL_2D or GL_3D for unlit two- or three-dimensional prim-
itives; GL_3D_COLOR for lit, three-dimensional primitives; and GL_3D_
COLOR_TEXTURE or GL_4D_COLOR_TEXTURE for lit, textured, three- or 
four-dimensional primitives. 

Each block of feedback values begins with a code indicating the primitive 
type, followed by values that describe the primitive’s vertices and associated 
data. Entries are also written for pixel rectangles. In addition, pass-through 
markers that you’ve explicitly created can be returned in the array; the next 
subsection explains these markers in more detail. Table 13-2 shows the syntax 
for the feedback array; remember that the data associated with each returned 
vertex is as described in Table 13-1. Note that a polygon can have n vertices 
returned. Also, the x-, y-, and z-coordinates returned by feedback are win-
dow coordinates; if w is returned, it’s in clip coordinates. For bitmaps and 
pixel rectangles, the coordinates returned are those of the current raster 
position. In Table 13-2, note that GL_LINE_RESET_TOKEN is returned only 
when the line stipple is reset for that line segment.  

Primitive Type Code Associated Data

Point GL_POINT_TOKEN vertex

Line GL_LINE_TOKEN or GL_LINE_
RESET_TOKEN

vertex vertex

Polygon GL_POLYGON_TOKEN n vertex vertex ... vertex

Bitmap GL_BITMAP_TOKEN vertex

Pixel Rectangle GL_DRAW_PIXEL_TOKEN or 
GL_COPY_PIXEL_TOKEN

vertex 

Pass-through GL_PASS_THROUGH_TOKEN a floating-point number

Table 13-2 Feedback Array Syntax
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Using Markers in Feedback Mode

Feedback occurs after transformations, lighting, polygon culling, and 
interpretation of polygons by glPolygonMode(). It might also occur after 
polygons with more than three edges are broken up into triangles (if your 
particular OpenGL implementation renders polygons by performing this 
decomposition). Thus, it might be hard for you to recognize the primitives 
you drew in the feedback data you receive. To help parse the feedback data, 
call glPassThrough() as needed in your sequence of drawing commands to 
insert a marker. You might use the markers to separate the feedback values 
returned from different primitives, for example. This command causes 
GL_PASS_THROUGH_TOKEN to be written into the feedback array, 
followed by the floating-point value you pass in as an argument. 

A Feedback Example

Example 13-7 demonstrates the use of feedback mode. This program draws 
a lit, three-dimensional scene in normal rendering mode. Then, feedback 
mode is entered, and the scene is redrawn. Since the program draws lit, 
untextured, three-dimensional objects, the type of feedback data is GL_3D_
COLOR. Since RGBA mode is used, each unclipped vertex generates seven 
values for the feedback buffer: x, y, z, r, g, b, and a.

In feedback mode, the program draws two lines as part of a line strip and 
then inserts a pass-through marker. Next, a point is drawn at ( 100.0, 
100.0, 100.0), which falls outside the orthographic viewing volume and 

thus doesn’t put any values into the feedback array. Finally, another pass-
through marker is inserted, and another point is drawn.

void glPassThrough(GLfloat token);

Inserts a marker into the stream of values written into the feedback array, 
if called in feedback mode. The marker consists of the code GL_PASS_
THROUGH_TOKEN followed by a single floating-point value, token. This 
command has no effect when called outside of feedback mode. Calling 
glPassThrough() between glBegin() and glEnd() generates a GL_
INVALID_OPERATION error. 

Compatibility 
Extension

glPassThrough
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Example 13-7 Feedback Mode: feedback.c

void init(void)
{
   glEnable(GL_LIGHTING);
   glEnable(GL_LIGHT0);
}

void drawGeometry(GLenum mode)
{
   glBegin(GL_LINE_STRIP);
   glNormal3f(0.0, 0.0, 1.0);
   glVertex3f(30.0, 30.0, 0.0);
   glVertex3f(50.0, 60.0, 0.0);
   glVertex3f(70.0, 40.0, 0.0);
   glEnd();
   if (mode == GL_FEEDBACK)
      glPassThrough(1.0);
   glBegin(GL_POINTS);
   glVertex3f(-100.0, -100.0, -100.0);  /*  will be clipped  */
   glEnd();
   if (mode == GL_FEEDBACK)
      glPassThrough(2.0);
   glBegin(GL_POINTS);
   glNormal3f(0.0, 0.0, 1.0);
   glVertex3f(50.0, 50.0, 0.0);
   glEnd();
   glFlush();
}

void print3DcolorVertex(GLint size, GLint *count, 
                        GLfloat *buffer)
{
   int i;

   printf(“  “);
   for (i = 0; i < 7; i++) {
      printf(“%4.2f “, buffer[size-(*count)]);
      *count = *count - 1;
   }
   printf(“\n”);
}
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void printBuffer(GLint size, GLfloat *buffer)
{
   GLint count;
   GLfloat token;

   count = size;
   while (count) {
      token = buffer[size-count]; count--;
      if (token == GL_PASS_THROUGH_TOKEN) {
         printf(“GL_PASS_THROUGH_TOKEN\n”);
         printf(“  %4.2f\n”, buffer[size-count]);
         count--;
      }
      else if (token == GL_POINT_TOKEN) {
         printf(“GL_POINT_TOKEN\n”);
         print3DcolorVertex(size, &count, buffer);
      }
      else if (token == GL_LINE_TOKEN) {
         printf(“GL_LINE_TOKEN\n”);
         print3DcolorVertex(size, &count, buffer);
         print3DcolorVertex(size, &count, buffer);
      }
      else if (token == GL_LINE_RESET_TOKEN) {
         printf(“GL_LINE_RESET_TOKEN\n”);
         print3DcolorVertex(size, &count, buffer);
         print3DcolorVertex(size, &count, buffer);
      }
   }
}

void display(void)
{
   GLfloat feedBuffer[1024];
   GLint size;

   glMatrixMode(GL_PROJECTION);
   glLoadIdentity();
   glOrtho(0.0, 100.0, 0.0, 100.0, 0.0, 1.0);

   glClearColor(0.0, 0.0, 0.0, 0.0);
   glClear(GL_COLOR_BUFFER_BIT);
   drawGeometry(GL_RENDER);

   glFeedbackBuffer(1024, GL_3D_COLOR, feedBuffer);
   (void) glRenderMode(GL_FEEDBACK);
   drawGeometry(GL_FEEDBACK);
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   size = glRenderMode(GL_RENDER);
   printBuffer(size, feedBuffer);
}

int main(int argc, char** argv)
{
   glutInit(&argc, argv);
   glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
   glutInitWindowSize(100, 100);
   glutInitWindowPosition(100, 100);
   glutCreateWindow(argv[0]);
   init();
   glutDisplayFunc(display);
   glutMainLoop();
   return 0; 
}

Running this program generates the following output:

GL_LINE_RESET_TOKEN
 30.00 30.00 0.00 0.84 0.84 0.84 1.00
 50.00 60.00 0.00 0.84 0.84 0.84 1.00
GL_LINE_TOKEN
 50.00 60.00 0.00 0.84 0.84 0.84 1.00
 70.00 40.00 0.00 0.84 0.84 0.84 1.00
GL_PASS_THROUGH_TOKEN
 1.00
GL_PASS_THROUGH_TOKEN
 2.00
GL_POINT_TOKEN
 50.00 50.00 0.00 0.84 0.84 0.84 1.00

Thus, the line strip drawn with these commands results in two primitives:

glBegin(GL_LINE_STRIP);
    glNormal3f(0.0, 0.0, 1.0);
    glVertex3f(30.0, 30.0, 0.0);
    glVertex3f(50.0, 60.0, 0.0);
    glVertex3f(70.0, 40.0, 0.0);
glEnd();

The first primitive begins with GL_LINE_RESET_TOKEN, which indicates 
that the primitive is a line segment and that the line stipple is reset. The 
second primitive begins with GL_LINE_TOKEN, so it’s also a line segment, 
but the line stipple isn’t reset and hence continues from where the previous 
line segment left off. Each of the two vertices for these lines generates seven 
values for the feedback array. Note that the RGBA values for all four vertices 
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in these two lines are (0.84, 0.84, 0.84, 1.0), which is a very light gray color 
with the maximum alpha value. These color values are a result of the 
interaction of the surface normal and lighting parameters.

Since no feedback data is generated between the first and second pass-
through markers, you can deduce that any primitives drawn between the 
first two calls to glPassThrough() were clipped out of the viewing volume. 
Finally, the point at (50.0, 50.0, 0.0) is drawn, and its associated data is 
copied into the feedback array.

Note: In both feedback and selection modes, information about objects is 
returned prior to any fragment tests. Thus, objects that would not be 
drawn due to failure of the scissor, alpha, depth, or stencil test may 
still have their data processed and returned in both feedback and 
selection modes.

Try This

Make changes in Example 13-7 to see how they affect the feedback values 
that are returned. For example, change the coordinate values of glOrtho().
Change the lighting variables, or eliminate lighting altogether and change 
the feedback type to GL_3D. Or, add more primitives to see what other 
geometric objects (such as filled polygons) contribute to the feedback array.

Try This
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Chapter 14

14.Now That You Know

Chapter Objectives

This chapter doesn’t have objectives in the same way that previous chapters 
do. It’s simply a collection of topics that describe ideas you might find 
useful for your application. Some topics, such as error handling, don’t fit 
into other categories, but are too short for an entire chapter.

OpenGL is a collection of low-level tools; now that you know about those 
tools, you can use them to implement higher-level functions. This chapter 
presents several examples of such higher-level capabilities. 
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This chapter discusses a variety of techniques based on OpenGL commands 
that illustrate some of the not-so-obvious uses to which you can put these 
commands. The examples presented are in no particular order and aren’t 
related to each other. The idea is to read the section headings and skip to 
the examples that you find interesting. For your convenience, the headings 
are listed and explained briefly here.

Note: Most of the examples in the rest of this guide are complete and can 
be compiled and run as is. In this chapter, however, there are no 
complete programs, and you have to do a bit of work on your own to 
make them run.

• “Error Handling” tells you how to check for OpenGL error conditions.

• “Which Version Am I Using?” describes how to find out details about 
your implementation, including the version number. This can be 
useful for writing applications that can run on earlier versions of 
OpenGL.

• “Extensions to the Standard” presents techniques for identifying and 
using extensions (which are either specific to a vendor or approved by 
the Khronos OpenGL ARB Working Group) to the OpenGL standard.

• “Cheesy Translucency” explains how to use polygon stippling to 
achieve translucency; this is particularly useful when no blending 
hardware is available.

• “An Easy Fade Effect” shows how to use polygon stippling to create the 
effect of a fade into the background.

• “Object Selection Using the Back Buffer” describes how to use the back 
buffer in a double-buffered system to handle simple object picking.

• “Cheap Image Transformation” discusses how to draw a distorted 
version of a bitmapped image by drawing each pixel as a quadrilateral.

• “Displaying Layers” explains how to display multiple layers of different 
materials and indicate where the materials overlap.

• “Antialiased Characters” describes how to draw smoother fonts.

• “Drawing Round Points” describes how to draw near-round points. 

• “Interpolating Images” shows how to blend smoothly from one image 
to another.

• “Making Decals” explains how to draw two images, where one is a sort 
of decal that should always appear on top of the other.
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• “Drawing Filled, Concave Polygons Using the Stencil Buffer” tells you 
how to draw concave polygons, nonsimple polygons, and polygons 
with holes by using the stencil buffer.

• “Finding Interference Regions” describes how to determine where 
three-dimensional pieces overlap.

• “Shadows” describes how to draw shadows of lit objects.

• “Hidden-Line Removal” discusses how to draw a wireframe object with 
hidden lines removed by using the stencil buffer.

• “Texture Mapping Applications” describes several clever uses for tex-
ture mapping, such as rotating and warping images.

• “Drawing Depth-Buffered Images” tells you how to combine images in 
a depth-buffered environment. 

• “Dirichlet Domains” explains how to find the Dirichlet domain of a set 
of points using the depth buffer.

• “Life in the Stencil Buffer” explains how to implement the Game of 
Life using the stencil buffer.

• “Alternative Uses for glDrawPixels() and glCopyPixels()” describes how 
to use these two commands for such effects as fake video, airbrushing, 
and transposed images.

Error Handling

The truth is, your program will make mistakes. Use of error-handling 
routines is essential during development and is highly recommended for 
commercially released applications (unless you can give a 100 percent 
guarantee your program will never generate an OpenGL error condition. 
Get real!). OpenGL has simple error-handling routines for the base GL and 
GLU libraries. 

When OpenGL detects an error (in either the base GL or GLU), it records a 
current error code. The command that caused the error is ignored, so it has 
no effect on the OpenGL state or on the framebuffer contents. (If the error 
recorded was GL_OUT_OF_MEMORY, however, the results of the command 
are undefined.) Once recorded, the current error code isn’t cleared—that
is, additional errors aren’t recorded—until you call the query command 
glGetError(), which returns the current error code. After you’ve queried 
and cleared the current error code, or if there’s no error to begin with, 
glGetError() returns GL_NO_ERROR.
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It is strongly recommended that you call glGetError() at least once in each 
display() routine. Table 14-1 lists the basic defined OpenGL error codes.

There are also 37 GLU NURBS errors (with nondescriptive constant names, 
GLU_NURBS_ERROR1, GLU_NURBS_ERROR2, and so on); 14 tessellator 
errors (GLU_TESS_MISSING_BEGIN_POLYGON, GLU_TESS_MISSING_
END_POLYGON, GLU_TESS_MISSING_BEGIN_CONTOUR, GLU_TESS_
MISSING_END_CONTOUR, GLU_TESS_COORD_TOO_LARGE, GLU_TESS_
NEED_COMBINE_CALLBACK, along with eight errors generically named 
GLU_TESS_ERROR*); and GLU_INCOMPATIBLE_GL_VERSION. Also, the 
GLU defines the error codes GLU_INVALID_ENUM, GLU_INVALID_VALUE, 
and GLU_OUT_OF_MEMORY, which have the same meanings as the related 
OpenGL codes.

GLenum glGetError(void);

Returns the value of the error flag. When an error occurs in either the GL 
or the GLU, the error flag is set to the appropriate error code value. If 
GL_NO_ERROR is returned, there has been no detectable error since the 
last call to glGetError() or since the GL was initialized. No other errors are 
recorded until glGetError() is called, the error code is returned, and the 
flag is reset to GL_NO_ERROR.

Error Code Description

GL_INVALID_ENUM GLenum argument out of range

GL_INVALID_VALUE numeric argument out of range

GL_INVALID_OPERATION operation illegal in current state

GL_INVALID_FRAMEBUFFER_
OPERATION

framebuffer object is not complete

GL_STACK_OVERFLOW command would cause a stack overflow

GL_STACK_UNDERFLOW command would cause a stack underflow

GL_OUT_OF_MEMORY not enough memory left to execute command

GL_TABLE_TOO_LARGE specified table is too large

Table 14-1 OpenGL Error Codes
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To obtain a printable, descriptive string corresponding to either a GL or 
GLU error code, use the GLU routine gluErrorString().

In Example 14-1, a simple error-handling routine is shown.

Example 14-1 Querying and Printing an Error

GLenum errCode;
const GLubyte *errString;

while ((errCode = glGetError()) != GL_NO_ERROR) {
 errString = gluErrorString(errCode);
 fprintf (stderr, “OpenGL Error: %s\n”, errString);

}

Note: The string returned by gluErrorString() must not be altered or freed 
by the application.

Which Version Am I Using?

The portability of OpenGL applications is one of OpenGL’s attractive fea-
tures. However, new versions of OpenGL introduce new features, and if you 
use new features, you may have problems running your code on older ver-
sions of OpenGL. In addition, you may want your application to perform 
equally well on a variety of implementations. For example, you might make 
texture mapping the default rendering mode on one machine, but have 
only flat shading on another. You can use glGetString() to obtain release 
information about your OpenGL implementation.

const GLubyte* gluErrorString(GLenum errorCode);

Returns a pointer to a descriptive string that corresponds to the OpenGL 
or GLU error number passed in errorCode.

const GLubyte* glGetString(GLenum name);

Returns a pointer to a string that describes an aspect of the OpenGL 
implementation. name can be one of the following: GL_VENDOR, 
GL_RENDERER, GL_VERSION, GL_SHADING_LANGUAGE_VERSION, 
or GL_EXTENSIONS.

Compatibility 
Extension

GL_EXTENSIONS
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GL_VENDOR returns the name of the company responsible for the OpenGL 
implementation. GL_RENDERER returns an identifier of the renderer, 
which is usually the hardware platform. For more about GL_EXTENSIONS, 
see the section “Extensions to the Standard.”

GL_VERSION and GL_SHADING_LANGUAGE_VERSION return a string 
that identifies the version number of your implementation of OpenGL. The 
version string is laid out as follows:

<version number><space><vendor-specific information>

The version number is of the form

major_number.minor_number

or

major_number.minor_number.release_number

where the numbers all have one or more digits. The vendor-specific infor-
mation is optional. For example, if this OpenGL implementation is from 
the fictitious XYZ Corporation, the string returned might be

1.2.4 XYZ-OS 3.2

which means that this implementation is XYZ’s fourth release of an OpenGL 
library that conforms to the specification for OpenGL Version 1.2. It prob-
ably also means that this is release 3.2 of XYZ’s proprietary operating 
system.

At runtime, another way to query the OpenGL version is to call 
glGetIntegerv() with GL_MAJOR_VERSION and GL_MINOR_VERSION, 
which will return the major and minor nubmer, respectively, as in would be 
returned in string form from glGetString(). At compile time, you can use the 
preprocessor statement #ifdef to look for the symbolic constants named 
GL_VERSION_m_n, where m, and n corresponed to the major- and minor-
version numbers. For example, the preprocessor token GL_VERSION_3_0, 
represent OpenGL version 3.0. If a particular token is present, that indicates 
that all versions up to, and including that version are available—at least for 
compilation. You should always check the version and extension strings at 
runtime to make sure the functionality you need is present in the imple-
mentation that you’re using..

Note: If running from client to server, such as when performing indirect 
rendering with the OpenGL extension to the X Window System, the 
client and server may be different versions. If your client version is 
ahead of your server, your client might request an operation that is 
not supported on your server.
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Utility Library Version

gluGetString() is a query function for the Utility Library (GLU) and is 
similar to glGetString().

Note that gluGetString() was not available in GLU 1.0. Another way to 
query the GLU version number is to look for the symbolic constant 
GLU_VERSION_1_3. The absence of the constant GLU_VERSION_1_3 
means that you have GLU 1.2 or an earlier version. The same principle is 
true for constants GLU_VERSION_1_1 and GLU_VERSION_1_2.

Also note that GLU extensions are different from OpenGL extensions.

Window System Extension Versions

For window system extensions for OpenGL, such as GLX, WGL, PGL, and 
AGL, there are similar routines (such as glXQueryExtensionString()) for 
querying version information. See Appendix D for more information.

(The aforementioned glXQueryExtensionString() and related routines 
were introduced with GLX 1.1 and are not supported with GLX 1.0.)

Extensions to the Standard

OpenGL has a formal written specification that describes the operations 
that comprise the library. An individual vendor or a group of vendors may 
decide to add additional functionality to their released implementation.

Function and symbolic constant names clearly indicate whether a feature is 
part of the OpenGL standard, a vendor-specific extension, or an OpenGL 
extension approved by the Khronos OpenGL ARB Working Group.

To make a vendor-specific name, the vendor appends a company identifier 
(in uppercase) and, if needed, additional information, such as a machine 
name. For example, if XYZ Corporation wants to add a new function and 
symbolic constant, they might be of the form glCommandXYZ() and 
GL_DEFINITION_XYZ. If XYZ Corporation wants to have an extension 

const GLubyte* gluGetString(GLenum name);

Returns a pointer to a string that describes an aspect of the OpenGL 
implementation. name can be GLU_VERSION or GLU_EXTENSIONS.
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that is available only on its FooBar graphics board, the names might be 
glCommandXYZfb() and GL_DEFINITION_XYZ_FB.

If two or more vendors agree to implement the same extension, then 
the functions and constants are suffixed with the more generic EXT 
(glCommandEXT() and GL_DEFINITION_EXT).

Similarly, if the OpenGL ARB approves an extension, the functions 
and constants are suffixed with ARB (glCommandARB() and 
GL_DEFINITION_ARB).

Determining Supported Extensions

There are a number of ways of determining which extensions are supported 
on your OpenGL implementation:

• If your OpenGL version is less than 3.0, call glGetString(GL_
EXTENSIONS), which returns a space-separated list of every extension 
supported by your implementation.

• To see whether a particular extension is supported, if you have GLU 1.3 
or greater, you can call gluCheckExtension(), which returns a Boolean 
value indicating support for that extension.

• If you are using OpenGL Version 3.0 or later, you can call 
glGetStringi(), which returns a single string corresponding to the 
extension string associated with the index provided.

GLboolean gluCheckExtension(char *extName, 
const GLubyte *extString);

Returns GL_TRUE if extName is found in extString, or GL_FALSE if it isn’t.

const GLubyte *glGetStringi(GLenum target, GLuint index);

Returns the string associated with index for the indexed state target.
target must be GL_EXTENSIONS. index must be a value between zero and 
GL_NUM_EXTENSIONS-1, as queried by glGetIntegerv().

There is no specified ordering of extension strings; the order may vary 
across OpenGL implementations, or across different contexts within a 
single implementation.

A GL_INVALID_VALUE error is generated if index is less than zero, or 
greater than or equal to GL_NUM_EXTENSIONS.
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Note: In OpenGL Version 3.1, glGetString() will no longer accept 
GL_EXTENSIONS. You must use glGetStringi() to obtain the list 
of extensions.

If you are using the GLEW library for managing extensions, it provides a 
convenient mechanism for verifying extensions: It defines a Boolean 
variable with a name identical to the extension string entry (e.g., 
“GL_ARB_multitexture”).

If you have GLU 1.3, you can use gluCheckExtension() to see whether a 
specified extension is supported.

gluCheckExtension() can check OpenGL and GLX extension strings, as 
well as GLU extension strings.

Prior to GLU 1.3, to find out if a specific extension is supported, use the 
code in Example 14-2 to search through the list and match the extension 
name. QueryExtension() returns GL_TRUE if the string is found, or 
GL_FALSE if it isn’t.

Example 14-2 Determining if an Extension Is Supported (Prior to GLU 1.3)

static GLboolean QueryExtension(char *extName)
{
 char *p = (char *) glGetString(GL_EXTENSIONS);
 char *end;
 if (p == NULL)

 return GL_FALSE;
 end = p + strlen(p);
 while (p < end) {

 int n = strcspn(p, “ “);
 if ((strlen(extName)==n) && (strncmp(extName,p,n)==0)) {
 return GL_TRUE;

 }
 p += (n + 1);

 }
 return GL_FALSE;

}

Extensions to the Standard for Microsoft Windows (WGL)

If you need access to an extension function on a Microsoft Windows 
platform, you should

• Create conditional code based on the symbolic constant, which 
identifies the extension.
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• Query the previously discussed extension string at run-time.

• Use wglGetProcAddress() to locate the pointer to the extension 
function.

Example 14-3 demonstrates how to find a fictitious extension named 
glSpecialEXT(). Note that the conditional code (#ifdef) verifies the 
definition of GL_EXT_special. If the extension is available, a data type (in 
this case, PFNGLSPECIALEXTPROC) is specifically defined for the function 
pointer. Finally, wglGetProcAddress() obtains the function pointer.

Example 14-3 Locating an OpenGL Extension with wglGetProcAddress()

#ifdef GL_EXT_special
PFNGLSPECIALEXTPROC glSpecialEXT;

#endif

/* somewhere later in the code */

#ifdef GL_EXT_special
glSpecialEXT = (PFNGLSPECIALEXTPROC)

wglGetProcAddress("glSpecialEXT");
assert(glSpecialEXT != NULL);

#endif

Cheesy Translucency

You can use polygon stippling to simulate a translucent material. This is 
an especially good solution for systems that don’t have blending hard-
ware. Since polygon stipple patterns are 32 32 bits, or 1024 bits, you can 
go from opaque to transparent in 1023 steps. (In practice, that’s many 
more steps than you need.) For example, if you want a surface that lets 
through 29 percent of the light, simply make up a stipple pattern in which 
29 percent (roughly 297) of the pixels in the mask are 0 and the rest are 1. 
Even if your surfaces have the same translucency, don’t use the same stip-
ple pattern for each one, because they cover exactly the same bits on the 
screen. Make up a different pattern for each surface by randomly selecting 
the appropriate number of pixels to be 0. (See “Displaying Points, Lines, 
and Polygons” in Chapter 2 for more information about polygon 
stippling.) 

If you don’t like the effect with random pixels turned on, you can use reg-
ular patterns, but they don’t work as well when transparent surfaces are 
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stacked. This is often not a problem, because most scenes have relatively 
few translucent regions that overlap. In a picture of an automobile with 
translucent windows, your line of sight can go through at most two win-
dows, and usually it’s only one.

An Easy Fade Effect

Suppose you have an image that you want to fade gradually to some back-
ground color. Define a series of polygon stipple patterns, each of which has 
more bits turned on so that they represent denser and denser patterns. Then 
use these patterns repeatedly with a polygon large enough to cover the 
region over which you want to fade. For example, suppose you want to fade 
to black in 16 steps. First define 16 different pattern arrays: 

GLubyte stips[16][4*32];

Then load them in such a way that each has one-sixteenth of the pixels in 
a 32 32 stipple pattern turned on and that the bitwise OR of all the stipple 
patterns is all 1’s. After that, the following code does the trick:

draw_the_picture(); 
glColor3f(0.0, 0.0, 0.0);    /* set color to black */ 
for (i = 0; i < 16; i++) { 
    glPolygonStipple(&stips[i][0]); 
    draw_a_polygon_large_enough_to_cover_the_whole_region(); 
}

In some OpenGL implementations, you might get better performance by 
first compiling the stipple patterns into display lists. During your initializa-
tion, do something like this:

#define STIP_OFFSET 100 
for (i = 0; i < 16; i++) { 
    glNewList(i+STIP_OFFSET, GL_COMPILE); 
    glPolygonStipple(&stips[i][0]); 
    glEndList(); 
}

Then, replace this line in the first code fragment

glPolygonStipple(&stips[i][0]); 

with

glCallList(i); 
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By compiling the command to set the stipple into a display list, OpenGL 
might be able to rearrange the data in the stips[ ][ ] array into the hardware-
specific form required for maximum stipple-setting speed.

Another application for this technique is if you’re drawing a changing 
picture and want to leave some blur behind that gradually fades out to give 
some indication of past motion. For example, suppose you’re simulating a 
planetary system and you want to leave trails on the planets to show recent 
portions of their paths. Again, assuming you want to fade in 16 steps, set up 
the stipple patterns as before (using the display-list version, say), and have 
the main simulation loop look something like this:

current_stipple = 0; 
while (1) {                         /* loop forever */ 
    draw_the_next_frame(); 
    glCallList(current_stipple++); 
    if (current_stipple == 16) current_stipple = 0; 
    glColor3f(0.0, 0.0, 0.0);       /* set color to black */ 
    draw_a_polygon_large_enough_to_cover_the_whole_region(); 
}

Each time through the loop, you clear one-sixteenth of the pixels. Any pixel 
that hasn’t had a planet on it for 16 frames is certain to be cleared to black. 
Of course, if your system supports blending in hardware, it’s easier to blend 
in a certain amount of background color with each frame. (See “Displaying 
Points, Lines, and Polygons” in Chapter 2 for polygon stippling details, 
Chapter 7 for more information about display lists, and “Blending” in 
Chapter 6 for information about blending.)

Object Selection Using the Back Buffer

Although the OpenGL selection mechanism (see “Selection” in Chapter 13) 
is powerful and flexible, it can be cumbersome to use. Often, the situation 
is simple: Your application draws a scene composed of a substantial number 
of objects; the user points to an object with the mouse, and the application 
needs to find the item under the tip of the cursor. 

One way to do this requires your application to be running in double-buffer 
mode. When the user picks an object, the application redraws the entire 
scene in the back buffer, but instead of using the normal colors for objects, 
it encodes some kind of object identifier for each object’s color. The appli-
cation then simply reads the pixel under the cursor, and the value of that 
pixel encodes the number of the picked object. If many picks are expected 
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for a single, static picture, you can read the entire color buffer once and 
look in your copy for each attempted pick, rather than read each pixel 
individually.

Note that this scheme has an advantage over standard selection in that it 
picks the object that’s in front if multiple objects appear at the same pixel, 
one behind the other. Since the image with false colors is drawn in the 
back buffer, the user never sees it; you can redraw the back buffer (or copy 
it from the front buffer) before swapping the buffers. In color-index mode, 
the encoding is simple: Send the object identifier as the index. In RGBA 
mode, encode the bits of the identifier into the R, G, and B components.

Be aware that you can run out of identifiers if there are too many objects 
in the scene. For example, suppose you’re running in color-index mode on 
a system that has 4-bit buffers for color-index information (16 possible dif-
ferent indices) in each of the color buffers, but the scene has thousands of 
pickable items. To address this issue, the picking can be done in a few 
passes. To think about this in concrete terms, assume there are fewer than 
4096 items, so all the object identifiers can be encoded in 12 bits. In the 
first pass, draw the scene using indices composed of the 4 high-order bits, 
and then use the second and third passes to draw the middle 4 bits and 
the 4 low-order bits. After each pass, read the pixel under the cursor, 
extract the bits, and pack them together at the end to get the object 
identifier.

With this method, the picking takes three times as long, but that’s often 
acceptable. Note that after you have the 4 high-order bits, you eliminate 
15/16 of all objects, so you really need to draw only 1/16 of them for the 
second pass. Similarly, after the second pass, 255 of the 256 possible items 
have been eliminated. The first pass thus takes about as long as drawing a 
single frame does, but the second and third passes can be up to 16 and 
256 times as fast.

If you’re trying to write portable code that works on different systems, 
break up your object identifiers into chunks that fit on the lowest 
common denominator of those systems. Also, keep in mind that your 
system might perform automatic dithering in RGB mode. If this is the 
case, turn off dithering.

Cheap Image Transformation

If you want to draw a distorted version of a bitmapped image (perhaps 
simply stretched or rotated, or perhaps drastically modified by some 
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mathematical function), there are many possibilities. You can use the image 
as a texture map, which allows you to scale, rotate, or otherwise distort the 
image. If you just want to scale the image, you can use glPixelZoom().

In many cases, you can achieve good results by drawing the image of each 
pixel as a quadrilateral. Although this scheme doesn’t produce images as 
nice as those you would get by applying a sophisticated filtering algorithm 
(and it might not be sufficient for sophisticated users), it’s a lot quicker. 

To make the problem more concrete, assume that the original image is m
pixels by n pixels, with coordinates chosen from [0, m 1]  [0, n 1]. Let 
the distortion functions be x(m, n) and y(m, n). For example, if the distor-
tion is simply a zooming by a factor of 3.2, then x(m, n) = 3.2 m and 
y(m, n) = 3.2Þ n. The following code draws the distorted image:

glShadeModel(GL_FLAT);
glScale(3.2, 3.2, 1.0);
for (j=0; j < n; j++) {
    glBegin(GL_QUAD_STRIP);
    for (i=0; i <= m; i++) {
        glVertex2i(i,j);
        glVertex2i(i, j+1);
        set_color(i,j);
    }
    glEnd();
}

This code draws each transformed pixel in a solid color equal to that pixel’s 
color and scales the image size by 3.2. The routine set_color() stands for 
whatever the appropriate OpenGL command is to set the color of the image 
pixel. 

The following is a slightly more complex version that distorts the image 
using the functions x(i, j) and y(i, j):

glShadeModel(GL_FLAT);
for (j=0; j < n; j++) {
    glBegin(GL_QUAD_STRIP);
    for (i=0; i <= m; i++) {
        glVertex2i(x(i,j), y(i,j));
        glVertex2i(x(i,j+1), y(i,j+1));
        set_color(i,j);
    }
    glEnd();
}
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An even better distorted image can be drawn with the following code:

glShadeModel(GL_SMOOTH);
for (j=0; j < (n-1); j++) {
    glBegin(GL_QUAD_STRIP);
    for (i=0; i < m; i++) {
        set_color(i,j);
        glVertex2i(x(i,j), y(i,j));
        set_color(i,j+1);
        glVertex2i(x(i,j+1), y(i,j+1));
    }
    glEnd();
}

This code smoothly interpolates color across each quadrilateral. Note that 
this version produces one fewer quadrilateral in each dimension than do 
the flat-shaded versions, because the color image is being used to specify 
colors at the quadrilateral vertices. In addition, you can antialias the 
polygons with the appropriate blending function (GL_SRC_ALPHA, 
GL_ONE) to get an even nicer image.

Displaying Layers

In some applications, such as semiconductor layout programs, you want to 
display multiple layers of different materials and indicate where the mate-
rials overlap each other. 

As a simple example, suppose you have three different substances that can 
be layered. At any point, eight possible combinations of layers can occur, as 
shown in Table 14-2.  

 Layer 1 Layer 2 Layer 3 Color 

0 absent absent absent black 

1 present absent absent red 

2 absent present absent green 

3 present present absent blue 

4 absent absent present pink 

Table 14-2 Eight Combinations of Layers
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You want your program to display eight different colors, depending on the 
layers present. One arbitrary possibility is shown in the last column of the 
table. To use this method, use color-index mode and load your color map 
so that entry 0 is black, entry 1 is red, entry 2 is green, and so on. Note that 
if the numbers from 0 through 7 are written in binary, the 4 bit is turned on 
whenever layer 3 appears, the 2 bit whenever layer 2 appears, and the 1 bit 
whenever layer 1 appears.

To clear the window, set the writemask to 7 (all three layers) and set the 
clearing color to 0. To draw your image, set the color to 7, and when you 
want to draw something in layer n, set the writemask to n. In other types of 
applications, it might be necessary to erase selectively in a layer, in which 
case you would use the writemasks just discussed, but set the color to 0 
instead of 7. (See “Masking Buffers” in Chapter 10 for more information 
about writemasks.)

Antialiased Characters

Using the standard technique for drawing characters with glBitmap(),
drawing each pixel of a character is an all-or-nothing affair—the pixel is 
either turned on or not. If you’re drawing black characters on a white back-
ground, for example, the resulting pixels are either black or white, never 
a shade of gray. Much smoother, higher-quality images can be achieved if 
intermediate colors are used when rendering characters (grays, in this 
example). 

Assuming that you’re drawing black characters on a white background, 
imagine a highly magnified picture of the pixels on the screen, with a high-
resolution character outline superimposed on it, as shown in the left-hand 
diagram in Figure 14-1.

5 present absent present yellow 

6 absent present present white 

7 present present present gray

 Layer 1 Layer 2 Layer 3 Color 

Table 14-2 (continued)        Eight Combinations of Layers

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Antialiased Characters 651

Notice that some of the pixels are completely enclosed by the character’s 
outline and should be painted black, some pixels are completely outside the 
outline and should be painted white, but many pixels should ideally be 
painted some shade of gray, where the darkness of the gray corresponds to 
the amount of black in the pixel. If this technique is used, the resulting 
image on the screen looks better.

If speed and memory usage are of no concern, each character can be drawn 
as a small image instead of as a bitmap. If you’re using RGBA mode, how-
ever, this method might require up to 32 bits per pixel of the character to 
be stored and drawn, instead of the 1 bit per pixel for a standard character. 
Alternatively, you could use one 8-bit index per pixel and convert these 
indices to RGBA by table lookup during transfer. In many cases, a compro-
mise is possible that allows you to draw the character with a few gray levels 
between black and white (say, two or three), and the resulting font descrip-
tion requires only 2 or 3 bits per pixel of storage.

The numbers in the right-hand diagram in Figure 14-1 indicate the 
approximate percentage coverage of each pixel: 0 means approximately 
empty, 1 means approximately one-third coverage, 2 means two-thirds, 
and 3 means completely covered. If pixels labeled 0 are painted white, 
pixels labeled 3 are painted black, and pixels labeled 1 and 2 are painted 

Figure 14-1 Antialiased Characters

http://lib.ommolketab.ir
http//lib.ommolketab.ir


652 Chapter 14: Now That You Know

one-third and two-thirds black, respectively, the resulting character 
looks quite good. Only 2 bits are required to store the numbers 0, 1, 2, 
and 3, so for 2 bits per pixel, four levels of gray can be saved.

There are basically two methods of implementing antialiased characters, 
depending on whether you’re in RGBA mode or color-index mode. 

In RGBA mode, define three different character bitmaps, corresponding to 
where 1, 2, and 3 appear in Figure 14-1. Set the color to white, and clear for 
the background. Set the color to one-third gray (RGB = (0.666, 0.666, 0.666)), 
and draw all the pixels with a 1 in them. Then set RGB = (0.333, 0.333, 
0.333), draw with the 2 bitmap, and use RGB = (0.0, 0.0, 0.0) for the 3 
bitmap. What you’re doing is defining three different fonts and redrawing 
the string three times, where each pass fills in the bits of the appropriate 
color densities.

In color-index mode, you can do exactly the same thing, but if you’re will-
ing to set up the color map correctly and use writemasks, you can get away 
with only two bitmaps per character and two passes per string. In the pre-
ceding example, set up one bitmap that has a 1 wherever 1 or 3 appears in 
the character. Set up a second bitmap that has a 1 wherever 2 or 3 appears. 
Load the color map so that 0 gives white, 1 gives light gray, 2 gives dark gray, 
and 3 gives black. Set the color to 3 (11 in binary) and the writemask to 1, 
and draw the first bitmap. Then change the writemask to 2, and draw the 
second. Where 0 appears in Figure 14-1, nothing is drawn in the frame-
buffer. Where 1, 2, and 3 appear, 1, 2, and 3 appear in the framebuffer.

For this example with only four gray levels, the savings are small—two 
passes instead of three. If eight gray levels were used instead of four, the 
RGBA method would require seven passes, and the color-map masking 
technique would require only three. With 16 gray levels, the comparison 
is 15 passes to four passes. (See “Masking Buffers” in Chapter 10 for more 
information about writemasks, and “Bitmaps and Fonts” in Chapter 8 for 
more information about drawing bitmaps.) 

Try This

• Can you imagine how to do RGBA rendering using no more images 
than the optimized color-index case? 

Hint: How are RGB fragments normally merged into the color buffer when 
antialiasing is desired?

Try This
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Drawing Round Points

Draw near-round, aliased points by enabling point antialiasing, turning 
blending off, and using an alpha function that passes only fragments with 
alpha greater than 0.5. (See “Antialiasing” and “Blending” in Chapter 6 for 
more information about these topics.)

Interpolating Images

Suppose you have a pair of images (where image can mean a bitmap image 
or a picture generated using geometry in the usual way), and you want to 
blend smoothly from one to the other. This can be done easily using the 
alpha component and appropriate blending operations. Let’s say you want 
to accomplish the blending in 10 steps, where image A is shown in frame 0 
and image B is shown in frame 9. The obvious approach is to draw image A 
with an alpha of (9 i)/9 and image B with an alpha of i/9 in frame i.

The problem with this method is that both images must be drawn in each 
frame. A faster approach is to draw image A in frame 0. To get frame 1, blend 
in 1/9 of image B and 8/9 of what’s there. For frame 2, blend in 1/8 of image 
B with 7/8 of what’s there. For frame 3, blend in 1/7 of image B with 6/7 of 
what’s there, and so on. For the last step, you’re just drawing 1/1 of image 
B blended with 0/1 of what’s left, yielding image B exactly.

To see that this works, if for frame i you have

and you blend in B/(9 i) with (8 i)/(9 i) of what’s there, you get

(See “Blending” in Chapter 6.)

Making Decals

Suppose you’re drawing a complex three-dimensional picture using depth-
buffering to eliminate the hidden surfaces. Suppose further that one part of 

(9 − i) A
+

 iB
   9           9

(9 − i) A
+

 iB
    9           9

=
 9 − (i + 1) A 

+
(i + 1) B

           9                   9
   B

+
8 − i

 9 − i     9 − i
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your picture is composed of coplanar figures A and B, where figure B is a sort 
of decal that should always appear on top of figure A. 

Your first approach might be to draw figure B after you’ve drawn figure A, 
setting the depth-buffering function to replace fragments when their depth 
is greater than or equal to the value stored in the depth buffer (GL_GEQUAL). 
Owing to the finite precision of the floating-point representations of the 
vertices, however, round-off error can cause figure B to be sometimes a bit 
in front of and sometimes a bit behind figure A. Here’s one solution to this 
problem:

1. Disable the depth buffer for writing, and render A.

2. Enable the depth buffer for writing, and render B.

3. Disable the color buffer for writing, and render A again.

4. Enable the color buffer for writing.

Note that during the entire process, the depth-buffer test is enabled. In 
Step 1, A is rendered wherever it should be, but none of the depth-buffer 
values are changed; thus, in Step 2, wherever B appears over A, B is 
guaranteed to be drawn. Step 3 simply makes sure that all of the depth 
values under A are updated correctly, but since RGBA writes are disabled, the 
color pixels are unaffected. Finally, Step 4 returns the system to the default 
state (writing is enabled in both the depth buffer and the color buffer). 

If a stencil buffer is available, the following, simpler technique can be used:

1. Configure the stencil buffer to write 1 if the depth test passes, and 0 
otherwise. Render A.

2. Configure the stencil buffer to make no stencil value change, but to 
render only where stencil values are 1. Disable the depth-buffer test 
and its update. Render B.

With this method, it’s not necessary to initialize the contents of the stencil 
buffer at any time, because the stencil values of all pixels of interest (that is, 
those rendered by A) are set when A is rendered. Be sure to reenable the 
depth test and disable the stencil test before additional polygons are drawn. 
(See “Selecting Color Buffers for Writing and Reading,” “Depth Test,” and 
“Stencil Test” in Chapter 10.) 
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Drawing Filled, Concave Polygons Using the 
Stencil Buffer

Consider the concave polygon 1234567 shown in Figure 14-2. Imagine that 
it’s drawn as a series of triangles: 123, 134, 145, 156, and 167, all of which 
are shown in the figure. The heavier line represents the original polygon 
boundary. Drawing all these triangles divides the buffer into nine regions A, 
B, C, ..., I, where region I is outside all the triangles.

In the text of the figure, each of the region names is followed by a list of the 
triangles that cover it. Regions A, D, and F make up the original polygon; 
note that these three regions are covered by an odd number of triangles. 
Every other region is covered by an even number of triangles (possibly zero). 
Thus, to render the inside of the concave polygon, you need to render only 
regions that are enclosed by odd numbers of triangles. This can be done 
using the stencil buffer, with a two-pass algorithm.

First, clear the stencil buffer and disable writing into the color buffer. Next, 
draw each of the triangles in turn, using the GL_INVERT function in the 
stencil buffer. (For best performance, use triangle fans.) This flips the value 
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Figure 14-2 Concave Polygon
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between zero and a nonzero value every time a triangle that covers a pixel 
is drawn. After all the triangles are drawn, if a pixel is covered an even 
number of times, the value in the stencil buffers is zero; otherwise, it’s 
nonzero. Finally, draw a large polygon over the whole region (or redraw the 
triangles), but allow drawing only where the stencil buffer is nonzero.

Note: There’s a slight generalization of the preceding technique, where you 
don’t need to start with a polygon vertex. In the 1234567 example, 
let P be any point on or off the polygon. Draw the triangles: P12, P23, 
P34, P45, P56, P67, and P71. Regions covered by odd numbers of 
triangles are inside; other regions are outside. This is a generalization 
in that if P happens to be one of the polygon’s edges, one of the 
triangles is empty.

This technique can be used to fill both nonsimple polygons (polygons 
whose edges cross each other) and polygons with holes. The following 
example illustrates how to handle a complicated polygon with two regions, 
one four-sided and one five-sided. Assume further that there’s a triangular 
hole and a four-sided hole (it doesn’t matter in which regions the holes lie). 
Let the two regions be abcd and efghi, and let the holes be jkl and mnop. 
Let z be any point in the plane. Draw the following triangles:

zab zbc zcd zda zef zfg zgh zhi zie zjk zkl zlj zmn zno zop zpm

Mark regions covered by odd numbers of triangles as in, and those covered 
by even numbers as out. (See “Stencil Test” in Chapter 10 for more 
information about the stencil buffer.)

Finding Interference Regions

If you’re designing a mechanical part made from smaller three-dimensional 
pieces, you often want to display regions in which the pieces overlap. In 
many cases, such regions indicate design errors where parts of a machine 
interfere with each other. In the case of moving parts, this process can be 
even more valuable, because a search for interfering regions can be done 
through a complete mechanical cycle of the design. The method for doing 
this is complicated, and the description here might be too brief. Complete 
details can be found in the paper Interactive Inspection of Solids: Cross-sections 
and Interferences, by Jarek Rossignac, Abe Megahed, and Bengt-Olaf 
Schneider (SIGGRAPH 1992 Proceedings). 

The method is related to the capping algorithm described in “Stencil Test” 
in Chapter 10. The idea is to pass an arbitrary clipping plane through the 
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objects that you want to test for interference, and then determine when a 
portion of the clipping plane is inside more than one object at a time. For a 
static image, the clipping plane can be moved manually to highlight inter-
fering regions; for a dynamic image, it might be easier to use a grid of clip-
ping planes to search for all possible interferences.

Draw each of the objects you want to check and clip them against the clip-
ping plane. Note which pixels are inside the object at that clipping plane 
using an odd-even count in the stencil buffer, as explained in “Drawing 
Filled, Concave Polygons Using the Stencil Buffer.” (For properly formed 
objects, a point is inside the object if a ray drawn from that point to the eye 
intersects an odd number of surfaces of the object.) To find interferences, 
you need to find pixels in the framebuffer where the clipping plane is in the 
interiors of two or more regions at once; in other words, in the intersection 
of the interiors of any pair of objects.

If multiple objects need to be tested for mutual intersection, store one bit 
every time some intersection appears, and another bit wherever the clip-
ping buffer is inside any of the objects (the union of the objects’ interiors). 
For each new object, determine its interior, find the intersection of that 
interior with the union of the interiors of the objects so far tested, and keep 
track of the intersection points. Then add the interior points of the new 
object to the union of the other objects’ interiors.

You can perform the operations described in the preceding paragraph by 
using different bits in the stencil buffer together with various masking 
operations. Three bits of stencil buffer are required per pixel—one for the 
toggling to determine the interior of each object, one for the union of all 
interiors discovered so far, and one for the regions in which interference has 
occurred so far. To make this discussion more concrete, assume that the 
1 bit of the stencil buffer is for toggling between interior and exterior, the 
2 bit is the running union, and the 4 bit is for interferences so far. For each 
object that you’re going to render, clear the 1 bit (using a stencil mask of 1 
and clearing to 0), then toggle the 1 bit by keeping the stencil mask as 1 and 
using the GL_INVERT stencil operation. 

You can find intersections and unions of the bits in the stencil buffers using 
the stenciling operations. For example, to make bits in buffer 2 be the union 
of the bits in buffers 1 and 2, mask the stencil to those 2 bits, and draw 
something over the entire object with the stencil function set to pass if any-
thing nonzero occurs. This happens if the bits in buffer 1, in buffer 2, or in 
both are turned on. If the comparison succeeds, write a 1 in buffer 2. Also, 
make sure that drawing in the color buffer is disabled. An intersection 
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calculation is similar—set the function to pass only if the value in the two 
buffers is equal to 3 (bits turned on in both buffers 1 and 2). Write the result 
into the correct buffer. (See “Stencil Test” in Chapter 10.)

Shadows

Every possible projection of three-dimensional space to three-dimensional 
space can be achieved with a suitable 4 4 invertible matrix and homoge-
neous coordinates. If the matrix isn’t invertible but has rank 3, it projects 
three-dimensional space onto a two-dimensional plane. Every such possible 
projection can be achieved with a suitable rank-3 4 4 matrix. To find the 
shadow of an arbitrary object on an arbitrary plane from an arbitrary light 
source (possibly at infinity), you need to find a matrix representing that 
projection, multiply it on the matrix stack, and draw the object in the 
shadow color. Keep in mind that you need to project onto each plane that 
you’re calling the “ground.” 

As a simple illustration, assume the light is at the origin, and the equation 
of the ground plane is ax + by + cz + d = 0. Given a vertex S = (sx, sy, sz, 1), 
the line from the light through S includes all points S, where  is an 
arbitrary real number. The point where this line intersects the plane 
occurs when

(a sx + b sy + c sz) + d = 0,

so

 = d/(a sx + b sy + c sz).

Plugging this back into the line, we get

d(sx, sy, sz)/(a sx + b sy + c sz)

for the point of intersection.

The matrix that maps S to this point for every S is 

This matrix can be used if you first translate the world so that the light is at 
the origin. 

d– 0 0 0
0 d– 0 0
0 0 d– 0
a b c 0
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If the light is from an infinite source, all you have is a point S and a direction 
D = (dx, dy, dz). Points along the line are given by

S + D

Proceeding as before, the intersection of this line with the plane is given by

a(sx + dx) + b(sy + dy) + c(sz+ dz) + d = 0

Solving for , plugging that back into the equation for a line, and then 
determining a projection matrix gives 

This matrix works given the plane and an arbitrary direction vector. There’s 
no need to translate anything first. (See Chapter 3 and Appendix C.)

Hidden-Line Removal

If you want to draw a wireframe object with hidden lines removed, one 
approach is to draw the outlines using lines and then fill the interiors of the 
polygons making up the surface with polygons having the background 
color. With depth-buffering enabled, this interior fill covers any outlines 
that would be obscured by faces closer to the eye. This method would work, 
except that there’s no guarantee that the interior of the object falls entirely 
inside the polygon’s outline; in fact, it might overlap it in various places.

There’s an easy, two-pass solution using either polygon offset or the stencil 
buffer. Polygon offset is usually the preferred technique, since polygon 
offset is almost always faster than stencil buffer. Both methods are described 
here, so you can see how both approaches to the problem work.

Hidden-Line Removal with Polygon Offset

To use polygon offset to accomplish hidden-line removal, the object is 
drawn twice. The highlighted edges are drawn in the foreground color, 
using filled polygons but with the polygon mode GL_LINE, to rasterize the 
polygons as wireframe edges. Then the filled polygons are drawn with the 

b dy c dz+ b– dx c– dx d– dx
a– dy a dx c dz+ c– dy d– dy
a– dz b– dz a dx b dy+ d– dz
0 0 0 a dx b+ dy c dz+
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default polygon mode, which fills the interior of the wireframe, and with 
enough polygon offset to nudge the filled polygons a little farther from 
the eye. With the polygon offset, the interior recedes just enough that the 
highlighted edges are drawn without unpleasant visual artifacts.

glEnable(GL_DEPTH_TEST);
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
set_color(foreground);
draw_object_with_filled_polygons();

glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
glEnable(GL_POLYGON_OFFSET_FILL);
glPolygonOffset(1.0, 1.0);
set_color(background);
draw_object_with_filled_polygons();
glDisable(GL_POLYGON_OFFSET_FILL);

You may have to adjust the amount of offset needed (for wider lines, for 
example). (See “Polygon Offset” in Chapter 6 for more information.)

Hidden-Line Removal with the Stencil Buffer

Using the stencil buffer for hidden-line removal is a more complicated pro-
cedure. For each polygon, you’ll need to clear the stencil buffer and then 
draw the outline in both the framebuffer and the stencil buffer. Then, when 
you fill the interior, enable drawing only where the stencil buffer is still 
clear. To avoid doing an entire stencil-buffer clear for each polygon, an easy 
way to clear it is simply to draw 0’s into the buffer using the same polygon 
outline. In this way, you need to clear the entire stencil buffer only once.

For example, the following code represents the inner loop you might use to 
perform such hidden-line removal. Each polygon is outlined in the fore-
ground color, filled with the background color, and then outlined again in 
the foreground color. The stencil buffer is used to keep the fill color of each 
polygon from overwriting its outline. To optimize performance, the stencil 
and color parameters are changed only twice per loop by using the same 
values both times the polygon outline is drawn.

glEnable(GL_STENCIL_TEST);
glEnable(GL_DEPTH_TEST);
glClear(GL_STENCIL_BUFFER_BIT);
glStencilFunc(GL_ALWAYS, 0, 1);
glStencilOp(GL_INVERT, GL_INVERT, GL_INVERT);
set_color(foreground);
for (i=0; i < max; i++) {
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    outline_polygon(i);
    set_color(background);
    glStencilFunc(GL_EQUAL, 0, 1);
    glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);
    fill_polygon(i);
    set_color(foreground);
    glStencilFunc(GL_ALWAYS, 0, 1);
    glStencilOp(GL_INVERT, GL_INVERT, GL_INVERT);
    outline_polygon(i);
}

(See “Stencil Test” in Chapter 10.) 

Texture Mapping Applications

Texture mapping is quite powerful, and it can be used in some interesting 
ways. Here are a few advanced applications of texture mapping:

• Antialiased text—Define a texture map for each character at a relatively 
high resolution, and then map them onto smaller areas using the 
filtering provided by texturing. This also makes text appear correctly 
on surfaces that aren’t aligned with the screen, but are tilted and have 
some perspective distortion. 

• Antialiased lines—These can be done like antialiased text: make the 
line in the texture several pixels wide, and use texture filtering to 
antialias the lines.

• Image scaling and rotation—If you put an image into a texture map 
and use that texture to map onto a polygon, rotating and scaling the 
polygon effectively rotates and scales the image. 

• Image warping—Store the image as a texture map, but map it to some 
spline-defined surface (using evaluators). As you warp the surface, the 
image follows the warping.

• Projecting images—Put the image in a texture map, and project it as a 
spotlight, creating a slide projector effect. (See “The q-Coordinate” in 
Chapter 9 for more information about how to model a spotlight using 
textures.) 

(See Chapter 3 for information about rotating and scaling, Chapter 9 for 
more information about creating textures, and Chapter 12 for details on 
evaluators.)
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Drawing Depth-Buffered Images

For complex static backgrounds, the rendering time for the geometric 
description of the background can be greater than the time it takes to draw 
a pixel image of the rendered background. If there’s a fixed background 
and a relatively simple changing foreground, you may want to draw the 
background and its associated depth-buffered version as an image, rather 
than render it geometrically. The foreground might also consist of items 
that are time-consuming to render, but whose framebuffer images and 
depth buffers are available. You can render these items into a depth-buffered 
environment using a two-pass algorithm. 

For example, if you’re drawing a model of a molecule made of spheres, you 
might have an image of a beautifully rendered sphere and its associated 
depth-buffer values that were calculated using Phong shading or ray-tracing 
or some other scheme that isn’t directly available through OpenGL. To draw 
a complex model, you might be required to draw hundreds of such spheres, 
which should be depth-buffered together.

To add a depth-buffered image to the scene, first draw the image’s depth-
buffer values into the depth buffer using glDrawPixels(). Then enable 
depth-buffering, set the writemask to 0 so that no drawing occurs, and 
enable stenciling such that the stencil buffers are drawn whenever a write 
to the depth buffer occurs.

Then draw the image into the color buffer, masked by the stencil buffer 
you’ve just written so that writing occurs only when there’s a 1 in the stencil 
buffer. During this write, set the stenciling function to zero out the stencil 
buffer so that it’s automatically cleared when it’s time to add the next image 
to the scene. If the objects are to be moved nearer to or farther from the 
viewer, you need to use an orthographic projection; in such cases, you use 
GL_DEPTH_BIAS with glPixelTransfer*() to move the depth image. (See 
“Coordinate System Survival Kit” in Chapter 2, “Depth Test” and “Stencil 
Test” in Chapter 10, and Chapter 8 for details on glDrawPixels() and 
glPixelTransfer*().)

Dirichlet Domains

Given a set S of points in a plane, the Dirichlet domain or Voronoi polygon 
of one of the points is the set of all points in the plane closer to that point 
than to any other point in the set S. These points provide the solutions to 
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many problems in computational geometry. Figure 14-3 shows outlines of 
the Dirichlet domains for a set of points. 

If for each point in S, you draw a depth-buffered cone with its apex at the 
point in a different color than each of the points in S, the Dirichlet domain 
for each point is drawn in that color. The easiest way to do this is to precom-
pute a cone’s depth in an image and use the image as the depth-buffer val-
ues as described in the preceding section,“Drawing Depth-Buffered Images.” 
You don’t need an image to draw into the framebuffer as in the case of 
shaded spheres, however. While you’re drawing into the depth buffer, use 
the stencil buffer to record the pixels where drawing should occur by first 
clearing it and then writing nonzero values wherever the depth test suc-
ceeds. To draw the Dirichlet region, draw a polygon over the entire window, 
but enable drawing only where the stencil buffers are nonzero. 

You can do this perhaps more easily by rendering cones of uniform color 
with a simple depth buffer, but a good cone might require thousands of 
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Figure 14-3 Dirichlet Domains
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polygons. The technique described in this section can render higher-quality 
cones much more quickly. (See “A Hidden-Surface Removal Survival Kit” in 
Chapter 5 and “Depth Test” in Chapter 10.)

Life in the Stencil Buffer

The Game of Life, invented by John Conway, is played on a rectangular grid 
in which each grid location is either “alive” or “dead.” To calculate the next 
generation from the current one, count the number of live neighbors for 
each grid location (the eight adjacent grid locations are neighbors). A grid 
location is alive in generation n + 1 if it was alive in generation n and has 
exactly two or three live neighbors, or if it was dead in generation n and 
has exactly three live neighbors. In all other cases, it is dead in generation 
n + 1. This game generates some incredibly interesting patterns given 
different initial configurations. (See Martin Gardner, “Mathematical 
Games,” Scientific American, vol. 223, no. 4, October 1970, pp. 120–123.) 
Figure 14-4 shows six generations from a game.

Figure 14-4 Six Generations from the Game of Life
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One way to create this game using OpenGL is to use a multipass algorithm. 
Keep the data in the color buffer, one pixel for each grid point. Assume that 
black (all zeros) is the background color, and that the color of a live pixel is 
nonzero. Initialize by clearing the depth and stencil buffers to zero, set the 
depth-buffer writemask to zero, and set the depth comparison function so 
that it passes on not-equal. To iterate, read the image off the screen, enable 
drawing into the depth buffer, and set the stencil function so that it 
increments whenever a depth comparison succeeds but leaves the stencil 
buffer unchanged otherwise. Disable drawing into the color buffer. 

Next, draw the image eight times, and offset one pixel in each vertical, 
horizontal, and diagonal direction. When you’re done, the stencil buffer 
contains a count of the number of live neighbors for each pixel. Enable 
drawing to the color buffer, set the color to the color for live cells, and set 
the stencil function to draw only if the value in the stencil buffer is 3 (three 
live neighbors). In addition, if this drawing occurs, decrement the value in 
the stencil buffer. Then draw a rectangle covering the image; this paints 
each cell that has exactly three live neighbors with the “alive” color.

At this point, the stencil buffers contain 0, 1, 2, 4, 5, 6, 7, and 8, and the 
values under the 2’s are correct. The values under 0, 1, 4, 5, 6, 7, and 8 must 
be cleared to the “dead” color. Set the stencil function to draw whenever the 
value is not 2 and to zero the stencil values in all cases. Then draw a large 
polygon of the “dead” color across the entire image. You’re done.

For a usable demonstration program, you might want to zoom the grid 
up to a size larger than a single pixel; it’s hard to see detailed patterns with 
a single pixel per grid point. (See “Coordinate System Survival Kit” in 
Chapter 2, and “Depth Test” and “Stencil Test” in Chapter 10.)

Alternative Uses for glDrawPixels() and 
glCopyPixels()

You might think of glDrawPixels() as a way to draw a rectangular region of 
pixels to the screen. Although this is often what it’s used for, some other 
interesting uses are outlined here:

• Video—Even if your machine doesn’t have special video hardware, 
you can display short movie clips by repeatedly drawing frames with 
glDrawPixels() in the same region of the back buffer and then swap-
ping the buffers. The size of the frames you can display with reasonable 

http://lib.ommolketab.ir
http//lib.ommolketab.ir


666 Chapter 14: Now That You Know

performance using this method depends on your hardware’s drawing 
speed, so you might be limited to 100 100 pixel movies (or smaller) if 
you want smooth fake video.

