
Java Enterprise in a Nutshell, 3rd Edition

By William Crawford, Jim Farley

...

Publisher: O'Reilly

Pub Date: November 2005

ISBN: 0-596-10142-2

Pages: 892

Table of Contents | Index

Nothing is as constant as change, and this is as true in enterprise computing as anywhere else.
With the recent release of Java 2 Enterprise Edition 1.4, developers are being called on to add even
greater, more complex levels of interconnectivity to their applications.

To do this, Java developers today need a clear understanding of how to apply the new APIs, use the
latest open source Java tools, and learn the capabilities and pitfalls in Java 2 Enterprise Edition 1.4 -
- so they can plan a technology and implementation strategy for new enterprise projects.

Fortunately, this is exactly what they get with the new Java Enterprise in a Nutshell, 3rd Edition.
Because most integrated development environments (IDE) today include API lookup, we took out
the main API sections from our previous edition to make room for new chapters, among others, on
Ant, Cactus, Hibernate, Jakarta Struts, JUnit, security, XDoclet, and XML/JAXP.

Revised and updated for the new 1.4 version of Sun Microsystems Java Enterprise Edition software,
Java Enterprise in a Nutshell, 3rd Edition is a practical guide for enterprise Java developers.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Java Enterprise in a Nutshell, 3rd Edition

By William Crawford, Jim Farley

...

Publisher: O'Reilly

Pub Date: November 2005

ISBN: 0-596-10142-2

Pages: 892

Table of Contents | Index

 Copyright

 Preface

 What's New in This Edition

 Contents of This Book

 Java Programming Resources

 Examples Online

 Conventions Used in This Book

 Using Code Examples

 Safari® Enabled

 Comments and Questions

 Acknowledgments

 Part I: The Java Enterprise APIs

 Chapter 1. Introduction

 Section 1.1. Enterprise Computing Defined

 Section 1.2. Enterprise Computing Demystified

 Section 1.3. Standard Java Enterprise APIs

 Section 1.4. De Facto Standard Enterprise Development Tools

 Section 1.5. An Enterprise Computing Scenario

 Section 1.6. Other Enterprise APIs

 Chapter 2. Application Assembly and Deployment

 Section 2.1. J2EE Application Assembly Model

 Section 2.2. Component Modules

 Section 2.3. Application Assemblies

 Section 2.4. Deploying J2EE Applications

 Chapter 3. Java Servlets

 Section 3.1. Getting a Servlet Environment

 Section 3.2. Servlet Basics

 Section 3.3. Web Applications

 Section 3.4. Servlet Requests

 Section 3.5. Servlet Responses

 Section 3.6. Custom Servlet Initialization

 Section 3.7. Security

 Section 3.8. Servlet Filters

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 3.9. Thread Safety

 Section 3.10. Cookies

 Section 3.11. Session Tracking

 Section 3.12. Databases and Non-HTML Content

 Chapter 4. JavaServer Pages

 Section 4.1. JSP Basics

 Section 4.2. JSP Actions

 Section 4.3. The JSP Expression Language

 Section 4.4. JSP Standard Tag Library

 Section 4.5. Custom Tags

 Section 4.6. Wrapping Up

 Chapter 5. JavaServer Faces

 Section 5.1. The Sample Application

 Section 5.2. Structure of a JSF Application

 Section 5.3. Managed Beans

 Section 5.4. The JSF Expression Language

 Section 5.5. JSF Actions and Views

 Section 5.6. Building Tables

 Section 5.7. Validation

 Section 5.8. Moving on with JSF

 Chapter 6. Enterprise JavaBeans

 Section 6.1. What Version Is Covered Here?

 Section 6.2. EJB Component Model Overview

 Section 6.3. EJB Tutorial

 Section 6.4. Deploying EJBs

 Section 6.5. Using Enterprise JavaBeans

 Section 6.6. Session Bean Specifics

 Section 6.7. Entity Beans

 Section 6.8. Message-Driven Beans

 Section 6.9. Transaction Management

 Section 6.10. EJB 3.0

 Chapter 7. Java and XML

 Section 7.1. Using XML Documents

 Section 7.2. Java API for XML Processing

 Section 7.3. SAX

 Section 7.4. DOM

 Section 7.5. XSLT

 Chapter 8. JDBC

 Section 8.1. JDBC Architecture

 Section 8.2. Connecting to the Database

 Section 8.3. Statements

 Section 8.4. Results

 Section 8.5. Handling Errors

 Section 8.6. Prepared Statements

 Section 8.7. BLOBs and CLOBs

 Section 8.8. Metadata

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 8.9. Transactions

 Section 8.10. Stored Procedures

 Section 8.11. Escape Sequences

 Section 8.12. RowSets

 Chapter 9. JNDI

 Section 9.1. JNDI Architecture

 Section 9.2. A Simple Example

 Section 9.3. Introducing the Context

 Section 9.4. Looking Up Objects in a Context

 Section 9.5. The NamingShell Application

 Section 9.6. Listing the Children of a Context

 Section 9.7. Creating and Destroying Contexts

 Section 9.8. Binding Objects

 Section 9.9. Accessing Directory Services

 Section 9.10. Modifying Directory Entries

 Section 9.11. Creating Directory Entries

 Section 9.12. Searching a Directory

 Section 9.13. Event Notification

 Chapter 10. J2EE Security

 Section 10.1. Basic Security Concepts

 Section 10.2. A Look at Java and J2EE Security Standards

 Section 10.3. Declarative Security Versus Programmatic Security

 Section 10.4. Web Component Security

 Section 10.5. EJB Component Security

 Section 10.6. Other J2EE Security Topics

 Section 10.7. Limitations of J2EE Security

 Chapter 11. Java Message Service

 Section 11.1. JMS in the J2EE Environment

 Section 11.2. Elements of Messaging with JMS

 Section 11.3. The Anatomy of Messages

 Section 11.4. Point-to-Point Messaging

 Section 11.5. Publish-Subscribe Messaging

 Section 11.6. Unified Messaging

 Section 11.7. Transactional Messaging

 Chapter 12. Web Services with JAX-RPC and SAAJ

 Section 12.1. What's Covered Here?

 Section 12.2. Brief Introduction to Web Services

 Section 12.3. Java Web Services

 Section 12.4. Writing Web Service Clients

 Section 12.5. Writing Web Services

 Section 12.6. Deploying Web Services

 Chapter 13. Remote Method Invocation

 Section 13.1. What's Covered Here?

 Section 13.2. Introduction to RMI

 Section 13.3. Defining Remote Objects

 Section 13.4. Creating the Stubs and Skeletons

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 13.5. Accessing Remote Objects as a Client

 Section 13.6. Dynamic Classloading

 Section 13.7. Remote Object Activation

 Section 13.8. RMI and Native Method Calls

 Section 13.9. RMI Over IIOP

 Chapter 14. Java IDL (CORBA)

 Section 14.1. A Note on Evolving Standards

 Section 14.2. The CORBA Architecture

 Section 14.3. Creating CORBA Objects

 Section 14.4. Putting It in the Public Eye

 Section 14.5. Finding and Using Remote Objects

 Section 14.6. What If I Don't Have the Interface?

 Chapter 15. JavaMail

 Section 15.1. Email and JavaMail

 Section 15.2. Creating and Sending Messages

 Section 15.3. Retrieving Messages

 Section 15.4. Multipart Messages

 Chapter 16. Transactions

 Section 16.1. Transaction Overview

 Section 16.2. Programmatic Transactions Versus Declarative Transactions

 Section 16.3. Optimistic Concurrency

 Section 16.4. EJB Transaction Management

 Section 16.5. Some Common Programming Scenarios

 Section 16.6. Transaction Best Practices

 Part II: Open Source Enterprise Tools

 Chapter 17. Ant

 Section 17.1. What Version Is Covered Here?

 Section 17.2. Ant Overview

 Section 17.3. Ant Fundamentals

 Section 17.4. Core Tasks

 Section 17.5. Enterprise Tasks

 Section 17.6. Creating Portable Build Processes

 Chapter 18. JUnit and Cactus

 Section 18.1. What's Covered Here?

 Section 18.2. Unit Testing Concepts

 Section 18.3. JUnit Overview

 Section 18.4. Using JUnit with Ant

 Section 18.5. Testing Enterprise Components with Cactus

 Chapter 19. Struts

 Section 19.1. The Scope of Struts

 Section 19.2. The Sample Application

 Section 19.3. The Development Process with Struts

 Section 19.4. The Struts Controller

 Section 19.5. The Action Class

 Section 19.6. Views in Struts

 Section 19.7. Struts Tags

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 19.8. Struts Plug-ins

 Section 19.9. DynaActionForms and the Struts Validator

 Chapter 20. Hibernate

 Section 20.1. The Sample Application

 Section 20.2. Principles of Hibernate

 Section 20.3. Configuration and Mapping

 Section 20.4. The Hibernate API

 Section 20.5. HQL (Hibernate Query Language)

 Section 20.6. Hibernate Services

 Section 20.7. Conclusion

 Chapter 21. Annotations with XDoclet and J2SE Metadata

 Section 21.1. What's Covered Here?

 Section 21.2. What Are Code Annotations?

 Section 21.3. Annotation Tools

 Section 21.4. XDoclet Tutorial

 Section 21.5. J2SE Annotations Tutorial

 Part III: Appendixes

 Appendix A. J2EE Deployment Descriptor Reference

 Section A.1. Web Components (web.xml)

 Section A.2. Enterprise JavaBeans (ejb-jar.xml)

 Section A.3. Application Archives (application .xml)

 Section A.4. Web Services (webservices.xml)

 Section A.5. Web Service Java/WSDL Mappings

 Appendix B. JavaServer Faces Tag Libraries

 Section B.1. JSF Core Tags

 Section B.2. JSF HTML Tags

 Appendix C. Enterprise JavaBeans Query Language Syntax

 Section C.1. Basic Structure of EJB QL Queries

 Section C.2. FROM Clause

 Section C.3. SELECT Clause

 Section C.4. WHERE Clause

 Section C.5. ORDER BY Clause

 Appendix D. SQL Reference

 Section D.1. Relational Databases

 Section D.2. Data Types

 Section D.3. Schema Manipulation Commands

 Section D.4. Data Manipulation Commands

 Section D.5. Functions

 Section D.6. Return Codes

 Appendix E. JMS Message Selector Syntax

 Section E.1. Structure of a Selector

 Section E.2. Identifiers

 Section E.3. Literals

 Section E.4. Operators

 Section E.5. Expressions

 Appendix F. FRMI Tools

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 rmic: The Java RMI Compiler

 rmid: The RMI Activation Daemon

 rmiregistry: The Java RMI Object Registry

 serialver: The RMI Serial Version Utility

 Appendix G. IDL Reference

 Section G.1. IDL Keywords

 Section G.2. Identifiers

 Section G.3. Comments

 Section G.4. Basic Data Types

 Section G.5. Constants and Literals

 Section G.6. Naming Scopes

 Section G.7. User-Defined Data Types

 Section G.8. Exceptions

 Section G.9. Module Declarations

 Section G.10. Interface Declarations

 Section G.11. Value Type Declarations

 Appendix H. HJava IDL Tools

 idlj: The Java IDL Compiler

 orbd: Naming Service Daemon

 servertool

 tnameserv: Transient Naming Service Daemon

 About the Authors

 Colophon

 Index

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Java Enterprise in a Nutshell, Third Edition

by Jim Farley and William Crawford with Prakash Malani, John G. Norman, and Justin Gehtland

Copyright © 2006 O'Reilly Media, Inc. All rights reserved. Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mike Loukides and Debra Cameron

Production Editor: A. J. Fox

Cover Designer: Edie Freedman

Interior Designer: David Futato

Printing History:

September 1999: First Edition.

April 2002: Second Edition.

November 2005: Third Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly Media, Inc. The In a Nutshell series designations, Java Enterprise in a Nutshell, Third Edition,
the image of a sand dollar, and related trade dress are trademarks of O'Reilly Media, Inc.

Java™ and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc., in the United States and other countries. O'Reilly Media, Inc. is independent of
Sun Microsystems.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of
a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN: 0-596-10142-2

[M]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Preface
This book is both a practical guide and a quick reference for Java™ programmers who are writing
enterprise applications. The world of enterprise development in the Java environment consists of a
mix of standardized APIs and services and de facto standard tools and APIs that have been
developed in the Java community. The first part of the book provides a fast-paced introduction to key
standard Java enterprise principles and APIs: J2EE™ deployment, servlets, JavaServer Pages™
(JSPs), JavaServer™ Faces (JSF), Enterprise JavaBeans™ (EJB), XML, JDBC™, Java Naming and
Directory Interface (JNDI), J2EE security principles, Java Message Service (JMS), SOAP web services,
Remote Method Invocation (RMI), Java IDL (CORBA), JavaMail™, and transactions. The second part
of the book covers a select set of key de facto tools commonly used in Java enterprise development:
Ant, JUnit, Cactus, Struts, Hibernate, and XDoclet.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

What's New in This Edition

The landscape of Java enterprise tools and APIs has evolved quite a bit in the three years since the
second edition. As we were planning the third edition, we realized that the set of enterprise tools that
developers found useful had settled into a mix of standard and de facto standard solutions. The
standard solutions are APIs within the Java 2 Enterprise Edition (J2EE) and Java 2 Standard Edition
(J2SE™) set of specifications, like JavaServer Pages and JDBC. The de facto standard solutions are
APIs and tools developed by the open source community, such as Hibernate and Ant.

We felt it was critical to cover both aspects of the enterprise toolbox, and so we decided to drop the
API reference material typically found in the Nutshell series in favor of coverage of the de facto tools
in the Java enterprise space. As you look through Part II of the book, you'll find tutorial chapters on a
critical set of these community tools, such as Ant, Hibernate, and Struts, among others. This change
is a recognition that enterprise developers have numerous ways to access API details, using tools
integrated into their development environments. More importantly, it's a recognition that effective
tutorials on these common community tools are critical to having a complete picture of the larger
Java enterprise framework, a framework that, today, is much larger than just the standard APIs
published as part of the J2EE specification.

In addition to this brand new material, we've also brought all the material up-to-date with the current
versions of the various APIs and tools. The examples and tutorial material now cover J2EE 1.4
versions of the various standard APIs, and we also cover the current released versions of the
community tools at the time of this writing. In key areas, we've also provided some previews of new
developments coming in the near future.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Contents of This Book

This book is divided into three parts:

Part I, The Java Enterprise APIs

The chapters in this part provide tutorials in the key standard Java Enterprise APIs and
principles and provide enough information so that you can start using them right away.

Part II, Open Source Enterprise Tools

Part II is similar to Part I, except that the chapters cover important but nonstandard
community tools in the Java enterprise space.

Part III, Appendixes

This part of the book contains summary and reference information.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Java Programming Resources

This book is designed to provide tutorials in a wide variety of J2EE APIs and tools, both standard and
de facto. It does not, and cannot, tell you everything you need to know about these APIs and tools.
In fact, in almost every case, you'll find that there are one or more entire books devoted to the topic
covered in any given chapter, and we refer you to those books for further reading. In addition to full-
length treatments of these topics, there are several valuable (and free) electronic sources of
information about Java programming.

Sun's web site for all things related to Java is http://java.sun.com. The web site specifically for Java
developers is http://developer.java.sun.com. Much of the content on this developer site is password-
protected, and access to it requires (free) registration.

Some of the enterprise APIs covered in this book are part of the core Java 2 platform, so if you have
downloaded the JDK, you already have the classes for APIs such as JDBC, RMI, XML, JNDI, and Java
IDL. Other APIs are standard extensions, however; so if you want to use, say, EJBs or servlets, you
have to download the classes separately, either by themselves or as part of an application server (for
example, the Apache Tomcat web container will provide the servlet and JSP APIs). The best way to
get the latest APIs is to start on Sun's Products and APIs page at http://java.sun.com/products/ and
find the appropriate API. And of course, the various de facto standard tools discussed in the second
part of the book, like JUnit, Ant, and Hibernate, each have their own download locations as described
in their respective chapters.

Sun distributes electronic documentation for all Java classes and methods in its javadoc HTML format.
Although this documentation is sometimes sparse, it is still an excellent starting point when you need
to know more about a particular Java package, class, method, or field. If you don't already have the
javadoc files with your Java distribution, see http://java.sun.com/docs/ for a link to the latest
available version.

Finally, don't forget O'Reilly's Java web site (http://java.oreilly.com), which contains Java news and
commentary. In addition, the O'Reilly network offers OnJava.com at http://www.onjava.com, which
contains insightful tips and tricks for every level of Java programmer.

http://java.sun.com
http://developer.java.sun.com
http://java.sun.com/products/
http://java.sun.com/docs/
http://java.oreilly.com
http://www.onjava.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Examples Online

The examples in this book are available online and can be downloaded from the home page for the
book at http://www.oreilly.com/catalog/javaentnut3/. You may also want to visit this site for
important notes about the book or errata.

http://www.oreilly.com/catalog/javaentnut3/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Conventions Used in This Book

This section covers typographic conventions and the format used for XML structure diagrams.

Typographic Conventions

Italic

Used for emphasis and to signify the first use of a term. Italic is also used for commands and
file and directory names.

Constant width

Used in all Java code and generally for anything that you would type literally when
programming, including options, keywords, data types, constants, method names, variables,
class names, and interface names.

Constant width italic

Used for the names of function arguments and generally as a placeholder to indicate an item
that should be replaced with an actual value in your program.

Constant width bold

Used for user input on the command line.

Indicates a tip, suggestion, or general note.

Indicates a warning or caution.

XML Schema/DTD Diagrams

In a number of places in the book, we need to describe the structure of specific XML formats (based

http://lib.ommolketab.ir
http://lib.ommolketab.ir

on either DTDs or XML schemas). We've chosen to use a simplified diagram format to show these
XML structures graphically. This format is described in the key in Figure P-1.

Figure P-1. Key to XML structure diagrams

Figure P-2 shows a sample XML structure diagram. Here is sample XML data that follows this
structure:

 <xyz-component>
 . . .
 <component-detail>
 <comp-name>Name</comp-name>
 </component-detail>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <param>
 <param-name>param1</param-name>
 <param-value>value1</param-value>
 <param-value>value2</param-value>
 </param>
 . . .
 </xyz-component>

Figure P-2. XML structure diagram

Note that these XML diagrams are simplified and don't describe all aspects of XML schemas or DTDs.
They do not include element attributes, for example, nor do they describe element sequence
constraints in XML schemas. They are meant to provide a high-level view of the XML structure only.
For precise details, the corresponding DTD or schema should be consulted.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in
your programs and documentation. You do not need to contact us for permission unless you're
reproducing a significant portion of the code. For example, writing a program that uses several
chunks of code from this book does not require permission. Selling or distributing a CD-ROM of
examples from O'Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount of example
code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: "Java Enterprise in a Nutshell, Third Edition, by Jim Farley and
William Crawford with Prakash Malani, John G. Norman, and Justin Gehtland. Copyright 2006 O'Reilly
Media, Inc., 0-596-10142-2."

If you feel your use of code examples falls outside fair use or the permission given above, feel free to
contact us at permissions@oreilly.com.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Safari® Enabled

When you see a Safari® Enabled icon on the cover of your favorite technology book,
that means the book is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search
thousands of top tech books, cut and paste code samples, download chapters, and find quick answers
when you need the most accurate, current information. Try it for free at http://safari.oreilly.com.

http://safari.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O'Reilly Media
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

There is a web page for this book that lists errata, examples, and any additional information. You can
access this page at:

http://www.oreilly.com/catalog/javaentnut3/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O'Reilly Network, see the
O'Reilly web site at:

http://www.oreilly.com

http://www.oreilly.com/catalog/javaentnut3/
http://www.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Acknowledgments

This book began six years ago as an extension of the series begun by Java in a Nutshell. The readers
of the past two editions have provided us with plenty of constructive comments, criticism,
suggestions, and validation over that time, and at the end of the day, they are the inspiration for this
new edition. The authors would also like to extend their gratitude to the book's technical reviewers,
whose constructive criticism has done much to improve this work: Ed Zarecor, Doug Heath, Pat
Niemeyer, Max Cooper, Steve Ditlinger, Bruce Tate, and Roshni Malani.

Jim Farley

First and foremost, I have to thank my coauthors, because this book simply wouldn't exist without
them. Many thanks to Will Crawford for revising and extending the bulk of the chapters on web
components (servlets, JSP, and JSF), for the updated chapter on JDBC, and the reworked chapter on
XML. Thanks to Prakash Malani for his contributions to the chapters on security and transactions, and
for his gracious attitude and generous efforts in reviewing others' material; to Justin Gehtland for the
much-needed chapter on Hibernate; and to John Norman for the new chapter on Struts, which
rounds out the web components material. It's been a pleasure working with you all on this.

But a writing project of any kind requires a much larger cast of characters than those listed on the
cover. Deb Cameron had the unenviable job of editing this edition, which turned out to be a much
bigger job than she signed up for, due to the new direction we decided to take with the book. She
also had to deal with five authors and managed to pull it off with little damage (emotional, physical,
temporal, or otherwise) and a lot of grace.

My wife, Sandy Mallalieu, was supportive as always through this latest writing project. My many
colleagues in the high-tech industry were invaluable sounding boards and critics for many of the new
ideas in this editionI can't possibly list them all here, but you know who you are, and I thank you for
your thoughts on difficult and sometimes esoteric issues. A special round of thanks goes out to all of
my Harvard students, who were willing and eager guinea pigs for some of the concepts that found
their way into the book in one form or another. And, as usual, for late-night inspiration, my undying
gratitude to Madeline and to Declan MacManus (and his new wife).

William Crawford

The usual acknowledgments, of course: my parents, my family, my friends. In the office, I had
excellent support from my colleagues at Perceptive Informatics, especially Howard Foster, who did
his best to make sure I had time to actually work on writing projects, and Dave Godwin, who bought
a large box of books in the hope that it would impress the customers. The jury is still out on that one.

Jim Farley, my partner in crime for three editions now, has really been responsible for keeping this
process rolling. Despite Jim's prodigious output, we probably wouldn't have made our final deadline
without the help of Prakash Malani, John Norman (who got to port my JSF example over to Struts, in
a project that was quite possibly the first and last of its kind), and Justin Gehtland. Welcome aboard.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

I'd also like to thank the students in the various courses I've taught over the last year. It's easy to
forget the kinds of questions we ask when we're just starting out. In particular, my April 2005
Enterprise Java class at Alliant Corporation gave me the opportunity to test out the JSF tutorial
before we went to press, as well as showing me a great time in Hanoi.

The third Java Enterprise in a Nutshell Patient Editor award goes to Deb Cameron, with special
distinction for this edition, and great appreciation for helping me work around the literally dozens of
emergencies that afflicted this last year. Sorry there's no plaque, but thanks for a great job.

Prakash Malani

This writing project has been amazing but challenging at the same time. Deb and my fellow authors
have always gone way out of their way to help! Working with these wonderful individuals has been a
great pleasure.

I am in great debt to my friend Ron Hitchens for having the confidence to recommend me for this
exciting project. I would sincerely like to thank Mike Loukides for trusting me to help out. I am
grateful to my close friends Max Cooper and Steve Ditlinger as well as my sister Roshni Malani, who
did an awesome job of carefully reviewing the chapters. However, any and all mistakes are solely
mine.

My wife, Clare Zhang, and my son, Arun Malani, are always loving, patient, understanding, and
encouraging. Without their help and support, this project would not have been possible. I dedicate
the chapter on transactions to them.

I dedicate the chapter on security to my parents, Chandrakant and Rajukumari Malani, who have
done an awesome job of bestowing everything upon me! Their dedication and sacrifice for their kids
always inspires me to be a better person, and especially a better parent!

John G. Norman

Thank you, Jim and Deb, for bringing me on! And to Jim and Will for reading the chapter on Struts
with attention and care. My students in the Enterprise Java course at Harvard Extension have been a
great help in reminding me to be clear and eschew surplusage. At work, I am grateful to everyone at
H3.com, and especially to Stan Ward and Hans Gieskes for not noticing too much when I ducked out
occasionally to write. The usual thanks to the likes of Alex Chilton, Norman Blake, Carrie Brownstein
and Corin Tucker, Peter Perrett, and Pete Shelley.

Finally, Juliette et Caroline: merci pour tous votre amour et dévotion.

Justin Gehtland

I'd like to thank Deb Cameron and Michael Loukides for thinking of me, the rest of the team for
letting me join at the last second, and Gavin King, the founder of the Hibernate project, for launching
such a cool tool. And, as always, Lisa and Zoe.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Part I: The Java Enterprise APIs
The chapters in Part I introduce you to key standard APIs within the Java Enterprise Edition
framework. Each chapter provides a broad overview of a particular area of the J2EE
environment, as well as tutorial material on the relevant APIs.

Chapter 1, Introduction
Chapter 2, Application Assembly and Deployment
Chapter 3, Java Servlets
Chapter 4, JavaServer Pages
Chapter 5, JavaServer Faces
Chapter 6, Enterprise JavaBeans
Chapter 7, Java and XML
Chapter 8, JDBC
Chapter 9, JNDI
Chapter 10, J2EE Security
Chapter 11, Java Message Service
Chapter 12, Web Services with JAX-RPC and SAAJ
Chapter 13, Remote Method Invocation
Chapter 14, Java IDL (CORBA)
Chapter 15, JavaMail
Chapter 16, Transactions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 1. Introduction
This book has arguably unreasonable goals. Its title alone invites raised eyebrows. Enterprise
application development, on any platform, involves a wide array of tools to solve an equally wide
array of issues and to manage several levels of complexity. How can you possibly hope to cover Java
enterprise development tools in a single work, let alone in a nutshell?

Our approach to this lofty goal is simple. We have selected the key tools and APIs that enterprise
architects and developers have found invaluable when working in the Java environment. Some of
these are part of the core Java 2 Standard Edition (J2SE) environment; many of them are part of the
larger Java 2 Enterprise Edition (J2EE)[*] environment; many of them fall outside the Java standards
but are useful and popular de facto standards within the Java community. For all of the tools covered,
we provide a short but effective tutorial while also striving to cover enough critical detail that the
material can serve as a quick reference as well. Along the way, in keeping with the "nutshell" concept
of this series, we've had to edit brutally. Only tools and APIs that are proven in the industry while
also being critical to success made the cut. Some things, useful and otherwise, had to be left by the
wayside. But we hope that sifting effort alone will benefit you, since the book also serves as a guide
through the sometimes confusing swirl of competing APIs, tools, and frameworks that make
enterprise development daunting at times.

[*] Sun recently announced a new naming scheme for the various Java platform editions. In the future, the standard edition, J2SE,

will be referred to simply as "Java SE," and the enterprise edition, J2EE, will be called "Java EE." We've chosen to stick with the

current nomenclature of "J2SE" (or just "Java") for the standard edition and "J2EE" for the enterprise edition. If the new naming

scheme takes hold in the community, we're sure our readers are smart enough to make the translation. If you've been working in

the Java environment for very long, you've already had a lot of practice in this regard.

We've divided the material in the book into two main sections: tools that are part of the Java and
J2EE standards and are managed under the auspices of the Java Community Process and tools that
are not part of these standards but have been proven in practice and are de facto standards in the
Java development community. Before we summarize the contents of these sections of the book, let's
make it clear what we mean by "enterprise computing ."

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.1. Enterprise Computing Defined

The term "enterprise computing" raises many different images in people's minds: big, sterile-looking
corporate data centers filled with humming servers ; complex financial systems stretching across the
globe; elaborate multilevel software systems running a stupefying amount of code distributed across
many servers, locations, companies, countries, even (in the case of NASA's Mars Rover project)
planets.

All of these images are true, to a degree. But they're all imprecise to a degree as well. Enterprise
computing can be done on a single student's laptop as well as in a big corporate data center. It can
be used in a small mom and pop business with a single storefront as well as in a huge multinational.
It can be done just as effectively with a very small amount of code as it can with huge code
repositories.

At its heart, enterprise computing is all about combining separate applications, services, and
processes into a unified system that is greater than the sum of its parts. The rest is context that
determines how you go about accomplishing this basic goal.

Anyone can write enterprise applications, not only because of the generalized nature of enterprise
computing but also because the tools and techniques for developing enterprise systems have
matured to the point that this domain is accessible to a much broader group of software developers.
Many of the arcane details have been smoothed over by standards, well-defined APIs, and really
powerful tools. This has made enterprise computing less scary and a lot more fun.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.2. Enterprise Computing Demystified

Enterprise computing has a reputation for complexity and, for the uninitiated, is often shrouded with
mystery. Here are some reasons enterprise computing can seem intimidating:

Enterprise computing usually takes place in a heterogeneous network of systems, one in which
the computers might range from large mainframes and supercomputers down to PCs, mobile
laptops, and even handheld devices. The computers were purchased at different times from a
variety of different vendors and run two, three, or more different operating systems.

A variety of server applications run on top of the heterogeneous hardware. An enterprise might
support application servers from three different companies, each of which covers a different
functional subset of the enterprise and each of which includes different, incompatible interfaces
and extensions.

Enterprise computing involves the use of many different protocols and standards. Some
standards overlap in small or significant ways. Many have been extended in various vendor-
specific, nonstandard ways. Some are quite old and use a vocabulary and terminology that date
back to an earlier era of computing. This creates a confusing alphabet soup of acronyms and
abbreviations.

Enterprise computing has only recently emerged as an integrated discipline of its own. Although
enterprise development models are becoming more cohesive and encompassing, many
enterprises are still left with lots of "legacy systems" that are aggregated in an ad hoc way.

Java helps to alleviate these intimidating aspects of enterprise computing. First, since Java is
platform-independent, the heterogeneous nature of the network ceases to be an issue. Second, the
J2EE framework forms a single, standard layer on top of various proprietary or vendor-enhanced
APIs . For example, the Servlet API and the JavaServer Pages API comprise a single, standard, well-
defined way to implement web interfaces, regardless of the application server, web server, operating
system, or hardware being used. Third, the Java and J2EE frameworks provide an excellent
foundation on which you can layer other, nonstandard but compatible tools. Standards can cover only
part of the enterprise application landscape, and there will always be valuable utilities developed by
the business and developer communities that fall outside of the standards. A standardized framework
provides a stable, formally managed backdrop for using these utilities without compromising the
portability promises of Java and J2EE. Finally, recall that many enterprise protocols and standards
were developed before the days of object-oriented programming. The object-oriented power and
elegance of the Java language make the Java Enterprise APIs simpler, easier to use, and easier to
understand than the non-Java APIs and protocols upon which they are layered.

Our message to you, and the central tenet of this book, is the following:

Enterprise computing is useful to everyone.

Any programmer can write distributed applications using the Java Enterprise APIs.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

With that said, it is important to understand that distributed enterprise computing actually is
somewhat more complicated than local computing. Just as using threads in a program introduces
complexities that don't exist in single-threaded programs, using distributed services in a program
introduces complexities that don't exist in programs that run entirely on one computer. And just as
developing a rapport with one person is much easier than arriving at a consensus with a crowd,
dealing with the vagaries of an entire enterprise is much more challenging than satisfying the needs
of a small department in an organization. Do not fear, however: the complexities of distributed,
enterprise computing really don't have to be overwhelming, and with a little study, any programmer
can master them.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.3. Standard Java Enterprise APIs

The J2EE standard framework provides support for a number of the most commonly used distributed
computing technologies and services. These APIs serve as building blocks for enterprise applications.
In this section, we group them into rough functional categories and discuss how they are covered in
this book. In the section that follows this one, we discuss some key, but nonstandard, enterprise APIs
and tools that facilitate the assembly of these enterprise components into applications. At the end of
the chapter, we describe an enterprise computing scenario that illustrates how these APIs and tools
can be used together to produce an enterprise application.

1.3.1. Basic Tools

Two essential technologies for enterprise application development are XML and security services.

1.3.1.1. Java API for XML Processing (JAXP)

XML is not strictly an enterprise-focused tool. XML is useful in all kinds of contexts, enterprise and
otherwise. We've included it in this book, however, because XML is now such a fundamental, all-
purpose tool that it touches nearly every level of enterprise application development, from basic
datafile formats to interprocess communications to user interface representations.

The Java API for XML Processing (JAXP) (defined in JSR 005)[*] is the standard API for consuming
and producing XML in Java. Application servers compliant with J2EE 1.3 and later must include a
compliant JAXP implementation. JAXP provides a pluggable API that supports both SAX and DOM
parsing of XML content, as well as XSLT-based transformations of XML. JAXP 1.2, the version
specified in the J2EE 1.4 specification, supports the SAX 2 and DOM 2 parsing APIs, as well as the
XSLT 1.0 transform API. JAXP is covered briefly in Chapter 7. The JAXP APIs are also covered in Java
in a Nutshell by David Flanagan (O'Reilly).

[*] Java standards, called Java Specification Requests or JSRs, are defined through the Java Community Process. A complete

list of JSRs can be found at http://www.jcp.org/en/jsr/all.

1.3.1.2. J2EE security

Security is of paramount importance in enterprises today and is entrenched in many aspects of
application development and deployment. In fact, security is a concern that must be considered in all
aspects of the modern enterprise, well beyond the J2EE security APIs discussed in this book.

The J2EE security chapter (Chapter 10) provides a brief overview of fundamental security concepts
such as authentication and authorization. Authentication refers to the process of a user identifying
himself to an application, typically using a username and password. Authorization refers to granting

http://www.jcp.org/en/jsr/all
http://lib.ommolketab.ir
http://lib.ommolketab.ir

the authenticated user access to the resources within the application, as appropriate to that user.

Chapter 10 explains security in the web tier as well as the Enterprise JavaBeans (EJB) tier with
several examples. It elaborates on the important concept of identity propagation across tiers as well
as within the EJB tier.

The chapter covers programmatic as well as declarative security approaches. In programmatic
security, you program the security rules in the code, while in declarative security you specify the
rules in the deployment descriptors and let the application server enforce the rules. The chapter
explains the ways in which programmatic and declarative security in Java and J2EE can be used
together to build effective security into your applications.

Chapter 10 also discusses single sign-on, a technique for sharing authentication credentials across
various applications.

1.3.2. Web UIs and Components

The J2EE framework supports web interfaces with the concept of web components. These
components run within application servers and take advantage of several runtime services provided
by these servers, including user session management, security services like authentication and
encrypted communications, and so on. Web components are also able to access other J2EE resources
and components, such as Java Database Connectivity (JDBC) DataSources and local and remote EJB
components.

J2EE supports the development of web components and web UIs with a family of three standards:
Java servlets , JavaServer Pages (JSPs) and, more recently, JavaServer Faces (JSF). Each of these
supports different programming models and runtime models, and each is important in different ways
and in different contexts. Struts, a nonstandard but popular web interface technology, is described in
a later section.

1.3.2.1. Java servlets: Basic web-enabled components

A servlet is a Java object that runs within a server to provide a service to a client. The name "servlet"
was originally meant to be a takeoff on "applet"a servlet can be thought of, roughly, as a server-side
applet. The Java Servlet API (JSR 053 and JSR 154) provides a generic mechanism for extending the
functionality of any kind of server that uses a protocol based on requests and responses.

For the most part, servlets are used behind web servers for dynamic generation of HTML content. But
more generally, a servlet is a Java object that can receive HTTP requests and provide HTTP
responses. The most typical scenario is a web browser that issues a request to a web server and a
Java servlet that receives the request, performs some operations (perhaps JDBC calls to retrieve
information or a call to an EJB component to invoke some business logic), and sends an HTML
response back to the browser. But servlets can also serve in other ways in an enterprise application.
A remote application can issue an HTTP request to a servlet, and the servlet can respond with an XML
document in response, for example.

A key advantage of servlets over some other similar technologies, such as Microsoft Active Server
Pages, is that servlets are portable among operating systems and among application servers. The
advantage of servlets over some script-based web technologies, like Perl CGIs, is that servlets are

http://lib.ommolketab.ir
http://lib.ommolketab.ir

also compiled objects that are persistent between invocations, which gives them major performance
benefits over parsed scripts. Servlets also have full access to the rest of the Java platform, so
features such as database access are automatically supported.

The Servlet API is a standard extension to the Java platform and is part of the J2EE specifications.
The API is implemented in the javax.servlet and javax.servlet.http packages. The javax.servlet
package defines classes that represent generic client requests and server responses, while the
javax.servlet.http package provides specific support for the HTTP protocol, including classes for
tracking multiple client requests that are all part of a single client session. See Chapter 3 for details
on servlet programming.

1.3.2.2. JavaServer Pages (JSPs): Dynamic web pages

JavaServer Pages (JSPs) (JSR 053 and JSR 152) are also part of the J2EE specifications family and
closely related to Java servlets. You can think of JSPs as an alternative approach to creating servlets,
in one sense. JSPs are similar to alternative technologies such as PHP and Microsoft Active Server
Pagesthey all provide a way to insert dynamic elements directly into HTML pages. In the case of JSPs,
these dynamic elements invoke Java code using references and calls to Java beans, using custom
tags that act as dynamic macros that are implemented by Java beans, or using raw Java code
snippets. Chapter 4 provides details on writing JSPs. In addition, this chapter provides some details
on using the Java Standard Tag Library (JSTL), a standard set of handy JSP tags that can be used in
any compliant JSP engine.

1.3.2.3. JavaServer Faces (JSF): Web UI components

JavaServer Faces (JSR 127) is a recently released Java standard for user interface (UI) components.
JSF builds on the foundation provided by Java servlets and JSPs, providing a UI component model
based on JSP tags. This UI component model allows you to create UIs for your application from a set
of predefined components (similar to the role that Java Swing plays in the world of desktop GUIs).
The JSF model also includes state management and page navigation facilities that help in the
development of applications using customary design patterns like model-view-controller (MVC).

See Chapter 5 for a short tutorial on JSF, its tag libraries, and application configuration schemes.

1.3.3. Accessing Information Systems

Access to databases and distributed systems is essential for enterprise applications. APIs in this area
include JDBC and Java Naming and Directory Interface (JNDI).

1.3.3.1. JDBC: Working with relational databases

JDBC (JSR 054) is the Java API for working with relational database systems. JDBC allows a Java
program to send SQL query and update statements to a database server and to retrieve and iterate
through query results returned by the server. JDBC also allows you to get metadata about the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

database and its tables from the database server.

The JDBC API is independent of vendor-specific APIs defined by particular database systems. The
JDBC architecture relies upon a Driver class that hides the details of communicating with a database
server. Each database server product requires a custom Driver implementation to allow Java
programs to communicate with it. Major database vendors have made JDBC drivers available for their
products. In addition, a "bridge" driver exists to enable Java programs to communicate with
databases through existing ODBC drivers.

The JDBC API is found in the java.sql package, which was first introduced in Java 1.1. Java 1.2
updated the core APIs to include JDBC 2.0, which added a number of new classes to support
advanced database features. JDBC 2.0 also provides additional features in the javax.sql standard
extension package. JDBC includes classes for extracting data from databases in the form of Java
objects, for pooling database connections, and for obtaining database connection information from a
JNDI name service. The extension package also supports scrollable result sets, batch updates, and
the storage of Java objects in databases. The latest versions of the J2SE, 1.4 and 5.0, include the
JDBC 3.0 API, whose specification was released in February 2002. This version of JDBC adds support
for transaction "savepoints," allowing you to programmatically roll back database transactions to
multiple checkpoints, as well as some enhancements to connection pooling support. At this writing,
however, driver support for JDBC 3.0 is still somewhat limited, and in several cases you may have
only JDBC 2.x API support in your drivers.

The JDBC API is simple and well designed. Programmers who are familiar with SQL and database
programming in general should find working with databases in Java very easy. See Chapter 8 for a
tutorial on JDBC and Appendix D for a quick reference to SQL.

1.3.3.2. Java Naming and Directory Interface (JNDI): Working with directory services

JNDI is the Java Enterprise API for working with networked naming and directory services. It allows
Java programs to use name servers and directory servers to look up objects or data by name and
search for objects or data according to a set of specified attribute values. JNDI is implemented in the
javax.naming package and its subpackages as a core API in the Java platform.

The JNDI API is not specific to any particular name or directory server protocol. Instead, it is a
generic API that is general enough to work with any name or directory server. To support a particular
protocol, plug a service provider for that protocol into a JNDI installation. Service providers have
been implemented for the most common protocols, such as LDAP, Active Directory, and Novell's NDS.
Service providers have also been written to interact with the RMI and CORBA object registries.

JNDI also plays a key role in the J2EE framework since it is the API used to access runtime
configuration information and resources by J2EE applications. Information specified in component
deployment descriptors is made available to components by the application server through an
internal name server, and the application components access this name server through JNDI.

JNDI is covered in detail in Chapter 9.

1.3.3.3. Java Transaction API (JTA): Accessing transactional resources

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The JTA, or Java Transaction API, is a Java Enterprise API for managing distributed transactions.
Distributed transactions are one of the things that make distributed systems more complicated than
nondistributed programs. To understand distributed transactions, you must first understand simple,
nondistributed transactions.

A transaction is a group of several operations that must behave atomically, as if they constitute a
single, indivisible operation. Consider a banking application that allows a user to transfer money from
a checking account to a savings account. If the two account balances are stored in a database, the
application must perform two database updates to handle a transferit must subtract money from the
checking account and add money to the savings account. These two operations must behave
atomically. To see why, imagine what would happen if the database server crashed after money had
been subtracted from the checking account but before it had been added to the savings account. The
customer would lose money!

The JTA defines a Java binding for the standard XA API for distributed transactions (XA is a standard
defined by the Open Group). Using the JTA, we can write a program that communicates with a
distributed transaction service and uses that service to coordinate a distributed transaction that
involves, for example, a transfer of money between database records in two different databases.

Chapter 16 provides a brief general tutorial on the JTA. Since EJBs and EJB containers provide direct
support for distributed transactions using JTA, there is also brief coverage of the API (as it relates to
EJB) in Chapter 6. JDBC drivers can also optionally support JTA-enabled distributed transactions, so
JTA (as it relates to JDBC) is also briefly mentioned in Chapter 8.

1.3.4. Distributed Computing

Support for distributed computing is key to building enterprise applications. In this area, you'll find
APIs for web services, remote method invocation (RMI), object request brokers (like CORBA), andlast
but far from leastEnterprise JavaBeans, a component architecture that brings it all together.

1.3.4.1. JAX-RPC and SAAJ: Using and writing web services

Web services have created quite a stir in the enterprise development domain by promising a new
idiom for writing and using distributed services. Web services refer to services that are callable using
an XML-based protocol and transmitted over HTTP, SMTP, and other communication protocols. Web
services are exciting because, like CORBA, they provide a platform-independent approach to
distributed computing; since they depend on ubiquitous formats and protocols (such as XML and
HTTP), the endpoints in web service architectures can be implemented in any platform or language
that supports these protocols. In other words, web services can be produced and consumed by nearly
all modern programming languages and on all platforms.

But web services have some additional advantages that RMI and CORBA do not. Since the overall
distributed computing architecture is generic and extensible, web services provide much more
flexibility in terms of the physical implementation of the web services and their surrounding runtime
support. A web service engine can be a full-blown application server with failover and load-balancing
or a tiny runtime process on a handheld device. Programming models, APIs, object models, and the
like are left up to the implementation platform, allowing them to be optimized for the particular
environment.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The fundamental standard protocols used in web services today are SOAP (Simple Object Access
Protocol) for interprocess communications and WSDL (Web Services Descriptor Language) for
describing web services. In the Java community, a suite of standard Java APIs have been defined to
help developers build and use web services. We discuss the two most important ones in this book:
the Java API for XML Remote Procedure Calls (JAX-RPC) (JSR 101, JSR 224) and the SOAP with
Attachments API for Java (SAAJ). SAAJ defines a standard API for basic, low-level messaging using
SOAP. On top of this, JAX-RPC provides a standard API for interacting with web services using a
remote method invocation paradigm in which a request to a web service is expected to result in an
immediate response. Both of these APIs are covered in the web services tutorial in Chapter 12.

1.3.4.2. Java RMI: Java-to-Java remote objects

Remote method invocation (RMI) is a programming model that provides a high-level, generic
approach to distributed computing. RMI extends the Java object-oriented programming paradigm to
distributed client/server programming: it allows a client to communicate with a server by invoking
methods on remote objects that reside on the server. RMI is implemented in the java.rmi package
and its subpackages, which were introduced in Java 1.1 and were enhanced in later versions of the
Java platform.

The Java RMI implementation is full-featured but still simple and easy to use. It gains much of its
simplicity by requiring both client and server to be implemented in Java. This requirement ensures
that both client and server share a common set of data types and have access to the object
serialization and deserialization features of the java.io package, for example. On the other hand, this
means that it is more difficult to use RMI with distributed objects written in languages other than
Java, such as objects that exist on legacy servers. The default remote method communication
protocol used by RMI will allow only Java code to interact with RMI objects. But you can also opt to
use RMI/IIOP, which was made a standard part of the core Java APIs in Version 1.3 of the Java
platform. RMI/IIOP is an optional communication protocol that allows RMI objects to interact with
CORBA-based remote objects. Since CORBA objects can be implemented in many languages, this
provides a bridge to systems implemented in other languages.

The java.rmi package makes it easy to create networked, object-oriented programs. Programmers
who have spent time writing networked applications using lower-level protocols are usually amazed
by the power of RMI. See Chapter 13 for a tutorial on using RMI.

1.3.4.3. Java IDL: Using and writing CORBA remote objects

As we've just discussed, RMI is a distributed object solution that works especially well when both
client and server are written in Java. It is more work, and therefore less attractive, in heterogeneous
environments in which clients and servers may be written in arbitrary languages. For environments
like these, the Java platform includes a CORBA-based solution for remote method invocation on
distributed objects.

CORBA (Common Object Request Broker Architecture) is a widely used standard defined by the
Object Management Group (OMG). The Java binding of this standard is implemented as a core part of
the Java platform in the org.omg.CORBA package and its subpackages. The implementation includes a
simple Object Request Broker (ORB) that a Java application can use to communicate (as both a client

http://lib.ommolketab.ir
http://lib.ommolketab.ir

and a server) with other ORBs, and thus with other CORBA objects.

The interfaces to remote CORBA objects are described in a platform- and language-independent way
with the Interface Definition Language (IDL). Sun provides an IDL compiler that translates an IDL
declaration of a remote interface into the Java stub classes needed for implementing the IDL
interface in Java or for connecting as a client to a remote implementation of the interface from your
Java code.

A number of Java implementations of the CORBA standard are available from various vendors. This
book documents Sun's implementation, known as Java IDL. It is covered in detail in Chapter 14. The
syntax of the IDL language itself is summarized in Appendix G, and the CORBA-related tools provided
with Sun's JVM are described in Appendix H.

1.3.4.4. Enterprise JavaBeans: Distributed business components

Enterprise JavaBeans (EJB) do for server-side enterprise programs what Java beans do for client-
side GUIs. EJB is a component model for units of business logic and business data. Programming
models that take business logic out of the client and put it on a server or in a middle tier have many
advantages in enterprise applications. However, the task of writing this middleware has always been
complicated by the fact that business logic must be mixed in with code for handling transactions,
security, networking, and so on.

The EJB model attempts to separate high-level business logic from low-level housekeeping chores.
And in the process, it attempts to leave the former to you, the enterprise developer, while the latter
is delegated to the EJB server. A component in the EJB model is an object that implements business
logic or represents business data. The difference between an enterprise bean and a run-of-the-mill
RMI remote object or nonremote Java bean is that EJB components run within an EJB container,
which in turn runs within an EJB server. The container and server provide features such as
transaction management, resource pooling, lifecycle management, security, name services,
distribution services, and so on. With all these services provided by the container and server,
enterprise beans (and enterprise bean programmers) are free to focus purely on business logic.

The EJB specification is a document that specifies the contracts to be maintained and conventions to
be followed by EJB servers, containers, and beans. Writing EJB components is straightforward: simply
write code to implement your business logic, taking care to follow the rules and conventions imposed
by the EJB model.

EJB components can also run within the larger J2EE framework. In addition to the standalone EJB
component services, EJBs running within a J2EE server can be assembled with other components
(like web components) into J2EE applications.

Unlike some of the other Java Enterprise APIs, the EJB API is just the beginning of understanding
how EJB works. The key to understanding Enterprise JavaBeans lies in the interactions among beans,
containers, and the EJB server. These interactions are described in detail in Chapter 6. In addition,
the syntax for the abstract persistence language used in entity EJBs, EJB QL, is described in Appendix
C.

1.3.5. Messaging

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Messaging provides an essential link for enterprise applications, and Java's support for messaging
includes Java Message Service (JMS) and JavaMail for email-based messaging.

1.3.5.1. Java Message Service (JMS): General enterprise messaging

JMS (JSR 914) is the Java Enterprise API for working with networked messaging services and for
writing message-oriented middleware (fondly referred to as MOM).

The word "message" means different things in different contexts. In the context of JMS, a message is
a chunk of data that is sent from one system to another in an asynchronous manner. The data serves
as a kind of event notification and is almost always intended to be read by a computer program, not
by a human. In a nondistributed system that uses the standard Java event model, an Event object
notifies the program that some important event (such as the user clicking a mouse button) has
occurred. In a distributed system, a message serves a similar purpose: it notifies some part of the
distributed system that an interesting event has occurred. You can think of a networked message
service as a distributed event notification system.

JMS is also a good complement to the synchronous communication provided by RMI, CORBA, and
most web services built using JAX-RPC. When an RMI client, for example, makes a remote method
call on a server object, the client will block until the remote method returns. JMS provides a way for
you to communicate asynchronously with a remote process: you can send your message and carry
on with useful work while the message is delivered and processed at the receiving end. If there's a
response from the receiver(s), a callback can be invoked on your end, and you can deal with it then.

Like JNDI and JDBC, JMS is an API layered on top of existing, vendor-specific messaging services. In
order to use JMS in your application, you need to obtain a JMS provider implementation that supports
your particular message server. Some J2EE application servers bundle their own JMS providers that
you can use as message servers; some of them provide easy ways to bridge their application servers
to other message services like IBM MQSeries or SonicMQ; others provide neither and leave it to you
to obtain and install a JMS provider.

Chapter 11 provides a tutorial on using JMS, and Appendix E documents the syntax for JMS message
selectors.

1.3.5.2. JavaMail: Email-based messaging

Email is another critical communication protocol for enterprise systems. Email is a widespread tool
used for interpersonal messaging in a wide variety of contexts, from corporate communications to
family reunion planning, as anyone reading this book is surely aware. In an enterprise application
context, email can also be an important tool for end user event notifications (for example, a notice
that a lower-priced flight has matched your travel profile), for content delivery (e.g., a weekly "ezine"
delivered automatically from a content management system), and for system monitoring (e.g., a
notice to a system administrator that connectivity to a critical information system has been lost).

J2EE's tool for composing, sending, and receiving email is the JavaMail API, contained in the
javax.mail package. For dealing with various types of content in MIME-based email messages, a
companion API called the JavaBeans Activation Framework and provided in the javax.activation
package is used in conjunction with JavaMail ("activation" in the name refers to activating a content

http://lib.ommolketab.ir
http://lib.ommolketab.ir

handler to deal with a particular type of content). Chapter 15 is a tutorial on the use of these APIs.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.4. De Facto Standard Enterprise Development Tools

The Java community members involved in defining the J2EE platform and its supporting standard
enterprise APIs would be the first to admit that it was never their intent to create standards for every
element of enterprise development. If there were only one right way to do everything, there wouldn't
be much room for creativity (or profit, for that matter). J2EE covers a critical mass of the capabilities
needed when building and running enterprise applications. It standardizes those things that are
required in order to make enterprise applications portable across application servers and support
systems, to allow vendors to integrate their services into the Java environment in a standard way
and to prevent enterprise developers from wasting their valuable time re-creating utilities that really
should be plumbing, enabling them to focus their efforts on the business logic and user interfaces of
their systems.

In addition to the standard Java Enterprise APIs discussed earlier, an enterprise developer typically
finds herself turning to a set of other support tools and extension APIs in order to be efficient and
effective in building enterprise systems. These tools and APIs fill the gaps left by the standard
enterprise Java APIs. Sometimes these gaps are intentional (e.g., "it doesn't make sense to
standardize an API for X"). Other times the gaps are temporary, because a standard hasn't been
defined yet for a particular area.

In the second part of this book, we provide tutorials on popular, effective tools and APIs that are
typically used when building enterprise Java systems. Choosing the tools to include in this section
was difficult in many cases, because so many viable, effective options are available in some areas.
But we chose tools and APIs based on the size of their respective user communities, the effectiveness
of their solutions, and the expected longevity of the tools and APIs relative to other options.

Readers will quickly realize that all of the tools chosen for this section of the book are open source
tools (see http://opensource.org). That was an intentional decision on our part, for a few reasons. In
nearly every functional area covered here, a family of solutions is available, with some commercial
and some open source. The right tool for you depends on the context of your enterprise development
scenario, but we wanted to give you practical exposure to the issues in each area, a sense of why
extension tools exist in the first place, and what makes the tool effective and useful. In order to do
that, we needed to choose tools that were accessible to all readers and that represented proven,
effective solutions for the areas we cover here. For these reasons, open source tools were the
obvious approach. While many good, effective commercial tools exist in virtually all of these areas,
they would not necessarily be accessible to all readers to experiment with the examples provided
here. We also realize that commercial tools are a necessary and effective part of many development
environments that readers need to use. To that end, as we cover each of the tools included here,
we've tried to highlight general concepts in each area that will help map the characteristics found in
these open source tools back to their commercial counterparts and hopefully help you, in an indirect
way, to understand and manage those tools.

1.4.1. Ant: Building and Deploying Applications

http://opensource.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Ant is used to manage the process of building and deploying code, among other things. Ant is similar
in purpose to age-old tools like make, gmake, and imake. It provides a way to codify the parameters
needed to build your code (like dependent libraries, configuration files, and the like) and to define
various tasks that can be done with the code (compile it, generate Javadoc pages from it, assemble it
into a J2EE application archive, deploy it to an application server, and run unit tests on it, among
other things).

Ant is an open source project managed by the Apache Software Foundation. It "ships" with a large
set of core tasks that can be used to compose Ant "build scripts," which are written in XML. An Ant
build script consists of a set of targets that you define. Each target consists of a set of tasks that are
executed when that target is requested by the user or invoked by another target. These tasks can be
core tasks included with Ant (like "compile this set of Java code" or "copy these files to that
directory"), they can be custom tasks that you define, or they can be tasks that are imported from a
third-party library. Many J2EE application servers and tools (including many of the open source tools
discussed in this book) now include their own Ant tasks, to allow you to easily integrate them into
your project Ant scripts.

Many Ant tasks and practices have been defined to help develop and manage large enterprise
projects in the Java environment. Chapter 17 provides both an overview tutorial of Ant in general
and some details on Ant-related utilities that are particularly useful when developing J2EE
applications. The chapter also includes some best practices in terms of designing Ant build processes
for multiple developers and multiple environments.

1.4.2. JUnit and Cactus: Testing Your Objects, Components, and
Applications

In any application development context, the practice of testing your code is a critical success factor.
Testing enterprise applications involves a number of different dimensions. The user experience and
the proper behavior of views (in the model-view-controller, or MVC, sense) can be tested using
functional testing tools; the correct behavior of software at the code level, in terms of objects and
components performing as expected, can be tested using unit testing tools; the throughput and
overall behavior of a system when under heavy load (large numbers of users or transactions or both)
can be tested using performance testing tools.

JUnit is an open source unit testing framework for Java. It is one in a series of such tools, built for a
number of development environments using the same conceptual architecture. Other tools in this
suite include PerlUnit for Perl and CppUnit for C++. JUnit includes a Java API that provides interfaces
and base classes for defining and running unit tests as well as some tools that facilitate the
configuration, running, and reporting of unit test suites. JUnit is used by developers to write suites of
unit tests that exercise their code in critical ways and that verify the results to ensure that they are
correct, according to the documented behavior of the code under test. These unit tests are
themselves Java code, making it easy to use the same code management tools to manage tests for
code along with the code itself.

Enterprise developers face unique challenges when unit testing their Java objects and components.
The proper behavior of enterprise code can be tested only if a suitable simulation of its runtime
environment can be achieved. A web component like a JSP tag handler, for example, can be tested
only if the testing framework can operate within a web container, can issue simulated handle
requests to the tag handler, and can interpret the responses that are generated to assess whether

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the test succeeded or not.

To facilitate the task of enterprise unit testing, the good people at Apache extended JUnit with a
framework called Cactus. Cactus allows J2EE developers to write unit tests for full enterprise
components, like servlets and EJBs.

Chapter 18 provides an introduction to the basic JUnit testing framework and also gives a tutorial on
using Cactus to define and execute test suites for enterprise components.

1.4.3. Struts: Implementing Model-View-Controller Systems

The MVC paradigm for architecting UI-oriented applications was introduced more than 20 years ago
in the Smalltalk environment. Since then, it's become a popular and effective pattern for designing
and managing web applications, and many tools have been created to support it.

In the MVC pattern, the model represents the data and business logic at the heart of the application,
views represent interactive user interface elements, and the controller links the views to the model
and keeps the application flow moving. In an MVC-based application, users interact with one or more
views in the user interface. Their actions are passed to the controller, which is responsible for
handling them. Based on the user's actions, the controller can make changes to the application
model, generate new views for the user, or all of the above. Changes in the application model can
also generate notifications directly to views, causing them to change appearance in key ways or
adjust their behavior, based on the new state of the model.

Java servlets and JavaServer Pages provide the essential tools for building web interfaces in Java,
using an object-oriented programming model or a "scripted" web page model, respectively. Struts is
an Apache project built on top of both of these standard Java technologies, using servlets to
implement the controller, both JSPs and servlets to implement views, and standard Java technologies
(such as Java beans and EJBs) to implement the application model. Struts further facilitates MVC
development by providing a configuration scheme for specifying the page flow of the application
based on user actions and an API for defining action handlers and other key MVC elements.

It's important to point out that the introduction of the JavaServer Faces standard provides many of
the same elements that the Struts project covers. Put another way, Struts was created to fill a
perceived gap between the Java standards at the time and the needs of enterprise developers. Since
then, JavaServer Faces was defined to fill a part of that same gap. JSF was released in specification
form in March 2004, and implementations are now readily available. The relationship that Struts will
have in the future with Java servlets, JSPs, and JSF still remains to be seen, but in the meantime,
Struts remains a popular and effective tool for MVC development.

A tutorial on Struts is provided in Chapter 19. Because of the functional overlap between JSF and
Struts, the code examples in the two chapters parallel each other and have identical user interfaces.
As a result, you can compare and contrast the implementations to help you decide which solution is
right for your application.

1.4.4. Hibernate: Object Relational Mappings

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Many enterprise application scenarios involve interactions with relational databases. When operating
within an object-oriented environment like Java, the issue of mapping relational constructs, like
tables and columns and rows, into object-oriented concepts, like objects and methods and data
members, arises to some degree in any database-enabled application. JDBC provides a relatively low-
level interface for interacting with databasesallowing you to establish connections to database
engines, construct SQL statements and issue them to the database, and retrieve the results in the
form of basic Java data types. The work of integrating these operations into the overall object model
is left up to the developer.

The approach to managing the object relational mapping (ORM) is an important one since it can
make the overall development, testing, and long-term management of your code either very easy or
very difficult indeed. For example, suppose that you developed a complicated application that relies
heavily on a given database with its own rich, complex schema structure. Now suppose that the
database needs to be changed in some significant ways (existing tables are restructured or
eliminated, new tables and columns are introduced, and stored procedures are altered). If you have
mapped the relational structures of the database into your application by sprinkling JDBC calls
throughout your code in an ad hoc fashion, refactoring the application will be possibly painful and
definitely costly. On the other hand, if you've used a consistent object relational mapping pattern that
insulates the application from the database details, the refactoring job will be relatively
straightforward, take less time, and introduce less instability into the system.

Since ORM mappings play such a potentially important role in enterprise development strategies, a
number of tools and approaches have emerged to fill the gap between the low-level standard API
provided by JDBC and the object-level persistence mapping needs of enterprise developers. One such
tool is an open source project called Hibernate, currently managed by JBoss along with their open
source application server and other related projects. Hibernate provides a framework for defining
mappings from relational elements to Java object-oriented elements, for generating the SQL calls
implied by these mappings, and for exposing the persistence capabilities to the rest of an enterprise
application using a clean Java interface that effectively isolates the persistence details from the rest
of the system. This makes database evolutions easier to manage, makes the overall application more
portable (to different database schemas or vendors), and makes your life as an enterprise developer
much happier in the long run.

It's important to note that efforts are afoot in the Java community to define standard ORM mapping
approaches. The most notable of these efforts are the EJB 3.0 specification work (JSR 220) and the
Java Data Objects (JDO) standard (JSR 012). JDO came about as a standards effort after Hibernate
and other ORM tools had already taken hold in the Java community, with the same conceptual goal
as many other Java standardization effortsto define a portable approach to ORM mappings that tools
could support independently, giving the enterprise developer the ability to choose solutions and
possibly switch solutions in the future without a lot of rework. The 1.0 version of JDO took a slightly
different technical approach to managing the ORM mappings than Hibernate and other tools. The JDO
approach involves postprocessing of Java bytecodes to enable their persistence capabilities, using an
ORM mapping to drive the generation of persistence code at the bytecode level. The JDO approach
did not take significant hold in the Java community for a variety of reasons, and a 2.0 version of the
JDO specification is now being developed. Meanwhile, elements of the JDO and Hibernate approach to
object relational mapping have had a significant influence on the upcoming EJB 3.0 specification,
which is in development. The newer versions of Hibernate implement preliminary versions of the EJB
3.0 model, and it's expected that the relationship between the two will become even closer in the
future.

Since this standards area is still in a state of flux, we chose to include an established but nonstandard
ORM mapping tool in this edition, to give you exposure to a tool that can be immediately applied in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

enterprise contexts and to provide a basis for understanding other ORM mapping tools that you may
encounter in the Java community.

Chapter 20 provides a tutorial on the use of Hibernate to create ORM mapping layers for your
applications.

1.4.5. XDoclet and Java Annotations: Simplifying Development with
Metadata

As enterprise applications and their corresponding development practices have matured and
expanded their scope, the concept of code and artifact generation has become more and more
important. In some cases, it can be more efficient to specify behavior using metadata and attributes
rather than explicitly specifying the lines of code needed to perform a task. It's also possible to infer
configuration parameters from attributes of source code rather than having to manually map the
intentions of the code to configuration details, like deployment descriptor entries. A good example of
this is object relational mapping scenarios, as discussed in the previous section. In many cases, it can
save you a lot of time and effort if you can simply describe a mapping from relational tables to Java
elements, using annotations inserted into the Java code itself, and then let a tool generate the
corresponding implementation artifacts: the Java code and SQL statements that implement the
mapping described in the metadata. Another example of this concept that is familiar to any Java
developer is Javadoc: tags inserted into your Java code are used by Javadoc to generate HTML
documentation for your source code, saving you the trouble of writing the HTML yourself.

XDoclet and the newer Java annotations (introduced in Java 5.0) are tools to assist with attribute-
oriented programming. Attribute-oriented development is aimed at leveraging this metadata-driven
approach to generating code and other implementation artifacts, but it is specifically aimed at using
metadata inserted into Java code to drive the generation process.

XDoclet's approach uses Javadoc extension tags to drive the process of generating source code,
deployment descriptors, configuration files, or whatever other implementation artifacts are needed to
deploy and run your code. The typical example used to explain XDoclet's utility involves EJB
components. Rather than writing several Java interfaces, Java classes, and a deployment descriptor,
you can annotate a single Java class with special XDoclet metadata tags and use XDoclet to generate
all the other required EJB artifacts for you.

The newer Java annotation features built into JDK 1.5/Java 5.0 provide similar capabilities through
actual Java syntax extensions instead of Javadoc comments. The concept is the same (code is
annotated with metadata that is used to generate other artifacts), but the annotation feature is a
standard element of the Java language itself.

Chapter 21 provides a tutorial on the general metadata models used by XDoclet and Java
annotations and also provides details on some specific enterprise Java use cases, such as developing
EJB components and web services. We also describe the integration of XDoclet and Java annotations
into Ant build scripts. This chapter is an exception in the book since it covers both standard (Java
annotations) and de facto standard (XDoclet) tools for the same functionality. In this case, we felt
that there were significant parallels between the two solutions and presenting them side by side in
the same chapter was much more effective for providing a comparison. Struts and JSF, on the other
hand, use very different programming models to achieve somewhat similar functionality, so we felt
they would be better served by separate chapters.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.5. An Enterprise Computing Scenario

The previous sections have been rapid-fire introductions to the Java Enterprise APIs that are part of
the J2EE framework as well as a set of key de facto standard tools used commonly in the Java
Enterprise space. Don't worry if you didn't understand all the information presented there: the rest of
the chapters in the following two parts of the book cover the APIs in more detail. The important
message you should take from this chapter is that the Java Enterprise APIs are building blocks that
work together to enable you to write distributed Java applications for enterprise computing. The
computing infrastructure of every enterprise is unique, and the Java Enterprise APIs can be combined
in any number of ways to meet the specific needs and goals of a particular enterprise.

Figure 1-1 shows a schematic for a hypothetical enterprise. It illustrates some of the many possible
interconnections among distributed services and shows some of the Java Enterprise APIs that
facilitate those interconnections. The figure is followed by example scenarios that demonstrate how
the Java Enterprise APIs might be used to solve typical enterprise computing problems. You may find
it useful to refer to Figure 1-1 while reading through the scenarios, but note that the figure doesn't
illustrate the specific scenarios presented here.

Figure 1-1. The distributed computing architecture of a hypothetical
enterprise

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.5.1. Enabling E-Commerce for a Mail-Order Enterprise

CornCo Inc. runs a successful catalog-based mail-order business selling fresh flavored popcorn. They
want to expand into the exciting world of online sales. Here's how they might do it:[*]

[*] This example is intended to illustrate only how the Java Enterprise APIs can be used together. We have ignored efficiency

http://lib.ommolketab.ir
http://lib.ommolketab.ir

considerations, so the resulting design might not actually be practical for a large-scale e-commerce web site.

A customer visits the company's web site, http://www.cornco.com, and uses a web browser to
interact with the company's web server. This allows the customer to view the company's
products and make selections to purchase.

1.

Before accessing protected or personalized sections of the web site, the customer must log in
(authenticate) to identify himself to the system. Once logged in, he is authorized to use
customer-related functions of the site and view his own data (and no one else's).

2.

The web server uses a shopping cart servlet to keep track of the products the customer has
chosen to buy. The HTTP protocol is itself stateless, but servlets can persist between client
requests, so this shopping cart servlet can remember the customer's selections even while the
customer continues to browse the web site.

3.

When the customer is done browsing and is ready to purchase the selected products, the web
server invokes a different checkout servlet. This servlet performs a number of important tasks,
using several Java Enterprise APIs.

4.

The checkout servlet uses JDBC to retrieve the list of products to be purchased (stored in a
database by the shopping cart servlet).

5.

Next, the servlet queries the customer for a shipping address, a billing address, and other
required information and then uses JDBC again to store this information in a customer
database. This database can be used, for example, by the CornCo marketing department for
direct mail purposes.

6.

The servlet then sends the customer's billing address and total purchase price to the billing
server. This server is a legacy application, specific to CornCo, that has a nonstandard interface.
Fortunately, however, the billing server exports itself as a CORBA object, so the servlet can
treat the entire server as a CORBA remote object and invoke the necessary methods on it.

7.

In order to ensure the very freshest product, CornCo maintains warehouses throughout the
world. CornCo is a growing company, so the list of warehouses is frequently updated. The
checkout servlet uses JNDI to contact a directory server and then uses the directory server to
find a warehouse that is close to the customer and has the customer's requested products in
stock.

8.

Having located a warehouse that can fulfill the customer's order, the checkout servlet uses JMS
to contact the company's enterprise messaging service. It uses this service to send the
customer's order to the selected warehouse in the form of a message. This message is delivered
to and queued up on the local computer at the warehouse.

9.

1.5.2. Updating CornCo with Enterprise JavaBeans

You may have noticed a flaw in the previous scenario. The checkout servlet sends billing information
to one server and then sends fulfillment information to another server. But it performs these two
actions independently, without any attempt to maintain transactional integrity and make them
behave atomically. In other words, if a network failure or server crash were to occur after the billing

http://www.cornco.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

information had been sent, but before the fulfillment information had been sent, the customer might
receive a bill for popcorn that was never shipped.

The designers of the e-commerce system described in the previous section were aware of this
problem, but since distributed transactions are complex and CornCo does not own a transaction
management server, they simply chose to ignore it. In practice, the number of customers who would
have problems would be small, and it was easier for the original programmers to let the customer
service department sort out any irregularities.

But now, CornCo has hired a new vice president of information systems. She's tough as nails and
likes all her i's dotted and her t's crossed. She won't stand for this sloppy state of affairs. As her first
official act as VP, she buys a high-end J2EE application server and gives her e-commerce team the
job of revamping the online ordering system to use it. The modified design might work like this:

The customer interacts with the web server and the shopping cart servlet in the same way as
before.

The checkout servlet is totally rewritten. Now it is merely a frontend for an Enterprise
JavaBeans component that handles the interactions with the ordering and fulfillment servers
and with the marketing database. The servlet uses JNDI to look up the remote enterprise bean
and then uses RMI to invoke methods on the bean (recall that all enterprise beans are RMI
remote objects).

The major functionality of the checkout servlet is moved to a new checkout bean. The bean
stores customer data in the marketing database using JDBC, sends billing information to the
billing server using CORBA, looks up a warehouse using JNDI, and sends shipping information to
the warehouse using JMS. The bean doesn't explicitly coordinate all these activities into a
distributed transaction, however. Instead, when the bean is deployed within the EJB container
provided with the J2EE server, the system administrator configures the EJB component so that
the server automatically wraps a distributed transaction around all of its actions. That is, when
the checkout() method of the bean is called, it always behaves as an atomic operation.

In order for this automatic distributed transaction management to work, another change is
required in the conversion from checkout servlet to checkout bean. The checkout servlet
managed all its own connections to other enterprise services, but enterprise beans don't
typically do this. Instead, they rely on their server for connection management. Thus, when the
checkout bean wants to connect to the marketing database or the enterprise messaging
system, for example, it asks the EJB server to establish that connection for it. The server
doesn't need to know what the bean does with the connection, but it does need to manage the
connection if it is to perform transaction management on the connection.

1.5.3. Other Potential Directions

This hypothetical situation has hopefully highlighted some of the motivations for utilizing the
enterprise APIs and tools we'll discuss in detail in the rest of the book. There are countless other
scenarios we could reference to motivate exploration of other parts of the enterprise domain, such
as:

1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CornCo expands to incorporate new partners whose services are accessible via SOAP services.
The system now needs to include web service clients, making remote calls to these partner
services.

1.

Consequently, CornCo partners ask for integration points in the CornCo system to allow them to
directly integrate their business processes, as well as desktop tools, into the CornCo
environment. Since these partners use a variety of enterprise development platforms for their
infrastructure, the development team decides to develop a suite of its own SOAP-based web
services that expose the necessary integration points to these partners in a platform-neutral
way.

2.

Key CornCo clients have requested the ability to place and track orders from mobile devices,
like mobile phones and personal digital assistants (PDAs), using simple email messages. To
support these devices, inbound and outbound email capabilities need to be integrated into the
system to allow these users to submit requests in the form of a formatted email and to receive
email notifications of order status.

3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.6. Other Enterprise APIs

We have decided not to include several enterprise APIs in this nutshell book, for a variety of reasons.
In most cases, it was due to prioritizing space for other tools that we felt were more important to a
larger population of readers.

In the area of web services, the Java API for XML Registries (JAXR) provides a standard API for
interacting with web service registries implemented using UDDI or ebXML, standard web service
registry protocols. JAXR is not covered here, because despite the initial enthusiasm over web services
and the current maturity of basic web service tools and APIs, the practice of creating web service
registries remains a relatively niche concern. Large organizations creating broad service-oriented
architectures (SOAs) may find effective use for UDDI and ebXML registries, but for many contexts,
web services talking SOAP and described using WSDL are enough, so we've kept our coverage to
JAX-RPC and SAAJ. Readers are encouraged to consult Java Web Services by Dave Chappell and
Tyler Jewell (O'Reilly) for details on using JAXR.

The Java Management Extensions (JMX) provide a standard framework for creating distributed
management and monitoring capabilities. The things being managed and monitored could be
applications, devices, external services, or any critical enterprise capability. We've omitted JMX and
related standards like the J2EE Management specification from the book because of their somewhat
narrow domain of use. Full details on JMX can be found in Java Management Extensions by J. Steven
Perry (O'Reilly).

Enterprise systems can be global not only in terms of server locations but also in terms of user
population. Web applications, by definition, are potentially accessible worldwide, and in some cases it
is important to consider the need to internationalize and localize your applications.
Internationalization refers to the ability of systems to behave properly when used with different
languages and display standards. Localization refers to the ability of an application to adjust itself to
local conditions, such as time zone and personal display preferences. In the interest of space, we do
not discuss the topics of internationalization or localization of Java applications (enterprise or
otherwise). The interested reader, however, should refer to Java Internationalization by Andy Deitsch
and David Czarnecki, the Java Servlet and JSP Cookbook by Bruce W. Perry, or Java Servlet
Programming by Jason Hunter, all from O'Reilly.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 2. Application Assembly and
Deployment
In any enterprise framework, it's important to understand not just the APIs and tools that are needed
to develop application code but also the model that the framework uses for assembling and deploying
the components of applications. Assembly of an application or component is the process of collecting
all of the elements required (source code, datafiles, and configuration files) into a structured format
that can be deployed to the server environment. Deploying a component or application is the process
of actually installing the runnable code in the runtime environment, which involves making the code
available to the server and resolving resource references in the assembly with the resources actually
available on the server.

Assembly and deployment are usually considered separate activities for several reasons. Perhaps
most importantly, assembly is focused on the nature of the application itself while deployment is
focused on the integration of the application with a specific runtime environment. Assembly of code,
therefore, is more easily standardized within a given enterprise framework. Archive structures and
configuration file formats can be specified in a generic way, including references to external resources
like databases and messaging services. Deployment, on the other hand, is more context-dependent.
The type and configuration of the runtime environment are going to determine how each deployment
will be carried out. The assembly itself will need to be installed in the runtime environment in
different ways, depending on the architecture and configuration of the server. If an application
requires a specific resource (as specified in its assembly), and a suitable resource is not available in
the runtime environment, it will need to be provisioned before the application can be deployed. The
physical steps needed to perform these deployment tasks vary for different runtime environments
although the same application assembly is being deployed to each.

J2EE is no different in this regard. As we'll see in later chapters of this book, J2EE supports various
types of application components (web-based components built using the Java Servlet, JavaServer
Pages, and JavaServer Faces APIs; business components built using the Enterprise JavaBeans APIs;
and so on). The J2EE specifications include standard archive formats and configuration file formats
for application and component assemblies. These configuration files, called deployment descriptors ,
allow you to configure both the elements that make up the components and external resources
required by the components at runtime. These resources are specified based on other standard Java
APIs, such as JDBC (DataSources) and JMS (Destinations).

With a J2EE component or application archive in hand, deployment is carried out in a server-
dependent fashion. The resource references in the assembly will need to be resolved, in some cases
requiring new resources to be provisioned in the J2EE server. The assembly also needs to be
physically delivered to the server somehow, in whatever scheme the server requires. Deploying the
same J2EE assembly to multiple servers simply means performing these deployment operations for
each environment. Ideally, the J2EE assembly itself (i.e., the physical packaging and description of
the application and components) remains the same, and the variations in the server environments
are handled in the deployment steps.

In this chapter, we present the general model that J2EE supports for assembling components and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

resources into full services or applications and how they are deployed to their runtime environments.
As a complement to this tutorial material, Appendix A provides a reference for the key deployment
descriptors defined in the J2EE family of specifications.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.1. J2EE Application Assembly Model

First, let's get the J2EE terminology straight. Figure 2-1 depicts the assembly model for J2EE
applications. J2EE applications are composed of one or more components. A component is a
functional element of an application that runs within a container and makes use of the runtime
services provided by the container. These runtime services might be security management services,
transaction management services, lifecycle services, or others, depending on the type of component
and the type of container. A component consists of one or more Java classes that implement the
component, along with any component-specific resources like properties files, images, and the like.
J2EE components (and their containers) come in five flavors: application clients , applets , web, EJB,
and resource adapters .[*] Each type of container is capable of providing a specific set of APIs and
runtime services to its corresponding components.

[*] It's important to note that most references on this subject distinguish resource adapters as a different category of "component"

in the J2EE model: a lower-level component that represents a resource to be used by the other, higher-order components,

without a formal container model like the others. But for the sake of consistency of the assembly and deployment model, they are

included here among the other J2EE component types, since at a general level, they are handled much the same as the other

components.

J2EE components are grouped together and deployed in modules , which are collections of
components of the same type, to be run inside the corresponding container type. A module contains
all of the component-specific classes, plus any

Figure 2-1. J2EE assembly model (conceptual)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

class libraries needed by the components and other cross-component resources, such as datafiles,
HTML documents (for web components), and image files. Each module also contains a standard XML
deployment descriptor that provides descriptive information, external resource references, and
configuration details about each component it contains. If required, a module can also contain
application server-specific details, such as configuration files, classes, and resources that are required
by a particular application server. Most application servers, for example, allow you to specify
additional configuration parameters, not included in the standard J2EE deployment descriptors , in
separate configuration files. The application server vendor dictates the format for these files and
where they should be included in the module archive. Modules are packaged in the form of jar files,
with the deployment descriptor, classes, class libraries, and other resources placed in specific
locations in the jar file.

An enterprise application archive, or ear file, is a set of one or more modules, and these modules
collectively contain all of the components of an application. An application archive also contains a
deployment descriptor, which specifies the modules that it contains and several other application-

http://lib.ommolketab.ir
http://lib.ommolketab.ir

wide configuration details. Like components, application archives are packaged into jar files with a
particular layout, containing the deployment descriptor for the application, the module jar files, and
any other application resources, such as documentation for the application.

In the remainder of this section, we'll talk about the general steps and concepts involved in
assembling and deploying J2EE applications. Following this, we'll discuss component modules and
application assemblies in more detail, using an example application as a guide.

2.1.1. Assembling Applications

As discussed in the introduction to this chapter, we've intentionally made the distinction between
assembling and deploying applications because they really are two distinct stages in getting a J2EE
application up and running. Assembling an application involves getting all of the elements of the
application together in the right package structure and with the right configuration information
included. Deploying an application is the act of taking the application assembly and plugging it into
the application server environment so that it can actually run.

The first step in assembling an application is to assemble the component modules that make up the
application. Once this is accomplished, you package up the component modules into an application
archive.

An application is fully assembled once all of its component modules have been pulled together into an
application archive, as shown in Figure 2-2. In the example shown, the application archive contains
two component modules, a web module and an EJB module. Each component module contains a
deployment descriptor describing the components themselves, how they should be managed by the
container at runtime, and references to any resources or other components that the module's
components require in order to operate correctly.

The application assembly itself also includes an application.xml deployment descriptor, which
references all of the modules that make up the application.

