
Microsoft AJAX Library
Essentials
Client-side ASP.NET AJAX 1.0 Explained

A practical tutorial to using Microsoft AJAX Library
to enhance the user experience of your ASP.NET
Web Applications

Bogdan Brinzarea
Cristian Darie

 BIRMINGHAM - MUMBAI

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Microsoft AJAX Library Essentials
Client-side ASP.NET AJAX 1.0 Explained

Copyright © 2007 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the authors, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2007

Production Reference: 1230707

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847190-98-7

www.packtpub.com

Cover Image by www.visionwt.com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table of Contents
Preface 1
Chapter 1: AJAX and ASP.NET 7

The Big Picture 8
AJAX and Web 2.0 10

Building Websites Since 1990 11
HTTP and HTML 11
ASP.NET and Other Server-Side Technologies 13
JavaScript and Other Client-Side Technologies 14
What's Missing? 15

The World of AJAX 15
What is AJAX Made Of? 17
Uses and Misuses of AJAX 18
Introducing ASP.NET AJAX 20
Resources and Tools 21

Setting Up Your Environment 22
Installing IIS 22
Installing Visual Web Developer 25
Creating a Folder for Your Project 25

Preparing the Atlas Application in Windows Vista 26
Preparing the Atlas Web Application in Windows XP 27

Hello World! 28
Time for Action—Quickstart AJAX 31
What Just Happened? 35

Summary 43
Chapter 2: AJAX Foundations 45

JavaScript and the Document Object Model 45
Time for Action—Playing with JavaScript and the DOM 48
What Just Happened 50

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table of Contents

[ii]

JavaScript Events and the DOM 51
Time for Action—Using JavaScript Events and the DOM 53
What Just Happened? 54

Even More DOM 56
Time for Action—Even More DOM 57
What Just Happened? 59

JavaScript, DOM, and CSS 61
Time for Action—Working with CSS and JavaScript 61
What Just Happened? 64

The XMLHttpRequest Object 65
Creating the XMLHttpRequest Object 65
Initiating Server Requests 69
Handling the Server Response 72

Time for Action—Making Asynchronous Calls with XMLHttpRequest 74
What Just Happened? 77

Summary 80
Chapter 3: Object-Oriented JavaScript 81

Concepts of Object-Oriented Programming 81
Objects and Classes 82
Encapsulation 83
Inheritance 83
Polymorphism 84

Object-Oriented JavaScript 84
JavaScript Functions 85

Functions as Variables 86
Anonymous Functions 88
Inner Functions and JavaScript Closures 89

JavaScript Classes 90
Class Diagrams 93
C# and JavaScript Classes 93
Referencing External Functions 96
Thinking of Objects as Associative Arrays 96
Creating Object Members on the Fly 98
Private Members 99
Prototypes 100

The JavaScript Execution Context 101
var x, this.x, and x 102
Using the Right Context 103

Inheritance using Closures and Prototypes 105
Inheritance Using Closures 105
Inheritance Using Prototyping 108

Introducing JSON 110
Summary 112

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table of Contents

[iii]

Chapter 4: Introducing the Microsoft AJAX Library 113
Microsoft AJAX Library Components 113
Asynchronous Communication 116

Client Asynchronous Communication 117
Server Asynchronous Communication 118

Working with WebRequest 119
Time for Action—WebRequest 120
What Just Happened? 125

More WebRequests 129
Time for Action—More WebRequest 130
What Just Happened? 132

Summary 133
Chapter 5: OOP with the Microsoft AJAX Library 135

The New Features 136
JavaScript Base Classes Extensions 136

Time for Action: Bubble Sort and Base Classes Extensions 137
What Just Happened? 140

Classes in Microsoft AJAX Library 142
The Type, Namespaces, and Events 143

Time for Action—Creating and Using the Person Class 144
What Just Happened? 148

Inheritance 154
Time for Action—Implementing Inheritance using Microsoft 156
What Just Happened? 161

AJAX Library
Enumerations 165
Interfaces 166

Ti me for action—Inheritance and Interfaces 167
What Just Happened? 173

OOP Recommendations 175
Summary 175

Chapter 6: Creating Client Components 177
DOM Elements and Events 177
Components, Behaviors, and Controls 180

Creating Components 182
Disposing of Components 183
Sys.Application and Client Page Life-Cycle Events 184

The init Event 186
The load Event 186
The pageLoad() Method 187
The pageUnload() Method 188
The unload Event 188

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table of Contents

[iv]

Behaviors 188
Controls 190
Quicksteps for Creating Custom Client Components 191

Summary 192
Chapter 7: Case Study: Timer and EnhancedTextBox 193

The Timer Component 193
The EnhancedTextBox Behavior 194
Creating Timer and EnhancedTextBox 196

Time for Action—Creating Custom Client Components 197
What Just Happened? 210

Using the Components 216
Summary 217

Chapter 8: Debugging Tools and Techniques 219
AJAX Debugging Overview 220
Debugging and Tracing with Microsoft AJAX Library 220

MicrosoftAjax.debug.js 222
Anonymous Functions vs. Pseudo-Named Functions 222
Parameters Validation 224

Debugging in Internet Explorer 225
Web Development Helper 228
Internet Explorer Developer Toolbar 228
Other tools 229

Debugging in Firefox 230
Firebug 230
Venkman JavaScript Debugger 231
Web Developer 233

Fiddler 233
Testing 234
Summary 234

Appendix A: Microsoft AJAX Library Reference 235
Conventions 235
Function Class 238

emptyMethod() Method 238
_validateParams() Method 238
createDelegate() Method 240
createCallback() Method 241

Type Class 242
JavaScript Base Type Extensions 242

Array Class 243
Boolean Class 245
Date Class 245

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table of Contents

[v]

Error Class 248
create() Method 248

Number Class 251
Object Class 252
RegExp Class 252
String Class 252

Sys Namespace 254
Sys.Application Class 255
Sys.ApplicationLoadEventArgs Class 256
Sys.Browser Class 256
Sys.CancelEventArgs Class 257
Sys.Component Class 257
Sys.CultureInfo Class 258
Sys.Debug Class 258
Sys.EventArgs Class 259
Sys.EventHandlerList Class 259
Sys.IContainer Interface 260
Sys.IDisposable Interface 260
Sys.INotifyDisposing Interface 260
Sys.INotifyPropertyChange Interface 261
Sys.PropertyChangedEventArgs Class 261
Sys.ScriptLoader Class 262
Sys.ScriptLoaderTask Class 263
Sys.StringBuilder Class 263

Sys.UI Namespace 264
Sys.UI.Behavior Class 264
Sys.UI.Bounds Class 265
Sys.UI.Control Class 265
Sys.UI.DomElement Class 266

getElementById() Method ($get) 266
addCssClass() Method 266
containsCssClass() Method 267
removeCssClass() Method 267
toggleCssClass() Method 267
getLocation() Method 268
getBounds() Method 268
setLocation() Method 268

Sys.UI.DomEvent Class 269
Sys.UI.Key Class 270

addHandler() Method ($addHandler) 270
addHandlers() Method ($addHandlers) 271
clearHandlers() Method ($clearHandlers) 271
preventDefault() Method 272

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table of Contents

[vi]

removeHandler() Method 272
stopPropagation() Method 272

Sys.UI.MouseButton Enumeration 273
Sys.UI.Point Class 273
Sys.UI.VisibilityMode Enumeration 273

Sys.Net Namespace 274
Sys.Net.NetworkRequestEventArgs Class 274
Sys.Net.WebRequest Class 275
Sys.Net.WebRequestExecutor Class 276
Sys.Net.WebRequestManager Class 277
Sys.Net.XmlHttpExecutor Class 278

Sys.Serialization Namespace 279
Sys.Serialization.JavaScriptSerializer Class 279

serialize() Method 279
deserialize() Method 280

Index 281

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Preface
AJAX is a complex phenomenon that means different things to different people.
Computer users appreciate that their favorite websites are now friendlier and feel
more responsive. Web developers learn new skills that empower them to create sleek
web applications with little effort. Indeed, everything sounds good about AJAX!

At its roots, AJAX is a mix of technologies that let you get rid of the evil page reload,
which represents the dead time when navigating from one page to another.
While this may be regarded as a minor feature, the elimination of page reloads
opened the way for implementing more complex features into websites, such as
real-time, server-supported data validation, drag and drop, and other tasks that were
traditionally associated only with desktop applications. The central technology in the
AJAX mix is JavaScript, which has been key to the success of AJAX: JavaScript is a
lightweight language, it's loaded quickly by the web browser, and it's supported by
all modern web browsers. No additional plug-ins or tools are required from the user
to load an AJAX web application.

Microsoft created the ASP.NET AJAX Framework to build on the features offered
by JavaScript, integrating the amazing power of AJAX into the world of ASP.NET.
Available as a separate download from http://ajax.asp.net/, and integrated
into the upcoming Visual Studio "Orcas" Edition, the ASP.NET AJAX Framework
includes a wealth of server-side and client-side features that allow creating powerful
web applications quickly.

The ASP.NET AJAX Framework is composed of a client-side JavaScript library
named the Microsoft AJAX Library, and a set of server-side ASP.NET controls built
on top of this library, named the Microsoft AJAX Extensions. This book covers the
Microsoft AJAX Library, which can be a significant challenge for the typical server-
side ASP.NET developer—the target of this book. Why is that so? For starters, in
order to successfully use the Microsoft AJAX Library, one needs to have decent
exposure to JavaScript, and an understanding of how objects work in JavaScript. This
book addresses these topics in Chapters 2 and 3. If you aren't a JavaScript wizard

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Preface

[2]

yet, you'll find that JavaScript is quite different than the typical .NET environment,
but we're certain that you'll end up liking it. You also need to understand the
environment created by the library, which implements the typical features of the
.NET platform into JavaScript, such as namespaces, interfaces, and so on.

To become a good ASP.NET AJAX Framework developer you'll need, obviously, to
learn how to work with the ASP.NET AJAX Extensions as well. You can do so before
or after reading this book. In both cases, this book will help you truly understand
how the client-side part of the framework functions, how to work with it, and how to
extend it.

We hope you'll find this book useful and relevant to your projects. For
the latest details and updates regarding this book, please visit the support
page maintained by Bogdan Brinzarea and Cristian Darie at
http://www.cristiandarie.ro/asp-ajax/.

What This Book Covers
Chapter 1: AJAX and ASP.NET is an initial incursion into the world of AJAX and the
vast possibilities it opens up for web developers and companies, to offer a better
experience to their users. In this chapter you'll learn about the world of AJAX and
Web 2.0, you'll set up your development environment, and you'll even build your
first AJAX-enabled web page.

Chapter 2: AJAX Foundations guides you through the foundation technologies used to
implement AJAX features, such as JavaScript, DOM, Cascading Style Sheets (CSS),
and the XMLHttpRequest object.

Chapter 3: Object-Oriented JavaScript teaches you how objects really work in
JavaScript. After a quick definition for terms such as encapsulation, inheritance, and
polymorphism, you'll learn about JavaScript anonymous functions and closures,
JavaScript prototypes, the JavaScript execution context and scope, how to implement
inheritance using closures and prototypes, how to read class diagrams and
implement them using JavaScript code, and more.

Chapter 4: Introducing the Microsoft AJAX Library is the first chapter where you
actually work with the Microsoft AJAX Library. You learn what the library is
made of, how it is structured, and what its main components do. At the end of the
chapter you re-create the quickstart exercise from Chapter 1, but this time using the
Microsoft AJAX Library to perform the asynchronous server call.

Chapter 5: OOP with the Microsoft AJAX Library presents the features in Microsoft
AJAX Library that extend JavaScript with features of the .NET world, such as
namespaces, interfaces, a more powerful inheritance paradigm, extended base
classes, properties, events, enumerations, and more.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Preface

[3]

Chapter 6: Creating Client Components teaches you how to create client components
using the Microsoft AJAX Library, which implies working with (and extending)
elements of the page, registering events, creating controls and behaviors, and
understanding the page life cycle.

Chapter 7: Case Study: Timer and EnhancedTextBox walks you through an exercise
that implements the theory you had learned in the book. You create two client-side
components, Timer and EnhancedTextBox, which are complex enough to offer a
realistic view on creating components with the Microsoft AJAX Library.

Chapter 8: Debugging Tools and Techniques is a short overview of the major tools that
you can use to debug your Microsoft AJAX Library projects, using Mozilla Firefox
and Microsoft Internet Explorer.

Appendix A: Microsoft AJAX Library Reference is a quick reference and a
visual guideline to the Microsoft AJAX Library namespaces and classes,
which complements the official documentation at
http://ajax.asp.net/docs/ClientReference/.

What You Need for This Book
This book has been written for ASP.NET developers entering the world of the
ASP.NET AJAX Framework, and for existing ASP.NET AJAX developers looking
for a more detailed tutorial on the client-side of the framework: the Microsoft
AJAX Library.

Who is This Book for
To follow this book you need to have a Windows-based machine that can run a web
server and Microsoft Visual Web Developer 2005 Express Edition. The installation
and setup instructions for your development environment are described in
Chapter 1.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

There are three styles for code. Code words in text are shown as follows: "The
Response.ContentType property corresponds to the Content-Type HTTP header."

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Preface

[4]

A block of code will be set as follows:

 // set the response content type
 Response.ContentType = "text/xml";
 // output the XML header
 Response.Write("<?xml version=\"1.0\" encoding=
 \"UTF-8\" standalone=\"yes\"?>");
 Response.Write("<response>");

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be made bold:

<html>
 <head>
 <script type="text/javascript" src="file.js"></script>
 </head>
</html>

Any command-line input and output is written as follows:

cd C:\Windows\Microsoft.NET\Framework\v2.0.50727

aspnet_regiis.exe -i

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"When the user clicks one of the Style buttons, the JavaScript DOM is used to assign
those styles to the elements of the table."

Important notes appear in a box like this.

Tips and tricks appear like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Preface

[5]

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or
email suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the Example Code for the Book
Visit http://www.packtpub.com/support, and select this book from the list of titles
to download any example code or extra resources for this book. The files available
for download will then be displayed.

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the Submit Errata link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata added to the list of existing errata. The existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

AJAX and ASP.NET
"Computer, draw a robot!" said my young cousin to the first computer he had ever
seen. (Since I had instructed it not to listen to strangers, the computer wasn't
receptive to this command.) If you're like me, your first thought would be "how
silly" or "how funny"—but this is a mistake. We're being educated to accommodate
computers, to compensate for the lack of ability of computers to understand humans,
but in an ideal world that spoken command should have been enough to have the
computer please my cousin.

This book doesn't aim to teach you how to create software applications that
intelligently interact with children—we're still far from that point. However, we'll
help you make a small but important step in that direction. We'll teach you how to
use web development technologies available today—AJAX and ASP.NET AJAX in
particular—to enhance web users' experience of your web site, by creating more
usable and friendly web interfaces. As far as this chapter is concerned, we'll discuss
the following topics:

The Big Picture. Here we'll answer a question we're often asked: "Why
bother improving our applications' user interfaces and features, when the
existing ones perform satisfactorily?"
Building Websites Since 1990. What are the fundamental principles of
the Web, and what are the important technologies that make it work? You
probably know most of this, but we hope you'll welcome this quick refresher.
The World of AJAX. As you will learn (if you don't already know), AJAX is
a powerful tool that you can use to improve your web interfaces. However,
it's important to understand when you should use it, and when you should
probably not. We'll also discuss the basic principles of AJAX, and refer to
online resources and tools that can help you along the way.

•

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

AJAX and ASP.NET

[8]

Setting Up Your Environment. In this book you'll find plenty of code—and
you'll probably be curious to execute it, and see it in action. We've taken care
of that by including step-by-step instructions with every exercise. To avoid
any potential problems following the exercises, in this section we walk you
through the installation and configuration process for the software you need.
Hello World! After reading so much pure theory, and installing many
software packages (and we all know how boring software installation can
be), you'll probably be eager to write some code, so at the end of this chapter,
you'll write your first AJAX application.

Let's get started. We hope your journey through this book will be a pleasant and
useful one!

The Big Picture
The story about Cristian's 7-years old cousin—which happened back in 1990—is still
relevant today, regarding the way people instinctively work with computers. The
ability of technology to be user-friendly has evolved very much in the past years, but
there's still a long way until we have really intelligent computers that self-adapt to
our needs. Until then, people need to learn how to work with computers—some to
the extent that they end up loving a black screen with a tiny command prompt on it!

We will be very practical and concise in this book, but before getting back to
your favorite mission—writing code—it's worth taking a little step back, just to
remember what we are doing and why we are doing it. We love technology to
the sound made by each key stroke, so it's very easy to forget that the very reason
technology exists is to serve people and make their lives at home more entertaining,
and at work more efficient.

The computer-working habits of many are driven by software with user interfaces
that allow for intuitive (and enjoyable) human interaction. Not coincidentally,
successful companies are typically one step ahead of their competition in offering
their users simple and natural ways of achieving their goals. This probably explains
the popularity of the mouse, of fancy features such as drag and drop, and of that
simple text box that searches all the Web for you in just 0.1 seconds (or so it says).

Understanding the way people's brains work would be the key to building
the ultimate software application. While we're far from that point, what we do
understand is that end users need intuitive user interfaces; they don't really care
what operating system they're running as long as the functionality they get is what
they want. This is a very important detail to keep in mind, as programmers typically
tend to think and speak in technical terms when interacting with end users. If you
disagree, try to remember how many times you've said the word "database" when
talking to a non-technical person.

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 1

[9]

The behavior of any computer software that interacts with humans is now even more
important than it used to be, because nowadays the computer user base varies much
more than in the past, when the users were technically sound as well. Now you need
to display good looking reports to Cindy, the sales department manager, and you
need to provide easy-to-use data entry forms to Dave, the sales person.

By observing people's needs and habits while working with computer systems, the
term software usability was born—referring to the art of meeting users' interface
expectations, understanding the nature of their work, and building software
applications accordingly. AJAX in general, and the ASP.NET AJAX Framework in
particular, are modern tools that web developers can use to develop user-friendly
Web Applications. As with any other tool, however, they can be used improperly,
complicating the user experience, neglecting users with disabilities, or lowering
search engine performance.

This being a programming book, our strong focus will regard the technical aspects
of Microsoft AJAX Library. However, as a responsible web developer, you should
not lose sight of the complementary aspects that affect the success of a web
application. If you haven't already, we strongly recommend that you check at least
some of these resources:

Don't Make Me Think: A Common Sense Approach to Web Usability, second
edition, by Steve Krug (New Riders Press, 2005)
Prioritizing Web Usability, by Jakob Nielsen and Hoa Loranger (New Riders
Press, 2006)
Designing Interfaces: Patterns for Effective Interaction Design, by Jenifer Tidwell
(O'Reilly, 2005)
Web Accessibility: Web Standards and Regulatory Compliance, by Andrew
Kirkpatrick, Richard Rutter, Christian Heilmann, Jim Thatcher, and Cynthia
Waddell (Friends of ED, 2006)
Ambient Findability, by Peter Morville (O'Reilly, 2005)
Bulletproof Web Design, second edition, by Dan Cederholm (New Riders
Press, 2007)
Professional Search Engine Optimization with ASP.NET: A Developer's Guide to
SEO, by Cristian Darie and Jaimie Sirovich (Wrox Press, 2007)

Historically, building user-friendly software has always been easier with desktop
applications than with web applications, simply because the Web lacked the
technical tools to implement more complex features. Indeed, the Web was designed
as a means of delivering simple documents formed of text, images, and links.
However, as the Internet gets more mature, the technologies it supports become
increasingly potent.

•

•

•

•

•

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

AJAX and ASP.NET

[10]

Many technologies have been developed—and are still being developed—to add
flashy lights, accessibility, and power to web applications. Notable examples include
Java applets, Flash, and Silverlight, which execute inside web browsers that
have specific plugins installed. AJAX and ASP.NET AJAX have similar purpose,
but on a different scale. They offer support for implementing lightweight rich
internet applications without requiring additional plugins, while using a simpler
programming model.

AJAX and Web 2.0
These days it's increasingly harder to discuss AJAX without mentioning Web 2.0
(http://en.wikipedia.org/wiki/Web_2). What is Web 2.0? Some say it is simply
a marketing buzzword without any special meaning, while others use this term to
describe the new open, interactive web that facilitates online information sharing
and collaboration.

How did it start? In the words of Tim O'Reilly, who coined the term, Web 2.0
was born in 2004 after "a brainstorming session between O'Reilly and Medialivea brainstorming session between O'Reilly and Medialive
International". As a result, a series of Web 2.0 conferences was born, and the term
ended up gaining huge popularity.

Even today, we can find controversies about the definition of "Web 2.0", but the
version number is an obvious allusion to the recent changes of the World Wide Web.
The initial goal of the Web addressed the delivery of static content in the form of
text and images. The new generation of web applications tends to offer a richer user
experience, much closer to that of desktop applications, while using live data from
the Internet.

Initially, Web 2.0 was associated with the Semantic Web (http://en.wikipedia.
org/wiki/Semantic_web). The Semantic Web is envisioned to be the next step in the
Web's evolution, based on online social-networking applications, using tag-based
folksonomies (user-generated tags for data categorization). W3C director Tim-Berners
Lee stated that "people keep asking what Web 2.0 is. I think maybe when you've got an
overlay of scalable vector graphics - everything rippling and folding and looking misty - on
Web 2.0 and access to a semantic Web integrated across a huge space of data, you'll have
access to an unbelievable data resource".

Even if the services offered by Web 2.0 are far away from those aimed by the
Semantic Web, where machines are able to understand and extract meanings from
the content they offer, Web 2.0 still represents a step forward. In the world of Web
2.0 AJAX plays an essential role, offering the technological support for implementing
rich and responsive Web interfaces.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 1

[11]

Building Websites Since 1990
Before getting into the details of ASP.NET AJAX, let's take the inevitable history
lesson, to make sure we've got our definitions straight. We promise to keep this
short. If you're a web development veteran, feel free to skip ahead to "The World
of AJAX" section.

Although the history of the Internet is a bit longer, 1991 is the year when Hypertext
Transfer Protocol (HTTP), which is still used to transfer data over the Internet, was
invented. In its first few initial versions, it didn't do much more than opening and
closing connections. The later versions of HTTP (version 1.0 in 1996 and version 1.1
in 1999) became the protocols that we all know and use.

HTTP and HTML
HTTP is supported by all web browsers, and it does very well the job it was
conceived for—retrieving simple web content. Whenever you request a web page
using your favorite web browser, the HTTP protocol is assumed. So, for example,
when you type www.msn.com in the location bar of your web browser, it will assume
by default that you meant http://www.msn.com.

The standard document type of the Web is Hypertext Markup Language (HTML),
and it is built of markup that web browsers understand, parse, and display. HTML
is a language that describes documents' formatting and content, which is basically
composed of static text and images. HTML wasn't designed for building complex
web applications with interactive content or user-friendly interfaces. When you
need to get to another HTML page via HTTP, you need to initiate a full page reload,
and the HTML page you requested must exist at the mentioned location, as a static
document, prior to the request. It's obvious that these restrictions don't really
encourage building anything interesting.

Nevertheless, HTTP and HTML are still very successful technologies that both web
servers and web clients (browsers) understand. They are the foundation of the Web
as we know it today. Figure 1-1 shows a simple transaction where a user requests a
web page from the Internet using the HTTP protocol:

client requests
index.html via HTTP

web server replies by
sending back the

contents of index.html
user

web client
web server

Figure 1-1. A Simple HTTP Request

http://lib.ommolketab.ir
http//lib.ommolketab.ir

AJAX and ASP.NET

[12]

Three points for you to keep in mind here:
1. HTTP transactions always happen between a web client (the

software making the request, such as a web browser) and a web
server (the software responding to the request, such as Microsoft's
IIS [Internet Information Services]). From now on in this book, when
saying 'client', we refer to the web client, and when saying 'server', we
refer to the web server.

2. The user is the person using the client.
3. Even though HTTP (and its secure version, HTTPS) is arguably

the most important protocol used on the Internet, it is not the only
one. Web servers use different protocols to accomplish various
tasks, usually unrelated to simple web browsing. The protocol that
we'll use most frequently in this book is HTTP, and when we say
'web request' we'll assume a request using HTTP protocol, unless
another protocol is mentioned explicitly.

The HTTP-HTML combination is very limited in what it can do by itself—it
only enables users to retrieve static content (HTML pages) from the Internet. To
complement the lack of features, several technologies have been developed.

All the web requests from now on in this book will use the HTTP protocol for
transferring the data, but the data itself can be built dynamically on the web server
(for example, using information from a database), and this data can contain more
than plain HTML allowing the client to perform some functionality rather than
simply display static pages.

The technologies that enable the Web to act smarter are grouped in the following two
main categories:

Client-side technologies enable the web client to do more interesting things
than displaying static documents. Usually these technologies complement
HTML rather than replacing it entirely.

Server-side technologies are those that enable the server to store logic and
build web pages on the fly. They usually have support for implementing
complex logical, object-oriented programming, working with databases,
and so on.

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 1

[13]

ASP.NET and Other Server-Side Technologies
ASP.NET is Microsoft's server-side web development technology, offering a solid
development platform. It has many competitors, such as PHP, Java Server Pages
(JSP), Perl, ColdFusion, Ruby on Rails, and others, each of them having their own
sets of weaknesses and strengths.

ASP.NET is part of the .NET Framework. Since .NET's initial release Microsoft's
marketing team have come up with more definitions for it, but for our purposes,
the .NET Framework is the core technology that allows developing and executing
ASP.NET Web Applications.

Figure 1-2 shows a request for a ASP.NET page called Default.aspx. This
time, instead of sending back the contents of Default.aspx, the server executes
Default.aspx, and sends back the results. These results must still be in the form of
HTML, or in another format that the client understands.

client requests
an ASP.NET page

response containing
HTML to be displayed

by user's browser
user

web client
web server

server executes the
ASP.NET page and
builds an HTML response

Figure 1-2. Client Requests an ASP.NET Page

To write the server-side code for ASP.NET web pages, you can use a number of
programming langages, C# and VB.NET being the most popular. In this book we'll
use C#, but if you're a VB.NET fan you should be able to easily translate the code.
Since both C# and VB.NET work using the base functionality packaged in the .NET
Framework, the major difference between these languages is the syntax.

Since you're reading this book, you're probably already familiar with
ASP.NET. Should you need further guidance, you can check out Cristian's
Build Your Own ASP.NET 2.0 Web Site Using C# & VB (Sitepoint, 2006).

However, even with ASP.NET that can build custom-made database-driven
responses, the browser still displays a static, boring, and not very smart web
document. The need for smarter and more powerful functionality on the web client
generated a separate set of technologies, called client-side technologies. Today's
browsers know how to parse more than simple HTML. Let's see how.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

AJAX and ASP.NET

[14]

JavaScript and Other Client-Side Technologies
The various client-side technologies differ in many ways, starting with how they
get loaded and executed by the web client (web browser). JavaScript is a scripting
language, whose code is written in plain text and can be embedded into HTML
pages to empower them. When a client requests an HTML page, that HTML page
may contain JavaScript. JavaScript is supported by all modern web browsers without
requiring users to install new components.

JavaScript is a language in its own right (theoretically it isn't tied to web
development), it's supported by most web browsers under any platform, and it has
object-oriented capabilities. However, JavaScript's OOP support doesn't follow the
same paradigm you're used to from typical ASP.NET coding—but more on this later.
JavaScript is not a compiled language so it's not suited for intensive calculations or
writing device drivers, and it must arrive in one piece at the client to be interpreted.
This doesn't make it suited for writing sensitive business logic (this wouldn't be a
recommended practice anyway), but it does a good job when used in web pages.

With JavaScript, developers could finally build web pages with snow falling over
them (remember the days?), with client-side form validation so that the user won't
cause a whole page reload (incidentally losing all typed data) if he or she forgot
to enter all the required fields (such as password, or credit card number), or if the
email address had an incorrect format. However, despite its potential, JavaScript
was never used consistently to make the web experience truly user-friendly, like a
desktop application.

Other popular technologies that perform functionality at the client side are Java
applets and Macromedia Flash. Java applets are written in the popular and powerful
Java language, and are executed through a Java Virtual Machine that needs to
be installed separately on the system. Java applets are certainly the way to go for
more complex projects, but they have lost the popularity they once had over web
applications because they consume many system resources. Sometimes they even
need long startup times, and are generally too heavy and powerful for the small
requirements of simple web applications.

Macromedia Flash has very powerful tools for creating animations and graphical
effects, and it's the de-facto standard for delivering such kind of programs via
the Web. Flash also requires the client to install a browser plug-in. Flash-based
technologies become increasingly powerful, and new ones keep appearing.

At the time of writing this book Microsoft is preparing for the launch of Silverlight,
a competitor to both Java applets and Flash. Silverlight applications execute inside
the web browser though a lightweight version of the .NET Framework supported
through browser plugins.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 1

[15]

What's Missing?
With all these options for developing powerful features inside web browsers, why
would anyone want anything new? What's been missing?

As pointed out at the beginning of this chapter, technology exists to serve market
needs. And part of the market wants more powerful functionality to web clients
without using Flash, Java applets, or other technologies that are considered either too
flashy or heavy-weight for certain purposes. A typical example is that of interactive
form validation, where the data typed by the visitor must be checked against some
validation rules coded on the server for compliancy.

For such scenarios, developers have usually created websites and web applications
using HTML, JavaScript, and ASP.NET (or another server-side technology). The
typical request with this scenario is shown in Figure 1-3, which shows an HTTP
request, and a response made up of HTML and JavaScript built programmatically
with ASP.NET.

client requests
an pageASP.NET

response containing
HTML and JavaScriptuser

web client
web server

server executes the
page and

builds an HTML response
ASP.NET

Figure 1-3. HTTP, HTML, ASP.NET, and JavaScript in Action

The hidden problem with this scenario is that each time the client needs new data
from the server, a new HTTP request must be made to reload the page, freezing the
user's activity. The page reload is the problem in the present day scenario, and AJAX
comes to our rescue.

The World of AJAX
AJAX is an acronym for Asynchronous JavaScript and XML. If you think it doesn't
say much, we agree. Simply put, AJAX can be read "empowered JavaScript", because it
essentially offers a technique for client-side JavaScript to make background server calls
and retrieve additional data as needed, updating certain portions of the page without
causing full page reloads. The next figure offers a visual representation of what happens
when a typical AJAX-enabled web page is requested by a visitor.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

AJAX and ASP.NET

[16]

user
web client

client requests a pageASP.NET

response containing HTML
and JavaScript

web server

server executes the
page and

builds an HTML response
ASP.NET

server replies by sending
the requested data

javascript code makes
invisible call to server

javascript updates the
web page using this data

Figure 1-4. A Typical AJAX Call

When put into perspective, AJAX is about reaching a better balance between client
functionality and server functionality when executing the action requested by the
user. Up until now, client-side functionality and server-side functionality were
regarded as separate bits of functionality that work one at a time to respond to user's
actions. AJAX comes with the solution to balance the load between the client and the
server by allowing them to communicate in the background while the user is working
on the page.

To explain with a simple example, consider web registration forms where the user
is asked to write some data (such as name, e-mail address, password, credit card
number, etc) that has to be validated before being used by the server-side code of
your application. There are three important ways to implement this:

1. Let the user type all the required data, let him or her submit the page, and
perform the validation on the server. If the validation doesn't succeed, the
server sends back the form, asking the visitor to correct the invalid entries. In
this scenario the user experiences a dead time after submitting the form, while
waiting for the new page to load.

2. Do the validation at the client side, using JavaScript. This way, the user is
told about invalid data , and he or she can correct the invalid entires, before
submitting the form. However this technique only works for very simple
validation that doesn't require additional data from the server while the
user is filling the form in. Also, it doesn't work with proprietary or secret
validation algorithms that can't be transferred to the client in the form of
JavaScript code.

3. Use AJAX form validation so that the web application can validate the
entered data by making server calls in the background, while the user keeps
typing. For example, after the user types the first letter of the city, the web
browser calls the server to load the list of cities that start with that letter,
without interrupting the user's current activity.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 1

[17]

The situations where AJAX can make a difference are endless. Here are just a few
of them:

Windows Local Live (http://local.live.com): Microsoft maps
service equivalent to other similar services offered by
Google (Google Maps – http://maps.google.com) and
Yahoo (Yahoo Maps – http://maps.yahoo.com).
Flickr (http://flickr.com/): "the best way to store, search, sort and share
your photos".
PageFlakes (http://pageflakes.com): "your personalized start page
with news, photos, music, bookmarks, blogs, weather and much more".
Google Suggest (http://www.google.com/webhp?complete=1): a Google
query autocompletion feature that helps you with your Google searches.
Similar functionality is offered by Yahoo! Instant Search, accessible at
http://instant.search.yahoo.com/.
GMail (http://www.gmail.com): a very popular service by now and doesn't
need any introduction. Other web-based email services such as Yahoo! Mail
and Hotmail have followed this trend and offer AJAX-based interfaces.
Digg (http://www.digg.com): This is a hugely popular social bookmarking
website featuring community-powered content.

So AJAX is about creating more versatile and interactive web applications by
enabling web pages to make asynchronous calls to the server transparently while the
user is working. AJAX is a tool that web developers can use to create smarter web
applications that behave better than traditional web applications when interacting
with humans.

What is AJAX Made Of?
The technologies AJAX is made of are already implemented in all modern web
browsers, such as Mozilla Firefox, Internet Explorer, Opera, or Safari, so the client
doesn't need to install any extra modules to run an AJAX website. AJAX is made up
of the following:

JavaScript is the essential ingredient of AJAX, allowing you to build the
client-side functionality. In your JavaScript functions you'll make heavy use of
the Document Object Model (DOM) to manipulate parts of the HTML page.
The XMLHttpRequest object enables JavaScript to access the server
asynchronously, so that the user can continue working, while functionality
is performed in the background. Accessing the server just involves a simple
HTTP request for a file or script located on the server. HTTP requests are
easy to make and don't cause any firewall-related problems.

•

•

•

•

•

•

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

AJAX and ASP.NET

[18]

Except for the simplest applications, a server-side technology is required to
handle requests that come from the JavaScript client. In this book, we'll use
ASP.NET to perform the server-side part of the job.

None of the AJAX components is new, or revolutionary (or even
evolutionary) as the current buzz around AJAX might suggest. The newest
AJAX component is XMLHttpRequest, which was released by Microsoft
in 1998. The name "Ajax" was born in 2005, in Jesse James Garret's article
at http://www.adaptivepath.com/publications/essays/
archives/000385.php, and gained much popularity when used by
Google in many of its applications. You can read more on the history of
AJAX at http://en.wikipedia.org/wiki/AJAX.
What's new with AJAX is that, for the first time, there is enough energy
in the market to encourage standardization and define a clear direction
of evolution. As a consequence, many AJAX frameworks are being
developed, and many AJAX-enabled websites have appeared. Microsoft
through its ASP.NET AJAX project is pushing AJAX development as well.

For client-server communication, the JavaScript client code and the ASP.NET
server-side code need a way to pass data and understand that data. Passing the data
is the simple part. The client script accessing the server (using the XMLHttpRequest
object) can send name-value pairs using GET or POST. It's very simple to read these
values with any server script.

The server script simply sends back the response via HTTP, but unlike with a usual
website, the response will be in a format that can be simply parsed by the JavaScript
code on the client. The two popular formats are XML and JavaScript Object Notation
(JSON), both of which will be introduced in Chapter 3.

This book assumes that you are already familiar with the AJAX ingredients, except
maybe the XMLHttpRequest object, which is less popular. However, to make sure
that we're all on the same level, we'll have a look together at how these pieces work,
and how they work together, in Chapter 2. Until then, for the remainder of this
chapter we'll focus on the big picture, and we will write an AJAX program for the joy
of the most impatient readers.

Uses and Misuses of AJAX
As noted earlier, AJAX can improve your visitors' experience with your web site, but
it can also worsen it when used inappropriately. In the vast majority of cases, AJAX
is best used in addition to the traditional web development paradigms, rather than
changing or replacing them.

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 1

[19]

For example, unless your application has really special requirements, it's wise to let
your users navigate your content using the good, old hyperlinks. Web browsers have
a long history of dealing with content navigation, and web users have a long history
of using browsers' navigational features.

Let's quickly review the potential benefits AJAX can bring to your projects:

It makes it possible to create better and more responsive web applications.
It encourages the development of patterns and frameworks, such as
ASP.NET AJAX, that help developers avoid re-inventing the wheel when
performing common tasks.
It makes use of existing technologies and features supported by all modern
web browsers.
It makes use of many existing developer skills.

Potential problems with AJAX are:

Using AJAX for the wrong purposes. Increased awareness of usability,
accessibility, web standards and search engine optimization will help you
make better decisions when designing and implementing web sites.
You can't easily allow for bookmarking AJAX-enabled pages. Typically
AJAX applications run inside a web page whose URL doesn't change in
response to user actions, in which case you can only bookmark the entry
page. It is possible to enable bookmarking by dynamically adding page
anchors using your JavaScript code, such as in http://www.example.com/
my-ajax-app.html#Page2. You also need to create supporting code that
loads and saves the state of your application through the anchor parameter.
The Back and Forward buttons in browsers don't produce the same result
as with classic web sites, unless your AJAX application is programmed to
support loading and saving states.
Search engines cannot index content dynamically generated by JavaScript in
an AJAX application, because they don't execute any JavaScript code when
indexing the web site. If search engine optimization is important for your
web site, you shouldn't use AJAX for content delivery and navigation.
JavaScript can be disabled at the client side, which makes the AJAX
application non-functional.

To enable AJAX page bookmarking and the Back and Forward browser buttons,
you can use frameworks such as Really Simple History by Brad Neuberg
(http://codinginparadise.org/projects/dhtml_history/README.html), or
Nikhil Kothari's UpdateHistory control for ASP.NET AJAX (http://www.nikhilk.
net/UpdateControls.aspx).

•

•

•

•

•

•

•

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

AJAX and ASP.NET

[20]

Following the popularity of AJAX, a large numbers of AJAX-enabled frameworks and
toolkits have been developed, including common features and offering great, tested
features. Max Kiesler (http://www.maxkiesler.com/) has put a list of such products has put a list of such products
on his weblog, but in reality there are many more. Some are server-agnostic,
 while others are specifically created for ASP.NET, Java, PHP, Coldfusion, Flash
and Perl backends. Among the most popular server-agnostic toolkits are Dojo
(http://dojotoolkit.org), Prototype (http://prototype.conio.net), and
script.aculo.us (http://script.aculo.us).

As far as ASP.NET developers are concerned, their main choice—strongly
promoted by Microsoft—is ASP.NET AJAX. Another popular choice is Ajax.NET
Professional—developed by Michael Schwartz (http://www.ajaxpro.info).

Introducing ASP.NET AJAX
ASP.NET AJAX (http://ajax.asp.net/), initially known only by its code name,
Atlas, is a powerful AJAX framework written by Microsoft for ASP.NET developers.
ASP.NET AJAX includes a wealth of tested functionality allowing you to build solid,
cross-browser AJAX-based interfaces.

ASP.NET AJAX is a complex framework which includes AJAX-enabled ASP.NET
server controls, as well as a very powerful client-side library. The native integration
with Visual Studio .NET 2005 allows the developer to build rich internet applications
(RIA) that are built upon the .NET 2.0, .NET 3.0, and .NET 3.5 frameworks without
forcing the end user to have anything installed on the client.

The world of ASP.NET AJAX is composed of:ASP.NET AJAX is composed of:

1. Microsoft AJAX Library. This is a powerful client-side Javascript library that
offers a common API for all modern browsers, and supports any backend
web technology. In theory at least, you can use the Microsoft AJAX Library
with a PHP or Java server script. In practice, the Microsoft AJAX Library is
really meant to be used togehter with its server-side companion from the
ASP.NET AJAX Extensions. Keep an eye on Jay Kimble's Java integration
project for Microsoft AJAX Library at http://www.codeplex.com/dtajax/,
and on the PHP integration at http://www.codeplex.com/phpmsajax.

2. ASP.NET AJAX Extensions includes the Microsoft AJAX Library, and
also a set of server-side AJAX-enabled controls that integrate well with
that library (ScriptManager, UpdatePanel, Timer, UpdateProgress, and
AsyncPostbackTrigger). At installation the product integrates with Visual
Studio 2005 so that you can access its controls through the Visual Studio
Toolbox, and will be included into the next version of Visual Studio, which at
the time of writing this book is code-named Orcas.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 1

[21]

3. The ASP.NET AJAX Control Toolkit is a set of free, shared source controls
and components that help you get the most value from the ASP.NET AJAX
Extensions. At the time of writing this book, the control toolkit is still under
development, and it isn't part of the 1.0 release of ASP.NET AJAX. However,
it will ship together with Visual Studio "Orcas".

This book is dedicated to the first of these three parts of ASP.NET AJAX. We'll cover
the Microsoft AJAX Library in detail, and by end of it you'll be able to masterfully
use its features at their full potential.

The Microsoft AJAX Library is the kind of technology that's easy to start
with, but as you dwelve into its details, you'll notice that its complexity
requires a longer learning curve than you may expect. In our opinion,
there aren't any real shortcuts to this process: you need to understand the
foundations of this framework very well before you can be efficient with it.
Understanding the Microsoft AJAX Library also requires a good knowledge
of JavaScript and its object-oriented model. In theory, working with an
API only requires knowledge of that API's publicly exposed features. In
practice however, dealing with a JavaScript framework—especially
 one that is young and sometimes imperfect—frequently requires an
understanding of the details of its inner workings. Sooner or later, you'll
be tempted to open the source code of the Microsoft AJAX Library. This is
not something that you'd expect from a C# library, but we're dealing with
a different kind of "monster" here.
The first part of this book will cover the basics of AJAX with JavaScript
and ASP.NET, without involving the Microsoft AJAX Library. You will
find that you can implement simple AJAX features by hand, simply coding
the necessary asynchronous server calls yourself. Then we'll set the ground
for ASP.NET AJAX by teaching the more advanced features of JavaScript,
such as prototypes and closures.
If you already understand the theory of JavaScript and its interaction with
ASP.NET, feel free to skip to Chapter 4. However, we advise you to look
at Chapters 2 and 3 so that we're on the same level when we meet again in
Chapter 4.

Resources and Tools
Finally, here are a few places that may help you in your journey into the exciting
world of AJAX. For starters, here are a few useful generic AJAX resources:

http://www.ajaxian.com is the AJAX website of Ben Galbraith and Dion
Almaer, the authors of Pragmatic Ajax (Pragmatic Bookshelf, 2006).
http://ajaxpatterns.org is an informative website about AJAX design
patterns, and the home page of Ajax Design Patterns by Michael Mahemoff
(O'Reilly, 2006).

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

AJAX and ASP.NET

[22]

http://www.fiftyfoureleven.com/resources/programming/
xmlhttprequest is a comprehensive collection of articles about AJAX.
http://www.sitepoint.com/subcat/javascript is Sitepoint's AJAX
home, featuring some excellent articles.
http://developer.mozilla.org/en/docs/AJAX is Mozilla's page on AJAX.
http://en.wikipedia.org/wiki/Ajax is the Wikipedia page on AJAX.

This list is by no means complete. If you need more online resources, search engines
will surely be available for help. For specific information on ASP.NET AJAX and
related technologies, we recommend that you visit the following resources from time
to time—ideally by subscribing to their RSS or Atom feeds:

Blogger or Resource Name URL
Atlas team http://weblogs.asp.net/atlas-team/

Dino Esposito http://weblogs.asp.net/despos/

Eilon Lipton http://weblogs.asp.net/leftslipper/

Alessandro Galo http://aspadvice.com/blogs/garbin/

Jay Kimble http://codebetter.com/blogs/jay.kimble/

Luis Abreu http://msmvps.com/blogs/luisabreu/

Nikhil Kothari http://www.nikhilk.net/

Steve Marx http://smarx.com/

Setting Up Your Environment
In the next few pages we'll guide you through installing the following softwares,
which you'll need for this book:

1. IIS (Internet Information Services), which is the Web Server used to serve
ASP.NET pages.

2. Visual Web Developer 2005 Express Edition, which is the tool that you'll be
using to develop your ASP.NET applications.

3. The ASP.NET AJAX Framework.

Installing IIS
To run ASP.NET web applications, you can use either Visual Web Developer's
integrated Web server (Cassini), or you can use IIS. Theoretically, the most important
difference between the two environments are the credentials under which the code
runs. Cassini runs with the credentials of the logged in user, while IIS uses a special
system account named ASPNET.

•

•

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 1

[23]

If you really want to, you can also run ASP.NET pages using Apache,
although we've not tested this configuration for the purposes of this book.
Read more details at http://weblogs.asp.net/israelio/archive/
2005/09/11/424852.aspx.

The two major benefits of using Cassini are:

Cassini works on systems that don't ship with IIS, such as Windows XP
Home Edition.
Cassini can be used in case you don't want to use your main IIS Web Server can be used in case you don't want to use your main IIS Web Server
for development purposes.

Even if these advantages don't convince you, we still recommend using IIS because
your application would end up running under an IIS server anyway, so the
development environment would more closely resemble the production environment.

IIS is delivered with most versions of server-capable Windows operating systems,
including Windows Vista Business, Windows XP Professional, Windows XP Media
Center Edition, Windows 2000 Professional, Server, Advanced Server, and Windows
Server 2003, but it's not installed automatically in all versions, which is why it may
not be present on your computer.

IIS isn't available in Windows XP Home Edition, Windows Vista Home Basic,
or Windows Vista Home Premium— if you run one of these, you'll need to rely
on Cassini.

The main development tool we'll use in this book is Visual Web Developer
2005, which works best with IIS 6, which ships with Windows XP.
Windows Vista, on the other hand, includes IIS 7, whose default settings
aren't very friendly with Visual Web Developer 2005. This explains that
you have more configuration work to do before you'll be able to run and
debug your ASP.NET Web Applications under Windows Vista properly.

To install IIS, simply follow these steps:

1. In the Control Panel, select Programs and Features (in Windows Vista), or
Add or Remove Programs (in Windows XP).

2. Choose Turn Windows features on or off (in Windows Vista), or
Add/Remove Windows Components (in Windows XP). The list of
components will become visible within a few seconds.

3. In the list of components, check Internet Information Services. If running
Windows XP, expand the node and make sure that the IIS Frontpage
Extensions node is checked.

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

AJAX and ASP.NET

[24]

In Windows Vista, also select the following options (also see Figure 1-4).

1. Web Management Tools | IIS 6 Management Compatibility node, and
its IIS Metabase and IIS �� ��n�����at��n ����at�b���t�IS �� ��n�����at��n ����at�b���t� sub-node. (IIS 6
Management Compatbility is required by Visual Web Developer 2005 when
connecting to your web site through FrontPage Extensions.)