• Airbrush—In a paint program, your airbrush (or paintbrush) shape can 
be simulated using alpha values. The color of the paint is represented 
as the color values. To paint with a circular brush in blue, repeatedly 
draw a blue square with glDrawPixels() where the alpha values are 
largest in the center and taper to zero at the edges of a circle centered 
in the square. Draw using a blending function that uses alpha of the 
incoming color and (1 alpha) of the color already at the pixel. If the 
alpha values in the brush are all much less than 1, you have to paint 
over an area repeatedly to get a solid color. If the alpha values are near 
1, each brush stroke pretty much obliterates the colors underneath.

• Filtered zooms—If you zoom a pixel image by a nonintegral amount, 
OpenGL effectively uses a box filter, which can lead to rather severe 
aliasing effects. To improve the filtering, jitter the resulting image by 
amounts less than a pixel and redraw it multiple times, using alpha 
blending to average the resulting pixels. The result is a filtered zoom. 

• Transposing images—You can swap same-size images in place with 
glCopyPixels() using the XOR operation. With this method, you can 
avoid having to read the images back into processor memory. If A and 
B represent the two images, the operation looks like this:

a. A = A XOR B 

b. B = A XOR B 

c. A = A XOR B
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Chapter 15

15.The OpenGL Shading Language

Chapter Objectives

This chapter discusses the OpenGL Shading Language. GLSL, as the OpenGL 
Shading Language is commonly called, is a programming language for 
creating programmable shaders. Introduced as a part of OpenGL version 2.0, 
the OpenGL Shading Language enables applications to explicitly specify the 
operations used in processing vertices and fragments. Additionally, GLSL 
helps unlock the computation power of modern hardware implementations 
of OpenGL.

After reading this chapter, you’ll be able to do the following:

• Understand the structure and components of programmable shaders 
written in the OpenGL Shading Language

• Integrate programmable shaders into OpenGL programs

• Use exclusively shader-based techniques, including transform 
feedback, uniform blocks, and texture buffers
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This chapter includes discussions of features in versions 1.30 and 1.40 of the 
OpenGL Shading Language, which are the versions associated with OpenGL 
versions 3.0 and 3.1, respectively. Just as OpenGL Version 3.1 removed the 
functionality deprecated in Version 3.0, so GLSL 1.40 removed features 
from GLSL 1.30. Those features are available if your implementation 
supports the GL_ARB_compatibility extension. This chapter discusses 
shaders in the context of GLSL 1.30.

The OpenGL Graphics Pipeline and Programmable 
Shading

You can think of the internal operation of OpenGL as two machines—one 
for processing vertices, the other for fragments—with dials and switches 
on the front of each machine. You control each machine’s operation by 
flipping switches and twisting dials, but the internal operation of the 
machines is “fixed”; that is, you can’t change the order of operations 
inside of the machine, and you’re limited to the features that were built 
into the machine. This mode of operation for OpenGL is commonly called 
the fixed-function pipeline, and is described in detail in Appendix E, “Order 
of Operations.”1 Figure 15-1 illustrates the basic architecture of the 
OpenGL fixed-function pipeline.

Figure 15-1 Overview of the OpenGL Fixed-Function Pipeline

OpenGL 2.0 augmented the fixed-function pipeline approach by adding a 
programmable shading pipeline, where you can control the processing of 
vertices and fragments with small programs, called shaders, written in a 
special language called The OpenGL Shading Language, or GLSL for short. 

1 This appendix is available online at http://www.opengl-redbook.com/appendices/.
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In an application, you can use both the fixed-function and programmable 
pipelines for processing data, but not simultaneously. When you use a 
shader for processing, the corresponding portion of the fixed-function 
pipeline is disabled. In Version 3.1, the fixed-function pipeline was removed 
through deprecation. If your implementation supports the GL_ARB_
compatibility extension its functionality is made available in that extension.

While programmable shaders are not new to computer graphics, accessibility 
to them became available in interactive graphics libraries such as OpenGL 
only a few years ago. Just like the field of computer graphics itself, 
techniques for programmable shaders constitute a huge subject, and this 
chapter does not attempt to teach the theory behind programmable shaders. 
Rather, it covers the language available for authoring shaders available in 
OpenGL and how to integrate those shaders into an OpenGL application. 
For more information on programmable shading, you may want to broaden 
your knowledge of the subject with these supplemental works:

• The RenderMan Companion: A Programmer’s Guide to Realistic Computer 
Graphics by Steve Upstill (Addison-Wesley, 1990)—while this text 
describes Pixar’s RenderMan shader language (which is one of the 
predominant programmable shader languages used for computer-
generated images in the movie industry), it describes the basics of 
programmable shading and presents much of the theory and practice 
of using shaders to generate images.

• Real-Time Shading by John C. Hart, Wolfgang Heidrich, Michael 
McCool, and Marc Olano (AK Peters, Ltd., 2002)—this modern text 
describes the latest advancements in programmable shading on 
graphics hardware and provides a survey of different techniques and 
implementations of programmable shaders.

• The GPU Gems series (Addison-Wesley)—these books describe many 
shader implementation tricks and techniques.

This section begins with a discussion of how shaders affect the processing 
of vertices and fragments. We continue describing what’s required to 
integrate shaders to your OpenGL program, and then introduce writing 
shaders in GLSL. For all of the details on the OpenGL shading language, 
please see:

• The OpenGL Shading Language Specification, versions 1.30 and 1.40 by 
John Kessenich (available for download from http://www.opengl.org)

• The OpenGL Shading Language, 3rd editon, by Randi Rost and Bill 
Licea-Kane, with contributions by Dan Ginsburg, John M. Kessenich, 
Barthold Lichtenbelt, Hugh Malan, and Mike Weiblen (Addison-
Wesley, 2009)
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Vertex Processing

Figure 15-2 illustrates the processing of a vertex through the OpenGL 
pipeline. The shaded area indicates the functions of the vertex processing 
pipeline that are replaced by a vertex shader.

When the fixed-function pipeline processes a vertex, it’s responsible for 
providing the following values that are used for rasterization:

• Eye-space coordinates

• Primary and secondary colors

• Texture coordinates

• Fog coordinates

• Point size

Depending upon which features you have enabled, the vertex pipeline may 
not update all of those values. Those values are computed based on the 
input of the application through calls like glVertex*() and the other vertex 
data calls.
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Not all operations in the vertex pipeline are replaced when you use a shader. 
After the execution of the shader, the following operations still occur, just 
as if the vertex were processed by the fixed-function pipeline:

• Perspective division

• Viewport mapping

• Primitive assembly

• Frustum and user clipping

• Backface culling

• Two-sided lighting selection

• Polygon-mode processing

• Polygon offset

• Depth range clamping

Fragment Processing

Similarly, Figure 15-3 illustrates the pixel processing part of the OpenGL 
pipeline. Once again, the shaded region indicates the functionality replaced 
by a fragment shader.
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Similar to vertex shaders, fragment shaders take over the processing of 
fragments. The operations subsumed in a fragment shader are:

• Texel retrieval for texture application

• Texture application

• Fogging

• Primary and secondary color summation

The operations that OpenGL does regardless of the application of a 
fragment shader are:

• Flat or smooth shading (which controls how values are 
interpolated across fragments)

• Pixel coverage computations

• Pixel ownership tests

• Scissor operations

• Stipple-pattern application (deprecated in OpenGL Version 3.0; 
removed in Version 3.1)

• Alpha test (in OpenGL versions up to and including 3.0. 
Version 3.1 removed this test, replacing it with functionality 
available in a fragment shader)

• Depth test

• Stencil test

• Alpha blending

• Logical operations on pixels

• Dithering of color values

• Color masking

Using GLSL Shaders

A Sample Shader

Example 15-1 shows a simple vertex shader. It transforms a point’s position 
by simulating acceleration due to gravity. While not every detail will make 
sense at the moment, hopefully you’ll be able to understand the basic flow 
of what’s going on.
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Example 15-1 A Sample GLSL (Version 1.30) Vertex Shader

#version 130

uniform float t; // Time (passed in from the application)
attribute vec4 vel; // Particle velocity

const vec4 g = vec4( 0.0, -9.80, 0.0 );

void main()
{

vec4 position = gl_Vertex;
position += t*vel + t*t*g;

gl_Position = gl_ModelViewProjectionMatrix * position;
}

The above preceeding is written using GLSL version 1.30 (you can tell by the 
#version 130), which is compatible with OpenGL Version 3.0. Minor 
changes are required to make it a version 1.40 shader, as demonstrated in 
Example 15-2.

Example 15-2 The Same GLSL Vertex Shader (Version 1.40)

#version 140

uniform float t; // Time (passed in from the application)
uniform mat4 MVP; // Combined modelview and projection matrices
in vec4 pos; // Particle position (as a homogenous coordinate)
in vec4 vel; // Particle velocity

const vec4 g = vec4( 0.0, -9.80, 0.0 );

void main()
{

vec4 position = pos;
position += t*vel + t*t*g;

gl_Position = MVP * position;
}

OpenGL / GLSL Interface

Writing shaders for use with OpenGL programs is similar to using a 
compiler-based language like “C.” You have a compiler analyze your 
program, check it for errors, and then translate it into object code. Next, 
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a collection of object files are combined together in a linking phase 
generating an executable program. Using GLSL shaders in your program 
is a similar process, except that the compiler and linker are part of the 
OpenGL driver.

Figure 15-4 illustrates the steps required to create GLSL shader objects and 
link them together to create an executable shader program.

When you want to use a vertex or fragment shader in your application, 
you’ll need to do the following sequence of steps:

For each shader object:

1. Create a shader object.

2. Compile your shader source into the object.

3. Verify that your shader successfully compiled.
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Then, to link multiple shader objects into a shader program, you’ll:

1. Create a shader program.

2. Attach the appropriate shader objects to the shader program.

3. Link the shader program.

4. Verify that the shader link phase completed successfully.

5. Use the shader for vertex or fragment processing.

Why create multiple shader objects? Just as you might reuse a function in 
different programs, the same idea applies to GLSL programs. Common 
routines that you create might be usable in multiple shaders. Instead of 
having to compile several large shaders with lots of common code, you’ll 
merely link the appropriate shader objects together into a shader program.

To create a shader object, call glCreateShader().

Once you have created a shader object, you need associate the source code 
of the shader with that object created by glCreateShader(). This is done by 
calling glShaderSource().

GLuint glCreateShader(GLenum type);

Allocates a shader object. type must be either GL_VERTEX_SHADER or
GL_FRAGMENT_SHADER. The return value is either a non-zero integer or 
zero if an error occurred.

void glShaderSource(GLuint shader, GLsizei count,
const GLchar **string, const GLint *length);

Associates the source of a shader with a shader object shader. string is 
an array of count GLchar strings that compose the shader’s source. The 
character strings in string may be optionally null-terminated. length can be 
one of three values. If length is NULL, then it’s assumed that each string 
provided in string is null-terminated. Otherwise, length has count elements, 
each of which specifies the length of the corresponding entry in string. If 
the value of an element in the array length is a positive integer, the value 
represents the number of characters in the corresponding string element. 
If the value is negative for particular elements, then that entry in string is 
assumed to be null-terminated.
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To compile a shader object’s source, use glCompileShader().

Similar to when you compile a “C” program, you need to determine if 
the compilation finished successfully. A call to glGetShaderiv(), with an 
argument of GL_COMPILE_STATUS, will return the status of the compilation 
phase. If GL_TRUE is returned, the compilation succeeded, and the object can 
be linked into a shader program. If the compilation failed, you can determine 
what the error was by retrieving the compilation log. glGetShaderInfoLog()
will return an implementation-specific set of messages describing the 
compilation errors. The current size of the error log can be queried by 
calling glGetShaderiv() with an argument of GL_INFO_LOG_LENGTH.

Once you have created and compiled all of the necessary shader objects, 
you will need to link them together to create an executable shader program. 
This process is similar in nature to creating shader objects. First, you’ll need 
to create a shader program to which you can attach the shader objects. 
Using glCreateProgram(), a shader program will be returned for further 
processing.

void glCompileShader(GLuint shader);

Compiles the source code for shader. The results of the compilation can be 
queried by calling glGetShaderiv() with an argument of GL_COMPILE_
STATUS.

void glGetShaderInfoLog(GLuint shader, GLsizei bufSize,
GLsizei *length, char *infoLog);

Returns the log associated with the last compilation of a shader object. 
shader specifies which shader object to query. The log is returned as a null-
terminated character string of length characters in the buffer infoLog. The 
maximum return size of the log is specified in bufSize.

If length is NULL, infoLog’s length is not returned.

GLuint glCreateProgram();

Creates an empty shader program. The return value is either a non-zero 
integer, or zero if an error occurred.
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Once you have your shader program, you’ll need to populate it with 
the necessary shader objects to create the executable program. This is 
accomplished by attaching a shader object to the program by calling 
glAttachShader().

For parity, if you need to remove a shader object from a program to modify 
the shader’s operation, detach the shader object by calling glDetachShader()
with the appropriate shader object identifier.

After all the necessary shader objects have been attached to the shader 
program, you will need to link the objects for an executable program. This 
is accomplished by calling glLinkProgram().

As with shader objects, there’s a chance that the linking phase may fail due 
to errors in the attached shader objects. You can query the result of the link 
operation’s success by calling glGetProgramiv() with an argument of 
GL_LINK_STATUS. If GL_TRUE was returned, the link was successful, and 
you’re able to specify the shader program for use in processing vertices or 
fragments. If the link failed, represented by GL_FALSE being returned, then 

void glAttachShader(GLuint program, GLuint shader);

Associates the shader object, shader, with the shader program, program. A 
shader object can be attached to a shader program at any time, although 
its functionality will only be available after a successful link of the shader 
program. A shader object can be attached to multiple shader programs 
simultaneously.

void glDetachShader(GLuint program, GLuint shader);

Removes the association of a shader object, shader, from the shader 
program, program. If shader is detached from program and had been 
previously marked for deletion (by calling glDeleteShader()), it is deleted 
at that time.

void glLinkProgram(GLuint program);

Processes all shader objects attached to program to generate a completed 
shader program. The result of the linking operation can be queried by 
calling glGetProgramiv() with GL_LINK_STATUS. GL_TRUE is returned 
for a successful link; GL_FALSE is returned otherwise.
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you can determine the cause of the failure by retrieving the program link 
information log by calling glGetProgramLog().

After a successful program link, you can engage the vertex or fragment 
program by calling glUseProgram() with the program’s object handle. To 
revert back to using the fixed-function pipeline, pass zero as the program 
object.

Example 15-3 illustrates creating and linking a vertex shader in GLSL. The 
process is virtually identical for fragment shaders.

Example 15-3 Creating and Linking GLSL shaders

GLuint shader, program;
GLint compiled, linked;

void glGetProgramInfoLog(GLuint program, GLsizei bufSize,
GLsizei *length, char *infoLog);

Returns the log associated with the last compilation of a shader program. 
program specifies which shader program to query. The log is returned as a 
null-terminated character string of length characters in the buffer infoLog.
The maximum return size of the log is specified in bufSize.

If length is NULL, infoLog’s length is not returned.

void glUseProgram(GLuint program);

Uses program for either vertex or fragment processing, depending upon 
the type of shader created with glCreateShader(). If program is zero, no 
shader is used for processing, and OpenGL reverts to fixed-function 
operation (in OpenGL Version 3.1, as there is no fixed-function pipeline, 
the results are undefined, but no error is generated).

While a program is in use, it can have new shader objects attached, 
compile attached shader objects, or detach previously attached objects. 
It may also be relinked. If the link phase is successful, the newly linked 
shader program replaces the previously active program. If the link fails, 
the currently bound shader program remains active and is not replaced 
until either a new program is specified with glUseProgram() or the 
program is successfully relinked.
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const GLchar* shaderSrc[] = {
“void main()”
“{“
“ gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;”
“}”

};

shader = glCreateShader(GL_VERTEX_SHADER);

glShaderSource(shader, 1, shaderSrc, NULL);
glCompileShader(shader);

glGetShaderiv(shader, GL_COMPILE_STATUS, &compiled );

if (!compiled) {
GLint length;
GLchar* log;
glGetShaderiv(shader, GL_INFO_LOG_LENGTH,

&length );

log = (GLchar*) malloc(length);
glGetShaderInfoLog(shader, length, &length, log);
fprintf(stderr, “compile log = ‘%s’\n”, log);
free(log);

}

program = glCreateProgram();

glAttachShader(program, shader);
glLinkProgram(program);

glGetProgramiv(program, GL_LINK_STATUS, &linked );

if (linked) {
glUseProgram(program);

} else {
GLint length;
GLchar* log;
glGetProgramiv(progam, GL_INFO_LOG_LENGTH, &length );

log = (GLchar*) malloc(length);
glGetProgramInfoLog(program, length, &length, log);
fprintf(stderr, “link log = ‘%s’\n”, log);
free(log);

}
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To release the resources related to shader objects and programs, you can 
delete those objects by calling the respective deletion function. If either the 
shader program or object is currently active when it’s deleted, the object is 
only marked for deletion. It is deleted when the program is no longer in use, 
or the shader object is detached from all shader program objects.

To determine if an identifier is currently in use as either a shader program 
or object, calling glIsProgram() or glIsShader() will return a boolean value 
indicating if the identifier is in use.

To aid in shader development, the OpenGL call glValidateProgram() can 
help verify that a shader will execute given the current OpenGL state. 
Depending upon the underlying OpenGL implementation, program 
validation may also return hints about performance characteristics or other 
useful information specific to that shader’s execution for that OpenGL 
implementation. You would validate a program in the same manner you 

void glDeleteShader(GLuint shader);

Deletes shader. If shader is currently linked to one or more active shader 
programs, the object is tagged for deletion and deleted once the shader 
program is no longer being used by any shader program.

void glDeleteProgram(GLuint program);

Deletes program immediately if not currently in use in any context, or 
tagged for deletion when the program is no longer in use by any contexts.

GLboolean glIsProgram(GLuint program);

Returns GL_TRUE if program is the name of a shader program. If program
is zero, or non-zero and not the name of a shader object, GL_FALSE is 
returned.

GLboolean glIsShader(GLuint shader);

Returns GL_TRUE if shader is the name of a shader object. If shader is zero, 
or non-zero and not the name of a shader object, GL_FALSE is returned.
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would compile it by merely calling glValidateProgram() once all of the 
necessary shader objects were attached to the shader program. Similarly, 
you can query the results of the validation step by calling glGetProgramiv()
with an argument of GL_VALIDATE_STATUS.

The OpenGL Shading Language

This section provides an overview of the shading language used within 
OpenGL, commonly called GLSL. GLSL shares many traits with C++ and 
Java, and is used for authoring both vertex and fragment shaders, although 
certain features are only available for one type of shader. We will first 
describe GLSL’s requirements, types, and other language constructs that are 
shared between vertex and fragment shaders, and then discuss the features 
unique to each type of shader.

Creating Shaders with GLSL

The Starting Point

A shader program, just like a “C” program, starts execution in main(). Every 
GLSL shader program begins life as:

void
main()
{

// Your code goes here
}

The “//” construct is a comment and terminates at the end of the current 
line. “C”-type, multi-line comments—the /* and */ type—are also supported. 

void glValidateProgram(GLuint program);

Validates program against the current OpenGL state settings. After 
validation, the value of GL_VALIDATE_STATUS will be set to either GL_
TRUE, indicating that the program will execute in the current OpenGL 
environment, or GL_FALSE otherwise. The value of GL_VALIDATE_
STATUS status can be queried by calling glGetProgramiv().
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However, unlike ANSI “C,” main() does not return an integer value; it is 
declared void.

While this is a perfectly legal GLSL vertex- or fragment-shader program that 
compiles and even runs, its functionality leaves something to be desired. 
We will continue by describing variables and their operation.

Also, as with C and its derivative languages, statements are terminated with 
a semicolon.

Declaring Variables

GLSL is a strongly typed language; that is, every variable must be declared 
and have an associated type. Variable names conform to the same rules as 
those for C: You can use letters, numbers, and the underscore character 
(_) to compose variable names. A digit cannot be the first character in a 
variable name.

Table 15-1 shows the basic types available in GLSL. 

An additional set of types is named samplers, which are used as opaque 
handles for accessing texture maps. The various types of samplers and their 
uses are discussed in “Accessing Texture Maps in Shaders” on page 707.

Note: An OpenGL implementation is not required to implement these 
types as stringently as one might like. As long as their operation 
is semantically and operationally correct, the underlying 
implementation may vary. For example, integers may be stored in 
floating-point registers. It is not a good idea to assume particular 
numeric outcomes, such as the maximum-sized integer value 
being 215, based upon these types.

Type Description

float IEEE-like floating-point value

int signed integer value

uint unsigned integer value

bool Boolean value

Table 15-1 Basic Data Types in GLSL
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Variable Scoping

While all variables must be declared, they may be declared any time before 
their use (unlike “C,” where they must be the first statements in a block of 
code). The scoping rules of GLSL closely parallel those of C++:

• Variables declared outside of any function definition have global scope 
and are visible to all functions within the shader program.

• Variables declared within a set of curly braces (e.g., function definition, 
block following a loop or “if” statement, and so on) exist within the 
scope of those braces only.

• Loop iteration variables, such as i in the loop

for (int i = 0; i < 10; ++i) {
// loop body

}

are only scoped for the body of the loop.

Variable Initialization

Variables may also be initialized when declared. For example:

int    i, numParticles = 1500;
float  force, g = -9.8;
bool   falling = true;

Integer constants may be expressed as octal, decimal, or hexadecimal 
values. An optional minus sign before a numeric value negates the constant, 
and a trailing ‘u’ or ‘U’ denotes an unsigned integer value.

Floating-point values must include a decimal point, unless described in 
scientific format (e.g., 3E-7), and may optionally include an ‘f’ or ‘F’ suffix 
as in “C.” 

Boolean values are either true or false, and can be initialized to either of those 
values or as the result of a operation that resolves to a boolean expression.

Constructors

As mentioned, GLSL is a strongly typed language, even more so than C++. 
In general, there is no implicit conversion between values, except in a few 
cases. For example,

int f = 10.0;

will result in a compilation error due to assigning a constant floating-point 
value to an integer variable. Integer values and vectors will be implicitly 
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converted into the equivalent floating-point value or vector. Any other 
conversion of values requires using a conversion function (a C++-like 
constructor). For example,

float f = 10.0;
int   ten = int(f);

uses the int() function to do the conversion. Likewise, the other types 
also have conversion functions: float(), uint(), bool(). These functions also 
illustrate another feature of GLSL: operator overloading, whereby each 
function takes various input types, but all use the same base function name. 
We will discuss more on functions in a bit.

Aggregate Types

Three of GLSL’s primitive types can be combined to better match core 
OpenGL’s data values and to ease computational operations.

First, GLSL supports vectors of two, three, or four dimensions for each of the 
primitive types. Also, matrices of floats are available. Table 15-2 lists the 
valid vector and matrix types.

Matrix types that list both dimensions, such as mat4x3, use the first value 
to specify the number of columns, the second the number of rows.

Variables declared with these types can be initialized similar to their scalar 
counterparts:

vec3  velocity = vec3(0.0, 2.0, 3.0);

Base Type 2-D vec 3-D vec 4-D vec Matrix Types

float vec2 vec3 vec4 mat2, mat3, mat4
mat2x2, mat2x3, mat2x4,
mat3x2, mat3x3, mat3x4
mat4x2, mat4x3, mat4x4

int ivec2 ivec3 ivec4 —

uint uvec2 uvec3 uvec4 —

bool bvec2 bvec3 bvec4 —

Table 15-2 GLSL Vector and Matrix Types
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and converting between types is equally accessible:

ivec3 steps = ivec3(velocity);

Vector constructors can also be used to truncate or lengthen a vector. If a 
longer vector is passed into the constructor of a smaller vector, the vector is 
truncated to the appropriate length.

vec4 color;
vec3 RGB = vec3(color); // now RGB only has three elements

Likewise, vectors are lengthened in somewhat the same manner. Scalar 
values can be promoted to vectors, as in

vec3 white = vec3(1.0); // white = ( 1.0, 1.0, 1.0 )
vec4 translucent = vec4(white, 0.5);

Matrices are constructed in the same manner and can be initialized to either 
a diagonal matrix or a fully populated matrix.

In the case of diagonal matrices, a single value is passed into the constructor, 
and the diagonal elements of the matrix are set to that value, with all others 
being set to zero, as in

Matrices can also be created by specifying the value of every element in the 
matrix in the constructor. Values can be specified by combinations of scalars 
and vectors, as long as enough values are provided, and each column is 
specified in the same manner. Additionally, matrices are specified in 
column-major order, meaning the values are used to populate columns 
before rows (which is the opposite of how “C” initializes two-dimensional 
arrays).

For example, we could initialize a 3 3 matrix in any of the following ways:

mat3 M = mat3(1.0, 2.0, 3.0,
4.0, 5.0, 6.0,
7.0, 8.0, 9.0 );

vec3 column1 = vec3(1.0, 2.0, 3.0);
vec3 column2 = vec3(4.0, 5.0, 6.0);
vec3 column3 = vec3(7.0, 8.0, 9.0);

mat3 M = mat3(column1, column2, column3);

m mat3 4.0
4.0 0.0 0.0
0.0 4.0 0.0
0.0 0.0 4.0

= =
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or even

vec2 column1 = vec2(1.0, 2.0);
vec2 column2 = vec2(4.0, 5.0);
vec2 column3 = vec2(7.0, 8.0);

mat3 M = mat3(column1, 3.0,
column2, 6.0,
column3, 9.0);

all yielding the same matrix

Accessing Elements in Vectors and Matrices

The individual elements of vectors and matrices can be accessed and 
assigned. Vectors support two types of element access: a named-component 
method and an array-like method. Matrices use a two-dimensional array-
like method.

Components of a vector can be accessed by name, as in

float red = color.r;
float v_y = velocity.y;

or using a zero-based index scheme. The following yield identical results to 
the above:

float red = color[0];
float v_y = velocity[1];

In fact, as shown in Table 15-3, there are three sets of component names 
available, all of which do the same thing. The multiple sets are useful for 
clarifying the operations that you’re doing.  

Component Accessors Description

(x, y, z, w) components associated with positions

(r, g, b, a) components associated with colors

(s, t, p, q) components associated with texture coordinates

Table 15-3 Vector Component Accessors

M
1.0 4.0 7.0
2.0 5.0 8.0
3.0 6.0 9.0

=

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Creating Shaders with GLSL 687

A common use for component-wise access to vectors is for swizzling
components, as you might do with colors, perhaps for color space 
conversion. For example, you could do the following to specify a luminance 
value based on the red component of an input color:

vec3 luminance = color.rrr;

Likewise, if you needed to move components around in a vector, you 
might do:

color = color.abgr; // reverse the components of a color

The only restriction is that only one set of components can be used with a 
variable in one statement. That is, you can’t do:

vec4 color = otherColor.rgz;// Error: ‘z’ is from a
// different group

Also, a compile-time error will be raised if you attempt to access an element 
that’s outside of what the type supports. For example,

vec2 pos;
float zPos = pos.z; // Error: no ‘z’ component in 2D vectors

Matrix elements can be accessed using the array notation. Either a single 
scalar value or an array of elements can be accessed from a matrix:

mat4 m = mat4(2.0);
vec4 zVec = m[2];
float yScale = m[1][1]; // or m[1].y works as well

Structures

You can also logically group together collections of different types in a 
structure. Structures are convenient for passing groups of associated data 
into functions. When a structure is defined, it automatically creates a new 
type, and implicitly defines a constructor function that takes the types of 
the elements of the structure as parameters.

struct Particle {
float lifetime;
vec3 position;
vec3 velocity;

};

Particle p = Particle(10.0, pos, vel); // pos, vel are vec3’s

Likewise, to reference elements of a structure, use the familiar “dot” 
notation as you would in “C.”
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Arrays

GLSL also supports one-dimensional arrays of any type, including 
structures. As with “C,” arrays are indexed using brackets ([ ]). The range of 
elements in an array of size n is 0 ... n 1. Unlike “C,” however, negative 
array indices are not permitted, nor are two-dimensional arrays.

Arrays can be declared sized or unsized. You might use an unsized array as 
a forward declaration of an array variable and later redeclare it to the 
appropriate size. Array declarations use the bracket notation, as in:

float coeff[3]; // an array of 3 floats
float[3] coeff; // same thing
int indices[]; // unsized. Redeclare later with a size

Arrays are first-class types in GLSL, meaning they have constructors and can 
be used as function parameters and return types. To statically initialize an 
array of values, you would use a constructor in the following manner:

float coeff[3] = float[3]( 2.38, 3.14, 42.0 );

The dimension value on the constructor is optional.

Additionally, similar to Java, GLSL arrays have an implicit method for 
reporting their number of elements: the length() method. If you would like 
to operate on all the values in an array, here is an example using the 
length() method:

for ( int i = 0; i < coeff.length(); ++i ) {
coeff[i] *= 2.0;

}

Storage Qualifiers

Types can also have modifiers that affect their behavior. There are four 
modifiers defined in GLSL, as shown in Table 15-4.

Type Modifier Description

const Labels a variable as a read-only, compile-time constant.

in Specifies that the variable is an input to the shader stage.

out Specifies that the variable is an output from a shader stage.

uniform Specifies that the value is passed to the shader from the 
application and is constant across a given primitive.

Table 15-4 GLSL Type Modifiers
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Note: In GLSL versions prior to 1.30, vertex shader input variables were 
qualified with the keyword “attribute.” Likewise, fragment shader 
input variables (which correspond to vertex shader outputs) were 
qualified with the “varying” keyword. In anticipation of potentially 
adding more shading stages, both of those keywords were replaced by 
the more generic “in” and “out” variations. In Version 1.40, both 
“attribute” and “varying” were removed (though they remain 
accessible using the GL_ARB_compatibility extension).

All storage qualifiers are valid for globally scoped variables. Additionally, 
const is applicable to local variables and function parameters.

Const Storage Qualifier

Just as with “C,” the const type modifier indicates that the variable is read-
only. For example, the statement

const float Pi = 3.141529

sets the variable Pi to an approximation of . With the addition of the const
modifier, it becomes an error to write to a variable after its declaration, so 
they must be initialized when declared.

In Storage Qualifier

The in modifier is used to qualify inputs into a shader stage. Those inputs 
may be vertex attributes (for vertex shaders) or interpolated variables (for 
fragment shaders).

Fragment shaders can further qualify their input values using some 
additional keywords that are valid only in combination with the in
keyword. Those keywords are described in Table 15-5.

in Keyword Qualifier Description

centroid Forces the sampling of a fragment input variable to be 
within the area covered by the primitive for the pixel 
when multisampling is enabled.

smooth Interpolates the fragment input variable in a 
perspective-correct manner.

Table 15-5 Additional in Keyword Qualifiers (for Fragment Shader Inputs)
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For example, if you would like a flat-shaded, centroid-sampled fragment 
input, you would specify

flat centroid in fragment;

in your fragment shader.

Out Storage Qualifier

The out modifier is used to qualify outputs from a shader stage—for 
example, the transformed homogenous coordinates from a vertex shader, or 
the final fragment color from a fragment shader.

Vertex shaders can further qualify their output values using the centroid
keyword, which has the same meaning here as for fragment inputs. In 
addition, any vertex shader output qualified by centroid must have a 
matching fragment shader input variable that is also centroid qualified (i.e., 
the fragment shader has to have a variable with the identical declaration as 
in the vertex shader).

Uniform Storage Qualifier

The uniform modifier specifies that a variable’s value will be specified by the 
application before the shader’s execution and does not change across the 
primitive being processed. Uniform variables are shared between vertex and 
fragment shaders and must be declared as global variables. Any type of 
variable, including structures and arrays, can be specified as uniform.

Consider a shader that uses an additional color in shading a primitive. You 
might declare a uniform variable to pass that information into your shaders. 
In the shaders, you would make the declaration:

uniform vec4 BaseColor;

Within your shaders, you can reference BaseColor by name, but to set its 
value in your application, you need to do a little extra work. The GLSL 

flat Doesn’t interpolate the fragment input (i.e., the input 
will be the same for all fragments, as in flat shading).

noperspective Linearly interpolates the fragment variable.

in Keyword Qualifier Description

Table 15-5 Additional in Keyword Qualifiers (for Fragment Shader Inputs)Table 15.5  (continued)  Additional in Keyword Qualifiers (for Fragment Shader Inputs)
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compiler creates a table of all uniform variables when it links your shader 
program. To set BaseColor’s value from your application, you need to obtain 
the index of BaseColor in the table, which is done using the 
glGetUniformLocation() routine.

Once you have the associated index for the uniform variable, you can set the 
value of the uniform variable using the glUniform*() or glUniformMatrix*()
routines.

GLint glGetUniformLocation(GLuint program, const char *name)

Returns the index of the uniform variable name associated with the shader 
program. name is a null-terminated character string with no spaces. A value 
of minus one ( 1) is returned if name does not correspond to a uniform 
variable in the active shader program, or if a reserved shader variable name 
(those starting with gl_ prefix) is specified.

name can be a single variable name, an element of an array (by including 
the appropriate index in brackets with the name), or a field of a structure 
(by specifying name, then “.” followed by the field name, as you would in 
the shader program). For arrays of uniform variables, the index of the first 
element of the array may be queried either by specifying only the array 
name (for example, “arrayName”), or by specifying the index to the first 
element of the array (as in “arrayName[0]”).

The returned value will not change unless the shader program is relinked 
(see glLinkProgram()).

void glUniform{1234}{if ui}(GLint location, TYPE value);
void glUniform{1234}{if ui}v(GLint location, GLsizei count,

const TYPE *values);
void glUniformMatrix{234}fv(GLint location, GLsizei count,

GLboolean transpose, const GLfloat *values);
void glUniformMatrix{2x3,2x4,3x2,3x4,4x2,4x3}fv(GLint location,

GLsizei count, GLboolean transpose,
const GLfloat *values);

Sets the value for the uniform variable associated with the index location
The vector form loads count sets of values (from one to four values, 
depending upon which glUniform*() call is used) into the uniform 
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Example 15-4 demonstrates obtaining a uniform variable’s index and 
assigning values.

Example 15-4 Obtaining a Uniform Variable’s Index and Assigning Values

GLint timeLoc; /* Uniform index for variable “time” in shader */
GLfloat timeValue; /* Application time */

timeLoc = glGetUniformLocation(program, “time”);
glUniform1f(timeLoc, timeValue);

Uniform variables can also be declared within named uniform blocks that 
enable sharing and other features for shaders. Those uniform variables 
aren’t accessible using the routines we just discussed, and they require usage 
of other routines described in the next section.

Uniform Blocks

Advanced

As your shader programs become more complex, it’s likely that the number 
of uniform variables they use will increase. Often the same uniform value is 

variables starting location. If location is the start of an array, count
sequential elements of the array are loaded.

The floating-point forms can be used to load a single float, a floating-point 
vector, an array of floats, or an array of vectors of floats.

The integer forms can be used to update a single integer, an integer vector, 
an array of integers, or an array of integer vectors. Additionally, individual 
and arrays of texture samplers can also be loaded.

For glUniformMatrix{234}fv(), count sets of 2 2, 3 3, or 4 4 matrices 
are loaded from values.

For glUniformMatrix{2x3,2x4,3x2,3x4,4x2,4x3}fv(), count sets of like-
dimensioned matrices are loaded from values. If transpose is GL_TRUE, 
values are specified in row-major order (like arrays in “C”); or if GL_FALSE 
is specified, values are taken to be in column-major order (ordered in the 
same manner as glLoadMatrix()).

Advanced
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used within several shader programs. As uniform locations are generated 
when a shader is linked (i.e., when glLinkProgram() is called), the indices 
may change, even though (to you) the values of the uniform variables 
are identical. Uniform buffer objects provide a method to optimize both 
accessing uniform variables and enabling sharing of uniform values across 
shader programs.

As you might imagine, that given uniform variables can exist both in your 
application and in a shader, you’ll need to both modify your shaders and 
use OpenGL routines to set up uniform buffer objects.

Note: Uniform blocks were added into OpenGL Version 3.1.

Specifying Uniform Variables Blocks in Shaders

To access a collection of uniform variables using routines such as 
glMapBuffer() (see “Buffer Objects” in Chapter 2 for more details), you 
need to slightly modify their declaration in your shader. Instead of 
declaring each uniform variable individually, you group them, just as you 
would do in a structure, in a uniform block. A uniform block is specified 
using the uniform keyword. You then enclose all the variables you want in 
that block within a pair of braces, as shown in Example 15-5. 

Example 15-5 Declaring a Uniform Variable Block

uniform Matrices {
mat4 ModelView;
mat4 Projection;
mat4 Color;

};

All types, with the exception of samplers, are permitted to be within a 
uniform block. Additionally, uniform blocks must be declared at global 
scope.

Uniform Block Layout Control

A variety of qualifiers are available to specify how to lay out the variables 
within a uniform block. These qualifiers can be used either for each 
individual uniform block or to specify how all subsequent uniform blocks 
are arranged (after specifying a layout declaration). The possible qualifiers 
are detailed in Table 15-6.
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For example, to specify that a single uniform block is shared and has row-
major matrix storage, you would declare it in the following manner:

layout (shared, row_major) uniform { ... };

The multiple qualifying options must be separated by commas within the 
parentheses. To affect the layout of all subsequent uniform blocks, use the 
following construct:

layout (packed, column_major) uniform;

With this specification, all uniform blocks declared after that line will use 
that layout until the global layout is changed, or unless they include a 
layout override specific to their declaration.

Accessing Uniform Variables Declared in a Uniform Block

While uniform blocks are named, the uniform variables declared within 
them are not qualified by that name. That is, a uniform block doesn’t 
scope a uniform variable’s name, so declaring two variables of the same 
name within two uniform blocks of different names will cause an error. 
Using the block name is not necessary when accessing a uniform variable, 
however.

Layout Qualifier Description

shared Specify that the uniform block is shared among 
multiple programs. (This is the default sharing 
setting).

packed Lay out the uniform block to minimize its 
memory use; however, this generally disables 
sharing across programs.

std140 Use the default layout as described in the 
OpenGL specification for uniform blocks.

row_major Cause matrices in the uniform block to be stored 
in a row-major element ordering.

column_major Specify matrices should be stored in a column-
major element ordering. (This is the default 
ordering.)

Table 15-6 Layout Qualifiers for Uniform Blocks
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Accessing Uniform Blocks from Your Application

Because uniform variables form a bridge to share data between shaders 
and your application, you need to find the offsets of the various uniform 
variables inside the named uniform blocks in your shaders. Once you know 
the location of those variables, you can initialize them with data, just as you 
would any type of buffer object (using calls such as glBufferData(), for 
example).

To start, let’s assume that you already know the names of the uniform blocks 
used inside the shaders in your application. The first step in initializing 
the uniform variables in your uniform block is to obtain the index of the 
block for a given program. Calling glGetUniformBlockIndex() returns an 
essential piece of information required to complete the mapping of uniform 
variables into your application’s address space.

To initialize a buffer object to be associated with your uniform block, you’ll 
need to bind a buffer object to a GL_UNIFORM_BUFFER target using the 
glBindBuffer() routine (see “Creating Buffer Objects” in Chapter 2 for 
details).

Once we have a buffer object initialized, we need to determine 
how large to make it to accommodate the variables in the named 
uniform block from our shader. To do so, we use the routine 
glGetActiveUniformBlockiv(), requesting the GL_UNIFORM_BLOCK_
DATA_SIZE, which returns the size of the block as generated by the 
compiler (the compiler may decide to eliminate uniform variables that 
aren’t used in the shader, depending on which uniform block layout 
you’ve selected). glGetActiveUniformBlockiv() can be used to obtain 
other parameters associated with a named uniform block. See “The 
Query Commands” in Appendix B for the complete list of options.

After obtaining the index of the uniform block, we need to associate a buffer 
object with that block. The most common method for doing so is to call 

GLuint glGetUniformBlockIndex(GLuint program,
const char *uniformBlockName)

Returns the index of the named uniform block specified by 
uniformBlockName associated with program. If uniformBlockName is not 
a valid uniform block of program, GL_INVALID_INDEX is returned.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


696 Chapter 15: The OpenGL Shading Language

either glBindBufferRange() or, if all the buffer storage is used for the 
uniform block, glBindBufferBase().

Once the association between a named uniform block and a buffer object is 
made, you can initialize or change values in that block by using any of the 
commands that affect a buffer’s values, as described in “Updating Data 
Values in Buffer Objects” in Chapter 2.

You may also want to specify the binding for a particular named uniform 
block to a buffer object, as compared to the process of allowing the linker 
to assign a block binding and then querying the value of that assignment 
after the fact. You might follow this approach if you have numerous shader 
programs will share a uniform block. It avoids having the block be assigned 
a different index for each program. To explicitly control a uniform block’s 
binding, call glUniformBlockBinding() before calling glLinkProgram().

void glBindBufferRange(GLenum target, GLuint index, GLuint buffer,
GLintptr offset, GLsizeiptr size);

void glBindBufferBase(GLenum target, GLuint index, GLuint buffer);

Associates the buffer object buffer with the named uniform block 
associated with index. target can either be GL_UNIFORM_BUFFER (for 
uniform blocks) or GL_TRANSFORM_FEEDBACK_BUFFER (for use with 
transform feedback; see “Transform Feedback” on page 722). index is the 
index associated with a uniform block. offset and size specify the starting 
index and range of the buffer that is to be mapped to the uniform buffer.

Calling glBindBufferBase() is identical to calling glBindBufferRange()
with offset equal to zero and size equal to the size of the buffer object.

These calls can generate various OpenGL errors: A GL_INVALID_VALUE is 
generated if size is less than zero; if offset + size is greater than the size of 
the buffer; if either offset or size is not a multiple of 4; or if index is less than 
zero, or greater than or equal to the value returned when querying GL_
MAX_UNIFORM_BUFFER_BINDINGS.

GLint gUniformBlockBinding(GLuint program,
GLuint uniformBlockIndex,
GLuint uniformBlockBinding)

Explicitly assigns uniformBlockIndex to uniformBlockBinding for program.
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The layout of uniform variables in a named uniform block is controlled by 
the layout qualifier specified when the block was compiled and linked. If 
you used the default layout specification, you will need to determine the 
offset and date-store size of each variable in the uniform block. To do so, 
you will use the pair of calls: glGetUniformIndices(), to retrieve the index 
of a particular named uniform variable, and glGetActiveUniformsiv(), to 
get the offset and size for that particular index, as shown in Example 15-6.

Example 15-6 Initializing Uniform Variables in a Named Uniform Block: ubo.c

/* Vertex and fragment shaders that share a block of uniforms
** named “Uniforms” */

const char* vShader = { 
“#version 140\n”
“uniform Uniforms {“
“    vec3  translation;”
“    float scale;”
“    vec4  rotation;”
“    bool  enabled;”
“};”
“in vec2  vPos;”
“in vec3  vColor;”
“out vec4  fColor;”
“void main()”
“{“
“    vec3   pos = vec3( vPos, 0.0 );”
“    float  angle = radians( rotation[0] );”
“    vec3   axis = normalize( rotation.yzw );”
“    mat3   I = mat3( 1.0 );”

“    mat3   S = mat3(       0, -axis.z,  axis.y, “

void glGetUniformIndices(GLuint program, GLsizei uniformCount,
const char **uniformNames, GLuint *uniformIndices);

Returns the indices associated with the uniformCount uniform variables 
specified by name in the array uniformNames in the array uniformIndices
for program. Each name in uniformNames is assumed to be NULL 
terminated, and both uniformNames and uniformIndices have uniformCount
elements in each array.

If a name listed in uniformNames is not the name of an active uniform 
variables, the value GL_INVALID_INDEX is returned in the corresponding 
element in uniformIndices.
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“                      axis.z,       0, -axis.x, “
“                     -axis.y,  axis.x,       0 );”
“    mat3   uuT = outerProduct( axis, axis );”
“    mat3   rot = uuT + cos(angle)*(I - uuT) + sin(angle)*S;”
“    pos *= scale;”
“    pos *= rot;”
“    pos += translation;”
“    fColor = vec4( scale, scale, scale, 1 );”
“    gl_Position = vec4( pos, 1 );”
“}”

};

const char* fShader = {
“#version 140\n”
“uniform Uniforms {“
“    vec3  translation;”
“    float scale;”
“    vec4  rotation;”
“    bool  enabled;”
“};”
“in vec4  fColor;”
“out vec4 color;”
“void main()”
“{“
“    color = fColor;”
“}”

};

/* Helper function to convert GLSL types to storage sizes */
size_t
TypeSize( GLenum type )
{

size_t  size;

#define CASE( Enum, Count, Type ) \
case Enum: size = Count * sizeof(Type); break

switch( type ) {
CASE( GL_FLOAT,             1,  GLfloat );
CASE( GL_FLOAT_VEC2,        2,  GLfloat );
CASE( GL_FLOAT_VEC3,        3,  GLfloat );
CASE( GL_FLOAT_VEC4,        4,  GLfloat );
CASE( GL_INT,               1,  GLint );
CASE( GL_INT_VEC2,          2,  GLint );
CASE( GL_INT_VEC3,          3,  GLint );
CASE( GL_INT_VEC4,          4,  GLint );
CASE( GL_UNSIGNED_INT,      1,  GLuint );
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CASE( GL_UNSIGNED_INT_VEC2, 2,  GLuint );
CASE( GL_UNSIGNED_INT_VEC3, 3,  GLuint );
CASE( GL_UNSIGNED_INT_VEC4, 4,  GLuint );
CASE( GL_BOOL,              1,  GLboolean );
CASE( GL_BOOL_VEC2,         2,  GLboolean );
CASE( GL_BOOL_VEC3,         3,  GLboolean );
CASE( GL_BOOL_VEC4,         4,  GLboolean );
CASE( GL_FLOAT_MAT2,        4,  GLfloat );
CASE( GL_FLOAT_MAT2x3,      6,  GLfloat );
CASE( GL_FLOAT_MAT2x4,      8,  GLfloat );
CASE( GL_FLOAT_MAT3,        9,  GLfloat );
CASE( GL_FLOAT_MAT3x2,      6,  GLfloat );
CASE( GL_FLOAT_MAT3x4,      12, GLfloat );
CASE( GL_FLOAT_MAT4,        16, GLfloat );
CASE( GL_FLOAT_MAT4x2,      8,  GLfloat );
CASE( GL_FLOAT_MAT4x3,      12, GLfloat );
default:

fprintf( stderr, “Unknown type: 0x%x\n”, type );
exit( EXIT_FAILURE );
break;

}
#undef CASE

return size;
}

void
init()
{

GLuint  program;

glClearColor( 1, 0, 0, 1 );

/* Compile and load vertex and fragment shaders (see 
** LoadProgram.c */
program = LoadProgram( vShader, fShader );
glUseProgram( program );

/* Initialize uniform values in uniform block “Uniforms” */
{

GLuint   uboIndex;
GLint    uboSize;
GLuint   ubo;
GLvoid  *buffer;

/* Find the uniform buffer index for “Uniforms”, and
** determine the block’s sizse*/
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uboIndex = glGetUniformBlockIndex( program, “Uniforms” );

glGetActiveUniformBlockiv( program, uboIndex,
GL_UNIFORM_BLOCK_DATA_SIZE, &uboSize );

buffer = malloc( uboSize );

if ( buffer == NULL ) {
fprintf( stderr, “Unable to allocate buffer\n” );
exit( EXIT_FAILURE );

}
else {

enum { Translation, Scale, Rotation,
Enabled, NumUniforms };

/* Values to be stored in the buffer object */
GLfloat    scale = 0.5;
GLfloat    translation[] = { 0.1, 0.1, 0.0 };
GLfloat    rotation[] = { 90, 0.0, 0.0, 1.0 };
GLboolean  enabled = GL_TRUE;

/* Since we know the names of the uniforms
** in our block, make an array of those values */
const char* names[NumUniforms] = {
“translation”,
“scale”,
“rotation”,
“enabled”

};

/* Query the necessary attributes to determine
** where in the buffer we should write 
** the values */
GLuint    indices[NumUniforms];
GLint     size[NumUniforms];
GLint     offset[NumUniforms];
GLint     type[NumUniforms];

glGetUniformIndices( program, NumUniforms,
names, indices );

glGetActiveUniformsiv( program, NumUniforms, indices,
GL_UNIFORM_OFFSET, offset );

glGetActiveUniformsiv( program, NumUniforms, indices,
GL_UNIFORM_SIZE, size );

glGetActiveUniformsiv( program, NumUniforms, indices,
GL_UNIFORM_TYPE, type );
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/* Copy the uniform values into the buffer */
memcpy( buffer + offset[Scale], &scale,

size[Scale] * TypeSize(type[Scale]) );
memcpy( buffer + offset[Translation], &translation,

size[Translation] * TypeSize(type[Translation]) );
memcpy( buffer + offset[Rotation], &rotation,

size[Rotation] * TypeSize(type[Rotation]) );
memcpy( buffer + offset[Enabled], &enabled,

size[Enabled] * TypeSize(type[Enabled]) );

/* Create the uniform buffer object, initialize
** its storage, and associated it with the shader
** program */
glGenBuffers( 1, &ubo );
glBindBuffer( GL_UNIFORM_BUFFER, ubo );
glBufferData( GL_UNIFORM_BUFFER, uboSize,

buffer, GL_STATIC_RAW );

glBindBufferBase( GL_UNIFORM_BUFFER, uboIndex, ubo );
}

}
...

}

Computational Invariance

GLSL does not guarantee that two identical computations in different 
shaders will result in exactly the same value. The situation is no different 
than for computational applications executing on the CPU, where the 
order of compiled instructions may result in tiny differences due to the 
accumulation order of instructions. These tiny errors may be an issue for 
multipass algorithms that expect positions to be computed exactly the 
same for each shader pass. GLSL has a method of enforcing this type of 
invariance between shaders by using the invariant keyword.

invariant Qualifier

The invariant qualifier may be applied to any output varying variables of a 
vertex shader. The variable may be a built-in variable or a user-defined one. 
For example:

invariant gl_Position;

invariant centroid varying vec3 Color;

http://lib.ommolketab.ir
http//lib.ommolketab.ir


702 Chapter 15: The OpenGL Shading Language

As you may recall, varying variables are used to pass data from a vertex 
shader into a fragment shader. Invariant variables must be declared 
invariant in both the vertex and fragment shader. The invariant keyword 
may be applied at any time before use of the variable in the shader and may 
be used to modify previously declared variables.

For debugging, it may be useful to impose invariance on all varying 
variables in shader. This can be accomplished by using the vertex shader 
preprocessor pragma

#pragma STDGL invariant(all)

Global invariance in this manner is useful for debugging; however, it may 
likely have an impact on the shader’s performance. Guaranteeing invariance 
usually disables optimizations that may have been performed by the GLSL 
compiler.

Statements

The real work in a shader is done by computing values and making 
decisions. In the same manner as C++, GLSL has a rich set of operators for 
constructing arithmetic operations for computing values and a standard set 
of logical constructs for controlling shader execution.

Arithmetic Operations

No text describing a language is complete without the mandatory table of 
operator precedence (see Table 15-7). The operators are ordered in decreasing 
precedence. In general, the types being operated on must be the same, and 
for vector and matrices, the operands must be of the same dimension.

Precedence Operators Accepted Types Description

1 ( ) — Grouping of operations

2 [ ]
f( )
. (period)
++ --

arrays
functions
structures
int, float, vec*, mat*

Array subscripting
Function calls and constructors
Structure field or method access
Post-increment and -decrement

3 ++ --
+ - !

int, float, vec*, mat*
int, float, vec*, mat*

Pre-increment and -decrement
Unary operations: explicit positive 
or negative value, negation

Table 15-7 GLSL Operators and Their Precedence
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Note: This table lists all currently implemented operators of GLSL. Various 
operations that exist in C++ (%, the modulus operator, for example) 
are currently reserved but not implemented in GLSL.

Overload Operators

Most operators in GLSL are overloaded, meaning that they operate on a 
varied set of types. Specifically, arithmetic operations (including pre- and 
post-increment and -decrement) for vectors and matrices are well-defined 
in GLSL. For example, to multiply a vector and a matrix (recalling that the 
order of terms is important—matrix multiplication is non-commutative, for 
all you math-heads), use the following operation:

vec3 v;
mat3 m;
vec3 result = v * m;

The normal restrictions apply, that the dimensionality of the matrix and 
the vector must match. Additionally, scalar multiplication with a vector and 
matrix will produce the expected result. One notable exception is that the 
multiplication of two vectors will result in component-wise multiplication 

4 * / int, float, vec*, mat* Multiplicative operations

5 + - int, float, vec*, mat* Additive operations

6 < > <= >= int, float, vec*, mat* Relational operations

7 == != int, float, vec*, mat* Equality operations

8 && bool Logical and operation

9 ^^ bool Logical exclusive-or operation

10 || bool Logical or operation

11 a ? b : c bool
int, float, vec*, mat*

Selection operation (inline “if” 
operation; if (a) then (b) else (c))

12 =
+= -=
*= /=

int, float, vec*, mat* Assignment
Arithmetic assignment

13 , (comma) — Sequence of operations

Precedence Operators Accepted Types Description

Table 15-7  (continued)        GLSL Operators and Their Precedence
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of components; however, multiplying two matrices will result in normal 
matrix multiplication.

vec2 a, b, c;
mat2 m, u, v;
c = a * b; //c = ( a.x*b.x, a.y*b.y )
m = u * v; //m = (u00*v00+u01*v10u00*v01+u01*v11

u01*v00+u11*v10u10*v01+u11*v11 )

Additional common vector operations (e.g., dot and cross products) are sup-
ported by function calls, as well as various per-component operations on 
vectors and matrices.

Logical Operations

GLSL’s logical control structures are the popular if-then-else and switch 
statements. As with the “C” language the else clause is optional, and 
multiple statements require a block.

if ( truth ) {
// true clause

} else {
// false clause

}

Similar to the situation in C, switch statements are available (starting with 
GLSL 1.30) in their familiar form:

switch( int_value ) {
case n:
// statements
break;

case m:
// statements
break;

default:
// statements
break;

}

GLSL switch statements also support “fall-through” cases—a case statement 
that does not end with a break statement. They do require a break for the 
final case in the block (before the closing brace).
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Looping Constructs

GLSL supports the familiar “C” form of for, while, and do ... while loops. 

The for loop permits the declaration of the loop iteration variable in the 
initialization clause of the for loop. The scope of iteration variables declared 
in this manner is only for the lifetime of the loop.

for (int i = 0; i < 10; ++i ) {
...

}

while (n < 10) {
...

}

do {
...

} while (n < 10);

Flow Control Statements

Additional control statements beyond conditionals and loops are available 
in GLSL. Table 15-8 describes available flow-control statements.

Statement Description

break Terminates execution of the block of a loop, and 
continues execution after the scope of that block.

continue Terminates the current iteration of the enclosing block 
of a loop, resuming execution with the next iteration of 
the loop.

return [result] Returns from the current subroutine, optionally 
providing a value to be returned from the function 
(assuming return value matches the return type of the 
enclosing function).

discard Discards the current fragment and ceases shader 
execution. Discard statements are only valid in fragment 
shader programs.

Table 15-8 GLSL Flow-Control Statements
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The discard statement is available only in fragment programs. The 
execution of the fragment shader may be terminated at the execution of the 
discard statement, but this is implementation dependent.

Functions

Functions permit you to replace occurrences of common code with a 
function call. This, of course, allows for smaller code, and less chances for 
errors. GLSL defines a number of built-in functions, which are listed in 
Appendix I, “Built-In OpenGL Shading Language Variables and Functions,”2

as well as support for user-defined functions. User-defined functions can be 
defined in a single shader object, and reused in multiple shader programs.

Declarations

Function declaration syntax is very similar to “C,” with the exception of the 
access modifiers on variables:

returnType functionName([accessModifier] type1 variable1,
[accessModifier] type2 varaible2,
... )

{
// function body
return returnValue; // unless returnType is void

}

Function names can be any combination of letters, numbers, and the 
underscore character, with the exception that it can neither begin with a 
digit nor with gl_.

Return types can be any built-in GLSL type and user-defined structure; 
arrays are not available as return values. If a function doesn’t return a value, 
its return type is void.

Parameters to functions can be of any type, including arrays (which must 
specify their size).

Functions must be either declared, or prototyped, before their use. Just as in 
C++, the compiler must have seen the function’s definition before its use or an 
error will be raised. If a function is used in a shader object other than the one 
where it’s defined, a prototype must be declared. A prototype is merely the 
function’s signature without its accompanying body. Here’s a simple example:

float HornerEvalPolynomial(float coeff[10], float x);

2 This appendix is available online at http://www.opengl-redbook.com/appendices/.
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Parameters Access Modifiers

While functions in GLSL are able to modify and return values after their 
execution, there’s no concept of a pointer or reference, as in “C” or C++. 
Rather, parameters of functions have associated access modifiers indicating 
if the value should be copied into, or out of, a function after execution. 
Table 15-9 describes the available parameter access modifiers in GLSL.

The in keyword is optional. If a variable does not include an access 
modifier, then an “in” modifier is implicitly added to the parameter’s 
declaration. However, if the variable’s value needs to be copied out of a 
function, it must either be tagged with an “out” (for write-only variables) or 
an “inout” (for read-write variables). Writing to an variable not tagged with 
one of these modifiers will generate a compile-time error.

Additionally, to verify at compile time that a function doesn’t modify an 
input-only variable, adding a “const in” modifier will cause the compiler to 
check that the variable is not written to in the function.

Using OpenGL State Values in GLSL Programs

Almost all values that you set in using the OpenGL API are accessible from 
within vertex and fragment shader programs. A comprehensive list of GLSL 
built-in variables is provided in Appendix I, “Built-In OpenGL Shading 
Language Variables and Functions.”3

Accessing Texture Maps in Shaders

GLSL also supports accessing texture maps in both vertex and fragment 
shaders. To access a texture map, GLSL makes an association between an 

Access Modifier Description

in value copied into a function (default if not specified)

const in read-only value copied into a function

out value copied out of a function (undefined upon 
entrance into the function)

inout value copied into and out of a function

Table 15-9 GLSL Function Parameter Access Modifiers

3 This appendix is available online at http://www.opengl-redbook.com/appendices/.
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active texture unit (see “Steps in Multitexturing” in Chapter 9) configured 
in the OpenGL application, and a variable declared in a shader. Such 
variables use one of the sampler data types shown in Table 15-10 to allow 
the shader program access to the texture map’s data. The dimensions of the 
associated texture map must match the type of the sampler.

Sampler Name Description

sampler1D
isampler1D
usample1D

Accesses a 1D texture map

sampler2D
isampler2D
usampler2D

Accesses a 2D texture map

sampler3D
isampler3D
usampler3D

Accesses a 3D texture map

samplerCube
isamplerCube
usamplerCube

Accesses a cube map (for reflection mapping)

sampler1DArray
isampler1DArray
usampler1DArray

Accesses an array of 1D texture maps

sampler2DArray
isampler2DArray
usampler2DArray

Accesses an array of 2D texture maps

sampler2DRect
isampler2DRect
usampler2DRect

Accesses a 2D texture rectangle

sampler1DShadow Accesses a 1D shadow map

sampler2DShadow Accesses a 2D shadow map

samplerCubeShadow Accesses a cube map of shadowmaps

sampler1DArrayShadow Accesses an array of 1D shadow maps

sampler2DArrayShadow Accesses an array of 2D shadow maps

Table 15-10 Fragment Shader Texture Sampler Types
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Samplers must be declared as uniform variables in the shader and must have 
their value assigned from within the OpenGL application. Samplers may 
also be used as parameters in functions, but must be used with samplers of 
matching type.

Samplers must have a texture unit assigned to them before their use in a 
shader, and can only be initialized by glUniform1i(), or glUniform1iv(), with 
the index of the texture unit that the sampler should use (see Example 15-7). 