At this point, the application is assembled but not deployed. All of the resource references in the
component module descriptors are dangling, unresolvedwe can't assign actual resources to these
references until we put the application into a physical server environment. It is possible to resolve
some internal component references at this point, if they reside in the same application assembly.
For example, if one of the component modules in Figure 2-2 references an EJB component and that
EJB component is contained in the other component module, we can specify that internal reference
directly in the deployment descriptor of the referring component. But for other resources, like JDBC
DataSources and JavaMail Sessions, we won't be able to connect the deployment descriptor
references to actual resources until we know the application server into which we're deploying and
how its resources are configured internally.

This separation of assembly and deployment of components and applications, using deployment
descriptors as the mediator between these two stages, helps you

Figure 2-2. Assembled application archive

http://lib.ommolketab.ir
http://lib.ommolketab.ir

to develop enterprise applications that migrate easily across environments. You may be writing a
shopping cart application, for example, with an EJB component that requires a database connection
in order to store and update order items. You might be developing this application in a development
environment using a MySQL database but need to run it in a production environment using an Oracle
database. The database requirement can be specified clearly as a reference to a DataSource in the
EJB deployment descriptor when the application is assembled. When the application is deployed to
the development environment, the DataSource reference can be bound to a DataSource configured
against the MySQL database. When the application is eventually deployed to production, the same
application assembly can be used, but the resource reference will now be bound to a DataSource
configured to connect to the production Oracle database.

2.1.2. JNDI Configuration Services

Given all this, the configuration services provided by an application server are a critical element in
deploying J2EE applications. Various runtime assets required by your components, such as database
connections, JMS message queues, JCA resource adapters, or even other J2EE components, will be
provided by the application server at runtime. These assets will be located at runtime using JNDI
lookups, so it's critical that all of the assets referenced in the component deployment descriptors are
configured properly in the JNDI namespace of the application server.

More complete details on JNDI and its use with general directory services can be found in Chapter 9.
Here, we'll discuss the naming conventions typically used for different resources and components
published in an application server's JNDI service and how names used in module deployment

http://lib.ommolketab.ir
http://lib.ommolketab.ir

descriptors are resolved against the real names of these resources and components.

2.1.2.1. Naming conventions

J2EE specifies some basic naming conventions for the assets published in the server's JNDI service
for application components. In general, runtime assets are given names within the java:comp/env
namespace in the JNDI service. The java:comp portion of the namespace indicates that the assets
are targeted for J2EE components, and the /env branch indicates assets that are part of the
component runtime environment. Some application-wide assets, such as CORBA ORBs, are stored
directly in the java:comp namespace. Table 2-1 shows the various assets that can be stored in a
JNDI service on behalf of J2EE components and the conventional namespace that is used for the
names of these assets.

Table 2-1. JNDI naming conventions for J2EE runtime assets

Asset category Java types supported JNDI name/namespace

Database
connections javax.sql.DataSource java:comp/env/jdbc/*

General
messaging
connections and
destinations

javax.jms.Queue

javax.jms.QueueConnectionFactory

javax.jms.Topic

javax.jms.TopicConnectionFactory

java:comp/env/jms/*

Email messaging
connections javax.mail.Session java:comp/env/mail/*

HTTP URL
connections java.net.URL java:comp/env/url/*

Transactions javax.transaction.UserTransaction java:comp/UserTransaction

CORBA object
request broker org.omg.CORBA.ORB java:comp/ORB

Resource adapter
connections javax.resource.cci.ConnectionFactory java:comp/env/eis/*

EJB components
javax.ejb.EJBHome

javax.ejb.EJBLocalHome

java:comp/env/ejb/*

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Asset category Java types supported JNDI name/namespace

General
environment
entries

Java basic data types (Boolean, Byte, Character,
Double, Float, Integer, Long, Short, String)

java:comp/env/*

These naming conventions require coordination among the component code, the deployment
descriptors, and the application server. In the component source code, you perform JNDI lookups to
access runtime assets. You might access a JDBC DataSource from a component like this:

Context context = new InitialContext();
DataSource ds = (DataSource)context.lookup("java:comp/env/jdbc/myDS");

We're assuming here that a DataSource is available under the name myDS within the standard J2EE
namespace for JDBC resources, java:comp/env/jdbc.

The deployment descriptor for the component making the JNDI reference must declare its
dependence on this JNDI asset. Assuming that this code resides in the implementation code for an
entity EJB component, the EJB deployment descriptor would also need to include a segment declaring
the dependence of the component on the DataSource, like this:

. . .
<resource-ref>
 <res-ref-name>jdbc/myDS</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
</resource-ref>
. . .

This entry declares that the component looks for a javax.sql.DataSource under the name jdbc/myDS
within the standard J2EE namespace, java:comp/env. The standard namespace prefix is not included
in the deployment descriptor declaration; it's assumed for all asset declarations. The application
server is responsible for creating the default java:comp/env namespace in its internal JNDI
namespace.

2.1.2.2. Two-level name resolution

Many application servers support two-level name bindings for the linking of JNDI names to actual
assets. This capability offers flexibility and, in some cases, efficiency when operating a number of
components and applications in the same server.

Two-level name binding allows you to assign an independent name to an asset when configuring it
within the application server and then link this asset name to the name specified in the component
deployment descriptors. Suppose, for example, that a deployment descriptor declares a requirement
for a JavaMail Session to be deployed on the server under the name

General
environment
entries

Java basic data types (Boolean, Byte, Character,
Double, Float, Integer, Long, Short, String)

java:comp/env/*

These naming conventions require coordination among the component code, the deployment
descriptors, and the application server. In the component source code, you perform JNDI lookups to
access runtime assets. You might access a JDBC DataSource from a component like this:

Context context = new InitialContext();
DataSource ds = (DataSource)context.lookup("java:comp/env/jdbc/myDS");

We're assuming here that a DataSource is available under the name myDS within the standard J2EE
namespace for JDBC resources, java:comp/env/jdbc.

The deployment descriptor for the component making the JNDI reference must declare its
dependence on this JNDI asset. Assuming that this code resides in the implementation code for an
entity EJB component, the EJB deployment descriptor would also need to include a segment declaring
the dependence of the component on the DataSource, like this:

. . .
<resource-ref>
 <res-ref-name>jdbc/myDS</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
</resource-ref>
. . .

This entry declares that the component looks for a javax.sql.DataSource under the name jdbc/myDS
within the standard J2EE namespace, java:comp/env. The standard namespace prefix is not included
in the deployment descriptor declaration; it's assumed for all asset declarations. The application
server is responsible for creating the default java:comp/env namespace in its internal JNDI
namespace.

2.1.2.2. Two-level name resolution

Many application servers support two-level name bindings for the linking of JNDI names to actual
assets. This capability offers flexibility and, in some cases, efficiency when operating a number of
components and applications in the same server.

Two-level name binding allows you to assign an independent name to an asset when configuring it
within the application server and then link this asset name to the name specified in the component
deployment descriptors. Suppose, for example, that a deployment descriptor declares a requirement
for a JavaMail Session to be deployed on the server under the name

http://lib.ommolketab.ir
http://lib.ommolketab.ir

java:comp/env/mail/AppSession. If the application server supports two-level name bindings, we can
configure a Session on the server under an independent name, such as
java:comp/mail/GenericSession, and link the asset name to the name required by the component
module. In effect, this linking ensures that the runtime JNDI lookup at
java:comp/env/mail/AppSession actually resolves to the Session deployed under
java:comp/mail/GenericSession. The mechanics of making this linkage is application-dependentit can
be done in a server-specific configuration file, in a web administration tool, or in something else
entirely. Later in this chapter, we'll see a concrete example of configuring an asset this way in JBoss.

Not only does this two-level binding feature allow you to manage your namespace more flexibly, but
it can also make it possible to share assets among components and applications running in the same
server. Following on to the Session example we just used, suppose this Session were configured with
fairly generic settings and that other components also needed a Session configured similarly. We can
reuse the same Session asset with other components by simply linking the names that these other
components declare for the asset with the same Session that is deployed at
java:comp/mail/GenericSession.

2.1.3. Deploying Applications

Deploying an application involves several steps, including resolving resource and component
references , managing the classloader used by the application server or servers, and finally,
physically deploying the application. We describe this process next.

2.1.3.1. Resolving resource and component references

Once we move our application assembly into an application server environment (i.e., deploy our
application), we need to settle all of the resource and component references contained in the various
deployment descriptors. In the J2EE model, application servers make resources available to
applications through an internal directory, accessed at runtime using the Java Naming and Directory
Interface (JNDI). This internal directory could be a full LDAP server, a CORBA Naming Service, or any
other directory service supported by JNDI.

Figure 2-3 shows the situation after a J2EE application assembly has been successfully deployed to
an application server environment. The resource and component references in the module descriptors
have been linked to deployed resources and components in the application server. These references
are linked through the application server's JNDI service: components and resources have been
deployed in the application server and "published" in its JNDI service under specific names. These
components and resources are then linked to the references in the deployment descriptors in our
deployed application, and the application is fully deployed.

If a component reference in a deployment descriptor needs to be linked to a component residing in
the same application assembly, it's possible to make that link directly in the module deployment
descriptor, and not through the server's JNDI service. This is depicted in Figure 2-3 by the "internal
reference" link between the two modules in the application. Otherwise, the resource and component
references need to be resolved to real assets through the application server's JNDI service.

2.1.3.2. Runtime classloading models

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Another key consideration when deploying applications is the classloading model used by the
application server. Typically, a J2EE application server runs within a parent Java virtual machine, and
that parent JVM may spawn other JVMs or non-Java processes to run specific runtime elements
(messaging services, directory services, etc.). Within the application server's JVM, the management
of classloaders can be done in a variety of ways. The most simplistic approach would be to have all
applications share the same classloader. In a multiple application scenario, this is usually not
desirable since various applications, or even different versions of the same application, may depend
on different versions of Java

Figure 2-3. Deployed application

http://lib.ommolketab.ir
http://lib.ommolketab.ir

libraries and classes, which would cause conflicts in a single-classloader situation (the first version of
a class loaded at runtime would be used by all applications in the server). If an application server
runs all applications within the same classloader, then you may find yourself forced to run multiple
server instances in order to run each application with the proper versions of libraries and classes.

A more realistic runtime model would be to assign a separate classloader to each deployed
application. This allows each application to load its own versions of specific classes, independent of
other applications. Assuming that the server is using the standard Java classloader implementation,
each application classloader would be a child of the server's main classloader, so any libraries that
you truly want to share across all applications (i.e., the same version used by all applications) will be
loaded by the main server at startup. This is typically done by either adjusting the server's startup
classpath or putting the shared libraries in a special library directory.

Some application servers impose a single classloading scheme on deployed applications, while others
allow you to configure the classloading scheme at a server or an application level. It's important to
understand the classloading schemes supported by your application server and to adjust these
settings if needed.

2.1.3.3. Physical deployment

The physical steps that you take to deploy an application in an application server are a vendor-
specific detail. The resource and component references might be resolved using server-specific
configuration files, as depicted in Figure 2-3, or an application server may provide a web-based
administration tool that allows you to graphically link references in deployment descriptors to actual
resources and components running in the application server. The documentation for your application
server should explain the details.

Now that we've seen the J2EE assembly and deployment model at a conceptual level, let's run
through the technical details, starting with the creation of component modules, then application
assemblies, and then deployment. Along the way, we'll work with a concrete example application
consisting of web and EJB components.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.2. Component Modules

A component module is the smallest unit of deployment in the J2EE deployment model. A module is
simply a jar file containing all of the bits and pieces that define a set of components. Each module
contains components of the same type so that they can be easily delegated to the containers that
handle them.

2.2.1. Module Jar Files

Each component module is packaged as a jar file with a specific layout for the elements that make up
the components. Table 2-2 summarizes the different module jar files and deployment descriptors
used for the different J2EE component types:

Table 2-2. Component module format summary

Component type Module jar file suffix Deployment descriptor filename and location

Web .war("web archive") WEB-INF/web.xml

Enterprise JavaBeans .jar META-INF/ejb-jar.xml

Applet .jar Not applicable

Application client .jar META-INF/application-client.xml

Resource adapter .rar ("resource archive") META-INF/rar.xml

In addition to the deployment descriptor locations specified Table 2-2, each component module jar
file also has a specific file layout that's required for the elements that make up the components. In a
war file, for example, all individual class files included in the module must be placed in the WEB-
INF/classes directory, all class libraries are placed in the WEB-INF/lib directory, and so on.

2.2.2. Deployment Descriptors

Each component module (except for applet jar files) includes a standard J2EE deployment descriptor.
These descriptors are key to the assembly and deployment process in J2EE. The deployment
descriptor knits together all the bits and pieces in the module jar file into actual components and
describes to the container how each component should be managed. Without the deployment
descriptor, the module jar just looks like a bag of Java classes and other files to the container.

Component deployment descriptors specify these major sets of information for the container:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Module descriptive information

In most cases, a component module as a whole can be given some descriptive information,
such as a name, a description, and so on. This information can be used by application server
management tools and server logs to provide human-readable information about the
components deployed in the server.

Component elements

Each component (EJB, web, or resource connector) is made up of one or more parts. A web
component is implemented as either a servlet class or a JSP file. An entity EJB is implemented
as a bean implementation class, one or more client interfaces, one or more home interfaces,
and a primary key class. For each component in the module jar file, the container needs to be
told the parts that make up the component.

Configuration data for component services

Each type of component makes use of specific services provided by the container. Some of
these services are optional; some are part of the standard runtime management provided by
the container. Web components use basic instantiation and lifecycle services, optional security
services, and so on. EJBs use more elaborate lifecycle services, security services, persistence
services, transaction management services, and so on. Where there are options in terms of
how these services are managed at runtime, the deployment descriptor allows you to specify
these options.

Resource and component dependencies

A component may make use of various resources that are expected to be deployed in its
runtime environment in the application server. These may include JDBC DataSources used to
make database connections, JavaMail Sessions used to create and send/receive email
messages, and so on. Also, components can make use of other components. A web component
might make use of a session EJB to perform some key tasks on behalf of users of its interface,
and the session EJB may in turn make use of an entity EJB to access persistent data. These
dependencies on external resources and components need to be declared in the deployment
descriptor as well.

The full format of each of the various component deployment descriptors is described in Appendix A
and the details of their use are demonstrated in the examples in Chapters 3, 4, 6, and 12. The
following example demonstrates the general assembly process for component modules , including the
use of deployment descriptors.[*]

[*] You may also want to take a look at Chapter 21, which describes XDoclet and annotations. One important use of these tools is

to automate the process of generating deployment descriptors.

2.2.3. Component Module Assembly Example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Suppose we have a web application that maintains profiles for each user, and a profile contains
various preferences for the behavior of the application. The profile data is stored in a database, and
an EJB component is used to represent each profile within the application. The application also
includes a JSP web component that provides an editor for profiles, where each user can specify his
preferences. The JSP makes use of the profile EJB to access the profile data stored in the database.

Given this architecture, our application needs a web component module to deploy the JSP and an EJB
module to deploy the profile EJB. Each of these modules will need its own deployment descriptor and
will be packaged into a jar file to be assembled into the final application.

2.2.3.1. EJB module descriptor

Moving from the bottom up (from the database to the EJB component to the web UI), we can look at
the deployment descriptor for our profile EJB component. The deployment descriptor is listed in
Figure 2-4. If you look through the XML descriptor, you'll notice that it includes all of the categories of
information we mentioned in the previous section: module descriptive information, component
element declarations, component service configuration, and resource/component references.

This module has only one EJB component, and we declare its name and the classes that make up its
implementation within the <enterprise-beans> section of the descriptor. We also configure the
container services for this component. In this case, we specify that the EJB will be using bean-
managed persistence, that it will not be reentrant, and that the security management should adopt
the identity of the caller when determining access rights to the component. The meaning of these
service configurations is explained in Chapter 6. Finally, we declare the external resources and
components that the EJB component requires in order to operate. In this case, our EJB will need a
JDBC DataSource to access the persistent profile data stored in the database. Here, we declare that
our EJB code looks for the DataSource under the JNDI name jdbc/ProfileDB. This implies that,
somewhere in the Java code that implements the EJB, we perform a JNDI lookup similar to the
following:

Context ctx = new InitialContext();
DataSource profileDB =
 (DataSource)ctx.lookup("java:comp/env/jdbc/ProfileDB");

Figure 2-4. Profile EJB deployment descriptor

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Our resource declaration in the EJB deployment descriptor instructs the container about this
dependence so that the container can ensure that there is indeed a DataSource configured at that
name in its JNDI service when we deploy the module. If there isn't, the container can stop the
deployment with an error, allowing you to adjust the server configuration and redeploy the module.
This is preferable to deploying an application and finding out at runtime that something is broken.

2.2.3.2. Web module descriptor

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The deployment descriptor for the web component is listed in Figure 2-5. This descriptor would be
included in the web module jar in the WEB-INF/web.xml file. This sample deployment descriptor also
demonstrates the four categories of information found in component descriptors. After the module
description, we declare web components and the code that defines them using <servlet> elements.
In this case, we have a single web component, our profile viewing JSP, and we declare it by giving it
a name and specifying the JSP file in the module jar file that serves as the component. Following
that, we specify some configuration parameters to the web container, telling it how to manage our
component. In this case, we simply tell the container what URLs should be mapped to our web
component and how long user sessions should last. Finally, we declare any resources that our
components require to operate at runtime. As we mentioned earlier, these references are specified
using the JNDI name that the component code uses to locate them at runtime, and they will be
resolved to actual resources and components in the application server's JNDI service. In this case, we
declare the EJB component that the JSP uses to access the profile data. We've specified that the JSP
will look for the EJB home interface using the JNDI name ejb/Profile, which implies that somewhere in
the component code we perform a JNDI lookup like this:

cntx = new InitialContext();
ProfileHome profileHome =
 (ProfileHome)cntx.lookup("java:comp/env/ejb/Profile");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.3. Application Assemblies

Once we have our components assembled into the appropriate modules, each with a deployment
descriptor, we can assemble an application by bundling the component modules along with an
application deployment descriptor into an enterprise application archive (ear) file.

Like component modules, an application archive is just a jar file with files stored in specific locations,
as dictated by the J2EE specifications. The deployment descriptor is stored as META-
INF/application.xml in the jar file, and component modules are placed in the jar and referenced in the
application descriptor using their location relative to the top of the application archive. The full syntax
of the application deployment descriptors can be found in Appendix A.

Application deployment descriptors are simpler in structure, because they primarily serve to assemble
component modules that have their own deployment information. The application deployment
descriptor contains the following categories of information:

Application descriptive information

Similar to component modules, applications can also have descriptive information in their
deployment descriptors. The application can be given a name and a description that can be
displayed in management tools, for example.

Figure 2-5. Web module deployment descriptor

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Module references

Each component module to be included in the application must be referenced in its own
<module> element in the application.xml file. The module reference indicates the location of the
module jar file in the application archive. In the case of web modules, the module can also be
given a web context root in the application descriptor. This context root is used as the base of
URLs mapped to the components in the module.

Application security roles

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Each component module can declare security roles that are used to control access to
components and their operations. You can also declare security roles at the application level to
indicate application-wide roles that must be mapped to actual users by the application server.
Details on the J2EE security model can be found in Chapter 10.

2.3.1. Application Assembly Example

Returning to our example application, we now need to create an application archive containing our
application's two component module archives. One module is an EJB module that contains the profile
EJB component, and the other is a web module that contains the UI elements, including the JSP used
for viewing profiles.

Figure 2-6 shows our application deployment descriptor. The first section of the file contains some
descriptive information about the application as a whole. Following this, we declare the two module
archives that contain our components. These jar files must be found in the application archive when
the application is deployed at the relative locations used here in the <module> elements. Finally, our
example descriptor declares some security roles to potentially be used by the application at runtime.
As with any roles declared at the component level, the application server should verify that these
roles have been configured within its runtime environment when the application is deployed.

Figure 2-6. Application deployment descriptor

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.4. Deploying J2EE Applications

Once all of the J2EE modules have been packaged into their respective jar files, each with a
deployment descriptor, and an application archive has been created with its own deployment
descriptor, you still need to actually deploy the application to a J2EE application server. The
deployment of an application (or even a single module) typically involves the steps described in the
remainder of this section. In each case, we'll demonstrate the task using a JBoss application server
and discuss how these tasks might be done in different ways in different application servers.

2.4.1. Adjust Deployment Descriptors

When you develop and package a set of components, you might imagine that the module should
remain unchanged when it's deployed as part of an application. But there can be local environmental
issues that force an application deployer to adjust the deployment descriptors . Some configuration
parameters placed in environment entries may need to be adjusted, for example. A shopping cart
web component might be delivered as part of an application with a JNDI environment entry that
specifies the maximum number of line items the cart allows, with a default setting. This default value
may need to be changed at deployment time to meet the needs of a particular user population (e.g.,
the application is being deployed for departmental administrators who require a much larger number
of line items on average when ordering).

In addition to these configuration values, you may want to resolve component references directly in
the module deployment descriptors. In our profile application, for example, we have a web
component (our JSP for viewing profiles) that references the profile EJB component in its deployment
descriptor because it makes use of it at runtime. As we mentioned earlier in this chapter, it's possible
to directly resolve these references without setting up a link to a named asset in the server's JNDI
service. In this case, we would alter the web module deployment descriptor to specify the component
that the EJB reference should resolve to:

. . .
 <!-- Declare EJB components that our web components use -->
 <ejb-local-ref>
 <ejb-ref-name>ejb/Profile</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <local-home>
 com.oreilly.jent.ejb.beanManaged.ProfileLocalHome
 </local-home>
 <local>com.oreilly.jent.ejb.beanManaged.ProfileLocal</local>
 <!-- The EJB module will be assembled as part of our app, so we
 can make a direct link to the Profile EJB using its ejb-name -->
 <ejb-link>BMP Profile Bean</ejb-link>
 </ejb-local-ref>
</web-app>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Notice that the name used in the <ejb-link> element must match the value given to the EJB
component in the <ejb-name> element in its deployment descriptor. You can verify our component
name by checking Figure 2-4.

Either of these changes can be made directly to the deployment modules packaged with the modules,
or edited deployment descriptors can be created and referred to using <alt-dd> elements[*] in the
application assembly deployment descriptor. If, for example, we wanted to take this approach with
our edited EJB deployment descriptor, we could create the file as described before, include it in our
application archive under a suitable filename (like alt-Profile-ejb-jar.xml), and reference it as an
alternative descriptor for the EJB module in our application deployment descriptor:

[*] "alt-dd" stands for "alternative deployment descriptor."

<application>
. . .
 <!-- Declare the EJB module as part of the app -->
 <module>
 <ejb>ProfileEJB.jar</ejb>
 <alt-dd>alt-Profile-ejb-jar.xml</alt-dd>
 </module>
. . .
</application>

2.4.2. Perform Server-Specific Configuration

As we've seen in the previous sections, each J2EE module's deployment descriptor allows you to
specify the runtime configuration of the components in the module. You can do things like declare
resources (JDBC DataSources, JMS Destinations, general environment variables, and so on) that the
components reference in their source code. You can also declare other components that are
referenced by the components in the module, like EJB components used by web components or other
EJB components. But there are almost always other configuration details that need to be specified
within the application server itself. If, for example, you look back at the example deployment
descriptors in the previous sections, you'll notice that while resource and component references allow
you to specify what JNDI name the components use to look up these things, there is no place in the
various deployment descriptors to define how a component itself should be published in the server's
JNDI space or to define the parameters or the JNDI name for the various types of resources used by
J2EE components. In addition, there are several places in the deployment descriptors where security-
related parameters (such as application roles) are referenced, but there is no place in the deployment
descriptors to specify actually how these roles are satisfied by the application server (Are they
mapped to users in an LDAP directory? Are they mapped to groups defined in a relational database
somewhere?).

The physical configuration of all of these application runtime assets, and the resolution of these
assets against the things named in the component deployment descriptors, is left up to the
application server and is not specified in any J2EE specification. This gap in the specifications is
intentional: application servers implement these services in many different ways depending on their
internal architecture and the business model of their vendors. So there needs to be some room in this

http://lib.ommolketab.ir
http://lib.ommolketab.ir

regard to support different server implementation models.

Looking at our example application that deals with user profiles, we have the following assets and
components declared in the web and EJB deployment descriptors:

Profile EJB component

This is referenced in the web module's web.xml file (Figure 2-5) using an <ejb-local-ref>
element. The JNDI name used by the code is specified as java:comp/env/ejb/Profile.

JDBC DataSource

This is referenced in the EJB module's ejb-jar.xml file (Figure 2-4) using a <resource-ref>
element. The JNDI name used by the code is specified as java:comp/env/jdbc/ProfileDB.

Security roles

The application archive's application.xml file (Figure 2-6) references two security roles used by
the application, admin and user, using <security-role> elements.

As we've hinted at earlier in the chapter, typically you configure the required assets in the application
server and link the references in the deployment descriptors to the assets configured in the
application server. As we've also mentioned several times already, the mechanics of this task are
server-specific. Once you've decided which application server you plan to use to deploy your
application, your next step would be to read up on deployment details in the server's documentation.
But to demonstrate the concepts, let's walk through these details for the JBoss application server.

Let's start with the DataSource reference made in the EJB module. First, we'll need to configure an
actual DataSource in the application server that connects to the database required by the application.
In JBoss, this is done using an XML configuration file that is placed in the server's deployment
directory. The structure of this XML file is specific to JBoss. The following is the beginning of a JBoss
configuration file that configures a DataSource in the server:

<?xml version="1.0" encoding="UTF-8"?>

<datasources>
 <local-tx-datasource>
 <!-- The JNDI name of the DataSource. JBoss prefixes this name -->
 <!-- with "java:/" when the DataSource reference is created in -->
 <!-- the JNDI service. -->
 <jndi-name>ProfileDS</jndi-name>

 <!-- The JDBC URL used to create connections in this DataSource -->
 <connection-url>jdbc:hsqldb:hsql://localhost:1701</connection-url>

 <!-- The JDBC driver class required for the connections. -->
 <!-- Specifying this here allows the server to load the -->
 <!-- driver classes and verify that they are available. -->

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <driver-class>org.hsqldb.jdbcDriver</driver-class>

 <!-- The username and password to be used to connect -->
 <user-name>sa</user-name>
 <password></password>

 <!-- Various other parameters, such as connection pool -->
 <!-- parameters, would normally be specified next. -->
 . . .

This DataSource configuration uses the Hypersonic database bundled with the JBoss server, specifies
a database account named sa to connect to the database, and names the DataSource java:/ProfileDS
when it is published in the server's JNDI service. These details would be placed in a file in the server's
deployment directory whose name ends with -ds.xml, which is the convention used by JBoss's
internal deployment engine for distinguishing DataSource configurations from other service
configuration files.

Now we need to connect the DataSource reference made in the EJB module descriptor to the
DataSource that we just configured on the server. In the JBoss server environment, we do that using
an additional EJB module configuration file specific to JBoss named jboss.xml that is placed within the
EJB module archive in the same location as the standard J2EE ejb-jar.xml file. This configuration file
can be used for several different configuration tasks. In our case, we need to do only two things: give
our profile EJB a JNDI name in the server's JNDI service, and specify that the DataSource referenced
in the ejb-jar.xml file should point to the DataSource we just configured. Giving the profile EJB a JNDI
name is necessary so that other components can reference it at runtime. In our case, we resolved
the web component reference directly without using the JNDI service, but it's good practice to specify
JNDI names for EJB components regardless. You never know when it might come in handy, in your
application or in someone else's.

The jboss.xml file for our EJB module is shown in Example 2-1. It follows the format of the ejb-
jar.xml file somewhat, but the information provided here is complementary. First, we have an
<entity> element that references the profile EJB component by specifying its ejb-name, BMP Profile
Bean. Then we specify the JNDI name to be used for the component using a <jndi-name> element.
Finally, we link the resource reference in the deployment descriptor, jdbc/ProfileDB, to the JNDI
name of the DataSource we just configured, java:/ProfileDS.

Example 2-1. jboss.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE jboss PUBLIC
 "-//JBoss//DTD JBOSS 4.0//EN"
 "http://www.jboss.org/j2ee/dtd/jboss_4_0.dtd">
<jboss>
 <enterprise-beans>
 <entity>
 <!-- Specify the JNDI name of the EJB home interface -->
 <ejb-name>BMP Profile Bean</ejb-name>
 <jndi-name>ejb/bmpProfile</jndi-name>
 <!-- Resolve the DataSource reference in the EJB deployment descriptor -->

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <resource-ref>
 <res-ref-name>jdbc/ProfileDB</res-ref-name>
 <jndi-name>java:/ProfileDS</jndi-name>
 </resource-ref>
 </entity>
 </enterprise-beans>
</jboss>

At this point, we've resolved the EJB component reference and the DataSource reference in the
deployment descriptors. We'll leave the details concerning the resolution of the security roles to
Chapter 10. But there are still a few server-specific configuration details to handle.

Our web components, for example, need to be given a URL context, the base to be used to access all
of the mapped web components. We specified mappings for the web components in our web.xml file,
but the context of these mappings needs to be specified somewhere as well. Assuming that we may
deploy multiple applications in our server, and possibly include the same web components in multiple
applications, we need a way to specify different URL bases on an application-by-application or
module-by-module basis. In the case of JBoss, we use a JBoss configuration file for web modules,
similar to the one we just saw for EJB modules. This configuration file, jboss-web.xml, is also placed
in the web module archive in the same location as the standard J2EE standard web.xml file. The
jboss-web.xml file for our example is shown in Example 2-2. Its only entry is the <context-root>
element that specifies the URL base for our web components. In our case, assuming that the JBoss
server is running on port 80 on a server named jent-apps.org, users would access our profile view
JSP using the URL http://jent-apps.org/jent-deploy/viewprofile. The first portion comes from the
hostname of the physical server, the jent-deploy segment is specified in the jboss-web.xml file, and
the viewprofile segment comes from the <servlet-mapping> element in the web.xml file in Figure 2-5.

Example 2-2. jboss-web.xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE jboss-web
 PUBLIC "-//JBoss//DTD Web Application 2H//EN"
 "http://www.jboss.org/j2ee/dtd/jboss-web_4_0.dtd">

<jboss-web>
 <context-root>/jent-deploy</context-root>
</jboss-web>

2.4.3. Generate Container-Specific Classes

The various APIs used to implement components in the J2EE framework often leave some
implementation details up to the application server. JSP files need to be converted into runnable Java
classes, concrete implementations of EJB client and home interfaces need to be generated, and so
forth.

The process for generating these container-specific classes is not defined in the J2EE specification or

http://jent-apps.org/jent-deploy/viewprofile
http://lib.ommolketab.ir
http://lib.ommolketab.ir

in the associated component API specifications (EJB, servlet, JSP, etc.). Each J2EE server provides its
own tools or processes for generating these classes. JBoss, for example, automatically generates EJB
interface implementations when you deploy an EJB module to the server, and the generation of Java
classes from JSP pages is done at runtime. BEA's WebLogic application server, on the other hand,
provides an optional command-line tool called weblogic.appc for generating container-specific classes
for EJB components. This tool takes an ejb-jar file as an argument, parses its contents, and
generates an augmented ejb-jar file that contains all of the WebLogic-specific classes for the EJB
components in the module. Consult your J2EE vendor's documentation for details on its approach for
generating these classes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 3. Java Servlets
Over the last few years, Java has become the predominant language for server-side programming.
This is due in no small part to the Java Servlet API , which provides a standard way to extend web
servers to support dynamic content generation. In terms of enterprise computing, servlets are a
natural fit if you are using the Web as your deployment platform. You can take advantage of web
browsers as universally available thin clients using the web server as middleware for running
application logic. Under this model, the user makes a request of the web server, the server invokes a
servlet designed to handle the request, the servlet fulfills the request, and the result is returned to
the user for display in the web browser.

While this sounds like every other dynamic content technology (such as CGI, ISAPI, ASP, PHP, and
the like), servlets have some major advantages. For one, servlets are persistent between
invocations, which dramatically improves performance relative to CGI-style programs. Servlets are
also 100% portable across operating systems and servers, unlike any of the alternatives. Finally,
servlets have access to all the APIs of the Java platform, so, for example, it is easy to create a
servlet that interacts with a database, using the JDBC API (see Chapter 8).

The Servlet API also provides the basis for programming with JavaServer Pages (see Chapter 4),
Struts (see Chapter 19), and Java Server Faces (see Chapter 5). In fact, if you use one of these
frameworks to structure your application, you may never need to write a servlet at all. But since JSP,
JSF, and Struts are all designed to work as components of larger applications, you can mix your own
servlets, filters, and session management into your framework-based applications, and that makes a
good knowledge of the Servlet API essential for advanced enterprise development.

Version 2.3 of the Servlet API is a required component of J2EE Version 1.3. A small update, Version
2.4, came out in 2003 and is part of the J2EE Version 1.4 specification. Since the two versions are
very similar (and there are still a lot of Version 2.3 applications out there), you can assume that
anything in this chapter applies equally to both versions unless we specifically say otherwise.

This chapter demonstrates the basic techniques used to write servlets using the Servlet API, including
some common web development tasks such as cookie manipulation and session tracking. This
chapter assumes that you have some experience with web development; if you are new to web
development, you may want to brush up on web basics by consulting Webmaster in a Nutshell by
Stephen Spainhour and Robert Eckstein (O'Reilly). For a more complete treatment of servlets, check
out Java Servlet Programming by Jason Hunter with William Crawford (O'Reilly).

Other chapters in this book also cover topics relevant to servlet development, and you may want to
consult them after digesting the following material on developing servlets. Chapter 2 discusses the
general J2EE deployment model for applications and components and goes into detail about deploying
web components. Chapter 10 provides an overview of J2EE security concepts and provides details on
integrating security features into web applications. Chapter 21 discusses code annotations that can
be used in your servlet code to automatically generate deployment descriptors and other artifacts for
your web applications, and Appendix A provides a reference for web deployment descriptors.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.1. Getting a Servlet Environment

You need a servlet container to run servlets. A servlet container uses a Java virtual machine to run
servlet code as requested by a web server. The servlet container is also responsible for managing
other aspects of the servlet lifecycle : user sessions, classloading, servlet contexts, servlet
configuration information, servlet persistence, and temporary storage.

Because Tomcat is the reference implementation for the Servlet API, all the examples in this chapter
have been tested with it. Tomcat 4.x supports the 2.3 API, and Tomcat 5.x supports the 2.4 API.
Since Tomcat falls under the Apache umbrella, distribution is free, and you can download a copy
(including, if you like, full source code) from http://jakarta.apache.org.Binary installations are
available for Windows and several Unix flavors.

http://jakarta.apache.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.2. Servlet Basics

The Servlet API consists of two packages, javax.servlet and javax.servlet.http. The javax is left
over from an earlier stage of Java package naming conventions. As mentioned (and as indicated by
the fact that this chapter appears in Part I of this book), servlets are a standard part of J2EE.

3.2.1. The Servlet Lifecycle

When a client makes a request involving a servlet, the server loads and executes the appropriate
Java classes. Those classes generate content, and the server sends the content back to the client. In
most cases, the client is a web browser, the server is a web server, and the servlet returns standard
HTML. From the web browser's perspective, this isn't any different from requesting a page generated
by a CGI script or, indeed, a static HTML file. On the server side, however, there is

Figure 3-1. The servlet lifecycle

an important difference: persistence.[*] Instead of shutting down at the end of each request, the
servlet can remain loaded, ready to handle subsequent requests. Figure 3-1 shows how this all fits
together.

[*] Note that we use "persistent" to mean "enduring between invocations," not "written to permanent storage."

The request processing time for a servlet can vary, but it is typically quite fast when compared to a
similar CGI program. The real performance advantage of a servlet is that you incur most of the
startup overhead only once. Most of the I/O-intensive resources (such as database connection pools)
your application will need can be created by the servlet container at startup and shared by all your
servlets. Instead of connecting to the databaseor just loading your codethousands of times a day, the
container loads it only once. When the container loads a servlet for the first time, it calls the
init(ServletConfig) method, which is allowed to complete before the servlet is asked to respond to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

any requests.[] After the init() method runs, the servlet container marks the servlet as available.
For each incoming connection directed at a particular servlet, the container calls the service()
method on the servlet to process the request. The service() method can have access to all the
resources created in the init() method. The servlet's destroy() method is called to clean up
resources when the server shuts down.

[] The init() method used to be an important way to create I/O-intensive resources. In more recent versions of the Servlet

API, it has largely been supplanted by resource setup at the application level (via ServletContextListener, discussed later in

this chapter) and at the container level.

Because servlets are persistent, you can actually remove a lot of filesystem and/or database access
altogether. For example, to implement a page counter, you can simply store a number in a static
variable rather than consulting a file (or database) for every request. Using this technique, you need
to read and write to the disk only occasionally to preserve state. Since a servlet remains active, it can
perform other tasks when it is not servicing client requests, such as running a background processing
thread (i.e., where clients connect to the servlet to view a result) or even acting as an RMI host,
enabling a single servlet to handle connections from multiple types of clients. For example, if you
write an order processing servlet, it can accept transactions from both an HTML form and an applet
using RMI.

The Servlet API includes numerous methods and classes for making application development easier.
Most common CGI tasks require a lot of fiddling on the programmer's part; even decoding HTML form
parameters can be a chore, to say nothing of dealing with cookies and session tracking. Libraries
exist to help with these tasks, but they are, of course, decidedly nonstandard. You can use the
Servlet API to handle most routine tasks, thus cutting development time and keeping things
consistent for multiple developers on a project.

3.2.2. Writing Servlets

The three core elements of the Servlet API are the javax.servlet.Servlet interface, the
javax.servlet.GenericServlet class, and the javax.servlet.http.HttpServlet class. Normally, you
create a servlet by subclassing one of the two classes, although if you are adding servlet capability to
an existing object, you may find it easier to implement the interface.

The GenericServlet class is used for servlets that don't implement any particular communication
protocol. Here's a basic servlet that demonstrates servlet structure by printing a short message:

import javax.servlet.*;
import java.io.*;

public class BasicServlet extends GenericServlet {

 public void service(ServletRequest req, ServletResponse resp)
 throws ServletException, IOException {

 resp.setContentType("text/plain");
 PrintWriter out = resp.getWriter();
 // We won't use the ServletRequest object in this example
 out.println("Hello.");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
}

BasicServlet extends the GenericServlet class and implements one method: service(). Whenever
a server wants to use the servlet, it calls the service() method, passing ServletRequest and
ServletResponse objects (we'll look at these in more detail shortly). The servlet tells the server what
type of response to expect, gets a PrintWriter from the response object, and transmits its output.

Why Two Classes?

The designers of the original Servlet API expected that it would used for a variety of
protocols above and beyond simple HTTP, hence the decision to create both a
GenericServlet and an HttpServlet class. In practice, this never happened: APIs for
other protocols use different mechanisms for content management. Prior to Version 2.3,
generic servlets were often used to filter content from other servlets, a role now
assumed by the Filter interface. Most servlets subclass HttpServlet.

3.2.3. HTTP Servlets

The HttpServlet class is an extension of GenericServlet that includes methods for handling HTTP-
specific data.[*] HttpServlet provides a number of methods, such as doGet(), doPost(), and
doPut(), to handle particular types of HTTP requests (GET, POST, and so on). These methods are
called by the default implementation of the service() method, which figures out what kind of
request is being made and then invokes the appropriate method. Here's a simple HttpServlet:

[*] HttpServlet is an abstract class, implemented by your servlet classes.

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class HelloWorldServlet extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException {

 resp.setContentType("text/html");
 PrintWriter out = resp.getWriter();

 out.println("<html>");
 out.println(
 "<head><title>Have you seen this before?</title></head>");
 out.println(

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 "<body><h1>Hello, World!</h1><h6>Again.</h6></body></html>");
 }
}

HelloWorldServlet demonstrates many essential servlet concepts. First, HelloWorldServlet extends
HttpServlet. This is standard practice for an HTTP servlet. HelloWorldServlet defines one method,
doGet(), which is called whenever anyone requests a URL that points to this servlet. The doGet()
method is actually called by the default service() method of HttpServlet. The service() method is
called by the web server when a request is made of HelloWorldServlet; the method determines what
kind of HTTP request is being made and dispatches the request to the appropriate doXXX() method

(in this case, doGet()). doGet() is passed two objects, HttpServletRequest and
HttpServletResponse, that contain information about the request and provide a mechanism for the
servlet to produce output, respectively.

The doGet() method itself does three things. First, it sets the output type to text/html, which
indicates that the servlet produces standard HTML as its output. Second, it calls the getWriter()
method of the HttpServletResponse parameter to get a java.io.PrintWriter that points to the client.
Finally, it uses the stream to send some HTML back to the client. This isn't really a whole lot different
from the BasicServlet example, but it gives us all the tools we'll need later on for more complex web
applications. We do have to explicitly set the content type, as there is no default setting, even for
HTTP servlets where one might reasonably expect text/html.

If you define a doGet() method for a servlet, you may also want to override the getLastModified()
method of HttpServlet. The server calls getLastModified() to find out if the content delivered by a
servlet has changed. The default implementation of this method returns a negative number, which
tells the server that the servlet doesn't know when its content was last updated, so the server is
forced to call doGet() and return the servlet's output. If you have a servlet that changes its display
data infrequently (such as a servlet that verifies uptime on several server machines once every 15
minutes), you should implement getLastModified() to allow browsers to cache responses.
getLastModified() should return a long value that represents the time the content was last
modified as the number of milliseconds since midnight, January 1, 1970, GMT (returned by calling the
getTime() method java.util.Date).

A servlet should also implement getServletInfo(), which returns a String that contains information
about the servlet, such as name, author, and version (just like getAppletInfo() in applets). This
method is called by the web server and generally used for logging purposes. It's rarely implemented
in the real world, but it really is good practice to do so.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.3. Web Applications

Now that we've seen a basic servlet, we can step back for a moment and talk about how servlets are
integrated into the servlet container. A web application consists of a set of resources, including
servlets, static content, JSP files, and class libraries, installed in a particular path on a web server.
This path is called the servlet context, and all servlets installed within the context are given an
isolated, protected environment to operate in, without interference from (or the ability to interfere
with) other software running on the server.

A servlet context directory tree contains several different types of resources. These include class files
and jar files (which aren't exposed to clients connecting via web browsers), JSP files (which are
processed by the JSP servlet before being fed back to the client), and static files, such as HTML
documents and JPEG images, which are served directly to the browser by the web server.

The context has a virtual component, too. For each context, the servlet container will instantiate
separate copies of servlets and will create a private address space that can be accessed via the
ServletContext class. Servlets running in the same context can use this class to communicate with
each other. We'll discuss this more later.

The simplest servlet installations create just a single context, rooted at /, which is the top of the web
server path tree. Servlets and static content are installed within this context. Most of the time, you'll
create multiple servlet contexts , rooted lower down on the directory tree. A catalog application, for
example, could be rooted at /catalog, with all of the application paths below the context root.

If you write a web application that will be installed on multiple web servers, it isn't safe to assume the
context root will be fixed. If the path of a resource within your application is /servlet/CatalogServlet,
and it's installed within the /catalog context, rather than writing:

out.println("");

you should write:

out.println(
 "");

This approach works regardless of the context path installed within the web server. Of course, in
most cases, you shouldn't be writing HTML directly out of the servlet anywaysee Chapters 4, 5, and
19 on JSP, JSF, and Struts for more on the separation of content and business logic in web
applications.

3.3.1. Structure of Web Applications

http://lib.ommolketab.ir
http://lib.ommolketab.ir

On disk, a web application consists of a directory. The directory contains a subdirectory called WEB-
INF and whatever other content is required for the application. The WEB-INF directory contains a
classes directory (containing application code), a lib directory (containing application jar files), and a
file called web.xml. The web.xml file contains all of the configuration information for the servlets
within the context, including names, path mappings, initialization parameters, and context-level
configuration information.

The procedure for installing a web application into a servlet container varies from product to product,
but it generally consists of selecting a context root and pointing the server to the directory containing
the web application.[*]

[*] Web applications can be packaged into jar file equivalents called war files. Just use the jar utility that comes with the JDK to

pack up the web application directory (including the WEB-INF subdirectory) and give the resulting file a .war extension, or use the

war target in an Ant script.

3.3.2. Mapping Requests with a Context

Servlets are installed within the servlet container and mapped to URIs. This is done either via global
properties that apply to all servlets or by specific, servlet-by-servlet mappings. In the first case, a
client invokes a servlet by requesting it by name. Some servers map servlets to a /servlet/ or
/servlets/ URL. If a servlet is installed as PageServlet, a request to /servlet/PageServlet would invoke
it. Servlets can also be individually mapped to other URIs or to file extensions. PageServlet might be
mapped to /pages/page1 or to all files with a .page extension (using *.page).

All of these mappings exist below the context level. If the web application is installed at /app, the
paths entered into the browser for the examples earlier would be /app/servlet/PageServlet,
/app/pages/page1, or /app/file.page. Of course, if they are entered into a browser, these paths
represent only the end of the full URL, which must also include the protocol, host, and port
information (e.g., http://myserver.org:8080).

To illustrate, imagine the servlet mappings (all are below the context root) in Table 3-1.

Table 3-1. Example servlet mappings

Mapping Servlet

/store/furniture/* FurnitureServlet

/store/furniture/tables/* TableServlet

/store/furniture/chairs ChairServlet

*.page PageServlet

http://myserver.org:8080
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The asterisk serves as a wildcard. URIs matching the pattern are mapped to the specified servlet,
provided that another mapping hasn't already been used to deal with the URL. This can get a little
tricky when building complex mapping relationships, but the Servlet API does require servers to deal
with mappings consistently. When the servlet container receives a request, it always maps it to the
appropriate servlet in the following order:

Exact path matching

A request to /store/furniture/chairs is served by ChairServlet.

1.

Prefix mapping

A request to /store/furniture/sofas is served by FurnitureServlet. The longest matching prefix
is used. A request to /store/furniture/tables/dining is served by TableServlet.

2.

Extension

Requests for /info/contact.page are served by PageServlet. However, requests for
/store/furniture/chairs/about.page is served by FurnitureServlet (since prefix mappings are
checked first, and ChairServlet is available only for exact matches).

3.

If no appropriate servlet is found, the server returns an error message or attempts to serve content
on its own. If a servlet is mapped to the / path, it becomes the default servlet for the application and
is invoked when no other servlet is found.

3.3.3. Context Methods

Resources within a servlet context (such as HTML files, images, and other data) can be accessed
directly via the web server. If a file called index.html is stored at the root of the /app context, then it
can be accessed with a request to /app/index.html. Context resources can also be accessed via the
ServletContext object, which is accessed via the getresource() and getresourceAsStream()
methods . A full list of available resources can be accessed via the getresourcePaths() method. In
this case, an InputStream containing the contents of the index.html file can be retrieved by calling
getresourceAsStream("/index.html") on the ServletContext object associated with the /app context.

The ServletContext interface provides servlets with access to a range of information about the local
environment. The getInitParameter() and getInitParameterNames() methods allow servlets to
retrieve context-wide initialization parameters. ServletContext also includes a number of methods
that allow servlets to share attributes. The setAttribute() method allows a servlet to set an
attribute that can be shared by any other servlets that live in its ServletContext, and
removeAttribute() allows a servlet to remove an attribute from the application context. The
getAttribute() method, which previously allowed servlets to retrieve hardcoded server attributes,
provides access to attribute values, while getAttributeNames() returns an Enumeration of all the
shared attribute names.

The servlet container is required to maintain a temporary working directory on disk for each servlet
context. This directory is accessed by retrieving the javax.servlet.context.tempdir attribute, which
consists of a java.io.File object pointing to the temporary directory. Each servlet must have its own
temporary directory. The servlet container is not required to maintain its contents across restarts, so

http://lib.ommolketab.ir
http://lib.ommolketab.ir

if you store something there, it may not be there if the servlet container restarts.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.4. Servlet Requests

When a servlet handles a request, it typically needs specific information about the request so that it
can respond appropriately. Most frequently, a servlet retrieves the value of a form variable and uses
that value in its output. A servlet may also need access to information about the environment in
which it is running. For example, a servlet may need to authenticate the user who is accessing the
servlet.

The ServletRequest and HttpServletRequest interfaces provide access to this kind of information.
When a servlet is asked to handle a request, the servlet container passes it a request object that
implements one of these interfaces. With this object, the servlet can determine the actual request
(e.g., protocol, URL, type), access parts of the raw request (e.g., headers, input stream), and get
any client-specific request parameters (e.g., form variables, extra path information). For instance,
the getProtocol() method returns the protocol used by the request, while geTRemoteHost() returns
the name of the client host. The interfaces also provide methods that let a servlet get information
about the server (e.g., getServername(), getServerPort()). As we saw earlier, the getParameter()
method provides access to request parameters such as form variables. There is also the
getParameterValues() method, which returns an array of strings that contains all the values for a
particular parameter. This array generally contains only one string, but some HTML form elements
(as well as non-HTTP-oriented services) do allow multiple selections or options, so the method always
returns an array, even if it has a length of 1.

HttpServletRequest adds a few more methods for handling HTTP-specific request data. For instance,
getHeaderNames() returns an enumeration of the names of all the HTTP headers submitted with a
request, while getHeader() returns a particular header value. Other methods handle cookies and
sessions, as we'll discuss later.

Example 3-1 shows a servlet that restricts access to users who are connecting via the HTTPS
protocol, using digest-style authentication and coming from a government site (a domain ending in
.gov). The restrictions are implemented by checking information pulled from the servlet request using
many of the methods described earlier.

Example 3-1. Checking request information to restrict servlet access

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class SecureRequestServlet extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException {

 resp.setContentType("text/html");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 PrintWriter out = resp.getWriter();

 out.println("<html>");
 out.println("<head><title>Semi-Secure Request</title></head>");
 out.println("<body>");

 String remoteHost = req.getRemoteHost();
 String scheme = req.getScheme();
 String authType = req.getAuthType();

 if((remoteHost == null) || (scheme == null) || (authType == null)) {
 out.println("Request Information Was Not Available.");
 return;
 }

 if(scheme.equalsIgnoreCase("https") && remoteHost.endsWith(".gov")
 && authType.equals("Digest")) {
 out.println("Special, secret information.");
 }
 else {
 out.println("You are not authorized to view this data.");
 }

 out.println("</body></html>");
 }
}

3.4.1. Forms and Interaction

The problem with creating a servlet like our earlier HelloWorldServlet is that it doesn't do anything
we can't already do with HTML. If we are going to bother with a servlet at all, we should do
something dynamic and interactive with it. In many cases, this means processing the results of an
HTML form. To make our example less impersonal, let's have it greet the user by name. The HTML
form that calls the servlet using a GET request might look like this:

<html>
<head><title>Greetings Form</title></head>
<body>
<form method=get action="/servlet/HelloServlet">
What is your name?
<input type=text name="username" size=20>
<input type=submit value="Introduce Yourself">
</form>
</body>
</html>

This form submits a form variable named username to /servlet/HelloServlet. The HelloServlet itself

http://lib.ommolketab.ir
http://lib.ommolketab.ir

does little more than create an output stream, read the username form variable, and print a nice
greeting for the user. Here's the code:

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class HelloServlet extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException {

 resp.setContentType("text/html");
 PrintWriter out = resp.getWriter();

 out.println("<html>");
 out.println("<head><title>Finally, interaction!</title></head>");
 out.println("<body><h1>Hello, " + req.getParameter("username")
 + "!</h1>");
 out.println("</body></html>");
 }
}

All we've done differently is use the getParameter() method of HttpServletRequest to retrieve the
value of a form variable.[*] When a server calls a servlet, it can also pass a set of request
parameters. With HTTP servlets, these parameters come from the HTTP request itselfin this case, in
the guise of URL-encoded form variables. Note that a GenericServlet running in a web server also
has access to these parameters using the simpler ServletRequest object. When HelloServlet runs, it
inserts the value of the username form variable into the HTML output, as shown in Figure 3-2.

[*] For those interested in ancient history, in Java Web Server 1.1, the getParameter() method was deprecated in favor of

getParameterValues(), which returns a String array rather than a single string. However, after an extensive write-in

campaign, Sun took getParameter() off the deprecated list for Version 2.0 of the Servlet API, so you can safely use this

method in your servlets. This is not an issue with later versions of the API, and the fact that we even talk about it dates us.

Figure 3-2. Output from HelloServlet

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.4.2. POST, HEAD and Other Requests

As mentioned earlier, doGet() is just one of a collection of enabling methods for HTTP request types.
doPost() is the corresponding method for POST requests . The POST request is designed for posting
information to the server, although in practice it is also used for long parameterized requests and
larger forms, to get around limitations on the length of URLs.

If your servlet is performing database updates, charging a credit card, or doing anything that takes
an explicit client action, you should make sure this activity is happening in a doPost() method
because POST requests aren't idempotent, which means that they aren't safely repeatable, and web
browsers treat them specially. For example, a browser can't bookmark or, in some cases, reload a
POST request. On the other hand, GET requests are idempotent, so they can safely be bookmarked,
and a browser is free to issue the request repeatedly without necessarily consulting the user. You can
see why you don't want to charge a credit card in a GET method!

To create a servlet that can handle POST requests, all you have to do is override the default doPost(
) method from HttpServlet and implement the necessary functionality in it. If necessary, your
application can implement different code in doPost() and doGet(). For instance, the doGet()
method might display a postable data entry form that the doPost() method processes. doPost()
can even call doGet() at the end to display the form again.

The less common HTTP request types, such as HEAD, PUT, TRACE, and DELETE, are handled by other
doXXX() dispatch methods. A HEAD request returns HTTP headers only, PUT and DELETE allow

clients to create and remove resources from the web server, and TRACE returns the request headers
to the client. Since most servlet programmers don't need to worry about these requests, the
HttpServlet class includes a default implementation of each corresponding doXXX() method that

either informs the client that the request is unsupported or provides a minimal implementation. You
can provide your own versions of these methods, but the details of implementing PUT or DELETE
functionality go rather beyond our scope.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.5. Servlet Responses

In order to do anything useful, a servlet must send a response to each request that is made to it. In
the case of an HTTP servlet, the response can include three components: a status code, any number
of HTTP headers, and a response body.

The ServletResponse and HttpServletResponse interfaces include all the methods needed to create
and manipulate a servlet's output. We've already seen that you specify the MIME type for the data
returned by a servlet using the setContentType() method of the response object passed into the
servlet. With an HTTP servlet, the MIME type is generally text/html, although some servlets return
binary data: a servlet that loads a GIF file from a database and sends it to the web browser should
set a content type of image/gif, while a servlet that returns an Adobe Acrobat file should set it to
application/pdf.

ServletResponse and HttpServletResponse each define two methods for producing output streams,
getOutputStream() and getWriter(). The former returns a ServletOutputStream, which can be
used for textual or binary data. The latter returns a java.io.PrintWriter object, which is used only
for textual output. The getWriter() method examines the content type to determine which charset
to use, so setContentType() should be called before getWriter().

HttpServletResponse also includes a number of methods for handling HTTP responses . Most of these
allow you to manipulate the HTTP header fields. For example, setHeader(), setIntHeader(), and
setDateHeader() allow you to set the value of a specified HTTP header, while containsHeader()
indicates whether a certain header has already been set. You can use either the setStatus() or
sendError() method to specify the status code sent back to the client. HttpServletResponse
provides a long list of integer constants that represent specific HTTP status codes (we'll see some of
these shortly). You typically don't need to worry about setting a status code, as the default code is
200 ("OK"), meaning that the servlet sent a normal response. However, a servlet that is part of a
complex application structure (such as serving XML content to an AJAX-based dynamic web interface)
may need to use a variety of status codes. Finally, the sendRedirect() method allows you to issue a
page redirect. Calling this method sets the Location header to the specified location and uses the
appropriate status code for a redirect.

3.5.1. Request Dispatching

Request dispatching allows a servlet to delegate request handling to other components on the server.
A servlet can either forward an entire request to another servlet or include bits of content from other
components in its own output. In either case, this is done with a RequestDispatcher object that is
obtained from the ServletContext via the getrequestDispatcher() method (also available via the
HttpServletRequest object). When you call this method, you specify the path to the servlet to which
you are dispatching the request. The path should be relative to the servlet context. If you want to
dispatch a request to /servlet/TargetServlet within the /app context (which is accessed from a user's
browser by /app/servlet/TargetServlet), request a dispatcher for /servlet/TargetServlet.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When you dispatch a request, you can set request attributes using the setAttribute() method of
ServletRequest and read them using the getAttribute() method. A list of available attribute names
is returned by getAttributeNames(). Rather than taking only String objects (like parameters), an
attribute may be any valid Java object.

RequestDispatcher provides two methods for dispatching requests: forward() and include(). To
forward an entire request to another servlet, use the forward() method. When using forward(),
the ServletRequest object is updated to include the new target URL. If a ServletOutputStream or
PrintWriter has already been retrieved from the ServletResponse object, the forward() method
throws an IllegalStateException.

The include() method of RequestDispatcher causes the content of the dispatchee to be included in
the output of the main servlet, just like a server-side include. To see how this works, let's look at part
of a servlet that does a keep-alive check on several different servers. The ServerMonitorServlet
referenced in this example relies on the serverurl attribute to determine which server to display
monitoring information for:

out.println("Uptime for our servers");
// Get a RequestDispatcher to the ServerMonitorServlet
RequestDispatcher d = getServletContext().
 getRequestDispatcher("/servlet/ServerMonitorServlet");
req.setAttribute("serverurl", new URL("http://www1.company.com"));
d.include(req, res);
req.setAttribute("serverurl", new URL("http://www2.company.com"));
d.include(req, res);

Request dispatching is obviously different from issuing an HTTP redirect (via the sendRedirect()
method of HttpResponse) since everything takes place within a single server request. Using a forward
rather than a redirect gives a better user experience since content is displayed in the browser without
two round-trips to the server. However, when you forward a request, the apparent URL (from the
browser's perspective) remains the original request URL. This can break relative links and sometimes
leads to confusing caching behavior on the browser. It is a good practice to avoid relative links
wherever possibleencode the full server-side path, starting with the context name, instead.

3.5.2. Error Handling

Sometimes things just go wrong. When that happens, it's nice to have a clean way out. The Servlet
API gives you two ways of to deal with errors: you can manually send an error message back to the
client or you can throw a ServletException. The easiest way to handle an error is simply to write an
error message to the servlet's output stream. This is the appropriate technique to use when the error
is part of a servlet's normal operation, such as when a user forgets to fill in a required form field.

3.5.2.1. Status codes

When an error is a standard HTTP error, you should use the sendError() method of
HttpServletResponse to tell the server to send a standard error status code. HttpServletResponse

http://lib.ommolketab.ir
http://lib.ommolketab.ir

defines integer constants for all the major HTTP status codes . Table 3-2 lists the most common
status codes. For example, if a servlet can't find a file the user has requested, it can send a 404 ("File
Not Found") error and let the browser display it in its usual manner. In this case, we can replace the
typical setContentType() and getWriter() calls with something like this:

response.sendError(HttpServletResponse.SC_NOT_FOUND);

If you want to specify your own error message (in addition to the web server's default message for a
particular error code), you can call sendError() with an extra String parameter:

response.sendError(HttpServletResponse.SC_NOT_FOUND,
 "It's dark. I couldn't find anything.");

Table 3-2. Some common HTTP status codes

Constant Code
Default
message

Meaning

SC_OK
200 OK The client's request succeeded, and the server's

response contains the requested data. This is
the default status code.

SC_NO_CONTENT
204 No Content The request succeeded, but there is no new

response body to return. A servlet may find this
code useful when it accepts data from a form,
but wants the browser view to stay at the form.
It avoids the "Document contains no data" error
message.

SC_MOVED_PERMANENTLY
301 Moved

Permanently
The requested resource has permanently
moved to a new location. Any future reference
should use the new location given by the
Location header. Most browsers automatically
access the new location.

SC_MOVED_TEMPORARILY
302 Moved

Temporarily
The requested resource has temporarily moved
to another location, but future references
should still use the original URL to access the
resource. The temporary new location is given
by the Location header. Most browsers
automatically access the new location.

SC_UNAUTHORIZED
401 Unauthorized The request lacked proper authorization. Used

in conjunction with the WWW-Authenticate and
Authorization headers.

SC_NOT_FOUND
404 Not Found

The requested resource is not available.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Constant Code
Default
message

Meaning

SC_INTERNAL_SERVER_ERROR
500 Internal

Server Error
An error occurred inside the server that
prevented it from fulfilling the request.

SC_NOT_IMPLEMENTED
501 Not

Implemented
The server doesn't support the functionality
needed to fulfill the request.

SC_SERVICE_UNAVAILABLE
503 Service

Unavailable
The server is temporarily unavailable, but
service should be restored in the future. If the
server knows when it will be available again, a
Retry-After header may also be supplied.

3.5.2.2. Servlet exceptions

The Servlet API includes two Exception subclasses, ServletException and its derivative,
UnavailableException. A servlet throws a ServletException to indicate a general servlet problem.
When a server catches this exception, it can handle the exception however it sees fit.

UnavailableException is a bit more useful, however. When a servlet throws this exception, it is
notifying the server that it is unavailable to service requests. You can throw an UnavailableException
when some factor beyond your servlet's control prevents it from dealing with requests. To throw an
exception that indicates permanent unavailability, use something like this:

throw new UnavailableException(this,
 "This is why you can't use the servlet.");

UnavailableException has a second constructor to use if the servlet is going to be temporarily
unavailable. With this constructor, you specify how many seconds the servlet is going to be
unavailable, as follows:

throw new UnavailableException(120, this, "Try back in two minutes");

One caveat: the servlet specification does not mandate that servers actually try again after the
specified interval. If you choose to rely on this capability, you should test it first with the container
you plan to deploy on.

3.5.2.3. A file-serving servlet

Example 3-2 demonstrates both of these error-handling techniques, along with another method for
reading data from the server. FileServlet reads a pathname from a form parameter and returns the
associated file. Note that this servlet is designed to return only HTML files. If the file can't be found,
the servlet sends the browser a 404 error. If the servlet lacks sufficient access privileges to load the
file, it sends an UnavailableException instead. Keep in mind that this servlet is a teaching exercise:

SC_INTERNAL_SERVER_ERROR
500 Internal

Server Error
An error occurred inside the server that
prevented it from fulfilling the request.

SC_NOT_IMPLEMENTED
501 Not

Implemented
The server doesn't support the functionality
needed to fulfill the request.

SC_SERVICE_UNAVAILABLE
503 Service

Unavailable
The server is temporarily unavailable, but
service should be restored in the future. If the
server knows when it will be available again, a
Retry-After header may also be supplied.

3.5.2.2. Servlet exceptions

The Servlet API includes two Exception subclasses, ServletException and its derivative,
UnavailableException. A servlet throws a ServletException to indicate a general servlet problem.
When a server catches this exception, it can handle the exception however it sees fit.

UnavailableException is a bit more useful, however. When a servlet throws this exception, it is
notifying the server that it is unavailable to service requests. You can throw an UnavailableException
when some factor beyond your servlet's control prevents it from dealing with requests. To throw an
exception that indicates permanent unavailability, use something like this:

throw new UnavailableException(this,
 "This is why you can't use the servlet.");

UnavailableException has a second constructor to use if the servlet is going to be temporarily
unavailable. With this constructor, you specify how many seconds the servlet is going to be
unavailable, as follows:

throw new UnavailableException(120, this, "Try back in two minutes");

One caveat: the servlet specification does not mandate that servers actually try again after the
specified interval. If you choose to rely on this capability, you should test it first with the container
you plan to deploy on.

3.5.2.3. A file-serving servlet

Example 3-2 demonstrates both of these error-handling techniques, along with another method for
reading data from the server. FileServlet reads a pathname from a form parameter and returns the
associated file. Note that this servlet is designed to return only HTML files. If the file can't be found,
the servlet sends the browser a 404 error. If the servlet lacks sufficient access privileges to load the
file, it sends an UnavailableException instead. Keep in mind that this servlet is a teaching exercise:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

you should not deploy it on your web server. (For one thing, any security exception renders the
servlet permanently unavailable, and for another, it can serve files from the root of your hard drive.)

Example 3-2. Serving files

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class FileServlet extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException {

 File r;
 FileReader fr;
 BufferedReader br;
 try {
 r = new File(req.getParameter("filename"));
 fr = new FileReader(r);
 br = new BufferedReader(fr);
 if(!r.isFile()) { // Must be a directory or something else
 resp.sendError(resp.SC_NOT_FOUND);
 return;
 }
 }
 catch (FileNotFoundException e) {
 resp.sendError(resp.SC_NOT_FOUND);
 return;
 }
 catch (SecurityException se) { // Be unavailable permanently
 throw(new UnavailableException(
 "Servlet lacks appropriate privileges."));
 }

 resp.setContentType("text/html");
 PrintWriter out = resp.getWriter();
 String text;
 while((text = br.readLine()) != null)
 out.println(text);

 br.close();
 }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.6. Custom Servlet Initialization

At the beginning of this chapter, we talked about how a servlet's persistence can be used to build
more efficient web applications. This is accomplished via class variables and the init() method.
When a server loads a servlet for the first time, it calls the servlet's init() method and does not
make any service calls until init() has finished. In the default implementation, init() simply
handles some basic housekeeping, but a servlet can override the method to perform whatever one-
time tasks are required. This often means doing some sort of I/O-intensive resource creation, such as
opening a database connection. You can also use the init() method to create threads that perform
various ongoing tasks. For instance, a servlet that monitors the status of machines on a network
might create a separate thread to periodically ping each machine. When an actual request occurs, the
service methods in the servlet can use the resources created in init(). Thus, the status monitor
servlet might display an HTML table with the status of the various machines.

The default init(ServletConfig) implementation is not a do-nothing method, so you should
remember to always call the super.init(ServetConfig) method. If you override the parameterless
version, you don't have to invoke the superclass's methodthe server calls the parameterized version,
which calls the parameterless method. You can access the ServletConfig object using the
getServletConfig() method.

The server passes the init() method a ServletConfig object, which can include specific servlet
configuration parameters (for instance, the list of machines to monitor). ServletConfig encapsulates
the servlet initialization parameters, which are accessed via the getInitParameter() and
getInitParameterNames() methods. GenericServlet and HttpServlet both implement the
ServletConfig interface, so these methods are always available in a servlet and they access the
servlet's ServletConfig to retrieve these parameters. Init parameters are set using the <init-param>
elements for the <servlet> in the web.xml deployment descriptor (see Appendix A).

Every servlet also has a destroy() method that can be overwritten. This method is called when, for
whatever reason, a server unloads a servlet. You can use this method to ensure that important
resources are freed or that threads are allowed to finish executing unmolested. Unlike init(), the
default implementation of destroy() is a do-nothing method, so you don't have to worry about
invoking the superclass's destroy() method.

Example 3-3 shows a counter servlet that saves its state between server shutdowns. It uses the
init() method to first try to load a default value from a servlet initialization parameter. Next the
init() method tries to open a file named /data/counter.dat and read an integer from it. When the
servlet is shut down, the destroy() method creates a new counter.dat file with the current hit count
for the servlet.

Example 3-3. A persistent counter servlet

import javax.servlet.*;
import javax.servlet.http.*;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import java.io.*;

public class LifeCycleServlet extends HttpServlet {

 int timesAccessed;

 public void init(ServletConfig conf) throws ServletException {

 super.init(conf);

 // Get initial value
 try {
 timesAccessed = Integer.parseInt(getInitParameter("defaultStart"));
 }
 catch(NullPointerException e) {
 timesAccessed = 0;
 }
 catch(NumberFormatException e) {
 timesAccessed = 0;
 }

 // Try loading from the disk
 DataInputStream ds = null;
 try {
 File r = new File("./data/counter.dat");
 DataInputStream ds = new DataInputStream(new FileInputStream(r));
 timesAccessed = ds.readInt();
 }
 catch (FileNotFoundException e) {
 // Handle error
 }
 catch (IOException e) {
 // This should be logged
 }
 finally {
 if (ds !=null)
 try {
 ds.close();
 } catch (IOException ignored) {}
 }

 public void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException {

 resp.setContentType("text/html");
 PrintWriter out = resp.getWriter();

 timesAccessed++;

 out.println("<html>");
 out.println("<head>");
 out.println("<title>Life Cycle Servlet</title>");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 out.println("</head><body>");

 out.println("I have been accessed " + timesAccessed + " time[s]");
 out.println("</body></html>");
 }

 public void destroy() {

 // Write the Integer to a file
 File r = new File("./data/counter.dat");
 DataOutputStream dout = null;
 try {
 dout = new DataOutputStream(new FileOutputStream(r));
 dout.writeInt(timesAccessed);
 }
 catch(IOException e) {
 // This should be logged
 }
 finally {
 try dout.close(); catch (IOException ignored) {}
 }
 }
}

3.6.1. Servlet Context Initialization

Version 2.3 of the Servlet API added support for application-level events using a listener-style
interface. Classes that implement the ServletContextListener interface can be associated with a
servlet context and are notified when the context is initialized or destroyed. This provides
programmers with the opportunity to create application-level resources, such as database connection
pools, before any servlets are initialized and to share single resources among multiple servlets using
the ServletContext attribute functionality.

ServletContextListener contains two methods, contextInitialized() and contextDestroyed(),
which take a ServletContextEvent. Context listeners are associated with their context in the web.xml
file for the web application (see Appendix A for details on configuring contexts in the web.xml file).
Example 3-4 defines a listener that creates a hashtable of usernames and unencrypted passwords
and associates it as a context attribute. We use it in a later example.

Example 3-4. A servlet context listener

import javax.servlet.ServletContextListener;
import javax.servlet.ServletContextEvent;

public class ContextResourceLoader implements ServletContextListener {

 public void contextInitialized(ServletContextEvent sce) {
 java.util.Hashtable users = new Hashtable();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 users.put("test", "test");
 users.put("admin", "bob3jk");
 sce.getServletContext().setAttribute("enterprise.users", users);
 }

 public void contextDestroyed(ServletContextEvent sce) {
 // This is where we clean up resources on server shutdown/restart
 }
}

Obviously, a real application would manage usernames and passwords in a more robust fashion, such
as by storing them in a database. In this case, we can count on the JVM to properly garbage-collect
the Hashtable object. If we do something more complex (such as maintaining a pool of connections
to a relational database), we would use the contextDestroyed() method to make sure those
resources are properly freed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.7. Security

Servlets don't have to handle their own security arrangements. Instead, they can rely on the
capabilities of the web server to limit access where required. The security capabilities of most web
servers are limited to basic on-or-off access to specific resources, controlled by username and
password (or digital certificate), with possible encryption using SSL. Most servers are limited to basic
authentication, which transmits passwords more or less in the clear, while some support the more
advanced digest authentication protocol, which works by transmitting a hash of the user's password
and a server-generated value rather than the password itself. Both of these approaches look the
same to the user; the familiar "Enter Username and Password" window pops up in the web browser.

Recent versions of the Servlet API take a much less hands-off approach to security. The web.xml file
can define which servlets and resources are protected and which users have access. The user access
model is the J2EE User-Role model, in which users can be assigned one or more roles. Users with a
particular role are granted access to protected resources. A user named Admin might have both the
Administrator role and the User role while users Bob and Ted might have only the User role. (See
Chapter 10 for more details about J2EE security.)

In addition to basic, digest, and SSL authentication, the web application framework allows for HTML
form-based logins. This approach allows the developer to specify an HTML or JSP page containing a
form like the following:

<form method="post" action="j_security_check">
<input type="text" name="j_username">
<input type=password" name="j_password">
<input type="submit" value="Log In">
</form>

Note that form-based authentication is insecure and works only if the client session is being tracked
via cookies or SSL signatures.

The HttpServletRequest interface includes a pair of basic methods for retrieving standard HTTP user
authentication information from the web server. If your web server is equipped to limit access, a
servlet can retrieve the username with getremoteUser() and the authentication method (basic,
digest, or SSL) with getAuthType(). Version 2.2 of the Servlet API added the isUserInRole() and
getUserPrincipal() methods to HttpServletRequest. isUserInRole() allows the program to query
whether the current user has a particular role (useful for dynamic content decisions that cannot be
made at the container level). The getUserPrincipal() method returns a java.security.Principal
object identifying the current user.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.8. Servlet Filters

Version 2.3 of the Servlet API introduced a new method of handling requests using the
javax.servlet.Filter class. When filters are used, the servlet container creates a filter chain, which
consists of zero or more Filter objects and a destination resource, either a servlet or another
resource available on the web server (such as an HTML or JSP file).

Filters are installed in the server and associated with particular request paths (just like servlets).
When a filtered resource is requested, the servlet constructs a filter chain and calls the doFilter()
method of the first filter in the filter chain, passing a ServletRequest, a ServletResponse, and the
FilterChain object. The filter can then perform processing on the request. Filters are often used to
implement logging, control security, or set up connection-specific objects. A filter can also wrap the
ServletRequest and ServletResponse classes with its own versions, overriding particular methods.
For instance, one of the example filters included with the Tomcat server adds support for returning
compressed output to browsers that support it.

After the filter has processed the response, it can call the doFilter() method of the FilterChain to
invoke the next filter in the sequence. If there are no more filters, the request is passed on to its
ultimate destination. After calling doFilter(), the filter can perform additional processing on the
response received from farther down the chain.

In the event of an error, the filter can stop processing, returning to the client whatever response has
already been created or forwarding the request to a different resource.

Example 3-5 provides a form-based authentication filter that could be customized to provide
additional functionality. It works by intercepting each request and checking the HttpSession for an
attribute called enterprise.login. If that attribute contains a Boolean.TRUE, access is permitted. If
not, the filter checks for request parameters named login_name and login_pass and searches for a
match in a hashtable containing valid username/password pairs. If valid login credentials are found,
filter chain processing continues. If not, the user is served a login page located at /login.jsp, retrieved
via a RequestDispatcher.[*]

[*] This isn't a highly secure system. Unless the client has connected via SSL, the username/password combination is transmitted

unencrypted over the Internet. Also, successful logins leave the login_name and login_pass parameters in the request when

processing it, potentially making them available to a malicious JSP file or servlet. This can be an issue when designing a shared

security scheme for dynamic content created by a group of different users (such as at an ISP). One way to get around this is to

create a custom HttpServletRequest wrapper that filters out the login_name and login_pass parameters for filters and

resources further down the chain.

Astute readers will note that we try to retrieve the user's hashtable from a servlet context attribute.
We showed how to set this attribute at the web application level earlier in the chapter. In case you
don't have that set up, the filter's init() method will create its own if it can't find one in the
context.

Example 3-5. AuthenticationFilter

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import javax.servlet.*;
import javax.servlet.http.*;
import java.util.Hashtable;

public class AuthenticationFilter implements Filter {

 private Hashtable users = null;
 public void init(FilterConfig config)
 throws javax.servlet.ServletException {

 users = (Hashtable)config.getServletContext().getAttribute(
 "enterprise.users");
 if(users == null) {
 users = new Hashtable(5);
 users.put("test", "test");
 }
 }

 public void doFilter(
 ServletRequest req, ServletResponse res, FilterChain chain)
 throws java.io.IOException, javax.servlet.ServletException {

 HttpServletRequest request = (HttpServletRequest)req;
 HttpSession sess = request.getSession(true);

 if(sess != null) {
 Boolean loggedIn = (Boolean)sess.getAttribute("enterprise.login");
 if (loggedIn != Boolean.TRUE) {
 String login_name = request.getParameter("login_name");
 String login_pass = request.getParameter("login_pass");
 if((login_name != null) && (login_pass != null))
 if(users.get(login_name).toString().equals(login_pass)) {
 loggedIn = Boolean.TRUE;
 sess.setAttribute("enterprise.login", Boolean.TRUE);
 sess.setAttribute("enterprise.loginname", login_name);
 }
 }

 if (loggedIn == Boolean.TRUE) {
 chain.doFilter(req, res);
 } else {
 request.setAttribute("originaluri", request.getRequestURI());
 request.getRequestDispatcher("/login.jsp").forward(req, res);
 }
 }
 }

 public void destroy() {
 // Code cleanup would be here
 }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Here's the JSP page used to display the login form. The important thing to note is that the form
submits back to the original URI. The filter uses the setAttribute() method of HttpServletRequest
to specify the URI to post the form back to; the filter is then reapplied, and if the user has provided
appropriate credentials, access to the resource is granted. For more on JSP, see Chapter 4.

<html><body bgcolor="white">

<% out.print ("<form method=post
action=\""+request.getAttribute("originaluri").toString() +"\">"); %>

Login Name: <input type=text name="login_name">

Password: <input type=password name="login_pass">
<input type=submit value="Log In">
</form>

</body></html>

When configuring the filter (we'll see an example in the next section), map it only to the paths you
wish to protect. Mapping it to /* will not work since that would also protect the login.jsp file. If you
did want to protect your whole application, you could build the login form into the filter, but that's not
good practiceyou have to recompile for every change.

3.8.1. Filters and Request Dispatchers

In the original filter specification, a filter would run only in response to an original request from a
remote client. Requests created internally via the RequestDispatcher class would not trigger new
filter chains. The example in the previous section relies on this behaviorotherwise the filter would
never be able to display the login.jsp file.

Servlet API 2.4 gives us a little more flexibility here. When declaring a filter mapping in web.xml, we
can indicate whether it runs on requests only (the default) or whether it runs on includes, forwards,
or any combination of the three. For example:

<filter-mapping>
 <filter-name>Authentication Filter</filter-name>
 <url-pattern>/secrets/*</url-pattern>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>REQUEST</dispatcher>
</filter-mapping>

This configuration causes the filter to run on request forwards as well as request dispatches, ensuring
that security is applied even if an unprotected portion of the application redirects the user to a
protected portion. However, use this power with care: many applications, including the various web
application frameworks, make extensive use of request forwarding, which could cause the filter to run
several times in the course of a single user request.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.9. Thread Safety

In a typical scenario, only one copy of any particular servlet or filter is loaded into the server's
runtime at any given time. Each servlet might, however, be called upon to deal with multiple requests
at the same time. This means that a servlet needs to be threadsafe. If a servlet doesn't use any class
variables (that is, any variables with a scope broader than the service method itself), it is generally
already threadsafe. If you are using any third-party libraries or extensions, make sure that those
components are also threadsafe. However, a servlet that maintains persistent resources needs to
make sure that nothing untoward happens to those resources. Imagine, for example, a servlet that
maintains a bank balance using an int in memory.[*] If two servlets try to access the balance at the
same time, you might get this sequence of events:

[*] Hey, bear with us on this. It's an example.

User 1 connects to the servlet to make a $100 withdrawal.1.

The servlet checks the balance for User 1, finding $120.2.

User 2 connects to the servlet to make a $50 withdrawal.3.

The servlet checks the balance for User 2, finding $120.4.

The servlet debits $100 for User 1, leaving $20.5.

The servlet debits $50 for User 2, leaving -$30.6.

The programmer is fired.7.

Obviously, this is incorrect behavior, particularly that last bit. We want the servlet to perform the
necessary action for User 1, and then deal with User 2 (in this case, by giving him an insufficient
funds message). We can do this by surrounding sections of code with synchronized blocks. While a
particular synchronized block is executing, no other sections of code that are synchronized on the
same object (usually the servlet or the resource being protected) can execute. For more information
on thread safety and synchronization, see Java Threads by Scott Oaks and Henry Wong (O'Reilly).

Example 3-6 implements the ATM display for the First Bank of Java. The doGet() method displays
the current account balance and provides a small ATM control panel for making deposits and
withdrawals, as shown in Figure 3-3.[]

[] Despite the fact that Java is a very large island, there's still only one account.