2. World Wide Web Services | Application Development Features | ASP.Wide Web Services | Application Development Features | ASP.
NET node.

3. Select the World Wide Web Services | Security | Windows Authentication
node, which is necessary if you want to run applications in debug mode.

Figure 1-5. Configuring IIS 7 Options in Windows Vista

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 1

[25]

4. Click Next or OK. Windows may prompt you to insert the Windows CD
or DVD.

To administer IIS, you use the Internet Information Services (IIS) Manager tool (in
Windows Vista) or the Internet Information Services tool (in Windows XP) that you
can find in the Administrative Tools menu of the Control Panel.

Installing Visual Web Developer
Install Visual Web Developer 2005 Express Edition following these simple steps:

1. Go to http://msdn.microsoft.com/vstudio/express/vwd/.

2. Click the Download link. You'll download a file named vwdsetup.exe.

3. Execute the downloaded file.

4. Accept the default options. At one point you'll be asked about
installing Microsoft MSDN 2005 Express Edition, which is the product's
documentation. Installing it will do no harm, but you need to be patient,
because it's quite big.

5. Install the Visual Web Developer Service Pack 1. If you use Windows Vista,
you should install the Service Pack 1 for Windows Vista.

6. The final step involves configuring ASP.NET with IIS. If you'll be using
Cassini or IIS 7, this step is not needed. Start a command-line console
(Start | Run | cmd), and type the following commands:

cd C:\Windows\Microsoft.NET\Framework\v2.0.50727

aspnet_regiis.exe -i

Creating a Folder for Your Project
To keep your hard drive tidy, let's create a folder that we'll be using for every
exercise in this book. Create a folder named Atlas in an easily accessible place of
your hard drive. I'll assume you're creating it as C:\Atlas.

Now we need to configure this folder as an IIS virtual directory so that it doesn't
interfere with other applications you may have on your machine. After preparing
the Atlas Web Application, the http://localhost/Atlas/ application will be
loaded from the C:\Atlas physical folder. If you can't use IIS, then skip to the "Hello
World!" section, a bit later in this chapter.

Because of the interface differences between the IIS 5/6 and IIS 7, separate
installation instructions are provided for Windows XP and Windows Vista.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

AJAX and ASP.NET

[26]

Preparing the Atlas Application in Windows Vista
If you're running Windows Vista and IIS 7, follow these steps to prepare your
Atlas folder.

1. Open the IIS Manager tool from the Administrative Tools section of the
Control Panel.

2. Find the Default Web Site in the Connections tab, and make sure it's started., and make sure it's started.
If its status is Stopped, right-click on it and select Start.

3. Right-clickclick Default Web Site, and select Add Application from the
context menu.

4. Choose. Choose Atlas for the alias name, and C:\Atlas for its "physical" path. Then
click Select..., choose Classic .NET AppPool, and click OK. (If you don't
choose the Classic .NET AppPool, you won't be able to debug the project
using Visual Web Developer 2005.) In the end, the Add Application dialog
should look like Figure 1-6.

Figure 1-6. Creating the Atlas IIS Application

5. After clicking OK to close the Add Application dialog, the Atlas virtual
directory will show up as a child node under Default Web Site. Select the
Atlas node, double-click the Authentication icon, and enable Windows
Authentication.

6. Close the IIS Manager.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 1

[27]

Preparing the Atlas Web Application in Windows XP
If you're running Windows XP, follow these steps to prepare your Atlas folder

1. Open the Internet Information Services tool from the Administrative Tools
section of the Control Panel. Then expand the node for your local computer,
then expand the Web Sites node, as shown in Figure 1-7.

Figure 1-7. Internet Information Services Tool in Windows XP

2. Make sure that the Default Web Site is running. If its status is Stopped,
right-click on it and select-click on it and select Start:

3. Right-click Default Web Site, and select New | Virtual Directory.
4. In the wizard that shows up, first click Next, then type Atlas for the name of

the Virtual Directory. Then click Next.
5. Type the full path for the "physical" folder where you'll save the examples

from this book. If you created the folder as suggested, then the path whould
be C:\Atlas.

6. In the next screen, check Read and Run scripts (such as ASP), and
click Next.

7. Click Finish to close the wizard, then close the Internet Information
Services applet.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

AJAX and ASP.NET

[28]

Hello World!
ASP.NET AJAX is a powerful and exciting framework which comes with lot of
built-in features, but in order to make the most out of it, it's best to take a disciplined
approach and learn the basics first. Chapter 2 and Chapter 3 will teach you the
foundations, and how to implement basic AJAX features with ASP.NET without
using the ASP.NET AJAX Framework. You'll start using the Microsoft AJAX Library
in Chapter 4.

This chapter ends with an exercise where we'll build a simple AJAX application
with ASP.NET, named Quickstart. This application doesn't make use of any of the
components of the Microsoft ASP.NET AJAX Framework. Instead, it uses simple
JavaScript and C# code.

Going through this exercise is optional. The exercise is for the most
impatient readers willing to start coding as soon as possible, but it assumes
you're already familiar with JavaScript, ASP.NET, and XML. If this is not
the case, or if at any time you feel this exercise is too challenging, feel free
to skip to Chapter 2.

Quickstart is a simple AJAX form-validation application where the user is requested
to type his or her name, and the server keeps verifying if it recognizes the typed
name while the user is writing. Figure 1-8 shows the initial page, Quickstart.html,
loaded by the user.

Figure 1-8. The Front Page of Your Quickstart Application

While the user is typing, the server is being called asynchronously, at regular
intervals, to validate the current user input. The server is called automatically,
approximately once per second, which explains why we don't need a button (such
as a Send button) to notify when we're done typing. (This method may not be
appropriate for real log-in mechanisms but it's very good to demonstrate the basic
AJAX functionality).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 1

[29]

Depending on the entered name, the message from the server may differ; see an
example in Figure 1-9.

Figure 1-9. User Receives a Prompt Reply From the Web Application

Check out this example online at http://www.cristiandarie.ro/asp-ajax/
Quickstart.html. Maybe at first sight there's nothing extraordinary going on
there. We've kept this first example simple on purpose, to make things easier to
understand. What's special about this application is that the displayed message
comes automatically from the server, without interrupting the user's actions. (The
messages are displayed as the user types a name.) The page doesn't get reloaded
to display the new data, even though a server call needs to be made to get that
data. This wasn't a simple task to accomplish using non-AJAX web development
techniques. The application consists of the following three files:

Quickstart.html is the initial HTML file the user requests.
Quickstart.js is a file containing JavaScript code that is loaded on the client
along with Quickstart.html. This file will handle making the asynchronous
requests to the server, when server-side functionality is needed.
Quickstart.aspx is an ASP.NET page residing on the server that gets called
by the JavaScript code in Quickstart.js file from the client.

•

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

AJAX and ASP.NET

[30]

Figure 1-10 shows the actions that happen when running this application:

server responds to the call by
sending back and
the JavaScript file quickstart.js
that is referenced in

quickstart.html

quickstart.html

user web client web server

user uses web browser
to access
quickstart.html

1 web browser makes normal
HTTP request to web server
requesting quickstart.html

2 3

client loads
and quickstart.js and
composes the page on
the screen

quickstart.html4

6

quickstart.js receives
response from the server
and uses the data to
update user's display

8

on the page, the
user starts typing
his/her name

5

user's page is updated
with new data while
user continues working
on the page

9

quickstart. is executed
on the server and returns
the results in XML format

aspx7quickstart.js makes an
asynchronous call to
quickstart. on the server
on behalf of the user

aspx

Figure 1-10. Diagram Explaining the Inner Works of Your Quickstart Application

Steps 1 through 5 are a typical HTTP request. After making the request, the user needs
to wait until the page gets loaded. With typical (non-AJAX) web applications, such a
page reload happens every time the client needs to get new data from the server.

Steps 5 through 9 demonstrate an AJAX-type call—more specifically, a sequence of
asynchronous HTTP requests. The server is accessed in the background using the
XMLHttpRequest object. During this period the user can continue to use the page
normally, as if it were a normal desktop application. No page refresh or reload is
experienced in order to retrieve data from the server and update the web page with
that data.

Now it's time to implement this code on your machine. Before moving on, ensure
you've prepared your working environment as shown earlier in this chapter.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 1

[31]

All the exercises in this book assume that you've installed software
on your machine as shown earlier in this chapter. If you set up your
environment differently you may need to implement various changes,
such as using different folder names, and so on.

Time for Action—Quickstart AJAX
1. Open Visual Web Developer, and select File | Open Web Site.
2. Select the Local IIS location, and the Atlas application, as shown in Figure

1-11. Then click OK.

Figure 1-11. Loading the Atlas Application in Visual Web Developer

If you don't have IIS, or intend to use Cassini for any reason, set the
Location type to File System, and type C:\Atlas\ for the location.

3. Right-click the root node in Solution Explorer, and select Add New Item.
Choose the HTML Page template, and type Quickstart.html for the name.
Then click Add.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

AJAX and ASP.NET

[32]

4. Modify the HTML code generated for you like this:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>AJAX with ASP.NET: Quickstart</title>
 <script type="text/javascript" src="Quickstart.js"></script>
 </head>
 <body onload="process()">
 <div>
 Server wants to know your name:
 <input type="text" id="myName" />
 </div>
 <div id="divMessage" />
 </body>
</html>

5. Right-click the root node in Solution Explorer, then click Add New Item, and
add a file named Quickstart.js using the JScript File template. Then type
the following code:

// stores a reference to an XMLHttpRequest instance
var xmlHttp = createXmlHttpRequestObject();

// retrieves the XMLHttpRequest object
function createXmlHttpRequestObject()
{
 // will store the reference to the XMLHttpRequest object
 var xmlHttp;
 // this should work for all browsers except IE6 and older
 try
 {
 // try to create XMLHttpRequest object
 xmlHttp = new XMLHttpRequest();
 }
 catch(e)
 {
 // assume IE6 or older
 xmlHttp = new ActiveXObject("Microsoft.XMLHTTP");
 }
 // return the created object or display an error message
 if (!xmlHttp)
 alert("Error creating the XMLHttpRequest object.");
 else
 return xmlHttp;
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 1

[33]

// make asynchronous HTTP request using the XMLHttpRequest object
function process()
{
 // proceed only if the xmlHttp object isn't busy
 if (xmlHttp.readyState == 4 || xmlHttp.readyState == 0)
 {
 // retrieve the name typed by the user on the form
 name = encodeURIComponent(document.getElementById("myName").
 value);
 // execute the Quickstart.aspx page from the server
 xmlHttp.open("GET", "Quickstart.aspx?name=" + name, true);
 // define the method to handle server responses
 xmlHttp.onreadystatechange = handleServerResponse;
 // make the server request
 xmlHttp.send(null);
 }
 else
 // if the connection is busy, try again after one second
 setTimeout("process()", 1000);
}

// executed automatically when a message is received from server
function handleServerResponse()
{
 // move forward only if the transaction has completed
 if (xmlHttp.readyState == 4)
 {
 // status of 200 indicates success
 if (xmlHttp.status == 200)
 {
 // extract the XML retrieved from the server
 xmlResponse = xmlHttp.responseXML;
 // obtain the root element of the XML structure
 xmlDocumentElement = xmlResponse.documentElement;
 // get the text message from the first child of the document
 helloMessage = xmlDocumentElement.firstChild.data;
 // display the data received from the server
 document.getElementById("divMessage").innerHTML =
 "<i>" + helloMessage + "</i>";
 // restart sequence
 setTimeout("process()", 1000);
 }
 // a HTTP status different than 200 signals an error
 else
 {
 alert("There was a problem accessing the server: " +
 xmlHttp.statusText);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

AJAX and ASP.NET

[34]

 }
 }
}

6. Create a new file named Quickstart.aspx in your project using the Web
Form template. Choose Visual C# for the language, and make sure both
the P�a�e ��de �n se�a�ate ���e and Select master page checkboxes are
unchecked. While using code-behind files is a good idea in most cases, this
time we don't want to complicate things unnecessarily.

7. Delete the template code generated by Visual Web Developer for you, and
type the following code in Quickstart.aspx:
<script runat="server" language="C#">
 protected void Page_Load()
 {
 // declare the names that are recognized by the server
 string[] names = new string[] { "CRISTIAN", "BOGDAN", "YODA" };

 // retrieve the current name sent by the client
 string currentUser = Request.QueryString["name"] + "";

 // set the response content type
 Response.ContentType = "text/xml";

 // output the XML header
 Response.Write("<?xml version=\"1.0\" encoding=\"UTF-8\"
 standalone=\"yes\"?>");
 Response.Write("<response>");

 // if the name is empty...
 if (currentUser.Length == 0)
 {
 Response.Write("Stranger, please tell me your name!");
 }
 // if the typed name is in the names array
 else if (Array.IndexOf(names, currentUser.ToUpper().Trim()) >= 0)
 {
 Response.Write("Hello, master " + currentUser + "!");
 }
 // if the name is neither empty or recognized
 else
 {
 Response.Write(currentUser + ", I don't know you!");
 }

 // output the XML document
 Response.Write("</response>");

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 1

[35]

 // flush the response stream
 Response.Flush();
 }
</script>

8. Double-click Quickstart.html in Solution Explorer, and press F5 to
execute the project in debug mode (You can also execute the project without
debugging, by hitting CTRL+F5). Visual Web Developer will offer to enable
debugging by creating a Web.config file with the appropriate settings for
you, as shown in Figure 1-12. Click OK.

Figure 1-12. Visual Web Developer Offering to Enable Debugging

9. A browser window will load http://localhost/Atlas/Quickstart.html,
which should look like shown earlier in Figures 1-9 and 1-10.

Should you encounter any problems running the application, check
whether you correctly followed the installation and configuration
procedures. Most errors happen because of small problems such as
typos. In Chapter 2 you'll learn how to implement error handling in
your JavaScript and ASP.NET code.

What Just Happened?
Here comes the fun part—understanding what happens in that code. (Remember
that we'll discuss the technical details in the following chapters.)

Let's start with the file the user first interacts with, Quickstart.html. This file
references the mysterious JavaScript file called Quickstart.js, and builds a very
simple web interface for the client.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

AJAX and ASP.NET

[36]

In the following code snippet from Quickstart.html, notice the elements
highlighted in bold:

<body onload="process()">
 <div>
 Server wants to know your name:
 <input type="text" id="myName" />
 </div>
 <div id="divMessage" />
</body>

When the page loads, a function from Quickstart.js called process() is executed.
This somehow causes the <div> element to be populated with a message from the
server. Before seeing what happens inside the process() function, let's see what
happens at the server side.

The server is represented by a page called Quickstart.aspx. This page receives the
name typed by the visitor, and it replies with an XML message. You may want to
have another look at Figure 1-10, which describes the process. This XML message
Quickstart.aspx sends back to the client consists of a <response> element that
packages the response message:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<response>
 ... message the server wants to transmit to the client ...
</response>

If the user name received from the client is empty, the message will be, "Stranger,
please tell me your name!". If the name is Cristian, Bogdan, or Yoda, the server
responds with "Hello, master <user name>!". If the name is anything else, the message
will be "<user name>, I don't know you!". So if Mickey Mouse types his name, the
server will send back the following XML structure:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<response>
 Mickey Mouse, I don't know you!
</response>

If you want to test this actually happens, it's quite simple. The advantage of sending
parameters from the client via GET is that it's very simple to emulate such a request
using your web browser, since GET simply means that you append the parameters
as name/value pairs in the URL query string. So to simulate the server request done
by the client when the user types Yoda, simply load http://localhost/Atlas/
Quickstart.aspx?name=Yoda into your web browser. You should get the XML
response shown in Figure 1-13.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 1

[37]

Figure 1-13: The XML Data Generated by Quickstart.aspx

The Quickstart.aspx page contains a simple script that contains the Page_Load()
method, which executes by default when the script is accessed. Page_Load() starts
by declaring the array of strings that will be the names "known" by the server:

 protected void Page_Load()
 {
 // declare the names that are recognized by the server
 string[] names = new string[] { "CRISTIAN", "BOGDAN", "YODA" };

Next, the Page_Load() method contains the entire server logic behind this example.
It retrieves the name sent by the client:

 // retrieve the current name sent by the client
 string currentUser = Request.QueryString["name"] + "";

The value of the name query string parameter is read using Request.
QueryString["name"]. This returns null when name doesn't exist in the query string,
and we use a little trick—appending an empty string to it—to avoid errors when this
happens. (In production code, when performance is a factor, you may prefer to use
different error-avoiding techniques.)

Next, we set the content type of the response to text/xml, and we start building the
XML response by opening the <response> element:

 // set the response content type
 Response.ContentType = "text/xml";
 // output the XML header
 Response.Write("<?xml version=\"1.0\" encoding=
 \"UTF-8\" standalone=\"yes\"?>");
 Response.Write("<response>");

The Response.ContentType property corresponds to the Content-Type HTTP
header. We use it to set the content type to text/xml, which is appropriate when
the page sends back an XML structure. Response.Write() is used to send content
to the output. The first bits we output are the XML document definition, and the
<response> document element.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

AJAX and ASP.NET

[38]

We continue by writing the message itself to the output. If the name is an empty
string, the message will be "Stranger, please tell me your name!"

 // if the name is empty...
 if (currentUser.Length == 0)
 {
 Response.Write("Stranger, please tell me your name!");
 }

If the name is one of those in the names array, the message will be a bit more friendly:

 // if the typed name is in the names array
 else if (Array.IndexOf(names, currentUser.ToUpper().Trim()) >= 0)
 {
 Response.Write("Hello, master " + currentUser + "!");
 }

Here's the code that outputs the text in case the name isn't recognized:

 // if the name is neither empty or recognized
 else
 {
 Response.Write(currentUser + ", I don't know you!");
 }

Finally, we close the <response> element, and flush the response stream:

 // output the XML document
 Response.Write("</response>");

 // flush the response stream
 Response.Flush();
 }

This XML message outputted by the server (Quickstart.aspx) is read at the client
by the handleServerResponse() function in Quickstart.js. More specifically, the
following lines of code extract the Hello, master Yoda! message, assuming the reader
has typed Yoda in the text box:

 // extract the XML retrieved from the server
 xmlResponse = xmlHttp.responseXML;
 // obtain the document element (the root element) of
 the XML structure
 xmlDocumentElement = xmlResponse.documentElement;
 // get the text message, which is in the first child of
 the document element
 helloMessage = xmlDocumentElement.firstChild.data;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 1

[39]

Here, xmlHttp is the XMLHttpRequest object used to call the server page
Quickstart.aspx from the client. Its responseXML property extracts the retrieved
XML document. XML structures are hierarchical by nature, and the root element of an
XML document is called the document element. In this case, the document element
is the <response> element, which contains a single child, which is the text message
we're interested in. Once the text message is retrieved, it's displayed on the client's
page by using the DOM to access the <divMessage> element in Quickstart.html:

 // update the client display using the data received
 from the server
 document.getElementById("divMessage").innerHTML = helloMessage;

document is a default object in JavaScript that allows you to manipulate the elements
in the HTML code of your page.

The rest of the code in Quickstart.js deals with making the request to the server
to obtain the XML message. The createXmlHttpRequestObject() function creates
and returns an instance of the XMLHttpRequest object. This function is longer
than it could be because we need to make it cross-browser compatible—we'll
discuss the details in Chapter 2. For now, it's important to know what it does.
The XMLHttpRequest instance, called xmlHttp, is used in process() to make the
asynchronous server request:

// make asynchronous HTTP request using the XMLHttpRequest object
function process()
{
 // proceed only if the xmlHttp object isn't busy
 if (xmlHttp.readyState == 4 || xmlHttp.readyState == 0)
 {
 // retrieve the name typed by the user on the form
 name = encodeURIComponent(document.getElementById("myName").
 value);
 // execute the Quickstart.aspx page from the server
 xmlHttp.open("GET", "Quickstart.aspx?name=" + name, true);
 // define the method to handle server responses
 xmlHttp.onreadystatechange = handleServerResponse;
 // make the server request
 xmlHttp.send(null);
 }
 else
 // if the connection is busy, try again after one second
 setTimeout("process()", 1000);
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

AJAX and ASP.NET

[40]

What you see here is, actually, the heart of AJAX—the code that makes the
asynchronous call to the server.

You may wonder why it is it so important to call the server asynchronously.
Asynchronous requests, by their nature, don't freeze processing (and with it the user
experience) from when the call is made until the response is received. Asynchronous
processing is implemented by event-driven architectures, a good example being the
way graphical user interface code is built. Without events, you'd probably need
to check continuously if the user has clicked a button or resized a window. Using
events, the button notifies the application automatically when it has been clicked,
and you can take the necessary actions in the event handler function. With AJAX,
this theory applies when making a server request—you are automatically notified
when the response comes back.

If you're curious to see how the application would work using a synchronous
request, change the third parameter of xmlHttp.open() to false, and then call
handleServerResponse() as shown below. If you try this, the input box where you're
supposed to write your name will freeze when the server is contacted (although the
delay may not noticeable when testing this on the local machine).

// function calls the server using the XMLHttpRequest object
function process()
{
 // retrieve the name typed by the user on the form
 name = encodeURIComponent(document.getElementById("myName").value);
 // execute the Quickstart.aspx page from the server
 xmlHttp.open("GET", "Quickstart.aspx?name=" + name, false);
 // synchronous server request (freezes processing until completed)
 xmlHttp.send(null);
 // read the response
 handleServerResponse();
}

The process() function is supposed to initiate a new server request using the
XMLHttpRequest object. However, this is only possible if the XMLHttpRequest object
isn't busy making another request. In our case, this can happen if it takes more than
one second for the server to reply, which could happen if the Internet connection is
very slow. So process() starts by verifying that it is clear to initiate a new request.
Chapter 2 will show more details about the various possible states of the request, but
for now, it's enough to know that a state of 0 or 4 means the connection is available
to make a new request. (It's not possible to perform more that one request through a
single XMLHttpRequest object at any given time.)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 1

[41]

// make asynchronous HTTP request using the XMLHttpRequest object
function process()
{
 // proceed only if the xmlHttp object isn't busy
 if (xmlHttp.readyState == 4 || xmlHttp.readyState == 0)
 {

So, if the connection is busy, we use setTimeout() to retry after one second (the
function's second argument specifies the number of milliseconds to wait before
executing the piece of code specified by the first argument:

 // if the connection is busy, try again after one second
 setTimeout("process()", 1000);

If the line is clear, you can safely make a new request. The lines of code that prepare
the server request but don't commit it:

 // execute the Quickstart.aspx page from the server
 xmlHttp.open("GET", "Quickstart.aspx?name=" + name, true);

The first parameter specifies the method used to send the user name to the server,
and you can choose between GET and POST (you will learn more about them in
Chapter 2). The second parameter is the server page you want to access; when the
first parameter is GET, you send the parameters as name/value pairs in the query
string. The third parameter is true if you want the call to be made asynchronously.
When making asynchronous calls, you don't wait for a response. Instead, you define
another function to be called automatically when the state of the request changes:

 // define the method to handle server responses
 xmlHttp.onreadystatechange = handleServerResponse;

Once you've set this option, you can rest calm—the handleServerResponse()
function will be executed by the system when anything happens to your request.
After everything is set up, you initiate the request by calling the XMLHttpRequest
object's send method:

 // make the server request
 xmlHttp.send(null);
 }

Let's now look at the handleServerResponse() function:

// executed automatically when a message is received from the server
function handleServerResponse()
{
 // move forward only if the transaction has completed
 if (xmlHttp.readyState == 4)
 {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

AJAX and ASP.NET

[42]

 // status of 200 indicates the transaction completed successfully
 if (xmlHttp.status == 200)
 {

The handleServerResponse() function is called multiple times, whenever the
status of the request changes. The data received from the server can be read only if
xmlHttp.readyState is 4 (which happens when the response was fully received
from the server), and the HTTP status code is 200, signaling that there were no
problems during the HTTP request. We'll learn more about these concepts in chapter
2. For now, suffice to say that when they are met, you can read the server response,
which you can use to display an appropriate message to the user.

After the response is received and used, the process is restarted using the
setTimeout() function, which will cause the process() function to be executed
after one second (although that it's not necessary, even with AJAX, to have repetitive
tasks in your client-side code):

 // restart sequence
 setTimeout("process()", 1000);

Finally, let's reiterate what happens after the user loads the page (you can refer to
Figure 1-6 for a visual representation):

1. The user loads Quickstart.html (this corresponds to steps 1–4 in
Figure 1-10).

2. The user starts (or continues) typing his or her name (this corresponds to step
5 in Figure 1-10.

3. When the process() method in Quickstart.js is executed, it calls a
server script named Quickstart.aspx asynchronously. The text entered
by the user is passed on the call as a query string parameter (via GET).
The handeServerResponse() function is designed to handle request
state changes.

4. Quickstart.aspx executes on the server. It composes an XML document
that encapsulates the message the server wants to transmit to the client.

5. The handleServerResponse() method on the client is executed multiple
times as the state of the request changes. It's called for the last time when the
response has been successfully received. The XML is read; the message is
extracted and displayed on the page.

6. The user display is updated with the new message from the server, but the
user can continue typing without any interruptions. After a delay of one
second, the process is restarted from step 2.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 1

[43]

Summary
This chapter was a quick introduction to the world of AJAX. In order to proceed
with learning how to build AJAX applications, it's important to understand why and
where they are useful. As with any other technology, AJAX isn't the answer to all
problems, but it offers means to solve some of them.

AJAX combines client-side and server-side functionality to enhance the user
experience of your site. The XMLHttpRequest object is the key element that enables
the client-side JavaScript code to call a page on the server asynchronously.
This chapter was intentionally short and probably has left you with many
questions—that's good! Be prepared for a whole book dedicated to answering
questions and demonstrating lots of interesting functionality!

http://lib.ommolketab.ir
http//lib.ommolketab.ir

AJAX Foundations
It is said that one picture is worth a thousand words. And so is a well-written piece
of code, we would say. In this chapter you will get plenty of both, while learning the
foundations of client-side AJAX development.

Hopefully, the first chapter has developed your interest in AJAX well enough that
you will endure the second chapter with lots of theory to be learned. On the other
hand, if you found the first exercise too challenging, be assured that this time we will
advance a bit slower. We will learn the theory in parts by going through many short
examples. In this chapter, we will meet client AJAX technologies, which include:

JavaScript
The Document Object Model (DOM)
Cascading Style Sheets (CSS)
The XMLHttpRequest object

You will learn how to make these components work together smoothly, and form a
strong foundation for your future AJAX applications.

JavaScript and the Document Object Model
JavaScript is the heart of AJAX. JavaScript is a programming language supported
by all modern web browsers, with a similar syntax to the good old C language.
JavaScript is a parsed language (not compiled), and it has some Object-Oriented
Programming (OOP) capabilities. JavaScript was initially designed for writing simple
scripts to implement (or complement) a web application's client-side functionality,
but powerful frameworks—such as the Microsoft AJAX Library, prototype, script.
aculo.us, Dojo, and many others—have been recently developed upon the features
introduced by newer versions of the language. A brief history and description of the
language can be found at http://en.wikipedia.org/wiki/JavaScript.

•

•

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

AJAX Foundations

[46]

Because the JavaScript programs are parsed, their code must arrive unaltered at the
client for execution. This is a strength and weakness at the same time, and you need
to keep it in mind when developing your JavaScript code. You can find very good
introductions to JavaScript at the following web links:

http://www.echoecho.com/javascript.htm

http://www.webteacher.com/javascript/

http://www.w3schools.com/js/default.asp

Part of JavaScript's power on the client resides in its ability to manipulate the parent
HTML document, and it does that through the Document Object Model (DOM)
interface. The DOM is a standard that allows for the programmatic representation
and manipulation of hierarchical structures such as HTML and XML. It is available
with a multitude of languages and technologies, including JavaScript, Java, PHP, C#,
C++, and so on.

When developing AJAX applications you need to use JavaScript's DOM to read,
parse, alter, and create HTML elements of the web page. To learn more about the
DOM, we recommend you check out the following tutorials:

http://www.quirksmode.org/dom/intro.html

http://www.javascriptkit.com/javatutors/dom.shtml

You can play a nice DOM game at http://www.topxml.com/learning/games/
b/default.asp. A comprehensive reference of the JavaScript DOM can be found
at http://krook.org/jsdom/. The Mozilla reference for the JavaScript DOM is
available at http://www.mozilla.org/docs/dom/reference/javascript.html.

In the first example of this chapter, you will use the DOM to write a piece of text on
the web page. When adding JavaScript code to an HTML file, one option is to write
the JavaScript code in a <script> element within the <body> element. Take the
following HTML file for example, which executes a simple JavaScript script when
loaded. Notice the document object, which is a default DOM object in JavaScript that
represents the HTML page.

Here we use its write() method to add content to the page. The code will display
"Hello, world!" on the page unless you execute it between 10 PM and 5 AM, in which
case it will display "You should go to sleep".

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>AJAX Tutorial: JavaScript and DOM</title>

•

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 2

[47]

 <script type="text/javascript">
 // declaring new variables
 var date = new Date();
 var hour = date.getHours();
 // demonstrating the if statement
 if (hour >= 22 || hour <= 5)
 document.write("You should go to sleep.");
 else
 document.write("Hello, world!");
 </script>
 </head>
 <body>
 </body>
</html>

The document.write() commands generate output that is added to the <body>
element of the page when the script executes. The content that you generate
becomes part of the HTML code of the page, so you can add HTML elements in
there if you want (ideally you'd avoid creating elements dynamically whenever
possible, however).

Writing compliant markup maximizes the chances that your pages will work fine
with most existing and future web browsers. A useful article about following web
standards can be found at http://www.w3.org/QA/2002/04/Web-Quality. A
good article explaining the document type declaration (DOCTYPE) can be found at
http://www.alistapart.com/stories/doctype/.

We advise you try to write well-formed and valid HTML code whenever possible.
When creating static pages, or pages that are dynamically created on the server,
you can check their compliancy using the W3C Markup Validator Service at
http://validator.w3.org/. However, the service can't be used to check pages
with elements generated by JavaScript. The validator service, just like web search
engines, doesn't execute the JavaScript code on the page, so it can't see any content
that is generated dynamically.

The debate on standards seems to be an endless one, with one group of
people being very passionate about strictly following the standards, while
others are just interested in their pages looking good on a certain set of
browsers. At the moment of writing, the front pages of Google and other
important companies do not output compliant HTML. The examples in
this book contain valid HTML code, with the exception of a few cases
where we broke the rules a little bit in order to make the code easier
to understand. A real fact is that very few online websites follow the
standards, for various reasons.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

AJAX Foundations

[48]

You will usually prefer to write the JavaScript code in a separate .js file that is
referenced from the .html file, instead of writing the JavaScript code in the .html
file itself. This allows you to keep the HTML code clean and have all the JavaScript
code organized in a single place. You can reference a JavaScript file in HTML code by
adding a child element called <script> to the <head> element, like this:

<html>
 <head>
 <script type="text/javascript" src="file.js"></script>
 </head>
</html>

Even if you don't have anything between the <script> and </script>
tags, don't be tempted to use the short form:<script type="text/
javascript" src="file.js" />. This causes problems with Internet
Explorer 6, which doesn't load the JavaScript file any more. (This problem
doesn't affect tags used to reference other kinds of files, such as CSS files,
for example.)

Let's do a short exercise.

Time for Action—Playing with JavaScript and the DOM
1. Open Visual Web Developer, and load the http://localhost/Atlas web

site that you created in Chapter 1.
2. Right-click the project's root in Solution Explorer, and select Add New Item.

Select the HTML Page template, type JavaScriptDom.html for the name,
click Add, and then modify it like this:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" >
<head>
 <title>AJAX Tutorial: JavaScript and DOM</title>
 <script type="text/javascript" src="JavaScriptDom.js"></script>
</head>
<body>
 What's up?
</body>
</html>

Visual Web Developer will warn you that including text directly in
the <body> element isn't compliant with the XHTML 1.0 Transitional
standard. This is one of the examples where we break the rules a little bit
for the purpose of keeping the exercise simple.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 2

[49]

3. Add a new file to the project, using the JScript File template, named
JavaScriptDom.js. Add the following code to the file:
// declaring new variables
var date = new Date();
var hour = date.getHours();

// simple conditional content output
if (hour >= 22 || hour <= 5)
 document.write("Goodnight, world!");
else
 document.write("Hello, world!");

Be very careful while writing this code, because JavaScript is case
sensitive. Even a small typo will usually make the code non-functional.
In case you run into trouble, please see Chapter 8 for details about
debugging your JavaScript code.

4. Select File | Save All (or press Ctrl + Shift + S) to save your changes.
5. Load http://localhost/Atlas/JavaScriptDom.html in your web

browser, and assuming it's not late enough, expect to see the message as
shown in Figure 2-1 (if it's past 10 PM, the message would be a bit different).
You can see the page online at http://www.cristiandarie.ro/asp-ajax/
JavaScriptDom.html.

Figure 2-1. The Hello World example with JavaScript and the DOM

http://lib.ommolketab.ir
http//lib.ommolketab.ir

AJAX Foundations

[50]

While JavaScriptDom.html is open in Visual Web Developer, you can
press Ctrl + F5 to have it load automatically in your web browser. Pressing
F5 would execute the project with debugging enabled, which would
work as well, but at this moment debugging is not necessary because you
have no ASP.NET code to debug. When you execute your project with
debugging for the first time, Visual Web Developer will offer to set up the
appropriate Web.config options for your project, to enable debugging.
Confirm this action.
Also, if you are using Windows Vista and IIS 7 and want to be able to
debug an ASP.NET application, you need to configure IIS as explained
in Chapter 1, and set your web application to use Classic .NET AppPool
instead of Default AppPool.

What Just Happened
The code is very simple indeed and hence it doesn't need detailed explanations. Here
are the main ideas you need to be aware of:

JavaScript doesn't require you to declare the variables, so in theory you can
avoid the var keywords. This isn't a recommended practice though.
The JavaScript code in JavaScriptDom.js executes automatically when
you load the HTML file. You can, however, group the code in JavaScript
functions, which only execute when called explicitly.

The code in the JavaScript file is executed when the file is referenced. In our
exercise, the file is referenced in the <head> section, which explains why
Hello World! appears before What's Up?.
The text generated by your JavaScript code isn't visible to clients that don't
execute JavaScript code, such as search engine spiders. If search engine
optimization is a concern, keep in mind to never output indexable content
only using JavaScript.
Because there is no server-side ASP.NET code involved, you can load the file
in your web browser directly from the disk, instead of accessing it through
an HTTP web server. In that case the URL will be file:///C:/Atlas/
JavaScriptDom.html. When loading an HTML page with JavaScript code
from a local location (file://) rather than through a web server (http://),
Internet Explorer will ask for confirmation to execute the JavaScript code
with higher privileges, as shown in Figure 2-2. (We will learn more about
security later in this chapter.)

•

•

•

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 2

[51]

Figure 2-2. Internet Explorer asks for permission to execute local JavaScript code

One of the problems of the presented example is that we don't control the place
where the JavaScript code displays its output. The code executes right in the place
where it's referenced, which in this case is before the <body> element. If you wanted
to have the "Hello World!" message displayed after "What's up", you would need to
move the script file reference inside <body>, like this:

<body>
 What's up?
 <script type="text/javascript" src="JavaScriptDom.js"></script>
</body>

Needless to say, you don't want to move JavaScript file references around depending
on what needs to be displayed. Except for the most simple of cases, having just
JavaScript code that executes unconditionally when the HTML page loads is not
enough. You will usually want to have more control over when and how portions of
JavaScript code execute, and the solution consists in using JavaScript functions, and
executing these functions when certain events (such as a button click) on the HTML
page are triggered.

JavaScript Events and the DOM
In the next exercise, we will create a simple HTML structure from JavaScript
code using the DOM. When creating a web page that has dynamically generated
parts, you first need to create its template (which contains the static parts), and use
placeholders for the dynamic parts. The placeholders must be uniquely identifiable
HTML elements (elements with the ID attribute set).

The typical elements used as placeholders are <div> and , due to their generic
usage purpose. In practice they're typically used in conjunction with CSS to customize
the appearance of the displayed content. The <div> and elements are nicely
(and briefly) described at http://en.wikipedia.org/wiki/Span_and_div.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

AJAX Foundations

[52]

Take a look at the following HTML document:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.w3.org/
TR/xhtml11/DTD/xhtml11.dtd">
<html>
 <head>
 <title>AJAX Tutorial: JavaScript Events and DOM</title>
 </head>
 <body>
 <p>
 Hello dude! Here's a cool list of colors for you:
 </p>

 Black
 Orange
 Pink

 </body>
</html>

Suppose that you want to have the element and its children—which are
highlighted in the code snippet—generated dynamically using JavaScript and DOM.
The first step is to create a placeholder in their place. This placeholder must have an
id, so that it can be then identified by your JavaScript code. If the <div> element is
used as a placeholder, then your page would look like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.w3.org/
TR/xhtml11/DTD/xhtml11.dtd">
<html>
 <head>
 <title>AJAX Tutorial: JavaScript Events and DOM</title>
 </head>
 <body>
 <p>
 Hello dude! Here's a cool list of colors for you:
 </p>
 <div id="myDivElement"/>
 </body>
</html>

Your goals for the next exercise are:

Access the named <div> element programmatically from a JavaScript function.
Have the JavaScript code execute after the HTML page loads, so that it can
access the <div> element. HTML elements in <body> aren't accessible from

•
•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 2

[53]

JavaScript code that executes in the <head> element, so we can't use the same
technique as in the previous exercise. Now we will execute the JavaScript
code from the <body> element's onload event.
Group the JavaScript code in a function for easier code handling.

If you've run the previous exercise in debug mode using Visual Web
Developer, remember to stop debugging (Debug | Stop Debugging)
before proceeding to the next exercise. Visual Web Developer doesn't
allow you to add files and perform various changes to a project that is
being debugged.

Time for Action—Using JavaScript Events and the DOM
1. In the same http://localhost/Atlas/ application, add a new HTML Page

named JavaScriptEvents.html, and add the following code to it:
 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
 <html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>AJAX Tutorial: JavaScript Events and
 DOM</title>
 <script type="text/javascript" src="JavaScriptEvents.js">
 </script>
 </head>
 <body onload="process()">
 <p>
 Hello dude! Here's a cool list of colors for you:
 </p>
 <div id="myDivElement" />
 </body>
 </html>

2. Add a new JScript File called JavaScriptEvents.js, with the following
contents:
function process()
{
 // create the HTML code
 var string;
 string = ""
 + "Black"
 + "Orange"
 + "Pink"
 + "";
 // obtain a reference to the <div> element on the page
 myDiv = document.getElementById("myDivElement");

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

AJAX Foundations

[54]

 // add content to the <div> element
 myDiv.innerHTML = string;
}

3. Save your files, then load http://localhost/Atlas/JavaScriptEvents
.html in a web browser. You should see a window like the one in Figure 2-3.
You can see the page online at http://www.cristiandarie.ro/asp-ajax/
JavaScriptEvents.html.

Figure 2-3. JavaScript Events and DOM

What Just Happened?
The code is pretty simple. In the HTML code, the important details are highlighted in
the following code snippet:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.w3.org/
TR/xhtml11/DTD/xhtml11.dtd">
<html>
 <head>
 <title>AJAX Tutorial: JavaScript Events and DOM</title>
 <script type="text/javascript" src="JavaScriptEvents.js">
 </script>
 </head>
 <body onload="process()">
 <p>
 Hello dude! Here's a cool list of colors for you:
 </p>
 <div id="myDivElement" />
 </body>
</html>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 2

[55]

Everything starts by referencing the JavaScript source file using the <script>
element. The JavaScript file contains a function called process(), which is used as
an event-handler function for the body's onload event. Note that the JavaScript file is
loaded at the time the <head> element is parsed by the browser, but none of the code
is executed because it is included in the process() function. Functions are executed
only when called explicitly.

You can find a very useful introduction to JavaScript events at
http://www.quirksmode.org/js/introevents.html, which is
continued with more details about the different events supported by
various web browsers at http://www.quirksmode.org/js/
events_events.html.

The onload event of <body> fires after the HTML file is fully loaded, and it executes
the process() function. The onload event is fired after the whole page has been
loaded by the browser, so at the time process()executes, it has access to the
elements inside <body>, including the <div> element we want to populate. The
function starts by creating the HTML code we want to add to the <div> element:

function process()
{
 // Create the HTML code
 var string;var string;
 string = ""
 + "Black"
 + "Orange"
 + "Pink"+ "Pink"
 + "";

Next, we obtained a reference to <myDivElement>, using the getElementById()
function of the document object. Remember that document is a default DOM object in
JavaScript, referencing the body of your HTML document:

 // obtain a reference to the <div> element on the page
 myDiv = document.getElementById("myDivElement");

Note that JavaScript allows you to use either single quotes or double
quotes for string variables. The previous line of code can be successfully
written like this:
myDiv = document.getElementById("myDivElement");

In the case of JavaScript, both choices are equally good, as long as you are
consistent about using only one of them. If you use both notations in the
same script you risk ending up with parse errors. In this book, we will use
double quotes in JavaScript programs.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

AJAX Foundations

[56]

Finally, we populated <myDivElement> by adding the HTML code you built in the
string variable:

 // add content to the <div> element
 myDiv.innerHTML = string;
}

In this example, you have used the innerHTML property of the DOM to add the
composed HTML to your document.

The innerHTML property that we used in this exercise isn't part of the W3C
 standard, and many recommend against using it. We generally recommend
against using it in production code when you have decent alternatives.
However, this property is still very frequently used—especially when
creating code prototypes—because of its ease of use and speed.

Even More DOM
In the previous exercise, you have created the list of elements by joining strings to
compose a simple HTML structure, and used the innerHTML property of the <div>
element to add that structure to your page. We used this technique because it was
the easiest way to demonstrate how to use page events, and you can successfully use
it for similar purposes in your own development. However, using innerHTML is not
the most elegant way to get things done.

This time we'll take a look at how to use standards-compliant DOM functions to
generate HTML output. The structure we want to create is similar to that from the
previous exercise, except this time we also generate the paragraph and the "Hello
dude…" dynamically:

<div id="myDivElement">
 <p>
 Hello dude! Here's a cool list of colors for you:
 </p>

 Black
 Orange
 Pink

</div>

A DOM document is a hierarchical structure of elements, where each element can
have one or more attributes. In this HTML fragment, the single element with an
attribute is <div>, which has an attribute called id with the value myDivElement.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 2

[57]

The root node that you can access through the document object is <body>. When
implementing this HTML document, you will end up with a structure such as the
one in Figure 2-4.

<body> <div>

Hello dude! Here's a cool list of colors for you

Black

Orange

Pink

Figure 2-4. A Hierarchy of HTML Elements

In the previous figure, you have seen an HTML structure formed of <body>, <div>,
<p>, , and elements, and four text nodes ("Hello…", "Black", "Orange",
"Pink"). In the next exercise, you will create this structure using the DOM functions
createElement(), createTextNode(), and appendChild().

Time for Action—Even More DOM
1. Make sure your project isn't running in debug mode, and create a new

HTML file called DomStandard.html, and add the following code to it:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" >
 <head>
 <title>AJAX Tutorial: More JavaScript and DOM</title>
 <script type="text/javascript" src="DomStandard.js"></script>
 </head>

 <body onload="process()">
 <div id="myDivElement" />
 </body>
</html>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

AJAX Foundations

[58]

2. Add a new JScript file to your project called DomStandard.js, and type the
following code:
function process()
{
 // create the <p> element
 oP = document.createElement("p");
 // create the "Hello..." text node
 oHelloText = document.createTextNode
 ("Hello dude! Here's a cool list of colors for you:");
 // add the text node as a child element of <p>
 oP.appendChild(oHelloText);

 // create the element
 oUl = document.createElement("ul")

 // create the first element and add a text node to it
 oLiBlack = document.createElement("li");
 oBlackText = document.createTextNode("Black");
 oLiBlack.appendChild(oBlackText);

 // create the second element and add a text node to it
 oLiOrange = document.createElement("li");oLiOrange = document.createElement("li");
 oOrangeText = document.createTextNode("Orange");
 oLiOrange.appendChild(oOrangeText);oLiOrange.appendChild(oOrangeText);

 // create the third element and add a text node to it
 oLiPink = document.createElement("li");
 oPinkText = document.createTextNode("Pink");
 oLiPink.appendChild(oPinkText);

 // add the <ui> elements as children of the element
 oUl.appendChild(oLiBlack);
 oUl.appendChild(oLiOrange);
 oUl.appendChild(oLiPink);

 // obtain a reference to the <div> element on the page
 myDiv = document.getElementById("myDivElement");

 // add the <p> and elements to the <div> element
 myDiv.appendChild(oP);
 myDiv.appendChild(oUl);
}

3. Load DomStandard.html in a web browser. The result should look
like Figure 2-5. The example can be viewed online at http://www.
cristiandarie.ro/asp-ajax/DomStandard.html.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 2

[59]

Figure 2-5. Even More JavaScript and DOM

JavaScript is case sensitive, and when writing long code listings it's very
easy to make mistakes. Please see Chapter 8 for details about debugging
your JavaScript code.

What Just Happened?
Well, what just happened is exactly what happened after the previous exercise, but
this time with much more code, as you can see by having a look at the process()
function. Although there are many lines of code, the functionality is pretty simple,
and it follows a cleaner coding practice that—in theory at least—generates code that
is easier to maintain in the long run.

It's pretty clear using the DOM to create HTML structures may not always be
your best option. However, in more complex projects—such as most real-world ones
are—this coding technique can actually make your life easier, for the
following reasons:

It's fairly easy to programmatically create dynamic HTML structures, such
as building elements in for loops, because you're not concerned about text
formatting but about building the hierarchical structure.
As a consequence, you don't need, for example, to manually add closing tags.
When you add a 'ui' element, the DOM will take care to generate the <ui>
tag and an associated closing </ui> tag for you.
You can treat the nodes as if they were independent nodes, and decide later
how to build the hierarchy. Again, the DOM takes care of the implementation
details; you just need to tell it what you want.

•

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

AJAX Foundations

[60]

Note that if you use the "View Source" feature of your web browser, or if you save
the page to disk, you will find the original HTML page, instead of the final form of
the page that was generated using JavaScript. If you want to browse the final results
as displayed by your browser, you can use the DOM Inspector tool that ships with
Firefox, accessible through Tools | DOM Inspector (Ctrl + Shift + I). Figure 2-6
shows how DOM Inspector sees the page we've just created.