Example 15-7 Associating Texture Units with Sampler Variables

GLint texSampler; /* sampler index for shader variable “tex” */

texSampler = glGetUniformLocation(program, “tex”);
glUniform1i(texSampler, 2); /* Set “tex” to use GL_TEXTURE2 */

Accessing Textures in GLSL

Sampling a texture map from within a GLSL shader uses the sampler 
variable that you’ve declared and associated with a texture unit. There 
are a number of texture access routines (described in “Texture Lookup 
Functions” in Appendix I, “Built-in OpenGL Shading Language Variables 
and Functions,”4) for accessing all OpenGL supported texture map types.

In Example 15-8, we sample the two-dimensional texture map associated 
with the sampler2D variable tex, and combine the results with the fragment’s 
color, providing the same results as using GL_MODULATE mode for the 
texture environment mode. 

Example 15-8 Sampling a Texture Within a GLSL Shader

uniform sampler2D tex;

void main()
{

gl_FragColor = gl_Color * texture2D(tex, gl_TexCoord[0].st);
}

sampler2DRectShadow Accesses a 2D shadow texture rectangle

samplerBuffer
isamplerBuffer
usamplerBuffer

Accesses a texture buffer

4 This appendix is available online at http://www.opengl-redbook.com/appendices/.

Sampler Name Description

Table 15-10  (continued)        Fragment Shader Texture Sampler Types
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Even though the example seems simple, that’s truly all there is to do. However, 
much more interesting applications are enabled when the values in a texture 
map do not necessarily represent colors, but other data used for subsequent 
computation after retrieving the results from the texture map. Specifically, one 
application is using the values in one texture map as indices into another, 
described in “Dependent Texture Reads” below. The same results can be 
accomplished using the combiner texture environment (see “Texture 
Combiner Functions” in Chapter 9), but are much simpler to do using shaders.

The results you compute after sampling a texture are controlled by the code 
you write in your shader, but how the texture map is sampled is still con-
trolled by the state settings in your application. For example, you control 
whether a texture map contains mipmaps, and how those mipmaps are 
sampled, as well as the filters used for resolving the returned texel values 
(basically, the parameters you set with glTexParameter*()). From inside 
the shader, you can control the biasing of mipmap selection, and using 
projective-texture techniques (see Appendix I, “Built-In OpenGL Shading 
Language Variables and Functions,”5 for details and suitable functions).

Dependent Texture Reads

During the execution of a shader that employs texture mapping, you’ll use 
texture coordinates to specify locations in texture maps and retrieve the 
resulting texel values. While texture coordinates are supplied for each active 
texture unit, you can use any values you might like as texture coordinates 
(assuming matching dimensionality) for use with a sampler, including 
values you may have just sampled from another texture map. Passing the 
results of one texture access as texture coordinates into another texture 
access operation is generally termed a dependent texture read, indicating that 
the results of the second operation are dependent on the first operation.

This is easy to implement in GLSL and is illustrated in Example 15-9.

Example 15-9 Dependent Texture Reads in GLSL

uniform sampler1D coords;
uniform sampler3D volume;

void main()
{

vec3 texCoords = texture1D(coords, gl_TexCoord[0].s);
vec3 volumeColor = texture3D(volume, texCoords);
...

}

5 This appendix is available online at http://www.opengl-redbook.com/appendices/.
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Texture Buffers

Advanced

While GLSL makes arrays available, both as statically initialized values 
inside shaders, and as collections of values presented as an array in a 
uniform variable, you might occasionally need an array that exceeds the 
size limits available in those two options. Previous to OpenGL Version 3.1, 
you would have likely stored such a table of values in a texture map, and 
then manipulate the texture coordinates to obtain access to the values you 
wanted in the texture, usually in a less than straightforward manner. A 
more intuitive and direct solution to that data storage problem is the texture 
buffer. A texture buffer is a special type of buffer object, similar to a one-
dimensional texture, that you can index using an integer value (like a 
normal array index) in your shader, but that offers the more expansive 
resources of texture memory, thereby allowing larger data sets.

You create a texture buffer just as you would any other buffer object. First 
you call glBindBuffer() with a target of GL_TEXTURE_BUFFER to create the 
object, and then you call glBufferData() (for example) to initialize its data. 
To bind that buffer to a texture buffer, you call glTexBuffer().

Similar to other texture maps, you specify which texture unit to associate 
the texture buffer with by calling glActiveTexture().

Shader Preprocessor

The first step in compilation of a GLSL shader is parsing by the preprocessor. 
Similar to the “C” preprocessor, there are a number of directives for creating 
conditional compilation blocks and defining values. However, unlike the 
“C” preprocessor, there is no file inclusion (#include).

void glTexBuffer(GLenum target, GLenum internalFormat, GLuint buffer);

Associates the buffer object buffer with target, causing the format of the 
data in buffer to be interpreted as having the format of internalFormat.
target must be GL_TEXTURE_BUFFER, and internalFormat may be any of 
the sized texture formats: G, GL_R8, GL_R16, GL_R16F, GL_R32F, GL_R8I, 
GL_R16I, GL_R32I, GL_R8UI, GL_R16UI, GL_R32UI, GL_RG8, GL_RG16, 
GL_RG16F, GL_RG32F, GL_RG8I, GL_RG16I, GL_RG32I, GL_RG8UI, 
GL_RG16UI, GL_RG32UI, GL_RGBA8, GL_RGBA16, GL_RGBA16F, 
GL_RGBA32F, GL_RGBA8I, GL_RGBA16I, GL_RGBA32I, GL_RGBA8UI, 
GL_RGBA16UI, GL_RGBA32UI.

Advanced

http://lib.ommolketab.ir
http//lib.ommolketab.ir


712 Chapter 15: The OpenGL Shading Language

Preprocessor Directives

Table 15-11 lists the preprocessor directives accepted by the GLSL 
preprocessor and their functions.

Macro Definition

The GLSL preprocessor allows macro definition in much the same manner 
as the “C” preprocessor, with the exception of the string substitution and 
concatenation facilities. Macros might define a single value, as in

#define NUM_ELEMENTS 10

or with parameters like

#define LPos(n) gl_LightSource[(n)].position

Additionally, there are several predefined macros for aiding in diagnostic 
messages (that you might issue with the #error directive, for example), as 
shown in Table 15-12.

Preprocessor Directive Description

#define
#undef

Control the definition of constants and macros 
similar to the C preprocessor

#if
#ifdef
#ifndef
#else
#elif
#endif

Conditional code management similar to the 
C preprocessor, including the defined operator.

Conditional expressions evaluate integer 
expressions and defined values (as specified by 
#define) only. 

#error text Cause the compiler to insert text (up to the first 
newline character) into the shader information log

#pragma options Control compiler specific options

#extension options Specify compiler operation with respect to 
specified GLSL extensions

#version number Mandate a specific version of GLSL version support

#line options Control diagnostic line numbering

Table 15-11 GLSL Preprocessor Directives

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Shader Preprocessor 713

Likewise, macros (excluding those defined by GLSL) may be undefined by 
using the #undef directive. For example

#undef LPos

Preprocessor Conditionals

Identical to the processing by the “C” preprocessor, the GLSL preprocessor 
provides conditional code inclusion based on macro definition and integer 
constant evaluation.

Macro definition may be determined in two ways: Either using the #ifdef
directive

#ifdef NUM_ELEMENTS
...
#endif

or using the defined operator with the #if or #elif directives

#if defined(NUM_ELEMENTS) && NUM_ELEMENTS > 3
...
#elif NUM_ELEMENTS < 7
...
#endif

Compiler Control

The #pragma directive provides the compiler additional information 
regarding how you would like your shaders compiled.

Macro Definition

__LINE__ Line number defined by one more than the number of 
newline characters processed and modified by the #line
directive

__FILE__ Source string number currently being processed

__VERSION__ Integer representation of the OpenGL Shading Language 
version

Table 15-12 GLSL Preprocessor Predefined Macros
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Optimization Compiler Option

The optimize option instructs the compiler to enable or disable 
optimization of the shader from the point where the directive resides 
forward in the shader source. You can enable or disable optimization by 
issuing either

#pragma optimize(on)

and

#pragma optimize(off)

respectively. These options may only be issued outside of a function 
definition. By default, optimization is enabled for all shaders.

Debug Compiler Option

The debug option enables or disables additional diagnostic output of the 
shader. You can enable or disable debugging by issuing either

#pragma debug(on)

and

#pragma debug(off)

respectively. Similar to the optimize option, these options may only be 
issued outside of a function definition, and by default, debugging is 
disabled for all shaders.

Global Shader Compilation Option

One final #pragma directive is available, STDGL. This option is currently used 
to enable invariance in the output of varying values. See “invariant 
Qualifier” on page 701 for details.

Extension Processing in Shaders

GLSL, like OpenGL itself, may be enhanced by extensions. As vendors may 
include extensions specific to their OpenGL implementation, it’s useful to 
have some control over shader compilation in light of possible extensions 
that a shader may use.

The GLSL preprocessor uses the #extension directive to provide 
instructions to the shader compiler regarding how extension availability 
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should be handled during compilation. For any, or all, extensions, you can 
specify how you would like the compiler to proceed with compilation. 

#extension extension_name : <directive>

where extensions_name uses the same extension name returned by calling 
glGetString(GL_EXTENSIONS) or

#extension all : <directive>

to affect the behavior of all extensions.

The options available are shown in Table 15-13.

Vertex Shader Specifics

You can send data from your application into a vertex program using several 
mechanisms:

• By using the standard OpenGL vertex data interface (those calls that 
are legal between a glBegin() and a glEnd()), such as glVertex*(),
glNormal*(), and so on. These values can vary on a per-vertex basis 
and are considered to be built-in attribute variables.

• By declaring uniform variables. These values remain constant across a 
geometric primitive.

Directive Description

require Flag an error if the extension is not supported, or if the all
extension specification is used.

enable Give a warning if the particular extensions specified are not 
supported, or flag an error if the all extension specification is 
used.

warn Give a warning if the particular extensions specified are not 
supported, or give a warning if any extension use is detected 
during compilation.

disable Disable support for the particular extensions listed (that is, have 
the compiler act as if the extension is not supported even if it 
is) or all extensions if all is present, issuing warnings and 
errors as if the extension were not present.

Table 15-13 GLSL Extension Directive Modifiers
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• By declaring attribute variables, which can be updated on a per-vertex 
basis, in addition to the standard vertex state. (This is effectively the 
only method for specifying vertex attributes in OpenGL Version 3.1, 
unless the GL_ARB_compatibility extension is available to you.)

Likewise, a vertex program must output some data (and optionally update 
other variables) for continued processing by the remaining vertex 
processing by the OpenGL pipeline, and possibly an accompanying 
fragment program.

The outputs that need to be written include:

• gl_Position, which must be updated by the vertex program and 
contain the homogeneous coordinate of the vertex after modelview 
and projection transformation.

• Various other built-in variables that are declared varying for passing 
data into the fragment pipeline. These include colors, texture 
coordinates, and other per-fragment data. They are described in 
“Varying Output Variables” on page 721.

• User-defined varying variables.

Figure 15-5 illustrates the inputs and outputs of a vertex program.

gl_Position

gl_FrontColor

gl_BackColor

gl_FrontSecondaryColor

gl_BackSecondaryColor

gl_TexCoord[n]

gl_FogFragCoord

gl_PointSize

gl_ClipVertex

User-defined
varyingvariables

gl_Vertex

gl_Normal

gl_Color

gl_SecondaryColor

gl_TexCoordn

gl_FogCoord

User-defined

uniform

variables

User-defined
vertexattributes

Vertex

Shader

Figure 15-5 GLSL Vertex Shader Input and Output Variables
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Built-In Attribute Input Variables

Table 15-14 shows variables representing those that are globally available in 
a vertex shader. The variables reflect the current OpenGL state, as set by the 
corresponding routine. 

User-Defined Attribute Variables

User-defined attribute variables are global variables that associate values 
passed from the OpenGL application to a vertex shader executing within 
the OpenGL implementation.

Attribute variables can be defined as float, floating-point vectors (vec*), or 
matrices (mat*). 

Hint: In general, attribute variables are implemented as vec4’s internal to 
OpenGL. If you have a number of single floating-point variables that 
you wish to use as vertex attributes, consider combining those values 
into one or more vec* structures. While declaring a single float is 
supported, it uses an entire vec4 to represent the single value.

Variable Type Specifying function Description

gl_Vertex vec4 glVertex Vertex’s world-space 
coordinate

gl_Color vec4 glColor Primary color value

gl_SecondaryColor vec4 glSecondaryColor Secondary color value

gl_Normal vec4 glNormal Lighting normal

gl_MultiTexCoordn vec4 glMultiTexCoord( n, ... ); Texture unit n’s texture 
coordinates, with n = 0 
... 7.

gl_FogCoord float glFogCoord Fog coordinate

gl_VertexID int — Index of current vertex 
since the start of the 
last rendering call

gl_InstanceID int glDrawArraysInstanced
glDrawElementsInstanced

The instance ID for the 
associated primitives

Table 15-14 Vertex Shader Attribute Global Variables
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To use user-defined attribute variables, OpenGL needs to know how to 
match the name of the variable you specified in your shader program with 
values that you pass into a shader. Similar to how OpenGL handles uniform 
variables, when a shader program is linked, the linker generates a table of 
variable names for attribute variables. To determine the maximum number 
of user-defined vertex attributes, call glGetIntegerv() with a parameter of 
GL_MAX_VERTEX_ATTRIBS.

To determine which index you need to update for the respective variable in 
the vertex program, you’ll call glGetAttribLocation(), with the name of 
your variable, and the index corresponding to that name will be returned.

For example, in a vertex shader, you might declare

varying vec3 displacement;

Assuming that the shader compiled and linked appropriately, you would 
determine the index of “displacement” by calling:

int index = glGetAttribLocation(program, “displacement”);

You can also explicitly set the binding of an attribute variable to an index 
using the glBindAttribLocation() call; however, this must be done before 
the shader program is linked.

GLint glGetAttribLocation(GLuint program, const char *name);

Returns the index associated with name for the shader program. name must 
be a null-terminated character string matching the declaration in program. 
If name is not an active variable, or it’s the name of a built-in attribute 
variable, or an error occurs, a value of 1 is returned.

void glBindAttribLocation(GLint program, GLuint index,
const char *name);

Explicitly specifies which index location name should be assigned the next 
time program is linked. index must be an integer between zero and GL_
MAX_VERTEX_ATTRIBS 1, and name must be a null-terminated string. 
Built-in attribute variables (those beginning with gl_) will generate a
GL_INVALID_OPERATION error.
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To set the value associated with the returned index, you’ll use a version of 
the glVertexAttrib*() function.

While attribute variables are floating point, there’s no restriction on the 
type of input data used to initialize their values. Specifically, integer-type 
input values can be normalized into the range of zero to one, using 
glVertexAttrib4N*(), before being assigned into the attribute variable. 

Scalar (single-value), vector, and matrix attribute values can be set using 
glVertexAttrib*(). For the matrix case, multiple calls are required. In 
particular, for a matrix of dimension n, you would call glVertexAttrib*(),
with indices: index, index+1, ..., index+n 1.

Vertex shaders also augment the vertex array facility (see “Vertex Arrays” 
on page 70). As with other types of vertex data, values for vertex attribute 
variables can be stored in vertex arrays and updated by calling 
glDrawArrays(), glArrayElement(), and so on. To specify the array to 
be used to update a variable’s value, call glVertexAttribPointer().

void glVertexAttrib{1234}{sfd}(GLuint index, TYPE values);
void glVertexAttrib{123}{sfd}v(GLuint index, const TYPE *values);
void glVertexAttrib4{bsifd ub us ui}v(GLuint index, TYPE values);
void glVertexAttrib4Nub(GLuint index, TYPE values);
void glVertexAttrib4N{bsi ub us ui}v(GLuint index, const TYPE *values);
void glVertexAttribI{1234}{i ui}(GLuint index, TYPE values);
void glVertexAttribI4{bsi ub us ui}v(GLint index, const TYPE *values);

Specifies the values for vertex attribute variables associated with index to 
values. For calls that do not explicitly set all four values, default values 
of 0.0 (0 for signed- and unsigned-integer values) will be set for the y- and 
z-coordinates, and 1.0 (1 for signed- and unsigned-integer values) for the 
w-coordinate.

Specifying values for index zero is identical to calling glVertex*(), with the 
same values.

The normalized version will convert integer input values into the range 
zero to one, using the mappings specified in Table 4-1 on page 198.

Matrices are updated by specifying consecutive values for index. values
specified will be used to update the respective columns of the matrix.
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As with other types of vertex arrays, specifying the array is only one part of 
the process. Each client-side vertex array needs to be enabled. Compared to 
using glEnableClientState(), arrays of vertex attributes are enabled by 
calling glEnableVertexAttribArray().

Special Output Variables

The values shown in Table 15-15 are available for writing (and reading after 
being written) in a vertex shader. gl_Position specifies the vertex’s final 
position upon exit of the vertex shader and is required to be written in the 
shader.

void glVertexAttribPointer(GLuint index, GLint size, GLenum type,
GLboolean normalized, GLsizei stride,
const GLvoid* pointer);

Specifies where the data values for index can be accessed. pointer is the 
memory address of the first set of values in the array. size represents the 
number of components to be updated per vertex. type specifies the data 
type (GL_SHORT, GL_INT, GL_FLOAT, or GL_DOUBLE) of each element in 
the array. normalized indicates that the vertex data should be normalized 
before being stored (in the same manner as glVertexAttrib4N*()). stride is 
the byte offset between consecutive elements in the array. If stride is 0, the 
data is assumed to be tightly packed.

void glEnableVertexAttribArray(GLuint index);
void glDisableVertexAttribArray(GLuint index);

Specifies that the vertex array associated with variable index be enabled 
or disabled. index must be a value between 0 and GL_MAX_VERTEX_
ATTRIBS 1.

Variable Name Type Description

gl_Position vec4 Transformed vertex position (in eye coordinates).

gl_PointSize float Point size of vertex.

gl_ClipVertex vec4 Vertex position to be used with user-defined clipping 
planes. This value must be in the same coordinate 
system as the clipping planes: eye-coordinates or 
object-coordinates.

Table 15-15 Vertex Shader Special Global Variables
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While you’re able to set the output vertex position to any homogenous 
coordinate you might like, the final value of gl_Position is usually 
computed within a vertex program as:

gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;

Or, if you’re employing a multipass algorithm (one rendering multiple 
images from the same geometry) that needs to have the results of the vertex 
shader and fixed function pipeline be consistent, set gl_Position using the 
following code:

gl_Position = ftransform();

gl_PointSize controls the output size of a point, similar to glPointSize(),
but on a per-vertex basis. To control the size of points from within vertex 
programs, call glEnable() with a value of GL_VERTEX_PROGRAM_POINT_
SIZE, which overrides any current point size that may have been specified.

User-defined clipping planes, as specified by glClipPlane(), can be used by 
writing a homogeneous coordinate into the gl_ClipVertex variable. For 
clipping to proceed correctly, the clipping plane specified and the coordinate 
written into gl_ClipVertex must be in the same coordinate space. The 
common space for clipping is eye-coordinates. You can transform the 
current vertex into eye-coordinates for clipping by executing:

gl_ClipVertex = gl_ModelViewMatrix * gl_Vertex;

Varying Output Variables

Table 15-16 represents those variables that can be written to in a vertex 
shader and have their values readable in a fragment shader. The values 
in the fragment shader are iterated across the fragments (or samples, if 
multisampling) of the primitives.

Variable Name Type Description

gl_FrontColor vec4 Primary color to be used for front-facing 
primitives

gl_BackColor vec4 Primary color to be used for back-facing 
primitives

gl_FrontSecondaryColor vec4 Secondary color to be used for front-facing 
primitives

Table 15-16 Vertex Shader Varying Global Variables
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A vertex shader has the capability of setting both the front- and back-face 
color values for a vertex. Be default, regardless of the values set from within 
a vertex shader, the front-facing color will be chosen. This behavior can be 
modified by calling glEnable(), with a value of GL_VERTEX_PROGRAM_
TWO_SIDE, which causes OpenGL to select colors based on the orientation 
of the underlying primitive.

Texture Mapping in Vertex Shaders

Texture mapping is available in vertex shaders. Using textures in vertex 
shaders is identical to the process described in “Accessing Textures in GLSL” 
on page 709, with one minor exception. Automatic mipmap selection is not 
done in vertex shaders. However, you can manually select which mipmap 
level using the texture*Lod routines in GLSL.

To determine if your implementation is capable of using textures in vertex 
shaders, query GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS using 
glIntegerv(). If a nonzero value is returned, texturing is supported.

Transform Feedback

Advanced

Transform feedback allows an application to record the transformed 
primitives generated by rendering (and before clipping) using a vertex 
shader, into a buffer object, somewhat similar to the situation described 
in “Feedback” in Chapter 13, but with more flexible control of the data 
recorded.

gl_BackSecondaryColor vec4 Secondary color to be used for back-facing 
primitives

gl_TexCoord[n] vec4 nth Texture coordinate values

gl_FogFragCoord vec4 Fragment fog coordinate value

Variable Name Type Description

Table 15-16  (continued)        Vertex Shader Varying Global Variables

Advanced
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Using transform feedback is a two-step process:

1. Specifying the mapping of outputs of a vertex shader into one or more 
buffer objects.

2. Rendering while in transform feedback mode.

To accomplish step 1, we’ll call glTransformFeedbackVaryings() before 
linking our vertex shader. This function will set the output ordering of the 
varyings that we want to capture and specify how the data will be written out.

Once the program has been successfully linked, and the ordering of 
varyings set, we can attach buffer objects to receive the transformed 
outputs. To bind a buffer, we use glBindBufferRange() (or 
glBindBufferBase()), associating the appropriate number of buffers if the 
bufferMode was set to GL_SEPARATE_ATTRIBS, or a single buffer if the 
bufferMode was set to GL_INTERLEAVED_ATTRIBS. The size of the buffer (as 
specified either by glBindBufferRange() or when the buffer was sized by 
calling glBufferData(), for example) dictates the number of attribute values 
recorded for the specified primitives. When the available buffer space is 
exhausted, no more primitives will be recorded.

To capture the transformed output, you enter transform feedback mode by 
calling glBeginTransformFeedback(), and specifying the type of primitives 
you would like recorded, as described in Table 15-17. The complete set of 
specified varyings is written for each vertex (up to space limitations in the 
buffer).

void glTransformFeedbackVaryings(GLuint program, GLsizei count,
const char **varyings, GLenum bufferMode);

Assigns the ordering for count varying variables specified by (null-
terminated) names in the array varyings for program. bufferMode must be 
either GL_SEPARATE_ATTRIBS, which specifies that the varyings should 
be written to count separate buffer objects, or GL_INTERLEAVED_ATTRIBS, 
which writes the count varying values contiguously into a single buffer 
object.

A program may fail to link if count exceeds the number of available 
varyings for output. A GL_INVALID_VALUE error will be generated if 
program is not a valid program object, or if bufferMode is set to GL_
SEPARATE_ATTRIBS and count is greater than the value returned for a 
query of GL_MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS.
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You then issue rendering commands. Vertices are transformed by your 
shader, and the varying variables you specified in step 1 are recorded.

Example 15-10 illustrates the process of capturing vertex values, surface 
normals, and texture coordinates using transform feedback. Note that the 
input consists of only the vertex positions; all of the other values are 
generated by the vertex shader.

Example 15-10 Using Transform Feedback to Capture Geometric Primitives: xfb.c

GLuint
LoadTransformFeedbackShader(const char* vShader, GLsizei count,

const GLchar** varyings)
{

GLuint  shader, program;
GLint   completed;

Transform Feedback Primitive Type Permitted OpenGL Primitive Type

GL_POINTS GL_POINTS

GL_LINES GL_LINES
GL_LINE_LOOP
GL_LINE_STRIP

GL_TRIANGLES GL_TRIANGLES
GL_TRIANGLE_FAN
GL_TRAINGLE_STRIP
GL_QUADS
GL_QUAD_STRIP
GL_POLYGONS

Table 15-17 Transform Feedback Primitives and Their Permitted OpenGL 
Rendering Types

void glBeginTransformFeedback(GLenum primitiveMode);
void glEndTransformFeedback(void);

Enters and exits transform feedback mode. primitiveMode must be one of 
GL_POINTS, GL_LINES, or GL_TRIANGLES, which represents the type of 
output written to the associated buffer objects. 

A GL_INVALID_OPERATION error is generated if a command renders an 
OpenGL primitive type that is incompatible with the current transform 
feedback mode.
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program = glCreateProgram();

/*
**  --- Load and compile the vertex shader ---
*/

if (vShader != NULL) {
shader = glCreateShader(GL_VERTEX_SHADER);
glShaderSource(shader, 1, &vShader, NULL);
glCompileShader(shader);
glGetShaderiv(shader, GL_COMPILE_STATUS, &completed);

if (!completed) {
GLint  len;
char*  msg;

glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &len);
msg = (char*) malloc(len);
glGetShaderInfoLog(shader, len, &len, msg);
fprintf(stderr, "Vertex shader compilation ” 
“failure:\n%s\n", msg);
free(msg);

glDeleteProgram(program);

exit(EXIT_FAILURE);
}

glAttachShader(program, shader);
}

glTransformFeedbackVaryings(program, count, varyings,
GL_INTERLEAVED_ATTRIBS);

/*
**  --- Link program ---
*/
glLinkProgram(program);
glGetProgramiv(program, GL_LINK_STATUS, &completed);

if (!completed) {
GLint  len;
char*  msg;

glGetProgramiv(program, GL_INFO_LOG_LENGTH, &len);
msg = (char*) malloc(len);
glGetProgramInfoLog(program, len, &len, msg);
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fprintf(stderr, "Program link failure:\n%s\n", msg);
free(msg);

glDeleteProgram(program);

exit(EXIT_FAILURE);
}

return program;
}

void
init()
{

/* Vertex shader generating our output values */
const char vShader[] = {
"#version 140\n" "in vec2  coords;"
"out vec2 texCoords;"
"out vec3 normal;"
"void main() {"
"   float angle = radians(coords[0]);"
"   normal = vec3(cos(angle), sin(angle), 0.0);"
"   texCoords = normal.xy;"
"   gl_Position = vec4(normal.xy, coords[1], 1.0);"
"}"
};

/* List (and ordering) of varying values written to the
** transform buffer */
const char *varyings[] = {

"texCoords",
"normal",
"gl_Position"

};

GLuint program;
GLuint query;
GLint  count;

/* Load shader program and set up varyings */
program = LoadTransformFeedbackShader(vShader, 3,

varyings);

glUseProgram(program);

glGenQueries(1, &query);

/* Bind to transform-feedback buffer */
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glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, xfb);

glBeginQuery(GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN,

query);
glBeginTransformFeedback(GL_POINTS);
glDrawArrays(GL_POINTS, 0, 2*(NumSlices+1));
glEndTransformFeedback();
glEndQuery(GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN);

glGetQueryObjectiv(query, GL_QUERY_RESULT, &count);

fprintf(stderr, "%d primitives written\n", count);
...

}

Fragment Shader Specifics

Like vertex programs, your OpenGL application can send data directly to a 
fragment program, as well as having OpenGL provide values for use in your 
program. All of that data, along with the inputs into a fragment shader, 
result in the final color and depth value of a fragment. After execution of a 
fragment shader, the computed values continue through the OpenGL 
fragment pipeline to the fragment test and blending stages. 

Figure 15-6 describes the inputs and outputs of a fragment programs.

Figure 15-6 Fragment Shader Built-In Variables
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Input Values

Fragment shaders receive the iterated values of the final vertex pipeline 
outputs. These include the fragment’s position, resolved primary and 
secondary colors, a set of texture coordinates, and a fog coordinate distance 
for the fragment. All of these values are described in Table 15-18.

Special Output Values

Input values are combined in a fragment program to produce the final 
values for fragment, as shown in Table 15-19.

Variable Type Description

gl_FragCoord vec4 (Read only) Position of the fragment, including 
the z-component, which represents the fixed-
function computed depth value

gl_FrontFacing bool (Read only) Specifies if the fragment belongs to 
a front-facing primitive

gl_Color vec4 Primary color of the fragment

gl_SecondayColor vec4 Secondary color of the fragment

gl_TexCoord[n] vec4 nth texture coordinates for the fragment

gl_FogFragCoord float Fragment’s fog coordinate, either specified as 
the z-coordinate of the primitive in eye space or 
the interpolated fog coordinate

gl_PointCoord vec2 Fragment’s location for a point sprite in the 
range [0.0, 1.0]. The value is undefined if the 
current primitive is not a point sprite or if point 
sprites are disabled

Table 15-18 Fragment Shader Varying Global Variables

Variable Type Description

gl_FragColor vec4 Final color of the fragment

gl_FragDepth float Final depth of the fragment

gl_FragData[n] vec4 Data value written to the nth data buffer

Table 15-19 Fragment Shader Output Global Variables
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gl_FragColor is the final color of the fragment. While writing to
gl_FragColor isn’t required output from a fragment program, the results of 
the final fragment color for writing into the color buffer are undefined. 

gl_FragDepth is the final depth of the fragment and is utilized in the depth 
test. While you cannot modify the (x, y) coordinate of a fragment, the depth 
value can be modified.

Finally, additional data may be written from a fragment program.
The gl_FragData array allows for the writing of various data into extra 
buffers, as described below.

Rendering to Multiple Output Buffers

A fragment shader may output values to multiple buffers simultaneously 
using the gl_FragData array. Writing a value into array element 
gl_FragData[n] will cause the color to be written into the appropriate 
fragment in the buffer in element n of the array passed to glDrawBuffers().

A fragment shader may write to either gl_FragColor or gl_FragData in a 
shader, but not both.

User-Defined Fragment Shader Outputs

You might find that using relatively nondescript names such as 
gl_FragColor is not suitable for specifying the output of your shader. 
While GLSL doesn’t care, the next programmer to look at your code 
(which you probably forgot to comment) might not immediately 
understand that your shader does not output a color, but rather the 
results of evaluating a Bessel function of the second kind (or some other 
mathematical archana).

With GLSL version 1.30, you can give more suitable names to the outputs 
from your fragment shaders, and you can control the mapping of those 
outputs to the various bound drawing buffers. You can either specify the 
mapping of fragment output name to a buffer before linking or query the 
program after linking to determine the layout of variables. 

To use the first approach, call glBindFragDataLocation() before calling 
glLinkProgram().
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After linking, you can retrieve the mapping by calling 
glGetFragDataLocation():

void glBindFragDataLocation(GLuint program, GLuint colorNumber,
const char *name);

Specifies the output of fragment variable name should be written to color 
buffer colorNumber for GLSL program. This affects only programs that have 
not yet been linked.

A GL_INVALID_VALUE error is generated if colorNumber is less than zero 
or greater than the value returned when querying GL_MAX_DRAW_
BUFFERS. A GL_INVALID_OPERATION error is generated if name begins 
with gl_.

GLint glGetFragDataLocation(GLuint program, const char *name);

Returns the color buffer index associated with the output of name from 
GLSL program.

A GL_INVALID_OPERATION error is generated if program did not 
successfully link, and glGetFragDataLocation() is called. A value of –1 is 
returned if name is not a fragment program output associated with 
program or if another error occurred.
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 Appendix A

A.
Basics of GLUT: The OpenGL Utility Toolkit

This appendix describes a subset of the OpenGL Utility Toolkit (GLUT) 
originally developed by Mark Kilgard. We use an open-source version of 
GLUT named freeglut (http://freeglut.sourceforge.net/) developed by 
Pawel W. Olszta, with contributions from Andreas Umbach and Steve Baker. 
GLUT has become a popular library for OpenGL programmers because it 
standardizes and simplifies window and event management. GLUT has 
been ported atop a variety of OpenGL implementations, including both the 
X Window System and Microsoft Windows.

This appendix has the following major sections:

• “Initializing and Creating a Window”

• “Handling Window and Input Events”

• “Loading the Color Map”

• “Initializing and Drawing Three-Dimensional Objects”

• “Managing a Background Process”

• “Running the Program”

(See “How to Obtain the Sample Code” on page xli for information about 
how to obtain the source code for GLUT.)

http://freeglut.sourceforge.net/
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With GLUT, your application structures its event handling to use callback 
functions. (This method is similar to using the Xt Toolkit, also known as the 
X Intrinsics, with a widget set.) For example, first you open a window and 
register callback routines for specific events. Then you create a main loop 
without an exit. In that loop, if an event occurs, its registered callback func-
tions are executed. On completion of the callback functions, flow of control 
is returned to the main loop.

Initializing and Creating a Window

Before you can open a window, you must specify its characteristics. Should 
it be single-buffered or double-buffered? Should it store colors as RGBA val-
ues or as color indices? Where should it appear on your display? To specify 
the answers to these questions, call glutInit(), glutInitDisplayMode(),
glutInitWindowSize(), and glutInitWindowPosition() before you call 
glutCreateWindow() to open the window.

void glutInit(int argc, char **argv);

glutInit() should be called before any other GLUT routine, because it 
initializes the GLUT library. glutInit() will also process command line 
options, but the specific options are window system dependent. For the 
X Window System, -iconic, -geometry, and -display are examples of com-
mand line options, processed by glutInit(). (The parameters to glutInit()
should be the same as those to main().)

void glutInitDisplayMode(unsigned int mode);

Specifies a display mode (such as RGBA or color-index, or single- or 
double-buffered) for windows created when glutCreateWindow() is 
called. You can also specify that the window have an associated depth, 
stencil, and/or accumulation buffer. The mask argument is a bitwise ORed 
combination of GLUT_RGBA or GLUT_INDEX, GLUT_SINGLE or GLUT_
DOUBLE, and any of the buffer-enabling flags: GLUT_DEPTH, GLUT_
STENCIL, or GLUT_ACCUM. For example, for a double-buffered, RGBA-
mode window with a depth and stencil buffer, use GLUT_DOUBLE | 
GLUT_RGBA | GLUT_DEPTH | GLUT_STENCIL. The default value is 
GLUT_RGBA | GLUT_SINGLE (an RGBA, single-buffered window).
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Handling Window and Input Events

After the window is created, but before you enter the main loop, you should 
register callback functions using the following routines.

void glutInitContextVersion(int majorVersion, int minorVersion);

Specifies the major and minor versions of the OpenGL implementation 
that you want a context created for. To use OpenGL Version 3.0 or greater, 
you need to call this routine before calling glutCreateWindow(), due to the 
different context creation semantics introduced by OpenGL Version 3.0.

void glutInitWindowSize(int width, int height);
void glutInitWindowPosition(int x, int y);

Requests windows created by glutCreateWindow() to have an initial size 
and position. The arguments (x, y) indicate the location of a corner of the 
window, relative to the entire display. width and height indicate the win-
dow’s size (in pixels). The initial window size and position are hints and 
may be overridden by other requests.

int glutCreateWindow(char *name);

Opens a window with previously set characteristics (display mode, width, 
height, and so on). The string name may appear in the title bar if your 
window system does that sort of thing. The window is not initially dis-
played until glutMainLoop() is entered, so do not render into the win-
dow until then.

The value returned is a unique integer identifier for the window. This 
identifier can be used for controlling and rendering to multiple windows 
(each with an OpenGL rendering context) from the same application.

void glutDisplayFunc(void (*func)(void));

Specifies the function that’s called whenever the contents of the window need 
to be redrawn. The contents of the window may need to be redrawn when the 
window is initially opened, when the window is popped and window damage 
is exposed, and when glutPostRedisplay() is explicitly called.
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void glutReshapeFunc(void (*func)(int width, int height));

Specifies the function that’s called whenever the window is resized or 
moved. The argument func is a pointer to a function that expects two 
arguments, the new width and height of the window. Typically, func calls 
glViewport(), so that the display is clipped to the new size, and it rede-
fines the projection matrix so that the aspect ratio of the projected image 
matches the viewport, avoiding aspect ratio distortion. If glutReshape-
Func() isn’t called or is deregistered by passing NULL, a default reshape 
function is called, which calls glViewport(0, 0, width, height).

void glutKeyboardFunc(void (*func)(unsigned char key, int x, int y));

Specifies the function, func, that’s called when a key that generates an 
ASCII character is pressed. The key callback parameter is the generated 
ASCII value. The x and y callback parameters indicate the location of the 
mouse (in window-relative coordinates) when the key was pressed.

void glutMouseFunc(void (*func)(int button, int state, int x, int y));

Specifies the function, func, that’s called when a mouse button is pressed 
or released. The button callback parameter is GLUT_LEFT_BUTTON, 
GLUT_MIDDLE_BUTTON, or GLUT_RIGHT_BUTTON. The state callback 
parameter is either GLUT_UP or GLUT_DOWN, depending on whether 
the mouse has been released or pressed. The x and y callback parameters 
indicate the location (in window-relative coordinates) of the mouse when 
the event occurred.

void glutMotionFunc(void (*func)(int x, int y));

Specifies the function, func, that’s called when the mouse pointer moves 
within the window while one or more mouse buttons are pressed. The x
and y callback parameters indicate the location (in window-relative coor-
dinates) of the mouse when the event occurred.

void glutPostRedisplay(void);

Marks the current window as needing to be redrawn. At the next 
opportunity, the callback function registered by glutDisplayFunc() will 
be called.

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Initializing and Drawing Three-Dimensional Objects 735

Loading the Color Map

If you’re using color-index mode, you might be surprised to discover there’s 
no OpenGL routine to load a color into a color-lookup table. This is because 
the process of loading a color map depends entirely on the window system. 
GLUT provides a generalized routine to load a single color index with an 
RGB value, glutSetColor().

Initializing and Drawing Three-Dimensional Objects

Many sample programs in this guide use three-dimensional models to 
illustrate various rendering properties. The following drawing routines are 
included in GLUT to avoid having to reproduce the code to draw these 
models in each program. The routines render all their graphics in immedi-
ate mode. Each three-dimensional model comes in two flavors: wireframe 
without surface normals, and solid with shading and surface normals. Use 
the solid version when you’re applying lighting. Only the teapot generates 
texture coordinates.

void glutSetColor(GLint index, GLfloat red, GLfloat green, GLfloat blue);

Loads the index in the color map, index, with the given red, green, and blue
values. These values are normalized to lie in the range [0.0, 1.0].

void glutWireSphere(GLdouble radius, GLint slices, GLint stacks);
void glutSolidSphere(GLdouble radius, GLint slices, GLint stacks);

void glutWireCube(GLdouble size);
void glutSolidCube(GLdouble size);

void glutWireTorus(GLdouble innerRadius, GLdouble outerRadius,
GLint nsides, GLint rings);

void glutSolidTorus(GLdouble innerRadius, GLdouble outerRadius,
GLint nsides, GLint rings);
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Managing a Background Process

You can specify a function that’s to be executed if no other events are 
pending—for example, when the event loop would otherwise be idle—with 
glutIdleFunc(). This is particularly useful for continuous animation or 
other background processing.

void glutWireIcosahedron(void); 
void glutSolidIcosahedron(void); 

void glutWireOctahedron(void); 
void glutSolidOctahedron(void); 

void glutWireTetrahedron(void); 
void glutSolidTetrahedron(void); 

void glutWireDodecahedron(GLdouble radius);
void glutSolidDodecahedron(GLdouble radius);

void glutWireCone(GLdouble radius, GLdouble height, GLint slices,
GLint stacks);

void glutSolidCone(GLdouble radius, GLdouble height, GLint slices,
GLint stacks);

void glutWireTeapot(GLdouble size);
void glutSolidTeapot(GLdouble size);

void glutIdleFunc(void (*func)(void)); 

Specifies the function, func, to be executed if no other events are pending. 
If NULL (zero) is passed in, execution of func is disabled.
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Running the Program

After all the setup is completed, GLUT programs enter an event processing 
loop, glutMainLoop().

void glutMainLoop(void);

Enters the GLUT processing loop, never to return. Registered callback 
functions will be called when the corresponding events instigate them.
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 Appendix B

B.State Variables

This appendix lists the queryable OpenGL state variables, their default 
values, and the commands for obtaining the values of these variables, and 
contains the following major sections:

• “The Query Commands”

• “OpenGL State Variables”
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The Query Commands

In addition to the basic commands to obtain the values of simple state vari-
ables (commands such as glGetIntegerv() and glIsEnabled(), which are 
described in “Basic State Management” in Chapter 2), there are other spe-
cialized commands to return more complex state variables. The prototypes 
for these specialized commands are listed here. Some of these routines, such 
as glGetError() and glGetString(), have been discussed in more detail else-
where in the book.

To find out when you need to use these commands and their corresponding 
symbolic constants, use the tables in the next section, “OpenGL State 
Variables.”

void glGetActiveAttrib(GLuint program, GLuint index, GLsizei bufSize,
GLsizei *length, GLint *size, GLenum *type,
char *name);

void glGetActiveUniformBlockiv(GLuint program,
GLuint uniformBlockIndex, GLenum pname,
GLint *params);

GLint glGetActiveUniformName(GLuint program,
GLuint uniformIndex, GLsizei bufSize,
GLsizei *length, char *uniformName)

void glGetActiveUniformsiv(GLuint program, GLsizei uniformCount,
const GLuint *uniformIndices, GLenum pname,
GLint *params)

void glGetAttachedShaders(GLuint program, GLsizei maxCount,
GLsizei *count, GLuint *shaders);

void glGetBufferSubData(GLenum target, GLintptr offset,
GLsizeiptr size, GLvoid* data);

void glGetBufferParameteriv(GLenum target, GLenum pname,
GLint *params);

void glGetBufferPointerv(GLenum target, GLenum pname,
GLvoid **pointer);

void glGetClipPlane(GLenum plane, GLdouble *equation);

void glGetColorTable(GLenum target, GLenum pname, GLenum type,
GLvoid *table);
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void glGetColorTableParameter{if}v(GLenum target, GLenum pname,
TYPE *params);

void glGetCompressedTexImage(GLenum target, GLint lod,
GLvoid *pixels);

void glGetConvolutionFilter(GLenum target, GLenum format,
GLenum type, GLvoid *image);

void glGetConvolutionParameter{if}v(GLenum target, GLenum pname,
TYPE *params);

GLenum glGetError(void);

void glGetHistogram(GLenum target, GLboolean reset, GLenum format,
GLenum type, GLvoid *values);

void glGetHistogramParameter{if}v(GLenum target, GLenum pname,
TYPE *params);

void glGetLight{if}v(GLenum light, GLenum pname, TYPE *params);

void glGetMap{ifd}v(GLenum target, GLenum query, TYPE *v);

void glGetMaterial{if}v(GLenum face, GLenum pname, TYPE *params);

void glGetMinmax(GLenum target, GLboolean reset, GLenum format,
GLenum type, GLvoid *values);

void glGetMinmaxParameter{if}v (GLenum target, GLenum pname,
TYPE *params);

void glGetPixelMap{f ui us}v(GLenum map, TYPE *values);

void glGetPolygonStipple(GLubyte *mask);

void glGetProgramInfoLog(GLuint program, GLsizei bufSize,
GLsizei *length, GLchar *infoLog);

void glGetProgramiv(GLuint program, GLenum pname, GLint *params);

void glGetQueryiv(GLenum target, GLenum pname, GLint *params);

void glGetQueryObjectiv(GLuint id, GLenum pname, GLint *params);

void glGetQueryObjectuiv(GLuint id, GLenum pname, GLuint *params);

void glGetSeparableFilter(GLenum target, GLenum format,
GLenum type, GLvoid *row, GLvoid *column,
GLvoid *span);
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void glGetShaderInfoLog(GLuint shader, GLsizei bufSize, GLsizei *length,
GLchar *infoLog);

void glGetShaderiv(GLuint shader, GLenum pname, GLint *params);

void glGetShaderSource(GLuint shader, GLsizei bufSize, GLsizei *length,
GLchar *source);

const GLubyte * glGetString(GLenum name);

const GLubyte * glGetStringi(GLenum name, GLuint index);

void glGetTexEnv{if}v(GLenum target, GLenum pname, TYPE *params);

void glGetTexGen{ifd}v(GLenum coord, GLenum pname, TYPE *params);

void glGetTexImage(GLenum target, GLint level, GLenum format,
GLenum type, GLvoid *pixels); 

void glGetTexLevelParameter{if}v(GLenum target, GLint level,
GLenum pname, TYPE *params);

void glGetTexParameter{if}v(GLenum target, GLenum pname,
TYPE *params);

void glGetUniform{if}v(GLuint program, GLint location, TYPE *params);

void glGetVertexAttrib{ifd}v(GLuint index, GLenum pname,
TYPE *params);

void glGetVertexAttribPointerv(GLuint index, GLenum pname,
GLvoid **pointer);

GLboolean glIsBuffer(GLuint buffer);

GLboolean glIsList(GLuint list);

GLboolean glIsProgram(GLuint program);

GLboolean glIsQuery(GLuint id);

GLboolean glIsShader(GLuint shader);

GLboolean glIsTexture(GLuint texObject);

void gluGetNurbsProperty(GLUnurbsObj *nobj, GLenum property,
GLfloat *value);

const GLubyte * gluGetString(GLenum name);

void gluGetTessProperty(GLUtesselator *tess, GLenum which,
GLdouble *data);
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OpenGL State Variables

The following pages contain tables that list the names of queryable state 
variables. For each variable, the tables list a description of it, its attribute 
group, its initial or minimum value, and the suggested glGet*() command 
to use for obtaining it. State variables that can be obtained using 
glGetBooleanv(), glGetIntegerv(), glGetFloatv(), or glGetDoublev() are 
listed with just one of these commands—the one that’s most appropriate 
given the type of data to be returned. (Some vertex-array variables can be 
queried only with glGetPointerv().) These state variables can’t be obtained 
using glIsEnabled(). However, state variables for which glIsEnabled() is 
listed as the query command can also be obtained using glGetBooleanv(),
glGetIntegerv(), glGetFloatv(), and glGetDoublev(). State variables for 
which any other command is listed as the query command can be obtained 
only by using that command. 

Note: When querying texture state, such as GL_TEXTURE_MATRIX, in 
an implementation where the GL_ARB_multitexture extension is 
defined, the values returned reference the currently active texture 
unit only. See “Multitexturing” on page 467 for details.

If one or more attribute groups are listed, the state variable belongs to the 
listed group or groups. If no attribute group is listed, the variable doesn’t 
belong to any group. glPushAttrib(), glPushClientAttrib(), glPopAttrib(),
and glPopClientAttrib() may be used to save and restore all state values 
that belong to an attribute group (see “Attribute Groups” in Chapter 2 for 
more information).

All queryable state variables have initial values; however, those that are 
implementation-dependent may not have an initial value listed. If no 
initial value is listed, you need to consult the section where that variable is 
discussed.

More detail on all of the query functions and values is available online at 
http://www.opengl.org/sdk/docs/man.

http://www.opengl.org/sdk/docs/man
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Current Values and Associated Data

State Variable Description Attribute 
Group

Initial Value Get Command

GL_CURRENT_COLOR Current color current (1, 1, 1, 1) glGetIntegerv(), 
glGetFloatv()

GL_CURRENT_SECONDARY_COLOR Current secondary color current (0, 0, 0, 1) glGetIntegerv(), 
glGetFloatv()

GL_CURRENT_INDEX Current color index current 1 glGetIntegerv(), 
glGetFloatv()

GL_CURRENT_TEXTURE_COORDS Current texture coordinates current (0, 0, 0, 1) glGetFloatv()

GL_CURRENT_NORMAL Current normal current (0, 0, 1) glGetFloatv()

GL_CURRENT_FOG_COORD Current fog coordinate current 0 glGetIntegerv(), 
glGetFloatv()

GL_CURRENT_RASTER_POSITION Current raster position current (0, 0, 0, 1) glGetFloatv()

GL_CURRENT_RASTER_DISTANCE Current raster distance current 0 glGetFloatv()

GL_CURRENT_RASTER_COLOR Color associated with raster 
position

current (1, 1, 1, 1) glGetIntegerv(), 
glGetFloatv()

GL_CURRENT_RASTER_SECONDARY_
COLOR

Secondary color associated with 
raster position

current (0, 0, 0, 1) glGetIntegerv(), 
glGetFloatv()

Table B-1 State Variables for Current Values and Associated Data
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GL_CURRENT_RASTER_INDEX Color index associated with 
raster position

current 1 glGetIntegerv(), 
glGetFloatv()

GL_CURRENT_RASTER_TEXTURE_COORDS Texture coordinates associated 
with raster position

current (0, 0, 0, 1) glGetFloatv()

GL_CURRENT_RASTER_POSITION_VALID Raster position valid bit current GL_TRUE glGetBooleanv()

GL_EDGE_FLAG Edge flag current GL_TRUE glGetBooleanv()

State Variable Description Attribute 
Group

Initial Value Get Command

Table B-1 (continued)        State Variables for Current Values and Associated Data
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Vertex Array Data State (Not Included in Vertex Array Object State)

Vertex Array Object State

State Variable Description Attribute Group Initial Value Get Command

GL_CLIENT_ACTIVE_TEXTURE Active texture unit, for 
texture-coordinate array

vertex-array GL_TEXTURE0 glGetIntegerv()

GL_ARRAY_BUFFER_BINDING Current buffer binding vertex-array 0 glGetIntegerv()

GL_PRIMITIVE_RESTART Primitive restart enable — GL_FALSE glIsEnabled()

GL_PRIMITIVE_RESTART_INDEX Primitive restart index 
value

— 0 glGetIntegerv()

Table B-2 Vertex Array Data State Variables

State Variable Description Attribute 
Group

Initial Value Get Command

GL_VERTEX_ARRAY Vertex array enable vertex-array GL_FALSE glIsEnabled()

GL_VERTEX_ARRAY_BINDING Vertex array object 
binding

vertex-array 0 glGetIntegerv()

GL_VERTEX_ARRAY_SIZE Coordinates per vertex vertex-array 4 glGetIntegerv()

GL_VERTEX_ARRAY_TYPE Type of vertex coordinates vertex-array GL_FLOAT glGetIntegerv()

Table B-3 Vertex Array Object State Variables 
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GL_VERTEX_ARRAY_STRIDE Stride between vertices vertex-array 0 glGetIntegerv()

GL_VERTEX_ARRAY_POINTER Pointer to the vertex array vertex-array NULL glGetPointerv()

GL_NORMAL_ARRAY Normal array enable vertex-array GL_FALSE glIsEnabled()

GL_NORMAL_ARRAY_TYPE Type of normal 
coordinates

vertex-array GL_FLOAT glGetIntegerv()

GL_NORMAL_ARRAY_STRIDE Stride between normals vertex-array 0 glGetIntegerv()

GL_NORMAL_ARRAY_POINTER Pointer to the normal 
array

vertex-array NULL glGetPointerv()

GL_FOG_COORD_ARRAY Fog coordinate array 
enable

vertex-array GL_FALSE glIsEnabled()

GL_FOG_COORD_ARRAY_TYPE Type of fog coordinate 
components

vertex-array GL_FLOAT glGetIntegerv()

GL_FOG_COORD_ARRAY_STRIDE Stride between fog 
coordinates

vertex-array 0 glGetIntegerv()

GL_FOG_COORD_ARRAY_POINTER Pointer to the fog 
coordinate array

vertex-array NULL glGetPointerv()

GL_COLOR_ARRAY RGBA color array enable vertex-array GL_FALSE glIsEnabled()

State Variable Description Attribute 
Group

Initial Value Get Command

Table B-3 (continued)        Vertex Array Object State Variables 
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GL_COLOR_ARRAY_SIZE Color components per 
vertex

vertex-array 4 glGetIntegerv()

GL_COLOR_ARRAY_TYPE Type of color components vertex-array GL_FLOAT glGetIntegerv()

GL_COLOR_ARRAY_STRIDE Stride between colors vertex-array 0 glGetIntegerv()

GL_COLOR_ARRAY_POINTER Pointer to the color array vertex-array NULL glGetPointerv()

GL_SECONDARY_COLOR_ARRAY Secondary color array 
enable

vertex-array GL_FALSE glIsEnabled()

GL_SECONDARY_COLOR_ARRAY_SIZE Secondary color 
components per vertex

vertex-array 3 glGetIntegerv()

GL_SECONDARY_COLOR_ARRAY_TYPE Type of secondary color 
components

vertex-array GL_FLOAT glGetIntegerv()

GL_SECONDARY_COLOR_ARRAY_
STRIDE

Stride between secondary 
colors

vertex-array 0 glGetIntegerv()

GL_SECONDARY_COLOR_ARRAY_
POINTER

Pointer to the secondary 
color array

vertex-array NULL glGetPointerv()

GL_INDEX_ARRAY Color-index array enable vertex-array GL_FALSE glIsEnabled()

GL_INDEX_ARRAY_TYPE Type of color indices vertex-array GL_FLOAT glGetIntegerv()

State Variable Description Attribute 
Group

Initial Value Get Command

Table B-3 (continued)        Vertex Array Object State Variables 
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GL_INDEX_ARRAY_STRIDE Stride between color 
indices

vertex-array 0 glGetIntegerv()

GL_INDEX_ARRAY_POINTER Pointer to the index array vertex-array NULL glGetPointerv()

GL_TEXTURE_COORD_ARRAY Texture-coordinate array 
enable

vertex-array GL_FALSE glIsEnabled()

GL_TEXTURE_COORD_ARRAY_SIZE Texture coordinates per 
element

vertex-array 4 glGetIntegerv()

GL_TEXTURE_COORD_ARRAY_TYPE Type of texture 
coordinates

vertex-array GL_FLOAT glGetIntegerv()

GL_TEXTURE_COORD_ARRAY_STRIDE Stride between texture 
coordinates

vertex-array 0 glGetIntegerv()

GL_TEXTURE_COORD_ARRAY_POINTER Pointer to the texture- 
coordinate array

vertex-array NULL glGetPointerv()

GL_VERTEX_ATTRIB_ARRAY_ENABLED Vertex attrib array enable vertex-array GL_FALSE glGetVertexAttribiv()

GL_VERTEX_ATTRIB_ARRAY_SIZE Vertex attrib array size vertex-array 4 glGetVertexAttribiv()

GL_VERTEX_ATTRIB_ARRAY_STRIDE Vertex attrib array stride vertex-array 0 glGetVertexAttribiv()

GL_VERTEX_ATTRIB_ARRAY_TYPE Vertex attrib array type vertex-array GL_FLOAT glGetVertexAttribiv()

State Variable Description Attribute 
Group

Initial Value Get Command

Table B-3 (continued)        Vertex Array Object State Variables 
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GL_VERTEX_ATTRIB_ARRAY_
NORMALIZED

Vertex attrib array 
normalized

vertex-array GL_FALSE glGetVertexAttribiv()

GL_VERTEX_ATTRIB_ARRAY_INTEGER Vertex attrib array has 
unconverted integer 
values

vertex-array GL_FALSE glGetVertexAttribiv()

GL_VERTEX_ATTRIB_ARRAY_POINTER Vertex attrib array pointer vertex-array NULL glGetVertexAttrib
Pointer()

GL_EDGE_FLAG_ARRAY Edge flag array enable vertex-array GL_FALSE glIsEnabled()

GL_EDGE_FLAG_ARRAY_STRIDE Stride between edge flags vertex-array 0 glGetIntegerv()

GL_EDGE_FLAG_ARRAY_POINTER Pointer to the edge-flag 
array

vertex-array NULL glGetPointerv()

GL_ARRAY_BUFFER_BINDING Current buffer binding vertex-array 0 glGetIntegerv()

GL_VERTEX_ARRAY_BUFFER_BINDING Vertex array buffer binding vertex-array 0 glGetIntegerv()

GL_NORMAL_ARRAY_BUFFER_BINDING Normal array buffer 
binding

vertex-array 0 glGetIntegerv()

GL_COLOR_ARRAY_BUFFER_BINDING Color array buffer binding vertex-array 0 glGetIntegerv()

GL_INDEX_ARRAY_BUFFER_BINDING Index array buffer binding vertex-array 0 glGetIntegerv()

State Variable Description Attribute 
Group

Initial Value Get Command

Table B-3 (continued)        Vertex Array Object State Variables 
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GL_TEXTURE_COORD_ARRAY_BUFFER_
BINDING

Texture-coordinate array 
buffer binding

vertex-array 0 glGetIntegerv()

GL_EDGE_FLAG_ARRAY_BUFFER_
BINDING

Edge flag array buffer 
binding

vertex-array 0 glGetIntegerv()

GL_SECONDARY_COLOR_ARRAY_
BUFFER_BINDING

Secondary color array 
buffer binding

vertex-array 0 glGetIntegerv()

GL_FOG_COORD_ARRAY_BUFFER_
BINDING

Fog-coordinate array 
buffer binding

vertex-array 0 glGetIntegerv()

GL_ELEMENT_ARRAY_BUFFER_BINDING Element array buffer 
binding

vertex-array 0 glGetIntegerv()

GL_VERTEX_ATTRIB_ARRAY_BUFFER_
BINDING

Vertex attribute array 
buffer binding

vertex-array 0 glGetVertexAttribiv()

GL_VERTEX_ARRAY_BINDING Current vertex array object 
binding

vertex-array 0 glGetIntegerv()

State Variable Description Attribute 
Group

Initial Value Get Command

Table B-3 (continued)        Vertex Array Object State Variables 
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State Variable Description Attribute 
Group

Initial Value Get Command

GL_BUFFER_SIZE Buffer data size — 0 glGetBufferParameteriv()

GL_BUFFER_USAGE Buffer usage pattern — GL_STATIC_DRAW glGetBufferParameteriv()

GL_BUFFER_ACCESS Buffer access flag — GL_READ_WRITE glGetBufferParameteriv()

GL_BUFFER_ACCESS_FLAGS Extended buffer access 
flags

— 0 glGetBufferParameteriv()

GL_BUFFER_MAPPED Buffer map flag — GL_FALSE glGetBufferParameteriv()

GL_BUFFER_MAP_POINTER Mapped buffer pointer — NULL glGetBufferPointerv()

GL_BUFFER_MAP_OFFSET Start of mapped buffer 
range

— 0 glGetBufferParameteriv()

GL_BUFFER_MAP_LENGTH Size of mapped buffer 
range

— 0 glGetBufferParameteriv()

Table B-4 Vertex Buffer Object State Variables
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Transformation

State Variable Description Attribute 
Group

Initial Value Get Command

GL_COLOR_MATRIX Color matrix stack — Identity glGetFloatv()

GL_TRANSPOSE_COLOR_MATRIX Stack of transposed color 
matrices

— Identity glGetFloatv()

GL_MODELVIEW_MATRIX Modelview matrix stack — Identity glGetFloatv()

GL_TRANSPOSE_MODELVIEW_MATRIX Stack of transposed 
modelview matrices

— Identity glGetFloatv()

GL_PROJECTION_MATRIX Projection matrix stack — Identity glGetFloatv()

GL_TRANSPOSE_PROJECTION_MATRIX Stack of transposed 
projection matrices

— Identity glGetFloatv()

GL_TEXTURE_MATRIX Texture matrix stack — Identity glGetFloatv()

GL_TRANSPOSE_TEXTURE_MATRIX Stack of transposed texture 
matrices

— Identity glGetFloatv()

GL_VIEWPORT Viewport origin and extent viewport — glGetIntegerv()

GL_DEPTH_RANGE Depth range near and far viewport 0, 1 glGetFloatv()

GL_COLOR_MATRIX_STACK_DEPTH Color matrix stack pointer — 1 glGetIntegerv()

Table B-5 Transformation State Variables
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GL_MODELVIEW_STACK_DEPTH Modelview matrix stack 
pointer

— 1 glGetIntegerv()

GL_PROJECTION_STACK_DEPTH Projection matrix stack 
pointer

— 1 glGetIntegerv()

GL_TEXTURE_STACK_DEPTH Texture matrix stack pointer — 1 glGetIntegerv()

GL_MATRIX_MODE Current matrix mode transform GL_MODELVIEW glGetIntegerv()

GL_NORMALIZE Current normal 
normalization on/off

transform/
enable

GL_FALSE glIsEnabled()

GL_RESCALE_NORMAL Current normal rescaling 
on/off

transform/
enable

GL_FALSE glIsEnabled()

GL_CLIP_DISTANCEi (replacing GL_
CLIP_PLANEi in Version 3.0 and greater)

User clipping-plane 
coefficients

transform (0, 0, 0, 0) glGetClipPlane()

GL_CLIP_DISTANCEi (replacing GL_
CLIP_PLANEi in Version 3.0 and greater)

ith user clipping plane 
enabled

transform/
enable

GL_FALSE glIsEnabled()

State Variable Description Attribute 
Group

Initial Value Get Command

Table B-5 (continued)        Transformation State Variables
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Coloring

State Variable Description Attribute 
Group

Initial Value Get Command

GL_FOG_COLOR Fog color fog (0, 0, 0, 0) glGetFloatv()

GL_FOG_INDEX Fog index fog 0 glGetFloatv()

GL_FOG_DENSITY Exponential fog density fog 1.0 glGetFloatv()

GL_FOG_START Linear fog start fog 0.0 glGetFloatv()

GL_FOG_END Linear fog end fog 1.0 glGetFloatv()

GL_FOG_MODE Fog mode fog GL_EXP glGetIntegerv()

GL_FOG True if fog enabled fog/enable GL_FALSE glIsEnabled()

GL_FOG_COORD_SRC Source of coordinates for 
fog calculation

fog GL_FRAGMENT_
DEPTH

glGetIntegerv()

GL_COLOR_SUM True if color sum is enabled fog/enable GL_FALSE glIsEnabled()

GL_SHADE_MODEL glShadeModel() setting lighting GL_SMOOTH glGetIntegerv()

GL_CLAMP_VERTEX_
COLOR

Vertex clamping color lighting/
enable

GL_TRUE glGetIntegerv()

GL_CLAMP_FRAGMENT_
COLOR

Fragment clamping color color-buffer/
enable

GL_FIXED_ONLY glGetIntegerv()

GL_CLAMP_READ_COLOR Read color clamping color-buffer/
enable

GL_FIXED_ONLY glGetIntegerv()

Table B-6 Coloring State Variables
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Lighting

See also Tables 5-1 and 5-3 for initial values. 