Figure 3-3. The First Bank of Java ATM display

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The control panel uses a POST request to send the transaction back to the servlet, which performs
the appropriate action and calls doGet() to redisplay the ATM screen with the updated balance.

Example 3-6. An ATM servlet

import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;
import java.io.*;

public class AtmServlet extends HttpServlet {

 Account act;

 public void init(ServletConfig conf) throws ServletException {
 super.init(conf);
 act = new Account();
 act.balance = 0;
 }

 public void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException {

 resp.setContentType("text/html");
 PrintWriter out = resp.getWriter();

 out.println("<html><body>");
 out.println("<h2>First Bank of Java ATM</h2>");
 out.println("Current Balance: " + act.balance + "
");
 out.println("<form method=post>");
 out.println("Amount: <input type=text name=AMOUNT size=3>
");
 out.println("<input type=submit name=DEPOSIT value=\"Deposit\">");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 out.println("<input type=submit name=WITHDRAW value=\"Withdraw\">");
 out.println("</form>");
 out.println("</body></html>");
 }

 public void doPost(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException {

 int amt=0;
 try {
 amt = Integer.parseInt(req.getParameter("AMOUNT"));
 }
 catch (NullPointerException e) {
 // No Amount parameter passed
 }
 catch (NumberFormatException e) {
 // Amount parameter was not a number
 }

 synchronized(act) {
 if((req.getParameter("WITHDRAW") != null) && (amt < act.balance))
 act.balance = act.balance - amt;
 if((req.getParameter("DEPOSIT") != null) && (amt > 0))
 act.balance = act.balance + amt;
 } // End synchronized block

 doGet(req, resp); // Show ATM screen
 }

 public void destroy() {
 // This is where we would save the balance to a file
 }

 class Account {
 public int balance;
 }
}

The doPost() method alters the account balance contained within an Account object act (since
Account is so simple, we've defined it as an inner class). In order to prevent multiple requests from
accessing the same account at once, any code that alters act is synchronized on act. This ensures
that no other code can alter act while a synchronized section is running.

The destroy() method is defined in the AtmServlet, but it contains no actual code. A real banking
servlet would obviously want to write the account balance to disk before being unloaded. And if the
servlet were using JDBC to store the balance in a database, it would also want to destroy all its
database-related objects.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Servlet API 2.4 deprecates the SingleThreadModel interface, which was a tag
interface to identify a servlet that could serve only one request at a time. Since
SingleThreadModel could not resolve all potential threading issues, it has been
deprecated and should not be used in new development.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.10. Cookies

Very few software features have caused as much public confusion and outcry as the HTTP cookie.
Ethical and moral considerations aside, cookies allow a web server to store small amounts of data on
client systems. Cookies are generally used to store basic user identification or configuration
information. Because a cookie's value can uniquely identify a client, cookies are often used for
session tracking (although, as we'll see shortly, the Servlet API provides higher-level support for
this).[*]

[*] The cookie standard is spelled out in RFC 2965, available at http://rfc.net/rfc2965.html.

To create a cookie, the server (or, more precisely, a web application running on the server) includes
a Cookie header with a specific value in an HTTP response. The browser then transmits a similar
header with that value back to the server with subsequent requests, which are subject to certain
rules. The web application can use the cookie value to keep track of a particular user, handle session
tracking, and so forth. Because cookies use a single Cookie header, the syntax for a cookie allows for
multiple name/value pairs in the overall cookie value.

The Servlet API includes a class, javax.servlet.http.Cookie, that abstracts cookie syntax and makes
cookies easy to work with. In addition, HttpServletResponse provides an addCookie() method and
HttpServletRequest provides a getCookies() method to aid in writing cookies to and reading cookies
from the HTTP headers, respectively. To find a particular cookie, a servlet needs to read the entire
collection of values and look through it:

Cookie[] cookies;
cookies = req.getCookies();
String userid = null;

for (int i = 0; i < cookies.length; i++)
 if (cookies[i].getName().equals("userid"))
 userid = cookies[i].getAttribute();

A cookie can be read at any time but can be created only before any content is sent to the client. This
is because cookies are sent using HTTP headers. These headers can be sent to the client before the
regular content. Once any content has been written to the client, the server can flush the output and
send the headers at any time, so you can't create any new cookies safely. You must create new
cookies before sending any content. Here's an example of creating a cookie:

String userid = createUserID(); // Create a unique ID
Cookie c = new Cookie("userid", userid);
resp.addCookie(c); // Add the cookie to the HTTP headers

Note that a web browser is required to accept only 20 cookies per site and 300 total per user, and

http://rfc.net/rfc2965.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

the browser can limit each cookie's size to 4096 bytes.

Cookies can be customized to return information only in specific circumstances. In particular, a cookie
can specify a particular domain, a particular path, an age after which the cookie should be destroyed,
and whether the cookie requires a secure (HTTPS) connection. A cookie is normally returned only to
the host that specified it. For example, if a cookie is set by server1.company.com, it isn't returned to
server2.company.com. You can get around this limitation by setting the domain to .company.com
with the setDomain() method of Cookie. By the same token, a cookie is generally returned for pages
only in the same directory as the servlet that created the cookie, or it's returned under that directory.
We can get around this limitation using setPath(). Here's a cookie that is returned to all pages on all
top-level servers at company.com:

String userid = createUserID(); // Create a unique ID
Cookie c = new Cookie("userid", userid);
c.setDomain(".company.com"); // *.company.com, but not *.web.company.com
c.setPath("/"); // All pages
resp.addCookie(c); // Add the cookie to the HTTP headers

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.11. Session Tracking

Very few web applications are confined to a single page, so having a mechanism for tracking users
through a site can often simplify application development. The Web, however, is an inherently
stateless environment. A client makes a request, the server fulfills it, and both promptly forget about
each other. In the past, applications that needed to deal with a user through multiple pages (for
instance, a shopping cart) had to resort to complicated dodges to hold onto state information, such
as hidden fields in forms, setting and reading cookies, or rewriting URLs to contain state information.

The Servlet API provides classes and methods specifically designed to handle session tracking . A
servlet can use the session-tracking API to delegate most of the user-tracking functions to the
server. The first time a user connects to a session-enabled servlet, the servlet simply creates a
javax.servlet.http.HttpSession object. The servlet can then bind data to this object, so subsequent
requests can read the data. After a certain amount of inactive time, the session object is destroyed.

A servlet uses the getSession() method of HttpServletRequest to retrieve the current session
object. This method takes a single boolean argument. If you pass TRue and there is no current
session object, the method creates and returns a new HttpSession object. If you pass false, the
method returns null if there is no current session object. For example:

HttpSession thisUser = req.getSession(true);

When a new HttpSession is created, the server assigns a unique session ID that must somehow be
associated with the client. Since clients differ in what they support, the server has a few options that
vary slightly depending on the server implementation. In general, the server's first choice is to try to
set a cookie on the client (which means that getSession() must be called before you write any other
data back to the client). If cookie support is lacking, the API allows servlets to rewrite internal links to
include the session ID, using the encodeURL() method of HttpServletResponse. This is optional, but
recommended, particularly if your servlets share a system with other, unknown servlets that may
rely on uninterrupted session tracking. However, this on-the-fly URL encoding can become a
performance bottleneck because the server needs to perform additional parsing on each incoming
request to determine the correct session key from the URL. (The performance hit is so significant that
many servers disable URL encoding by default.)

To use URL encoding, run all your internal links through encodeURL(). If you have a line of code like
this:

out.println("Check Out");

you should replace it with:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

out.print("<a href=\"");
out.print(resp.encodeURL("/servlet/CheckoutServlet");
out.println("\">Check Out");

When cookies can't be used, the server will encode the session ID into the path by appending
;jsessionid= and the session ID, like this:[*]

[*] Earlier versions of the Servlet API left the session encoding algorithm up to the container developer. Later releases

standardized the system to prevent portability problems for applications that also use path encoding.

Check Out"

In addition to encoding your internal links, you need to use encodeRedirectURL() to handle redirects
properly. This method works in the same manner as encodeURL().[]

[] These methods were introduced in Servlet API 2.1, replacing two earlier methods named encodeUrl() and

encodeRedirectUrl(). This was done to bring the capitalization scheme in line with other Java APIs.

You can access the unique session ID via the getID() method of HttpSession. This is enough for
most applications, since a servlet can use some other storage mechanism (i.e., a flat file, memory, or
a database) to store the unique information (e.g., hit count or shopping cart contents) associated
with each session. However, the API makes it even easier to hold onto session-specific information by
allowing servlets to bind objects to a session using the setAttribute() method of HttpSession. Once
an object is bound to a session, you can use the getAttribute() method to retrieve it.

Objects bound using setAttribute() are available to all servlets running on the server. The system
works by assigning a user-defined name to each object (the String argument); this name is used to
identify objects at retrieval time. In order to avoid conflicts, the general practice is to name bound
objects with names of the form applicationname.objectname. For example:

session.setAttribute("myservlet.hitcount", new Integer(34));

Now that object can be retrieved with:

Integer hits = (Integer)session.getAttribute("myservlet.hitcount")

Example 3-7 demonstrates a basic session-tracking application that keeps track of the number of
visits to the site by a particular user. It works by storing a counter value in an HttpSession object
and incrementing it as necessary. When a new session is created (as indicated by isNew(), which
returns true if the session ID has not yet passed through the client and back to the server) or the
counter object is not found, a new counter object is created.

Example 3-7. Counting visits with sessions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class VisitCounterServlet extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException {

 PrintWriter out = resp.getWriter();
 resp.setContentType("text/html");
 HttpSession thisUser = req.getSession(true);
 Integer visits;

 if(!thisUser.isNew()) { // Don't check newly created sessions
 visits = (Integer)thisUser.getAttribute("visitcounter.visits");
 if(visits == null)
 visits = new Integer(1);
 else
 visits = new Integer(visits.intValue() + 1);
 }
 else
 visits = new Integer(1);

 // Put the new count in the session
 thisUser.setAttribute("visitcounter.visits", visits);

 // Finally, display the results and give them the session ID too
 out.println("<html><head><title>Visit Counter</title></head>");
 out.println("<body>You have visited this page " + visits + " time[s]");
 out.println("since your last session expired.");
 out.println("Your Session ID is " + thisUser.getId());
 out.println("</body></html>");
 }
}

3.11.1. HttpSessionBindingListener

Sometimes it is useful to know when an object is being bound to or unbound from a session object.
For instance, in an application that binds a JDBC java.sql.Connection object to a session (something
that, by the way, is ill-advised in all but very low traffic sites), it is vitally important that the
Connection be explicitly closed when the session is destroyed.

The javax.servlet.http.HttpSessionBindingListener interface handles this task. It includes two
methods, valueBound() and valueUnbound(), that are called whenever the object that implements
the interface is bound or unbound from a session, respectively. Each of these methods receives an
HttpSessionBindingEvent object that provides the name of the object being bound or unbound and
the session involved in the action. The following is an object that implements the
HttpSessionBindingListener interface in order to make sure that a database connection is closed

http://lib.ommolketab.ir
http://lib.ommolketab.ir

properly:

class ConnectionHolder implements HttpSessionBindingListener {

 java.sql.Connection dbCon;

 public ConnectionHolder(java.sql.Connection con) {
 dbCon = con;
 }

 public void valueBound(HttpSessionBindingEvent event) {
 // Do nothing
 }

 public void valueUnbound(HttpSessionBindingEvent event) {
 dbCon.close();
 }
}

Programmers should also be aware of the HttpSessionListener interface, which responds to session
creation and destruction events.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.12. Databases and Non-HTML Content

Most web applications need to communicate with a database, either to generate dynamic content or
collect and store data from users, or both. With servlets, this communication is easily handled using
the JDBC API described in Chapter 8. Thanks to JDBC and the generally sensible design of the servlet
lifecycle, servlets are an excellent intermediary between a database and web clients.

Most of the general JDBC principles discussed in Chapter 8 apply to servlets. In our example, we
create a database connection within the servlet's init() method. Larger applications will generally
prefer to use a database connection pool, managed by the servlet container. Connection pools and
DataSource objects (for container-managed database connections) are discussed in Chapter 8.
Another option would be to use the object relational capabilities provided by Hibernate in your
servlet. Hibernate is discussed in Chapter 20.

So far, all our servlets have produced standard HTML content. Of course, this is all most servlets ever
do, but it's not all that they can do. Say, for instance, that your company stores a large database of
PDF documents within an Oracle database, where they can be easily accessed. Now say you want to
distribute these documents on the Web. Luckily, servlets can dish out any form of content that can be
defined with a MIME header. All you have to do is set the appropriate content type and use a
ServletOuputStream if you need to transmit binary data. Example 3-8 shows how to pull Adobe
Acrobat documents from an Oracle database.

Example 3-8. A servlet that serves PDF files from a database

import java.io.*;
import java.sql.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class DBPDFReader extends HttpServlet {

 Connection con;

 public void init(ServletConfig config) throws ServletException {
 super.init(config);
 try {
 Class.forName("oracle.jdbc.driver.OracleDriver");
 con = DriverManager.getConnection("jdbc:oracle:thin:@DBHOST:1521:ORCL",
 "user", "passwd");
 }
 catch (ClassNotFoundException e) {
 throw new UnavailableException("Couldn't load OracleDriver");
 }
 catch (SQLException e) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 throw new UnavailableException("Couldn't get db connection");
 }
 }

 public void doGet(HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException {

 try {
 res.setContentType("application/pdf");
 ServletOutputStream out = res.getOutputStream();

 Statement stmt = con.createStatement();

 /* This is dangerous for production code. Request
 parameters should never be injected into SQL without
 preprocessing. We're keeping syntax simple for this
 example. */
 ResultSet rs = stmt.executeQuery(
 "SELECT PDF FROM PDF WHERE PDFID = " + req.getParameter("PDFID"));

 if (rs.next()) {
 BufferedInputStream pdfData =
 new BufferedInputStream(rs.getBinaryStream("PDF"));
 byte[] buf = new byte[4 * 1024]; // 4K buffer
 int len;
 while ((len = pdfData.read(buf, 0, buf.length)) != -1) {
 out.write(buf, 0, len);
 }
 }
 else {
 res.sendError(res.SC_NOT_FOUND);
 }
 rs.close();
 stmt.close ();
 }
 catch(SQLException e) {
 // Report it
 }
 }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 4. JavaServer Pages
In Chapter 3, we looked at Java servlets, J2EE's primary mechanism for communicating with web
browsers. Servlets are a great technology, but they don't solve every problem faced by web
developers, and they introduce a few issues of their own. One major problem is that developing
complex HTML-based user interfaces with servlets is time-consuming. Embedding strings of println(
) statements is tedious and error-prone and requires that pages be assembled by a fully qualified
programmer who, just perhaps, should be off doing other things. Configuration is also a problem,
although it has been simplified a great deal since the original Servlet API. Adding a new servlet to a
web application involves editing the deployment XML file and typically reloading the application or
restarting the server.[*] Changes to a servlet create the same issues, turning rapid prototyping into
regular prototyping.

[*] Dynamic class reloading and change detection solve some of these problems, but not for all servers and not always reliably.

On the design side, servlets can also blend application logic with presentation logic, undoing one of
the primary benefits of the client/server architectures that they often replace. In a canonical J2EE
environment, where business logic is abstracted into Enterprise JavaBeans or other middleware, this
is not much of a concern. But in real life, full J2EE systems aren't always appropriate. Many
applications don't need the full weight of an application server, and often developers lack the interest
or time to create a full J2EE implementation. And even within a J2EE application, there are
substantial benefits to separating flow control (accomplished by servlets) from actual pages.

One obvious approach is to use static HTML content for most pages, reserving servlets for forms
processing with a redirect or forward to another HTML page upon completion. Such an approach
breaks down fairly quickly, as most pages in a web application have at least some dynamic element.
A better solution, however, is to embed dynamic elements directly into the static content. This is the
reverse of the approach servlets use, where static content is embedded within the dynamic
framework.[*] Static web pages with a few dynamic content extensions can be edited using any HTML
authoring tool and previewed live in the browser, either with or without the dynamic elements
(obviously, the efficacy of this last technique depends on the complexity of the page).

[*] Since the dawn of civilization, humankind has sought to embed code within content. Great, if virtual, wars have been fought

over the advisability of actually doing so. At this point, very few people consider it wise to embed all of their presentation HTML

directly within a servlet, but there is wide divergence of opinion on how much code is appropriate for a JSP . In truth, the answer

depends on your application. It's safe to say that the larger or longer lived you expect your application to be, the more likely you

will benefit from a clean separation of code and content.

There have been a few different approaches to creating dynamic web pages without a full servlet.
Generally, these involve inserting either custom tags or control statements within HTML document
templates and then running the documents through a server-side processor that replaces tags and
directives with dynamically generated content. The resulting pure HTML is delivered to the client. This
type of templating system is shown in Figure 4-1. In a servlet environment, the template processor
will be implemented as one or more servlets. Examples of templating engines include WebMacro
(http://www.webmacro.org) and Velocity (http://jakarta.apache.org/velocity).

http://www.webmacro.org
http://jakarta.apache.org/velocity
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 4-1. Generic templating engines

Sun's templating solution is called JavaServer Pages, or JSP, which is currently at Revision 2.0. JSP is
a highly integrated dynamic content system that is built on top of the Java Servlet API. In fact, JSPs
are compiled into Java servlets before being executed by the web server. This allows JSP developers
to obtain all the advantages of Java servlets (efficient lifecycles, integration with Java middleware,
and so on) without spending hours integrating HTML into actual Java code. JSP also allows page
developers to access properties of Java beans without writing code. Finally, custom JSP tags can be
created by developers for use by page designers, removing Java code from the JSPs entirely.

Along with the Servlet API, the JSP API is part of the J2EE specification. J2EE 1.4 incorporates JSP
2.0, which was released in 2003. Earlier versions of J2EE supported JSP 1.2. We will indicate changes
when possible, but this chapter focuses on the 2.0 version of the standard.

JSP is also closely integrated with the JavaServer Faces and Struts application frameworks, which are
described in Chapters 5 and 19, respectively. In both systems, JSPs provide the user interface,
collaborating with extensions provided by the application framework. Other parts of this book that
you may find especially relevant include Chapter 2, where we provide details on assembling and
deploying web components, and Chapter 21, where we discuss code annotation systems that can be
used to automatically generate deployment descriptors and other artifacts for web applications.

In this chapter, we are going to look at JSP from a Java programmer's perspective as opposed to that
of a web site designer. Of course, one of the great things about JSPs, and other templating
technologies, is that you don't have to be a programmer to use them. However, for a more thorough
introduction to JSP, as well as some substantial additional detail for experienced developers, we
suggest JavaServer Pages by Hans Bergsten (O'Reilly).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.1. JSP Basics

The JSP specification is part of the full J2EE specification, and JSP engines are included with most
major servlet engines. The Tomcat 5.5 server from the Apache project is the reference
implementation for both the Servlet 2.4 and JSP 2.0 specifications, and is freely available. For
information on downloading and installing Tomcat, see http://jakarta.apache.org/tomcat. The rest of
this chapter assumes some familiarity with the concept of a web application and servlets. Chapter 3
covers servlets and web applications in more detail. For now, it is enough to know that a servlet is a
compiled Java class that responds to a web request, and a web application is a collection of servlets
and other resources.

Since the JSP architecture is based on the servlet architecture, JSP support within a web server
provides a translation layer. Individual JSPs are text files stored on the web server and accessed via
their real path. For example, if a JSP named index.jsp resides at the root of the "enterprise" web
application, it would be accessed by a request to http://localhost:8080/enterprise/index.jsp,
assuming that the web server is running on port 8080 of localhost. When the JSP is first requested,
the JSP engine uses the JSP file to generate the source code for a servlet. The generated source is
then compiled, installed into the servlet engine, and used to service the request. Once the JSP has
been compiled, the compiled version is saved and used to service additional requests according to the
standard servlet lifecycle. Figure 4-2 shows the process in more detail.

When the JSP file is modified, the server detects the change and rebuilds the corresponding servlet.
The compilation phase imposes a slight delay the first time the page is retrieved. If necessary, many
servers allow precompilation of JSPs to get around this problem.

Now is a good time to look at a simple JSP, so here's an example that displays the current date:

<html>
<body>
 Hello, visitor. It is now <%= new java.util.Date().toString() %>
</body>
</html>

Figure 4-2. JSP lifecycle

http://jakarta.apache.org/tomcat
http://localhost:8080/enterprise/index.jsp
http://lib.ommolketab.ir
http://lib.ommolketab.ir

This looks easy enough. The only part of the example that is not regular HTML is the % tag. JSP
elements come in two forms: the simple <% %> entity, used for directly embedding Java code and
issuing JSP specific directives, and XML style "action tags," which we'll see a little later. The <%= %>
tag is an expression tag, which inserts the value of a single Java expression into the page's output.
For space reasons, we're not going to include the Java code produced by the system, but if you want
to look at it, you can find it in the web server's working areas. For Tomcat 5, the path is
/<tomcat_path>/work/Catalina/<servername>/<webappname>. Figure 4-3 shows the output sent
to the client browser.

Figure 4-3. Output from date display JSP

Now, let's try something a little more complicated. The <% %> element can insert regular Java code,
which can control the flow of the page. The following example checks whether it's before or after
noon (we'll count nighttime as the afternoon for the purpose of this sample) and displays an
appropriate greeting:

<html>
<body>
<%
java.util.Date theDate = new java.util.Date();
%>
<% if (theDate.getHours() < 12) { %>
Good morning,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<% } else { %>
Good afternoon,
<% } %>
 visitor. It is now <%= theDate.toString() %>
</body>
</html>

Two things should be noted about this example. The first is the declaration of a local variable in the
first pair of <% %> tags. Unlike the %= tags, nothing is displayed. The next JSP element includes a Java
if statement that operates on the variable. Note that we don't finish the if statement in the JSP tag,
but return to template text. This text will be displayed if the if clause evaluates to true. The next JSP
element closes the if and begins an else. It is followed by the text to be displayed in the else case,
and a final JSP element to close the else. The rest of the file is the same as in the first example,
except we use the Date object created earlier rather than instantiating a new one.

When viewed in the afternoon, the JSP-generated servlet produces HTML that looks like this:

<html>
<body>

Good afternoon,

 visitor. It is now Mon Dec 24 14:50:39 EST 2007
</body>
</html>

Note that there is some whitespace where some of the JSP tags were. This is because we placed
whitespace around them in the source JSP file. The JSP processor removes the tags themselves, but
has no way of determining whether it should also remove the carriage returns that follow them. This
is not a problem for HTML, since the web browser compresses all whitespace characters into a single
space character, but you should be aware of this behavior when debugging or producing plain-text
output.

4.1.1. Directives and Declarations

JSP also allows the insertion of JSP directives , which control behavior for the entire page. Directive
tags begin with <%@ rather than <%. There are three directives. The first, include, simply includes a
static file into the page output. So to include a copyright notice at the bottom of each JSP, you can
just add the tag:

<%@ include file="copyright.html"%>

The second directive, page, is more flexible. It defines parameters that relate to the current JSP and
is valid across all invocations of that page. Table 4-1 displays the possible attributes of the page

http://lib.ommolketab.ir
http://lib.ommolketab.ir

directive.

Table 4-1. JSP page directive values

Name Description

autoFlush
Set to true or false, identifying whether the page buffer should be flushed when
full. The default is true.

buffer
Set the buffer size, in kilobytes. The default is 8kb, and values must be in the format
of number kb or none.

contentType Set the MIME type or MIME type and charset. The default is text/html.

errorPage An optional path to a custom error-handling page.

extends
An optional fully qualified class name of a class implementing
javax.servlet.jsp.JspPage or javax.servlet.jsp.HttpJspPage.

import A comma-separated list of Java classes or packages to import.

info
Text describing this JSP. The text entered here can be used by a server
administration tool.

isErrorPage
Identifies this page as an error page, making the exception object (see next section)
available to script elements.

isThreadSafe
Set to true or false, indicating whether this JSP should implement the servlet
SingleThreadModel.

language

The scripting language for this page. The default is java, and the JSP specification
doesn't require support for any other language, although some application servers
support JavaScript.

session
Set to true or false depending on whether the page should participate in user
sessions. The default is TRue.

The final directive, taglib, is discussed later in this chapter.

JSP supports another tag sequence that globally affects all instances of a page. This is the declaration
element, which begins with <%! and declares a global variable within the JSP. Unlike variables
declared in a standard <% %> tag pair, variables declared with <%! will be available for all invocations
of the JSP. For example:

<%! int globalHitCounts = 0; %>
This page has been accessed <%= ++globalHitCounts %> times.

However, use of declarations introduces thread safety and lifecycle issues. For example, there is no
guarantee that the JSP will not be rebuilt and reloaded. If this happens, the hit count will return to 0.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Therefore, for most applications, you should use other approaches for maintaining global data.

4.1.2. Built-in Objects

In addition to objects declared within a JSP file itself, Java code running within a JSP has access to a
set of classes provided by the web server. These classes allow for communication between JSPs,
interaction with the JSP container, and support for sessions and elaborate output. In servlets, for
instance, request parameters are retrieved from the browser via the getParameter() method of an
HttpServletRequest object. JSPs can do the same thing. The following JSP fragment uses the built-in
request object (which maps to HttpServletRequest) and the out object (which provides a
PrintWriter) to echo the form parameters submitted by the client):

<%
 java.util.Enumeration e = request.getParameterNames();
 while(e.hasMoreElements()) {
 String name = (String)e.nextElement();
 out.println("" + name + ":" +
 request.getParameter(name));
 }
%>

Table 4-2 lists the objects available to a JSP.

Table 4-2. Objects available in JSPs

Name Type Description

application javax.servlet.ServletContext
The servlet context for this web
application.

config javax.servlet.ServletConfig
The ServletConfig object
associated with this page.

exception java.lang.Throwable
For error pages only, the exception
that triggered the error.

out javax.servlet.jsp.JspWriter
A PrintWriter subclass that writes
to the page's output stream.

page java.lang.Object

The implementation class instance
currently processing the request.
When Java is the scripting language,
page is synonymous to this.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Name Type Description

pageContext javax.servlet.jsp.PageContext The page context for this JSP.

request
javax.servlet.ServletRequest or
javax.servlet.http.HttpServletRequest

The protocol-specific request object
for this request.

response
javax.servlet.ServletResponse or
javax.servlet.http.HttpServletResponse

The protocol-specific response
object for this request.

session javax.servlet.http.HttpSession
For pages retrieved over HTTP, the
current user's HttpSession object.

4.1.3. Sharing Data Between JSPs, Other JSPs, and Servlets

HTTP is a stateless protocol, and by extension, the Web is inherently a stateless environment. If a
client makes a series of connections to a web server, there is no built-in foolproof mechanism for the
web server to associate the sequential requests with the same user. Similarly, a JSP or servlet will
treat each request individually, regardless of whether the user has made other requests in the recent
past.

The simplest form of communication between JSPs is a hyperlink. A JSP produces an HTML-formatted
link, which the user can then click on to request another JSP. HTTP allows name=value parameters to
be associated with an HTTP request. So, for example, if JSP 1 needs to inform JSP 2 of the user's
language, it might use a JSP fragment like this one to produce a link:

<a href="page2.jsp?language=<%= userLanguage %>">Go to page 2

This HTML fragment includes a JSP expression that passes a variable called userLanguage as a
request parameter to page2.jsp, which can then retrieve it from the session.

This is a clumsy approach, however, for all but the simplest applications. For one thing, as soon as
the user accesses a page that doesn't pass the language parameter on, such as a static HTML page
or a link off-site, the information is gone and must somehow be retrieved again. A better place to
store this information is the user's session, accessible via the session object made available to all
JSPs served over HTTP. For more on the session object, see Chapter 5. Information that is global to
the entire application can be stored in the ServletContext object, which is accessible via the
application object.

All information loaded into the session and application contexts will be available to any JSP that
participates in the session or is part of the application. Servlets within the application will also be able
to access the data. In the next section, we'll look at some other ways of using these mechanisms to
share data across JSPs.

pageContext javax.servlet.jsp.PageContext The page context for this JSP.

request
javax.servlet.ServletRequest or
javax.servlet.http.HttpServletRequest

The protocol-specific request object
for this request.

response
javax.servlet.ServletResponse or
javax.servlet.http.HttpServletResponse

The protocol-specific response
object for this request.

session javax.servlet.http.HttpSession
For pages retrieved over HTTP, the
current user's HttpSession object.

4.1.3. Sharing Data Between JSPs, Other JSPs, and Servlets

HTTP is a stateless protocol, and by extension, the Web is inherently a stateless environment. If a
client makes a series of connections to a web server, there is no built-in foolproof mechanism for the
web server to associate the sequential requests with the same user. Similarly, a JSP or servlet will
treat each request individually, regardless of whether the user has made other requests in the recent
past.

The simplest form of communication between JSPs is a hyperlink. A JSP produces an HTML-formatted
link, which the user can then click on to request another JSP. HTTP allows name=value parameters to
be associated with an HTTP request. So, for example, if JSP 1 needs to inform JSP 2 of the user's
language, it might use a JSP fragment like this one to produce a link:

<a href="page2.jsp?language=<%= userLanguage %>">Go to page 2

This HTML fragment includes a JSP expression that passes a variable called userLanguage as a
request parameter to page2.jsp, which can then retrieve it from the session.

This is a clumsy approach, however, for all but the simplest applications. For one thing, as soon as
the user accesses a page that doesn't pass the language parameter on, such as a static HTML page
or a link off-site, the information is gone and must somehow be retrieved again. A better place to
store this information is the user's session, accessible via the session object made available to all
JSPs served over HTTP. For more on the session object, see Chapter 5. Information that is global to
the entire application can be stored in the ServletContext object, which is accessible via the
application object.

All information loaded into the session and application contexts will be available to any JSP that
participates in the session or is part of the application. Servlets within the application will also be able
to access the data. In the next section, we'll look at some other ways of using these mechanisms to
share data across JSPs.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.2. JSP Actions

If you've spent any time working with servlets, our examples up to this point really haven't been
anything new. Essentially, we've replaced reams of println() calls with template text in a JSP. This
certainly saves time, but we aren't doing anything different. For one thing, at the beginning of this
chapter, we promised that JSP allowed nonprogramming web designers and content creators to help
create dynamic content. The techniques we've just seen let you do that, but you have to teach them
Java first, which pretty much defeats the purpose.

HTML developers may not be confident tackling server-side Java code, but they're certainly
comfortable with markup tags. Web browsers, after all, just treat tags as instructions. If a browser
sees a tag, it turns the running text to boldface until it sees another tag. Scriptlets in JSP do
the same thing, except in two steps: the server processes the script, possibly producing more HTML,
and the browser then views it. This is not a difficult concept, but we haven't gotten around the fact
that the first set of instructions is provided as Java code and hence requires a Java programmer with
some time on her hands.

JSP solves this problem with action tags . An action tag looks like a regular HTML tag and doesn't
follow the <% %> syntax conventions we've seen before. JSP actions are divided into two categories:
built-in functions, which we'll discuss in this section, and custom tags, which we'll discuss later in the
chapter. Built-in JSP actions provide access to many of the features we've already seen with
scriptletsfor instance, there is another type of include we can perform with actions:

<jsp:include page="/headers/header.jsp"/>

If you think this looks like an XML tag, you're right: the syntax requirements are the same as for
namespace-enabled XML. The jsp namespace is reserved for JSP built-in actions (we'll see the real
value of this in the next section). The tag name is specified after the namespace and the action to be
performed. Tags can then have zero or more attributes (such as page, name, id). Tags can be closed
with a standard closing tag (such as </jsp:include>) or with a / before the final >, for tags that don't
have any elements within them.

The difference between the <%@ include %> directive and the <jsp:include> action is that the
directive happens once at compile time for the page while the action happens at request time, each
time the page is processed for a client.

The <jsp:include> tag itself includes the contents of the specified relative URL (it must be from the
same server) in the output of the current page.[*] Parameters for the included page can be included
by nesting a <jsp:param> tag into the include:

[*] In pure servlets, this is the functionality handled by the RequestDispatcher object.

<jsp:include page="/headers/header.jsp">
 <jsp:param name="company" value="The Company"/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</jsp:include>

The <jsp:forward> tag works similarly, but transfers control to the destination page rather than
including its content:

<jsp:forward page="/login/access.jsp" />

or, with parameters:

<jsp:forward page="/login/access.jsp">
 <jsp:param name="redirect" value="<%= request.getRequestURI()%>" />
</jsp:forward>

The preceding example uses a JSP expression to generate the parameter value. One caution on
<jsp:forward>: if any output has been written to the client (either because the output buffer was
flushed or because buffering was turned off via a page directive), an attempt to use <jsp:forward>
produces an IllegalStateException.

4.2.1. JSP Tags and JavaBeans

JSP actions combine with Java beans to provide data to page designers. Programmers can write a
Java bean that handles data access and business logic (including accessing Enterprise JavaBeans)
and make that information available to a JSP, without embedding all of the necessary JDBC (or
whatever) code within the JSP itself.

As a Java class, Java beans can be instantiated in scriptlets. If we want to use a bean named
ProductBean in the com.company package, we could write a JSP like this:

<% com.company.ProductBean product =
new com.company.ProductBean();
product.setProductId("DH2309-AX");
%>

The ProductBean, after setting the product ID, retrieves the necessary product information, which is
exposed via other properties. So if the bean has a Price property, we could retrieve it with:

<%= product.getPrice() %>

However, JSPs offer another way to access the bean, using the <jsp:useBean> tag:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<jsp:useBean id="product" class="com.company.ProductBean" />

It's that simple. Once the bean is created, properties can be set using the <jsp:setProperty> tag:

<jsp:setProperty name="product" property="ProductID" value="DH2309-AX"/>

The <jsp:setProperty> tag can be nested within the <jsp:useBean> tag or used later. Properties are
retrieved in the same way, using the <jsp:getProperty> tag:

<jsp:getProperty name="product" property="Price"/>

There's one more trick to the <jsp:setProperty> tag. If the value attribute is not included, the JSP
will search the incoming request parameters for a name=value pair with the same name as the bean
property currently being set and will use the value from the request. For example, the request
http://shop.company.com/schlock/product.jsp?ProductId=DH2309-AX has a ProductId parameter
containing the ID for the product we want to display. If the product.jsp file contains these lines:

<jsp:useBean id="product" class="com.company.ProductBean" />
<jsp:setProperty name="product" property="ProductId" />

the ProductId property is set to DH2309-AX. For further convenience, we can use the special
property name (*), which populates every property of the bean from the request parameters.

4.2.2. Scoping Beans

The Java bean used in the last example existed within the scope of the current page. This means that
it was created when the client requested the page and destroyed when the page was destroyed. For
some applications, this is fine: a Java bean that retrieves and displays information about a particular
product in an online catalog doesn't need to hang around, although it should use efficient strategies
to speed its interior execution.[*] But what about a bean that retrieves information about the current
user-display preferences, identity, and so on? This information is used by every page the user
accesses, but doesn't change except in very specific situations. We want to create the bean once and
store it in the user's session, where it can remain until the user leaves the site.

[*] For instance, if the bean retrieves product information from a SQL database, it should use a connection-pooling strategy,

possibly via JDBC 2.0, to avoid the overhead of creating a new connection for each database access.

One way to accomplish this is to use a scriptlet to add the bean directly to the user's session using
the implicit JSP session object and then to retrieve it manually for each page that uses it. However,
the <jsp:useBean> tag offers a way around this, via the scope argument, which will apply to every
instance of that particular Java bean class with the specified ID. By default, beans have a page
scope, but they also can be set to have a user scope, so the same instance is used whenever a
<jsp:useBean> tag is invoked for that class and ID. The application scope goes even further, applying

http://shop.company.com/schlock/product.jsp?ProductId=DH2309-AX
http://lib.ommolketab.ir
http://lib.ommolketab.ir

to the web application as a whole by inserting the bean instance into the ServletContext object
associated with the web application. This allows servlets to access beans created by JSPs and vice
versa.

The other available scope is request. Elements scoped to the request level will be available for the
duration of the current request. This means they can be accessed by other JSPs referenced via
<jsp:include> or <jsp:forward>.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.3. The JSP Expression Language

JSP 2.0 introduced the JSP Expression Language (the EL), which is designed to make it easier for
page authors to access and write logical tests. Expressions written in the EL can be embedded into
static text or passed into JSP tag parameters. In both cases, the JSP engine evaluates the expression
and embeds the result in the page.

Everything in this chapter up until this point will work with JSP 1.2 or JSP 2.0.
The JSP EL is available only in JSP 2.0.

EL expressions begin with a $ and are enclosed by curly bracket characters. Here's a simple example,
evaluating the expression 3 > 4 (to false, of course) and also doing the sum:

<%@ page contentType="text/html;charset=UTF-8" language="java" %>
<html>
 <body>
 Is three greater than four? That's ${3 > 4}.
 The sum is ${3+4}, though.
 </body>
</html>

Expressions can also retrieve values from the page, request, session, and application scopes, in that
order. Let's say that you have the following Java bean:

public class Product {
 private String name = null;
 private double price = 0.0d;

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public double getPrice() {
 return price;
 }

 public void setPrice(double price) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 this.price = price;
 }
}

For the purpose of this example, we've used a double to represent the item
price. We've done this to keep the examples short, and since we're only
displaying data it doesn't cause any problems. However, you should not do it in
a real system since floats and doubles are not accurate for certain kinds of
calculations: try writing a program that multiplies 59999 by .01 and you'll see
that the answer is not quite 599.99. A better option for dealing with currency
values is the java.math.BigDecimal class.

We can load the object into the request scope with a servlet like this (note that the servlet isn't
responsible for generating any HTML content, just for creating and packaging the Product object):

import javax.servlet.http.*;
import javax.servlet.ServletException;
import java.io.IOException;

public class ProductServlet extends HttpServlet {
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 Product product = new Product();
 product.setName("Hyperwidget");
 product.setPrice(599.99d);
 request.setAttribute("product", product);
 request.getRequestDispatcher("/product.jsp")
 .forward(request, response);
 }
}

Now that the object is in the request scope, we can access it via the EL within the product.jsp page:

<%@ page contentType="text/html;charset=UTF-8" language="java" %>
<html>
 <head><title>Product Description</title></head>
 <body>
 <h1>${product.name}</h1>
 Price: $${product.price}
 </body>
</html>

The only trick here is that we included two $ characters before {price}: one to display to the user
and one to indicate the start of the expression.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

All of the built-in objects described in Table 4-2 are available within the EL. For instance, to display
the application context page, you can use the expression ${pageContext.request.contextPath},
which pulls the HttpServletRequest object from the PageContext object and evaluates the
contextPath bean property.

The EL also allows retrieval of values from maps using the following syntax:

mapname['key']

Using the built-in param convenience object (which contains the form parameters for the current
request), the standard "Hello, Joe" application looks like this:

<%@ page contentType="text/html;charset=UTF-8" language="java" %>
<html>
 <head><title>Generic Seasonal Greetings!</title></head>
 <body>Hello, ${param['name']}!</body>
</html>

Accessing this JSP via the URI /context/hello.jsp?name=Joe provides an appropriate greeting to Joe.

4.3.1. Using the EL with Tags

JSP EL expressions can also be used with JSP tag attributes. Simply replace the tag literal with the EL
expression. For example, we can use the <c:if> tag (which we'll look at a little more in the next
section) along with an EL expression to display special shipping information if the cost of an item on
our product page is more than, say, $400:

<%@ taglib uri="http://java.sun.com/jsp/jstl/core"
 prefix="c" %>

<%@ page contentType="text/html;charset=UTF-8" language="java" %>
<html>
 <head><title>Product Description</title></head>
 <body>
 <h1>${product.name}</h1>
 Price: $${product.price}

 <c:if test="${product.price > 400}">

Eligible for Saver Shipping!
 </c:if>
 </body>
</html>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Of course, we really shouldn't have the logic for Saver Shipping eligibility embedded in the JSP itself.
For more information on techniques for abstracting business logic away from content, see the chapter
on Struts (Chapter 19), the chapter on JavaServer Faces (Chapter 5), or the book J2EE Design
Patterns by William Crawford and Jonathan Kaplan(O'Reilly).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.4. JSP Standard Tag Library

Many developers criticized the original JSP specification because it lacked some important basic
capabilities. As we saw earlier in the chapter, you can implement complex logic within JSPs by
embedding scriptlets. This approach works (at least, it's functional and produces web pages that look
about right), but it makes JSPs look a lot less like HTML and a lot more like Java code. As a result,
the range of people who can work on them is sharply limited. To make things even worse, because
developers were virtually forced into embedding large amounts of Java code into each page (at least
if the page were in any way complex), business logic had a tendency to creep down into the
presentation layer.

The JSP EL removes some of the need for scriptlets (you can now display a variable without
embedding Java code directly) but doesn't help implement page logic. That's where the JSP Standard
Tag Library (JSTL) comes in. JSTL is not directly part of the JSP standard, but it's an associated
standard, and JSTL Version 1.1 (which is compatible with JSP 2.0) is also included in J2EE 1.4. In this
section, we'll discuss the most commonly used JSTL tags for variable handling, flow control, and
internationalization.

The JSTL tags are easy to incorporate into your web applications. J2EE 1.4- compatible containers
include all the necessary jar files. Standalone servlet/JSP containers, such as Tomcat, don't, so you'll
need to obtain both the jstl.jar file and an implementation of the tags themselves separately. The
reference implementation for JSTL grew out of the Jakarta taglibs project, and can be downloaded
from http://jakarta.apache.org/taglibs/index.html. Put both jar files (the implementation from
Jakarta is in standard.jar) into your WEB-INF/lib directory.

Once the JSTL tags are available to the web application, you need to map them to a namespace for
each JSP. This is easy enough; just add the following line to the top of each page:

<%@ taglib uri="http://java.sun.com/jsp/jstl/core"
 prefix="c" %>

By convention, the JSTL tags are given the prefix c.

4.4.1. Variables and Flow Control

The <c:set> and <c:remove> tags provide basic variable handling for JSPs. In general, these tags
should be used carefully: you very rarely need to manipulate variables within the JSP itself, other
than possibly for page layout purposes, and in most cases the EL will suffice. But if you must, the
following JSP file retrieves a variable from the request parameter (using the built-in param object and
an EL expression), sets it to a session variable, displays the variable, and then removes the variable
from the session:

http://jakarta.apache.org/taglibs/index.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

<%@ taglib uri="http://java.sun.com/jsp/jstl/core"
 prefix="c" %>
<%@ page contentType="text/html;charset=UTF-8" language="java" %>

<html>
 <c:set var="username" scope="session" value="${param.username}"/>
 <c:out value="${username}" escapeXML="false"/>
 <c:remove var="username"/>
</html>

This JSP also uses the <c:out> tag to display the variable. This tag was, before JSP 2.0, the only
nonscriptlet method to display a variable in a JSP. Now that we have the EL, the use of <c:out>,
which is much clunkier, can be reduced but not quite eliminated. Unlike a regular EL expression, the
<c:out> tag escapes all XML characters into XML/HTML-safe entities. The > character becomes <
and so on. If you expect to display variables that might include HTML or XML reserved characters,
you should use <c:out> rather than embedding the bare expression into the page.

4.4.1.1. Flow control

JSTL includes tags for loops and conditional logic, freeing the page author from the tyranny of
scriptlets. We saw one of these tags, <c:if> , in the previous section. The <c:if> tag evaluates an EL
expression to true or false and, if true, processes the JSP code contained within the tag.

There is no corresponding else tagyou need to use another <c:if> with an inverse condition or, if
there are multiple conditions, the <c:choose> tag. In the following extremely contrived example, we
display one message if a variable is 1 or below, another if it is 2 or 3, and a final message if it's
greater than 3. The first two determinations are made using the <c:when> tag, which evaluates a
conditional within a choose block, and the final message is displayed using a <c:otherwise> tag,
which provides an optional fall-through action:

<%@ taglib uri="http://java.sun.com/jsp/jstl/core"
 prefix="c" %>

<%@ page contentType="text/html;charset=UTF-8" language="java" %>

<c:set var="niftylevel" value="5"/>

<c:choose>
 <c:when test="${niftylevell < 2}">
 Not terribly nifty.
 </c:when>
 <c:when test="${niftylevel > 1 and niftylevel < 4}">
 Nifty, but could be niftier.
 </c:when>
 <c:otherwise>
 Remarkably nifty.
 </c:otherwise>
</c:choose>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Processing stops when a condition is metso setting the niftylevel variable to 3 after printing out the
first message does not cause the second message to print.

Finally, JSTL includes a very robust loop tag, <c:forEach> . This tag accepts any standard Collection
implementation, any standard Map implementation, arrays of primitive types, and even strings
containing comma-separated values.[*]

[*] Iterator and Enumeration objects are also supported, but with limits, since both types of objects can be processed only

once.

In this example, the request attribute catalog contains an ArrayList holding a set of Product objects.
The JSP works through the list, creating a temporary page variable named product and printing out
each list entry.

<%@ taglib uri="http://java.sun.com/jsp/jstl/core"
 prefix="c" %>

<%@ page contentType="text/html;charset=UTF-8" language="java" %>
<html>
 <head><title>Widget Catalog</title></head>
 <body>

 <c:forEach var="product" items="${catalog}">
 ${product.name}: $${product.price}
 </c:forEach>

 </body>
</html>

4.4.1.2. URL management

JSTL provides basic support for URL management. This functionality is important if you are using URL
rewriting to track sessions and can also simplify page design if you're assembling complex URLs. The
<c:url> tag simply accepts a (content-relative) URL and an optional set of request parameters and
displays a properly formatted URL.

For example, in our catalog example, we could replace the contents of the <c:forEach> tag with the
following code to produce a URL that would link to a product detail page, passing in the product's
Stock Keeping Unit (SKU) code as a URL parameter named productID:

<c:url var="producturl" value="/product" >
 <c:param name="productID" value="${product.SKU}" />
</c:url>
${product.name} - $${product.price}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.4.2. Internationalization

JSTL includes tags that support the Java internationalization standards. Unlike the tags we've looked
at so far, the internationalization formatting tags reside in the fmt package rather than the core
package.

Java's internationalization functions, in a proverbial nutshell, let developers move the display
constants from an application to an external properties file, also known as a resource bundle. The
properties file can then be translated into other languages, making it easy to write multilingual
applications. The strings are kept in the standard properties file format:

first.name=First Name
last.name=Last Name

To use these two properties in a JSP file, we first make the properties file accessible to the web
application by placing it in the classpath. If we name the file messages.properties and place it in
WEB-INF/classes, we have created a resource bundle named messages. To provide other languages,
we provide other files with the same base name followed by the two-character language code for the
language in question. A German language resource bundle would be named messages_dk.properties
and an explicitly English language bundle would be called messages_en.properties.

The <fmt:message> and <fmt:bundle> tags handle message display. Consider the JSP in Example 4-1.

Example 4-1. message.jsp

<%@ taglib uri="http://java.sun.com/jsp/jstl/fmt"
 prefix="fmt" %>

<%@ page contentType="text/html;charset=UTF-8" language="java" %>
<html>
 <head><title>Message Bundle Example</title></head>
 <body>
 <form>
 <fmt:bundle basename="messages">
 <table>
 <tr><td>
 <fmt:message key="first.name"/>
 </td><td><input type="text" name="firstname"></td></tr>
 <tr><td>
 <fmt:message key="last.name"/>
 </td><td><input type="text" name="lastname"></td></tr>
 </table>
 </fmt:bundle>
 <input type="submit" value="Submit">
 </form>
 </body>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</html>

The <fmt:bundle> tag sets the message bundle using the basename attribute. The two <fmt:message>
tags retrieve the messages from the resource bundle by name. The resulting page looks like Figure
4-4.

Figure 4-4. Internationalized screen (in English)

It's possible to skip the <fmt:bundle> tag, either by using the <fmt:setBundle> tag (which sets the
bundle for the entire page) or by including a bundle attribute on the <fmt:message> tag itself.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.5. Custom Tags

JSP and Java beans provide a nice way to abstract data access away from the page itself, but it still
doesn't get code entirely out of the system. Page designers still must use script elements for control
functions such as loops or branching logic. In addition, Java beans sometimes aren't enough to fully
encapsulate a web application's internal logic, leaving large chunks of code embedded in JSPs. And of
course, there's the matter of code reuse. While utility methods can be abstracted out into classes and
made available to JSPs, scripting code embedded within a particular JSP tends not to lend itself to
abstraction.

The JSP specification addresses this by allowing the creation of custom tags. Tags are organized into
tag libraries , which can be loaded by pages as needed. Each tag library gets its own namespace and
can be shared by as many pages as necessary. Properly designed custom tags can cut most, if not
all, of the remaining pure Java code out your JSPs. We've already seen tags in action, since JSTL is
just a collection of JSP tags that are a standard part of the environment.

Imagine a simple tag that displays the current date and time. Let's call the tag Date. After creating
and configuring it, we can access it within a JSP page:

<enterprise:Date/>

Note that the namespace is no longer jsp. Instead, we have a custom specified namespace that
identifies a tag library, or taglib, containing a set of custom tags. We declare the tag library at the
beginning of the JSP file with the <%@ taglib %> directive:

<%@ taglib
 uri="http://oreilly.com/enterprise/examples-taglib"
 prefix="enterprise"%>

The taglib containing the Date tag is identified by a specific URI. First, the server looks in the web.xml
file for a mapping from the URI to a taglib file in the web archive. If there is not a mapping, then the
server tries to find the taglib using the URI as a direct path. A taglib mapping is made in the web.xml
file using a <taglib> element, like so:

<taglib>
<taglib-uri>http://oreilly.com/enterprise/examples-taglib</taglib-uri>
<taglib-location>
 /WEB-INF/jsp/enterprise-taglib.tld
 </taglib-location>
</taglib>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The <taglib-location> tag points to a .tld file, which is an XML-formatted tag library deployment
descriptor. Here's the .tld file that describes a single tag library:

<?xml version="1.0" encoding="ISO-8859-1"?>
<taglib
 xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-jsptaglibrary_2_0.xsd"
 version="2.0">
 <description>A simple tag library for JEIAN</description>
 <tlib-version>1.0</tlib-version>
 <short-name>enterprise</short-name>
 <uri>http://oreilly.com/enterprise/examples-taglib</uri>
 <tag>
 <description>Display current date</description>
 <name>Date</name>
 <tag-class>com.oreilly.jent.jsp.DateTag</tag-class>
 <body-content>empty</body-content>
 </tag>
</taglib>

The key thing here is the <tag> tag with its subtags, <name> and <tag-class> (descriptions are
optional). The <name> tag specifies the name that JSPs will use to refer to the tag itself, and the <tag-
class> specifies the Java class that implements the tag functionality. In this case, it's a class named
DateTag in the enterprise package. This class file must be available to the web application.

By this point, we've described a tag, put it in a library, associated the library with the web
application, retrieved the library from the web application for use in a JSP page, mapped it to the
enterprise namespace for the page, and invoked the tag itself. The only thing remaining is the actual
implementing class.

4.5.1. Implementing Custom Tags

Custom tags come in two basic varieties: basic tags and body tags. Basic tags don't access their
bodies (the content between the open and close tags), although they can control whether or not the
JSP servlet processes their content. Body tags are just like basic tags, but have access to their body
content. Support interfaces and classes for all custom tags are in the javax.servlet.jsp.tagext
package.

Basic tags implement the Tag interface, which has two methods of interest to the tag developer:
doStartTag() and doEndTag(). The doStartTag() method is called when the page processing
reaches the opening of the tag (<enterprise:Date> in the previous example), and the doEndTag()
method is called when execution reaches the end tag (</enterprise:Date>). These are called
sequentially for empty tags.

The doStartTag() method can return Tag.SKIP_BODY or Tag.EVAL_BODY_INCLUDE. Skipping the body

http://lib.ommolketab.ir
http://lib.ommolketab.ir

causes execution to jump right to the end of the tag. Evaluating the body will cause the JSP to
process the body normally, as if it were outside of the tag. The doEndTag() method can return
Tag.EVAL_PAGE or Tag.SKIP_PAGE. If EVAL_PAGE is returned, the rest of the page will be processed; if
SKIP_PAGE is returned, processing stops.

Here, finally, is the DateTag class. It extends the TagSupport class, which implements the Tag
interface and provides stub versions of both do- methods, as well as the other methods in the
interface (which are used by the JSP to provide resources to the tag). It implements the doEndTag()
method:

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

public class DateTag extends TagSupport {

 public int doEndTag() throws JspException {

 try {
 pageContext.getOut().println((new java.util.Date()).toString());
 } catch (java.io.IOException e) {
 throw new JspException(e);
 }
 return Tag.EVAL_PAGE;
 }
}

The pageContext object is an instance of PageContext and is provided by the TagSupport class. The
PageContext object provides access to the current output writer (via getOut()), as well as the
ServletRequest and ServletResponse objects for the request, page attributes, ServletConfig and
ServletContext objects, and the HttpSession object.

Shown below is another TagSupport-based tag, which is a little fancier. The <enterprise:Evening> tag
encloses content and displays it only if the current server time is not within the workday. Here's how
it works in a JSP:

<enterprise:Evening dayStart="9" dayEnd="17">
Sorry, we're closed for the day. Please try us tomorrow.
</enterprise:Evening>

The code is simple, but this time we extend the doStartTag() method instead and return SKIP_BODY
if the current time is within the working day:

import java.util.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

public class EveningTag extends TagSupport {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 private int dayStart = 9;
 private int dayEnd = 17; // 24 hour time
 // In production, we should propagate errors with exceptions
 public void setDayStart(String value) {
 dayStart = Integer.parseInt(value);
 }
 public void setDayEnd(String value) {
 dayEnd = Integer.parseInt(value);
 }

 public int doStartTag() throws JspException {
 int hour = GregorianCalendar.getInstance().get(Calendar.HOUR_OF_DAY);

 if((hour >= dayStart) && (hour <= dayEnd))
 return Tag.SKIP_BODY;

 return Tag.EVAL_BODY_INCLUDE;
 }
}

Note that we also have two optional tag attributes: dayStart and dayEnd, which accept an hour value,
defaulting to 9 A.M. to 5 P.M. These values are communicated to the Tag via JavaBean-style setter
objects. The JSP implementation will call the setters for every supplied attribute before calling any of
the doXXX() methods. Attributes also need to be declared in the tag library descriptor. Here's the

extension to the previous tag library for the Evening tag:

 <tag>
 <description>Display text if it's the evening</description>
 <name>Evening</name>
 <tag-class>com.oreilly.jent.jsp.EveningTag</tag-class>
 <body-content>JSP</body-content>
 <attribute>
 <name>dayStart</name>
 <required>false</required>
 </attribute>
 <attribute>
 <name>dayEnd</name>
 <required>false</required>
 </attribute>
 </tag>

4.5.2. More About the Tag Lifecycle

JSP tags are frequently called upon to perform an action more than once. The JSP specification
supports this capability via the IterationTag interface, which adds an additional lifecycle method,
doAfterBody(). The doAfterBody() method is invoked after the tag body has been processed and
can return IterationTag.EVAL_BODY_AGAIN to have the tag body reprocessed. The tag body is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

reprocessed immediately, and the doAfterBody() method is called again. Returning Tag.SKIP_BODY
stops the loop.

The next example creates a tag named <enterprise:Loop>, which processes its content a given
number of times (specified via the times attribute).

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

public class ForTag extends TagSupport {
 private int current = 1;
 private int times = 0;

 public void setTimes(int i) {
 times = i;
 }

 public int doStartTag() throws JspException {
 pageContext.setAttribute("current", new Integer(current));
 if(current < times)
 return Tag.EVAL_BODY_INCLUDE;

 returnTag.SKIP_BODY;
 }

 public int doAfterBody() throws JspException {
 if(current >= times)
 return Tag.SKIP_BODY;
 current ++;
 pageContext.setAttribute("current", new Integer(current));
 return IterationTag.EVAL_BODY_AGAIN;
 }
}

This tag also uses the setAttribute() method to create a variable in the page context named
current. This allows us to see the loop count in our JSP body. Here's an example:

<enterprise:Loop times="4">
Loop <%= current %>

</enterprise:Loop>

The output in the browser will be:

Loop 1
Loop 2
Loop 3
Loop 4

http://lib.ommolketab.ir
http://lib.ommolketab.ir

We can't just create variables at will, though. At the minimum, they have to be described in the tag
library descriptor, so that the JSP compiler can create the appropriate references. Here's the
descriptor for the Loop tag:

<tag>
 <name>Loop</name>
 <tag-class>com.oreilly.jent.jsp.ForTag</tag-class>
 <description>For Loop</description>
 <variable>
 <name-given>current</name-given>
 <variable-class>java.lang.Integer</variable-class>
 <scope>NESTED</scope>
 </variable>
 <attribute>
 <name>times</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
</tag>

The <variable> tag declares the current variable as a java.lang.Integer. Its scope is defined as
NESTED, which means it will be available to code inside the tag only. The other legal values are
AT_BEGIN and AT_END. If you want to create variables dynamically (for instance, to allow the user to
choose the name of the counter variable), you can create a TagExtraInfo class and associate it with
the tag using <tei-class>.

Also, note the <rtexprvalue> tag associated with the times attribute. This means that the attribute
can accept a JSP expression as its value. So if you have created a variable named count, the Loop tag
could be opened with:

<enterprise:Loop times="<%= count %>">

4.5.3. Body Tags

Tags that need to interact with their body content extend the BodyTag interface instead of the Tag
interface. BodyTag introduces a new method, doInitBody(), which runs before the tag body is first
processed. It also introduces the BodyContent object, which provides access to the tag body.
BodyContent is an extension of JspWriter, with additional methods to retrieve its content in various
ways, including as a String object. The BodyTagSupport class fills the same role for BodyTag that
TagSupport does for Tag and IterationTag. All BodyTag objects are also IterationTag objects.

The next example shows a simple tag that retrieves the body content, processes it through the
java.net.URLEncoder object, and outputs the result:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

public class EncodeTag extends BodyTagSupport {

 public int doAfterBody() throws JspException {
 BodyContent c = getBodyContent(); // Get the tag body
 JspWriter out = getPreviousOut(); // Get the enclosing writer
 try {
 out.print(java.net.URLEncoder.encode(c.getString()));
 } catch(java.io.IOException e) {
 throw new JspException(e);
 }
 return BodyTag.SKIP_BODY; // Do not process again
 }
}

The getPreviousOut() method of BodyTagSupport retrieves the JspWriter associated with the tag's
parent. This might be the main JspWriter for the page, or it might be the BodyContent object of
another JSP tag.

4.5.4. Intertag Communication

As just mentioned, it's possible for JSP custom tags to be nested within other JSP custom tags. The
inner tags are executed between the doStartTag() and doEndTag() methods of the outer tags. Let's
imagine an <enterprise:Email> tag. In the JSP file, it might be used like this:

<enterprise:Email>
<enterprise:EmailAddress addr="from">deb@company.com
</enterprise:EmailAddress>
<enterprise:EmailAddress addr="to">will@company.com
</enterprise:EmailAddress>
<enterprise:EmailText>Where's that JSP Chapter?</enterprise:EmailText>
</enterprise:Email>

The Email tag is implemented with either a Tag or a BodyTag, with JavaBean-style methods to set
from and to addresses and email content. The doEndTag() method assembles and sends the email.
Assuming that the doStartTag() method of the email tag class doesn't stop the tag's processing,
each of the three interior tags will be processed in turn. These tags can access the parent tag using
the findAncestorWithClass() method, which takes a Tag and a class reference and finds the first
appearance of the specified class in the tag's hierarchy, working up from the specified tag.

Here's the code for the EmailAddress tag, which sets the to and from addresses of the EmailTag class
(not included):

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import javax.servlet.jsp.tagext.*;

public class EmailAddressTag extends BodyTagSupport {
 String addrType = null;
 public void setAddr(String s) {
 addrType = s;
 }
 public int doEndTag() {
 Tag t = findAncestorWithClass(this, enterprise.EmailTag.class);
 if(t != null) {
 EmailTag et = (EmailTag)t;
 if(addrType.equalsIgnoreCase("to"))
 et.setToAddress(getBodyContent().getString());
 else if (addrType.equalsIgnoreCase("from"))
 et.setFromAddress(getBodyContent().getString());
 }
 return Tag.EVAL_PAGE;
 }
}

And that's all there is to it. If the EmailAddressTag object doesn't find an EmailTag in its parent
hierarchy, it exits without taking any action.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.6. Wrapping Up

We've just gone through a great deal of JSP material, and you should now have a pretty good grasp
of the range of capabilities provided by JSPs. Obviously, there is more depth and nuance than we can
cover in a tutorial chapter, but the material we've discussed covers the full range of capabilities. As
you begin to develop your JSPs, you may find it useful to consult Chapter 2, where we provide details
on assembling and deploying web applications, and Appendix A, where we provide details on the
structure of web deployment descriptors. In addition, you may want to become familiar with the code
annotation facilities discussed in Chapter 21, since these can help simplify the development of web
components in general by automatically generating various code artifacts, such as deployment
descriptors.

For information on JSP beyond the material in this book, we recommend JavaServer Pages (O'Reilly).
This book provides more detail on some of the features we've flown rather lightly over and also
addresses database access from JSPs and other important approaches to putting all the pieces
together.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 5. JavaServer Faces
The JavaServer Faces API provides a standard framework for building presentation tiers for web
applications. Unlike the Servlet API, which focuses on low-level request handling for the HTTP
protocol, JSF provides developers with a set of prewritten user interface (UI) components and an
event model for wiring interactions between the UI and the objects underlying your application.

The JSF team's goal was to streamline and standardize web UI development. JSF was also designed
to be tool-friendly, allowing IDE vendors to support drag-and-drop user interface generation while
retaining standardized, portable code and allowing third parties to develop UI components that any
JSF developer can use. JSF is included in the J2EE 1.4 framework, but since it requires only the
Servlet 2.3 and JSP 1.1 APIs, JSF applications can be deployed in a J2EE 1.3 environment as well.

This chapter provides a whirlwind introduction to programming with JavaServer Faces. Since JSF IDEs
aren't yet very mature, and this is a Nutshell book anyway, we focus on the underlying code: if you
start using a tool later, you'll have an understanding of how the API itself works, and, of course, you
can always write a JSF UI by hand. While JSF might seem more conceptually daunting than other web
frameworks, such as Struts, it's actually quite easy to work with by hand once you've gained some
basic familiarity with the API.

JSF uses JSP tags to create user interfaces, so if you've never written a JSP page, you might want to
take a quick look through Chapter 4 and then come back. Appendix B provides a reference for all the
standard JSP tags provided by the basic JSF implementation since we can't cover them all in any
detail in a short tutorial. We've also elected not to discuss some advanced features, such as
rendering for non-HTML output and developing custom components. For a much more extensive
tutorial, please see JavaServer Faces by Hans Bergsten (O'Reilly).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.1. The Sample Application

JSF is a big topic, and we can't cover it all here, but we did want to provide you with a complete
application to look at. Our sample application lets us cover the most frequently used JSF functions.
We'll reproduce bits of the code here, and you can download the whole thing from this book's web
site, at http://www.oreilly.com/catalog/javaentnut3/.

The sample application itself is a simple library book management system that implements the
following use cases:

Log in as a user (with Borrower or Librarian privileges)

Add a book (Librarians)

View available books (everyone)

Check out a book (Librarians, Borrowers)

Check in a book (Librarians)

Review all books

In order to compile the examples, you'll want the full JSF 1.1 reference implementation from Sun,
which is available at http://java.sun.com/j2ee/javaserverfaces/. You'll need a Servlet 2.3-compatible
web container as well; we used JBoss 4.0, available from http://jboss.org, to develop and test the
sample application. In the downloadable version, we've also included an Ant buildfile for building the
sample application.

http://www.oreilly.com/catalog/javaentnut3/
http://java.sun.com/j2ee/javaserverfaces/
http://jboss.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.2. Structure of a JSF Application

JSF applications are web applications built on the Java Servlet framework, so they follow the same
general packaging scheme as any other J2EE application (see Chapter 2 for more information). The
jar files for the JSF implementation must be available on the web application's classpath (usually
accomplished by putting the appropriate jar files into the WEB-INF/lib directory).

For the reference implementation, the FacesServlet must be configured in the web.xml file for the
application. This servlet provides the JSF engine: it's responsible for processing requests for JSF-
based pages and returning the UI in HTML format. For our example, we're going to treat all resources
with a .faces extension as a JSF target, so we configure the FacesServlet like this:

 <servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>

 <!-- Faces Servlet Mapping -->
 <servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>*.faces</url-pattern>
 </servlet-mapping>

Mapping *.faces to the FacesServlet instructs the servlet container to delegate all requests ending
with .faces to the JSF engine.

5.2.1. JSF Lifecycle

So what happens when a request is sent to the JSF engine? In short, the JSF engine creates a tree
containing a set of "components," each corresponding to an element of the user interface for the
page being submitted, and ensures that the correct user values are applied to those components. The
component tree is used to process the request, and an appropriate response is generated for the
user. The FacesServlet accomplishes this in six steps:

Restore view

The JSF engine looks at the request and matches it to a view definition, which is usually defined
in a JSP file. By default, the view definition is found by looking for a .jsp file with the same base
name as the request URI. A request for /view/books.faces will use /view/books.jsp as the view

1.

2.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

definition. The engine then creates the component tree based on the view definition.

Apply request values

If any HTTP parameters were submitted along with the request, the JSF engine will try to map
them to specific user interface components on the page. Otherwise, the engine skips to step 6,
which renders the page and returns it to the client.

2.

Process validations

After applying any request values to the page, the JSF engine will cycle through all of the input
validators associated with each component. If any validations fail, the page is rerendered with
the original data, and, depending on how the developer set the page up, warning messages may
be displayed.

3.

Update model values

If the validation process succeeds, the underlying Java beans associated with each UI
component are updated.

4.

Invoke application

After the model has been updated, the JSF engine invokes any business logic actions requested
by the user.

5.

Render response

The JSF engine renders a response for the user. Depending on the results of step 5, this may be
the view associated with the page that was originally requested, or it may be a different view.

6.

After steps 2 through 5, the JSF engine will process any events that were triggered during the
processing activity. The event model allows you to override the lifecycle if necessaryfor instance,
jumping from the Apply Request Values phase to the Render Response phase. We won't get into that
in much detail in this chapter, but you should know the capability is there.

The Restore View phase is particularly important. This is where the JSF engine produces the
component tree, which is an object hierarchy containing all of the JSF UI components within the
requested view. This tree is used for all of the subsequent processing stages, and it maintains its
state across multiple requestswe'll see an example of how this works when we talk about user
interface events in a few pages.

5.2.2. The JSF Configuration File

JSF relies heavily on a single configuration file , faces-config.xml, located in your web application's
WEB-INF directory. This file is where you keep track of navigation rules, managed beans, localization
information, and any other configuration data required by more advanced JSF features. Configuring
web applications via XML will be familiar to users of Struts, although the JSF framework does more
behind the scenes than Struts does, reducing the overall complexity of the file. For example, you
don't have to define your action classes and the related forms as you do in Struts: the server loads
Faces resources automatically based on URL patterns.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Here's an example of a very simple faces-config.xml file for the sample application. We'll look at it in
more detail shortly.

<?xml version='1.0' encoding='UTF-8'?>

<!DOCTYPE faces-config PUBLIC
 "-//Sun Microsystems, Inc.//DTD JavaServer Faces Config 1.1//EN"
 "http://java.sun.com/dtd/web-facesconfig_1_1.dtd">

<faces-config>

 <application>
 <locale-config>
 <default-locale>en</default-locale>
 </locale-config>
 </application>

 <!-- Navigation rules here -->

 <!-- Bean definitions here -->

</faces-config>

In the beginning of the file, we define the application's default localization setting, which is English. In
the rest of this section, we'll show how to set up the various Java beans we want JSF to manage for
us and the navigation rules our application should follow.

If the file gets too unwieldy, you can split it into parts, with each file defining configuration
information for a subset of your application. To do this, add an initialization parameter named
javax.faces.CONFIG_FILES to the FacesServlet configuration in web.xml, containing a comma-
separated list of configuration files. Large projects with multiple developers will probably need to do
this since it allows you to define settings for different modules of an application separately.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.3. Managed Beans

As we've just seen, the JSF configuration file has two main sectionsone for navigation rules and one
for bean definitions. The JSF framework relies on managed beans to glue the user interface (defined
primarily in JSP using the JSF tag libraries) to the business logic of your application (which can be
whatever sort of code you want).

Managed beans are simply regular Java beans, configured within the faces-config.xml file. The bean
class follows the standard JavaBeans rulesa zero-parameter constructor and a set of get/set methods
for manipulating properties. In JSF, managed beans also contain action methods . Action methods are
invoked by the JSF framework in response to a user action or an event and contain the code that
actually manipulates the data model behind your application. In Struts, these methods would
correspond to the Action classes that drive the application.

A JSF application usually has two types of managed beansmodel beans and backing beans . The
difference between the two is more architectural than technical. Model beans focus on integration
with the data model of the application. In the Library application, we have model beans (in the
com.oreilly.jent.jsf.library.model package) for tasks like managing the book collection itself and
for keeping track of user accounts and privileges. Backing beans are linked more directly to the
structure of the user interface. A backing bean contains action methods that manipulate the model
beans on behalf of the UI and properties that relate directly to user interface elements embedded in
HTML forms (we'll look at this in more detail in the next section). Remember that there's no technical
difference between the two: you write and deploy them exactly the same way.[*]

[*] Bean management is a little simpler in JSF than in Struts, where you have to associate request and session scope beans with

particular forms via configuration XML. In JSF, beans are instantiated as they're called for within JSF pagesno sooner. This

means you can define as many request and session scope beans as you'd like and use them in multiple views rather than having

to associate a particular ActionForm with a particular Action.

Beans have four possible scopes: application, session, request, and scopeless. If a managed bean is
defined as application scope, the entire application shares a single instance. For session-scoped
beans, the JSF framework creates a new instance of the bean for each user when the bean is first
accessed by the user. For request-scoped beans, the framework creates a new instance for each
request, assuming that the request uses the bean at some point. Scopeless beans are accessed by
other beans, but not directly by the application. They are instantiated when requested and will be
garbage-collected like any other object once they pass out of scope. Note that the four scope options
are not quite the same as the equivalent Servlet/JSP scopes, and to ensure compatibility, you'll want
to access them through JSF rather than trying to pull values out of request attributes or HttpSession
objects.

Example 5-1 shows a simple backing bean, which we use for keeping track of information about the
current user's session. It includes properties (currentUser and loggedIn) and an action method,
logout().

Example 5-1. UserSession.java

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import model.User;
import logic.UserManager;

public class UserSession {
 private User currentUser = null;

 public UserSession() {
 currentUser = UserManager.getGuestUser();
 }

 public User getCurrentUser() {
 return currentUser;
 }

 public void setCurrentUser(User currentUser) {
 this.currentUser = currentUser;
 }

 public boolean isLoggedIn() {
 if (currentUser == null)
 return false;
 if (currentUser == UserManager.getGuestUser())
 return false;
 return true;
 }

 public String logout() {
 currentUser = UserManager.getGuestUser();
 return "home";
 }
}

Managed beans are set up via the JSF configuration file. The following example sets up three beans, a
model bean stored in the application scope, and backing beans stored in the session and request
scopes:

 <managed-bean>
 <managed-bean-name>library</managed-bean-name>
 <managed-bean-class>
 com.oreilly.jent.jsf.library.model.Library
 </managed-bean-class>
 <managed-bean-scope>application</managed-bean-scope>
 </managed-bean>

 <managed-bean>
 <managed-bean-name>usersession</managed-bean-name>
 <managed-bean-class>
 com.oreilly.jent.library.session.UserSession
 </managed-bean-class>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <managed-bean-scope>session</managed-bean-scope>
 </managed-bean>

 <managed-bean>
 <managed-bean-name>loginform</managed-bean-name>
 <managed-bean-class>
 com.oreilly.jent.library.backing.LoginForm
 </managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 </managed-bean>

Each bean definition has a name, a class, and a bean scope (application, session, request, or none).

Sometimes we need to access managed beans directly within our code. We can do this using the
FacesContext object, which provides access to a set of Map objects that are associated with the
underlying JSF session. To retrieve the usersession managed bean from the session scope, we can
use code like this at any time during request processing:

UserSession userSession =
 (UserSession)FacesContext.getCurrentInstance()
 .getExternalContext().getSessionMap().get("usersession");

There's a major architectural problem with doing this too often, thoughyou become reliant on the
usersession literal rather than having a truly type-safe way to access session data. You can improve
this in two ways. The first is to establish a centralized directory that different classes in your
application can use to look up objects. The Library application uses a Directory class (Example 5-2)
to provide easy access to the Library object that we store in the application's scope. This example
also shows how to retrieve managed beans by dynamically executing an expression written in the JSF
EL.

We'll look at the EL in the next section, so for now just be advised that #{library} means to retrieve
a bean named library from the closest possible scope. There's no map maintained for application
scope, so this technique is important.

Example 5-2. Directory class

package com.oreilly.jent.library;

import com.oreilly.jent.library.model.Library;

import javax.faces.context.FacesContext;
import javax.faces.el.ValueBinding;
import javax.faces.application.Application;

public class Directory {
 public static Library getLibrary() {
 FacesContext context = FacesContext.getCurrentInstance();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Application app = context.getApplication();
 ValueBinding binding = app.createValueBinding("#{library}");
 Library library = (Library)binding.getValue(context);
 return library;
 }
}

The second way to reduce or eliminate dependencies on literal values in compiled code is to have the
JSF engine populate the bean properties at runtime. If we want to give a managed bean access to
another managed bean, we can also have the JSF framework provide the first bean with access to
the second bean by passing the second bean to the first bean at runtime. In our application, we have
a backing bean for the book display form that requires access to the library bean that we're
managing via the JSF framework. The BookDisplayForm class just needs a simple setter method, like
this:

 public void setLibrary(Library library) {
 this.library = library;
 }

With the setter in place, we can use the <managed-property> tag in the Faces configuration file to
execute an expression and populate the library property whenever an instance of BookDisplayForm
is created:

 <managed-bean>
 <managed-bean-name>bookdisplayform</managed-bean-name>
 <managed-bean-class>
 com.oreilly.jent.jsf.library.backing.BookDisplayForm
 </managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 <managed-property>
 <property-name>library</property-name>
 <value>#{library}</value>
 </managed-property>
 </managed-bean>

Remember to keep your scopes straight when setting up managed propertiesthe bean you're using as
the property value must have an equal or broader scope. You can populate a request scope bean with
session-scoped beans, but not vice versa. This is also where those scopeless beans (that is, beans
with a scope of none) are useful: you can use them as injected property values for other managed
beans without exposing them directly to the application.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.4. The JSF Expression Language

Now that we've established the existence of managed beans, we can talk about the JSF EL . The EL,
which is similar but not identical to the JSP EL described in Chapter 4, allows you to write expressions
that reference the managed beans in your application. These expressions serve two main purposes in
JSF: retrieving values from beans and telling JSF components which bean properties to update. In
some cases, the same expression does both, depending on where you are in the request lifecycle.

The general syntax of an EL expression is #{identifiers and modifiers}. The #{marks the beginning

of the expression, and the } marks the end.

Here's an example of a simple tag that displays a value from a managed bean. In this case, we're
displaying the username property, which is itself a property of the currentUser property of the
usersession bean.

 <h:outputText value="#{usersession.currentUser.username}"/>

The <h:outputText> tag is a built-in JSF tag, used to display the value of an expression. We'll look at
more JSF tags in the next section. When working with input controls, the application uses the value
expression first to prepopulate the control and then to store the results of the request. The following
tag creates a text input control, associated with the username property of the loginform bean:

 <h:inputText value="#{loginform.username}"/>

When the user first loads the JSF page containing this tag, the application displays an HTML input
field containing the current value of the EL expression. In this case, the field will be blank since the
login form bean is request scoped. When the form is submitted, the JSF framework will use the same
EL expression to decide where to store the form values the browser sends: in this case, into the
username property of the loginform bean.

The EL also supports lists and maps, allowing you to access more dynamic information. Many of the
built-in EL objects (listed in Table 5-1) rely on this functionality. When referencing a Map, the identifier
on the righthand side of the period is used as the key for retrieving a value from the map. For
example, using the built-in attribute sessionScope, we can retrieve the usersession bean like this:

#{sessionScope.usersession.currentUser.username}

An equivalent expression would be:

#{sessionScope['usersession'].currentUser.username}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is an alternative syntax for retrieving values from a map. The square-bracket syntax is generally
used when retrieving values with (.) characters in their keys, which is often necessary when dealing
with properties files and message bundles for internationalization.

Table 5-1. Built-in JSF Expression Language objects

EL object Definition

applicationScope A Map containing all application scope-managed beans

cookie A Map of the HTTP cookies for the current request, by name

facesContext The FacesContext instance associated with the current request

header
A Map with all HTTP headers submitted with the current request, containing one
value for each header

headerValues
A Map with all HTTP headers submitted with the current request, containing a
String[] array for each header with all submitted values

initParam A Map containing each of the initialization parameters for the FacesServlet

param
A Map with all HTTP parameters submitted with the current request, containing
one value for each parameter

paramValues
A Map with all HTTP parameters submitted with the current request, containing
a String[] array for each parameter with all submitted values

requestScope A Map containing all request scope-managed beans

sessionScope A Map containing all session scope-managed beans

view The UIViewRoot object associated with the current request

You can also perform calculations with EL expressions. The EL doesn't allow you to write value
assignment statements directly, which frees page developers from the temptation to write too much
business logic into the JSP files themselves. But as we'll see, many tags take Boolean parameters and
it's often helpful to be able to express them in the EL rather than writing lots of extra methods in
your beans.

The alphabetic versions of the relational operators, which are listed below the regular versions in
Table 5-2, exist to avoid conflict with JSP, XML, and HTML tags (having too many angle brackets
running around gets confusing for the parsers!).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 5-2. JSF Expression Language operators

Operator type Operators

Arithmetic + - / %

 div mod

Logical && || !

and not

Relational < <= > >= == !=

lt le gt ge eq ne

Selection ?

The ? selection operator works the same way it does in Java. For example, we can use it for some
simple formatting:

<h:outputText value="#{bookdisplayform.book.checkedOut ? 'Out' : 'In'}"/>

The selection operator is often useful for controlling component rendering on JSF pages when a bean
method does not return true or false.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.5. JSF Actions and Views

Now that we've set up our managed beans, we can start looking at the JSF pages themselves. Let's
start with the home page for the Library application, which is shown in Example 5-3.