Figure 2-6. Using the Firefox DOM Inspector

The DOM functions used in this exercise are perhaps the most frequently used, but
obviously there are many more—we'll bore you with some additional theory later in
the book. To learn about the insidious details of DOM, including the implementation
differences between various web browsers, we recommend that you bookmark
the tutorial at http://www.howtocreate.co.uk/tutorials/javascript/
dombasics—you'll find it useful, sooner or later.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 2

[61]

JavaScript, DOM, and CSS
CSS (Cascading Style Sheets) is certainly a familiar term to you. CSS is a powerful
language used to describe the appearance of the elements of a web page. CSS
definitions can be stored in one or more files with the .css extension, allowing web
designers to detach the CSS styling definitions from the HTML document structure.
If the job is done right and CSS is used consistently in a website, CSS will allow you
to make visual changes to the entire site (or parts of the site) with very little effort,
just by editing the CSS file.

While technically it's not necessary to know CSS when implementing AJAX, in
practice it's very desirable to be at least educated in CSS basics, even if the HTML
and CSS design is created by someone else. CSS is a vast subject; there are many
books and tutorials on CSS, including those you can find at http://www.w3.org/
Style/CSS/learning and http://www.csstutorial.net/. The Wikipedia page on
CSS (http://en.wikipedia.org/wiki/Cascading_Style_Sheets) contains useful
material on the history of CSS, and its current state and limitations.

We will go through a simple exercise to demonstrate a few techniques of using
CSS with JavaScript, which is the most relevant scenario in the context of AJAX
development. In the following exercise, you will draw a nice table, and you will
have two buttons named Set Style 1 and Set Style 2. These buttons will change the
table's colors and appearance by just switching the current styles. See Figure 2-7
to get a feeling about what you're about to create, or visit it online at http://www.
cristiandarie.ro/asp-ajax/JavaScriptCSS.html.

Time for Action—Working with CSS and JavaScript
1. Add a new HTML file to your project named JavaScriptCSS.html, and

modify it like this:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" >
 <head>
 <title>AJAX Tutorial: JavaScript and CSS</title>
 <script type="text/javascript" src="JavaScriptCSS.js"></
script>
 <link href="TableStyles.css" type="text/css"
rel="stylesheet"/>
 </head>
 <body>
 <table id="table">
 <tr>
 <th id="tableHead">

http://lib.ommolketab.ir
http//lib.ommolketab.ir

AJAX Foundations

[62]

 Product Name
 </th>
 </tr>
 <tr>
 <td id="tableFirstLine">
 Airplane
 </td>
 </tr>
 <tr>
 <td id="tableSecondLine">
 Big car
 </td>
 </tr>
 </table>
 <p>
 <input type="button" value="Style 1"
onclick="setStyle1();"/>
 <input type="button" value="Style 2"
onclick="setStyle2();"/>
 </p>
 </body>
</html>

2. Create a JScript file named JavaScriptCSS.js and write the following code
in it:
// Change table style to style 1
function setStyle1()
{
 // obtain references to HTML elements
 oTable = document.getElementById("table");
 oTableHead = document.getElementById("tableHead");
 oTableFirstLine = document.getElementById("tableFirstLine");
 oTableSecondLine = document.getElementById("tableSecondLine");

 // set styles
 oTable.className = "Table1";
 oTableHead.className = "TableHead1";
 oTableFirstLine.className = "TableContent1";
 oTableSecondLine.className = "TableContent1";
}

// Change table style to style 2
function setStyle2()
{
 // obtain references to HTML elements

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 2

[63]

 oTable = document.getElementById("table");
 oTableHead = document.getElementById("tableHead");
 oTableFirstLine = document.getElementById("tableFirstLine");
 oTableSecondLine = document.getElementById("tableSecondLine");

 // set styles
 oTable.className = "Table2";
 oTableHead.className = "TableHead2";
 oTableFirstLine.className = "TableContent2";
 oTableSecondLine.className = "TableContent2";
}

3. Finally, add a CSS file named TableStyles.css, using Visual Web
Developer's Style Sheet template, and add the following definitions to it:
.Table1
{
 border: #339966 1px solid;
 background-color: #ccff66;
}
.TableHead1
{
 font-family: Verdana, Arial;
 font-weight: bold;
 font-size: 10pt;
}
.TableContent1
{ font-family: Verdana, Arial;
 font-size: 10pt;
}
.Table2
{
 border: #006699 1px solid;
 background-color: #ccffff;
}
.TableHead2
{
 font-family: Verdana, Arial;
 font-weight: bold;
 font-size: 10pt;
}
.TableContent2
{
 font-family: Verdana, Arial;
 font-size: 10pt;
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

AJAX Foundations

[64]

4. Load http://localhost/Atlas/JavaScriptCSS.html in your web
browser, and test that your buttons work as they should:

Figure 2-7. Table with CSS and JavaScript

What Just Happened?
Your TableStyles.css file contains two sets of styles that can be applied to the
table in JavaScriptCSS.html. When the user clicks one of the Style buttons, the
JavaScript DOM is used to assign those styles to the elements of the table.

In the first part of the SetStyle methods, we use the getElementById() function to
obtain references to the HTML elements that we want to apply CSS styles to:

 // obtain references to HTML elements
 oTable = document.getElementById("table");
 oTableHead = document.getElementById("tableHead");
 oTableFirstLine = document.getElementById("tableFirstLine");
 oTableSecondLine = document.getElementById("tableSecondLine");

As with many other web development tasks, manipulating CSS can be
the subject of significant inconsistencies between different browsers. For
example, in the previous code snippet, try to rename the object names to be
the same as their associated HTML elements (such as renaming oTable to
table) to see Internet Explorer stop working. Internet Explorer doesn't like
it if there's already an object with that ID in the HTML file.

After initializing these objects, the safe way that works with all browsers to set the
elements' CSS style is to use their className property:

 // set styles
 oTable.className = "Table1";
 oTableHead.className = "TableHead1";
 oTableFirstLine.className = "TableContent1";
 oTableSecondLine.className = "TableContent1";

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 2

[65]

The XMLHttpRequest Object
XMLHttpRequest is the object that enables the JavaScript code to make asynchronous
HTTP server requests. This allows you to initiate HTTP requests and receive
responses from the server in the background, without requiring the user to submit
the page to the server. This feature, combined with the possibility to manipulate the
web page using DOM and CSS, allows you to implement responsive functionality
and visual effects backed with live data from the server, without the user
experiencing any visual interruptions.

The XMLHttpRequest object was initially implemented by Microsoft in 1999 as an
ActiveX object in Internet Explorer, and eventually became de facto standard for all
the browsers, being supported as a native object by all modern web browsers except
Internet Explorer 6.

Note that even if XMLHttpRequest has become a de facto standard in
the web browsers, it is not yet a W3C standard. Similar functionality is
proposed by the W3C DOM Level 3 Load and Save specification standard,
which hasn't been implemented yet by web browsers.

The typical sequence of operations when working with XMLHttpRequest is as follows:

1. Create an instance of the XMLHttpRequest object.
2. Use the XMLHttpRequest object to make an asynchronous call to a server

page, defining a callback function that will be executed automatically when
the server response is received.

3. Read the server's response in the callback function.
4. Update the web page using the data received from the server.
5. Go to step 2.

Let's now see how to do these steps with real code.

Creating the XMLHttpRequest Object
The XMLHttpRequest object is implemented in different ways by the browsers.
In Internet Explorer 6 and older, XMLHttpRequest is implemented as an ActiveX
control, and you instantiate it like this:

xmlhttp = new ActiveXObject("Microsoft.XMLHttp");

For the other web browsers—including Firefox, Opera and Safari, and Internet
Explorer 7, XMLHttpRequest is a native object, so you create instances of it like this:

xmlhttp = new XMLHttpRequest();

http://lib.ommolketab.ir
http//lib.ommolketab.ir

AJAX Foundations

[66]

The ActiveX XMLHttp library comes in many more flavors and versions
that you could imagine. Each piece of Microsoft software, including
Internet Explorer and MDAC, came with new versions of this ActiveX
control, each having its own name. Microsoft.XMLHttp is the oldest
and is supported on all Windows machines, but the newer versions have
performance improvements.
It is possible to write JavaScript code that automatically detects the latest
XMLHttp version installed on the visitor's machine, if he or she is using
Internet Explorer 6 or older. The technique is described in AJAX and PHP:
Building Responsive Web Applications (Packt, 2006), but we will not insist
on it here because the feature is included in the Microsoft AJAX Library.

The following JavaScript function creates an XMLHttpRequest instance by using the
native object if available, or the Microsoft.XMLHttp ActiveX control for visitors that
use Internet Explorer 6 or older:

// creates an XMLHttpRequest instance
function createXmlHttpRequestObject()
{
 // xmlHttp will store the reference to the XMLHttpRequest object
 var xmlHttp;
 // try to instantiate the native XMLHttpRequest object
 try
 {
 // create an XMLHttpRequest object
 xmlHttp = new XMLHttpRequest();
 }
 catch(e)
 {
 // assume IE6 or older
 try
 {
 xmlHttp = new ActiveXObject("Microsoft.XMLHttp");
 }
 catch(e) { }
 }
 // return the created object or display an error message
 if (!xmlHttp)
 alert("Error creating the XMLHttpRequest object.");
 else
 return xmlHttp;
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 2

[67]

This function uses the JavaScript try/catch construct, which is a powerful
exception-handling technique that was initially implemented in OOP (Object-Oriented
Programming) languages. Basically, when an error happens at run time in the
JavaScript code, an exception is thrown. The exception is an object that contains the
details of the error. Using the try/catch syntax, you can catch the exception and
handle it locally, so that the error won't be propagated to the user's browser.

The try/catch syntax is as follows:

try
{
 // code that might generate an exception
}
catch (e)
{
 // code that executes if an exception was thrown in the try block
 // (exception details are available through the e parameter)
}

You place any code that might generate errors inside the try block. If an error
happens, the execution is passed immediately to the catch block. If no error happens
inside the try block, then the code in the catch block never executes.

Run-time exceptions propagate from the point they were raised, up through the call
stack of your program. The call stack is the list of methods that are being executed.
So if a function A() calls a function B() which at its turn calls a function called C(),
then the call stack will be formed of these three methods. If an exception happens
in C(), you can handle it using a try/catch block right there. If the exception
isn't caught and handled in C(), it propagates, to B(), and so on. The final layer is
the web browser. If your code generates an exception that you don't handle, the
exception will end up getting caught by the web browser, which may display an
unpleasant error message to your visitor.

The way you handle each exception depends very much on the situation at hand.
Sometimes you will simply ignore the error, other times you will flag it somehow in
the code, or you will display an error message to your visitor. In this book you will
meet all kinds of scenarios.

In our particular case, when we want to create an XMLHttpRequest object, we will
first try to create the object as if it was a native browser object, like this:

 // try to instantiate the native XMLHttpRequest object
 try
 {
 // create an XMLHttpRequest object
 xmlHttp = new XMLHttpRequest();
 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

AJAX Foundations

[68]

Internet Explorer 7, Mozilla, Opera, Safari, and other browsers will execute this
piece of code just fine, and no error will be generated, because XMLHttpRequest
is a supported natively. However, Internet Explorer 6 and its older versions won't
recognize the XMLHttpRequest object, an exception will be generated, and the
execution will be passed to the catch block. For Internet Explorer 6 and older
versions, the XMLHttpRequest object needs to be created as an ActiveX control:

 catch(e)
 {
 // assume IE6 or older
 try
 {
 xmlHttp = new ActiveXObject("Microsoft.XMLHttp");
 }
 catch(e) { }
 }

Every JavaScript programmer seems to have his or her own technique for creating the
XMLHttpRequest object, and surprisingly enough, all techniques work just fine. The
implementation we presented uses try and catch to instantiate the object, because it
(reasonably) guarantees the best chance of working well with future browsers, while
doing proper error checking without consuming too many lines of code.

Alternatively, you could, for example, check whether your browser supports
XMLHttpRequest before trying to instantiate it, using the typeof function:

if (typeof XMLHttpRequest != "undefined")
{
 xmlHttp = new XMLHttpRequest();
}

Using typeof can often prove to be very helpful. In our particular case, using typeof
doesn't eliminate the need to guard against errors using try/catch, so you would
just end up typing more lines of code.

Another technique is to use a JavaScript feature called object detection. This feature
allows you to check whether a particular object is supported by the browser, and
works like this:

if (window.XMLHttpRequest)
{
 xmlHttp = new XMLHttpRequest();
}

At the end of our createXmlHttpRequestObject function, we test that after all the
efforts, we have ended up obtaining a valid XMLHttpRequest instance:

 // return the created object or display an error message
 if (!xmlHttp)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 2

[69]

 alert("Error creating the XMLHttpRequest object.");
 else
 return xmlHttp;

Here we used the reverse effect of JavaScript's object detection feature,
which in our opinion is even nicer than the feature itself. Object detection
says that JavaScript will evaluate a valid object instance, such as
xmlHttp, to true. The negation of this expression, (!xmlHttp), returns
true not only if xmlHttp is false, but also if it is null or undefined.

Initiating Server Requests
After creating the XMLHttpRequest object you can do lots of interesting things
with it. Although it has different ways of being instantiated, all the instances of
XMLHttpRequest are supposed to share the same API (Application Programming
Interface) and support the same functionality. This API is formed of the following
methods and properties:

Method/Property Description
abort Stops the current request.
getAllResponseHeaders() Returns the response headers as a string.
getResponseHeader("headerLabel") Returns a single response header as a string.

open("method", "URL"[,
asyncFlag[, "userName"[,
"password"]]])

Initializes the request parameters.

send(content)

Performs the HTTP request.

setRequestHeader ("label",
"value")

Sets an HTTP request header.

onreadystatechange

Used to set the callback function that handles
request state changes.

readyState

Returns the status of the request:
0 = uninitialized
1 = loading
2 = loaded
3 = interactive
4 = complete

responseText

Returns the server response as a string.

responseXml

Returns the server response as an XML
document that can be manipulated using
JavaScript's DOM functions.

status Returns the status code of the request.
statusText Returns the status message of the request.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

AJAX Foundations

[70]

The methods you will use with every server request are open() and send(). The
open() method configures a request by setting various parameters, and send()
sends the request to the server. When the request is made asynchronously, before
calling send you will also need to set the onreadystatechange property with the
callback method to be executed when the status of the request changes, thus enabling
the AJAX mechanism.

The open() method is used for initializing a request. It has two required parameters
and a few optional ones. The open() method doesn't initiate a connection to the
server; it is only used to set the connection options. The first parameter specifies the
method used to send data to the server page, such as GET, POST, or PUT. The second
parameter is URL, which specifies where you want to send the request. The URL can
be complete or relative. If the URL doesn't specify a resource accessible via HTTP,
the first parameter is ignored.

The third parameter of open, called async, specifies whether the request should be
handled asynchronously; true means that your code processing carries on after
the send() method returns without waiting for a response from the server; false
means that the script waits for a response before continuing processing, freezing
the web page functionality. To enable asynchronous processing (which is the
heart of the AJAX mechanism), you will need to set async to true, and handle the
onreadystatechange event to process the response from the server.

When using GET to pass parameters, you send the parameters using the URL's query
string, as in http://localhost/ajax/test.aspx?param1=x¶m2=y. This server
request passes two parameters to the server—a parameter called param1 with the
value x, and a parameter called param2 with the value y:

// call the server to execute the server side operation
xmlHttp.open("GET", "http://localhost/ajax/test.
aspx?param1=x¶m2=y", true);
xmlHttp.onreadystatechange = handleRequestStateChange;
xmlHttp.send(null);

When using POST, you send the query string as a parameter of the send() method,
instead of joining it on to the base URL, like this:

// call the server page to execute the server side operation
xmlHttp.open("POST", "http://localhost/ajax/test.aspx", true);
xmlHttp.onreadystatechange = handleRequestStateChange;
xmlHttp.send("param1=x¶m2=y");

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 2

[71]

The two code samples should have the same effects. In practice, there are a few
differences between POST and GET that you should know about:

Using GET can help with debugging because you can simulate GET requests
with a web browser, so you can easily see with your own eyes what your
server script generates.
The POST method is required when sending data larger than 512 bytes, which
cannot be handled by GET.
GET is meant to be used for retrieving data from the server, while POST is
meant to submit changes. In the real world, it's good to obey by these rules,
otherwise strange things can happen. For example, search engines send GET
requests to read data from the Web, but they never POST any data. If you use
GET to submit changes, and a search engine becomes aware of the address of
the server script, that search engine could start modifying your data—and
you certainly don't want that!

The minimal implementation of a function named process() that makes
asynchronous server calls using GET looks like this:

function process()
{
 // call the server to execute the server side operation
 xmlHttp.open("GET", "ServerScript.aspx", true);
 xmlHttp.onreadystatechange = handleRequestStateChange;
 xmlHttp.send(null);
}

This method has the following potential problems:

process() may be executed even if xmlHttp doesn't contain a valid
XMLHttpRequest instance. This may happen if, for example, the user's
browser doesn't support XMLHttpRequest. This would cause an unhandled
exception to happen. Our other efforts to handle errors don't help very much
if we aren't consistent and do something about the process function as well.
process() isn't protected against other kinds of errors that could happen.
For example, as you will see later in this chapter, some browsers will
generate a security exception if they don't like the server you want to access
with the XMLHttpRequest object (more on security in Chapter 3).

A better version of process() looks like that:

// performs a server request and assigns a callback function
function process()
{
 // continue only if xmlHttp isn't void
 if (xmlHttp)

•

•

•

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

AJAX Foundations

[72]

 {
 // try to connect to the server
 try
 {
 // initiate server request
 xmlHttp.open("GET", "ServerScript.aspx", true);
 xmlHttp.onreadystatechange = handleRequestStateChange;
 xmlHttp.send(null);
 }
 // display an error in case of failure
 catch (e)
 {
 alert("Can't connect to server:\n" + e.toString());
 }
 }
}

If xmlHttp is null (or false) we don't display yet another error message,
because we assume such a message was already displayed by the
createXmlHttpRequestObject function. We make sure to signal any other
connection problems though.

Handling the Server Response
When making an asynchronous request (such as in the code snippets presented
earlier), the execution of xmlHttp.send()doesn't freeze until the server response
is received; instead, the execution continues normally. In the process() function
shown earlier, the handleRequestStateChange() function is defined as the callback
method that should handle request state changes.

Usually, handleRequestStateChange() is called four times, for each time the
request enters a new stage.The readyState property can have one the following
values representing the possible stages of the request:

0 = uninitialized
1 = loading
2 = loaded
3 = interactive
4 = complete

Except state 3, all the other states have pretty self-explaining names. The interactive
state is an intermediate state when the response has been partially received. In our
AJAX applications we will only use the complete state, which marks that a response
has been fully received from the server.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 2

[73]

The typical implementation of handleRequestStateChange() is shown in the
following code snippet, which highlights the portion where you actually get to read
the response from the server:

// function executed when the state of the request changes
function handleRequestStateChange()
{
 // continue if the process is completed
 if (xmlHttp.readyState == 4)
 {
 // continue only if HTTP status is "OK"
 if (xmlHttp.status == 200)
 {
 // retrieve the response
 response = xmlHttp.responseText;
 // do something with the response
 // ...
 // ...
 }
 }
}

Before attempting to read the received data, we also verify that the response status
code is 200. Sending such a code indicating the status of the request is part of the
HTTP protocol, and 200 is the status code that specifies that the request completed
successfully. Other popular HTTP status codes are 404, which indicates that the
requested resource couldn't be found, and 500, which indicates a server error.

Once again we can use try/catch blocks to handle errors that could happen while
initiating a connection to the server, or while reading the response from the server. A
safer version of the handleRequestStateChange() function looks like this:

// function executed when the state of the request changes
function handleRequestStateChange()
{
 // continue if the process is completed
 if (xmlHttp.readyState == 4)
 {
 // continue only if HTTP status is "OK"
 if (xmlHttp.status == 200)
 {
 try
 {
 // retrieve the response
 response = xmlHttp.responseText;
 // do something with the response
 // ...

http://lib.ommolketab.ir
http//lib.ommolketab.ir

AJAX Foundations

[74]

 // ...
 }
 catch(e)
 {
 // display error message
 alert("Error reading the response: " + e.toString());
 }
 }
 else
 {
 // display status message
 alert("There was a problem retrieving the data:\n" +
 xmlHttp.statusText);
 }
 }
}

OK, let's see how these functions work in action.

Time for Action—Making Asynchronous Calls with
XMLHttpRequest

1. In your Atlas website, create a Text File called async.txt, and add the
following text to it:
Hello, client!

2. Create an HTML Page file called Async.html, and modify the template
like this:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" >
 <head>
 <title>AJAX Tutorial: XMLHttpRequest</title>
 <script type="text/javascript" src="async.js"></script>
 </head>
 <body onload="process()">
 <p>Hello, server!</p>
 <div id="myDivElement" />
 </body>
</html>

3. Create a JScript file called Async.js with the following contents:
// holds an instance of XMLHttpRequest
var xmlHttp = createXmlHttpRequestObject();

// creates an XMLHttpRequest instance
function createXmlHttpRequestObject()

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 2

[75]

{
 // xmlHttp will store the reference to the XMLHttpRequest object
 var xmlHttp;
 // try to instantiate the native XMLHttpRequest object
 try
 {
 // create an XMLHttpRequest object
 xmlHttp = new XMLHttpRequest();
 }
 catch(e)
 {
 // assume IE6 or older
 try
 {
 xmlHttp = new ActiveXObject("Microsoft.XMLHttp");
 }
 catch(e) { }
 }
 // return the created object or display an error message
 if (!xmlHttp)
 alert("Error creating the XMLHttpRequest object.");
 else
 return xmlHttp;
}

// performs a server request and assigns a callback function
function process()
{
 // continue only if xmlHttp isn't void
 if (xmlHttp)
 {
 // try to connect to the server
 try
 {
 // initiate reading the async.txt file from the server
 xmlHttp.open("GET", "async.txt", true);
 xmlHttp.onreadystatechange = handleRequestStateChange;
 xmlHttp.send(null);
 }
 // display an error in case of failure
 catch (e)
 {
 alert("Can't connect to server:\n" + e.toString());
 }
 }
}

// function that handles the HTTP response

http://lib.ommolketab.ir
http//lib.ommolketab.ir

AJAX Foundations

[76]

function handleRequestStateChange()
{
 // obtain a reference to the <div> element on the page
 myDiv = document.getElementById("myDivElement");

 // display the status of the request
 if (xmlHttp.readyState == 1)
 {
 myDiv.innerHTML += "<p>Request status: 1 (loading)</p>";
 }
 else if (xmlHttp.readyState == 2)
 {
 myDiv.innerHTML += "<p>Request status: 2 (loaded)</p>";
 }
 else if (xmlHttp.readyState == 3)
 {
 myDiv.innerHTML += "<p>Request status: 3 (interactive)</p>";
 }
 // when readyState is 4, we also read the server response
 else if (xmlHttp.readyState == 4)
 {
 // continue only if HTTP status is "OK"
 if (xmlHttp.status == 200)
 {
 try
 {
 // read the message from the server
 response = xmlHttp.responseText;
 // display the message
 myDiv.innerHTML +=
 "<p>Request status: 4 (complete). Server said:</p>";
 myDiv.innerHTML += response;
 }
 catch(e)
 {
 // display error message
 alert("Error reading the response: " + e.toString());
 }
 }
 else
 {
 // display status message
 alert("There was a problem retrieving the data:\n" +
 xmlHttp.statusText);
 }
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 2

[77]

4. Load the Async.html file through the HTTP server by loading http://
localhost/Atlas/Async.html in your browser (you must load it through
HTTP; local access won't work this time). The script can also be tested online
at http://www.cristiandarie.ro/asp-ajax/Async.html. Expect to see
results similar to those shown in Figure 2-8.

Figure 2-8. The Four HTTP Request Status Codes

Don't worry if your browser doesn't display all the messages. Some
XMLHttpRequest implementations simply ignore some status codes.
Opera, for example, will only fire the event for status codes 3 and 4.
Internet Explorer 6 will report status codes 2, 3, and 4 when using a more
recent XMLHttp version.

What Just Happened?
To understand the exact flow of execution, let's start from where the processing
begins—the Async.html file:

<html>
 <head>
 <title>AJAX Tutorial: XMLHttpRequest</title>
 <script type="text/javascript" src="async.js"></script>
 </head>
 <body onload="process()">

http://lib.ommolketab.ir
http//lib.ommolketab.ir

AJAX Foundations

[78]

This bit of code hides some interesting functionality. First, it references the async.
js file, at which moment that file is parsed. The code residing in JavaScript functions
does not execute automatically, but the rest of the code does. All the code in our
JavaScript file is packaged as functions, except one line:

// holds an instance of XMLHttpRequest
var xmlHttp = createXmlHttpRequestObject();

This way we ensure that the xmlHttp variable contains an XMLHttpRequest
instance right from the start. The XMLHttpRequest instance is created by calling the
createXmlHttpRequestObject() function that you encountered a bit earlier.

The process() method is executed when the onload event fires. The process()
method can rely on the xmlHttp object being already initialized, so it only focuses
on initializing a server request. The proper error-handling sequence is used to guard
against potential problems. The code that initiates the server request is:

 // initiate reading the async.txt file from the server
 xmlHttp.open("GET", "async.txt", true);
 xmlHttp.onreadystatechange = handleRequestStateChange;
 xmlHttp.send(null);

Note that you cannot load the script locally, directly from the disk using
a file:// resource. Instead, you need to load it through HTTP. To load
it locally, you would need to specify the complete access path to the .txt
file, but you may still meet a security problem that we will deal with later.

Supposing that the HTTP request was successfully initialized and executed
asynchronously, the handleRequestStateChange() method will get called every time
the state of the request changes. In real applications we will ignore all states except 4
(which signals the request has completed), but in this exercise we print a message with
each state so you can see the callback method actually gets executed as advertised.

The code in handleRequestStateChange() is not that exciting by itself, but the fact
that it's being called for you is very nice indeed. Instead of waiting for the server
to reply with a synchronous HTTP call, making the request asynchronously allows
your script to continue doing other tasks until a response is received.

The handleRequestStateChange() function starts by obtaining a reference to the
HTML element called myDivElement, which is used to display the various states the
HTTP request is going through:

// function that handles the HTTP response
function handleRequestStateChange()
{
 // obtain a reference to the <div> element on the page
 myDiv = document.getElementById("myDivElement");

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 2

[79]

 // display the status o the request
 if (xmlHttp.readyState == 1)
 {
 myDiv.innerHTML += "<p>Request status: 1 (loading)</p>";
 }
 else if (xmlHttp.readyState == 2)
 ...
 ...

When the status hits the value of 4, we have the typical code that deals with reading
the server response, hidden inside xmlHttp.responseText:

 // when readyState is 4, we also read the server response
 else if (xmlHttp.readyState == 4)
 {
 // continue only if HTTP status is "OK"
 if (xmlHttp.status == 200)
 {
 try
 {
 // read the message from the server
 response = xmlHttp.responseText;
 myDiv.innerHTML +=
 "<p>Request status: 4 (complete). Server said:</p>";
 myDiv.innerHTML += response;
 }
 catch(e)
 {
 // display error message
 alert("Error reading the response: " + e.toString());
 }
 }
 else
 {
 // display status message
 alert("There was a problem retrieving the data:\n" +
 xmlHttp.statusText);
 }
 }

Apart from the error-handling bits, it's good to notice the xmlHttp.responseText
property that contains the response from the server. This property has a bigger
brother called xmlHttp.responseXml, which can be used when the response from
the server is in XML format.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

AJAX Foundations

[80]

Summary
This chapter walked you through many fields—HTML, JavaScript, CSS, the DOM,
and, XMLHttpRequest—which are all important to understand before you can
implement AJAX applications. In the chapter that follows we'll investigate one more
important topic that you need to master before starting to work with the Microsoft
AJAX Library: object-oriented programming with JavaScript.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Object-Oriented JavaScript
In this chapter, you'll learn about OOP (Object-Oriented Programming) and how it
relates to JavaScript. As an ASP.NET developer, you probably have some experience
working with objects, and you may even be familiar with concepts such as
inheritance. However, unless you're already an experienced JavaScript programmer,
you probably aren't familiar with the way JavaScript objects and functions really
work. This knowledge is necessary in order to understand how the Microsoft AJAX
Library works, and this chapter will teach you the necessary foundations. More
specifically, you will learn:

What encapsulation, inheritance, and polymorphism mean
How JavaScript functions work
How to use anonymous functions and closures
How to read a class diagram, and implement it using JavaScript code
How to work with JavaScript prototypes
How the execution context and scope affect the output of JavaScript functions
How to implement inheritance using closures and prototypes
What JSON is, and what a JSON structure looks likeis, and what a JSON structure looks like, and what a JSON structure looks like

In the next chapters you'll use this theory to work effectively with the Microsoft
AJAX Library.

Concepts of Object-Oriented Programming
Most ASP.NET developers are familiar with the fundamental OOP principles
because this knowledge is important when developing for the .NET development.
Similarly, to develop client-side code using the Microsoft AJAX Library, you need
to be familiar with JavaScript's OOP features. Although not particularly difficult,Although not particularly difficult,
understanding these features can be a bit challenging at first, because JavaScript's
OOP model is different than that of languages such as C#, VB.NET, C++, or Java.

•
•
•
•
•
•
•
•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Object-Oriented JavaScript

[82]

JavaScript is an object-based language. Just as in C#, you can create objects, call their
methods, pass them as parameters, and so on. You could see this clearly when working
with the DOM, where you manipulated the HTML document through the methods
and properties of the implicit document object. However, JavaScript isn't generally
considered a fully object-oriented language because it lacks support for some features
that you'd find in "real" OOP languages, or simply implements them differently.

Your most important goal for this chapter is to understand how to work with
JavaScript objects. As an ASP.NET developer, we assume that you already know
how OOP works with .NET languages, although advanced knowledge isn't
necessary. A tutorial written by Cristian Darie on OOP development with C# can be
downloaded in PDF format at http://www.cristiandarie.ro/downloads/.

To ensure we start off from the same square, in the following couple of pages we'll
review the essential OOP concepts as they apply in C# and other languages—objects,
classes, encapsulation, inheritance, and polymorphism. Then we'll continue by
"porting" this knowledge into the JavaScript realm.

Objects and Classes
What does "object-oriented programming" mean anyway? Basically, as the name
suggests, OOP puts objects at the centre of the programming model. The object is
probably the most important concept in the world of OOP—a self-contained entity
that hashas state and behavior, just like a real-world object. Each object is an instance of a
class (also called type), which defines the behavior that is shared by all its objects.

We often use objects and classes in our programs to represent real-world objects,
and types (classes) of objects. For example, we can have classes like Car, Customer,
Document, or Person, and objects such as myCar, johnsCar, or or davesCar.

The concept is intuitive: the class represents the blueprint, or model, and objects are
particular instances of that model. For example, all objects of type Car will have the
same behavior—for example, the ability to change gear. However, each individual
Car object may be in a different gear at any particular time—each object has its
particular state. In programming, an object's state is described by its fields and
properties, and its behavior is defined by its methods and events.

You've already worked with objects in the previous chapter. First, you've worked
with the built-in document object. This is a default DOM object that represents the
current page, and it allows you to alter the state of the page. However, you also
learned how to create your own objects, when you created the xmlHttp object. In
that case, xmlHttp is an object of the XMLHttpRequest class. You could create more
XMLHttpRequest objects, and all of them would have the same abilities (behavior),
such as the ability to contact remote servers as you learned earlier, but each would
have a different state. For example, each of them may be contacting a different server.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 3

[83]

In OOP's world everything revolves around objects and classes, and OOP languages
usually offer three specific features for manipulating them—encapsulation,
inheritance, and and polymorphism.

Encapsulation
Encapsulation is a concept that allows the use of an object without having to know is a concept that allows the use of an object without having to know
its internal implementation in detail. The interaction with an object is done only
via its public interface, which contains public members and methods. We can say
that encapsulation allows an object to be treated as a "black box", separating the
implementation from its interface. Think of the objects you've worked with so far:
document, a DOM object, and xmlHttp, an XMLHttpRequest object. You certainly. You certainly
don't know how these objects do their work internally! All you have to know is the
features you can use.

The "features you can use" of a class form the public interface of a class, which is
the sum of all its public members. The public members are those members that are
visible and can be used by external classes. For example, the innerHTML property
of a DOM object (such as the default document object), or the open() and send()
methods of XMLHttpRequest, are all public, because you were able to use them. Each
class can also contain private members, which are meant for internal usage only
and aren't visible from outside.

Inheritance
Inheritance allows creating classes that are specialized versions of an existing class. allows creating classes that are specialized versions of an existing class.
For example assume that you have the Car class, which exposes a default interface
for objects such as myCar, johnsCar, or davesCar. Now, assume that you want
to introduce in your project the concept of a supercar, which would have similar
functionality to the car, but some extra features as well, such as the capability to fly!

If you're an OOP programmer, the obvious move would be to create a new
class named SuperCar, and use this class to create the necessary objects such as
mySuperCar, or davesSuperCar. In such scenarios, inheritance allows you to create
the SuperCar class based on the Car class, so you don't need to code all the common
features once again. Instead, you can create SuperCar as a specialized version of Car,
in which case SuperCar inherits all the functionality of Car. You would only need to would only need to
code the additional features you want for your SuperCar, such as a method named
Fly. In this scenario, Car is the base class (also referred to as superclass), and SuperCar
is the derived class (also referred to as subclass).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Object-Oriented JavaScript

[84]

Inheritance is great because it encourages code reuse. The potential negative side
effect is that inheritance, by its nature, creates an effect that is known as tight coupling
between the base class and the derived classes. Tight coupling refers to the fact that
any changes that are made to a base class are automatically propagated to all the
derived classes. For example, if you make a performance improvement in the code of
the original Car class, that improvement will propagate topropagate to to SuperCar as well. While
this usually can be used to your advantage, if the inheritance hierarchy isn't wisely
designed such coupling can impose future restrictions on how you can expand or
modify your base classes without breaking the functionality of the derived classes.

Polymorphism
Polymorphism is a more advanced OOP feature that allows using objects of different
classes when you only know a common base class from which they both derive.when you only know a common base class from which they both derive.
Polymorphism permits using a base class reference to access objects of that class,
or objects of derived classes. Using polymorphism, you can have, for example, a
method that receives as parameter an object of type Car, and when calling that
method you supply as parameter an object of type SuperCar. Because SuperCar
is a specialized version of Car, all the public functionality of Car would also be
supported by SuperCar, although the SuperCar implementations could differ
from those of Car. This kind of flexibility gives much power to an experienced
programmer who knows how to take advantage of it.

Object-Oriented JavaScript
Objects and classes are implemented differently in JavaScript than in languages
such as C#, VB.NET, Java, or C++. However, when it comes to using them, you'll
feel on familiar ground. You create objects using theusing the new operator, and you call their
methods, or access their fields using the syntax you already know from C#. Here are
a few examples of creating objects in JavaScript:

// create a generic object
var obj = new Object();

// create a Date object
var oToday = new Date();

// create an Array object with 3 elements
var oMyList = new Array(3);

// create an empty String object
var oMyString = new String();

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 3

[85]

Object creation is, however, the only significant similarity between JavaScript objects
and those of "typical" OOP languages. The upcoming JavaScript 2.0 will reduce theThe upcoming JavaScript 2.0 will reduce the
differences by introducing the concept of classes, private members, and so on, but
until then we have to learn how to live without them.

Objects in JavaScript have the following particularities. In the following pages we'll
discuss each of them in detail:

JavaScript code is not compiled, but parsed. This allows for flexibility when
it comes to creating or altering objects. As you'll see, it's possible to add new
members or functions to an object or even several objects by altering their
prototype, on the fly.
JavaScript doesn't support the notion of classes as typical OOP languages
do. In JavaScript, you create functions that can behave—in many cases—just
like classes. For example, you can call a function supplying the necessary
parameters, or you can create an instance of that function supplying those
parameters. The former case can be associated with a C# method call, and
the later can be associated with instantiating a class supplying values to
its constructor.
JavaScript functions are first-class objects. In English, this means that the
function is regarded, and can be manipulated, just as like other data types.
For example, you can pass functions as parameters to other functions,
or even return functions. This concept may be difficult to grasp since it's
very different from the way C# developers normally think of functions or
methods, but you'll see that this kind of flexibility is actually cool.
JavaScript supports closures.
JavaScript supports prototypes.

Ray Djajadinata's JavaScript article at http://msdn.microsoft.com/msdnmag/
issues/07/05/JavaScript/ covers the OOP features in JavaScript very well, and
you can refer to it if you need another approach at learning these concepts.

JavaScript Functions
A simple fact that was highlighted in the previous chapter, but that is often
overlooked, is key to understanding how objects in JavaScript work: code that
doesn't belong to a function is executed when it's read by the JavaScript interpreter,
while code that belongs to a function is only executed when that function is called.

•

•

•

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Object-Oriented JavaScript

[86]

Take the following JavaScript code that you created in the first exercise of Chapter 2:

// declaring new variables
var date = new Date();
var hour = date.getHours();

// simple conditional content output
if (hour >= 22 || hour <= 5)
 document.write("Goodnight, world!");
else
 document.write("Hello, world!");

This code resides in a file named JavaScriptDom.js, which is referenced from an
HTML file (JavaScriptDom.html in the exercise), but it could have been included
directly in a <script> tag of the HTML file. How it's stored is irrelevant; what does
matter is that all that code is executed when it's read by the interpreter. If it was
included in a function it would only execute if the function is called explicitly, as is
this example:

// call function to display greeting message
ShowHelloWorld();

// "Hello, World" function
function ShowHelloWorld()
{
 // declaring new variables
 var date = new Date();
 var hour = date.getHours();

 // simple conditional content output
 if (hour >= 22 || hour <= 5)
 document.write("Goodnight, world!");
 else
 document.write("Hello, world!");
}

This code has the same output as the previous version of the code, but it is only
because the ShowHelloWorld() function is called that will display "Goodnight,
world!" or "Hello, world!" depending on the hour of the day. Without that function
call, the JavaScript interpreter would take note of the existence of a function named
ShowHelloWorld(), but would not execute it.

Functions as Variables
In JavaScript, functions are first-class objects. This means that a function is regarded
as a data type whose values can be saved in local variables, passed as parameters,
and so on. For example, when defining a function, you can assign it to a variable, and
then call the function through this variable. Take this example:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 3

[87]

 // displays greeting
 var display = function DisplayGreeting(hour)
 {
 if (hour >= 22 || hour <= 5)
 document.write("Goodnight, world!");
 else
 document.write("Hello, world!");
 }

 // call DisplayGreeting supplying an hour as parameter
 display(10);

When storing a piece of code as a variable, as in this example, it can make sense to
create it as an anonymous function—which is, a function without a name. You do
this by simply omitting to specify a function name when creating it:

 // displays greeting
 var display = function(hour)
 {
 ...
 }

Anonymous functions will come in handy in many circumstances when you need
to pass an executable piece of code that you don't intend to reuse anywhere else, as
parameter to a function.

Let's see how we can send functions as parameters. Instead of sending a numeric
hour to DisplayGreeting(), we can send a function that in turn returns the current
hour. To demonstrate this, we create a function named GetCurrentHour(), and send
it as parameter to DisplayGreeting(). DisplayGreeting() needs to be modified
to reflect that its new parameter is a function—it should be referenced by appending
parentheses to its name. Here's how:

// returns the current hour
function GetCurrentHour()
{
 // obtaining the current hour
 var date = new Date();
 var hour = date.getHours();

 // return the hour
 return hour;
}

// display greeting
function DisplayGreeting(hourFunc)
{

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Object-Oriented JavaScript

[88]

 // retrieve the hour using the function received as parameter
 hour = hourFunc();

 // display greeting
 if (hour >= 22 || hour <= 5)
 document.write("Goodnight, world!");
 else
 document.write("Hello, world!");
}

// call DisplayGreeting
DisplayGreeting(GetCurrentHour);

This code can be tested online at http://www.cristiandarie.ro/asp-ajax/
Delegate.html. The output should resemble Figure 3-1.

Figure 3-1. Simple demonstration of how a function can be sent as parameter to another function

.NET languages such as C# and VB.NET support similar functionality
through the concept of delegates. A delegate is a data type that represents
a reference to a function. An instance of a delegate represents a function
instance, and it can be passed as a parameter to methods that need to
execute that function. Delegates are the technical means used by .NET
to implement event-handling. C# 2.0 added support for anonymous
methods, which behave similarly to JavaScript anonymous functions.

Anonymous Functions
Anonymous functions can be created adhoc and used instead of a named function.
Although this can hinder readability when the function is more complex, you can
do this if you don't intend to reuse a function's code. In the following example
we pass such an anonymous function to DisplayGreeting(), instead of passing
GetCurrentHour():

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 3

[89]

// call DisplayGreeting
DisplayGreeting(
 function()
 {
 return (new Date()).getHours();
 }
);

This syntax is sure to look strange if this is the first time you have worked with
anonymous functions. You can compact it on a single line if it helps understanding
it better:

DisplayGreeting(function() { return (new Date()).getHours(); });

This code can be tested online at http://www.cristiandarie.ro/asp-ajax/
AnonymousFunction.html.

Inner Functions and JavaScript Closures
JavaScript functions implement the concept of closures, which are functions that are
defined inside other functions, and use contextual data from the parent functions to
execute. You can find a complete and technically accurate definition of closures at
http://en.wikipedia.org/wiki/Closure_(computer_science).

In JavaScript a function can be regarded as a named block of code that you can
execute, but it can also be used as a data member inside another function, in which
case it is referred to as an inner functions. In other words, a JavaScript function can
contain other functions.

Say that we want to upgrade the initial ShowHelloWorld() function by separating
the code that displays the greeting message into a separate function inside
ShowHelloWorld(). This is a possible implementation, and the output continues to
be the same as before:

// call function to display greeting message
ShowHelloWorld();

// "Hello, World" function
function ShowHelloWorld()
{
 // declaring new variables
 var date = new Date();
 var hour = date.getHours();

 // call DisplayGreeting supplying the current hour as parameter
 DisplayGreeting(hour);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Object-Oriented JavaScript

[90]

 // display greeting
 function DisplayGreeting(hour)
 {
 if (hour >= 22 || hour <= 5)
 document.write("Goodnight, world!");
 else
 document.write("Hello, world!");
 }
}

Here, we created a function named DisplayGreeting() inside ShowHelloWorld(),
which displays a greeting message depending on the hour parameter it receives. The
execution rules apply here as well. This new function needs to be called explicitly
from its parent function in order to execute.

This code can be tested online at http://www.cristiandarie.ro/asp-ajax/
JavaScriptClosure.html.

JavaScript Classes
Not only can JavaScript functions contain other functions, but they can also be
instantiated. This makes JavaScript functions a good candidate for implementing the makes JavaScript functions a good candidate for implementing the
concept of a class from traditional object-oriented programming. This is very helpful
feature indeed, because JavaScript doesn't support the notion of a class in the classic
sense of the word. Functions can be instantiated using the new operator, such as in
this example:

var myHelloWorld = new ShowHelloWorld();

This line of code effectively creates an object named myHelloWorld, which represents
an instance of the ShowHelloWorld() function. When the object is instantiated,
the function code is executed, so creating the object has the same effect as calling
ShowHelloWorld() as in the previous examples.

Here are a few facts that will help you port your C# OOP knowledge into the
JavaScript world:

When a function is used as a class, its body code is considered to be the
constructor. In classic OOP, the constructor is a special method that doesn't
return anything, and that is called automatically when the object is created.
The same effect happens in JavaScript when creating an instance of the
function: its code executes. A C# constructor is equivalent to the code in the
JavaScript function—without including any inner functions (whose code
doesn't execute automatically).

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 3

[91]

In C# constructors can receive parameters, and also in JavaScript. If the code
in a function represents the "class constructor", the parameters received by
that function play the role of constructor parameters.
Class fields in JavaScript are created and referenced with thefields in JavaScript are created and referenced with the in JavaScript are created and referenced with the this keyword.
In a JavaScript function, this.myValue is a public member of the function
(class), while myValue is a local variable that can't be accessed through
function instances. Also, the local variable is destroyed after the function
executes, while class fields persist their value for the entire object lifetime.
Class methods that need to be accessible from outside the class need to be
referred to using this as well. Otherwise the inner function will be regarded
as a local function variable, rather than a "class" member.

We'll demonstrate these concepts by transforming the ShowHelloWorld() function
that you saw earlier into a "real" class. We will:

Change the name of the function from ShowHelloWorld() to HelloWorld().
Add a parameter named hour to the function's "constructor" so that we tell
the class the hour for which we need a greeting message, when instantiating
it. If this parameter is passed when creating objects of the class, we store it for
future use as a class field. If this parameter is not specified, the current hourclass field. If this parameter is not specified, the current hour
of the day should be stored instead.stored instead.
The method DisplayGreeting() of the class should not support the hour
parameter any longer. Instead, it should display the greeting message
depending on the hour field that was initialized by the constructor.

Why are we changing the name of the function? Remember, OOP is a
style of coding, not a list of technical requirements that a language must
support. JavaScript is considered an OOP-capable language because it
supports an object-based programming style. In the OOP paradigm, a
class should represent an entity, and not an action. Since we intend now to
use ShowHelloWorld() as a class, we are changing its name to one that
reflects this purpose.

Once your new class is created, you use it just as you'd use a C# class. For example,
this is how you'd create a new class instance, and call its DisplayGreeting() method:

// create class instance
var myHello = new HelloWorld();

// call method
myHello.DisplayGreeting();

•

•

•

•

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Object-Oriented JavaScript

[92]

A possible implementation of the HelloWorld class is the following:

// "Hello, World" class
function HelloWorld(hour)
{
 // class "constructor" initializes this.hour field
 if (hour)
 {
 // if the hour parameter has a value, store it as a class field
 this.hour = hour;
 }
 else
 {
 // if the hour parameter doesn't exist, save the current hour
 var date = new Date();
 this.hour = date.getHours();
 }

 // display greeting
 this.DisplayGreeting = function()
 {
 if (this.hour >= 22 || this.hour <= 5)
 document.write("Goodnight, world!");
 else
 document.write("Hello, world!");
 }
}

This code can be tested online at http://www.cristiandarie.ro/asp-ajax/
JavaScriptClass.html. The HelloWorld class is formed of the constructor
code that initializes the hour field (this.hour), and of the DisplayGreeting()
method—this.DisplayGreeting(). Fans of the ternary operator can rewrite the
constructor using this shorter form, which also makes use of the object detection
feature that was discussed in Chapter 2:

 // define and initialize this.hour
 this.hour = (hour) ? hour : (new Date()).getHours();

The ternary operator is supported both by C# and JavaScript. It has the
form (condition ? valueA : valueB). If the condition is true, the
expression returns valueA, otherwise it returns valueB. In the shown
example, object detection is used to test if a value was supplied for the
hour parameter. If it was not, the current hour is used instead.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 3

[93]

Class Diagrams
JavaScript classes, just like C# or VB.NET classes, can be described visually using
class diagrams. There are standards such as UML (Un���ed M�de��n� Lan��a�e),
that can be used to model classes and the relationships between them. In this book
we'll show quite a few class diagrams using the notation used by Visual Studio
2005. Using this notation, the HelloWorld class shown earlier would be described as
shown in Figure 3-2.