State Variable Description Attribute 
Group

Initial Value Get Command

GL_LIGHTING True if lighting is enabled lighting
/enable

GL_FALSE glIsEnabled()

GL_COLOR_MATERIAL True if color tracking is enabled lighting GL_FALSE glIsEnabled()

GL_COLOR_MATERIAL_PARAMETER Material properties tracking 
current color

lighting GL_AMBIENT_
AND_DIFFUSE

glGetIntegerv()

GL_COLOR_MATERIAL_FACE Face(s) affected by color 
tracking

lighting GL_FRONT_
AND_BACK

glGetIntegerv()

GL_AMBIENT Ambient material color lighting (0.2, 0.2, 0.2, 1.0) glGetMaterialfv()

GL_DIFFUSE Diffuse material color lighting (0.8, 0.8, 0.8, 1.0) glGetMaterialfv()

GL_SPECULAR Specular material color lighting (0.0, 0.0, 0.0, 1.0) glGetMaterialfv()

GL_EMISSION Emissive material color lighting (0.0, 0.0, 0.0, 1.0) glGetMaterialfv()

GL_SHININESS Specular exponent of material lighting 0.0 glGetMaterialfv()

GL_LIGHT_MODEL_AMBIENT Ambient scene color lighting (0.2, 0.2, 0.2, 1.0) glGetFloatv()

GL_LIGHT_MODEL_LOCAL_VIEWER Viewer is local lighting GL_FALSE glGetBooleanv()

Table B-7 Lighting State Variables
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GL_LIGHT_MODEL_TWO_SIDE Use two-sided lighting lighting GL_FALSE glGetBooleanv()

GL_LIGHT_MODEL_COLOR_
CONTROL

Color control lighting GL_SINGLE_
COLOR

glGetIntegerv()

GL_AMBIENT Ambient intensity of light i lighting (0.0, 0.0, 0.0, 1.0) glGetLightfv()

GL_DIFFUSE Diffuse intensity of light i lighting — glGetLightfv()

GL_SPECULAR Specular intensity of light i lighting — glGetLightfv()

GL_POSITION Position of light i lighting (0.0, 0.0, 1.0, 0.0) glGetLightfv()

GL_CONSTANT_ATTENUATION Constant attenuation factor lighting 1.0 glGetLightfv()

GL_LINEAR_ATTENUATION Linear attenuation factor lighting 0.0 glGetLightfv()

GL_QUADRATIC_ATTENUATION Quadratic attenuation factor lighting 0.0 glGetLightfv()

GL_SPOT_DIRECTION Spotlight direction of light i lighting (0.0, 0.0, 1.0) glGetLightfv()

GL_SPOT_EXPONENT Spotlight exponent of light i lighting 0.0 glGetLightfv()

GL_SPOT_CUTOFF Spotlight angle of light i lighting 180.0 glGetLightfv()

GL_LIGHTi True if light i enabled lighting
/enable

GL_FALSE glIsEnabled()

GL_COLOR_INDEXES ca, cd, and cs for color-index 
lighting

lighting 0, 1, 1 glGetMaterialfv()

State Variable Description Attribute 
Group

Initial Value Get Command

Table B-7 (continued)        Lighting State Variables
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Rasterization

State Variable Description Attribute Group Initial Value Get Command

GL_POINT_SIZE Point size point 1.0 glGetFloatv()

GL_POINT_SMOOTH Point antialiasing on point/enable GL_FALSE glIsEnabled()

GL_POINT_SPRITE Point sprite enable point/enable GL_FALSE glIsEnabled()

GL_POINT_SIZE_MIN Attenuated minimum point 
size

point 0.0 glGetFloatv()

GL_POINT_SIZE_MAX Attenuated maximum point 
size

point See Note a at 
end of table.

glGetFloatv()

GL_POINT_FADE_THRESHOLD_
SIZE

Threshold for alpha 
attenuation

point 1.0 glGetFloatv()

GL_POINT_DISTANCE_
ATTENUATION

Attenuation coefficients point 1, 0, 0 glGetFloatv()

GL_POINT_SPRITE_COORD_
ORIGIN

Origin orientation for point 
sprites

point GL_UPPER_LEFT glGetIntegerv()

GL_LINE_WIDTH Line width line 1.0 glGetFloatv()

GL_LINE_SMOOTH Line antialiasing on line/enable GL_FALSE glIsEnabled()

GL_LINE_STIPPLE_PATTERN Line stipple line 1’s glGetIntegerv()

GL_LINE_STIPPLE_REPEAT Line stipple repeat line 1 glGetIntegerv()

Table B-8 Rasterization State Variables
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GL_LINE_STIPPLE Line stipple enable line/enable GL_FALSE glIsEnabled()

GL_CULL_FACE Polygon culling enabled polygon/enable GL_FALSE glIsEnabled()

GL_CULL_FACE_MODE Cull front-/back-facing 
polygons

polygon GL_BACK glGetIntegerv()

GL_FRONT_FACE Polygon front-face CW/CCW 
indicator

polygon GL_CCW glGetIntegerv()

GL_POLYGON_SMOOTH Polygon antialiasing on polygon/enable GL_FALSE glIsEnabled()

GL_POLYGON_MODE Polygon rasterization mode 
(front and back)

polygon GL_FILL glGetIntegerv()

GL_POLYGON_OFFSET_FACTOR Polygon offset factor polygon 0 glGetFloatv()

GL_POLYGON_OFFSET_UNITS Polygon offset units polygon 0 glGetFloatv()

GL_POLYGON_OFFSET_POINT Polygon offset enable for GL_
POINT mode rasterization

polygon/enable GL_FALSE glIsEnabled()

GL_POLYGON_OFFSET_LINE Polygon offset enable for GL_
LINE mode rasterization

polygon/enable GL_FALSE glIsEnabled()

GL_POLYGON_OFFSET_FILL Polygon offset enable for GL_
FILL mode rasterization

polygon/enable GL_FALSE glIsEnabled()

GL_POLYGON_STIPPLE Polygon stipple enable polygon/enable GL_FALSE glIsEnabled()

— Polygon stipple pattern polygon-stipple 1’s glGetPolygon
Stipple()

a. The initial value of GL_POINT_SIZE_MAX is the maximum of GL_ALIASED_POINT_SIZE_RANGE and GL_SMOOTH_POINT_SIZE_RANGE.

State Variable Description Attribute Group Initial Value Get Command

Table B-8 (continued)        Rasterization State Variables
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Multisampling

State Variable Description Attribute Group Initial Value Get Command

GL_MULTISAMPLE Multisample rasterization multisample/
enable

GL_TRUE glIsEnabled()

GL_SAMPLE_ALPHA_TO_COVERAGE Modify coverage from alpha multisample/
enable

GL_FALSE glIsEnabled()

GL_SAMPLE_ALPHA_TO_ONE Set alpha to maximum multisample/
enable

GL_FALSE glIsEnabled()

GL_SAMPLE_COVERAGE Mask to modify coverage multisample/
enable

GL_FALSE glIsEnabled()

GL_SAMPLE_COVERAGE_VALUE Coverage mask value multisample 1 glGetFloatv()

GL_SAMPLE_COVERAGE_INVERT Invert coverage mask value multisample GL_FALSE glGetBooleanv()

Table B-9 Multisampling
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Texturing

State Variable Description Attribute 
Group

Initial Value Get Command

GL_COMPRESSED_TEXTURE_
FORMATS

List of supported compressed 
texture formats

— varies glGetIntegerv()

GL_TEXTURE_x True if x (dimensional) texturing is 
enabled (x is 1D, 2D, or 3D)

texture/
enable

GL_FALSE glIsEnabled()

GL_TEXTURE_x x-D texture image at level of detail 
i (x is 1D, 2D, or 3D)

— — glGetTexImage()

GL_TEXTURE_1D_ARRAY 1D texture array image at row i — — glGetTexImage()

GL_TEXTURE_2D_ARRAY 2D texture array image at slice i — — glGetTexImage()

GL_TEXTURE_RECTANGLE Rectangular texture image at LOD 0 — — glGetTexImage()

GL_TEXTURE_BINDING_x Texture object bound to GL_
TEXTURE_x (x is 1D, 2D, or 3D)

texture 0 glGetIntegerv()

GL_TEXTURE_BINDING_1D_
ARRAY

Texture object bound to GL_
TEXTURE_1D_ARRAY

texture 0 glGetIntegerv()

GL_TEXTURE_BINDING_2D_
ARRAY

Texture object bound to GL_
TEXTURE_2D_ARRAY

texture 0 glGetIntegerv()

GL_TEXTURE_BINDING_
RECTANGLE

Texture object bound to GL_
TEXTURE_RECTANGLE

— 0 glGetIntegerv()

Table B-10 Texturing State Variables
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GL_TEXTURE_BINDING_
CUBE_MAP

Texture object bound to GL_
TEXTURE_CUBE_MAP

texture 0 glGetIntegerv()

GL_TEXTURE_BUFFER_DATA_
STORE_BINDING

Buffer object bound as the data 
store for the active image unit’s 
buffer texture

— 0 glGetTexLevelParameter()

GL_TEXTURE_COMPRESSED True if texture map is stored 
internally in a compressed format

— GL_FALSE glGetTexLevelParameter*()

GL_TEXTURE_COMPRESSED_
IMAGE_SIZE

Number of bytes in compressed 
texture image array

— 0 glGetTexLevelParameter*()

GL_TEXTURE_CUBE_MAP True if cube map texturing is 
enabled

texture/
enable

GL_FALSE glIsEnabled()

GL_TEXTURE_CUBE_MAP_
POSITIVE_X

+x face cube map texture image at 
level of detail i

— — glGetTexImage()

GL_TEXTURE_CUBE_MAP_
NEGATIVE_X

-x face cube map texture image at 
level of detail i

— — glGetTexImage()

GL_TEXTURE_CUBE_MAP_
POSITIVE_Y

+y face cube map texture image at 
level of detail i

— — glGetTexImage()

GL_TEXTURE_CUBE_MAP_
NEGATIVE_Y

-y face cube map texture image at 
level of detail i

— — glGetTexImage()

State Variable Description Attribute 
Group

Initial Value Get Command
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GL_TEXTURE_CUBE_MAP_
POSITIVE_Z

+z face cube map texture image at 
level of detail i

— — glGetTexImage()

GL_TEXTURE_CUBE_MAP_
NEGATIVE_Z

-z face cube map texture image at 
level of detail i

— — glGetTexImage()

GL_TEXTURE_BORDER_COLOR Texture border color texture (0, 0, 0, 0) glGetTexParameter*()

GL_TEXTURE_MIN_FILTER Texture minification function texture GL_NEAREST_
MIPMAP_
LINEAR

glGetTexParameter*()

GL_TEXTURE_MAG_FILTER Texture magnification function texture GL_LINEAR glGetTexParameter*()

GL_TEXTURE_WRAP_S Texture coord S wrap mode texture GL_REPEAT glGetTexParameter*()

GL_TEXTURE_WRAP_T Texture coord T wrap mode
(2D, 3D, cube map textures only)

texture GL_REPEAT glGetTexParameter*()

GL_TEXTURE_WRAP_R Texture coord R wrap mode
(3D textures only)

texture GL_REPEAT glGetTexParameter*()

GL_TEXTURE_PRIORITY Texture object priority texture 1 glGetTexParameter*()

GL_TEXTURE_RESIDENT Texture residency texture varies glGetTexParameteriv()

GL_TEXTURE_MIN_LOD Minimum level of detail texture 1000 glGetTexParameterfv()

GL_TEXTURE_MAX_LOD Maximum level of detail texture 1000 glGetTexParameterfv()

State Variable Description Attribute 
Group

Initial Value Get Command
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GL_TEXTURE_BASE_LEVEL Base texture array texture 0 glGetTexParameterfv()

GL_TEXTURE_MAX_LEVEL Maximum texture array level texture 1000 glGetTexParameterfv()

GL_TEXTURE_LOD_BIAS Texture level-of-detail bias texture 0.0 glGetTexParameterfv()

GL_DEPTH_TEXTURE_MODE Depth texture mode texture GL_
LUMINANCE

glGetTexParameteriv()

GL_TEXTURE_COMPARE_MODE Texture comparison mode texture GL_NONE glGetTexParameteriv()

GL_TEXTURE_COMPARE_FUNC Texture comparison function texture GL_LEQUAL glGetTexParameteriv()

GL_GENERATE_MIPMAP Automatic mipmap generation texture GL_FALSE glGetTexParameter*()

GL_TEXTURE_WIDTH Texture image i’s width — 0 glGetTexLevelParameter*()

GL_TEXTURE_HEIGHT 2D/3D texture image i’s height — 0 glGetTexLevelParameter*()

GL_TEXTURE_DEPTH 3D texture image i’s depth — 0 glGetTexLevelParameter*()

GL_TEXTURE_BORDER Texture image i’s border width — 0 glGetTexLevelParameter*()

GL_TEXTURE_INTERNAL_
FORMAT

Texture image i’s internal image 
format

— GL_RGBA or 
GL_R8

glGetTexLevelParameter*()

GL_TEXTURE_COMPONENTS Texture image i’s internal image 
format

— 1 glGetTexLevelParameter*()

GL_TEXTURE_RED_SIZE Texture image i’s red resolution — 0 glGetTexLevelParameter*()

State Variable Description Attribute 
Group

Initial Value Get Command
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GL_TEXTURE_GREEN_SIZE Texture image i’s green resolution — 0 glGetTexLevelParameter*()

GL_TEXTURE_BLUE_SIZE Texture image i’s blue resolution — 0 glGetTexLevelParameter*()

GL_TEXTURE_ALPHA_SIZE Texture image i’s alpha resolution — 0 glGetTexLevelParameter*()

GL_TEXTURE_LUMINANCE_SIZE Texture image i’s luminance 
resolution

— 0 glGetTexLevelParameter*()

GL_TEXTURE_INTENSITY_SIZE Texture image i’s intensity 
resolution

— 0 glGetTexLevelParameter*()

GL_TEXTURE_DEPTH_SIZE Texture image i’s depth resolution — 0 glGetTexLevelParameter*()

GL_SHARED_SIZE Shared exponent field resolution — 0 glGetTexLevelParameter*()

GL_TEXTURE_RED_TYPE Texture image i’s red type — GL_NONE glGetTexLevelParameter*()

GL_TEXTURE_GREEN_TYPE Texture image i’s green type — GL_NONE glGetTexLevelParameter*()

GL_TEXTURE_BLUE_TYPE Texture image i’s blue type — GL_NONE glGetTexLevelParameter*()

GL_TEXTURE_ALPHA_TYPE Texture image i’s alpha type — GL_NONE glGetTexLevelParameter*()

GL_TEXTURE_LUMINANCE_
TYPE

Texture image i’s luminance type — GL_NONE glGetTexLevelParameter*()

GL_TEXTURE_INTENSITY_TYPE Texture image i’s intensity type — GL_NONE glGetTexLevelParameter*()

GL_TEXTURE_DEPTH_TYPE Texture image i’s depth type — GL_NONE glGetTexLevelParameter*()

State Variable Description Attribute 
Group

Initial Value Get Command
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GL_TEXTURE_COMPRESSED True, if texture image has a 
compressed internal format

— GL_FALSE glGetTexLevelParameter*()

GL_TEXTURE_COMPRESSED_
IMAGE_SIZE

Size (in GLubyte) of compressed 
texture image

— 0 glGetTexLevelParameter*()

GL_COORD_REPLACE Coordinate replacement enable point GL_FALSE glTexEnviv()

GL_ACTIVE_TEXTURE Active texture unit texture GL_TEXTURE0 glGetIntegerv()

GL_TEXTURE_ENV_MODE Texture application function texture GL_MODULATE glGetTexEnviv()

GL_TEXTURE_ENV_COLOR Texture environment color texture (0, 0, 0, 0) glGetTexEnvfv()

GL_TEXTURE_LOD_BIAS Texture level of detail bias texture 0.0 glGetTexEnvfv()

GL_TEXTURE_GEN_x Texgen enabled (x is S, T, R, 
or Q)

texture/
enable

GL_FALSE glIsEnabled()

GL_EYE_PLANE Texgen plane equation coefficients texture — glGetTexGenfv()

GL_OBJECT_PLANE Texgen object linear coefficients texture — glGetTexGenfv()

GL_TEXTURE_GEN_MODE Function used for texgen texture GL_EYE_
LINEAR

glGetTexGeniv()

GL_COMBINE_RGB RGB combiner function texture GL_MODULATE glGetTexEnviv()

GL_COMBINE_ALPHA Alpha combiner function texture GL_MODULATE glGetTexEnviv()

State Variable Description Attribute 
Group

Initial Value Get Command
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GL_SRC0_RGB RGB source 0 texture GL_TEXTURE glGetTexEnviv()

GL_SRC1_RGB RGB source 1 texture GL_PREVIOUS glGetTexEnviv()

GL_SRC2_RGB RGB source 2 texture GL_CONSTANT glGetTexEnviv()

GL_SRC0_ALPHA Alpha source 0 texture GL_TEXTURE glGetTexEnviv()

GL_SRC1_ALPHA Alpha source 1 texture GL_PREVIOUS glGetTexEnviv()

GL_SRC2_ALPHA Alpha source 2 texture GL_CONSTANT glGetTexEnviv()

GL_OPERAND0_RGB RGB operand 0 texture GL_SRC_
COLOR

glGetTexEnviv()

GL_OPERAND1_RGB RGB operand 1 texture GL_SRC_
COLOR

glGetTexEnviv()

GL_OPERAND2_RGB RGB operand 2 texture GL_SRC_ALPHA glGetTexEnviv()

GL_OPERAND0_ALPHA Alpha operand 0 texture GL_SRC_ALPHA glGetTexEnviv()

GL_OPERAND1_ALPHA Alpha operand 1 texture GL_SRC_ALPHA glGetTexEnviv()

GL_OPERAND2_ALPHA Alpha operand 2 texture GL_SRC_ALPHA glGetTexEnviv()

GL_RGB_SCALE RGB post-combiner scaling texture 1.0 glGetTexEnviv()

GL_ALPHA_SCALE Alpha post-combiner scaling texture 1.0 glGetTexEnviv()

State Variable Description Attribute 
Group

Initial Value Get Command
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Pixel Operations

State Variable Description Attribute Group Initial Value Get Command

GL_SCISSOR_TEST Scissoring enabled scissor/enable GL_FALSE glIsEnabled()

GL_SCISSOR_BOX Scissor box scissor — glGetIntegerv()

GL_ALPHA_TEST Alpha test enabled color-buffer/
enable

GL_FALSE glIsEnabled()

GL_ALPHA_TEST_FUNC Alpha test function color-buffer GL_ALWAYS glGetIntegerv()

GL_ALPHA_TEST_REF Alpha test reference value color-buffer 0 glGetIntegerv()

GL_STENCIL_TEST Stenciling enabled stencil-
buffer/enable

GL_FALSE glIsEnabled()

GL_STENCIL_FUNC Stencil function stencil-buffer GL_ALWAYS glGetIntegerv()

GL_STENCIL_VALUE_MASK Stencil mask stencil-buffer 1’s glGetIntegerv()

GL_STENCIL_REF Stencil reference value stencil-buffer 0 glGetIntegerv()

GL_STENCIL_FAIL Stencil fail action stencil-buffer GL_KEEP glGetIntegerv()

GL_STENCIL_PASS_DEPTH_FAIL Stencil depth-buffer fail action stencil-buffer GL_KEEP glGetIntegerv()

GL_STENCIL_PASS_DEPTH_PASS Stencil depth-buffer pass action stencil-buffer GL_KEEP glGetIntegerv()

GL_STENCIL_BACK_FUNC Back stencil function stencil-buffer GL_ALWAYS glGetIntegerv()

Table B-11 Pixel Operations
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GL_STENCIL_BACK_VALUE_
MASK

Back stencil mask stencil-buffer 1’s glGetIntegerv()

GL_STENCIL_BACK_REF Back stencil reference value stencil-buffer 0 glGetIntegerv()

GL_STENCIL_BACK_FAIL Back stencil fail action stencil-buffer GL_KEEP glGetIntegerv()

GL_STENCIL_BACK_PASS_
DEPTH_FAIL

Back stencil depth-buffer fail action stencil-buffer GL_KEEP glGetIntegerv()

GL_STENCIL_BACK_PASS_
DEPTH_PASS

Back stencil depth-buffer pass 
action

stencil-buffer GL_KEEP glGetIntegerv()

GL_DEPTH_TEST Depth buffer enabled depth-buffer/
enable

GL_FALSE glIsEnabledi()

GL_DEPTH_FUNC Depth-buffer test function depth-buffer GL_LESS glGetIntegerv()

GL_BLEND Blending enabled for draw buffer i color-buffer/
enable

GL_FALSE glIsEnabled()

GL_BLEND_SRC_RGB Blending source RGB function color-buffer GL_ONE glGetIntegerv()

GL_BLEND_SRC_ALPHA Blending source alpha function color-buffer GL_ONE glGetIntegerv()

GL_BLEND_DST_RGB Blending destination RGB function color-buffer GL_ZERO glGetIntegerv()

GL_BLEND_DST_ALPHA Blending destination alpha 
function

color-buffer GL_ZERO glGetIntegerv()

State Variable Description Attribute Group Initial Value Get Command
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GL_BLEND_EQUATION_RGB RGB blending equation color-buffer GL_FUNC_ADD glGetIntegerv()

GL_BLEND_EQUATION_ALPHA Alpha blending equation color-buffer GL_FUNC_ADD glGetIntegerv()

GL_BLEND_COLOR Constant blend color color-buffer (0, 0, 0, 0) glGetFloatv()

GL_FRAMEBUFFER_SRGB sRGB update and blending enabled color-buffer/
enable

GL_FALSE glIsEnabled()

GL_DITHER Dithering enabled color-buffer/
enable

GL_TRUE glIsEnabled()

GL_INDEX_LOGIC_OP Color index logical operation 
enabled

color-buffer/
enable

GL_FALSE glIsEnabled()

GL_COLOR_LOGIC_OP RGBA color logical operation 
enabled

color-buffer/
enable

GL_FALSE glIsEnabled()

GL_LOGIC_OP_MODE Logical operation function color-buffer GL_COPY glGetIntegerv()

State Variable Description Attribute Group Initial Value Get Command
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Framebuffer Control

State Variable Description Attribute Group Initial 
Value

Get Command

GL_DRAW_BUFFERi Buffers selected for color i color-buffer — glGetIntegerv()

GL_DRAW_BUFFER Buffers selected for color 0 color-buffer — glGetIntegerv()

GL_INDEX_WRITEMASK Color-index writemask color-buffer 1’s glGetIntegerv()

GL_COLOR_WRITEMASK Color write enabled; R, G, B, or A for 
draw buffer i

color-buffer GL_TRUE glGet
Booleani_v()

GL_DEPTH_WRITEMASK Depth buffer enabled for writing depth-buffer GL_TRUE glGetBooleanv()

GL_STENCIL_WRITEMASK Front stencil buffer writemask stencil-buffer 1’s glGetIntegerv()

GL_STENCIL_BACK_
WRITEMASK

Back stencil buffer writemask stencil-buffer 1’s glGetIntegerv()

GL_COLOR_CLEAR_VALUE Color-buffer clear value (RGBA mode) color-buffer (0, 0, 0, 0) glGetFloatv()

GL_INDEX_CLEAR_VALUE Color-buffer clear value (color-index 
mode)

color-buffer 0 glGetFloatv()

GL_DEPTH_CLEAR_VALUE Depth-buffer clear value depth-buffer 1 glGetIntegerv()

GL_STENCIL_CLEAR_VALUE Stencil-buffer clear value stencil-buffer 0 glGetIntegerv()

GL_ACCUM_CLEAR_VALUE Accumulation-buffer clear value accum-buffer 0 glGetFloatv()

Table B-12 Framebuffer Control State Variables
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Framebuffer Object State

State Variable Description Attribute 
Group

Initial Value Get Command

GL_DRAW_FRAMEBUFFER_
BINDING

Framebuffer object bound to GL_DRAW_
FRAMEBUFFER

— 0 glGetIntegerv()

GL_READ_FRAMEBUFFER_
BINDING

Framebuffer object bound to GL_READ_
FRAMEBUFFER

— 0 glGetIntegerv()

GL_DRAW_BUFFERi Draw buffer selected for color output i color-
buffer

— glGetIntegerv()

GL_READ_BUFFER Read source buffer pixel — glGetIntegerv()

GL_FRAMEBUFFER_
ATTACHMENT_OBJECT_TYPE

Type of image attached to framebuffer 
attachment point

— GL_NONE glGetFramebuffer
Attachment
Parameteriv()

GL_FRAMEBUFFER_
ATTACHMENT_OBJECT_NAME

Name of object attached to framebuffer 
attachment point

— 0 glGetFramebuffer
Attachment
Parameteriv()

GL_FRAMEBUFFER_
ATTACHMENT_TEXTURE_
LEVEL

Mipmap level of texture image attached, if 
object attached is a texture

— 0 glGetFramebuffer
Attachment
Parameteriv()

Table B-13 Framebuffer Object State Variables
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GL_FRAMEBUFFER_
ATTACHMENT_TEXTURE_
CUBE_MAP_FACE

Cubemap face of texture image attached, if 
object attached is a cubemap texture

— GL_
TEXTURE_
CUBE_MAP_
POSITIVE_X

glGetFramebuffer
Attachment
Parameteriv()

GL_FRAMEBUFFER_
ATTACHMENT_TEXTURE_
LAYER

Layer of texture image attached, if 
attached object is a 3D texture

— 0 glGetFramebuffer
Attachment
Parameteriv()

GL_FRAMEBUFFER_
ATTACHMENT_COLOR_
ENCODING

Encoding of components in the attached 
image

— — glGetFramebuffer
Attachment
Parameteriv()

GL_FRAMEBUFFER_
ATTACHMENT_COMPONENT_
TYPE

Type of components in the attached image — — glGetFramebuffer
Attachment
Parameteriv()

GL_FRAMEBUFFER_
ATTACHMENT_RED_SIZE

Size in bits of attached image’s red 
component

— GL_NONE glGetFramebuffer
Attachment
Parameteriv()

GL_FRAMEBUFFER_
ATTACHMENT_GREEN_SIZE

Size in bits of attached image’s green 
component

— GL_NONE glGetFramebuffer
Attachment
Parameteriv()

GL_FRAMEBUFFER_
ATTACHMENT_BLUE_SIZE

Size in bits of attached image’s blue 
component

— GL_NONE glGetFramebuffer
Attachment
Parameteriv()

State Variable Description Attribute 
Group

Initial Value Get Command
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GL_FRAMEBUFFER_
ATTACHMENT_ALPHA_SIZE

Size in bits of attached image’s alpha 
component

— GL_NONE glGetFramebuffer
Attachment
Parameteriv()

GL_FRAMEBUFFER_
ATTACHMENT_DEPTH_SIZE

Size in bits of attached image’s depth 
component

— GL_NONE glGetFramebuffer
Attachment
Parameteriv()

GL_FRAMEBUFFER_
ATTACHMENT_STENCIL_SIZE

Size in bits of attached image’s stencil 
component

— GL_NONE glGetFramebuffer
Attachment
Parameteriv()

State Variable Description Attribute 
Group

Initial Value Get Command
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Renderbuffer Object State

State Variable Description Attribute 
Group

Initial Value Get Command

GL_RENDERBUFFER_BINDING Renderbuffer object bound to GL_
RENDERBUFFER

— 0 glGetIntegerv()

GL_RENDERBUFFER_WIDTH Width of renderbuffer — 0 glGetRenderbuffer
Parameteriv()

GL_RENDERBUFFER_HEIGHT Height of renderbuffer — 0 glGetRenderbuffer
Parameteriv()

GL_RENDERBUFFER_
INTERNAL_FORMAT

Internal format of renderbuffer — GL_RGBA glGetRenderbuffer
Parameteriv()

GL_RENDERBUFFER_RED_SIZE Size in bits of renderbuffer image’s red 
component

— 0 glGetRenderbuffer
Parameteriv()

GL_RENDERBUFFER_GREEN_
SIZE

Size in bits of renderbuffer image’s green 
component

— 0 glGetRenderbuffer
Parameteriv()

GL_RENDERBUFFER_BLUE_
SIZE

Size in bits of renderbuffer image’s blue 
component

— 0 glGetRenderbuffer
Parameteriv()

GL_RENDERBUFFER_ALPHA_
SIZE

Size in bits of renderbuffer image’s alpha 
component

— 0 glGetRenderbuffer
Parameteriv()

GL_RENDERBUFFER_DEPTH_
SIZE

Size in bits of renderbuffer image’s depth 
component

— 0 glGetRenderbuffer
Parameteriv()

Table B-14 Renderbuffer Object State Variables
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Pixels

GL_RENDERBUFFER_STENCIL_
SIZE

Size in bits of renderbuffer image’s stencil 
component

— 0 glGetRenderbuffer
Parameteriv()

GL_RENDERBUFFER_SAMPLES Number of samples — 0 glGetRenderbuffer
Parameteriv()

State Variable Description Attribute 
Group

Initial Value Get Command

GL_UNPACK_SWAP_BYTES Value of GL_UNPACK_SWAP_BYTES pixel-store GL_FALSE glGetBooleanv()

GL_UNPACK_LSB_FIRST Value of GL_UNPACK_LSB_FIRST pixel-store GL_FALSE glGetBooleanv()

GL_UNPACK_IMAGE_HEIGHT Value of GL_UNPACK_IMAGE_HEIGHT pixel-store 0 glGetIntegerv()

GL_UNPACK_SKIP_IMAGES Value of GL_UNPACK_SKIP_IMAGES pixel-store 0 glGetIntegerv()

GL_UNPACK_ROW_LENGTH Value of GL_UNPACK_ROW_LENGTH pixel-store 0 glGetIntegerv()

GL_UNPACK_SKIP_ROWS Value of GL_UNPACK_SKIP_ROWS pixel-store 0 glGetIntegerv()

GL_UNPACK_SKIP_PIXELS Value of GL_UNPACK_SKIP_PIXELS pixel-store 0 glGetIntegerv()

Table B-15 Pixel State Variables

State Variable Description Attribute 
Group

Initial Value Get Command
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GL_UNPACK_ALIGNMENT Value of GL_UNPACK_ALIGNMENT pixel-store 4 glGetIntegerv()

GL_PIXEL_PACK_BUFFER_
BINDING

Pixel pack buffer binding pixel-store 0 glGetIntegerv()

GL_PIXEL_UNPACK_BUFFER_
BINDING

Pixel unpack buffer binding pixel-store 0 glGetIntegerv()

GL_PACK_SWAP_BYTES Value of GL_PACK_SWAP_BYTES pixel-store GL_FALSE glGetBooleanv()

GL_PACK_LSB_FIRST Value of GL_PACK_LSB_FIRST pixel-store GL_FALSE glGetBooleanv()

GL_PACK_IMAGE_HEIGHT Value of GL_PACK_IMAGE_HEIGHT pixel-store 0 glGetIntegerv()

GL_PACK_SKIP_IMAGES Value of GL_PACK_SKIP_IMAGES pixel-store 0 glGetIntegerv()

GL_PACK_ROW_LENGTH Value of GL_PACK_ROW_LENGTH pixel-store 0 glGetIntegerv()

GL_PACK_SKIP_ROWS Value of GL_PACK_SKIP_ROWS pixel-store 0 glGetIntegerv()

GL_PACK_SKIP_PIXELS Value of GL_PACK_SKIP_PIXELS pixel-store 0 glGetIntegerv()

GL_PACK_ALIGNMENT Value of GL_PACK_ALIGNMENT pixel-store 4 glGetIntegerv()

GL_MAP_COLOR True if colors are mapped pixel GL_FALSE glGetBooleanv()

GL_MAP_STENCIL True if stencil values are mapped pixel GL_FALSE glGetBooleanv()

GL_INDEX_SHIFT Value of GL_INDEX_SHIFT pixel 0 glGetIntegerv()

State Variable Description Attribute 
Group

Initial Value Get Command

Table B-15 (continued)        Pixel State Variables

http://lib.ommolketab.ir
http//lib.ommolketab.ir


778
A

ppendix
B

: State V
ariables

GL_INDEX_OFFSET Value of GL_INDEX_OFFSET pixel 0 glGetIntegerv()

GL_x_SCALE Value of GL_x_SCALE; x is GL_RED, 
GL_GREEN, GL_BLUE, GL_ALPHA, or 
GL_DEPTH

pixel 1 glGetFloatv()

GL_x_BIAS Value of GL_x_BIAS; x is GL_RED, 
GL_GREEN, GL_BLUE, GL_ALPHA, or 
GL_DEPTH

pixel 0 glGetFloatv()

GL_COLOR_TABLE True if color table lookup is enabled pixel/
enable

GL_FALSE glIsEnabled()

GL_POST_CONVOLUTION_
COLOR_TABLE

True if post convolution color table lookup 
is enabled

pixel/
enable

GL_FALSE glIsEnabled()

GL_POST_COLOR_MATRIX_
COLOR_TABLE

True if post color matrix color table lookup 
is enabled

pixel/
enable

GL_FALSE glIsEnabled()

GL_COLOR_TABLE Color tables — empty glGetColorTable()

GL_COLOR_TABLE_FORMAT Color tables’ internal image format — GL_RGBA glGetColorTable
Parameteriv()

GL_COLOR_TABLE_WIDTH Color tables’ specified width — 0 glGetColorTable
Parameteriv()

State Variable Description Attribute 
Group

Initial Value Get Command
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GL_COLOR_TABLE_x_SIZE Color table component resolution; 
x is RED, GREEN, BLUE, 
ALPHA, LUMINANCE, or 
INTENSITY

— 0 glGetColorTable
Parameteriv()

GL_COLOR_TABLE_SCALE Scale factors applied to color table entries pixel (1, 1, 1, 1) glGetColorTable
Parameterfv()

GL_COLOR_TABLE_BIAS Bias values applied to color table entries pixel (0, 0, 0, 0) glGetColorTable
Parameterfv()

GL_CONVOLUTION_1D True if 1D convolution is enabled pixel/
enable

GL_FALSE glIsEnabled()

GL_CONVOLUTION_2D True if 2D convolution is enabled pixel/
enable

GL_FALSE glIsEnabled()

GL_SEPARABLE_2D True if separable 2D convolution is 
enabled

pixel/
enable

GL_FALSE glIsEnabled()

GL_CONVOLUTION_1D 1D convolution filter — empty glGetConvolution
Filter()

GL_CONVOLUTION_2D 2D convolution filter — empty glGetConvolution
Filter()

GL_SEPARABLE_2D 2D separable convolution filter — empty glGetSeparable
Filter()

State Variable Description Attribute 
Group

Initial Value Get Command
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GL_CONVOLUTION_
BORDER_COLOR

Convolution border color pixel (0, 0, 0, 0) glGetConvolution
Parameterfv()

GL_CONVOLUTION_
BORDER_MODE

Convolution border mode pixel GL_REDUCE glGetConvolution
Parameteriv()

GL_CONVOLUTION_
FILTER_SCALE

Scale factors applied to convolution filter 
entries

pixel (1, 1, 1, 1) glGetConvolution
Parameterfv()

GL_CONVOLUTION_
FILTER_BIAS

Bias values applied to convolution filter 
entries

pixel (0, 0, 0, 0) glGetConvolution
Parameterfv()

GL_CONVOLUTION_FORMAT Convolution filter internal format — GL_RGBA glGetConvolution
Parameteriv()

GL_CONVOLUTION_WIDTH Convolution filter width — 0 glGetConvolution
Parameteriv()

GL_CONVOLUTION_HEIGHT Convolution filter height — 0 glGetConvolution
Parameteriv()

GL_POST_CONVOLUTION_
x_SCALE

Component scale factors after 
convolution; x is RED, GREEN, BLUE, or 
ALPHA

pixel 1 glGetFloatv()

GL_POST_CONVOLUTION_
x_BIAS

Component bias values after convolution; 
x is RED, GREEN, BLUE, or ALPHA

pixel 0 glGetFloatv()

State Variable Description Attribute 
Group

Initial Value Get Command
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GL_POST_COLOR_MATRIX_
x_SCALE

Component scale factors after color 
matrix; x is RED, GREEN, BLUE, or ALPHA

pixel 1 glGetFloatv()

GL_POST_COLOR_MATRIX_
x_BIAS

Component bias values after color matrix; 
x is RED, GREEN, BLUE, or ALPHA

pixel 0 glGetFloatv()

GL_HISTOGRAM True if histogramming is enabled pixel/
enable

GL_FALSE glIsEnabled()

GL_HISTOGRAM Histogram table — empty glGetHistogram()

GL_HISTOGRAM_WIDTH Histogram table width — 0 glGetHistogram
Parameteriv()

GL_HISTOGRAM_FORMAT Histogram table internal format — GL_RGBA glGetHistogram
Parameteriv()

GL_HISTOGRAM_x_SIZE Histogram table component resolution;
x is RED, GREEN, BLUE, ALPHA, or 
LUMINANCE

— 0 glGetHistogram
Parameteriv()

GL_HISTOGRAM_SINK True if histogramming consumes pixel 
groups

— GL_FALSE glGetHistogram
Parameteriv()

GL_MINMAX True if minmax is enabled pixel/
enable

GL_FALSE glIsEnabled()

State Variable Description Attribute 
Group

Initial Value Get Command
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GL_MINMAX Minmax table — See Note a
at the end 
of table.

glGetMinmax()

GL_MINMAX_FORMAT Minmax table internal format — GL_RGBA glGetMinmax
Parameteriv()

GL_MINMAX_SINK True if minmax consumes pixel groups — GL_FALSE glGetMinmax
Parameteriv()

GL_ZOOM_X x zoom factor pixel 1.0 glGetFloatv()

GL_ZOOM_Y y zoom factor pixel 1.0 glGetFloatv()

GL_PIXEL_MAP_x glPixelMap() translation tables;
x is a map name from Table 8-1

— 0’s glGetPixelMap*()

GL_PIXEL_MAP_x_SIZE Size of glPixelMap() translation table x — 1 glGetIntegerv()

GL_READ_BUFFER Read source buffer pixel — glGetIntegerv()

a. Min table initially set to maximum representable values. Max table set to minimum representable values.

State Variable Description Attribute 
Group

Initial Value Get Command
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Evaluators

State Variable Description Attribute Group Initial Value Get Command

GL_ORDER 1D map order — 1 glGetMapiv()

GL_ORDER 2D map orders — 1, 1 glGetMapiv()

GL_COEFF 1D control points — — glGetMapfv()

GL_COEFF 2D control points — — glGetMapfv()

GL_DOMAIN 1D domain endpoints — — glGetMapfv()

GL_DOMAIN 2D domain endpoints — — glGetMapfv()

GL_MAP1_x 1D map enables: x is map type eval/enable GL_FALSE glIsEnabled()

GL_MAP2_x 2D map enables: x is map type eval/enable GL_FALSE glIsEnabled()

GL_MAP1_GRID_DOMAIN 1D grid endpoints eval 0, 1 glGetFloatv()

GL_MAP2_GRID_DOMAIN 2D grid endpoints eval 0, 1; 0, 1 glGetFloatv()

GL_MAP1_GRID_SEGMENTS 1D grid divisions eval 1 glGetFloatv()

GL_MAP2_GRID_SEGMENTS 2D grid divisions eval 1, 1 glGetFloatv()

GL_AUTO_NORMAL True if automatic normal 
generation is enabled

eval/enable GL_FALSE glIsEnabled()

Table B-16 Evaluator State Variables

http://lib.ommolketab.ir
http//lib.ommolketab.ir


784
A

ppendix
B

: State V
ariables

Shader Object State

State Variable Description Attribute Group Initial Value Get Command

GL_SHADER_TYPE Type of shader (vertex or 
fragment)

— — glGetShaderiv()

GL_DELETE_STATUS Shader flagged for deletion — GL_FALSE glGetShaderiv()

GL_COMPILE_STATUS Last compilation status — GL_FALSE glGetShaderiv()

— Information log for shader 
objects

— empty string glGetShaderInfoLog()

GL_INFO_LOG_LENGTH String length of shader 
information log

— 0 glGetShaderiv()

— Source code for a shader — empty string glGetShaderSource()

GL_SHADER_SOURCE_LENGTH String length of shader 
source code

— 0 glGetShaderiv()

Table B-17 Shader Object State Variables
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Program Object State

State Variable Description Attribute Group Initial Value Get Command

GL_CURRENT_PROGRAM Name of current program object — 0 glGetIntegerv()

GL_DELETE_STATUS Program object deleted — GL_FALSE glGetProgramiv()

GL_LINK_STATUS Last link attempt succeeded — GL_FALSE glGetProgramiv()

GL_VALIDATE_STATUS Last validate attempt succeeded — GL_FALSE glGetProgramiv()

GL_ATTACHED_SHADERS Number of attached shader 
objects

— 0 glGetProgramiv()

— Shader objects attached — empty glGetAttachedShaders()

— Info log for program object — empty glGetProgramInfoLog()

GL_INFO_LOG_LENGTH Length of info log — 0 glGetProgramiv()

GL_ACTIVE_UNIFORMS Number of active uniforms — 0 glGetProgramiv()

— Location of active uniforms — — glGetUniformLocation()

— Size of active uniform — — glGetActiveUniform()

— Type of active uniform — — glGetActiveUniform()

— Name of active uniform — empty glGetActiveUniform()

GL_ACTIVE_UNIFORM_
MAX_LENGTH

Maximum active uniform name 
length

— 0 glGetProgramiv()

Table B-18 Program Object State Variables
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— Uniform value — 0 glGetUniform()

GL_ACTIVE_ATTRIBUTES Number of active attributes — 0 glGetProgramiv()

— Location of active generic 
attribute

— — glGetAttribLocation()

— Size of active attribute — — glGetActiveAttrib()

— Type of active attribute — — glGetActiveAttrib()

— Name of active attribute — empty glGetActiveAttrib()

GL_ACTIVE_ATTRIBUTE_
MAX_LENGTH

Maximum active attribute name 
length

— 0 glGetProgramiv()

GL_TRANSFORM_
FEEDBACK_BUFFER_MODE

Transform feedback mode for the 
program

— GL_
INTERLEAV
ED_ATTRIBS

glGetProgramiv()

GL_TRANSFORM_
FEEDBACK_VARYINGS

Number of varyings to stream to 
buffer objects

— 0 glGetProgramiv()

GL_TRANSFORM_
FEEDBACK_VARYING_
MAX_LENGTH

Maximum transform feedback 
varying name length

— 0 glGetProgramiv()

— Size of each transform feedback 
varying variable

— — glGetTransformFeedback
Varying()

State Variable Description Attribute Group Initial Value Get Command
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— Type of each transform feedback 
varying variable

— — glGetTransformFeedback
Varying()

— Name of each transform feedback 
varying variable

— — glGetTransformFeedback
Varying()

GL_UNIFORM_BUFFER_
BINDING

Uniform buffer object bound to 
to the context

— 0 glGetIntegerv()

GL_UNIFORM_BUFFER_
BINDING

Uniform buffer object bound to a 
specific context binding point

— 0 glGetIntegeri_v()

GL_ACTIVE_UNIFORM_
BLOCKS

Number of active uniform blocks — 0 glGetProgramiv()

GL_ACTIVE_UNIFORM_
BLOCK_MAX_NAME_
LENGTH

Length of longest active uniform 
block name

— 0 glGetProgramiv()

GL_UNIFORM_TYPE Type of active uniform — — glGetActiveUniformsiv()

GL_UNIFORM_SIZE Size of active uniform — — glGetActiveUniformsiv()

GL_UNIFORM_NAME_
LENGTH

Uniform name length — — glGetActiveUniformsiv()

GL_UNIFORM_BLOCK_
INDEX

Uniform block index — — glGetActiveUniformsiv()

GL_UNIFORM_OFFSET Uniform buffer offset — — glGetActiveUniformsiv()

State Variable Description Attribute Group Initial Value Get Command
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GL_UNIFORM_ARRAY_
STRIDE

Uniform buffer array stride — — glGetActiveUniformsiv()

GL_UNIFORM_MATRIX_
STRIDE

Uniform buffer intra-matrix 
stride

— — glGetActiveUniformsiv()

GL_UNIFORM_IS_ROW_
MAJOR

Is uniform a row-major matrix? — — glGetActiveUniformsiv()

GL_UNIFORM_BLOCK_
BINDING

Uniform buffer binding point 
associated with the specified 
uniform block

— 0 glGetActiveUniform
Blockiv()

GL_UNIFORM_BLOCK_
DATA_SIZE

Size of storage needed to hold 
uniform block’s data

— — glGetActiveUniform
Blockiv()

GL_UNIFORM_BLOCK_
ACTIVE_UNIFORMS

Number of active uniforms in the 
specified uniform block

— — glGetActiveUniform
Blockiv()

GL_UNIFORM_BLOCK_
ACTIVE_UNIFORMS_
INDICES

Array of active uniform indices of 
the specified uniform block

— — glGetActiveUniform
Blockiv()

GL_UNIFORM_BLOCK_
REFERENCED_BY_VERTEX_
SHADER

True if uniform block is actively 
referenced by the vertex stage

— 0 glGetActiveUniform
Blockiv()

GL_UNIFORM_BLOCK_
REFERENCED_BY_
FRAGMENT_SHADER

True if uniform block is actively 
referenced by the fragment stage

— 0 glGetActiveUniform
Blockiv()

State Variable Description Attribute Group Initial Value Get Command
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Query Object State

Transform Feedback State

State Variable Description Attribute Group Initial Value Get Command

GL_QUERY_RESULT Query object result — 0 glGetQueryObject
uiv()

GL_QUERY_RESULT_AVAILABLE Is the query object’s 
result available?

— GL_FALSE glGetQueryObject
uiv()

Table B-19 Query Object State Variables

State Variable Description Attribute Group Initial Value Get Command

GL_TRANSFORM_FEEDBACK_
BUFFER_BINDING

Buffer object bound to 
generic bind point for 
transform feedback

— 0 glGetIntegerv()

GL_TRANSFORM_FEEDBACK_
BUFFER_BINDING

Buffer object bound to 
each transform feedback 
attribute stream

— 0 glGetIntegeri_v()

GL_TRANSFORM_FEEDBACK_
BUFFER_START

Starting offset of range 
bound for each 
transform feedback 
attribute stream

— 0 glGetIntegeri_v()

Table B-20 Transform Feedback State Variables
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GL_TRANSFORM_FEEDBACK_
BUFFER_SIZE

Size of range bound for 
each transform feedback 
attribute stream

— 0 glGetIntegeri_v()

GL_TRANSFORM_FEEDBACK_
INTERLEAVED_COMPONENTS

Maximum number of 
components to write to a 
single buffer in 
interleaved mode

— 64 glGetIntegerv()

GL_TRANSFORM_FEEDBACK_
SEPARATE_ATTRIBS

Maximum number of 
separate varying 
attributes that can be 
captured in transform 
feedback

— 4 glGetIntegerv()

GL_TRANSFORM_FEEDBACK_
SEPARATE_COMPONENTS

Maximum number of 
separate varying 
components in separate 
mode

— 4 glGetIntegerv()

State Variable Description Attribute Group Initial Value Get Command
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Vertex Shader State

Hints

State Variable Description Attribute Group Initial Value Get Command

GL_VERTEX_PROGRAM_TWO_SIDE Two-sided color mode enable GL_FALSE glIsEnabled()

GL_CURRENT_VERTEX_ATTRIB Generic vertex attribute current (0, 0, 0, 1) glGetVertex
Attribfv()

GL_VERTEX_PROGRAM_POINT_SIZE Point size mode enable GL_FALSE glIsEnabled()

Table B-21 Vertex Shader State Variables

State Variable Description Attribute 
Group

Initial Value Get Command

GL_PERSPECTIVE_CORRECTION_HINT Perspective correction hint hint GL_DONT_CARE glGetIntegerv()

GL_POINT_SMOOTH_HINT Point smooth hint hint GL_DONT_CARE glGetIntegerv()

GL_LINE_SMOOTH_HINT Line smooth hint hint GL_DONT_CARE glGetIntegerv()

GL_POLYGON_SMOOTH_HINT Polygon smooth hint hint GL_DONT_CARE glGetIntegerv()

GL_FOG_HINT Fog hint hint GL_DONT_CARE glGetIntegerv()

GL_GENERATE_MIPMAP_HINT Mipmap generation hint hint GL_DONT_CARE glGetIntegerv()

Table B-22 Hint State Variables
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Implementation-Dependent Values

GL_TEXTURE_COMPRESSION_HINT Texture compression hint hint GL_DONT_CARE glGetIntegerv()

GL_FRAGMENT_SHADER_DERIVATIVE_
HINT

Fragment shader derivative 
accuracy hint

hint GL_DONT_CARE glGetIntegerv()

State Variable Description Attribute 
Group

Minimum 
Value

Get Command

GL_MAX_LIGHTS Maximum number of lights — 8 glGetIntegerv()

GL_MAX_CLIP_DISTANCES (which 
replaces GL_MAX_CLIP_PLANES in Version 
3.0 and greater)

Maximum number of user clipping 
planes

— 6 glGetIntegerv()

GL_MAX_COLOR_MATRIX_STACK_DEPTH Maximum color matrix stack depth — 2 glGetIntegerv()

GL_MAX_MODELVIEW_STACK_DEPTH Maximum modelview-matrix stack 
depth

— 32 glGetIntegerv()

GL_MAX_PROJECTION_STACK_DEPTH Maximum projection-matrix stack 
depth

— 2 glGetIntegerv()

Table B-23 Implementation-Dependent State Variables

State Variable Description Attribute 
Group

Initial Value Get Command
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GL_MAX_TEXTURE_STACK_DEPTH Maximum depth of texture matrix 
stack

— 2 glGetIntegerv()

GL_SUBPIXEL_BITS Number of bits of subpixel precision in 
x and y

— 4 glGetIntegerv()

GL_MAX_3D_TEXTURE_SIZE See discussion in “Texture Proxy” in 
Chapter 9

— 16 glGetIntegerv()

GL_MAX_TEXTURE_SIZE See discussion in “Texture Proxy” in 
Chapter 9

— 64 glGetIntegerv()

GL_MAX_ARRAY_TEXTURE_LAYERS Maximum number of layers for texture 
arrays

— 256 glGetIntegerv()

GL_MAX_TEXTURE_LOD_BIAS Maximum absolute texture level of 
detail bias

— 2.0 glGetFloatv()

GL_MAX_CUBE_MAP_TEXTURE_SIZE Maximum cube map texture image 
dimension

— 16 glGetIntegerv()

GL_MAX_RENDERBUFFER_SIZE Maximum width and height of 
renderbuffers

— 1024 glGetIntegerv()

GL_MAX_PIXEL_MAP_TABLE Maximum size of a glPixelMap() 
translation table

— 32 glGetIntegerv()

GL_MAX_NAME_STACK_DEPTH Maximum selection-name stack depth — 64 glGetIntegerv()

State Variable Description Attribute 
Group

Minimum 
Value

Get Command
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GL_MAX_LIST_NESTING Maximum display-list call nesting — 64 glGetIntegerv()

GL_MAX_EVAL_ORDER Maximum evaluator polynomial order — 8 glGetIntegerv()

GL_MAX_VIEWPORT_DIMS Maximum viewport dimensions — — glGetIntegerv()

GL_MAX_ATTRIB_STACK_DEPTH Maximum depth of the attribute stack — 16 glGetIntegerv()

GL_MAX_CLIENT_ATTRIB_STACK_DEPTH Maximum depth of the client attribute 
stack

— 16 glGetIntegerv()

GL_NUM_COMPRESSED_TEXTURE_
FORMATS

Number of supported texture 
compression formats

— — glGetIntegerv()

GL_AUX_BUFFERS Number of auxiliary buffers — 0 glGetBooleanv()

GL_RGBA_MODE True if color buffers store RGBA — — glGetBooleanv()

GL_INDEX_MODE True if color buffers store indices — — glGetBooleanv()

GL_DOUBLEBUFFER True if front and back buffers exist — — glGetBooleanv()

GL_STEREO True if left and right buffers exist — — glGetBooleanv()

GL_ALIASED_POINT_SIZE_RANGE Range (low to high) of aliased point 
sizes

— 1, 1 glGetFloatv()

GL_SMOOTH_POINT_SIZE_RANGE Range (low to high) of antialiased 
point sizes

— 1, 1 glGetFloatv()

State Variable Description Attribute 
Group

Minimum 
Value

Get Command
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GL_SMOOTH_POINT_SIZE_GRANULARITY Antialiased point-size granularity — — glGetFloatv()

GL_ALIASED_LINE_WIDTH_RANGE Range (low to high) of aliased line 
widths

— 1, 1 glGetFloatv()

GL_SMOOTH_LINE_WIDTH_RANGE Range (low to high) of antialiased line 
widths

— 1, 1 glGetFloatv()

GL_SMOOTH_LINE_WIDTH_
GRANULARITY

Antialiased line-width granularity — — glGetFloatv()

GL_MAX_CONVOLUTION_WIDTH Maximum width of convolution filter — 3 glConvolution
Parameteriv()

GL_MAX_CONVOLUTION_HEIGHT Maximum height of convolution filter — 3 glConvolution
Parameteriv()

GL_MAX_ELEMENTS_INDICES Recommended maximum number of 
glDrawRangeElements() indices

— — glGetIntegerv()

GL_MAX_ELEMENTS_VERTICES Recommended maximum number of 
glDrawRangeElements() vertices

— — glGetIntegerv()

GL_MAX_TEXTURE_UNITS Maximum number of texture units
(not to exceed 32)

— 2 glGetIntegerv()

GL_SAMPLE_BUFFERS Number of multisample buffers — 0 glGetIntegerv()

GL_SAMPLES Coverage mask size — 0 glGetIntegerv()

State Variable Description Attribute 
Group

Minimum 
Value

Get Command
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GL_MAX_SAMPLES Maximum number of multisample 
samples

— 4

GL_MAX_COLOR_ATTACHMENTS Maximum number of framebuffer 
object color attachment points

— 8

GL_COMPRESSED_TEXTURE_FORMATS Enumerated compressed texture 
formats

— — glGetIntegerv()

GL_NUM_COMPRESSED_TEXTURE_
FORMATS

Number of enumerated compressed 
texture formats

— 0 glGetIntegerv()

GL_QUERY_COUNTER_BITS Number of bits in the occlusion query 
counter

— — glGetQueryiv()

GL_EXTENSIONS Supported extensions — — glGetStringi()

GL_NUM_EXTENSIONS Number of supported extensions — — glGetIntegerv()

GL_MAJOR_VERSION Major version number — — glGetIntegerv()

GL_MINOR_VERSION Minor version number — — glGetIntegerv()

GL_CONTEXT_FLAGS Value for full- or forward-compatible 
context flag

— — glGetIntegerv()

GL_RENDERER Renderer string — — glGetString()

State Variable Description Attribute 
Group

Minimum 
Value

Get Command
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GL_SHADING_LANGUAGE_VERSION OpenGL Shading Language (GLSL) 
version

— — glGetString()

GL_VENDOR Vendor string — — glGetString()

GL_VERSION Version string — — glGetString()

GL_MAX_VERTEX_ATTRIBS Number of active vertex attributes — 16 glGetIntegerv()

GL_MAX_VERTEX_UNIFORM_
COMPONENTS

Number of words for vertex shader 
uniform variables

— 512 glGetIntegerv()

GL_MAX_VARYING_COMPONENTS 
(which replaces GL_MAX_VARYING_
FLOATS in Version 3.0 and greater)

Number of floats for varying variables — 32 glGetIntegerv()

GL_MAX_COMBINED_TEXTURE_IMAGE_
UNITS

Total number of texture units 
accessible by OpenGL

— 2 glGetIntegerv()

GL_MAX_VERTEX_TEXTURE_IMAGE_
UNITS

Number of texture image units 
accessible by a vertex shader

— 0 glGetIntegerv()

GL_MAX_TEXTURE_IMAGE_UNITS Number of texture image units 
accessible by fragment processing

— 2 glGetIntegerv()

GL_MAX_TEXTURE_COORDS Number of texture-coordinate sets — 2 glGetIntegerv()

State Variable Description Attribute 
Group

Minimum 
Value

Get Command
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GL_MAX_TEXTURE_BUFFER_SIZE Number of addressable texels for buffer 
textures

— 65536 glGetIntegerv()

GL_MAX_RECTANGLE_TEXTURE_SIZE Maximum width and height of 
rectangular textures

— 1024 glGetIntegerv()

GL_MAX_FRAGMENT_UNIFORM_
COMPONENTS

Number of words for fragment shader 
uniform variables

— 64 glGetIntegerv()

GL_MIN_PROGRAM_TEXEL_OFFSET Minimum texel offset allowed in texel 
lookup

— –8 glGetIntegerv()

GL_MAX_PROGRAM_TEXEL_OFFSET Maximum texel offset allowed in texel 
lookup

— 7 glGetIntegerv()

GL_MAX_DRAW_BUFFERS Maximum number of active draw 
buffers

— 1+ glGetIntegerv()

GL_MAX_VERTEX_UNIFORM_BLOCKS Maximum number of vertex uniform 
buffers per program

— 12 glGetIntegerv()

GL_MAX_FRAGMENT_UNIFORM_BLOCKS Maximum number of fragment 
uniform buffers per program

— 12 glGetIntegerv()

GL_MAX_COMBINED_UNIFORM_BLOCKS Maximum number of combined 
uniform buffers per program

— 24 glGetIntegerv()

State Variable Description Attribute 
Group

Minimum 
Value

Get Command
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GL_MAX_UNIFORM_BUFFER_BINDINGS Maximum number of uniform buffer 
binding points per context

— 24 glGetIntegerv()

GL_MAX_UNIFORM_BLOCK_SIZE Maximum size in machine units of a 
uniform block

— 16384 glGetIntegerv()

GL_UNIFORM_BUFFER_OFFSET_
ALIGNMENT

Minimum required alignment for 
uniform buffer sizes and offsets

— 1 glGetIntegerv()

GL_MAX_VERTEX_UNIFORM_
COMPONENTS

Number of words for vertex shader 
uniform variables in default uniform 
block

— 1 glGetIntegerv()

GL_MAX_FRAGMENT_UNIFORM_
COMPONENTS

Number of words for fragment shader 
uniform variables in default uniform 
block

— 1 glGetIntegerv()

GL_MAX_COMBINED_VERTEX_
UNIFORM_COMPONENTS

Number of words for vertex shader 
uniform variables in all uniform blocks 
(including the default uniform block)

— 1 glGetIntegerv()

GL_MAX_COMBINED_FRAGMENT_
UNIFORM_COMPONENTS

Number of words for fragment shader 
uniform variables in all uniform blocks 
(including the default uniform block)

— 1 glGetIntegerv()

State Variable Description Attribute 
Group

Minimum 
Value

Get Command
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Implementation-Dependent Pixel Depths

Miscellaneous

State Variable Description Attribute 
Group

Minimum 
Value

Get Command

GL_x_BITS Number of bits in x color buffer component 
(x is one of RED, GREEN, BLUE, ALPHA, or INDEX)

— — glGetIntegerv()

GL_DEPTH_BITS Number of depth-buffer bitplanes — — glGetIntegerv()

GL_STENCIL_BITS Number of stencil bitplanes — — glGetIntegerv()

GL_ACCUM_x_BITS Number of bits in x accumulation buffer component 
(x is one of RED, GREEN, BLUE, or ALPHA)

— — glGetIntegerv()

Table B-24 Implementation-Dependent Pixel-Depth State Variables

State Variable Description Attribute 
Group

Initial Value Get Command

GL_LIST_BASE Setting of glListBase() list 0 glGetIntegerv()

GL_LIST_INDEX Number of display list under 
construction; 0 if none

— 0 glGetIntegerv()

GL_LIST_MODE Mode of display list under construction; 
undefined if none

— 0 glGetIntegerv() 

Table B-25 Miscellaneous State Variables
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GL_ATTRIB_STACK_DEPTH Attribute stack pointer — 0 glGetIntegerv()

GL_CLIENT_ATTRIB_STACK_DEPTH Client attribute stack pointer — 0 glGetIntegerv()

GL_NAME_STACK_DEPTH Name stack depth — 0 glGetIntegerv()

GL_RENDER_MODE glRenderMode() setting — GL_RENDER glGetIntegerv()

GL_SELECTION_BUFFER_POINTER Pointer to selection buffer select 0 glGetPointerv()

GL_SELECTION_BUFFER_SIZE Size of selection buffer select 0 glGetIntegerv()

GL_FEEDBACK_BUFFER_POINTER Pointer to feedback buffer feedback 0 glGetPointerv()

GL_FEEDBACK_BUFFER_SIZE Size of feedback buffer feedback 0 glGetIntegerv()

GL_FEEDBACK_BUFFER_TYPE Type of feedback buffer feedback GL_2D glGetIntegerv()

— Current error code(s) — 0 glGetError()

GL_CURRENT_QUERY Active occlusion query ID — 0 glGetQueryiv()

GL_COPY_READ_BUFFER Buffer object bound to copy buffer 
“read” bind point

— 0 glGetIntegerv()

GL_COPY_WRITE_BUFFER Buffer object bound to copy buffer 
“write” bind point

— 0 glGetIntegerv()

GL_TEXTURE_BUFFER Buffer object bound to texture buffer 
bind point

— 0 glGetIntegerv()

State Variable Description Attribute 
Group

Initial Value Get Command
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 Appendix C

C.Homogeneous Coordinates and
Transformation Matrices

This appendix presents a brief discussion of homogeneous coordinates. 
It also lists the forms of the transformation matrices used for rotation, 
scaling, translation, perspective projection, and orthographic projection. 
These topics are introduced and discussed in Chapter 3. For a more 
detailed discussion of these subjects, see almost any book on three-
dimensional computer graphics—for example, Computer Graphics: 
Principles and Practice, by Foley, van Dam, Feiner, and Hughes (Addison-
Wesley, 1990); or a text on projective geometry—for example, The Real 
Projective Plane, by H. S. M. Coxeter, 2nd ed. (Cambridge University Press, 
1961). In the discussion that follows, the term homogeneous coordinates
always means three-dimensional homogeneous coordinates, although 
projective geometries exist for all dimensions.