Example 5-3. index.jsp

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>

<html>

 <f:view>
 <head>
 <title>JSF Library Home Page</title>
 <link rel="stylesheet" type="text/css" href='<%=
 request.getContextPath() + "/css/app.css" %>'>
 </head>
 <body>
 <h:form>
 <h1>JSF Library</h1>
 <hr>
 Welcome to the JSF library.
 <p>
 <h:outputText
 value="You are logged in as #{usersession.currentUser.username}"/>
 <p>
 <h:commandButton action="viewbooks" value="View Books"/>
 <h:commandButton action="addbook"
 rendered="#{usersession.currentUser.librarian}" value="Add Book"/>

 <hr>
 <h:commandLink rendered="#{not usersession.loggedIn}" action="login">
 <h:outputText value="Log In"/>
 </h:commandLink>
 <h:commandLink rendered="#{usersession.loggedIn}"
 action="#{usersession.logout}">
 <h:outputText value="Log Out"/>
 </h:commandLink>

 </h:form>
 </body>
</f:view>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<html>

This file lives in the root directory of our web application. But if we try and access it at
http://server/library/index.jsp, we'll get a messy error. Instead, we access it via the FacesServlet,
which is responsible for managing the JSF lifecycle. Earlier, we set up a mapping in web.xml that
forwards all requests with a .faces extension to the FacesServlet. The FacesServlet sets up a
FacesContext object and then dispatches to the appropriate view definitionsuch as the index.jsp file.
The mapping is simple: a request for /index.faces uses the /index.jsp view.

In situations where you are using both JSF-enabled and standard JSPs, it can be useful to be able to
easily distinguish between the two. One way to do this is to use the javax.faces.DEFAULT_SUFFIX
context parameter. The value of this parameter determines the suffix used to find matching JSPs
when the FacesServlethandles a request. If we used our earlier mapping for the FacesServlet and
set the DEFAULT_SUFFIX to *.jsf, for example, then every URL ending with .faces will be resolved to a
JSP with a .jsf suffix. Remember that context parameters are set using <context-param> elements in
the web.xml file. See Appendix A for full details on web.xml syntax.

We've imported two tag libraries into this JSP file. The first, which we've given the h: prefix, is the
JSF HTML tag library. The HTML tags provide access to the various UI components provided by the
JSF libraries. The second tag library, which we've given the f: prefix, is the JSF core tag library.
These are the standard prefixes, and we'll use them for the rest of the chapter.

All of the JSF content in a page must be contained within an <f:view> tag, which represents the root
of the JSF component tree. Example 5-3 uses the <h:outputText> tag to display text based on an EL
expression, and the <h:commandButton> and <h:commandLink> tags to allow navigation within the
application.

All of the HTML-related tags support the rendered attribute, which allows us to specify whether or not
the UI component is displayed, based on the runtime value of a JSF expression. In Example 5-3, we
display a login link if the user isn't logged in and a logout link if he is. We also display an Add Book
button for librarians only.

5.5.1. Navigation

Page-to-page navigation in JSF is built around navigation rules . A navigation rule has three basic
parts: an originating view, an outcome, and a destination view. The two kinds of views are identified
by URL patterns, and the outcome is a simple text string. When a user triggers a navigation event
(by clicking on a button or a command link), the JSF framework selects a destination view by finding
the navigation rule with the appropriate outcome that most closely matches the originating view.

Let's start with a simple definition. This rule states that the addbook outcome from the /index.jsp file
should lead to the /view/addbook.jsp view:

 <navigation-rule>
 <from-view-id>/index.jsp</from-view-id>
 <navigation-case>
 <from-outcome>addbook</from-outcome>
 <to-view-id>/view/addbook.jsp</to-view-id>

http://server/library/index.jsp
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </navigation-case>
 </navigation-rule>

Within the index.jsp file, we can reference this outcome directly by specifying the outcome name as
the action associated with the command button:

<h:commandButton action="addbook"
 rendered="#{usersession.currentUser.librarian}" value="Add Book"/>

The result is a button that, when clicked, causes the server to display the /view/addbook.jsp view.

Rather than linking views one by one, we can use wildcards and provide multiple navigation cases.
Here's how we define a set of rules that applies to outcomes originating from any view:

 <navigation-rule>
 <from-view-id>*</from-view-id>
 <navigation-case>
 <from-outcome>login</from-outcome>
 <to-view-id>/login/index.jsp</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>home</from-outcome>
 <to-view-id>/index.jsp</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>viewbooks</from-outcome>
 <to-view-id>/view/listbooks.jsp</to-view-id>
 </navigation-case>
 </navigation-rule>

We use the wildcard character (*) in the <from-view-id> tag to declare that this rule should apply to
all originating views unless a more exact match is available. With this rule in place, we can use the
login, home, and viewbooks outcomes from anywhere in the application.

Wildcard mapping for navigation rules works almost exactly as it does for servlets. More precise
mappings take precedence: if we defined a home outcome in a navigation rule governing the
/view/addbook.jsp view, it would override the default navigation rule as well as a rule governing (for
example) /view/*.

5.5.1.1. Dynamic actions and navigation

Most applications need to control navigation based on the result of an action rather than just
hardcoding outcomes directly to buttons. That's why they're called outcomes: they can differ based
on the circumstances. We also need a way to execute code after clicking a button. Let's take a look
at the library login functionality to see how this is done.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

We start by defining the navigation rules in faces-config.xml. We want to display a success message
if the user logs in successfully, and we want to redisplay the login page if the user can't log in for
some reason. Here's the navigation rule:

 <navigation-rule>
 <from-view-id>/login/index.jsp</from-view-id>
 <navigation-case>
 <from-outcome>success</from-outcome>
 <to-view-id>/login/success.jsp</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>failure</from-outcome>
 <to-view-id>/login/index.jsp</to-view-id>
 </navigation-case>
 </navigation-rule>

Next, we write a Java method to handle the login process. We include this method in the backing
bean associated with the login activity. In this case, the method is confirmCredentials(). The only
thing that's special about this method is that it returns a string indicating the outcome of the
requestin this example, success or failure. The code is in Example 5-4.

Example 5-4. LoginForm.java

import logic.UserManager;
import session.UserSession;
import model.User;

import javax.faces.context.FacesContext;
import javax.faces.application.FacesMessage;

public class LoginForm {
 private String username;
 private String password;

 public String getUsername() {
 return username;
 }

 public void setUsername(String username) {
 this.username = username;
 }

 public String getPassword() {
 return password;
 }

 public void setPassword(String password) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 this.password = password;
 }

 public String confirmCredentials() {

 UserSession userSession =
 (UserSession)FacesContext.getCurrentInstance()
 .getExternalContext().getSessionMap().get("usersession");

 if (UserManager.confirmLogin(username, password)) {
 User user = UserManager.getUser(username);
 userSession.setCurrentUser(user);
 return "success";
 }

 FacesMessage message = new FacesMessage();
 message.setSummary("Login Error");
 message.setDetail("Unable to log you in -"
 + " username and password combination not found.");
 message.setSeverity(FacesMessage.SEVERITY_WARN);
 FacesContext.getCurrentInstance().addMessage(null,message);
 return "failure";
 }
}

Finally, as you'll see in Example 5-5, we can wire the <h:commandButton> on the login form to the
confirmCredentials() method on the backing bean. We use the same action property we used
when we wired command buttons directly to outcomes.

Example 5-5. /login/index.jsp

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>

<html>

 <f:view>
 <head>
 <title>JSF Library Login</title>
 <link rel="stylesheet" type="text/css"
 href='<%= request.getContextPath() + "/css/app.css" %>'>
 </head>
 <body>
 <h1>JSF Library Login</h1>
 <hr>
 In order to borrow or add books you must log into the Library
 application.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <h:messages showDetail="true" warnClass="loginWarning"
 layout="table"/>

 <h:form>

 <table>
 <tr>
 <td>Username:</td>
 <td><h:inputText value="#{loginform.username}"/></td>
 </tr>
 <tr>
 <td>Password:</td>
 <td><h:inputSecret value="#{loginform.password}"/></td>
 </tr>
 </table>

 <p>
 <h:commandButton value="Login"
 action="#{loginform.confirmCredentials}"/>
 </p>

</h:form>
</body>
</f:view>
</html>

When the user clicks the button, the JSF server performs the following steps:

Obtains an instance of the LoginForm bean. Since we've declared it as a request scope bean, a
new instance is always created.[*]

[*] In Struts, request scope beans are reused. This is not the case in JSF.

1.

Sets bean properties based on the form submission from the <h:inputText> and
<h:inputSecret> controls on the login form.

2.

Calls the confirmCredentials() method on the LoginForm instance, which attempts the login
process and returns the string "success" or the string "failure" based on the outcome.

3.

Displays the appropriate view based on the data in faces-config.xml.4.

We do a few special things with the failure case, which is shown in Figure 5-1. First, the username
input field remains populated with whatever the user originally submittedthat's because the
LoginForm bean instance created in step 1 is still in scope. The password field doesn't get filled back
in, because it's an <h:inputSecret> component, which doesn't prepopulate. The original bean
instance isn't thrown away until after the page is rendered. When the user resubmits the form, a new
instance is created (however, the component tree is retained until the user accesses another view).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 5-1. JSF Library Login failure

Second, the action method adds a FacesMessage object to the current instance of the FacesContext
object. This message is then displayed via the <h:messages> tag. A JSF message has two parts: a
summary and a detail. The <h:messages> tag lets us display both the summary and the detail (by
default, only the summary is shown) for each message in the queue for the current page. We'll look
at message display a bit more closely at the end of the chapter.

5.5.2. Sophisticated Views

Let's take a look at another page in the JSF Library, the View Books screen. This screen allows users
to browse books and to check books in and out, provided that they have appropriate privileges. This
screen illustrates how to use JSF select boxes and how to group display elements into panels for
more control of the display. Example 5-6 shows the listbooks.jsp file.

Example 5-6. /view/listbooks.jsp

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>

<html>
 <f:view>
 <head>
 <title>Library Books</title>
 <link rel="stylesheet" type="text/css"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 href='<%= request.getContextPath() + "/css/app.css" %>'>
 </head>
 <body>
 <h1>Library Collection</h1>
 <hr>
 <h:form>
 <table>
 <tr><td valign="top">

 <h:selectOneListbox size="10"
 value="#{bookdisplayform.currentBookID}"
 onchange="submit()">
 <f:selectItems value="#{bookdisplayform.bookList}"/>
 </h:selectOneListbox>
 <p/>
 <h:commandButton value="Return Home" action="home"/>

 </td><td valign="top">
 <h:panelGroup rendered="#{bookdisplayform.bookSelected}">
 <h:panelGrid columnClasses="rowLabel,rowContent" columns="2">
 <h:outputText value="Title:"/>
 <h:outputText value="#{bookdisplayform.book.title}"/>
 <h:outputText value="Author:"/>
 <h:outputText value="#{bookdisplayform.book.author}"/>
 <h:outputText value="ISBN:"/>
 <h:outputText value="#{bookdisplayform.book.ISBN}"/>
 <h:outputText value="Status:"/>
 <h:outputText value=
 "#{bookdisplayform.book.checkedOut ? 'Checked Out' : 'Checked In'}"/>
 </h:panelGrid>

 <h:panelGroup id="buttonHolder">

 <h:panelGroup rendered="#{usersession.currentUser.borrower}">
 <h:commandButton value="Check Out"
 action="#{bookdisplayform.checkBookOut}"
 rendered="#{not bookdisplayform.book.checkedOut}"/>
 </h:panelGroup>

 <h:panelGroup rendered="#{usersession.currentUser.librarian}">
 <h:commandButton value="Check In"
 action="#{bookdisplayform.checkBookIn}"
 rendered="#{bookdisplayform.book.checkedOut}"/>
 </h:panelGroup>

 </h:panelGroup>
 </h:panelGroup>
 </td></tr>
 </table>
 <h:selectBooleanCheckbox onclick="submit()"
 valueChangeListener="#{bookdisplayform.safeModeChange}"/>
 <h:outputText value="Safe Mode"/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</h:form>

</body>

</f:view>
</html>

Figure 5-2 shows what the page looks like for Librarian users who have selected a particular book.
The JSP produces a selection box based on the booklist property of the BookDisplayForm backing
bean. Earlier we showed how the BookDisplayForm is configured as a managed bean in faces-
config.xml. If a book has been selected, the page displays details about the book using the
<h:panelGrid> and <h:panelGroup> tags. If the user has logged in, the page may also display a Check
In or a Check Out button, depending on the book's status and whether the user is logged in as a
Librarian or as a regular Borrower. Just ignore the Safe Mode checkbox for now; we'll look at it later.

Figure 5-2. Library Collection screen

Let's look at the select box first. The code in the JSP for creating this component is very simple:

 <h:selectOneListbox size="10"
 value="#{bookdisplayform.currentBookID}"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 onchange="submit()">
 <f:selectItems value="#{bookdisplayform.bookList}"/>
 </h:selectOneListbox>

We use the <h:selectOneListbox> component since we want the user to be able to select only one
book at a time. We've also embedded some JavaScript in the tag, using the onchange attribute. This
is a pass-through attribute to the HTML <select> tag that is produced when the page is rendered. It
causes the form to be submitted when the user selects a new value.

The <f:selectItems> tag provides the list of items to include in the select box. In this case, we don't
want to hardcode the options into the JSP tag (although this can be done using the <f:selectItem>
tag). Rather, we want to get the list of books from the application's data model. So we've written a
method on our backing bean for the form, which accesses our data model object to produce an array
of javax.faces.model.SelectItem objects:

public SelectItem[] getBookList() {
 Library library = Directory.getLibrary();
 List books = library.getBookList();
 SelectItem[] items = new SelectItem[books.size()];
 for (int i = 0; i < books.size(); i++) {
 Book book = (Book)books.get(i);
 items[i] = new SelectItem(book.getTrackingID(),
 book.getTitle());
 }
 return items;
 }

Since we don't want the data model itself to know about JSF objects (it doesn't need to) we haven't
built the ability to create the SelectItem array into the Library class itself: we use the backing bean
as the intermediary between the user interface and the data model.

The SelectItem constructor requires an object ID and a label. The object ID is used as the key when
building the select box, and the label is used as the text displayed to the user. When an item is
selected and the form is submitted, the object ID is what's made available to the application. For the
Library application, the object ID is the book's tracking ID, which is a unique string that can be used
to retrieve a Book object from the Library object.

The following three methods from the BookDisplayForm backing bean work together to translate the
book ID bound to the <h:selectOneListbox> tag into the book property, which can then be accessed
by any other tags in the UI that need access to the currently selected book:[*]

[*] An obvious refactoring here would be to retrieve the Book object within the setCurrentBookID() method and to cache it for

future use. We've kept it this way to make the division of responsibility clear and leave the refactoring as a simple exercise to the

reader.

 public String getCurrentBookID() {
 return currentBookID;
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public void setCurrentBookID(String currentBookID) {
 this.currentBookID = currentBookID;
 }

 public Book getBook() {
 if (currentBookID == null) return null;
 return (Book)getLibrary().getBooks().get(currentBookID);
 }

5.5.3. User Interface Events

In Example 5-3, we used logic within a Java bean to modify the display based on selected values.
This approach doesn't always make sense, so JSF provides another mechanism to respond to user
actions that are focused primarily on the interface: events. By taking advantage of JSF's event model
(which we mentioned briefly during our discussion of the JSF lifecycle earlier in this chapter), we can
respond to changes made to user interface components without processing a full action.

Unlike actions, events have access to the UIComponent object that fired the event and through it to
the rest of the component tree for the page. Events are, in general, not the place to implement
business functionality: an event shouldn't be firing off emails or making model changes. That kind of
business logic should be reserved for actions, which should not need to know the details of the user
interface.

On the View Books page, we've added a Safe Mode checkbox that allows the user to turn the Check
In/Check Out buttons on and off (OK, we'll fess up: this is a trivial example, but it shows how events
can be used to modify the appearance of the user interface). We set up the Safe Mode checkbox like
this, using the standard <h:selectBooleanCheckbox> UI component:

<h:selectBooleanCheckbox onclick="submit()"
 valueChangeListener="#{bookdisplayform.safeModeChange}"/>

We use a JavaScript handler to submit the page when the value is changed, and we include a
reference to a listener method on the backing bean for the form. One thing that we don't do is
provide a value binding: all we're interested in is the change, so we don't bind the value of the
checkbox to any JavaBean properties. This means the checkbox defaults false every time a user
navigates to the view. The checkbox retains its value each time the view is reloaded, until the user
navigates to a different view (at which point the JSF engine builds a new component tree for the new
view, and any values that aren't bound to session- or application- scoped beans are lost).

The code for the listener function itself looks like this:

public void safeModeChange(ValueChangeEvent event) {

 UIComponent buttonHolderGrid =
 event.getComponent().findComponent("buttonHolder");

 if (buttonHolderGrid != null) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Object newVal = event.getNewValue();
 if (newVal instanceof Boolean)
 buttonHolderGrid.setRendered(
 !((Boolean)newVal).booleanValue());
 }

}

The listener starts out by retrieving the UIComponent that fired the event and uses that object to find
the buttonHolder panel grid. Then, depending on the value the checkbox has been set to, it sets the
rendered property for the panel grid, which either hides or shows the Check In and Check Out
buttons.

Listeners can also be attached to command components such as buttons and links. This allows the
application to respond to UI events before (or instead of) processing an action.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.6. Building Tables

JSF provides two mechanisms for generating tables. Panel grids allow you to organize multiple JSF
components into an HTML table and are useful for laying out data entry forms and other pages for
which you know the number of components but want to leave the mechanics of HTML formatting to
the JSF engine. Data grids allow you to build tables based on variable numbers of objectslist objects,
ResultSets and RowSets, and JSF DataModel objects.

5.6.1. Panel Grids

The Book Details form uses the <h:panelGroup> and <h:panelGrid> tags to group and display multiple
JSF tags. The <h:panelGroup> tag is very simpleit groups a set of JSF components into a single unit.
Decisions about which components to display can then be handled at the group level rather than
component by component. Back in Example 5-6, we grouped an <h:panelGrid> (for book
information) and an <h:panelGroup> (containing two additional panel groups for control buttons) into
a parent <h:panelGroup>. The top-level group controls rendering of all book information based on
whether a book is selected.

The <h:panelGrid> component allows you to apply table formatting to a set of components. The tag
allows the designer to specify a number of columns and then builds a table with the specified number
of columns and as many rows as are required to accommodate the set of components provided by
the page designer. In our example, we have two columns and eight components, so the JSF engine
renders a table with two columns and four rows:

 <h:panelGrid columnClasses="rowLabel,rowContent" columns="2">
 <h:outputText value="Title:"/>
 <h:outputText value="#{bookdisplayform.book.title}"/>
 <h:outputText value="Author:"/>
 <h:outputText value="#{bookdisplayform.book.author}"/>
 <h:outputText value="ISBN:"/>
 <h:outputText value="#{bookdisplayform.book.ISBN}"/>
 <h:outputText value="Status:"/>
 <h:outputText value=
 "#{bookdisplayform.book.checkedOut ? 'Checked Out' : 'Checked In'}"/>
 </h:panelGrid>

To specify Cascading Style Sheets (CSS) styles, the <h:panelGrid> tag includes four CSS-related
attributes: columnClasses, rowClasses, headerClass, and footerClass, each of which specifies a CSS
style. The columnClasses and rowClasses attributes accept comma-separated lists of values that
repeat if more columns or rows exist than there are CSS styles specified. This allows you to do things
like alternate the color of each row by specifying something like:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <h:panelGrid rowClasses="oddRows,evenRows" columns="4">
 <!-- components would go here -->
 </h:panelGrid>

The <h:panelGrid> tag works only with a known number of components. To display grids with
unknown numbers of components, use the <h:dataGrid> tag, which we discuss next.

Remember that neither <h:panelGroup> nor <h:panelGrid> affects non-UIComponent page content. So
if you want to use a group to control whether some text is displayed, you need to display the text via
<h:outputText> rather than just entering it into the JSP file.

5.6.2. Data Grids

Panel grids aren't helpful when we don't know how many rows we need to display. For the Library
Administration screen, shown in Figure 5-3, we want to list all the books available and whether
they're checked in and give librarians an easy way to check books in and out. Data grids allow us to
iterate through a set of objects (such as a java.util.List) or the results of a SQL query and display
the results in a table.

Figure 5-3. Library Administration table

Example 5-7 shows the JSP file for the Library Administration page. The important tag is the
<h:dataTable> tag, which contains a set of <h:column> tags that define the contents of each column.
In this example, we're using the list of books from the shared library bean, so we don't even need a
special backing bean for this form.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 5-7. /view/adminbooks.jsp

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>

<html>
 <f:view>
 <head>
 <title>Library Administration</title>
 <link rel="stylesheet" type="text/css"
 href='<%= request.getContextPath() + "/css/app.css" %>'>
 </head>
 <body>
 <h1>Library Administration</h1>
 <hr>
 <h:form>
 <h:commandButton value="Return Home" action="home"/>

 <h:dataTable value="#{library.bookList}"
 headerClass="tableHeader" var="book">
 <h:column>
 <f:facet name="header">
 <h:outputText value="Title"/>
 </f:facet>
 <h:outputText value="#{book.title}"/>
 </h:column>
 <h:column>
 <f:facet name="header">
 <h:outputText value="Author"/>
 </f:facet>
 <h:outputText value="#{book.author}"/>
 </h:column>
 <h:column>
 <f:facet name="header">
 <h:outputText value="Checked Out"/>
 </f:facet>
 <h:selectBooleanCheckbox onclick="submit()"
 value="#{book.checkedOut}"/>
 </h:column>
 </h:dataTable>
 </h:form>
 </body>
 </f:view>
</html>

The value attribute of the <h:dataTable> tag lets us specify the list of objects for the table, which are
displayed one per row. As the table is rendered, the JSF engine iterates through each object on the
list and creates a "temporary" variable using the name specified in the var attribute.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The <h:column> tags define the columns for the table. The body of the tag contains the components
that will be included for that column in each row of the table. By including an <h:outputText> tag in
the column definition, we can display a value for each object in the list.

Data tables also support facets via the <f:facet> tag. A facet allows you to define specific additional
behavior for use under certain conditions. Data table columns support a header facet and a footer
facet for each column. The renderer uses this information to generate header and footer rows where
appropriate. In this case, we use header facets (in conjunction with the headerClass attribute) to
display a set of header rows.

5.6.2.1. Editing data tables

We've also made this table editable by the extremely simple expedient of using an
<h:selectBooleanCheckbox> tag to display the checkedOut property of each book. We use an onclick
JavaScript handler to submit the form whenever the box is checked or unchecked. This is all we have
to do to update the underlying modelJSF will take care of the rest, including associating the individual
checkboxes with the appropriate Java beans. Of course, if this doesn't sound like good separation of
the real data model and the application, you're right, and we'll look at that next.

If we want to make the administration view available to any user, but limit check in and check out
capabilities to librarians, we can include two components in the column and use the rendered
attribute to control which one is displayed:

<h:column>
 <f:facet name="header">
 <h:outputText value="Checked Out"/>
 </f:facet>
 <h:selectBooleanCheckbox
 onclick="submit()"
 value="#{book.checkedOut}"
 rendered="#{usersession.currentUser.librarian}"> />
 <h:outputText value="#{book.checkedOut}"
 rendered="#{not usersession.currentUser.librarian}" />
</h:column>

5.6.2.2. Data model objects

Data tables don't actually access the underlying objects directly. Instead, the underlying objects
(lists, JDBC result sets, and so forth) are wrapped inside an object that extends the
javax.faces.model.DataModel class. The <h:dataTable> component interacts with the DataModel
implementation, which handles interaction with the model itself.

Why is this important? In our example, we're accessing the library's book list directly. That makes it
easy for us to support editing by clicking and unclicking checkboxes and keeps the code to a
minimum. But what if we want to support sorting by title or by author? We can't simply sort the main
list every time the user sorts since that list is shared by every user in the system. By writing a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

custom data model (or a wrapper for one of the standard data model implementations), we can
maintain a separate "view" into the underlying data for each session.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.7. Validation

Most software requires some kind of data entry, and in order to be user-friendly, an application
should support the user as much as possible throughout the data entry process. This means
identifying invalid input and giving the user a chance to fix it sooner rather than later.

JSF, as you might expect, has built-in support for validation . All JSF user interface components
support validation through both built-in and custom validation rules.

Let's take a look at the Add Books form (Figure 5-4) in the JSF Library, which needs to enforce
minimum field lengths and mandatory fields. The Add Books function is available to librarians who
have logged into the system. It allows them to fill out a simple form to create a new book.

5.7.1. Adding Validators to Forms

Example 5-8 shows the JSP source for the Add Books form. We're using three different kinds of
validation: required fields, built-in validators, and a custom validator (which we'll see in more detail in
the next section). We're also using the <h:message> tag to display validation messages for each
component.

Figure 5-4. Add Books form

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 5-8. /view/addbook.jsp

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>

<html>

 <f:view>
 <head>
 <title>Add Book to Library</title>
 <link rel="stylesheet" type="text/css"
 href='<%= request.getContextPath() + "/css/app.css" %>'>
 </head>
 <body>
 <h1>Add Books to Library</h1>
 <hr>
 Enter information below to add a book to the library.
 <h:form>
 <table>
 <tr>
 <td>Title:</td>
 <td><h:inputText id="title" binding="#{addbookform.title}"
 required="true">
 <f:validateLength minimum="5"/>
 </h:inputText>
 <h:message styleClass="validationWarning" for="title"/>
 </td>
 </tr>
 <tr>
 <td>Author:</td>
 <td><h:inputText id="author" binding="#{addbookform.author}"
 required="true"/>
 <h:message styleClass="validationWarning" for="author"/>
 </td>
 </tr>
 <tr>
 <td>ISBN:</td>
 <td><h:inputText id="isbn" binding="#{addbookform.isbn}"
 required="true">
 <f:validator validatorId=
 "com.oreilly.jent.jsf.library.validator.ISBNValidator"/>
 </h:inputText>
 <h:message styleClass="validationWarning" for="isbn"/>
 </td>
 </tr>
 </table>

 <p>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <h:commandButton value="Add Book" action="#{addbookform.addBook}"/>
 <h:commandButton value="Verify" action="verify"/>
 </p>

</h:form>

</body>

</f:view>
</html>

Each time a JSF form is submitted, the engine runs through a Process Validations phase before any
other actions take place. The validation process goes through each component and checks for
associated validators. The condition associated with each validator is evaluated, and if the validator
fails, a message is added to the page's message queue. Regardless of success or failure of any
particular validator, every validator on the page is checked. If any validator fails, processing of the
request is aborted and the user is returned to the original form, which can display the error messages
produced by the validators and allow the user to try submitting again.

The <f:validateLength>, <f:validateDoubleRange>, and <f:validateLongRange> tags are all provided
by the JSF implementation and allow validation of minimum lengths, floating-point double ranges,
and long integer ranges, respectively. Each of these tags can be embedded within an input
component to apply the specified validation behavior to that component. You can add multiple
validators to a single component, and they will be processed in order.

Setting a field to required works a bit differently, as the various input components have a required
attribute that can be set to true to make the fields mandatory (we do this for all three in Example 5-
8). This check is also performed at the validation stage, and leaving out any required fields produces
the same kind of message that any other validator would.

5.7.2. Displaying Validation Messages

The <h:message> and <h:messages> tags display the messages produced by the system during the
validation phase. We saw the <h:messages> tag in Example 5-5; it's used to show all of the messages
produced during page processing.

Messages, as we saw earlier, have two components: a high-level message and a detailed message.
Messages are also associated with particular components: in this case, with the components that
failed validation. This lets us display a validation error message alongside the component that the
message is associated with. The <h:message> tag displays the detailed message associated with a
particular component:

 <h:message styleClass="validationWarning" for="title"/>

The for attribute specifies the component ID for the component for which we want to display
messages. Note that we have to specify component IDs manually rather than allowing the JSF engine
to do it for us.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.7.3. Custom Validators

The basic validators provided with the JSF API are useful but don't cover every possible situation. But
not to fearyou can create your own validator classes by implementing the
javax.faces.validator.Validator interface. We've built a simple one in Example 5-9 for validating
ISBN numbers, using the simple ISBN checksum algorithm.[*] With this validator, we made a design
decision not to throw an error if the ISBN is null; we leave that decision to the required attribute on
the input field and display an error only if the input provided isn't a valid ISBN.

[*] The ISBN algorithm is simple. ISBNs may contain the digits 0-9 as well as the character X, which means 10. Multiply each digit

by its distance from the righthand side of the ISBN code (10 for the first digit, 9 for the second digit, etc). Add the 10 products and

divide by 11. If there is no remainder, the code is valid.

Example 5-9. ISBNValidator.java

import javax.faces.validator.Validator;
import javax.faces.validator.ValidatorException;
import javax.faces.context.FacesContext;
import javax.faces.component.UIComponent;
import javax.faces.application.FacesMessage;

public class ISBNValidator implements Validator {

 public void validate(FacesContext facesContext,
 UIComponent uiComponent, Object o)
 throws ValidatorException {

 String val = o.toString();
 if (val != null) {
 if (val.length() == 10) {
 if(!checkISBN(val))
 throwValidatorException(
 "ISBN does not pass validation");
 } else {
 throwValidatorException("ISBN must be 10 characters");
 }
 }
 }

 private boolean checkISBN(String ISBN) {
 int sum = 0;
 for (int i = 0; i < 10; i++) {
 char current = ISBN.charAt(i);
 int num = 0;
 if (current == 'X')
 num = 10;
 else

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 num = current;
 sum += (num * (10-i));
 }
 return (sum % 11 == 0);
 }

 private void throwValidatorException(String detail)
 throws ValidatorException {
 FacesMessage message = new FacesMessage();
 message.setSeverity(FacesMessage.SEVERITY_ERROR);
 message.setSummary("Invalid ISBN");
 message.setDetail(detail);
 throw new ValidatorException(message);
 }
}

In order to use this validator, we need to register it in the faces-config.xml file, associating a
validator ID with the validator class. Here's how we do it for the library:

 <validator>
 <validator-id>
 ISBNValidator
 </validator-id>
 <validator-class>
 com.oreilly.jent.jsf.library.validator.ISBNValidator
 </validator-class>
 </validator>

Once a custom validator is registered, we invoke it using the validator ID and the <f:validator> tag.
Note that even through we've chosen to use the full package and class name as the validator ID (this
is good practice in general, since it prevents confusion), we still have to register it before we can use
it.

<f:validator
validatorId="ISBNValidator"/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.8. Moving on with JSF

We couldn't cover the full range of JSF features in the few dozen pages available to us here. For a
more in-depth look, JavaServer Faces (O'Reilly) delves deeper into the essential JSF functionality and
provides an introduction to the art of creating your own custom JSF components.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 6. Enterprise JavaBeans
RMI and JavaBeans bring a standard distributed object framework and a component model,
respectively, to the general Java environment. The Enterprise JavaBeans architecture builds on these
foundations to provide a standard distributed component model for the enterprise Java environment.

So, you may ask, how are EJB components different from "regular" RMI and CORBA distributed
objects or nondistributed JavaBeans components? Well, in a nutshell (so to speak), an EJB includes
the capabilities of both and adds an entire set of enterprise services. An EJB component has the
remote capabilities of an RMI or CORBA object, in the sense that it can be exported as a remote
object using RMI or RMI/IIOP. An EJB component is also a JavaBeans component since it has
properties that can be introspected and it uses JavaBeans conventions for defining accessor methods
for its properties. The EJB architecture provides a framework in which a developer can easily take
advantage of transaction processing, security, persistence, and resource-pooling facilities provided by
an EJB container. These facilities don't come for free, of course. You need to understand how they
work and what rules your EJB object needs to follow in order to take advantage of these services.

Enterprise JavaBeans are useful in any situation in which regular distributed objects are useful. They
excel, however, in situations that take advantage of the component nature of EJB objects and the
other services that EJB objects can provide with relative ease, such as transaction processing and
persistence. A good example is an online banking application. A user sitting at home wants to connect
to all of her financial accounts, no matter where and with whom they may live, and see them tied
together into one convenient interface. The EJB component architecture allows the various financial
institutions to export user accounts as different implementations of a common Account interface, just
as we would do with other distributed object APIs. But since the Account objects are also EJBs, we
can use the EJB server's transaction management capabilities to implement the Accounts as
transactional components, which allows the client to perform a number of account operations within a
single transaction and then either commit them all or roll them back. This can be a critical feature in
financial applications, especially if you need to ensure that a supporting transfer can be executed
before a withdrawal request is submitted. The transactional support in EJB ensures that if an error
occurs during the transfer and an exception is raised, the entire transaction can be rolled back and
the client-side application can inform you of the reason. And of course, an application such as this
may also take advantage of any of the other EJB-related component services.

The EJB component model insulates applications and beans (for the most part) from the details of the
component services included in the specification. A benefit of this separation is the ability to deploy
the same enterprise bean under different conditions, as needed by specific applications. The
parameters used to control a bean's transactional nature, persistence, resource pooling, and security
management are specified in separate deployment descriptors , and not embedded in the bean
implementation or the client application code. So, when a bean is deployed in a distributed
application, the properties of the deployment environment (client load levels and database
configuration, for example) can be accounted for and reflected in the settings of the bean's
deployment options.

The EJB API is a standard extension to Java, available in the javax.ejb package and its subpackages.
You must install this extension API explicitly to write code against the EJB interfaces. You can find the
latest version of the API at http://java.sun.com/products/ejb. You should also note that EJB is just a

http://java.sun.com/products/ejb
http://lib.ommolketab.ir
http://lib.ommolketab.ir

specification for how distributed components should work within the Java environment. In order to
actually create and use EJB objects, you need to install an EJB-enabled server. J2EE-compliant
application servers provide this service and are bundled with the standard EJB API classes and
interfaces.

Finally, it's important to note that this chapter provides only a basic introduction to Enterprise
JavaBeans, which is an extensive specification with many features. For more complete coverage, see
Enterprise JavaBeans by Richard Monson-Haefel (O'Reilly).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.1. What Version Is Covered Here?

As discussed in the introduction to this book, the current versions of virtually all the prominent J2EE
servers support the 1.4 version of the J2EE specification. This translates to supporting the EJB 2.1
specification, the version required by J2EE 1.4. At the time of this writing, however, draft versions of
the EJB 3.0 specification have been distributed, and various vendors and open source projects have
announced support for the new version. Since the EJB 3.0 specification is still in development and
likely to change before it is finalized, we've restricted our coverage in the chapter to EJB 2.1. But at
the end of the chapter, we do provide a short summary of the new programming model being
planned for EJB 3.0.

The code examples in this chapter have been tested in the EJB container in JBoss 4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.2. EJB Component Model Overview

Chapter 13 discusses the two fundamental roles in the RMI environment: the client of the remote
object and the object itself, which acts as a kind of server or service provider. These two roles exist
in the EJB environment as well, but EJB adds a third role, called the container. Figure 6-1 shows a
conceptual diagram of how the three EJB roles interact. The container is responsible for interceding
between the client (any code that is invoking the EJB) and the EJB component itself. The container
also provides all the extra services for an EJB object mentioned earlier: transaction processing,
security, object persistence, and resource pooling. If you're familiar with CORBA, you can think of the
EJB container as being roughly equivalent to the ORB in CORBA, with a few of the CORBA services
thrown in as well. In EJB, however, the container is strictly a server-side entity. The client doesn't
need its own container to use EJB objects, but an EJB object needs to have a container in order to be
available for client use.

Figure 6-1. The basic roles in an EJB environment

6.2.1. The Enterprise JavaBeans Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

At the heart of an EJB component is the actual implementation object. The EJB implementation class
is where the real value of the EJB liesthe business methods that clients want to invoke are
implemented here.

The EJB object:

Implements the business logic behind the operations in its client interfaces

Interacts with the EJB container to make use of component services, like security and
transaction management

6.2.1.1. Types of EJBs

The three fundamental types of Enterprise JavaBeans are session, entity, and message-driven. The
key difference between these component models lies in how they are managed during their lifetime
by the EJB container and what component services are available to them through the container.
Before implementing an EJB component, it's important to understand these different types and
decide which one is most appropriate for a particular situation.

Session bean

Typically accessed by one client at a time and is nonpersistent. It lives for a specific period of
time (a session) and then gets removed by the server.

Entity bean

Represents a data entity in persistent storage (e.g., a database or filesystem). Entity EJBs that
represent the same persistent entity can be accessed by multiple clients concurrently. The data
that defines a particular entity can be persistent beyond a client session, beyond the life of a
particular EJB component instance, and beyond the lifetime of the EJB server.

Message-driven beans

Seen by clients as a JMS destination, but are managed by the EJB container similar to a session
EJB. Clients send messages to the JMS destination, the messages are mapped to operations on
the EJB component, and the results, if any, are mapped back into JMS messages that are
accessible by the client through the JMS destination.

To illustrate the differences between session, entity, and message-driven beans , suppose you're
building an online banking system using EJB components. An automated teller machine, which
reports on account balances and executes deposits and withdrawals on specified accounts, could be
implemented as a session bean. A single client uses the teller bean to perform services on bank
accounts that are maintained in some separate persistent store (the bank's database). An EJB object
that directly represents a bank account, however, should be an entity bean. Multiple clients can
access the account to perform transactions, and the state of the account entity should be persistent
across the lifetime of the online banking server. If we want to provide wireless access to the banking
system from PDAs or mobile phones, we might have these devices communicate with the system

http://lib.ommolketab.ir
http://lib.ommolketab.ir

using lightweight, asynchronous messaging, since their network connectivity is typically unstable and
low in bandwidth. This may lead us to use message-driven EJBs, which can respond to these client
messages but still take advantage of the lifecycle management capabilities of the EJB container.

6.2.1.2. EJB code artifacts

At a minimum, an EJB component consists of an implementation class that is deployed to the EJB
container, plus a deployment descriptor that tells the EJB container how to manage the component.
Depending on the specific type of EJB you are implementing, the EJB may also need to include one or
more client interfaces and server-side support classes required for the EJB container to manage the
component.

Specifically, a message-driven bean requires only an implementation class and a deployment
descriptor. These beans are seen by clients as JMS destinations to which they send messages, so
there's no need for client interfaces for these EJBs .

Session beans are created by clients using their home interface(s) and operated by clients using their
client interfaces, so these interfaces (in addition to the implementation class and deployment
descriptor) are required when implementing session EJBs.

Entity EJBs are the most complex to implement because they make the most use of the EJB
container's services. In addition to the implementation class, home interface(s), client interface(s),
and deployment descriptor, an entity bean may also require a primary key class. Entity beans also
have a significant amount of additional information in their deployment descriptors, related to their
persistence properties.

6.2.2. The EJB Client

An EJB client uses EJB objects to access data, perform tasks, and generally get things done. In the
EJB environment, the first action a client performs is to find the home interface for the type of EJB
object that it wants to use. This home interface is a kind of object factory, used to create new
instances of the EJB type, look up existing instances (only when using entity EJB objects, discussed
later), and delete EJB objects. This is a bit different from RMI, in which the client first has to get a
direct handle to an existing RMI servant. In many RMI applications, this first RMI object is a kind of
object factory that is used to create other RMI object references. So, in a sense, the use of home
interfaces in EJB is just formalizing the role of factory objects in distributed component applications.

EJB home interfaces are located by clients using JNDI (described in Chapter 9), the same way that
other J2EE resources like JDBC DataSources and JMS ConnectionFactory resources are accessed. An
EJB server publishes the home interface for a particular EJB object under a particular name in a JNDI
namespace. The EJB client needs to connect to the JNDI server and look up the EJB home interface
under the appropriate name in order to start things off.

We'll see concrete examples of EJB clients a bit later in the chapter, but here is a summary of the
fundamental steps an EJB client performs:

Gets a JNDI context from the EJB/J2EE server1.

2.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.

Uses this context to look up a home interface for the bean you want to use2.

Uses this home interface to create (or find) a reference to an EJB3.

Calls methods on the bean4.

6.2.3. The EJB Container

Most readers need to be familiar with EJB containers only from the perspective of an EJB client or an
EJB object. A J2EE application server provides an internal EJB container, along with other required
aspects of the J2EE framework. EJB-enabled application servers, with their own EJB containers and
deployment tools, are available from BEA, JBoss, IBM, Sun, and many others.

The EJB container supplies the value-added features that EJB provides over standard remote objects
built using RMI or CORBA. The EJB container manages the lifecycle of your EJBs and all the details of
transaction processing, security, resource pooling, and data persistence. For components that require
these services, the use of the EJB container reduces the burden on both client applications and EJB
objects, allowing them to deal with just the business at hand.

An EJB container is the heart of an EJB environment, in the same way that an ORB is the heart of a
CORBA environment or a web server is the heart of a web environment. As depicted in Figure 6-1, all
runtime interactions between the clients and the EJB objects themselves are mediated by the EJB
container (although from the client's perspective, it seems as though they are interacting directly
with the EJB component itself).

The EJB container takes all of the elements that make up your EJB (the implementation class, any
client interfaces, etc.) and a deployment descriptor, and it uses these to generate the various support
classes needed to manage and run the EJB component, as shown in Figure 6-2. You provide any
needed home and client interfaces, and the container generates both the client and the server-side
implementations for these interfaces. As the figure shows, EJBs can support both local and remote
clients. When a remote client looks up a session or entity bean's remote home interface through
JNDI, it receives an instance of a remote stub class. All methods invoked on this stub are remotely
invoked, via RMI or IIOP, on the corresponding home implementation object on the EJB server.
Similarly, if the client creates or finds any beans through the remote home stub, the client receives
remote object stubs, and methods invoked on the stubs are passed through RMI or IIOP to
corresponding implementation objects on the server. These remote objects are linked, through the
EJB container, to a corresponding enterprise bean object, which is an instance of your bean
implementation class. Local clients interact with EJBs in a simplified, more efficient way. Local home
objects and bean interfaces are obtained the same way as remote ones, but the objects obtained are
nonremote objects that interact locally (i.e., from within the same Java virtual machine) with their
EJB implementations.

Note that Figure 6-2 demonstrates the situation for session and entity beans. Message-driven beans
are accessed by clients using JMS messages sent to a JMS destination, and EJBs that are published as
web services are invoked by clients using SOAP calls. So in both of these cases, clients do not need
home or client interfaces. Details on JMS and SOAP clients can be found in Chapters 11 and 12,
respectively.

It's important to remember that all client requests to create, look up, delete, or call methods on EJBs
are mediated by the EJB container. It either handles them itself or passes the requests to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

corresponding methods on to the EJB object. Once the client obtains a reference to an interface for
an EJB object, the container intercedes in all method calls to the bean to provide the bean with
required services (transaction management, lifecycle management, and security) and to notify the
bean of any events related to these services (for example, the bean needing to reload its persistent
data or the bean instance being destroyed by the container).

Figure 6-2. Relationship of bean-provider classes and container-
generated classes

When you deploy an EJB object within an EJB server, you use deployment descriptors to specify how
the container should manage the bean during runtime, in terms of all the services the container
provides. Deployment descriptors contain parameter settings for these various options. These
settings can be customized for each deployment of an EJB object. You might purchase an EJB object
from a vendor and deploy it on your EJB server with a particular set of container management
options while someone else who purchased the same bean can deploy it with a different set of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

deployment options. We discuss the details of the runtime options available in deployment descriptors
and how to use them later in this chapter when we talk about deploying EJB components.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.3. EJB Tutorial

Now let's look at the generic steps that you take to implement an Enterprise JavaBeans component.
In all of the examples that follow, we're showing you the "traditional" approach to writing EJBs: you
create the client and home interfaces (where needed), the implementation classes, and the
deployment descriptor by hand. A number of tools are available to simplify EJB development by
creating these elements for you. Chapter 21 discusses XDoclet annotations that can be used to
automatically generate interfaces and deployment descriptors for EJBs using special Javadoc
comments in your code. At the end of this chapter we also give a preview of similar features being
integrated into the EJB 3.0 specification. But even with current and upcoming development aids, it's
important to understand the underlying EJB programming model so that you can apply the tools
effectively.

As we discussed earlier, every type of EJB (session, entity, message-driven) must include a bean
implementation class. This class houses the bean's business logicit's the heart of the component. All
the other trappings of the EJB either give clients ways to access the bean or help the container
manage the bean.

If you are creating either an entity or a session bean, you also need to provide:

Home interfaces

A home interface is used by clients to create or find EJB objects of a specific type. An EJB can
have both local and remote home interfaces , though in most cases only one or the other is
needed, based on the context in which the EJB is being deployed.

Client stub interfaces

When a client creates or finds an EJB object through a home interface, the container provides
the client with a reference to a stub that implements the client interface for the bean. The
interface defines the methods the EJB object exports to clients. As with home interfaces, an
EJB can have both local and remote bean interfaces.

The EJB object implementation must implement all the methods defined in its remote and local
interfaces, provide methods that correspond to the methods on its home interface for creating or
finding the bean, and also implement a set of required methods used by the EJB container to manage
the bean.

Message-driven beans require only the bean implementation class. They don't have home interfaces
or client interfaces since the client interface is implemented using JMS message passing (we'll give
more details on creating and using message-driven beans later in the chapter).

To demonstrate the various components that make up an Enterprise JavaBeans object, we'll look at a
simple example: a profile server. The profile server is a bean that provides profile information for

http://lib.ommolketab.ir
http://lib.ommolketab.ir

named users. This profile information consists of name/value pairs that might represent preferences
in an application, historical usage patterns, and the like. You might see a profile server running
behind an online information service, personalizing the content and appearance of the site. After
we've gone through this general example of writing a bean, we'll look more closely at the differences
between implementing session and entity beans.

6.3.1. Client Interfaces

Although the bean implementation is central to the functions of the EJB component, it's typical to
start putting together an EJB by defining its client interface(s). Client interfaces contain declarations
of the methods that are available to clients.

6.3.1.1. Remote client interfaces

A remote client interface for our ProfileManager is shown in Example 6-1. A remote EJB client
interface must extend the javax.ejb.EJBObject interface. EJBObject in turn extends the
java.rmi.Remote interface, which makes the remote client interface an RMI remote interface as well.

Example 6-1. Remote interface for the profile manager bean

import javax.ejb.*;
import java.rmi.RemoteException;

public interface ProfileManager extends EJBObject {
 public ProfileBean getProfile(String acctName)
 throws NoSuchPersonException, RemoteException;
}

The ProfileManager interface defines a single method, getProfile(), that accepts an account name
as its only argument. It returns a ProfileBean object containing the profile information for the person
named. If the person's profile can't be found on the server, a NoSuchPersonException is thrown. This
is an application-specific exception whose implementation isn't discussed in this chapter. Since the
ProfileManager interface is an RMI remote interface, its methods must throw RemoteException in
case some RMI communication problem occurs during a method call. Also, the arguments and return
values for the methods have to be Serializable, or they need to be exportable RMI objects
themselves. Our getProfile() method returns a ProfileBean object, which we'll implement as a
Serializable object, as shown below in Example 6-2. The ProfileBean, not shown here but included
in the example source code download for the book, is a fairly straightforward Java bean: it simply has
methods that allow you to get and set the profile entry values.

6.3.1.2. Local client interfaces

A local client interface for an EJB is defined in a similar way, but the rules and usage of the interface

http://lib.ommolketab.ir
http://lib.ommolketab.ir

differ from those of its remote counterpart. As we've mentioned, local interfaces are used by clients
that reside in the same JVM as the EJB itself, so they follow the same argument-passing and return-
value rules as normal, nonremote Java classes: objects are passed by reference, and basic data
types are passed by value. No remote operations are involved in the use of a local interface, so
there's no need to ensure that method arguments and return values are Remote or Serializable
object types. And methods in a local interface aren't required to throw RemoteException. Local
interfaces extend the EJBLocalObject interface, which is a simplified, nonremote interface. A local
interface for our profile server is shown in Example 6-2.

Example 6-2. Local interface for the profile server

import javax.ejb.*;

public interface ProfileManagerLocal extends EJBLocalObject {
 public ProfileBean getProfile(String acctName)
 throws NoSuchPersonException;
}

An EJB implementation class needs to provide implementations for all the methods exposed in its
remote and local interfaces.

6.3.2. Home Interfaces

The client needs a way to create a reference to a profile server, so we have to provide a home
interface for our bean. Since clients use home interfaces directly, and since clients can be either
remote or local, an EJB can also have remote and local home interfaces.

Example 6-3 shows a remote home interface for our EJB. It provides a single create() method that
takes no arguments and returns the bean's remote interface type, ProfileManager.

Example 6-3. Remote home interface for the profile server bean

import javax.ejb.*;
import java.rmi.RemoteException;

public interface ProfileManagerHome extends EJBHome {
 public ProfileManager create() throws CreateException, RemoteException;
}

A remote home interface for an EJB object extends the javax.ejb.EJBHome interface. The remote
home interface is also an RMI remote interface since EJBHome extends java.rmi.Remote. The home
interface can contain multiple create() methods that take various initialization arguments to create
the bean. A corresponding local home interface is shown in Example 6-4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 6-4. Local home interface for the profile server bean

import javax.ejb.*;

public interface ProfileManagerLocalHome extends EJBLocalHome {
 public ProfileManagerLocal create() throws CreateException;
}

For each create() method on a home interface, the EJB object implementation must have a
matching ejbCreate() method that takes the same arguments. In either remote or local home
interfaces, create() methods are required to throw javax.ejb.CreateException, in case some error
occurs during the EJB creation process. Create methods (and all other methods) on remote home
interfaces must also throw java.rmi.RemoteException (or one of its parent exceptions) since the
home interface is an RMI remote interface and some sort of network/communication error could
occur between the client and the home implementation on the server. If the corresponding
ejbCreate() method on the bean implementation throws any other exceptions, the create()
method has to include these in its throws clause as well. As we'll see in our bean implementation in
the next section, the bean's ejbCreate() method doesn't throw any special exceptions, so we don't
need to add any additional exceptions in the home interfaces.

Home interfaces for entity beans can also include finder methods, used to find previously created
persistent entity beans. We'll discuss them when we talk about entity beans in detail.

6.3.3. The Bean Implementation

Now that we have a home interface that lets clients create EJB references and interfaces that
describe what the EJB can do for the client, we need to actually implement the EJB object itself.
Every bean implementation class can be divided into three sets of methods: business method
implementations, container callback methods, and internal utility methods used by the bean class
itself. A complete implementation class for the ProfileManager EJB can be found in the downloadable
source code for the book; we'll just look at the highlights here in terms of these three categories of
methods.

The business method implementations must match the business methods that are exposed in the
EJB's client interfaces. For our ProfileManagerBean, we have only one business method in the client
interfaces: getProfile(). Our implementation of this business method is simple enough:

public Profile getProfile(String name) throws NoSuchPersonException {
 // First validate the provided name, throw a NoSuchPersonException
 // if it's not valid
 if (!validateName(name)) {
 throw new NoSuchPersonException("No user found matching name \"" +
 name + "\"");
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // If the name is valid, find/create the profile. Here, we simply
 // create a new profile Java bean (e.g., no persistence is provided)
 Profile profile = new Profile(name);
 return profile;
}

We validate the name argument and create a new Profile JavaBean object for the named user. Note
that this highly simplified implementation provides no persistence featuresevery time a username is
given, a new, empty profile is created and returned. We'll see later in the tutorial how to integrate
persistence into the bean implementation.

The validateName() method is an internal utility method: it's private, and it's not included in any of
the client interfaces, so it's not available for clients to invoke.

Every implementation class for any EJB object must implement the javax.ejb.EnterpriseBean
interface. This is typically done indirectly, through the SessionBean, EntityBean, or
MessageDrivenBean interface. These interfaces include the required callback/notification methods that
the EJB container needs in order to effectively manage the lifecycle of the EJB at runtime. Our sample
EJB implementation is a session bean, so the ProfileManagerBean class implements the SessionBean
interface.

The implementation class must follow a few other rules. The class must be declared as public to
allow the container to introspect the class when generating the classes that hook the bean to the
container and to allow the container to invoke methods on the bean directly where necessary. The
bean class doesn't implement the bean's remote or local interface. This may seem a bit strange at
first, especially if you're familiar with remote object systems like RMI and CORBA, since the purpose
of the bean is to provide a concrete implementation of the EJB's interfaces, and in these other
contexts this is done through direct inheritance. But in an EJB context, the EJB container always
mediates between a client method request and the actual call on the corresponding method on a
bean instance. As long as the container is explicitly told the EJB's various interfaces and its
implementation class (and we'll see how to do that with deployment descriptors in a later section), it
has all the information it needs to make this connection. When the EJB server generates the classes
that bridge the bean to the container, it also provides a class that implements the remote interface
and acts as a proxy to the EJB class itself.

The EJB container callbacks actually make up the bulk of the implementation class. These methods
serve as the hooks the EJB container uses to manage the bean as a component. They also implement
some of the functionality provided to the client through the client home and stub interfaces. For
example, since the home interfaces for this EJB include a no-argument create() method, we must
provide an equivalent ejbCreate() method that will be invoked by the container on a bean instance
when the create() method is invoked by a client on a home interface. The ejbCreate() method is a
container callbackit gives the EJB implementation object a chance to initialize any resources it might
need to operate properly. In our case, resources must be set up (because our implementation is so
simple), but we still need to provide a method implementation for the container:

public void ejbCreate() {
 System.out.println("ProfileManagerBean created.");
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The other remaining methods on the implementation class, ejbActivate(), ejbRemove(),
ejbPassivate(), and setSessionContext(), are also container callbacks, invoked by the container
to manage the EJB instance during its lifetime.

All session and entity bean implementations have to provide the following container callback
methods, which are used in the following ways:

public void ejbCreate(...)

Called on a bean instance after a client invokes a corresponding create() method on a bean's
home interface. Create methods are required for session and message-driven beans and
optional for entity beans. The arguments, if any, in the create method indicate the identity or
starting state of the bean. Note that the return type of ejbCreate() methods depends on the
component model being used by the EJB. Specifics for each type of EJB model are given in the
sections on session, entity, and message-driven beans.

public void ejbPassivate()

Called by the container just before a bean is to be serialized and stored in passive storage
(e.g., disk, database) on the server. This callback allows the bean to release any
nonserializable resources (e.g., open files, network connections).

public void ejbActivate()

Called by the container when the bean has been deserialized from passive storage on the
server, and is becoming eligible to receive client method requests again. It allows the bean to
reclaim any resources freed during passivation (e.g., file handles, network connections) or
restore any other state not explicitly saved when the bean was serialized.

public void ejbRemove()

Called by the container just before the bean is to be removed from the container and made
eligible for garbage collection. Again, the exact semantics of this method depend on the
component model of the EJB. "Removing" a session or a message-driven bean simply pulls the
bean out of its active state before it is actually destroyed by the container. Removing an entity
bean means to delete the bean's persistent state data from the underlying database.

In our example, the ProfileManagerBean doesn't need to perform any actions in these methods, so
they are implemented as empty methods that simply print message to standard output, indicating
that they have been called.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.4. Deploying EJBs

As with web components (servlets and JavaServer Pages), EJB components in the J2EE environment are
packaged into jar files, and the components are described and configured within an application server using
deployment descriptors that are included in these jar files. These deployment descriptors are based on an
XML DTD that is published as part of the EJB specification. An overview of J2EE deployment concepts can be
found in Chapter 2 . In this section, we discuss some EJB-specific deployment details that complement the
material in Chapter 2 .

Once you've written the home and remote interfaces and the implementation of your enterprise bean, you
need to deploy your beans in an EJB container, which involves the following steps:

Specify the deployment information and options for your bean, in the form of an XML file called an EJB
deployment descriptor. The information in this deployment descriptor includes the names of classes that
serve as the client interfaces, the home interfaces, and implementation for your EJB as well as any
transaction support options, access control settings, and so on. In addition to the basic deployment
information, different types of EJBs (session, entity, message-passing) require different sets of
additional metadata (e.g., data mappings for container-managed entity beans and session timeouts for
session EJBs).

1.

Provide any vendor-specific deployment information beyond the information in the standard J2EE
deployment descriptor. Some EJB container implementations allow/require you to specify additional
deployment parameters in a container-specific way, either in an additional configuration file for the EJB
or through a server management console.

2.

Generate the container-provided classes shown earlier in Figure 6-2 .3.

Package your EJBs into an ejb-jar file.4.

As shown in Figure 6-2 , the EJB container generates a set of classes that are needed to deploy your EJB
object. It's up to the EJB container to provide a tool or tools for generating these classes. Some may be
command-line tools that read a standard EJB deployment descriptor and generate the needed classes while
others may be GUI tools that let you control the deployment options of your bean using a visual interface.

6.4.1. EJB Deployment Descriptors

All EJB deployment descriptors include a listing of the Java classes that serve as the home, client, and
implementation classes for a particular EJB. They also include various metadata about the bean, such as a
description, a display name for the bean (useful in application server management interfaces), and so on.
Appendix A provides a complete reference for EJB deployment descriptors. We'll simply give a short overview
here. It might be useful to refer back to the schema structure diagrams in "Enterprise JavaBeans (ejb-
jar.xml)" in Appendix A as you read through this section.

The general structure for an EJB deployment descriptor is as follows:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<? xml version="1.0" encoding="UTF-8" ?>
<ejb-jar xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd" version="2.1">
 <!-- Metadata about the contents of the ejb-jar file ... -->
 <!-- Provide an enterprise-bean element for each EJB component
 contained in the jar -->
 <enterprise-beans>
 <!-- Describe a session bean -->
 <session>...</session>
 <!-- Describe an entity bean -->
 <entity>...</entity>
 <!-- Describe a message-driven bean -->
 <message-driven>...</message-driven>
 </enterprise-beans>
 <!-- Any additional metadata (inter-EJB relationships, assembly info,
 etc.) -->
 <relationships>...</relationships>
 <assembly-descriptor>...</assembly-descriptor>
 <ejb-client-jar>...</ejb-client-jar>
 ...
</ejb-jar>

The EJB descriptor starts with the usual XML preface. The top-level element in the deployment descriptor is
an <ejb-jar> element, and it references the standard XML schema for EJB deployment descriptors, in this
case referencing the schema from the java.sun.com server (see Chapter 7 for more details on XML schema
and namespaces). The <ejb-jar> root element contains an <enterprise-beans> element that lists each EJB
in the jar. Each entry within the <enterprise-beans> element contains the deployment information for a
single EJB, including the various classes that make up the EJB's implementation, runtime management
parameters, and so on.

A complete deployment descriptor that describes our ProfileManager EJB is shown in Example 6-5 .

Example 6-5. Deployment descriptor for the profile server EJB

<? xml version="1.0" encoding="UTF-8" ?>

<ejb-jar xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd"
 version="2.1">
 <!-- Description of contents -->
 <description>Introductory EJB Example:
 Stateless ProfileManager Bean</description>
 <display-name>ProfileManager Bean Example (stateless)</display-name>
 <enterprise-beans>
 <!-- A stateless session profile server EJB -->

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <session>
 <display-name>ProfileManager Bean</display-name>
 <ejb-name>ProfileManagerBean</ejb-name>
 <!-- Remote home interface -->
 <home>
 com.oreilly.jent.ejb.stateless.ProfileManagerHome
 </home>
 <!-- Remote bean interface -->
 <remote>
 com.oreilly.jent.ejb.stateless.ProfileManager
 </remote>
 <!-- Local home interface -->
 <local-home>
 com.oreilly.jent.ejb.stateless.ProfileManagerLocalHome
 </local-home>
 <!-- Local bean interface -->
 <local>
 com.oreilly.jent.ejb.stateless.ProfileManagerLocal
 </local>
 <!-- Bean implementation class -->
 <ejb-class>
 com.oreilly.jent.ejb.stateless.ProfileManagerBean
 </ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 </session>
 </enterprise-beans>
 <ejb-client-jar>ProfileManagerClient.jar</ejb-client-jar>
</ejb-jar>

We're using the <description> and <display-name> elements to provide some text descriptions of the
contents within the top-level <ejb-jar> element. The information contained in these elements might be used
by a management console on an application server or within an EJB-enabled IDE.

The <enterprise-beans> element contains one element for each EJB contained in an EJB jar. There are three
possible subelements of <enterprise-beans> , one for each type of EJB: <session> , <entity> , and
<message-driven> . Our ProfileManager EJB is a session bean, so we use the <session> element here. Within
the <session> element, we provide a display name for the bean itself and an <ejb-name> element that
provides a name that can be used to refer to this bean from other J2EE components. Then we specify all of
the classes that make up our EJB: the remote home and client interfaces (<home> and <remote>), the local
home and client interfaces (<local-home> and <local>), and the EJB implementation class itself (<ejb-class>
).

At the end of the <session> element comes configuration information that is specific to session EJBs. In this
case, we are using the <session-type> element to specify that this is a stateless session bean and the
<transaction-type> element to indicate that we want transactions managed by the EJB container for this
EJB. This information is used primarily by the EJB container to determine how the EJB should be managed at
runtime. The information that is specified in this section of the deployment descriptor depends on the type of
EJB being described (session, entity, message-driven). Examples of the kind of metadata required for the
various types of EJBs are provided later in this chapter.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.4.2. Security-Related Deployment Attributes

Security management is another important service provided by the EJB container for your components.
Essentially, the EJB container needs to provide some means for mapping a client identity to a named user or
role defined on the EJB server itself. Then you, the bean provider, specify which users and/or roles can
access each method on your bean. This approach to specifying security details keeps the access details out of
the bean implementation code and allows the same bean to be deployed in different EJB containers, using
different underlying security systems and access settings that suit the local context.

If you do need to resort to programmatic security checks in your EJB components, the EJBContext interface
provides access to the user's identity and roles. Refer to "EJB Component Security" in Chapter 10 for further
details on programmatic security in the EJB context.

6.4.2.1. Client security roles

The EJB specification allows you to specify security roles and associated access control levels in the EJB
deployment descriptor. Suppose that we are deploying our EJB-based profile service and we want any client
at all to be able to read profile entries, but we want only clients (individual users or client applications)
identified as administrators to be able to set profile entries. To do this, we first have to define an appropriate
security role in our EJB deployment descriptor. This is done in the <assembly-descriptor> element, which
follows the <enterprise-beans> and <relationships> elements in the root <ejb-jar> element. Within the
<assembly-descriptor> , you define a security role using the <security-role> element:

...
<assembly-descriptor>
 ...
 <security-role>
 <description>
 Profile administrators, allowed to update entries
 </description>
 <role-name>profile-admin</role-name>
 </security-role>
 ...
</assembly-descriptor>
...

In order for these security roles to actually mean anything, they need to be assigned to concrete principals
and/or groups defined within the security realms of whatever J2EE application server you are using to deploy
your EJBs. The specific details of how this is done depends on the particular vendor you are using. In BEA
WebLogic, you would use the WebLogic administration interface to create new realms that refer to existing
LDAP, RDBMS, native OS, and/or custom authentication services and then map your security roles to
principals defined in these realms. Other application servers will provide other schemes for authenticating
users and tying their identities into the EJB context.

6.4.2.2. Method permissions

So far we've declared some application-specific security roles, but we haven't given these roles any rights to
invoke methods on our EJBs. To do this, we have to add one or more <method-permission> elements to the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<assembly-descriptor> . A <method-permission> element gives a particular role rights to access one or more
methods on an EJB.

Suppose we defined a Profile EJB, with an implementation class called BMPProfileBean , representing
persistent data about a profile. This is an entity EJB version of the serializable Profile bean that we used in
our stateless session example earlier (this EJB will be shown in detail in later sections). We might have a
setEntry() method on this EJB that's used to alter entry values on the Profile , and we might want to give
only the profile-admin role the rights to execute the setEntry() method on our Profile bean. If so, we
would use a <method-permission> element such as:

...
<assembly-descriptor>
 ...
 <method-permission>
 <description>
 Only allow profile administrators to set entries on profiles
 </description>
 <role-name>profile-admin</role-name>
 <method>
 <ejb-name>BMPProfileBean</ejb-name>
 <method-name>setEntry</method-name>
 </method>
 </method-permission>
 ...
</assembly-descriptor>
...

This allows any user who has the profile-admin role to invoke the setEntry() method on the Profile ,
while all other client methods on the bean are accessible to everyone. The <role-name> indicates which role
should have access to this method, and the method element(s) indicates the EJB and method that this role
can access. Here, we have a single method specified: any method named setEntry on the BMPProfileBean
EJB defined in this deployment descriptor. If setEntry() is overloaded on our bean, we can be more specific
by including the method parameters of the single method we want made accessible:

...
<assembly-descriptor>
 ...
 <method-permission>
 <description>
 Only allow profile administrators to set entries on profiles
 </description>
 <role-name>profile-admin</role-name>
 <method>
 <ejb-name>BMPProfileBean</ejb-name>
 <method-name>setEntry</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 <method-param>java.lang.String</method-param>
 </method-params>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </method>
 </method-permission>
 ...
</assembly-descriptor>
...

You can also give access to all methods on an EJB by using an asterisk (*) as the value of the <method-name>
element. By default, all methods on all EJBs are accessible to everyone. Any methods not specified in a
<method-permission> element in the deployment descriptor maintain this global accessibility.

6.4.2.3. Propagating identities

It's also possible in EJB to specify how identities are propagated from your EJB to other EJBs and resources,
by indicating which role your EJB will assume when its methods are executed. The identity used to execute
the EJB methods will be passed forward when the EJB makes calls to other EJBs or accesses other J2EE
resources. This identity will be used to determine access rights to these resources in the same way that the
caller's credentials are used to control access to the EJB itself and so on down the call chain.

To specify the runtime identity used to execute your EJB methods, use the <security-identity> element in
the <session> , <entity> , and <message-driven> sections of the deployment descriptor. The <security-
identity> element allows you to specify either that the methods on the bean will be invoked using the
identity of the calling client or that a specific named security role will be used to invoke the bean methods.

The first option simply passes on the identity of the calling client when an EJB method invokes other EJBs or
resources. To specify this option, include the following in the EJB's deployment descriptor section (a session
bean is used as the example here):

...
<enterprise-beans>
 ...
 <session>
 ...
 <security-identity>
 <use-caller-identity />
 </security-identity>
 ...
 </session>
 ...
</enterprise-beans>
...

This scheme is most appropriate when the client operates in a context in which it can be authenticated
against a shared authority (e.g., a servlet is the user entry point, and the user is challenged with an HTTP
authentication prompt), and the user's identity can be propagated to the EJB container. Note that the <use-
caller-identity> option can't be used with message-driven beans since there is no path for a user's
credentials to be propagated to the EJB container via message destinations. A message-driven bean has to
assume its own role when handling messages.

The other alternative is to specify a role under which all invocations of your EJB will be executed. For this,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

use the <run-as> option in the <security-identity> :

...
<enterprise-beans>
 ...
 <session>
 ...
 <security-identity>
 <run-as>
 <role-name>profile-admin</role-name>
 </run-as>
 </security-identity>
 ...
 </session>
 ...
</enterprise-beans>
...

Here, we're specifying that all method invocations on our EJB will run under the profile-admin role and will
assume that role's access rights when invoking other EJBs and resources.

6.4.3. Packaging EJBs

An ejb-jar file is the standard packaging format for Enterprise JavaBeans. It is a normal Java archive (jar)
file, created using the standard jar utility, but it contains specific files that provide all the information needed
for an EJB container to deploy the beans that are contained in the jar file. An ejb-jar file can contain one or
more EJBs.

An ejb-jar file contains two types of files:

The class files for each bean, including their home and client interfaces, and the bean implementations.
An ejb-jar file can also include container-generated classes (concrete implementations of home and
client interfaces, for example).

Deployment descriptor files, as described in the previous sections. At a minimum, an ejb-jar file must
include a standard ejb-jar.xml file. Different EJB container vendors may also require additional
deployment descriptor files that allow you to control vendor-specific aspects of how your EJBs will be
managed at runtime.

An ejb-jar file is a compact, efficient way to package a set of EJBs for deployment in an EJB container; it
contains all the information an EJB container requires to manage your EJBs.

The compiled Java classes that make up your EJBs are included in the ejb-jar file in package-specific
directories, just as in a regular jar file. The deployment descriptor that describes and configures the EJBs
must be included in the ejb-jar file as META-INF/ejb-jar.xml .

Some EJB container vendors include a utility to facilitate the creation of ejb-jar files from your bean classes.
Ant also includes a task, ejbjar , that can be used to create ejb-jar files from your Ant buildfiles (see Chapter
17 for more details). It's a simple matter, however, to create an ejb-jar using the jar utility provided with the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

JDK. Assuming that you have created a valid ejb-jar.xml deployment descriptor file, such as the one shown
earlier, simply compile all of your relevant classes into a given directory, create a META-INF directory in this
same area, and put the ejb-jar.xml file in it, then use jar to create your ejb-jar file:

% jar cvf ProfileManager.jar com/oreilly/jent/ejb/*.class META-INF
added manifest
adding: com/oreilly/jent/ejb/ProfileManager.class(in = 344) (out= 225)(deflated 34%)
adding: com/oreilly/jent/ejb/ProfileManagerBean.class(in = 1254) (out= 598)(deflated 52%)
adding: com/oreilly/jent/ejb/ProfileManagerHome.class(in = 317) (out= 208)(deflated 34%)
adding: com/oreilly/jent/ejb/ProfileManagerLocal.class(in = 327) (out= 214)(deflated 34%)
adding: com/oreilly/jent/ejb/ProfileManagerLocalHome.class(in = 305) (out= 198)
(deflated 35%)
ignoring entry META-INF/
adding: META-INF/ejb-jar.xml(in = 0) (out= 0)(stored 0%)

This command creates an ejb-jar file named ProfileManager.jar in the current directory. Note that this ejb-jar
file doesn't contain any container-generated classes; these need to be created using tools provided by the
EJB vendor, as described in the next section.

6.4.3.1. Generating the container classes

So far we've seen the basic elements that make up an EJB (home interface(s), client interface(s), and a bean
implementation class), how the configuration parameters for one or more beans are specified in an XML
deployment descriptor, and how all of these can be packaged into a standard ejb-jar file. In order for an EJB
container to deploy your EJBs, it still needs to generate the container-specific classes depicted in Figure 6-2 .
How this is done depends on the EJB container you are using. If you are using BEA's WebLogic application
server, for example, you can use the appc tool that is provided with the server to generate the runtime
support classes needed by WebLogic. If we've packaged our EJB classes and deployment descriptor into an
ejb-jar file named ProfileManager.jar , we can use the appc tool like so (for a Unix environment):

> java -classpath $WL_HOME/lib/weblogic.jar:$CLASSPATH weblogic.appc -output
wl-ProfileManager.jar ProfileManager.jar

If the EJB(s) contained in the specified ejb-jar file check out (the interfaces, implementation classes, and
deployment descriptor meet the EJB specification requirements), this will generate a new ejb-jar file, wl-
ProfileManager.jar , that contains all the classes needed to run your EJB(s) within the WebLogic server. This
ejb-jar file can be directly deployed to the server.

Each EJB container will have its own scheme for generating support classes for your EJBs. Consult your EJB
vendor's documentation for specific details.

6.4.3.2. Delivering the package

Finally, after writing, configuring, and packaging one or more EJB components, you need to actually deliver
the EJBs to the server running the EJB container. Again, this procedure is not specified by the EJB or J2EE
specificationseach server implementation is free to do this in whatever way is most appropriate for it. In
some cases, EJB components are deployed by simply placing the ejb-jar file in a specific directory on the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

server. In other cases, a server management tool (web-based or otherwise) needs to be used to upload the
ejb-jar file to the server to deploy it.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.5. Using Enterprise JavaBeans

So far, we've seen the high-level details on implementing and deploying an EJB. Now let's look at
how you use an enterprise bean as a client.

It's important to note that a "client" for a given EJB can be many things. In a fairly typical scenario, a
client may be a Java servlet or JSP, running in the same or different J2EE server as the EJBs being
used. A client can also be a standalone GUI client (in J2EE parlance, an "application client") that
directly connects to a local or remote EJB container and makes requests of beans. A client can also
be another EJB, invoking an EJB on the same or different EJB server in order to satisfy a client
request. Regardless of which of these scenarios is the case, the following details apply.

6.5.1. Local Versus Remote Clients

A local client (i.e., a client that resides in the same Java virtual machine as the EJB container) can
interact with EJBs using either the local or remote interfaces for the EJB. If the EJB has a local home
and client interface, this provides an efficient way for the client to make requests, since their method
calls don't need to be marshaled into a remote method call and transmitted over an RMI or IIOP
connection to the EJB container. If the EJB doesn't have a local client and home interface, or if the
local interfaces don't expose the functionality that the client needs (remember that local and remote
interfaces for the same EJB don't need to be equivalent to each other), a local client must use its
remote home and client interface. Local EJB interfaces were introduced in EJB 2.0, so if you are using
EJB 1.1, your EJBs can have only remote interfaces.

Remote clients (i.e., clients that run in a different Java virtual machine than the EJB container) must
use the EJB's remote client and home interfaces . Remote interfaces are RMI client stubs (see
Chapter 13 for full details on Java RMI), and the underlying remote method protocol being used can
be RMI/JRMP (the "native" RMI protocol) or RMI/IIOP (the CORBA protocol). In order for a client to
maintain portability across different EJB implementations, it's important that remote references
obtained from the EJB container be cast to their interface types using the narrow() method on
javax.rmi.PortableRemoteObject. This ensures that RMI/IIOP remote references will be safely cast to
their expected type.

6.5.2. Finding Home Interfaces Through JNDI

Once an enterprise bean is deployed within an EJB container, the home interface(s) for the bean have
been exported under a particular name using JNDI according to the settings in the deployment
descriptor. As a client, you need to know how to connect to the JNDI context of the EJB/J2EE server
and know the name for the bean home interface you're interested in. Full details on using JNDI and
the options for creating InitialContexts can be found in Chapter 9, but in general you need to set
connection properties required for the JNDI provider you're connecting to and then create an
InitialContext object that points to the root of the naming system:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Hashtable props = new Hashtable();
// Specify the necessary properties
...
// Try looking up the context
javax.naming.Context ctx = null;
try {
 ctx = new javax.naming.InitialContext(props);
}
catch (NamingException ne) {
 System.out.println("Failed to connect to JNDI service for EJB server");
}

If you're running within a J2EE environment (e.g., the EJB client is actually a web component running
within the same J2EE server), you typically won't need to specify any connection properties. The J2EE
server is configured so that the default JNDI connection properties point to its internal JNDI service,
and you can use the no-argument form of the InitialContext constructor:

ctx = new javax.naming.InitialContext();

Now that we have a JNDI naming context from the EJB server, we can look up the home interface for
the bean we're interested in. Assuming that we deployed our bean and specified to the EJB container
that its JNDI name should be ProfileManagerHome, we can obtain a reference to a home interface to
the bean with code such as the following:

ProfileManagerHome pHome = null;
try {
 Object pRef = ctx.lookup("ProfileManagerHome");
 pHome =
 (ProfileManagerHome)PortableRemoteObject.narrow(pRef,
 ProfileManagerHome.class);
}
catch (NamingException ne) {
 System.out.println("Failed to lookup home for ProfileManager bean.");
}

Notice that we're using the javax.rmi.PortableRemoteObject.narrow() method to safely cast the
remote reference obtained from the EJB container to the expected home interface type. This allows
our client to work safely with EJB servers that provide RMI/IIOP remote references to their beans.

6.5.3. Creating and Finding Beans

As we saw in the previous sections, home interfaces for an EJB contain methods that allow a client to
create new beans or find existing beans (for entity beans). Continuing our example client, assuming
we're using our ProfileManager bean and its corresponding home interface shown in Example 6-3, we

http://lib.ommolketab.ir
http://lib.ommolketab.ir

can create a reference to a ProfileManager bean as follows:

ProfileManager pServer = null;
try {
 pServer = pHome.create();
}
catch (RemoteException re) {
 System.out.println("Remote exception while creating
 ProfileManager: " +
 re.getMessage());
}
catch (CreateException ce) {
 System.out.println("Error occurred during creation:
 " + ce.getMessage());
}

We're using the create() method defined on our ProfileManagerHome interface. Since this is a
remote home interface, we need to catch both RemoteException and CreateException in our client
code, in case some error occurs while communicating with the remote EJB container or during the
create process itself. Assuming all goes well, we can now use our ProfileManager bean, invoking its
business methods as needed by our client.

In the sections that follow, we'll examine client usage of each type of EJB (session, entity, and
message-driven) in more detail, after we discuss the implementation and deployment details of each
EJB component type.

6.5.4. EJB Handles and Home Handles

Every bean's remote client interface (if it has one) extends the EJBObject interface. Among other
things, this interface allows the client to obtain a serializable handle on the remote enterprise bean.
This handle is a persistent reference to the bean that can be serialized and then stored in local
storage on the client side or emailed as an attachment to other users, for example. Later, a client can
deserialize the handle object and continue interacting with the bean it references. The handle
contains all of the information needed to reestablish a remote reference to the enterprise bean it
represents. Since this is useful only for beans that are still valid when the handle is reconstituted, it is
usually applicable only to entity beans, since they are persistent. Handles to session beans can also
be used this way, as long as the handle is serialized and deserialized during the lifetime of the session
bean (e.g., the EJB container doesn't shut down in the meantime or the session bean is not removed
from memory by the container).

You can get the handle for a bean using the getHandle() method on a remote bean object
reference:

ProfileManager profileServ = ...;
Handle pHandle = pServ.getHandle();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The getHandle() method returns a javax.ejb.Handle object. Typically, the Handle implementation
for a particular EJB is provided by the EJB container and is generated automatically from the EJB
remote client interface and bean implementation class that you provide. Every Handle implementation
is a Serializable object, which allows it to be transmitted to remote clients and to be stored in
serialized format, if needed:

ObjectOutputStream oout = ...;
oout.writeObject(pHandle);

Later, you can read the object back from its serialized state and obtain a reference to the same
remote EJB, using the getEJBObject() method on the handle:

ObjectInputStream oin = ...;
Handle pHandleIn = (Handle)oin.readObject();
EJBObject pRef = pHandleIn.getEJBObject();
ProfileManager pIn =
 (ProfileManager)PortableRemoteObject.narrow(pRef, ProfileManager.class);
ProfileBean prof = pIn.getProfile("JohnSmith");

When we call getEJBObject() on the Handle, the Handle communicates with the source EJB
container and attempts to construct a remote reference to the bean that the handle came from
originally. As with other situations in which we receive a remote reference from the EJB container, we
use the PortableRemoteObject.narrow() method to safely cast the remote EJB interface to the
expected type, and then we can use the EJB.

It's also possible to get a handle for a remote home EJB interface. The same basic sequence of
events can be followed for obtaining and serializing a home handle: obtain the handle by calling the
getHomeHandle() method on a home stub instance, use the appropriate serialization technique
(instantiate an ObjectOutputStream, store the handle in a binary field in a database, and so on) to
store the handle:

ProfileManagerHome pHome = ...
HomeHandle pHomeHandle = pHome.getHomeHandle();
ObjectOutputStream oout = ...;
oout.writeObject(pHomeHandle);

We can reconstitute the serialized HomeHandle later and use its getEJBHome() method to get a new
remote home reference for the same EJB:

ObjectInputStream oin = ...;
HomeHandle pHomeHandleIn = (HomeHandle)oin.readObject();
EJBHome pHomeRef = pHomeHandleIn.getEJBHome();
ProfileManagerHome profileHomeIn =
 (ProfileManagerHome)PortableRemoteObject.narrow(
 pHomeRef, ProfileHome.class);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ProfileManager pServer = profileHomeIn.create();

The EJB specification doesn't dictate the usable lifetime of a home handle. It may become invalid
after the source EJB container restarts, it may expire after some timeout period, or it may remain
valid for an extended period of time. Consult your EJB vendor documentation for specific details.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.6. Session Bean Specifics

Now that we've seen all the basic elements of implementing, deploying, and using an EJB, let's look a
bit at the specifics of implementing session beans.