Figure 3-2. HelloWorld class diagram

The diagrams to this book follow typical conventions for C# classes, which don't
translate to JavaScript exactly. For example, the diagram in Figure 3-2 says that the
HelloWorld class has an integer field named hour. However, JavaScript doesn't
support specifying data types for variables or class fields. The data type of the field
makes the diagram helpful in specifying the intended purpose and type of the field,
but that type isn't used in the actual implementation of the class.

The diagram also mentions the HelloWorld() constructor, which receives an integer
parameter. As you know, JavaScript doesn't support "real" constructors. However,
by reading the diagram you can tell that the HelloWorld() function receives a
parameter named hour, which is supposed to be an integer value.

Appendix A contains more details about the conventions used in class diagrams
throughout this book.

C# and JavaScript Classes
For the purpose of demonstrating a few more OOP-related concepts, we'll use
another class. Our new class is named Table, and it has two public fields (rows,
columns), and one method, getCellCount(). The getCellCount() method
should return the number of rows multiplied by the number of columns. The class
constructor should receive two parameters, used to initialize the rows and columns
fields. This class could be represented by the class diagram in Figure 3-3.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Object-Oriented JavaScript

[94]

Figure 3-3. Class diagram representing the Table class

The C# version of this class would look like this:

public class Table
{
 // public members
 public int rows = 0;
 public int columns = 0;

 // constructor
 public Table(int rows, int columns)
 {
 this.rows = rows;
 this.columns = columns;
 }

 // method returns the number of cells
 public int getCellCount()
 {
 return rows * columns;
 }
}

You'd instantiate and use the class like this:

Table t = new Table(3,5);
int cellCount = t.getCellCount();

In a production-quality C# implementation you may want to implement
rows and columns as properties with get and set assessors, rather
than public fields. That implementation, however, would make its
JavaScript version more complicated than necessary for the purposes of
our examples.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 3

[95]

The Table class can be easily implemented in JavaScript as shown in the following
code snippet, and it would resemble very much its C# version:

function Table (rows, columns)
{
 // "constructor"
 this.rows = rows;
 this.columns = columns;

 // getCellCount "method"
 this.getCellCount = function()
 {
 return this.rows * this.columns;
 };
}

After having declared the object, we can instantiate it by using the new operator and
use its properties and methods:

var t = new Table(3,5);
var cellCount = t.getCellCount();

There are a few subtle points you need to notice regarding the JavaScript
implementation of Table:

You don't declare public members explicitly. You simply need to reference
them using this, and assign some value to them; from that point on, they're
both declared and defined.
JavaScript allows you to implement most of the design specifications defined
in class diagrams, but the implementation can't reflect the specification as
accurately as a C# implementation can. For example, the line Table (int rows,
int columns) in the diagram in Figure 3-3 refers to the constructor of the class.
In JavaScript, as you know, classes as implemented using functions neither
have real constructors, nor support specifying data types for their parameters.
When objects are created, each object has its own set of data—to maintain
its own state. However, C# and JavaScript are different in that in JavaScript
functions are first-class objects. In C#, the "state" is made of the object's fields.
The object functionality, as defined by its methods, is the same for all objects
of the same type. For example, if you create many objects of the type Table in
C#, each object will have its own set of rows and columns, but internally they
all use the same copy of the getCellCount() method. In JavaScript, however,
functions are treated like any other variable. In other words, creating a new
Table object in JavaScript will result not only in creating a new set of rows
and columns values, but also in a new copy of the getCellCount() method.
Usually, you don't need (or want) this behavior.

•

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Object-Oriented JavaScript

[96]

The last mentioned problem is commonly referred to as a "memory leak", although
technically it's just inefficient JavaScript object design. When we design our
JavaScript "classes" as we do in typical OOP languages, we don't need each class to
create its own set of methods. It's only state (fields) that need to be individual, and
not methods' code. The good news is that JavaScript has a neat trick that we can use
to avoid replicating the inner function code for each object we create: referencing
external functions.

Referencing External Functions
Instead of defining member functions ("methods") inside the main function ("class")
as shown earlier, you can make references to functions defined outside your main
function, like this:

function Table (rows, columns)
{
 // "constructor"
 this.rows = rows;
 this.columns = columns;

 // getCellCount "method"
 this.getCellCount = getCellCount;
}

// returns the number of rows multiplied by the number of columns
function getCellCount()
{
 return this.rows * this.columns;
}

Now, all your Table objects will share the same instance of getCellCount(), which
is what you will usually want.

Thinking of Objects as Associative Arrays
A key element in understanding JavaScript objects is understanding the notion of
associative arrays, which are nothing more than collections of (key, value) pairs. As a
.NET developer you have worked with associative arrays represented by classes such
as NameValueCollection, Hashtable, dictionaries, and others. Unlike with normal
arrays, where the key is numeric (as in bookNames[5]), the key of an associative array
is usually a string, or even other kinds of objects that can represent themselves as
strings. For example, take a look at the following code snippet, where we retrieve the
name of the book by specifying a unique string value that identifies that book:

// retrieve the name of the book
bookName = bookNames["ASP_AJAX"];

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 3

[97]

The concept is simple indeed. In this case, the key and the value of the bookNames
associative array are both strings. This associative array could then be represented by
a table like this:

Key Value
ASP_AJAX Microsoft AJAX Library Essentials
AJAX_PHP AJAX and PHP: Building Responsive Web Applications
SEO_ASP Professional Search Engine Optimization with ASP.NET

The table above can be represented in JavaScript, as an associative array, like this:

// define a simple associative array
var bookNames =
{ "ASP_AJAX" : "Microsoft AJAX Library Essentials",
 "AJAX_PHP" : "AJAX and PHP: Building Responsive Web Applications",
 "SEO_ASP" : "Professional Search Engine Optimization with ASP.NET"
};

The key of an element doesn't have to be literal; it can even be specified through
a variable:

// store the book ID in a variable
var bookId = "ASP_AJAX";

// display the name of the book
document.write("The name of " + bookId +
 " is " + bookNames[bookId] + "
");

In JavaScript, however, the implementation of the associative array is more powerful,
in that it makes no restriction on the type of the value of the (key, value) pair. The
value can be a number, a string, a date, or even a function! This flexibility allows us
to represent JavaScript objects as associative arrays. For example, an instance of the
Table class that we discussed earlier can be represented like this:

// create Table object
var t =
 { rows : 3,
 columns : 5,
 getCellCount : function () { return this.rows * this.columns; }
 };

// display object field values
document.writeln("Your table has " + t.rows + " rows" +
 " and " + t.columns + " columns
");

// call object function
document.writeln("The table has " + t.getCellCount() +
 " cells
");

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Object-Oriented JavaScript

[98]

This example, and the one presented earlier with book names, can be tested online
at http://www.cristiandarie.ro/asp-ajax/Associative.html, and the result is
presented in Figure 3-4.

Figure 3-4. Testing JavaScript associative arrays

The literal notation of creating JavaScript objects has one weakness—it
can only be used to describe objects. In other words, using the literal
notation you can only define (key, value) pairs, but you can't create
classes, class constructors, or other reusable components of code.

Creating Object Members on the Fly
One major difference between OOP in C# and ASP.NET, and OOP in JavaScript, is
that JavaScript allows creating object members "on the fly". This is true for objects
and classes that you create yourself and also for JavaScript's own objects and types
as well. Here's an example where we add a field named ImADate to a JavaScript
Date object:

// create a Date object
var myDate = new Date();

// create a new member named ImADate in the oDate object
myDate.ImADate = "I'm a Date!";

// display the value of oDate.ImADate
document.write(myDate.ImADate);
A typical OOP language such as C#, VB.NET, or Java, doesn't allow you
to create members on the fly, like JavaScript does. Instead, each
member must be defined formally in the definition of the class.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 3

[99]

Private Members
JavaScript doesn't support the notion of private members as C# does, but you can
simulate the functionality by using variables inside the function. Variables are
declared with the var keyword or are received as function parameters.
They aren't accessed using this, and they aren't accessible through function
instances, thus acting like private members. Variables can, however, be accessed by
closure functions.

If you want to test this, modify the Table function as shown below.

function Table (rows, columns)
{
 // save parameter values to local variables
 var _rows = rows;
 var _columns = columns;

 // return the number of table cells
 this.getCellCount = function()
 {
 return _rows * _columns;
 };
}

This time we persist the values received as parameters as local variables named
_rows and _columns. Note they aren't referred to using this any more. Local
variables names don't need to start with an underscore, but this is a useful naming
convention that specifies they are meant to be used as private members. You can
make a short test that the "private" members can't be accessed from outside the
function, and that getCellCount() still works, using code such as the following. The
results are shown in Figure 3-5.

// create a Table object
var t = new Table(3,5);

// display object field values
document.write("Your table has " + t._rows + " rows" +
 " and " + t._columns + " columns
");

// call object function
document.write("The table has " + t.getCellCount() + " cells
");

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Object-Oriented JavaScript

[100]

Figure 3-5. JavaScript example demonstrating "private" members

This exercise reveals that _rows and _columns aren't accessible from outside the
function's scope. Their values read �nde��ned because there are no fields named
_rows and _columns in the Table function. The getCellCount() function, on the
other hand, can read _rows and _columns as variables because they are in the same
closure. As you can see, although the implementation and behavior are somewhat
different than in C#, you still have a way of defining internal (private) members
inside a function.

Prototypes
You learned earlier that in JavaScript you should define "class methods" outside
the body of the "class", in order to prevent their multiplication for each instantiated
object. Prototyping is a JavaScript language feature that allows attaching functions
and properties to the "blueprint" of a function. When functions are added to a class
(function) prototype, they are not replicated for each object of the class (function).
This reflects quite well the behavior of classes in C#, although the core mechanism
and the specific implementation details differ greatly. A few facts that you should
keep in mind about prototypes are:

Every JavaScript function has a property named prototype. Adding
members to the function's prototype is implemented by adding them to the
prototype property of the function.
Private variables of a function aren't accessible through functions added to
its prototype.
You can add members to a function's prototype at any time, but this won't
affect objects that were already created. It will affect only any new ones.
You can add members to a function's prototype only after the function itself
has been defined.

•

•

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 3

[101]

The Table "class" from the previous example contains a "method" named
getCellCount(). The following code creates the same class, but this time adding
getCellCount() to its prototype:

// Table class
function Table (rows, columns)
{
 // save parameter values to class properties
 this.rows = rows;
 this.columns = columns;
}

// Table.getCellCount returns the number of table cells
Table.prototype.getCellCount = function()
{
 return this.rows * this.columns;
};

The JavaScript Execution Context
In this section we'll take a peek under the hood of the JavaScript closures and the
mechanisms that allow us to create classes, objects, and object members in JavaScript.
For most cases, understanding these mechanisms isn't absolutely necessary for
writing JavaScript code—so you can skip it if it sounds too advanced. If, on the
contrary, you should be interested in learning more about the JavaScript parser's
inner workings, see the more advanced article at http://www.jibbering.com/faq/
faq_notes/closures.html.

The JavaScript execution context is a concept that explains much of the behavior
of JavaScript functions, and of the code samples presented earlier. The execution
context represents the environment in which a piece of JavaScript code executes.
JavaScript knows of three execution contexts:

The global execution context is the implicit environment (context) in which
the JavaScript code that is not part of any function executes.
The function execution context is the context in which the code of a function
executes. A function context is created automatically when a function is
executed, and removed from the contexts stack afterwards.
The eval() execution context is the context in which JavaScript code executed
using the eval() function runs.

Each execution context has an associated scope, which specifies the objects that arespecifies the objects that are
accessible to the code executing within that context.

•

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Object-Oriented JavaScript

[102]

The scope of the global execution context contains the locally defined variables and
functions, and the browser's window object. In that context, this is equivalent to
window, so you can access, for example, the location property of that object using
either this.location or window.location.

The scope of a function execution context contains the function's parameters, the
locally defined variables and functions, and the variables and functions in the scope
of the calling code. This explains why the getCellCount() function has access to the
_rows and _columns variables that are defined in the outer function (Table):

// Table class
function Table (rows, columns)
{
 // save parameter values to local variables
 var _rows = rows;
 var _columns = columns;

 // return the number of table cells
 this.getCellCount = function()
 {
 return _rows * _columns;
 };
}

The scope of the eval() execution context is identical to the scope of the calling code
context. The getCellCount() function from the above code snippet could be written
like this, without losing its functionality:

 // return the number of table cells
 this.getCellCount = function ()
 {
 return eval(_rows * _columns);
 };

var x, this.x, and x
An execution context contains a collection of (key, value) associations representing(key, value) associations representing associations representing
the local variables and functions, a prototype whose members can be accessedprototype whose members can be accessed
through the this keyword, a collection of function parameters (if the context was
created for a function call), and information about the context of the calling code.

Members accessed through this, and those declared using var, are stored in
separate places, except in the case of the global execution context where variables
and properties are the same thing. In objects, variables declared through var are not
accessible through function instances, which makes them perfect for implementing
private "class" members, as you could see in an earlier exercise. On the other hand,
members accessed through this are accessible through function instances, so we can
use them to implement public members.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 3

[103]

When a member is read using its literal name, its value is first searched for in the
list of local variables. If it's not found there, it'll be searched for in the prototype.
To understand the implications, see the following function, which defines a local
variable x, and a property named x. If you execute the function, you'll see that the
value of x is read from the local variable, even though you also have a property with
the same name:

function BigTest()
{
 var x = 1;
 this.x = 2;

 document.write(x); // displays "1"
 document.write(this.x); // displays "2"
}

Calling this function, either directly or by creating an instance of it, will display 1 and
2—demonstrating that variables and properties are stored separately. Should you
execute the same code in the global context (without a function), for which variables
and properties are the same, you'd get the same value displayed twice.

When reading a member using its name literally (without this), if there's no local
variable with that name, the value from the prototype (property) will be read
instead, as this example demonstrates:

function BigTest()
{
 this.x = 2;
 document.write(x); // displays "2"
}

Using the Right Context
When working with JavaScript functions and objects, you need to make sure the code
executes in the context it was intended for, otherwise you may get unpredictable
results. You saw earlier that the same code can have different output when executing
inside a function or in the global context.

Things get a little more complicated when using the this keyword. As you know,
each function call creates a new context in which the code executes. When the context
is created, the value of this is also decided:

When an object is created from a function, this refers to that object.
In the case of a simple function call, no matter if the function is defined
directly in the global context or in another function or object, this refers to
the global context.

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Object-Oriented JavaScript

[104]

The second point is particularly important. Using this in a function that is meant
to be called directly, rather than instantiated as an object, is a bad programming
practice, because you end up altering the global object. Take this example that
demonstrates how you can overwrite a global variable from within a function:

x = 0;
function BigTest()
{
 this.x = 1; // modify a variable of the global context
}
BigTest();
document.write(x); // displays "1"

Modifying the global object can be used to implement various coding architectures
or features, but abusing of this technique can be dangerous. On the other hand,
if BigTest is instantiated using the new keyword, the this keyword will refer to
the new object, rather than the global object. Modifying the previous example as
highlighted below, we can see the x variable of the global context remains untouched:

x = 0;
function BigTest()
{
 this.x = 1; // create an internal object property
}
var obj = new BigTest();
document.write(x); // displays "0"

When creating your own code framework, you can enforce that a function's code is
executed through a function instance. The little trick involves creating a new object
on the spot if the function was called directly, and using that object for further
processing. This allows you to ensure that a function call will not modify any
members of the global context. It works like this:

x = 0;
function BigTest()
{
 if (!(this instanceof BigTest)) return new BigTest();
 this.x = 1;
}
BigTest();
document.write(x); // displays "0"

The highlighted line simply checks if the this keyword refers to an instance of
BigTest (the instanceof keyword is used for this). If it's not, a new BigTest
instance is returned, and execution stops. The BigTest instance, however, is
executed, and this time this will be awill be a BigTest instance, so the function will continue
executing in the context of that object.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 3

[105]

This ends our little incursion into JavaScript's internals. The complete theory
is more complicated than that, and it's comprehensively covered by David Flangan's
JavaScript: The Definitive Guide, Fifth Edition (O'Reilly, 2006). The FAQ at
http://www.jibbering.com/faq/ will also be helpful if you need to learn about
the more subtle aspects of JavaScript.

Inheritance using Closures and Prototypes
There are two significant techniques for implementing the OOP concept of
inheritance with JavaScript code. The first technique uses closures, and the other
technique makes use of a feature of the language named prototyping.prototyping.

Early implementations of the Microsoft AJAX library made use of closures-based
inheritance, and in the final stage the code was rewritten to use prototypes. In the
following few pages we'll quickly discuss both techniques.

Inheritance Using Closures
In classic OOP languages such as C#, C++, or Java, you can extend classes through
inheritance. Closure-based inheritance is implemented by creating a member in the
derived class that references the base class, and calling that member. This causes
the derived class to inherit all the base class members, effectively implementing theeffectively implementing the
concept of inheritance.

To demonstrate this technique, we'll implement two classes: Car and SuperCar. The
Car class constructor receives a car name as parameter, and it has a method named
Drive(). The class SuperCar inherits the functionality of Car, and adds a new
method named Fly(), reflecting the additional functionality it has in addition to
what Car has to offer. The diagram in Figure 3-6 describes these two classes.

Figure 3-6. Car and SuperCar class diagram

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Object-Oriented JavaScript

[106]

Rember that in JavaScript the implementation of a class diagram can be achieved
in multiple ways. The code reflects the concept of the diagram, but not also the
implementation details, as the C# code would. Here's a possible implementation of
Car and SuperCar:

<script type="text/javascript">
 // to be used as the Drive method of Car
 function Drive()
 {
 document.write("My name is " + this.Name +
 " and I'm driving.
");
 }

 // class Car
 function Car(name)
 {
 // create the Name property
 this.Name = name;

 // Car knows how to drive
 this.Drive = Drive;
 }

 // to be used as the Fly method of SuperCar
 this.Fly = function()
 {
 document.write("My name is " + this.Name + " and I'm flying!
");
 }

 // class SuperCar
 function SuperCar(name)
 {
 // implement closure inheritance
 this.inheritsFrom = Car;
 this.inheritsFrom(name);

 // SuperCar knows how to fly
 this.Fly = Fly;
 }

 // create a new Car and then Drive
 var myCar = new Car("Car");
 myCar.Drive();

 // create SuperCar object
 var mySuperCar = new SuperCar("SuperCar");

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 3

[107]

 // SuperCar knows how to drive
 mySuperCar.Drive();

 // SuperCar knows how to fly
 mySuperCar.Fly();
</script>

Loading this script in a browser would generate the results shown in Figure 3-7.
It can be tested online at http://www.cristiandarie.ro/asp-ajax/
JavaScriptClosureInheritance.html.

Figure 3-7. JavaScript Inheritance

The exercise demonstrates that inheritance really works. SuperCar only defines the
capability to Fly(), yet it can Drive() as well. The capability to Drive() and the
Name property are inherited from Car.

At the first sight the code can look a bit complicated, especially if you're a C#
veteran. The Drive() and Fly() functions aren't defined inside Car and SuperCar,
as you'd do in a C# class. Instead, we stored these methods/functions in the global
context, and referenced them in Car and SuperCar, to avoid the memory leaks that
were discussed earlier in this chapter. You can, however, define Drive() inside Car,
and Fly() inside SuperCar, without losing any functionality.

If you comment the execution of this.inheritsFrom(name) fromfrom SuperCar, it
won't inherit the capabilities of Car any more. If you make this test in FireFox, you'll
see the following eloquent error message in the Error Console window of Firefox:

Figure 3-8. Signs of failed inheritance

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Object-Oriented JavaScript

[108]

The problem with the presented inheritance solution is that it's not very elegant.
Writing all functions and classes in the global context can quickly degenerate into
chaos; and things get even more complicated if you want to have classes that have
functions with the same name. Needless to say, this isn't something you need to be
dealing with when writing your code. Luckily, JavaScript has a very neat feature that
allows us implement inheritance in a much cleaner way: prototyping.

Inheritance Using Prototyping
Once again, prototyping can help us implement an OOP feature in a more elegant
way than when using closures. Prototype-based inheritance makes use of the behavior
of JavaScript prototypes. When accessing a member of a function, that member will be
looked for in the function itself. If it's not found there, the member is looked for in thefor in thein the
function's prototype. If it's still not found, the member is looked for in the prototype'sfor in the prototype'sin the prototype's
prototype, and so on until the prototype of the implicit Object object.

In closure-based inheritance, the derived class inherits the base class methods and
properties by "loading" them into itself. Here's the code again for your reference:

 // class SuperCar
 function SuperCar(name)
 {
 // implement closure inheritance
 this.inheritsFrom = Car;
 this.inheritsFrom(name);

 // SuperCar knows how to fly
 this.Fly = Fly;
 }

When implementing inheritance through prototyping, we can "load" the base class
properties and methods by adding them to the derived class prototype. That way, an
object of the derived class will have access to the class methods and properties, but also
to the base class methods and properties since they exist in the derived class prototype.
To successfully implement prototype-based inheritance with JavaScript, you need to:

Add a base class instance to the derived class prototype property, as
in SuperCar.prototype = new Car(). This creates Car as SuperCar's
prototype.
The prototype property has a constructor property that needs to point
back to the function itself. Since now the SuperCar's prototype is a Car, its
constructor property points back to the constructor of Car. To fix this,
we need to set the constructor property of the prototype property of the
derived class to the class itself, as in SuperCar.prototype.constructor =
SuperCar.

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 3

[109]

Create the derived class constructor, and call the base class constructor from
there, eventually passing any necessary parameters. In other words, when a
new SuperCar is instantiated, its base class constructor should also execute,
to ensure correct base class functionality.
Add any additional derived class members or functions to its prototype.

This is so very complicated! In practice you'll find that the code doesn't look that
scary, although the complete theory is a little more complex than this. A nice article
describing a few additional theoretical aspects can be found at http://mckoss.com/
jscript/object.htm.

The new implementation of Car and SuperCar, this time using prototypes, is the
following, with the inheritance mechanism highlighted. The Drive() and Fly()
methods have also been created through prototyping, although the old version using
closures would work as well. The code can be checked online at
http://www.cristiandarie.ro/seo-asp/JavaScriptPrototypeInheritance.html.

<script type="text/javascript">
 // class Car
 function Car(name)
 {
 // create the Name property
 this.Name = name;
 }

 // Car.Drive() method
 Car.prototype.Drive = function()
 {
 document.write("My name is " + this.Name +
 " and I'm driving.
");
 }

 // SuperCar inherits from Car
 SuperCar.prototype = new Car();
 SuperCar.prototype.constructor = SuperCar;

 // class SuperCar
 function SuperCar(name)
 {
 // call base class constructor
 Car.call(this, name);
 }

 // SuperCar.Fly() method
 SuperCar.prototype.Fly = function()
 {

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Object-Oriented JavaScript

[110]

 document.write("My name is " + this.Name +
 " and I'm flying!
");
 }

 // create a new Car and then Drive
 var myCar = new Car("Car");
 myCar.Drive();

 // create SuperCar object
 var mySuperCar = new SuperCar("SuperCar");

 // SuperCar knows how to drive
 mySuperCar.Drive();

 // SuperCar knows how to fly
 mySuperCar.Fly();
</script>

Here, instead of creating a Car instance in SuperCar's constructor, we declare Car as
SuperCar's prototype.

Introducing JSON
In AJAX applications, client-server communication is usually packed in XML
documents, or in the JSON (JavaScript Object Notation) format. InterestinglyInterestingly
enough, JSON's popularity increased together with the AJAX phenomenon, although
the AJAX acronym includes XML. JSON is the format used by the Microsoft
AJAX Library and the ASP.NET AJAX Framework to exchange data between the
AJAX client and the server, which is why it deserves a quick look here. As you'll
learn, the Microsoft AJAX Library handles JSON data packaging through Sys.
Serialization.JavaScriptSerializer, which is described in the Appendix—but
more on this later.

Perhaps the best short description of JSON is the one proposed by its official
website, http://www.json.org: "JSON (JavaScript Object Notation) is a lightweightJSON (JavaScript Object Notation) is a lightweight
data-interchange format. It is easy for humans to read and write. It is easy for
machines to parse and generate."

If you're new to JSON, a fair question you could ask would be: why another datawhy another data
exchange format? JSON, just like XML, is a text-based format that it is easy to write
and to understand for both humans and computers. The key word in the definition
above is "lightweight". JSON data structures occupy less bandwidth than their
XML versions.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 3

[111]

To get an idea of how JSON compares to XML, let's take the same data structure and
see how we would represent it using both standards:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<response>
 <clear>false</clear>
 <messages>
 <message>
 <id>1</id>
 <color>#000000</color>
 <time>2006-01-17 09:07:31</time>
 <name>Guest550</name>
 <text>Hello there! What's up?</text>
 </message>
 <message>
 <id>2</id>
 <color>#000000</color>
 <time>2006-01-17 09:21:34</time>
 <name>Guest499</name>
 <text>This is a test message</text>
 </message>
 </messages>
</response>

The same message, written in JSON this time, looks like this:

[
 {"clear":"false"},
 "messages":
 [
 {"message":
 {"id":"1",
 "color":"#000000",
 "time":"2006-01-17 09:07:31",
 "name":"Guest550",
 "text":"Hello there! What's up?"}Hello there! What's up?"}"}
 },
 {"message":
 {"id":"2",
 "color":"#000000",
 "time":"2006-01-17 09:21:34",
 "name":"Guest499",
 "text":"This is a test message"}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Object-Oriented JavaScript

[112]

 }
]
 }
]

As you can see, they aren't very different. If we disregard the extra formatting spaces
that we added for better readability, the XML message occupies 396 bytes while the
JSON message has only 274 bytes.

JSON is said to be a subset of JavaScript because it's based on the associative array-because it's based on the associative array-
nature of JavaScript objects. JSON is based on two basic structures:

Object: This is defined as a collection of name�value pairs. Each object is defined as a collection of name�value pairs. Each object
begins with a left curly brace ({) and ends with a right curly brace (}). The. The
pairs of names/values are separated by a comma. A pair of name/value has
the following form: string:value.
Array: This is defined as a list of values separated by a coma (is defined as a list of values separated by a coma (,).

We've mentioned strings and values. A value can be a string, a number, an
object, an array, true or false, or or null. A string is a collection of Unicode
characters surrounded by double quotes. For escaping, we use the backslash (\).

It's obvious that if you plan to use JSON, you need to be able to parse and generate
JSON structures in both JavaScript and ASP.NET, at least if the communication
is bidirectional. JSON libraries are available for most of today's programming
languages: ActionScript, C, C++, C#, VB.NET, Delphi, E, Erlang, Java, JavaScript,
Lisp,Lua, ML and Ruby, Objective CAML, OpenLazslo, Perl, PHP, Python, Rebol,
Ruby, and Squeak. When we said almost every programming language we were
right, weren't we!

If you plan to work with JSON data outside of the Microsoft AJAX Library, you can
use the library listed at http://www.json.org/js.html.

Summary
This chapter walked you through many fields. Working with OOP in JavaScript
is certainly no easy task, especially if you haven't been exposed to the implied
concepts before. Where you don't feel confident enough, have a look at the additional
resources we've referenced. When you feel ready, proceed to Chapter 4, where you
will have an overview of the architecture and features of the Microsoft AJAX Library.

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Introducing the Microsoft
AJAX Library

In the previous chapters you've learned the basics of AJAX and object-oriented
JavaScript, and in Chapter 1 you even created a very simple AJAX-enabled form
validation page using ASP.NET code for the server.

On small projects it's acceptable to implement the features you need from scratch,
occasionally reinventing the wheel. However, when developing more complex ASP.
NET projects, the decision of "whether to use ASP.NET AJAX or not" becomes "how
much of ASP.NET AJAX to use ". In this chapter we'll quickly investigate the features
offered by the Microsoft AJAX Library, and at the end we'll even use it to update the
Quickstart example that was presented in Chapter 1.

In this chapter, you will:

Learn about the components of the ASP.NET AJAX Framework and the
Microsoft AJAX Library
Understand the asynchronous communication model of the Microsoft
AJAX Library
Go through a quickstart exercise

Let's get started!

Microsoft AJAX Library Components
You learned in Chapter 1 that the ASP.NET AJAX Framework is made of three
componenets: the Microsoft AJAX Library, the ASP.NET AJAX Extensions, and
the ASP.NET AJAX Control Toolkit. The first two are available for download at
http://www.asp.net/, while the control toolkit is a project under development at
CodePlex (http://www.codeplex.com/AtlasControlToolkit).

•

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Introducing the Microsoft AJAX Library

[114]

These components are shown in Figure 4-1.

ASP.NET AJAX Control Toolkit Components

ASP.NET AJAX Control Toolkit Base Classes (.NET & JavaScript)

ASP.NET 2.0 AJAX Extensions

ASP.NET 2.0
Microsoft AJAX Library

Figure 4-1. The World of ASP.NET AJAX

The Microsoft AJAX Library, the subject of this book, is the client-side component
of the ASP.NET AJAX Framework. It comes in the form of a JavaScript file named
MicrosoftAjax.js, which has about 80 kilobytes, and (obviously) needs to travel
to the client when a visitor loads a website that uses the library. This potential
drawback, together with the complexity of the library, which may require a long
learning curve, needs to be taken into account when deciding whether to use this
library. If the AJAX features you need to implement are very simple, you can write
the AJAX code yourself, such as in the simple example from Chapter 1.

For larger projects, the Microsoft AJAX Library gives a helping hand offering thethe Microsoft AJAX Library gives a helping hand offering the
following features:

Cross-browser compatibility: We don't need to worry about having our
applications running on multiple browsers.
Server-side agnostic: The Microsoft AJAX Library is a JavaScript library that
can integrate with any server-side technology.
Object orientation: The Microsoft AJAX Library builds on the basic
OOP capabilities you learned in Chapter 3, to create a framework that
permits coding in a way that resembles very much the way you code for the
.NET Framework.

These features will help you:

Avoid the problems related to working with the different DOM
implementations in today's web browsers.
Implement asynchronous postbacks easily, using an improved API.

•

•

•

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 4

[115]

Benefit from the power of a framework that exposes features that aren't
typically available to JavaScript programmers, such as namespaces, common
types, type reflection, and more.

The features of the Microsoft AJAX Library are implemented in a layeredMicrosoft AJAX Library are implemented in a layered
architecture that is described in Figure 4-2.

Microsoft AJAX Library

Components
Non-visual Components,

Behaviors, Controls

Browser Compatibility
Support for Microsoft

Internet Explorer, Mozilla
Firefox, Apple Safari

Networking
Asynchronous Requests,
XML & JSON Serialization

Web & Application Services

Core Services
JavaScript Base Class

Extensions, Type System,
Events, Serialization

Client

Figure 4-2. Microsoft AJAX Library

Core Services : This layer was inspired from the .NET BCL (Base Class
Library), and extends JavaScript by adding features you'd expect to meet
in a .NET environment: namespaces, classes, interfaces, inheritance,
enumerations, delegates, data types, serialization, event handling, extended
error handling with debugging and tracing, string builders, etc.
Networking: This layer handles all the communication with the web services
and application services as well as calls using web requests.
Browser Compatibility: This layer provides the abstraction needed in order
to avoid compatibility problems across browsers.
Components: This layer contains non-visual components, controls, and
behaviors that enable the AJAX experience.

•

•

•

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Introducing the Microsoft AJAX Library

[116]

Asynchronous Communication
In Chapter 2, you learned about the XMLHttpRequest object that represents the core
of any AJAX-enabled application. Asynchronous client-server communication is
also a pillar of the Microsoft AJAX Library. Although this library does a great job at
abstracting the low-level details from the developer, XMLHttpRequest is still used to
handle the background client-server communication.

The Microsoft AJAX Library client can call server-side web service methods. Its
networking layer binds together the client presentation layer and the business layer
of the server side. This approach has the advantage of loosely coupling the JavaScript
client to the ASP.NET server, providing an interface for them to communicate.

The networking layer in Microsoft AJAX Library works as described in Figure 4-3.

Presentation
(HTML/CSS)

Server Asynchronous
Communication

Initial Rendering
(UI + Behavior)

Data

Data

Service Proxies
UI Behavior (Scripts)

Web
Services

Pages

Client Asynchronous
Communication

Figure 4-3. Asynchronous Communication with ASP.NET AJAX

The Microsoft AJAX Library client can use the networking layer to do one of
the following:

Make calls to server pages
Make calls to the server services (authentication, profile) automatically
exposed as web services by using their corresponding JavaScript proxies
Make calls to page methods as if they were web services
Make calls to web services
Carry out serialization/deserialization using JSON

•

•

•

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 4

[117]

Client Asynchronous Communication
Figure 4-4 describes the components of the Microsoft AJAX Library networking layer.e components of the Microsoft AJAX Library networking layer.

Client Applications

Script Core Library

Client Networking Layer

Web Service
Proxies

Page Method
Proxies

Profile
Proxy

Authentication
Proxy

WebRequest

WebRequestManager

XmlHttpExecutor

XmlHttp

JSON
Serialization

Browser Compatibility Layer

Internet Explorer, Firefox, Safari

Figure 4-4. Components of the Microsoft AJAX Library networking layer

At a higher level, the client asynchronous communication (networking layer) can be
divided into three parts:

Core communication layer
Conversion layer
Proxies layer

•

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Introducing the Microsoft AJAX Library

[118]

The Proxies layer consists of all the proxies that access functionality from the server side:

The Web Service proxy enables us to call web service methods directly from
the client script.
The Page Method proxy allows calling methods of ASP.NET pages as if they
were web service methods.
The Authentication and Profile proxies are automatically generated by the
server's authentication and profile services providing access to ASP.NET's
authentication and profile services respectively. Using these proxies, the
user can be authenticated and his or her profile retrieved without additional
postbacks to the server.

These services are invoked in a similar way to how web services' methods are called.
The methods exposed by the application services are available through their client
proxies as web methods so that the same infrastructure can be used to call web
service methods, page methods, and application services.

The Conversion layer is responsible for serialization and deserialization to and
from the common .NET types. The default serialization is handled by the
Sys.Serialization.JavaScriptSerializer class. JSON represents the default
serialization format but additional serialization formats such as XML can be specified.

The Core communication layer is represented by a set of classes that make HTTP
requests. The Sys.Net.WebRequestExecutor represents an "abstract" base class
by convention, offering a generic interface for making web requests. The class is
extended by Sys.Net.XmlHttpExecutor, which uses XMLHttpRequest to make
the web requests. The logic of the web request is implemented in the Sys.Net.
WebRequest class, which uses a WebRequestExecutor object (XmlHttpExecutor
is used by default). All the web requests initiated by the browser are managed by
the Sys.Net.WebRequestManager class that offers an additional level of control by
exposing new properties, events, and methods.

See Appendix A for reference regarding these classes. We'll use them in practice in
the upcoming exercise.

Server Asynchronous Communication
This book is dedicated to the client-side of the ASP.NET AJAX Framework—in
other words, the Microsoft AJAX Library. You should be aware, however, that the
ASP.NET AJAX Framework includes server-side capability as well, including an
asynchronous communication layer. This layer is made of the components described
in Figure 4-5.

•

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 4

[119]

Server Networking Layer

Web Services Page Methods Authentication
Service

Profile
Service

HTTP Handler

JSON SerializationXML Serialization

Generated Client ScriptsServer Applications

Figure 4-5. Server Asynchronous Communication

This architecture can also be split into three layers, just like its client-side counterpart:

Core communication layer
Conversion layer
Application services layer

The Core communication layer consists of the web services that are the entry point for
each request initiated from the client side. Remember that we said that page methods
and application services are exposed as web service methods.

The Conversion layer consists of JSON serialization/deserialization by default, and
allows custom serialization and deserialization of common .NET types.

The Application services layer consists of a set of services that generate client proxies
in order to enable invocation from the client side. Once configured, they provide the
client with the necessary proxies.

Working with WebRequest
For the rest of this chapter, we'll go through two simple exercises to implement the
QuickStart example from Chapter 1, but this time using the Microsoft AJAX Library.
This exercise will demonstrate how the WebRequest class can be used to perform
AJAX requests. Look ahead at Figures 4-6 and 4-7 to see where we're heading, and
start typing.

•

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Introducing the Microsoft AJAX Library

[120]

Time for Action—WebRequest
1. Open the http://localhost/Atlas web application in Visual Web

Developer 2005.
2. Create a folder named Scripts in your project. We'll use this folder to store

the files of the Microsoft AJAX Library, and other JavaScript files we'll create.
3. Copy all the files in \Program Files\Microsoft ASP.NET\ASP.NET 2.0

AJAX Extensions\version\MicrosoftAjaxLibrary\
System.Web.Extensions\version\ to your Scripts folder. After this
operation, your Scripts folder should contain MicrosoftAjax.js,
MicrosoftAjaxTimer.js, MicrosoftAjaxWebForms.js, their debug
versions, and other JavaScript source files. The files we're interested in are
MicrosoftAjax.js and MicrosoftAjax.debug.js.

4. Create a new HTML Page in your project named AtlasQuickstart.html
and modify it as highlighted below:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html>
<head>
 <title>Microsoft AJAX Library: Quickstart</title>
</head>
<body>
 <form>
 <!-- load debug version of Microsoft AJAX Library -->
 <script type="text/javascript" src="Scripts/MicrosoftAjax.
debug.js"></script>

 <div>
 <h1>Microsoft AJAX Library: Quickstart</h1>

 Server wants to know your name:
 <input type="text" id="myName" />

 <h2>OnWebRequestCompleted</h2>
 <div id="response"></div>
 </div>
 </form>

 <script type="text/javascript">
 // get references to the response div element
 responseDiv = $get("response");

 // initialize application
 function pageLoad()

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 4

[121]

 {
 // make web request
 makeWebRequest();
 }

 // performs asynchronous server request
 function makeWebRequest()
 {
 // set request parameters
 var param = "?name=" +
 encodeURIComponent($get("myName").value);
 var url = "AtlasQuickstartServer.ashx" + param;
 var timeout = 10000;
 var httpVerb = "GET";

 // create new WebRequest object and set its properties
 req = new Sys.Net.WebRequest();
 req.set_timeout(timeout);
 req.set_httpVerb(httpVerb);
 req.add_completed(OnWebRequestCompleted);
 req.set_url(url);

 // perform asynchronous server call
 req.invoke();
 }

 // executed when the message is received from the server
 function OnWebRequestCompleted(executor, eventArgs)
 {
 // if the request timed out...
 if(executor.get_timedOut())
 {
 responseDiv.innerHTML = "The request timed out!";
 }
 // if the request was aborted...
 else if(executor.get_aborted())
 {
 responseDiv.innerHTML = "The request aborted!";
 }
 // if the request completed successfully
 else if(executor.get_responseAvailable())
 {
 // use get_object() to deserialize response JSON data
 result = executor.get_object();

 // display the response
 responseDiv.innerHTML = result.response;
 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Introducing the Microsoft AJAX Library

[122]

 // restart sequence after one second
 setTimeout("makeWebRequest();", 1000);
 }
 </script>
</body>
</html>

5. Add a new Generic Handler file in your project, named
AtlasQuickstartServer.ashx.

6. The code in AtlasQuickstartServer.ashx is similar to Quickstart.aspx
that you created in Chapter 1, except that now we have a Generic Handler
instead of a Web Form, and we encode the server response in JSON format.
Here is the code of AtlasQuickstartServer.ashx:
<%@ WebHandler Language="C#" Class="AtlasQuickstartServer" %>

using System;
using System.Web;

public class AtlasQuickstartServer : IHttpHandler
{
 public void ProcessRequest(HttpContext context)
 {
 // declare the names that are recognized by the server
 string[] names = new string[] { "CRISTIAN", "BOGDAN",
 "YODA" };

 // retrieve the current name sent by the client
 string currentUser = context.Request.QueryString["name"] + "";

 // set the response content type
 context.Response.ContentType = "application/json";

 // declare the response string format, and the response text
 string response = "{{response:\"{0}\"}}";
 string responseText = "";

 // if the name is empty...
 if (currentUser.Length == 0)
 {
 responseText = "Stranger, please tell me your name!";
 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 4

[123]

 // if the typed name is in the names array
 else if (Array.IndexOf(names, currentUser.ToUpper().Trim())
 >= 0)
 {
 responseText = "Hello, master " + currentUser + "!";
 }
 // if the name is neither empty nor recognized
 else
 {
 responseText = currentUser + ", I don't know you!";
 }

 // fill in the response
 response = string.Format(response, responseText);

 // output the response
 context.Response.Write(response);

 // flush the response stream
 context.Response.Flush();
 }

 public bool IsReusable
 {
 get
 {
 return false;
 }
 }
}

7. Select AtlasQuickstart.html and execute it, or right-click on it, and choose
View in Browser.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Introducing the Microsoft AJAX Library

[124]

8. If you don't type anything in the text box, the message from the server will
read Stranger, please tell me your name!, as shown in Figure 4.6:

Figure 4-6. Sample output from AtlasQuickstart.html

9. Type John Doe in the box, and note the updated message received from the
server—see Figure 4-7:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 4

[125]

Figure 4-7. Server doesn't know John Doe

What Just Happened?
The example shows how to make simple web requests using the Microsoft AJAX
Library. As advertised, we'll go into the nitty gritty details of working with
this library starting with Chapter 5. You can test the example online at
http://www.cristiandarie.ro/asp-ajax/AtlasQuickstart.html.

The purpose of this exercise was to get you a first exposure to the Microsoft AJAX
Library. As you could see, the major difference between this example and the
Quickstart example presented in Chapter 1 is the client-side code.

Before looking at the code itself, here are a few conclusions we can draw straight away:

The Microsoft AJAX Library offers a powerful, event-based, and completely
object-oriented interface to the AJAX web development paradign. You
implemented the required functionality by handling a few events. You didn't
execute the XMLHttpRequest calls manually.
If all you need is to implement trivial AJAX functionality, you may be
better off without the Microsoft AJAX Library, which requires an additional
learning curve, plus 80 kilobytes for your visitors to load. Chapter 2 taught
you most of what you needed to know to do just that.

Let's analyze our project in detail now. The client requests are handled at the server
side by a Generic Handler named AtlasQuickstartServer.ashx. A Generic
Handler is an ASP.NET-supported file type, which can be used to write scripts that
don't need the typical functionality of .aspx Web Forms. In our case we only needed
a simple script that is able to output simple content depending on the parameter
received as the query string.

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Introducing the Microsoft AJAX Library

[126]

ASP.NET Web Forms (files with the .aspx extension) are essentially classes
that derive from System.Web.UI.Page. This is a powerful class that
contains the functionality needed to render web pages, and includes support
for features such as master pages, controls, code-behind files, and so on.
ASP.NET Generic Handlers (files with the .ashx extension), on the other
hand, don't derive from System.Web.UI.Page. This makes them useful
for creating web-accessible functionality without the overhead implied by
inheriting from Page.
Generic Handlers must implement the System.Web.IHttpHandler
interface. This interface contains two members: IsReusable—a Boolean
property that specifies whether the handler instance can be reused for
more requests, and ProcessRequest()—the method that executes when
the handler is loaded. When creating a new Generic Handler in Visual
Web Developer, you get a very simple handler template, which simply
outputs "Hello World".

You're already familiar with most of this script from the Quickstart exercise in
Chapter 1. Just as a short reminder, this script reads the name parameter sent through
the query string. For example, you could load this URL:

http://localhost/Atlas/AtlasQuickstartServer.ashx?name=Yoda

The script replies by packaging the response—this time in JSON format, such as:

{response:"Hello, master Yoda!"}

This output is created using the String.Format() method, and the following
formatting string (the curly bracket is doubled to lose its special meaning):

string response = "{{response:\"{0}\"}}";

Let's see what happens at the client side now. Your visitor loads AtlasQuickstart.
html, whose body is pretty simple. Apart from the input text box and the <div>
element where we write the response, we also have reference to the debug version of
the Microsoft AJAX Library script—MicrosoftAjax.debug.js.

 <form>
 <!-- load debug version of Microsoft AJAX Library -->
 <script type="text/javascript" src="Scripts/MicrosoftAjax.debug.
js"></script>

 <div>
 <h1>Microsoft AJAX Library: Quickstart</h1>

 Server wants to know your name:
 <input type="text" id="myName" />
 <h2>OnWebRequestCompleted</h2>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 4

[127]

 <div id="response"></div>
 </div>
 </form>

Later in AtlasQuickstart.html, we can find the JavaScript code that uses the
Microsoft AJAX Library to call AtlasQuickstartServer.ashx asynchronously.
The first thing we do is to obtain a reference to the <response> element from our
document, which we'll populate with the response received from the server:

 <script type="text/javascript">
 // get references to the response div element
 responseDiv = $get("response");

$get() is just a shortcut to the Sys.UI.DomElement.getElementById() function of
the Microsoft AJAX Library, which is basically a wrapper for the getElementById()
JavaScript function. In other words, $get() obtains a reference to the object with the
specified ID.

Remember that Appendix A contains the Microsoft AJAX Library API
reference. Use it when you need more details about classes or methods
in the Microsoft AJAX Library.

Next there is the pageLoad() function. Although it's not referenced anywhere else,
this is called automatically when the Microsoft AJAX Library loads. Here we call
makeWebRequest(), which starts calling the server.

 // initialize application
 function pageLoad()
 {
 // make web request
 makeWebRequest();
 }

The code in makeWebRequest() starts looking familiar and making some sense, at
last. This function makes the asynchronous request to AtlasQuickstartServer.
ashx, and sends the text typed by the visitor as a parameter. It starts by setting a
number of parameters that will be used for making the request: the timeout valuethe timeout value
in milliseconds, the URL to access, and the HTTP method. We use. We use $get() to read
the text typed by the visitor, and we use encodeURIComponent() to encode it for
transferring it safely to the server as a query string parameter:

 // set request parameters
 var param = "?name=" + encodeURIComponent($get("myName").value);
 var url = "AtlasQuickstartServer.ashx" + param;
 var timeout = 10000;
 var httpVerb = "GET";

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Introducing the Microsoft AJAX Library

[128]

Once these variables are set, we create the WebRequest object. This is the Microsoft
AJAX Library object that encapsulates all the functionality required to perform
asynchronous web requests. Although it is more complex than that, it's easy to see
that WebRequest is a wrapper for the XMLHttpRequest object. Instead of creating
XMLHttpRequest objects and performing the requests ourselves, now we create a
WebRequest object.