This appendix has the following major sections:

• “Homogeneous Coordinates”

• “Transformation Matrices”
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Homogeneous Coordinates

OpenGL commands usually deal with two- and three-dimensional vertices, 
but in fact all are treated internally as three-dimensional homogeneous ver-
tices comprising four coordinates. Every column vector (x, y, z, w)T repre-
sents a homogeneous vertex if at least one of its elements is nonzero. If the 
real number a is nonzero, then (x, y, z, w)T and (ax, ay, az, aw)T represent 
the same homogeneous vertex. (This is just like fractions: x/y = (ax)/(ay).) A 
three-dimensional Euclidean space point (x, y, z)T becomes the homoge-
neous vertex with coordinates (x, y, z, 1.0)T, and the two-dimensional 
Euclidean point (x, y)T becomes (x, y, 0.0, 1.0)T.

As long as w is nonzero, the homogeneous vertex (x, y, z, w)T corresponds 
to the three-dimensional point (x/w, y/w, z/w)T. If w = 0.0, it corresponds to 
no Euclidean point, but rather to some idealized “point at infinity.” To under-
stand this point at infinity, consider the point (1, 2, 0, 0), and note that the 
sequence of points (1, 2, 0, 1), (1, 2, 0, 0.01), and (1, 2.0, 0.0, 0.0001) corre-
sponds to the Euclidean points (1, 2), (100, 200), and (10,000, 20,000). This 
sequence represents points rapidly moving toward infinity along the line 
2x = y. Thus, you can think of (1, 2, 0, 0) as the point at infinity in the direc-
tion of that line.

Note: OpenGL might not handle homogeneous clip coordinates with w < 0 
correctly. To be sure that your code is portable to all OpenGL systems, 
use only non-negative w-values.

Transforming Vertices

Vertex transformations (such as rotations, translations, scaling, and shear-
ing) and projections (such as perspective and orthographic) can all be 
represented by applying an appropriate 4 4 matrix to the coordinates rep-
resenting the vertex. If v represents a homogeneous vertex and M is a 4 4
transformation matrix, then Mv is the image of v under the transformation 
by M. (In computer-graphics applications, the transformations used are 
usually nonsingular—in other words, the matrix M can be inverted. This 
isn’t required, but some problems arise with singular matrices.)

After transformation, all transformed vertices are clipped so that x, y, and z
are in the range [ w, w] (assuming w > 0). Note that this range corresponds 
in Euclidean space to [ 1.0, 1.0].
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Transforming Normals

Normal vectors aren’t transformed in the same way as vertices or position 
vectors are. Mathematically, it’s better to think of normal vectors not as vec-
tors, but as planes perpendicular to those vectors. Then, the transformation 
rules for normal vectors are described by the transformation rules for per-
pendicular planes.

A homogeneous plane is denoted by the row vector (a, b, c, d), where at least 
one of a, b, c, and d is nonzero. If q is a nonzero real number, then (a, b, c, d)
and (qa, qb, qc, qd) represent the same plane. A point (x, y, z, w)T is on the 
plane (a, b, c, d) if ax + by + cz + dw = 0. (If w = 1, this is the standard descrip-
tion of a Euclidean plane.) In order for (a, b, c, d) to represent a Euclidean 
plane, at least one of a, b, or c must be nonzero. If they’re all zero, then (0, 
0, 0, d) represents the “plane at infinity,” which contains all the “points at 
infinity.”

If p is a homogeneous plane and v is a homogeneous vertex, then the 
statement “v lies on plane p” is written mathematically as pv = 0, where pv
is normal matrix multiplication. If M is a nonsingular vertex transformation 
(that is, a 4 4 matrix that has an inverse M 1), then pv = 0 is equivalent to 
pM 1Mv = 0, so Mv lies in the plane pM 1. Thus, pM 1 is the image of the 
plane under the vertex transformation M.

If you like to think of normal vectors as vectors instead of as the planes 
perpendicular to them, let v and n be vectors such that v is perpendicular 
to n. Then, nTv = 0. Thus, for an arbitrary nonsingular transformation M,
nTM 1Mv = 0, which means that nTM 1 is the transpose of the transformed 
normal vector. Thus, the transformed normal vector is (M 1)Tn. In other 
words, normal vectors are transformed by the inverse transpose of the 
transformation that transforms points. Whew!

Transformation Matrices

Although any nonsingular matrix M represents a valid projective transfor-
mation, a few special matrices are particularly useful. These matrices are 
listed in the following subsections. 
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Translation

The call glTranslate*(x, y, z) generates T, where 

Scaling

The call glScale*(x, y, z) generates S, where 

Notice that S 1 is defined only if x, y, and z are all nonzero.

Rotation

The call glRotate*(a, x, y, z) generates R as follows: 

Let v = (x, y, z)T, and u = v/||v|| = (x’, y’, z’)T.

Also let

Then

T =                   and T−1 =

1 0 0 x
0 1 0 y
0 0 1 z
0 0 0 1

1 0 0 −x
0 1 0 −y
0 0 1 −z
0 0 0 1

S =                   and S−1 =

x 0 0 0
0 y 0 0
0 0 z 0
0 0 0 1

1 0 0 0x

0 1 0 0y

0 0 1 0z

0 0 0  1

S =                    and M = uuT + (cos a) (I − uuT) + (sin a) S
 0 −z'  y'
 z'  0 −x'
−y' x'  0

R =

m m m 0
m m m 0
m m m 0
0  0  0  1
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where m represent the elements from M, which is the 3 3 matrix defined 
on the preceding page. The R matrix is always defined. If x = y = z = 0, 
then R is the identity matrix. You can obtain the inverse of R, R 1, by 
substituting a for a, or by transposition. 

The glRotate*() command generates a matrix for rotation about an 
arbitrary axis. Often, you’re rotating about one of the coordinate axes; the 
corresponding matrices are as follows:

As before, the inverses are obtained by transposition. 

Perspective Projection

The call glFrustum(l, r, b, t, n, f ) generates R, where 

R is defined as long as l r, t b, and n f.

glRotate*(a, 1, 0, 0):

1       0         0       0
0    cos a −sin a    0
0    sin a    cos a 0
0       0         0       1

glRotate*(a, 0, 1, 0):

cos a   0     sin a    0
  0       1        0 0
−sin a 0     cos a 0
  0       0       0       1  

glRotate*(a, 0, 0, 1):

cos a −sin a 0 0
sin a  cos a    0 0
  0       0        1 0
  0       0        0      1

R

2n
r l–
---------- 0 r l+

r l–
---------- 0

0 2n
t b–
---------- t b+

t b–
----------- 0

0 0 f n+–
f n–

------------------- 2fn–
f n–
-----------

0 0 1– 0

and R 1–

r l–
2n

---------- 0 0 r l+
2n

----------

0 t b–
2n

---------- 0 t b+
2n

-----------

0 0 0 1–

0 0 f n––
2fn

------------------- f n+
2fn
-----------

= =
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Orthographic Projection

The call glOrtho(l, r, b, t, n, f ) generates R, where 

R is defined as long as l r, t b, and n f.

R

2
r l–
---------- 0 0 r l+

r l–
----------–

0 2
t b–
---------- 0 t b+

t b–
-----------–

0 0 2–
f n–
----------- f n+

f n–
-----------–

0 0 0 1

and R 1–

r l–
2

---------- 0 0 r l+
2

----------

0 t b–
2

---------- 0 t b+
2

-----------

0 0 f n–
2–

----------- n f+
2

-----------

0 0 0 1

= =
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D.OpenGL and Window Systems

OpenGL is available on many different platforms and works with many 
different window systems. It is designed to complement window systems, 
not duplicate their functionality. Therefore, OpenGL performs geometric 
and image rendering in two and three dimensions, but it does not manage 
windows or handle input events.

However, the basic definitions of most window systems don’t support a 
library as sophisticated as OpenGL, with its complex and diverse pixel 
formats, including depth, stencil, and accumulation buffers, as well as 
double-buffering. For most window systems, some routines are added to 
extend the window system to support OpenGL.

This appendix introduces the extensions defined for several window and 
operating systems: the X Window System, the Apple Mac OS, and Microsoft 
Windows. You need to have some knowledge of the window systems to 
fully understand this appendix. 

This appendix has the following major sections:

• “Accessing New OpenGL Functions”

• “GLX: OpenGL Extension for the X Window System”

• “AGL: OpenGL Extensions for the Apple Macintosh”

• “WGL: OpenGL Extension for Microsoft 
Windows 95/98/NT/ME/2000/XP”
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Accessing New OpenGL Functions

OpenGL is changing all the time. The manufacturers of OpenGL graphics 
hardware add new extensions and the Khronos OpenGL ARB Working Group 
approve those extensions and merge them into the core of OpenGL. Since 
each manufacturer needs to be able to update its version of OpenGL, the 
header files (like gl.h), and the library you use to compile (like opengl32.lib, 
on Microsoft Windows, for example) may be out of sync with the latest ver-
sion. This would likely cause errors when compiling (or more specifically, 
linking) your application.

To help you work around this problem, a mechanism for accessing the new 
functions was added to each of the window system libraries. This method 
varies among the different window systems, but the idea is the same in all 
cases. You will need to retrieve function pointers for the functions that you 
want to use. You need to do this only if the function is not available 
explicitly from your library (you’ll know when it isn’t; you’ll get a linker 
error).

Each window system has its own function for getting an OpenGL function 
pointer; check the respective section in this appendix for specifics.

Here is an example for Microsoft Windows:

#include <windows.h>  /* for wglGetProcAddress() */
#include “glext.h”

PFNGLBINDPROGRAMARBPROC  glBindProgramARB;

void
init(void)
{
   glBindProgramARB = (PFNGLBINDPROGRAMARB) 
      wglGetProcAddress(“glBindProgramARB”);
   ...
}

The function pointer type—in this case, PFNGLBINDPROGRAMARBPROC— 
is defined in glext.h, as are all of the enumerants that you pass into 
OpenGL functions. If the returned value is zero (effectively a NULL 
pointer), the function is not available in the OpenGL implementation 
that your program is using.

GLUT includes a similar routine, glutGetProcAddress(), which simply 
wraps the window-system dependent routine.
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It’s not sufficient in all cases to merely retrieve a function pointer to 
determine if functionality is present. To verify that the extension the 
functionality is defined from is available, check the extension string (see 
“The Query Commands” in Appendix B for details).

GLEW: The OpenGL Extension Wrangler

To simplify both verifying extension support and dealing with the 
associated function pointers, we recommend using the open-source GLEW 
library (http://glew.sourceforge.net/) developed by Milan Ikits and 
Marcelo Magallon, which manages this process simply and elegantly.

To incorporate GLEW into your applications, follow these three simple 
steps:

1. Replace the OpenGL and glext.h header files with those of GLEW: 
glew.h

2. Initialize GLEW by calling glewInit() after you’ve created your 
window (or more specifically, your OpenGL context). This causes 
GLEW to query and retrieve all available function pointers from your 
implementation as well as to provide a convenient set of variables for 
determining whether a particular version or extension is supported.

3. Verify that the extension containing the functionality you want to use 
is available. GLEW provides a set of Boolean variables named after the 
extension (for example, GL_ARB_map_buffer_range is the variable 
name for the OpenGL map buffer range extension). If the variable’s 
value is true, you can use the extension’s functions.

Here’s a short example using our init() routine, which is executed after 
calling glutCreateWindow():

#include <GLEW.h>

void
init()
{

GLuint vao;

glewInit(); // Initialize the GLEW library

if ( GLEW_VERSION_3_0 ) {
// We know that we’re using OpenGL Version 3.0, and
// that vertex array objects are supported

http://glew.sourceforge.net/
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glGenVertexArrays( 1, &vao );
glBindVertexArray( vao );

}

// Initialize and bind all other vertex arrays
...

}

We can use one of GLEW’s variables, GLEW_VERSION_3_0, in this case to 
determine our OpenGL version and make decisions about use of features.

GLX: OpenGL Extension for the X Window System

In the X Window System, OpenGL rendering is made available as an exten-
sion to X in the formal X sense. GLX is an extension to the X protocol (and 
its associated API) for communicating OpenGL commands to an extended 
X server. Connection and authentication are accomplished with the 
normal X mechanisms.

As with other X extensions, there is a defined network protocol for OpenGL’s 
rendering commands encapsulated within the X byte stream, so client-
server OpenGL rendering is supported. Since performance is critical in 
three-dimensional rendering, the OpenGL extension to X allows OpenGL 
to bypass the X server’s involvement in data encoding, copying, and inter-
pretation, and instead render directly to the graphics pipeline.

GLX Version 1.3 introduces several sweeping changes, starting with the new 
GLXFBConfig data structure, which describes the GLX framebuffer config-
uration (including the depth of the color buffer components, and the types, 
quantities, and sizes of the depth, stencil, accumulation, and auxiliary buff-
ers). The GLXFBConfig structure describes these framebuffer attributes for 
a GLXDrawable rendering surface. (In X, a rendering surface is called a 
Drawable.)

GLX 1.3 also provides for three types of GLXDrawable surfaces: GLXWindow, 
GLXPixmap, and GLXPbuffer. A GLXWindow is on-screen; a GLXPixmap 
or GLXPbuffer is off-screen. Because a GLXPixmap has an associated 
X pixmap, both X and GLX may render into a GLXPixmap. GLX may be the 
only way to render into a GLXPbuffer. The GLXPbuffer is intended to store 
pixel data in nonvisible framebuffer memory. (Off-screen rendering isn’t 
guaranteed to be supported for direct renderers.)
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GLX version 1.4 increased support for framebuffer configuration by adding 
drawable configuration options for number of buffers and samples for 
multisampled drawables.

The X Visual is an important data structure for maintaining pixel format 
information about an OpenGL window. A variable of data type XVisualInfo 
keeps track of pixel format information, including pixel type (RGBA or 
color-index), single- or double-buffering, resolution of colors, and presence 
of depth, stencil, and accumulation buffers. The standard X Visuals (for 
example, PseudoColor, and TrueColor) do not describe the pixel format 
details, so each implementation must extend the number of X Visuals 
supported. 

In GLX 1.3, a GLXWindow has an X Visual, associated with its GLXFBConfig. 
For a GLXPixmap or a GLXPbuffer, there may or may not be a similar 
associated X Visual. Prior to GLX 1.3, all surfaces (windows or pixmaps) were 
associated with an X Visual. (Prior to 1.3, Pbuffers were not part of GLX.)

The GLX routines are discussed in more detail in the OpenGL Reference 
Manual. Integrating OpenGL applications with the X Window System and 
the Motif widget set is discussed in great detail in OpenGL Programming 
for the X Window System by Mark Kilgard (Addison-Wesley, 1996), which 
includes full source code examples. If you absolutely want to learn about 
the internals of GLX, you may want to read the GLX specification, which 
can be found at

http://www.opengl.org/developers/documentation/glx.html

Initialization

Use glXQueryExtension() and glXQueryVersion() to determine whether 
the GLX extension is defined for an X server and, if so, which version is 
present. glXQueryExtensionsString() returns extension information about 
the client-server connection. glXGetClientString() returns information 
about the client library, including extensions and version number. 
glXQueryServerString() returns similar information about the server.

glXChooseFBConfig() returns a pointer to an array of GLXFBConfig 
structures describing all GLX framebuffer configurations that meet the 
client’s specified attributes. You may use glXGetFBConfigAttrib() to query 
a framebuffer configuration about its support of a particular GLX attribute. 
You may also call glXGetVisualFromFBConfig() to retrieve the X visual 
associated with a GLXFBConfig.
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Creation of rendering areas varies slightly, depending on the type of draw-
able. For a GLXWindow, first create an X Window with an X visual that 
corresponds to the GLXFBConfig. Then use that X Window when calling 
glXCreateWindow(), which returns a GLXWindow. Similarly for a 
GLXPixmap, first create an X Pixmap with a pixel depth that matches the 
GLXFBConfig. Then use that Pixmap when calling glXCreatePixmap() to 
create a GLXPixmap. A GLXPbuffer does not require an X Window or an 
X Pixmap; just call glXCreatePbuffer() with the appropriate GLXFBConfig.

Note: If you are using GLX 1.2 or earlier, you do not have a GLXFBConfig 
structure. Instead, use glXChooseVisual(), which returns a pointer 
to an XVisualInfo structure describing the X visual that meets the 
client’s specified attributes. You can query a visual about its support 
of a particular OpenGL attribute with glXGetConfig(). To render to 
an off-screen pixmap, you must use the earlier 
glXCreateGLXPixmap() routine.

Accessing OpenGL Functions

To access function pointers for extensions and new features in the 
X Window System, use the glXGetProcAddress() function. This function 
is defined in the glxext.h header file, which can be downloaded from the 
OpenGL Web site.

Controlling Rendering

Several GLX routines are provided for creating and managing an OpenGL 
rendering context. Routines are also provided for such tasks as handling 
GLX events, synchronizing execution between the X and OpenGL streams, 
swapping front and back buffers, and using an X font.

Managing an OpenGL Rendering Context

An OpenGL rendering context is created with either glXCreateNewContext()
or glXCreateContextAttribsARB(), whose use is required in OpenGL 
Version 3.0 and greater. One of the arguments to these routines allows you 
to request a direct rendering context that bypasses the X server as described 
previously. (To perform direct rendering, the X server connection must be 
local, and the OpenGL implementation needs to support direct rendering.) 
Another argument also allows display-list and texture-object indices and 
definitions to be shared by multiple rendering contexts. You can determine 
whether a GLX context is direct with glXIsDirect().
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glXMakeContextCurrent() binds a rendering context to the current 
rendering thread and also establishes two current drawable surfaces. You 
can draw into one of the current drawable surfaces and read pixel data 
from the other drawable. In many situations, the draw and read drawables 
refer to the same GLXDrawable surface. glXGetCurrentContext() returns 
the current context. You can also obtain the current draw drawable 
with glXGetCurrentDrawable(), the current read drawable with 
glXGetCurrentReadDrawable(), and the current X Display with 
glXGetCurrentDisplay(). You can use glXQueryContext() to determine 
the current values for context attributes.

Only one context can be current for any thread at any one time. If you have 
multiple contexts, you can copy selected groups of OpenGL state variables 
from one context to another with glXCopyContext(). When you’re 
finished with a particular context, destroy it with glXDestroyContext().

Note: If you are using GLX 1.2 or earlier, use glXCreateContext() to create 
a rendering context and glXMakeCurrent() to make it current. You 
cannot declare a drawable as a separate read drawable, so you do not 
have glXGetCurrentReadDrawable().

Handling GLX Events

GLX 1.3 introduces GLX events, which are returned in the event stream of 
standard X11 events. GLX event handling has been added specifically to deal 
with the uncertainty of the contents of a GLXPbuffer, which may be clob-
bered at any time. In GLX 1.3, you may use glXSelectEvent() to select only 
one event with GLX_PBUFFER_CLOBBER_MASK. With standard X event 
handling routines, you can now determine if a portion of a GLXPbuffer (or 
GLXWindow) has been damaged and then take steps, if desired, to recover. 
(Also, you can call glXGetSelectedEvent() to find out if you are already 
monitoring this GLX event.)

Synchronizing Execution

To prevent X requests from executing until any outstanding OpenGL 
rendering is completed, call glXWaitGL(). Then, any previously issued 
OpenGL commands are guaranteed to be executed before any X rendering 
calls made after glXWaitGL(). Although the same result can be achieved 
with glFinish(), glXWaitGL() doesn’t require a round-trip to the server and 
thus is more efficient in cases where the client and server are on separate 
machines.
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To prevent an OpenGL command sequence from executing until any out-
standing X requests are completed, use glXWaitX(). This routine guarantees 
that previously issued X rendering calls are executed before any OpenGL 
calls made after glXWaitX().

Swapping Buffers

For drawables that are double-buffered, the front and back buffers can be 
exchanged by calling glXSwapBuffers(). An implicit glFlush() is done as 
part of this routine. 

Using an X Font

A shortcut for using X fonts in OpenGL is provided with the command 
glXUseXFont(). This routine builds display lists, each of which calls 
glBitmap() for each requested character from the specified font and font size.

Cleaning Up Drawables

Once rendering is completed, you can destroy the drawable surface with 
the appropriate call to glXDestroyWindow(), glXDestroyPixmap(), or 
glXDestroyPbuffer(). (These routines are not available prior to GLX 1.3, 
although there is glXDestroyGLXPixmap(), which is similar to 
glXDestroyPixmap().)

GLX Prototypes

Initialization

Determine whether the GLX extension is defined on the X server:

Bool glXQueryExtension( Display *dpy, int *errorBase,
int *eventBase );

Query version and extension information for client and server:

Bool glXQueryVersion( Display *dpy, int *major, int *minor );

const char* glXGetClientString( Display *dpy, int name );

const char* glXQueryServerString( Display *dpy, int screen,
int name );

const char* glXQueryExtensionsString( Display *dpy, int screen );
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Obtain available GLX framebuffer configurations:

GLXFBConfig * glXGetFBConfigs( Display *dpy, int screen,
int *nelements );

GLXFBConfig * glXChooseFBConfig( Display *dpy, int screen,
const int attribList, int *nelements );

Query a GLX framebuffer configuration for attribute or X Visual 
information:

int glXGetFBConfigAttrib( Display *dpy, GLXFBConfig config,
int attribute, int *value );

XVisualInfo * glXGetVisualFromFBConfig( Display *dpy,
GLXFBConfig config );

Create surfaces that support rendering (both on-screen and off-screen):

GLXWindow glXCreateWindow( Display *dpy,
GLXFBConfig config, Window win, const int *attribList );

GLXPixmap glXCreatePixmap( Display *dpy, GLXFBConfig config,
Pixmap pixmap, const int *attribList );

GLXPbuffer glXCreatePbuffer( Display *dpy, GLXFBConfig config,
const int *attribList );

Obtain a pointer to an OpenGL function:

__GLXextFuncPtr glXGetProcAddress(const char* funcName);

Controlling Rendering

Manage and query an OpenGL rendering context:

GLXContext glXCreateNewContext( Display *dpy,
GLXFBConfig config, int renderType, GLXContext shareList,
Bool direct );

GLXContext glXCreateContextAttribsARB (Display *dpy,
GLXFBConfig config, GLXContext shareList, Bool direct,
const int *attribs);

Bool glXMakeContextCurrent( Display *dpy,
GLXDrawable drawable, GLXDrawable read, GLXContext context );

void glXCopyContext( Display *dpy, GLXContext source,
GLXContext dest, unsigned long mask );
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Bool glXIsDirect( Display *dpy, GLXContext context );

GLXContext glXGetCurrentContext( void );

Display* glXGetCurrentDisplay( void );

GLXDrawable glXGetCurrentDrawable( void );

GLXDrawable glXGetCurrentReadDrawable( void );

int glXQueryContext( Display *dpy, GLXContext context,
int attribute, int *value );

void glXDestroyContext( Display *dpy, GLXContext context );

Ask to receive and query GLX events:

int glXSelectEvent( Display *dpy, GLXDrawable drawable,
unsigned long eventMask );

int glXGetSelectedEvent( Display *dpy, GLXDrawable drawable,
unsigned long *eventMask );

Synchronize execution:

void glXWaitGL( void );

void glXWaitX( void );

Exchange front and back buffers:

void glXSwapBuffers( Display *dpy, GLXDrawable drawable );

Use an X font:

void glXUseXFont( Font font, int first, int count, int listBase );

Clean up drawables:

void glXDestroyWindow( Display *dpy, GLXWindow win );

void glXDestroyPixmap( Display *dpy, GLXPixmap pixmap );

void glXDestroyPbuffer( Display *dpy, GLXPbuffer pbuffer );

Deprecated GLX Prototypes

The following routines have been deprecated in GLX 1.3. If you are using 
GLX 1.2 or a predecessor, you may need to use several of these routines.
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Obtain the desired visual:

XVisualInfo* glXChooseVisual( Display *dpy, int screen,
int *attribList );

int glXGetConfig( Display *dpy, XVisualInfo *visual, int attrib,
int *value );

Manage an OpenGL rendering context:

GLXContext glXCreateContext( Display *dpy, XVisualInfo *visual,
GLXContext shareList, Bool direct );

Bool glXMakeCurrent( Display *dpy, GLXDrawable drawable,
GLXContext context );

Perform off-screen rendering:

GLXPixmap glXCreateGLXPixmap( Display *dpy,
XVisualInfo *visual, Pixmap pixmap );

void glXDestroyGLXPixmap( Display *dpy, GLXPixmap pix );

AGL: OpenGL Extensions for the Apple Macintosh

This section covers the routines defined as the OpenGL extension to the 
Apple Macintosh (AGL). An understanding of the way the Macintosh 
handles graphics rendering is required. The OpenGL Programming Guide 
for Mac OS X contains a complete reference for using OpenGL within 
Apple’s Mac OS X operating system (accessible on the Internet at 
http://developer.apple.com/DOCUMENTATION/GraphicsImaging/

Conceptual/OpenGL-MacProgGuide/opengl_intro/opengl_intro.html.)

In addition to AGL, Mac OS X supports other interfaces for OpenGL: CGL 
(Core OpenGL API), which is a low-level interface to OpenGL contexts 
(not recommended for novice users); and NSOpenGL* routines, which are 
part of Cocoa, Apple’s set of media APIs. We only describe AGL in this 
appendix, and refer the interested reader to Apple’s Developer Web site: 
http://developer.apple.com/.

The data type AGLPixelFormat (the AGL equivalent to XVisualInfo) 
maintains pixel information, including pixel type (RGBA or color index); 
single- or double-buffering; resolution of colors; and presence of depth, 
stencil, and accumulation buffers.

http://developer.apple.com/DOCUMENTATION/GraphicsImaging/Conceptual/OpenGL-MacProgGuide/opengl_intro/opengl_intro.html
http://developer.apple.com/DOCUMENTATION/GraphicsImaging/Conceptual/OpenGL-MacProgGuide/opengl_intro/opengl_intro.html
http://developer.apple.com/
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Initialization

Use aglGetVersion() to determine which version of AGL for the Macintosh 
is available.

The capabilities of underlying graphics devices and your requirements for 
rendering buffers are resolved using aglChoosePixelFormat(). It returns an 
AGLPixelFormat structure or NULL, depending on whether or not your 
requirements can be accommodated.

Rendering and Contexts

Several AGL routines are provided for creating and managing an OpenGL 
rendering context. You can use such a context to render into either a win-
dow or an off-screen graphics world. Routines are also provided that allow 
you to swap front and back rendering buffers; adjust buffers in response to 
a move, resize, or graphics device change event; and use Macintosh fonts. 
For software rendering (and, in some cases, hardware-accelerated render-
ing), the rendering buffers are created in the system memory space.

Managing an OpenGL Rendering Context

An OpenGL rendering context is created (at least one context per window 
being rendered into) with aglCreateContext(). This takes the pixel format 
you selected as a parameter and uses it to initialize the context.

Use aglSetDrawable() to attach the context to the drawable and then 
aglSetCurrentContext() to make a rendering context current. Only one 
context can be current for a thread of control at any time. This indicates 
which drawable is to be rendered into and which context to use with it. It’s 
possible for more than one context to be used (not simultaneously) with a 
particular drawable. Two routines allow you to determine the current 
rendering context and drawable being rendered into: 
aglGetCurrentContext() and aglGetDrawable().

If you have multiple contexts, you can copy selected groups of OpenGL 
state variables from one context to another with aglCopyContext(). When 
a particular context is no longer needed, it should be destroyed by calling 
aglDestroyContext().
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On-Screen Rendering

To render on-screen, first create a pixel format. Create a context based 
on this pixel format and attach the context to the window with 
aglSetDrawable(). The buffer rectangle can be modified by calling 
aglSetInteger(AGL_BUFFER_RECT, ...).

Off-Screen Rendering

To render off-screen, create a pixel format with the AGL_OFFSCREEN 
attribute. Create a context based on this pixel format and attach the context 
to the screen with aglSetOffScreen().

Full-Screen Rendering

To render full-screen, create a pixel format with the AGL_FULLSCREEN 
attribute. Create a context based on this pixel format and attach the context 
to the screen with aglSetFullScreen().

Swapping Buffers

For drawables that are double-buffered (as per the pixel format of the 
current rendering context), call aglSwapBuffers() to exchange the 
front and back buffers. The swap rectangle can be modified by calling 
aglSetInteger(AGL_SWAP_RECT, ...). An implicit glFlush() is performed 
as part of this routine.

Updating the Rendering Buffers

The Apple Macintosh toolbox requires you to perform your own event 
handling and does not provide a way for libraries to hook into the event 
stream automatically. So that the drawables maintained by OpenGL 
can adjust to changes in drawable size, position, and pixel depth, 
aglUpdateContext() is provided.
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This routine must be called by your event processing code whenever one of 
these events occurs in the current drawable. Ideally, the scene should be 
re-rendered after an update call to take into account the changes made to 
the rendering buffers.

Using an Apple Macintosh Font

A shortcut for using Macintosh fonts is provided with aglUseFont().
This routine builds display lists, each of which calls glBitmap() for each 
requested character from the specified font and font size.

Error Handling

An error-handling mechanism is provided for the Apple Macintosh 
OpenGL extension. When an error occurs, you can call aglGetError() to 
get a more precise description of what caused the error.

AGL Prototypes

Initialization

Determine version information:

void aglGetVersion( GLint *major, GLint *minor );

Determine available pixel formats:

AGLPixelFormat aglCreatePixelFormat( const GLint *attribs );

AGLPixelFormat aglChoosePixelFormat( const AGLDevice *gdevs,
GLint ndev, const GLint *attribs );

GLboolean aglDescribePixelFormat( AGLPixelFormat pix,
GLint attrib, GLint *value );

void aglDestroyPixelFormat( AGLPixelFormat pix );

AGLPixelFormat aglNextPixelFormat( AGLPixelFormat pix );

AGLDevice *aglDevicesOfPixelFormat( AGLPixelFormat pix,
GLint *ndevs );
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Renderer information functions:

AGLRendererInfo aglQueryRendererInfo( const AGLDevice *gdevs,
GLint ndev );

void aglDestroyRendererInfo( AGLRendererInfo rend );

AGLRendererInfo aglNextRendererInfo( AGLRendererInfo rend );

GLboolean aglDescribeRenderer( AGLRendererInfo rend,
GLint prop, GLint *value );

Controlling Rendering

Manage OpenGL rendering contexts:

AGLContext aglCreateContext( AGLPixelFormat pix,
AGLContext share );

GLboolean aglDestroyContext( AGLContext ctx );

GLboolean aglCopyContext( AGLContext src, AGLContext dst,
GLuint mask );

GLboolean aglUpdateContext( AGLContext ctx );

Current state functions:

GLboolean aglSetCurrentContext( AGLContext ctx );

AGLContext aglGetCurrentContext( void );

Drawable functions:

GLboolean aglSetDrawable( AGLContext ctx, AGLDrawable draw );

GLboolean aglSetOffScreen( AGLContext ctx, GLsizei width,
GLsizei height, GLsizei rowbytes, GLvoid *baseaddr );

GLboolean aglSetFullScreen( AGLContext ctx, GLsizei width,
GLsizei height, GLsizei freq, GLint device );

AGLDrawable aglGetDrawable( AGLContext ctx );

Virtual screen functions:

GLboolean aglSetVirtualScreen( AGLContext ctx, GLint screen );

GLint aglGetVirtualScreen( AGLContext ctx );
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Configure global library option:

GLboolean aglConfigure( GLenum pname, GLuint param );

Swap function:

void aglSwapBuffers( AGLContext ctx );

Per context options:

GLboolean aglEnable( AGLContext ctx, GLenum pname );

GLboolean aglDisable( AGLContext ctx, GLenum pname );

GLboolean aglIsEnabled( AGLContext ctx, GLenum pname );

GLboolean aglSetInteger( AGLContext ctx, GLenum pname,
const GLint *params );

GLboolean aglGetInteger( AGLContext ctx, GLenum pname,
GLint *params );

Font function:

GLboolean aglUseFont( AGLContext ctx, GLint fontID, Style face,
GLint size, GLint first, GLint count, GLint base );

Error functions:

GLenum aglGetError( void );

const GLubyte *aglErrorString( GLenum code );

Soft reset function:

void aglResetLibrary( void );

WGL: OpenGL Extension for Microsoft 
Windows 95/98/NT/ME/2000/XP

OpenGL rendering is supported on systems that run any modern version 
of Microsoft Windows (from Windows 95 and later). The functions and 
routines of the Win32 library are necessary to initialize the pixel format and 
control rendering, and for access to extensions for OpenGL. Some routines, 
which are prefixed by wgl, extend Win32 so that OpenGL can be fully 
supported.
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For Win32/WGL, the PIXELFORMATDESCRIPTOR is the key data structure 
for maintaining pixel format information about the OpenGL window. 
A variable of data type PIXELFORMATDESCRIPTOR keeps track of pixel 
information, including pixel type (RGBA or color-index); single- or 
double-buffering; resolution of colors; and presence of depth, stencil, and 
accumulation buffers.

To get more information about WGL, you may want to start with technical 
articles available through the Microsoft Developer Network Web site.

Initialization

Use GetVersion() or the newer GetVersionEx() to determine version 
information. ChoosePixelFormat() tries to find a PIXELFORMAT
DESCRIPTOR with specified attributes. If a good match for the requested 
pixel format is found, then SetPixelFormat() should be called for actual 
use of the pixel format. You should select a pixel format in the device con-
text before creating a rendering context.

If you want to find out details about a given pixel format, use 
DescribePixelFormat() or, for overlays or underlays, 
wglDescribeLayerPlane().

Accessing OpenGL Functions

To access function pointers for extensions and new features in Microsoft 
Windows, use the wglGetProcAddress() function. This function is defined 
in the wingdi.h header file, which is automatically included when you 
include windows.h in your application.

Controlling Rendering

Several WGL routines are provided for creating and managing an OpenGL 
rendering context, rendering to a bitmap, swapping front and back buffers, 
finding a color palette, and using either bitmap or outline fonts.

Managing an OpenGL Rendering Context

wglCreateContext() and wglCreateContextAttribsARB() (the latter for 
use with OpenGL Version 3.0 and greater) create an OpenGL rendering 
context for drawing on the device in the selected pixel format of the device 
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context. (To create an OpenGL rendering context for overlay or underlay 
windows, use wglCreateLayerContext() instead.) To make a rendering 
context current, use wglMakeCurrent(); wglGetCurrentContext() returns 
the current context. You can also obtain the current device context with 
wglGetCurrentDC(). You can copy some OpenGL state variables from 
one context to another with wglCopyContext() or make two contexts 
share the same display lists and texture objects with wglShareLists().
When you’re finished with a particular context, destroy it with 
wglDestroyContext().

Accessing OpenGL Extensions

Use wglGetProcAddress() to access implementation-specific OpenGL 
extension procedure calls. To determine which extensions are supported 
by your implementation, use glGetString(GL_EXTENSIONS).
wglGetProcAddress(), when passed the exact name of the extension 
returned from glGetString(), returns a function pointer for the extension 
procedure call, or returns NULL if the extension is not supported.

OpenGL Rendering to a Bitmap

Win32 has a few routines for allocating (and deallocating) bitmaps, to 
which you can render OpenGL directly. CreateDIBitmap() creates a 
device-dependent bitmap (DDB) from a device-independent bitmap (DIB). 
CreateDIBSection() creates a device-independent bitmap (DIB) that appli-
cations can write to directly. When finished with your bitmap, you can use 
DeleteObject() to free it up.

Synchronizing Execution

If you want to combine GDI and OpenGL rendering, be aware that there 
are no equivalents to functions such as glXWaitGL(), glXWaitX(), and 
pglWaitGL() in Win32. Although glXWaitGL() has no equivalent in Win32, 
you can achieve the same effect by calling glFinish(), which waits until all 
pending OpenGL commands are executed, or by calling GdiFlush(), which 
waits until all GDI drawing has been completed.

Swapping Buffers

For windows that are double-buffered, the front and back buffers can be 
exchanged by calling SwapBuffers() or wglSwapLayerBuffers(); the latter 
is used for overlays and underlays.
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Finding a Color Palette

To access the color palette for the standard (nonlayer) bitplanes, use the 
standard GDI functions to set the palette entries. For overlay or underlay 
layers, use wglRealizeLayerPalette(), which maps palette entries from 
a given color-index layer plane into the physical palette or initializes 
the palette of an RGBA layer plane. wglGetLayerPaletteEntries() and 
wglSetLayerPaletteEntries() are used to query and set the entries in 
palettes of layer planes.

Using a Bitmap or Outline Font

WGL has two routines, wglUseFontBitmaps() and wglUseFontOutlines(),
for converting system fonts for use with OpenGL. Both routines build a dis-
play list for each requested character from the specified font and font size.

WGL Prototypes

Initialization

Determine version information:

BOOL GetVersion( LPOSVERSIONINFO lpVersionInformation );

BOOL GetVersionEx( LPOSVERSIONINFO lpVersionInformation );

Pixel format availability, selection, and capability:

int ChoosePixelFormat( HDC hdc,
CONST PIXELFORMATDESCRIPTOR * ppfd );

BOOL SetPixelFormat( HDC  hdc, int iPixelFormat,
CONST PIXELFORMATDESCRIPTOR * ppfd );

int DescribePixelFormat( HDC hdc, int iPixelFormat, UINT nBytes,
LPPIXELFORMATDESCRIPTOR  ppfd );

BOOL wglDescribeLayerPlane( HDC hdc, int iPixelFormat,
int iLayerPlane, UINT nBytes, LPLAYERPLANEDESCRIPTOR plpd );

Obtain a pointer to an OpenGL function:

PROC wglGetProcAddress(LPCSTR funcName);
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Controlling Rendering

Manage or query an OpenGL rendering context:

HGLRC wglCreateContext( HDC hdc );

HGLRC wglCreateContextAttribsARB( HDC hdc,
HGLRC hShareContext, const int *attribList )

HGLRC wglCreateLayerContext( HDC hdc, int iLayerPlane );

BOOL wglShareLists( HGLRC  hglrc1, HGLRC  hglrc2 );

BOOL wglDeleteContext( HGLRC  hglrc );

BOOL wglCopyContext( HGLRC  hglrcSource, HGLRC  hlglrcDest,
UINT  mask );

BOOL wglMakeCurrent( HDC  hdc, HGLRC  hglrc );

HGLRC wglGetCurrentContext( VOID );

HDC wglGetCurrentDC( VOID );

Access implementation-dependent extension procedure calls:

 PROC wglGetProcAddress( LPCSTR lpszProc );

Access and release the bitmap of the front buffer:

HBITMAP CreateDIBitmap( HDC hdc,
CONST BITMAPINFOHEADER *lpbmih, DWORD fdwInit,
CONST VOID *lpbInit, CONST BITMAPINFO *lpbmi,
UINT fuUsage );

HBITMAP CreateDIBSection( HDC hdc, CONST BITMAPINFO *pbmi,
UINT iUsage, VOID *ppvBits, HANDLE hSection,
DWORD dwOffset );

BOOL DeleteObject( HGDIOBJ hObject );

Exchange front and back buffers:

BOOL SwapBuffers( HDC hdc );

BOOL wglSwapLayerBuffers( HDC  hdc, UINT fuPlanes );
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Find a color palette for overlay or underlay layers:

int wglGetLayerPaletteEntries( HDC  hdc, int iLayerPlane,
int iStart, int cEntries, CONST COLORREF *pcr );

int wglSetLayerPaletteEntries( HDC hdc, int iLayerPlane, int iStart
int cEntries, CONST COLORREF *pcr );

BOOL wglRealizeLayerPalette( HDC hdc, int iLayerPlane,
BOOL bRealize );

Use a bitmap or an outline font:

BOOL wglUseFontBitmaps( HDC hdc, DWORD first, DWORD count,
DWORD listBase );

BOOL wglUseFontOutlines( HDC hdc, DWORD first, DWORD count,
DWORD listBase, FLOAT deviation, FLOAT extrusion, int format,
LPGLYPHMETRICSFLOAT lpgmf );
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API

An abbreviation of “application-programming interface.”

accumulation buffer

Memory (bitplanes) that is used to accumulate a series of images gener-
ated in the color buffer. Using the accumulation buffer may significantly 
improve the quality of the image, but also take correspondingly longer 
to render. The accumulation buffer is used for effects such as depth of field, 
motion blur, and full-scene antialiasing.

aliasing

A rendering technique that assigns to pixels the color of the primitive being 
rendered, regardless of whether that primitive covers all or only a portion 
of the pixel’s area. This results in jagged edges, or jaggies.

alpha

A fourth color component. The alpha component is never displayed 
directly and is typically used to control color blending. By convention, 
OpenGL alpha corresponds to the notion of opacity, rather than transpar-
ency, meaning that an alpha value of 1.0 implies complete opacity, and an 
alpha value of 0.0 complete transparency.

ambient

Ambient light is nondirectional and distributed uniformly throughout 
space. Ambient light falling upon a surface approaches from all directions. 
The light is reflected from the object independent of surface location and 
orientation, with equal intensity in all directions.
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animation

Generating repeated renderings of a scene, with smoothly changing view-
point and/or object positions, quickly enough so that the illusion of motion 
is achieved. OpenGL animation is almost always done using double-
buffering.

antialiasing

A rendering technique that assigns pixel colors based on the fraction of the 
pixel’s area that’s covered by the primitive being rendered. Antialiased 
rendering reduces or eliminates the jaggies that result from aliased 
rendering.

application-specific clipping

Clipping of primitives against planes in eye coordinates; the planes are 
specified by the application using glClipPlane().

ARB Imaging Subset

The collection of OpenGL extensions for processing pixel rectangles. 
Imaging Subset operations include color table lookups, color matrix 
transformations, image convolutions, and image statistics.

attenuation

The property of light that describes how a light’s intensity diminishes over 
distance.

attribute group

A set of related state variables, which OpenGL can save or restore together 
at one time.

back faces

See faces.

bit

Binary digit. A state variable having only two possible values: 0 or 1. Binary 
numbers are constructions of one or more bits.

bitmap

A rectangular array of bits. Also, the primitive rendered by the glBitmap()
command, which uses its bitmap parameter as a mask.
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bitplane

A rectangular array of bits mapped one-to-one with pixels. The framebuffer 
is a stack of bitplanes.

blending

Reduction of two color components to one component, usually as a linear 
interpolation between the two components.

buffer

A group of bitplanes that store a single component (such as depth or green) 
or a single index (such as the color index or the stencil index). Sometimes 
the red, green, blue, and alpha buffers together are referred to as the color 
buffer, rather than the color buffers.

buffer object

A vertex array located in the GL’s server memory, as opposed to the client 
application’s memory. Vertex data and indices stored in buffer objects may 
render considerably faster than the equivalent client-side versions.

byte swapping

The process of exchanging the ordering of bytes in a (usually integer) 
variable type (i.e., int, short, etc.)

C

God’s programming language.

C++

The object-oriented programming language of a pagan deity.

client

The computer from which OpenGL commands are issued. The computer 
that issues OpenGL commands can be connected via a network to a differ-
ent computer that executes the commands, or commands can be issued and 
executed on the same computer. See also server.

client memory

The main memory (where program variables are stored) of the client 
computer.
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clip coordinates

The coordinate system that follows transformation by the projection matrix 
and precedes perspective division. View-volume clipping is done in clip 
coordinates, but application-specific clipping is not.

clipping 

Elimination of the portion of a geometric primitive that’s outside the half-
space defined by a clipping plane. Points are simply rejected if outside. The 
portion of a line or polygon that’s outside the half-space is eliminated, and 
additional vertices are generated as necessary to complete the primitive 
within the clipping half-space. Geometric primitives and the current raster 
position (when specified) are always clipped against the six half-spaces 
defined by the left, right, bottom, top, near, and far planes of the view vol-
ume. Applications can specify optional application-specific clipping planes 
to be applied in eye coordinates.

color index

A single value that represents a color by name, rather than by value. OpenGL 
color indices are treated as continuous values (for example, floating-point 
numbers), while operations such as interpolation and dithering are per-
formed on them. Color indices stored in the framebuffer are always integer 
values, however. Floating-point indices are converted to integers by round-
ing to the nearest integer value.

color-index mode

An OpenGL context is in color-index mode if its color buffers store color 
indices, rather than red, green, blue, and alpha color components.

color-lookup table

A one-dimensional image used to substitute RGBA color components in an 
image pixel.

color map

A table of index-to-RGB mappings that’s accessed by the display hardware. 
Each color index is read from the color buffer, converted to an RGB triple 
by lookup in the color map, and sent to the monitor.

color matrix

The 4 4 matrix used to transform RGBA pixel values when passed into 
the Imaging Subset. Color matrices are particularly useful in color space 
conversions.
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components

Single, continuous (for example, floating-point) values that represent 
intensities or quantities. Usually, a component value of zero represents the 
minimum value or intensity, and a component value of one represents the 
maximum value or intensity, although other ranges are sometimes used. 
Because component values are interpreted in a normalized range, they 
are specified independent of actual resolution. For example, the RGB 
triple (1, 1, 1) is white, regardless of whether the color buffers store 4, 8, 
or 12 bits each.

Out-of-range components are typically clamped to the normalized range, 
not truncated or otherwise interpreted. For example, the RGB triple 
(1.4, 1.5, 0.9) is clamped to (1.0, 1.0, 0.9) before it’s used to update the color 
buffer. Red, green, blue, alpha, and depth are always treated as components, 
never as indices.

concave

A polygon that is not convex. See convex.

context

A complete set of OpenGL state variables. Note that framebuffer contents are 
not part of OpenGL state, but that the configuration of the framebuffer (and 
any associated renderbuffers) is.

convex

A polygon is convex if no straight line in the plane of the polygon intersects 
the polygon more than twice.

convex hull

The smallest convex region enclosing a specified group of points. In two 
dimensions, the convex hull is found conceptually by stretching a rubber 
band around the points so that all of the points lie within the band.

convolution filter

One- or two-dimensional images that are used for computing the weighted 
average of pixel images.

convolution kernel

See convolution filter.
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coordinate system

In n-dimensional space, a set of n linearly independent vectors anchored to 
a point (called the origin). A group of coordinates specifies a point in space 
(or a vector from the origin) by indicating how far to travel along each 
vector to reach the point (or tip of the vector).

culling

The process of eliminating a front face or back face of a polygon so that it 
isn’t drawn.

current matrix

A matrix that transforms coordinates in one coordinate system to coordi-
nates of another system. There are three current matrices in OpenGL: The 
modelview matrix transforms object coordinates (coordinates specified by 
the programmer) to eye coordinates; the perspective matrix transforms eye 
coordinates to clip coordinates; the texture matrix transforms specified or 
generated texture coordinates as described by the matrix. Each current 
matrix is the top element on a stack of matrices. Each of the three stacks can 
be manipulated with OpenGL matrix-manipulation commands.

current raster position

A window coordinate position that specifies the placement of an image 
primitive when it’s rasterized. The current raster position and other current 
raster parameters are updated when glRasterPos() is called.

decal

A method of calculating color values during texture application, where the 
texture colors replace the fragment colors or, if alpha blending is enabled, 
the texture colors are blended with the fragment colors, using only the 
alpha value.

deprecated

The identification of a function entry point, or feature exposed as a token 
passed into a function call, that is slated for potential removal in future 
versions of the API.

depreciation model

The plan used for the identification and potential removal of features from 
the OpenGL library. The depreciation model was introduced with OpenGL 
Version 3.0, and the first features were removed from the API in Version 3.1.
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depth

Generally refers to the z window coordinate.

depth buffer

Memory that stores the depth value at every pixel. To perform hidden-
surface removal, the depth buffer records the depth value of the object that 
lies closest to the observer at every pixel. The depth value of every new 
fragment uses the recorded value for depth comparison and must pass the 
comparison test before being rendered.

depth-cuing

A rendering technique that assigns color based on distance from the 
viewpoint.

diffuse

Diffuse lighting and reflection accounts for the direction of a light source. 
The intensity of light striking a surface varies with the angle between the 
orientation of the object and the direction of the light source. A diffuse 
material scatters that light evenly in all directions.

directional light source

See infinite light source.

display list

A named list of OpenGL commands. Display lists are always stored on the 
server, so display lists can be used to reduce network traffic in client-server 
environments. The contents of a display list may be preprocessed and might 
therefore execute more efficiently than the same set of OpenGL commands 
executed in immediate mode. Such preprocessing is especially important 
for computing intensive commands such as NURBS or polygon tessellation.

dithering

A technique for increasing the perceived range of colors in an image at the 
cost of spatial resolution. Adjacent pixels are assigned differing color values; 
when viewed from a distance, these colors seem to blend into a single 
intermediate color. The technique is similar to the halftoning used in black-
and-white publications to achieve shades of gray.
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double-buffering

OpenGL contexts with both front and back color buffers are double-
buffered. Smooth animation is accomplished by rendering into only the 
back buffer (which isn’t displayed), and then causing the front and back 
buffers to be swapped. See glutSwapBuffers() in “Motion = Redraw + Swap” 
in Chapter 1Appendix A. 

edge flag

A Boolean value at a vertex that marks whether that vertex precedes a 
boundary edge. glEdgeFlag*() may be used to mark an edge as not on the 
boundary. When a polygon is drawn in GL_LINE mode, only boundary 
edges are drawn.

element

A single component or index.

emission

The color of an object that is self-illuminating or self-radiating. The 
intensity of an emissive material is not attributed to any external light 
source.

evaluated

The OpenGL process of generating object-coordinate vertices and 
parameters from previously specified Bézier equations.

execute

An OpenGL command is executed when it’s called in immediate mode or 
when the display list that it’s a part of is called.

extension

A new feature of OpenGL that hasn’t been added into the core of OpenGL. 
An extension does not have to be supported by every OpenGL implemen-
tation, as compared to core OpenGL functions, which are supported for 
every OpenGL implementation. There are different types of extensions, 
based upon how broadly supported the functionality is. Generally, exten-
sions supported only by a single company’s OpenGL implementation will 
have a name that includes an abbreviation of the company name. If more 
companies adopt the extension, its name will change from the abbreviation 
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to a string that includes the letters, EXT; for example, GL_EXT_polygon_
offset. If OpenGL’s governing body, the Khronos OpenGL ARB Working 
Group (or ARB, for short) reviews and approves the extension, its name will 
change once again. For example, a reviewed extension that was approved 
by the ARB is GL_ARB_multitexture.

eye coordinates

The coordinate system that follows transformation by the modelview 
matrix and precedes transformation by the projection matrix. Lighting and 
application-specific clipping are done in eye coordinates.

faces

The sides of a polygon. Each polygon has two faces: a front face and a back 
face. Only one face or the other is ever visible in the window. Whether the 
back or front face is visible is effectively determined after the polygon is 
projected onto the window. After this projection, if the polygon’s edges are 
directed clockwise, one of the faces is visible; if directed counterclockwise, 
the other face is visible. Whether clockwise corresponds to front or back 
(and counterclockwise corresponds to back or front) is determined by the 
OpenGL programmer. 

feedback

OpenGL’s mechanism for allowing an application to retrieve information 
about which geometric and imaging primitives that would have rasterized 
to the window. No pixels are updated in feedback mode.

filtering

The process of combining pixels or texels to obtain a higher or lower 
resolution version of an input image or texture.

fixed-function pipeline

The processing model where the order of operations that OpenGL uses on 
vertices and fragments is fixed by the implementation. A programmer’s 
control over its operation is limited by setting state values and enabling or 
disabling operations. See programmable graphics pipeline.

flat shading

Refers to a primitive colored with a single, constant color across its extent, 
rather than smoothly interpolated colors across the primitive. See Gouraud 
shading.
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fog

A rendering technique that can be used to simulate atmospheric effects such 
as haze, fog, and smog by fading object colors to a background color based 
on distance from the viewer. Fog also aids in the perception of distance from 
the viewer, giving a depth cue.

fonts

Groups of graphical character representations generally used to display 
strings of text. The characters may be roman letters, mathematical symbols, 
Asian ideograms, Egyptian hieroglyphics, and so on.

fragment

Fragments are generated by the rasterization of primitives. Each fragment 
corresponds to a single pixel and includes color, depth, and sometimes 
texture-coordinate values.

framebuffer

All the buffers of a given window or context. Sometimes includes all the 
pixel memory of the graphics hardware accelerator.

framebuffer attachment

A connection point in a framebuffer object that makes an association 
between allocated image storage (which might be a texture map level, a 
renderbuffer, pixel buffer object, or any of the other types of object storage 
in OpenGL), and a rendering target, such as a color buffer, the depth buffer, 
or the stencil buffer.

front faces

See faces.

frustum

The view volume warped by perspective division. 

gamma correction

A function applied to colors stored in the framebuffer to correct for the 
nonlinear response of the eye (and sometimes of the monitor) to linear 
changes in color-intensity values.
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geometric model

The object-coordinate vertices and parameters that describe an object. Note 
that OpenGL doesn’t define a syntax for geometric models, but rather a 
syntax and semantics for the rendering of geometric models.

geometric object

See geometric model.

geometric primitive

A point, a line, or a polygon.

GLSL

The short name for The OpenGL Shading Language.

GLX

The window system interface for OpenGL on the X Window System.

GPU

The abbreviation for Graphics Processing Unit.

GPGPU

The short name for General-Purpose computing on GPUs, which is the field 
of techniques attempting to do general computation (algorithms that you 
would normally execute on a CPU) on graphics processors.