Beans that simply provide a set of well-defined functionality to clients are best-suited to be session
beans. A simplified view of session beans is to think of them as regular remotely callable objects (like
RMI objects) that are managed by an EJB container and therefore have access to all the basic EJB
services (such as lifecycle management and security). Another way to decide whether an EJB should
be a session bean is to remember what a session bean isn't: session beans are not meant to
represent persistent data entities. A client acquires a reference to a session bean and asks it to
perform functional services by calling methods on the bean. If the chunk of functionality you want to
package for clients fits this description, the session bean model is probably the right one.

A session bean gets its name from the fact that it doesn't live beyond the lifetime of its serverin other
words, it is not persistent. If an EJB client has a reference to a session bean and the host EJB server
restarts, that session bean reference is no longer valid. You can reacquire a session bean of the same
type from the same server after the restart, but it's not guaranteed to be in the same state as the
bean you had before the server restart.

In terms of implementing session beans, the following sections cover specific requirements for
session beans in addition to the general EJB requirements spelled out earlier.

6.6.1. Session Bean Implementation Classes

Session bean implementation classes must follow these rules:

Session bean classes must implement the javax.ejb.SessionBean interface.

The implementation class also must implement the setSessionContext() method specified in
the SessionBean interface. The container calls this method on the session bean just after the
bean has been created, passing in a javax.ejb.SessionContext object that represents the
runtime context for the bean. This session context is valid for the life of the bean.

6.6.2. Stateless Versus Stateful Session Beans

Session beans can be stateful or stateless . A stateless session bean doesn't maintain client state
across method calls. If a client makes a series of method calls or transactions with the stateless
bean, the bean should be in the same effective state at the start of each method call or transaction.
Our ProfileManagerBean is implemented as a stateless session beanthe key signal of this is the use of
the Stateless value for the session-type parameter in its deployment descriptor in Example 6-5. The
stateless session model makes sense for the ProfileManager: the component doesn't need to keep
any client-specific state to perform its function. It just locates a profile for a named user and returns

http://lib.ommolketab.ir
http://lib.ommolketab.ir

it, and then it's out of the picture.

Since stateless beans don't have any client state, they are entirely interchangeableany instance of a
stateless bean of a given type can be used to respond to a client request. And that's exactly how an
EJB container manages stateless beansit keeps a pool of precreated beans on the server, and when a
client request comes in, the container picks an instance at random, effectively, and invokes the
required method on it. Stateless beans also don't need to be passivated since they have no state that
needs to be restored when they're reactivated. The container simply destroys any stateless session
beans it feels are no longer needed.

A stateful session bean, on the other hand, does maintain client-specific state that can be accessed
and changed directly by a client. So a client that creates a stateful session bean owns it for the life of
the bean, and no other clients ever get access to it. The bean stays active in the container until the
client removes it or until the client's reference to the bean expires (e.g., the client dies and the lease
on the remote reference expires), whichever comes first. Again, the container won't associate that
particular bean instance with any other clientthe client that created it owns it for its lifetime.

To illustrate the difference between stateless and stateful session beans, let's take our stateless
ProfileManagerBean and convert it to a stateful session bean. The ProfileManagerBean is stateless
because all it does is accept requests for user profiles and return the profiles directly to the client as
Profile objects, which are Serializable JavaBean objects. The client then interacts with the Profile
directly, and the Profile holds the conversational state for the client, in the form of the values of the
profile entries.

We can provide the same functionality by merging the stateless session ProfileManager EJB and the
Profile Java bean into a single stateful session Profile EJB. Instead of creating a reference to a
ProfileManager and calling its getProfile() business method to get a Java bean, the clients create
a stateful Profile EJB directly using its home interface.

Example 6-6 shows the remote interface for the Profile EJB (we won't implement a local interface
for this example). It's similar to the interface for the Profile Java bean we used in the stateless
ProfileManager example. It has setEntry() and getEntry() methods that access entries using their
names. The Profile EJB also has accessors for the name of its user.

Example 6-6. Remote client interface for the Profile EJB

import java.rmi.RemoteException;
import javax.ejb.EJBObject;

public interface Profile extends EJBObject {
 // Get the name of the user associated with this profile
 public String getName() throws RemoteException;
 // Look up an entry by name
 public String getEntry(String name) throws RemoteException;
 // Set an entry value
 public void setEntry(String name, String value) throws RemoteException;
}

We'll need a home interface that clients can use to create these profiles. It's shown in Example 6-7we

http://lib.ommolketab.ir
http://lib.ommolketab.ir

provide only a single create() method, taking the name of the user who owns the profile. Notice
that the create() method throws the exceptions required by the EJB standard (RemoteException,
because this is a remote home interface, and CreateException), but it also throws an application-
specific exception, NoSuchPersonException. We defined this exception for this application (it indicates
that the named user could not be found on the server). We can add any application-specific
exceptions that we want to create() methods on home interfaces, as long as we also include them
in the signature of the corresponding ejbCreate() methods on the bean implementation class.

Example 6-7. Remote home interface for the Profile EJB

import java.rmi.RemoteException;

import javax.ejb.CreateException;
import javax.ejb.EJBHome;

public interface ProfileHome extends EJBHome {
 // Create a profile for a named person. Throws an exception if the person's
 // profile can't be found.
 public Profile create(String name)
 throws RemoteException, CreateException, NoSuchPersonException;
}

Creating a stateful session implementation of this Profile EJB is much the same as creating the
implementation of the ProfileManager EJB. We need to provide all the same container callbacks
because they are both session EJBs, we need to implement ejbCreate() methods for any create()
methods on the home interface(s), and we need to implement the business methods exposed in the
client interface(s). We won't show all the container callbacks here because they're much the same as
the earlier ProfileManager example, and the full details can be found in the source code bundle for
the book.[*] Our home interface in Example 6-7 has a single create method, so we need a
corresponding ejbCreate() method:

[*] You can download the code bundle for this book from http://www.oreilly.com/catalog/javaentnut3.

// Create method with name of profile owner
public void ejbCreate(String name) throws NoSuchPersonException {
 mName = name;
 System.out.println("Profile EJB created for " + mName + ".");
}

The method implementation simply stores the username into an instance variable on the bean and
prints a diagnostic message.

We also need to provide implementations of the business methods exposed in the client interface in
Example 6-6:

 // Get the name associated with this profile

http://www.oreilly.com/catalog/javaentnut3
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public String getName() {
 return mName;
 }

 // Get the value for a particular property in the profile
 public String getEntry(String key) {
 return mEntries.getProperty(key);
 }

 // Change a value in the profile
 public void setEntry(String key, String value) {
 mEntries.put(key, value);
 }

Deploying this bean is very much like deploying our ProfileManager example. We need to put its
details into the deployment descriptor as a <session> element within the <enterprise-beans>
element of the ejb-jar.xml file. The key difference here is that we need to specify a value of Stateful
for the <session-type> element, to instruct the container that it should manage this EJB using the
stateful session bean model (e.g., clients own the beans they create, no other client gets access to an
instance created by another client, and so on). We then package the ejb-jar file and perform the rest
of the deployment steps as required by our particular EJB container.

Clients use the Profile bean much the same way as the ProfileManager. They first look up its home
interface using a JNDI call to the EJB container, then create a Profile EJB using the home stub's
create() method. This gives them a client stub that they can use to set and get profile entries. An
example client use scenario is shown here:

// Get the Profile bean's home interface
ProfileHome pHome = (ProfileHome) context.lookup("ejb/ProfileHome");
// Create a profile for a person
System.out.println("Creating profile for " + name);
Profile profile = pHome.create(name);
// Get/set some entries in the profile
System.out.println("Setting profile entries for " + name);
profile.setEntry("favoriteColor", "blue");
profile.setEntry("language", "German");
System.out.println("Getting profile entries for " + name);
System.out.println("\tFavorite color: " +
 profile.getEntry("favoriteColor"));
System.out.println("\tLanguage: " + profile.getEntry("language"));

This example assumes that we've deployed the Profile bean's home interface under the name
ejb/ProfileHome in the EJB container's JNDI context.

6.6.3. Container Management of Session Beans

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Since stateless beans can be used by any client, the container pools stateless beans and doles them
out to clients as needed. If new stateless beans are required, the container creates them; when they
aren't (e.g., the rate of client requests decreases), they are simply destroyed. To allow the container
to fill its pool, any stateless session bean must provide a single ejbCreate() method with no
arguments. The container can call this whenever it decides another bean is needed in its ready pool.

Stateful beans are tied to the clients that create them, and they do maintain conversational state
with their clients, so the container necessarily manages them differently. Stateful beans are created
on demand when the container receives client requests for them. The container may still keep a pool
of preconstructed instances of a stateful bean, but they aren't ready to accept method requests until
a client calls one of the create() methods on the home interface, and the container subsequently
calls the corresponding ejbCreate() method on one of the beans. At this point, the bean is "owned"
by the client, and it's not removed until the client explicitly removes it by calling remove() on the
client interface for the bean or until the client's reference to the bean goes away (the client quits or
the bean reference goes out of scope on the client).

Stateful session beans can also be passivated and activated by the EJB container. The container may
decide to do this in order to free up runtime resources on the server, for example. Passivating a
session bean involves serializing its state and saving it to disk or some other storage area. When the
container decides to passivate a stateful session bean, it invokes its ejbPassivate() method. The
bean can do any cleanup of resources that it deems appropriate before it is serialized (close I/O
streams or database connections, release file handles, and so forth). When the container decides to
reactivate a passivated session bean, it first deserializes the bean, then invokes the bean's
ejbActivate() method to give the bean a chance to restore any resources that it may need during
runtime.

Stateless session beans aren't passivated or activated by the container since they aren't designed to
maintain client state data. Instead, when the container decides a stateless session bean instance is
no longer needed, it simply removes it entirely, and all of the stateless session bean's internal state is
lost.

6.6.4. Optional Transaction Support

Stateful session beans can optionally receive notification of transaction boundaries from the EJB
container. The container can notify the bean when a new client transaction is beginning and when the
client transaction has either been completed or rolled back. For more information on EJB transaction
management, see "Message-Driven Beans" later in this chapter.

Since session beans don't typically represent persistent shared data and stateful session beans can
be accessed only by a single client at a time, user transaction boundaries may not be important in
general to session beans. If, however, the session bean is managing database data for the user, it
may want to know about the beginning and ending of user transactions, so that it can cache data at
the start and commit its database updates at the end. For this reason, the EJB specification allows
stateful session beans to optionally implement the javax.ejb.SessionSynchronization interface. By
implementing this interface, the session bean indicates that it wants the container to notify it about
the beginning and end of transactions.

In this case, the bean must implement the three methods that are declared on the
SessionSynchronization interface: afterBegin(), beforeCompletion(), and afterCompletion().
The container calls the bean's afterBegin() method just after a new transaction begins. This lets
the bean allocate any resources it might need during the transaction and cache database data, for

http://lib.ommolketab.ir
http://lib.ommolketab.ir

example. Just before the transaction completes, the container calls the bean's beforeCompletion()
method. In this method, the bean can release any resources or cached data it may have initialized
during the transaction. The afterCompletion() method is called just after the transaction has
completed. The container passes in a boolean value that is true if the transaction was committed and
false if the transaction was rolled back. The bean can use this notification to deal with rollbacks, for
example, allowing the bean to undo any changes made during the transaction.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.7. Entity Beans

An entity bean represents data that is stored in a database or some other persistent storage. Entity
beans are persistent across client sessions and the lifetime of the server. No matter when or where
you get a reference to an entity bean with a given identity, the bean should reflect the current state
of the persistent data it represents. Multiple clients can access entity beans with the same identity at
the same time. The EJB container manages these concurrent transactions for the underlying entity,
ensuring that client transactions are properly isolated from each other, consistent, and persistent.

Returning to our running example of a profile service, we started with a session EJB, ProfileManager,
that simply created profiles (represented as Java beans) for the client. Then we changed the design
into a single Profile EJB, implemented as a stateful session bean. The major drawback in our
stateful session Profile is that its profile data isn't persistent. A profile is created by a client and
updated through client method calls, but once the Profile reference is given up by the client, or if
the server crashes or shuts down for some reason, the accumulated profile data is lost. What we
really want is a bean whose state is stored in a relational database or some other persistent storage
that can be reloaded at a later time when the user reenters a profiled application. An entity EJB
provides this functionality, and we can make our profiles persistent by implementing the Profile
bean as an entity EJB. We'll use an entity bean implementation of the Profile EJB to demonstrate
the features of entity EJBs.

At a basic level, entity beans are implemented similarly to session beans. You need to provide a local
and/or remote home interface, a local and/or remote client interface, and a bean implementation. An
entity bean, however, requires some additional methods in its home interface and bean
implementation, to support the management of its persistent state and to allow clients to look up an
entity in persistent storage. Entity beans must also provide a class that serves as its primary key, a
unique identifier for entities.

The persistent data associated with an entity bean can be managed in two ways by the EJB
containerusing bean-managed persistence (BMP) or container-managed persistence (CMP). With
CMP, you leave the database calls to the container, and instead you tell the container (in the EJB's
deployment descriptor) about bean properties and references that need to be persisted. The
deployment tools provided with the EJB server are responsible for generating the corresponding
database calls in the classes it uses to implement and deploy your bean. With BMP, you provide the
actual database calls for managing your bean's persistent storage as part of your bean
implementation.

If you can rely on the EJB container to handle your entity bean's persistence, this can be a huge
benefit since it saves you from having to add (and debug) JDBC code to your beans and potentially
makes your bean more portable across different persistent storage schemes (database vendors,
schema variations, and even other persistence mechanisms like object databases). But even with the
expanded CMP support provided in EJB 2.0 and 2.1, the automated persistence support in EJB is
limited, and at times you'll need to manage persistence directly in your bean implementation. We
discuss the pros and cons of each of these scenarios a bit later in this section.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.7.1. Finder Methods

Since entity beans are persistent and can be accessed by multiple clients, clients have to be able to
find them as well as create them. To this end, an entity bean's home interface(s) can provide finder
methods , named with a findXXX() scheme, that a client can invoke to look up preexisting entities in

persistent storage and have them returned in the form of an EJB reference. For each finder method,
the bean implementation has to have a corresponding ejbFindXXX() method that takes the same
arguments. The findXXX() methods on the home interface can have any name, as long as the

method name begins with find. A person bean, for example, might define a findBySSN() method
that lets you look up citizens of the U.S. using their Social Security number. The EJB implementation
class must then have an ejbFindBySSN() method that implements this lookup function.

The entity version of our Profile bean has two finder methods defined in its remote home interface:

public Profile findByPrimaryKey(String name)
 throws RemoteException, FinderException;

public Collection findByEntryValue(String key, String value)
 throws RemoteException, FinderException;

The first one finds a Profile based on the name of the profile owner, which in our case is the unique
identifier for a Profile. The second finder finds any Profiles that have a particular value for a named
entry.

A client can use the findXXX() methods on the home interface to determine if an entity (or entities)
with a given identity already exists in persistent storage. From the client's point of view, if a findXXX(

) method finds an appropriate entity or entities, entity bean instances are initialized and associated
with these persistent entities, and references to the matching beans are returned to the client. If the
identified entity is not found in persistent storage, a javax.ejb.FinderException is thrown. All
findXXX() methods on the bean's home interface must declare that they can throw FinderException

and, if it's a remote home interface, RemoteException (or one of the parents of Remote Exception).

Each findXXX() method on the home interface must return either an instance of the bean's remote

interface or a collection of these objects. If a finder method can potentially return multiple beans, it
has to have a return type that is either an Enumeration or a Collection. In our profile bean example,
the findByPrimaryKey() method can return only a single profile as a result, so it should be declared
as returning an instance of the profile bean type. The findByEntryValue() method, on the other
hand, can match multiple profiles, so it returns a Collection.

Every entity bean is required to have a findByPrimaryKey() method defined on each of its home
interfaces. This finder method takes a single argument (an instance of the primary key for the entity
bean) and returns the entity corresponding to that primary key. By definition, a primary key uniquely
identifies a single entity, so this finder method should return a single bean instance. We discuss
primary keys shortly in "Entity Bean Implementations."

6.7.2. Select Methods

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In addition to finder methods, entity beans that make use of container-managed persistence
(discussed later) can have select methods as well. Select methods are utility methods that are
accessible only from the bean implementation class itself; they aren't visible to the client. One of the
principles behind CMP is to encapsulate the persistence details and not expose them in the EJB
implementation. However, it is sometimes necessary to perform lookups against the underlying
persistent store from business methods in your EJB implementation. Select methods provide this
lookup functionality without forcing you to put database details into your bean code. You can define
any number of ejbSelectXXX() methods as abstract methods on your bean implementation class.

The EJB container is responsible for providing implementations for these methods based on the
persistence logic you provide for these methods in your deployment descriptors.

6.7.3. Entity Bean Implementations

Entity bean implementations must include all the basic container callbacks mentioned earlier:
ejbActivate(), ejbPassivate(), ejbRemove(), and an ejbCreate() method for each create()
method provided in the EJB's home interface(s). Entity beans must also provide several persistence-
related callbacks as well as some additional callbacks related to the lifecycle model applied to entity
beans. Before we discuss these, we should understand how primary keys play a role with entity
beans.

6.7.3.1. Primary keys

Every type of entity bean must have an associated primary key class. The primary key serves as a
unique identifier for the persistent entities represented by the entity bean. The primary key for a
person's records in a database, for example, might be a first and last name, a Social Security number
(for U.S. citizens), or some other identification number. The primary key used for entity beans is
public, in that clients can see the primary key for an entity bean, and the primary key is used directly
by the bean implementation to load or update its state from persistent storage.

A primary key can be either a custom class that we write as part of the EJB implementation, or it can
be a basic Java object type, like a String, Float, or Integer. The name of the user uniquely identifies
our Profile bean, for example. A custom primary key class for an entity bean implementation of our
Profile might look something like the following:

public class ProfilePK implements java.io.Serializable {
 public String mName;
 public ProfilePK() {
 mName = null;
 }
 public ProfilePK(String name) {
 mName = name;
 }
 public boolean equals(Object other) {
 if (other instanceof ProfilePK &&
 this.mName.equals(((ProfilePK)other).mName)) {
 return true;
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 else {
 return false;
 }
 }
 public int hashCode() {
 return mName.hashCode();
 }
}

However, since the unique identifier for a Profile is simply a single String, we can just use
java.lang.String as the primary key for our entity Profile bean and avoid having to write the
primary key class in the first place.

A primary key class needs to satisfy the requirements of being a Value type in RMI-IIOP, because it
may need to be transmitted to remote clients. In practical terms, this means that the primary key
class has to be Serializable and must not implement the java.rmi.Remote interface. A primary key
class also has to have a valid implementation of the equals() and hashCode() methods so that the
container can manage primary keys internally using collections, for example. If your entity bean uses
container-managed persistence, the primary key class must obey the following additional rules:

It must be a public class.

It must have a default constructor (one with no arguments) that is public.

All its data members must be public.

All of the names of the data members on the class must match the names of container-
managed data members on the entity bean.

We've satisfied all of these requirements with our ProfilePK primary key class (note that the only
data member, mName, has to have a matching mName data member on the entity implementation of the
Profile bean).

6.7.3.2. Entity bean container callbacks

Instead of the single setSessionContext() callback method required on session EJBs, an entity EJB
implementation is required to have the following two context-related callbacks:

public void setEntityContext(EntityContext ctx)

The container calls this method after a new instance of the bean has been constructed, but
before any of its ejbCreate() methods are called. The bean is responsible for storing the
context object. This method takes the place of the corresponding setSessionContext()
method on session beans.

public void unsetEntityContext(EntityContext ctx)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The container calls this method before the entity bean is destroyed to disassociate the bean
from its identity, represented by its primary key.

When an EJB container is managing an entity EJB, it requires several additional container callbacks
related to persistence operations:

public primaryKeyType ejbFindByPrimaryKey(primaryKeyType) throws FinderException

This is the only required finder method on an entity bean. Both the argument and the return
type must be the bean's primary key type. The container is responsible for converting the
returned primary key into a valid EJB reference for the client.

public void ejbPostCreate()

If needed, an entity bean can optionally supply an ejbPostCreate() method for each
ejbCreate() method it provides, taking the same arguments. The container calls the
ejbPostCreate() method after the bean's ejbCreate() method has been called and after the
container has initialized the transaction context for the bean.

public void ejbLoad()

This method is called by the container to cause the bean instance to load its state from
persistent storage. The container can call this bean method anytime after the bean has been
created to do an initial load from persistent storage or to refresh the bean's state from the
database (e.g., after a business method on the bean has completed or after the container has
detected an update to the same persistent entity by another bean instance).

public void ejbStore()

This method is called by the container to cause the bean to write its current runtime state to
persistent storage. This method can be called anytime after a bean is created.

In addition to these entity-specific methods on bean implementations, the semantics of some of the
other standard methods are slightly different for entity beans . Each ejbCreate() method, for
example, is actually a request to create a new entity in persistent storage. The implementations of
the create methods should not only assign any state data passed in as arguments but also create a
record in persistent storage for the new entity bean described by the method arguments. In addition
to this semantic difference, the signatures of ejbCreate() methods on entity beans can be different
from session beans. For an entity bean that manages its own persistence (a bean-managed entity
bean), the ejbCreate() methods return the primary key type for the bean. For a container-managed
entity bean, the ejbCreate() methods return void, the same as for session beans.

An entity bean can be passivated by its container, but the meaning of being passivated is slightly
different as well. A container passivates an entity bean (calling its ejbPassivate() method in the
process) when it wants to disassociate the bean from the persistent data entity it has been
representing. After being passivated, the bean may be put into the container's "wait" pool, to be
associated with another client-requested entity at a later time, or it may be removed from the server
altogether.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A client calling the remove() method on an entity bean reference or on the home interface for a bean
is also interpreted differently: it's a request to remove the entity from persistent storage entirely. The
entity bean implementation should therefore remove its state from the persistent storage in its
ejbRemove() implementation.

6.7.4. Deployment Options for Entity Beans

When deploying entity EJBs, include an <entity> element in the <enterprise-beans> element within
the deployment descriptor. A sample <entity> element for our Profile EJB is shown here:

...
<enterprise-beans>
 ...
 <entity>
 <display-name>BMP Profile Bean</display-name>
 <ejb-name>BMPProfileBean</ejb-name>
 <home>com.oreilly.jent.ejb.beanManaged.ProfileHome</home>
 <remote>com.oreilly.jent.ejb.Profile</remote>
 <ejb-class>com.oreilly.jent.ejb.beanManaged.ProfileBean</ejb-class>
 <persistence-type>Bean</persistence-type>
 <prim-key-class>java.lang.String</prim-key-class>
 <reentrant>false</reentrant>
 <resource-ref>
 <res-ref-name>jdbc/ProfileDB</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>
 </entity>
 ...
</enterprise-beans>
...

The <entity> element contains much of the same basic required information as a session element
(<ejb-name>, <home>, <remote>, <local-home>, <local>, <ejb-class>), but it also contains several
elements specific to entity beans. Three of these are required: <persistence-type>, <prim-key-
class>, and <reentrant>.

The <persistence-type> element specifies how the persistence for your entity bean is to be
managed. The allowed values for this element are Bean or Container, indicating the two fundamental
ways that entity persistence can be handled. Our ProfileBean is written to use bean-managed
persistence, so we set the persistence type to Bean.

The <prim-key-class> element specifies which class is being used as the primary key for this bean.
We chose to use Strings rather than our custom ProfilePK class, so we specify java.lang.String as
our primary key type.

The <reentrant> element indicates whether an EJB can be accessed by multiple clients concurrently.
If an EJB is marked reentrant, it's eligible for concurrent access; otherwise, it's run in a single-

http://lib.ommolketab.ir
http://lib.ommolketab.ir

threaded manneronly one client request is processed at a time by any given EJB instance within the
container. In our example, we haven't written our ProfileBean to be threadsafe (a quick look at the
setEntry() implementation in the source code will confirm that), so we've set the <reentrant>
element to false. The <reentrant> property has other implications related to loopback calls (method
implementations on the bean that result in calls back to the same bean instance). Refer to O'Reilly's
Enterprise JavaBeans or the EJB specification for full details on loopback calls.

6.7.5. The Entity Context

The EJB container provides context information to an entity bean in the form of an EntityContext
object. The container sets this object using the bean's setEntityContext() method and removes it
when the bean is being removed by calling the bean's unsetEntityContext() method. Like
SessionContext, EntityContext provides the bean with access to its corresponding remotely exported
object through the getEJBObject() method. The EntityContext also gives an entity bean access to
its primary key through getPrimaryKey(). The declared return type of this method is Object, but the
object returned is of the bean's primary key type. Note that the data accessed through the
EntityContext might be changed by the EJB container during the bean's lifetime, as explained in the
next section. For this reason, you shouldn't store the EJB remote object reference or primary key in
data variables in the bean object since they might not be valid for the entire lifetime of the bean. Our
entity ProfileBean, for example, stores the EntityContext reference in an instance variable, where it
can access the context data as needed during its lifetime.

6.7.6. Lifecycle of an Entity Bean

Before the first client asks for an entity bean by calling a create() or findXXX() method on its

home interface, an EJB container might decide to create a pool of entity beans to handle client
requests for beans. This potentially reduces the amount of time it takes for a client to receive an
entity bean remote reference after it makes a request for an entity bean. To add a bean to its pool,
the container creates an instance of your bean implementation class and sets its context using the
setEntityContext() method. At this point, the entity bean hasn't been associated with a particular
data entity, so it doesn't have an identity and therefore isn't eligible for handling client business
method calls on bean references.

When a client calls a create() method on the bean's home interface, the container picks a bean out
of this wait pool and calls the corresponding ejbCreate() method on the bean. If the ejbCreate()
method is successful, it returns one or more primary key objects to the container. For each primary
key, the container picks an entity bean out of its pool to be assigned to the entity represented by the
key. Next, the container assigns the bean's identity by setting the properties in its EntityContext
object (e.g., its primary key and remote object values). If the bean has an ejbPostCreate()
method, that gets called after the bean's entity identity has been set. The ejbCreate() method
should create the entity in persistent storage, if the bean is managing its own persistence.

Alternatively, the client might call a findXXX() method on the home interface. The container picks
one of the pooled entity beans and calls the corresponding ejbFindXXX() method on it. If the finder

method finds one or more matching entities in persistent storage, the container uses entity beans in
the wait pool to represent these entities. It picks entity beans out of the pool and calls their
ejbActivate() methods. Before calling ejbActivate(), the container sets the bean's context by
assigning the corresponding primary key and remote object reference in its context.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

After an entity bean has been activated (either by being created through one of its ejbCreate()
methods or by being found and having its ejbActivate() method called), it is associated with a
specific entity in persistent storage and with a specific client stub. At any point after this, the
container can call the bean's ejbLoad() or ejbStore() method to force the bean to read or write its
state from or to persistent storage. The bean's business methods can also be invoked by clients when
it is in this state.

At some point, the container may decide to put the bean back into its internal pool. This might
happen after all remote references to the bean have been released or after a certain period of
inactivity with the bean. The container might also do this as a reaction to client-loading issues (e.g.,
time-sharing pooled beans between client requests). When the container wants to remove the
association between the entity bean instance and the client stub but doesn't want the object's state
removed from persistent store, it calls the bean's ejbPassivate() method. The bean can release any
resources it allocated while in the active state, but it doesn't have to update persistent storage for
the entity it represents, as this was done the last time the container invoked the bean's ejbStore()
method.

The bean can also lose its association with an entity when the client decides to remove the entity.
The client does this either by calling a remove() method on the bean's home interface or calling the
remove() method directly on an EJB object. When one of these things happens, the container calls
the bean's ejbRemove() method, and the bean deletes the data in persistent storage pertaining to
the entity it represents. After the ejbRemove() method completes, the container puts the bean back
into its internal pool.

6.7.7. Bean-Managed Persistence

Bean-managed persistence (BMP) is one option for dealing with the persistence of the state of entity
EJBs. In BMP, all of the persistence management is done directly in the EJB implementation class,
using custom JDBC calls or whatever API is appropriate for the persistent storage being used. The
persistence management of an entity bean is handled in the ejbCreate(), ejbRemove(), ejbLoad(),
and ejbStore() methods on the bean implementation. The persistent store is also accessed directly
in the ejbFindXXX() methods on the implementation of BMP beans.

Let's look at a BMP entity implementation of our Profile EJB. We've already seen some details on the
home and client interfaces for this entity bean in earlier sections. The purpose of the bean is the
same as our stateful session version: it represents a profile for a named application user, maintaining
a list of name/value pairs for various attributes and options. The difference is that this Profile EJB
represents a profile entity that exists as a set of persistent data (stored in a database, in this case).
The full source code for the implementation class can be found in the file
com/oreilly/jent/ejb/beanManaged/ProfileBean.java in the code bundle for the book; we'll cover some
highlights in this tutorial.

The structure of the entity Profile implementation is similar to the stateful session bean version. All
of the EJB-required methods, including ejbActivate(), ejbPassivate(), ejbCreate(), and
ejbRemove(), are present. The ejbActivate() and ejbPassivate() methods are called as the
container moves the bean in and out of the entity bean "wait" pool, so it's a chance to free up any
resources, such as file handles, before the bean is passivated and reclaim them if needed when it is
activated again.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The ejbCreate() methods on the ProfileBean create a new profile entity in the database, so our
ejbCreate() method (associated with the create() method in our home interface) is a bit more
complicated than in our session beans because now it needs to make all the JDBC calls to create a
profile entity in the underlying database:

public String ejbCreate(String name)
 throws DuplicateProfileException, CreateException {
 Connection conn = null;
 Statement s = null;
 try {
 conn = getConnection();
 s = conn.createStatement();
 s.executeUpdate("insert into profile (name) values ('"
 + name + "')");
 }
 catch (SQLException se) {
 System.out.println("Error creating profile, assuming duplicate.");
 try {
 StringWriter strw = new StringWriter();
 PrintWriter prntw = new PrintWriter(strw);
 se.printStackTrace(prntw);
 throw new DuplicateProfileException(
 "SQL error creating profile for " +
 name + ": " + se.toString() +
 "\n" + strw.toString());
 }
 catch (Exception e) {}
 }
 catch (NamingException ne) {
 System.out.println("Error accessing DataSource");
 throw new CreateException("Error accessing DataSource.");
 }
 finally {
 try { s.close(); } catch (Exception e) {}
 try { conn.close(); } catch (Exception e) {}
 }
 System.out.println("ProfileBean created for " + name + ".");
 return name;
 }

Notice that the ejbCreate() method is using an internal utility method on our implementation,
getConnection(), to get a JDBC connection to the database. This method looks for a DataSource
stored in the JNDI context of the J2EE server and uses it to create a connection to the database. For
details on configuring and using DataSources, see Chapter 8.

Another difference in this ejbCreate() method is that it returns the EJB's primary key type (a
String, in this case). The returned primary key value must represent the identity of the actual entity
that was created by the ejbCreate() method. In our case, we just return the name of the profile
owner, since that's our unique identifier for profiles. The EJB container is responsible for intercepting
the primary key object returned by the ejbCreate() method, converting it to a reference to a live

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Profile EJB, and returning a Profile stub to the client that originally called the create() method on
the ProfileHome interface.

An entity bean can also optionally provide an ejbPostCreate() method for each create() method
on its home interface(s). The container calls this method after the ejbCreate() method returns and
after the container initializes the bean's transaction context. The ejbPostCreate() method has to
match the arguments to its corresponding create() and ejbCreate() methods. In our case, nothing
needs to be done in the ejbPostCreate() method, so we simply log that it's been called and return.

The ejbRemove() method on our ProfileBean deletes all the records for this profile entity from the
database:

 public void ejbRemove() {
 // Get this profile's name
 String key = (String)mContext.getPrimaryKey();
 Connection conn = null;
 Statement s = null;
 try {
 conn = getConnection();
 s = conn.createStatement();
 // Clear out any profile entries
 s.executeUpdate("delete from profile_entry where name = '"
 + key + "'");
 // Clear out the profile itself
 s.executeUpdate("delete from profile where name = '" + key + "'");

 System.out.println("ProfileBean removed.");
 }
 catch (SQLException se) {
 System.out.println("Error removing profile for " + key);
 se.printStackTrace();
 }
 catch (NamingException ne) {
 System.out.println("Error accessing DataSource");
 ne.printStackTrace();
 }
 finally {
 try { s.close(); } catch (Exception e) {}
 try { conn.close(); } catch (Exception e) {}
 }
 }

In terms of the actual business methods of the Profile EJB, a Properties object holds the profile
entries for the user, and the getEntry() and setEntry() remote method implementations access
this Properties object for the client. The name is found in the primary key object, and the primary
key is stored for us in the EntityContext that the container gives us through the setEntityContext(
) method. The getName() method on the ProfileBean implementation shows how we retrieve the
username for the profile using the getPrimaryKey() method on the EntityContext:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public String getName() {
 return (String)mContext.getPrimaryKey();
}

We've removed the setName() method from the entity version of our Profile EJB since we don't
want to allow the client to change the name of an existing, active entity bean. The Profile client
interface for this bean, not shown here, is similar to the Profile interface in Example 6-6, with the
setName() method removed. Since the Profile is now a persistent entity bean and the name is the
primary key, or identifying attribute, of the bean, the name of the bean should be set only when the
bean is created. While the entity bean is active, it is associated with a profile entity for a specific user,
and the client should read only the name associated with the profile.

Two additional persistence-related container callbacks are needed on entity bean implementations,
ejbLoad() and ejbStore(). Since this bean is using BMP, our ejbLoad() and ejbStore() methods
do all the JDBC calls directly, just like the other persistence callbacks in this version of the Profile
EJB:

 public void ejbLoad() {
 try {
 String key = (String)mContext.getPrimaryKey();
 loadFromDB(key);
 }
 catch (Exception e) {
 System.out.println("Failed to load ProfileBean: ");
 e.printStackTrace();
 throw new EJBException("ejbLoad failed: ", e);
 }
 System.out.println("ProfileBean load finished.");
 }

 public void ejbStore() {
 String key = (String)mContext.getPrimaryKey();
 Connection conn = null;
 Statement s = null;
 try {
 conn = getConnection();
 s = conn.createStatement();
 // Clear out old profile entries; replace with current ones
 s.executeUpdate(
 "delete from profile_entry where name = '" + key + "'");
 Enumeration pKeys = mEntries.propertyNames();
 while (pKeys.hasMoreElements()) {
 String pKey = (String)pKeys.nextElement();
 String pValue = mEntries.getProperty(pKey);
 s.executeUpdate(
 "insert into profile_entry (name, key, value) values "
 + "('" + key + "', '" + pKey + "', '" + pValue + "')");
 }
 }
 catch (Exception e) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 System.out.println("Failed to store ProfileBean: ");
 e.printStackTrace();
 throw new EJBException("ejbStore failed: ", e);
 }
 finally {
 try { s.close(); } catch (Exception e) {}
 try { conn.close(); } catch (Exception e) {}
 }
 System.out.println("ProfileBean store finished.");
 }

An ejbFindXXX() method in our entity ProfileBean corresponds to each findXXX() method in

ProfileHome. The ejbFindByPrimaryKey() method simply takes the primary key passed in as an
argument and attempts to load the data for the entity from the database.

public String ejbFindByPrimaryKey(String key) throws FinderException {
 loadFromDB(key);
 return key;
}

If successful, it returns the primary key to the container, where it is converted to a remote Profile
object to be returned to the client. It's not necessary to actually load all the profile data here in the
finder method; we need only to verify that the specified entity exists in the database and either
return the primary key to signal success or throw an exception. Since we already have the internal
loadFromDB() method used in ejbLoad(), it is a simple matter to reuse it in this finder method. If
the performance hit for loading the profile data twice is too great, we would have to rewrite the finder
method to simply check the PROFILE table for a record matching the name in the primary key.

The ejbFindByEntryValue() method takes key and value String arguments and attempts to find any
and all profile entities with a matching key/value pair in the PROFILE_ENTRY table. Each name that has
such a record is converted to a primary key object and returned to the container in a Collection.

 public Collection ejbFindByEntryValue(String key, String value)
 throws FinderException {
 LinkedList userList = new LinkedList();
 // Get a new connection from the EJB server
 Connection conn = null;
 Statement s = null;
 try {
 conn = getConnection();
 s = conn.createStatement();
 // Issue a query for matching profile entries, grabbing
 // just the name
 s.executeQuery("select distinct(name) from profile_entry where " +
 " key = '" + key + "' and value = '"
 + value + "'");
 // Convert the results in primary keys and return an enumeration
 ResultSet results = s.getResultSet();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 while (results.next()) {
 String name = results.getString(1);
 userList.add(name);
 }
 }
 catch (SQLException se) {
 // Failed to do database lookup
 throw new FinderException();
 }
 catch (NamingException ne) {
 // Failed to access DataSource
 throw new FinderException();
 }
 finally {
 try { s.close(); } catch (Exception e) {}
 try { conn.close(); } catch (Exception e) {}
 }
 return userList;
 }

The container converts each primary key object in the returned Collection into a remote Profile
object and returns the set to the client. If we encounter a database problem along the way, we throw
a FinderException.

6.7.8. Container-Managed Persistence

In our first entity-based Profile, the persistent state of the profile entity is managed by the bean
itself. Custom JDBC code in the ProfileBean implementation loads, stores, and removes the entity's
database entries. The EJB container calls the appropriate callback methods on your entity bean, but
your bean implementation is responsible for connecting to the database and making all of the
necessary queries and updates to reflect the lifecycle of the data entity.

Container-managed persistence(CMP) allows you to define properties on your entity bean
implementation that represent the state of the entity and tell the EJB container how to map these
properties to persistent storage. With CMP, the container is responsible for loading, updating, and
removing the entity data from persistent storage, based on the mapping you provide. The container
invokes the callbacks on your bean implementation to notify it when it has performed these tasks for
you, allowing your bean to do any follow-up work that may be required. The container also
implements all the finder methods required by the bean's home interface.

If you want to take advantage of CMP, you have to indicate this to the EJB container when you
deploy the bean, you need to provide a bean implementation that assumes that the container is
performing all persistence management, and you need to supply the container with a data mapping
at deployment time.

Implementing CMP-based entity beans involves describing the persistence properties of your bean
rather than implementing them directly:

1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In your bean implementation class, declare abstract accessor methods for persistent properties
that represent the state of the bean.

1.

Declare finder and select methods in the home interface(s) for the EJB.2.

Map the persistent state properties to persistent storage in the EJB deployment descriptor.3.

Provide the container with the logic needed to implement the finder and select methods.4.

The EJB container is responsible for generating the relevant code to load, store, and update the state
of the EJB to and from persistent storage and to implement the finder and select methods defined on
your home interface(s). The various persistence-related container callback methods on your
implementation class (ejbLoad(), ejbStore(), ejbCreate(), and ejbRemove()) are still used as
callbacks by the EJB container, but in the case of CMP, they're invoked by the container just before
and after it performs the corresponding persistence operation.

The complete source code for a CMP implementation of our Profile bean can be found in the source
bundle for the book, in the file com/oreilly/jent/ejb/containerManaged/ProfileBean.java. We discuss
the key features here.

In comparison to our earlier BMP-based ProfileBean, this bean is somewhat simpler since the
ejbRemove(), ejbLoad(), and ejbStore() methods don't need to perform database calls.

The container handles the loading and storing of the bean's data and the removal of any entities from
the database, so we don't need to do anything about these operations in our bean implementation. In
our Profile bean case, all we do in our ejbLoad() and ejbStore() methods is map the persistence
data managed by the container into our own internal data structures. This is not typical for CMP
beans; we'll discuss the reasons that we need to do this in the next section when we discuss abstract
persistence mappings. Here is the code for ejbLoad() and ejbStore():

public void ejbLoad() {
 try {
 transferToProps();
 }
 catch (IOException e) {
 System.out.println("Failed to load ProfileBean: ");
 e.printStackTrace();
 throw new EJBException("ejbLoad failed: ", e);
 }
}

public void ejbStore() {
 try {
 transferToBytes();
 }
 catch (IOException e) {
 System.out.println("Failed to store ProfileBean: ");
 e.printStackTrace();
 throw new EJBException("ejbStore failed: ", e);
 }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The important thing to note here is that these callbacks aren't doing any database operationsthe
container is doing the database calls, and we're just getting ready for this (ejbStore()) or cleaning
up afterward (ejbLoad()).

The same is true of the ejbRemove() methodit's called just before the container is about to remove
this entity's data from the database. In our case, there's nothing to do, so we provide an empty
method:

public void ejbRemove() {
 System.out.println("ProfileBean removed.");
}

6.7.8.1. Mapping container-managed fields: Abstract persistence schema

In the CMP model, the persistent state of your entity EJBs is specified in terms of an abstract
persistence schema . The abstract schema consists of a set of named EJBs (the "tables" of the
schema) and the persistent properties declared on your entity EJBs (the "columns" of the schema).
You describe the components of this abstract schema in your EJB deployment descriptor and provide
the container with a mapping from this abstract schema to a real persistence store (such as a
relational database schema or an object database). The container takes all of this information and
uses it to generate persistence management code for your EJB.

You indicate abstract persistence fields on your bean by providing abstract accessors (JavaBeans-
style set and get methods) on the EJB implementation class. The EJB container provides concrete
implementations for these abstract accessor methods in its generated classes. In our ProfileBean
implementation class, we have two sets of accessors for the two abstract persistent fields needed by
our bean: get/setName() for the name property and get/setEntriesBytes() for the entriesBytes
property:

abstract public String getName();
abstract public void setName(String name);

abstract public byte[] getEntriesBytes();
abstract public void setEntriesBytes(byte[] entries);

The use of a byte array for our profile entries may seem like an odd implementation decision. It has
to do with the limitations of automatic CMP persistence. We'll return to this later, but for now just
take it on faith that our profile entries need to be maintained as a byte array.

Note that, since we need to define persistent field accessors as abstract in our implementation class,
the class itself must be declared as abstract as well:

abstract public class ProfileBean implements EntityBean {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Next, we need to describe our abstract persistence schema in the EJB's deployment descriptor. This
essentially amounts to specifying an abstract schema name for each EJB we are creating (thus
defining the "tables") and listing the persistent properties of each EJB (defining the "columns"). A
partial listing of the ejb-jar.xml file for our CMP Profile bean is shown in Example 6-8.

Example 6-8. Section of ejb-jar.xml file for CMP profile EJB

<?xml version="1.0" encoding="UTF-8"?>
<ejb-jar xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd"
 version="2.1">
 <enterprise-beans>
 <!-- A Profile EJB using container-managed persistence -->
 <entity>
 <ejb-name>CMPProfileBean</ejb-name>
 <home>com.oreilly.jent.ejb.containerManaged.ProfileHome</home>
 <remote>com.oreilly.jent.ejb.containerManaged.Profile</remote>
 <local-home>
 com.oreilly.jent.ejb.containerManaged.ProfileLocalHome
 </local-home>
 <local>
 com.oreilly.jent.ejb.containerManaged.ProfileLocal
 </local>
 <ejb-class>
 com.oreilly.jent.ejb.containerManaged.ProfileBean
 </ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>java.lang.String</prim-key-class>
 <reentrant>false</reentrant>
 <cmp-version>2.x</cmp-version>
 <abstract-schema-name>ProfileBean</abstract-schema-name>

 <!-- Indicate which fields need to be managed persistently -->
 <cmp-field>
 <description>Name of the profile owner</description>
 <field-name>name</field-name>
 </cmp-field>
 <cmp-field>
 <description>Binary data containing profile entries.</description>
 <field-name>entriesBytes</field-name>
 </cmp-field>

 <!-- Since our primary key is simple (one-column), we need to specify
 to the container which field maps to the primary key -->
 <primkey-field>name</primkey-field>
 </entity>
 ...

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </enterprise-beans>
 ...
</ejb-jar>

Before listing our persistent fields, we provide an <abstract-schema-name> element, which labels our
EJB with an abstract name within the abstract persistence schema we're defining. Think of this
abstract name as a sort of virtual table name; it's a way to refer to it in the EJB query language
statements that define finder and select methods.

Following this, we list the <cmp-field> elements that describe our EJB's persistent properties. Our
Profile bean has two persistent properties: name and entriesBytes, represented by the
corresponding accessor methods in the bean implementation. So we have two <cmp-field> elements
that serve to "tag" these bean properties as ones that need to be treated as persistent state.

In addition, the container needs to know how the bean's primary key is mapped. The primary key has
to be mapped to one or more of the <cmp-field> elements listed in the deployment descriptor. If it
maps to a single <cmp-field>, the name of the field has to be provided in the deployment descriptor
as a <primkey-field> element. If the primary key is a complex key that maps to multiple <cmp-field>
elements on the EJB, no <primkey-field> is provided and instead the data members on the primary
key class must have variable names that match the corresponding persistent fields in the EJB
implementation class. The container automatically makes the mapping from primary key fields to
persistent bean fields. In our case, the primary key is simply the bean's name property, so we've
included a <primkey-field> element in our deployment descriptor to that effect.

All we've done so far in the ejb-jar.xml file is provide the basic deployment information for our EJB
and list the fields in the bean implementation that need to be persisted. But the container doesn't
know how to persist these fields yet. The EJB specification does not define a standard way to provide
this mapping to physical data storage. One reason for not including this in the specification is that it
would require assumptions about the type of persistence being used by the container. EJB containers
can (ostensibly) use any kind of persistent storage to maintain the state of entity beans: relational
databases, object databases, XML databases, even flat files. Undoubtedly, virtually all of the major
J2EE vendors provide relational persistence support in their CMP implementations, but the EJB
specification team did not want to build this assumption into the specification, so they left the
mapping of abstract persistent fields to physical storage up to the container vendors.

If we're using BEA's WebLogic application server, for example, we would specify the CMP deployment
parameters using some additional deployment files that are specific to WebLogic. All EJBs (session,
entity, or message-driven) deployed in WebLogic need to have an additional deployment file named
weblogic-ejb-jar.xml, where things such as the JNDI binding for the EJB home interface can be
specified. For container-managed entity beans using relational persistence, an additional deployment
file, weblogic-cmp-rdbms-jar.xml, is used to specify persistence management information for the
bean.

Each EJB-enabled server has its own scheme, but the required information is roughly the same.
Regardless of how you specify the CMP field mapping, the EJB container reads the information and
generates the necessary code to load and store the bean's persistent data to and from the underlying
persistent storage system. It's your responsibility to ensure that the underlying physical persistence
schema (whether it's relational, object-oriented, or hierarchical) is compatible with the deployment
information provided to the container.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.7.8.2. Handling complex data structures

Now we can finally explain why we implemented our CMP Profile EJB using a byte array for the
entry data.

Each EJB container is limited to some degree in the way that data on your bean implementation can
be mapped into persistent data fields. There is no standard format defined for the data mapping a
particular container supports, so it's possible a particular EJB provider won't support whatever
complicated mapping you require for your bean. For the most part, however, you can expect EJB
providers to limit the format to a single persistent data field being mapped to a single data member
on your bean implementation. If your bean's data structures are too complicated for you to provide
an explicit mapping to persistent data fields, you have to decide how to deal with this.

In our entity Profile example, the profile entries need to be a list of name/value pairs that represent
the parameters in the profile. We don't know at deployment time how many entries there will be, so
we can't enumerate a mapping to particular database fields. Ideally, we really want each entry in the
profile to be stored in a separate entry table in our database, along with the name of the owner of
the entry, which is exactly how we implemented our bean-managed implementation. But since we're
using CMP, we can't count on the EJB container supporting this type of persistence mapping (and, in
fact, chances are that it won't).

One option is to give up on CMP and manage it yourself in the bean implementation using BMP.
Another is to make each entry in the profile its own EJB and store the entries as a list of Entry beans
on the profile bean. In this case, you could use EJB relationships, described in a later section, to tell
the EJB container how these two entity EJBs are related to each other (e.g., when a given profile EJB
is loaded, all of its corresponding entry EJBs should also be found and loaded). This makes the
implementation pretty complex, though, since we now have two entity EJBs required to manage the
data associated with profiles, and the amount of deployment information we need to provide gets
much more complicated. This could also turn out to be expensive in terms of interactions with the
container and memory usage. Each entry in the profile would need to be managed separately by the
container, with all of the relevant lifecycle notifications and the like. CMP is supposed to make things
simpler and faster, not the reverse, so we would probably not take this path in a real-world situation.

Another option, and the one we used in our CMP Profile EJB, is to convert the data structure into
something that can be persisted into a single database table. Since the EJB specification gives us
well-defined container callbacks to mark persistence operations, we can use these to do the
conversion of our internal data structures to and from simplified persistent properties. In our Profile
EJB, we defined the profile entries as a persistent byte array property. In our deployment descriptors
for the bean, we mapped this persistent property to the binary PROFILE_BIN.ENTRIES_BYTES column in
the database.

This gives us a persistent binary field for our EJB, but we still have to serialize the Properties object
into the byte array when it needs to be stored persistently and deserialize the byte array into the
Properties object when the persistent data is loaded. As we mentioned before, when using CMP, the
ejbLoad() and ejbStore() methods are used by the container as callbacks. The ejbStore()
method is called just before the container performs an automatic store of the bean's persistent fields
to the database, and ejbLoad() is called just after the container has loaded the persistent fields
from the database. So we can use the ejbStore() method on our bean to copy the Properties
object on our ProfileBean to the mEntriesBytes persistent data member. If you look at the ejbStore(
) method, you'll see that it simply calls our transferToBytes() method:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// Transfer the list of entries from our Properties member to the byte
// array
private void transferToBytes() throws IOException {
 // Serialize the Properties into a byte array using an ObjectOutputStream
 if (mEntries != null && !mEntries.isEmpty()) {
 ByteArrayOutputStream byteOut = new ByteArrayOutputStream();
 ObjectOutputStream objOut = new ObjectOutputStream(byteOut);
 objOut.writeObject(mEntries);
 setEntriesBytes(byteOut.toByteArray());
 }
 else {
 setEntriesBytes(null);
 }
}

This method uses I/O streams to serialize the mEntries Properties object into the mEntriesBytes
byte array. After the container calls our ejbStore() method, it can write the mEnTRiesBytes data
member on our bean to a raw data field in the database (e.g., a LONG BINARY field in a SQL
database). On the reading end, the container will load the bytes stored in the database column into
the mEntriesBytes byte array and call our ejbLoad() method. We can use the ejbLoad() method to
convert the bytes loaded by the container into a Properties object; our ejbLoad() method simply
calls TRansferToProps():

// Convert the serialized byte array into our Properties entry list
private void transferToProps() throws IOException {
 // Take the raw byte array and deserialize it
 // back into a Properties object using an ObjectInputStream
 try {
 if (getEntriesBytes() != null) {
 ByteArrayInputStream byteIn =
 new ByteArrayInputStream(getEntriesBytes());
 ObjectInputStream objIn = new ObjectInputStream(byteIn);
 mEntries = (Properties)objIn.readObject();
 }
 // If no entries in database, set properties
 // to a new, empty collection
 else {
 mEntries = new Properties();
 }
 }
 catch (ClassNotFoundException cnfe) {
 System.out.println(
 "Properties class not found during de-serialization");
 }
}

This workaround is a good example of how the ejbLoad() and ejbStore() methods can be useful
for CMP entity beans. It may also seem like an ideal solution for our Profile example since it allows
us to deploy our entity Profile with container-managed persistence and still have a variable-sized list

http://lib.ommolketab.ir
http://lib.ommolketab.ir

of entries on a profile. But this solution comes with a price tag: it makes our database records
unusable for other, non-Java applications. The data stored in the PROFILE_BIN.ENTRIES_ BYTES
column is a serialized Java object, so there's no way, for example, to check on a user's profile entries
using a simple SQL query or to use a standard RDBMS reporting tool to show categories of users
sorted by profile entries. As we'll see in the next section, the limitations of CMP also make it more
difficult to implement certain complex finder methods.

6.7.8.3. Finder and select methods

When using container-managed persistence, the EJB container also generates all of the ejbFindXXX(

) methods required for the finder methods on the home interface(s). It can automatically generate
an ejbFindByPrimaryKey() method, based on the data mapping and primary key information you
provide at deployment time (although the EJB specifications are unclear as to whether the container
is required to do this). But for any other ejbFindXXX() methods, you need to provide the container

with the logic for the methods. The container can't infer the semantics of what you're trying to do
based solely on method arguments. The same is true of select methods.

As an example, suppose we want to add a finder method for our Profile EJB, called
findEmptyProfiles() that finds all the profiles in the persistent store that have no entries in them.
We would add the finder method to the home interface(s) for the Profile bean:

public Collection findEmptyProfiles()
 throws RemoteException, FinderException;

The finder method returns a Collection because it could potentially find more than one empty profile
in the database. Now we need to tell the EJB container how to implement this method.

The persistence logic for both finder and select methods is provided using EJB QL, a standard query
language defined as part of the EJB specification. EJB QL is similar in syntax to SQL, except that
queries are defined using the abstract schema elements defined in the deployment descriptors for
your EJBs.

Query logic for finder and select methods is included in the ejb-jar.xml deployment descriptor, using
<query> elements within the corresponding <entity> section. So to provide the query logic for the
findEmptyProfiles() finder method on our Profile EJB, we would add the following stanza to our
ejb-jar.xml file, within the <entity> element for our Profile bean:

...
<enterprise-beans>
 ...
 <entity>
 ...
 <query>
 <query-method>
 <method-name>findEmptyProfiles</method-name>
 <method-params></method-params>
 </query-method>
 <ejb-ql>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <![CDATA[SELECT OBJECT(p) FROM ProfileBean AS p
 WHERE p.entriesBytes IS NULL]]>
 </ejb-ql>
 </query>
 ...
 </entity>
 ...
</enterprise-beans>
...

The full syntax for EJB QL is provided in Appendix C, but it should be fairly obvious in our example
what we're doing. The findEmptyProfiles() method takes no arguments, so we specify the <query-
method> (using findEmptyProfiles as its <method-name>) and an empty <method-params> element. We
want this finder to return all Profiles that have no entries in the database, so we specify an EJB QL
statement that selects all ProfileBeans (using the abstract "table" name we defined earlier for our
Profile EJB) whose entriesBytes persistent fields are null.

Select methods are defined using the same <query> element in the deployment descriptor. We simply
specify the corresponding ejbSelectXXX() method name in the <method-name> element.

This persistence logic, in combination with the abstract schema information provided earlier in the
deployment descriptor, is used by the container to generate the concrete implementations of the
finder and select methods for our bean. The EJB QL might be "compiled" into SQL for a relational
database, Object Query Language (OQL) for an object-oriented database, or some other native
persistence query language.

You may have noticed in our CMP bean implementation (if you peruse the source code) that we've
removed the ejbFindByEntryValue() finder method that we had in our BMP version. Because of the
way we decided to implement the persistence of the entries of the Profile bean (using a single
serialized byte array stored in a single binary database column), there isn't any way to implement the
logic of findByEntryValue(). From the perspective of EJB QL, the entriesBytes "column" is simply
an array of bytes, with no way to query for the data stored in the Properties object that it came
from. Again, we could fix this problem by changing our persistence mappingfor example, we could
create a new Entry EJB and have the Profile bean maintain a set of references to Entry beans. But
as mentioned in the previous section, this would impose some significant resource needs on our
profile service, since each entry in each profile would now be a full-blown EJB object with all of the
requisite container management.

6.7.8.4. EJB relationships

In keeping with the idea of an abstract persistence schema, EJB relationships can be thought of as
abstract foreign key constraints between our EJB "tables." Suppose, for example, that in addition to
our Profile bean, we also defined a Person entity bean that provided access to more general
information about a person (name, address, etc.). Within the Profile bean implementation, it might
be useful to access the Person bean corresponding to the owner of a particular Profile. In the EJB
2.1 CMP model, we can do this using EJB relationships.

Since EJB relationships are a way to extend the abstract persistence schema of a set of CMP EJBs,
they can be established only between EJBs that are using CMP. Session beans, message-driven

http://lib.ommolketab.ir
http://lib.ommolketab.ir

beans, and BMP entity beans can't participate in EJB relationships. EJB relationships are accessible
only from within the bean implementationsthey aren't exposed directly to clients. EJB relationships
can be one-to-one or one-to-many. In our case, we want a single Person to be related to a single
Profile, so the relationship will be one-to-one. If we plan to change our Profile bean so that it uses
a new EnTRy EJB to represent its entries and we want to establish a persistence relationship between
the two, we would make the relationship one-to-many.

It's important to note that EJB relationships are created using the local interfaces for EJBs. If an EJB
doesn't have a local interface, it can have one-way relationships to other beans, but other EJBs can't
have relationships with it.

The process for establishing an EJB relationship is similar to defining persistent fields; you define the
accessor method(s) on either end of the relationship, specify the relationship in the EJB deployment
descriptor, and then provide the container with the information on how the relationship is mapped to
the underlying persistent storage system. In our case, we want to define a one-to-one relationship
between our Profile bean and a new Person bean. Let's suppose that the Person bean has a very
simple local client interface:

import javax.ejb.*;

public interface PersonLocal extends EJBLocalObject {
 // Access the person's first and last name
 public String getFirstName();
 public String getLastName();
}

We won't show all of the details of the implementation of this Person EJB; we'll just highlight the
details relevant to the EJB relationship.

The first step in creating the relationship is defining abstract accessor methods on the
implementations of the beans involved. On our ProfileBean implementation class, we would add the
following accessors:

// Get local person related to this profile
abstract public PersonLocal getPersonLocal();
abstract public void setPersonLocal(PersonLocal person);

If we wanted the relationship to be bidirectional, we would also define accessor methods on the
implementation class for our Person bean to read and write the Profile associated with the Person:

// Get/set local Profile using CMP relationships
abstract public ProfileLocal getProfileLocal();
abstract public void setProfileLocal(ProfileLocal profile);

Notice that these accessors need to be defined in terms of the local interfaces of the beans involved.

Now we need to specify the relationship between these two beans in the EJB deployment descriptor.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Assuming that both beans are defined in the same ejb-jar.xml file, the relationship is defined like so:

...
<ejb-jar ...>
 <enterprise-beans>
 <!-- A Profile EJB using container-managed persistence -->
 <entity>
 <ejb-name>CMPProfileBean</ejb-name>
 ...
 </entity>
 <!-- A Person EJB using container-managed persistence -->
 <entity>
 <ejb-name>CMPPersonBean</ejb-name>
 ...
 </entity>
 </enterprise-beans>
 <!-- Establish EJB relationships between Person and Profile -->
 <relationships>
 <ejb-relation>
 <ejb-relation-name>Person-Profile</ejb-relation-name>
 <!-- Relation from person to profile -->
 <ejb-relationship-role>
 <ejb-relationship-role-name>
 Person-has-Profile
 </ejb-relationship-role-name>
 <!-- One profile per person -->
 <multiplicity>One</multiplicity>
 <relationship-role-source>
 <ejb-name>CMPPersonBean</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>profileLocal</cmr-field-name>
 </cmr-field>
 </ejb-relationship-role>
 <!-- Relation from profile to person -->
 <ejb-relationship-role>
 <ejb-relationship-role-name>
 Profile-belongs-to-Person
 </ejb-relationship-role-name>
 <!-- One person per profile -->
 <multiplicity>One</multiplicity>
 <relationship-role-source>
 <ejb-name>CMPProfileBean</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>personLocal</cmr-field-name>
 </cmr-field>
 </ejb-relationship-role>
 </ejb-relation>
 </relationships>
 ...

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</ejb-jar>

We've added a <relationships> element to our ejb-jar.xml file, after the <enterprise-beans> section
that describes the EJBs themselves. Each <ejb-relation> element in this section defines a
relationship between two EJBs. Here we have a single <ejb-relation> that defines the relationship
between the Person and Profile beans described earlier in the deployment descriptor. Each "side" of
the relationship is described using an <ejb-relationship-role> element. The <ejb-relationship-
role> element includes a name to assign to the role, the multiplicity of the role ("one" or "many"),
the source EJB of the role (using the <ejb-name> associated with the EJB), and a <cmr-field> element
that specifies the property on the bean that the role is associated with. In our case, we use the
profileLocal and personLocal properties for the <cmr-field> elements to correspond to the accessor
methods we defined earlier on our beans.

The last thing we need to do is provide the EJB container with the information specifying how this
relationship is represented in persistent storage. Again, a format for specifying this information isn't
defined in the EJB specification. You need to determine what form of persistence your J2EE server
supports and how it requires the persistence mapping to be defined. The details of providing this
mapping will be server-specific: JBoss will do it one way, WebLogic will do it another, and so on.
Consult your application server's documentation for full details.

Since we defined both read and write accessors for either end of this EJB relationship, we can alter
the persistent relationship between a Person and his Profile by simply using the setPersonLocal()
or setProfileLocal() methods on the Profile or Person implementations, respectively. The data in
persistent storage will be adjusted accordingly by the EJB container to reflect the new relationship. In
the case of RDBMS persistent storage, the foreign key column(s) point to the appropriate row in the
target table.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.8. Message-Driven Beans

Message-driven EJBs are components that are managed by an EJB container like other EJBs, but they
are invoked asynchronously by clients using JMS messages rather than method calls. In terms of
their runtime lifecycle and container management, message-driven beans are closest in nature to
stateless session beans. They are invoked indirectly and asynchronously, so they don't maintain
conversational state on behalf of clients, and they can be pooled by the container to handle incoming
messages.

From the client's perspective, a message-driven bean is seen as simply another JMS destination with
which to exchange messages. Clients do not even know that an EJB container is involvedthey simply
perform the usual steps to establish a session with the JMS queue or topic and exchange messages
with it. We only touch on these JMS-specific details herefor more details, see Chapter 11.

Message-driven EJBs are the simplest to implement since they require only a bean implementation
class. The only client interaction with them is through JMS messages, so there's no need for client
interfaces or home interfaces. A message-driven bean must implement both the MessageDrivenBean
interface from the EJB API as well as the MessageListener interface from JMS. The bean's lifecycle is
managed by the EJB container, including its association with a JMS destination. While a simple,
standalone JMS MessageListener needs to be programmatically associated with its message
destination, the EJB container associates message-driven beans with their destinations automatically,
using the information provided in the bean's deployment descriptor. Once a message-driven bean is
activated, it receives messages from its designated JMS destination and responds to them through its
onMessage() method, just like any JMS MessageListener.

As an example, suppose we want to expose the profile management capabilities of our Profile EJB to
messaging clients. We may decide to do this if we plan to support clients that can't utilize direct EJB
calls or that have a need for asynchronous calls. We can use a message-driven EJB to do this. Our
message-driven EJB can run within our EJB container along with our Profile EJB and act as a proxy
between the Profile EJB and messaging clients. The full source for our message-driven
ProfileProxyBean can be found in the source code bundle for the book, in the file
com/oreilly/jent/ejb/messageDriven/ProfileProxyBean.java.

Message-driven beans require the following EJB container callbacks :

ejbCreate()

Message-driven beans must have a single, no-argument ejbCreate() method.

setMessageDrivenContext()

This method is analogous to the setSessionContext() and setEntityContext() methods on
session and entity beans, respectively. The MessageDrivenContext is used to access the
runtime environment of the EJB container. The container calls this method just before it calls

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the bean's ejbCreate() method.

ejbRemove()

This method is called when the container decides that a message-driven bean is no longer
needed in active memory and wants to destroy the bean to reclaim its resources.

Our ProfileProxyBean includes these methods, of course. The ejbRemove() and
setMessageDrivenContext() methods are fairly simple: ejbRemove() doesn't need to do anything in
our case because we don't have any resources to clean up, and setMessageDrivenContext() simply
stores the context in an instance member variable. The ejbCreate() method is a little more
interesting because it needs to initialize a connection to the home interface for the Profile entity
EJB:

public void ejbCreate () throws CreateException {
 System.out.println("Create called on ProfileProxyBean.");
 try {
 Context ctx = new InitialContext();
 mProfileHome =
 (ProfileHome)PortableRemoteObject.narrow(
 ctx.lookup("ejb/ProfileHome"), ProfileHome.class);
 }
 catch (NamingException ne) {
 throw new CreateException("Failed to locate home interface: " +
 ne.getMessage());
 }
}

A message-driven bean also implements the javax.jms.MessageListener interface and therefore
needs to have an onMessage() method for dealing with incoming messages. In our
ProfileProxyBean, we expect to receive a MapMessage containing name/value pairs representing
entries to be set on a particular profile.

public void onMessage(Message msg) {
 if (msg instanceof MapMessage) {
 MapMessage mMsg = (MapMessage)msg;
 try {
 String name = mMsg.getString("OWNER");
 if (name != null) {
 Profile prof = mProfileHome.findByPrimaryKey(name);
 Enumeration eNames = mMsg.getMapNames();
 while (eNames.hasMoreElements()) {
 String eName = (String)eNames.nextElement();
 String eVal = mMsg.getString(eName);
 if (!eName.equals("OWNER")) {
 prof.setEntry(eName, eVal);
 }
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 }
 catch (JMSException je) {
 System.out.println("JMS error processing message to ProfileProxy: " +
 je.getMessage());
 }
 catch (RemoteException re) {
 System.out.println("Remote exception while accessing profile: " +
 re.getMessage());
 }
 catch (FinderException fe) {
 System.out.println("Failed to find Profile named in message: " +
 fe.getMessage());
 }
 }
 else {
 System.out.println("Non-MapMessage received by ProfileProxy, type = " +
 msg.getClass().getName());
 }
 }

The name of the profile owner is expected in the OWNER property on the MapMessage. In the onMessage(
) method, we get the name of the target profile, then use findByPrimaryKey() on the ProfileHome to
get a reference to the Profile to be updated. Next, we get a list of the property names present in the
MapMessage and set the corresponding entry on the Profile according to the values found in the
message.

6.8.1. Deploying Message-Driven EJBs

Deploying our message-driven bean is the same general procedure as for session and entity beans.
We need to provide a <message-driven> element in an ejb-jar.xml file that describes our bean. In this
case, we would use an entry such as the following:

<ejb-jar ...>
 <enterprise-beans>
 ...
 <!-- A message-driven proxy for the Profile beans -->
 <message-driven>
 <ejb-name>MessageDrivenProfileProxy</ejb-name>
 <ejb-class>
 com.oreilly.jent.ejb.messageDriven.ProfileProxyBean
 </ejb-class>
 <transaction-type>Container</transaction-type>
 <message-destination-type>
 javax.jms.Queue
 </message-destination-type>
 </message-driven>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ...
 </enterprise-beans>
 ...
</ejb-jar>

The <message-driven> element lists the name used to refer to the bean (<ejb-name>), the class of the
bean implementation (<ejb-class>), whether we want the transactions managed by the bean or the
container (<transaction-type>), and what type of JMS destination the bean should be connected to
(<message-destination-type>).

6.8.2. Message-Driven Clients

A client of a message-driven EJB simply connects to the JMS destination for the bean and exchanges
messages with it: it doesn't need to use any EJB API calls at all. A client that wanted to use our
message-driven Profile bean would use basic JMS code such as the following to update a user's
profile:

Context context = new InitialContext(...);

// Look up the JMS queue connection factory, make a connection, start it
QueueConnectionFactory qFactory =
 (QueueConnectionFactory)context.lookup(
 "java:comp/env/jms/jent-EJB-connFactory");
QueueConnection qConn = qFactory.createQueueConnection();
qConn.start();

// Look up the JMS message queue for the message-driven bean, and
// create a session with it
Queue profQueue = (Queue)context.lookup("jms/ProfileProxyQueue");
QueueSession qSession =
 qConn.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);

// Create a sender
QueueSender sender = qSession.createSender(profQueue);

// Create a MapMessage
MapMessage msg = qSession.createMapMessage();
// Set the name for the target profile
msg.setString("OWNER", "Kaitlyn");
// Set an entry value
msg.setString("favoriteColor", "green");
// Send the message
sender.send(msg);

The first half of this code segment is simply establishing a session with the message destination.
Here, we've assumed that our message-driven bean has been associated with a message queue
stored in JNDI under the name java:comp/env/jms/jent-EJB-connFactory. In the last few lines of this

http://lib.ommolketab.ir
http://lib.ommolketab.ir

client code, we construct a MapMessage, set the OWNER field in the map to be the name of the owner of
the target profile, and then set one or more profile entries to be used to update the profile.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.9. Transaction Management

One of the advanced value-added features that Enterprise JavaBeans provides over regular remote
objects is transaction management. The EJB container can broker transaction contexts on behalf of
your EJBs, making sure to "do the right thing" in terms of handling transaction defers, commits, or
rollbacks.

The Enterprise JavaBeans architecture relies on the Java Transaction API (JTA) for transaction
support. Chapter 16 provides a general overview of transaction management concepts and the JTA.
In that chapter, you'll also find some extended topics related to bean- and container-managed
transactions with EJBs. If you're looking for material specifically about transaction management
within an EJB context, we recommend that you start with the material in this section and then turn to
Chapter 16 if you need to know more about the general concepts of transaction management and the
JTA. If you need to delve into the broader context of transaction management in general (e.g., if you
need to integrate distributed transactions across multiple resource managers into your application),
you may want to start with the general overview provided in Chapter 16, then return to the EJB-
specific details provided here.

The EJB container is the principal player in the area of transaction management since it is responsible
for either generating transactions around client interactions with the bean or detecting client-
requested transactions and then notifying the EJB objects about transaction boundaries (start and
commit/rollback). This is another reason all interactions with EJB instances are brokered by the
containerso it can properly manage transactions for EJBs that support/require it.

In the context of an Enterprise JavaBeans component, transactions can be defined by any of the
three runtime roles that participate in the EJB architecture: the client of the EJB object, the EJB
container, or the EJB object itself. In all cases, the EJB container decides how to handle the
transaction context whenever a method is invoked on an EJB object. During a bean's lifetime, the
container decides whether to execute the bean's business methods within the client's transaction, or
within a transaction that the container defines, or to allow the bean to manage its own transaction
boundaries. JTA supports what is called a flat transaction model, meaning that transactions can't be
nested within each other. If a client defines its own transaction (as shown previously) and invokes an
EJB method, which attempts to define its own, separate transaction context, the EJB container needs
to decide how to mitigate these two transaction contexts so that there is only one (or else throw an
exception if the situation can't be resolved). What the container does in a particular transactional
situation is determined largely by deployment descriptor elements that indicate how an EJB
transaction is to be managed.

6.9.1. Transaction Management: Bean-Managed Versus Container-
Managed

First, at a high level, you need to specify to the container whether your EJB will manage its own
transactions (by creating its own UserTransaction objects and starting/committing them in its
business methods) or will rely on the container to manage its transactions. This is done in the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

deployment descriptor using the <transaction-type> element:

...
<enterprise-beans>
 <session>
 ...
 <transaction-type>Container</transaction-type>
 ...
 </session>
 ...
</enterprise-beans>
...

A Container value indicates container-managed transactions; a Bean value indicates bean
management. If you specify bean-managed transactions, the container will automatically suspend
any client-defined transactions before calling methods on your EJB and resume them after any bean-
defined transaction contexts have been committed/rolled back. If you use container-managed
transactions, the container will use the method-level transaction support attributes discussed in the
next section to determine how it deals with transactions. Normally you will want to use container-
managed transactions since managing your own transaction boundaries within your bean code isn't
usually necessary. Bean-managed transactions may be necessary when you need to define multiple
transaction contexts in the span of a single method. But situations like this are rare, and where
possible you should avoid the additional complexity in your code and leave the transaction
management to the EJB container.

Entity beans aren't allowed to use bean-managed transaction management because the persistence
management services of the EJB container require that entity beans never create their own
UserTransactions. So you never specify a <transaction-type> for entity beans in their deployment
descriptor; it's always assumed to be Container.

6.9.2. Transaction Support Attributes

If your EJB uses container-managed transaction management, you can further specify how each
method on the EJB "supports" transactions, and therefore how the container should deal with
different transaction contexts when it invokes these methods on your beans. The following
<transaction-support> values are available when specifying them in your deployment descriptor:

NotSupported

The method can't support transactions, so it must be called without a transaction context. If
the client has initiated a transaction, it is suspended by the container before the bean's method
is invoked. After the method completes, the container resumes the client's transaction. The
container doesn't define its own transaction context for the method call, so if the EJB calls
other EJBs from the method, no transaction context is passed along to these methods.

Supports

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The method supports transactions if requested. If the client calls a method on the bean while
within a transaction, the method is invoked within the client's transaction context; this
transaction will be passed on to any other EJB methods called within this method. If the client
calls the method with no transaction context, the container doesn't create one; it runs the
method with no transaction context.

Required

The method must be executed within a transaction context. If the client is already in a
transaction of its own, the transaction context is used to invoke the EJB method. If not, the
container creates a new transaction before calling the bean's method and commits/rolls back
the transaction when the bean's method finishes, but before the method results are returned to
the client.

RequiresNew

The method must be executed within a new transaction. The container automatically starts a
new transaction before calling a remote method on the bean, and commits the transaction
when the method finishes, but before the results are returned to the client. If the client calls a
remote method while within a transaction, the client's transaction is suspended by the
container before executing the bean's method within the new transaction and resumed after
the new transaction is committed.

Mandatory

The method must be run within the context of a client-initiated transaction. If the client calls
the method on the bean without starting a transaction first, the container throws a
javax.transaction.TransactionRequiredException if the client is remote. It throws a
javax.ejb.TransactionRequiredLocalException for local clients.

Never

The method must never be called with a transaction context. If a client calls this method from
within its own transaction, the container will throw an exception back to the client
(java.rmi.RemoteException if the client is remote, javax.ejb.EJBException if the client is local).

These attributes are associated with methods on the EJB in the <assembly-descriptor> section of the
deployment descriptor. You provide <container-transaction> elements that specify one or more
methods and a transaction support attribute to apply to those methods. Using our stateless session
ProfileManager EJB as an example, we can specify that its getProfile() method "supports"
transactions using this XML stanza:

...
<assembly-descriptor>
 ...
 <container-transaction>
 <method>
 <ejb-name>ProfileManagerBean</ejb-name>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <method-name>getProfile</method-name>
 </method>
 <trans-attribute>Supports</trans-attribute>
 </container-transaction>
 ...
</assembly-descriptor>
...

There are some restrictions on the use of these attribute values for some types of EJBs, as described
next.

6.9.2.1. Message-driven beans

For message-driven beans, only the NotSupported and Required attributes are allowed since client
transactions can't be propagated to the EJB through a message passed to a JMS service.

6.9.2.2. CMP entity beans

Entity beans using CMP use transactions by definition when the container interacts with the persistent
store on their behalf. Therefore, entity EJBs using CMP should use either the Required, RequiresNew,
or Mandatory attributes since the others allow for contexts with no transactions. Technically, you can
use the other attribute values with CMP beans, but EJB containers are not required to support them
in this situation, so it's wise to avoid them.

6.9.2.3. Stateful session beans

Stateful session beans that implement the session synchronization interface, as discussed at the end
of "Session Bean Specifics" earlier in this chapter, depend on transaction notifications from the
container to keep their state in sync. Without a transaction, the container is not able to invoke the
session synchronization callbacks. Therefore, this flavor of stateful session bean can use only
attribute values that result in a transaction: Required, RequiresNew, and Mandatory.

6.9.2.4. Stateless session beans

If a stateless session bean is published as a web service (as detailed in Chapter 12), you are not
allowed to use the Mandatory attribute value. A transaction context initiated by a SOAP client cannot
be propagated across a SOAP call to the session bean, so mandating that the client initiate a
transaction for the bean request doesn't make sense.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.10. EJB 3.0

The 3.0 version of the EJB specification is currently in draft form and should be released in final form
shortly after this book hits the shelves. Early versions of EJB 3.0 implementations have started to
appear already. In anticipation of the eventual wide availability of EJB 3.0 containers, we provide a
short introduction to the new programming model introduced in the 3.0 specification.

The biggest complaint by developers about the current EJB programming model (Version 2.1) is that
it is just too complex. Several Java interfaces and classes have to be written for each EJB, and
configuration details have to be supplied in the form of an XML deployment descriptor. And that's
after you've figured out the various rules and contracts for implementing container callbacks, using
container services, and so on. Some projects find the benefits of the EJB container services to be
worth it, and their developers work through the EJB complexities to get these benefits. But many
developers have found other, simpler solutions to get these services. The most notable "EJB
competitor" has been Hibernate, discussed in Chapter 20. Hibernate presents a much simpler
programming model for handling object/relational persistence in enterprise applications, and many
developers have voted with their feet and gone down the path of least resistance.

It's not surprising, then, that the primary goal in writing the EJB 3.0 specification was simplification.
The specification leads listened to the critics, borrowed design principles (and developers) from
Hibernate and other projects, and put together a streamlined programming model in EJB 3.0. Some
of the significant new features in the new model are:

An EJB can be implemented with a single Java class. You aren't required to write home and
client interfaces (though you still can if you really want to).

Annotations (based on the J2SE annotations model discussed in Chapter 21) have been
introduced. These annotations can be used to specify most if not all of the configuration details
for the EJB, including deployment descriptor details, persistence mappings, web service
methods, container callbacks, and the like.

The bean doesn't have to follow the EnterpriseBean interface (or its subclasses). Annotations
can be used to map your methods to the container callbacks, letting you write your beans the
way you want to write them.

To demonstrate the new model, Example 6-9 shows our stateful ProfileBean implemented under the
EJB 3.0 programming model. This one, smaller class replaces all the code in the home, client, and
implementation classes we had earlier. The EJB container implementation will generate the client and
home interfaces based on the annotations we've placed in the code, such as the @Remote indicator on
the class and the @BusinessMethod tag on our getName() method. In addition, we may be able to
eliminate writing an EJB deployment descriptor since we've included the specification of dependent
resources with an @Resource annotation and the other information we specified in our deployment
descriptor can be inferred by other features and annotations in the code, like the @Stateful tag.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 6-9. EJB 3.0 version of Profile bean

// Indicate this is a stateful session bean
@Stateful(name="ProfileEJB3")
// Request a remote client interface for this bean
@Remote
// Specify deployed resources this bean depends on
@Resource(name="ProfileDB",
 resourceType="javax.sql.DataSource",
 jndiName="jdbc/ProfileDB")
// Note: No need to extend the SessionBean interface
public class ProfileBeanEJB3 {
 // Name of the person owning the profile
 private String mName = "";
 // Entries in the profile (name/value pairs)
 private Properties mEntries = new Properties();

 // No activate, passivate methods - we don't need them,
 // no need to write them.

 // Tag this as a business method, so it appears in the generated
 // client interface(s)
 @BusinessMethod
 // Also tag this as a web method, so it will be callable from
 // the SOAP interface. Note that this annotation is actually
 // defined in the new JAX-RPC 2.0 spec, not in the EJB 3.0 spec.
 @WebMethod
 public String getName() {
 return mName;
 }
}

Note that the example we show here may not be directly applicable to the final EJB 3.0 specification
when it is released. This example is based on the latest draft version of the specification available at
this time.

If you have invested development time and resources into EJB 2.1 (or earlier) components, don't
fret. There are backward-compatibility measures built into the EJB 3.0 specification. But given the
cleaner, more flexible, and simpler model provided in EJB 3.0, you likely won't want to run your
"legacy" EJBs for very long before converting them to this approach.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 7. Java and XML
Extensible Markup Language (XML) has become an essential technology for enterprise applications.
The XML specification[*] allows users to define unique and structured document formats, allowing for
easy and flexible data exchange between applications. Since the syntax of an XML document is bound
by a public specification, XML documents can be read and manipulated by a wide variety of tools.
Because XML documents are text-based, they can be easily transmitted between different systems
using a number of transportation mechanisms, from JMS to HTTP.