After creating the WebRequest object, you need to set the parameters that you've
just defined as variables: the URL to call, the timeout, and the HTTP method, which
in our case is GET because we're passing the parameters through the query string.
Additionally you set the event handler for the Completed event. This is similar
to setting the onreadystatechange() method of the XMLHttpRequest object. In
our case we set OnWebRequestCompleted() as the method to be called when the
response from the server is received:

 // create new WebRequest object and set its properties
 req = new Sys.Net.WebRequest();
 req.set_timeout(timeout);
 req.set_httpVerb(httpVerb);
 req.add_completed(OnWebRequestCompleted);
 req.set_url(url);

Finally, we call the invoke() method of WebRequest, which initiates the
asynchronous server call:

 // perform asynchronous server call
 req.invoke();
 }

The code in OnWebRequestCompleted() will also look familiar, as it's very similar to
the handleServerResponse() function you wrote in Chapter 2 to handle the server
response. This event handler is the one responsible for retrieving the response data.This event handler is the one responsible for retrieving the response data.
However, here we no longer manually verify the state and status code of the request
as we did before. Instead, we check properties of the executor parameter to find the
status of the request:

 // executed when the message is received from the server
 function OnWebRequestCompleted(executor, eventArgs)
 {
 // if the request timed out...
 if(executor.get_timedOut())
 {
 responseDiv.innerHTML = "The request timed out!";
 }
 // if the request was aborted...
 else if(executor.get_aborted())

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 4

[129]

 {
 responseDiv.innerHTML = "The request aborted!";
 }
 // if the request completed successfully
 else if(executor.get_responseAvailable())
 {
 ...
 }

If executor.get_responseAvailable() is true, then we know the response has
arrived successfully from the server. In this case we read the server's response using
the get_object() method of executor:

 // if the request completed successfully
 else if(executor.get_responseAvailable())
 {
 // use get_object() to deserialize response JSON data
 result = executor.get_object();

 // display the response
 responseDiv.innerHTML = result.response;
 }

In order to make your code totally bulletproof, you can also check for the
response code using get_responseCode(). The result of this method call
should be 200, indicating that the server successfully replied to the request. Note
that the get_object() method of WebRequestExecutor internally executes
JavaScriptSerializer.deserialize(), which is used to deserialize incoming
JSON data, so the highlighted line of code is equivalent to:

result = Sys.Serialization.JavaScriptSerializer.deserialize(executor.
get_responseData());

At the end of our OnWebRequestCompleted() function, we restart the sequence by
using setTimeout() to execute makeWebRequest() after one second:

 // restart sequence after one second
 setTimeout("makeWebRequest();", 1000);

More WebRequests
After going through the previous example, you could think that using WebRequest
isn't that different from working with XMLHttpRequest directly—but, that is because
we only scratched the functionality of the Microsoft AJAX Library.

In the exercise we handled the completed event of WebRequest to read the server
response. In the last little experiment for this chapter we will handle two events of
the WebRequestManager class: invokingRequest and completedRequest.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Introducing the Microsoft AJAX Library

[130]

Time for Action—More WebRequest
1. While still in the Atlas project, modify the pageLoad() function in

AtlasQuickstart.html like this:
 // initialize WebRequestManager on page load
 function pageLoad()
 {
 // create WebRequestManager and assign event handlers
 var wrm = Sys.Net.WebRequestManager;
 wrm.add_invokingRequest(OnWebRequestManagerInvoking);
 wrm.add_completedRequest(OnWebRequestManagerCompleted);

 // make web request
 makeWebRequest();
 }

2. Add the highlighted elements to the form:
 <div>
 <h1>Microsoft AJAX Library: Quickstart</h1>

 Server wants to know your name:
 <input type="text" id="myName" />
 <h2>OnWebRequestCompleted</h2>
 <div id="response"></div>

 <h2>OnWebRequestManagerInvoking</h2>
 <div id="responseWRMI"></div>

 <h2>OnWebRequestManagerCompleted</h2>
 <div id="responseWRMC"></div>
 </div>

3. Obtain references to the new <div> elements by writing this code:
 <script type="text/javascript">
 // get references to the response div element
 responseDiv = $get("response");
 responseWRMIDiv = $get("responseWRMI");
 responseWRMCDiv = $get("responseWRMC");

4. Add the following two event handlers, before the closing </script> tag:
 function OnWebRequestManagerInvoking(sender, eventArgs)
 {
 var req = eventArgs.get_webRequest();

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 4

[131]

 responseWRMIDiv.innerHTML =
 "Date: " + new Date().toString() + "
" +
 "URL : " + req.getResolvedUrl() + "
" +
 "Timeout : " + req.get_timeout() + "
" +
 "Method : " + req.get_httpVerb() + "
";
 }

 function OnWebRequestManagerCompleted(executor, eventArgs)
 {
 responseWRMCDiv.innerHTML =
 "Date: " + new Date().toString() + "
" +
 "Timed out: " + executor.get_timedOut() + "
" +
 "Aborted: " + executor.get_aborted() + "
";

 if (executor.get_responseAvailable())
 {
 responseWRMCDiv.innerHTML +=
 "Status code: " + executor.get_statusCode() + "
" +
 "Status text: " + executor.get_statusText() + "
" +
 "Headers: " + executor.getAllResponseHeaders()+ "
";
 }
 }

5. Load the application again, type Yoda, and expect to see the results shown in
Figure 4-8.

Figure 4-8: Reading more data about the request

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Introducing the Microsoft AJAX Library

[132]

What Just Happened?
We used the page's load event to register the event handlers for
WebRequestManager's invokingRequest and completedRequest events.

 // create WebRequestManager and assign event handlers
 var wrm = Sys.Net.WebRequestManager;
 wrm.add_invokingRequest(OnWebRequestManagerInvoking);
 wrm.add_completedRequest(OnWebRequestManagerCompleted);

The event handler for the invokingRequest event simply logs all the details for
the web request: URL, timeout, and the HTTP method. Our event handler displays
this data:

 function OnWebRequestManagerInvoking(sender, eventArgs)
 {
 var req = eventArgs.get_webRequest();

 responseWRMIDiv.innerHTML =
 "Date: " + new Date().toString() + "
" +
 "URL : " + req.getResolvedUrl() + "
" +
 "Timeout : " + req.get_timeout() + "
" +
 "Method : " + req.get_httpVerb() + "
";
 }

The handler for the completedRequest event logs data about the response: whether
it is timed out or not, whether it is aborted or not, the response code, the response
text, and all the response headers:

 function OnWebRequestManagerCompleted(executor, eventArgs)
 {
 responseWRMCDiv.innerHTML =
 "Date: " + new Date().toString() + "
" +
 "Timed out: " + executor.get_timedOut() + "
" +
 "Aborted: " + executor.get_aborted() + "
";

 if (executor.get_responseAvailable())
 {
 responseWRMCDiv.innerHTML +=
 "Status code: " + executor.get_statusCode() + "
" +
 "Status text: " + executor.get_statusText() + "
" +
 "Headers: " + executor.getAllResponseHeaders()+ "
";
 }
 }

During the life cycle of a request these two methods will provide information about
the request's general information.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 4

[133]

Summary
Wasn't this chapter short! You've learned about the main architectural principles
built into the Microsoft AJAX Library, and you now know about its main
components. We also touched a bit on the asynchronous communication features
in the library. In Chapter 5, you'll continue your journey by investigating the inner
details of this library.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

OOP with the Microsoft AJAX
Library

Microsoft AJAX Library is a large set of functions that can be used for developing
powerful client-side functionality. This chapter will help you understand the
environment created by those functions, and how to adapt to it when writing your
own code. You will learn the architectural fundamentals that make the Microsoft
AJAX Library work, and you'll test its features in a few small projects.

The developers of the Microsoft AJAX Library have invested a lot of effort to create,
with JavaScript, an environment that is similar—to the extent that is possible—to the
.NET framework. You will find support for the major features you'd expect to find in
a professional development environment: namespaces, interfaces, class and interface
inheritance, properties and events, and more.

Please remember to use Appendix A for detailed reference for the classes discussed.for detailed reference for the classes discussed.
The official reference at http://ajax.asp.net/docs/ will also be helpful for
the areas that we couldn't afford to cover with enough depth. At the end of this
chapter, you will have a good understanding of the following aspects of the
Microsoft AJAX Library:

The JavaScript base classes extensions
The Type system
Namespaces
Inheritance and interfaces
Properties and events
Enumerations

Let's get started!

•

•

•

•

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

OOP with the Microsoft AJAX Library

[136]

The New Features
We hope the list of features you'll learn in this chapter didn't look very intimidating!
To get you accustomed to the world of the Microsoft AJAX Library, let's have a
high-level look at these features, before discussing at length the details:

Classes in JavaScript are reference types derived from Object.
Reflection is supported through Type, which is a special class that defines an
extended area of features available implicitly to all classes written within the
Microsoft AJAX Library ecosystem.
JavaScript Base Classes Extensions (Array, Boolean, Date, Error, Number,
Object, String) are classes that represent the basic data types exposed by
the Microsoft AJAX Library and that extend those in JavaScript.
Namespaces, just like in .NET, offer the means for grouping classes in a hierachical
fashion, for improved project management and type collision avoidance.
Inheritance, interfaces, and enumerations are also supported or enhanced by the
Microsoft AJAX Library.
Properties and events are supported through special conventions for naming
and using them.

The fact that Microsoft AJAX Library introduces classes, namespaces, inheritance,
interfaces, properties, events, enumerations, and reflection, might not seem much.
However, in comparison to what JavaScript offers by default, there's quite a great
deal of new functionality at your disposal.

JavaScript Base Classes Extensions
The Microsoft AJAX Library base classes are: Array, Boolean, Date, Error, Number,
Object, andand String. For detailed reference, apart from Appendix A, we recommend
that you check the cheat sheets published at http://aspnetresources.com/.
The complete links are too long to type, but you can easily find them googling for
"microsoft ajax cheat sheet".

You create objects of a base class the same way you create other kinds of objects. For
example, here's how you create an array of three string elements:

var myArray = new Array("one", "two", "three");

JavaScript's loose typing, although admittedly feeling a bit unnatural to many .NET
programmers, has its advantages when it comes to coding flexibility. For example,
you can create arrays containing objects of any type. Moreover, each array element
can be of any type. The flip side is that you need to be careful when the data type is
not clear. For example, take this array:

var myArray = new Array("12/23/1980");

•
•

•

•

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5

[137]

Although it may look like a date, this is an array that contains one string. Trying
to use myArray[0] as a Date will have unexpected results because Date-specific
methods aren't recognized by strings, and those that are have different functionality.
To store the date as a Date, you would need to do something like this:

var myDate = Date.parseInvariant("1980/12/23", "yyyy/MM/dd");
var myArray = new Array(myDate);

This time, the array contains a Date object, thus inheriting all functionality provided
by the Date type.

To demonstrate some typical coding involving base classes extensions, we'll go
thourgh a simple example where we use the Bubble Sort algorithm to sort an array of
dates, in ascending order of the date.

Bubble Sort is one of the simplest sorting algorithms to implement. It
involves parsing the list of elements multiple times, comparing each
element with the one that comes after it, and swapping their values if
needed. The process is repeated until no swaps happen when parsing the
entire list.

Note that Bubble Sort isn't one of the most efficient sorting algorithms, but we're
using it in this exercise for its simplicity. If you're not familiar with this algorithm,
we recommend that you read its description at http://en.wikipedia.org/wiki/
Bubble_sort.

Time for Action: Bubble Sort and Base Classes Extensions
1. Open the http://Atlas/ website in Visual Web Developer.
2. Make sure you have the Microsoft AJAX Library files in your Scripts folder,

as instructed in the first exercise of Chapter 4.
3. Create a new HTML Page file in your project named BubbleSort.html.
4. Modify the generated template for BubbleSort.html like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Microsoft AJAX Framework: Base Classes Extensions
 and Bubble Sort</title>
 <script src="Scripts/MicrosoftAjax.js" type="text/javascript">
 </script>
 <script src="Scripts/BubbleSort.js" type="text/javascript">
 </script>
</head>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

OOP with the Microsoft AJAX Library

[138]

<body>
 <h1>Base Classes Extensions and Bubble Sort
 with the Microsoft AJAX Library</h1>

 <p>Here are the original dates:</p>
 <div id="originalDates"></div>

 <p>Here are the sorted dates:</p>
 <div id="sortedDates"></div>

 <script language="JavaScript">
 // executed by MS AJAX Library on page load
 function pageLoad()
 {
 bubbleSort();
 }
 </script>
</body>
</html>

5. Create a new JScript File in the Scripts folder, named BubbleSort.js, and
type this code in:
// sorts dates using bubble sort algorithm
function bubbleSort()
{
 // get reference to the div elements
 originalDiv = $get("originalDates");
 sortedDiv = $get("sortedDates");

 // define an array of strings containing dates
 var dateArr = new Array(
 Date.parseInvariant("08/13/1981", "MM/dd/yyyy"),
 Date.parseInvariant("12/23/1984", "MM/dd/yyyy"),
 Date.parseInvariant("04/22/1977", "MM/dd/yyyy"),
 Date.parseInvariant("09/22/1979", "MM/dd/yyyy"));

 // display the original dates
 for (i=0; i<dateArr.length; i++)
 originalDiv.innerHTML +=
 dateArr[i].format("dddd, dd MMMM yyyy
");

 // bubble sort the dates
 do
 {
 // initialize swapped to false
 swapped = false;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5

[139]

 // bubble sort
 for (i=0; i<dateArr.length - 1; i++)
 {
 // if condition is met, swap dates and set the swapped flag
 if (dateArr[i] > dateArr[i+1])
 {
 tempDate = dateArr[i];
 dateArr[i] = dateArr[i+1];
 dateArr[i+1] = tempDate;
 swapped = true;
 }
 }
 }
 while (swapped);

 // display the sorted dates
 for (i=0; i<dateArr.length; i++)
 sortedDiv.innerHTML +=
 dateArr[i].format("dddd, dd MMMM yyyy
");
}

6. Load http://localhost/Atlas/BubbleSort.html. You should get the You should get the
results shown in Figure 5-1.

Figure 5-1. Testing the base classes extensions in the Microsoft AJAX Library

http://lib.ommolketab.ir
http//lib.ommolketab.ir

OOP with the Microsoft AJAX Library

[140]

What Just Happened?
This little exercise demonstrated a few relevant ways of working with Microsoft
AJAX Framework's base classes extensions. You can test it online at
http://www.cristiandarie.ro/asp-ajax/BubbleSort.html.

The HTML page, BubbleSort.html, contains these essential elements: contains these essential elements:

Two <div> elements that we use to display the original and sorted dates
A reference to BubbleSort.js, which contains our bubble sort codewhich contains our bubble sort code
A reference to MicrosoftAjax.js, which contains the Microsoft AJAX Library which contains the Microsoft AJAX Library
A function named pageLoad() that the Microsoft AJAX Library calls onthat the Microsoft AJAX Library calls on
page load

The BubbleSort.js file contains just one function, named bubbleSort(), which is
executed from pageLoad() of BubbleSort.html:

 <script language="JavaScript">
 // executed by MS AJAX Library on page load
 function pageLoad()
 {
 bubbleSort();
 }
 </script>
</body>
</html>

The bubbleSort() function starts by using $get to obtain references to the two
<div> elements, originalDates and sortedDates. These are used to display the
original dates and the sorted dates. (Remember that $get() is a shortcut to the
Sys.UI.DomElement.getElementById() function of the Microsoft AJAX Library,
which is basically a wrapper for the getElementById() JavaScript function.)

function bubbleSort()
{
 // get reference to the div elements
 originalDiv = $get("originalDates");
 sortedDiv = $get("sortedDates");

Next, we created an array of Date objects. As you can read from the reference
in Appendix A, Date contains quite a few useful methods. This time we've used
parseInvariant(), which takes as parameter a string in the specified format, and
transforms it into a Date.

•

•

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5

[141]

 // define an array of strings containing dates
 var dateArr = new Array(
 Date.parseInvariant("08/13/1981", "MM/dd/yyyy"),
 Date.parseInvariant("12/23/1984", "MM/dd/yyyy"),
 Date.parseInvariant("04/22/1977", "MM/dd/yyyy"),
 Date.parseInvariant("09/22/1979", "MM/dd/yyyy"));

Once the Array is created, we display its elements. You can see how we parse the
array, and how we call the format() function on each Date element of the array, to
display the date as a string.

 // display the original dates
 for (i=0; i<dateArr.length; i++)
 originalDiv.innerHTML +=
 dateArr[i].format("dddd, dd MMMM yyyy
");

Next, the Bubble Sort algorithm is implemented to sort the array in ascending order
of the dates. The detail to notice here is the direct comparison we're making between
two array elements. Because the array elements are Date objects, the comparison isn't
a string comparison, but a date comparison!

 // if condition is met, swap dates and set the swapped flag
 if (dateArr[i] > dateArr[i+1])
 {
 tempDate = dateArr[i];
 dateArr[i] = dateArr[i+1];
 dateArr[i+1] = tempDate;
 swapped = true;
 }

At the end, we display the sorted list, this time in the <sortedDates>sortedDates> div element.

We used the release version of the Microsoft AJAX Library (MicrosoftAjax.js).
Feel free to use the debug version instead (MicrosoftAjax.debug.js). The
differences between these versions of the library are:

The debug version contains de-obfuscated, readable code. The release
version is stripped of all spaces and comments to be smaller for download.
The debug version contains XML descriptions for some functions, to be used
by the IntelliSense features of Visual Studio "Orcas" edition.
The debug version verifies function parameters using
Function._validateParams().

We hope you enjoyed this little example. You'll meet more examples of working with
the base classes in the following pages.

•

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

OOP with the Microsoft AJAX Library

[142]

Classes in Microsoft AJAX Library
You've learned about JavaScript classes and objects in Chapter 3. Here we're
providing a quick refresher, with additional details as they relate to the features of
Microsoft AJAX Library.

In JavaScript, classes are reference types that derive from JavaScript'sclasses are reference types that derive from JavaScript's Object.
Classes can have four types of members: fields, properties, methods, and events.

Fields and properties have the same meaning as in C#. Public fields hold the state
of an object of the class. Properties are mechanisms that offer getter and setter
functions for retrieving and modifying field values, which is useful when additional
code needs to run when setting or reading a field value. When a property is created
to expose a field, the field's value should only be accessed through that property.
This restriction is by convention only; field values can be accessed directly, but the
convention requires using the getter and setter methods.

Because we use conventions, the implementation will differ from what you see in a
class diagram. The class field that stores the property value is named with a leading
underscore (_), suggesting that it's not meant to be accessed directly. The getter and
setter methods are prefixed with get_ and set_ followed by the property name.
For example, a property called name could be implemented like this:

this._name = myvalue;
...
get_name: function(){
 return this._name;
},
set_name: function(value){
 this._name = value;
}

Methods are functions inside a class. The term comes from the OOP world, but in
the case of JavaScript, methods are implemented as functions.

Events represent notifications that an action has occurred. The implementation
for events in JavaScript is very similar to the one chosen in the .NET case. If you
aren't familiar with the .NET implementation, please refer to the OOP tutorial you
can download at http://www.cristiandarie.ro/downloads/. Having in mind
the approach chosen in .NET, the implementation for an event named change in
JavaScript looks like this:

this._events = new Sys.EventHandlerList();
...
add_change: function(handler) {
 this.get_events().addHandler("change", handler);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5

[143]

},
// unregister a change event handler
remove_change: function(handler) {
 this.get_events().removeHandler("change", handler);
}

When an event is raised, one or more functions, called event handlers, can be invoked
in response. Handlers can be registered and deregistered from an event. Each event
handler would typically have a signature like the following:

function MyHandler(source, eventArgs)

Here, source represents the object that raised the event, and eventArgs contains an
object derived from Sys.EventArgs as the parameters for our event. As can be easily
seen, this closely matches the .NET implementation of event handlers.

Events are implemented by using the Sys.EventHandlerList class in a similar
fashion to the classic .NET approach. This class is mapped as a property having only
a getter accessor, so we cannot modify (by convention) the default reference to
Sys.EventHandlerList. The exercises that follow will demonstrate these concepts The exercises that follow will demonstrate these concepts
in practice.

The Type, Namespaces, and Events
The Microsoft AJAX Library contains a special class named Type (which is an alias
for JavaScript's Function constructor), which defines a set of properties and methods
that provide typing and type-reflection capability, and other common features
required when building ASP.NET AJAX applications. Type provides these features:

Typing system and type-reflection
Namespace registration
Registration of classes, interfaces, and enumerations

As in typical .NET development, namespaces offer the means for avoiding type
collision, and are used as containers for classes. They provide a simple yet efficient
way to group common functionality implemented in classes in tree-like structures.
It takes less effort to narrow our search when finding a class when guided by
the namespaces at each step. Searching inside the current namespace is certainly
easier than having to search in the global namespace that might contain hundreds
of classes. In order to create a new namespace and to register it, we use the
registerNamespace() static method of Type:

Type.registerNamespace("Samples");

•

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

OOP with the Microsoft AJAX Library

[144]

Namespaces are registered as property objects of the JavaScript's window object. This
means they become available to all the running scripts. Root namespaces like the one
defined on the previous page are also registered in the __rootNamespaces property
of the window object. This property is an array of all the registered root namespaces
allowing us to declare nested namespaces that are registered as properties of their
parent namespaces (rather than as properties of the window object). For example, we
can declare the following nested namespace:

Type.registerNamespace ("Samples.Chapter5");

In this case, the Chapter5 namespace will be added as an Object property to the
Samples entry in the __rootNamespaces array.

In the exercise that follows, we will build a class (Person) that exposes a single
property (name) and a single event (change). The name property can be read or
modified through the get_name() and set_name() accessor methods. As you know,
it is possible to register several event handlers for the same event. To demonstrate
this, we will register programmatically two event handlers for the change event.
These functions will execute when the change event is fired, and we will see how our
event handlers are notified. Use Figure 5-2 as reference, and proceed to the exercise.Use Figure 5-2 as reference, and proceed to the exercise.

Figure 5-2. Person class diagram

Time for Action—Creating and Using the Person Class
1. Open your Atlas project in Visual Web Developer and add a HTML Page

named Person.html.
2. Update the generated code in Person.html as shown in the following

code snippet:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5

[145]

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" >
<head>
 <title>Microsoft AJAX Library: Classes and Namespaces</title>
 <script type="text/javascript" src="Scripts/MicrosoftAjax.js">
 </script>
</head>
<body>
 <script type="text/javascript" src="Scripts/Person.js">
 </script>
 <script type="text/javascript" src="Scripts/PersonTest.js">
 </script>

 <textarea id="TraceConsole" cols="70" rows="10"></textarea>

 <script type="text/javascript">
 function pageLoad()
 {
 loadPersonTest();
 }
 </script>
</body>
</html>

3. Add a JScript File named Person.js to the Scripts folder, and type the
following code in. This file contains the Person class, and it registers this
class under a namespace named AjaxTutorial. We'll add all the classes
we create in this chapter to the AjaxTutorial namespace, to keep our code
structure tidy.
// register a new namespace
Type.registerNamespace("AjaxTutorial");

// create the Person class and constructor
AjaxTutorial.Person = function(name)
{
 // initialize person name
 this._name = name;

 // notify person creation
 Sys.Debug.trace("Person created: " + name);
}

// define the instance members of the person class
AjaxTutorial.Person.prototype =
{

http://lib.ommolketab.ir
http//lib.ommolketab.ir

OOP with the Microsoft AJAX Library

[146]

 // getter function for the name property
 get_name: function() {
 return this._name;
 },

 // setter function for the name property
 set_name: function(value) {
 if(value != this._name) {
 // set the new name and raise the change event
 this._name = value;
 this._raiseEvent("change");
 }
 },

 // returns the events of the class
 get_events: function() {
 if (!this._events) {
 this._events = new Sys.EventHandlerList();
 }
 return this._events;
 },

 // raises an event
 _raiseEvent: function(eventName, eventArgs) {
 // obtain the event handler for the specified event name
 var handler = this.get_events().getHandler(eventName);

 // continue only if there is at least one registered handler
 if (handler) {
 // if no event args have been supplied, create empty
 //EventArgs
 if (!eventArgs) eventArgs = Sys.EventArgs.Empty;
 // call the event handlers
 handler(this, eventArgs);
 }
 },

 // register a change event handler
 add_change: function(handler) {
 this.get_events().addHandler("change", handler);
 },

 // unregister a change event handler
 remove_change: function(handler) {
 this.get_events().removeHandler("change", handler);
 }
}

// register the Person class
AjaxTutorial.Person.registerClass("AjaxTutorial.Person");

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5

[147]

4. Add a new JScript file to the project named PersonTest.js, and type the
following code:
// tests the functionality of the Person class
function loadPersonTest()
{
 // create a Person named Mike
 var Mike = new AjaxTutorial.Person("Mike");

 // register two handlers for the change event
 Mike.add_change(OnChangeHandler);
 Mike.add_change(OnChange2Handler);

 // change the name, causing the change event to fire
 Mike.set_name("Michael");

 // remove one event handler
 Mike.remove_change(OnChange2Handler);

 // change the name again
 Mike.set_name("Mike");
}

// handler for Person's change event
function OnChangeHandler(sender, args)
{
 Sys.Debug.trace("OnChangeHandler: The name has changed to: " +
 sender.get_name());
}

// another handler for Person's change event
function OnChange2Handler(sender, args)
{
 Sys.Debug.trace("OnChange2Handler: The name has changed to: " +
 sender.get_name());
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

OOP with the Microsoft AJAX Library

[148]

5. Execute your application or choose View in Browser from the context menu of
Person.html. You should get the output shown in Figure 5-3.

Figure 5-3. Working with Namespaces and Events

What Just Happened?
You can test the page online at http://www.cristiandarie.ro/asp-ajax/
Person.html. Let's see what the messages displayed by the application represent. The
application is made of one HTML file—Person.html, and three external JavaScript
files: Person.js, PersonTest.js, and (unsurprisingly) MicrosoftAjax.js.

The pageLoad() function in Person.html is automatically executed by the Microsoft
AJAX Library, and it calls in turn the loadPersonTest() function in order to test our
Person class:

 <script language="javascript">
 function pageLoad()
 {
 loadPersonTest();
 }
 </script>

Person.js contains the definition of a class named Person, located in a namespace
named AjaxTutorial. PersonTest.js is a script file that we use to test the
functionality of the Person class. Let's analyze these files one at a time.

Person.js starts by registering the AjaxTutorial namespace. This is not strictly
related to the Person class, but since Person is part of the AjaxTutorial namespace,
we think it's easier to define AjaxTutorial here instead of creating a separate
JavaScript file for it. If you create more classes, in separate files, but in the same
namespace, it's safe to register that namespace multiple times, in each of those
files—the Microsoft AJAX Library will only register the namespace once.

// register a new namespace
Type.registerNamespace("AjaxTutorial");

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5

[149]

After registering the namespace, we created the Person class, according to the
diagram you saw earlier in Figure 5-2. The class has a private field called _name,
which stores the person's name, and which is accessible through a property called
name. Because there's no support for properties in JavaScript as there is in C#, the
name property is implemented in practice through getter/setter functions, which are
called get_name() and set_name().

The class diagram also shows a private method called _raiseEvent(), which is used which is used
to raise events, and the change event. In practice we implement the support for the
change event through getter/setter functions named add_change() and remove_
change(), and the getter method named get_events(), which returns an object which returns an object
representing the class's list of events.

We try to use the coding conventions used by the developers of the
Microsoft AJAX Library. We name private members of a class starting
with an underscore, such as _name or _raiseEvent(). Note that these
fields are only private by convention, because in practice they are public
members. Getter and setter functions for properties are named like
get_propertyName and set_propertyName. For events, they are named
add_eventName, remove_eventName, and get_events(). The rest of the
functions and fields are named using camel casing, where the first letter
of each word is in upper case except the first—as in _raiseEvent().
Class names use Pascal casing, where the first letter of each word is in
upper case, as in Person.

Let's get back to the implementation now. After creating the AjaxTutorial
namespace, we created the body of the Person function, which implements the
Person class and also serves as its constructor. (Please review the OOP theory in
Chapter 3 if this sounds awkward to you.)

// create the Person class and constructor
AjaxTutorial.Person = function(name)

The class receives as parameter the person's name, and is meant to be instantiated
like this:

// create a Person named Mike
var Mike = new AjaxTutorial.Person("Mike");

Note that unlike in .NET languages such as C# and VB.NET, you can't
import a namespace, and refer to its classes without appending the
namespace name. With Microsoft AJAX Library, you must always use
the fully qualified name of a class, which includes its entire namespace
hierarchy. In our particular case, the Person class needs to be referred to
as AjaxTutorial.Person.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

OOP with the Microsoft AJAX Library

[150]

To understand how the class instantiation works, let's further analyze the definition
of AjaxTutorial.Person. As you know, in JavaScript the function definition also
functions as its constructor. The parameter name is a parameter that the class receives
when it's instantiated. We save its value to a private field, so that a Person instance
will retain its name:

// create the Person class and constructor
AjaxTutorial.Person = function(name)
{
 // initialize person name
 this._name = name;

 // notify person creation
 Sys.Debug.trace("Person created: " + name);
}

Apart from saving the name, the constructor also displays a message on the
<TraceConsole>TraceConsole> element using Sys.Debug.trace() to acknowledge execution (for
debugging purposes).

What's Sys.Debug.trace()? This is one of the static functions of the
Debug class, which displays debugging data to a <textarea> element
of the page that must be called TraceConsole. As you can see, we
have such an element in Person.html. Review Chapter 7 for more
information on the debugging features of Microsoft AJAX Library; for
now, suffice to say that we have an easy way to output testing data.

Next, we extend Person using its prototype object, to add property, event, and
function definitions to the class. The first definitions we add are those for the get_
name() and set_name() functions. These are the getter and setter functions for our
person's name property, which is stored internally into a "private" field called _name.
This way, when get_name() is called, it returns the value of _name, and when set_
name() is called, its argument is saved as _name, but only if it's different than the
already existing name. Also, when setting a new name the change event is fired:

// define the instance members of the person class
AjaxTutorial.Person.prototype =
{
 // getter function for the name property
 get_name: function() {
 return this._name;
 },

 // setter function for the name property
 set_name: function(value) {
 if(value != this._name) {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5

[151]

 // set the new name and raise the change event
 this._name = value;
 this._raiseEvent("change");
 }
 },

Then we have two methods that support class event handling (get_events(),
_raiseEvent()), and two methods that deal particularly with the change event
(add_change() and remove_change()).

When events are involved, there are always two parties involved: the
class that generates (fires) the events, and the class that is listening to
those events. In our scenario, Person is the class that generates (fires)
events, and the event handlers are functions in the classes that use
Person, and listen to its events. We've tested the Person class, and
listened to its events, in the PersonTest.js file. The class or program
that listens to events (PersonTest.js), informs the class that throws
the events (Person) of one or more event handlers, which are methods
to be executed when the event happens. In other words, to fire events, the
Person class simply executes one or more methods in PersonTest.js.
For each event, one or more event handlers can be registered.

When adding an event to a JavaScript class, you need to take care of five things:

Declare an add_eventName method in order to enable adding handlers to
the event
Declare a remove_eventName method in order to enable removing handlers
from the event
Create a helper function named get_events() that creates and returns an
event handler list (Sys.EventHandlerList) for the class.
Declare the _raiseEvent() function that raises events
Use the _raiseEvent() function to raise the event whenever necessary

Let's see get_events() first. While it's not necessary to create a special function for
creating a new Sys.EventHandlerList, we choose to do so to keep the code clean.
This function is by convention the getter function of a read-only property named
events. We'll find ourselves calling get_events() whenever we need to manipulate
the events of our class.

 // returns the events of the class
 get_events: function() {
 if (!this._events) {
 this._events = new Sys.EventHandlerList();
 }
 return this._events;
 },

•

•

•

•
•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

OOP with the Microsoft AJAX Library

[152]

The code is quite straightforward: we check if we already have a Sys.
EventHandlerList object in the _events field. If not we declare it and hold it in a
private field named _events. The object is then returned to the caller.

The Sys.EventHandlerList class manages a dictionary containing
events as keys, and their corresponding handlers as an array of values. It
contains three methods: addHandler() adds a new handler for the id
event, removeHandler() removes a handler from the list of handler for
the id event, and getHandler() returns a function that can be invoked
to call all the handlers for the id event. This class is extensively used
when dealing with custom Microsoft AJAX Library components, but in
our case we will use it only to keep track of the events and their handlers
for our simple person example.

The _raiseEvent() function fires an event. When this happens, the handlers for the
event need to be executed. It receives two parameters: a string containing the name
of the event, and a class derived from the EventArgs object containing the details
(arguments) of the event. The function retrieves a method that calls all the handlers
of the event, and invokes it. The function is obtained using getHandler():

 // raises an event
 _raiseEvent: function(eventName, eventArgs) {
 // obtain the event handler for the specified event name
 var handler = this.get_events().getHandler(eventName);

Next, if there is at least one handler for the event, it's executed by supplying the
class instance—which is the object firing the event, mentioned using the this
keyword—and the list of arguments in the form of an EventArgs object. If no
additional arguments are needed for the event handler, we supply an empty list of
arguments in the form of Sys.EventArgs.Empty. This is the standard way of firing
events from a class using the Microsoft AJAX Library:

 // continue only if there is at least one registered handler
 if (handler) {
 // if no event args have been supplied, create empty EventArgs
 if (!eventArgs) eventArgs = Sys.EventArgs.Empty;

 // call the event handlers
 handler(this, eventArgs);
 }
 },

Once get_events() and _raiseEvent() are in place, the getter/setter methods
for the change event—namely add_change() and remove_change(), are easy to
implement. They are simple wrappers for EventHandlerList's addHandler() and

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5

[153]

removeHandler() methods. The EventHandlerList object for our object is returned
by get_events(). These methods receive the name of the event, and the event
handler to register or unregister for that event.

 // register a change event handler
 add_change: function(handler) {
 this.get_events().addHandler("change", handler);
 },

 // unregister a change event handler
 remove_change: function(handler) {
 this.get_events().removeHandler("change", handler);
 }

Remember that an event can have multiple event handlers registered. Typically there
will be methods of various classes or programs using our class, but in our case we'll
use a single program—the code in PersonTest.js—to register and use two event
handlers for the change event of Person.

After creating the Person class, we register it using the registerClass() method,
which is provided by Type. Class registration is somewhat similar to namespace
registration. Each class name is put inside the __registeredTypes and __classes
fields of the window object offering the means to avoid registering two classes or
types with the same name.

// register the Person class
AjaxTutorial.Person.registerClass("AjaxTutorial.Person");

This gets us to PersonTest.js, which, at least compared to the Person class,
contains fairly easy code. Once the foundations have been programmed, it's easy
to use them. PersonTest.js contains three functions: loadPersonTest() is the
function that we call from Person.html at load time; OnChangeHandler() and
OnChange2Handler() are the two event handlers that we register for Person's
change event.

loadPersonTest() starts by creating an instance of the AjaxTutorial.Person class,
named Mike. Note that unlike with C#, if a class has been created in a namespace, it
has to be always instantiated (and referred to) using the fully qualified name. This
is due to the fact that in Microsoft AJAX Library there is no keyword like using that
we find in C#. Then loadPersonTest() registers two event handlers for the change
event. By convention, this is done using add_eventName functions:

// tests the functionality of the Person class
function loadPersonTest()
{
 // create a Person named Mike

http://lib.ommolketab.ir
http//lib.ommolketab.ir

OOP with the Microsoft AJAX Library

[154]

 var Mike = new AjaxTutorial.Person("Mike");

 // register two handlers for the change event
 Mike.add_change(OnChangeHandler);
 Mike.add_change(OnChange2Handler);

After adding the event handlers, we change the person's name:

 // change the name, causing the change event to fire
 Mike.set_name("Michael");

 // remove one event handler
 Mike.remove_change(OnChange2Handler);

 // change the name again
 Mike.set_name("Mike");
}

At this moment, both the change event fires, and the two event handlers that listen
to this event are executed. OnChangeHandler() and OnChange2Handler() have
minimal implementations—all they do is to display a message on the <messages>
element, so that we can test they were indeed executed as planned, as we could see
in Figure 5-3.

At the end in loadPersonTest(), also for testing purposes, we called Mike.remove_
change() to remove one event handler, and changed the person's name again, to test
that the second time only the first event handler is executed.

Inheritance
You're already familiar with the concept of inheritance. As an ASP.NET developer
you know how inheritance works with C#, and you've learned about inheritance
with JavaScript in Chapter 3.

The Microsoft AJAX Library implements a more involved mechanism for
achieving inheritance. The Type class contains five register methods
(registerBaseMethod(), registerClass(), registerInterface(),
registerNamespace(), registerEnum()), which are used to initialize several fields which are used to initialize several fields
such as the type name, the list of interfaces it implements, and the list of base classes.

When registering a class we can specify a base class and also an array of interfaces
it implements. This additional information is stored inside the registered class's
__baseType and __interfaces fields, and is used to implement the inheritance
mechanism and to check for the correct use of base classes and interfaces.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5

[155]

The initializeBase() method is responsible for creating the impression of
inheritance. You usually call this method in the first line of the constructor of your
class, and it executes the constructor of the base class and loads all the members of
the base class. This mechanism, as implemented by the Microsoft AJAX Library,
provides some improvements on the default JavaScript approach for inheritance.

The isInstanceOfType() and inheritsFrom() methods that your classes inherit
from Type can be used to test if an object is of a specified type, or if a class derives
from another (this is where the __baseType and __interfaces fields are used). For
example, Person.isInstanceOfType(myObject) will return true if myObject is a
Person object.

In the following exercise we'll create a new class named SmartPerson that inherits
from Person, and adds a property named iq, which stores the person's IQ. The
relationship between Person and SmartPerson is described in the class diagram in
Figure 5-4.

Figure 5-4. Diagram representing SmartPerson inheriting from Person

We will also use inheritance to create a class named
PersonPropertyChangedEventArgs, which derives from Sys.
PropertyChangedEventArgs, and contains the old and new values of a change
event. This class is created before calling _raiseEvent() in Person and will be
passed as the second parameter when firing the change event. The class exposes
three read-only properties:

propertyName: will contain the name of the property that changed (inherited
from Sys.PropertyChangedEventArgs)
oldValue: will contain the property value before the change
newValue: will contain the property value after the change

•

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

OOP with the Microsoft AJAX Library

[156]

This new class is presented below in Figure 5-5.

Figure 5-5. Diagram representing AjaxTutorial.PersonPropertyChangedEventArgs inheriting from

Sys.PropertyChangedEventArgs

Let's implement and use the PersonPropertyChangedEventArgs and SmartPerson
classes in a Time for Action exercise, and we'll discuss the details afterwards.

Time for Action—Implementing Inheritance using Microsoft
AJAX Library

1. Create a JScript file in your Scripts folder named Utils.js, and type the
following code in.
// register namespace
Type.registerNamespace("AjaxTutorial");

// create PersonPropertyChangedEventArgs class and constructor
AjaxTutorial.PersonPropertyChangedEventArgs = function(
 propertyName, oldValue, newValue)
{
 // initialize the base class
 AjaxTutorial.PersonPropertyChangedEventArgs.initializeBase(
 this, [propertyName]);

 // initialize oldValue and newValue property values
 this._oldValue = oldValue;
 this._newValue = newValue;
}

// create the members of PersonPropertyChangedEventArgs
AjaxTutorial.PersonPropertyChangedEventArgs.prototype =

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5

[157]

{
 // get accessor for oldValue property
 get_oldValue: function(){
 return this._oldValue;
 },

 // get accessor for newValue property
 get_newValue: function(){
 return this._newValue;
 }
}

// register the class mentioning the base class
AjaxTutorial.PersonPropertyChangedEventArgs.registerClass(
 "AjaxTutorial.PersonPropertyChangedEventArgs",
 Sys.PropertyChangedEventArgs);

2. Create a new file in your Scripts folder named SmartPerson.js, and type
the following code in.
// create the SmartPerson class and its constructor
AjaxTutorial.SmartPerson = function(name, iq)
{
 // call the Person base class constructor
 AjaxTutorial.SmartPerson.initializeBase(this, [name]);
 this._iq = iq;

 // notify SmartPerson creation
 Sys.Debug.trace(
 String.format("{0} was created with an IQ of {1}",
 this.get_name(), this.get_iq()));
}

// register the SmartPerson class
AjaxTutorial.SmartPerson.registerClass("AjaxTutorial.SmartPerson",
 AjaxTutorial.Person);

// define the instance members of the SmartPerson class
AjaxTutorial.SmartPerson.prototype =
{
 // getter function for the iq property
 get_iq: function() {
 return this._iq;
 },

 // setter function for the iq property
 set_iq: function(value) {
 if(value != this._iq) {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

OOP with the Microsoft AJAX Library

[158]

 // create eventArgs that contains the old and new values
 var eventArgs =
 new AjaxTutorial.PersonPropertyChangedEventArgs("IQ",
 this._iq, value);

 // set the new iq and raise the change event
 this._iq = value;
 this._raiseEvent("change", eventArgs);
 }
 },

 // returns string description of object
 toString: function() {
 return String.format('{{name:"{0}", IQ:{1}\}}',
 this._name, this._iq);
 }
}

3. In the Scripts folder, create a copy of Person.js named Person2.js, and
modify its code as highlighted:
// setter function for the name property
set_name: function(value) {
 if(value != this._name) {
 // create eventArgs that contains the old and new values
 var eventArgs =
 new AjaxTutorial.PersonPropertyChangedEventArgs(
 "name", this._name, value);

 // set the new name and raise the change event
 this._name = value;
 this._raiseEvent("change", eventArgs);
 }
},

4. In the Scripts folder make a copy of PersonTest.js named PersonTest2.
js, and modify the loadPersonTest() function to make use of the new
SmartPerson class. The new code is highlighted opposite. We've removed
some of the old code, including the references to OnChange2Handler(), to
keep the focus on the matter at hand.
// executed on page load
function loadPersonTest()
{
 // get the messages <div> element
 messagesDiv = $get("messages");

 // create a Person named Mike

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5

[159]

 var Mike = new AjaxTutorial.Person("Mike");

 // register a handler for the change event
 Mike.add_change(OnChangeHandler);

 // change the name, causing the change event to fire
 Mike.set_name("Michael");

 // create a SmartPerson named John with the IQ of 200
 var John = new AjaxTutorial.SmartPerson("John", 200);

 // register an event handler for SmartPerson's change event
 John.add_change(OnChangeHandler);

 // change John's IQ
 John.set_iq(100);

 // change John's name
 John.set_name("Johnny");
}

5. Also in PersonTest2.js, modify OnChangeHandler() to display different
messages for events raised by Person and by SmartPerson, and to use the
new PropertyChangedEventArgs class received as parameter. You can
delete the other event handler (OnChange2Handler()) because we aren't
using it any more in this exercise.
// handler for change event of Person and SmartPerson
function OnChangeHandler(sender, args)
{
 // display info for events fired by Person
 if (AjaxTutorial.Person.isInstanceOfType(sender))
 {
 Sys.Debug.trace(
 String.format("Person changed its {0} from {1} to {2}",
 args.get_propertyName(), args.get_oldValue(),
 args.get_newValue()));
 }

 // display info for events fired by SmartPerson
 else if (AjaxTutorial.SmartPerson.isInstanceOfType(sender))
 {
 Sys.Debug.trace(
 String.format(
 "SmartPerson {0} changed its {1} from {2} to {3}",
 sender, args.get_propertyName(),
 args.get_oldValue(), args.get_newValue()));
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

OOP with the Microsoft AJAX Library

[160]

6. Make a copy of Person.html in your project named Person2.html, and
modify it as highlighted:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" >
<head>
 <title>Microsoft AJAX Library: Inheritance</title>
 <script type="text/javascript" src="Scripts/MicrosoftAjax.js">
 </script>
</head>
<body>
 <script type="text/javascript" src="Scripts/Utils.js">
 </script>
 <script type="text/javascript" src="Scripts/Person2.js">
 </script>
 <script type="text/javascript" src="Scripts/SmartPerson.js">
 </script>
 <script type="text/javascript" src="Scripts/PersonTest2.js">
 </script>

 <textarea id="TraceConsole" cols="70" rows="10"></textarea>

 <script type="text/javascript">
 function pageLoad()
 {
 loadPersonTest();
 }
 </script>
</body>
</html>

7. Load Person2.html. The results should resemble Figure 5-6. You can also
check the example online at http://www.cristiandarie.ro/asp-ajax/
Person2.html.

Figure 5-6. Testing SmartPerson

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5

[161]

What Just Happened?
In this exercise we've created a new class named SmartPerson, which inherits from
Person, and a class named PersonPropertyChangedEventArgs that inherits from
Sys.PropertyChangedEventArgs.

The inheritance mechanism is implemented using initializeBase(), inherited
from Type, in the first line of the derived class's constructor. This imports all the
members of the base class into the derived class simulating in this way the "real"
inheritance you're accustomed to from the world of .NET, Java, or C++.

// create the SmartPerson class and its constructor
AjaxTutorial.SmartPerson = function(name,iq)
{
 // call the Person base class constructor
 AjaxTutorial.SmartPerson.initializeBase(this, [name]);
 this._iq = iq;

As you can see, we call initializeBase() by supplying as parameters the current
class instance, and an array with the parameters for the base class contructor. This
is similar to the base(..) syntax of C#. To test that inheritance actually works,
the constructor in SmartPerson displays a message that includes both the person's
name, and the person's IQ. The person's name is referenced through this.get_
name(), which, as you know, is defined in Person.

 // notify SmartPerson creation
 Sys.Debug.trace(
 String.format("{0} was created with an IQ of {1}",
 this.get_name(), this.get_iq());

Apart from inheriting the properties, methods, and events of Person, SmartPerson
added the iq property, implementing it using get_iq() and set_iq(). We have
also overridden the toString() method that is provided by default by JavaScript's
Object. You can see these in Figure 5-4, and we're displaying them again in
Figure 5-7 for your convenience.