Gouraud shading

Smooth interpolation of colors across a polygon or line segment. Colors are 
assigned at vertices and linearly interpolated across the primitive to produce 
a relatively smooth variation in color. Also called smooth shading.

group

Each pixel of an image in client memory is represented by a group of one, 
two, three, or four elements. Thus, in the context of a client memory image, 
a group and a pixel are the same thing.

half-spaces

A plane divides space into two half-spaces.
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hidden-line removal

A technique to determine which portions of a wireframe object should be 
visible. The lines that comprise the wireframe are considered to be edges of 
opaque surfaces, which may obscure other edges that are farther away from 
the viewer.

hidden-surface removal

A technique to determine which portions of an opaque, shaded object 
should be visible and which portions should be obscured. A test of the 
depth coordinate, using the depth buffer for storage, is a common method 
of hidden-surface removal.

histogram

A database of the distribution of pixel values in an image. The results of the 
histogram process are counts of unique pixel values.

homogeneous coordinates

A set of n+1 coordinates used to represent points in n-dimensional 
projective space. Points in projective space can be thought of as points in 
Euclidean space together with some points at infinity. The coordinates are 
homogeneous because a scaling of each of the coordinates by the same 
nonzero constant doesn’t alter the point that the coordinates refer to. 
Homogeneous coordinates are useful in the calculations of projective 
geometry, and thus in computer graphics, where scenes must be projected 
onto a window.

image

A rectangular array of pixels, either in client memory or in the framebuffer.

image primitive

A bitmap or an image.

immediate mode

Execution of OpenGL commands when they’re called, rather than from a 
display list. No immediate-mode bit exists; the mode in immediate mode 
refers to use of OpenGL, rather than to a specific bit of OpenGL state.
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index

A single value that’s interpreted as an absolute value rather than as a nor-
malized value in a specified range (as is a component). Color indices are the 
names of colors, which are dereferenced by the display hardware using the 
color map. Indices are typically masked, rather than clamped when out of 
range. For example, the index 0xf7 is masked to 0x7 when written to a 4-bit 
buffer (color or stencil). Color indices and stencil indices are always treated 
as indices, never as components.

indices

Preferred plural of index. (The choice between the plural forms indices or 
indexes—as well as matrices or matrixes and vertices or vertexes—has 
engendered much debate between the authors and principal reviewers of 
this guide. The authors’ compromise solution is to use the -ices form, but to 
state clearly for the record that the use of indice [sic], matrice [sic], and 
vertice [sic] for the singular forms is an abomination.) 

infinite light source

A directional source of illumination. The radiating light from an infinite 
light source strikes all objects as parallel rays.

instance id

A identifier available in vertex shaders for identifying a unique group of 
primitives. In GLSL, the instance id is provided in the monotonically 
increasing variable gl_InstanceID.

instanced rendering

Drawing multiple copies of the same set of geometry, varying a unique 
identifier for each copy of the geometry. See instance id.

interleaved

A method of storing vertex arrays whereby heterogeneous types of data (i.e., 
vertex, normals, texture coordinates, etc.) are grouped together for faster 
retrieval.

interpolation

Calculation of values (such as color or depth) for interior pixels, given the 
values at the boundaries (such as at the vertices of a polygon or a line).
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IRIS GL

Silicon Graphics’ proprietary graphics library, developed from 1982 
through 1992. OpenGL was designed with IRIS GL as a starting point.

jaggies

Artifacts of aliased rendering. The edges of primitives that are rendered with 
aliasing are jagged, rather than smooth. A near-horizontal aliased line, for 
example, is rendered as a set of horizontal lines on adjacent pixel rows, 
rather than as a smooth, continuous line.

jittering

A pseudo-random displacement (shaking) of the objects in a scene, used in 
conjunction with the accumulation buffer to achieve special effects.

kernel

See convolution kernel.

level of detail

The process of creating multiple copies of an object or image with different 
levels of resolution. See also mipmap.

lighting

The process of computing the color of a vertex based on current lights, 
material properties, and lighting-model modes.

line

A straight region of finite width between two vertices. (Unlike 
mathematical lines, OpenGL lines have finite width and length.) Each 
segment of a strip of lines is itself a line.

local light source

A source of illumination that has an exact position. The radiating light from 
a local light source emanates from that position. Other names for a local 
light source are point light source or positional light source. A spotlight is a 
special kind of local light source.

local viewer mode

An OpenGL light model mode that accurately computes the vector from a 
vertex to the eye. For performance reasons, local viewer mode is not enabled, 
and an approximation to the real vector is used for lighting computations.
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logical operation

Boolean mathematical operations between the incoming fragment’s RGBA 
color or color-index values and the RGBA color or color-index values 
already stored at the corresponding location in the framebuffer. Examples 
of logical operations include AND, OR, XOR, NAND, and INVERT.

luminance

The perceived brightness of a surface. Often refers to a weighted average of 
red, green, and blue color values that indicates the perceived brightness of 
the combination.

material

A surface property used in computing the illumination of a surface.

matrices

Preferred plural of matrix. See indices.

matrix

A two-dimensional array of values. OpenGL matrices are all 4 4, though 
when stored in client memory they’re treated as 1 16 single-dimension 
arrays.

minmax

The process of computing the minimum and maximum pixel values in an 
image using the Imaging Subset.

mipmap

A reduced resolution version of a texture map, used to texture a geometric 
primitive whose screen resolution differs from the resolution of the source 
texture map.

modelview matrix

The 4 4 matrix that transforms points, lines, polygons, and raster 
positions from object coordinates to eye coordinates.

modulate

A method of calculating color values during texture application whereby 
the texture and the fragment colors are combined.
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monitor

The device that displays the image in the framebuffer.

motion blurring

A technique that uses the accumulation buffer to simulate what appears on 
film when you take a picture of a moving object or when you move the 
camera while taking a picture of a stationary object. In animations without 
motion blur, moving objects can appear jerky.

multitexturing

The process of applying several texture images to a single primitive. The 
images are applied one after another, in a pipeline of texturing operations. 

network

A connection between two or more computers that enables each to transfer 
data to and from the others.

nonconvex

A polygon is nonconvex if a line exists in the plane of the polygon that 
intersects the polygon more than twice.

normal

A three-component plane equation that defines the angular orientation, 
but not position, of a plane or surface.

normal vectors

See normal.

normalized

To normalize a normal vector, divide each of the components by the square 
root of the sum of their squares. Then, if the normal is thought of as a vector 
from the origin to the point (nx’, ny’, nz’), this vector has unit length.

factor = sqrt(nx2 + ny2 + nz2)

nx’ = nx / factor 

ny’ = ny / factor 

nz’ = nz / factor
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NURBS

Non-Uniform Rational B-Spline. A common way to specify parametric 
curves and surfaces. (See GLU NURBS routines in Chapter 12.) 

object

An object-coordinate model that’s rendered as a collection of primitives.

object coordinates

Coordinate system prior to any OpenGL transformation.

off-screen rendering

The process of drawing into a framebuffer that is not directly displayed to 
the visible screen.

The OpenGL Shading Language

The language used for authoring shader program. Also commonly known as 
the GLSL.

orthographic

Nonperspective (or parallel) projection, as in some engineering drawings, 
with no foreshortening.

outer product

A process that produces a matrix from two vectors. For the matrix A, which 
is the outer product of the vectors u and v, Aij = uivj.

pack

The process of converting pixel colors from a buffer into the format 
requested by the application.

parameters

Values passed as arguments to OpenGL commands. Sometimes parameters 
are passed by reference to an OpenGL command.

perspective correction

An additional calculation for texture coordinates to fix texturing artifacts 
for a textured geometric rendered in a perspective projection.

perspective division 

The division of x, y, and z by w, carried out in clip coordinates.
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picking

A form of selection that uses a rectangular region (usually near the cursor 
location) to determine which primitives to select.

ping-pong buffers

A GPGPU technique of writing values to a buffer (usually a texture map) that 
is immediately rebound as a texture map to be read from to do a subsequent 
computation. Effectively, you can consider the buffer written-to, and 
subsequently read-from as being a collection of temporary values. Ping-
ponging buffers is usually done using framebuffer objects.

pixel

Picture element. The bits at location (x, y) of all the bitplanes in the frame-
buffer constitute the single pixel (x, y). In an image in client memory, a pixel 
is one group of elements. In OpenGL window coordinates, each pixel cor-
responds to a 1.0 1.0 screen area. The coordinates of the lower left corner 
of the pixel are (x, y), and of the upper right corner are (x + 1, y + 1).

point

An exact location in space, which is rendered as a finite-diameter dot.

point light source

See local light source.

polygon

A near-planar surface bounded by edges specified by vertices. Each triangle 
of a triangle mesh is a polygon, as is each quadrilateral of a quadrilateral 
mesh. The rectangle specified by glRect*() is also a polygon.

polygon offset

A technique to modify depth-buffer values of a polygon when additional 
geometric primitives are drawn with identical geometric coordinates.

positional light source

See local light source.

primitive 

A point, a line, a polygon, a bitmap, or an image. (Note: Not just a point, a 
line, or a polygon!) 
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projection matrix

The 4 4 matrix that transforms points, lines, polygons, and raster 
positions from eye coordinates to clip coordinates.

proxy texture

A placeholder for a texture image, which is used to determine if there are 
enough resources to support a texture image of a given size and internal 
format resolution.

programmable graphics pipeline

The mode of operation where the processing of vertices, fragments, and their 
associated data (texture coordinates, for example) is under the control of 
shader programs specified by the programmer.

quadrilateral

A polygon with four edges.

rasterization

Converts a projected point, line, or polygon, or the pixels of a bitmap or 
image, to fragments, each corresponding to a pixel in the framebuffer. Note 
that all primitives are rasterized, not just points, lines, and polygons.

rectangle

A quadrilateral whose alternate edges are parallel to each other in object 
coordinates. Polygons specified with glRect*() are always rectangles; other 
quadrilaterals might be rectangles.

rendering 

Conversion of primitives specified in object coordinates to an image in the 
framebuffer. Rendering is the primary operation of OpenGL—it’s what 
OpenGL does.

render-to-texture

A technique where the storage for a texture map is used as a destination for 
rendering (i.e., a renderbuffer). Render-to-texture enables a more efficient 
method for updating texture maps than rendering into the color buffer, and 
copy the results into texture memory, saving the copy operation.
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renderbuffer

An allocation of memory in the OpenGL server for the storage of pixel 
values. Renderbuffers are used as a destination for rendering, as well as able 
to be as texture maps without requiring a copy of the renderbuffer’s data.

resident texture

A texture image that is cached in special, high-performance texture mem-
ory. If an OpenGL implementation does not have special, high-performance 
texture memory, then all texture images are deemed resident textures.

RGBA

Red, green, blue, alpha.

RGBA mode

An OpenGL context is in RGBA mode if its color buffers store red, green, 
blue, and alpha color components, rather than color indices.

scissoring

A fragment clipping test. Fragments outside of a rectangular scissor region 
are rejected.

selection

The process of determining which primitives intersect a 2D region or 3D 
volume defined by matrix transformations.

separable filter

A form of 2D convolution filter that can be represented by two 1D vectors. 
The 2D separable filter is determined by computing the outer product of the 
two vectors.

server

The computer on which OpenGL commands are executed. This might differ 
from the computer from which commands are issued. See client.

shader program

A set of instructions written in a graphics shading language (The OpenGL 
Shading Language, also called GLSL) that control the processing of graphics 
primitives.
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shading

The process of interpolating color within the interior of a polygon, or 
between the vertices of a line, during rasterization.

shininess

The exponent associated with specular reflection and lighting. Shininess 
controls the degree with which the specular highlight decays.

single-buffering

OpenGL contexts that don’t have back color buffers are single-buffered. You 
can use these contexts for animation, but take care to avoid visually 
disturbing flashes when rendering.

singular matrix

A matrix that has no inverse. Geometrically, such a matrix represents a 
transformation that collapses points along at least one line to a single point.

smooth shading

See Gouraud shading.

specular

Specular lighting and reflection incorporates reflection off shiny objects 
and the position of the viewer. Maximum specular reflectance occurs when 
the angle between the viewer and the direction of the reflected light is zero. 
A specular material scatters light with greatest intensity in the direction of 
the reflection, and its brightness decays, based upon the exponential value 
shininess.

spotlight

A special type of local light source that has a direction (where it points to) 
as well as a position. A spotlight simulates a cone of light, which may have 
a fall-off in intensity, based upon distance from the center of the cone.

sprite

A screen-aligned graphics primitive. Sprites are usually represented as 
either a single vertex that is expanded to cover many pixels around the 
transformed vertex, or as a quadrilateral its vertices specified so that it is 
perpendicular to the viewing direction (or put another way, parallel to the 
image plane).
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sRGB color space

An RGB color space standard specified by the International Electrotechnical 
Commission (IEC) that matches the color intensity outputs of monitors 
and printers better than a linear RGB space. The sRGB approximately 
corresponds to gamma correcting RGB (but not alpha) values using a 
gamma value of 2.2. See IEC standard 61966-2-1 for all of the gory details.

stencil buffer

Memory (bitplanes) that is used for additional per-fragment testing, along 
with the depth buffer. The stencil test may be used for masking regions, 
capping solid geometry, and overlapping translucent polygons.

stereo

Enhanced three-dimensional perception of a rendered image by computing 
separate images for each eye. Stereo requires special hardware, such as two 
synchronized monitors or special glasses, to alternate viewed frames for 
each eye. Some implementations of OpenGL support stereo by including 
both left and right buffers for color data.

stipple

A one- or two-dimensional binary pattern that defeats the generation of 
fragments where its value is zero. Line stipples are one-dimensional and are 
applied relative to the start of a line. Polygon stipples are two-dimensional 
and are applied with a fixed orientation to the window.

tessellation

Reduction of a portion of an analytic surface to a mesh of polygons, or of a 
portion of an analytic curve to a sequence of lines.

texel

A texture element. A texel is obtained from texture memory and represents 
the color of the texture to be applied to a corresponding fragment.

texture mapping

The process of applying an image (the texture) to a primitive. Texture 
mapping is often used to add realism to a scene. For example, you can apply 
a picture of a building facade to a polygon representing a wall.

texture matrix

The 4 4 matrix that transforms texture coordinates from the coordinates 
in which they’re specified to the coordinates that are used for interpolation 
and texture lookup.
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texture object

A named cache that stores texture data, such as the image array, associated 
mipmaps, and associated texture parameter values: width, height, border 
width, internal format, resolution of components, minification and 
magnification filters, wrapping modes, border color, and texture priority.

textures

One- or two-dimensional images that are used to modify the color of 
fragments produced by rasterization.

texture unit

When multitexturing, as part of an overall multiple pass application of tex-
ture images, a texture unit controls one processing step for a single texture 
image. A texture unit maintains the texturing state for one texturing pass, 
including the texture image, filter, environment, coordinate generation, 
and matrix stack. Multitexturing consists of a chain of texture units.

transformations

The warping of spaces. In OpenGL, transformations are limited to projec-
tive transformations that include anything that can be represented by a 
4 4 matrix. Such transformations include rotations, translations, (non-
uniform) scalings along the coordinate axes, perspective transformations, 
and combinations of these.

triangle

A polygon with three edges. Triangles are always convex.

uniform variable

A type of variable used in vertex or fragment shaders that doesn’t change its 
value across a set of primitives (either a single primitive, or the collection of 
primitives specified by a single draw call).

uniform buffer object

A type of buffer object that encapsulates a set of uniform variables, making 
access and update of that collection of uniform variables much faster with 
less function call overhead.

unpack

The process of converting pixels supplied by an application to OpenGL’s 
internal format.
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vertex

A point in three-dimensional space.

vertex array

A block of vertex data (vertex coordinates, texture coordinates, surface 
normals, RGBA colors, color indices, and edge flags) may be stored in an 
array and then used to specify multiple geometric primitives through the 
execution of a single OpenGL command.

vertices

Preferred plural of vertex. See indices.

viewpoint

The origin of either the eye- or the clip-coordinate system, depending on 
context. (For example, when discussing lighting, the viewpoint is the origin 
of the eye-coordinate system. When discussing projection, the viewpoint is 
the origin of the clip-coordinate system.) With a typical projection matrix, 
the eye-coordinate and clip-coordinate origins are at the same location.

view volume

The volume in clip coordinates whose coordinates satisfy the following 
three conditions:

w  x  w

w  y  w

w  z  w

Geometric primitives that extend outside this volume are clipped.

VRML 

VRML stands for Virtual Reality Modeling Language, which is (according to 
the VRML Mission Statement) “a universal description language for multi-
participant simulations.” VRML is specifically designed to allow people to 
navigate through three-dimensional worlds that are placed on the World 
Wide Web. The first versions of VRML are subsets of the Open Inventor 
file format with additions to allow hyperlinking to the Web (to URLs—
Universal Resource Locators).

window

A subregion of the framebuffer, usually rectangular, whose pixels all have 
the same buffer configuration. An OpenGL context renders to a single 
window at a time.
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window-aligned

When referring to line segments or polygon edges, implies that these are 
parallel to the window boundaries. (In OpenGL, the window is rectangular, 
with horizontal and vertical edges.) When referring to a polygon pattern, 
implies that the pattern is fixed relative to the window origin.

window coordinates

The coordinate system of a window. It’s important to distinguish between 
the names of pixels, which are discrete, and the window-coordinate 
system, which is continuous. For example, the pixel at the lower left corner 
of a window is pixel (0, 0); the window coordinates of the center of this 
pixel are (0.5, 0.5, z). Note that window coordinates include a depth, or z,
component, and that this component is continuous as well.

wireframe

A representation of an object that contains line segments only. Typically, 
the line segments indicate polygon edges.

working set

On machines with special hardware that increases texture performance, this 
is the group of texture objects that are currently resident. The performance 
of textures within the working set outperforms the textures outside the 
working set.

X Window System

A window system used by many of the machines on which OpenGL is 
implemented. GLX is the name of the OpenGL extension to the X Window 
System. (See Appendix D.)
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Numbers
3D Computer Graphics,  390

A
accumulation buffer,  492, 494, 519–525

clearing,  36, 495
depth-of-field effect, use for,  521–525
examples of use,  519
motion blur, use for,  520
sample program with depth-of-field effect,

522
AGL,  15

aglChoosePixelFormat(),  820, 822
aglConfigure(),  824
aglCopyContext(),  820, 823
aglCreateContext(),  820, 823
aglDescribePixelFormat(),  822
aglDescribeRenderer(),  823
aglDestroyContext(),  820, 823
aglDestroyPixelFormat(),  822
aglDestroyRendererInfo(),  823
aglDevicesOfPixelFormat(),  822
aglDisable(),  824
aglEnable(),  824
aglErrorString(),  824
aglGetCurrentContext(),  820, 823
aglGetDrawable(),  820, 823
aglGetError(),  824
aglGetInteger(),  824
aglGetVersion(),  820, 822
aglGetVirtualScreen(),  823
aglIsEnabled(),  824
aglNextPixelFormat(),  822
aglNextRendererInfo(),  823
aglQueryRendererInfo(),  823
aglResetLibrary(),  824

aglSetCurrentContext(),  820, 823
aglSetDrawable(),  820, 821, 823
aglSetFullScreen(),  821, 823
aglSetInteger(),  821, 824
aglSetOffScreen(),  821, 823
aglSetVirtualScreen(),  823
aglSwapBuffers(),  821, 824
aglUpdateContext(),  821, 823
aglUseFont(),  824

airbrushing,  666
Akeley, Kurt,  519
aliasing, see antialiasing
alpha,  251

destination alpha,  280
material properties,  233
multisampling coverage,  279
texture image data type,  445

alpha blending, see blending
alpha test,  503

querying current values,  503
rendering pipeline stage,  14

ambient
contribution to lighting equation,  243
global light,  228, 242
light,  207, 208, 216
material properties,  209, 233

animation,  22–25
antialiasing,  267–280

accumulation buffer used for,  520–??
characters (by masking),  650
characters (by texturing),  661
color-index mode,  272
coverage values,  267
enabling for points or lines,  269
enabling for polygons,  280
lines,  267, 269–275
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antialiasing, continued
lines (by texturing),  661
points,  269–275, 653
polygons,  280
RGBA mode,  270
sample program in color-index mode,  272
sample program in RGBA mode,  270

Apple Interface to OpenGL, see AGL
ARB imaging subset,  367–388
architectural applications

orthographic parallel projection, use of,
156

arcs,  559
array elements, see vertex arrays
aspect ratio

perspective projection,  155
viewport transformation,  159

atmospheric effects, see fog
attenuation of light,  217–218
attribute groups,  110–112

client,  110
list of,  743–800
multitexturing, with,  470
server,  110
stack depth, obtaining,  111
stacks,  110

auxiliary buffers,  493, 498

B
back-facing polygons,  61

culling,  62
material property, specifying,  232
two-sided lighting,  229

background,  34–37
color,  34
drawing a fixed,  500, 662

background processing,  736
backward compatibility

tessellation,  558

basis functions,  571, 572
Bernstein

basis,  571
polynomial,  575

Bézier
basis,  571, 572
curve,  575
sample program using mesh for surface,

582
sample program which draws curve,  573
sample program which draws surface,  580

BGR and BGRA pixel formats,  336
billboarding,  259, 504
bitmaps,  322–329

display lists cache bitmap data,  303
distorting,  648
drawing,  327
feedback mode,  629
fonts, used for,  324, 331
imaging pipeline operations,  344
ordering of data in,  325
origin of,  328
sample program,  324
sample program that creates a font,  331
size of,  325

bitplanes,  190, 490
displayable colors, number of,  192

blending,  251–264, 516
antialiasing polygons,  280
controlling blending on a per-buffer basis,

516
coverage calculations for antialiasing,  267
destination alpha,  280
differences among releases,  250
enabling,  255
enabling for antialiasing,  269
equation,  255
factors (source and destination),  252
images,  653
ordering polygons before drawing,  263
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rendering pipeline stage,  14
sample program for three-dimensional,  264
sample program with blended polygons,

261
texture function,  448
three dimensions, in,  263
uses of,  258

buffer object,  833
buffer objects

binding,  93
creating,  92
deleting,  102
flushing a mapped buffer range,  100
initializing with data,  94
mapping a buffer,  97, 98
partial copy,  101
replacing data,  96
unmapping a buffer,  97

buffer, see framebuffer

C
C programming language,  8
CAD/CAM, see computer-aided design
camera analogy,  126–127

environment mapping,  463
viewport transformations,  158

capping, see computational solid geometry
characters

antialiasing,  661
circles,  559
clearing buffers,  36
clearing the color buffer,  35
clearing the framebuffer,  34–37, 495–496

affected by scissoring, dithering, and 
masking,  496

client-server, see networked operation
clip coordinates,  128, 170

feedback mode,  629

clip planes
user defined,  169

clipping,  158
interference regions found using clipping 

planes,  657
overview,  125
primitives in rendering pipeline,  12
viewing volume,  153

clipping planes
additional clipping planes,  128, 168–172
far,  154–156, 162
near,  154–156, 162
querying number of additional,  170
sample program with additional clipping 

planes,  170
color

alpha values,  251
background,  34
cube showing blended RGB values,  189
current raster color,  329
human perception,  187
RGBA values for,  38, 188
specifying,  37
specifying for tessellation,  548
specifying in color-index mode,  199
specifying in RGBA mode,  197

color buffer,  188, 190, 491, 492, 493
clearing,  36
masking,  499

color map,  188, 193
loading for antialiasing,  272
loading for smooth shading,  202
loading, using GLUT,  735
size of,  194

color matrix,  382–383
example,  382
post transform scale and bias,  383
sample program,  382

color sum mode,  478
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color tables,  369–371
proxies,  374
replacing part of,  373
sample program,  371
specifying,  369

color-index mode,  193–195
changing between RGBA mode 

and,  196
choosing between RGBA mode and,  195
coverage calculations for 

antialiasing,  267
dithering,  517
layering with writemasks,  500
lighting,  246–247
lighting calculations in,  247
texturing limitations,  396, 404
vertex arrays, specifying values with,  74

combiner functions,  472–478
command syntax,  7–9
compositing images,  259
compositing transformations,  172–179
computational solid geometry

capping,  509
difference of several contours,  553
interference regions,  656
intersection of two contours,  553
union of several contours,  553

Computer Graphics: Principles and Practice,  xl, 
187, 191, 803

computer-aided design
orthographic parallel projection, use of,

156
concave polygons

GLU tessellation,  542
stencil buffer, drawing with the,  655

cones,  559, 736
improving rendering of,  664

constant attenuation,  218
contours,  458
control points,  570, 574, 578, 587

convex polygons,  43
convolutions,  374–382

1d filters,  380
2d filters,  374
border modes,  381
post convolution scale and bias,  382
sample program,  376
separable filters,  378

Conway, John,  664
coordinate systems

grand, fixed,  139, 148, 172
local,  139, 148, 172, 176
simple 2D,  40–41

coordinates
see clip coordinates, depth coordinates, eye 

coordinates, homogeneous 
coordinates, normalized device 
coordinates, object coordinates, q 
texture coordinates, texture 
coordinates, w coordinates, or window 
coordinates

coverage, pixel,  267
Coxeter, H. S. M.,  803
cross product,  151
CSG, see computational solid geometry
cube maps,  465
culling,  61–62

enabling,  62
rendering pipeline stage,  12
selection mode,  610

curves and curved surfaces,  45
also see evaluators or NURBS

Curves and Surfaces for Computer-Aided 
Geometric Design,  571

cylinders,  559

D
data types

RGBA color conversion,  197
special OpenGL,  8
texture data,  403
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decals,  503, 654
polygon offset used for,  294
texture function,  447

deprecation mechanism,  27
depth buffer,  206, 492, 494

also see hidden-surface removal
background, using masking for a common,

500
blending, use for three-dimensional,  263
clearing,  36, 206, 495
decals, for,  654
Dirichlet domains, for,  663
drawing static backgrounds,  662
masking,  499
pixel data,  342, 353

depth coordinates,  129, 161
perspective division,  161
picking use,  621
polygon offset,  293–296
rendering pipeline stage for depth-range 

operations,  12
sample program with picking,  621
selection hit records,  610

depth test,  510
also see depth buffer
rendering pipeline stage,  14

depth-cuing, see fog
depth-of-field effect,  521–525

sample program,  522
destination factor, see blending
determing object coordinates from window 

coordinates,  180, 182
diffuse

contribution to lighting 
equation,  243

light,  208, 216
material properties,  209, 233

directional light source,  217
Dirichlet domains,  663
disks,  559

display lists,  33, 299
changing mode settings,  319
compiling,  307
creating,  305
deleting,  311
disadvantages,  304, 310
error handling,  306
executing,  305, 310
executing multiple,  312
font creation,  313, 329
hierarchical,  310
immediate mode, mixing with,  310
indices for, obtaining,  306
naming,  306
nesting,  310
nesting limit, querying,  310
networked operation,  309
querying use of an index,  311
rendering pipeline stage,  11
sample program creating a font,  314
sample program for creating,  299, 305
sharing among rendering contexts,  814, 826
state variables saved and restored,  319
tessellation, use with,  557
uses for,  303, 319
vertex-array data,  309
what can be stored in,  308

distorted images,  647
texture images,  451

dithering,  192–193, 516
and clearing,  496
rendering pipeline stage,  14

dot product
lighting calculations, use in,  243
texture combiner function,  475

double-buffering,  23–25
automatic glFlush(),  39
changing between single-buffering and,  196
object selection using the back buffer,  646
querying its presence,  494
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drawing
clearing the window,  34
forcing completion of,  38
icosahedron,  115
points,  48
polygons,  48, 61
preparing for,  34
rectangles,  45
spheres, cylinders, and disks,  559–567

drawing pixel data, see pixel data
Duff, Tom,  259

E
edge flags,  67–68

tessellated polygons generate,  546
vertex arrays, specifying values with,  74

emission,  208, 234, 241
enabling

alpha test,  502
antialiasing of points or lines,  269
antialiasing polygons,  280
blending,  255
color material properties mode,  237
color sum mode,  478
culling,  62
depth test,  510
dithering,  193, 517
evaluators,  575, 579
fog,  281
lighting,  231
line stippling,  57
logical operations,  517
multisampling,  276
normal vectors for evaluated surfaces, 

automatic generation of,  579, 587
polygon offset,  294
polygon stippling,  63
rescaling normals,  70, 212
stencil test,  504

texture coordinate generation,  462
texturing,  396, 399
unit length normal vectors ensured,  70, 

212
endianness,  349
environment mapping,  463, 465
errata,  xlii
error handling,  637–639

error string description,  639
evaluators,  572–586

basis functions,  571, 575
evenly spaced values,  577, 581
one-dimensional,  572
rendering pipeline stage,  11
sample program using mesh for 2D Bézier 

surface,  582
sample program which draws 1D Bézier 

curve,  573
sample program which draws 2D Bézier 

surface,  580
sample program which generates texture 

coordinates,  584
texture coordinates, generating,  584
two-dimensional,  580

event management, using GLUT,  21
extensions

Microsoft Windows and 
wglGetProcAddress(),  643

vendor-specific,  641
eye coordinates,  128, 170

texture coordinate generation,  458, 462

F
fade effect,  645
Farin, Gerald E.,  571
feedback,  627–634

array contents,  633
pass-through markers,  630
querying current rendering mode,  608
returned data,  629
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sample program,  631
steps to perform,  628
tessellation, obtaining vertex data after,  557

Feiner, Steven K.,  xl, 803
field of view,  132

calculate, using trigonometry to,  163
filtering,  434–436

mipmapped textures,  424–429, 436
texture border colors,  452

flat shading,  200
flight simulation

fog, use of,  281
flushing,  38
fog,  280–291

blending factors,  284
color-index mode,  285
density,  285
enabling,  281
equations,  284
fog coordinates,  288
hints,  281
RGBA mode,  285
sample program in color-index mode,  286
sample program in RGBA mode,  281
sample program with fog coordinates,  289

Foley, James D.,  xl, 187, 191, 803
fonts,  329–332

antialiased characters (by masking),  650
antialiased characters (by texturing),  661
bitmapped,  331
creating with display lists,  313
drawing,  328
drawing as bitmaps,  324
multi-byte,  330
same program,  331
sample program using multiple display 

lists,  314
X fonts, using,  816

Foran, Jim,  482

foreshortening, perspective,  153
fragments,  14, 490

alpha test,  503
blending,  251
depth test,  510
rendering pipeline operations,  14
scissor test,  502
tests,  501–518
texture functions,  446

framebuffer,  190, 491
capacity per pixel,  492
clearing,  495–496
copying pixel data within,  333, 342, 344
enabling for reading,  497
enabling for writing,  497
minimum configuration with the X 

Window System,  492
querying color resolution,  190
reading pixel data from,  333, 335
writing pixel data to,  333, 341

framebuffer objects,  13
freeglut,  xli, 15
front-facing polygons,  61

specifying material property for,  232
two-sided lighting,  229

frustum,  153
ftp (file-transfer protocol) site

GLX specification,  813
Fundamentals of Computer Aided Geometric 

Design,  571

G
Game of Life,  664
gamma correction,  191
Gardner, Martin,  664
geometric primitives,  42–53

rendering pipeline stage,  12
geosciences

use of texturing in applications,  458
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giraffe,  194
GL_VERTEX_PROGRAM_POINT_SIZE,  721
GL_VERTEX_PROGRAM_TWO_SIDE,  722
glAccum(),  519
glActiveTexture(),  469
glAlphaFunc(),  503
glAreTexturesResident(),  442
glArrayElement(),  77

legal between glBegin() and glEnd(),  52
Glassner, Andrew S.,  xl
glAttachShader(),  677
glBegin(),  47, 48, 546

restrictions,  51
glBeginConditionalRender(),  515
glBeginQuery(),  513
glBeginTransformFeedback(),  724
glBindAttribLocation(),  718
glBindBuffer(),  93
glBindBufferBase(),  696
glBindBufferRange(),  696
glBindFragDataLocation(),  730
glBindFramebuffer(),  528
glBindRenderbuffer(),  530
glBindTexture(),  399, 439

multitexturing,  469
glBindVertexArray()

vertex array objects,  105
glBitmap(),  324, 327, 816

feedback mode,  629
fonts, used for,  331
imaging pipeline operations,  344
pixel-storage modes effect,  347

glBlendColor*(),  254
glBlendEquation(),  255
glBlendEquationSeparate(),  255
glBlendFunc(),  253
glBlendFuncSeparate(),  253
glBlitFramebuffer(),  540
glBufferData(),  94

glBufferSubData(),  96
glCallList(),  302, 305, 310

legal between glBegin() and glEnd(),  52
glCallLists(),  312

fonts, use for,  329
legal between glBegin() and glEnd(),  52
sample program,  331

glCheckFramebufferStatus(),  538
glClampColor(),  198
glClear(),  35, 36, 496

depth buffer, clearing the,  206
glClearAccum(),  36, 495
glClearBuffer*(),  496
glClearBufferfi(),  497
glClearColor(),  35, 36, 495
glClearDepth(),  35, 495
glClearIndex(),  36, 199, 495

fog, use with,  286
glClearStencil(),  36, 495
glClientActiveTexture(),  472
glClipPlane(),  169
glColor*(),  38, 197

legal between glBegin() and glEnd(),  51
glColorMask(),  496, 499
glColorMaski(),  499
glColorMaterial(),  237
glColorPointer(),  74
glColorSubTable(),  373
glColorTable(),  369
glColorTableParameter(),  371
glCompileShader(),  676
glCompressedTexImage1D(),  421
glCompressedTexImage2D(),  421
glCompressedTexImage3D(),  421
glCompressedTexSubImage1D(),  422
glCompressedTexSubImage2D(),  422
glCompressedTexSubImage3D(),  422
glConvolutionFilter1D(),  380
glConvolutionFilter2D(),  375
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glConvolutionParameter*(),  381
glCopyBufferSubData(),  101
glCopyColorSubTable(),  373
glCopyColorTable(),  372
glCopyConvolutionFilter1D(),  380
glCopyConvolutionFilter2D(),  378
glCopyPixels(),  333, 342

alternative uses,  665
feedback mode,  629
glReadBuffer() effect,  499
imaging pipeline operations,  344
pixel-transfer modes effect,  352

glCopyTexImage1D(),  413
glReadBuffer() effect,  499
pixel-transfer modes effect,  352

glCopyTexImage2D(),  405
glReadBuffer() effect,  499
pixel-transfer modes effect,  352

glCopyTexSubImage1D(),  414
glReadBuffer() effect,  499
pixel-transfer modes effect,  352

glCopyTexSubImage2D(),  411
glReadBuffer() effect,  499
pixel-transfer modes effect,  352

glCopyTexSubImage3D(),  417
pixel-transfer modes effect,  352

glCreateProgram(),  676
glCreateShader(),  675
glCullFace(),  62
glDeleteBuffers(),  102
glDeleteFramebuffers(),  528
glDeleteLists(),  312, 330
glDeleteProgram(),  680
glDeleteQueries(),  514
glDeleteRenderbuffers(),  529
glDeleteShader(),  680
glDeleteTextures(),  442
glDeleteVertexArrays(),  109
glDepthFunc(),  510

glDepthMask(),  499
blending opaque and translucent objects,

264
glDepthRange(),  161

gluUnProject(), relationship to,  180
glWindowPos*() effect,  326

glDetachShader(),  677
glDisable(),  10, 54
glDisableClientState(),  73
glDisablei(),  516
glDisableVertexAttribArray(),  720
glDrawArrays(),  82
glDrawBuffer(),  341, 343, 498
glDrawBuffers(),  498
glDrawElements(),  78
glDrawPixels(),  333, 340, 506, 662

alternative uses,  665
feedback mode,  629
pixel-storage modes effect,  347
pixel-transfer modes effect,  352

glDrawRangeElements(),  81
version,  33

glEdgeFlag*(),  68
legal between glBegin() and glEnd(),  52

glEdgeFlagPointer(),  74
glEnable(),  10, 54, 213

also see enabling
glEnableClientState(),  52, 72
glEnablei(),  516
glEnableVertexAttribArray(),  720
glEnd(),  47, 48, 546

restrictions,  51
glEndConditionalRender(),  515
glEndList(),  301, 305, 307
glEndQuery(),  513
glEndTransformFeedback(),  724
glEvalCoord*(),  577

legal between glBegin() and glEnd(),  52
used instead of glVertex*(),  572, 575
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glEvalCoord2*(),  579
glEvalMesh1(),  578
glEvalMesh2(),  581
glEvalPoint*()

legal between glBegin() and glEnd(),  52
glext.h,  16
glFeedbackBuffer(),  628

glRenderMode(), use with,  608
glFinish(),  40
glFlush(),  39, 816
glFlushMappedBufferRange(),  100
glFog*(),  284
glFogCoord*(),  288
glFogCoordPointer(),  74
glFramebufferRenderbuffer(),  533
glFramebufferTexture1D(),  535
glFramebufferTexture2D(),  535
glFramebufferTexture3D(),  535
glFramebufferTextureLayer(),  538
glFrontFace(),  62
glFrustum(),  133, 153, 154
glGenBuffers(),  92
glGenerateMipmap(),  428
glGenFramebuffers(),  527
glGenLists(),  301, 306

fonts, use for,  330
glGenQueries(),  512
glGenRenderbuffers(),  529
glGenTextures(),  399, 438
glGenVertexArrays(),  105
glGetAttachedShaders(),  740
glGetAttribLocation(),  718
glGetBooleanv(),  10, 54, 743

double-buffering support, querying,  494
stereo support, querying,  494

glGetBufferParameteriv(),  740
glGetBufferPointerv(),  740
glGetBufferSubData(),  740
glGetClipPlane(),  740

glGetColorTable(),  740
pixel-storage modes effect,  347

glGetColorTableParameter*(),  741
glGetCompressedTexImage(),  741
glGetConvolutionFilter(),  741

pixel-storage modes effect,  347
glGetConvolutionParameter*(),  741
glGetDoublev(),  10, 54, 743
glGetError(),  10, 638, 741
glGetFloatv(),  10, 54, 743

line width attributes, obtaining,  57
glGetFragDataLocation(),  730
glGetHistogram(),  385, 741

pixel-storage modes effect,  347
glGetHistogramParameter*(),  741
glGetIntegerv(),  10, 54, 743

alpha test information, obtaining,  503
attribute stack depth, obtaining,  111
clipping planes, obtaining number of 

additional,  170
color resolution, obtaining,  190
display list nesting limit, obtaining,  310
matrix stack depth, obtaining,  167
maximum texture size, obtaining,  406
name stack depth, obtaining,  609
pixel map information, obtaining,  355
rendering mode, obtaining current,  608
stencil-related values, obtaining,  505
vertex array range values, obtaining,  81

glGetLight*(),  10, 741
glGetMap*(),  741
glGetMaterial*(),  741
glGetMinmax(),  387, 741

pixel-storage modes effect,  347
glGetMinmaxParameter*(),  741
glGetPixelMap(),  741
glGetPointerv(),  10, 54, 743
glGetPolygonStipple(),  10, 741
glGetProgramInfoLog(),  678
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glGetProgramiv(),  741
glGetProgramLogInfo(),  741
glGetQueryiv(),  741
glGetQueryObject*(),  513
glGetQueryObjectiv(),  741
glGetQueryObjectuiv(),  741
glGetSeparableFilter(),  741

pixel-storage modes effect,  347
glGetShaderInfoLog(),  676, 742
glGetShaderiv(),  742
glGetShaderSource(),  742
glGetString(),  639, 742
glGetStringi(),  642
glGetTexEnv*(),  742
glGetTexGen*(),  742
glGetTexImage(),  742

pixel-storage modes effect,  347
pixel-transfer modes effect,  352

glGetTexLevelParameter*(),  407, 742
glGetTexParameter*(),  742

texture residency, obtaining,  442
glGetUniform*(),  742
glGetUniformBlockIndex(),  695
glGetUniformIndices(),  697
glGetUniformLocation(),  691
glGetVertexAttrib*(),  742
glGetVertexAttribPointerv(),  742
glHint()

fog use,  281
texture use,  400

glHistogram(),  384
glIndex(),  199
glIndex*()

fog, use with,  286
legal between glBegin() and glEnd(),  51

glIndexMask(),  496, 499
glIndexPointer(),  74
glInitNames(),  607, 608, 609
glInterleavedArrays(),  89

glIsBuffer(),  93, 742
glIsEnabled(),  10, 54, 743
glIsFramebuffer(),  528
glIsList(),  312, 742
glIsProgram(),  680, 742
glIsQuery(),  512, 742
glIsRenderbuffer(),  530
glIsShader(),  680, 742
glIsTexture(),  438, 742
glIsVertexArray(),  110
glLight*(),  213, 214, 215, 220
glLightModel*(),  228
glLineStipple(),  57
glLineWidth(),  56
glLinkProgram(),  677
glListBase(),  312

fonts, use for,  330
sample program,  331

glLoadIdentity(),  133, 135, 145
viewing transformations, use 

before,  131
glLoadMatrix*(),  134, 135
glLoadName(),  608, 610
glLoadTransposeMatrix*(),  134, 136
glLogicOp(),  256, 518
glMap*(),  574
glMap1*(),  576
glMap2*(),  579
glMapBuffer(),  97
glMapBufferRange(),  98
glMapGrid1*(),  577
glMapGrid2*(),  581
glMaterial*(),  214, 232

legal between glBegin() and glEnd(),  51
glMatrixMode(),  133, 135

use with matrix stacks,  166
glMinmax(),  387
glMultiDrawArrays(),  83

version,  33
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glMultiDrawElements(),  80
version,  33

glMultiTexCoord*(),  470
glMultMatrix*(),  134, 135
glMultTransposeMatrix*(),  134, 136
glNewList(),  301, 305, 307
glNormal*()

legal between glBegin() and glEnd(),  51
glNormal3*(),  69
glNormalPointer(),  74
glOrtho(),  157

picking matrix use,  615
glPassThrough(),  628, 630
glPixelMap*(),  354
glPixelStore*(),  347, 417

cannot be stored in display lists,  309
polygon stippling,  63
texture image data, effect on,  403, 405, 

409, 411, 413, 416, 421, 422
glPixelTransfer*(),  352, 662

texture image data, effect on,  403, 405, 
409, 411, 413, 416, 421, 422

glPixelZoom(),  356, 648
glPointParameter*(),  292
glPointSize(),  55, 721
glPolygonMode(),  61

antialiasing, effect on,  280
polygon offset, use with,  294

glPolygonOffset(),  294
glPolygonStipple(),  63

pixel-storage modes effect,  347
glPopAttrib(),  10, 111, 318, 470, 743
glPopClientAttrib(),  10, 112, 470, 743
glPopMatrix(),  166, 176, 223, 318

restore orientation of coordinate systems,
179

selection, use with,  607
glPopName(),  608, 609
glPrimitiveRestartIndex(),  84

glPrioritizeTextures(),  443
glPushAttrib(),  10, 111, 318, 470, 743
glPushClientAttrib(),  10, 112, 470, 743
glPushMatrix(),  166, 176, 223, 318

save orientation of coordinate systems,  179
selection, use with,  607

glPushName(),  607, 608, 609
glRasterPos*(),  324, 325

images, for positioning,  333
multitexturing, with,  471
selection hit,  610

glReadBuffer(),  342, 499
glReadPixels(),  333, 335

glReadBuffer() effect,  499
pixel-storage modes effect,  347
pixel-transfer modes effect,  352

glRect*(),  45
glRenderbufferStorage(),  530
glRenderbufferStorageMultisample(),  530
glRenderMode(),  607, 608, 610, 628
glResetHistogram(),  386
glResetMinmax(),  388
glRotate*(),  142, 172, 175
glSampleCoverage(),  279
glScale*(),  131, 142, 175
glScissor(),  502
glSecondaryColor*(),  479
glSecondaryColorPointer(),  74
glSelectBuffer(),  607, 608

display lists, cannot be stored in,  309
glSeparableFilter2D(),  379
glShadeModel(),  200
glShaderSource(),  675
glStencilFunc(),  504
glStencilFuncSeparate(),  504
glStencilMask(),  499
glStencilMaskSeparate(),  499
glStencilOp(),  505
glStencilOpSeparate(),  505
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glTexBuffer(),  711
glTexCoord*(),  400, 449

legal between glBegin() and glEnd(),  52
texture unit 0, for,  471

glTexCoordPointer(),  74
glTexEnv*(),  399, 444, 473

level of detail bias,  430
multitexturing,  468

glTexGen*(),  457
cube maps,  466
environment mapping,  464
multitexturing,  468, 471

glTexImage1D(),  412
pixel-storage modes effect,  347
pixel-transfer modes effect,  352

glTexImage2D(),  399, 400
cube map textures,  465
pixel-storage modes effect,  347
pixel-transfer modes effect,  352
specifying mipmaps,  425

glTexImage3D(),  415
pixel-storage modes effect,  347
pixel-transfer modes effect,  352

glTexParameter*(),  399, 455
automatic mipmap regeneration,  429
mipmap level of detail, controlling,  433
mipmap levels, controlling base and 

maximum,  432
multitexturing,  468
specifying filtering methods,  435

glTexSubImage1D(),  413
pixel-storage modes effect,  347
pixel-transfer modes effect,  352

glTexSubImage2D(),  409
pixel-storage modes effect,  347
pixel-transfer modes effect,  352

glTexSubImage3D(),  416
pixel-storage modes effect,  347
pixel-transfer modes effect,  352

glTranslate*(),  141, 172, 175

GLU,  3, 15, 542
drawing spheres, cylinders, and disks,

559–567
error string description,  639
obsolete routines

gluBeginPolygon(),  558
gluEndPolygon(),  558
gluNextContour(),  558

quadrics,  559–567
tessellation,  44, 542–559
version numbers, obtaining,  641

gluBeginCurve(),  587, 597
gluBeginSurface(),  587, 595
gluBeginTrim(),  601
gluBuild1DMipmapLevels(),  430
gluBuild1DMipmaps(),  429
gluBuild2DMipmapLevels(),  430
gluBuild2DMipmaps(),  429
gluBuild3DMipmapLevels(),  430
gluBuild3DMipmaps(),  429
gluCheckExtension(),  642
gluCylinder(),  560, 563
gluDeleteNurbsRenderer(),  591
gluDeleteQuadric(),  560, 561
gluDeleteTess(),  557, 558
gluDisk(),  560, 564
gluEndCurve(),  587, 597
gluEndSurface(),  587, 595
gluEndTrim(),  601
gluErrorString(),  561, 595, 639

polygon tessellation,  546
gluGetNurbsProperty(),  594, 742
gluGetString(),  641, 742
gluGetTessProperty(),  553, 742
gluLoadSamplingMatrices(),  594
gluLookAt(),  129, 131, 149, 172
gluNewNurbsRenderer(),  587, 591
gluNewQuadric(),  560, 561
gluNewTess(),  544, 558
glUniform*(),  691
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glUniformBlockBinding(),  696
glUniformMatrix*(),  691
glUnmapBuffer(),  97
gluNurbsCallback(),  587, 595, 598
gluNurbsCallbackData(),  599
gluNurbsCurve(),  587, 597
gluNurbsProperty(),  587, 592

returning tessellated data,  597
gluNurbsSurface(),  587, 596
gluOrtho2D(),  158

resized windows, use with,  41
gluPartialDisk(),  560, 564
gluPerspective(),  133, 156, 172

picking matrix use,  615
gluPickMatrix(),  615
gluProject(),  183
gluPwlCurve(),  601
gluQuadricCallback(),  560, 561
gluQuadricDrawStyle(),  560, 561
gluQuadricNormals(),  560, 562
gluQuadricOrientation(),  560, 562
gluQuadricTexture(),  560, 562
gluScaleImage(),  405
glUseProgram(),  678
gluSphere(),  560, 563
GLUT,  15, 731–737

basic functions,  17–22
event management,  21
glutCreateWindow(),  19, 733
glutDisplayFunc(),  19, 733
glutIdleFunc(),  21, 736
glutInit(),  18, 732
glutInitContextFlags(),  19
glutInitContextVersion(),  18
glutInitDisplayMode(),  18, 732
glutInitWindowPosition(),  18, 733
glutInitWindowSize(),  18, 733
glutKeyboardFunc(),  21, 734
glutMainLoop(),  19, 737

glutMotionFunc(),  21, 734
glutMouseFunc(),  21, 734
glutPostRedisplay(),  19, 302, 734
glutReshapeFunc(),  21, 734

simple example,  40
glutSetColor(),  18, 199, 247, 735

smooth shading, use for,  202
glutSolidCone(),  736
glutSolidCube(),  21, 735
glutSolidDodecahedron(),  736
glutSolidIcosahedron(),  736
glutSolidOctahedron(),  736
glutSolidSphere(),  21, 735
glutSolidTeapot(),  736
glutSolidTetrahedron(),  736
glutSolidTorus(),  735
glutSwapBuffers(),  25
glutWireCone(),  736
glutWireCube(),  21, 735
glutWireDodecahedron(),  736
glutWireIcosahedron(),  736
glutWireOctahedron(),  736
glutWireSphere(),  21, 172, 735
glutWireTeapot(),  736
glutWireTetrahedron(),  736
glutWireTorus(),  735
multisampling,  276
window management,  40

gluTessBeginContour(),  555
gluTessBeginPolygon(),  554
gluTessCallback(),  545, 555, 558
gluTessEndContour(),  555
gluTessEndPolygon(),  554
gluTessNormal(),  553, 554, 557
gluTessProperty(),  550, 555
gluTessVertex(),  555, 558
gluUnProject(),  180, 183
gluUnProject4(),  182
glValidateProgram(),  681
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glVertex*(),  46
legal between glBegin() and glEnd(),  51
using glEvalCoord*() instead,  572

glVertexAttrib*(),  719
glVertexAttrib4N*(),  719
glVertexAttribI*(),  719
glVertexAttribPointer(),  720
glVertexPointer(),  52, 74
glViewport(),  134, 159

using with resized windows,  41
glWindowPos*(),  326

multitexturing, with,  471
selection hit,  610

GLX,  15, 813
ftp site for GLX specification,  813
glXChooseFBConfig(),  813, 817
glXChooseVisual(),  814, 819
glXCopyContext(),  815, 817
glXCreateContext(),  815, 819
glXCreateGLXPixmap(),  814, 819
glXCreateNewContext(),  814, 817
glXCreatePbuffer(),  814, 817
glXCreatePixmap(),  814, 817
glXCreateWindow(),  814, 817
glXDestroyContext(),  815, 818
glXDestroyGLXPixmap(),  816, 819
glXDestroyPbuffer(),  816, 818
glXDestroyPixmap(),  816, 818
glXDestroyWindow(),  816, 818
glXGetClientString(),  813, 816
glXGetConfig(),  493, 814, 819
glXGetCurrentContext(),  815, 818
glXGetCurrentDisplay(),  815, 818
glXGetCurrentDrawable(),  815, 818
glXGetCurrentReadDrawable(),  815, 818
glXGetFBConfigAttrib(),  813, 817
glXGetFBConfigs(),  817
glXGetProcAddress(),  814, 817
glXGetSelectedEvent(),  815, 818
glXGetVisualFromFBConfig(),  813, 817

glXIsDirect(),  814, 818
glXMakeContextCurrent(),  815, 817
glXMakeCurrent(),  815, 819
glXQueryContext(),  815, 818
glXQueryExtension(),  813, 816
glXQueryExtensionsString(),  813, 816
glXQueryServerString(),  813, 816
glXQueryVersion(),  813, 816
glXSelectEvent(),  815, 818
glXSwapBuffers(),  25, 816, 818
glXUseXFont(),  816, 818
glXWaitGL(),  815, 818
glXWaitX(),  816, 818

glXQueryExtensionString(),  641
Gouraud shading, see smooth shading

H
Haeberli, Paul,  482, 519
haze, see fog
header files,  15

Version 3.1,  17
hidden-line removal,  659

polygon offset used for,  294
hidden-surface removal,  205–207, 510
hierarchical models,  164, 310

picking,  619–621
highlights, see specular
hints,  268

fog,  281
perspective correction,  268, 400

histogram,  383–386
reseting,  384, 386
retrieving,  384
sample program,  385

hits (selection), see selection (hit records)
holes in polygons,  43, 656
homogeneous coordinates,  42, 804
Hoschek, Josef,  571
Hughes, John F.,  xl, 803
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I
icosahedron, drawing,  115
identity matrix,  131, 135, 145
illumination, see lighting
images,  322, 333–343

also see pixel data
blending,  653
compositing,  252
distorted,  647
imaging pipeline,  343–359
interpolating between,  653
magnifying or reducing,  356
nonrectangular,  259
projecting,  661
sample code which draws an image,  341
sample program which draws, copies, and 

zooms an image,  357
scaling and rotating,  661
sources of,  333
superimposing,  654
transposing,  666
warping,  661

imaging pipeline, see images (imaging pipeline)
imaging subset,  367–388

texture images, effect on,  404, 412
immediate mode,  33, 298

display lists, mixing with,  310
infinite light source,  217
input events

handling, using GLUT,  21
intensity

texture image data type,  445
Interactive Inspection of Solids: Cross-sections 

and Interferences,  656
interference regions,  656
interleaved arrays,  88
interpolating

color values and texture coordinates,  268, 
449

texture combiner function,  477

J
jaggies,  267
jittering,  525

K
Kilgard, Mark,  xli, 15, 731, 813
Korobkin, Carl,  482

L
Lasser, Dieter,  571
layers, drawing,  649
Life, Game of,  664
light sources,  214–227

ambient light,  208, 216
contribution to lighting equation,  242
diffuse light,  208, 216
directional,  217
display lists cache values,  303
infinite light source,  217
local light source,  217
maximum number of sources,  213
moving along with the viewpoint,  225
moving light sources,  221–226
multiple light sources,  220
performance tips,  213
positional,  217
rendering pipeline stage,  12
RGBA values,  209
sample program that moves the light 

source,  224
specifying a light source,  213
specular light,  208
spotlights,  219–220
stationary,  222

lighting
also see light sources, material properties
ambient light,  207
approximation of the real world,  207
attenuation,  217–218
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calculations in color-index mode,  247
color-index mode,  246–247
default values, using,  214
display lists cache values,  303
enabling,  213, 214
enabling and disabling,  231
equation that calculates lighting,  241
global ambient light,  228, 242
lighting model,  227–230
lighting model, specifying a,  213
rendering pipeline stage,  12
sample program introducing lighting,  210
specular color separated,  230, 245, 479
steps to perform,  210
two-sided materials,  229
viewer, local or infinite,  229

line segment,  43
linear attenuation,  218
lines,  43

antialiasing,  269–275, 661
connected closed loop, specifying,  48, 50
connected strip, specifying,  48, 50
feedback mode,  629
querying line width,  57
sample program with wide, stippled lines,

59
specifying,  48, 50
stippling,  57
tessellated polygons decomposed 

into,  546
width,  56

local light source,  217
logical operations

rendering pipeline stage,  14
transposing images, using for,  666

lookup table, see color map
luminance,  336, 362

pixel data formats for,  338, 346
texture image data type,  445

M
magnifying images,  356
masking,  499

antialiasing characters,  652
layers, drawing,  649
rendering pipeline stage,  14

material properties,  214, 231–240
ambient,  209, 233
changing a single parameter with 

glColorMaterial(),  237
changing material properties,  235
diffuse,  209, 233
display lists cache values,  303
emission,  208, 234, 241
enabling color material properties mode,

237
rendering pipeline stage,  12
RGBA values,  210
sample program which changes material 

properties,  235
sample program which uses 

glColorMaterial(),  238
shininess,  234
specular,  209, 234
two-sided lighting,  229

matrix
choosing which matrix is current,  135
column-major ordering,  136
current,  131
display lists cache matrix operations,  303
identity,  131, 135, 145
loading,  135
loading transposed,  136
modelview,  128, 135
multiplying matrices,  135
multiplying transposed matrices,  136
NURBS, specifying for sampling,  593
orthographic parallel projection,  808
perspective projection,  807
projection,  133, 135
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matrix, continued
rotation,  806
row-major ordering,  136
scaling,  806
texture,  481
transformation pipeline,  126
transformations of homogeneous 

coordinates,  804
translation,  806

matrix stack,  164–168
choosing which matrix stack is current,

166
modelview,  167
popping,  166
projection,  168
pushing,  166
querying stack depth,  167
texture,  481

Megahed, Abe,  656
Microsoft

callback functions on Windows,  547
Microsoft Win32, see Win32
Microsoft Windows 95/98/NT,  15, 824
Microsoft Windows to OpenGL interface, 

see WGL
minmax,  387–388

reseting,  387, 388
retrieving results,  387
sample program,  388

mipmapping,  424–429
automated generation,  429
base and maximum levels,  432
level of detail control,  431
minification filters,  436
texture objects for mipmaps,  441

mirroring objects, see scaling
modeling transformations,  131, 137, 140–145

camera analogy,  126
connection to viewing transformations,

131

example,  143
rotation,  142
rotation matrix,  806
sample program,  145
scaling,  142
scaling matrix,  806
translation,  141
translation matrix,  806

models
rendering wireframe and solid,  21, 735

modelview matrix,  128, 135
arbitrary clipping planes, effect on,  169
stack,  167

mosaicing,  431
motion blur,  520

stippling, with,  646
motion, see animation
movie clips,  665
multiple layers

displaying with overlap,  649
multisampling,  275–279

fading point primitives,  292
sample program,  276

multitexturing,  467–472

N
name stack,  607–611

creating,  608
initializing,  608
loading,  608
multiple names,  619–621
popping,  608
pushing,  608
querying maximum depth,  609

networked operation,  39–40
attribute groups, saving and restoring,  110
display lists,  309
versions,  640
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Non-Uniform Rational B-Splines, see NURBS
nonplanar polygons,  44
normal vectors,  68–70, 212

calculating length,  70
cross product, calculating normalized,  117
enabling automatic unit length division,

70, 212
matrix transformations,  128
normalized,  70
NURBS, generating for,  596
quadrics, generated for,  562
rendering pipeline stage,  12
specifying,  69
tessellation, specifying for,  548
transformations,  805
uniform rescaling,  70
vertex arrays, specifying values with,  74

normal, see normal vectors
normalized device coordinates,  128
NURB Curves and Surfaces,  571
NURBS,  586–604

creating a NURBS curve or surface,
595–597

creating a NURBS object,  591
culling,  592
deleting a NURBS object,  591
display list use,  302
error handling,  594
method of display (lines or filled 

polygons),  592
normal vectors, generating,  596
properties, controlling NURBS,  591
querying property value,  594
references,  571
sample program which draws a lit NURBS 

surface,  588
sample program with a trimmed surface,

603
sampling precision,  592
source for matrices,  593

steps to use,  587
texture coordinate generation,  596
trimming,  601–604

NURBS Book, The,  571
NURBS for Curve and Surface Design,  571
NURBS tessellator

sample code,  599, 600

O
object coordinates,  128

texture coordinate generation,  458
objects, see models
occlusion queries

conditional rendering,  515
occlusion query,  511
opacity,  252
OpenGL contexts,  27
OpenGL Extension to the X Window System, 

see GLX
OpenGL Programming for the X Window System,

xli, 813
OpenGL Reference Manual,  xl, 813
OpenGL Utility Library, see GLU
OpenGL Utility Toolkit, see GLUT
orthographic parallel projection,  133, 

156–157
matrix,  808

outer product,  378
outlined polygons,  61, 68

polygon offset solution,  293
overlapping objects,  656

P
packed pixel data,  338–339
painting,  252, 258, 666
partial disks,  559
pass-through markers,  630
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performance tips
clearing the window,  36
display lists,  302
flushing the pipeline,  38
fog,  281
hints,  268
light source attenuation, effect of,  218
light sources, effect of additional,  213
NURBS and display lists,  302
pixel data alignment,  350
pixel data, drawing,  366
polygon restrictions,  44
polygon subdivision,  114
removing hidden surfaces,  207
tessellation and display lists,  302
tessellation, use of,  557
texture images, internal format of,  403
texture objects,  437
two-sided lighting,  230

perspective projection,  153–156
correction hint,  268, 400
depth coordinates, effect on,  161
matrix,  807
perspective division,  128

picking,  614–624
back buffer for, using the,  646
depth coordinates,  621
hierarchical models,  619–621
projection matrix, special,  615
sample program,  616
sample program with depth coordinates,

621
strategies,  625
sweep selection,  626

Piegl, Les,  571
pipeline

imaging,  343–359
rendering,  10–14
vertex transformation,  126

pixel
coverage,  267

pixel data,  322, 333–343
also see images
BGR and BGRA formats,  336
byte alignment,  350
byte swapping,  348
copying within the framebuffer,  13, 333, 

342, 344
depth buffer pixel data,  342, 353
drawing or reading a subrectangle of,  349
drawing process in detail,  359–361
endianness,  349
feedback mode,  629
formats for reading or drawing,  335
formats for storing in memory,  338, 346
mapping,  13, 354–355
packed,  338–339
packing into processor memory,  13, 

346–348
performance tips,  366
pipeline operations,  13, 343–359
pixel zoom,  356
querying pixel mapping information,  355
reading from the framebuffer,  333, 335
reading process in detail,  361–362
sample code which draws an image,  341
sample program that uses a pixel buffer 

object for storage,  364
sample program which draws, copies, and 

zooms pixel data,  357
stencil buffer pixel data,  338, 354
storage modes,  347, 417–419
transfer modes,  13, 352, 445
unpacking from processor memory,  13, 