[*] The complete specification, developed by the World Wide Web Consortium , is available from the W3C web site at

http://www.w3.org/XML. The site also includes a variety of related specifications and other useful resources.

XML documents can be freely structured, although they must abide by a basic set of XML rules that
define a well-formed document. More commonly, however, the document structure is further defined
by a Document Type Definition (DTD). With a standardized DTD, enterprise applications can
exchange data without knowledge of each other's native formats. Industry working groups have
defined DTDs for everything from bank transactions to medical records to electronic books. DTDs are
very common, although they have been partially supplanted by XML Schemas, a more sophisticated
way of describing the structure of an XML document that, among other things, supports defining data
types.

The advantages of combining Java and XML are obviousa cross-platform language and a cross-
platform data specification. We don't have space here to discuss XML itself in depthfor more
information, try Learning XML by Erik T. Ray (O'Reilly). This book covers the XML specification itself,
including topics such as XML namespaces, DTDs, the XLink and XPointer specifications for rich links,
and the XSLT transformation specification (which we will touch on later in this chapter). We have
tried to include enough information to give newcomers a taste of what can be done.

In this chapter, we're going to take a quick look at Sun's Java API for XML Processing (JAXP) Version
1.2, which provides a standardized approach to processing XML files in Java. JAXP is included in
Version 1.4 of the J2EE specification. While originally an enterprise API, JAXP joined the standard
J2SE distribution with J2SE 1.4. JAXP includes three other specifications by reference: the Simple API
for XML parsing (SAX), Version 2; the W3C's Document Object Model (DOM), Level 2; and the XSLT
(XML Stylesheet Transformation) specification. We also discuss using JAXP to access DOM and SAX
parsers and XSLT processors and offer a quick introduction to using DOM and SAX. If you want to
know more about using Java with XML, try Brett McLaughlin's Java and XML (O'Reilly).

http://www.w3.org/XML
http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.1. Using XML Documents

XML allows developers to create tag-based markup structures that are bound by a set of rules
defined in a public specification. The actual content of any particular XML file is left undefined by the
specification. Here's an example, orders.xml, that represents two orders made to a fictional online
shopping site. Each order includes identifying information (an order number and a customer
number), a shipping address, and one or more items. The shipping address encapsulates both the
shipping method and the shipping destination, and each item includes an identifying number and the
quantity ordered, as well as an optional handling instruction.

Most elements include an opening and closing tag, with the element attributes set in the opening tag.
Some elements are "empty," such as the first example of the <item> tag. Empty elements terminate
with /> instead of simply >, and don't need a separate closing tag. The significance of an empty tag is
in either its attributes or its mere presence. The data is simple enough that the structure should be
clear to the reader. Here's the actual XML:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE orders SYSTEM "orders.dtd">
<orders>
 <order idnumber="3123" custno="121312">
 <shippingaddr method="Camel"><![CDATA[One Main St
 Boston, MA 02112]]></shippingaddr>
 <item idnumber="7231" quantity="13"/>
 <item idnumber="1296" quantity="2">
 <handling>Please embroider in a tasteful manner!</handling>
 </item>
 </order>
 <order idnumber="3124" custno="12">
 <shippingaddr method="FedEx"><![CDATA[285 York St.
 New Haven, CT 06510]]></shippingaddr>
 <item idnumber="12" quantity="8"/>
 </order>
</orders>

At the simplest level, an XML document must merely be well-formed, meaning that the document
adheres to all of the syntax rules defined by the XML specification. These rules define the XML
declaration on the first line and specify how tags may be formed and nested.[*] The requirements for
a well-formed document don't include any particular XML tags except for the XML version and specify
structure in only the broadest possible terms. So for most applications, simply knowing that a
document is well-formed is not particularly helpful. Of course, one can specify that only files of a
particular format should be used as input for a particular program, but without a way to define what
that format should be and whether documents conform to it, an extensible markup language doesn't
make a great deal of sense.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[*] And quite a bit more, including entity escape sequences, namespaces, valid character sets, and so on. But we don't have room

here for a full discussion, so again, we recommend O'Reilly's Learning XML.

However, there is a solution. The second line of orders.xml specifies that the file should conform to a
DTD. The DTD goes a step beyond the well-formed requirement and specifies the allowable XML tags,
their formats, and the allowable structure. The DTD for the orders.xml file requires that all <order>
tags be nested within an <orders> tag, all orders have at least one item and a shipping address, all
items include identifier and quantity attributes, and so forth. Here's the DTD orders.dtd:

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT orders (order+)>
<!ELEMENT order (shippingaddr, item+)>
<!ELEMENT shippingaddr (#PCDATA)>
<!ELEMENT item (handling?)>
<!ELEMENT handling (#PCDATA)>
<!ATTLIST order
 idnumber CDATA #REQUIRED
 custno CDATA #REQUIRED
>
<!ATTLIST shippingaddr
 method (FedEx | UPS | USPS | Camel) #REQUIRED
>
<!ATTLIST item
 idnumber CDATA #REQUIRED
 quantity CDATA #REQUIRED
>

The XML layer of an application generally consists of one or more DTDs and a set of documents. The
DTDs are written ahead of time, by an individual developer, a working group, an application server
vendor, or other provider. Some documents, particularly those related to configuration and profiling
tasks (such as the J2EE deployment descriptors), are edited by hand and read by software.

The previous example is more transaction-oriented. Documents like orders.xml would likely be
generated by a purchasing frontend (such as a web site) and transmitted over the network to a
fulfillment system (such as a corporate order tracking database) via HTTP, JMS, or some other
transport layer. The receiving software reads the document and processes it, often without any
human intervention at all. Standardized DTDs mean that the two sides of the exchange can easily be
provided by different vendors.

7.1.1. XML Schema

You may have noticed in orders.dtd that the DTD standard is missing a few things. For one, the
specification of data types for elements and their attributes is extremely limited. Your application may
require that the contents of the idnumber attribute be a valid integer, for example. The closest you
can get to this with a DTD is to declare the attribute as an enumerated type. But this is useful only if
you can enumerate all of the allowed integer values for idnumber, which isn't possible in most cases.
So typically the only option you'd have is to declare the attribute as character data, as we've done in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the example, and then validate the attribute values in your application code. Things are even more
limited for data within elements, where DTDs allow only character data, no data (empty), or
completely unspecified content. Again, in most cases, you would need to do additional data validation
within your application.

DTDs are also limiting in terms of entity namespaces and granularity. You can have only a single DTD
associated with a given XML document, and that DTD applies to the entire document.

The XML Schema standard provides a much richer mechanism for describing the structure and
content of an XML file. A schema defines a set of data types that is then used to define element and
attribute types. One or more schemas can then be referenced in a given XML document and applied
to specific elements in the document. This provides a much more flexible model than DTDs. The data
type descriptions are more powerful, the namespace facility allows you to integrate multiple schemas
into a single document, and schema types can be applied at the individual element or attribute level
in your XML documents.

In addition, XML schema files are regular XML files, so they can be processed using standard XML-
handling tools. This makes it much easier to write software that can respond to incoming XML
dynamically.

An XML schema describing the orders.xml file might look something like this:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<xs:schema xmlns="jent:xml-orders"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="jent:xml-orders">
 <!-- An item contains a sequence of handling elements, as well
 as idnumber and quantity attributes -->
 <xs:complexType name="itemType">
 <xs:sequence>
 <xs:element name="handling" type="xs:string"
 minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="idnumber"
 type="xs:positiveInteger" use="required"/>
 <xs:attribute name="quantity" type="xs:integer"
 use="required"/>
 </xs:complexType>
 <!-- A shippingaddr contains a method attribute, that must be
 one of the enumerated values listed below, and contains
 a single text element as a child. -->
 <xs:complexType name="shippingaddrType" mixed="true">
 <xs:attribute name="method" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="USPS"/>
 <xs:enumeration value="Camel"/>
 <xs:enumeration value="FedEx"/>
 <xs:enumeration value="UPS"/>
 </xs:restriction>
 </xs:simpleType>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </xs:attribute>
 </xs:complexType>
 <!-- An order is a sequence of items with shippingaddrs, with
 idnumber and custno atttributes that are integer values -->
 <xs:complexType name="orderType">
 <xs:sequence>
 <xs:element name="shippingaddr" type="shippingaddrType"/>
 <xs:element name="item" type="itemType"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="idnumber" type="xs:positiveInteger"
 use="required"/>
 <xs:attribute name="custno" type="xs:positiveInteger"
 use="required"/>
 </xs:complexType>
 <!-- An orders element contains a sequence of order elements -->
 <xs:complexType name="ordersType">
 <xs:sequence>
 <xs:element name="order" type="orderType"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <!-- Now define our root element, referencing the appropriate type
 from the set defined above -->
 <xs:element name="orders" type="ordersType"/>
</xs:schema>

The schema representation is longer than the DTD representation, but it's also easier to read. The
most important pieces are the <xs:element> and <xs:complexType> elements. Complex types in XML
Schema are collections of element and attribute descriptions. These types are bound to XML elements
using the type attribute on element declarations. In our example, the root element, orders is defined
at the end of the schema, and it uses the type ordersType, which is defined by the complexType
defined above it.[*] The type attribute on the element specifies that the data included in the element
or attribute value should conform to a particular data type.

[*] This is a two-step process because we might want to use the same complex type definition for two or more different elements

without having to copy and paste.

The complexType structure is the top of the food chain in terms of the data-typing facilities in XML
Schema. In orders.xsd, we also constrain various elements and attributes using the <xs:string>,
<xs:integer>, and <xs:positiveInteger> data types, standard data types specified in the XML
Schema specification. XML Schema also allows you to define new data types based on existing data
types, using the <xs:simpleType> and <xs:restriction> tags. These are used in the
shippingaddrType to define the type for the name attribute, specified as an enumerated type using
the built-in NMTOKEN type. Other restrictions are available for other data types. The xs:string data
type, in particular, supports restrictions for minimum and maximum length and for regular expression
matching, allowing for effectively unlimited control of data formatting.

As mentioned earlier, XML schemas are referenced within XML documents as a namespace that
defines entities (elements and attributes) to be used in the document. Typically, this is done by
specifying the namespace (and its corresponding schema) for the root element in your XML

http://lib.ommolketab.ir
http://lib.ommolketab.ir

document. Adjusting our orders.xml document to refer to our XML schema would look like this:

<?xml version="1.0" encoding="UTF-8"?>
<orders xmlns="jent:xml-orders"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="jent:xml-orders
 http://mycompany.com/orders.xsd">
 <order idnumber="3123" custno="121312">
 <shippingaddr method="Camel"><![CDATA[One Main St
 Boston, MA 02112]]></shippingaddr>
 <item idnumber="7231" quantity="13"/>
 <item idnumber="1296" quantity="2">
 <handling>Please embroider in a tasteful manner!</handling>
 </item>
 </order>
 <order idnumber="3124" custno="12">
 <shippingaddr method="FedEx"><![CDATA[285 York St.
 New Haven, CT 06510]]></shippingaddr>
 <item idnumber="12" quantity="8"/>
 </order>
</orders>

Note the new attributes on the <orders> element. xmlns is a standard attribute supported by all XML
elements and is used to specify a namespace to be used by the element and its children. If you want
or need to use a prefix with the elements and attributes referenced from the schema, you can specify
the prefix by appending it (with a colon separator) to the xmlns attribute entry. We've done this with
our orders.xml example when we import the XML Schema "instance" schema, a standard schema
that defines some attributes that are useful when dealing with schemas in XML documents. We've
imported the schema as a namespace using the xsi prefix. When we want to reference elements or
attributes from this namespace, we use this prefix on their names. The schemaLocation attribute
shows this in actionthis attribute comes from the "instance" schema, so we refer to it as
xsi:schemaLocation.

The schemaLocation attribute we use on the orders element also demonstrates one way to specify
the location of schema definition files. In the xmlns attribute, we specified our orders schema using a
URN, jent:xml-orders. The schemaLocation attribute tells the XML parser how to resolve this URN to
a physical schema file. In our case, we're telling the parser that the schema file is located at the URL
http://mycompany.com/orders.xsd.

There's quite a lot more to XML Schema, but this should get you started. For a much more detailed
introduction, we suggest XML Schema by Eric van der Vlist (O'Reilly).[*]

[*] There is also an excellent short tutorial on O'Reilly's XML.com at http://www.xml.com/pub/a/2000/11/29/schemas/part1.html.

http://mycompany.com/orders.xsd
http://www.xml.com/pub/a/2000/11/29/schemas/part1.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.2. Java API for XML Processing

The JAXP API is bundled into the JDK as of 1.4 and is an optional package for earlier versions. It is
also a standard component of the J2EE 1.3 and 1.4 platforms. XML Schema support is available only
in JAXP 1.2, which is part of J2EE 1.4 and JDK 1.4. J2EE 1.3 includes the 1.1 release of JAXP, which
is otherwise functionally identical. If you're working in a Java 5.0 environment, you're using JAXP 1.3,
which adds XPath and XInclude support to the API, among other things.The full specification and a
reference implementation are available from http://java.sun.com/xml.

The SAX and DOM APIs that are actually used for processing XML files don't include a standard
method for creating a parser object; this is one of the voids JAXP fills. The API provides a set of
Factory objects that will create parsers or XSLT processors. Additionally, JAXP defines a
programmatic interface to XSLT processors.

The actual parser and processor implementations used by JAXP are pluggable. You can use the
Crimson parser , the Apache Xerces parser (available from http://xml.apache.org), or any other
JAXP-compatible parser. Version 1.1 of the reference implementation shipped with Sun's Crimson
XML parser and the Xalan XSL engine from the Apache XML project (again, see
http://xml.apache.org). In JAXP 1.2, the Crimson parser was replaced with the Xerces parser. There
are still variations in support for different levels of functionality across parser implementations. The
examples in this chapter have been tested with the Xerces parser that shipped with JAXP 1.2.

7.2.1. Getting a Parser or Processor

To retrieve a parser or processor from inside a Java program, call the newInstance() method of the
appropriate factory class, either SAXParserFactory, DocumentBuilderFactory, or transformerFactory.
The actual factory implementation is provided by the parser vendor. For example, to retrieve the
platform default SAX parser:

SAXParserFactory spf = SAXParserFactory.newInstance();
spf.setValidating(true); //request a validating parser
try {
 SAXParser saxParser = spf.newSAXParser();
 // Processs XML here
} catch (SAXException e) {
 e.printStackTrace();
} catch (ParserConfigurationException pce) {
 pce.printStackTrace();
} catch (IOException ioe) {
 ioe.printStackTrace();
}

http://java.sun.com/xml
http://xml.apache.org
http://xml.apache.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The next three sections will deal with what you can do once you've actually retrieved a parser. For
the time being, let's treat it as an end in itself.

SAXParserFactory includes a static method called newInstance(). When this method is called, the
JAXP implementation searches for an implementation of javax.xml.parsers.SAXParserFactory,
instantiates it, and returns it. The implementation of SAXParserFactory is provided by the parser
vendor; it's org.apache.xerces.jaxp.SAXParserFactoryImpl for the Xerces parser.

The system looks for the name of the class to instantiate in the following four locations, in order:

In one of these system properties:

javax.xml.parsers.SAXParserFactory

javax.xml.parsers.DocumentBuilderFactory

javax.xml.parsers.TransformerFactory

1.

In the lib/jaxp.properties file in the JRE directory. The configuration file is in key=value format,
and the key is the name of the corresponding system property. Therefore, to set Crimson as the
default parser, jaxp.properties would contain the following line:

javax.xml.parsers.SAXParserFactory=org.apache.crimson.jaxp.
 SAXParserFactoryImpl

2.

In the application jar file, via the Services API . The API looks for the classname in a file called
META-INF/services/parserproperty in which the filename (parserproperty) is the property name
corresponding to the desired factory. The runtime environment checks every available jar file,
so if you have multiple parsers available to your application, specify the desired factory using
one of the previous methods to prevent nondeterministic behavior.

3.

In a platform default factory instance.4.

Once you have a factory, various parser options can be set using the factory- specific set methods.
SAXParserFactory and DocumentBuilderFactory, for instance, include setNamespaceAware() and
setValidating() methods, which tell the factory whether to produce a parser that is aware of XML
namespaces (and will fail if the document being parsed doesn't properly conform to the namespace
specification) and whether to validate against any DTD and/or schema specified by the XML
document itself. To enable schema validation in parsers, you'll need to set the following attribute on
the DocumentBuilderFactory, or set the equivalent property on the SAXParser using setProperty():

 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 dbf.setAttribute(
 "http://java.sun.com/xml/jaxp/properties/schemaLanguage",
 "http://www.w3.org/2001/XMLSchema");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This attribute is a standard property defined in the JAXP specification and it tells the parser which
schema language to use for validation. In this example, we're using the 2001 version of the XML
Schema language.

Factories are threadsafe, so a single instance can be shared by multiple threads. This allows parser
factories to be instantiated in a Java Servlet init() method or other centralized location. Parsers
and processors, however, aren't guaranteed to be threadsafe.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.3. SAX

The SAX API provides a procedural approach to parsing an XML file. As a SAX parser iterates through
an XML file, it performs callbacks to a user-specified object. These calls indicate the start or end of an
element, the presence of character data, and other significant events during the life of the parser.

SAX doesn't provide random access to the structure of the XML file; each tag must be handled as it is
encountered by the browser. This means that SAX provides a relatively fast and efficient method of
parsing. Because the SAX parser deals with only one element at a time, implementations can be
extremely memory-efficient, making it often the only reasonable choice for dealing with particularly
large files.

7.3.1. SAX Handlers

The SAX API allows you to create objects that handle XML parsing events, by implementing the
org.xml.sax.ContentHandler, org.xml.sax.ErrorHandler, and org.xml.sax.DTDHandler interfaces.[*]

Processing a document with SAX involves passing a handler implementation to the parser and calling
the parse() method of SAXParser. The parser will read the contents of the XML file, calling the
appropriate method on the handler when significant events (such as the start of a tag) occur. All
handler methods may throw a SAXException in the event of an error.

[*] We're not covering DTDHandler here, because it's rarely used. It is useful only if you need to know about unparsed entities and

notations in the DTD associated with an XML document.

We'll take a look at the ContentHandler, the ErrorHandler, and the generic but useful DefaultHandler
interfaces next.

7.3.1.1. ContentHandler

Most, if not all, SAX applications implement the ContentHandler interface. The SAX parser will call
methods on a ContentHandler when it encounters basic XML elements: chiefly, the start or end of a
document, the start or end of an element, and character data within an element.

The startDocument() and endDocument() methods are called at the beginning[*] and end of the
parsing process and take no parameters. Most applications use startDocument() to create any
necessary internal data stores and use endDocument() to dispose of them (for example, by writing to
the database).

[*] The first method called by the parser is actually setDocumentLocator(), which provides the handler with an implementation

of org.xml.sax.Locator. This object can report the current position of the parser within the XML file via its getColumnNumber(

), getLineNumber(), getPublicId(), and getSystemId() methods. However, while parser implementations are strongly

encouraged to implement this method, they aren't required to.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When the parser encounters a new element, it calls the startElement() method of the
ContentHandler, passing a namespace URI, the local name of the element, the fully qualified name of
the element (the namespace and the local name), and an org.xml.sax.Attributes object containing
the element attributes.

The Attributes interface allows the parser to inform the ContentHandler of attributes attached to an
XML tag. For instance, the <order> tag in our earlier example contained two attributes, idnumber and
custno, specified like this:

<order idlabel="321" custno="98173">

To retrieve attributes when processing an element, call the getValue() method of attributes:

public void startElement(String namespaceURI, String localName,
 String qName, Attributes atts)
 throws SAXException {
 if(localName.equals("order")
 System.out.println("New Order Number " + atts.getValue("idnumber") +
 " for Customer Number " + atts.getValue("custno"));
}

Note that before we can safely run this line, we need to make sure that we are processing an <order>
tag; otherwise, there is no guarantee that the particular attributes we are querying will be
available.[*]

[*] The parser returns all the attributes specified in the XML document, either explicitly or through a default value specified in the

DTD. Attributes without defaults that aren't explicitly specified in the XML document itself aren't included.

When the parser encounters the closing tag of an element (</order>, in this case), the parser calls
the endElement() method, passing the same namespace URI, local name, and qualified name that
were passed to startElement(). Every startElement() call will have a corresponding endElement()
call, even when the element is empty.

These four methods all deal with handling information about XML tags but not with the data within a
tag (unless that data is another tag). Much XML content consists of textual data outside the confines
of tags and attributes. For example, here's the handling instruction from orders.xml:

<handling>Please embroider in a tasteful manner!</handling>

When the SAX parser encounters the text between the tags, it calls the characters() method,
passing a character array, a starting index within that array, and the length of the relevant character
sequence within the array. This simple implementation of characters() prints the output to the
screen:

public void characters(char[] ch, int start, int length)
 throws SAXException {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 System.out.print(new String(ch, start, length));
}

Note that there is no guarantee that all of the characters you want will be delivered in the same call.
Also, since the characters() method doesn't include any references to the parent element, to
perform more complicated tasks (such as treating the characters differently depending on the
element that contains them), you will need to store the name of the current element within the
handler class itself. Example 7-1, later in this chapter, shows how to do this via the startElement()
method.

The characters() method might also be called when the parser encounters ignorable whitespace,
such as a carriage return separating nested elements that don't otherwise have nested character
data. If the parser is validating the document against a DTD, it must instead call the
ignoreableWhitespace() method to report these characters.

7.3.1.2. ErrorHandler

Since SAX is a language-independent specification, it doesn't handle parsing errors by throwing
exceptions. Instead, a SAX parser reports errors by calling methods on a user-supplied object that
implements the ErrorHandler interface. The ErrorHandler interface includes three methods: error(
), fatalError(), and warning(). Each method takes an org.xml.sax.SAXParseException
parameter. The programmer is free to handle the errors in whatever manner she deems appropriate;
however, the specification doesn't require parsing to continue after a call to fatalError().

7.3.1.3. DefaultHandler

The API also provides the org.xml.sax.helpers.DefaultHandler class that implements all three
handler interfaces. Since most handlers don't need to override every handler method, or even most,
the easiest way to write a custom handler is to extend this object and override methods as
necessary.

7.3.2. Using a SAX Parser

Once you have a handler or set of handlers, you need a parser. JAXP generates SAX parsers via a
SAXParserFactory, as we saw earlier. The SAXParserFactory has three methods for further specifying
parser behavior: setValidating() (which instructs the parser to validate the incoming XML file
against its DTD or schema), setNamespaceAware() (which requests support for XML namespaces),
and setFeature() (which allows configuration of implementation-specific attributes for parsers from
particular vendors).

It is possible to parse a document directly from a SAXParser object by passing an object that
implements the ContentHandler interface to the parse() method, along with a path, URI, or
InputStream containing the XML to be parsed. For more control, call the getXMLReader() method of
SAXParser, which returns an org.xml.sax.XMLReader object. This is the underlying parser that actually
processes the input XML and calls the three handler objects. Accessing the XMLReader directly allows

http://lib.ommolketab.ir
http://lib.ommolketab.ir

programs to set specific ErrorHandler and DTDHandler objects, rather than being able to set a
ContentHandler only.

All events in the SAX parsing cycle are synchronous. The parse() method will not return until the
entire document has been parsed, and the parser will wait for each handler method to return before
calling the next one.

7.3.2.1. A SAX example: Processing orders

Example 7-1 uses a SAX DefaultHandler to process an XML document containing a set of incoming
orders for a small business. It uses the startElement() method of ContentHandler to process each
element, displaying relevant information. Element attributes are processed via the Attributes object
passed to the startElement() method. When the parser encounters text within a tag, it calls the
characters() method of ContentHandler.

You can also call the set Property() method on the SAXParser to control its behavior. The standard
JAXP property we saw in the previous section can be set using this method, for example.

Example 7-1. Parsing XML with SAX

import javax.xml.parsers.*;
import org.xml.sax.*;

public class OrderHandler extends org.xml.sax.helpers.DefaultHandler {

 public static void main(String[] args) {
 SAXParserFactory spf = SAXParserFactory.newInstance();
 spf.setValidating(true); //request a validating parser

 XMLReader xmlReader = null;
 try {
 SAXParser saxParser = spf.newSAXParser();
 /* We need an XMLReader to use an ErrorHandler
 We could just pass the DataHandler to the parser if we wanted
 to use the default error handler. */
 xmlReader = saxParser.getXMLReader();
 xmlReader.setContentHandler(new OrderHandler());
 xmlReader.setErrorHandler(new OrderErrorHandler());
 xmlReader.parse("orders.xml");
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }

 // The startDocument() method is called at the beginning of parsing
 public void startDocument() throws SAXException {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 System.out.println("Incoming Orders:");
 }

 // The startElement() method is called at the start of each element
 public void startElement(String namespaceURI, String localName,
 String rawName, Attributes atts)
 throws SAXException {
 if(localName.equals("order")) {
 System.out.print("\nNew Order Number " + atts.getValue("idnumber") +
 " for Customer Number " + atts.getValue("custno"));
 }
 else if (localName.equals("item")) {
 System.out.print("\nLine Item: " + atts.getValue("idnumber") +
 " (Qty " + atts.getValue("quantity") + ")");
 }
 else if (localName.equals("shippingaddr")) {
 System.out.println("\nShip by " + atts.getValue("method") + " to:");
 }
 else if (localName.equals("handling")) {
 System.out.print("\n\tHandling Instructions: ");
 }
 }

 // Print Characters within a tag
 // This will print the contents of the <shippingaddr> and <handling> tags
 // There is no guarantee that all characters will be delivered in a
 // single call

 public void characters(char[] ch, int start, int length)
 throws SAXException {
 System.out.print(new String(ch, start, length));
 }

 /* A custom error handling class, although DefaultHandler implements both
 interfaces. Here we just throw the exception back to the user.*/
 private static class OrderErrorHandler implements ErrorHandler {

 public void error(SAXParseException spe) throws SAXException {
 throw new SAXException(spe);
 }

 public void warning(SAXParseException spe) throws SAXException {
 System.out.println("\nParse Warning: " + spe.getMessage());
 }

 public void fatalError(SAXParseException spe) throws SAXException {
 throw new SAXException(spe);
 }
 }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In a real application, we would want to treat error handling in a more robust fashion, probably by
reporting parse errors to a logging utility or EJB. An actual order management utility would populate
a database table or an Enterprise JavaBean's object.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.4. DOM

The DOM API, unlike the SAX API, allows programmers to construct an object model representing a
document and then traverse and modify that representation. The DOM API is not Java-specific; it was
developed by the W3C XML working group as a cross-platform API for manipulating XML files (see
http://www.w3c.org/XML). As a result, it sometimes doesn't take the most direct Java-based path to
a particular result. The JAXP 1.1 API incorporated DOM Level 2. In JAXP 1.3, this was updated to
support DOM Level 3.

DOM is useful when programs need random access to a complex XML document or to a document
whose format is not known ahead of time. This flexibility does come at a cost, however, as the parser
must build a complete in-memory object representation of the document. For larger documents, the
resource requirements mount quickly. Consequently, many applications use a combination of SAX
and DOM, using SAX to parse longer documents (such as importing large amounts of transactional
data from an enterprise reporting system) and using DOM to deal with smaller, more complex
documents that may require alteration (such as processing configuration files or transforming
existing XML documents).

7.4.1. Getting a DOM Parser

The DOM equivalent of a SAXParser is the org.w3c.dom.DocumentBuilder. Many DocumentBuilder
implementations actually use SAX to parse the underlying document, so the DocumentBuilder
implementation itself can be thought of as a layer that sits on top of SAX to provide a different view
of the structure of an XML document. We use the JAXP API to get a DocumentBuilder interface in the
first place, via the DocumentBuilderFactory class:

DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
// Validation
dbf.setValidating(false);
// Ignore text elements that are completely empty
dbf.setIgnoringElementContentWhitespace(false);
// Expand XML entities according to the DTD
dbf.setExpandEntityReferences(true);
// Treat CDATA sections the same as text
dbf.setCoalescing(true);

DocumentBuilder db = null;
try {
 db = dbf.newDocumentBuilder();
} catch (ParserConfigurationException pce) {
 pce.printStackTrace();
}

http://www.w3c.org/XML
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The set() methods, as with the SAXParserFactory, provide a simple method for configuring parser
options:

setCoalescing()

Joins XML CDATA nodes with adjoining text nodes. The default is false.

setExpandEntityReferences()

Expands XML entity reference nodes. The default is true.

setIgnoringComments()

Ignores XML comments. The default is false.

setIgnorningElementContentWhitespace()

Ignores whitespace in areas defined as element-only by the DTD. The default is false.

setNamespaceAware()

Requests a namespace-aware parser. The default is false.

setValidating()

Requests a validating parser. The default is false.

setAttribute()

Sets various standard and implementation-specific parser attributes.

Once the DocumentBuilder is instantiated, call the parse(String URI) method to return an
org.w3c.dom.Document object.

7.4.2. Navigating the DOM Tree

The Document object provides the starting point for working with a DOM tree. Once the parser has
produced a Document, your program can traverse the document structure and make changes. In
addition, Document implements the Node interface, which is the core of DOM's tree structure, and
provides methods for traversing the tree and retrieving information about the current node.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Each element, attribute, entity, and text string (indeed, every distinct component within an XML
document) is represented in DOM as a node. To determine what kind of node you are working with,
you can call the getNodeType() method. This returns one of the constants specified by the Node
interface. All node objects have methods for dealing with child elements, although not all nodes may
have children. The DOM API also provides a set of interfaces that map to each node type.

The most important DOM node types and their corresponding interfaces are listed in Table 7-1. If you
attempt to add child elements to a node that doesn't support children, a DOMException is thrown.

Table 7-1. Important DOM node types

Interface
Name property
contains

Value Children Node constant

Attr Name of attribute Yes No ATTRIBUTE_NODE

CDATASection #cdata-section Yes No CDATA_SECTION_NODE

Comment #comment Yes No COMMENT_NODE

Document #document No Yes DOCUMENT_NODE

DocumentFragment #document-fragment No Yes DOCUMENT_FRAGMENT_NODE

DocumentType Document type name No No DOCUMENT_TYPE_NODE

Element Tag name No Yes ELEMENT_NODE

Entity Entity name No No ENTITY_NODE

EntityReferenced
Name of referenced
entity

No No ENTITY_REFERENCE_NODE

ProcessingInstruction PI target Yes No PROCESSING_INSTRUCTION_NODE

Text #text No No TEXT_NODE

For most applications, element nodes (identified by Node.ELEMENT_NODE) and text nodes (identified by
Node.TEXT_NODE) are the most important. An element node is created when the parser encounters an
XML markup tag. A text node is created when the parser encounters text that is not included within a
tag. For example, if the input XML (we're using XHTML in this example) looks like this:

<p>
 Here is some boldface text.
</p>

The parser creates a top-level node that is an element node with a local name of p. The top-level
node contains three child nodes: a text node containing "Here is some," an element node named b,
and another text node containing "text." The b element node contains a single child text node
containing the word "boldface."

The getNodeValue() method returns the contents of a text node or the value of other node types. It

http://lib.ommolketab.ir
http://lib.ommolketab.ir

returns null for element nodes.

To iterate through a node's children, use the getFirstChild() method, which will return a Node
reference. To retrieve subsequent child nodes, call the getNextSibling() method of the node that
was returned by getFirstChild(). To print the names of all the children of a particular Node (assume
that the node variable is a valid Node):

for (c = node.getFirstChild(); c != null; c = c.getNextSibling()) {
 System.out.println(c.getLocalName());
}

Note that there is no getNextChild() method, and you can't iterate through child nodes except via
the getNextSibling() method. As a result, if you use the removeChild() method to remove one of
a node's children, calls to the child node's getNextSibling() method immediately return null.

7.4.2.1. Element attributes

Element attributes are accessed via the getAttributes() method, which returns a NamedNodeMap
object. The NamedNodeMap contains a set of Node objects of type ATTRIBUTE_NODE. The getNodeValue()
method can read the value of a particular attribute.

NamedNodeMap atts = elementNode.getAttributes();
if(atts != null) {
 Node sizeNode = atts.getNamedItem("size");
 String size = sizeNode.getValue();
}

Alternately, you can cast a node to its true type (in this case, an org.w3c.dom.Element) and retrieve
attributes or other data more directly:

if(myNode.getNodeType() == Node.ELEMENT_NODE) {
 Element myElement = (org.w3c.dom.Element)myNode;
 String attributeValue = myElement.getAttribute("attr");
 // attributeValue will be an empty string if "attr" does not exist
}

This is often easier than retrieving attribute nodes from a NamedNodeMap.

7.4.3. Manipulating DOM Trees

DOM is particularly useful when you need to manipulate the structure of an XML file. Example 7-2 is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

an HTML document "condenser." It loads an HTML file (which must be well-formed XML, although not
necessarily XHTML), iterates through the tree, and preserves only the important content. In this
case, it's text within , <th>, <title>, , and <h1> tHRough <h6>. All text nodes that aren't
contained within one of these tags are removed. A more sophisticated algorithm is no doubt possible,
but this one is good enough to demonstrate the DOM principle.

Example 7-2. DocumentCondenser

import javax.xml.parsers.*;
import javax.xml.transform.*;
import javax.xml.transform.dom.*;
import javax.xml.transform.stream.*;
import org.w3c.dom.*;

public class DocumentCondenser {
 public static void main(String[] args) throws Exception {

 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();

 // For HTML, we don't want to validate without a DTD
 dbf.setValidating(false);
 // Ignore text elements that are completely empty:
 dbf.setIgnoringElementContentWhitespace(false);
 dbf.setExpandEntityReferences(true);
 dbf.setCoalescing(true);

 // Ensure that getLocalName() returns the HTML element name
 dbf.setNamespaceAware(true);

 DocumentBuilder db = null;
 try {
 db = dbf.newDocumentBuilder();
 }
 catch (ParserConfigurationException pce) {
 pce.printStackTrace();
 return;
 }

 Document html = null;
 try {
 html = db.parse("enterprisexml.html");
 process(html);

 // Use the XSLT Transformer to see the output
 TransformerFactory tf = TransformerFactory.newInstance();
 Transformer output = tf.newTransformer();
 output.transform(new DOMSource(html), new StreamResult(System.out));
 }
 catch (Exception ex) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ex.printStackTrace();
 return;
 }
 }

 /* We want to keep text if the parent is , <title>, , , <th>
 or <h1>..<h6>. We also want to keep text if it is in a tag with
 a size attribute set to a larger than normal size */
 private static boolean keepText(Node parentNode) {
 if (parentNode == null) return true; // top level

 String parentName = parentNode.getLocalName();
 if ((parentName.equalsIgnoreCase("em")) ||
 (parentName.equalsIgnoreCase("title")) ||
 (parentName.equalsIgnoreCase("b")) ||
 (parentName.equalsIgnoreCase("li")) ||
 (parentName.equalsIgnoreCase("th")) ||
 ((parentName.toLowerCase().startsWith("h")) &&
 (parentName.length() == 2))) {
 return true;
 }

 if ((parentNode.getNodeType() == Node.ELEMENT_NODE) &&
 (parentName.equalsIgnoreCase("font"))) {
 NamedNodeMap atts = parentNode.getAttributes();
 if (atts != null) {
 Node sizeNode = atts.getNamedItem("size"); //get an attribue Node
 if (sizeNode != null) {
 if (sizeNode.getNodeValue().startsWith("+")) {
 return true;
 }
 }
 }

 }
 return false;
 }

 private static void process(Node node) {

 Node c = null;
 Node delNode = null;

 for (c = node.getFirstChild(); c != null; c = c.getNextSibling()) {
 if (delNode != null) {
 delNode.getParentNode().removeChild(delNode);
 }
 delNode = null;
 if ((c.getNodeType() == Node.TEXT_NODE) &&
 (!keepText(c.getParentNode()))) {
 delNode = c;
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 else if (c.getNodeType() != Node.TEXT_NODE) {
 process(c);
 }
 } // End For

 if (delNode != null) // Delete, if the last child was text
 delNode.getParentNode().removeChild(delNode);
 }
}

After the DOM tree has been processed, use the JAXP XSLT API to output new HTML. We will discuss
how to use XSL with JAXP in the next section.

If you want to replace the text with a condensed version, call the setNodeValue() method of Node
when processing a text node.

7.4.4. Extending DOM Trees

Manipulating DOM trees falls, broadly, into three categories. We can add, remove, and modify nodes
on existing trees; we can create new trees; and finally, we can merge trees together.

Back in the last example, we saw how to delete nodes from a DOM tree with the removeChild()
method. If we want to add new nodes, we have two options. While there is no direct way to
instantiate a new Node object, we can copy an existing Node using its cloneNode() method. The
cloneNode() method takes a single Boolean parameter, which specifies whether the node's children
will be cloned as well:

Node newNodeWithChildren = oldElementNode.cloneNode(true);
Node childlessNode = oldElementNode.cloneNode(false);

Regardless of whether children are cloned, clones of an element node will include all of the attributes
of the parent node. The DOM specification leaves certain cloning behaviors, specifically Document,
DocumentType, Entity and Notation nodes, up to the implementation.

New nodes can also be created via the createXXX() methods of the Document object. The
createElement() method accepts a String containing the new element name and returns a new
element Node. The createElementNS() method does the same thing, but accepts two parameters, a
namespace and an element name. The createAttribute() method also has a version that is
namespace-aware, createAttributeNS().

Once a new Node is created, it can be inserted or appended into the tree using the appendChild(),
insertBefore(), and replaceChild() methods. Attribute nodes can be inserted into the
NamedNodeMap returned by the getAttributes() method of Node. You can also add attributes to an
element by casting the Node to an Element and calling setAttribute().

Creating new trees involves creating a new Document object. The easiest way to do this is via the
DOMImplementation interface. An implementation of DOMImplementation can be retrieved from a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DocumentBuilder object via the getdOMImplementation() method. Example 7-3 builds a version of
the XML from a blank slate.

Example 7-3. TreeBuilder

import javax.xml.parsers.*;
import javax.xml.transform.*;
import javax.xml.transform.dom.*;
import javax.xml.transform.stream.*;
import org.w3c.dom.*;

public class TreeBuilder {

 public static void main(String[] args) {
 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 dbf.setValidating(false);

 DocumentBuilder db = null;
 try {
 db = dbf.newDocumentBuilder();
 }
 catch (ParserConfigurationException pce) {
 pce.printStackTrace();
 return;
 }

 Document doc =
 db.getDOMImplementation().createDocument(null, "orders", null);
 // create the initial document element
 Element orderNode = doc.createElement("order");
 orderNode.setAttribute("orderno", "123433");

 Node item = doc.createElement("item");
 Node subitem = doc.createElement("number");
 subitem.appendChild(doc.createTextNode("3AGM-5"));
 item.appendChild(subitem);

 subitem = doc.createElement("handling");
 subitem.appendChild(doc.createTextNode("With Care"));
 item.appendChild(subitem);

 orderNode.appendChild(item);
 doc.getDocumentElement().appendChild(orderNode);

 // View the output
 try {
 TransformerFactory tf = TransformerFactory.newInstance();
 Transformer output = tf.newTransformer();
 output.transform(new DOMSource(doc),

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 new StreamResult(System.out));
 }
 catch (TransformerException e) {
 e.printStackTrace();
 }
 }
}

The second parameter to createDocument() specifies the name of the base document elementin this
case, the <orders> tag. Subsequent tags can be appended to the base tag. If we were to look at the
results of this program as regular XML, it would look like this (we've added some whitespace
formatting to make it more readable):

<?xml version="1.0" encoding="UTF-8"?>
<orders>
 <order orderno="123433">
 <item>
 <number>3AGM-5</number>
 <handling>With Care</handling>
 </item>
 </order>
</orders>

You've probably noticed that each Node implementation we've created has been based on a particular
instance of the Document object. Since each node is related to its parent document, we can't go
around inserting one document's nodes into another document without triggering an exception. The
solution is to use the importNode() method of Document, which creates a copy of a node from
another document. The original node from the source document is left untouched. Here's an example
that takes the <orders> tag from the first document and puts it into a new document under an
<ordersummary> tag:

Document doc2 = db.getDOMImplementation().createDocument(
 null, "ordersummary", null);

DocumentFragment df = doc.createDocumentFragment();
df.appendChild(doc.getDocumentElement().cloneNode(true));
doc2.getDocumentElement().appendChild(doc2.importNode(df, true));

We use a DocumentFragment object to hold the data we're moving. Document fragment nodes provide
a lightweight structure for dealing with subsets of a document. Fragments must be valid XML, but
don't need to be DTD-conformant and can have multiple top-level children. When appending a
document fragment to a document tree, the DocumentFragment node itself is ignored, and its children
are appended directly to the parent node. In this example, we cloned the source element when
creating the document fragment, since assigning a node to a fragment releases the node's
relationship with its previous parent. The XML in the second document object looks like this:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<?xml version="1.0" encoding="UTF-8"?>
<ordersummary>
 <orders>
 <order orderno="123433">
 <item><number>3AGM-5</number>
 <handling>With Care</handling></item>
 </order>
 </orders>
</ordersummary>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.5. XSLT

Another specification incorporated into the JAXP API is the XML Stylesheet Transformation (XSLT)
system. An XSLT transformation takes an input XML document and transforms it into an output
format (not necessarily XML) according to a set of rules specified in an XSL stylesheet. One common
application of XSL stylesheets is transforming XML into HTML for presentation in a browser; this is
often done in the browser directly or on the web server via a content management system such as
the Apache project's Cocoon (http://cocoon.apache.org).

The following XSL document converts the orders.xml file from the SAX example into HTML:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/
Transform" xmlns:fo="http://www.w3.org/1999/XSL/Format">
 <xsl:template match="orders">
 <html>
 <head><title>Order Summary</title></head>
 <body>
 <xsl:apply-templates/>
 </body>
 </html>
 </xsl:template>
 <xsl:template match="order">
 <h1>Order Number <xsl:value-of select="@idnumber"/></h1>
 Ship To:
 <pre>
 <xsl:value-of select="shippingaddr"/>
 </pre>

 <xsl:apply-templates select="item"/>

 </xsl:template>
 <xsl:template match="item">
 <xsl:value-of select="@quantity"/> of item
 <xsl:value-of select="@idnumber"/><xsl:apply-templates/>
 </xsl:template>
 <xsl:template match="handling">

Special Instructions: <xsl:value-of select="."/>
 </xsl:template>
</xsl:stylesheet>

The XSL file consists of a series of templates. The XSL processor matches each template to a
particular XML tag and replaces the tag with the template contents. For example, when the processor
encounters an <orders> and an </orders> tag, it replaces them with:

http://cocoon.apache.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

<html>
 <head><title>Order Summary</title></head>
 <body>
 <xsl:apply-templates/>
 </body>
</html>

The <xsl:apply-templates/> command tells the XSLT processor to recursively apply all of the
available templates to the XML content contained within the <orders> tag pair. Other XSL commands
allow the processor to display element attributes, limit recursion to specific templates, and so forth.
For more examples, please check one of the books recommended at the beginning of this chapter.
After running the orders.xml file through the stylesheet, we get this HTML:

<html xmlns:fo="http://www.w3.org/1999/XSL/Format">
<head>
<META http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Order Summary</title>
</head>
<body>

<h1>Order Number 3123</h1>
 Ship To:
 <pre>One Main St
Boston, MA 02112</pre>

13 of item 7231
2 of item 1296

Special Instructions: Please embroider in a tasteful manner!

<!-- Snipped for brevity -->
</body>
</html>

The classes in the JAXP javax.xml.transform package allow programs to use XSLT Transformer
objects, such as Apache Xalan (which ships with the JAXP reference implementation) to transform
XML documents.

At this point, we should point out that JAXP doesn't require XSLT at all: instead, it is a generic
transformations API that theoretically can be used with a variety of transformation systems.
However, XSLT is by far the most popular and widely implemented, so the remainder of this section
(and most books on the subject) will assume that XSLT is used as the transformation system.

7.5.1. JAXP Data Sources

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The DOM example earlier in this chapter briefly introduced the transformerFactory class.
transformerFactory works just like the SAX and DOM parser factories, but returns a transformer
object instead of a parser. The default behavior of a transformer is to pass the input XML through
without modification, which is what will occur if no transformation stylesheet is given.

Input and output from a transformer are handled via the javax.xml.transform.Source and
javax.xml.transform.Result interfaces. Each has three implementing classes, one each for DOM,
SAX, and streams (DOMSource, SAXSource, StreamSource, DOMResult, SAXResult, and StreamResult).
Note that the JAXP processors will not necessarily support all six. We handled the output in the DOM
example by creating a DOMSource and outputting to a StreamResult that targeted System.out (in this
example, the document variable contains a DOM Document object):

TransformerFactory tf = TransformerFactory.newInstance();
Transformer output = tf.newTransformer();
output.transform(new DOMSource(document), new StreamResult(System.out));

The Source objects can also specify the source of the stylesheet used for the conversion. If we want
to use a stylesheet located in /home/will/orderdisplay.xsl:

TransformerFactory tf = TransformerFactory.newInstance();
Transformer output = tf.newTransformer(
 new StreamSource("file://home/will/orderdisplay.xsl"));
output.transform(new DOMSource(document), new StreamResult(System.out));

The different source and result types can streamline processing. Rather than load an XML file,
transform it, write it to disk, reload it, and parse it with a SAX ContentHandler, the transformation
process can feed its results directly into a ContentHandler that can deal with the transformation
results.

Example 7-4 shows transformation of a document and its immediate processing by a SAX
ContentHandler. We'll use the OrderHandler program from earlier in the chapter as the content
handler, and we'll use the same orders.xml file. To keep things simple, we'll do a one-to-one
transformation, rather than use an XSLT file to actually alter the structure of the orders.xml file.

Example 7-4. Transforming a document into a SAXResult

import javax.xml.transform.*;
import javax.xml.transform.sax.*;
import javax.xml.transform.stream.*;
import org.xml.sax.*;
import org.xml.sax.helpers.*;

public class SAXTransformTarget {

 public static void main(String[] args) {
 try {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 StreamSource ss = new StreamSource("orders.xml");
 SAXResult sr = new SAXResult(new OrderHandler());
 TransformerFactory tf = TransformerFactory.newInstance();
 Transformer t = tf.newTransformer();
 t.transform(ss, sr);
 } catch (TransformerConfigurationException e) {
 e.printStackTrace();
 } catch (TransformerException e) {
 e.printStackTrace();
 }
 }

The output from this program should be identical to the output from Example 7-1; we've simply
replaced the XMLReader with a transformation stream.

7.5.1.1. Determining data source support

The transformerFactory class includes a method named getFeature(), which takes a String and
returns TRue if the feature identified by the String is supported by the processor. Each of the Source
and Result implementations includes a String constant named FEATURE. So to determine whether the
XSL processor supports DOM source:

TransformerFactory tf = TransformerFactory.newInstance();
boolean supportsDOMSource = tf.getFeature(DOMSource.FEATURE);

7.5.1.2. Custom URI resolution

When processing XSL files, it is sometimes necessary to resolve relative URIs. Ordinarily, the parser
will do the best possible job, but sometimes it is necessary to override this behavior (for instance, in
a web content management system in which the document tree apparent to the content creator and
client might not match the system structure or when XML output from a servlet is being transformed
within the servlet). In these cases, the setURIResolver(URIResolver) method of transformer allows
you to specify resolution behavior by implementing the URIResolver interface. The resolve()
method of URIResolver must return a Source or null:

class XSLResolver implements URIResolver {
 public Source resolve(String href, String base)
 throws TransformerException {
 // Check for a null Base URI, and provider it if so
 if((base == null) || (base.equals("/servlet/")))
 base = "http://www.oreilly.com/catalog/jentnut3/";
 if(href == null)
 return null;
 return new StreamSource(base + href);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
}

Finally, JAXP supports XSLT transformations that can convert between DOM, SAX, and streams;
transform an XML document based on an XSL stylesheet; or both.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 8. JDBC
The JDBC[*] API provides Java applications with midlevel access to most database systems, via the
Structured Query Language (SQL). JDBC is a key enterprise API, as it's hard to imagine an enterprise
application that doesn't use a database in some way.

[*] According to Sun, "JDBC" is not an abbreviation for "Java Database Connectivity."

In the first two editions of this book, we focused on the original JDBC 1.0 and 2.0 APIs. As of J2SE
1.4, the JDBC 3.0 API became part of the standard Java deployment, so we've reworked this chapter
to focus on the JDBC 3.0 API, which includes a modest yet valuable set of new features. Some JDBC
3.0 features aren't yet widely implemented (or aren't supported by some underlying databases), so
we'll call special attention to them.

Since JDBC has been around for so long (it even predates the J2EE abbreviation), the different
versions can get a little confusing. A number of JDBC 2.0 features were found in the JDBC 2.0
Optional Package and distributed as part of the javax.sql package rather than regular JDBC's
java.sql package. JDBC 3.0 has merged everything back into a single specification, where it will
hopefully remain.

A word of caution: while the java.sql package is not tremendously complex, it does require
grounding in general database concepts and the SQL language itself. This book includes a brief SQL
reference (see Appendix D), but if you have never worked with a relational database system before,
this chapter is not the place to start. For a more complete treatment of JDBC and general database
concepts, we recommend Database Programming with JDBC and Java by George Reese (O'Reilly).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.1. JDBC Architecture

Different database systems have surprisingly little in common: just a similar purpose and a mostly
compatible query language. Beyond that, every database has its own API that you must learn in
order to write programs that interact with the database. This has meant that writing code capable of
interfacing with databases from more than one vendor has been a daunting challenge. Cross-
database APIs exist, most notably Microsoft's ODBC API, but these tend to find themselves, at best,
limited to a particular platform.

JDBC is Sun's attempt to create a platform-neutral interface between databases and Java. With
JDBC, you can count on a standard set of database access features and (usually) a particular subset
of SQL, SQL-92 . The JDBC API defines a set of interfaces that encapsulates major database
functionality, including running queries, processing results, and determining configuration
information. A database vendor or third-party developer writes a JDBC driver, which is a set of
classes that implements these interfaces for a particular database system. An application can use a
number of drivers interchangeably. Figure 8-1 shows how an application uses JDBC to interact with
one or more databases without knowing about the underlying driver implementations.

Figure 8-1. JDBC-database interaction

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.1.1. JDBC Basics

Before we discuss all of the individual components of JDBC, let's look at a simple example that
incorporates most of the major pieces of JDBC functionality. Example 8-1 loads a driver, connects to
the database, executes some SQL, and retrieves the results. It also keeps an eye out for any
database-related errors.

Example 8-1. A simple JDBC example

import java.sql.*;

public class JDBCSample {

 public static void main(java.lang.String[] args) {
 try {
 // This is where we load the driver
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 }
 catch (ClassNotFoundException e) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 System.out.println("Unable to load Driver Class");
 return;
 }

 try {
 // All database access is within a try/catch block. Connect to database,
 // specifying particular database, username, and password.
 Connection con = DriverManager.getConnection("jdbc:odbc:companydb",
 "", "");

 // Create and execute a SQL statement
 Statement stmt = con.createStatement();
 ResultSet rs = stmt.executeQuery("SELECT FIRST_NAME FROM EMPLOYEES");

 // Display the SQL results
 while(rs.next()) {
 System.out.println(rs.getString("FIRST_NAME"));
 }

 // Make sure our database resources are released
 rs.close();
 stmt.close();
 con.close();

 }
 catch (SQLException se) {
 // Inform user of any SQL errors
 System.out.println("SQL Exception: " + se.getMessage());
 se.printStackTrace(System.out);
 }
 }
}

Example 8-1 starts out by loading a JDBC driver class (in this case, Sun's JDBC-ODBC bridge). Then
it creates a database connection, represented by a Connection object, using that driver. With the
database connection, we can create a Statement object to represent a SQL statement. Executing a
SQL statement produces a ResultSet that contains the results of a query. The program displays the
results and then cleans up the resources it has used. If an error occurs, a SQLException is thrown, so
our program traps that exception and displays some of the information it encapsulates.

Clearly, there is a lot going on in this simple program. Every Java application that uses JDBC follows
these basic steps, so the following sections discuss each step in much more detail.

8.1.2. JDBC Drivers

Before you can use a driver, it must be registered with the JDBC DriverManager. This is typically done
by loading the driver class using the Class.forName() method:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

try {
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 Class.forName("com.oracle.jdbc.OracleDriver");
}
catch (ClassNotFoundException e) {
 /* Handle Exception */
}

One reason most programs call Class.forName() is that this method accepts a String argument,
meaning that the program can store driver selection information dynamically (e.g., in a properties
file).

Drivers can be loaded by a J2EE server and connections made using these drivers can be provided to
the application via JNDI. We'll see more about that toward the end of this chapter. For most
applications, server-managed connections have replaced the use of DriverManager.

JDBC drivers are available for most database platforms, from a number of vendors and in a number
of different flavors. There are four categories of drivers:

Type 1: JDBC-ODBC bridge drivers

Type 1 drivers use a bridge technology to connect a Java client to an ODBC database system.
Type 1 drivers require some sort of non-Java software to be installed on the machine running
your code, and they are implemented using native code.

Type 2: Native-API partly Java drivers

Type 2 drivers use a native code library to access a database, wrapping a thin layer of Java
around the native library. For example, with Oracle databases, the native access might be
through the Oracle Call Interface (OCI) libraries that were originally designed for C/C++
programmers. Type 2 drivers are implemented with native code, so they may perform better
than all-Java drivers, but they also add an element of risk, as a defect in the native code can
crash the Java virtual machine.

Type 3: Net-protocol all-Java drivers

Type 3 drivers define a generic network protocol that interfaces with a piece of custom
middleware. The middleware component might use any other type of driver to provide the
actual database access. BEA's WebLogic product line (formerly known as WebLogic Tengah and
before that as jdbcKona/T3) is an example. These drivers are especially useful for applet
deployment since the actual JDBC classes can be written entirely in Java and downloaded by
the client on the fly.

Type 4: Native-protocol all-Java drivers

Type 4 drivers are written entirely in Java. They understand database-specific networking
protocols and can access the database directly without any additional software. These drivers

http://lib.ommolketab.ir
http://lib.ommolketab.ir

are also well-suited for applet programming, provided that the Java security manager allows
TCP/IP connections to the database server.

When you are selecting a driver, you need to balance speed, reliability, and portability. Different
applications have different needs. A standalone, GUI-intensive program that always runs on a
Windows NT system will benefit from the additional speed of a Type 2, native-code driver. An applet
might need to use a Type 3 driver to get around a firewall. A servlet that is deployed across multiple
platforms might require the flexibility of a Type 4 driver.

A list of JDBC drivers is available at http://developers.sun.com/product/jdbc/drivers.

8.1.3. JDBC URLs

A JDBC driver uses a JDBC URL to identify and connect to a particular database. These URLs are
generally of the form:

jdbc:driver:databasename

The actual standard is quite fluid, however, as different databases require different information to
connect successfully. For example, the Oracle JDBC-Thin driver uses a URL of the form:

jdbc:oracle:thin:@site:port:database

while the JDBC-ODBC bridge uses:

jdbc:odbc:datasource;odbcoptions

The only requirement is that a driver be able to recognize its own URLs.

8.1.4. The JDBC-ODBC Bridge

The JDBC-ODBC bridge ships with Sun's JDK. The bridge provides an interface between JDBC and
database drivers written using Microsoft's Open Database Connectivity (ODBC) API. The bridge was
originally written to allow the developer community to get up and running quickly with JDBC. Since
the bridge makes extensive use of native method calls, it is not recommended for long-term or high-
volume deployment. The bridge also doesn't support JDBC 3.0 functionality (the driver bundled with
JDK 1.4 and Java 5.0 supports JDBC 2.0).

The bridge is not a required component of the JDK, so it is not supported by most web browsers or
other runtime environments. Using the bridge in an applet requires a browser with a JVM that
supports the JDBC-ODBC bridge, as well as a properly configured ODBC driver and data source on

http://developers.sun.com/product/jdbc/drivers
http://lib.ommolketab.ir
http://lib.ommolketab.ir

the client side.[*]

[*] Finally, due to different implementations of the native methods interface, the bridge doesn't work with some development

environments, most notably Microsoft Visual J++. This was a big deal when VJ++ was introduced, but since the product was

discontinued years ago, you're likely to encounter this only when maintaining legacy code.

The JDBC URL subprotocol odbc has been reserved for the bridge. Like most JDBC URLs, it allows
programs to encode extra information about the connection. ODBC URLs are of the form:

jdbc:odbc:datasourcename[;attribute-name=attribute-value]*

For instance, a JDBC URL pointing to an ODBC data source named companydb with the CacheSize
attribute set to 10 looks like this:

jdbc:odbc:companydb;CacheSize=10

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.2. Connecting to the Database

The java.sql.Connection object, which encapsulates a single connection to a particular database,
forms the basis of all JDBC data-handling code. An application can maintain multiple connections , up
to the limits imposed by the database system itself. A standard small office or web server Oracle
installation can support 200 or so connections, while a major corporate database could host several
thousand. The DriverManager.getConnection() method creates a connection:

Connection con = DriverManager.getConnection("url", "user", "password");

You pass three arguments to getConnection(): a JDBC URL, a database username, and a password.
For databases that don't require explicit logins, the user and password strings should be left blank.
When the method is called, the DriverManager queries each registered driver, asking if it understands
the URL. If a driver recognizes the URL, it returns a Connection object. Because the getConnection()
method checks each driver in turn, you should avoid loading more drivers than are necessary for
your application.

The getConnection() method has two other variants that are less frequently used. One variant takes
a single String argument and tries to create a connection to that JDBC URL without a username or
password or with a username and password embedded in the URL itself. The other version takes a
JDBC URL and a java.util.Properties object that contains a set of name/value pairs. You generally
need to provide at least username=value and password=value pairs.

When a Connection has outlived its usefulness, you should be sure to explicitly close it by calling its
close() method. This frees up any memory being used by the object, and, more importantly, it
releases any other database resources the connection may be holding on to. These resources
(cursors, handles, and so on) can be much more valuable than a few bytes of memory, as they are
often quite limited. This is particularly important in applications such as servlets that might need to
create and destroy thousands of JDBC connections between restarts. Because of the way some JDBC
drivers are designed, it is not safe to rely on Java's garbage collection to remove unneeded JDBC
connections.

8.2.1. DataSource Objects

The DataSource interface provides an alternative to the DriverManager class and conventional JDBC
URLs. Instead, information about a database is stored within a naming service and retrieved via the
JNDI API. Connection information (drivers, server locations, and so forth) is stored within the
DataSource object, which uses it to create the actual Connection object used to execute JDBC
commands. DataSource objects are also used to provide native driver-level support for connection
pooling and distributed transactions.

Each DataSource is assigned a logical name, by convention beginning with jdbc/. The logical name

http://lib.ommolketab.ir
http://lib.ommolketab.ir

and associated connection metadata are configured in the J2EE setup process. This makes code more
portable and allows for easy changes in drivers and connection information. Accessing a DataSource
via JNDI is very simple:

Context ctx = new InitialContext();
DataSource ds = (DataSource)ctx.lookup("jdbc/CamelDB");
Connection con = ds.getConnection("lawrence", "arabia");

The first two lines obtain the DataSource object from the naming service. The getConnection()
method of DataSource then logs into the database and returns a Connection object. Unlike
DriverManager, the only information required is a username and password.

8.2.2. Connection Pooling

Generally DriverManager provides the easiest way to retrieve a single database connection for a small
application, but virtually every enterprise application, including J2EE and EJB systems, uses a
DataSource instead for two main reasons. First, the DataSource interface is simpler to use. Second,
DataSource objects also support connection pooling, which lets an application maintain several open
database connections and spread the load among them. This is often necessary for enterprise-level
applications, such as servlets, that may be called upon to perform tens of thousands of database
transactions a day.

Connection pooling is implemented behind the scenes, either by an application server or a pooling
utility such as Jakarta DBCP (http://jakarta.apache.org/commons/dbcp). This means you can write
your application to simply rely on a DataSource object rather than worrying about the semantics of
connection pooling.

When using a connection pool, the underlying driver creates a set of connections and distributes the
connections to programs as needed (often on a per-thread basis). Once a connection has been used,
it is returned to the pool to be reused later. This eliminates the substantial overhead of creating a
new Connection for each request (a delay that can often be measured in seconds). For applications
that make intensive use of database connections over extended periods, such as Java servlets (see
Chapter 3), this added efficiency can be vital.

Like regular DataSources, connection pools are configured by the J2EE server administrator and must
be supported by the database driver itself. Developers need only to remember to explicitly close all
Connection objects after use, which is good programming practice anyway. The best way to handle
this is with a try/catch/finally block:

Connection con = null;
try {
 ds = (DataSource)context.lookup("jdbc/oasisDB");
 con = ds.getConnection("larryl", "camel");
 // ... some worthwhile action
} catch (Exception e) {
} finally {
 if(con != null)
 con.close();

http://jakarta.apache.org/commons/dbcp
http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.3. Statements

Once you have created a Connection, you can begin using it to execute SQL statements . This is
usually done via Statement objects. There are actually three kinds of statements in JDBC :

Statement

Represents a basic SQL statement

PreparedStatement

Represents a precompiled SQL statement, which can offer improved performance

CallableStatement

Allows JDBC programs complete access to stored procedures within the database itself

We're going to discuss just the Statement object for now; PreparedStatement and CallableStatement
are covered in detail later in this chapter.

To get a Statement object, call the createStatement() method of a Connection:

Statement stmt = con.createStatement();

Once you have created a Statement, use it to execute SQL statements. A statement can be either a
query that returns results or an operation that manipulates the database in some way. If you are
performing a query, use the executeQuery() method of the Statement object:

ResultSet rs = stmt.executeQuery("SELECT * FROM CUSTOMERS");

Here we've used executeQuery() to run a SELECT statement. This call returns a ResultSet object
that contains the results of the query (we'll take a closer look at ResultSet in the next section).

Statement also provides an executeUpdate() method for running SQL statements that don't return
results, such as the UPDATE and DELETE statements. executeUpdate() returns an integer that
indicates the number of rows in the database that were altered.

If you don't know whether a SQL statement is going to return results (such as when the user is
entering the statement in a form field), you can use the execute() method of Statement. This

http://lib.ommolketab.ir
http://lib.ommolketab.ir

method returns TRue if there is a result associated with the statement. In this case, the ResultSet
can be retrieved using the getresultSet() method and the number of updated rows can be
retrieved using getUpdateCount():

Statement unknownSQL = con.createStatement();
if(unknownSQL.execute(sqlString)) {
 ResultSet rs = unknownSQL.getResultSet();
 // Display the results
}
else {
 System.out.println("Rows updated: " + unknownSQL.getUpdateCount());
}

It is important to remember that a Statement object represents a single SQL statement. A call to
executeQuery(), executeUpdate(), or execute() implicitly closes any active ResultSet associated
with the Statement. In other words, you need to be sure you are done with the results from a query
before you execute another query with the same Statement object. If your application needs to
execute more than one simultaneous query, you need to use multiple Statement objects. As a general
rule, calling the close() method of any JDBC object also closes any dependent objects, such as a
Statement generated by a Connection or a ResultSet generated by a Statement, but well-written
JDBC code closes everything explicitly.

8.3.1. Multiple Result Sets

It is possible to write a SQL statement that returns more than one ResultSet or update count (exact
methods of doing so vary depending on the database). The Statement object supports this
functionality via the getMoreResults() method. Calling this method implicitly closes any existing
ResultSet and moves to the next set of results for the statement. getMoreResults() returns true if
another ResultSet is available to be retrieved by getresultSet(). However, the method returns
false if the next statement is an update, even if there is another set of results waiting farther down
the line. To be sure you've processed all the results for a Statement, you need to check that
getMoreResults() returns false and that getUpdateCount() returns -1.

We can modify the previous execute() example to handle multiple results:

Statement unknownSQL = con.createStatement();
unknownSQL.execute(sqlString);
while (true) {
 rs = unknownSQL.getResultSet();
 if(rs != null)
 // Display the results
 else
 // Process the update data

 // Advance and quit if done
 if((unknownSQL.getMoreResults() == false) &&
 (unknownSQL.getUpdateCount() == -1))

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 break;
}

Statements that return multiple results are actually quite rare. They generally arise from stored
procedures or SQL implementations that allow multiple statements to be executed in a batch. Under
SyBase, for instance, multiple SELECT statements may be separated by newline characters (\n).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.4. Results

When a SQL query executes, the results form a pseudotable that contains all rows that fit the query
criteria. For instance, here's a textual representation of the results of the query string "SELECT NAME,
CUSTOMER_ID, PHONE FROM CUSTOMERS":

NAME CUSTOMER_ID PHONE
-------------------------------- ----------- -------------------
Jane Markham 1 781 555-1212
Louis Smith 2 617 555-1213
Woodrow Lang 3 508 555-7171
Dr. John Smith 4 (011) 42 323-1239

This kind of textual representation is not very useful for Java programs. Instead, JDBC uses the
java.sql.ResultSet interface to encapsulate the query results as Java primitive types and objects.
You can think of a ResultSet as an object that represents an underlying table of query results, where
you use method calls to navigate between rows and retrieve particular column values.

A Java program might handle the previous query as follows:

Statement stmt = con.createStatement();
ResultSet rs = stmt.executeQuery(
 "SELECT NAME, CUSTOMER_ID, PHONE FROM CUSTOMERS");

while(rs.next()) {
 System.out.print("Customer #" + rs.getString("CUSTOMER_ID"));
 System.out.print(", " + rs.getString("NAME"));
 System.out.println(", is at " + rs.getString("PHONE");
}
rs.close();
stmt.close();

Here's the resulting output:

Customer #1, Jane Markham, is at 781 555-1212
Customer #2, Louis Smith, is at 617 555-1213
Customer #3, Woodrow Lang, is at 508 555-7171
Customer #4, Dr. John Smith, is at (011) 42 323-1239

The code loops through each row of the ResultSet using the next() method. When you start

http://lib.ommolketab.ir
http://lib.ommolketab.ir

working with a ResultSet, you are positioned before the first row of results. That means you have to
call next() once just to access the first row. Each time you call next(), you move to the next row.
If there are no more rows to read, next() returns false. Note that with the JDBC 1.0 ResultSet, you
can only move forward through the results, and since there is no way to go back to the beginning,
you can read them only once. Updateable ResultSets were introduced in JDBC 2.0, and we'll discuss
them later.

Individual column values are read in our example using the getString() method. getString() is
one of a family of getXXX() methods, each of which returns data of a particular type. Each getXXX(

) method has two versions: one that takes the case-insensitive String name of the column to be
read (e.g., "PHONE", "CUSTOMER_ID") and one that takes a SQL-style column index. Note that column
indexes run from 1 to n, unlike Java array indexes, which run from 0 to n - 1, where n is the number
of columns.

The most important getXXX() method is getObject(), which can return any kind of data packaged

in an object wrapper. For example, calling getObject() on an integer field returns an Integer object,
while calling it on a date field yields a java.sql.Date object. Table 8-1 lists the different getXXX()

methods, along with the corresponding SQL data type and Java data type. Where the return type for
a getXXX() method is different from the Java type, the return type is shown in parentheses. Note

that the java.sql.Types class defines integer constants that represent the standard SQL data types .

Table 8-1. SQL data types, Java types, and default getXXX() methods

SQL data type Java type getXXX() method

CHAR String getString()

VARCHAR String getString()

LONGVARCHAR String getString()

NUMERIC java.math.BigDecimal getBigDecimal()

DECIMAL java.math.BigDecimal getBigDecimal()

BIT Boolean (boolean) getBoolean()

TINYINT Integer (byte) getByte()

SMALLINT Integer (short) getShort()

INTEGER Integer (int) getInt()

BIGINT Long (long) getLong()

REAL Float (float) getFloat()

FLOAT Double (double) getDouble()

DOUBLE Double (double) getDouble()

BINARY byte[] getBytes()

VARBINARY byte[] getBytes()

LONGVARBINARY byte[] getBytes()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SQL data type Java type getXXX() method

DATE java.sql.Date getDate()

TIME java.sql.Time getTime()

TIMESTAMP java.sql.Timestamp getTimestamp()

BLOB java.sql.Blob getBlob()

CLOB java.sql.Clob getClob()

Note that this table merely lists the default mappings according to the JDBC specification, and some
drivers don't follow these mappings exactly. Also, a certain amount of casting is permitted. For
instance, the getString() method returns a String representation of just about any data type.

8.4.1. Handling Nulls

Sometimes database columns contain null, or empty, values. However, because of the way certain
database APIs are written, it is impossible for JDBC to provide a method to determine before the fact
whether or not a column is null.[*] Methods that don't return an object of some sort are especially
vulnerable. getInt(), for instance, resorts to returning a value of -1. JDBC deals with this problem
via the wasNull() method, which indicates whether or not the last column read was null:

[*] The driver can figure this out after reading the object, but since some driver implementations and database connection

protocols allow you to reliably read a value from a column only once, implementing an isNull() method requires the

ResultSet to cache the entire row in memory. While many programs do exactly this, it is not appropriate behavior for the lowest-

level result handler.

int numberInStock = rs.getInt("STOCK");
if(rs.wasNull())
 System.out.println("Result was null");
else
 System.out.println("In Stock: " + numberInStock);

Alternately, you can call getObject() and test to see if the result is null:

Object numberInStock = rs.getObject("STOCK");
if(numberInStock == null)
 System.out.println("Result was null");

8.4.2. Large Data Types

You can retrieve large chunks of data from a ResultSet as a stream. This can be useful when reading
images from a database or loading large documents from a data store, for example. The relevant
ResultSet methods are getAsciiStream(), getBinaryStream(), and getCharacterStream(); each

DATE java.sql.Date getDate()

TIME java.sql.Time getTime()

TIMESTAMP java.sql.Timestamp getTimestamp()

BLOB java.sql.Blob getBlob()

CLOB java.sql.Clob getClob()

Note that this table merely lists the default mappings according to the JDBC specification, and some
drivers don't follow these mappings exactly. Also, a certain amount of casting is permitted. For
instance, the getString() method returns a String representation of just about any data type.

8.4.1. Handling Nulls

Sometimes database columns contain null, or empty, values. However, because of the way certain
database APIs are written, it is impossible for JDBC to provide a method to determine before the fact
whether or not a column is null.[*] Methods that don't return an object of some sort are especially
vulnerable. getInt(), for instance, resorts to returning a value of -1. JDBC deals with this problem
via the wasNull() method, which indicates whether or not the last column read was null:

[*] The driver can figure this out after reading the object, but since some driver implementations and database connection

protocols allow you to reliably read a value from a column only once, implementing an isNull() method requires the

ResultSet to cache the entire row in memory. While many programs do exactly this, it is not appropriate behavior for the lowest-

level result handler.

int numberInStock = rs.getInt("STOCK");
if(rs.wasNull())
 System.out.println("Result was null");
else
 System.out.println("In Stock: " + numberInStock);

Alternately, you can call getObject() and test to see if the result is null:

Object numberInStock = rs.getObject("STOCK");
if(numberInStock == null)
 System.out.println("Result was null");

8.4.2. Large Data Types

You can retrieve large chunks of data from a ResultSet as a stream. This can be useful when reading
images from a database or loading large documents from a data store, for example. The relevant
ResultSet methods are getAsciiStream(), getBinaryStream(), and getCharacterStream(); each

http://lib.ommolketab.ir
http://lib.ommolketab.ir

method has column name and column index variants, just like the other getXXX() methods. Each of

these methods returns an InputStream. Here's a code sample that retrieves an image from a
PICTURES table and writes the image to an OutputStream of some kind (this might be a
ServletOutputStream for a Java servlet that produces a GIF from a database):

ResultSet rs =
 stmt.executeQuery("SELECT IMAGE FROM PICTURES WHERE PID = " +
 req.getParameter("PID"));
if (rs.next()) {
 BufferedInputStream gifData =
 new BufferedInputStream(rs.getBinaryStream("IMAGE"));
 byte[] buf = new byte[4 * 1024]; // 4K buffer
 int len;
 while ((len = gifData.read(buf, 0, buf.length)) != -1) {
 out.write(buf, 0, len);
 }
}

The JDBC 2.0 (and later) APIs include Blob and Clob objects to handle large data types ; we discuss
these objects later in this chapter.

8.4.3. Dates and Times

JDBC defines three classes devoted to storing date and time information: java.sql.Date,
java.sql.Time, and java.sql.Timestamp. These correspond to the SQL DATE, TIME, and TIMESTAMP
types. The java.util.Date class is not suitable for any of them, so JDBC defines a new set of
wrapper classes that extends (or limits) the standard Date class to fit the JDBC mold.

The SQL DATE type contains only a date, so the java.sql.Date class contains only a day, month, and
year. SQL TIME (java.sql.Time) includes only a time of day, without date information. SQL TIMESTAMP
(java.sql.Timestamp) includes both, but at nanosecond precision (the standard Date class is
incapable of handling more than milliseconds).

Since different DBMS packages have different methods of encoding date and time information, JDBC
supports the ISO date escape sequences, and individual drivers must translate these sequences into
whatever form the underlying DBMS requires. The syntax for dates, times, and timestamps is:

{d 'yyyy-mm-dd'}
{t 'hh:mm:ss'}
{ts 'yyyy-mm-dd hh:mm:ss.ms.microseconds.ns'}

A TIMESTAMP needs to be specified only up to seconds; the remaining values are optional. Here is an
example that uses a date escape sequence (where dateSQL is a Statement of some sort):

dateSQL.execute("INSERT INTO FRIENDS(BIRTHDAY) VALUES ({d '1978-12-14'})");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.4.4. Advanced Results Handling

With JDBC 1.0, the functionality provided by the ResultSet interface is rather limited. There is no
support for updates of any kind, and access to rows is limited to a single, sequential read (i.e., first
row, second row, third row, and so on with no going back). As of 2.0, JDBC supports scrollable and
updateable result sets , which allows for advanced record navigation and in-place data manipulation.

With scrolling, you can move forward and backward through the results of a query rather than just
using the next() method to move to the next row. In terms of scrolling, there are now three distinct
types of ResultSet objects: forward-only (as in JDBC 1.0), scroll-insensitive, and scroll-sensitive. A
scroll-insensitive result set generally doesn't reflect changes to the underlying data while scroll-
sensitive ones do. In fact, the number of rows in a sensitive result set doesn't even need to be fixed.

As of JDBC 2.0, result sets are also updateable. From this perspective, there are two different kinds
of result sets: read-only result sets that don't allow changes to the underlying data and updateable
result sets that allow such changes, subject to transaction limitations and so on.

To create an updateable, scroll-sensitive result set, we pass two extra arguments to the
createStatement() method;

Statement stmt = con.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
 ResultSet.CONCUR_UPDATEABLE);

If you don't pass any arguments to createStatement(), you get a forward-only, read-only result set,
just as you would using JDBC 1.0. Note that if you specify a scrollable result set (either sensitive or
insensitive), you must also specify whether or not the result set is updateable. After you have created
a scrollable ResultSet, use the methods listed in Table 8-2 to navigate through it. As with JDBC 1.0,
when you start working with a ResultSet, you are positioned before the first row of results.

Table 8-2. JDBC 2.0 (and later) record-scrolling functions

Method Function

first() Move to the first record.

last() Move to the last record.

next() Move to the next record.

previous() Move to the previous record.

beforeFirst() Move to immediately before the first record.

afterLast() Move to immediately after the last record.

absolute(int) Move to an absolute row number. Takes a positive or negative argument.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Method Function

relative(int)
Move backward or forward a specified number of rows. Takes a positive or negative
argument.

The JDBC 2.0 API also includes a number of methods that tell you where you are in a ResultSet. You
can think of your position in a ResultSet as the location of a cursor in the results. The isFirst() and
isLast() methods return TRue if the cursor is located on the first or last record, respectively.
isAfterLast() returns true if the cursor is after the last row in the result set while isBeforeFirst(
) returns true if the cursor is before the first row.

With an updateable ResultSet, you can change data in an existing row, insert an entirely new row, or
delete an existing row. To change data in an existing row, use the new updateXXX() methods of

ResultSet. Let's assume we want to update the CUSTOMER_ID field of the first row we retrieve (OK, it's
a contrived example, but bear with us):

Statement stmt = con.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
 ResultSet.CONCUR_UPDATEABLE);
ResultSet rs = stmt.executeQuery(
 "SELECT NAME, CUSTOMER_ID FROM CUSTOMERS");

rs.first();
rs.updateInt(2, 35243);
rs.updateRow();

Here we use first() to navigate to the first row of the result set and then call updateInt() to
change the value of the customer ID column in the result set. After making the change, call
updateRow() to actually make the change in the database. If you forget to call updateRow() before
moving to another row in the result set, any changes you made are lost. If you need to make a
number of changes in a single row, do so with multiple calls to updateXXX() methods and then a

single call to updateRow(). Just be sure you call updateRow() before moving on to another row.

The technique for inserting a row is similar to updating data in an existing row, with a few important
differences. The first step is to move to what is called the insert row, using the moveToInsertRow()
method. The insert row is a blank row associated with the ResultSet that contains all the fields, but
no data; you can think of it as a pseudorow in which you can compose a new row. After you have
moved to the insert row, use updateXXX() methods to load new data into the insert row and then

call insertRow() to append the new row to the ResultSet and the underlying database. Here's an
example that adds a new customer to the database:

ResultSet rs = stmt.executeQuery(
 "SELECT NAME, CUSTOMER_ID FROM CUSTOMERS");
rs.moveToInsertRow();
rs.updateString(1, "Tom Flynn");
rs.updateInt(2, 35244);
rs.insertRow();

relative(int)
Move backward or forward a specified number of rows. Takes a positive or negative
argument.

The JDBC 2.0 API also includes a number of methods that tell you where you are in a ResultSet. You
can think of your position in a ResultSet as the location of a cursor in the results. The isFirst() and
isLast() methods return TRue if the cursor is located on the first or last record, respectively.
isAfterLast() returns true if the cursor is after the last row in the result set while isBeforeFirst(
) returns true if the cursor is before the first row.

With an updateable ResultSet, you can change data in an existing row, insert an entirely new row, or
delete an existing row. To change data in an existing row, use the new updateXXX() methods of

ResultSet. Let's assume we want to update the CUSTOMER_ID field of the first row we retrieve (OK, it's
a contrived example, but bear with us):

Statement stmt = con.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
 ResultSet.CONCUR_UPDATEABLE);
ResultSet rs = stmt.executeQuery(
 "SELECT NAME, CUSTOMER_ID FROM CUSTOMERS");

rs.first();
rs.updateInt(2, 35243);
rs.updateRow();

Here we use first() to navigate to the first row of the result set and then call updateInt() to
change the value of the customer ID column in the result set. After making the change, call
updateRow() to actually make the change in the database. If you forget to call updateRow() before
moving to another row in the result set, any changes you made are lost. If you need to make a
number of changes in a single row, do so with multiple calls to updateXXX() methods and then a

single call to updateRow(). Just be sure you call updateRow() before moving on to another row.