Figure 5-7. Class diagram for SmartPerson class

http://lib.ommolketab.ir
http//lib.ommolketab.ir

OOP with the Microsoft AJAX Library

[162]

Next we called registerClass() to register the new class, this time also specifying
the base class:

// register the SmartPerson class
AjaxTutorial.SmartPerson.registerClass("AjaxTutorial.SmartPerson",
 AjaxTutorial.Person);

When using the SmartPerson class in PersonTest2.js we've made a few tests
to ensure the inheritance works fine. For starters, we created a new SmartPerson
named John, with an IQ of 200:

 // create a SmartPerson named John with the IQ of 200
 var John = new AjaxTutorial.SmartPerson("John", 200);

If you look at the debugging messages in Figure 5-6, you'll see that the constructor
of Person is called first, as a result of executing initializeBase() in SmartPerson,
and then the rest of SmartPerson's constructor is executed. This behavior is similar
to the natural inheritance mechanism that you find in server-side .NET programming
with C#.

Then we registered an event handler for the change event of SmartPerson. This is
another demonstration that inheritance works, because the change event is defined
in Person, and inherited by SmartPerson.

 // register an event handler for SmartPerson's change event
 John.add_change(OnChangeHandler);

Then we changed John's name and IQ, to ensure that OnChangeHandler() fires
correctly when both the name and the IQ are changed:

 // change John's IQ
 John.set_iq(100);

 // change John's name
 John.set_name("Johnny");
}

The last function in PersonTest2.js is OnChangeHandler(), which is the event
handler that handles the change event of Person and SmartPerson. One of the
design goals for this function was to continue supporting the functionality that we
had for the Person class, and display the old value and the new value of a property
that is being changed. However, in order to support this feature for SmartPerson
we needed to extend our architecture a little bit by creating a class named
PersonPropertyChangedEventArgs.

This class is designed to hold the name of the property that is being changed (such as
"name" or "iq"), the old value of the property, and the new value of that property.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5

[163]

Whenever SmartPerson fires a change event, it creates a
PersonPropertyChangedEventArgs object that contains this data, and supplies this
object to the event handler. The event handler uses this data to display information
about the change event of SmartPerson:

// handler for change event of Person and SmartPerson
function OnChangeHandler(sender, args)
{
 // display info for events fired by Person
 if (AjaxTutorial.Person.isInstanceOfType(sender))
 {
 Sys.Debug.trace(
 String.format("Person changed its {0} from {1} to {2}",
 args.get_propertyName(), args.get_oldValue(),
 args.get_newValue()));
 }

 // display info for events fired by Person
 else if (AjaxTutorial.SmartPerson.isInstanceOfType(sender))
 {
 Sys.Debug.trace(
 String.format(
 "SmartPerson {0} changed its {1} from {2} to {3}",
 sender, args.get_propertyName(),
 args.get_oldValue(), args.get_newValue()));
 }
}

If you're curious to see how the args parameter is created as a
PersonPropertyChangedEventArgs object, see the set_iq() function in
SmartPerson. There you'll see how the event data is created, and how the event
is created (a similar approach was implemented in the Person class in the
set_name() function):

 // setter function for the iq property
 set_iq: function(value) {
 if(value != this._iq) {
 // create eventArgs that contains the old and new values
 var eventArgs =
 new AjaxTutorial.PersonPropertyChangedEventArgs("IQ",
 this._iq, value);

 // set the new iq and raise the change event
 this._iq = value;
 this._raiseEvent("change", eventArgs);
 }
 },

http://lib.ommolketab.ir
http//lib.ommolketab.ir

OOP with the Microsoft AJAX Library

[164]

PersonPropertyChangedEventArgs is a class that derives from Sys.
PropertyChangedEventArgs, which in its turn derives from Sys.EventArgs. The
names of these classes reveal their purpose, and as always you can read more about
them in Appendix A. The inheritance mechanism is the standard one, as you can see
in the class definition in Utils.js. First we called initializeBase() to initialize
the base class, and afterwards we created the additional properties that we needed to
implement in PersonPropertyChangedEventArgs:

// create PersonPropertyChangedEventArgs class and constructor
AjaxTutorial.PersonPropertyChangedEventArgs = function(
 propertyName, oldValue, newValue)
{
 // initialize the base class
 AjaxTutorial.PersonPropertyChangedEventArgs.initializeBase(
 this, [propertyName]);

 // initialize oldValue and newValue property values
 this._oldValue = oldValue;
 this._newValue = newValue;
}

So the class differs from Sys.PropertyChangedEventArgs in that it adds two
properties next to the propertyName property (which is provided by the base class):
the "before" and "after" values of the property. These are implemented as read-only
properties "by convention" by creating only the getter accessors:

// create the members of PersonPropertyChangedEventArgs
AjaxTutorial.PersonPropertyChangedEventArgs.prototype =
{
 // get accessor for oldValue property
 get_oldValue: function(){
 return this._oldValue;
 },

 // get accessor for newValue property
 get_newValue: function(){
 return this._newValue;
 }
}

After creating the PersonPropertyChangedEventArgs class, we registered it inside
the new namespace:

// register the class mentioning the base class
AjaxTutorial.PersonPropertyChangedEventArgs.registerClass(
 "AjaxTutorial.PersonPropertyChangedEventArgs",
 Sys.PropertyChangedEventArgs);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5

[165]

Before moving on to the next topic, it's worth noticing the way SmartPerson
overrode JavaScript's default implementation for toString(). When SmartPerson
needs to display itself as a string, it will do so in a form like {name: "John", IQ:
150}. This string obviously resembles the JSON format, but it doesn't need to. We
just needed a string representation of the smart person, so that we could identify the
object when displaying the change event data in the event handler.

Enumerations
Enumerations represent a set of finite identifiers for integers. It is much easier to
work with labels instead of brute values. Typically, only one enumeration identifier
can be assigned to a variable. In order to declare enumerations we need to use the
registerEnum() method like this:

 // create an enum named Days
 AjaxTutorial.Days = function() {};
 AjaxTutorial.Days.prototype = {
 Su : 1,
 Mo : 2,
 Tu : 3,
 We : 4,
 Th : 5,
 Fr : 6,
 Sa : 7
 }

 // register the Days enum
 AjaxTutorial.Days.registerEnum("AjaxTutorial.Days");

 // example of reading an enum value
 alert(AjaxTutorial.Days.Sa);

When declaring flags the values can be combined using bitwise operators. In this case
we must supply true for the second parameter of registerEnum. Here's an example:

 // create a flag enumeration named ConnectionStatus
 AjaxTutorial.ConnectionStatus = function() {};
 AjaxTutorial.ConnectionStatus.prototype = {
 UNINITIALIZED : 0x0,
 LOADING : 0x2,
 LOADED : 0x4,
 INTERACTIVE : 0x8,
 COMPLETE : 0x10
 }

 // register the flags enumeration
 AjaxTutorial.ConnectionStatus.registerEnum(
 "AjaxTutorial.ConnectionStatus", true);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

OOP with the Microsoft AJAX Library

[166]

 // example of combining flag values
 alert(AjaxTutorial.ConnectionStatus.UNINITIALIZED |
 AjaxTutorial.ConnectionStatus.COMPLETE);

Interfaces
An interface is a contract that specifies a list of methods that need to be implemented
by the classes that adhere to it. However, this contract is not checked when an object
is registered (as it is in C#, for example), and not even when the object is created, so
we must be extra careful when using interfaces with JavaScript and the Microsoft
AJAX Library. For example, an interface method could contain code that is inherited
if the method is not overridden in the class that implements the interface. This is
obviously not a desirable case, as it breaks the rules of interface-based programming.

Interface registration is very similar to class registration, except that it's done using
the registerInterface() method of Type. The interface name is saved internally
inside the __registeredTypes field of the window object offering the means to avoid
registering two interface or types with the same name, or implementing from a base
type that is not an interface.

The isImplementedBy() and implementsInterface() methods (both provided by
Type) can be used to test if an interface has a relation with a class.

To demonstrate the implementation of interfaces and more features in Microsoft AJAX
Library's OOP architecture, we'll implement the class design presented in Figure 5-8.

Figure 5-8. Class diagram that uses inheritance and interfaces

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5

[167]

The diagram describes a simple class structure formed of four classes: Person,
and three classes that inherit from it: Student, Instructor, and Manager. We
also have two interfaces: IEmployee, and ISelfDescribingObject. Classes that
implement IEmployee must implement a method named startWorking(), which
is defined by that interface. The ISelfDescribingObject interface contains a
method named describeYourself(), which must be implemented by classes that
implement the interface.

As the diagram shows, Student implements ISelfDescribingObject, so it contains
a method named describeYourself(). It also has a method named learn().

Instructor implements both IEmployee and ISelfDescribingObject, so it
contains the required methods describeYourself() and startWorking(). It also
contains a method named teach().

Manager also implements both IEmployee and ISelfDescribingObject, but unlike
Instructor it doesn't add any more features on top of those required by the interfaces.

Follow the exercise to implement this structure of classes using JavaScript and the
Microsoft AJAX Library.

Time for action—Inheritance and Interfaces
1. Create a JScript File in your Scripts folder named

ISelfDescribingObject.js, and type the following code:
// register the AjaxTutorial namespace
Type.registerNamespace("AjaxTutorial");

// define the ISelfDescribingObject interface
AjaxTutorial.ISelfDescribingObject = function() { }

AjaxTutorial.ISelfDescribingObject.prototype = {
 describeYourself : function() {}
}

// register the ISelfDescribingObject interface
AjaxTutorial.ISelfDescribingObject.registerInterface(
 "AjaxTutorial.ISelfDescribingObject");

2. Create a new JScript File in your Scripts folder named IEmployee.js, and
type the following code:
// register the AjaxTutorial namespace
Type.registerNamespace("AjaxTutorial");

// define the IEmployee interface
AjaxTutorial.IEmployee = function() { }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

OOP with the Microsoft AJAX Library

[168]

AjaxTutorial.IEmployee.prototype = {
 startWorking : function() {}
}

// register the IEmployee interface
AjaxTutorial.IEmployee.registerInterface("AjaxTutorial.IEmployee");

3. Create a JScript File in your Scripts folder named Student.js, and type
the following code:
// register the AjaxTutorial namespace
Type.registerNamespace("AjaxTutorial");

// define the Student class
AjaxTutorial.Student = function(name)
{
 // initialize base class
 AjaxTutorial.Student.initializeBase(this, [name]);

 // notify student creation
 Sys.Debug.trace("Student created: " + name);
}

// create Student instance members
AjaxTutorial.Student.prototype =
{
 // Student must implement this method of ISelfDescribingObject
 describeYourself: function()
 {
 Sys.Debug.trace(
 String.format("Hello man, I'm {0}. I'm a cool student!",
 this._name));
 },

 // Student has the function to learn
 learn: function()
 {
 Sys.Debug.trace("Student wakes up, yawns, " +
 "stratches head, and tries to look interested.");
 }
}

// register the Student class
AjaxTutorial.Student.registerClass("AjaxTutorial.Student",
 AjaxTutorial.Person, AjaxTutorial.ISelfDescribingObject);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5

[169]

4. Create a JScript File in your Scripts folder named Instructor.js, and
type the following code:
// register the AjaxTutorial namespace
Type.registerNamespace("AjaxTutorial");

// define the Instructor class
AjaxTutorial.Instructor = function(name)
{
 // initialize base class
 AjaxTutorial.Instructor.initializeBase(this, [name]);

 // notify instructor creation
 Sys.Debug.trace("Instructor created: " + name);
}

// define Instructor instance members
AjaxTutorial.Instructor.prototype =
{
 // method of ISelfDescribingObject interface
 describeYourself: function()
 {
 Sys.Debug.trace("Good morning class. My name is " +
 this._name + " and I'm your instructor.");
 },

 // method of IEmployeeInterface
 startWorking : function()
 {
 Sys.Debug.trace("Going to my dear students.");
 },

 // method specific to Instructor
 teach: function()
 {
 Sys.Debug.trace("Instructor bubbles incomprehensibly");
 }
}

// register the Instructor class
AjaxTutorial.Instructor.registerClass("AjaxTutorial.Instructor",
 AjaxTutorial.Person, AjaxTutorial.ISelfDescribingObject,
 AjaxTutorial.IEmployee);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

OOP with the Microsoft AJAX Library

[170]

5. Create a JScript File in your Scripts folder named Manager.js, and type
the following code:
// register the AjaxTutorial namespace
Type.registerNamespace("AjaxTutorial");

// define the Manager class
AjaxTutorial.Manager = function(name)
{
 // initialize base class
 AjaxTutorial.Manager.initializeBase(this, [name]);

 // notify manager creation
 Sys.Debug.trace("Manager created: " + name);
}

// define Manager instance members
AjaxTutorial.Manager.prototype =
{
 // method of ISelfDescribingObject interface
 describeYourself : function()
 {
 Sys.Debug.trace(String.format(
 "I'm {0}. I'm the boss around here.", this._name));
 },

 // method of IEmployee interface
 startWorking: function()
 {
 Sys.Debug.trace("No, it's my golf day!");
 }
}

// register the Manager class
AjaxTutorial.Manager.registerClass("AjaxTutorial.Manager",
 AjaxTutorial.Person, AjaxTutorial.ISelfDescribingObject,
 AjaxTutorial.IEmployee);

6. Make a copy of PersonTest2.js created in the previous exercise, name it
PersonTest3.js, and modify the loadPersonTest() function like this:
// executed on page load
function loadPersonTest()
{
 // testing Student
 Sys.Debug.trace("Working with Student Joe");
 var student = new AjaxTutorial.Student("Joe");

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5

[171]

 student.add_change(OnChangeHandler);
 student.set_name("Joe v2");
 student.describeYourself();

 Sys.Debug.trace("---");

 // testing Instructor
 Sys.Debug.trace("Working with Instructor Pamela");
 var instructor = new AjaxTutorial.Instructor("Pamela");
 instructor.startWorking();

 Sys.Debug.trace("---");

 // testing Manager
 Sys.Debug.trace("Working with Manager Mr. Barneson");
 var manager = new AjaxTutorial.Manager("Mr. Barneson");
 manager.add_change(OnChangeHandler);
 manager.startWorking();
 manager.describeYourself();
 manager.set_name("Mr. Listentomecarefully");
}

7. Make a copy of Person2.html, name that copy Person3.html, and update it
as highlighted:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" >
<head>
 <title>Microsoft AJAX Library: Inheritance and Interfaces
 </title>
 <script type="text/javascript" src="Scripts/MicrosoftAjax.js">
 </script>
</head>
<body>
 <script type="text/javascript" src="Scripts/Utils.js">
 </script>
 <script type="text/javascript" src="Scripts/Person2.js">
 </script>
 <script type="text/javascript"
 src="Scripts/ISelfDescribingObject.js">
 </script>
 <script type="text/javascript" src="Scripts/IEmployee.js">
 </script>
 <script type="text/javascript" src="Scripts/Student.js">
 </script>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

OOP with the Microsoft AJAX Library

[172]

 <script type="text/javascript" src="Scripts/Instructor.js">
 </script>
 <script type="text/javascript" src="Scripts/Manager.js">
 </script>
 <script type="text/javascript" src="Scripts/PersonTest3.js">
 </script>

 <textarea id="TraceConsole" cols="70" rows="20"></textarea>

 <script type="text/javascript">
 function pageLoad()
 {
 loadPersonTest();
 }
 </script>
</body>
</html>

8. Load Person3.html. The results should resemble Figure 5-9. You can also
find it online at http://www.cristiandarie.ro/asp-ajax/Person3.html.

Figure 5-9. Working with inheritance and interfaces

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5

[173]

What Just Happened?
The goal of this exercise was to demonstrate how interfaces, class inheritance, and
interface inheritance can be used in client-side programming.

You used two interfaces (ISelfDescribingObject and IEmployee), a base class
(Person), and three derived classes (Student, Instructor, andand Manager) that extend
the base class and implement the interfaces. The base class Person is the same as theis the same as the
one used in the previous exercise.

Each of the two interfaces exposes one method and uses the registerInterface()
method to register itself. Here's the example from IEmployee.js:

// register the AjaxTutorial namespace
Type.registerNamespace("AjaxTutorial");

// define the IEmployee interface
AjaxTutorial.IEmployee = function() { }

AjaxTutorial.IEmployee.prototype = {
 startWorking : function() {}
}

// register the IEmployee interface
AjaxTutorial.IEmployee.registerInterface("AjaxTutorial.IEmployee");

Declaring the two interfaces (IEmployee and ISelfDescribingObject) is very
simple as they have empty constructors and each method is also empty.

Each of the newly defined classes (Student, Instructor, and Manager) extends the
Person base class and implements one or two interfaces.lass and implements one or two interfaces.

Each of the new classes receives as parameter for its contructor the name of the
person. The constructors of the newly derived classes first call the constructor of
the Person base class, passing in turn the person's name, and then display a short
debugging message to signal object creation:

// define the Manager class
AjaxTutorial.Manager = function(name)
{
 // initialize base class
 AjaxTutorial.Manager.initializeBase(this, [name]);

 // notify manager creation
 Sys.Debug.trace("Manager created: " + name);
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

OOP with the Microsoft AJAX Library

[174]

Student implements the ISelfDescribingObject interface by implementing
the describeYourself() method, and adds a new method named learn(). The
interface is implemented by defining the method exposed by the interface:

// create Student instance members
AjaxTutorial.Student.prototype =
{
 // Student must implement this method of ISelfDescribingObject
 describeYourself: function()
 {
 Sys.Debug.trace(
 String.format("Hello man, I'm {0}. I'm a cool student!",
 this._name));
 },

 // Student has the function to learn
 learn: function()
 {
 Sys.Debug.trace("Student wakes up, yawns, " +
 "stratches head, and tries to look interested.");
 }
}

Student inherits from Person, and implements the ISelfDescribingObject
interface. This information is specified at registration time, when the base classwhen the base class
is specified as the second parameter of registerClass(), and the interfaces it
implements are specified using the third parameter:

// register the Student class
AjaxTutorial.Student.registerClass("AjaxTutorial.Student",
 AjaxTutorial.Person, AjaxTutorial.ISelfDescribingObject);

Things are similar for the Instructor class, except that it implements two interfaces
and it adds a new teach method. When the Instructor class is registered we add the
two interfaces it implements as the last parameters of the registerClass() method:

// register the Instructor class
AjaxTutorial.Instructor.registerClass("AjaxTutorial.Instructor",
 AjaxTutorial.Person, AjaxTutorial.ISelfDescribingObject,
 AjaxTutorial.IEmployee);

The Manager class is very similar to the Instructor class as it implements both
interfaces but it doesn't expose any new methods.

With this example we covered the most important details of the OOP model you can
implement using the Microsoft AJAX Library.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5

[175]

OOP Recommendations
Before putting aside the rather theoretical area of OOP programming, here are a few
guidelines for you to follow when writing your object-oriented JavaScript code with
the Microsoft AJAX Library.

Declare all fields, properties and events in the class constructor.
Prefix the "private by convention" field names with an underscore (_).
Declare the variables as instance fields using the this keyword.
In the prototype, declare all the methods, accessor methods for properties,
and events.
Call initializeBase() in the first line of your constructor if deriving from a
base class.

Summary
This chapter introduced you to the core of Microsoft AJAX Library and the client-side
 programming. It is very important to have a good understanding of what was
presented here as it will represent the foundation to build upon in the next chapters.

This chapter was not intended to be an exhaustive presentation of Microsoft
AJAX Library but merely a solid introduction to the client-side platform offered
by Microsoft. In the next chapter you'll use this knowledge to create client-side
components using this library.

•

•

•

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating Client Components
In this chapter you learn how to create client-side components using the Microsoft
AJAX Library. This implies working with elements of the page, registering events,
creating controls and behaviors, and more. At the end of this chapter, you will have
the thoeritical foundation of:

Working with DOM elements and events
Application object and page life cycle
Components, controls, and behaviors

As usual, Appendix A will serve as your reference for the classes and methods discussed.
You won't find much code in this chapter. Instead, Chapter 7 will put the concepts into
practice through a detailed case study.

DOM Elements and Events
One of the problems developers face when writing client-side JavaScript code
regards writing code that is compatible with all existing browsers. Internet Explorer
in particular has historically raised the most problems because of its non-compliance
with the W3C standards.

For example, to attach or detach an event handler for a particular event of an object
in Internet Explorer, you need to use attachEvent() or detachEvent(). You can
easily find examples of working with these functions by googling for "attachevent
javascript example". On the other hand, standards-compliant browsers use
addEventListener() and removeEventListener(). There are examples with these
functions at http://www.quirksmode.org/js/events_advanced.html.

The differences don't stop here! The events themselves sometimes have
different names. For example, the event that is raised when a button is clicked is
named onclick in Internet Explorer, and is named click in other browsers.
The differences continue with the parameters the event handlers receive.

•
•
•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating Client Components

[178]

Internet Explorer (including IE 7) takes these parameters from the window.event
object whereas in other browsers the event object is passed as a parameter to the
event handler itself. The list of issues can continue with mouse button's values
and so on. The point is made. There are so many differences between the web
browsers! To overcome these browser incompatibilities when it comes to working
with DOM elements and events, the Microsoft AJAX library provides a set of static
helper functions and properties grouped in two classes: Sys.UI.DomElement and
Sys.UI.DomEvent. These classes offer a unified API that correctly performs the
functionality you need implemented for any web browser.

You've already worked with these classes in this book. For example,
you've used the $get() function, which is a shortcut for the
Sys.UI.DomElement.getElementById() function.

You can sneak peek how the Microsoft AJAX Library implements the browser
compatibility layer by looking, for example, at the definition of $addHandler()
in MicrosoftAjax.debug.js. Here it is a stripped portion of this function, which
highlights the code that verifies if the user's browser supports addEventListener()
or attachEvent():

var $addHandler = Sys.UI.DomEvent.addHandler = function SysUIDomEven
t$addHandler(element, eventName, handler)
{
...
...
...
 if (element.addEventListener) {
 browserHandler = function(e) {
 return handler.call(element, new Sys.UI.DomEvent(e));
 }
 element.addEventListener(eventName, browserHandler, false);
 }
 else if (element.attachEvent) {
 browserHandler = function() {
 return handler.call(element,
 new Sys.UI.DomEvent(window.event));
 }
 element.attachEvent("on" + eventName, browserHandler);
 }
 eventCache[eventCache.length] =
 {handler: handler, browserHandler: browserHandler};
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 6

[179]

The Microsoft AJAX Library offers an API that hides the various differences between
browsers, while offering a model that is close to the standard API. This API is part of
the browser compatibility layer of the library (see Figures 4-2 and 4-4 from Chapter
4). This layer is made of the Sys.UI.DomElement and Sys.UI.DomEvent classes,
along with some other classes and enumerations inside the Sys.UI namespace
(Sys.UI.Bounds, Sys.UI.Key, Sys.UI.MouseButton, Sys.UI.Point, and
Sys.UI.VisibilityMode). They provide the user a seamless way of working across
different browsers. The following browsers are supported:

Internet Explorer 6.0 or higher
Firefox 1.5 or higher
Opera 9.0 or higher
Safari 2.0 or higher

Sys.UI.DomElement contains a set of static methods that manipulate DOM elements.
These include the very useful getElementById() function, methods for working
with CSS classes (addCssClass(), containsCssClass(), removeCssClass(),
toggleCssClass()), and with the element's position (getLocation(),
setLocation()) and coordinates (getBounds()). These methods are very handy
when working with the DOM elements and can save us a lot of time when we need
to write non-trivial cross-browser code.

Sys.UI.DomEvent exposes a set of static methods that help us registering/
deregistering event handlers for different events: addHandler(), addHandlers(),
removeHandler(), and clearHandlers(). All these methods have corresponding
shortcut methods: $addHandler(), $addHandlers(), $removeHandler(),
$clearHandlers().

Each event handler added using these methods should have the following signature:

function MyEventHandler(domEvent)
{...}

where the domEvent parameter is a Sys.UI.DomEvent object.

While in Chapter 5 you saw how you can fire an AJAX event, you might just
wonder how we can do the same for events that occur in browser or DOM. DOM
events can be categorized as: user interface events, HTML events, mouse events,
and mutation events (events that notify changes in the structure of the document).
Being able to fire DOM events (click, mousedown, mouseup, change, focus, blur,
etc.) gives an enormous power for controlling what happens in the browser.

•

•

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating Client Components

[180]

The Microsoft AJAX Library doesn't include this feature yet, but we will see that is
fairly simple to do it ourselves. Here are some references:Here are some references:

http://www.w3.org/TR/DOM-Level-2-Events/events.html

http://developer.mozilla.org/en/docs/DOM:document.createEvent

http://www.webreference.com/js/tips/000722.html

In our code we could implement a uniform interface for raising DOM events, in
the form of a method named _raiseDomEvent(). It does not represent the ultimate
solution to raising events, but it will come in handy. Please refer to the www.w3.org
reference mentioned above for more details on DOM events. Here's the code for our
_raiseDomEvent() function:

// raise a DOM event
_raiseDomEvent: function(eventName)
{
 // FireFox + Safari + Opera
 if (document.createEvent) {
 var onEvent = document.createEvent("HTMLEvents");
 onEvent.initEvent(eventName, true, true);

 this.get_element().dispatchEvent(onEvent);
 }
 // IE
 else if(document.createEventObject) {
 this.get_element().fireEvent("on" + eventName);
 }
}

In the next example we will see that we add it to our custom client control, but we
could extend the Sys.UI.DomEvent with a static method as well. The static method
would differ from the above implementation of _raiseDomEvent() in that it would
also receive as parameter the DOM element it applies to.

Components, Behaviors, and Controls
Components represent objects that inherit from the Sys.Component class. They have
no user interface representation and no DOM element associated to them and their
lifetime is managed by Microsoft AJAX.

•

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 6

[181]

The components of an application are managed by the Sys.Application class,
which is also a component and has no representation in the user interface and
therefore inherits from Sys.Component. Adding a component to the application
means adding it to Sys.Application's bag of components. By implementing the
Sys.IContainer interface, Sys.Application declares itself as a component that can
contain other components. This ability translates into a series of methods exposed
by Sys.Application (addComponent(), getComponents(), removeComponent(),
findComponent(), or its shortcut $find().

Sys.Component is the base class for components, but there are two other important
classes that derive from Sys.Component and represent base classes for specialized
client components: Sys.UI.Behavior and Sys.UI.Control. Objects that derive from
these classes have specific names: behavior and control respectively.

Behaviors represent components that extend the behavior of DOM elements they
are attached to and typically do not modify their existing markup. If they are
assigned a name they can be referenced through a custom expando attribute of the
DOM element. A DOM element can have multiple behaviors. The control toolkit
includes behavior examples such as Slider (for text boxes),, SlideShow (for images),
TextBoxWatermark (for text boxes), and RoundedCorners (works with any element;
adds rounded corners around it).

Controls represent components that typically change the behavior of DOM elements
in order to provide new functionality. A DOM element can have a single control
attached to them. They can also be referenced by using the control expando of the
DOM element.

The Sys.Component class implements the Sys.INotifyPropertyChange interface.
This interface exposes the propertyChanged event, which can be used internally by
the control or externally by other objects that register to this event. It is recommended
that every class implementing this interface and thus every component, behavior, or
control uses it to notify registered listeners about changes of different properties.

Every handler registered to the propertyChanged event typically receives a
Sys.PropertyChangedEventArgs object as the event argument parameter.
We can raise this event for a specific property using the Sys.Component's
raisePropertyChanged() method.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating Client Components

[182]

Creating Components
The Sys.Component class has the create() static method, as shown in Figure 6-1.
The shortcut version for it is $create().

Figure 6-1. Class diagram for Sys.Component

The signature of create() is particularly interesting, because it's the key for creating
new components. This method must receive at least one parameter: the type of
component being created:

Component create (Type type,
 Dictionary<string, object> properties,
 Dictionary <string, Delegate> events,
 Array<Component> references,
 object element)

Quite often we might want to pass other information such as the default property
values, handlers for events exposed by the component, or the references to other
components. This information can be passed in as it follows:

For property values, as the second parameter of the create() method
{ propertyName: value, propertyName2: value2 }

For events handlers, as the third parameter of the create() method
{ eventName: handler, eventName2: handler2}

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 6

[183]

For referenced components, as the fourth parameter of the create() method
{ component1, component2 }

The DOM element the component is attached to, as the fifth parameter of the
create() method

When the create() method is called, there are two phases in which the component
is created. In the first phase the component's constructor is called and the optional
properties and events handlers specified as parameters are set.

At the beginning of this phase the component is marked as being updated, the state
being reflected by the isUpdating property. At the end of this phase we have a new
component created and added to the Sys.Application's bag of components.

The second phase involves initializing the component by calling its initialize()
method. The isUpdating property is set to false reflecting the completion of the
first phase.

Sys.Component defines an initialize() method that simply marks the component
as initialized through the isInitialized property. Another two properties that are
frequently used in applications are:

id is a unique identifier that represents the component. The id can be set
only once, and it's recommended to set it using the properties parameter
of the create() method, when creating the component. We can use the
Sys.Application.find() method (or its shortcut $find()) to retrieve a
component by its id.
events is a read-only property that represents the Sys.EventHandlerlist
object of the component.

Disposing of Components
The Sys.Component class also implements the Sys.IDisposable interface. This
interface contains the dispose() method that is used for closing, releasing, or
resetting resources held. After the method executed, an object instance is ready to
be deleted. The method is very similar to the Dispose() method used in server-side
programming for releasing unmanaged resources.

The Sys.Component class also implements the Sys.INotifyDisposing interface.
This interface exposes the disposing event. This event allows other objects to hook
to when a component is disposed in order to implement some custom logic typically
involving cleanup and self disposal.

By implementing the IDisposable and INotifyDisposing interfaces we make sure
that every component gets the chance to do cleanup operations before its life ends.

•

•

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating Client Components

[184]

Sys.Application and Client Page Life-Cycle
Events
In ASP.NET it is important to know the server page life cycle, and the events that are
raised at every stage. The Microsoft AJAX Library ports these concepts to the client,
and raises client events during the client page life cycle. These client events offer the
means for controlling the user interface. Microsoft AJAX uses Sys.Application to
raise application events.

In ASP.NET 2.0 we have the Page server control that raises events like init, load,
and unload. The Page server control derives from the base class Control. The
Microsoft AJAX Library keeps this hierarchy having the Sys.Component control
similar to Control on the server, and the Sys.Application class similar to Page.
The Sys.Application class inherits from Sys.Component and implements the
Sys.IContainer interface.interface.

The Sys.Application object is created by default inside the Microsoft AJAX Library
so we don't have to bother about it. It provides the events and methods that fully It provides the events and methods that fully
support the development of client components. Figure 6-2 displays the public
interface of this class.

Beside the addComponent(), removeComponent(), getComponents(), and
findComponent() (or $find()) methods for components management, we
have two methods for objects that implement the Sys.IDisposable interface
to register themselves as disposable: registerDisposableObject() and
unregisterDisposableObject().

Inside its constructor, the Sys.Application object registers a handler for two events
that occur in every browser: load and unload of the window object. These two events
represent the hooks of Microsoft AJAX Library in the browser's events.

The window's load event is raised when all the page content is loaded (including
scripts and images)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 6

[185]

Figure 6-2. Class diagram for Sys.Application

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating Client Components

[186]

The init Event
Sys.Application is registered to the window's load event, which allows it toit toto
initialize itself. During this phase the _initializing field is set to true and its own
init event is raised. Sys.Application's init event fires at the time we can create at the time we can create we can create
our components. We can register our own handler for this event like this:

<script>
 // define handler for init event
 Sys.Application.add_init(pageInit);

 // page init
 function pageInit(sender, eventArgs)
 {
 ...
 }
</script>

The registered handler for this event receives the Sys.Application object as its first
parameter, and Sys.EventArgs.Empty as its second parameter.

Before calling the handlers registered to this event, Sys.Application sets its
isCreatingComponents property to true. Anyone should check this property before
tampering with the components during this early phase.

Each handler registered to the init event can create components by using the
$create() method. At the end of the init event we have the page fully loaded and
the components created and properly initialized.

After successfully completing the init event, Sys.Application raises another
event: load.

The load Event
Similarly to what happens on the server side, the init event is followed by one of
the best known and most used events: the load event. The The init event is raised only
when the page is initially loaded, whereas the load event is raised during the initial
page load and during partial page updates.

All the handlers registered to this event should have the following signature:

function OnLoadHandler(sender, eventArgs)
{
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 6

[187]

The sender parameter contains the Sys.Application object and the eventArgs
parameter contains a Sys.ApplicationLoadEventArgs object. The Sys.
ApplicationLoadEventArgs object has two properties:

components – returns an array containing the created components.
isPartialLoad – returns false if Sys.Application's _initializing field
is true, andand true otherwise. (Remember that the _initializingializinging field is set
to true only during the initial page load when theinitial page load when the page load when the Sys.ApplicationApplicationcationon object
initializes itself.)

Figure 6-3. ApplicationLoadEventArgs class diagram

The pageLoad() Method
After raising the load event, the page's pageLoad() method is called, if it exists. The
signature for this method should be:

function pageLoad(sender, eventArgs)
{
}

The parameters for pageLoad() are the same as for the handlers registered for the
load event.

After these events are raised, the Sys.Application object is fully initialized (it's not
necessary to initialize Sys.Application many times).

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating Client Components

[188]

The pageUnload() Method
At the other end of the page life cycle we have the window's unload event. As we
have seen above, Sys.Application hooks to this event inside its constructor. The
Sys.Application object calls its dispose() method and does the necessary cleanup.

At the end of the page life cycle events, methods, and events are called and raised in
reverse order: first the pageUnload() method (the pair of the pageLoad() method)
and then the unload event (the pair of the load event). The signature for this
method should be:

function pageUnload(sender, eventArgs)
{
}

The sender parameter contains the Sys.Application object and the eventArgs
parameter contains a Sys.EventArgs.Empty object.

The unload Event
After calling the pageUnload() method, the unload event is fired. All the handlers
registered to this event should have the following signature:

function OnUnloadHandler(sender, eventArgs)
{
}

The parameters are the same as with the pageUnload() method.

This event represents the best place for disposing the components as it is the last
event before the page is unloaded by the browser. At this moment we might want to
display some sort of message or release different resources.

After this event the dispose() method is called on all the components registered
as disposable.

Behaviors
The Sys.UI.Behavior class (described in Figure 6-4) represents the base class
for developing behavior components. As stated before, a DOM element can have
multiple behaviors, but a behavior can be attached to a single DOM element.
Generally they do not modify the markup of the elements they are attached to.

Because Behavior inherits from Sys.Component, we are able to set its id property.
We are also able to set a new property it exposes, name, which stores the name of
the behavior.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 6

[189]

Depending on whether the id and/or name properties are set, the overridden getter
method for the id property returns:

the id of the behavior if set
an empty string if the DOM element's id is not set
the DOM element's id appended with $ and the behavior's name

If the name property is set with $create(), the behavior can be accessed directly
through a custom expando attribute of the DOM element like this:

domElement[behaviorName]

If you set the behavior name later than at creation time, the behavior won't be
accessible throught the custom expando attribute of the DOM element.

The constructor of the behavior receives as parameter the associated DOM element,
which is stored inside the element property.

There are also three additional static methods of Sys.UI.Behavior that allow
retrieving behaviors for a DOM element: getBehaviorByName(), getBehaviors(),
and getBehaviorsByType().

Figure 6-4. Class diagram for Sys.UI.Behavior

•

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating Client Components

[190]

Controls
The Sys.UI.Control class (Figure 6-5) represents the base class for developing
control components. Unlike behaviors they cannot be attached to more than one
DOM element and they typically provide new functionality. They can be easily
accessed throught the control expando of the DOM element they are associated to:

domElement.control

The id property returns the DOM element's id.

Beside the element property that (as for behaviors) exposes the DOM element,
Control also provides the parent property, which represents the parent
Sys.UI.Control component. The getter method for. The getter method for parent tries to return the
first Sys.UI.Control associated to a DOM element up in the DOM hierarchy if the
parent property is not set.

The control also has another two interesting properties: visible and
visibilityMode.

As you might have already guessed, these two properties are related one to another:
the visibilityMode property specifies how the control will behave when the
visible property is set to false. The visibilityMode property can have two
values defined by the Sys.UI.VisibilityMode enumeration: hide or collapse.
Here's an example of how to set the visibilityMode for a control to hide:

control.set_visibilityMode(Sys.UI.VisibilityMode.hide);

The visible property is related to the display CSS property, where
visibilityMode is related to the visibility CSS property.

Sys.UI.Control offers wrapper methods with the same names as the static
methods of Sys.UI.DomElement: addCssClass(), removeCssClass(), and
toggleCssClass().

Another two interesting methods of Control are raiseBubbleEvent() and
onBubbleEvent(). The raiseBubbleEvent() method receives as parameters
a sender object and an eventArgs object, and the onBubbleEvent() method is
called with these parameters for each parent control up in the hierarchy until
one onBubbleEvent() returns true or we have reached the top of the hierarchy.
This resembles very much the way a DOM event bubbles up the DOM hierarchy,
except that we have the flexibility of passing custom eventArgs objects containing
different information.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 6

[191]

Figure 6-5. Class diagram for Sys.UI.Control

After having gone through all that's related to components and getting a grasp on
client page life-cycle events, it's time to see how we can create our own components.

Quicksteps for Creating Custom Client
Components
This section is intended to represent a general reference when creating our custom
client components. It will represent a reference point when we analyze the custom
components we create.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating Client Components

[192]

When developing a custom client component we have to keep in mind a few steps
that can be as followed for guidance:

Register the namespace for the component
Declare the component's constructor
Call the component's inherited initializeBase() method
Declare the fields and properties
Declare the component's prototype
Declare an overridden initialize() method
Call the initialize method of the base class using callBaseMethod()
Initialize private fields, register event handlers
Declare an overridden dispose() method
Close and release any resources held
Remove any handlers added during the initialize phase or during the
component's life
Call the dispose() method of the base class using callBaseMethod()
Declare the getters and setters for the component's properties
Declare the "private" and "public" methods
Declare the events
Register the new component

Summary
This short and admittedly very theoretical chapter laid the foundations for creating
custom client components using the Microsoft AJAX Library. Chapter 7 will walk
you through a practical example that demonstrates this theory into practice.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Case Study: Timer and
EnhancedTextBox

In this chapter you will apply the theory you've learned so far in this book,
while creating two client-side components: Timer and EnhancedTextBox.
Building components represents the final challenge when working with thecomponents represents the final challenge when working with the
Microsoft AJAX Library.

The Timer component is one of the client components that didn't make it into
ASP.NET AJAX 1.0. We will create it here, however, to help us create the component
we're interested in: a behavior named EnhancedTextBox. This behavior extends the
normal HTML input text control by implementing the word suggest/auto-complete
feature based on the letters typed by the user inside the text box.

The Timer Component
The timer component is very useful because it can be used in a variety of scenarios
that involve repetitive tasks. This component has a very simple logic: based on
two properties named interval and enabled, the component fires a tick event
informing the registered handlers of the elapsed period of time.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Case Study: Timer and EnhancedTextBox

[194]

Figure 7-1 represents the class diagram for this component.

Figure 7-1. Class diagram for the Timer component

The timer component inherits from Sys.Component as it doesn't have a
visual representation.

The EnhancedTextBox Behavior
The EnhancedTextBox behavior enriches the classic HTML input text with one of
the most appreciated features brought by today's web applications: suggest and
auto-complete. While the user is typing text inside the text box, it is auto-completed
using a dictionary of known names. You can move back and forth between known
names using the "up" and "down" arrow keys.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 7

[195]

EnhancedTextBox is a behavior component thus inheriting from Sys.UI.Behavior
as it is attached to a visual element but it does not modify it. You can see its list of
members in the diagram in Figure 7-2.

Figure 7-2. Class diagram for EnhancedTextBox behavior

EnhancedTextBox makes use of a class named Dictionary, which stores the
possible words for auto-completion, and has a method named getMatchingItems()
that returns the matches that start with the prefix provided as parameter.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Case Study: Timer and EnhancedTextBox

[196]

Figure 7-3. Diagram representing the Dictionary class

Creating Timer and EnhancedTextBox
We'll create and test the Timer and EnhancedTextBox in the following step-by-step
exercise, and we'll discuss more details about them afterwards. We will also create a
helper class named Dictionary, which stores the dictionary of known words used
by EnhancedTextBox for word auto-completion, and performs keyword matching
through a function named getMatchingItems().

Figure 7-4 shows the demo page in action: after typing the letters "Bo" the text was
auto-completed to the first match, "Bobby". When hitting the down arrow on the
keyboard, the text was auto-completed to the next known name to start with "Bo,"
which according to our current dictionary is "Bogdan".