346–348
writing to the framebuffer,  333, 341

point light source, see positional light source
point parameters,  291

sample program,  292
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points,  42
antialiasing,  269–275, 653
drawing,  48
feedback mode,  629
point parameters,  291
round,  269–275, 653
size,  55
specifying,  48, 50

polygon offset,  293–296
depth slope of a polygon,  295
enabling,  294
hidden-line removal,  659
sample program,  296
shadowing use,  484

polygonal approximations to surfaces,  113
polygons,  43

boundary edges,  67–68
concave, drawing filled,  542, 655
convex,  43
culling the faces,  61
drawing,  48
drawing as points, lines, or filled,  61
feedback mode,  629
front and back faces,  61
holes in,  43
non-convex,  44, 67
nonplanar,  44
polygon mode,  12, 61
reversing the faces,  61
self-intersecting,  549
simple,  43
specifying,  48, 51
stippling,  63
tessellation, specifying for,  554
Voronoi,  663

positional light source,  217
primitives

geometric,  42–53
raster,  322

priority of texture objects,  443
Procedural Elements for Computer Graphics,  560
programs

aaindex.c,  272
aargb.c,  270
alpha3D.c,  264
alpha.c,  261
bezcurve.c,  573
bezmesh.c,  582
bezsurf.c,  580
checker.c,  398
clip.c,  170
colormat.c,  238
colormatrix.c,  382
colortable.c,  371
combiner.c,  477
convolution.c,  376
cube.c,  130
cubemap.c,  466
dof.c,  522
drawf.c,  324
feedback.c,  631
fog.c,  281
fogcoord.c,  289
fogindex.c,  286
font.c,  331
histogram.c,  385
image.c,  357
light.c,  210
lines.c,  59
list.c,  305
material.c,  235
minmax.c,  388
mipmap.c,  426
model.c,  145
movelight.c,  224
multisamp.c,  276
multitex.c,  469
pboimage.c,  364
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programs, continued
pickdepth.c,  621
picksquare.c,  616
planet.c,  173
pointp.c,  292
polyoff.c,  296
quadric.c,  565
robot.c,  177
select.c,  611
shadowmap.c,  484–486
smooth.c,  200
sprite.c,  481
stencil.c,  507
stroke.c,  314
surface.c,  588
surfpoints.c,  599, 600
tess.c,  548, 556
texbind.c,  439
texgen.c,  459
texsub.c,  410
texture3d.c,  415
texturesurf.c,  584
torus.c, using a display list,  299
trim.c,  603
unproject.c,  180

projecting images,  661
projection matrix,  133, 135

matrix stack,  168
orthographic parallel projection matrix,  808
perspective projection matrix,  807
shadows created with,  658

projection transformation
centered along view vector,  156
off-axis perspective,  154
parallel projection,  157
perspective,  154, 156
three-dimensional orthographic,  157

projection transformations,  132, 152–158
camera lens analogy,  126
orthographic parallel,  133, 156–157

perspective,  153–156
picking,  615
texturing effects,  482
two-dimensional orthographic,  158

proxies
color table, see color table proxies,  374

proxy textures,  406
cube maps,  465

Q
q texture coordinates,  482
quadratic attenuation,  218
quadrics,  559–567

creating an object,  560
destroying an object,  560
drawing as points, lines, and filled 

polygons,  561
error handling,  561
normal vectors, generating,  562
orientation,  562
quadratic equation,  559
sample program,  565
steps to use,  560
texture coordinates, generating,  562

quadrilateral
specifying,  48
strip, specifying,  48, 51

R
raster position,  325

after drawing a bitmap,  327
current,  325
current raster color,  329
current, obtaining the,  326
selection hit,  610
transformation of,  326

rasterization,  190, 490
rendering pipeline stage,  14
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readImage(),  372
reading pixel data, see pixel data
Real Projective Plane, The,  803
rectangles

specifying,  45
reducing images,  356
reflecting objects, see scaling
reflection, see material properties
reflective objects, see environment mapping
refresh, screen,  22
removing hidden surfaces, see hidden-surface 

removal
rescaling normals,  70, 212
resident textures,  408, 442

management strategies,  443
querying residence status,  442

RGBA mode,  191
changing between color-index mode and,

196
choosing between color-index mode and,

195
coverage calculations for antialiasing,  267
data type conversion,  197
light source colors,  209
lighting calculations in,  241
material property values,  210
vertex arrays, specifying values with,  74

Robins, Nate,  xlii, 145, 151, 158, 179, 227, 
236, 437, 448, 450, 457, 482

robot arm example,  175–179
Rogers, David,  560
Rossignac, Jarek,  656
rotating images,  661
rotation,  142

matrix,  806

S
scaling,  142

matrix,  806
scaling images,  661

Schneider, Bengt-Olaf,  656
Scientific American,  664
scissor test,  502

and clearing,  496
rendering pipeline stage,  14

secondary color,  478–479
specular,  230, 245

Segal, Mark,  482
selection,  606–627

back buffer for, using the,  646
hit records,  610
programming tips,  625
querying current rendering mode,  608
sample program,  611
steps to perform,  607
sweep selection,  626

shading
flat,  200
sample program with smooth shading,  200
smooth,  200
specifying shading model,  200

shadows,  241, 525, 658
shininess,  234

also see environment mapping
silhouette edges,  114
smoke, see fog
smooth shading,  200
solar system example,  172–175
source factor, see blending
specifying the background color,  36
specifying the depth buffer clear value,  35
specular

contribution to lighting equation,  244
light,  208
material properties,  209, 234
secondary specular color,  230, 245, 479

sphere map,  463
spheres,  559, 735
split-screen

multiple viewports,  159
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spotlights, see light sources
state attributes

perserving,  111
preserving vertex arrays,  112
reverting,  111
reverting vertex arrays,  112

state machine,  9–10
state variables,  53

attribute groups,  110–112
display list execution, effect of,  318
enable and disable states,  54
list of,  743–800
querying,  54

stencil buffer,  492, 494
clearing,  36, 495
concave polygons, for drawing,  655
decals, for,  654
Dirichlet domains, for,  663
Game of Life, for the,  664
hidden-line removal,  660
masking,  499
pixel data,  338, 354

stencil test,  504–510
examples of using,  506
interference regions found using clipping 

planes,  657
querying stencil parameters,  505
rendering pipeline stage,  14
sample program,  507

stereo,  494, 498
querying its presence,  494

stippling
display lists cache stipple patterns,  303
enabling line stippling,  57
enabling polygon stippling,  63
fade effect, use for,  645
line pattern reset,  58, 629, 633
lines,  57
polygons,  63

sample program with line stipple,  59
stencil test, use of,  510
translucency, use to simulate,  644

stitching,  294
stretching objects, see scaling
stride

vertex arrays,  76, 89
subdivision,  113–121

generalized,  120
icosahedron example,  118
recursive,  119

subimages,  408–411, 413, 416
superimposing images,  654
surface normals, see normal vectors
surfaces, see evaluators or NURBS
swapping buffers, see double-buffering
syntax, see command syntax

T
Terminator 2,  463
tessellation,  44, 542–559

backward compatibility with obsolete 
routines,  558

begin and end callback routines,  546
callback routines,  544–549
combine callback routine,  546, 549
contours, specifying,  554
converting code to use the GLU 1.2 

tessellator,  559
creating an object,  544
decomposition into geometric primitives,

546
deleting objects,  557
display list use,  302
edge flag generation,  546
error handling,  546
interior and exterior, determining,

550–553
intersecting contours combined,  546, 549
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performance tips,  557
polygons, specifying,  554
properties,  550–554
reuse of objects,  544, 557
reversing winding direction,  554
sample code,  548, 556
user-specified data,  549
vertices, specifying,  547, 555
winding rules,  550–553

texels,  14, 391
text, see characters
texture coordinates,  400, 448–464

assigning manually,  448
clamping,  452–455
computing manually,  450
cube maps,  466
enabling automatic generation of,  462
environment mapping, automatic 

generation for,  464
evaluators, generated by,  584
generating automatically,  457–464
multitexturing, special situations with,  471
NURBS, generating for,  596
q coordinate,  482
quadrics, generated for,  562
reference planes, specifying,  458
rendering pipeline stage,  12
repeating,  452–455
sample program with texture coordinate 

generation,  459
tessellation, specifying for,  548
vertex arrays, specifying values with,  74
wrapping modes,  452–455

texture functions,  444–448
add,  448
blend,  448
blending color,  448
decal,  399, 447
fragment operations,  446

level of detail bias,  444
modulate,  448
pixel-transfer modes effect,  445
replace,  447
texture internal format, interaction with,

446
texture images

alpha data,  445
borders,  423, 452
components,  401
data types,  403
distorting,  451
framebuffer as a source of,  405, 411, 413, 

417
imaging pipeline operations,  345
intensity data,  445
internal format,  401
luminance data,  445
mipmaps,  424–429
multitexturing,  468
one-dimensional,  412–414
performance affected by internal format,

403
power of 2 size restriction,  404
proxy textures,  406
querying maximum size,  406
residence status,  442
resident textures,  408, 442
resident textures, management strategies 

of,  443
sample program with mipmaps,  426
sample program with subimages,  410
specifying,  400–423
subimages,  408–411, 413, 416
three-dimensional,  414–419
working set of textures,  408, 437, 442

texture mapping
sample program using 3D textures,  415

texture mapping, see texturing
texture matrix,  481
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texture objects,  399, 437–442
binding,  438
creating,  438
data which can be stored in,  439
deleting,  441
fragmentation of texture memory,  444
least-recently used (LRU) strategy,  444
mipmaps,  441
naming,  438
performance tips,  437
priority,  443
rendering pipeline,  13
sample program,  398
sample program with multiple texture 

objects,  439
sharing among rendering contexts,  814, 

826
steps to perform,  437
using,  438

texturing
also see texture coordinates, texture 

functions, texture images, texture 
matrix, and texture objects

antialiasing characters,  661
antialiasing lines,  661
blending,  259
border colors, treatment of,  452
color-index mode limitations,  396, 404
combiner functions,  472–478
compressed textures,  420
creating contours,  458
cube maps,  465
decals with alpha testing,  503
differences among releases,  393
enabling,  396, 399
filtering,  434–436
image transformations,  661
mipmapping,  424–429, 436
mosaic texture,  431
multitexturing,  467–472

perspective correction hint,  400
popping visual artifact,  431
rendering pipeline stage,  13
sample code using point sprites,  481
sample code with a depth texture,  484–486
sample code with combiner functions,  477
sample code with multitexturing,  469
sample program,  398
sample program with cube maps,  466
sample program with evaluated, Bézier 

surface,  584
sample program with mipmapping,  426
sample program with texture coordinate 

generation,  459
sample uses for,  661
simulating shadows or spotlights,  482
specular color separated,  230, 245, 479
sphere map,  463
steps to perform,  396

3D Computer Graphics: A User’s Guide for 
Artists and Designers,  xl

3D models, rendering,  21, 735
Tiller, Wayne,  571
tips, programming

selection and picking,  625
transformations,  162

transformations
also see modeling transformations, 

projection transformations, viewing 
transformations, and viewport 
transformations

combining multiple,  172–179
display lists cache transformations,  303
general-purpose commands,  134
matrices,  805–808
modeling,  137, 140–145
ordering correctly,  137–140
overview,  125
projection,  132, 152–158
reversing the geometric processing 

pipeline,  180
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sample program,  130
sample program combining modeling 

transformations,  173, 177
sample program for modeling 

transformations,  145
sample program showing reversal of 

transformation pipeline,  180
troubleshooting,  162–164
units,  156
viewing,  137, 146–151
viewport,  134, 158–160

translation,  141
matrix,  806

translucent objects,  252, 644
stencil test, creating with the,  510

transparent objects,  252
creating with the alpha test,  503

transposing images,  666
triangle

fan, specifying,  48
specifying,  48, 50
strip, specifying,  48, 50
tessellated polygons decomposed into,  546

trimming
curves and curved surfaces,  601–604
sample program,  603

tutorials
on-line,  xlii

two-sided lighting,  229

U
up-vector,  131
Utility Library, OpenGL, see GLU
Utility Toolkit, OpenGL, see GLUT

V
van Dam, Andries,  xl, 187, 191, 803
van Widenfelt, Rolf,  482

vendor-specific extensions,  641
versions,  639–641

GLU,  641
vertex,  42

also see vertex arrays
evaluators, generating with,  572
feedback mode,  629
per-vertex operations pipeline stage,  12
specifying,  46
tessellation, specifying for,  547, 555
transformation pipeline,  126

vertex arrays,  70–91
dereference a list of array elements,  78, 80, 

81
dereference a sequence of array elements,

82, 83
dereference a single element,  77
differences among releases,  33
disabling,  73
display list use,  309
enabling,  72
interleaved arrays,  88
interleaved arrays, specifying,  89
multitexturing texture coordinates,  471
querying,  743
querying range values,  81
restarting primitives,  83–??, 84, ??–86
reuse of vertices,  79
specifying data,  73
steps to use,  71
stride between data,  76, 89
vertex-array objects,  104–??, 109, ??–110
vertex-arrays objects,  105

video
fake,  665
flipping an image with glPixelZoom(),  356
textured images,  408

viewing
camera analogy,  126–127
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viewing transformations,  130, 137, 146–151
connection to modeling transformations,

131
default position,  131
different methods,  151
pilot view,  152
polar view,  152
tripod analogy,  126
up-vector,  131

viewing volume,  153
clipping,  158, 168

viewpoint
lighting, for,  229

viewport transformations,  129, 134, 158–160
photograph analogy,  126
rendering pipeline stage,  12

visual simulation
fog, use of,  281

Voronoi polygons,  663

W
w coordinates,  42, 129, 134

lighting, use with,  217
perspective division,  161

warping images,  661
Watt, Alan,  390
web sites,  xl

errata list,  xlii
Microsoft Developer Network,  825

WGL,  15, 825
wglCopyContext(),  826, 828
wglCreateContext(),  825, 828
wglCreateLayerContext(),  826, 828
wglDeleteContext(),  828
wglDescribeLayerPlane(),  825, 827
wglDestroyContext(),  826
wglGetCurrentContext(),  826, 828
wglGetCurrentDC(),  826, 828

wglGetLayerPaletteEntries(),  827, 829
wglGetProcAddress(),  828
wglMakeCurrent(),  826, 828
wglRealizeLayerPalette(),  827, 829
wglSetLayerPaletteEntries(),  829
wglShareLists(),  826, 828
wglSwapLayerBuffers(),  826, 828
wglUseFontBitmaps(),  827, 829
wglUseFontOutlines(),  827, 829

wglGetProcAddress(),  644
Williams, Lance,  424
Win32

ChoosePixelFormat(),  825, 827
CreateDIBitmap(),  826, 828
CreateDIBSection(),  826, 828
DeleteObject(),  826, 828
DescribePixelFormat(),  825, 827
GetVersion(),  825, 827
GetVersionEx(),  825, 827
SetPixelFormat(),  825, 827
SwapBuffers(),  826, 828

winding,  62
winding rules,  550–553

computational solid geometry, used for,
551

reversing winding direction,  554
window coordinates,  129, 158

feedback mode,  629
polygon offset,  294
raster position,  326

window management
glViewport() called, when window resized,

159
using GLUT,  40

working set of textures,  408, 437, 442
fragmentation of texture memory,  444

writemask, see masking (buffers)
writing pixel data, see pixel data (drawing)
www.opengl.org,  xl
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X
X Window System,  15, 813

client-server rendering,  5
minimum framebuffer configuration,  492
X Visual,  196, 813

Z
z buffer, see depth buffer
z coordinates, see depth coordinates
zooming images,  356

filtered,  666
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 Appendix E

E.Order of Operations

This book describes all the operations performed between initial specifica-
tion of vertices and final writing of fragments into the framebuffer. The 
chapters of this book are arranged in an order that facilitates learning, rather 
than in the exact order in which these operations are actually performed. 
Sometimes the exact order of operations doesn’t matter—for example, sur-
faces can be converted to polygons and then transformed, or transformed 
first and then converted to polygons, with identical results—and different 
implementations of OpenGL might do things differently. 

This appendix describes a possible order; any implementation is required to 
yield equivalent results. If you want more details than are presented here, 
see the OpenGL Specification at http://www.opengl.org/registry/.

This appendix has the following major sections:

• “Overview”

• “Geometric Operations”

• “Pixel Operations”

• “Fragment Operations”

• “Odds and Ends”

http://www.opengl.org/registry/
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2 Appendix E: Order of Operations

Overview

This section gives an overview of the order of operations. Shown in 
Figure E-1 is a schematic representation of the fixed-function OpenGL 
pipeline. Geometric data (vertices, lines, and polygons) follows the path 
through the row of boxes that include evaluators and per-vertex operations, 
while pixel data (pixels, images, and bitmaps) is treated differently for part 
of the process. Both types of data undergo the rasterization and per-fragment 
operations before the final pixel data is written into the framebuffer. 

All data, whether it describes geometry or pixels, can be saved in a display 
list or processed immediately. When a display list is executed, the data is 
sent from the display list just as if it were sent by the application.

All geometric primitives are eventually described by vertices. If evaluators 
are used, that data is converted to vertices and treated as vertices from then 
on. Vertex data may also be stored in and used from specialized vertex 
arrays. Per-vertex calculations are performed on each vertex, followed by 
rasterization to fragments. For pixel data, pixel operations are performed, 
and the results are stored in the texture memory, used for polygon stippling, 
or rasterized to fragments.

Vertex

shading

and prim
itive 

assembly

Pixel
data

Vertex
data

Pixel 

operations

Rasterization

Per-fra
gment

operations

FramebufferTexture

assembly

Fragment

shading

Figure E-1 The Fixed-Function Pipeline’s Order of Operations
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Finally, the fragments are subjected to a series of per-fragment operations, 
after which the final pixel values are drawn into the framebuffer.

This model differs only slightly for the programmable pipeline available in 
OpenGL Version 3.1 and greater, as illustrated in Figure E-2.

Figure E-2 The Programmable Pipeline’s Order of Operations

Geometric Operations

Geometric data, whether it comes from a display list, an evaluator, the ver-
tices of a rectangle, or is in the form of raw data, consists of a set of vertices 
and the type of primitive it describes (a vertex, line, or polygon). Vertex 
data includes not only the (x, y, z, w) coordinates, but also other vertex 
attributes: a normal vector, texture coordinates, primary and secondary 
RGBA colors, a color index, material properties, edge-flag data, or entirely 
generic values assigned meaning in a programmable vertex shader. All of 
these elements except the vertex’s coordinates can be specified in any 
order, and default values exist as well. As soon as a vertex rendering com-
mand (e.g., glVertex*(), glDrawArrays(), glDrawElements()) is issued, the 
components are padded, if necessary, to four dimensions (using z = 0 and 
w = 1), and the current values of all the elements are associated with the 
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4 Appendix E: Order of Operations

vertex. The complete set of vertex data is then processed. (If vertex arrays 
are used, vertex data may be batch processed, and processed vertices may 
be reused.)

Per-Vertex Operations

In the fixed-function pipeline mode, the per-vertex operations stage of pro-
cessing, each vertex’s spatial coordinates are transformed by the modelview 
matrix, while the normal vector is transformed by that matrix’s inverse 
transpose and renormalized if specified. If automatic texture generation is 
enabled, new texture coordinates are generated from the transformed ver-
tex coordinates, and they replace the vertex’s old texture coordinates. The 
texture coordinates are then transformed by the current texture matrix and 
passed on to the primitive assembly step.

Meanwhile, the lighting calculations, if enabled, are performed using the 
transformed vertex and normal vector coordinates and the current material, 
lights, and lighting model. These calculations generate new colors or indi-
ces that are clamped or masked to the appropriate range and passed on to 
the primitive assembly step.

For vertex shader programs, the above sequence of operations is replaced 
by the execution of the user-defined shader, which must update the 
vertex’s position, and may update the primary and secondary colors for the 
primitives front- and back-facing colors, associated texture coordinates, 
and fog coordinates. Additionally, the point size, and vertex position to be 
used with user-defined clip planes may also be updated.

Primitive Assembly

Primitive assembly varies, depending on whether the primitive is a point, a 
line, or a polygon. If flat shading is enabled, the colors or indices of all the 
vertices in a line or polygon are set to the same value. If special clipping 
planes are defined and enabled, they’re used to clip primitives of all three 
types. (The clipping-plane equations are transformed by the inverse trans-
pose of the modelview matrix when they’re specified.) Point clipping sim-
ply passes or rejects vertices; line or polygon clipping can add additional 
vertices, depending on how the line or polygon is clipped. After this clip-
ping, the spatial coordinates of each vertex are transformed by the projec-
tion matrix, and the results are clipped against the standard viewing planes 
x = w, y = w, and z = w.
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If selection is enabled, any primitive not eliminated by clipping generates a 
selection-hit report, and no further processing is performed. Without selec-
tion, perspective division by w occurs and the viewport and depth-range 
operations are applied. Also, if the primitive is a polygon, it’s then subjected 
to a culling test (if culling is enabled). A polygon might convert to vertices 
or lines, depending on the polygon mode. 

Finally, points, lines, and polygons are rasterized to fragments, taking into 
account polygon or line stipples, line width, and point size. Rasterization 
involves determining which squares of an integer grid in window coordi-
nates are occupied by the primitive. If antialiasing is enabled, coverage (the 
portion of the square that is occupied by the primitive) is also computed. 
Color and depth values are also assigned to each such square. If polygon off-
set is enabled, depth values are slightly modified by a calculated offset 
value.

Pixel Operations

Pixels from host memory or pixel unpack buffers are first unpacked into the 
proper number of components. The OpenGL unpacking facility handles a 
number of different formats. Next, the data is scaled, biased, and processed 
using a pixel map. The results are clamped to an appropriate range, depend-
ing on the data type, and then either written in the texture memory for use 
in texture mapping or rasterized to fragments.

If pixel data is read from the framebuffer, pixel-transfer operations (scale, 
bias, mapping, and clamping) are performed. The results are packed into an 
appropriate format and then returned to processor memory.

The pixel-copy operation is similar to a combination of the unpacking and 
transfer operations, except that packing and unpacking are unnecessary, 
and only a single pass is made through the transfer operations before the 
data is written back into the framebuffer.

Texture Memory

Texture images can be specified from framebuffer memory, as well as 
processor memory. All or a portion of a texture image may be replaced. 
Texture data may be stored in texture objects, which can be loaded into 
texture memory. If there are too many texture objects to fit into texture 
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memory at the same time, the textures that have the highest priorities 
remain in the texture memory.

Fragment Operations

In the fixed-function mode, if texturing is enabled, a texel is generated from 
texture memory for each fragment from every enabled texture unit (by 
means of glActiveTexture()) and is applied to the fragment. Then fog 
calculations are performed, if they’re enabled, followed by the application 
of coverage (antialiasing) values, if antialiasing is enabled.

If a fragment shader program is enabled, texture sampling and application, 
per-pixel fog computations, and alpha-value assignment may be done in 
the fragment shader. Assuming the fragment was not discarded by the 
fragment shader, the fragment’s color will be updated with the color 
assigned in the fragment shader, which may include the combination of 
colors generated from the iterated primary and secondary colors, texture 
application, fog computations, or other color values. The depth value for 
the fragment may be also be updated and any associated fragment data may 
also be updated.

Next comes scissoring, followed by the alpha test (in RGBA mode only, and 
for OpenGL versions to Version 3.0), the stencil test, and the depth-buffer 
test. If in RGBA mode, blending is performed. Blending is followed by dith-
ering and logical operation. All these operations may be disabled.

The fragment is then masked by a color mask or an index mask, depending 
on the mode, and drawn into the appropriate buffer. If fragments are being 
written into the stencil or depth buffer, masking occurs after the stencil and 
depth tests, and the results are drawn into the framebuffer without perform-
ing the blending, dithering, or logical operation.

Odds and Ends

For the fixed-function pipeline, matrix operations deal with the current 
matrix stack, which can be the modelview, the projection, or the texture 
matrix stack. If the Imaging subset is included in the implementation, a 
color matrix stack will also be present. The commands glMultMatrix*(),
glLoadMatrix*(), and glLoadIdentity() are applied to the top matrix on 
the stack, while glTranslate*(), glRotate*(), glScale*(), glOrtho(), and 
glFrustum() are used to create a matrix that’s multiplied by the top matrix. 
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When the modelview matrix is modified, its inverse transpose is also gener-
ated for normal vector transformation.

The commands that set the current raster position are treated exactly like a 
vertex command up until the point when rasterization would occur. At this 
point, the value is saved and used in the rasterization of pixel data.

The various glClear() commands bypass all operations except scissoring, 
dithering, and writemasking.
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 Appendix F

F.Programming Tips 

This appendix lists some tips and guidelines that you might find useful. 
Keep in mind that these tips are based on the intentions of the designers of 
OpenGL, not on any experience with actual applications and implementa-
tions. This appendix has the following major sections: 

• “OpenGL Correctness Tips”

• “OpenGL Performance Tips”

• “GLX Tips”

http://lib.ommolketab.ir
http//lib.ommolketab.ir
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OpenGL Correctness Tips

• Perform error checking often. Call glGetError() at least once each time 
the scene is rendered to make certain error conditions are noticed 
while you are developing your application. Once development is 
completed, removing the error checking can help improve 
performance.

• Do not count on the error behavior of an OpenGL implementation—it 
might change in a future release of OpenGL. For example, OpenGL 1.1 
ignores matrix operations invoked between glBegin() and glEnd()
commands, but a future version might not. Put another way, OpenGL 
error semantics may change between upward-compatible revisions.

• Check the extension string to verify that any extensions you want to 
use are supported. This is particularly relevant for routines that must be 
accessed through a function pointer retrieved by functions such as 
glXGetProcAddress() or wglGetProcAddress().

• If you need to collapse all geometry to a single plane, use the projec-
tion matrix. If the modelview matrix is used, OpenGL features that 
operate in eye coordinates (such as lighting and application-defined 
clipping planes) might fail.

• Do not make extensive changes to a single matrix. For example, do not 
animate a rotation by continually calling glRotate*() with an incre-
mental angle. Rather, use glLoadIdentity() to initialize the given 
matrix for each frame, and then call glRotate*() with the desired 
complete angle for that frame. 

• Count on multiple passes through a rendering database to generate the 
same pixel fragments only if this behavior is guaranteed by the invari-
ance rules established for a compliant OpenGL implementation. (See 
Appendix G for details on the invariance rules.) Otherwise, a different 
set of fragments might be generated. 

• Do not expect errors to be reported while a display list is being defined. 
The commands within a display list generate errors only when the list 
is executed. 

• Place the frustum’s near plane as far from the viewpoint as possible to 
optimize the operation of the depth buffer. 

• Call glFlush() to force all previous OpenGL commands to be executed. 
Do not count on glGet*() or glIs*() to flush the rendering stream. 
Query commands flush as much of the stream as is required to return 
valid data but don’t guarantee completion of all pending rendering 
commands. 
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• Turn dithering off when rendering predithered images (for example, 
when glCopyPixels() is called). 

• Make use of the full range of the accumulation buffer. For example, 
if accumulating four images, scale each by one-quarter as it is 
accumulated. 

• If exact two-dimensional rasterization is desired, you must carefully 
specify both the orthographic projection and the vertices of primitives 
that are to be rasterized. The orthographic projection should be speci-
fied with integer coordinates, as shown in the following example:

gluOrtho2D(0, width, 0, height);

where width and height are the dimensions of the viewport. Given this 
projection matrix, polygon vertices and pixel image positions should 
be placed at integer coordinates to rasterize predictably. For example, 
glRecti(0, 0, 1, 1) reliably fills the lower left pixel of the viewport, and 
glRasterPos2i(0, 0) reliably positions an unzoomed image at the lower 
left of the viewport. Point vertices, line vertices, and bitmap positions 
should be placed at half-integer locations, however. For example, a line 
drawn from (x1, 0.5) to (x2, 0.5) will be reliably rendered along the 
bottom row of pixels into the viewport, and a point drawn at (0.5, 0.5) 
will reliably fill the same pixel as glRecti(0, 0, 1, 1).

An optimum compromise that allows all primitives to be specified at 
integer positions, while still ensuring predictable rasterization, is to 
translate x and y by 0.375, as shown in the following code fragment. 
Such a translation keeps polygon and pixel image edges safely away 
from the centers of pixels, while moving line vertices close enough to 
the pixel centers.

glViewport(0, 0, width, height);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(0, width, 0, height);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(0.375, 0.375, 0.0);
/* render all primitives at integer positions */

• Avoid using negative w vertex coordinates and negative q texture 
coordinates. OpenGL might not clip such coordinates correctly and 
might make interpolation errors when shading primitives defined by 
such coordinates. 
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• Do not assume the precision of operations based on the data types 
of parameters to OpenGL commands. For example, if you are using 
glRotated(), you should not assume that the geometric processing 
pipeline maintains double-precision floating-point accuracy during its 
operation. It is possible that the parameters to glRotated() are con-
verted to a different data type before processing.

OpenGL Performance Tips

Following are some performance tips for your consideration, regardless of 
whether of which rendering pipeline (i.e., fixed-function or programmable) 
you’re using. Generally speaking, these tips will help improve the 
performance of any application:

• Try to minimize state changes during rendering by grouping primitives 
of like OpenGL state. When you issue a draw call (e.g., glVertex(), 
glDrawArrays()), OpenGL does an internal state validation check, 
usually called validation. Validation can be an expensive operation in 
terms of performance, so it benefits your application’s performance to 
minimize validations.

• Use query functions when your application requires just a few state 
values for its own computations. If your application requires several 
state values from the same attribute group, use glPushAttrib() and 
glPopAttrib() to save and restore them. 

• Some OpenGL implementations benefit from storing vertex data in 
vertex arrays. Use of vertex arrays reduces function call overhead. Some 
implementations can improve performance by engaging in batch 
processing or reusing processed vertices.

• Generate object names (e.g., by calling glGen*()), rather than 
assigning names of your own choosing. This practice is required for 
OpenGL Version 3.1 and greater, but in versions prior to OpenGL 
Version 3.1, user-assigned object names require a lookup in internal 
implementation-specific tables (and almost always on the host CPU, 
as compared to the GPU). This lookup may add significant overhead 
to binding objects if a large number of names are used, especially if 
identical names are used for different types of objects (e.g., if a texture 
object and a pixel-buffer object use the same unsigned-integer value).

• In many cases, using indexed vertex arrays rendered with 
glDrawElements() may take advantage of hardware caching of 
transformed vertices.
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• If the situation allows it, use gl*TexSubImage() to replace all or part of 
an existing texture image, rather than the more costly operations of 
deleting and creating an entire new image.

• If your OpenGL implementation supports a high-performance working 
set of resident textures, try to make all of your textures resident—that 
is, make them fit into the high-performance texture memory. If neces-
sary, reduce the size or internal format resolution of your textures until 
they all fit into memory. If such a reduction creates intolerably fuzzy 
textured objects, you may give some textures lower priority, which 
will, when push comes to shove, leave them out of the working set.

• If you need to render the same pixel rectangle multiple times, store 
the image in a texture map and render it by using a screen-aligned 
quadrilateral rather than by calling glDrawPixels().

• Use a single glClear() call per frame if possible. Do not use glClear() to 
clear small subregions of the buffers; use this routine only for complete 
or nearly complete clears. 

• Call glFinish() only when you are measuring the execution time of 
OpenGL rendering. Remove this function from your program once 
you’re done making measurements.

• OpenGL commands are automatically flushed (as if you had called 
glFlush()) when a double-buffered window is swapped.

When using the fixed-function pipeline, here are some performance 
considerations to keep in mind:

• Use glColorMaterial() when only a single material property is being 
varied rapidly (at each vertex, for example). Use glMaterial() for 
infrequent changes or when more than a single material property is 
being varied rapidly. 

• Use glLoadIdentity() to initialize a matrix, rather than load your own 
copy of the identity matrix. 

• Use specific matrix calls such as glRotate*(), glTranslate*(), and 
glScale*(), rather than compose your own rotation, translation, or 
scale matrices and call glMultMatrix().

• Use texture objects to encapsulate texture data. Place all the 
glTexImage*() calls (including mipmaps) required to completely 
specify a texture and the associated glTexParameter*() calls (which set 
texture properties) into a texture object. Bind this texture object to 
select the texture.
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• Use evaluators even for simple surface tessellations to minimize 
network bandwidth in client–server environments. 

• Provide unit-length normals if it’s possible to do so, and avoid the 
overhead of GL_NORMALIZE. Avoid using glScale*() when doing 
lighting because it almost always requires that GL_NORMALIZE be 
enabled. 

• Set glShadeModel() to GL_FLAT if smooth shading isn’t required. 

• Use a single call to glBegin(GL_TRIANGLES) to draw multiple 
independent triangles, rather than calling glBegin(GL_TRIANGLES)
multiple times or calling glBegin(GL_POLYGON). Even if only a single 
triangle is to be drawn, use GL_TRIANGLES, rather than GL_POLYGON. 
Use a single call to glBegin(GL_QUADS) in the same manner, rather 
than calling glBegin(GL_POLYGON) repeatedly. Likewise, use a single 
call to glBegin(GL_LINES) to draw multiple independent line segments, 
rather than calling glBegin(GL_LINES) multiple times. 

• Favor the use of vertex buffer objects over display lists.

• In general, use the vector forms of commands to pass precomputed 
data, and use the scalar forms of commands to pass values that are 
computed near call time. 

• Be sure to disable expensive rasterization and per-fragment operations 
when drawing or copying images. OpenGL will even apply textures to 
pixel images if asked.

• Unless absolutely necessary, avoid having different front and back 
polygon modes.

When you’re using vertex or fragment shaders in your applications, here are 
some tips that may help improve the application’s performance:

• Pack individual scalar values (such as uniform variables or vertex 
attributes) into vector data types. In the case of uniform variables, 
when the GLSL linker resolves scalar values, they are assigned unique 
uniform vector values, even if only a single component of the vector is 
used. Helping the linker out by making that mapping explicit in your 
shader may improve performance.

• Using uniform buffer objects (in particular, the shader variety) will 
help significantly reduce the overhead of loading uniform variables 
when changing between shaders.
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GLX Tips

• Use glXWaitGL(), rather than glFinish(), to force X rendering com-
mands to follow GL rendering commands.

• Likewise, use glXWaitX(), rather than XSync(), to force GL rendering 
commands to follow X rendering commands. 

• Be careful when using glXChooseVisual(), because Boolean selections 
are matched exactly. Since some implementations won’t export visu-
als with all combinations of Boolean capabilities, you should call 
glXChooseVisual() several times with different Boolean values before 
you give up. For example, if no single-buffered visual with the required 
characteristics is available, check for a double-buffered visual with the 
same capabilities. It might be available, and it’s easy to use.
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 Appendix G

G.OpenGL Invariance

OpenGL is not a pixel-exact specification. It therefore doesn’t guarantee an 
exact match between images produced by different OpenGL implementa-
tions. However, OpenGL does specify exact matches, in some cases, for 
images produced by the same implementation. This appendix describes the 
invariance rules that define these cases. 
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2 Appendix G: OpenGL Invariance

The obvious and most fundamental case is repeatability. A conforming 
OpenGL implementation generates the same results each time a specific 
sequence of commands is issued from the same initial conditions. Although 
such repeatability is useful for testing and verification, it’s often not useful 
to application programmers, because it’s difficult to arrange for equivalent 
initial conditions. For example, rendering a scene twice, the second time 
after swapping the front and back buffers, doesn’t meet this requirement. 
Therefore, repeatability can’t be used to guarantee a stable, double-buffered 
image.

A simple and useful algorithm that counts on invariant execution is erasing 
a line by redrawing it in the background color. This algorithm works only if 
rasterizing the line results in the same fragment (x, y) pairs being generated 
in both the foreground and background color cases. OpenGL requires that 
the coordinates of the fragments generated by rasterization be invariant 
with respect to framebuffer contents; which color buffers are enabled for 
drawing; the values of matrices other than those on the tops of the matrix 
stacks; the scissor parameters; all writemasks; all clear values; the current 
color, index, normal, texture coordinates, and edge-flag values; the current 
raster color, raster index, and raster texture coordinates; and the material 
properties. It is further required that exactly the same fragments be gener-
ated, including the fragment color values, when framebuffer contents, color 
buffer enables, matrices other than those on the tops of the matrix stacks, 
the scissor parameters, writemasks, or clear values differ.

OpenGL further suggests, but doesn’t require, that fragment generation be 
invariant with respect to the matrix mode, the depths of the matrix stacks, 
the alpha test parameters (other than alpha test enable), the stencil param-
eters (other than stencil enable), the depth test parameters (other than 
depth test enable), the blending parameters (other than enable), the logical 
operation (but not logical operation enable), and the pixel-storage and 
pixel-transfer parameters. Because invariance with respect to several enables 
isn’t recommended, you should use other parameters to disable functions 
when invariant rendering is required. For example, to render invariantly with 
blending enabled and disabled, set the blending parameters to GL_ONE 
and GL_ZERO to disable blending, rather than call glDisable(GL_BLEND). 
Alpha testing, stencil testing, depth testing, and the logical operation all 
can be disabled in this manner.

Finally, OpenGL requires that per-fragment arithmetic, such as blending 
and the depth test, is invariant to all OpenGL states except the state that 
directly defines it. For example, the only OpenGL parameters that affect 
how the arithmetic of blending is performed are the source and destination 
blend parameters and the blend enable parameter. Blending is invariant to 
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Appendix G: OpenGL Invariance 3

all other state changes. This invariance holds for the scissor test, the alpha 
test, the stencil test, the depth test, blending, dithering, logical operations, 
and buffer writemasking.

As a result of all these invariance requirements, OpenGL can guarantee that 
images rendered into different color buffers, either simultaneously or 
separately using the same command sequence, are pixel-identical. This 
holds for all the color buffers in the framebuffer or all the color buffers in 
an off-screen buffer, but it isn’t guaranteed between the framebuffer and off-
screen buffers.
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 Appendix H

H.Calculating Normal Vectors

This appendix describes how to calculate normal vectors for surfaces. 
You need to define normals to use the OpenGL lighting facility, which 
is described in Chapter 5. “Normal Vectors” in Chapter 2 introduces nor-
mals and the OpenGL command for specifying them. This appendix goes 
through the details of calculating them. It has the following major sections:

• “Finding Normals for Analytic Surfaces”

• “Finding Normals from Polygonal Data”

1

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Since normals are perpendicular to a surface, you can find the normal at a 
particular point on a surface by first finding the flat plane that just touches 
the surface at that point. The normal is the vector that’s perpendicular to 
that plane. On a perfect sphere, for example, the normal at a point on the 
surface is in the same direction as the vector from the center of the sphere 
to that point. For other types of surfaces, there are other, better means of 
determining the normals, depending on how the surface is specified. 

Recall that smooth curved surfaces are approximated by large numbers of 
small flat polygons. If the vectors perpendicular to these polygons are used 
as the surface normals in such an approximation, the surface appears fac-
eted, since the normal direction is discontinuous across the polygonal 
boundaries. In many cases, however, an exact mathematical description 
exists for the surface, and true surface normals can be calculated at every 
point. Using the true normals improves the rendering considerably, as 
shown in Figure H-1. Even if you don’t have a mathematical description, 
you can do better than the faceted look shown in the figure. The two major 
sections in this appendix describe how to calculate normal vectors for these 
two cases:

• “Finding Normals for Analytic Surfaces” explains what to do when you 
have a mathematical description of a surface.

• “Finding Normals from Polygonal Data” covers the case in which you 
have only the polygonal data to describe a surface. 

2 Appendix H: Calculating Normal Vectors

Figure H-1 Rendering with Polygonal Normals versus True Normals
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Finding Normals for Analytic Surfaces 3

Finding Normals for Analytic Surfaces

An analytic surface is a smooth, differentiable surface that is described by 
a mathematical equation (or set of equations). In many cases, the easiest 
surfaces to find normals for are analytic surfaces for which you have an 
explicit definition in the following form: 

V(s, t) = [ X(s, t) Y(s, t) Z(s, t) ]

where s and t are constrained to be in some domain, and X, Y, and Z are 
differentiable functions of two variables. To calculate the normal, find

which are vectors tangent to the surface in the s- and t-directions. The cross 
product

is perpendicular to both and, hence, to the surface. The following shows 
how to calculate the cross product of two vectors. (Watch out for the 
degenerate cases where the cross product has zero length.) 

You should probably normalize the resulting vector. To normalize a vector 
[x y z], calculate its length

and divide each component of the vector by the length.

As an example of these calculations, consider the analytic surface

V(s, t) = [ s2 t3  3 st ]

From this we have

[vx vy vz] x [wx wy wz] = [(vy wz − wyvz)   (wx vz − vxwz)   (vx wy − wxvy)]

Length = x2 + y2 + z2
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4 Appendix H: Calculating Normal Vectors

For example, when s = 1 and t = 2, the corresponding point on the surface 
is (1, 8, 1), and the vector ( 24, 2, 24) is perpendicular to the surface at that 
point. The length of this vector is 34, so the unit normal vector is ( 24/34, 
2/34, 24/34) = ( 0.70588, 0.058823, 0.70588).

For analytic surfaces that are described implicitly, as F(x, y, z) = 0, the prob-
lem is harder. In some cases, you can solve for one of the variables, say 
z = G(x, y), and put it in the explicit form given previously:

Then continue as described earlier. 

If you can’t get the surface equation in an explicit form, you might be able 
to make use of the fact that the normal vector is given by the gradient

evaluated at a particular point (x, y, z). Calculating the gradient might be 
easy, but finding a point that lies on the surface can be difficult. As an 
example of an implicitly defined analytic function, consider the equation 
of a sphere of radius 1 centered at the origin:

x2 + y2 + z2  1 = 0

This means that 

F(x, y, z) = x2 + y2 + z2  1

which can be solved for z to yield

Thus, normals can be calculated from the explicit form

as described previously.

V(s, t) = [ s  t G(s, t) ]

z = + 1 − x2 − y2

V(s, t) = [ s  t 1 − s2 − t2 ]
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Finding Normals from Polygonal Data 5

If you could not solve for z, you could have used the gradient

as long as you could find a point on the surface. In this case, it’s not so hard 
to find a point—for example, (2/3, 1/3, 2/3) lies on the surface. Using the 
gradient, the normal at this point is (4/3, 2/3, 4/3). The unit-length normal 
is (2/3, 1/3, 2/3), which is the same as the point on the surface, as expected.

Finding Normals from Polygonal Data

As mentioned previously, you often want to find normals for surfaces that 
are described with polygonal data such that the surfaces appear smooth 
rather than faceted. In most cases, the easiest way to do this (although it 
might not be the most efficient way) is to calculate the normal vectors for 
each of the polygonal facets and then average the normals for neighboring 
facets. Use the averaged normal for the vertex that the neighboring facets 
have in common. Figure H-2 shows a surface and its polygonal approxima-
tion. (Of course, if the polygons represent the exact surface and aren’t 
merely an approximation—if you’re drawing a cube or a cut diamond, for 
example—don’t do the averaging. Calculate the normal for each facet as 
described in the following paragraphs, and use that same normal for each 
vertex of the facet.) 

To find the normal for a flat polygon, take any three vertices v1, v2, and v3
of the polygon that do not lie in a straight line. The cross product 

[v1 v2]  [v2 v3]

is perpendicular to the polygon. (Typically, you want to normalize the 
resulting vector.) Then you need to average the normals for adjoining facets 
to avoid giving too much weight to one of them. For instance, in the exam-
ple shown in Figure H-2, if n1, n2, n3, and n4 are the normals for the four 
polygons meeting at point P, calculate n1 + n2 + n3 + n4 and then normalize 
it. (You can get a better average if you weight the normals by the size of the 
angles at the shared intersection.) The resulting vector can be used as the 
normal for point P.

  F =    2x  2y  2z∇
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6 Appendix H: Calculating Normal Vectors

Sometimes, you need to vary this method for particular situations. For 
instance, at the boundary of a surface (such as point Q in Figure H-2), you 
might be able to choose a better normal based on your knowledge of how 
the surface should look. Sometimes the best you can do is average the 
polygon normals on the boundary as well. Similarly, some models have 
some smooth parts and some sharp corners (point R is on such an edge in 
Figure H-2). In this case, the normals on either side of the crease shouldn’t 
be averaged. Instead, polygons on one side of the crease should be drawn 
with one normal, and polygons on the other side with another.

n1

n3 n2

n4
Q

P

R

Figure H-2 Averaging Normal Vectors
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 Appendix I

I.Built-In OpenGL Shading Language
Variables and Functions

The OpenGL Shading Language, commonly called the “GLSL,” defines
a number of variables for matching OpenGL state and large set of 
convenience functions. This appendix1 provides a complete list of GLSL 
built-in variables and functions.

1 This appendix is adapted from The OpenGL Shading Language Specification (Versions 1.30 and 
1.40) by John Kessenich.
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2 Appendix I: Built-In OpenGL Shading Language Variables and Functions

The OpenGL Shading Language has been updated including deprecating 
and removing some features.

Version 1.30 of GLSL added numerous new functions and data types, while 
maintaining complete backward compatibility with previous versions of 
GLSL. No features were removed through deprecation, although various 
variables and state were deprecated.

Version 1.40, while aligning with the removed features of OpenGL, 
removed several features as well. Those removed features are made available 
again if the GL_ARB_compatibility extension is available with your 
implementation. Removed features (which are supported with the 
compatibility extension) are listed in the margin.

Variables

For OpenGL versions up to and including 3.0, much of the OpenGL 
state associated with the fixed-function pipeline that an application can 
configure is also available as variables from within a GLSL shader. The next 
sections describe all state variables available to shaders, and any restrictions 
on their use.

Vertex Shader Input Attribute Variables

Table I-1 lists the set of global attribute values reflecting the per-vertex input 
data that can be accessed exclusively from within a vertex shader. Almost 
all of these values were deprecated in Version 1.30. 

Variable Name Type Specifying Function Description

gl_Vertex vec4 glVertex Vertex’s world-space 
coordinate

gl_Color vec4 glColor Primary color value

gl_SecondaryColor vec4 glSecondaryColor Secondary color value

gl_Normal vec3 glNormal Lighting normal

Table I-1 Global Vertex Shader Attribute Variables

Compatibility 
Extension

gl_Vertex
gl_Color
gl_
SecondaryColor
gl_Normal
gl_
MultiTexCoordn
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Vertex Shader Special Output Variables

The following variables are used in later stages of the vertex processing 
pipeline, and are only available in vertex shaders.

In particular, the gl_Position variable is the only required output of vertex 
shaders, and specifies the final, projected position of the input vertex. 
Generally, this is accomplished by directly multiplying the input vertex by 
the combined modelview and projection transformations, as in the 
following example:

gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;

Table I-2 enumerates the special output variables of a vertex shader.

gl_MultiTexCoordn vec4 glMultiTexCoord( n, ) Texture unit n’s texture 
coordinates, with
n = 0 ... 7.

gl_FogCoord float glFogCoord Fog coordinate

gl_VertexID int — Index value of current 
vertex

gl_InstanceID int — Instance index of 
current rendering 
primitive

Variable Name Type Description

gl_Position vec4 Transformed vertex position.

gl_PointSize float Point size (in pixels) of output vertex. This 
value overrides the current OpenGL setting if
glEnable(GL_VERTEX_PROGRAM_POINT_SIZE); 
has been called.

gl_ClipDistance[] float Distances from the vertex to each clipping plane. 
(This variable replaces gl_ClipVertex from 
GLSL 1.20.)

Table I-2 Special Vertex Shader Output Variables

Variable Name Type Specifying Function Description

Table I-1 (continued)        Global Vertex Shader Attribute Variables

Compatibility 
Extension

gl_ClipVertex

http://lib.ommolketab.ir
http//lib.ommolketab.ir
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Vertex Shader Output Varying Variables

While user-defined varying variables are shared between vertex and 
fragment shaders, certain OpenGL-defined varying variables are accessible 
only in vertex shader, with their values being assigned to a unique set of 
(corresponding, but differently named) varying values that are available 
only in fragment shaders.

Table I-3 lists the variables that are only available in vertex shaders.

Table I-4 lists the set of input varying variables available in fragment 
shaders.

Variable Name Type Description

gl_FrontColor vec4 Primary color to be used for front-facing 
primitives

gl_BackColor vec4 Primary color to be used for back-facing 
primitives

gl_FrontSecondaryColor vec4 Secondary color to be used for front-facing 
primitives

gl_BackSecondaryColor vec4 Secondary color to be used for back-facing 
primitives

gl_TexCoord[n] vec4 nth Texture coordinates values

gl_FogFragCoord vec4 Fragment fog coordinate value

Table I-3 Varying Vertex Shader Output Variables

Variable Name Type Description

gl_Color vec4 Primary color of the fragment

gl_SecondaryColor bool Secondary color of the fragment

gl_TexCoord[n] vec4 nth Texture coordinates for the fragment

gl_FogFragCoord float Fragment’s fog coordinate

gl_PointCoord vec2 Fragment’s coordinates when point sprites are 
enabled

Table I-4 Varying Fragment Shader Input Variables

Compatibility 
Extension

gl_Front*Color
gl_Back*Color
gl_TexCoord
gl_FogFragCoord

Compatibility 
Extension

gl_*Color
gl_TexCoord
gl_FogFragCoord
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Built-In Implementation Constants

Most implementation-dependent maximum values are reflected as constant 
integer variables accessible in both vertex and fragment shaders. The 
variables listed in Table I-5 represent the minimum capabilities of an 
OpenGL implementation, and all are represented as a single constant 
integer expression.

Variable Name Default 
Value

Description

gl_MaxLights 8 Number of lights

gl_MaxClipPlanes 6 Number of user-defined clipping 
planes

gl_MaxTextureUnits 16 Number of texture units

gl_MaxTextureCoords 2 Number of texture-coordinates 
supported.

gl_MaxVertexAttribs 16 Number of vec4 sets of vertex 
attributes

gl_MaxVertexUniformComponents 1024 Number of vec4 uniform 
variables available for a vertex 
shader

gl_MaxVaryingFloats 64 Number of varying float variables

gl_MaxVertexTextureImageUnits 16 Number of texture units available 
from within a vertex shader

gl_MaxCombinedTextureImageUnits 16 Total number of texture units 
available for both vertex and 
fragment shaders

gl_MaxTextureImageUnits 16 Number of texture units available 
from within a fragment shader

gl_MaxFragmentUniformComponents 1024 Number of vec4 uniform 
variables available from a 
fragment shader

Table I-5 Implementation Maximum Value Variables

Compatibility 
Extension

gl_MaxClipPlanes
gl_MaxVarying
Floats
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Built-In Uniform State Variables

The following sets of variables are available in both vertex and fragment 
shaders, and reflect the OpenGL state settings specified by the application.

Note: All built-in uniform state, with the exception of gl_DepthRange, 
was deprecated in GLSL 1.30, and effectively removed. All of the 
functionality is available if your implementation includes the 
GL_ARB_compatibility extension.

Transformation Matrix State

The following variables represent the matrix transformation states 
of OpenGL. Various matrices are derived from the values set within an 
OpenGL application. For example, lighting normals (see “Define Normal 
Vectors for Each Vertex of Every Object” in Chapter 5) are transformed by 
the inverse-transpose of the upper-left 3 3 part of the modelview matrix, 
which is automatically computed for you when changes are made to the 
modelview matrix and presented using the gl_NormalMatrix variable.

Derived matrices (particularly those involving matrix inverses) may be 
undefined if the source matrix is ill-conditioned or singular.

Table I-6 lists the available matrices in GLSL.

gl_MaxDrawBuffers 8 Number of buffers available 
for simultaneous output from 
within a fragment shader using 
gl_FragData

gl_MaxClipDistances 8 Number of distances to user-
defined clipping planes

Variable Name Type Description

gl_ModelViewMatrix mat4 Current modelview matrix

gl_ProjectionMatrix mat4 Current projection matrix

Table I-6 Transformation Matrix Variables

Variable Name Default 
Value

Description

Table I-5 (continued)        Implementation Maximum Value Variables

Compatibility 
Extension

All fixed-function 
matrices
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gl_ModelViewProjectionMatrix mat4 Product of the modelview and 
projection matrices

gl_TextureMatrix[n] mat4 Texture matrix for texture 
unit n. The maximum 
dimension of the array is 
gl_MaxTextureCoords.

gl_NormalMatrix mat3 Inverse-transpose of the upper 
3 3 of the modelview matrix

gl_ModelViewMatrixInverse mat4 Inverse of the modelview 
matrix

gl_ProjectionMatrixInverse mat4 Inverse of the projection 
matrix

gl_ModelViewProjectionMatrixInverse mat4 Inverse of combined 
modelview and projection 
matrices

gl_TextureMatrixInverse[n] mat4 Inverse of texture matrix n

gl_ModelViewMatrixTranspose mat4 Transpose of the modelview 
matrix

gl_ProjectionMatrixTranspose mat4 Transpose of the projection 
matrix

gl_ModelViewProjectionMatrixTranspose mat4 Inverse of the combined 
modelview and projection 
matrix

gl_TextureMatrixTranspose[n] mat4 Transpose of texture
matrix n

gl_ModelViewMatrixInverseTranspose mat4 Inverse-transpose of the 
modelview matrix

gl_ProjectionMatrixInverseTranspose mat4 Inverse-transpose of the 
projection matrix

gl_ModelViewProjection
MatrixInverseTranspose

mat4 Inverse-transpose of the 
combined modelview and 
projection matrix

gl_TextureMatrixInverseTranspose[n] mat4 Inverse-transpose of texture 
matrix n

Variable Name Type Description

Table I-6 (continued)        Transformation Matrix Variables
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Lighting Normal Normalization State

Vertex normals can be normalized within a shader by using the normalize()
function. However, if normals were uniformly scaled (all calls to glScale()
had the same values for x, y, and z), they could be normalized by a simple 
scaling operation (thus saving the potentially expensive square root 
operation required by normalize()). The scaling factor is stored in:

uniform float gl_NormalScale;

and applied as

vec3 normal = gl_NormalScale * gl_Normal;

Depth Range State

Access to the depth range values (as set by glDepthRange()) can be accessed 
using:

struct gl_DepthRangeParameters {
    float near;
    float far;
    float diff;
};

uniform gl_DepthRangeParameters gl_DepthRange;

Table I-7 provides descriptions for each of the depth range variables.

User-Defined Clipping Planes

Access to the user-defined clipping planes (as specified by glClipPlane())
can be accessed in a shader through the array:

uniform vec4 gl_ClipPlane[gl_MaxClipPlanes];

Variable Name Type Description

gl_DepthRange.near float Depth value that vertices at the near 
clipping plane are mapped to

gl_DepthRange.far float Depth value that vertices at the far clipping 
plane are mapped to

gl_DepthRange.diff float Difference between the near and far depth 
range values, computed as (far – near)

Table I-7 Depth Range Variables

Compatibility 
Extension

gl_ClipPlanes
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Point Parameter

Parameters controlling the size and shading of points are controlled by the 
state set by calling glPointParameter(). The following structure allows 
access to all point parameter settings:

struct gl_PointParameters {
    float size;
    float sizeMin;
    float sizeMax;
        float fadeThresholdSize;
    float distanceConstantAttenuation;
    float distanceLinearAttenuation;
    float distanceQuadraticAttenuation;
};

uniform gl_PointParameters gl_Point;

The variables associated with point sizes and parameters are listed in 
Table I-8.

Variable Name Type Description

gl_Point.size float Current point-size setting

gl_Point.sizeMin float Minimum value for derived 
point sizes

gl_Point.sizeMax float Maximum value for derived 
point sizes

gl_Point.fadeThresholdSize float Threshold value for selecting 
whether to fade a point’s 
alpha value

gl_Point.distanceConstantAttenuation float Constant coefficient for point 
attenuation computations

gl_Point.distanceLinearAttenuation float Linear coefficient for point 
attenuation computations

gl_Point.distanceQuadraticAttenuation float Quadratic coefficient for 
point attenuation 
computations

Table I-8 Point Size and Attenuation Variables

Compatibility 
Extension

gl_Point
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Material State

Material state, as specified by calling glMaterial(), can be queried by 
utilizing the values in the following structure, which stores material 
properties for both the front- and back-material state:

struct gl_MaterialParameters {
    vec4 emission;
    vec4 ambient;
    vec4 diffuse;
    vec4 specular;
    float shininess;
};

uniform gl_MaterialParameters gl_FrontMaterial;
uniform gl_MaterialParameters gl_BackMaterial;

Table I-9 lists the material variables and their descriptions.

Lighting State

The state associated with each light in OpenGL is stored in the following 
structure. For this section, the notation described in “The Mathematics of 
Lighting” on page 240 is used.

struct gl_LightSourceParameters {
    vec4 ambient;
    vec4 diffuse;
    vec4 specular;
    vec4 position;

Variable Name Type Description

gl_FrontMaterial.emission
gl_BackMaterial.emission

vec4 Emission color for material

gl_FrontMaterial.ambient
gl_BackMaterial.ambient

vec4 Ambient color for material

gl_FrontMaterial.diffuse
gl_BackMaterial.diffuse

vec4 Diffuse color for material

gl_FrontMaterial.specular
gl_BackMaterial.specular

vec4 Specular color for material

gl_FrontMaterial.shininess
gl_BackMaterial.shininess

float Shininess color for material

Table I-9 Lighting Material Variables

Compatibility 
Extension

gl_FrontMaterial
gl_BackMaterial

Compatibility 
Extension

gl_LightSource
gl_LightModel
gl_
FrontLightProduct
gl_
BackLightProduct
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    vec4 halfVector;
    vec3 spotDirection;
    float spotExponent;
    float spotCutoff;
    float spotCosCutoff;
    float constantAttenuation;
    float linearAttenuation;
    float quadraticAttenuation;
};

uniform gl_LightSourceParameters gl_LightSource[gl_MaxLights];

Table I-10 provides a list of the parameters associated with each light source 
available in a shader.

Variable Name Type Description

gl_LightSource[n].ambient vec4 Ambient color for light n

gl_LightSource[n].diffuse vec4 Diffuse color for light n

gl_LightSource[n].specular vec4 Specular color for light n

gl_LightSource[n].position vec4 World-coordinate position for 
light n

gl_LightSource[n].halfVector vec4 Lighting half-vector for light n

gl_LightSource[n].spotDirection vec3 Spotlight direction for light n

gl_LightSource[n].spotExponent float Spotlight exponent for light n

gl_LightSource[n].spotCutoff float Spotlight cutoff angle for
light n

gl_LightSource[n].spotCosCutoff float Cosine of the spotlight cutoff 
angle for light n

gl_LightSource[n].constantAttenuation float Constant coefficient for 
attenuation computation for 
light n

gl_LightSource[n].linearAttenuation float Linear coefficient for 
attenuation computation for 
light n

gl_LightSource[n].quadraticAttenuation float Quadratic coefficient for 
attenuation computation for 
light n

Table I-10 Light Source Variables
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12 Appendix I: Built-In OpenGL Shading Language Variables and Functions

The following structure contains the values for the light-model parameters.

struct gl_LightModelParameters {
    vec4 ambient;
};

uniform gl_LightModelParameters gl_LightModel;

The values associated with the light model are described in Table I-11.

To help reduce the computation required for computing the colors based on 
OpenGL’s Phone lighting model, the non-light dependent terms of the 
lighting equation (the emission and ambient material terms) combined 
with the light model ambient value are cached in the following structure 
and are described in Table I-12.

struct gl_LightModelProducts {
    vec4 sceneColor;
};

uniform gl_LightModelProducts gl_FrontLightModelProduct;
uniform gl_LightModelProducts gl_BackLightModelProduct;

Similarly, various products of constant factors of the material and lights are 
cached in the following structure and described in Table I-13.

struct gl_LightProducts 
    vec4 ambient;
    vec4 diffuse;
    vec4 specular;
};

Variable Name Type Description

gl_LightModel.ambient vec4 Light model’s ambient color

Table I-11 Light Model Variables

Variable Name Type Description

gl_FrontLightModelProduct.sceneColor
gl_BackLightModelProduct.sceneColor

vec4 emissionmaterial + ambientmaterial * 
ambientlight model

Table I-12 Cached Light Model Value Variables
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uniform gl_LightProducts gl_FrontLightProduct[gl_MaxLights];

uniform gl_LightProducts gl_BackLightProduct[gl_MaxLights];

Texture Environment State

The texture environment color (as specified by glTexEnv()) for each texture 
unit is available by accessing:

uniform vec4 gl_TextureEnvColor[gl_MaxTextureImageUnits];

Texture Coordinate Generation State

The user-defined planes for texture coordinate generation are available 
by accessing the following sets of values, one for each set of texture 
coordinates:

uniform vec4 gl_EyePlaneS[gl_MaxTextureCoords];
uniform vec4 gl_EyePlaneT[gl_MaxTextureCoords];
uniform vec4 gl_EyePlaneR[gl_MaxTextureCoords];
uniform vec4 gl_EyePlaneQ[gl_MaxTextureCoords];

uniform vec4 gl_ObjectPlaneS[gl_MaxTextureCoords];
uniform vec4 gl_ObjectPlaneT[gl_MaxTextureCoords];
uniform vec4 gl_ObjectPlaneR[gl_MaxTextureCoords];
uniform vec4 gl_ObjectPlaneQ[gl_MaxTextureCoords];

Fog

The state associated with fog and atmospheric effects (see “Fog” in 
Chapter 6) in OpenGL is stored in the following structure and described 
in Table I-14.