The technique for inserting a row is similar to updating data in an existing row, with a few important
differences. The first step is to move to what is called the insert row, using the moveToInsertRow()
method. The insert row is a blank row associated with the ResultSet that contains all the fields, but
no data; you can think of it as a pseudorow in which you can compose a new row. After you have
moved to the insert row, use updateXXX() methods to load new data into the insert row and then

call insertRow() to append the new row to the ResultSet and the underlying database. Here's an
example that adds a new customer to the database:

ResultSet rs = stmt.executeQuery(
 "SELECT NAME, CUSTOMER_ID FROM CUSTOMERS");
rs.moveToInsertRow();
rs.updateString(1, "Tom Flynn");
rs.updateInt(2, 35244);
rs.insertRow();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Note that you don't have to supply a value for every column, as long as the columns you omit can
accept null values. If you don't specify a value for a column that can't be null, you'll get a
SQLException. After you call insertRow(), you can create another new row or you can move back to
the ResultSet using the various navigation methods shown in Table 8-2. One final navigation method
that isn't listed in the table is moveToCurrentRow(). This method takes you back to where you were
before you called moveToInsertRow(); it can be called only while you are in the insert row.

Deleting a row from an updateable result set is easy. Simply move to the row you want to delete and
call the deleteRow() method. Here's how to delete the last record in a ResultSet:

rs.last();
rs.deleteRow();

Calling deleteRow() also deletes the row from the underlying database.

Note that not all ResultSet objects are updateable. In general, the query must reference only a single
table without any joins. Due to differences in database implementations, there is no single set of
requirements for what makes an updateable ResultSet.

As useful as scrollable and updateable result sets are, the JDBC specification doesn't require driver
vendors to support them. If you are building middleware or some other kind of system that requires
interaction with a wide range of database drivers, you should avoid this functionality for the time
being. The extended DatabaseMetaData object, introduced in JDBC 2.0, can provide information about
scrolling and concurrency support .

8.4.5. Java-Aware Databases

Java is object-oriented; relational databases aren't. As a result, it's decidedly difficult to shoehorn a
Java object into a stubbornly primitive-oriented database table. Luckily, the wind is changing, and
newer database systems, including object-oriented database management systems (OODBMSs)
provide direct support for storing and manipulating objects, and in some cases Java code as well.
While a regular relational database can store only a limited number of primitive types, a JDBMS[*]

system can store entire, arbitrary Java objects .

[*] A number of these products also use Java as a trigger language, generally in a JDBC structure.

Say we want to store a customized Java Account object in the ACCOUNTS table in a database. With a
standard DBMS and JDBC 1.0, we have to pull each piece of data (such as account number, account
holder, and balance) out of the Account object and write it to a complicated database table. To get
data out, we reverse the process. Short of serializing the Account object and writing it to a binary
field (a rather complex operation), we're stuck with this clumsy approach.

JDBC 2.0 extended the getObject() method to support these new Java-aware databases. Provided
that the database supports a Java-object type, we can read the Account object just like any primitive
type:

ResultSet rs = stmt.executeQuery("SELECT ACCOUNT FROM ACCOUNTS");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

rs.next();
Account a = (Account)rs.getObject(1);

To store an object, we use a PreparedStatement and the setObject() method:

Account a = new Account();
// Fill in appropriate fields in Account object

PreparedStatement stmt = con.prepareStatement(
 "INSERT INTO ACCOUNTS (ACCOUNT) VALUE (?)");
stmt.setObject(1, a);
stmt.executeUpdate();

A column that stores a Java object has a type of Types.JAVA_OBJECT. The JDBC API doesn't take any
special steps to locate the bytecodes associated with any particular class, so you should make sure
that any necessary objects can be instantiated with a call to Class.forName().

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.5. Handling Errors

Any JDBC object that encounters an error serious enough to halt execution throws a SQLException.
For example, database connection errors, malformed SQL statements, and insufficient database
privileges all throw SQLException objects.

The SQLException class extends the normal java.lang.Exception class and defines an additional
method called getNextException(). This allows JDBC classes to chain a series of SQLException
objects together. SQLException also defines the getSQLState() and getErrorCode() methods to
provide additional information about an error. The value returned by getSQLState() is one of the
ANSI-92 SQL state codes ; these codes are listed in Appendix D. getErrorCode() returns a vendor-
specific error code.

An extremely conscientious application might have a catch block that looks something like this:

try {
 // Actual database code
}
catch (SQLException e) {
 while(e != null) {
 System.out.println("\nSQL Exception:");
 System.out.println(e.getMessage());
 System.out.println("ANSI-92 SQL State: " + e.getSQLState());
 System.out.println("Vendor Error Code: " + e.getErrorCode());
 e = e.getNextException();
 }
}

8.5.1. SQL Warnings

JDBC classes also have the option of generating (but not throwing) a SQLWarning exception when
something is not quite right, but at the same time not sufficiently serious to warrant halting the
entire program. For example, attempting to set a transaction isolation mode that is not supported by
the underlying database might generate a warning rather than an exception. Remember, exactly
what qualifies as a warning condition varies by database.

SQLWarning encapsulates the same information as SQLException and is used in a similar fashion.
However, unlike SQLException objects, which are caught in try/catch blocks, warnings are retrieved
using the getWarnings() methods of the Connection, Statement, ResultSet, CallableStatement, and
PreparedStatement interfaces. SQLWarning implements the getMessage(), getSQLState(), and
getErrorCode() methods in the same manner as SQLException.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you are debugging an application and you want to be aware of every little thing that goes wrong
within the database, you might use a printWarnings() method like this one:

void printWarnings(SQLWarning warn) {
 while (warn != null) {
 System.out.println("\nSQL Warning:");
 System.out.println(warn.getMessage());
 System.out.println("ANSI-92 SQL State: " + warn.getSQLState());
 System.out.println("Vendor Error Code: " + warn.getErrorCode());
 warn = warn.getNextWarning();
 }
}

You can then use the printWarnings() method as follows:

// Database initialization code here
ResultSet rs = stmt.executeQuery("SELECT * FROM CUSTOMERS");
printWarnings(stmt.getWarnings());
printWarnings(rs.getWarnings());
// Rest of database code

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.6. Prepared Statements

The PreparedStatement object is a close relative of the Statement object. Both accomplish roughly the
same thing: running SQL statements. PreparedStatement, however, allows you to precompile your
SQL and run it repeatedly, adjusting specific parameters as necessary. Since processing SQL strings
is a large part of a database's overhead, getting compilation out of the way at the start can
significantly improve performance. With proper use, it can also simplify otherwise tedious database
tasks.

As with Statement, you create a PreparedStatement object from a Connection object. In this case,
though, the SQL is specified at creation instead of execution, using the prepareStatement() method
of Connection:

PreparedStatement pstmt = con.prepareStatement(
 "INSERT INTO EMPLOYEES (NAME, PHONE) VALUES (?, ?)");

This SQL statement inserts a new row into the EMPLOYEES table, setting the NAME and PHONE columns
to certain values. Since the whole point of a PreparedStatement is to be able to execute the
statement repeatedly, we don't specify values in the call to prepareStatement(), but instead use
question marks (?) to indicate parameters for the statement. To actually run the statement, we
specify values for the parameters and then execute the statement:

pstmt.clearParameters();
pstmt.setString(1, "Jimmy Adelphi");
pstmt.setString(2, "201 555-7823");
pstmt.executeUpdate();

Before setting parameters, we clear out any previously specified parameters with the
clearParameters() method. Then we can set the value for each parameter (indexed from 1 to the
number of question marks) using the setString() method. PreparedStatement defines numerous
setXXX() methods for specifying different types of parameters; see the java.sql reference material

later in this book for a complete list. Finally, we use the executeUpdate() method to run the SQL.

The setObject() method can insert Java object types into the database, provided that those objects
can be converted to standard SQL types. setObject() comes in three flavors:

setObject(int parameterIndex, Object x, int targetSqlType, int scale)
setObject(int parameterIndex, Object x, int targetSqlType)
setObject(int parameterIndex, Object x)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Calling setObject() with only a parameter index and an Object causes the method to try and
automatically map the Object to a standard SQL type (see Table 8-1). Calling setObject() with a
type specified allows you to control the mapping. The setXXX() methods work a little differently in

that they attempt to map Java primitive types to JDBC types.

You can use PreparedStatement to insert null values into a database, either by calling the setNull()
method or by passing a null value to one of the setXXX() methods that take an Object. In either

case, you must specify the target SQL type.

Let's clarify with an example. We want to set the first parameter of a prepared statement to the
value of an Integer object while the second parameter, which is a VARCHAR, should be null. Here's
some code that does that:

Integer i = new Integer(32);
pstmt.setObject(1, i, Types.INTEGER);
pstmt.setObject(2, null, Types.VARCHAR);
// Or pstmt.setNull(2, Types.VARCHAR);

8.6.1. Batch Updates

The original JDBC standard was not very efficient at loading large amounts of information into a
database. Even if you use a PreparedStatement, your program still executes a separate query for
each piece of data inserted. If your software inserts 10,000 rows into the database, it can introduce a
substantial performance bottleneck.

The addBatch() method of Statement allows you to lump multiple update statements into a unit and
execute them all at once. Call addBatch() after you create the statement and before execution:

con.setAutoCommit(false); // If some fail, we want to roll back the rest
Statement stmt = con.createStatement();

stmt.addBatch(
 "INSERT INTO CUSTOMERS VALUES (1, "J Smith", "781 555-1323");
stmt.addBatch(
 "INSERT INTO CUSTOMERS VALUES (2, "A Smith", "617 555-1132");
stmt.addBatch(
 "INSERT INTO CUSTOMERS VALUES (3, "C Smith", "617 555-1238");
stmt.addBatch(
 "INSERT INTO CUSTOMERS VALUES (4, "K Smith", "617 555-7823");

int[] upCounts = stmt.executeBatch();
con.commit();

Notice that we turn transaction autocommit off before creating the batch. This is because we want to
roll back all the SQL statements if one or more of them fail to execute properly (for a more detailed
discussion of transaction handling, see "Transactions" later in this chapter). After calling addBatch()
multiple times to create our batch, we call executeBatch() to send the SQL statements off to the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

database to be executed as a batch. Batch statements are executed in the order they are added to
the batch. executeBatch() returns an array of update counts , in which each value in the array
represents the number of rows affected by the corresponding batch statement. If you need to
remove the statements from a pending batch job, you can call clearBatch(), as long as you call it
before calling executeBatch().

Note that you can use only SQL statements that return an update count (e.g., CREATE, DROP, INSERT,
UPDATE, DELETE) as part of a batch. If you include a statement that returns a result set, such as
SELECT, you get a SQLException when you execute the batch. If one of the statements in a batch can't
be executed for some reason, executeBatch() throws a BatchUpdateException. This exception,
derived from SQLException, contains an array of update counts for the batch statements that
executed successfully before the exception was thrown. If we then call rollback(), the components
of the batch transaction that did execute successfully will be rolled back.

The addBatch() method works slightly differently for PreparedStatement and CallableStatement
objects. To use batch updating with a PreparedStatement, create the statement normally, set the
input parameters, and then call the addBatch() method with no arguments. Repeat as necessary
and then call executeBatch() when you're finished:

con.setAutoCommit(false); // If some fail, we want to roll back the rest
PreparedStatement stmt = con.prepareStatement(
 "INSERT INTO CUSTOMERS VALUES (?,?,?)");

stmt.setInt(1,1);
stmt.setString(2, "J Smith");
stmt.setString(3, "781 555-1323");
stmt.addBatch();

stmt.setInt(1,2);
stmt.setString(2, "A Smith");
stmt.setString(3, "617 555-1132");
stmt.addBatch();

int[] upCounts = stmt.executeBatch();
con.commit();

This batch functionality also works with CallableStatement objects for stored procedures. The catch
is that each stored procedure must return an update count and may not take any OUT or INOUT
parameters.

8.6.2. Auto-Generated Keys

Although it isn't part of the standard set of SQL capabilities, many databases, including the popular
MySQL system, support autogenerated primary keys. This is a very useful capability, but in the past
it's had a drawback: JDBC provided no way to retrieve the generated key values! So you were stuck
running a second query to retrieve the new key or generating the key separately. But no more, as
JDBC 3.0 provides methods for retrieving autogenerated key values, provided that the underlying
database and driver support them.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The execute() and executeUpdate() methods of Statement now include additional versions that
allow your program to register interest in generated key values by passing in the
Statement.RETURN_GENERATED_KEYS constant. After executing the statement, you can call the
getGeneratedKeys() method to return a ResultSet containing the generated keys. Keys are returned
one to a row, so if your SQL statement generates multiple new rows, you'll get each key back, in
order.

Example 8-2 shows a simple program that inserts a single row into a table, retrieves the key
generated by the table, and prints the result.

Example 8-2. KeyGenerator

import java.sql.*;

public class KeyGenerator {

 public static void main(String[] args) throws Exception {
 Class.forName("com.mysql.jdbc.Driver");
 Connection conn =
 DriverManager.getConnection("jdbc:mysql://localhost/test");

 int newKey = -1;
 Statement stmt = conn.createStatement();
 stmt.executeUpdate(
 "insert into people (fullname) values ('John Morgan')",
 Statement.RETURN_GENERATED_KEYS);

 ResultSet keys = stmt.getGeneratedKeys();
 if (keys.next()) {
 newKey = keys.getInt(1);
 }
 keys.close();

 System.out.println("New Key: " + newKey);

 stmt.close();
 conn.close();
 }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.7. BLOBs and CLOBs

As users began to increase the volume of data stored in databases, vendors introduced support for
large objects (LOBs). The two varieties of LOBs, binary large objects (BLOBs) and character large
objects (CLOBs), store large amounts of binary or character data, respectively. The SQL99
specification formally defined these data types.

Support for LOB types across databases varies. Some don't support them at all, and most have
unique type names (BINARY, LONG RAW, and so forth). JDBC 1.0 makes programs retrieve BLOB and
CLOB data using the getBinaryStream() or getAsciiStream() methods. (A third method,
getUnicodeStream(), has been deprecated in favor of the getCharacterStream() method, which
returns a Reader.)

As of JDBC 2.0, the ResultSet interface includes getBlob() and getClob() methods, which return
Blob and Clob objects, respectively. The Blob and Clob objects themselves allow access to their data
via streams (the getBinaryStream() method of Blob and the getCharacterStream() method of
Clob) or via direct-read methods (the getBytes() method of Blob and the getSubString() method
of Clob).

To retrieve the data from a CLOB, simply retrieve the Clob object and call the getCharacterStream()
method:

String s;
Clob clob = blobResultSet.getBlob("CLOBFIELD");
BufferedReader clobData = new BufferedReader(clob.getCharacterStream());
while((s = clobData.readLine()) != null)
 System.out.println(s);

In addition, you can set Blob and Clob objects when you are working with a PreparedStatement, using
the setBlob() and setClob() methods. Note that the life span of a Blob or Clob object is limited to
the transaction that created it, so if you've retrieved one from a ResultSet, you need to keep that
ResultSet open while you're working with it.

JDBC 3.0 extended the java.sql.Blob interface to include a setBytes() method to alter the BLOB's
content, and the java.sql.Clob class includes a setString() method. When using these methods,
it's up to the driver whether to update a local copy of the LOB or to directly update the copy in the
database. The locatorsUpdateCopy() method of DatabaseMetaData will tell you which approach is
used by your driver. If the method returns true, you'll need to issue a separate update statement to
commit the changes to the LOB back to the database. To insert data in a new BLOB or CLOB field,
first create a row with an empty LOB, select the row, retrieve the LOB, edit its contents, and write it
back if necessary.

Modified Blob and Clob objects can be passed to the setBlob() and setClob() methods of
PreparedStatement and to the new updateBlob() and updateClob() methods of ResultSet (for

http://lib.ommolketab.ir
http://lib.ommolketab.ir

updateable result sets).

JDBC driver support for BLOB and CLOB types varies wildly. Some vendors don't support any LOB
functionality at all, and others support only JDBC 2.0-level (read-only) LOBs or provide their own
extensions for manipulating them. Check your driver documentation for more details.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.8. Metadata

Most JDBC programs are designed to work with a specific database and particular tables in that
database; the program knows exactly what kind of data it is dealing with. Some applications,
however, need to dynamically discover information about result set structures or underlying database
configurations. This information is called metadata , and JDBC provides two classes for dealing with
it: DatabaseMetaData and ResultSetMetaData. If you are developing a JDBC application that will be
deployed outside a known environment, you need to be familiar with these interfaces.

8.8.1. DatabaseMetaData

You can retrieve general information about the structure of a database with the
java.sql.DatabaseMetaData interface. By making thorough use of this class, a program can tailor its
SQL and use of JDBC on the fly to accommodate different levels of database and JDBC driver
support.

Database metadata is associated with a particular connection, so DatabaseMetaData objects are
created with the getMetaData() method of Connection:

DatabaseMetaData dbmeta = con.getMetaData();

DatabaseMetaData provides an overwhelming number of methods you can call to get actual
configuration information about the database. Some of these return String objects (getURL()),
some return boolean values (nullsAreSortedHigh()), and still others return integers
(getMaxConnections()).

A number of other methods return ResultSet objects. These methods, such as getColumns(),
getTableTypes(), and getPrivileges(), generally encapsulate complex or variable-length
information. The getTables() method, for instance, returns a ResultSet that contains the name of
every table in the database as well as a good deal of extra information.

Many of the DatabaseMetaData methods take string patterns as arguments, allowing for simple
wildcard searching. A percent sign (%) substitutes for any number of characters, and an underscore
(_) calls for a single character match. Thus, %CUSTOMER% matches NEW_CUSTOMERS, CUSTOMER, and
CUSTOMERS, while CUSTOMER% matches only CUSTOMER and CUSTOMERS. All of these patterns are case-
sensitive.

8.8.2. ResultSetMetaData

The ResultSetMetaData interface provides information about the structure of a particular ResultSet.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Data provided by ResultSetMetaData includes the number of available columns, the names of those
columns, and the kind of data available in each. Example 8-3 is a short program that displays the
contents of a table and shows the data type for each column.

Example 8-3. TableViewer program

import java.sql.*;

public class TableViewer {

 final static String jdbcURL = "jdbc:oracle:customerdb";
 final static String jdbcDriver = "oracle.jdbc.driver.OracleDriver";
 final static String table = "CUSTOMERS";

 public static void main(java.lang.String[] args) {

 System.out.println("--- Table Viewer ---");

 try {
 Class.forName(jdbcDriver);
 Connection con = DriverManager.getConnection(jdbcURL, "", "");
 Statement stmt = con.createStatement();
 ResultSet rs = stmt.executeQuery("SELECT * FROM "+ table);

 ResultSetMetaData rsmd = rs.getMetaData();
 int columnCount = rsmd.getColumnCount();
 for(int col = 1; col <= columnCount; col++) {
 System.out.print(rsmd.getColumnLabel(col));
 System.out.print(" (" + rsmd.getColumnTypeName(col)+")");
 if(col < columnCount)
 System.out.print(", ");
 }
 System.out.println();

 while(rs.next()) {
 for(int col = 1; col <= columnCount; col++) {
 System.out.print(rs.getString(col));
 if(col < columnCount)
 System.out.print(", ");
 }
 System.out.println();
 }

 rs.close();
 stmt.close();
 con.close();
 }
 catch (ClassNotFoundException e) {
 System.out.println("Unable to load database driver class");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 catch (SQLException e) {
 System.out.println("SQL Exception: " + e.getMessage());
 }
 }
}

The key methods used here are getColumnCount(), getColumnLabel(), and getColumnTypeName().
Note that type names returned by getColumnTypeName() are database-specific (e.g., Oracle refers to
a string value as a VARCHAR; Microsoft Access calls it TEXT). Here's some sample output for
TableViewer:

--- Table Viewer ---
CustNo (SHORT), CustName (VARCHAR), CustAddress (VARCHAR)
1, Jane Markham, 12 Stevens St
2, Louis Smith, 45 Morrison Lane
3, Woodrow Lang, 4 Times Square

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.9. Transactions

A transaction is a group of several operations that must behave atomically (i.e., as if they are a
single, indivisible operation). With regard to databases, transactions allow you to combine one or
more database actions into a single atomic unit. If you have an application that needs to execute
multiple SQL statements to fulfill one goal (say an inventory management system that needs to move
items from an INVENTORY table to a SHIPPING table), you probably want to use JDBC's transaction
services to accomplish the goal.

This section gives a brief overview of transactions with respect to relational databases and JDBC. For
broader coverage of transactions in the general J2EE environment, see Chapter 16.

Working with a transaction involves the following steps: start the transaction, perform its component
operations, and then either commit the transaction if all the component operations succeed or roll it
back if one of the operations fails. The ability to roll back a transaction is the key feature. This means
that if any one SQL statement fails, the entire operation fails, and it is as though none of the
component operations took place. Therefore, it is impossible to end up with a situation in which, for
example, the INVENTORY table has been debited, but the SHIPPING table has not been credited.

Another issue with transactions and databases concerns changes to the database becoming visible to
the rest of the system. Transactions can operate at varying levels of isolation from the rest of the
database. At the most isolated level, the results of all the component SQL statements become visible
to the rest of the system only when the transaction is committed. In other words, nobody sees the
reduced inventory before the shipping data is updated.

The Connection object in JDBC is responsible for transaction management. With JDBC, you are
always using transactions in some form. By default, a new connection starts out in transaction
autocommit mode, which means that every SQL statement is executed as an individual transaction
that is immediately committed to the database.

To perform a transaction that uses multiple statements, you have to call the setAutoCommit()
method with a false argument. (You can check the status of autocommit with the getAutoCommit()
method.) Now you can execute the SQL statements that comprise your transaction. When you are
done, call the commit() method to commit the transaction or the rollback() method to undo it.
Here's an example:

try {
 con.setAutoCommit(false);
 // Run some SQL
 stmt.executeUpdate("UPDATE INVENTORY SET ONHAND = 10 WHERE ID = 5");
 stmt.executeUpdate(
 "INSERT INTO SHIPPING (QTY) VALUES (5)");
 con.commit();
}
catch (SQLException e) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 con.rollback(); //Undo the results of the transaction
}

When autocommit is set to false, you must remember to call commit() (or rollback()) at the end
of each transaction, or your changes will be lost.

JDBC supports a number of transaction isolation modes that allow you to control how the database
deals with transaction conflictsin other words, who sees what when. JDBC defines five modes, some
of which may not be supported by all databases. The default mode varies depending on the
underlying database and driver. Higher isolation levels generally yield poorer performance. Here are
the five standard options, which are defined as integer constants in the Connection interface:

TRANSACTION_NONE

Transactions are either disabled or not supported.

TRANSACTION_READ_UNCOMMITTED

Minimal transaction support that allows dirty reads. In other words, other transactions can see
the results of a transaction's SQL statements before the transaction commits itself. If you roll
back your transaction, other transactions may be left with invalid data.

TRANSACTION_READ_COMMITTED

Transactions are prevented from reading rows with uncommitted changes; in other words, dirty
reads aren't allowed.

TRANSACTION_REPEATABLE_READ

Protects against repeatable reads as well as dirty reads. Say one transaction reads a row that
is subsequently altered (and committed) by another transaction. If the first transaction reads
the row again, the first transaction doesn't get a different value the second time around. The
new data is visible to the first transaction only after it calls commit() and performs another
read.

TRANSACTION_SERIALIZABLE

Provides all the support of trANSACTION_REAPEATABLE_READ and guards against row insertions as
well. Say one transaction reads a set of rows and then another transaction adds a row to the
set. If the first transaction reads the set again, it doesn't see the newly added row. Put another
way, this level of isolation forces the database to treat transactions as if they occurred one at a
time.

Transaction isolation modes are set by the setTransactionIsolation() method. For example:

con.setTransactionIsolation(TRANSACTION_READ_COMMITTED);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can use the DatabaseMetaData class to determine the transaction support of the underlying
database. The most useful methods are getdefaultTransaction Isolation(),
supportsTransactions(), supportsTransactionIsolationLevel(), and
supportsDataDefinitionAndDataManipulationTransactions() (which may well be the longest method
name in the Java API).

An application that uses transactions is a prime candidate for also using a connection pool (available
as of JDBC 2.0). Since each database transaction requires its own Connection object, an application
that performs multiple simultaneous transactions (for instance, spawning threads that perform
database updates) needs multiple connections available. Maintaining a pool of connections is much
more efficient than creating a new one whenever you need a new transaction.

8.9.1. Distributed Transactions

With appropriate driver support, the XADataSource interface can also be used to create connections
supporting distributed transactions. A distributed transaction is spread across more than one
database and is coordinated by an external transaction monitor. Like pooled connections, the
DataSource must be configured by the administrator of the J2EE environment.

While connections supporting distributed transactions are nearly indistinguishable from regular
connections, there is a functional difference: autocommit mode defaults to off, and when a
connection is used within a distributed transaction, the rollback(), commit(), and setAutoCommit(
) methods should not be called.

Connections received from an XADataSource may be used for nondistributed transactions as well. All
of the usual transaction management commands may be used in a nondistributed transaction.

8.9.2. Savepoints

Sometimes it's helpful to be able to roll back part of a transaction but not the whole thing. JDBC 3.0
comes to the rescue with support for an advanced database feature called a savepoint. A savepoint is
a named point within a transaction. If the underlying database and driver support the functionality,
you can use the setSavepoint(String name) method of Connection to create a named savepoint in
the current transaction and get an object implementing the Savepoint interface. This object can be
passed to the rollback() method of Connection to roll back all components of the current
transaction that took place after the setSavepoint() method was called:

Statement stmt = con.createStatement();
stmt.executeUpdate("delete from clients");
stmt.executeUpdate(
 "insert into clients (NAME, ID) values ('Charles Babbage', 1)");
Savepoint save = con.setSavepoint("INSERT_POINT");
stmt.executeUpdate(
 "update clients set NAME = 'Ada Lovelace' where ID = 1");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

con.rollback(save);
con.commit();

This example will leave the clients table with a single row, with a value of one in the ID column and
Charles Babbage in the NAME column.

Savepoints can't be used in distributed transactions, at least with any of the databases we've tried.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.10. Stored Procedures

Most RDBMS systems include some sort of internal programming language (e.g., Oracle's PL/SQL).
These languages allow database developers to embed procedural application code directly within the
database and then call that code from other applications. The advantage of this approach is that the
code can be written just once and then used in multiple different applications (even with different
platforms and languages). It also allows application code to be divorced from the underlying table
structure. If stored procedures handle all of the SQL and applications just call the procedures, only
the stored procedures need to be modified if the table structure is changed later on.

Here is an Oracle PL/SQL stored procedure:[*]

[*] If it looks familiar, that's because it is from George Reese's Database Programming with JDBC (O'Reilly).

CREATE OR REPLACE PROCEDURE sp_interest
(id IN INTEGER
bal IN OUT FLOAT) IS
BEGIN
SELECT balance
INTO bal
FROM accounts
WHERE account_id = id;

bal := bal + bal * 0.03;

UPDATE accounts
SET balance = bal
WHERE account_id = id;

END;

This PL/SQL procedure takes two input values, an account ID and a balance, and returns an updated
balance.

The CallableStatement interface is the JDBC object that supports stored procedures . The Connection
class has a prepareCall() method that is very similar to the prepareStatement() method we used
to create a PreparedStatement. Because each database has its own syntax for accessing stored
procedures, JDBC defines a standardized escape syntax for accessing stored procedures with
CallableStatement. The syntax for a stored procedure that doesn't return a result set is:

{call procedure_name[(?[,?...])]}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The syntax for a stored procedure that returns a result is:

{? = call procedure_name[(?[,?...])]}

In this syntax, each question mark (?) represents a placeholder for a procedure parameter or a
return value. Note that the parameters are optional. The JDBC driver is responsible for translating
the escape syntax into the database's own stored procedure syntax.

Here's a code fragment that uses CallableStatement to run the sp_interest stored procedure:

CallableStatment cstmt = con.prepareCall("{call sp_interest(?,?)}");
cstmt.registerOutParameter(2, Types.FLOAT);
cstmt.setInt(1, accountID);
cstmt.setFloat(2, 2343.23);
cstmt.execute();
out.println("New Balance:" + cstmt.getFloat(2));

In this example, we first create a CallableStatement using the prepareCall() method and passing
in the appropriate escape syntax for the stored procedure. Since this stored procedure has an output
parameter (actually, in this case, an IN OUT parameter, which means it also serves as an input
parameter), we use the registerOutParameter() method to identify that parameter as an output of
type FLOAT. Note that, just as with prepared statements, substituted parameters are numbered from
1 to n, left to right. Any time you have an output parameter in a stored procedure, you need to
register its type using registerOutParameter() before you execute the stored procedure.

Next we set the two input parameters, the account ID and the balance, using the appropriate
setXXX() methods. Finally, we execute the stored procedure and then use the getFloat() method
to display the new balance. The getXXX() methods of CallableStatement are similar to those of the

ResultSet.

You need to use CallableStatement only with stored procedures that have output values, such as the
one we just saw. You can use either of the other statement objects to execute stored procedures that
take parameters but don't return anything.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.11. Escape Sequences

Escape sequences allow JDBC programs to package certain database commands in a database-
independent manner. Since different databases implement different features (especially scalar SQL
functions) in different ways, in order to be truly portable, JDBC needs to provide a standard way to
access at least a subset of that functionality. We've already seen escape sequences twice: with the
various SQL date and time functions and with the CallableStatement object.

A JDBC escape sequence consists of a pair of curly braces, a keyword, and a set of parameters. Thus,
call is the keyword for stored procedures, while d, t, and ts are keywords for dates and times. One
keyword we haven't seen yet is escape. This keyword specifies the character that is used to escape
wildcard characters in a LIKE statement:

stmt.executeQuery(
 "SELECT * FROM ApiDocs WHERE Field_Name like 'TRANS_%' {escape '\'}");

Normally, the underscore character (_) is treated as a single-character wildcard, while the percent
sign (%) is the multiple-character wildcard. By specifying the backslash (\) as the escape character,
we can match on the underscore character itself. Note that the escape keyword can also be used
outside wildcard searches. For example, SQL string termination characters (such as the single quote)
need to be escaped when appearing within strings.

The fn keyword allows the use of internal scalar database functions . Scalar functions are a fairly
standard component of most database architectures, even though the actual implementations vary.
For instance, many databases support the SOUNDEX(string) function, which translates a character
string into a numerical representation of its sound. Another function, DIFFERENCE(string1, string2),
computes the difference between the soundex values for two strings. If the values are close enough,
you can assume the two words sound the same ("Beacon" and "Bacon"). If your database supports
DIFFERENCE, you can use it by executing a SQL statement that looks like this:

{fn DIFFERENCE("Beacon", "Bacon")}

Available scalar functions differ depending on the database being used. Also, some drivers, such as
Oracle's, don't support the {fn} escape mechanism at all.

The last escape keyword is oj, which is used for outer joins. The syntax is simply:

{oj outer-join}

Outer joins aren't supported by some databases and are sufficiently complex (and unrelated to the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

JDBC API per se) as to be beyond the scope of this chapter. For more information, consult the SQL
documentation for your database.

Note that when performance is an issue, you can use the setEscapeProcessing() method of
Statement to turn off escape sequence processing.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.12. RowSets

JDBC 2.0 introduced the RowSet interface. But unlike ResultSet, RowSet encapsulates data using a
JavaBean interface, allowing it to participate in the JavaBean event model. A RowSet, as the name
implies, encapsulates a set of rows produced by a query. Since a RowSet is a Java bean, it can be
used easily in a graphical development environment. In addition to the RowSet interface itself, the
JDBC 3.0 API introduced a set of standard interfaces for particular kinds of row sets.

Sun's JDK 1.4 environment doesn't ship with any RowSet implementations. However, J2SE 5.0 does,
and for earlier releases, Sun has made a number of implementations available at
http://java.sun.com/products/jdbc/download.html. The Sun implementations are found in the
com.sun.rowset package and have class names that echo the interface names, followed by Impl.
Here's how to use the simplest of these, JdbcRowSet, which simply encapsulates a ResultSet:

 JdbcRowSet jdbcRowSet
 = new JdbcRowSetImpl();
 jdbcRowSet.setCommand("SELECT * FROM CUSTOMERS WHERE CUSTNO = ?");
 jdbcRowSet.setUrl("jdbc:oracle:thin:@dbhost.co.com:1521:ORCL");
 jdbcRowSet.setUsername("SAMSON");
 jdbcRowSet.setPassword("DELILAH");
 jdbcRowSet.setType(ResultSet.TYPE_SCROLL_INSENSITIVE);
 jdbcRowSet.setConcurrency(ResultSet.CONCUR_UPDATABLE);
 jdbcRowSet.setInt(1, 10);
 jdbcRowSet.execute();

 jdbcRowSet.first();
 System.out.println(jdbcRowSet.getString(1));
 jdbcRowSet.last();
 System.out.println(jdbcRowSet.getString(1));

 jdbcRowSet.close();

The getXXX and setXXX methods are the same as in the ResultSet interface. Support for scrollable

and updateable row sets depends on the underlying driver and database implementation.

The addRowSetListener() method of RowSet can be used to register other components as listeners.
They must implement the RowSetListener interface to be implemented.

The com.sun.rowset package also contains a CachedRowSet object that will hold a ResultSet
independently of the originating JDBC connection:

Connection con = DriverManager.getConnection(dbURL, dbUser, dbPassword);
Statement stmt = con.createStatement();

http://java.sun.com/products/jdbc/download.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

ResultSet rs = stmt.executeQuery("SELECT * FROM CUSTOMERS");
CachedRowSet crs = new CachedRowSetImpl();
crs.populate(rs);
rs.close();
stmt.close();
crs.next();
System.out.println(crs.getString("CUSTNAME"));

In order to update a CachedRowSet, you must set the JDBC connection information and specify the
underlying SQL via the setCommand() method. Now, let's continue our code sample:

crs.setUrl(dbURL);
crs.setUsername(dbUser);
crs.setPassword(dbPassword);
crs.setCommand("SELECT * FROM CUSTOMERS");
//...
crs.setString("CUSTNAME", "John Smith");
crs.updateRow();
crs.moveToCurrentRow();
crs.acceptChanges();

Note that we call the acceptChanges() method after performing our update. This is necessary to
propagate the changes back to the original DataSource.

The final RowSet available from Sun is the WebRowSet, which is identical to the CachedRowSet but has a
persistence engine based on XML.

While a RowSet object would generally be used with JDBC, there is no actual requirement that this be
so. RowSet implementations could be written to act against tabular data, text files, and more esoteric
storage mechanisms.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 9. JNDI
The Java Naming and Directory Interface (JNDI) is an API that supports accessing naming and
directory services in Java programs. The purpose of a naming service is to associate names with
objects and to provide a way to access objects based on their names. You should be familiar with
naming systems; you use them every day when you browse the filesystem on your computer or surf
the Web by typing in a URL. Objects in a naming system can range from files in a filesystem and
names located in Domain Name System (DNS) records to Enterprise JavaBeans (EJB) components in
an application server and user profiles in an LDAP (Lightweight Directory Access Protocol) directory. If
you want to use Java to write an application such as a search utility, a network-enabled desktop, an
application launcher, an address book, a network management utility, or a class browserin short,
anything that accesses objects in a naming systemJNDI is a good candidate for writing that
application.

As its name implies, JNDI doesn't just deal with naming services . JNDI also encompasses directory
services, which are a natural extension of naming services. The primary difference between the two
is that a directory service allows the association of attributes with objects, such as an email address
attribute for a user object, while a naming service does not. Thus, with a directory service, you can
access the attributes of objects and search for objects based on their attributes. You can use JNDI to
access directory services like LDAP and Novell Directory Services (NDS) directories.

JNDI is an integral part of the J2EE standard framework; it is used by J2EE components to access
deployment information and various runtime resources, such as Enterprise JavaBean references,
JDBC data sources, and so on. Details on how JNDI plays a role specifically in accessing EJBs can be
found in Chapter 6. Full details on the use of JNDI for application deployment can be found in Chapter
2.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.1. JNDI Architecture

The architecture of JNDI is somewhat like the JDBC architecture in that both provide a standard
protocol-independent API built on top of protocol-specific driver or provider implementations. This
layer insulates an application from the actual data source it is using, so, for example, it doesn't
matter whether the application is accessing an NDS or LDAP directory service.

The JNDI architecture includes both an application programming interface (API) and a service
provider interface (SPI), as shown in Figure 9-1. A Java application uses the JNDI API to access
naming and directory services, primarily through the Context and DirContext interfaces. The JNDI
API is defined in the javax.naming and javax.naming.directory packages. Note that JNDI is a
standard extension to the Java 2 platform; it is included in the core APIs starting with JDK 1.3. If you
are using an earlier version of the Java environment, the JNDI API classes and various providers are
also available separately at http://java.sun.com/products/jndi. This chapter covers JNDI Version 1.2,
which is the version included in JDK 1.3, 1.4, and 1.5, and is a standard component in the J2EE 1.3
and 1.4 specifications.

Figure 9-1. The JNDI architecture

In order for an application to actually interact with a particular naming or directory service, there

http://java.sun.com/products/jndi
http://lib.ommolketab.ir
http://lib.ommolketab.ir

must be a JNDI service provider for that service. This is where the JNDI SPI comes in. A service
provider is a set of classes that implements various JNDI interfaces for a specific naming or directory
service, much as a JDBC driver implements various JDBC interfaces for a particular database system.
The provider can also implement other interfaces that aren't part of JNDI, such as Novell's NdsObject
interface.

The classes and interfaces in the javax.naming.spi package are of interest only to developers who
are creating service providers. For instance, the NamingManager class defines methods for creating
Context objects and otherwise controlling the operation of the underlying service provider. As an
application programmer, you don't have to worry about the JNDI SPI. All you have to do is make sure
that you have a service provider for each naming or directory service you want to use. Sun maintains
a list of available service providers on the JNDI web page.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.2. A Simple Example

Before going any further, let's take a look at a simple JNDI example. To access an object in a naming
system, we need to create an initial context for the naming system, to give us an entry point into it.
Once we have an initial context, we can look up an object by name.

Example 9-1 demonstrates the basic JNDI tasks of getting an initial context to a naming system and
looking up an object in that naming system. With slight modification, this code can be used to look up
objects with any JNDI provider. So, for example, you could use this Lookup class to look up Enterprise
JavaBeans or remote objects in an RMI registry and handle them however you like. All you have to
change is the properties that control the naming system being accessed.

Example 9-1. Looking up an object in a naming system

import java.util.Properties;
import javax.naming.*;

public class Lookup {
 public static void main(String[] args) {
 String name = "";
 if (args.length > 0)
 name = args[0];

 try {
 // Create a Properties object and set default properties
 Properties props = new Properties();
 props.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.fscontext.RefFSContextFactory");
 props.put(Context.PROVIDER_URL, "file:///");

 // Optional command-line args to specify alternate factory and URL
 if (args.length > 1) {
 props.put(Context.INITIAL_CONTEXT_FACTORY, args[1]);
 }
 if (args.length > 2) {
 props.put(Context.PROVIDER_URL, args[2]);
 }

 // Create the initial context from the properties we just created
 Context initialContext = new InitialContext(props);

 // Look up the named object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Object obj = initialContext.lookup(name);
 if (name.equals(""))
 System.out.println("Looked up the initial context");
 else
 System.out.println(name + " is bound to: " + obj);
 }
 catch (NamingException ne) {
 System.out.println("Encountered a naming exception");
 ne.printStackTrace();
 }
 }
}

The first thing the Lookup application does is create a java.util.Properties object and use it to store
some String values. The keys used for these values are constants defined in the
javax.naming.Context class. Each constant corresponds to an underlying standard JNDI property
name that is meant to communicate specific information about the JNDI service the application is
using. Context.INITIAL_CONTEXT_FACTORY specifies the factory class that creates an initial context for
the service we want to use. The class com.sun.jndi.fscontext.RefFSContextFactory is a factory class
from the filesystem service provider from Sun. It isn't provided by default in the Sun JDK downloads,
but it can be downloaded from http://java.sun.com/products/jndi. Context.PROVIDER_URL tells the
factory class the protocol, server name, and path to use in creating an initial context. We specify the
URL file:/// to indicate the root of the local filesystem. This works on any Unix or Windows filesystem.

Once we have created the Properties object and set the default values for the context factory and
the provider URL, we check the command-line arguments for specific values that the user may have
provided. Finally, we pass the Properties to the javax.naming.InitialContext constructor, which
returns the initial context object that is our entry point into this particular naming system. Next, we
call the lookup() method on initialContext, specifying the name we want to look up. This call
returns an object from the naming system, which, in this case, is a file or directory.

You can run Lookup from the command line and specify an optional name to look up. For example, on
a typical Windows machine:

% java Lookup boot.ini
boot.ini is bound to: C:\boot.ini

If the name is actually a directory, the output looks a bit different:

% java Lookup System
System is bound to: com.sun.jndi.fscontext.RefFSContext@803adec0

Note that if we wanted to make Lookup more general, we might change it so that it reads its property
values from a properties file. Luckily, JNDI takes care of this for you; it automatically loads any of its
standard properties from a jndi.properties file if it finds the file in your CLASSPATH. Changing the
naming system is a simple matter of editing this properties file to specify an appropriate factory
object and URL. You can always override the properties loaded from jndi.properties in your code, as

http://java.sun.com/products/jndi
http://lib.ommolketab.ir
http://lib.ommolketab.ir

we've done in the Lookup example. In the next section, we'll discuss the properties that can be set to
control how JNDI operates.

JNDI throws naming exceptions when naming operations can't be completed. The root naming
exception, javax.naming.NamingException, is a catchall for any JNDI exception. The javax.naming
package defines numerous subclasses of NamingException. A common naming exception,
NameNotFoundException, is thrown when a name can't be found, because it either doesn't exist or is
spelled incorrectly. JNDI throws a NoPermissionException when a program doesn't have sufficient
rights or permissions and throws an OperationNotSupportedException when an application uses a
JNDI method on an object that doesn't support that specific naming operation.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.3. Introducing the Context

A naming service associates names with objects. An association between a name and an object is
called a binding, and a set of such bindings is called a context. A name in a context can be bound to
another context that uses the same naming conventions; the bound context is called a subcontext.
Using a filesystem as an analogy, a directory (such as /temp) is a context that contains bindings
between filenames and objects that the system can use to manipulate the files (often called file
handles). If a directory contains a binding for another directory (e.g., /temp/javax), the subdirectory
is a subcontext.

JNDI represents a context in a naming system using the javax.naming.Context interface. This is the
key interface for interacting with naming services. A Context knows about its set of bindings in the
naming system, but little else. While you might be tempted to think of a Context as an exotic
java.io.File object, you should resist making that analogy, as it will just confuse you. Unlike a File
object, which can tell you its absolute and relative names as well as return a reference to its parent,
a Context object can tell you only about its bindings. A Context can't go up a level, tell you its
absolute pathname or even tell you its own name. When you think of a Context, think of an object
that encapsulates its children as data and has methods that perform operations on that data, not on
the Context itself.

9.3.1. Using the InitialContext Class

The javax.naming.InitialContext class implements the Context interface and serves as our entry
point to a naming system. To use JNDI to access objects in a naming system, you must first create
an InitialContext object. The InitialContext constructors take a set of properties in the form of a
java.util.Hashtable or one of its subclasses, such as a Properties object. Here is how we created
an InitialContext in the Lookup example:

// Create a Properties object and set default properties
Properties props = new Properties();
props.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.fscontext.RefFSContextFactory");
props.put(Context.PROVIDER_URL, "file:///");

...

// Create the initial context from the properties we just created
Context initialContext = new InitialContext(props);

The most fundamental property key is java.naming.factory.initial, which corresponds to the
Context.INITIAL_CONTEXT_FACTORY constant. The value for this property specifies the name of a
factory class in a JNDI service provider. It is the job of this factory class to create an InitialContext

http://lib.ommolketab.ir
http://lib.ommolketab.ir

that is appropriate for its service and then hand the object back to us. We have to give the factory
class all the information it needs to create an InitialContext in the form of other property values.
For example, the factory class learns the protocol, server name, and path to use from the
java.naming.provider.url property (Context.PROVIDER_URL).

The filesystem factory class (com.sun.jndi.fscontext.RefFSContextFactory) requires a minimal set
of properties; it needs only to have its context factory and provider URL specified. Other JNDI
providers can be more demanding. For example, the factory class in Sun's LDAP service provider
requires the URL of the LDAP server and directory entry you want to access, a username and
password, and an authentication type. Here are some properties (shown in the file format used by
the Properties class) you might use to create an InitialContext with the LDAP factory class:

java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory
java.naming.provider.url=ldap://192.168.1.20/o=Planetary,c=US
java.naming.security.authentication=simple
java.naming.security.principal=cn=kris
java.naming.security.credentials=secret

These properties create an InitialContext for an organization called Planetary in the global X.500
namespace.

The standard JNDI properties can be specified in several ways. Our Lookup example set them
explicitly in the source, using some hardwired default values and (optionally) reading alternate values
from the command line. Since these are Java properties, they can also be specified using -D
arguments to the Java runtime, for example:

% java -Djava.naming.factory.initial=org.my.jndi.factory
-Djava.naming.provider.url=file:/// MyJNDIClient

JNDI can also read its properties from a jndi.properties file located in your CLASSPATH. If we put the
following into a jndi.properties file in the root of one of the directories on our CLASSPATH:

java.naming.factory.initial=org.my.jndi.factory
java.naming.provider.url=file:///

it will have the same effect as the Java runtime arguments just shown.

Note that some JNDI services, such as nonpublic LDAP servers, require authentication in order to
access them. In these cases, you would use the Context.SECURITY_PRINCIPAL and
Context.SECURITY_CREDENTIALS properties to indicate the username and password for the account
you are using to access the underlying service. The corresponding property names for entering these
in your jndi.properties file are java.naming.security.principal and
java.naming.security.credentials, respectively.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.3.2. Other Naming Systems

Since many companies support JNDI, there are many naming system service providers . You can find
a reasonably comprehensive list of public JNDI providers from the JNDI page on the Sun web site
(currently at http://java.sun.com/products/jndi/serviceproviders.html). You should contact the
vendor of your enterprise naming system or directory for more details regarding its specialized
providers. Table 9-1 lists the factory classes for some common JNDI providers. The first three are
provided out-of-the-box with Sun's JDK 1.3, 1.4, and 1.5 implementations. JDK 1.4 and 1.5 also
include the DNS provider by default. The others can be downloaded from the URL just specified.

Table 9-1. JNDI factory classes

Service Factory class

LDAPv3 com.sun.jndi.ldap.LdapCtxFactory

COSNaming com.sun.jndi.cosnaming.CNCtxFactory

RMI registry com.sun.jndi.rmi.registry.RegistryContextFactory

DNS com.sun.jndi.dns.DnsContextFactory

Filesystem

com.sun.jndi.fscontext.FSContextFactory

or

com.sun.jndi.fscontext.RefFSContextFactory

NDS com.novell.naming.service.nds.NdsInitialContextFactory

NIS com.sun.jndi.nis.NISCtxFactory

http://java.sun.com/products/jndi/serviceproviders.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.4. Looking Up Objects in a Context

Retrieving an object by name from a naming system or directory is called looking up the object. This
is the job of the lookup() method of Context. Performing a lookup is analogous to getting the
number of a friend from a telephone book by looking up his name. You can use JNDI to look up and
retrieve an EJB home interface from an application server or a remote object from a remote RMI
registry.

When you call lookup(), you specify the name of the child of the Context you want to find. lookup(
) returns a java.lang.Object that represents the child. Here's how we did it in the Lookup example:

Object obj = initialContext.lookup(name);

Calling lookup() retrieves an object from the underlying naming system. The JNDI service provider
determines the Java representation of these objects, and we have no way of affecting the provider's
decision. Depending on the naming system and the design of the provider, the object you retrieve
may or may not implement Context. For example, if you use the Sun filesystem provider and your
current context is a directory, looking up a child that is a file returns an instance of java.io.File.
Looking up a directory, however, returns an instance of FSContext or RefFSContext, both of which
implement Context. As another example, say you use Novell's NDS provider and the current context
is an NDS tree. If you look up an organization, you get back an OrganizationDirContext that
implements both Context and Novell's NdsObject interface. The bottom line is that the class you get
back from lookup() depends on how the service provider is implemented.

JNDI leaves it up to the service provider to choose whether objects should implement Context. There
are no strict rules about when an object should implement it, but there are some general guidelines.
An object with children is a container, and the guideline for containers is that they should implement
Context. This is because we generally perform naming operations upon these objects. In the
filesystem provider, for example, directories can contain other objects (files and other directories), so
the object that represents a directory should implement Context (which is how Sun's filesystem
provider behaves). If directories don't support Context methods, we can't use JNDI to look up any
children of the directory.

Objects without children are leaves, and leaves may or may not implement Context, depending on
how they are used. For example, because files have no children to look up, the methods we perform
on them lie outside the naming system. The author of the Sun filesystem provider made a design
choice that once we have looked up a file, we're done with JNDI. So, we can read the input stream on
a file or write an output stream to it, but we can't use JNDI to perform naming operations on the file.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.5. The NamingShell Application

The rest of the examples in this chapter are going to be based on the NamingShell code shown in
Example 9-2. NamingShell is an extensible JNDI shell that enables us to perform naming operations in
any JNDI-accessible naming system. The shell provides methods for getting and setting the current
object and other shell-related details, and it also keeps track of the name of the current object,
something a Context can't do for itself.

Example 9-2. The NamingShell class

import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.Hashtable;
import java.util.StringTokenizer;
import java.util.Vector;

import javax.naming.Context;

class NamingShell {

 // Private variables
 private static Hashtable COMMAND_TABLE = new Hashtable();
 private static String PROMPT = "[no initial context]";
 private static String VERSION = "1.0";
 private static Context CURRENT_CONTEXT, INITIAL_CONTEXT;
 private static String CURRENT_NAME, INITIAL_NAME;
 private static boolean RUNNING = true;
 private static String CMD_PKG = "com.oreilly.jent.jndi";

 // Shell operations
 private static void exit(int status) { System.exit(status); }

 // Accessor methods
 public static Hashtable getCommands() { return COMMAND_TABLE; }
 public static Context getCurrentContext() { return CURRENT_CONTEXT; }
 public static String getCurrentName() { return CURRENT_NAME; }
 public static Context getInitialContext() { return INITIAL_CONTEXT; }
 public static String getInitialName() { return INITIAL_NAME; }
 public static String getPrompt() { return PROMPT; }
 public static void setCurrentContext(Context ctx) {
 CURRENT_CONTEXT = ctx; }
 public static void setInitialContext(Context ctx) {
 INITIAL_CONTEXT = ctx; }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public static void setInitialName(String name) {
 INITIAL_NAME = name; }
 public static void setPrompt(String prompt) { PROMPT = prompt; }
 public static void setCurrentName(String name) {
 CURRENT_NAME = name;
 setPrompt(name);
 }

 // Executes a preinstantiated command we are sure is already
 // present in the table
 private static void execute(Command c, Vector v) {
 if (c == null) {
 System.out.println("No command was loaded; cannot execute the command.");
 return;
 }
 try {
 c.execute(CURRENT_CONTEXT, v);
 }
 catch (CommandException ce) {
 System.out.println(ce.getMessage());
 }
 }

 // Another private method that enables us to specify a command
 // by its string name and that loads the command first
 private static void execute(String s, Vector v) {
 execute(loadCommand(s), v);
 }

 // Loads the command specified in commandName; the help command
 // relies on this method
 public static Command loadCommand(String commandName) {
 // The method returns a null command unless some of its
 // internal logic assigns a new reference to it
 Command theCommand = null;

 // First see if the command is already present in the hashtable
 if (COMMAND_TABLE.containsKey(commandName)) {
 theCommand = (Command)COMMAND_TABLE.get(commandName);
 return theCommand;
 }

 try {
 // Here we use a little introspection to see if a class
 // implements Command before we instantiate it
 Class commandInterface = Class.forName(CMD_PKG + ".Command");
 Class commandClass = Class.forName(CMD_PKG + "." + commandName);

 // Check to see if the class is assignable from Command
 // and if so, put the instance in the command table
 if (!(commandInterface.isAssignableFrom(commandClass)))
 System.out.println("[" + commandName + "]: Not a command");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 else {
 theCommand = (Command)commandClass.newInstance();
 COMMAND_TABLE.put(commandName, theCommand);
 }
 }
 catch (ClassNotFoundException cnfe) {
 System.out.println("[" + commandName + "]: command not found");
 }
 catch (IllegalAccessException iae) {
 System.out.println("[" + commandName + "]: illegal access");
 }
 catch (InstantiationException ie) {
 System.out.println("["+commandName+"]: command couldn't be instantiated");
 }

 return theCommand;
 }

 // This method reads a line of input, gets the command and arguments
 // within the line of input, and then dynamically loads the command
 // from the current directory of the running shell
 private static void readInput() {
 // Get the input from System.in
 BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

 // Begin reading input
 try {
 while (RUNNING) {
 System.out.print(PROMPT + "% ");

 // Tokenize the line, read each token, and pass the token
 // into a convenient remaining arguments Vector that we
 // pass into the Command
 StringTokenizer tokenizer = new StringTokenizer(br.readLine());
 Vector remainingArgs = new Vector();
 String commandToken = "";
 if (tokenizer.hasMoreTokens()) {
 commandToken = tokenizer.nextToken();
 while (tokenizer.hasMoreTokens())
 remainingArgs.addElement(tokenizer.nextToken());
 }

 // Dynamically load the class for the appropriate command
 // based upon the case-sensitive name of the first token,
 // which is the command token
 if (!(commandToken.equals("")))
 execute(commandToken, remainingArgs);
 }
 }
 catch (java.io.IOException ioe) {
 System.out.println("Caught an IO exception reading a line of input");
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 // Constructor
 NamingShell(String[] args) {
 }

 // Main method that reads input until the user exits
 public static void main(String[] args) {
 NamingShell shell = new NamingShell(args);
 NamingShell.readInput();
 System.out.println("Exiting");
 }
}

Once you've loaded NamingShell, you can use the shell to execute JNDI-related commands, just as
you would use a regular shell to execute operating system commands. We encourage you to
download the code for NamingShell right now, so that you can experiment with it as we proceed
through the rest of the chapter. NamingShell uses the name you type to locate a command
dynamically from the classpath. The shell has no interpreter; however, NamingShell expects a
command to implement the Command interface and its execute() method. This means a command
really interprets itself. A command throws a CommandException when execution fails.

As you can see, NamingShell itself contains very little real JNDI code. All the JNDI functionality is
implemented in the various Command classes we create to handle particular JNDI operations. The shell
simply supports the loading of commands and keeps track of various shell-related details.

9.5.1. The Command Interface

The Command interface (shown in Example 9-3) describes a standard interface for a shell command. It
has an execute() method that contains the command logic and a help() method for displaying
online help for the command. If execute() encounters a naming exception (or some other
exception), it throws a CommandException (shown in Example 9-4), which stores the first exception as
an instance variable so that the shell can display the exception appropriately.

Example 9-3. The Command interface

import java.util.Vector;
import javax.naming.Context;

public interface Command {
 public void execute(Context c, Vector v)
 throws CommandException;
 public void help();
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 9-4. The CommandException class

public class CommandException extends Exception {
 Exception e; // Root exception
 CommandException(Exception e, String message) {
 super(message);
 this.e = e;
 }
 public Exception getRootException() {
 return e;
 }
}

9.5.2. A Command for Loading an Initial Context

As we said earlier, to use JNDI to look up an object in a naming system (or, in fact, to do anything
with the naming system), you first have to create an InitialContext for that naming system. So, the
first command we need to implement is initctx, for loading an initial context into NamingShell.
Example 9-5 shows an implementation of this command.

Example 9-5. The initctx command

import java.io.*;
import java.util.*;
import javax.naming.*;

public class initctx implements Command {

 public void execute(Context c, Vector v) {
 String jndiPropsFilename = null;

 // Check for a properties filename
 if (!v.isEmpty())
 jndiPropsFilename = (String)v.firstElement();

 System.out.println("file = " + jndiPropsFilename);

 try {
 // If no properties file is specified, let JNDI get its properties from
 // the default jndi.properties file on the CLASSPATH. Otherwise, use
 // the specified properties file.
 if (jndiPropsFilename != null) {
 Properties props = new Properties();
 File jndiProps = new File(jndiPropsFilename);
 props.load(new FileInputStream(jndiProps));

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 NamingShell.setInitialContext(new InitialContext(props));
 }
 else {
 NamingShell.setInitialContext(new InitialContext());
 }
 NamingShell.setInitialName("/");
 NamingShell.setCurrentContext(NamingShell.getInitialContext());
 NamingShell.setCurrentName(NamingShell.getInitialName());
 System.out.print("Created initial context using ");
 if (jndiPropsFilename != null) {
 System.out.println(jndiPropsFilename);
 }
 else {
 System.out.println("jndi.properties.");
 }
 }
 catch (NamingException ne) {
 System.out.println("Couldn't create the initial context");
 }
 catch (FileNotFoundException fnfe) {
 System.out.print("Couldn't find properties file: ");
 System.out.println(jndiPropsFilename);
 }
 catch (IOException ioe) {
 System.out.print("Problem loading the properties file: ");
 System.out.println(jndiPropsFilename);
 }
 catch (Exception e) {
 System.out.println("There was a problem starting the shell");
 }
 }

 public void help() { System.out.println("Usage: initctx [filename]"); }
}

The initctx command accepts an optional argument that specifies the name of a properties file to use
in creating the Properties object that is passed to the InitialContext constructor. If no filename is
specified, initctx creates the InitialContext using the no-argument constructor, which in turn uses
the default jndi.properties file in the CLASSPATH. So, with NamingShell, all you have to do to use a
particular naming service is create an appropriate properties file for that service and either specify it
explicitly when you invoke the initctx command or put it in your CLASSPATH as jndi.properties.

9.5.3. Running the Shell

With NamingShell and initctx, we have enough functionality to actually run the shell. Before you try
this, make sure that any specialized providers are specified in your CLASSPATH. Here's how we might
start NamingShell and establish an initial context, once the CLASSPATH is set appropriately:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

% java NamingShell
[no initial context]% initctx
Created initial context using jndi.properties
/%

In this case, since we didn't specify a properties file on the command line, the no-argument
InitialContext constructor is called, and it looks for a jndi.properties file in the CLASSPATH. For the
purpose of our next few examples, let's assume that this file contains property settings that allow us
to use the filesystem provider from Sun. You can change initial contexts at any time during the shell
session by running initctx with a new filename. After you create an initial context, you can begin
performing naming operations by typing in commands. To exit the shell, simply use the exit
command.[*] If you aren't sure how a command works, you can get help for that command by
typing:

[*] The help and exit commands are implemented as separate classes, just like the JNDI-related commands. We don't examine

the code for these commands, because they don't use JNDI. However, the code is provided in the examples available online at

http://www.oreilly.com/catalog/javaentnut3.

/% help command

http://www.oreilly.com/catalog/javaentnut3
http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.6. Listing the Children of a Context

A common JNDI operation is retrieving the list of names of an object's children. For example, an
application might get the names of Enterprise JavaBeans in a Java application server or list the
names of user profile information in an LDAP server in order to populate a Swing JTRee component in
an address book application. You list the names of an object's children using the list() method of
Context:

NamingEnumeration children = initialContext.list("");

The list() method returns a javax.naming.NamingEnumeration of javax.naming.NameClassPair
objects; each NameClassPair contains the name and class of a single child of the Context. Note that
the NameClassPair is not the child itself. Its getName() method, however, enables us to learn the
name of the child while getClassName() lets us access the child's class name. NamingEnumeration
implements the java.util.Enumeration interface, so it allows us to loop through the results of calling
list() using the familiar enumeration methods. JNDI actually uses NamingEnumeration as the return
type of a number of naming operations; the actual objects in the enumeration vary depending on the
operation.

Example 9-6 shows the implementation of a list command for our NamingShell. Because executing
list() requires a current Context, the execute() method queries the shell to determine whether
one exists. If there is no current Context, the method throws an exception.

Example 9-6. The list command

import java.util.Vector;
import javax.naming.*;

public class list implements Command {
 public void execute(Context c, Vector v) throws CommandException {

 String name = "";

 // An empty string is OK for a list operation as it means
 // list children of the current context
 if (!(v.isEmpty()))
 name = (String)v.firstElement();

 // Check for current context; throw an exception if there isn't one
 if (NamingShell.getCurrentContext() == null)
 throw new CommandException(new Exception(),
 "Error: no current context.");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Call list() and then loop through the results, printing the names
 // and class names of the children
 try {
 NamingEnumeration enum = c.list(name);
 while (enum.hasMore()) {
 NameClassPair ncPair = (NameClassPair)enum.next();
 System.out.print(ncPair.getName() + " (type ");
 System.out.println(ncPair.getClassName() + ")");
 }
 }
 catch (NamingException e) {
 throw new CommandException(e, "Couldn't list " + name);
 }
 }

 public void help() { System.out.println("Usage: list [name]"); }
}

Let's continue with our example of using NamingShell with the filesystem provider. Say that we are
accessing a filesystem in which we have unpacked a jar file that contains, among others, a javax
directory and a naming subdirectory. If the current Context is the naming directory (ignoring for a
moment how we set the current Context; we'll see how to do that shortly), we can use the list
command with the following results:

naming% list
AuthenticationException.class (type java.io.File)
AuthenticationNotSupportedException.class (type java.io.File)
BinaryRefAddr.class (type java.io.File)
Binding.class (type java.io.File)
CannotProceedException.class (type java.io.File)
CommunicationException.class (type java.io.File)
CompositeName.class (type java.io.File)
CompoundName.class (type java.io.File)
ConfigurationException.class (type java.io.File)
Context.class (type java.io.File)
ContextNotEmptyException.class (type java.io.File)
directory (type javax.naming.Context)
...

9.6.1. How Names Work

The list() method on Context allows us to list the names of the children of any arbitrary child of a
Context. We just saw that we can list the names of the children of a Context itself (in this case, the
naming directory) by calling its list() method using an empty string as a parameter. Again, let's
assume we have a Context object for the naming subdirectory under javax. Here's how a call to get
the names of the children of this Context might look:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

NamingEnumeration childrenOfNaming = namingContext.list("");

The result is a NamingEnumeration that contains NameClassPair objects representing all the children of
naming (i.e., the classes and subpackages of javax.naming), including the directory directory (i.e.,
the javax.naming.directory subpackage).

To list the names of the children of an arbitrary child of a Context, we have to pass a name to list(
). For example, we can list the children of directory by specifying the String "directory" as a
parameter to list():

NamingEnumeration childrenOfDirectory = namingContext.list("directory");

The result here is a NamingEnumeration that contains NameClassPair objects representing all the
children of directory (i.e., the classes of javax.naming.directory, such as DirContext).

You can also specify a name using something called a compound name. A compound name is
composed of atomic names, like "naming" and "directory," that are separated by separator
characters. In the case of the filesystem provider, these can be either a Unix-style forward slash (/)
or a Windows-style backslash (\). Any JNDI method that takes a name as a parameter can accept a
compound name.

Say we have a Context object for the javax directory. We can get a list of the children of that
directory as follows:

NamingEnumeration childrenOfDirectory = javaxContext.list(
 "naming/directory");

This call returns the same NamingEnumeration we got earlier. Now consider the following call:

NamingEnumeration childrenOfContext = javaxContext.list(
 "naming/Context");

The compound name here specifies an object that is not a Context, so it has no children. In this case,
the call to list() throws a NamingException.

The separator character used in JNDI compound names varies across naming and directory services;
the separator is analogous to the separator used in java.io.File. Although the Sun filesystem
provider allows us to use the Unix-style forward slash and the Windows-style backslash
interchangeably, most service providers are very picky about the separator character used for that
service. Unfortunately, the JNDI API doesn't provide a way to get the separator character
programmatically the way java.io.File does. Although the javax.naming.CompoundName class reads a
property called jndi.syntax.separator that contains the separator character, this property can't be
accessed outside the service provider. So, to find out the separator character for a particular service
provider, you have to consult the documentation or some sample code for that provider.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.6.2. Browsing a Naming System

So far, we know how to look up an object in a Context using lookup() and list the children of that
Context with list(). Browsing is a composite operation that involves repeated calls to list() and
lookup() to see what objects are available in the naming system and to move around in those
objects.

Context objects are the key to browsing . You start with a current Context and list the children of that
Context to see which child you (or, more likely, the user) are interested in. Once you have selected
an interesting child, look up that child to get the actual child object. If the object implements Context,
you can use this new Context object to continue browsing, by calling list() again, selecting a child,
and looking up its object. If the object doesn't implement Context, however, you obviously can't
continue browsing down that branch of the naming system. Once you have a Context object, it is
always possible to list its children and look up objects within it. So, for example, you can always use
the InitialContext for a naming system to go back and start browsing at the entry point to the
naming system.

Example 9-7 shows an implementation of a cd command for NamingShell. The cd command changes
the current context of NamingShell to the specified context; you use it in conjunction with the list
command to browse the naming system. The name of this command comes from the Unix cd
command for changing directories, because changing the directory on a Unix system is an analogous
operation to changing the current context when NamingShell is used with the filesystem provider. To
change the current context back to the initial context, use either cd / or cd \. Note, however, that you
can't use cd.. because Context objects don't know about their parents, and so you can't go up the
Context hierarchy.

Example 9-7. The cd command

import java.util.Vector;
import javax.naming.*;

class cd implements Command {
 public void execute(Context ctx, Vector v) throws CommandException {
 if (NamingShell.getCurrentContext() == null)
 throw new CommandException(new Exception(), "No current context");
 else if (v.isEmpty())
 throw new CommandException(new Exception(), "No name specified");

 // Get args[0] and throw away the other args
 else {
 String name = (String)v.firstElement();
 try {
 if (name.equals("..")) {
 throw new CommandException(new Exception(),
 "Contexts don't know about their parents.");
 }
 else if (((name.equals("/")) || (name.equals("\\"))) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 NamingShell.setCurrentContext(NamingShell.getInitialContext());
 NamingShell.setCurrentName(NamingShell.getInitialName());
 System.out.println("Current context now " + name);
 }
 else {
 Context c =
 (Context) (NamingShell.getCurrentContext()).lookup(name);
 NamingShell.setCurrentContext(c);
 NamingShell.setCurrentName(name);
 System.out.println("Current context now " + name);
 }
 }
 catch (NamingException ne) {
 throw new CommandException(ne, "Couldn't change to context " + name);
 }
 catch (ClassCastException cce) {
 throw new CommandException(cce, name + " not a Context");
 }
 }
 }

 public void help() { System.out.println("Usage: cd [name]"); }
}

Earlier, when demonstrating the list command, we asked you to assume that the current Context for
NamingShell was the naming subdirectory. Now you can see just how to change the current Context
to that directory:

initctx% cd temp
Current context now temp
temp% cd javax
Current context now javax
javax% cd naming
Current context now naming

Of course, these commands assume you are starting from the initial context and that the naming
directory is available in the filesystem at /temp/javax/naming.

9.6.3. Listing the Bindings of a Context

The listBindings() method of Context provides an alternative way to access the children of a
Context. We've seen that list() returns a NamingEnumeration of NameValuePair objects, where each
NameValuePair provides access to the name and class name of a single child of the Context.
listBindings() also returns a NamingEnumeration, but, in this case, the enumeration contains
Binding objects. Binding is a subclass of NameValuePair that contains the actual child object in
addition to its name and class. You can use the getObject() method of Binding to get the child

http://lib.ommolketab.ir
http://lib.ommolketab.ir

object.

Just as with list(), we can pass an empty string to listBindings() to return the bindings for a
Context:

NamingEnumeration bindings = initialContext.listBindings("");

listBindings() is designed for situations in which you need to perform some sort of operation on
all the children of a Context, and you want to save yourself the time and trouble of looking up each
child individually. Be aware, however, that listBindings() is potentially a very expensive operation,
as it has to get each child object from the underlying naming system. If you don't need all the
objects, you are better off using list() to get the names of the children and then just looking up
the objects you need.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.7. Creating and Destroying Contexts

With JNDI, you can create a context in a naming system using the createSubcontext() method of
an existing Context. All you have to specify in this call is the name of the new subcontext. Note that
Context doesn't provide a public constructor; creating a new context requires a parent Context (such
as an InitialContext) whose createSubcontext() method we can call.

When you call createSubcontext(), the JNDI service provider you are using looks at the class of the
Context whose method you are calling. Based on this class and the provider's own internal logic, the
provider creates a new object of a particular class. You don't get to pick the class of this object; the
provider has all the control over the class of the object it creates (you do, however, have control over
the class of object that is created when using directory services, as we'll see shortly). The
documentation for a service provider should tell you what kinds of objects createSubcontext() can
create. Note that whatever object the provider creates, it always implements Context; there is no
way to use JNDI to create an object that doesn't implement Context.

For example, if we are using the Sun filesystem provider and our current Context is a directory,
calling createSubcontext() causes the provider to create a directory, not a file. This makes sense,
as a directory can have subordinates and thus implements Context. There is actually no way to
create a file using the JNDI API and the filesystem provider; you have to drop out of JNDI to do this,
as we'll see in the next section.

Example 9-8 shows the implementation of a create command for NamingShell that demonstrates how
to use createSubcontext().

Example 9-8. The create command

import java.util.Vector;
import javax.naming.*;

public class create implements Command {

 public void execute(Context c, Vector v) throws CommandException {

 // Check to see if we have the name we need to create a context
 if (v.isEmpty())
 throw new CommandException(new Exception(), "No name specified");

 String name = (String)v.firstElement();
 try {
 c.createSubcontext(name);
 System.out.println("Created " + name);
 }
 catch (NoPermissionException npe) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 throw new CommandException(npe,
 "You don't have permission to create " + name + " at this context");
 }
 catch (NamingException ne) {
 throw new CommandException(ne, "Couldn't create " + name);
 }
 }

 public void help() { System.out.println("Usage: create [name]"); }
}

Here is the create command, in conjunction with the cd and list commands we've already seen:

/% create test
Created test
/% cd test
Current context now test
test% create another
Created another
test% list
another (type javax.naming.Context)

The destroySubcontext() method of Context destroys a context, as you might expect from its name.
Again, you have to specify the name of the context to be destroyed; you can't destroy the current
object by specifying an empty name. Calling the destroySubcontext() method on a Context from the
Sun filesystem provider is analogous to removing a directory in the filesystem.

Example 9-9 shows the implementation of a destroy command for NamingShell. Note that it contains
several catch statements, to handle such exceptions as insufficient permission to destroy a context,
trying to destroy an object that doesn't implement the Context interface, and trying to destroy an
object that has children.

Example 9-9. The destroy command

import java.util.Vector;
import javax.naming.*;

public class destroy implements Command {
 public void execute(Context c, Vector v) throws CommandException {

 // Check to see if we have the name we need
 if (v.isEmpty())
 throw new CommandException(new Exception(), "No name specified");

 String name = (String)v.firstElement();

 try {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 c.destroySubcontext(name);
 System.out.println("Destroyed " + name);
 }
 catch (NameNotFoundException nnfe) {
 throw new CommandException(nnfe, "Couldn't find " + name);
 }
 catch (NotContextException nce) {
 throw new CommandException(nce,
 name + " is not a Context and couldn't be destroyed");
 }
 catch (ContextNotEmptyException cnee) {
 throw new CommandException(cnee,
 name + " is not empty and couldn't be destroyed");
 }
 catch (NamingException ne) {
 throw new CommandException(ne, name + " couldn't be destroyed");
 }
 }

 public void help() { System.out.println("Usage: destroy [name]"); }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.8. Binding Objects

A Context stores its subordinates as a set of Binding objects. A binding is an association between an
object and its name. Thus, as we've already seen, a Binding object contains an object, its name, and
its class. We can add a new Binding to a Context with the bind() method. For example, here's how
to add a binding for a new file object to an existing Context:

java.io.File newfile = java.io.File("c:\temp\newfile");
tempContext.bind("newfile", newfile);

Now, if we call list() on this Context, you see a new child named newfile. Recall in the previous
section we said that you have to drop out of JNDI to create a new file when using the Sun filesystem
provider. The previous example shows what we meant. To create a file, use the java.io.File
constructor, which isn't part of JNDI. To bind the file into the naming system, use the bind()
method of Context.

If you try to bind a name to an object, and the name has already been used, the method throws a
NameAlreadyBoundException. If you want to bind a new object to an existing name, use the rebind()
method instead. Context also has an unbind() method you can use to remove a binding.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.9. Accessing Directory Services

So far, we've discussed JNDI only in the context of naming services. Now it's time to turn to directory
services. At its root, a directory is merely a naming service whose objects have attributes as well as
names. Programming for a directory service, such as an LDAP directory, is roughly as hard as
programming for a relational database.

As we've seen, a binding in JNDI is an association between a name and an object. While this
association is sufficient for some naming services, a directory service needs to be able to associate
more than just a name with an object. Attributes associate specialized data with an object. In JNDI,
an object with attributes as well as a name is called a directory entry.

We've been talking about the filesystem as though it were a naming system because that is how
Sun's filesystem provider implements it. But if you think about it, a filesystem is really a directory
system; files and directories have attributes like permissions, user IDs, and group IDs (we just can't
get at these attributes using Sun's filesystem provider).

9.9.1. The DirContext Interface

javax.naming.directory.DirContext is JNDI's directory services interface. It extends Context and
provides modified methods that support operations involving attributes. Like a Context, a DirContext
encapsulates a set of name-to-object bindings. In addition, a DirContext contains a
javax.naming.directory.Attributes object for each bound object that holds the attributes and
values for that object.

The names of objects in X.500-based directories (like LDAP) look a little different from the names
we've seen so far for filesystems. If you've worked with an LDAP directory, you've probably seen
names like "cn=Billy Roberts, o=Acme Products". This name is actually a compound name while
something like "o=Acme Products" is an atomic name. By convention, in an LDAP directory, the part
of the name before the equals sign (e.g., "cn", "o") is stored as an attribute of the directory entry,
and the rest of the name (e.g., "Billy Roberts", "Acme Products") is stored as its value. This
attribute is called the key attribute. Table 9-2 lists some commonly used key attributes. Note that
when a DirContext is used with an LDAP directory, it knows its name, unlike a Context.

Table 9-2. Common key X.500 attributes

Attribute Meaning

"c" A country, such as the United States or Lithuania

"o" An organization or corporation, such as the Humane Society or Omni Consumer Products

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attribute Meaning

"ou"
A division of an organization, such as the Public Relations Department or the Robotic
Peace Officer Division

"cn"
The common name of an entity (often a user, in which case it can be a first name or a
full name)

"sn" The surname (last name) of a user

The key attribute is closely tied to the directory entry's object class definition, otherwise known as its
type. For example, in an LDAP directory, an entry that has an object class of "user" has a key
attribute of "cn" while an object with a class of "organization" has a key attribute of "o".

The schema for a directory defines the object classes that can be used in the directory, analogous to
the way that the schema for a relational database defines the data tables that are available in the
database. The object class of a directory entry is stored as an attribute of the entry. Note that the
values used for object classes are directory-dependent, so a user entry from one directory might
have a different object class than a user entry from another directory.

9.9.2. The Attributes Interface

The Attributes interface represents the set of attributes for a directory entry. It has accessor
methods that enable access to the entire set, as well as to specific attributes. In X.500-based
directories, the name of an attribute (also called an attribute ID), such as "name", "address", or
"telephonenumber", determines the type of the attribute and is called the attribute type definition. An
attribute type definition is part of a directory's schema; the corresponding attribute syntax definition
specifies the syntax for the attribute's value and whether it can have multiple values, among other
things.

You can retrieve all attributes of a directory entry by calling the getAttributes() method of
DirContext, followed by the getAll() method of Attributes. getAttributes() returns an
Attributes object. Calling the getAll() method of this object returns a NamingEnumeration of
javax.naming.directory.Attribute objects, one for each attribute of the directory entry.

Example 9-10 shows the implementation of a listattrs command for NamingShell. This command
prints the attributes of a directory entry, as well as string representations of the attribute values.

Example 9-10. The listattrs command

import java.util.Vector;
import javax.naming.*;
import javax.naming.directory.*;

class listattrs implements Command {
 public void execute(Context c, Vector v) throws CommandException {

 String name = "";

"ou"
A division of an organization, such as the Public Relations Department or the Robotic
Peace Officer Division

"cn"
The common name of an entity (often a user, in which case it can be a first name or a
full name)

"sn" The surname (last name) of a user

The key attribute is closely tied to the directory entry's object class definition, otherwise known as its
type. For example, in an LDAP directory, an entry that has an object class of "user" has a key
attribute of "cn" while an object with a class of "organization" has a key attribute of "o".

The schema for a directory defines the object classes that can be used in the directory, analogous to
the way that the schema for a relational database defines the data tables that are available in the
database. The object class of a directory entry is stored as an attribute of the entry. Note that the
values used for object classes are directory-dependent, so a user entry from one directory might
have a different object class than a user entry from another directory.

9.9.2. The Attributes Interface

The Attributes interface represents the set of attributes for a directory entry. It has accessor
methods that enable access to the entire set, as well as to specific attributes. In X.500-based
directories, the name of an attribute (also called an attribute ID), such as "name", "address", or
"telephonenumber", determines the type of the attribute and is called the attribute type definition. An
attribute type definition is part of a directory's schema; the corresponding attribute syntax definition
specifies the syntax for the attribute's value and whether it can have multiple values, among other
things.

You can retrieve all attributes of a directory entry by calling the getAttributes() method of
DirContext, followed by the getAll() method of Attributes. getAttributes() returns an
Attributes object. Calling the getAll() method of this object returns a NamingEnumeration of
javax.naming.directory.Attribute objects, one for each attribute of the directory entry.

Example 9-10 shows the implementation of a listattrs command for NamingShell. This command
prints the attributes of a directory entry, as well as string representations of the attribute values.

Example 9-10. The listattrs command

import java.util.Vector;
import javax.naming.*;
import javax.naming.directory.*;

class listattrs implements Command {
 public void execute(Context c, Vector v) throws CommandException {

 String name = "";

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // An empty string is OK for a listattrs operation
 // as it means list attributes of the current context
 if (!(v.isEmpty()))
 name = (String)v.firstElement();

 if (NamingShell.getCurrentContext() == null)
 throw new CommandException(new Exception(), "No current context");

 try {
 // Get the Attributes and then get enumeration of Attribute objects
 Attributes attrs = ((DirContext)c).getAttributes(name);
 NamingEnumeration allAttr = attrs.getAll();
 while (allAttr.hasMore()) {
 Attribute attr = (Attribute)allAttr.next();
 System.out.println("Attribute: " + attr.getID());

 // Note that this can return human-unreadable garbage
 NamingEnumeration values = attr.getAll();
 while (values.hasMore())
 System.out.println("Value: " + values.next());
 }
 }
 catch (NamingException e) {
 throw new CommandException(e, "Couldn't list attributes of " + name);
 }
 catch (ClassCastException cce) {
 throw new CommandException(cce, "Not a directory context");
 }
 }

 public void help() { System.out.println("Usage: listattrs [name]"); }
}

To use the listattrs command, you need access to a live directory server. To experiment with a live
LDAP directory server, you might try the University of Michigan's server at ldap://ldap.itd.umich.edu
or Novell's test server at ldap://nldap.com. Another option is to download and compile the OpenLDAP
source code from http://www.openldap.org and get an LDAP server running on your local network.
To use the University of Michigan's LDAP server with NamingShell, you need to create a properties file
that contains the following properties:

java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory
java.naming.provider.url=ldap://ldap.itd.umich.edu/

Make sure that the jar file for the LDAP service provider is in the CLASSPATH of NamingShell when you
use this initial context information. If you are using JDK 1.3 or later, this LDAP provider is built into
the runtime.