Figure 7-4. EnhancedTextBox in action

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 7

[197]

Time for Action—Creating Custom Client Components
1. Open the http://localhost/Atlas/ project in Visual Web Developer.
2. Create a new JScript File in your Scripts folder named Timer.js, and type

the following code in.
// Register the AjaxTutorial namespace
Type.registerNamespace("AjaxTutorial");

// Timer constructor
AjaxTutorial.Timer = function()
{
 // initialize base class
 AjaxTutorial.Timer.initializeBase(this);
 // set up class members
 this._interval = 1000;
 this._enabled = false;
 this._timer = null;
}

// Timer members
AjaxTutorial.Timer.prototype =
{
 // initialize the timer
 initialize: function()
 {
 // initialize base class
 AjaxTutorial.Timer.callBaseMethod(this, "initialize");

 // start the timer if it's enabled
 if(this._enabled) this._startTimer();
 },

 // dispose of the timer
 dispose: function()
 {
 // make sure the timer is stopped
 this._stopTimer();

 // be sure to call base.dispose()
 AjaxTutorial.Timer.callBaseMethod(this, "dispose");
 },

 // interval getter
 get_interval: function()
 {
 return this._interval;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Case Study: Timer and EnhancedTextBox

[198]

 },

 // interval setter
 set_interval: function(value)
 {
 if (this._interval !== value) {
 this._interval = value;
 this.raisePropertyChanged("interval");
 // do not restart the timer during the creation phase
 if (!this.get_isUpdating() && this._timer !== null)
 this._restartTimer();
 }
 },
 // enabled getter
 get_enabled: function()
 {
 return this._enabled;
 },

 // enabled setter
 set_enabled: function(value)
 {
 if (value !== this._enabled) {
 this._enabled = value;
 this.raisePropertyChanged("enabled");
 // do not enable the timer during the creation phase
 if (!this.get_isUpdating())
 if(this._enabled)
 this._startTimer();
 else
 this._stopTimer();
 }
 },

 // tick event
 add_tick: function(handler)
 {
 this.get_events().addHandler("tick", handler);
 },

 remove_tick: function(handler)
 {
 this.get_events().removeHandler("tick", handler);
 },

 // callback function for the tick event
 _onTick: function()

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 7

[199]

 {
 this._raiseAjaxEvent("tick");
 },

 // start or restart the timer
 restartTimer: function()
 {
 this._stopTimer();
 this._startTimer();
 },

 // start the timer
 _startTimer: function()
 {
 // save timer cookie
 this._timer = window.setInterval(Function.createDelegate(this,
this._onTick), this._interval);
 },

 // stop the timer
 _stopTimer: function()
 {
 // prevent multiple calls
 if(this._timer) {
 window.clearInterval(this._timer);
 this._timer = null;
 }
 },

 // raise an AJAX event
 _raiseAjaxEvent: function(eventName, eventArgs)
 {
 // obtain the event handler for the specified event name
 var handler = this.get_events().getHandler(eventName);

 // continue only if there is at least one handler for the event
 if (handler) {
 // if no event args have been supplied, create empty EventArgs
 if (!eventArgs) eventArgs = Sys.EventArgs.Empty;
 // call the event handlers
 handler(this, eventArgs);
 }
 }
}

// register the Timer class
AjaxTutorial.Timer.registerClass("AjaxTutorial.Timer",
Sys.Component);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Case Study: Timer and EnhancedTextBox

[200]

3. Create a new JScript File in your Scripts folder named EnhancedTextBox.js,
 and type the following code in.
// Register our namespaces
Type.registerNamespace("AjaxTutorial");

// EnhancedTextBox constructor
AjaxTutorial.EnhancedTextBox = function(element)
{
 // initialize base class
 AjaxTutorial.EnhancedTextBox.initializeBase(this, [element]);

 // set up the initial behavior state
 this._onKeyUpHandler = null;
 this._onKeyPressHandler = null;
 this._onFocusHandler = null;
 this._dictionary = null;
 this._index = 0;
 this._prefix = "";
 this._timer = null;
 this._interval = 2000;
 this._onTickHandler = null;
 this._wasKeyUpDownPressed = false;
 this._wasAnyKeyPressed = false;
}

// EnhancedTextBox members
AjaxTutorial.EnhancedTextBox.prototype =
{
 // initialize
 initialize: function()
 {
 // initialize base class
 AjaxTutorial.EnhancedTextBox.callBaseMethod(this, "initialize");

 // create the dictionary
 this._dictionary = new AjaxTutorial.Dictionary();

 // KeyUp
 this._onKeyUpHandler = Function.createDelegate(this, this._
onKeyUp);
 $addHandler(this.get_element(), "keyup", this._onKeyUpHandler);

 // KeyPress
 this._onKeyPressHandler = Function.createDelegate(this, this._
onKeyPress);
 $addHandler(this.get_element(), "keypress", this._
onKeyPressHandler);
 // Focus

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 7

[201]

 this._onFocusHandler = Function.createDelegate(this, this._
onFocus);
 $addHandler(this.get_element(), "focus", this._onFocusHandler);

 // Tick
 this._onTickHandler = Function.createDelegate (this, this._
onTick);

 this._timer = $create(AjaxTutorial.Timer, {interval:this._
interval, enabled:true}, {tick:this._onTickHandler}, null, null);

 // focus on the DOM element
 this.get_element().focus();
 },
 // dispose
 dispose: function()
 {
 // remove the event handlers
 $removeHandler(this.get_element(), "keyup", this._
onKeyUpHandler);
 $removeHandler(this.get_element(), "keypress", this._
onKeyPressHandler);
 $removeHandler(this.get_element(), "focus", this._
onFocusHandler);

 // make sure the timer is not enabled
 if(this._timer) {
 this._timer.remove_tick(this._onTickHandler);
 }

 // call dispose of the base calss
 AjaxTutorial.EnhancedTextBox.callBaseMethod(this, "dispose");
 },

 // interval getter
 get_interval: function()
 {
 return this._interval;
 },

 // interval setter
 set_interval: function(value)
 {
 if(value != this._interval) {
 this._interval = value;
 this.raisePropertyChanged("interval");
 if(this._timer)
 this._timer.set_interval(this._interval);
 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Case Study: Timer and EnhancedTextBox

[202]

 },

 // onFocus handler
 _onFocus: function (e)
 {
 this._index = 0;
 },

 // onTick handler
 _onTick: function()
 {
 if(this._wasAnyKeyPressed && !this._wasKeyUpDownPressed) {
 this._index = -1;
 this._prefix = this.get_element().value;
 this._getNextMatchingItem();
 this._wasAnyKeyPressed = false;
 }
 },

 // onKeyPress handler
 _onKeyPress: function(e)
 {
 this._wasAnyKeyPressed = true;
 },

 // onKeyUp handler
 _onKeyUp: function(e)
 {
 this._wasKeyUpDownPressed = false;

 if (e.keyCode == Sys.UI.Key.down) {
 this._wasKeyUpDownPressed = true;
 this._getNextMatchingItem();
 return;
 }

 if (e.keyCode == Sys.UI.Key.up) {
 this._wasKeyUpDownPressed = true;
 this._getPreviousMatchingItem();
 return;
 }

 // fix for IE where backspace and delete keypress is not raised
 if (e.keyCode == Sys.UI.Key.backspace ||
 e.keyCode == Sys.UI.Key.del)
 this._wasAnyKeyPressed = true;
 },

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 7

[203]

 // Type ahead
 _selectRange : function(start,length)
 {
 var element = this.get_element();
 // IE
 if (element.createTextRange)
 {
 var range = element.createTextRange();
 range.moveStart("character", start);
 range.moveEnd("character", length - range.text.length);
 range.select();
 }
 // FF
 else if (element.setSelectionRange)
 {
 element.setSelectionRange(start, length);
 }

 element.focus();
 },

 // Select the next matching item in the textbox
 _getNextMatchingItem: function()
 {
 var results = this._dictionary.getMatchingItems(this._prefix);

 if(results.length > 0)
 {
 if (this._index < results.length - 1) this._index++;
 var matchingItem = results[this._index];

 this.get_element().value = matchingItem;
 this._selectRange(this._prefix.length, matchingItem.length);
 }
 },

 // Select the previous matching item in the textbox
 _getPreviousMatchingItem: function()
 {
 var results = this._dictionary.getMatchingItems(this._prefix);

 if(results.length > 0)
 {
 if(this._index > 0) this._index--;
 var matchingItem = results[this._index];

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Case Study: Timer and EnhancedTextBox

[204]

 this.get_element().value = matchingItem;
 this._selectRange(this._prefix.length, matchingItem.length);
 }
 }
}

// register the EnhancedTextBox class
AjaxTutorial.EnhancedTextBox.registerClass(
 "AjaxTutorial.EnhancedTextBox", Sys.UI.Control);

4. Create a new JScript File in your Scripts folder named Dictionary.js,
and type the following code in.
// JScript File
Type.registerNamespace("AjaxTutorial");

// Dictionary constructor
AjaxTutorial.Dictionary = function()
{
 this._prefix = "";
 this._results = [];
 this._dictionary = [
"Aaron", "Abdullah", "Abel", "Abraham", "Abram","Adam",
"Adan","Addison","Aden","Adin","Aditya","Adolfo","Adonis",
"Adrian","Adriel","Adrien","Aedan","Agustin","Ahmad","Ahmed",
"Aidan","Aiden","Ajax","Alan","Albert","Alberto","Alden",
"Aldo","Alec","Alejandro","Alessandro","Alex","Alexander",
"Alexandro","Alexis","Alexzander","Alfonso","Alfred",
"Alfredo","Ali","Alijah","Allan","Allen","Alonso","Alonzo",
"Alvaro","Alvin","Amare","Amari","Amarion","Amir","Anderson",
"Andre","Andreas","Andres","Andrew","Andy","Angel","Angelo",
"Anthony","Antoine","Anton","Antonio","Antony","Antwan","Ari",
"Ariel","Arjun","Armando","Armani","Arnav","Aron",
"Arthur","Arturo","Aryan","Asa","Asher","Ashton","Atticus",
"August","Augustus","Austen","Austin","Avery","Axel","Aydan",
"Ayden","Aydin","Baby","Bailey","Barrett","Beau","Ben",
"Benjamin","Bennett","Bernard","Bernardo","Billy","Blaine",
"Blaise","Blake","Blaze","Bobby","Bogdan","Brad","Braden",
"Bradley","Brady","Bradyn","Braeden","Braedon","Braiden",
"Branden","Brandon","Branson","Braulio","Braxton","Brayan",
"Brayden","Braydon","Braylen","Braylon","Brendan","Brenden",
"Brendon","Brennan","Brennen","Brent","Brenton","Brett","Brian",
"Brice","Bridger","Brock","Broderick","Brodie","Brody",
"Bronson","Brooks","Bruce","Bruno","Bryan","Bryant","Bryce",
"Brycen","Bryson","Byron","Cade","Caden","Cael","Caiden",
"Cale","Caleb","Calvin","Camden","Cameron","Campbell","Camren",

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 7

[205]

"Camron","Camryn","Cannon","Carl","Carlo","Carlos","Carlton",
"Carmelo","Carmine","Carson","Carter","Casey","Cash","Cason",
"Cayden","Cedric","Cesar","Chad","Chaim","Chance","Chandler",
"Charles","Charlie","Chase","Chaz","Chris","Christian",
"Christopher","Clarence","Clark","Clay","Clayton","Clifford",
"Clinton","Coby","Cody","Cohen","Colby","Cole","Coleman",
"Colin","Collin","Colt","Colten","Colton","Conner","Connor",
"Conor","Conrad","Cooper","Corbin","Corey","Cornelius",
"Cortez","Cory","Craig","Cristian","Cristobal","Cristofer",
"Cristopher","Cruz","Cullen","Curtis","Cyrus","Dakota","Dale",
"Dallas","Dallin","Dalton","Damari","Damarion","Damian",
"Damien","Damion","Damon","Dandre","Dane","Dangelo","Daniel",
"Danny","Dante","Daquan","Darian","Darien","Darin","Dario",
"Darion","Darius","Darnell","Darrell","Darren","Darrius",
"Darryl","Darwin","Daryl","Dashawn","Davian","David","Davin",
"Davion","Davis","Davon","Dawson","Dayton","Deacon","Dean",
"Deandre","Deangelo","Declan","Demarcus","Demarion",
"Demetrius","Dennis","Denzel","Deon","Derek","Derick",
"Derrick","Deshaun","Deshawn","Desmond","Destin","Devan",
"Deven","Devin","Devon","Devonte","Devyn","Dexter","Diego",
"Dillan","Dillon","Dimitri","Dion","Domenic","Dominic",
"Dominick","Dominik","Dominique","Donald","Donavan","Donovan",
"Donte","Dorian","Douglas","Drake","Draven","Drew","Duncan",
"Dustin","Dwayne","Dylan","Dylon","Ean","Earl","Easton",
"Eddie","Edgar","Edison","Eduardo","Edward","Edwin",
"Efrain", "Efren","Eli","Elian", "Elias","Elijah",
"Eliseo","Elisha","Elliot","Elliott",
"Ellis","Elmer","Elvin","Elvis","Emanuel","Emerson",
"Emiliano","Emilio","Emmanuel","Emmett","Enrique","Enzo",
"Eric","Erick","Erik","Ernest","Ernesto","Esteban","Estevan",
"Ethan","Ethen","Eugene","Evan","Everett","Ezekiel",
"Ezequiel","Ezra","Fabian","Felipe","Felix","Fernando",
"Fidel","Finn","Finnegan","Fisher","Francis","Francisco",
"Franco","Frank","Frankie","Franklin","Freddy","Frederick",
"Fredrick","Fredy","Gabriel","Gael","Gage","Gaige","Gannon",
"Garret","Garrett","Garrison","Gary","Gauge","Gaven","Gavin",
"Gavyn","Geoffrey","George","Gerald","Gerardo","German",
"Giancarlo","Gianni","Gideon","Gilbert","Gilberto","Giovani",
"Giovanni","Giovanny","Glenn","Gonzalo","Gordon","Grady",
"Graham","Grant","Grayson","Gregory","Greyson","Griffin",
"Guadalupe","Guillermo","Gunnar","Gunner","Gustavo","Haden",
"Hamza","Harley","Harold","Harrison","Harry","Hassan",
"Hayden","Heath","Hector","Henry","Holden","Houston",
"Howard","Hudson","Hugh","Hugo","Humberto","Hunter","Ian",

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Case Study: Timer and EnhancedTextBox

[206]

"Ibrahim","Ignacio","Immanuel","Irvin","Irving","Isaac",
"Isaak","Isai","Isaiah","Isaias","Isiah","Ismael","Israel",
"Issac","Ivan","Izaiah","Jabari","Jace","Jack","Jackson",
"Jacoby","Jaden","Jadon","Jadyn","Jaeden","Jaheim","Jaiden",
"Jaidyn","Jaime","Jair","Jairo","Jake","Jacob","Jakob",
"Jalen","Jamal","Jamar","Jamari","Jamarion","Jamel","James",
"Jameson","Jamie","Jamir","Jamison","Jan","Jaquan","Jared",
"Jaren","Jaron","Jarrett","Jarvis","Jase","Jason","Jasper",
"Javier","Javion","Javon","Jax","Jaxon","Jaxson","Jay",
"Jayce","Jayden","Jaydin","Jaydon","Jaylan","Jaylen",
"Jaylin","Jaylon","Jayson","Jean","Jefferson","Jeffery",
"Jeffrey","Jeramiah","Jeremiah","Jeremy","Jermaine","Jerome",
"Jerry","Jesse","Jessie","Jesus","Jett","Jimmy","Joaquin",
"Joe","Joel","Joey","Johan","John","Johnathan","Johnathon",
"Johnny","Johnpaul","Jon","Jonah","Jonas","Jonathan",
"Jonathon","Jordan","Jorden","Jordon","Jordy","Jordyn",
"Jorge","Jose","Josef","Joseph","Josh","Joshua","Josiah",
"Josue","Jovan","Jovani","Jovanni","Jovanny","Jovany",
"Juan","Judah","Jude","Julian","Julien","Julio","Julius",
"Junior","Justice","Justin","Justus","Kade","Kaden","Kadin",
"Kadyn","Kaeden","Kai","Kaiden","Kale","Kaleb","Kamari",
"Kamden","Kameron","Kamren","Kamron","Kane","Kanye","Kareem",
"Karl","Karson","Karter","Kasey","Kason","Kayden","Keagan",
"Keanu","Keaton","Keegan","Keenan","Keith","Kellen","Kelton",
"Kelvin","Kendall","Kendrick","Kennedy","Kenneth","Kenny",
"Kenyon","Keon","Keshawn","Keven","Kevin","Keyon","Keyshawn",
"Khalil","Kian","Kieran","Kobe","Kody","Kolby","Kole",
"Kolton","Konner","Konnor","Korbin","Korey","Kristian",
"Kristopher","Kurt","Kyan","Kylan","Kyle","Kyler","Lamar",
"Lance","Landen","Landon","Landyn","Lane","Larry","Lawrence",
"Lawson","Layne","Layton","Leandro","Lee","Leland","Leo",
"Leon","Leonard","Leonardo","Leonel","Leroy","Levi","Lewis",
"Liam","Lincoln","Logan","London","Lorenzo","Louis","Luca",
"Lucas","Lucian","Luciano","Luis","Luka","Lukas","Luke",
"Maddox","Makai","Makhi","Malachi","Malakai","Malaki",
"Malcolm","Malik","Manuel","Marc","Marcel","Marcelo","Marco",
"Marcos","Marcus","Mariano","Mario","Mark","Markell",
"Markus","Marlon","Marques","Marquez","Marquis","Marquise",
"Marshall","Martin","Marvin","Mason","Mateo","Mathew",
"Mathias","Matias","Matteo","Matthew","Matthias","Maurice",
"Mauricio","Maverick","Max","Maxim","Maximilian",
"Maximillian","Maximo","Maximus","Maxwell","Mekhi","Melvin",
"Messiah","Micah","Michael","Micheal","Miguel","Mike",
"Mikel","Miles","Milo","Milton","Misael","Mitchell",

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 7

[207]

"Mohamed","Mohammad","Mohammed","Moises","Morgan","Moses",
"Moshe","Muhammad","Myles","Nash","Nasir","Nathan",
"Nathanael","Nathanial","Nathaniel","Nathen","Nehemiah",
"Neil","Nelson","Nestor","Nicholas","Nick","Nickolas",
"Nico","Nicolas","Nigel","Nikhil","Nikolas","Noah","Noe",
"Noel","Nolan","Norman","Octavio","Oliver","Omar","Omari",
"Omarion","Orion","Orlando","Oscar","Osvaldo","Oswaldo",
"Owen","Pablo","Parker","Patrick","Paul","Paxton","Payton",
"Pedro","Perry","Peter","Peyton","Philip","Phillip",
"Phoenix","Pierce","Porter","Pranav","Preston","Prince",
"Quentin","Quincy","Quinn","Quinten","Quintin","Quinton",
"Rafael","Ralph","Ramiro","Ramon","Randall","Randy",
"Raphael","Rashad","Raul","Ray","Raymond","Reagan","Reece",
"Reed","Reese","Reginald","Reid","Reilly","Remington","Rene",
"Reuben","Rex","Rey","Reynaldo","Rhett","Rhys","Ricardo",
"Richard","Ricky","Rigoberto","Riley","Rishi","River",
"Robert","Roberto","Rocco","Rocky","Roderick","Rodney",
"Rodolfo","Rodrigo","Rogelio","Roger","Rohan","Roland",
"Rolando","Roman","Romeo","Ronald","Ronaldo","Ronan",
"Ronnie","Rory","Ross","Rowan","Roy","Royce","Ruben",
"Rudy","Russell","Ryan","Ryder","Ryker","Rylan","Ryland",
"Rylee","Sage","Salvador","Salvatore","Sam","Samir",
"Sammy","Samuel","Santiago","Santino","Santos","Saul",
"Savion","Sawyer","Scott","Seamus","Sean","Sebastian",
"Semaj","Sergio","Seth","Shamar","Shane","Shannon","Shaun",
"Shawn","Shayne","Shea","Sheldon","Sidney","Silas","Simeon",
"Simon","Sincere","Skylar","Skyler","Solomon","Sonny",
"Soren","Spencer","Stanley","Stefan","Stephan","Stephen",
"Sterling","Steve","Steven","Stone","Sullivan","Talan",
"Talon","Tanner","Tariq","Tate","Taylor","Tayshaun","Teagan",
"Terrance","Terrell","Terrence","Terry","Thaddeus",
"Theodore","Thomas","Timothy","Titus","Tobias","Toby",
"Todd","Tomas","Tommy","Tony","Trace","Travis","Travon",
"Trent","Trenton","Trevon","Trevor","Trey","Tristan",
"Tristen","Tristian","Tristin","Triston","Troy","Tucker",
"Ty","Tye","Tyler","Tyree","Tyrell","Tyrese","Tyrone",
"Tyshawn","Tyson","Ulises","Ulysses","Uriel","Valentin",
"Van","Vance","Vaughn","Vicente","Victor","Vincent",
"Vincenzo","Wade","Walker","Walter","Warren","Waylon",
"Wayne","Wesley","Weston","Will","William","Willie","Wilson",
"Winston","Wyatt","Xander","Xavier","Xzavier","Yahir",
"Yair","Yosef","Yusuf","Zachariah","Zachary","Zachery",
"Zack","Zackary","Zackery","Zain","Zaire","Zakary","Zander",
"Zane","Zavier","Zechariah","Zion"];

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Case Study: Timer and EnhancedTextBox

[208]

}

// Dictionary members
AjaxTutorial.Dictionary.prototype =
{
 // filter each item
 _matchItem : function(element, index, array)
 {
 if (element.toLowerCase().indexOf(this._prefix.toLowerCase())
== 0) Array.add(this._results, element);
 },

 // get the matching items for a prefix
 getMatchingItems: function(prefix)
 {
 // return the cached items for the same prefix
 if(this._prefix.toLowerCase() == prefix.toLowerCase())
 {
 return Array.clone(this._results);
 }

 // fetch the new items according to the new prefix
 this._prefix = prefix.toString();
 this._results = [];

 Array.forEach(this._dictionary,
 Function.createDelegate(this,this._matchItem));
 return Array.clone(this._results);
 }
};

// register the Dictionary class
AjaxTutorial.Dictionary.registerClass("AjaxTutorial.Dictionary");

5. Add an HTML Page named EnhancedTest.html, and update its code as
shown in the following code snippet:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" >
<head>
 <title>Microsoft AJAX Library Case Study: Creating Custom Client
Components</title>
 <script type="text/javascript" src="Scripts/MicrosoftAjax.js">
 </script>
 <script type="text/javascript" src="Scripts/Timer.js">
 </script>
 <script type="text/javascript" src="Scripts/Dictionary.js">

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 7

[209]

 </script>
 <script type="text/javascript" src="Scripts/EnhancedTextBox.js">
 </script>
</head>
<body>
 <h1>Microsoft AJAX Library Case Study: Creating Custom Client
Components</h1>

 <p>Start typing a name:</p>
 <form>
 <input type="text" id="name" />
 </form>

 <script type="text/javascript">
 // add handler for the application init event
 Sys.Application.add_init(pageInit);

 // page init event handler
 function pageInit()
 {
 // create the EnhancedTextBox behavior for the name DOM element
 $create(AjaxTutorial.EnhancedTextBox, {interval:1000}, {},
 null, $get("name"));
 }
 </script>
</body>
</html>

6. Execute EnhancedTest.html, and type "Aj". The text should be
auto-completed to "Ajax," as shown in Figure 7-5. You can also test the script
at http://www.cristiandarie.ro/asp-ajax/EnhancedTest.html.

Figure 7-5. Testing EnhancedTextBox

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Case Study: Timer and EnhancedTextBox

[210]

What Just Happened?
The goal of this example was to show how we can create custom client components.
We will start the analysis with our custom Timer component. Its creation started by
registering the AjaxTutorial namespace:

// Register the AjaxTutorial namespace
Type.registerNamespace("AjaxTutorial");

We continued by declaring the component's constructor. Because thee continued by declaring the component's constructor. Because the Timer control
derives from Sys.Component, the constructor first calls initializeBase(), which
ensures the base class is created properly:

// Timer constructor
AjaxTutorial.Timer = function()
{
 // initialize base class
 AjaxTutorial.Timer.initializeBase(this);

Here is where we also define the fields, properties, and handlers for our component:

 // set up class members
 this._interval = 1000;
 this._enabled = false;
 this._timer = null;
}

The _interval and _enabled fields store the values for their corresponding
properties. interval represents the interval of time between two consecutive tick
events. enabled is a Boolean value indicating whether the timer is active or not.

The tick event exposed by the timer can be seen as the component's heartbeat. To
build the timer we use JavaScript's setInterval() and clearInterval() methods.
The _timer private field contains the timeout ID returned by setInterval().

After creating the class constructor, we continued by building its members, starting
by overriding the initialize() method. This function itself starts by calling the
initialize() method of the base class, Sys.Component, to ensure that is also
properly initialized. Also in initialize() we call startTimer() to start the
countdown to the next tick event, if the timer is enabled:

// Timer members
AjaxTutorial.Timer.prototype =
{
 // initialize the timer
 initialize: function()
 {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 7

[211]

 // initialize base class
 AjaxTutorial.Timer.callBaseMethod(this, "initialize");

 // start the timer if it's enabled
 if(this._enabled) this._startTimer();
 },

Next, we make sure that the component can be gracefully disposed, by overriding
the dispose() method. Here, we only stop the timer and call the dispose() method
of the base class in order to let it do its own cleanup.

 // dispose of the timer
 dispose: function()
 {
 // make sure the timer is stopped
 this._stopTimer();

 // be sure to call base.dispose()
 AjaxTutorial.Timer.callBaseMethod(this, "dispose");
 },

Then we declared the setter and getter methods for our properties, interval and
enabled. The getters for both properties are quite trivial as they simply return the
property values:

 // interval getter
 get_interval: function()
 {
 return this._interval;
 },

 // enabled getter
 get_enabled: function()
 {
 return this._enabled;
 },

On the other side, the setters are quite interesting as they implement some
custom logic. When setting a new interval for the timer, we raise the inherited
propertyChanged event (from Sys.Component) for our interval property by
calling the inherited raisePropertyChanged() method (also from Sys.Component).
A change of the interval implies restarting the timer, and this can only happen when
the component is not during the first phase of the component's creation, when this
parameter is passed to the $create() method.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Case Study: Timer and EnhancedTextBox

[212]

 // interval setter
 set_interval: function(value)
 {
 if (this._interval !== value) {
 this._interval = value;
 this.raisePropertyChanged("interval");
 // do not restart the timer during the creation phase
 if (!this.get_isUpdating() && this._timer !== null)
 this._restartTimer();
 }
 },

The enabled property has an equally interesting setter method. It is very similar
in terms of functionality to set_interval() as it first raises the propertyChanged
event and then starts or stops the timer if the component is not in its first phrase
of creation.

 // enabled setter
 set_enabled: function(value)
 {
 if (value !== this._enabled) {
 this._enabled = value;
 this.raisePropertyChanged("enabled");
 // do not enable the timer during the creation phase
 if (!this.get_isUpdating())
 if(this._enabled)
 this._startTimer();
 else
 this._stopTimer();
 }
 },

The tick event's implementation is quite straightforward—no surprises here. What's
different from the previous examples is that we don't need the events property with
its getter get_events() method, as Sys.Component has this feature built in.

 // tick event
 add_tick: function(handler)
 {
 this.get_events().addHandler("tick", handler);
 },

 remove_tick: function(handler)
 {
 this.get_events().removeHandler("tick", handler);
 },

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 7

[213]

The core of the component is represented by the start and stop methods as
they control whether the timer is raising events or not. Both of them are quite
straightforward as they represent wrappers for JavaScript's setInterval() and
clearInterval() methods.

 // start the timer
 _startTimer: function()
 {
 // save timer cookie
 this._timer = window.setInterval(Function.createDelegate(this,
this._onTick), this._interval);
 },

 // stop the timer
 _stopTimer: function()
 {
 // prevent multiple calls
 if(this._timer) {
 window.clearInterval(this._timer);
 this._timer = null;
 }
 },

The component exposes a single public method that allows the timer to be restarted.
This method simply calls _stopTimer() and _startTimer() in order to do its job:

 // start or restart the timer
 restartTimer: function()
 {
 this._stopTimer();
 this._startTimer();
 },

When the timer "ticks", the _onTick() function executes, which uses a helper
function named _raiseAjaxEvent() to raise the tick event by executing all its
registered event handlers.

After the class implementation is complete, we register the component. With this last
step we have successfully created our first custom client component:

AjaxTutorial.Timer.registerClass("AjaxTutorial.Timer", Sys.Component);

Let's now have a look at EnhancedTextBox. When creating this class we started,
as usually, by registering its namespace, and creating its constructor. We end up
registering the namespace multiple times, to make sure that it exists when we need it
for our class declaration without relying on other scripts to register the namespace.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Case Study: Timer and EnhancedTextBox

[214]

As the behavior has an associated DOM element, we need to pass it to our
constructor. In turn the behavior passes it to the base class (Sys.UI.Behavior) when
calling the initializeBase() method, which will add it to the DOM element's list
of behaviors.

// EnhancedTextBox constructor
AjaxTutorial.EnhancedTextBox = function(element)
{
 // initialize base class
 AjaxTutorial.EnhancedTextBox.initializeBase(this, [element]);

Things become more interesting when we meet the fields and properties of the
behavior, which hold the component's state. Most of them have self-descriptive names:

 // set up the initial behavior state
 this._onKeyUpHandler = null;
 this._onKeyPressHandler = null;
 this._onFocusHandler = null;
 this._dictionary = null;
 this._index = 0;
 this._prefix = "";
 this._timer = null;
 this._interval = 2000;
 this._onTickHandler = null;
 this._wasKeyUpDownPressed = false;
 this._wasAnyKeyPressed = false;
}

Things are getting even more interesting as we move on. The overridden
initialize() method has a bit more logic than simply calling the initialize()
method of the base class, Sys.UI.Behavior. It also creates a new Dictionary
object, and it registers the keyup, keypress, and focus events of the DOM element
associated to the behavior. TheThe get_element() method of Sys.UI.Behavior is used
in the process to retrieve the DOM element associated to the component.

 // initialize
 initialize: function()
 {
 // initialize base class
 AjaxTutorial.EnhancedTextBox.callBaseMethod(this, "initialize");

 // create the dictionary
 this._dictionary = new AjaxTutorial.Dictionary();

 // KeyUp
 this._onKeyUpHandler = Function.createDelegate(this, this._onKeyUp);
 $addHandler(this.get_element(), "keyup", this._onKeyUpHandler);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 7

[215]

 // KeyPress
 this._onKeyPressHandler = Function.createDelegate(this, this._
onKeyPress);
 $addHandler(this.get_element(), "keypress", this._onKeyPressHandler);

 // Focus
 this._onFocusHandler = Function.createDelegate(this, this._onFocus);
 $addHandler(this.get_element(), "focus", this._onFocusHandler);

Also in initialize() we create the timer component, and we set the focus on our
element by using the DOM element's focus() method:

 // Tick
 this._onTickHandler = Function.createDelegate (this, this._onTick);
 this._timer = $create(AjaxTutorial.Timer, {interval:this._
interval, enabled:true}, {tick:this._onTickHandler}, null, null);

 // focus on the DOM element
 this.get_element().focus();
 },

At the other side of the component's page life cycle we have the dispose() method.
As we had more work in the initialize() method, it is normal to have almost the
same amount here. Following the recommendation, we release all the resources and
handlers we declared during initialization:

 // dispose
 dispose: function()
 {
 // remove the event handlers
 $removeHandler(this.get_element(), "keyup", this._onKeyUpHandler);
 $removeHandler(this.get_element(), "keypress", this._
onKeyPressHandler);
 $removeHandler(this.get_element(), "focus", this._onFocusHandler);

 // make sure the timer is not enabled
 if(this._timer) {
 this._timer.remove_tick(this._onTickHandler);
 }

As in any dispose() method, the final step consists of calling the base class's
dispose() method. We don't need to worry about the timer component's cleanup as
it has its own dispose() method, which is called by Sys.Application because it is
registered as a disposable object:

 // call dispose of the base calss
 AjaxTutorial.EnhancedTextBox.callBaseMethod(this, "dispose");
 },

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Case Study: Timer and EnhancedTextBox

[216]

We move on to declaring the getter and setter methods for the interval property.
As was the case for the timer component, the getter method simply returns the
internally stored value, and the setter method sets the new value and raises the
propertyChanged event. It's worth noting that the setter method doesn't do
anything if the value you're trying to set is identical to the one that is already stored
by the component.

The _onTick() event handler verifies if any key different than the up and down
arrow keys have been pressed, in which case the current word is auto-completed
using the _getNextMatchingItem() function:

 _onTick: function()
 {
 if(this._wasAnyKeyPressed && !this._wasKeyUpDownPressed) {
 this._index = -1;
 this._prefix = this.get_element().value;
 this._getNextMatchingItem();
 this._wasAnyKeyPressed = false;
 }
 },

The _onKeyPress() and _onKeyUp() functions, and their supporting functions,
implement the mechanics of type-ahead auto-completion. As their functionality
isn't overly complex and only relies on basic JavaScript functionality, we'll leave
analyzing them to you as an exercise.

Using the Components
We have chosen a simple example in order to show how we can create components,
register to their events, and see the order in which their events are raised. The custom
components are included in the page by referencing their JavaScript source files:

<head>
 <title>Microsoft AJAX Library Case Study: Creating Custom Client
Components</title>
 <script type="text/javascript" src="Scripts/MicrosoftAjax.js">
 </script>
 <script type="text/javascript" src="Scripts/Timer.js">
 </script>
 <script type="text/javascript" src="Scripts/Dictionary.js">
 </script>
 <script type="text/javascript" src="Scripts/EnhancedTextBox.js">
 </script>
</head>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 7

[217]

The user interface has only one textbox that we will enhance using the
EnhancedTextBox behavior. The textbox is defined like this:

 <form>
 <input type="text" id="name" />
 </form>

We add the new behavior to this textbox during the init event of the application. In
order to do so, we first register an event handler for Sys.Application's init event:

 <script type="text/javascript">
 // add handler for the application init event
 Sys.Application.add_init(pageInit);

The pageInit() event handler simply uses $create(). As explained in Chapter 6,
$create() is just the short version of Sys.Component.create(). The first parameter
is the type of the behavior (AjaxTutorial.EnhancedTextBox), the second parameter
is used to pass initialization parameters to this class ({interval:1000}), the third
parameter is used to set up events (none in our case), the fourth parameter is used
to set referenced components (none in our case), and the last parameter is the DOM
element on which we're applying the behavior, which we get using $get("name"):

 // page init event handler
 function pageInit()
 {
 // create the EnhancedTextBox behavior for the name DOM element
 $create(AjaxTutorial.EnhancedTextBox, {interval:1000}, {},
 null, $get("name"));
 }

Summary
This chapter completed the tutorial of the world of the Microsoft AJAX Library
by having you create a simple component named Timer, and a behavior named
EnhancedTextBox. Understanding these mechanics will help you be a better
ASP.NET AJAX programmer, which is particularly important when using the
Microsoft AJAX Library in the context of more complex projects. Chapter 8 will
discuss tools and techniques for debugging your Microsoft AJAX code.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Debugging Tools and
Techniques

Developing AJAX applications that involve complex client-side programming and
communication with the server side raises the need for equally complex debugging
tools and techniques.

Most of today's AJAX frameworks, including the Microsoft AJAX Library, offer
built-in capabilities for debugging and tracing. In this chapter we will learn about
the capabilities built in the Microsoft AJAX Library, and we'll also learn about
third-party debugging and tracing tools.

More specifically, you will:

Learn about the debugging and tracing capabilities of Microsoft AJAX Library
Learn how to enable and use Internet Explorer's debugging capabilities
Work with Web Development Helper, Developer Toolbar, and other Internet
Explorer tools
Work with Firefox plugins such as FireBug, Venkman JavaScript Debugger,
and Web Developer
Use Fiddler to analyze the traffic between the web server and your web client

•

•

•

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Debugging Tools and Techniques

[220]

AJAX Debugging Overview
Unfortunately, today's tools for client-side debugging and tracing aren't as evolved
as their server-side counterparts. For example, things such as capturing ongoing
communication traffic between the client and the server, or client-side debugging,
aren't usually supported by today's IDEs (Integrated Development Environments)
such as Microsoft Visual Studio 2005. The next version of Visual Studio (code-named
Orcas at the time of writing) promises a lot of improvements in this area:

Improved IntelliSense technology with support for JavaScript code, which
provides coding hints based on specially-formatted comments in the code
Breakpoints in inline JavaScript code

These are only the most important new coming features; there are others as
well. For more information we suggest that you browse and keep an eye on Scott
Guthrie's blog at http://weblogs.asp.net/scottgu/, the JScript blog at
http://blogs.msdn.com/jscript/, Bertrand Le Roy's blog at
http://weblogs.asp.net/bleroy/, and the other resources mentioned in Chapter 1.

Until this new edition of Visual Studio is released, we can rely on third-party tools that
can do a very good job at helping us develop our AJAX applications. As you found out
earlier, you'll meet a number of tools for Internet Explorer and Mozilla Firefox.

Debugging and Tracing with Microsoft
AJAX Library
The common practices for debugging JavaScript code are:

Putting alert messages throughout the code to get notified about the values
of the variables
Logging tracing messages in a <div> element

While the first option is straightforward, the second option offers a centralized
place for storing different messages and could be considered more appropriate.
Nevertheless both options can come in quite handy depending on the circumstances.

•

•

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 8

[221]

Microsoft AJAX Library offers the Sys.Debug object that has a series of methods that
you can use for debugging and tracing. The diagram of this class is presented
in Figure 8-1.

Figure 8-1. The Debug class

As we can easily see in the diagram, Sys.Debug offers the most common features
that we can find also in other languages: assert(), trace(), traceDump(), fail(),
and clearTrace().

assert(), trace(), and and fail() automatically send the messages to the debugging
console of the browser. To see the messages in IE you need to have the Web
Development Helper, and for Firefox you need the FireBug plugin. Both of these
tools are presented later in this chapter. Internally assert() calls fail() if the
expression evaluates to false. fail() simply logs the message passed in by assert to
the debugging console.

trace() offers an interesting feature beside logging to the debugging console: it
offers the possibility to log the trace message in a <textarea> element with the ID
TraceConsole. If such an element is found, trace() will log this message in this
element too. This feature was demonstrated in the exercises in Chapter 5.

The clearTrace() function simply clears the <TraceConsole> element, if found.

The traceDump() function traces all the information about an object including its
properties. Internally this function uses the trace() function so that we can have the
information logged in the browser's debugging console, and in the <TraceConsole>
element (if it exists).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Debugging Tools and Techniques

[222]

MicrosoftAjax.debug.js
You might have wondered why the Microsoft AJAX Library comes with both release
and debug version of the JavaScript file. The major features of the debug version of
the library files are:

The script is nicely formatted
The names of variables are not obfuscated
The script contains code comments
Some of the functions have the optional summary data that will be used by
Visual Studio "Orcas" for code auto-completion
The script outputs debugging-friendly information
Parameters are validated

Once the development stage is finished, you can switch your application to the
release version of the script (MicrosoftAjax.js), which is smaller and doesn't
contain the debugging features presented above.

Perhaps the most interesting features of the debug version are the last two:
debugging-friendly information and parameter validation.

Anonymous Functions vs. Pseudo-Named
Functions
We will explain these two concepts by taking a look at how different functions are
defined in the debug and release version of the library. The debug version of the
library contains:

function Sys$_Debug$assert(condition, message, displayCaller) {
 ...
}

Sys._Debug.prototype = {
 assert: Sys$_Debug$assert,
 ...
}

and:
String.format = function String$format(format, args) {...}

In the release version of the library we have:
Sys._Debug.prototype = {
 assert: function(c, a, b) {
 ...
}

•
•
•
•

•
•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 8

[223]

and:

String.format = function() {...}

In the release version, we have methods that are anonymous functions. This means
that within a debugger stack trace the method name will read JScript anonymous
function (as shown in Figure 8-2). This is not very useful for debugging purposes, is it?

Figure 8-2. Call Stack showing anonymous functions

However, the debug version of the library uses the dollar-syntax to provide
alias names for our functions: String$format() for String.format() and
Sys$Debug$assert() for Sys.Debug.assert(). When using the debug version of
the file, the stack trace would look like Figure 8-3.

Figure 8-3. Call Stack showing named functions

We can still notice some anonymous functions as they are the result of creating
callback or delegate functions. The example shows two different ways of coding:

In the debug version, the function is declared outside the prototype and then
referenced in the prototype declaration.
In the release version, the declaration is done directly where the function is
declared (outside or inside the prototype).

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Debugging Tools and Techniques

[224]

Parameters Validation
Another interesting feature that has not been documented in the Microsoft AJAX
Library documentation is that of parameters validation.

Type safety is one of the typical problems when it comes to using JavaScript.
Although the dynamic type features are really useful, sometimes we might really
want to make sure that a parameter or object is of a certain type. To check the data
type of an object, you can try converting the object to the desired type, or using the
methods defined by Type. Fortunately the Microsoft AJAX Library has a function
that does the dirty work for us: Function._validateParams(). The class diagram in
Figure 8-4 shows the _validateParameter() and _validateParams() methods of
the Function class.

Figure 8-4. The Function class

The Function._validateParams() function, even if it is declared as private (by
convention, using the leading underscore), can be used by our scripts as it is usedcan be used by our scripts as it is used
throughout the debug version of the Microsoft AJAX Library. Here's an example of
using this function:

function Sys$_Debug$fail(message) {
/// <param name="message" type="String" mayBeNull="true"></param>
 var e = Function._validateParams(arguments,
 [{name: "message", type: String, mayBeNull: true}]);
 if (e) throw e;

This shows how the parameter for the fail() function is validated as a String. We
can also see the additional code comments inside the function, which are meant to be
used by the IntelliSense feature in Visual Studio "Orcas" to check for the correctness
of the parameter types.

While the first parameter of _validateParams() represents an array of parameters
to be checked, the second parameter is an array of JSON objects describing the
validation rules for the array of parameters. Each JSON object contains a validation
rule for a parameter. The JSON object is a dictionary of keys and values. The list of
keys that can be used is described in the table that follows.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 8

[225]

Key Description
name The name of the parameter

type

The allowed type for this parameter (ex: String, Array,
Function, Sys.Component, etc.) etc.)

mayBeNull

Boolean value indicating whether this parameter can be passed
as null or not

domElement

Boolean value indicating whether this parameter is a DOM
element or not

integer

Boolean value indicating whether this parameter should have
an integer value or not

optional

Boolean value indicating whether this parameter is optional or
not

parameterArray

Boolean value indicating whether this parameter should be an
Array or not

elementType

The allowed type for each element of an array (type must be
Array)

elementMayBeNull

Boolean value indicating whether an array element could have
null or not (type must be Array)

elementDomElement

Boolean value indicating whether each element of an array is a
DOM element (type must be Array)

elementInteger

Boolean value indicating whether each element of an array
should have an integer value (type must be Array)

The function returns an error message if the parameters don't validate and the error
is typically thrown like this:

if (e) throw e;

This exception could be caught and the appropriate measures taken
programmatically. If the exception is not caught, the error will pop up in the
debugging console of the browser.

Debugging in Internet Explorer
By default, JavaScript errors are ignored by Internet Explorer. In order to be able to
debug in Internet Explorer, you need to:

1. Start Internet Explorer and go toInternet Explorer and go to Explorer and go to Tools | Internet Options | Advanced
and clear the Disable script debugging (Internet Explorer) and Disable
script debugging (Other) checkboxes. If you want a pop-up window to be
displayed for each error, you need to check the D�s��a� a n�t����at��n ab��t
every script error checkbox, as shown in Figure 8-5.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Debugging Tools and Techniques

[226]

Figure 8-5. Enabling debugging in Internet Explorer

2. Open the solution you want to debug in Visual Studio.
3. Execute the project.the project. project.
4. After the Internet Explorer window opens, go back to Visual Studio.
5. Open the script explorer by going to Debug | Windows | Script Explorer.

The script explorer will list the available script files that can be debugged (see
Figure 8-6).

Figure 8-6. Using the IE script explorer

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 8

[227]

6. Double-clicking a file in the script explorer will open it in the editor. There
you can place breakpoints inside JavaScript files, and the feature will workbreakpoints inside JavaScript files, and the feature will work
just as it does when debugging server-side code. Figure 8-7 shows Visual
Studio while we were debugging the case study from Chapter 7.

Figure 8-7. Debugging JavaScript code using Visual Studio

Alternatively, if you have Visual Studio, you can attach the debugger to an existing
the Internet Explorer process by selecting Debug | Attach to Process, and then and then
choosing the Internet Explorer process (iexplore.exe).

If Internet Explorer is configured for debugging and a script error is encounted in
the browser while no debugger is attached, you're promoted to choose one of the
available debuggers:

Visual Studio and Visual Web Developer 2005
Microsoft Script Debugger (downloadable from Microsoft's website)
Microsoft Script Editor (ships with Microsoft Office)

•

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Debugging Tools and Techniques

[228]

For more about debugging web applications in Visual Studio, see these links:

http://msdn2.microsoft.com/en-us/library/sc65sadd(VS.80).aspx

http://www.developerfusion.co.uk/show/5918/

http://msdn2.microsoft.com/en-us/library/k2h50zzs(VS.80).aspx

Web Development Helper
Web Development Helper is a great tool developed by Nikhil Kothari and should be
used by every developer who needs the following development features:

HTTP(S) traffic monitoring
DOM inspector
Script errors and immediate window

Web Development Helper can be downloaded from:
http://www.nikhilk.net/Project.WebDevHelper.aspx.

For more documentation about this tool, check the following links:

http://projects.nikhilk.net/WebDevHelper/Readme.pdf

http://www.nikhilk.net/WebDevHelperDebuggingTools.aspx

http://weblogs.asp.net/scottgu/archive/2006/11/13/Nikhil_2700_s
-WebDevHelper-Utility-and-ASP.NET-AJAX-Support.aspx

When it comes to debugging, the tool offers nice features such as showing the trace,
catching run-time errors, and showing the full call stack (including script URL, line
number, and line of code). The Script Console window allows entering custom script
that is executed within the document context.

Internet Explorer Developer Toolbar
Microsoft offers the Internet Explorer Developer toolbar as an option for exploring
web pages. It is especially useful for working with the page's DOM element, CSS
styles, cookies, etc. It can be downloaded Microsoft's website..After it installs, you.After it installs, you
open it through Tools | Toolbars | Explorer Bar | IE Developer Toolbar.

•

•

•

•

•

•

•

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 8

[229]

Figure 8-8. Internet Explorer Developer Toolbar in action

It is worth mentioning that it doesn't compete with Nikhil's tool, but it's more like a
complementary tool as it doesn't offer JavaScript debugging capabilities or any of the
other main features by Web Development Helper.

Other tools
There are other other tools that are worth mentioning and that you should keep an
eye on:

Damian Meher's TraceJS is a tool that logs every line of script executed inis a tool that logs every line of script executed in
Internet Explorer. Find it at
http://damianblog.com/2006/11/23/tracejs/.
Julien Couvreur's XMLHttpRequest debugging bookmarklet. See http://
blog.monstuff.com/archives/000291.html and http://weblogs.asp.
net/bleroy/archive/2006/05/15/446532.aspx.

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Debugging Tools and Techniques

[230]

Debugging in Firefox
With the increasing number of users of Firefox, the number of tools used for web
development has grown as well.

First of all, Firefox offers an Error Console accessible from the from thefrom the Tools menu, where all
the JavaScript errors, warnings, and messages are logged. It also has a built-in script
evaluator within the document context, and the DOM Inspector tool, which can
be selected at installation time, so we can say that the features packaged into Firefox
are quite advanced in comparison with the default features of Internet Explorer.
Figure 8-9 shows the Error Console signalling a typo in our code.

Figure 8-9. The Error Console in Firefox

Firebug
Firebug (http://www.getfirebug.com/) is a Firefox plugin that offers almost
anything a web developer could want from a debugging tool:

Debugging and profiling script
Monitoring HTTP traffic
Examining HTTP headers
Inspecting and editing the DOM
Inspecting and editing CSS
Quick search for filtering errors and messages

•

•

•

•

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 8

[231]

Delivering such a powerful set of tools in one free product makes Firebug the perfect
choice for debugging applications in Firefox. Figure 8-10 shows Firebug in action. Figure 8-10 shows Firebug in action.

Figure 8-10. Debugging using Firebug

Venkman JavaScript Debugger
The Venkman JavaScript debugger (http://www.mozilla.org/projects/
venkman/) is a powerful tool for debugging in Mozilla-based browsers (Firefox,
Netscape, and Seamonkey).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Debugging Tools and Techniques

[232]

Like Firebug, Venkman JavaScript Debugger offers debugging and profiling, full call
stack, breakpoints, local variables, and watches, all within an interface that is very
similar to Visual Studio. Figure 8-11 shows this tool in action.

Figure 8-11. Debugging using Venkman JavaScript Debugger

You can find a few excellent online articles for using Venkman JavaScript Debugger:

http://www.svendtofte.com/code/learning_venkman/

http://www.hacksrus.com/~ginda/venkman/

http://www.webreference.com/programming/javascript/venkman/

•

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 8

[233]

Web Developer
Similar to what Firebug and Internet Explorer Developer Toolbar offer, Web
Developer plugin ((https://addons.mozilla.org/en-US/firefox/addon/60),,
provides a most comprehensive set of tools for:

DOM information and inspection
Outlining different elements (frames, headings, tables, links, etc.)
HTTP headers, JavaScript, images information
Cookies
CSS
Page validation (CSS, HTML, WAI, links, Section 508) WAI, links, Section 508)WAI, links, Section 508)

All in all, this extension is a very good companion for developing websites.
The homepage for this extension and some documentation can be found at
http://chrispederick.com/work/webdeveloper/.

Fiddler
When it comes to inspecting and tampering with the HTTP(S) traffic from our
computer and the Internet, the most popular tool you can find is Fiddler. This is a
freeware tool that allows inspecting all HTTP and HTTPS traffic and tampering it,
setting breakpoints, making it an ideal candidate for debugging applications.

It also offers an event-based subscription system offering the capability to easily
extend it. Install Fiddler from http://www.fiddler2.com/Fiddler2/. You can find
a quick introduction to Fiddler on MSDN, and in the following resources:

Fiddler tutorial http://www.developer.com/lang/jscript/article.
php/3631066

Fiddler2 demonstration videos http://www.fiddler2.com/fiddler/help/
video/default.asp

Fiddler2 extensions development http://www.fiddlertool.com/
fiddler2/extensions.asp

Fiddler2 user interface http://www.fiddler2.com/Fiddler/help/ui.asp

•

•

•

•

•

•

•

•

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Debugging Tools and Techniques

[234]

Testing
There are a lot of testing tools available today, but only few of them allow for
automatic testing of AJAX applications. Dan Wahlin has put together a list of
automated testing and debugging tools on his weblog at http://weblogs.asp.net/
dwahlin/ on 2007/02/16/.

In his article we can find some of the tools that we presented so far, and also a
comprehensive list of tools that we can use for automatic testing.

A less documented feature of Fiddler is that it can generate Visual Studio WebTest
files that can be using in Visual Studio. Why is this necessary? Visual Studio doesn't
record AJAX requests based on XMLHttpRequest, but only full postbacks.

In order to create a Visual Studio WebTest file, you need to follow these steps:

1. Open Fiddler.
2. Start capturing the traffic by pressing capturing the traffic by pressing F12 or by selecting File | Capture

T�af���.
3. Browse the AJAX application and Fiddler will register the requests.
4. After having finished the steps save the session by going to File | Save |

Session(s) | as Visual Studio Web Test.
5. Now you can import the generated file in Visual Studio and use it for

automatic testing.

Summary
Debugging and testing are quite complex tasks and they could be the subject of
an entire book. The goal of this chapter was to introduce the common tools and
techniques for debugging and also to offer a glimpse into the world of automated
testing tools for AJAX applications. With the continuous growth of AJAX
applications, the need for more complex tools will generate new products so that it's
worth keeping an eye on what's new in this domain.

We hope you enjoyed reading this book, and that it helps you create better ASP.NET
AJAX applications!