Variable Name Type Description

gl_FrontLightProduct[n].ambient
gl_BackLightProduct[n].ambient

vec4 ambientmaterial ambientlight

gl_FrontLightProduct[n].diffuse
gl_BackLightProduct[n].diffuse

vec4 (max {L · n, 0})  diffuselight
diffusematerial

gl_FrontLightProduct[n].specular
gl_BackLightProduct[n].specular

vec4 (max {s · n, 0})shininess

specularlight  specularmaterial

Table I-13 Cached Light Product Value Variables

Compatibility 
Extension

gl_EyePlane*
gl_ObjectPlane*

Compatibility 
Extension

gl_Fog
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14 Appendix I: Built-In OpenGL Shading Language Variables and Functions

struct gl_FogParameters {
    vec4 color;
    float density;
    float start;
    float end;
    float scale;
};

uniform gl_FogParameters gl_Fog;

Built-In Functions

Angle Conversion and Trigonometric Functions

Table I-15 describes the trigonometric functions available in GLSL shaders. 
Angles are measured in radians, and the following commands operate on 
each component separately. TYPE represents one of float, vec2, vec3, or vec4.

Variable Name Type Description

gl_Fog.color vec4 Fog color

gl_Fog.density float Fog density

gl_Fog.start float Starting distance for linear fog

gl_Fog.end float Ending distance for linear fog

gl_Fog.scale float Scaling factor for linear fog. This value is

computed as 

Table I-14 Fog Variables and Cached Values

Function Syntax Description

TYPE radians(TYPE degrees) Returns 

TYPE degrees(TYPE radians) Returns 

Table I-15 Angle Conversion and Trigonometric Functions

scale 1
end start–
----------------------------=

180
--------- degrees

180--------- radians
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TYPE sin(TYPE angle) Returns the sine of angle

TYPE cos(TYPE angle) Returns the cosine of angle

TYPE tan(TYPE angle) Returns the tangent of angle

TYPE asin(TYPE x) Returns the arcsine (sin–1) of x. The range of 
values returned by this function is [– /2, /2],
and the result is undefined if |x| > 1.

TYPE acos(TYPE x) Returns the arccosine (cos–1) of x. The range of 
values returned by this function is [0, ], and 
the result is undefined if |x| > 1.

TYPE atan(TYPE y, TYPE x) Returns the arctangent (tan–1) of y/x. The signs 
of x and y are used to determine what 
quadrant the angle is in. The range of values 
returned by this function is [– , ], and the 
result is undefined if x and y are both 0.

TYPE atan(TYPE y_over_x) Returns the arctangent (tan–1) of y_over_x. The 
range of values returned by this function is 
[– /2, /2]

TYPE sinh(TYPE x) Returns the hyperbolic sine of x, which is 

defined as 

TYPE cosh(TYPE x) Returns the hyperbolic cosine of x, which is 

defined as 

TYPE tanh(TYPE x) Returns the hyperbolic tangent of x, which is 

defined as 

TYPE asinh(TYPE x) Returns the arc (inverse) hyperbolic sine of x.

TYPE acosh(TYPE x) Returns the arc (inverse) hyperbolic cosine 
of x.

TYPE atanh(TYPE x) Returns the arc (inverse) hyperbolic tanget 
of x.

Function Syntax Description

Table I-15 (continued)        Angle Conversion and Trigonometric Functions

ex e x–
–
2

------------------

ex e x–
+
2

------------------

xsinh
xcosh

--------------------
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Transcendental Functions

Table I-16 lists the logarithmic and exponential functions available 
in GLSL. The commands operate on each component separately. TYPE
represents one of float, vec2, vec3, or vec4.

Basic Numerical Functions

Table I-17 lists the basic numerical functions that GLSL supports. Each 
command operates on each component separately. TYPE represents one of 
float, vec2, vec3, or vec4. iTYPE represents one of int, ivec2, ivec3, or ivec4. 
Similarly, uTYPE represents one of uint, uvec2, uvec3, or uvec4.

Function Syntax Description

TYPE pow(TYPE x, TYPE y) Returns xy. Results are undefined if x < 0, or if 
x = 0 and y 0

TYPE exp(TYPE x) Returns ex.

TYPE log(TYPE x) Returns ln(x). Results are undefined if x  0

TYPE exp2(TYPE x) Returns 2x.

TYPE log2(TYPE x) Returns log2(x). Results are undefined if x  0.

TYPE sqrt(TYPE x) Returns . Results are undefined if x 0.

TYPE inversesqrt(TYPE x) Returns . Results are undefined if x 0.

Table I-16 Transcendental Functions

Function Syntax Description

TYPE abs(TYPE x)
iTYPE abs(iTYPE x

Returns 

TYPE sign(TYPE x)
iTYPE sign(iTYPE x) Returns 

Table I-17 Basic Numerical Functions

x

1
x

-------

x

1 x 0
0 x 0=

1– x 0
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TYPE floor(TYPE x) Returns a value equal to the nearest 
integer that is less than or equal to x

TYPE ceil(TYPE x) Returns a value equal to the nearest 
integer that is greater than or equal to x

TYPE fract(TYPE x) Returns x - floor(x)

TYPE trunc(TYPE x) Returns the nearest integer to x whose 
absolute value is not greater than the 
absolute value of x

TYPE round(TYPE x) Returns the nearest integer to x rounded 
in an implementation-dependent 
manner, presumably using the fastest 
computational approach.

TYPE roundEven(TYPE x) Returns the nearest even integer to x by 
adding 0.5. For example, 3.5 and 4.5, 
would both round to 4.0.

TYPE mod(TYPE x, float y)
TYPE mod(TYPE x, TYPE y)

Returns the floating-point modulus:
x – y  floor (x/y)

TYPE modf(TYPE x, out TYPE i) Returns the fractional part of x and sets 
i to the integer part of x. Both the return 
value and i will have the same sign as x.

TYPE min(TYPE x, TYPE y)
TYPE min(TYPE x, float y)
iTYPE min(iTYPE x, iTYPE y)
iTYPE min(iTYPE x, int y)
uTYPE min(uTYPE x, uTYPE y)
uTYPE min(uTYPE x, uint y)

Returns x < y ? x : y;

TYPE max(TYPE x, TYPE y)
TYPE max(TYPE x, float y)
iTYPE max(iTYPE x, iTYPE y)
iTYPE max(iTYPE x, int y)
uTYPE max(uTYPE x, uTYPE y)
uTYPE max(uTYPE x, uint y)

Returns x > y ? x : y;

Function Syntax Description

Table I-17 (continued)        Basic Numerical Functions
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18 Appendix I: Built-In OpenGL Shading Language Variables and Functions

TYPE clamp(TYPE x, TYPE minVal,
TYPE maxVal)

TYPE clamp(TYPE x, float minVal,
float maxVal)

iTYPE clamp(iTYPE x, iTYPE minVal,
iTYPE maxVal)

iTYPE clamp(iTYPE x, int minVal,
int maxVal)

uTYPE clamp(uTYPE x, uTYPE minVal,
uTYPE maxVal)

uTYPE clamp(uTYPE x, uint minVal,
uint maxVal)

Returns
min(max(x, minVal), maxVal)

TYPE mix(TYPE x, TYPE y, TYPE a)
TYPE mix(TYPE x, TYPE y, float a)

Returns x  (1 – a) + y  a

TYPE mix(TYPE x, TYPE y, bvec a) Returns ai ? xi : yi for each component 
of a.

TYPE step(TYPE edge, TYPE x)
TYPE step(float edge, TYPE x)

Returns x < edge ? 0.0 : 1.0;

TYPE smoothstep(TYPE edge0,
TYPE edge1, TYPE x)

TYPE smoothstep(float edge0,
float edge1, TYPE x)

Returns 

where

bvec isnan(TYPE x) Returns true if x is NaN (not a number), 
false otherwise.

bvec isinf(TYPE x) Returns true if x is either positive or 
negative infinity (based on the 
underlying floating-point 
representation), false otherwise.

Function Syntax Description

Table I-17 (continued)        Basic Numerical Functions

0.0 x edge0

t3 2t2– edge0 x edge1
1.0 x edge1

t x edge0–
edge1 edge0–
------------------------------------=
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Vector-Operation Functions

Table I-18 describes the vector operations in GLSL. The following 
commands operate on their arguments as vectors. Where not explicitly 
specified, TYPE represents one of: float, vec2, vec3, or vec4.

Function Syntax Description

float length(TYPE x) Returns the length of vector x:
sqrt (x[0] x[0] + x[1] x[1] + ...)

float distance(TYPE p0, TYPE p1) Returns the distance between p0 and p1:
length (p0 – p1)

float dot(TYPE x, TYPE y) Returns the dot product of x and y:
result = x[0] y[0] + x[1] y[1] + ...

vec3 cross(vec3 x, vec3 y) Returns the cross product of x and y, i.e.,

result.x = x[1] y[2] - y[1] x[2]
result.y = x[2] y[0] - y[2] x[0]
result.z = x[0] y[1] - y[0] x[1]

TYPE normalize(TYPE x) Returns a vector in the same direction as x
but with a length of 1.

vec4 ftransform() Returns the transformed input vertex such 
that it matches the output of the fixed-
function vertex pipeline.

TYPE faceforward(TYPE N,
TYPE I, TYPE Nref)

Returns dot (Nref, I) < 0 ? N : –N

TYPE reflect(TYPE I, TYPE N) Returns the reflection direction for incident 
vector I, given the normalized surface 
orientation vector N:

result = I – 2 dot(N, I) N

TYPE refract(TYPE I, TYPE N,
float eta)

Returns the refracted vector R, given the 
normalized incident vector I, normalized 
surface normal N, and ratio of indices of 
refraction eta. The refracted vector is 
computed in the following manner:

Table I-18 Vector-Operation Functions

Compatibility 
Extension

ftransform()

k 1 eta2 1 N̂ Î
2

––=

R 0 k 0

eta Î etaN̂ Î k+ N̂– k 0
=
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Matrix Functions

As compared to standard matrix multiplication, which is defined using 
the  operator, the matrixCompMult() routine, described in Table I-19,
produces a component-wise multiplication of two equally dimensioned 
matrices.

Function Syntax Description

mat matrixCompMult(mat x, mat y) Multiply matrix x by matrix y
component-wise, i.e., resultij is the 
scalar product of xij and yij.

mat2 outerProduct(vec2 c, vec2 r)
mat3 outerProduct(vec3 c, vec3 r)
mat4 outerProduct(vec4 c, vec4 r)

mat2x3 outerProduct(vec3 c, vec2 r)
mat3x2 outerProduct(vec2 c, vec3 r)

mat2x4 outerProduct(vec4 c, vec2 r)
mat4x2 outerProduct(vec2 c, vec4 r)

mat3x4 outerProduct(vec4 c, vec3 r)
mat4x3 outerProduct(vec3 c, vec4 r)

Generates a c r matrix by computing 
the outer matrix product (also called 
the tensor product). 

mat2 transpose(mat2 m)
mat3 transpose(mat3 m)
mat4 transpose(mat4 m)

mat2x3 transpose(mat3x2 m)
mat3x2 transpose(mat2x3 m)

mat2x4 transpose(mat4x2 m)
mat4x2 transpose(mat2x4 m)

mat3x4 transpose(mat4x3 m)
mat4x3 transpose(mat3x4 m)

Return the transpose of the matrix m.
The input matrix is not modified.

Table I-19 Matrix Functions
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Vector-Component Relational Functions

The following functions produce a vector of Boolean values representing 
the results of the specified operation conducted on each pair of components 
from the input vectors. TYPE represents any of vec2, vec3, vec4, ivec2, 
ivec3, ivec4, uvec2, uvec3, or uvec4 in the prototypes below, or a Boolean 
vector when explicitly specified. The input vectors must be of the same 
type, and the Boolean vector returned, represented by bvec below, will have 
the same size at the input vectors.

Table I-20 describes the accepted vector functions. 

Texture Lookup Functions

Texture lookup functions are available to both vertex and fragment shaders 
if supported by the underlying OpenGL implementation. All of these 

Function Syntax Description

bvec lessThan(TYPE x, TYPE y) Returns the component-wise 
compare of x < y.

bvec lessThanEqual(TYPE x, TYPE y) Returns the component-wise 
compare of x y.

bvec greaterThan(TYPE x, TYPE y) Returns the component-wise 
compare of x > y.

bvec greaterThanEqual(TYPE x, TYPE y) Returns the component-wise 
compare of x y.

bvec equal(TYPE x, TYPE y)
bvec equal(bvec x, bvec y)

Returns the component-wise 
compare of x == y.

bvec notEqual(TYPE x, TYPE y)
bvec notEqual(bvec x, bvec y)

Returns the component-wise 
compare of x != y.

bool any(bvec x) Returns true if any component of x
is true.

bool all(bvec x) Returns true only if all components 
of x are true.

bvec not(bvec x) Returns the component-wise 
logical complement of x.

Table I-20 Vector Component Operation Functions
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functions rely on the use of samplers, which provide a handle for accessing 
the texture map specified by the application using the OpenGL API. The 
different types of samplers are detailed in “Accessing Texture Maps in 
Shaders” in Chapter 15.

In the following tables, sampler types (e.g., floating point, signed, and 
unsigned integer) are generically represented by “SAMPLER” with the 
specific texture type appended (e.g., SAMPLER2DArray). Likewise, optional 
parameters are denoted in square brackets ([...]).

The functions in Tables I-29 through I-32 provide access to textures through 
samplers, as set up through the OpenGL API. Texture properties such as size, 
pixel format, number of dimensions, filtering method, number of mip-map 
levels, depth comparison, and so on are also defined by OpenGL API calls. 
Such properties are taken into account as the texture is accessed via the 
built-in functions defined below.

Texture Sizes Access Functions

The following routines will return the sizes (as a set of integers) for each 
dimension of a texture level (lod):

Function Syntax Description

int textureSize(SAMPLER1D sampler, int lod)
ivec2 textureSize(SAMPLER2D sampler, int lod)
ivec3 textureSize(SAMPLER3D sampler, int lod)
ivec2 textureSize(SAMPLERCube sampler, int lod)
int textureSize(SAMPLER1DShadow sampler, int lod)
ivec2 textureSize(SAMPLER2DShadow sampler, int lod)
ivec2 textureSize(SAMPLERCubeShadow sampler, int lod)
ivec2 textureSize(SAMPLER1DArray sampler, int lod)
ivec3 textureSize(SAMPLER2DArray sampler, int lod)
ivec2 textureSize(SAMPLER1DArrayShadow sampler, int lod)
ivec3 textureSize(SAMPLER2DArrayShadow sampler, int lod)

Added in GLSL 1.40:
ivec2 textureSize(SAMPLER2DRect sampler, int lod)
ivec2 textureSize(SAMPLER2DRectShadow sampler, int lod)
int textureSize(SAMPLERBuffer sampler, int lod)

Returns the 
dimensions of the 
specified lod for the 
texture addressed 
by sampler. For 
multi-dimensional 
textures, the width, 
height, and depth 
of the texture (or 
the number of 
layers for array 
textures) are 
returned in that 
order.

Table I-21 Texture Size Access Functions
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Basic Texture Access Functions

The following functions use the provided texture coordinates to retrieve a 
texel from the texture map associated with sampler.

All forms are accepted by fragment shaders. Functions with the bias
parameter are not accepted in vertex shaders.

The optional bias parameter is used to alter which mipmap is sampled (see 
“Calculating the Mipmap Level” in Chapter 9). If a bias value is provided 
while accessing a texture that does not contain mipmaps, the texture is 
accessed directly, and the value is ignored. The bias forms of the texture 
functions are available only in fragment shaders.

Function Syntax Description

gvec4 texture(SAMPLER1D sampler, float coord
[, float bias])

gvec4 texture(SAMPLER2D sampler, vec2 coord
[, float bias])

gvec4 texture(SAMPLER3D sampler, vec3 coord
[, float bias])

gvec4 texture(SAMPLERCube sampler, vec3 coord
[, float bias])

float texture(SAMPLER1DShadow sampler,
vec3 coord [, float bias])

float texture(SAMPLER2DShadow sampler,
vec3 coord [, float bias])

float texture(SAMPLERCubeShadow sampler,
vec4 coord [, float bias])

gvec4 texture(SAMPLER1DArray sampler,
vec2 coord [, float bias])

gvec4 texture(SAMPLER2DArray sampler,
vec3 coord [, float bias])

float texture(SAMPLER1DArrayShadow sampler,
vec3 coord [, float bias])

float texture(SAMPLER2DArrayShadow sampler,
vec4 coord

Added in GLSL 1.40:
gvec4 texture(SAMPLER2DRect sampler, vec2 coord)
float texture(SAMPLER2DRectShadow sampler,

vec3 coord)

Samples the texture 
associated with sampler at 
the coordinate coord, adding 
bias to the computed 
mipmap level-of-detail.

Table I-22 Basic Texture Access Functions
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Texture Lookup Functions Using a Constant Coordinate Offset

Sample a texture using a constant offset that is applied to the texture 
coordinates provided. If a bias value is specified, it is added to the mipmap 
lod parameter before sampling. The bias form is not valid in vertex shaders. 

Function Syntax Description

gvec4 textureOffset(SAMPLER1D sampler, 
float coord, int offset [, float bias])

gvec4 textureOffset(SAMPLER2D sampler, 
vec2 coord, ivec2 offset [, float bias])

gvec4 textureOffset(SAMPLER3D sampler, 
vec3 coord, ivec3 offset [, float bias])

float textureOffset(
SAMPLER1DShadow sampler,
vec3 coord, int offset, 
[, float bias])

float textureOffset(
SAMPLER2DShadow sampler,
vec3 coord, ivec2 offset,
[, float bias])

gvec4 textureOffset(
SAMPLER1DArray sampler,
vec2 coord, int offset [, float bias])

gvec4 textureOffset(
SAMPLER2DArray sampler,
vec2 coord, ivec2 offset [, float bias])

gvec4 textureOffset(
SAMPLER1DArrayShadow sampler, 
vec2 coord, int offset [, float bias])

Added in GLSL 1.40:
gvec4 textureOffset(SAMPLER2DRect sampler, 

vec2 coord, ivec2 offset)
float textureOffset(

SAMPLER2DShadow sampler,
vec3 coord, ivec2 offset)

Sample a texture offsetting the 
provided coordinates. The range of 
offset values is implementation 
dependent, and may be queried by 
the application (not the shader, 
however) by querying the values 
GL_MIN_PROGRAM_TEXEL_
OFFSET, and GL_MAX_PROGRAM_
TEXEL_OFFSET.

The offset value is not applied to 
the layer value for Array samplers.

Table I-23 Constant Texture-Coordinate Offset Texture Access Functions 
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Single Texel Fetch Functions

The following functions retrieve a single texel (without filtering) from a 
texture. The *Offset forms offset the supplied texture coordinates by an 
offset, similar to the textureOffset() functions.

Function Syntax Description

gvec4 texelFetch(SAMPLER1D sampler, 
int coord, int lod)

gvec4 texelFetch(SAMPLER2D sampler, 
ivec2 coord, int lod)

gvec4 texelFetch(SAMPLER3D sampler, 
ivec3 coord, int lod)

gvec4 texelFetch(SAMPLER1DArray 
sampler, ivec2 coord, int lod)

gvec4 texelFetch(SAMPLER2DArray 
sampler, ivec3 coord, int lod)

Added in GLSL 1.40: 
gvec4 texelFetch(SAMPLER2DRect 

sampler, ivec2 coord)
gvec4 texelFetch(SAMPLERBuffer

sampler, int coord)

Retrieve a single unfiltered texel from a 
texture map addressed by coord from the 
level-of-detail lod.

gvec4 texelFetchOffset(SAMPLER1D 
sampler, int coord, int lod, int
offset)

gvec4 texelFetchOffset(SAMPLER2D 
sampler, ivec2 coord, int lod, int
offset)

gvec4 texelFetchOffset(SAMPLER3D 
sampler, ivec3 coord, int lod, int
offset)

gvec4 texelFetchOffset(
SAMPLER1DArray sampler, 
ivec2 coord, int lod, int offset)

gvec4 texelFetchOffset(
SAMPLER2DArray sampler, 
ivec3 coord, int lod, int offset)

gvec4 texelFetchOffset(
SAMPLER2DRect sampler,
ivec2 coord, int offset)

Retrieve a single unfiltered texel from a 
texture map addressed by coord from the 
level-of-detail lod. Texture coordinates 
are offset using the values specified in 
offset.

Table I-24 Single Texel Texture Access Functions 
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Projected Texture Access Functions

The following functions retrieve a texel from the texture map associated 
with sampler. Before the texel is retrieved, all components of the input 
texture coordinate, coord, are divided by the last coordinate.

All forms are accepted by fragment shaders. Functions with the bias
parameter are not accepted in vertex shaders.

Once again, the optional bias parameter is used to alter which mipmap is 
sampled (see “Calculating the Mipmap Level” in Chapter 9). If a bias value 
is provided while accessing a texture that does not contain mipmaps, the 
texture is accessed directly and the value is ignored. The bias forms of the 
texture functions are available only in fragment shaders.

The *Offset forms apply the specified offset, similar to the operation of the 
texelOffset() routines, to the provided coordinates before the projective 
divide and texture sampling.

Function Syntax Description

gvec4 textureProj(SAMPLER1D sampler, 
vec2 coord [, float bias])

gvec4 textureProj(SAMPLER1D sampler, 
vec4 coord [, float bias])

gvec4 textureProj(SAMPLER2D sampler, 
vec3 coord [, float bias])

gvec4 textureProj(SAMPLER2D sampler, 
vec4 coord [, float bias])

gvec4 textureProj(SAMPLER3D sampler, 
vec4 coord [, float bias])

float textureProj(SAMPLER1DShadow 
sampler, vec4 coord [, float bias])

gvec4 textureProj(SAMPLER2D sampler, 
vec4 coord [, float bias])

Added in GLSL 1.40:
gvec4 textureProj(SAMPLER2DRect 

sampler, vec3 coord)
gvec4 textureProj(SAMPLER2DRect 

sampler, vec4 coord)
float textureProj(

SAMPLER2DRectShadow sampler, 
vec4 coord)

Sample a texture with projection. 
Texture coordinates are divided by 
the last component of coord before 
sampling. For shadow maps, the third 
component of the divided coordinate 
is used as the shadow map reference 
value.

Table I-25 Projected Texture Access Functions
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Explicit Texture LOD Access Functions

The following functions retrieve texels only from a single mipmap level 
explicitly specified by the lod parameter.

The *Offset forms apply the specified offset, similar to the operation of the 
texelOffset() routines, to the provided coordinates before texture sampling. 

gvec4 textureProjOffset(SAMPLER1D
sampler, vec2 coord, int offset [, 
float bias])

gvec4 textureProjOffset(SAMPLER1D
sampler, vec4 coord, int offset [, 
float bias])

gvec4 textureProjOffset(SAMPLER2D
sampler, vec3 coord, ivec2 offset [, 
float bias])

gvec4 textureProjOffset(SAMPLER2D
sampler, vec4 coord, ivec2 offset [, 
float bias])

gvec4 textureProjOffset(SAMPLER3D
sampler, vec4 coord, ivec3 offset [, 
float bias])

float textureProjOffset(
SAMPLER1DShadow sampler, 
vec4 coord, int offset [, float bias])

gvec4 textureProjOffset(SAMPLER2D
sampler, vec4 coord, ivec2 offset [, 
float bias])

Added in GLSL 1.40:
gvec4 textureProjOffset(

SAMPLER2DRect sampler, vec3
coord, ivec2 offset)

gvec4 textureProjOffset(
SAMPLER2DRect sampler, vec4
coord, ivec2 offset)

float textureProjOffset(
SAMPLERRectShadow sampler, 
vec4 coord, ivec2 offset)

Sample a texture with projection. 
Texture coordinates are divided by 
the last component of coord before 
sampling. For shadow maps, the third 
component of the divided coordinate 
is used as the shadow map reference 
value.

Function Syntax Description

Table I-25 (continued)        Projected Texture Access Functions
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Function Syntax Description

gvec4 textureLod(SAMPLER1D sampler, float
coord, float lod)

gvec4 textureLod(SAMPLER2D sampler, vec2
coord, float lod)

gvec4 textureLod(SAMPLER3D sampler, vec3
coord, float lod)

gvec4 textureLod(SAMPLERCube sampler, vec3
coord, float lod)

gvec4 textureLod(SAMPLER1DShadow sampler, 
vec3 coord, float lod)

gvec4 textureLod(SAMPLER2DShadow sampler, 
vec3 coord, float lod)

gvec4 textureLod(SAMPLER1DArray sampler, vec2
coord, float lod)

gvec4 textureLod(SAMPLER2DArray sampler, vec2
coord, float lod)

gvec4 textureLod(SAMPLER1DArrayShadow 
sampler, vec2 coord, float lod)

Sample from the single 
mipmap level specified by lod.
These calls also set all partial 
derivatives associated with 
mipmap-level interpolation 
to zero.

gvec4 textureLodOffset(SAMPLER1D sampler, 
float coord, float lod, int offset)

gvec4 textureLodOffset(SAMPLER2D sampler, 
vec2 coord, float lod, ivec2 offset)

gvec4 textureLodOffset(SAMPLER3D sampler, 
vec3 coord, float lod, ivec3 offset)

float textureLodOffset(
SAMPLER1DShadow sampler, vec3 coord, 
float lod, ivec offset)

float textureLodOffset(
SAMPLER2DShadow sampler, vec3 coord, 
float lod, ivec offset)

gvec4 textureLodOffset(
SAMPLER1DArray sampler, vec2 coord, 
float lod, ivec offset)

gvec4 textureLodOffset(
SAMPLER2DArray sampler, vec2 coord, 
float lod, ivec offset)

float textureLodOffset(
SAMPLER1DArrayShadow sampler, vec2
coord, float lod, ivec offset)

Sample from the single 
mipmap level specified by lod,
using the coordinates supplied 
in coord after being offset by the 
values supplied in offset. These 
calls also set all partial 
derivatives associated with 
mipmap-level interpolation 
to zero.

Table I-26 Explicit Texture LOD Access Functions

http://lib.ommolketab.ir
http//lib.ommolketab.ir


Built-In Functions 29

Explicit Gradient Texture Access Functions

The following functions sample a texture using the user-supplied gradients 
in the mipmap level determination. The *Offset forms apply the specified 
offset, similar to the operation of the texelOffset() routines, to the provided 
coordinates before texture sampling.

Function Syntax Description

gvec4 textureGrad(SAMPLER1D sampler,
float coord, float dPdx, float dPdy)

gvec4 textureGrad(SAMPLER2D sampler,
vec2 coord, vec2 dPdx, vec2 dPdy)

gvec4 textureGrad(SAMPLER3D sampler,
vec3 coord, vec3 dPdx, vec3 dPdy)

gvec4 textureGrad(SAMPLERCube sampler,
vec3 coord, vec3 dPdx, vec3 dPdy)

float textureGrad(SAMPLER1DShadow sampler,
vec3 coord, float dPdx, float dPdy)

float textureGrad(SAMPLER2DShadow sampler,
vec3 coord, vec2 dPdx, vec2 dPdy)

float textureGrad(SAMPLERCubeShadow sampler,
vec4 coord, vec3 dPdx, vec3 dPdy)

gvec4 textureGrad(SAMPLER1DArray sampler,
vec2 coord, float dPdx, float dPdy)

gvec4 textureGrad(SAMPLER2DArray sampler,
vec3 coord, vec2 dPdx, vec2 dPdy)

float textureGrad(SAMPLER1DArrayShadow sampler,
vec3 coord, float dPdx, float dPdy)

float textureGrad(SAMPLER2DShadow sampler,
vec4 coord, vec2 dPdx, vec2 dPdy)

Added in GLSL 1.40:
gvec4 textureGrad(SAMPLER2DRect sampler,

vec2 coord, vec2 dPdx, vec2 dPdy)
float textureGrad(SAMPLER2DRectShadow sampler,

vec3 coord, vec2 dPdx, vec2 dPdy)

Sample a texture using 
the provided explicit 
gradients. The partial 
derivatives are with 
respect to the window x
and y coordinates. 

Table I-27 Explicit Gradient Texture Access Functions
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gvec4 textureGradOffset(SAMPLER1D sampler,
float coord, float dPdx, float dPdy)

gvec4 textureGradOffset(SAMPLER2D sampler,
vec2 coord, vec2 dPdx, vec2 dPdy)

gvec4 textureGradOffset(SAMPLER3D sampler,
vec3 coord, vec3 dPdx, vec3 dPdy)

gvec4 textureGradOffset(SAMPLERCube sampler,
vec3 coord, vec3 dPdx, vec3 dPdy)

float textureGradOffset(SAMPLER1DShadow sampler, 
vec3 coord, float dPdx, float dPdy)

float textureGradOffset(SAMPLER2DShadow sampler, 
vec3 coord, vec2 dPdx, vec2 dPdy)

float textureGradOffset(SAMPLERCubeShadow 
sampler, vec4 coord, vec3 dPdx, vec3 dPdy)

gvec4 textureGradOffset(SAMPLER1DArray sampler,
vec2 coord, float dPdx, float dPdy)

gvec4 textureGradOffset(SAMPLER2DArray sampler,
vec3 coord, vec2 dPdx, vec2 dPdy)

float textureGradOffset(SAMPLER1DArrayShadow 
sampler, vec3 coord, float dPdx, float dPdy)

float textureGradOffset(SAMPLER2DShadow sampler, 
vec4 coord, vec2 dPdx, vec2 dPdy)

Added in GLSL 1.40:

gvec4 textureGradOffset(SAMPLER2DRect sampler,
vec2 coord, vec2 dPdx, vec2 dPdy)

float textureGradOffset(SAMPLER2DShadow sampler,
vec3 coord, vec2 dPdx, vec2 dPdy)

Sample a texture using the 
provided explicit gradient 
values. The provided offset 
is applied to the texture 
coordinates before 
sampling.

Function Syntax Description

Table I-27 (continued)        Explicit Gradient Texture Access Functions
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Combination Texture Access Functions

The following routines provide combinations of the other routines for 
texture access. For example, the textureProjLod() function does a 
projective texture sample on a single mipmap level. As always, the *Offset()
variants apply a coordinate offset before sampling the texture, similar to 
textureOffset().

Function Syntax Description

gvec4 textureProjLod(SAMPLER1D sampler,
vec2 coord, float lod)

gvec4 textureProjLod(SAMPLER1D sampler,
vec4 coord, float lod)

gvec4 textureProjLod(SAMPLER2D sampler,
vec3 coord, float lod)

 gvec4 textureProjLod(SAMPLER2D sampler,
vec4 coord, float lod)

gvec4 textureProjLod(SAMPLER3D sampler,
vec4 coord, float lod)

float textureProjLod(SAMPLER1DShadow sampler, 
vec4 coord, float lod)

float textureProjLod(SAMPLER2DShadow sampler, 
vec4 coord, float lod)

Sample a texture using a 
projective lookup within 
an explicit LOD.

gvec4 textureProjLodOffset(SAMPLER1D sampler, vec2
coord, float lod, int offset)

gvec4 textureProjLodOffset(SAMPLER1D sampler, vec4
coord, float lod, int offset)

gvec4 textureProjLodOffset(SAMPLER2D sampler, vec3
coord, float lod, ivec2 offset)

 gvec4 textureProjLodOffset(SAMPLER2D sampler, 
vec4 coord, float lod, ivec2 offset)

gvec4 textureProjLodOffset(SAMPLER3D sampler, vec4
coord, float lod, ivec3 offset)

float textureProjLodOffset(
SAMPLER1DShadow sampler, vec4 coord,
float lod, int offset)

float textureProjLodOffset(
SAMPLER2DShadow sampler, vec4 coord,
float lod, ivec2 offset)

Sample a texture using a 
projective lookup within 
an explicit LOD, 
offsetting the supplied 
coordinates.

Table I-28 Projected, LOD, and Gradient Combined Texture Access Functions
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gvec4 textureProjGrad(SAMPLER1D sampler,
vec2 coord, float dPdx, float dPdy)

gvec4 textureProjGrad(SAMPLER1D sampler,
vec4 coord, float dPdx, float dPdy)

gvec4 textureProjGrad(SAMPLER2D sampler,
vec3 coord, vec2 dPdx, vec2 dPdy)

gvec4 textureProjGrad(SAMPLER2D sampler,
vec4 coord, vec2 dPdx, vec2 dPdy)

gvec4 textureProjGrad(SAMPLER3D sampler,
vec4 coord, vec3 dPdx, vec3 dPdy)

float textureProjGrad(SAMPLER1DShadow sampler,
vec4 coord, float dPdx, float dPdy)

float textureProjGrad(SAMPLER2DShadow sampler,
vec4 coord, float dPdx, float dPdy)

Added in GLSL 1.40:
gvec4 textureProjGrad(SAMPLER2DRect sampler,

vec3 coord, vec2 dPdx, vec2 dPdy)
gvec4 textureProjGrad(SAMPLER2DRect sampler,

vec4 coord, vec2 dPdx, vec2 dPdy)
float textureProjGrad(SAMPLER2DRectShadow sampler,

vec4 coord, float dPdx, float dPdy)

Sample a texture using a 
projective lookup with an 
explicit gradient.

Function Syntax Description

Table I-28 (continued)        Projected, LOD, and Gradient Combined Texture Table I-28 (continued)        Projected, LOD, and Gradient Combined Texture Access 
Functions
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Deprecated Texture Access Functions

The following set of functions were deprecated in GLSL Version 1.30, but 
had not been removed from the language as of the time of this book’s 
publication.

Projective Texture Access Functions

The following functions retrieve a texel from the texture map associated 
with sampler. Before the texel is retrieved, all components of the input 
texture coordinate, coord, are divided by the last coordinate.

gvec4 textureProjGradOffset(SAMPLER1D sampler,
vec2 coord, float dPdx, float dPdy, int offset)

gvec4 textureProjGradOffset(SAMPLER1D sampler,
vec4 coord, float dPdx, float dPdy, int offset)

gvec4 textureProjGradOffset(SAMPLER2D sampler,
vec3 coord, vec2 dPdx, vec2 dPdy, ivec2 offset)

 gvec4 textureProjGradOffset(SAMPLER2D sampler,
vec4 coord, vec2 dPdx, vec2 dPdy, ivec2 offset)

gvec4 textureProjGradOffset(SAMPLER3D sampler,
vec4 coord, vec3 dPdx, vec3 dPdy, ivec3 offset)

float textureProjGradOffset(
SAMPLER1DShadow sampler, vec4 coord,
float dPdx, float dPdy, int offset)

float textureProjGradOffset(
SAMPLER2DShadow sampler, vec4 coord,
vec2 dPdx, vec2 dPdy, ivec2 offset)

Added in GLSL 1.40:
gvec4 textureProjGradOffset(SAMPLER2DRect sampler, 

vec3 coord, vec2 dPdx, vec2 dPdy,
ivec2 offset)

 gvec4 textureProjGradOffset(SAMPLER2DRect 
sampler, vec4 coord, vec2 dPdx, vec2 dPdy,
ivec2 offset)

float textureProjGradOffset(
SAMPLER2DRectShadow sampler,
vec4 coord, vec2 dPdx, vec2 dPdy, ivec2 offset)

Sample a texture using a 
projective lookup with an 
explicit gradient., 
offsetting the supplied 
coordinates.

Function Syntax Description

Table I-28 (continued)        Projected, LOD, and Gradient Combined Texture Table I-28 (continued)        Projected, LOD, and Gradient Combined Texture Access 
Functions
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All forms are accepted by fragment shaders. Functions with the bias
parameter are not accepted in vertex shaders.

Once again, The optional bias parameter is used to alter which mipmap is 
sampled (see “Calculating the Mipmap Level” in Chapter 9). If a bias value 
is provided while accessing a texture that does not contain mipmaps, the 
texture is accessed directly and the value is ignored. The bias forms of the 
texture functions are only available in fragment shaders.

Function Syntax Description

vec4 texture1D(sampler1D sampler,
float coord)

vec4 texture1D(sampler1D sampler,
float coord, float bias)

Samples a one-dimensional texture map, 
with optional mipmap-level biasing

vec4 texture2D(sampler2D sampler,
vec2 coord)

vec4 texture2D(sampler2D sampler,
vec2 coord, float bias)

Samples a two-dimensional texture map, 
with optional mipmap-level biasing

vec4 texture3D(sampler3D sampler,
vec3 coord)

vec4 texture3D(sampler3D sampler,
vec3 coord, float bias)

Samples a three-dimensional texture 
map, with optional mipmap-level 
biasing

Table I-29 Deprecated Basic Texture Access Functions

Function Syntax Description

vec4 texture1DProj(sampler1D sampler,
vec2 coord)

vec4 texture1DProj(sampler1D sampler,
vec4 coord)

vec4 texture1DProj(sampler1D sampler,
vec2 coord, float bias)

vec4 texture1DProj(sampler1D sampler,
vec4 coord, float bias)

Samples a one-dimensional texture 
map, with optional mipmap-level 
biasing. The input texture coordinate 
is divided by the last texture 
coordinates (coord.s for the vec2 call; 
coord.q for the vec4 call).

Table I-30 Projective Texture Access Functions
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Vertex Shader Texture Access Functions

Texel retrieval in vertex shaders does not include the automatic 
computation of a mipmap level, as happens in a fragment shader. The 
following functions allow for the sampling of mipmapped textures by 
vertex shaders by providing an mipmap level-of-detail, or lod value (see 
“Calculating the Mipmap Level” in Chapter 9 for how to compute the level-
of-detail value). 

The vertex shader versions of the texture access functions are available in 
non-projective and projective forms (those calls that include “Proj” in the 
name. The input texture coordinates for the projective forms are processed 
as described in “Projective Texture Access Functions” on page 33.

vec4 texture2DProj(sampler2D sampler,
vec3 coord)

vec4 texture2DProj(sampler2D sampler,
vec4 coord)

vec4 texture2DProj(sampler2D sampler,
vec3 coord, float bias)

vec4 texture2DProj(sampler2D sampler,
vec4 coord, float bias)

Samples a two-dimensional texture 
map, with optional mipmap-level 
biasing. The input texture coordinate 
is divided by the last texture 
coordinates (coord.t for the vec2 call; 
coord.q for the vec4 call).

vec4 texture3DProj(sampler3D sampler,
vec4 coord)

vec4 texture3DProj(sampler3D sampler,
vec4 coord, float bias)

Samples a three-dimensional texture 
map, with optional mipmap-level 
biasing. The input texture coordinate 
is divided by the last texture 
coordinates (coord.p for the vec2 call; 
coord.q for the vec4 call).

Function Syntax Description

vec4 texture1DLod(sampler1D sampler,
float coord, float lod)

vec4 texture1DProjLod(sampler1D sampler, vec2 
coord, float lod)

vec4 texture1DProjLod(sampler1D sampler, vec4 
coord, float lod)

Samples a one-dimensional 
texture map by specifying the 
mipmap level-of-detail.

Table I-31 Vertex Shader Texture Access Functions

Function Syntax Description

Table I-30 Projective Texture Access Functions
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Cube-Map Texture Access Functions

Retrieve the texel at input texture coordinate, coord, in the cube map texture 
currently bound to sampler. The direction of coord is used to select which 
face to do a two-dimensional texture lookup in.

Shadow-Map Texture Access Functions

If a non-shadow texture call is made to a sampler that represents a depth 
texture with depth comparisons turned on, then results are undefined. If a 
shadow texture call is made to a sampler that represents a depth texture 
with depth comparisons turned off, then results are undefined. If a shadow 
texture call is made to a sampler that does not represent a depth texture, 
then results are undefined.

vec4 texture2DLod(sampler2D sampler,
vec2 coord, float lod)

vec4 texture2DProjLod(sampler2D sampler, vec3 
coord, float lod)

vec4 texture2DProjLod(sampler2D sampler, vec4 
coord, float lod)

Samples a two-dimensional 
texture map by specifying the 
mipmap level-of-detail.

vec4 texture3DLod(sampler3D sampler,
vec3 coord, float lod)

vec4 texture3DProjLod(sampler3D sampler, vec4 
coord, float lod)

Samples a three-dimensional 
texture map by specifying the 
mipmap level-of-detail.

Function Syntax Description

vec4 textureCube(samplerCube sampler,
vec3 coord)

vec4 textureCube(samplerCube sampler,
vec3 coord, float bias)

vec4 textureCubeLod(samplerCube sampler,
vec3 coord, float lod)

Samples a cube-mapped texture, 
with optional bias (fragment 
shader only) or lod parameters.

Table I-32 Cube-Map Texture Access Functions

Function Syntax Description

Table I-31 (continued)        Vertex Shader Texture Access Functions
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Fragment Processing Functions

Table I-34 describes the functions for accessing a fragment’s derivative, 
which are computed as the fragments of the underlying geometric primitive 
are rasterized.

Function Syntax Description

vec4 shadow1D(sampler1DShadow sampler, 
vec3 coord)

vec4 shadow2D(sampler2DShadow sampler, 
vec3 coord)

vec4 shadow1D(sampler1DShadow sampler, 
vec3 coord, float bias)

vec4 shadow2D(sampler2DShadow sampler, 
vec3 coord, float bias)

vec4 shadow1DProj(sampler1DShadow sampler,
vec4 coord)

vec4 shadow2DProj(sampler2DShadow sampler, 
vec4 coord)

vec4 shadow1DProj(sampler1DShadow sampler,
vec4 coord, float bias)

vec4 shadow2DProj(sampler2DShadow sampler, 
vec4 coord, float bias)

vec4 shadow1DLod(sampler1DShadow sampler, 
vec3 coord, float lod)

vec4 shadow2DLod(sampler2DShadow sampler, 
vec3 coord, float lod)

vec4 shadow1DProjLod(sampler1DShadow sampler, 
vec4 coord, float lod)

vec4 shadow2DProjLod(sampler2DShadow sampler, 
vec4 coord, float lod)

Sample a shadow depth 
map. The functions 
utilizing the bias
parameter are only 
available in fragment 
shaders.

The LOD and projective 
versions of the 
functions process 
texture coordinates 
similarly to other LOD 
and projective 
functions, respectively.

Table I-33 Shadow-Map Texture Access Functions

Function Syntax Description

TYPE dFdx(TYPE p) Returns the derivative in the x-direction.

TYPE dFdy(TYPE p) Returns the derivative in the y-direction

TYPE fwidth(TYPE p) Returns 

Table I-34 Fragment Derivative Functions

dFdx p dFdy p+
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Noise Functions

The stochastic noise functions described in Table I-35 are available in both 
vertex and fragment shaders. The computed noise values returned are 
pseudo-random, but repeatable provided the same random number seed 
is used.

Function Syntax Description

float noise1(TYPE x) Returns a 1D noise value based on the input value x.

vec2 noise2(TYPE x) Returns a 2D noise value based on the input value x.

vec3 noise3(TYPE x) Returns a 3D noise value based on the input value x.

vec4 noise4(TYPE x) Returns a 4D noise value based on the input value x.

Table I-35 Random-Noise Generation Functions
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 Appendix J

J.Floating-Point Formats for Textures, 
Framebuffers, and Renderbuffers

This appendix will describe the floating-point formats used for pixel storage 
in framebuffers and renderbuffers, and texel storage in textures. It has the 
following major sections:

• “Floating-Point Formats Used in OpenGL”
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Floating-Point Formats Used in OpenGL

In addition to the normal 32-bit single-precision floating-point values you 
are used to using when you declare a GLfloat in your application, OpenGL 
supports reduced-precision floating-point representations for storing data 
more compactly than its 32-bit representation. In many instances, your 
floating-point data may not require the entire dynamic range of a 32-bit 
float, and storing or processing data in a reduced-precision format may save 
memory, and increase data transfer rates.

OpenGL supports three reduce-precision floating-point formats: 16-bit 
(signed) floating-point values, and 10- and 11-bit unsigned floating-point 
values. Table J-1 describes the bit-layout of each representation, and the 
associated pixel formats

16-bit Floating-Point Values

For signed 16-bit floating-point values, the minimum and maximum values 
that can be represented are (about) 6.103 10-5, and 65504.0, respectively.

The following routine, F32toF16(), will convert a single, full-precision 
32-bit floating-point value to a 16-bit reduced-precision form (stored as an 
unsigned-short integer)

#define F16_EXPONENT_BITS   0x1F
#define F16_EXPONENT_SHIFT  10
#define F16_EXPONENT_BIAS   15
#define F16_MANTISSA_BITS   0x3ff
#define F16_MANTISSA_SHIFT  (23 - F16_EXPONENT_SHIFT)
#define F16_MAX_EXPONENT \

(F16_EXPONENT_BITS << F16_EXPONENT_SHIFT)

Floating-
point 
Type

Associated Pixel Formats Sign bit Number of 
Exponents 
Bits

Number of 
Mantissa Bits

16-bit GL_RGB16F,
GL_RGBA16F

1 5 10

11-bit GL_R11F_G11F_B10F
(red and green components)

0 5 6

10-bit GL_R11F_G11F_B10F
(blue component)

0 5 5

Table J-1 Reduced-Precision Floating-Point Formats
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GLushort
F32toF16(GLfloat val)
{

GLuint    f32 = (*(GLuint *) &val);
GLushort  f16 = 0;

/* Decode IEEE 754 little-endian 32-bit floating-point value 
*/
int sign     =  (f32 >> 16) & 0x8000;
/* Map exponent to the range [-127,128] */
int exponent = ((f32 >> 23) & 0xff) - 127; 
int mantissa =   f32 & 0x007fffff;

if (exponent == 128) { /* Infinity or NaN */
f16 = sign | F16_MAX_EXPONENT;
if (mantissa)  f16 |= (mantissa & F16_MANTISSA_BITS);

}
else if (exponent > 15) { /* Overflow - flush to Infinity */

f16 = sign | F16_MAX_EXPONENT;
}
else if (exponent > -15) { /* Representable value */

exponent += F16_EXPONENT_BIAS;
mantissa >>= F16_MANTISSA_SHIFT;
f16 = sign | exponent << F16_EXPONENT_SHIFT | mantissa;

}
else {

f16 = sign;
}

return f16;
}

Likewise, F16toF32() converts from the reduced-precision floating-point 
form into a normal 32-bit floating-point value.

#define F32_INFINITY  0x7f800000

GLfloat
F16toF32(GLushort val)
{

union {
GLfloat f;
GLuint  ui;

} f32;
    
int sign     = (val & 0x8000) << 15;
int exponent = (val & 0x7c00) >> 10;
int mantissa = (val & 0x03ff);
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f32.f = 0.0;

if (exponent == 0) {
if (mantissa != 0) {

const GLfloat scale = 1.0 / (1 << 24);
f32.f = scale * mantissa;

}
}
else if (exponent == 31) {

f32.ui = sign | F32_INFINITY | mantissa;
}
else {

GLfloat scale, decimal;
exponent -= 15;
if (exponent < 0) {

scale = 1.0 / (1 << -exponent);
}
else {

scale = 1 << exponent;
}
decimal = 1.0 + (float) mantissa / (1 << 10);
f32.f = scale * decimal;

}

if (sign) f32.f = -f32.f;

return f32.f;
}

10- and 11-bit Unsigned Floating-Point Values

For normalized color values in the range [0, 1], unsigned 10- and 11-bit 
floating-point formats may provide a more compact format with better 
dynamic range than either floating-point values, or OpenGL’s unsigned 
integer pixel formats. The maximum representable values are 65204 and 
64512, respectively.

Routines for converting floating-point values into 10-bit unsigned floating-
point values, and vice versa are shown below.

#define UF11_EXPONENT_BIAS   15
#define UF11_EXPONENT_BITS   0x1F
#define UF11_EXPONENT_SHIFT  6
#define UF11_MANTISSA_BITS   0x3F
#define UF11_MANTISSA_SHIFT  (23 - UF11_EXPONENT_SHIFT)
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#define UF11_MAX_EXPONENT \
(UF11_EXPONENT_BITS << UF11_EXPONENT_SHIFT)

GLushort
F32toUF11(GLfloat val)
{

GLuint    f32 = (*(GLuint *) &val);
GLushort  uf11 = 0;

/* Decode little-endian 32-bit floating-point value */
int sign     =  (f32 >> 16) & 0x8000;
/* Map exponent to the range [-127,128] */
int exponent = ((f32 >> 23) & 0xff) - 127;
int mantissa =   f32 & 0x007fffff;

if (sign) return 0;

if (exponent == 128) { /* Infinity or NaN */
uf11 = UF11_MAX_EXPONENT;
if (mantissa)  uf11 |= (mantissa & UF11_MANTISSA_BITS);

}
else if (exponent > 15) { /* Overflow - flush to Infinity */

uf11 = UF11_MAX_EXPONENT;
}
else if (exponent > -15) { /* Representable value */

exponent += UF11_EXPONENT_BIAS;
mantissa >>= UF11_MANTISSA_SHIFT;
uf11 = exponent << UF11_EXPONENT_SHIFT | mantissa;

}

return uf11;
}

#define F32_INFINITY  0x7f800000

GLfloat
UF11toF32(GLushort val)
{

union {
GLfloat f;
GLuint  ui;

} f32;
    
int exponent = (val & 0x07c0) >> UF11_EXPONENT_SHIFT;
int mantissa = (val & 0x003f);
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f32.f = 0.0;

if (exponent == 0) {
if (mantissa != 0) {

const GLfloat scale = 1.0 / (1 << 20);
f32.f = scale * mantissa;

}
}
else if (exponent == 31) {

f32.ui = F32_INFINITY | mantissa;
}
else {

GLfloat scale, decimal;
exponent -= 15;
if (exponent < 0) {

scale = 1.0 / (1 << -exponent);
}
else {

scale = 1 << exponent;
}
decimal = 1.0 + (float) mantissa / 64;
f32.f = scale * decimal;

}

return f32.f;
}

For completeness, we present similar routines for converting 10-bit 
unsigned floating-point values.

#define UF10_EXPONENT_BIAS   15
#define UF10_EXPONENT_BITS   0x1F
#define UF10_EXPONENT_SHIFT 5
#define UF10_MANTISSA_BITS   0x3F
#define UF10_MANTISSA_SHIFT  (23 - UF10_EXPONENT_SHIFT)
#define UF10_MAX_EXPONENT \

(UF10_EXPONENT_BITS << UF10_EXPONENT_SHIFT)

GLushort
F32toUF10(GLfloat val)
{

GLuint    f32 = (*(GLuint *) &val);
GLushort uf10 = 0;

/* Decode little-endian 32-bit floating-point value */
int sign     =  (f32 >> 16) & 0x8000;
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/* Map exponent to the range [-127,128] */
int exponent = ((f32 >> 23) & 0xff) - 127;
int mantissa =   f32 & 0x007fffff;

if (sign) return 0;

if (exponent == 128) { /* Infinity or NaN */
uf10 = UF10_MAX_EXPONENT;
if (mantissa) uf10 |= (mantissa & UF10_MANTISSA_BITS);

}
else if (exponent > 15) { /* Overflow - flush to Infinity */

uf10 = UF10_MAX_EXPONENT;
}
else if (exponent > -15) { /* Representable value */

exponent += UF10_EXPONENT_BIAS;
mantissa >>= UF10_MANTISSA_SHIFT;
uf10 = exponent << UF10_EXPONENT_SHIFT | mantissa;

}

return uf10;
}

#define F32_INFINITY  0x7f800000

GLfloat
UF10toF32(GLushort val)
{

union {
GLfloat f;
GLuint  ui;

} f32;
    
int exponent = (val & 0x07c0) >> UF10_EXPONENT_SHIFT;
int mantissa = (val & 0x003f);

f32.f = 0.0;

if (exponent == 0) {
if (mantissa != 0) {

const GLfloat scale = 1.0 / (1 << 20);
f32.f = scale * mantissa;

}
}
else if (exponent == 31) {

f32.ui = F32_INFINITY | mantissa;
}
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else {
GLfloat scale, decimal;
exponent -= 15;
if (exponent < 0) {

scale = 1.0 / (1 << -exponent);
}
else {

scale = 1 << exponent;
}
decimal = 1.0 + (float) mantissa / 64;
f32.f = scale * decimal;

}

return f32.f;
}
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 Appendix K

K.RGTC Compressed Texture Format

This appendix will describe the RG-texture compression format, used for 
compressing one- and two-component textures. It has the following major 
sections:

• “RGTC Overview”
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RGTC Overview

The RGTC compressed texture format is a standardized compression format 
for one- and two-component textures. It is a block-based format where 
collections of 4 4 texel squares that are compressed into a 64-bit 
encodings for each component. The first two bytes of an encoding for a 
channel represent representative values, which may be linearly combined 
to compute the color of any pixel in the 4 4 block. The remaining 48-bits 
represent 16 three-bit codes used to determine the appropriate linear 
combination of the two representative values.

Textures compressed using the RGTC format must have a width and height 
that are multiples of four pixels. Any pixels that fall outside of the multiple-
of-four width or height are ignored on decompression.

The RGTC format includes four encodings depending on the number of 
components in the image, and the sign of the texel data, as shown in Table K-1.

Encoding RGTC Images

The following routine will encode a one-component 4 4 block of 
GLubyte pixels into an RGTC bit-field representing the compressed pixels, 
as described in The OpenGL Graphics System: A Specification, Appendix D 
(Version 3.1).

RGTC Format Description

GL_COMPRESSED_RED_RGTC1 Single-channel 8-bit unsigned 
image data

GL_COMPRESSED_SIGNED_RED_RGTC1 Single-channel 8-bit signed image 
data

GL_COMPRESSED_RG_RTGC2 Two-channel 8-bit per 
component unsigned image data

GL_COMPRESSED_SIGNED_RG_RGTC2 Two-channel 8-bit per 
component signed image data

Table K-1 The RTGC Compressed Image Formats
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GLubyte*
RGTCEncode( const GLubyte pixels[4][4] )
{

int       i, j, r, c, idx;
GLubyte   min = 0xff,  max = 0x00;  /* range for current 4x4 
block */
GLubyte   codes[4][4];
GLbyte    group = 0;

static GLubyte   encoded[8];

unsigned long long  *bits;

/* Note which group of codes were using
**  in our encoding.
**
**   Group[0] ==> red_0 > red_1
**   Group[1] ==> red_0 <= red_1
*/
const GLubyte  Group[2] = { 0x00, 0x80 };
const GLubyte  Mask[2]  = { 0x07, 0x38 };
const GLubyte  Shift[2] = { 0, 3 };

/* compute min & max pixel values */
for ( i = 0; i < 4; ++i ) {

for ( j = 0; j < 4; ++j ) {
GLubyte val = pixels[i][j];
if ( min > val )  min = val;
if ( max < val )  max = val;

}
}

if ( min == max ) {
/* Constant color across the block - we'll use the
**   first set of codes (red_0 > red_1), and set
**   all bits to be code 0 */
encoded[0] = min;
encoded[1] = max;
encoded[2] = 0x00;
encoded[3] = 0x00;
encoded[4] = 0x00;
encoded[5] = 0x00;
encoded[6] = 0x00;
encoded[7] = 0x00;

}
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else {
GLfloat d1 = (max - min) / 7.0;
GLfloat d2 = (max - min) / 5.0;

GLubyte *pptr = (GLubyte*) pixels;
GLubyte *cptr = (GLubyte*) codes;

for ( i = 0; i < 16; ++i, ++pptr, ++cptr ) {
GLfloat v1 = (*pptr - min) / d1;
GLfloat v2 = (*pptr - min) / d2;

GLubyte ip1 = (GLubyte) v1;
GLubyte ip2 = (GLubyte) v2;

GLfloat fp1 = v1 - ip1;
GLfloat fp2 = v2 - ip2;

enum { MinCode = 0, MaxCode = 1 };

if ( fp1 > 0.5 ) {
fp1 -= 0.5;
ip1 += 1;

}

if ( fp2 > 0.5 ) {
fp2 -= 0.5;
ip1 += 1;

}

if ( ip1 == 0 ) {
*cptr = MinCode;

}
else if ( ip1 == 7 ) {

*cptr = MaxCode; 
}
else {

*cptr = (ip2 << Shift[1]) | (ip1 << Shift[0]);
  }

  if ( fp1 < fp2 ) {
/* The current pixel's closer to one of the
**   seventh range partitoning values */
*cptr |= Group[0];
++group;

}
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else {
/* Here, the current pixel's closer to
**   one of the fifth range partitonings
**   values */
*cptr |= Group[1];
--group;

}
}

}

group = (group >= 0) ? 0 : 1;

bits = (unsigned long long*) encoded;

for ( i = 0; i < 4; ++i ) {
for ( j = 0; j < 4; ++j ) {

GLubyte shift = 3*(4*j+i);
GLubyte code;
unsigned long long mask;

code = codes[i][j] & Mask[group];
code >>= Shift[group];
mask = code << shift;
*bits |= mask;

}
}

if ( group == 0 ) {
encoded[0] = max;
encoded[1] = min;

}
else { 

encoded[0] = min;
encoded[1] = max;

}
}

return encoded;
}
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 Appendix L

L.std140 Uniform Buffer Layout

This appendix describes the layout of the members of a uniform buffer 
object when the layout is specified with the layout modifier std140. It has 
the following major sections:

• “Using the std140 Layout Qualifier”

• “std140 Layout Rules”
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Using the std140 Layout Qualifier

Generally, when you group a number of uniform variables in a uniform 
buffer object, you need to query the offset (and format and type, if you 
don’t know those values from the shader source). For large collections of 
uniforms, this process can result in needed to make many queries. The 
std140 layout qualifier requests that the GLSL shader compiler organize the 
variables in uniform block according to a set of rules, where you can 
predictably compute the offset of any member in the block, knowing its 
type and offset. This feature is only available with GLSL Version 1.40 at the 
time of this writing (but will presumably be backward compatible with 
future versions of GLSL).

In order to qualify a block to use the std140 layout, you need to add layout 
directive to its declaration, as demonstrated below:

layout (std140) uniform UniformBlock {
// declared variables

};

std140 Layout Rules

The set of rules shown in Table L-1 are used by the GLSL compiler to layout 
members in a std140-qualified uniform block. The offsets of members in 
the block are accumulated based on the sizes of the previous members in the 
block (those declared before the variable in question), and the starting 
offset. The starting offset of the first member is always zero.

Variable Type Variable Size/Offset

Scalar variable type (bool, int, uint, 
float)

Size of the scalar in basic machine types 
(e.g., sizeof(GLfloat))

Two-element vector (bvec2, ivec2, 
uvec2, vec2)

Twice the size of the underlying scalar 
type

Three-element vector (bvec3, ivec3, 
uvec3, vec3)
Four-element vector (bvec4, ivec4, 
uvec4 vec2)

Four times the size of the underlying 
scalar type

Table L-1 std140 Layout Rules
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An array of scalars or vectors Each element in the array is the size of 
the underlying type, and the offset of 
any element is its index (using zero-
based indexing) times the elements size. 
The entire array is padded to be a 
multiple of the size of a vec4.

Single, or arrays of column-major 
matrices of size C columns and R rows

Stored as an array of C vectors each with 
R components, and potentially padded 
like other arrays.

If the variable is an array of M column-
major matrices, it is stored as an array of 
M C vectors each with R components 
(and potentially padded).

Single, or arrays of row-major matrices 
with R rows and C columns

 Stored as an array of R vectors each with 
C components, and potentially padded 
like other arrays.

If the variable is an array of M column-
major matrices, it is stored as an array of 
M R vectors each with C components 
(and potentially padded).

A single structure definition, or an array 
of structures

Offsets and sizes of the structure’s 
members are computed using the 
preceding rules. The structure’s size will 
be padded out to a multiple of the size of 
a vec4.

An array of structures’ offsets are 
computed considering the alignment 
and padding of the individual 
structures, with structure member’s 
offsets computed using the preceding 
rules.

Variable Type Variable Size/Offset

Table L-1 (continued)        std140 Layout Rules
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