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Microsoft AJAX Library
Reference

This appendix has been designed to be a quick reference and visual guideline to
the Microsoft AJAX Library namespaces and classes that have been mentioned in
this book. This reference attempts to supplement the official library documentation
available at http://ajax.asp.net/docs/ClientReference/. In the following
pages, you will find:

Description of the conventions used in the class diagrams
Function reference
JavaScript base type extensions reference
Sys namespace reference
Sys.UI namespace reference
Sys.Net namespace reference
Sys.Serialization namespace reference

Conventions
In this book, you were first introduced to class diagrams in Chapter 5. There
you learned that unlike in C#, several conventions need to be used in order to
implement typical OOP concepts using JavaScript code. Class diagrams use different
conventions for the different types of items they describe, such as class fields,
properties, methods, and events.

•

•

•

•

•

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Microsoft AJAX Library Referencez

[236]

Fields are variables of primitive types and can be accessed directly using a class
instance. Properties are mechanisms where the values of class fields can be accessed
or altered only through getter and setter functions. This restriction is by convention
only; the fields that store property values can be accessed directly, but the convention
requires using the getter and setter methods.

The property's field that internally store its value is declared with a leading
underscore (_). The getter and setter methods are prefixed with "get_" and "set_"
followed by the property name. For example, a property called name would be
implemented using JavaScript code like this:

this._name = myvalue;
...
get_name: function()
{
 return this._name;
},

set_name: function(value)
{
 . this._name = value;
}

Methods are functions inside a class. The term comes from the OOP world, but in
the case of JavaScript, method and function can often be used interchangeably.

Events represent notifications that an action has occurred. The implementation for
events in JavaScript is very similar to the one chosen on the server-side .NET platform.

The JavaScript implementation for an event named change looks like this:

this._events = new Sys.EventHandlerList();
...

// register a change event handler
add_change: function(handler) {
 this.get_events().addHandler("change", handler);
},

// unregister a change event handler
remove_change: function(handler) {
 this.get_events().removeHandler("change", handler);
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Appendix A

[237]

When an event is raised, one or more functions, called handlers, can be invoked in
response. Handlers can be registered and deregistered from an event. Each event
handler would typically have a signature like the following:

function MyHandler(source, eventArgs)

Here, source represents the object that raised the event, and eventArgs contains an
object derived from Sys.EventArgs which contains the parameters sent to our event.
This strongly resembles the .NET style of event handlers.

The diagrams in this book have been created using the Class Diagram feature of
Visual Studio 2005 Team System Edition. Note, however, that this feature doesn't
actually work with JavaScript—to create class diagrams, we created C# classes that
correspond to the Microsoft AJAX Library functions. The mentioned conventions
were used to port the JavaScript code to C#. Here are a few examples:

Unlike public methods, private (by convention) JavaScript methods are
named with a leading underscore. See Figure A-1.

Figure A-1. Public and private methods

JavaScript properties (by convention) are declared as C# properties (see
Figure A-2); read-only JavaScript properties are represented as C# properties
having only a getter (see Figure A-3).

Figure A-2. Read-write property

Figure A-3. Read-only property

Private (by convention) JavaScript fields are represented as C# fields with
leading underscore(s)—see Figure A-4; all public Javascript fields are
mapped to public C# fields (see Figure A-5).

Figure A-4. Private fields

•

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Microsoft AJAX Library Referencez

[238]

Figure A-5. Public field

All the events (by convention) exposed by JavaScript objects are mapped
to C# events; the classic EventHandler in C# is replaced by convention by
Function (see Figure A-6).

Figure A-6. Event

Function Class
The Function class (Figure A-7) provides basic features for functions and it is used
throughout the library.

Figure A-7. Function

emptyMethod() Method
Static method that represents an empty function.

_validateParams() Method
Static method that validates a list of parameters against of list of JSON objects
representing the validation rules.

Parameters
arguments – Array of parameters to be validated.

expectedParams – Array of JSON objects describing the validation rules for
the arguments.

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Appendix A

[239]

Returns
The method return an Error message if the arguments do not validate.

Remarks
Each JSON object contains a validation rule for a parameter. The JSON object is a
dictionary of keys and values.

The list of keys that can be used is given in the following table:

Key Description
name The name of the parameter

type

The allowed type for this parameter (examples: String,
Array, Function, Sys.Component, etc.)

mayBeNull

Boolean value indicating whether this parameter can be passed
as null or not

domElement

Boolean value indicating whether this parameter is a DOM
element or not

integer

Boolean value indicating whether this parameter should have
an integer value or not

optional

Boolean value indicating whether this parameter is optional
or not

parameterArray

Boolean value indicating whether this parameter should be an
Array or not

elementType

The allowed type for each element of an array (type must
be Array)

elementMayBeNull

Boolean value indicating whether an array element could have
null or not (type must be Array)

elementDomElement

Boolean value indicating whether each element of an array is a
DOM element (type must be Array)

elementInteger

Boolean value indicating whether each element of an array
should have an integer value (type must be Array)

The function returns an Error message if the parameters don't validate and this error
is typically thrown as shown below.

if (e) throw e;

This error could be caught and the appropriate measures can be taken
programmatically. If not caught, the error will pop up in the debugging console of
the browser.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Microsoft AJAX Library Referencez

[240]

Example
function Sys$_Debug$fail(message) {
/// <param name="message" type="String" mayBeNull="true"></param>
 var e = Function._validateParams(arguments, [
 {name: "message", type: String, mayBeNull: true}
]);
 if (e) throw e;

The above example is extracted from the debug version of the library.

createDelegate() Method
Static method that creates a delegate for a given function and instance object.

Parameters
instance – the referenced object inside the method.

method – the method for which the delegate is created.

Returns
The method returns a delegate function.

Remarks
When the handler is an instance method and uses the this word in its body, we
need to attach it as an event handler. We can use this method so that in the returned
function this means the same thing as in the original instance context.

Example
myObject = function(){
 var handler = Function.createDelegate(this,this.myMethod);
}

myObject.prototype = {
 myMethod: function() { …
 }
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Appendix A

[241]

createCallback() Method
Static method that creates a callback function for a given method and an
optional context.

Parameters
method – the method for which the callback is created.

context – the arbitrary context for calling the callback function.

Returns
The method returns a callback function.

Remarks
The context parameter is optional, but if it is omitted the callback function simply
represents the original method with an additional level of indirection.

Even if the callback function is called without any parameters, the initial context will
still be remembered.

Example
var myCallback = Function.createCallback(myMethod, "test");
function myMethod(message){
 alert(message);
}
myCallback();

The output of the above mentioned code snipped is an alert message with the
test message.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Microsoft AJAX Library Referencez

[242]

Type Class
The Type class (Figure A-8) provides useful static methods for type-handling and
type reflection, which helps implementing OOP features with JavaScript. It represent
an alias for Function.

Figure A-8. Type

JavaScript Base Type Extensions
The ECMAScript (JavaScript) objects have been enriched with some new methods in
order to make the programmer's transition from using the .NET Framework's classes
to JavaScript's objects much easier.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Appendix A

[243]

Array Class
The Array class (Figure A-9) represents an extension of the built-in JavaScript Array
object. It provides reflection information about the type and the type name of an
object and also additional static methods offered by the .NET environment for arrays.

Figure A-9. Array

All the methods in this class are static methods.

var a = ["1", "2", "3"];
var b = ["11", "12", "13"];
// Add an element to an array
Array.add(a, "4");
Sys.Debug.trace(a);
// Output: 1,2,3,4

// Add a range of elements to an array
Array.addRange(a, ["5", "6"]);
Sys.Debug.trace(a);
 // Output: 1,2,3,4,5,6

// Clone an array
var c = Array.clone(a);
Sys.Debug.trace(a);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Microsoft AJAX Library Referencez

[244]

// Output: 1,2,3,4,5,6

// Clear an array
Array.clear(c);
Sys.Debug.trace(c);
// Output:

// Check to see if an array has an element
 Sys.Debug.trace(Array.contains(a,"3"));
// Output: true

// Dequeue the last element from an array
Sys.Debug.trace(Array.dequeue(a));
// Output: 1

// Apply a function to all the elements of an array
Array.forEach(a,function(element, i, array){
Sys.Debug.trace("Array[" + i + "]=" + element);
});
// Output: Array[0]=2
Array[1]=3
Array[2]=4
Array[3]=5
Array[4]=6
// Search an element in an array
Sys.Debug.trace(Array.indexOf(a,"5",2));
// Output: 3

// Insert an element in an array at a specified position
Array.insert(a,3,"8");
Sys.Debug.trace(a);
// Output: 2, 3, 4, 8, 5, 6

// Parse a string and return an array
Sys.Debug.trace(Array.parse('["0","1","2"]'));
// Output : 0, 1, 2

// Remove an element from an array
Array.remove(a, "1");
Sys.Debug.trace(a);
// Output : 2, 3, 4, 8, 5, 6

// Remove an element at a specified position from an array
Array.removeAt(a,2);
Sys.Debug.trace(a);
// Output : 2, 3, 8, 5, 6

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Appendix A

[245]

Boolean Class
The Boolean class (Figure A-10) represents an extension of the built-in JavaScript
Boolean object. It provides reflection information about the type and the type name
of an object and also an additional method offered by the .NET environment.

Figure A-10. Boolean

var bool = Boolean.parse("true");
 Sys.Debug.trace(bool);
// Output: true

Date Class
The Date class (Figure A-11) represents an extension of the built-in JavaScript Date
object. It provides reflection information about the type and the type name of an
object and also additional methods offered by the .NET environment for creating and
formatting a date.

Figure A-11. Date

Please refer to Sys.CultureInfo for more information about the
localization features.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Microsoft AJAX Library Referencez

[246]

Date and Number JavaScript variables can be formatted to their corresponding locale.

P�ede��ned st��n� �atte�ns Description
d Short date pattern :MM/dd/yyyy
D Long date pattern : dddd, dd MMMM yyyy
t Short time pattern : HH:mm
T Long time pattern : HH:mm:ss
F Full date time pattern : dddd, dd MMMM yyyy HH:mm:ss
M or m Month day pattern : MMMM dd

s Sortable date time pattern :
yyyy'-'MM'-'dd'T'HH':'mm':'ss

Y or y Year month pattern : yyyy MMMM

The above table represents the predefined string patterns for the InvariantCulture.
As we can see each predefined pattern translates into a series of format specifier
characters. Below we can find the complete list of format specifier characters:

F���at s�e����e� �ha�a�te� Description
dddd Full day name (Sunday, Monday, etc.), etc.) etc.)
ddd Abbreviated day name (Sun, Mon, etc.), etc.) etc.)
dd Day of the month, 2 digits (00…31)
d Day of the month (0…31)
MMMM Full month name (January, February, etc.)
MMM Abbreviated month name (Jan, Feb, etc.)
MM Month of the year, 2 digits (01…12)
M Month of the year (1…12)
yyyy Year, 4 digits (2006)
yy Year, 2 digits (06, 00, 99)
y Year (6, 0, 99)
hh Hour (1…12)
h Hour (0…23)
HH Hour, 2 digits (00…23)
H Hour (0…23)
mm Minutes, 2 digits (00…59)
m Minutes (0…59)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Appendix A

[247]

F���at s�e����e� �ha�a�te� Description
ss Seconds, 2 digits (00…59)
s Seconds (0…59)
tt AM or PM
t A or P (short for AM and PM)
f Hundreds of milliseconds, 1 digit (0…9)
ff Hundreds and tens of milliseconds, 2 digits (00…99)
fff Milliseconds (000…999)
z Time zone offset in hours (+7, -2)
zz Time zone offset in hours, 2 digits (+ 07, -02)
zzz Time zone offset in hours and minutes (+07:00, -02:00)

The string passed to the format() or localeFormat() methods
should have a single character if it is a predefined pattern, or at least two
characters if it has format specifier characters.

// Displays the current date using the InvariantCulture object
Sys.Debug.trace ((new Date()).format("F"));
// Output: Friday, May 18, 2007 4:58:36 PM

// Displays the current date using the CurrentCulture object set for
French
Sys.Debug.trace((new Date()).localeFormat("F"));
// Output: vendredi 18 mai 2007 17:03:47

// Parse a string date using two date formats from InvariantCulture
object. The first format is skipped and the second one is choosed
Sys.Debug.trace(Date.parseInvariant("05/17/2007","MM-dd-yyyy","MM/dd/
yyyy"));
// Output: Thu May 17 00:00:00 UTC+0300 2007

// Parse a string date using the predefined short date format from
French CurrentCulture object. The short date pattern is dd/MM/yyyy
Sys.Debug.trace(Date.parseLocale("17/05/2007","d"));
// Output: Thu May 17 00:00:00 UTC+0300 2007

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Microsoft AJAX Library Referencez

[248]

Error Class
The Error extension class (Figure A-12) contains a series of static methods that return
Error objects.

Figure A-12. Error

create() Method
Static method that creates and returns an Error object.

Parameters
message – the optional message to be displayed in the error.

errorInfo – a JSON object containing a collection of keys and their values.

Returns
The method returns the created Error object.

Remarks
The method creates and returns an Error object. It can receive an optional message
and JSON object containing an additional collection of keys and their values.
This collection will be added to the error message where the keys will represent
additional attributes and the values would represent their values. The message
parameter is mapped as the message attribute of the Error object.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Appendix A

[249]

Example
var e = Error.create(displayMessage, { name: "Sys.ArgumentException",
paramName: paramName });

The preceding example is extracted from the debug version of the library in the
Error.argument() method.

Following are few other examples for Error:

// Create and throw and argument error
var err = Error.argument(“valueParameter”, “Invalid parameter”);
throw err;
/* Output: Sys.ArgumentException: Invalid parameter
Parameter name: valueParameter */

// Create and throw a null argument error
var err = Error.argumentNull(“nullParameter”, “The parameter does not
accept null values”);
throw err;
/* Output: Sys.ArgumentNullException: The parameter does not accept
null values
Parameter name: nullParameter */

// Create and throw an argument out of range error
var err = Error.argumentOutOfRange(“valueParameter”, 11, “The
parameter accepts values between 1 and 10”);
throw err;
/* Output: Sys.ArgumentOutOfRangeException: The parameter accepts
values between 1 and 10
Parameter name: valueParameter
Actual value was 11. */

// Create and throw an argument type error
var err = Error.argumentType(“valueParameter”, Date, Number, “The
parameter is not the expected type”);
throw err;
/* Output Sys.ArgumentTypeException: The parameter is not the expected
type
Parameter name: valueParameter */

// Create and throw an undefined argument error
if(typeof(parameter) === ‘undefined’)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Microsoft AJAX Library Referencez

[250]

{
 var err = Error.argumentUndefined(“parameter”, “The parameter type
is undefined”);
 throw err;
}
//Output Sys.ArgumentUndefinedException: The parameter type is
undefined
Parameter name: parameter

// Create and throw an invalid operation error
var err= Error.invalidOperation(“An invalid operation has been
detected”);
throw err;
// Output: Sys.InvalidOperationException: An invalid operation has
been detected

function test()
{
 // Create and throw a not implemented error
 var err= Error.notImplemented(“Method not implemented”);
 throw err;
}
test();
// Output: Sys.NotImplementedException: Method not implemented

function testParams()
{
 if(arguments.length>0)
 {
 // Create and throw a parameter count error
 var err= Error.parameterCount(“Too many parameters”);
 throw err;
 }
}
testParams(“test”);
// Output: Sys.ParameterCountException: Too many parameters

var err = Error.format(“Bad format specified “);
throw err;
// Output: Sys.FormatException: Bad format specified

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Appendix A

[251]

Number Class
This class represents an extension of the built-in JavaScript Number object. It
provides reflection information about the type and the type name of an object,
and also additional methods offered by the .NET environment for creating and
formatting a number.

Figure A-13. Number

Please refer to Sys.CultureInfo for more information about the
localized features.

The patterns for the Number object are:

F���at s�e����e� �ha�a�te� Description
d or D Decimal format
c or C Currency format
n or N Number format
p or P Percentage

Please check the link below for more info:
http://msdn2.microsoft.com/en-us/library/44e531aa-1383-48ad-887b-
fa15d81566c3.aspx

// This example shows how the same value is parsed using the
InvariantCulture and the French CurrentCulture.
var a = Number.parseInvariant(“2.55”);
var b = Number.parseLocale(“2,55”);
Sys.Debug.trace(a + b);
// Output: 5.1

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Microsoft AJAX Library Referencez

[252]

Object Class
This class represents an extension of the built-in JavaScript Object object and it
provides reflection information about the type and the type name of an object.

Figure A-14. Object

var array = ["1","2"];
Sys.Debug.trace (Object.getTypeName(array));
// Output: Array

RegExp Class
This class represents an extension of the built-in JavaScript RegExp object and
it provides reflection information about the type and the type name of a
regular expression.

Figure A-15. RegExp

Without adding any additional functions, it offers the same functionality that is
provided by JavaScript by default.

String Class
This class represents an extension of the built-in JavaScript String object. It provides
reflection information about the type and the type name of an object and also
additional methods offered by the .NET environment for arrays.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Appendix A

[253]

Figure A-16. String

// Trim a string
 var str = " My text ";
 Sys.Debug.trace(str.trim());
// Output:My text

 // Left trim a string
 var str = " My text ";
 Sys.Debug.trace(str.trimStart());
// Output:My text

 // Right trim a string
 var str = " My text ";
 Sys.Debug.trace(str.trimEnd());
// Output: My text

 // Test to see if a string starts with another string
 var str = "test string";
 Sys.Debug.trace(str.startsWith("tes"));
// Output:true

 // Test to see if a string ends with another string
 var str = "test string";
 Sys.Debug.trace(str.endsWith("tes"));
// Output:false

 // Format a string based on the arguments using the
 InvariantCulture object
 Sys.Debug.trace(String.format("On {0:F} the market share is
 {1:p}",new Date(),23.24));

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Microsoft AJAX Library Referencez

[254]

// Output:On Friday, 18 May 2007 20:35:33 the market share is 23.24 %
 // Format a string based on the arguments using the
 CurrentCulture object
 Sys.Debug.trace(String.localeFormat("On {0:F} the market
 share is {1:p}",new Date(),23.24));
// Output: On vendredi 18 mai 2007 20:35:33 the market share is On vendredi 18 mai 2007 20:35:33 the market share isOn vendredi 18 mai 2007 20:35:33 the market share is
 23,24 %

Sys NamespaceNamespace
The following members of the Sys namespace are covered here:

Sys.Application
Sys.ApplicationLoadEventArgs
Sys.Browser
Sys.CancelEventArgs
Sys.Component
Sys.CultureInfo
Sys.Debug
Sys.EventArgs
Sys.EventHandlerList
Sys.IContainer Interface
Sys.IDisposable Interface
Sys.INotifyDisposing Interface
Sys.INotifyPropertyChange Interface
Sys.PropertyChangedEventArgs
Sys.ScriptLoader
Sys.ScriptLoaderTask
Sys.StringBuilder

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Appendix A

[255]

Sys.Application Class
The Sys.Application object (Figure A-17) object represents the central point for
handling client components registered in the application and it is also the one that
exposes the main page life cycle events. It works with the Sys.ScriptLoader object
to load the scripts in the page.

Figure A-17. Sys.Application

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Microsoft AJAX Library Referencez

[256]

Sys.ApplicationLoadEventArgs Class
Sys.ApplicationLoadEventArgs (Figure A-18) extends Sys.EventArgs and stores
the information passed by the load event of Sys.Application.

Figure A-18. Sys.ApplicationLoadEventArgs

Sys.Browser Class
Sys.Browser (Figure A-19) contains contains information based on browser
detection and is used throughout the library to solve compatibility issues.

Figure A-19. Sys.Browser

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Appendix A

[257]

Sys.CancelEventArgs Class
Sys.CancelEventArgs (Figure A-20) extends the Sys.EventArgs class and offers a
base class for all the canceled event arguments.

Figure A-20. Sys.CancelEventArgs

Sys.Component Class
Sys.Component (Figure A-21) is the base class for all the components, controls,
and behaviors. It is used so that the objects' lifetime is managed by Microsoft
AJAX Library.

Figure A-21. Sys.Component

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Microsoft AJAX Library Referencez

[258]

Sys.CultureInfo Class
Sys.CultureInfo (Figure A-22) represents the base class for objects storing
culture-related information.

Figure A-22. Sys.CultureInfo

Based on this class we also have two additional objects:

Sys.CultureInfo.InvariantCulture, which is a CultureInfo object
having a culture that does not belong to any language or locale. It specifies
how dates and numbers should be formatted when the format method is
used, thus no specific locale applies
Sys.CultureInfo.CurrentCulture, which is also a CultureInfo object
having the current culture and thus a specific locale. If no locale is specified,
it defaults to en-US and it is used when the localeFormat() method is used.

Sys.Debug Class
Sys.Debug (Figure A-23) provides methods that can be used for debugging and
tracing functionality.

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Appendix A

[259]

Figure A-23. Sys.Debug

Sys.EventArgs Class
Sys.EventArgs (Figure A-24) represents the base class for all the event arguments
objects passed by event sources. Sys.EventArgs.Empty represents such an object
and is defined in Microsoft AJAX Library.

Figure A-24. Sys.EventArgs

Sys.EventHandlerList Class
Sys.EventHandlerList class (Figure A-25) is used for storing event handlers for
different events. The events' names represent the keys and a list of event handlers the
values in an internal dictionary.

Figure A-25. Sys.EventHandlerList

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Microsoft AJAX Library Referencez

[260]

Sys.IContainer Interface
The Sys.IContainer interface (Figure A-26) defines methods for all components
that contain other components. It is implemented by Sys.Application.

Figure A-26. Sys.IContainer

Sys.IDisposable Interface
The Sys.INotifyDisposing interface (Figure A-27) represents a common
interface for closing and releasing resources held by objects registered using
Microsoft AJAX Library.

Figure A-27. Sys.IDisposable

Sys.INotifyDisposing Interface
The Sys.INotifyPropertyChange interface (Figure A-28) defines the disposing
event. When implemented, it notifies other objects when it is about to release
resources. It is implemented by Sys.Component and thus by all components,
behaviors, and controls.

Figure A-28. Sys.INotifyDisposing

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Appendix A

[261]

Sys.INotifyPropertyChange Interface
The Sys.INotifyPropertyChange interface (Figure A-29) defines the
propertyChanged event. It is implemented by Sys.Component and thus by all
components, behaviors, and controls.

Figure A-29. Sys.INotifyPropertyChange

Sys.PropertyChangedEventArgs Class
Sys.PropertyChangedEventArgs (Figure A-30) extends Sys.EventArgs class and
is used as an event argument by the propertyChanged event.

Figure A-30. Sys.PropertyChangedEventArgs

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Microsoft AJAX Library Referencez

[262]

Sys.ScriptLoader Class
Sys.ScriptLoader (Figure A-31) offers a centralized mechanism for loading
script files.

Figure A-31. Sys.ScriptLoader

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Appendix A

[263]

Sys.ScriptLoaderTask Class
Sys.ScriptLoaderTask (Figure A-32) is used by Sys.ScripLoader to load a
particular script file.

Figure A-32. Sys.ScriptLoaderTask

Sys.StringBuilder Class
Sys.StringBuilder class (Figure A-33) offers a mechanism for concatenating strings.

Figure A-33. Sys.StringBuilder

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Microsoft AJAX Library Referencez

[264]

Sys.UI Namespace Namespace
We cover the following members of Sys.UI:

Sys.UI.Behavior
Sys.UI.Bounds
Sys.UI.DomElement
Sys.UI.DomEvent
Sys.UI.Key
Sys.UI.MouseButton
Sys.UI.Point
Sys.UI.VisibilityMode

Sys.UI.Behavior Class
Sys.UI.Behavior class (Figure A-34) extends Sys.Component and represents the
base class for all behaviors.

Figure A-34. Sys.UI.Behavior

•

•

•

•

•

•

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Appendix A

[265]

Sys.UI.Bounds Class
Sys.UI.Bounds (Figure A-35) contains information about a point's position, a width,
and a height.

Figure A-35. Sys.UI.Bounds

Sys.UI.Control Class
Sys.UI.Bounds class (Figure A-36) extends Sys.Component and represents the base
class for all controls.

Figure A-36. Sys.UI.Bounds

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Microsoft AJAX Library Referencez

[266]

Sys.UI.DomElement Class
Sys.UI.Bounds class (Figure A-37) a set of methods for operating on a DOM element.

Figure A-37. Sys.UI.Bounds

getElementById() Method ($get)
Static method that searches a DOM element by its ID.

Parameters
id – the ID of the DOM element to be searched for.

element – optional DOM element that specifies parent element to search in.

Remarks
If the DOM element to search in is not specified, the document element is presumed
by default.

Example
//Get a DOM element
var elm=$get('log');

addCssClass() Method
Static method that add a CSS class to a DOM element.

Parameters
element – the DOM element.

className – the name of the CSS class.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Appendix A

[267]

Example
//Add a CSS class
Sys.UI.DomElement.addCssClass($get('log'),'newClass');

containsCssClass() Method
Static method that checks to see if a DOM element has a specified CSS class.

Parameters
element – the DOM element.
className – the name of the CSS class.

Returns
The method returns true if the DOM element has the specified CSS class or
false otherwise.

Example
//Check to see if a DOM element has a CSS class
Sys.Debug.trace(Sys.UI.DomElement.containsCssClass($get('log'),
'class'));

removeCssClass() Method
Static method that removes a CSS class from a DOM element.

Parameters
element – the DOM element.
className – the name of the CSS class.

Example
//Remove a CSS class from a DOM element
Sys.UI.DomElement.removeCssClass($get('log'),'class');

toggleCssClass() Method
Static method that toggles a CSS class for a DOM element.

Parameters
element – the DOM element.
className – the name of the CSS class.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Microsoft AJAX Library Referencez

[268]

Example
//Toggle a CSS class
Sys.UI.DomElement.toggleCssClass($get('log'),'class');

getLocation() Method
Static method that gets the position of the upper left corner for a DOM element.

Parameters
element – the DOM element.

Returns
The method returns a Sys.UI.Point object containing the upper left corner's position.

getBounds() Method
Static method that gets the bounds for a DOM element.

Parameters
element – The DOM element.

Returns
The method returns a Sys.UI.Bounds object containing the position and dimensions
of the DOM element.

Remarks
The method internally uses Sys.UI.DomElement.getLocation() for the x and y fields
of the Sys.UI.Bounds object and the offsetWidth and offsetHeight attributes of the
DOM element for the width and height fields of the same Sys.UI.Bounds object.

For more information about the boxing model please check:

http://www.w3.org/TR/CSS21/box.html

Example
//Toggle a CSS class
Sys.UI.DomElement.toggleCssClass($get('log'),'class');

setLocation() Method
Static method that sets the absolute position for a DOM element.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Appendix A

[269]

Parameters
element – the DOM element.
x – number of horizontal pixels from the top left corner.
y – number of vertical pixels from the top left upper corner.

Remarks
The method internally sets the position CSS attribute to absolute and the left
and top attributes to x and y.

Example
//Set the location for a DOM element
Sys.UI.DomElement.setLocation($get('log'),10,20);

Sys.UI.DomEvent Class
Sys.UI.DomEvent (Figure A-38) stores all the information that is passed to a handler
registered to a DOM event and also provides methods for registering to a DOM event.

Figure A-38. Sys.UI.DomEvent

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Microsoft AJAX Library Referencez

[270]

Sys.UI.Key Class
This enumeration contains the key codes.

Figure A-39. Sys.UI.DomEvent

addHandler() Method ($addHandler)
Static method that adds a handler to an event of a DOM element.

Parameters
element – the DOM element.

eventName – the name of the event the handler is being attached to.

handler – the handler to be attached to the DOM element's event.

Remarks
In the event handler, the this keyword refers to the DOM element. Use Function.
createDelegate() to create handler delegates inside objects so that this refers the
object and not the DOM element.

Example
// Add a handler for the keypress event
// Version 1
 this._onKeyPressHandler = Function.createDelegate(this, this._
onKeyPress);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Appendix A

[271]

 $addHandler(this.get_element(),'keypress',this._
onKeyPressHandler);
// Same as Sys.DomEvent.addHandler
...
_onKeyPress: function(e){..}

// Version 2
$addHandler(element, 'keypress', handler);
function handler(e){..}

addHandlers() Method ($addHandlers)
Static method that adds a series of handlers to different events of a DOM element.

Parameters
element – the DOM element.

events – a JSON object containing pairs of event names and their handlers.

handlerOwner – if specified, this will point to it inside event handlers.

Remarks
There is no need to create delegates for the event handlers as with the
addHandler(). This method internally uses Function.createDelegate() if
handlerOwner is specified.

This method could be used inside the initialize() method of a component when a
series of event handlers need to be attached.

Example
//Add a series of handlers in a control or behavior
$addHandlers(this.get_element(),{'mousedown' : this._
onMouseDown,'mouseup' : this._onMouseUp} , this);
_onMouseDown: function(e){...},
_onMouseUp: function(e){...}

clearHandlers() Method ($clearHandlers)
Static method that removes all the event handlers attached to a DOM element.

Parameters
element – the DOM element.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Microsoft AJAX Library Referencez

[272]

Remarks
This method should be used in the dispose() method of a component in order to
remove the attached event handlers.

Example
//Clear all handlers attached to a element
$clearHandlers(this.get_element());

preventDefault() Method
Method that prevents the default event action from taking place.

Example
function myEvent(e)
{
 e.preventDefault();
}

removeHandler() Method
Static method that removes an event handler from the DOM element it is attached to.

Parameters
element – the DOM element.

eventName – the name of the event the handler is being removed from.

handler – the handler to be removed from the DOM element's event.

Example
//Remove an event handler
Sys.UI.DomEvent.removeHandler(this.get_element(),'mousedown',handler);

stopPropagation() Method
Method that prevents the event from bubbling up the hierarchy.

Example
function myEvent(e)
{
 e.stopPropagation();
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Appendix A

[273]

Sys.UI.MouseButton Enumeration
Sys.UI.MouseButton (Figure A-40) contains elements that represent the
mouse buttons.

Figure A-40. Sys.UI.MouseButton

Sys.UI.Point Class
Sys.UI.Point (Figure A-41) contains information about a point's position.

Figure A-41. Sys.UI.Point

Sys.UI.VisibilityMode Enumeration
Sys.UI.VisibilityMode (Figure A-42) contains two values for the visibility CSS
property of a DOM element.

Figure A-42. Sys.UI.VisibilityMode

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Microsoft AJAX Library Referencez

[274]

Sys.Net Namespace Namespace
We cover the following classes of Sys.Net:

Sys.Net.NetworkRequestEventArgs

Sys.Net.WebRequest

Sys.Net.WebRequestExecutor

Sys.Net.WebRequestManager

Sys.Net.XmlHttpExecutor

Sys.Net.NetworkRequestEventArgs Class
Sys.Net.NetworkRequestEventArgs (Figure A-43) stores the underlying Sys.Net.
WebRequest and is passed as an argument object for the invokingRequest event.

Figure A-43. Sys.Net.NetworkRequestEventArgs

•

•

•

•

•

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Appendix A

[275]

Sys.Net.WebRequest Class
Sys.WebRequest (Figure A-44) encapsulates the necessary functionality in
order to make web requests from the client side. It uses an underlying Sys.Net.
WebRequestExecutor (Sys.Net.XmlHttpExecutor by default) to actually make a
request. It exposes properties, methods, and events in order to easily make a request.

Figure A-44. Sys.WebRequest

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Microsoft AJAX Library Referencez

[276]

Sys.Net.WebRequestExecutor Class
Sys.Net.WebRequestExecutor (Figure A-45) represents an "abstract" class (by
convention as some of the methods throw an Error.notImplemented() error) and
it is the base class for different implementation of executor classes for web requests.
Currently, only the Sys.Net.XmlHttpExecutor class based on the XMLHttp object
is available.

Figure A-45. Sys.Net.WebRequestExecutor

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Appendix A

[277]

Sys.Net.WebRequestManager Class
Sys.Net.WebRequestManager (Figure A-46) coordinates all the web requests
initiated from the browser exposing two additional events for more control.

Figure A-46. Sys.Net.WebRequestManager

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Microsoft AJAX Library Referencez

[278]

Sys.Net.XmlHttpExecutor Class
Sys.Net.XmlHttpExecutor (Figure A-47) extends Sys.Net.WebRequestExecutor
and represents an executor for web requests based on the XMLHttp browser object.

Figure A-47. Sys.Net.XmlHttpExecutor

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Appendix A

[279]

Sys.Serialization Namespace Namespace
This namespace contains a single class: Sys.Serialization.JavaScriptSerializer.

Sys.Serialization.JavaScriptSerializer Class
Sys.Serialization.JavaScriptSerializer (Figure A-48) provides two static
methods for serializing types into JSON formatted data strings and for deserializing
JSON formatted data strings into JavaScript types.

Figure A-48. Sys.Serialization.JavaScriptSerializer

serialize() Method
Static method that serializes a JavaScript object into a string representation of the
corresponding JSON object.

Parameters
obj – the JavaScript object to be serialized.

Returns
The method returns the string representation of the JSON object representing the
JavaScript object.

Remarks
Date objects are serialized as \/Date(milliseconds from the 1st January
1970)\/.

Properties that start with $ are skipped.

Non-finite numbers are not serialized. The isFinite() JavaScript function is used to
determine whether a number is finite or not.

Special characters are escaped using a \ and Unicode characters by using \u00.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Microsoft AJAX Library Referencez

[280]

deserialize() Method
Static method that deserializes a JSON object and returns a JavaScript object.

Parameters
data – the string representation of the JSON object to be deserialized.

Returns
The method returns the JavaScript object corresponding to the JSON object.

Remarks
Date objects are serialized as \/Date(milliseconds from the 1st January
1970)\/ so that they can be correctly deserialized.

The JavaScript object is constructed by calling eval() on the JSON string.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index
A
AJAX

about 15
advantages 19
application building, ASP.NET used 28
ASP.NET AJAX 20
disadvantages 19
DOM 17
examples 17
for validations 16
need for 15
resources 21
technologies used 17, 18
tools 21
Web 2.0 10
XMLHttpRequest 17

anonymous function
versus pseudo-named functions 222

application, building
ASP.NET, using 28

array, sorting
Bubble Sort algorithm used 137

array class 243
ASP.NET AJAX

about 20
ASP.NET AJAX control toolkit 21
ASP.NET AJAX extensions 20
Microsoft AJAX library 20
Quickstart 28
technologies used 21

asynchronous communication
about 116
client side 117, 118
server side 118, 119
uses 116

Asynchronous JavaScript and XML. See AJAX

B
behaviors

about 181
Sys.UI.Behavior 188

boolean class 245
Bubble Sort algorithm

about 137
array, sorting 137-139
working 140-142

C
Cascading Style Sheets. See CSS
classes

about 82
behavior 82
events 142
features, Type class 143
fields and properties 142
member types 142
methods 142
state 82
Type class 143

classes, JavaScript
about 90
C# classes 93-95
class diagram 93
constructor 90
external functions, referencing 96
object members, creating 98
objects, as associate arrays 96-98
private members 99, 100
prototypes 100, 101

http://lib.ommolketab.ir
http//lib.ommolketab.ir

[282]

client-side web technologies
about 14
JavaScript 14

client components
creating 177, 191, 192

client page events 184
client side synchronous communication

about 117
conversion layer 117
core communication layer 117
layers 117
proxies layer 117

closures
about 89
for inheritance 105

components
about 180
creating 182, 183
disposing 183
timer component 193
using 216, 217

controls
about 181
Sys.UI.Control 190

conventions, Microsoft AJAX Library
events 236
fields 236
JavaScript properties 237
methods 236
private 237
properties 236
public 237

CSS 61

D
date class

about 245
format specifier character 246, 247
string patterns 246

debugging
Firefox 230
Internet Explorer 225-227
MicrosoftAjax.debug.js 222
Microsoft AJAX Library, using 220-225
overview 220
parameters, validating 224, 225

Document Object Model. See DOM
DOM

about 17
CSS 61
events 177-180
HTML, manipulating 46
HTML structure, creating 56
JavaScript events 51
placeholders 51

E
encapsulation 83
EnhancedTextBox behavior

about 194
creating 196

enumerations 165
environment, setting up

Atlas, for Windows Vista 26
Atlas, for Windows XP 27
IIS, installing 22-25
project folder, creating 25-27
Visual Web Developer, installing 25

error class
about 248
create() method 248

events
DOM elements 177
load 186
pageLoad() method 187
pageUnload() method 188
unload 188

execution context. See JavaScript execution
context

F
Fiddler

about 233
resources 233

FireBug 230
Firefox, debugging

about 230
FireBug 230, 231
Venkman JavaScript debugger 231, 232
web developer 233

http://lib.ommolketab.ir
http//lib.ommolketab.ir

[283]

functions, JavaScript
about 85
anonymous functions 88, 89
as variables 86-88
closures 89
inner functions 89

functions, Microsoft AJAX Library
_validateParams 238
createCallback 241
createDelegate 240
emptyMethod 238
type class 242

H
HTML 11

I
inheritance

about 83
closures, using 105-108
implementing, Microsoft AJAX Library

used 156-160
prototyping 105-110
register method 154
tight coupling 84

inner functions 89
interfaces

about 166
implementing 167-172

Internet Explorer, debugging
about 225
IE Developer toolbar 228, 229
tools 229
Web Developer Helper 228

J
JavaScript

about 45
adding content in HTML page, write

method used 46, 47
CSS 61
events 51
functions 85
HTML manipulating, DOM used 46-51
HTML structure, creating 52

object detection 68
objects 84
placeholders 51
websites, for learning 46
XMLHttpRequest object, for asynchronous

HTTP server requests 65
JavaScript base classes extensions

about 136
date, as Array class 136
date, as Date class 137
objects, creating 136

JavaScript base type extensions
about 242
array class 243, 244
date class 246, 247
error class 248
number class 251
object class 252
RegExp class 252
string class 252

JavaScript execution context
about 101
choosing 103-105
eval() execution context 101
function execution context 101
global execution context 101
this.x 102
types 101
var x 102
x 102

JavaScript Object Notation 110
JSON 110

M
Microsoft AJAX Library

about 113
classes 142
client components, creating 177
components 113
conventions 235
debugging 220
enumerations 165
features 114, 115, 136
functions 238
inheritance 154
inheritance, implementing 156-160

http://lib.ommolketab.ir
http//lib.ommolketab.ir

[284]

interfaces 166
JavaScript base classes extensions 136
layered architecture 115
references 235
WebRequest class 119

N
namaspaces 143
number class 251

O
object class 252
Object Oriented Programming. See OOP
objects 82
objects, JavaScript

creating 84, 85
features 85

OOP
about 81
classes 82
concept 81
encapsulation 83
events 82
inheritance 83
methods 82
objects 82
polymorphism 84

P
parameters

validating 224, 225
placeholders 51
polymorphism 84
prototyping

for inheritance 108-110
pseudo-named functions

versus anonymous functions 222

Q
Quickstart

about 28
files included 29
working 30

R
RegExp class 252

S
server-side web technologies

about 13
ASP.NET 13

server side synchronous communication 118
string class 252
Sys.Application 184
Sys.Net namespace

Sys.Net.NetworkRequestEventArgs 274
Sys.Net.WebRequest 275
Sys.Net.WebRequestExecutor 276
Sys.Net.WebRequestManager 277
Sys.Net.XmlHttpExecutor 278

Sys.Serialization namespace
Sys.Serialization.JavaScriptSerializer 279

Sys.UI namespace
Sys.UI.Behavior class 264
Sys.UI.Bounds class 265
Sys.UI.Control class 265
Sys.UI.DomElement class 266
Sys.UI.DomEvent class 269
Sys.UI.Key class 270
Sys.UI.MouseButton class 273
Sys.UI.Point class 273
Sys.UI.VisibilityMode class 273

Sys namespace
Sys.Application class 255
Sys.ApplicationLoadEventArgs class 256
Sys.Browser class 256
Sys.CancelEventArgs class 257
Sys.CultureInfo class 258
Sys.Debug class 258
Sys.EventArgs class 259
Sys.EventHandlerList class 259
Sys.IContainer interface 260
Sys.IDisposable interface 260
Sys.INotifyingDisposing interface 260
Sys.INotifyingPropertyChange interface 261
Sys.PropertyChangedEventArgs class 261
Sys.ScriptLoader class 262
Sys.ScriptLoaderTask class 263
Sys.StringBuilder class 263

http://lib.ommolketab.ir
http//lib.ommolketab.ir

[285]

T
testing

Visual Studio Web Test files 234
tight coupling 84
timer component

about 193
creating 196

tracing
Microsoft AJAX Library, using 220

Type class
about 143
creating 145-147
features 143
namaspaces 143
working 148-154

V
validation

AJAX, using 16
types 16

Venkman JavaScript debugger
about 231
Firefox, debugging in 231

W
Web 2.0 10
WebRequest class

working with 119-129
web technologies

about 11
ASP.NET 13
client-side technologies 14
HTML 11
HTTP 11
JavaScript 14
server-side technologies 13

X
XMLHttpRequest object

about 17, 65
call stack 67
creating 65-69
for asynchronous HTTP server requests 65
object detection 68
server requests, initiating 69-72
server response, handling 72-79

http://lib.ommolketab.ir
http//lib.ommolketab.ir

	Microsoft AJAX Library Essentials
	Table of Contents
	Preface
	Chapter 1: AJAX and ASP.NET
	The Big Picture
	AJAX and Web 2.0

	Building Websites Since 1990
	HTTP and HTML
	ASP.NET and Other Server-Side Technologies
	JavaScript and Other Client-Side Technologies
	What's Missing?

	The World of AJAX
	What is AJAX Made Of?
	Uses and Misuses of AJAX
	Introducing ASP.NET AJAX
	Resources and Tools

	Setting Up Your Environment
	Installing IIS
	Installing Visual Web Developer
	Creating a Folder for Your Project
	Preparing the Atlas Application in Windows Vista
	Preparing the Atlas Web Application in Windows XP

	Hello World!
	Summary

	Chapter 2: AJAX Foundations
	JavaScript and the Document Object Model
	JavaScript Events and the DOM
	Even More DOM
	JavaScript, DOM, and CSS
	The XMLHttpRequest Object
	Creating the XMLHttpRequest Object
	Initiating Server Requests
	Handling the Server Response

	Summary

	Chapter 3: Object-Oriented JavaScript
	Concepts of Object-Oriented Programming
	Objects and Classes
	Encapsulation
	Inheritance
	Polymorphism

	Object-Oriented JavaScript
	JavaScript Functions
	Functions as Variables
	Anonymous Functions
	Inner Functions and JavaScript Closures

	JavaScript Classes
	Class Diagrams
	C# and JavaScript Classes
	Referencing External Functions
	Thinking of Objects as Associative Arrays
	Creating Object Members on the Fly
	Private Members
	Prototypes

	The JavaScript Execution Context
	var x, this.x, and x
	Using the Right Context

	Inheritance using Closures and Prototypes
	Inheritance Using Closures
	Inheritance Using Prototyping

	Introducing JSON
	Summary

	Chapter 4: Introducing the Microsoft AJAX Library
	Microsoft AJAX Library Components
	Asynchronous Communication
	Client Asynchronous Communication
	Server Asynchronous Communication

	Working with WebRequest
	More WebRequests
	Summary

	Chapter 5: OOP with the Microsoft AJAX Library
	The New Features
	JavaScript Base Classes Extensions
	Classes in Microsoft AJAX Library
	The Type, Namespaces, and Events
	Inheritance
	Enumerations
	Interfaces
	OOP Recommendations

	Summary

	Chapter 6: Creating Client Components
	DOM Elements and Events
	Components, Behaviors, and Controls
	Creating Components
	Disposing of Components
	Sys.Application and Client Page Life-Cycle Events
	The init Event
	The load Event
	The pageLoad() Method
	The pageUnload() Method
	The unload Event

	Behaviors
	Controls
	Quicksteps for Creating Custom Client Components

	Summary

	Chapter 7: Case Study: Timer and EnhancedTextBox
	The Timer Component
	The EnhancedTextBox Behavior
	Creating Timer and EnhancedTextBox
	Using the Components
	Summary

	Chapter 8: Debugging Tools and Techniques
	AJAX Debugging Overview
	Debugging and Tracing with Microsoft AJAX Library
	MicrosoftAjax.debug.js
	Anonymous Functions vs. Pseudo-Named Functions
	Parameters Validation

	Debugging in Internet Explorer
	Web Development Helper
	Internet Explorer Developer Toolbar
	Other tools

	Debugging in Firefox
	Firebug
	Venkman JavaScript Debugger
	Web Developer

	Fiddler
	Testing
	Summary

	Appendix A: Microsoft AJAX Library Reference
	Conventions
	Function Class
	emptyMethod() Method
	_validateParams() Method
	createDelegate() Method
	createCallback() Method

	Type Class

	JavaScript Base Type Extensions
	Array Class
	Boolean Class
	Date Class
	Error Class
	create() Method

	Number Class
	Object Class
	RegExp Class
	String Class

	Sys Namespace
	Sys.Application Class
	Sys.ApplicationLoadEventArgs Class
	Sys.Browser Class
	Sys.CancelEventArgs Class
	Sys.Component Class
	Sys.CultureInfo Class
	Sys.Debug Class
	Sys.EventArgs Class
	Sys.EventHandlerList Class
	Sys.IContainer Interface
	Sys.IDisposable Interface
	Sys.INotifyDisposing Interface
	Sys.INotifyPropertyChange Interface
	Sys.PropertyChangedEventArgs Class
	Sys.ScriptLoader Class
	Sys.ScriptLoaderTask Class
	Sys.StringBuilder Class

	Sys.UI Namespace
	Sys.UI.Behavior Class
	Sys.UI.Bounds Class
	Sys.UI.Control Class
	Sys.UI.DomElement Class
	getElementById() Method ($get)
	addCssClass() Method
	containsCssClass() Method
	removeCssClass() Method
	toggleCssClass() Method
	getLocation() Method
	getBounds() Method
	setLocation() Method

	Sys.UI.DomEvent Class
	Sys.UI.Key Class
	addHandler() Method ($addHandler)
	addHandlers() Method ($addHandlers)
	clearHandlers() Method ($clearHandlers)
	preventDefault() Method
	removeHandler() Method
	stopPropagation() Method

	Sys.UI.MouseButton Enumeration
	Sys.UI.Point Class
	Sys.UI.VisibilityMode Enumeration

	Sys.Net Namespace
	Sys.Net.NetworkRequestEventArgs Class
	Sys.Net.WebRequest Class
	Sys.Net.WebRequestExecutor Class
	Sys.Net.WebRequestManager Class
	Sys.Net.XmlHttpExecutor Class

	Sys.Serialization Namespace
	Sys.Serialization.JavaScriptSerializer Class
	serialize() Method
	deserialize() Method

	Index