Once you have NamingShell set up to use a directory server, here's how you might use the listattrs

http://www.openldap.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

command:

o=NOVELL% listattrs cn=admin
Attribute: groupMembership
Value: cn=DEVNET SYSOP,ou=Groups,o=NOVELL
Attribute: revision
Value: 235
Attribute: uid
Value: admin
Attribute: objectClass
Value: top
Value: person
Value: organizationalPerson
Value: inetOrgPerson
Attribute: sn
Value: admin
Attribute: cn
Value: admin

The following code in listattrs retrieves the Attributes object of the named directory context and
enumerates the individual Attribute objects:

Attributes attrs = ((DirContext)c).getAttributes(name);
NamingEnumeration allAttr = attrs.getAll();

Calling getAttributes() with the name of a directory entry returns an Attributes object that
contains all the attributes for that entry. Another variation of getAttributes() allows you to pass
the name of a directory entry and an array of attribute names (as String objects). This method
returns an Attributes object that contains only the specified attributes. For example:

String[] attrIDs = {"name", "telephonenumber"};
Attributes partialAttrs = dirContext.getAttributes(name, attrIDs);

In listattrs, we used the getAll() method of Attributes to return an enumeration of Attribute
objects. The Attributes interface also provides a getIDs() method that returns an enumeration of
just the attribute names (or IDs) for the directory entry. If you know the attribute you want, you can
specify the attribute name in a call to the get() method, which returns a single Attribute object.
For example:

Attribute addr = attrs.get("address");

9.9.3. The Attribute Interface

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Attribute interface represents a single directory attribute. We've already seen this interface in
the listattrs command, where we used it to print the names and values of all the attributes of a
directory context.

An attribute can have a single value or multiple values, as specified in the schema for the directory.
For example, a "name" attribute might have a single value (e.g., "Billy") while a "telephonenumber"
attribute might have multiple values (e.g., "800 555 1212" and "303 444 6633").

JNDI provides several methods for working with values in an attribute. For instance, we can get one
or more values, add or remove a single value, remove all values, or determine if a particular value is
present.

The get() method of Attribute returns a single attribute value as a java.lang.Object. If the
attribute has only a single value, get() returns that value. If the attribute has multiple values, the
service provider determines the value that is returned. The following code shows how to get a single
value from an attribute:

DirContext user ... ; // Created somewhere else in the program
Attributes attrs = user.getAttributes("");
Attribute attr = attrs.get("telephonenumber");
Object onePhoneNumber = attr.get();

The getAll() method returns multiple attribute values as a NamingEnumeration of objects, as we saw
in listattrs. Here's how to print all values stored in an attribute:

Attribute attr = attrs.get("telephonenumber");
NamingEnumeration phoneNumbers = attr.getAll();
while (phoneNumbers.hasMore())
 System.out.println(phoneNumbers.next());

The add() method of Attribute enables us to add another value to an attribute:

Attribute attr = attrs.get("telephonenumber");
attr.add("520 765 4321"); // Add a new number

If we try to add a value to an attribute that doesn't support multiple values, the method doesn't
throw an exception. The attribute simply doesn't accept the new value. By the same token, you can
use the remove() method to remove a value from an attribute.

Attribute attr = attrs.get("telephonenumber");
attr.remove("303 444 6633"); // Remove the old number

To remove all the values from an attribute, you can call the clear() method. Note that none of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

these method calls actually affect the directory entry; they simply modify the local Attribute object.
To make a permanent change, you have to call the modifyAttributes() method of DirContext and
provide it with a modified Attribute object, as discussed in the next section.

The contains() method lets you determine whether an attribute has a certain value, while size()
returns the number of values the attribute has:

Attribute attr = attrs.get("telephonenumber");
// Check for certain value
boolean itsThere = attr.contains("800 555 1212");
int valuesItHas = attr.size(); // Check how many values it has

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.10. Modifying Directory Entries

Modifying the attribute values of a directory entry involves using the modifyAttributes() method of
DirContext. One variant of this method takes the name of a directory entry, a modification type, and
an Attributes object that contains modified Attribute objects; another variant takes a name and an
array of javax.naming.directory.ModificationItem objects. A ModificationItem encapsulates a
modified Attribute object and a modification type.

The only part of this operation that warrants much explanation is the creation of modified Attribute
objects. The javax.naming.directory.BasicAttributes and javax.naming.directory.BasicAttribute
classes implement the Attributes and Attribute interfaces, respectively. These are the classes you'll
typically use to create modified attribute values.

For example, let's say we want to remove the phone number "303 444 6633" from a user entry's
"telephonenumber" attribute and replace it with the new number "520 765 4321". In the following
code, we create two BasicAttributes objects, newNumber and oldNumber, and use them in calls to
modifyAttributes():

DirContext user ... ; // Created somewhere else in the program

BasicAttribute newAttr = new BasicAttribute();
newAttr.add("telephonenumber", "520 765 4321");
BasicAttributes newNumber = new BasicAttributes();
newNumber.put(newAttr);
BasicAttributes oldNumber =
 new BasicAttributes("telephonenumber", "303 444 6633");

user.modifyAttributes("", DirContext.REMOVE_ATTRIBUTE, oldNumber);
user.modifyAttributes("", DirContext.ADD_ATTRIBUTE, newNumber);

In this code, we use two different techniques to create BasicAttributes objects. For newNumber, we
first create a new BasicAttribute and add a "telephonenumber" attribute to it. Then we create a new
BasicAttributes object and put the BasicAttribute in it. With oldNumber, we use the convenience
constructor of BasicAttributes to accomplish the same task in one line of code.

Now we use the two BasicAttributes objects in two calls to modifyAttributes(), one to remove the
old number and one to add the new. DirContext defines three constants we can use to specify the
type of modification we are doing: ADD_ATTRIBUTES, REMOVE_ATTRIBUTES, and REPLACE_ATTRIBUTES.
With any of these types, modifyAttributes() uses the ID of each Attribute object to determine
which attribute to modify by adding, removing, or replacing attribute values. The net result of our
two calls is the old number is replaced with the new number. Of course, we could have done this with
one call to modifyAttributes() if we had used the REPLACE_ATTRIBUTES modification type.

The following code shows how to make the same change using a variant of modifyAttributes() that

http://lib.ommolketab.ir
http://lib.ommolketab.ir

takes an array of ModificationItem objects:

ModificationItem[] mods = new ModificationItem[2];
mods[0] = new ModificationItem(DirContext.REMOVE_ATTRIBUTE,
 new BasicAttribute("telephonenumber", "303 444 6633"));
mods[1] = new ModificationItem(DirContext.ADD_ATTRIBUTE,
 new BasicAttribute("telephonenumber", "520 765 4321"));
user.modifyAttributes("", mods);

Again, this change could have been done with a single ModificationItem, using REPLACE_ATTRIBUTES.
You should be cautious when using REPLACE_ATTRIBUTES, however, since it replaces all values of the
attribute with the value or values you provide.

Note that the examples here don't reflect any particular directory. In order to change a directory's
"telephonenumber" attribute value, you need to consult the schema of that directory for the
appropriate attribute type and syntax definitions.

Note also that we have discussed only modifying existing attribute values, not adding new attributes
altogether. The reason is that adding new attribute IDs requires modifying the schema, or type
system, of a directory. JNDI supports schema access and modification, but the details on how to do
so are beyond the scope of this chapter.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.11. Creating Directory Entries

So far, we have been accessing directory entries that are already present in the directory. Now it's
time to learn how to create directory entries of our own, using the createSubcontext() method of
DirContext. As we discussed earlier, when you create a subcontext of a Context object, the service
provider controls the type of object that is created. With a DirContext, this is not the case; you
actually have complete control over the type of object you create with createSubcontext() (within
the constraints of the directory schema, of course).

As noted earlier, the object class definition determines the type of a directory entry, and the entry
stores its object class as an attribute. So, in order to create a directory entry, we must pass the
object class attribute and some other attributes into the parent entry's createSubcontext() method.

Most directories require that you specify attributes for at least the object class definition (e.g.,
"objectclass=") and key attribute (e.g., common name, "cn=") of a directory entry. Often directories
require that you specify more attributes than just these. The minimum set of attributes necessary for
creating a directory entry is called the mandatory attributes. They are mandatory because, if you
don't specify them, createSubcontext() tHRows an InvalidAttributesException. Other attributes
that aren't required, but that add more useful data to the entry, are called extended attributes.

Say we have a reference to a DirContext called orgUnit (where this directory entry lives in an LDAP
v3 directory) and we want to create a user entry that is a child of orgUnit to represent the network
user Billy Roberts. Here's how we can create a user entry for Billy:[*]

[*] Note that we didn't implement a "create directory entry" command for NamingShell because most public access LDAP servers

don't allow you to create new entries.

DirContext orgUnit = ... ; // Created somewhere else in the program
BasicAttributes mandatory = new BasicAttributes("cn", "Billy");
BasicAttribute objectclass = new BasicAttribute("objectclass", "user");
BasicAttribute surname = new BasicAttribute("surname", "Roberts");
mandatory.put(objectclass);
mandatory.put(surname);

orgUnit.createSubcontext("cn=Billy", mandatory);

Note that the createSubcontext() method of DirContext resembles the createSubcontext()
method of Context; the only difference is the addition of an Attributes parameter. In this example,
we create a BasicAttributes object and put three attributes in it. While all the attribute values here
are String objects (because that's what an LDAP directory requires), the JNDI API allows you to
specify any kind of object as an attribute value.

In this example, orgUnit represents an organizational unit, under which Billy Roberts's newly created
user entry resides. In an LDAP directory, an organizational unit is an object class definition that
represents a division of a company, and a user is an object class definition that represents a person

http://lib.ommolketab.ir
http://lib.ommolketab.ir

who uses network resources. It is natural that a division of a company can contain a person, but it
doesn't necessarily work in the opposite direction; it doesn't make sense that a user can contain an
organizational unit. The LDAP schema dictates these rules and also specifies the values we can use
for the objectclass attribute (which is where "user" came from in the example code).

When you are creating your own directory entries, be sure to consult the schema for the directory
you are using. If you attempt to create a type of entry that can't reside under a particular DirContext
or you specify an incorrect value for the objectclass attribute, createSubcontext() throws an
exception.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.12. Searching a Directory

One of the most useful features a directory service can offer is the ability to search its entries for
attribute values that meet certain criteria. JNDI supports this kind of searching in directory systems,
which means you can implement search functionality in your JNDI applications. DirContext provides
different search() methods that allow you to specify what you are searching for and control how the
search operates.

9.12.1. Search Criteria

You can specify what you are searching for in two ways. The simpler technique is to create a set of
attributes that serves as the search criteria . In this case, you can set an attribute value, meaning
that an entry must have that attribute value to match, or leave the value empty so that all entries
that have the attribute match no matter what the value.

The more flexible way to specify search criteria is with a search filter string. A search filter allows you
to express search criteria using LDAP search syntax, specified in RFC 2254. Note that this syntax
works with all JNDI providers, not just LDAP; it's the JNDI standard for searching all kinds of
directories . The search filter is a String that takes the following general form:

(attribute operator value)

You can use an asterisk (*) to represent a wildcard. For example, here's how to search for all entries
in an LDAP directory:

(objectclass=*)

A search for all users takes the form of:

(objectclass=user)

You can also use the wildcard character to represent completion, just as in a Unix shell or a DOS
prompt. For example, here's a filter for searching for all users whose first names start with "k":

(cn=k*)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can use operators other than equals (=), as in:

(revision<24)

You can also combine search filters with operators such as AND (&) and OR (|). The way to do this is
to wrap the entire expression in parentheses:

(&(objectclass=computer)(cn=Billy))

Finally, you can nest search expressions:

(&(|(objectclass=computer)(objectclass=user))(cn=Billy)))

Obviously, the attributes you specify in a search depend on the directory service you are searching.

9.12.2. Search Results

Regardless of how you specify the search criteria, the search() method you call returns a
NamingEnumeration of SearchResult objects. There is a SearchResult for each directory entry that
matches the search criteria. SearchResult is a direct subclass of Binding that stores a set of
Attributes along with the usual name, class name, and object. (As we'll see shortly, the object in a
SearchResult may be null, depending on the SearchControls you set.) Since a search operation
returns a NamingEnumeration, you must cast the object that the enumeration returns from the next(
) method to a SearchResult object. Once you've done this, you can retrieve attributes with the
getAttributes() method and use methods inherited from Binding (and NameClassPair) to get other
information about the matching entry.

9.12.3. Search Controls

The search() methods that take a SearchControls object allow you to control how a search
operates. You can set the scope of a search, whether the search should return objects, and the
maximum amount of time the search should take, among other things. The easiest way to create a
SearchControls object is to use the default constructor and then call various set() methods to set
particular search properties.

For example, the setSearchScope() method controls where the search should look for matching
directory entries. Most of the time, you set the scope of a SearchControls object to search an entire
subtree, but you can also limit the search to an object or its children. Table 9-3 lists the available
search scopes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 9-3. SearchControls search scopes

Scope Meaning

OBJECT_SCOPE Searches only the object itself

ONELEVEL_SCOPE Searches only the children of the search target

SUBTREE_SCOPE Searches the entire subtree

The setReturningObjFlag() method determines whether the results of a search contain references
to the actual directory entries or only the names and class names of the entries. The default behavior
is to not return the actual entries, meaning that calling getObject() on a SearchResult returns null.

The SearchControls object also allows you to specify other aspects of the behavior of a search:

The number of milliseconds to wait for the directory to return the search results (by default, a
search can take as long as it takes)

The number of entries that can be returned from the search (by default, as many as are present
or as many as the underlying directory allows you to retrieve)

Whether to follow links to finish the search (no by default)

What attributes if any to return (all by default)

In general, the default behavior is typically what you want for these parameters.

9.12.4. A Search Command

Now that we've discussed how the various search() methods work, let's look at a real example.
Example 9-11 shows the implementation of a search command for NamingShell. This example uses
the search() method that takes the name of the context to be searched, a search filter that
describes the search criteria, and a SearchControls object.

Example 9-11. The search command

import java.util.Vector;
import javax.naming.*;
import javax.naming.directory.*;

class search implements Command {
 public void execute(Context c, Vector v) throws CommandException {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 if (NamingShell.getCurrentContext() == null)
 throw new CommandException(new Exception(), "No current context");
 else if (v.isEmpty())
 throw new CommandException(new Exception(), "No filter specified");
 String filter = (String)v.firstElement();
 try {
 SearchControls cons = new SearchControls();
 cons.setSearchScope(SearchControls.SUBTREE_SCOPE);
 NamingEnumeration results = ((DirContext)c).search("", filter, cons);
 while (results.hasMore()) {
 SearchResult result = (SearchResult)results.next();
 System.out.println(result.getName());
 }
 }
 catch (InvalidSearchFilterException isfe) {
 throw new CommandException(isfe,
 "The filter [" + filter + "] is invalid");
 }
 catch (NamingException e) {
 throw new CommandException(e, "The search for " + filter + " failed");
 }
 catch (ClassCastException cce) {
 throw new CommandException(cce, "Not a directory context");
 }
 }

 public void help() { System.out.println("Usage: search filter"); }
}

The search command always starts searching in the current context, so you need to move to the
appropriate location in the directory service using cd before you use search. search requires you to
specify a search filter as its first argument. Note that you can't use any spaces in the filter, or the
filter will be parsed as multiple arguments and therefore will not work. Here's how to use the search
command:

o=Novell% search (&(objectclass=person)(cn=a*))
cn=admin
cn=admin,ou=cook1,ou=user
cn=admin,ou=fj,ou=user
cn=admin,ou=Stanford,ou=user
cn=admin,ou=Ed Reed,ou=user
cn=admin,ou=antimony,ou=user
cn=admin,ou=keaves,ou=user
cn=admin,ou=acme,ou=user
cn=admin,ou=nld,ou=user
cn=admin,ou=wibble,ou=user
cn=admin,ou=xxx,ou=user
cn=admin,ou=piet,ou=user
cn=admin,ou=adamtest1,ou=user
cn=admin,ou=novell,ou=user

http://lib.ommolketab.ir
http://lib.ommolketab.ir

...

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.13. Event Notification

In addition to finding, browsing, searching, and altering objects stored in a naming or directory
service, the JNDI API also supports the concept of event notification . This involves registering
listeners for various types of events that may occur in a naming/directory server. This functionality is
provided through the javax.naming.event package.

Essentially, JNDI event notification is similar to other event models in the Java platform: you obtain a
reference to an event source and then register an event listener with the source. When the specified
events fire in the event source, notifications are made by invoking callback methods on the event
listeners.

9.13.1. Event Sources

Event sources in JNDI are represented by special subclasses of Context and DirContext:
EventContext and EventdirContext, both from the javax.naming.event package. These interfaces
provide the additional functionality required to register event listeners with a naming/directory
service. Acquiring a reference to an event source is simply a matter of casting a returned Context or
DirContext. For example, if we wanted to get an event source for the "person" branch of a directory
service:

Context ctx = new InitialContext(props).lookup("ou=person");
EventDirContext evCtx = (EventDirContext)ctx;

In order to take advantage of event notification, the JNDI provider (and the underlying naming or
directory service) needs to support event notification, and its Context implementations need to
implement the EventContext or EventdirContext interfaces. If the provider doesn't support event
notification, the cast in the second line of the previous example fails with a ClassCastException.
There is a more fault-tolerant way to check for event notification support:

Context ctx = new InitialContext(props).lookup("ou=People");
if (ctx instanceof EventDirContext) {
 // Register listeners with directory event source
 ...
}
else if (ctx instanceof EventContext) {
 // Register listeners with naming event source
 ...
}
else {
 // No event notification support

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 System.out.println("Sorry, provider doesn't support event notification");
}

The LDAP provider supplied with JDK 1.3 and later does support event notification, so the remainder
of our examples will assume that we're accessing LDAP services.

9.13.2. Writing Event Listeners

Once you have an event source from your naming/directory service, you can register listeners for
various events. Event listeners in JNDI are simply classes that implement the NamingListener
interface. This interface acts as the base interface for the other types of listeners supported by JNDI,
which we'll discuss next. It also supports handling errors that occur in the naming service. If you
register a listener with the naming service and the service then encounters some error that will
prevent it from notifying you of events, it makes you aware of the error by calling the
namingExceptionThrown() callback on the NamingListener interface.

Two types of events can occur in a naming or directory service. The first involves changes relative to
the namespace of the service (i.e., when objects are added or removed from a naming service or an
object's name in the service is changed). The second type of event involves changes relative to the
actual objects stored in the naming service (i.e., when an object's binding in the naming service has
been changed or its attributes (in a directory service) have been altered).

There are two subclasses of NamingListener provided in JNDI to match these two types of events:
NamespaceChangeListener and ObjectChangeListener. To be notified of changes in the namespace,
create an implementation of the NamespaceChangeListener interface and register it with an event
source. There are three event notification callbacks on this interface that you can implement. The
objectAdded() method is called when a new object is added to the namespace, objectRemoved() is
called when any object is removed, and objectRenamed() is called when an object's binding in the
namespace is changed. A very simple NamespaceChangeListener implementation is shown in Example
9-12. This listener simply logs events to standard output as they occur.

Example 9-12. Listener for namespace changes

import javax.naming.*;
import javax.naming.event.*;

public class NamespaceChangeLogger implements NamespaceChangeListener {
 // Default constructor
 public NamespaceChangeLogger() {}

 // Callback for object addition events
 public void objectAdded(NamingEvent ev) {
 Binding b = ev.getNewBinding();
 System.out.println("--> ADD: Object of type " + b.getClassName() +
 " added at binding \"" + b.toString() + "\"");
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Callback for object removal events
 public void objectRemoved(NamingEvent ev) {
 Binding b = ev.getOldBinding();
 System.out.println("--> REMOVE: Object of type " + b.getClassName() +
 " removed from binding \"" + b.toString() + "\"");
 }

 // Callback for object addition events
 public void objectRenamed(NamingEvent ev) {
 Binding bNew = ev.getNewBinding();
 Binding bOld = ev.getOldBinding();
 System.out.println("--> RENAME: Object of type " + bNew.getClassName() +
 " renamed from binding \"" + bOld.toString() +
 "\" to binding \"" + bNew.toString() + "\"");
 }

 // Callback for errors in the naming service
 public void namingExceptionThrown(NamingExceptionEvent ev) {
 System.out.println(
 "--> ERROR: An error occurred in the naming service:");
 ev.getException().printStackTrace();
 }
}

Each event notification callback takes a single NamingEvent argument. NamingEvent is a subclass of
the generic java.util.EventObject class that is the base class for events in the AWT event model
and the JavaBeans event model. A NamingEvent, as the name implies, contains information describing
an event that occurred in the naming service. The getOldBinding() and getNewBinding() methods
return Binding objects that indicate the state of the affected object's binding before and after the
event. In the case of add events, the old binding is null; in the case of removal events, the new
binding is null. The NamingEvent interface also allows you to access the EventContext that fired the
event. In our example listener, we simply log the old and new binding when we are notified of add,
remove, or change events.

In the case of errors encountered by the naming service, the namingContext-Thrown() callback will
be called on our listener and given a NamingExceptionEvent. This is another subclass of EventObject;
NamingExceptionEvent wraps a NamingException that has been thrown within the naming service. In
our example, when a naming error occurs, we simply log it to standard output and print out the stack
trace for the NamingException enclosed in the NamingExceptionEvent.

Changes to objects in the naming service are tracked using an implementation of the
ObjectChangeListener interface. Creating an ObjectChangeListener is similar to the
NamespaceChangeListener: create a subclass that includes concrete implementations of the
notification callbacks defined in the interface. For ObjectChangeListener, there is only one event
callback to implement: objectChanged(). You also need to implement namingExceptionThrown() to
handle any errors. Example 9-13 shows an example of an ObjectChangeListener implementation.

Example 9-13. Listener for object change events

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import javax.naming.*;
import javax.naming.event.*;

public class ObjectChangeLogger implements ObjectChangeListener {
 // Default constructor
 public ObjectChangeLogger() {}

 // Callback for object change events
 public void objectChanged(NamingEvent ev) {
 Binding bNew = ev.getNewBinding();
 Binding bOld = ev.getOldBinding();
 System.out.println("--> CHANGE: Object of type " + bNew.getClassName() +
 " changed, previous binding = \"" + bOld.toString() +
 "\" post-change binding = \"" + bNew.toString() + "\"");
 }

 // Callback for errors in the naming service
 public void namingExceptionThrown(NamingExceptionEvent ev) {
 System.out.println(
 "--> ERROR: An error occurred in the naming service:");
 ev.getException().printStackTrace();
 }
}

Of course, you could also create a single listener that receives both namespace change events and
object change events by simply implementing both listener interfaces with a single class.

9.13.3. Registering Event Listeners

Event listeners are registered with an event source by specifying a target (the subset of objects in
the naming service for which you want notifications), along with the listener that should receive the
notifications. This is done using the addNamingListener() methods available on the EventContext and
Eventdir-Context interfaces.

The target objects for a listener can be specified in a few different ways. To define a subset of objects
based strictly on their bindings and parent-child relationships in the naming service, you can use the
addNamingListener() methods on the EventContext interface. With these registration methods, the
target of a listener is specified by providing the name of an object (in the form of either a string or a
Name object) and a scope. The name is simply a valid binding within the naming service being usedin
an LDAP directory it is an X.500-style name such as "ou=people,cn=Smith, John". The scope is
indicated by one of three static constants defined on the EventContext interface, with the following
meanings:

OBJECT_SCOPE

Limit the target to just the named object or context.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ONELEVEL_SCOPE

Limit the target to the children of the named context, excluding the context itself. The name
must refer to a context when this scope is used.

SUBTREE_SCOPE

Extend the target to include the entire subtree of the naming hierarchy, starting at (and
including) the named object or context.

So, for example, if we wanted to listen for object-change events on the entry for "John Smith" in our
LDAP directory, we would register one of our ObjectChangeLogger listeners like so:

EventContext ctx = (EventContext)(new InitialContext());
ObjectChangeLogger ocLogger = new ObjectChangeLogger();
ctx.addNamingListener("ou=people,cn=Smith, John",
 EventContext.OBJECT_SCOPE, ocLogger;

If we wanted to be notified for any changes in the namespace in the entire context starting with
"John Smith", we might do this:

NamespaceChangeLogger ncLogger = new NamespaceChangeLogger();
ctx.addNamingListener("ou=people,cn=Smith, John",
 EventContext.SUBTREE_SCOPE, ncLogger);

It's also possible to use more elaborate filters to specify the target of your listener, using the
EvenTDirContext interface and its overloaded versions of addNamingListener(). In these versions,
specify the name of an object or context as before, but instead of a simple scope value, specify a
search filter that defines the subset of the naming service that you want to target. Specifying your
notification target this way is very similar to performing a search on a directory service using the
DirContext.search() method. The search filter takes the form of a filter string, an optional set of
filter arguments (in the form of an Object array), and a set of search controls (in the form of a
SearchControls object). So if we wanted to listen for object change events on any objects in the
"people" branch with a surname of "Jim", we could do the following:

EventDirContext dirCtx = (EventDirContext)(new InitialContext());
ObjectChangeLogger ocLogger = new ObjectChangeLogger();
SearchControls sctl = new SearchControls();
sctl.setSearchScope(SearchControl.SUBTREE_SCOPE);
dirCtx.addNamingListener("ou=people", "(sn=Jim)", sctl, ocLogger);

Notice that in this case, we specify the scope of the target using the setSearchScope() method on
the SearchControls that we provide with the filter.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.13.3.1. A listen command

Returning to our NamingShell example, we can use the event notification features of JNDI to add a
listen command to our shell. We can use this command to register listeners for events in the naming
service. First, we'll create a single listener that can be registered for both namespace events and
object events, by implementing both the NamespaceChangeListener and ObjectChangeListener
interfaces. This listener, AnyChangeLogger, is just a merging of the two listeners we created in the
previous section and is shown in Example 9-14.

Example 9-14. Listener for any naming events

import javax.naming.*;
import javax.naming.event.*;

public class AnyChangeLogger
 implements NamespaceChangeListener, ObjectChangeListener {
 // Default constructor
 public AnyChangeLogger() {}

 // Callback for object addition events
 public void objectAdded(NamingEvent ev) {
 Binding b = ev.getNewBinding();
 System.out.println("--> ADD: Object of type " + b.getClassName() +
 " added at binding \"" + b.toString() + "\"");
 }

 // Callback for object removal events
 public void objectRemoved(NamingEvent ev) {
 Binding b = ev.getOldBinding();
 System.out.println("--> REMOVE: Object of type " + b.getClassName() +
 " removed from binding \"" + b.toString() + "\"");
 }

 // Callback for object rename events
 public void objectRenamed(NamingEvent ev) {
 Binding bNew = ev.getNewBinding();
 Binding bOld = ev.getOldBinding();
 System.out.println("--> RENAME: Object of type " + bNew.getClassName() +
 " renamed from binding \"" + bOld.toString() +
 "\" to binding \"" + bNew.toString() + "\"");
 }

 // Callback for object change events
 public void objectChanged(NamingEvent ev) {
 Binding bNew = ev.getNewBinding();
 Binding bOld = ev.getOldBinding();
 System.out.println("--> CHANGE: Object of type " + bNew.getClassName() +

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 " changed, previous binding = \"" + bOld.toString() +
 "\" post-change binding = \"" + bNew.toString() + "\"");
 }

 // Callback for errors in the naming service
 public void namingExceptionThrown(NamingExceptionEvent ev) {
 System.out.println(
 "--> ERROR: An error occurred in the naming service:");
 ev.getException().printStackTrace();
 }
}

Our listen command takes one required argument, the name of the target object or context, and an
optional search filter argument that can further define the target of the listener. The command class
is shown in Example 9-15.

Example 9-15. The listen command

import java.util.Vector;
import javax.naming.*;
import javax.naming.event.*;
import javax.naming.directory.*;

class listen implements Command {
 public void execute(Context c, Vector v) throws CommandException {

 if (NamingShell.getCurrentContext() == null)
 throw new CommandException(new Exception(), "No current context");
 else if (v.isEmpty())
 throw new CommandException(new Exception(), "No target specified");
 String name = (String)v.firstElement();
 String filter = null;
 if (v.size() > 1) {
 filter = (String)v.elementAt(1);
 }

 try {
 // Cast context to an event context
 EventContext evCtx = (EventContext)c;
 // Create our listener
 NamingListener listener = new AnyChangeLogger();
 // If no filter specified, just register a listener using EventContext
 if (filter == null) {
 evCtx.addNamingListener(name, EventContext.OBJECT_SCOPE, listener);
 }
 // If we have a filter, use the EventDirContext to specify the target
 else {
 EventDirContext evDirCtx = (EventDirContext)c;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 evDirCtx.addNamingListener(name, filter, null, listener);
 }
 System.out.println("Registered listener for " + name +
 (filter != null ? (" and filter " + filter) : ""));
 }
 catch (ClassCastException cce) {
 cce.printStackTrace();
 throw new CommandException(cce,
 "The current context does not support event notification.");
 }
 catch (NamingException e) {
 throw new CommandException(e, "The search for " + filter + " failed");
 }
 }

 public void help() { System.out.println("Usage: listen name [filter]"); }
}

The execute() method checks the incoming command arguments to see what kind of target is being
specified. If just a single argument is given, it's assumed to be the name of the object or context
target, and we use the EventContext interface to register one of our listeners. If a second argument
is provided, it's assumed to be a search filter string, and we use the EventdirContext interface to
register the listener using both the name and filter to specify the target. If we are unable to cast the
current Context to an EventContext or EventdirContext, then we assume that the naming service
doesn't support event notification, and report that to the user by throwing a CommandException.

With this command, we can use the NamingShell to register listeners in our naming service. For
example, if we're connected to an LDAP-based person directory and want to listen for any events
associated with a person with a UID of jsmith:

> java com.oreilly.jent.jndi.NamingShell
Created initial context using jndi.properties
/% cd ou=People
Current context now ou=People
ou=People% listen uid=jsmith
Registered listener for uid=jsmith
ou=People%

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 10. J2EE Security
Security is paramount in any application, especially in large-scale, distributed J2EE applications.
Although J2EE security is critical, it is only one piece of a much larger picture. Security requires an
enterprise strategy that addresses physical security, application security, and network security. J2EE
security is but one link in that larger chain.

When developing J2EE applications, security is a critical concern. You want to make sure that only
authorized users access the application and that hackers can't steal sensitive data. This chapter
describes how you can secure your J2EE application.

The chapter begins by providing an overview of transport and application security as well as defining
the important concepts of authentication and authorization. It then explains security in the web and
application tiers. The chapter explains the concepts of programmatic security as well as declarative
security and then goes on to address various specific enterprise security concerns. Finally, we
conclude this chapter by highlighting some of the limitations of the current J2EE security model.

Before we get started, here's a caveat. In order to cover J2EE security in some detail in this chapter,
we assume that you are familiar with numerous security concepts and techniques, including
authentication, authorization, encryption, message digests, and digital signatures, to name a few.
Depending on your background, you may want to do some further reading in this area as well as
begin monitoring some important online resources.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.1. Basic Security Concepts

Applications need multiple layers of security. Roughly speaking, these can be described as two high-
level layers: transport layer security and application layer security . Transport layer security refers to
protection of data while it's in transit across the network. Application layer security ensures that only
authorized users gain access to the application and its data.

Before we discuss the issues related to transport and application layer security, let's have a quick
primer on public-key cryptography, which plays an important role in common solutions to both areas
of security concerns.

10.1.1. Public-Key Cryptography

Public-key cryptography is a powerful approach for secure operations that can be used for data
encryption, digital signatures, and authentication and in various other security contexts. In the
public-key cryptography model, each party participating in a secure exchange has two keys: a public
key and a private key that fit together mathematically. The public key can be widely and openly
published. Private keys, on the other hand, must be carefully guarded, since they can be used to
create digital signatures. Public and private keys are used in conjunction with each other to perform
highly secure operations. An encrypted data exchange, for example, is performed by encoding a
message with the recipient's public key. It can then be decrypted only with the recipient's private
key. In this way, only the intended recipient can decrypt the message.[*]

[*] Where digital signatures are not used, a shared key can be used to encrypt data instead.

Public-key methods are also a critical element of digital signatures. A digital signature is an encoded
piece of information included with a message that ensures the recipient that the message came from
the sender, not from some malicious third party impersonating the sender. The sender of a message
takes the message contents and uses an algorithm called a one-way hash to generate a hash value
for the message. This hash value is then encrypted with the sender's private key to generate the
signature for the message. Like any public-key-encrypted message, the signature can be decrypted
only with the sender's public key, which, as mentioned earlier, can be freely shared. Both the original
message and the signature for the message are sent to the recipient together. Once received, the
recipient can decrypt the signature using the sender's public key. Running the same one-way hash on
the message should produce an identical hash value. If the hashes match, the integrity of the
message is intact; the message was not modified in transit. If the message contents had been
altered at some point between the sending and receiving of the message, the hash values would not
match. In addition, since the hash was proven to be encrypted by the sender's private key, we know
that the message came from the owner of the private key.

In the context of J2EE applications, the senders and recipients in this transaction are often
components or systems rather than people, but the basic idea is the same.[*] However, it is
important to point out that, while public-key cryptography is highly secure for end user
authentication, creating a public-key infrastructure (PKI) that issues, expires, and revokes user
certificates is daunting, and installing them on the client side, whether in hardware or software, also
takes work. Only in some industries in which privacy is paramount can the business case for full-

http://lib.ommolketab.ir
http://lib.ommolketab.ir

blown PKI be made. However, certificates are commonly used on a server-to-server basis to provide
SSL encryption between applications, for example.

[*] It is easier to explain the concepts in this section using people as illustrations, but bear in mind that the user might be a

component or class rather than a person.

10.1.2. Transport Layer Security: Integrity and Confidentiality

Security at the transport layer ensures the integrity as well as the confidentiality of the data as
applications exchange the data over the wire.

Integrity protection ensures that data is not modified in transit, guaranteeing that the data sent is
the data received. One technique for ensuring data integrity over the wire is the use of digital
signatures in conjunction with message digests.

Confidentiality protection ensures that unauthorized parties cannot read data if they intercept it. The
primary means to ensure this is to scramble, or encrypt, the data. One technique for ensuring the
confidentiality of data in transit is Secure Sockets Layer (SSL).[*]

[*] SSL has become standardized as Transport Layer Security (TLS), defined in RFC 2246. SSL remains the more common term,

and so we use it in this chapter.

10.1.3. Application Layer Security: Authentication and Authorization

Two fundamental concepts in application security are authentication and authorization .
Authentication ensures that a user is who she says she is. Authorization assures that the user can
access only the portions of the program and the data to which she is entitled.

Authentication refers to the process that a user or program uses to identify itself to the application.
Authentication typically involves something you have, something you know, or something you are.
Passwords, the most common authentication method, involve something you know. Digital signatures
involve something you havea private key, whether stored on a hard drive or on a smartcardand
something you know, the passphrase that guards the private key. Biometric authentication involves
technology such as fingerprint readers, facial or voice recognition systems, and retinal scans. This
approach is based on something you are (the whorls on your fingerprints or the modulation patterns
in your voice). Biometric authentication is more rare, even in enterprise applications, but it exists and
is becoming more broadly available. Some laptops even offer fingerprint-based authentication to
access the computer system.

Authorization ensures that users have access only to the resources that they are allowed to access
and may regulate what they can do (read but not modify data, initiate process X but not Y, etc.). The
application server allows only authorized users access to given resources; otherwise, access to the
resource is restricted. In a web application, these resources can be URLs or URL patterns. In the EJB
tier, these resources can be components or a component's methods.

The problem with authorization is that specifying what resources each individual user can access is
cumbersome. As the application changes, as people come and go, and as user roles change over
time, all these settings must be kept up-to-date. In recognition of this security management issue,
J2EE security is role-based. Rather than specifying authorizations on a per-user basis, you define

http://lib.ommolketab.ir
http://lib.ommolketab.ir

them for a set of well-defined roles, such as customer, administrator, salesperson, student, and
professor. Users are given permissions in the system by granting them one or more of these roles.
Creating categories of users greatly streamlines authorization because you've defined the allowed
combinations of permissions in one place (the role definitions), and a given user's authorizations are
represented as a simple list of roles that he's been assigned.

Role-based authentication involves users, roles, permissions, and resources. A user provides a
username and authentication credentials of some kind to the application. At that point, the
authenticated user is considered by the application to have an identity, which is the username. Users
have one or more roles. This classification of users makes it relatively easy to create fine-grained
authorization policies. Instead of specifying authorizations for each individual user, you specify
authorizations for a role. Therefore, a role is a grouping of permissions that a given type of user
possesses. You typically specify authorizations as policies. You specify these policies, in a declarative
programming model that we will discuss later, in special policy files, deployment descriptors, or
special-purpose policy stores. An Access Control List (ACL) maps roles to resources. We will provide
more details about how to do this for various kinds of applications later in this chapter.

Application server vendors may provide additional security services beyond the ones discussed
earlier, such as auditing and nonrepudiation. Auditing services log security information for later
review. These logs can be used to detect malicious attempts to break into applications, among other
things. Nonrepudiation facilities provide proof of user actions in such a way that the user cannot later
deny it (obviously a particularly good feature for business transactions).

Now that we've outlined these terms and concepts, the next section describes how the Java platform
implements these basic security features. The J2EE security model leverages Java platform security.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.2. A Look at Java and J2EE Security Standards

J2EE security builds on the foundation of the Java security APIs. These APIs include application-level
interfaces such as the Java Authentication and Authorization Service (JAAS) and the Java
Authorization Contract for Containers (JACC) as well as lower-level APIs such as the Java
Cryptography Extension (JCE), the Java Secure Socket Extension (JSSE), and the Java Generic
Security Services (GSS) API. While the nuts and bolts of these standards are often hidden from the
developer, it helps to understand what security pieces the standards provide, especially as you
evaluate application servers or security providers, for example.

10.2.1. Authentication and Authorization in Java Security

The core Java security model is based on .policy files that govern the allowed operations for specific
pieces of code. These pieces of code are defined based on their packages and classes, where the code
originated, and who (if anyone) signed the code. This level of security is often called code-level
security, since you are authorizing chunks of code to do specific things rather than the users who are
interacting with the code.

JAAS enhances the Java security model by providing user-level security. JAAS deals with
authenticating users (referred to in JAAS as subjects) and authorizing them to run certain programs,
applets, or jars based on a variety of criteria, all specified in the same .policy file used for code-level
security. JAAS is a required element in both the 1.3 and 1.4 versions of the J2EE specification, so any
compliant application server will offer support for it. The authentication aspects of JAAS are highly
applicable to J2EE applications since they allow for pluggable runtime authentication, which is useful
for developing and deploying applications in various environments using different security
infrastructures. Standalone Java clients can also use JAAS for authentication, provided that their
runtime environment has a JAAS implementation available.

The authorization features of JAAS allow you to authorize users to perform specific actions within an
application. A set of low-level permissions are available out of the box with JAAS, but you can
implement your own context-specific (or even application-specific) permissions by subclassing the
java.security.Permission class. Permissions can be specified to restrict users to specific URLs in a
web application, for example, or to perform certain administrative actions on a financial system.

The Java Authorization Contract for Containers (JACC) is a newer security API, introduced as a
standard part of J2EE as of the 1.4 version of the specification. JACC builds on JAAS in three
fundamental ways. First, it provides a set of standard JAAS/Java security permission types that are
directly relevant to enterprise applications (e.g., standard permissions related to web resources and
EJB business methods). Next, it provides a standard model for role-based authorization, grouping
sets of permissions into named roles, such as customer or salesperson, that can be applied to users
within policy definitions. Last, JACC defines a standard service provider API (SPI) that allows J2EE
containers and servers to plug in their own authorization providers into the standard JACC model.
This pluggability layer also allows you to integrate third-party authorization providers into your
application server.[*]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[*] J2EE 1.4-compliant application servers such as Apache Geronimo, BEA WebLogic 9, and IBM WebSphere 6 support JACC;

Tomcat, for example, does not.

10.2.2. Encryption in Java Security

JCE is a lower-level security API aimed at data protection needs in applications. JCE is a pluggable
framework for encryption, key generation and agreement, and Message Authentication Code (MAC)
algorithms. Sun provides a default implementation of JCE, but several third-party implementations of
the framework and of specific cryptographic algorithms are available in both commercial and open
source products. Application server vendors may implement underlying security mechanisms by
leveraging JCE, but in general JCE has a limited role in the security aspects of the J2EE specification.
However, JCE can be a very useful tool in your application code. JCE can be used to encrypt sensitive
information such as passwords or credit card numbers, in transport or in storage.

JSSE is also related to data protection through encryption. It is a Java implementation of the SSL
protocol. Like JCE, application servers and containers may or may not use JSSE in their internal
implementations, in this case for SSL network communications. Some versions of Tomcat, for
example, use JSSE internally to implement SSL-enabled HTTP communications. JSSE can also be
used by both server- and client-side application code to execute secure socket communications
directly.

The Java GSS-API defines and implements Java mappings for GSS-API features including support for
Kerberos authentication.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.3. Declarative Security Versus Programmatic Security

Two basic approaches to implementing security are programmatic security, in which you embed
explicit security calls directly into your code, and declarative security, in which you specify security
policies using deployment descriptors and configuration files.

When making use of programmatic security, you embed security enforcement within the application
with programmatic checks on policies, to determine what a user is allowed to do or see in the
application, and then react to this information appropriately. Programmatic security can be useful,
even required in some situations, especially in application contexts in which the expressive power of
declarative security is insufficient. But programmatic security should be used with care. If the design
and implementation are not clever and the developers are not careful, such checks become scattered
and strewn throughout the application code. This situation can become extremely difficult to maintain
because of duplicated code and nonuniform implementation styles. For example, a change in a
particular piece of business logic might require changing several pieces of code. This is expensive,
because there is more code to update and test, and also error-prone, because it's difficult to ensure
that you've covered all the bases when the code is implemented and distributed in an ad hoc fashion.
So with programmatic security, the onus is on you to architect your security code in such a way that
it's contained and well encapsulated.

Declarative security involves the use of external deployment descriptors and configuration files to
describe the authentication and authorization requirements for your application code. The application
server or container is responsible for applying these security constraints to your code at runtime.
Implementing security in this manner can result in more straightforward and maintainable code,
because there's less of it. However, in many situations, declarative security is not sufficient and you
still need to add some carefully designed programmatic security in order to achieve all of your
application's security requirements.

At this point, having laid this groundwork, let's look at how J2EE security works in both web-based
and EJB applications.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.4. Web Component Security

J2EE provides comprehensive support for security in the web tier including transport-level security
with SSL as well as authentication and authorization for application-level security. These security
services are provided as both declarative security features (configured through web.xml deployment
descriptor elements) and programmatic security calls integrated with the Servlet and JSP APIs.

10.4.1. Web-Tier Transport-Level Security

The web tier provides fine-grained control over transport-level security. There are three modes of
transport-level security: NONE, INTEGRAL, and CONFIDENTIAL. NONE, as the name implies, means no
transport-level security; all information is sent in the clear. This is the default mode. INTEGRAL means
that the client and the server cooperate to ensure that content is not changed in transit.
CONFIDENTIAL means that the client and server keep the content secret as it is transported over the
wire. INTEGRAL and CONFIDENTIAL imply using SSL to communicate between the clients (typically
browsers) and the server. Such transport-level security is also known as one-way SSL. You specify
the transport-level security constraints in the web.xml deployment descriptor as part of the
<security-constraint> elements as depicted in Figure 10-1.

The <security-constraint> element uses the <web-resource-collection> element to specify the
subset of the application that is the target of the constraint. The <web-resource-collection> element
also supports specification of specific HTTP request types, such as GET and POST. You can specify the
URL collection for the constraint using a fully specified URL (e.g., /admin/edit.jsp) or you can use the
* wildcard to specify groups of URLs, such as all URLs that fall within a particular path (/admin/*) or
all URLs that end with a particular suffix (/admin/*.jsp). The rules for matching URLs to url-pattern
values within <web-resource-collection> entries are the same as those used for matching <servlet-
mapping> entries and <filter-mapping> entries in web deployment descriptors. Refer to Chapter 3 for
full details on these mapping preferences.

What happens if you access an INTEGRAL or CONFIDENTIAL resource using HTTP instead of HTTPS?
There are at least two alternatives. The first alternative is to display an error informing the user that
access to the resource is restricted. The second alternative is to redirect the request using the HTTPS
protocol. The second approach is seamless and elegant in terms of the user experience. Recent
servlet specifications mandate such redirects. Example 10-1 shows a security constraint. The
constraint specifies a web resource collection that encapsulates all URLs that start with /admin.
Therefore, the constraint will match a URL such as /admin/manageRegions.jsp. The <user-data-
constraint> entry specifies that this collection of URLs must be protected to the CONFIDENTIAL level.
This means that the URLs must be accessed over SSL. If a user attempts to access
/admin/manageRegions.jsp over HTTP, for example, the web container triggers a redirect to the
same URL over HTTPS in order to enforce this constraint.

Figure 10-1. Security constraint schema diagram

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 10-1. Example security constraint configuration

<web-app>
 ...
 <security-constraint>
 <display-name>The user must access these over SSL</display-name>
 <web-resource-collection>
 <web-resource-name>AdminURLs</web-resource-name>
 <description>Collection of admin urls</description>
 <url-pattern>/admin/*</url-pattern>
 <http-method>GET</http-method>
 <http-method>POST</http-method>
 </web-resource-collection>
 <user-data-constraint>
 <description>Only confidential is allowed.</description>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
 </security-constraint>
 ...
</web-app>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.4.2. Web-Tier Authentication

J2EE web containers also support the declaration of authentication schemes for applications. The
standard HTTP authentication mechanisms available in the web tier include BASIC, DIGEST, FORM, and
CLIENT. The authentication mechanism is specified in the web.xml file using the <login-config>
element shown in Figure 10-2. The authentication method applies to all web components in the
application.

Figure 10-2. Login configuration schema diagram

10.4.2.1. BASIC authentication

Example 10-2 shows a web.xml fragment that specifies BASIC authentication for a web application.
With BASIC authentication, when a user interacts with a page that requires authentication, the
underlying HTTP server prompts the user with a dialog box requesting a username and password.
The browser controls the look and feel of the dialog, which is one of the limitations of BASIC
authentication. The username and password are base64 encoded when sent to the server. Base64
encoding simply obscures the text so that it does not pass in the clear; it does not encrypt it.
Transport-level security such as SSL should be used to ensure that the usernames and passwords are
sent securely.

Example 10-2. BASIC authentication

<web-app>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ...
 <login-config>
 <auth-method>BASIC</auth-method>
 </login-config>
 ...
</web-app>

10.4.2.2. DIGEST authentication

In an application configured with DIGEST authentication, the user experience is very similar to BASIC
authentication. A request to a protected page triggers a dialog box that asks the user for a username
and password. Again, the browser controls the look-and-feel of the dialog. The client base64 encodes
the username but encrypts the password. This mechanism is more secure than BASIC authentication,
but compatibility problems between different HTTP server implementations and web browsers have
limited its adoption in web applications.

10.4.2.3. FORM authentication

Example 10-3 shows a declaration of FORM authentication for a web application. In an application
configured with FORM authentication, a developer creates a login screen, login.jsp in this example,
that displays an HTML form to prompt the user for a username and password. When the user
requests a page that requires authentication, the web container redirects her to this login page. The
user fills out the login form and submits the request to the server. This mechanism is not secure from
a transport level, unless used in conjunction with SSL or other network encryption protocols. One of
the neat features of FORM authentication is that the server remembers the requested page, including
all request parameters. Upon successful authentication, the application server directly takes the user
to the authenticated page originally requested. If authentication fails, the application server takes the
user to a customized login failure page, loginError.jsp in this example.

Example 10-3. FORM authentication configuration

<web-app>
 ...
 <login-config>
 <auth-method>FORM</auth-method>
 <form-login-config>
 <form-login-page>/login.jsp</form-login-page>
 <form-error-page>/loginError.jsp</form-error-page>
 </form-login-config>
 </login-config>
 ...
</web-app>

What action should you specify for the login form, and who implements that action? As shown in the
HTML fragment in Example 10-4, the application server implements a special internal action called

http://lib.ommolketab.ir
http://lib.ommolketab.ir

j_security_check, and you specify this special action as the target of your login form. How does the
j_security_check action know about the username and password fields? It expects you to use the
standard name of j_username for the user's identifier and the standard name of j_password for the
password field.

Example 10-4. Login form for FORM-based authentication

 <form action="j_security_check" method="POST">
 <table>
 <tr>
 <td>Username:</td>
 <td><input type="text" name="j_username"></td>
 </tr>
 <tr>
 <td>Password:</td>
 <td><input type="password" name="j_password"></td>
 </tr>
 <tr>
 <td><input type="submit" value="Login"></td>
 <td><input type="reset" name="Reset"></td>
 </tr>
 </table>
 </form>

10.4.2.4. CLIENT authentication

When a user interacts with a page that requires authentication, when using CLIENT authentication,
the client browser sends the client's digital certificate to the server. This method of authentication
works in conjunction with the transport-level security. The browser never prompts the user for a
username and password. The CLIENT authentication approach is also known as two-way SSL. CLIENT
authentication is the most secure method among the standard methods offered by web containers,
but it is not widely implemented since it mandates issuing digital certificates to all clients that access
the application.

10.4.2.5. Custom authentication

Another option for implementing authentication in your web application is to implement your own
scheme within the general web component model. In other words, rather than use the declarative
authentication configuration offered by the web deployment model, you can write your own login
scheme. One common approach to custom web authentication is to write a servlet filter that checks
for credentials on the request (cookies or session data defined by the filter, for example). If none are
found, the filter logs in the user, perhaps by forwarding him to a custom login page or component.

10.4.3. Web-Tier Authorization

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Web containers support both declarative and programmatic authorization, as described in the
following sections.

10.4.3.1. Declarative authorization

Declarative authorization in the web tier allows you to declare authorization policies for collections of
URLs in your web application. As with the other declarative security features in J2EE, these policies
are defined in a deployment descriptor. In this case, since we're discussing web components, the
declarative authorization is done in the web.xml deployment descriptor.

You specify declarative authorization in web.xml using the <security-constraint> element, the same
element that is used to specify transport-level security settings. Refer back to Figure 10-1 for the
schema diagram of the <security-constraint> element. The <security-constraint> element
specifies which roles are allowed to access specific sets of web resources; the application server
enforces these constraints. As shown in Example 10-5, the resources are specified using the same
<web-resource-collection> element used for transport constraints. The roles that are allowed to
access the collection of URLs are specified using the <auth-constraint> element. You can specify
roles by name, or you can use an asterisk (*) to match all the roles in the deployment descriptor.

Example 10-5. Security constraint example

<web-app>
 ...
 <security-constraint>
 <display-name>Seller constraints</display-name>
 <web-resource-collection>
 <web-resource-name>SellerURLs</web-resource-name>
 <description>Collection of seller urls</description>
 <url-pattern>/seller/*</url-pattern>
 <http-method>GET</http-method>
 <http-method>POST</http-method>
 </web-resource-collection>
 <auth-constraint>
 <description>Only individuals with seller role.</description>
 <role-name>seller</role-name>
 </auth-constraint>
 </security-constraint>
 ...
</web-app>

When an unauthenticated user accesses a restricted resource, the application server rejects the
request by returning an HTTP 401 status code. The 401 status code (SC_UNAUTHORIZED) indicates that
the server must authenticate the user in order to process this request. The return of a 401 status
code causes the browser to prompt the user for authentication (typically a username and password).
If the user is not authorized to access the resource (because her role does not give her permission to
access that resource), the application server rejects the request by returning an HTTP 403

http://lib.ommolketab.ir
http://lib.ommolketab.ir

(SC_FORBIDDEN) status code.

10.4.3.2. Programmatic authorization

The primary methods that support programmatic authorization in the web tier are geTRemoteUser(),
getUserPrincipal(), and isUserInRole() on the javax.servlet.http.HttpServletRequest
interface. The getremoteUser() method returns the username of the currently authenticated user as
a string. The getUserPrincipal()method returns similar information to getremoteUser(), but
instead of returning a string, it returns a java.security.Principal object. What if there is no
currently authenticated user? The geTRemoteUser() and getUserPrincipal() methods return null,
and the isUserInRole() method returns false.

The isUserInRole() method takes a role in a string form. You define the role in the web.xml file
using a <security-role> element and then reference it within a web component declaration using a
<security-role-ref> element as depicted in Figure 10-3.

Figure 10-3. Security role reference schema elements

Let's look at an example that illustrates programmatic authorization. Your company sells widgets
online. You have regular buyers and special VIP buyers. You would like to offer a significant discount,
say 20%, to the VIP buyers. One way to do this is to assign VIP buyers a special vip role. This role is
specified in the web.xml file in a <security-role> element as shown in Example 10-6. Example 10-7
shows how the application gives the discount to VIP buyers in the DiscountServlet class. As you can
see, role-based authorization can do more than simply admit or bar access to a given resource; it has
business applications as well, especially when combined with programmatic security.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 10-6. Security role reference

<web-app>
 ...
 <servlet>
 <description>The discount servlet.</description>
 <servlet-name>DiscountServlet</servlet-name>
 <servlet-class>com.oreilly.jent.securitydemo.servlets.DiscountServlet
 </servlet-class>
 <security-role-ref>
 <role-name>VIPRole</role-name>
 <role-link>vip</role-link>
 </security-role-ref>
 </servlet>
 ...
 <security-role>
 <description>The VIP role.</description>
 <role-name>vip</role-name>
 </security-role>

Example 10-7. Programmatic authorization code

 public static String VIP_ROLE = "VIPRole";
 String aDiscount = "10";
 if (aRequest.isUserInRole(VIP_ROLE)) {
 aDiscount = "20";
 }
...

You specify the roles in the deployed application using <security-role> elements. These elements
declare roles that must be resolved to actual user principals and groups by the underlying application
server or container. However, you may want or need to use these roles under different names in the
application code itself, and one security role can be referenced multiple times under different names
by various web components. In our example, we've linked the role name used in the code, VIPRole,
to the deployed role name, vip. VIPRole is specified in the <role-name> element of the <security-
role-ref>. You map the role name to the actual deployed role, using the <role-link> element. Using
a <security-role-ref> is optional if the role name in the code is the same as the role name in the
deployed environment. However, it's a good idea to specify the <security-role-ref> element
anyway, using identical values for the <role-name> element and the <role-link> element. This makes
it easier to adjust deployed role names in the deployment descriptor when needed, and it also makes
it clear in the deployment descriptor which roles are used by which web components.

10.4.4. Identity Propagation from the Web Tier to the EJB Tier

http://lib.ommolketab.ir
http://lib.ommolketab.ir

We've discussed programmatic and declarative authentication as well as authorization in the web tier.
Frequently, though, the web tier is not completely independent of the EJB tier. One common scenario
is for the web tier to act as a client of one or more EJB components, delegating business behavior to
the EJB tier. In order for security to work seamlessly across tiers, we need to pass along the user's
credentials from the web tier to the EJB tier. This technique is called identity propagation.

In the EJB tier, clients are responsible for authenticating users. For example, if the client is a web
application, the web tier specifies the mechanisms for authentication. Once the application server
authenticates a user in the web tier, his identity is established. The application server passes along
this identity to the EJB components as depicted in Figure 10-4.

Figure 10-4. Propagation from the web tier to the EJB tier

Identity propagation, passing along the credentials from the web tier to the EJB tier, is the default
and works well in most applications. However, in some circumstances, the components in the EJB
container do not care about the client's identity but only the client's role. In other situations, the web
application may allow unauthenticated users to access certain web components, but the EJB
components require a role to be associated with all incoming requests. In such scenarios, you can use
the <run-as> element in the declaration of a web component within the deployment descriptor. The
position of the <run-as> element in the web.xml structure is depicted in Figure 10-5. When a role is
specified in a <run-as> element, all user requests of the component are run under the specified role,
and this role is propagated to any EJBs accessed by the web component.

Figure 10-5. run-as element in web.xml schema

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 10-8 illustrates the use of <run-as> within a deployment descriptor. In this example, we
declare that the TaxServlet does not pass along the caller identity. Instead, the TaxServlet passes
the role name TaxServiceUserRole to any EJB components that it invokes.

Example 10-8. run-as

<web-app>
 ...
 <servlet>
 <description>The tax servlet.</description>
 <servlet-name>TaxServlet</servlet-name>
 <servlet-class>com.oreilly.jent.securitydemo.servlets.TaxServlet
 </servlet-class>
 <run-as>
 <description>Specify the role to invoke tax service</description>
 <role-name>TaxServiceUserRole</role-name>
 </run-as>
 </servlet>
 ...
</web-app>

10.4.5. Web Tier Best Practices

We recommend the following best practices for the web tier:

Use declarative security whenever possible, and resort to programmatic security only when
necessary.

Be very cautious about the paths in your web application that cross the boundary from SSL to
non-SSL mode and back again. These mode switches can lead to inadvertent leakage of secure
and sensitive data, if you're not careful. It's possible, for example, to request secure information

http://lib.ommolketab.ir
http://lib.ommolketab.ir

from the user over SSL, put this information into session data while the user is within SSL
portions of the application, and then display the information to the user in the clear within a
non-SSL page.

Be aware that if you use RequestDispatcher forward or include operations, the forward or
include happens on the server side and the container has no opportunity to enforce security
policies. As a result, users are not authenticated and authorization checks are not performed.

Stay informed about new web security vulnerabilities related to specific web servers and
browsers, and be proactive about dealing with them, if possible, in your application. One good
source for this kind of information is the Open Web Application Security Project (OWASP) Top
Ten Most Critical Web Application Vulnerabilities list (see
http://www.owasp.org/documentation/topten.html). There are also many alert services to
which you can subscribe to receive email about new vulnerabilities as they are found.

http://www.owasp.org/documentation/topten.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.5. EJB Component Security

EJB containers provide fairly rich security capabilities for EJB components that they manage. The
following sections discuss transport-level security, authentication, declarative and programmatic
authorization, identity propagation, and security best practices for the EJB tier. The material
presented here complements the coverage provided in Chapter 6. We'd recommend reviewing the
relevant security-related material in that chapter first, then returning to this section for further
details.

10.5.1. EJB-Tier Transport-Level Security

As discussed in Chapter 6, remote EJB clients can use either RMI/JRMP or CORBA/IIOP protocols to
communicate over the network with EJB components. If you need to secure the communications
between clients and the EJB container, IIOP traffic can be tunneled over SSL using various IIOP/SSL
tunneling protocols. But support for SSL-enabled IIOP is server-specific, so you'll have to ensure that
both the EJB container and the client environments support the same secure IIOP protocols.

Using secure JRMP connections has been problematic in the past because of a lack of standard
implementations of secure JRMP sockets in the Java platform. JDK 1.5 introduced a new standard
SSL-enabled RMI socket implementation, but it will likely take some time for these to make their way
into EJB container implementations as an option for deployed components.

In either case, configuring EJB containers to use secure transport communications is a vendor-
specific detail. Consult the documentation for your EJB container for details.

10.5.2. EJB-Tier Authentication

As we discussed earlier, clients of EJB components are responsible for authentication of users and for
propagating the user's identity to the EJB tier. We already described what happens with a web client,
which passes along or propagates credentials from the web application to the EJB. Now, how is
authentication handled for a standalone Swing or Standard Widget Toolkit (SWT) application or a
command-line application? One option is to use JAAS for authentication. Once the client container
authenticates a user in the client tier, the client container passes along the user's identity to the EJB
components as shown in Figure 10-6. You leverage JAAS to authenticate the user with various
mechanisms such as Kerberos, LDAP, or even the operating system.

Figure 10-6. Propagation from client to EJB tier

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.5.3. EJB-Tier Authorization

J2EE security supports declarative as well as programmatic authorization for the EJB tier as detailed
in the following sections.

10.5.3.1. EJB-tier declarative authorization

Declarative authorization in the EJB tier involves defining authorization policies in your EJB
deployment descriptor. These policies specify which roles may access the methods on your EJB
components and how these roles are propagated (or not) from the client. Role-based authorizations
for accessing EJB methods are set using <method-permission> elements. You can also specify EJB
methods that should not be accessed by clients by including them in <exclude-list> elements.

The propagation of user roles from the client to the EJB container is controlled using the <security-
identity> element with each component's entry in the deployment descriptor. Using a <use-caller-
identity> element specifies that any client requests to the EJB component should inherit the identity
and roles of the client making the request. If you want all calls to the EJB component to assume a
singular role, you can specify a <run-as> element within the <security-identity> element.

For details and examples of using these EJB declarative authorization settings, see the section
"Deploying EJBs" in Chapter 6.

10.5.3.2. EJB-tier programmatic authorization

The primary methods that support programmatic authorization in the EJB tier are
getCallerPrincipal() and isCallerInRole() of the javax.ejb.EJBContext interface.
getCallerPrincipal() returns an instance of java.security.Principal object. What if there is no
current authenticated user? The getCallerPrincipal() method does not return null; it returns a
Principal that represents an unauthenticated identityi.e., an anonymous user.

The isCallerInRole() method takes a role in string form as shown in Example 10-9.

Example 10-9. isCallerInRole

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public static final String VIP_ROLE = "vip_role";

 public BigDecimal getPercentageCost() {
 sLogger.info(
 " in shipping manager bean. get percentage cost : "
 + mSessionContext.getCallerPrincipal().getName()
);
 if (mSessionContext.isCallerInRole(VIP_ROLE)) {
 return new BigDecimal("3.00");
 }
 return new BigDecimal("7.00");
 }

Before you pass the role name as an argument to the isCallerInRole() method, the role name
must be declared in the <security-role-ref> element of the ejb-jar.xml deployment descriptor as
shown in Example 10-10. The scope of <security-role-ref> is at the entity bean or session bean
level. There is no client caller in case of a message driven bean.

Example 10-10. Security role reference

<ejb-jar>
 ...
 <session>
 ...
 <ejb-name>ShippingManager</ejb-name>
 ...
 <security-role-ref>
 <role-name>vip_role</role-name>
 <role-link>vip</role-link>
 </security-role-ref>
 ...
 </session>
 ...
</ejb-jar>

You map the role in the <security-role-ref> element to the <security-role> element using the
<role-link> element. The scope of the <security-role> is the entire ejb-jar.xml file and applies to all
the enterprise beans in that file. Example 10-11 shows how to specify a <security-role> as part of
the <assembly-descriptor>.

Example 10-11. Security role in assembly descriptor

<ejb-jar>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ...
 <assembly-descriptor>
 ...
 <security-role>
 <description>The VIP role.</description>
 <role-name>vip</role-name>
 </security-role>
 ...
 </assembly-descriptor>
 ...
</ejb-jar>

10.5.4. EJB Tier Best Practices

We recommend the following best practices for managing security at the EJB tier:

As with the web tier, use declarative security whenever possible and resort to programmatic
security only when necessary.

Keep your security policies as coarse-grained as possible to avoid complex, highly granular
authorization settings that are difficult to maintain and troubleshoot. Session bean façades in
front of your entity beans can be useful in this regard since they can be used to channel users
through a few well-defined entry points, thus reducing the number of required roles.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.6. Other J2EE Security Topics

In this section, we discuss a few other topics relevant to J2EE security, including securing enterprise
resource managers, web service security, and single sign-on.

10.6.1. Accessing Enterprise Resource Managers

An enterprise may have a wide range of enterprise resource managers such as relational database
systems and message-oriented middleware products. To establish a connection to these resources,
authentication is often required. You can manage the authentication details for these resource
managers in one of two ways. You can manage it yourself in your application code, or you can use
the application server or container to manage the connection details for you.

Resource manager references are declared in web and EJB deployment descriptors using <resource-
ref> elements. Full details on declaring resource references in deployment descriptors can be found
in Chapter 2. In terms of the authentication mode to be used with a given resource, this is specified
using the <res-auth> element within the <resource-ref> element. To indicate that the container
should handle authentication details, set the <res-auth> element to Container. You then need to
configure the authentication details for the resource in the container, using its management tools or
container-specific configuration files. If you'd prefer to manage the authentication details in your
application code, set the <res-auth> value to Application. It's usually preferable to use container-
managed authentication since it facilitates the portability of your application across development and
production environments. It also reduces the amount of code you need to maintain.

10.6.2. Web Services Security

Chapter 12 provides general details on implementing SOAP-based web services using JAX-RPC and
SAAJ. Securing SOAP services is a topic that is still in flux in the market in general. A number of
competing standards exist for sending client credentials across a SOAP request, for encrypting SOAP
communications, and for managing access to SOAP services. In part because of this uncertainty
around web service security protocols, the J2EE 1.4 and JAX-RPC 1.1 specifications do not make any
provisions for standardized web service security models.

Here, we simply introduce a few of the current techniques in practical use for securing web services.
Future versions of the Java standards around web services, and broader agreement in the industry at
large about web service security protocols, will make the job of securing web services much easier
than it is today.

One common way to authenticate a web services client is to use BASIC authentication. In this
approach, the web service client is responsible for providing authentication credentials through HTTP
headers to the web server that fronts the web services being invoked. Of course, this approach works
only in SOAP messages exchanged over HTTP, and in order to be truly secure, the underlying
communication transport should actually be HTTPS. It is also possible to use CLIENT authentication

http://lib.ommolketab.ir
http://lib.ommolketab.ir

(i.e., the client provides its credentials in the form of a certificate) with web services. In fact, this
form of web-based authentication is more suited for web clients since web clients are often other
applications, which means the certificate exchange is between two servers and much easier to
manage than end user certificate distribution.

We discussed the concept of digital signatures at the beginning of this chapter. XML documents can
also take advantage of this technique, using standards like XML Signature. XML Signature is a joint
IETF and W3C standards effort, and, among other things, it provides well-defined schema elements
that can be used to attach digital signatures to XML documents, such as SOAP messages. The Java
XML Digital Signature API (JSR 105) provides a standard Java API for both producing and consuming
XML documents signed using XML Signature.

XML Encryption is a complementary standard, also maintained jointly by the IETF and W3C, that
provides a standard approach for encrypting and decrypting the contents of XML documents. A
corresponding Java API, the Java XML Digital Encryption API (JSR 106), is currently in development.

From the standpoint of SOAP-based web services, however, both XML Signature and XML Encryption
are low-level security protocols. They deal directly with the XML contents of SOAP messages, so for a
Java developer to use the corresponding Java APIs in either a SOAP client or service, she would have
to delve into the ugly details of the XML data being sent back and forth. In an ideal world, there
would be a standard way to integrate these XML security protocols into a SOAP message context and
extract the relevant application-level information (the sender's identity, roles, etc.) to drive
authorization and personalization features. In the world of general XML and web service protocols,
the WS-Security standard (managed by the Organization for the Advancement of Structured
Information Standards (OASIS) is a higher-level security protocol for web services. It integrates XML
Signature and XML Encryption and specifies details on how these and other security measures are to
be applied within SOAP messages. Unfortunately, a standard Java API for interacting with WS-
Security-protected SOAP messages, and mapping them into standard Java security entities like
Principals, Subjects and Permissions, is still pending. Some open source and commercial
implementations of WS-Security, such as the Apache Axis WSSE project, do exist, but broad support
for WS-Security in the J2EE environment is still in development.

10.6.3. Single Sign-On (SSO)

An enterprise has a multitude of applications, each requiring security services including, but not
limited to, authentication. Single Sign-On (SSO) is a system for authenticating a particular user just
once to permit access to all the different applications in an enterprise.

SSO has usability benefits because the user does not have to remember different usernames and
passwords for all the different applications. SSO has benefits for the organization as well because the
organization provisions an individual just once. When an individual joins the organization, he is given
access to the appropriate applications all at once, and when the individual leaves the organization, it
discontinues the user's access to all applications. In addition to the convenience features of SSO,
organizations can save money; password resets are a frequent request and occur largely because of
having to remember a multitude of passwords. Administrative costs can potentially drop when SSO
systems are implemented.

SSO is principally concerned with authentication. What about other security features such as
authorization? The industry is moving toward a standardization of security information exchange with
Security Assertion Markup Language (SAML). SAML supports not only authentication but also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

authorization. You can even use SAML to create federated identities that integrate different SSO
providers. The Liberty Alliance Project is embracing SAML with support for federated identities. JSR
155 provides the standard Java specification as well as a reference implementation for SAML.

What is involved in adopting SSO? The following sections discuss some of the issues related to
implementing SSO in the context of J2EE security.

10.6.3.1. SSO products

Many different SSO products are on the market today, including Computer Associates' eTrust Identity
and Access Management (which includes Netegrity SiteMinder), Entrust GetAccess, IBM Tivoli Access
Manager, Oblix COREid, and RSA ClearTrust. When evaluating the products, be sure to check out
their integration with your favorite application server(s) and client desktop applications.

A common temptation is to do point-to-point SSO integration between systems and applications
without a clearly defined SSO strategy. The danger with such integration is that the implementation
may turn out to be more time-consuming to develop, maintain, test, and deploy. Additionally, such
an implementation may potentially be insecure and fragile.

10.6.3.2. Security stores

A single master location for user identities, roles, and permissions, sometimes called a security store,
is ideal for implementing SSO. One of the most common security store solutions utilized in
enterprises is an LDAP-based service. LDAP is ideally suited to store security information that is read
many times and updated few times. Some other common solutions for security stores are custom or
product-defined relational database schemas or operating system domains such as Windows Active
Directory. Accessing security stores from your J2EE applications can be done using low-level APIs like
JNDI or JDBC, or you can integrate the security store behind a JAAS provider. Alternatively, at the
highest level, you can integrate the security store directly into your application server, allowing you
to use declarative security measures in your deployment descriptors using identities and roles
managed by the SSO environment. Your choice of these options will depend on the particular security
store and application server(s) in use in your organization.

The ideal SSO situation of a single enterprise-wide security store is relatively rare, sadly. A typical
organization will more likely have multiple security stores for various reasons such as legacy,
performance issues, license limitations , and organizational and political factors. In these situations,
the enterprise needs to keep these stores in sync with a variety of techniques, such as live data links,
data replication, batch updates, and others.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.7. Limitations of J2EE Security

One important aspect of security is preventing unauthorized access, either inadvertent or intentional.
For example, the application prevents a regular user from accessing a set of URLs that only an admin
can access. As another example, the application must prevent a regular user from invoking a set of
methods that only an admin can invoke. Declarative security helps achieve this goal.

Sometimes, prevention happens too late from a usability perspective. Ideally, the application should
present users only the functionality that they can access. The functionality that they do not have
access to should be hidden or disabled. Despite the advantages of declarative security, it can't do
checks at this level of granularity. Programmatic security can definitely help in this regard, especially
with web contexts where specific visual or functional elements on web pages need to be enabled or
disabled based on the identity and roles of the user.

For example, a common security feature is to allow users to edit their own data. The application
allows the customer to edit his own order, and not somebody else's order. Granular security checks
like this need to occur programmatically in the codedeclarative authorization measures in J2EE aren't
expressive enough to represent business logic at this level.

Other low-level gaps in the J2EE security landscape can also lead to custom programmatic measures.
J2EE web components, for example, do not have a standard way to explicitly log out a user from a
web application. The most common way programmers implement this feature is by invalidating the
HTTP session in their code. However, this technique works consistently only for form-based logins
since other authentication schemes can leave a persistent cookie on the client web browser. This
limitation may be addressed in future versions of the servlet specification, but at the moment, it's a
practical issue that forces developers into custom programming.

Sadly, once developers move down the path of programmatic security measures, they are inclined to
abandon J2EE security altogether in favor of custom development. Rather than provision the
application server to integrate with the organization's security stores, the pressures of deadlines and
short-term product or service goals can lead to application-specific security solutions that can be
expensive to maintain, confusing to users (in terms of login mechanics, authorization models, etc.),
and potentially risky in terms of security holes created in distributed security implementation code.

Naturally, these inclinations should be resisted as much as possible. You should strive to create a
consistent security model across your organization's applications and systems, rather than a
patchwork of local, custom implementations. And where you have J2EE application servers in place,
you should leverage their security services as much as is practical in your environment. If they can
tie directly into your security stores (LDAP servers, Active Directory, and so on), you should attempt
to establish this level of integration and stick to business logic in your application code.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 11. Java Message Service
The standard Java networking APIs, as well as remote object systems such as RMI and CORBA,
operate by default under the assumption of synchronous communications. In other words, if a client
makes a request of a remote server (e.g., opens a socket and attempts to read some data from it or
makes a remote method call on a remote object), the thread that made the request will block until
the response comes back from the server. In some situations, it might be necessary or useful to
engage in asynchronous communications (e.g., a client sends a request to the server and then
continues doing other work, while the server possibly invokes some kind of callback on the client
when the request is complete). This is where the Java Message Service (JMS) comes in.

JMS is an API for performing asynchronous messaging. JMS is principally a client-focused API, in that
it provides a standard, portable interface for Java/J2EE clients to interact with native message-
oriented middleware (MOM) systems like IBM WebSphere MQ, SonicMQ, and so on. JMS isn't
intended to be a platform for implementing a full messaging system, since it doesn't provide a service
provider interface for all of the internals of a message service implementation. In a sense, JMS plays
a role with native messaging systems that is analogous to the role that JDBC plays with relational
database systems or the role JNDI plays with naming and directory services. Java clients using JMS
to interact with messaging systems can (ostensibly) be more easily ported from one native
messaging system to another, because they are insulated from the proprietary particulars of the
underlying vendor's message system.

The JMS API is provided in the javax.jms package. The material in this chapter is based on Version
1.1 of the JMS specification, released in April 2002, which is the most current version at this writing
and the version that is required in J2EE 1.4 environments. J2EE 1.3 servers use JMS 1.0we highlight
relevant issues between these JMS versions in this chapter. The examples in the chapter have been
tested against the JMS services embedded in the JBoss 4.0 server.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.1. JMS in the J2EE Environment

As of J2EE 1.3, compliant servers are required to provide a full JMS provider, including support for
both point-to-point and publish-subscribe message destinations (these are described in detail next).
So any compliant J2EE 1.3 (or later) server will have its own JMS server capable of hosting its own
message destinations.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.2. Elements of Messaging with JMS

The principal players in a JMS system are messaging clients, message destinations, and a JMS-
compatible messaging provider .

Messaging clients produce and consume messages. Typically, messaging takes place asynchronously;
a client produces a message and sends it to a message destination, and some time later another
client receives the message. Message clients can be implemented using JMS, or they can use a native
messaging API to participate in the messaging system. If a native message client (e.g., a client using
the native IBM MQ Series APIs) produces a message to a message destination, a JMS connection to
the native message system is responsible for retrieving the message, converting it into the
appropriate JMS message representation, and delivering it to any relevant JMS-based clients.

Message destinations are places to and from which JMS clients send and receive messages. Message
destinations are created within a JMS provider that manages all of the administrative and runtime
functions of the messaging system. At a minimum, a JMS provider allows you to specify a network
address for a destination, allowing clients to find the destination on the network. But providers may
also support other administrative options on destinations, such as persistence options, resource
limits, and the like.

11.2.1. Messaging Styles: Point-to-Point and Publish-Subscribe

Generally speaking, asynchronous messaging usually comes in two flavors: a message can be
addressed and sent to a single receiver (point-to-point), or a message can be published to a
particular channel or topic and any receiver that subscribes to that channel will receive the message
(publish-subscribe). These two messaging styles have analogies at several levels in the distributed
computing "stack," all the way from the network level (standard TCP packet delivery versus multicast
networking) to the application level (email versus newsgroups).Figure 11-1 depicts the two message
models supported by JMS, as well as the key interfaces that come into play in a JMS context. We
discuss the specifics of these interfaces later in the chapter.

Most messaging providers support one or both of these messaging styles, so JMS provides support
for them both in its API. JMS includes a set of generic messaging interfaces, described next. Each
style of messaging is supported by specialized subclasses of these generic interfaces.

Figure 11-1. JMS message models

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.2.2. Key JMS Interfaces

The following key interfaces represent the concepts that come into play in any JMS client application,
whether it is using point-to-point or publish-subscribe messaging:

Message

Messages are at the heart of JMS, naturally. Messages have accessor methods for their header
fields, properties, and body contents. Subtypes of this interface provide implementations for
different types of content.

MessageListener

A MessageListener is attached to a MessageConsumer by a client and receives a callback for each
Message received by that consumer. MessageListeners are the key to asynchronous message
delivery to clients, since the client attaches a listener to a consumer and then carries on with
its thread(s) of control. MessageListeners must implement an onMessage() method, which is
the callback used to notify the listener that a message has arrived.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ConnectionFactory

A ConnectionFactory creates connections to a JMS provider. ConnectionFactory references are
obtained from a JMS provider through a JNDI lookup. A QueueConnectionFactory creates
connections in a point-to-point context; TopicConnectionFactory creates connections in
publish-subscribe contexts. The createConnection() method (added in JMS 1.1) creates a
Connection appropriate for the type of messaging supported by the factory, either a
QueueConnection or a TopicConnection. You can also cast a ConnectionFactory to its specific
subtype (QueueConnectionFactory or TopicConnectionFactory) and use the
createQueueConnection() or createTopicConnection() methods (respectively).

Destination

A Destination represents a network location, managed by a JMS provider, that can be used to
exchange messages. A JMS client sends messages to Destinations and attaches
MessageListeners to Destinations to receive messages from other clients. A client obtains
references to Destinations using JNDI lookups. Queues and Topics are the Destinations in
point-to-point and publish-subscribe contexts, respectively.

Connection

A Connection is a live connection to a JMS provider used for the receipt and delivery of
messages. Before a client can exchange messages with a JMS destination, it must have a live
connection that was started by the client. A Connection is obtained from a ConnectionFactory
using its createXXXConnection() methods. A

QueueConnectionFactory.createQueueConnection() returns a QueueConnection; a
TopicConnectionFactory.createTopicConnection() returns a TopicConnection. The
createConnection() method on ConnectionFactory (added in JMS 1.1) returns a Connection,
which can be cast to its subtype if needed.

Session

A Session can be thought of as a single, serialized flow of messages between a client and a JMS
provider. A Session is used to create message consumers and producers and to create
Messages that a client wishes to send. A Session is used within a single thread of control on a
client. Since a Session is accessed only from within a single thread, the messages sent or
received through its consumers and producers are serialized with respect to the client. Sessions
also provide a context for defining transactions around message operations; further details can
be found in "Transactional Messaging" later in this chapter. Sessions are created from
Connections using their createXXXSession() methods. The

QueueConnection.createQueueSession() method returns a QueueSession, and the
TopicConnection.createTopicSession() method returns a TopicSession. The
Connection.createSession() method (added in JMS 1.1) returns a Session, which can be cast
to its subtype if needed.

MessageProducer/MessageConsumer

MessageProducers and MessageConsumers are used to send and receive messages to and from a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

destination, respectively. Producers and consumers are created using various createXXX()

methods on Sessions, using the target Destination as the argument. In a point-to-point
context, QueueSenders are created using the QueueSession.createSender() method, and
QueueReceivers are created using the QueueSession.createReceiver() methods. In a publish-
subscribe context, TopicPublishers are created using TopicSession.createPublisher(), and
TopicSubscribers are created using TopicSession.createSubscriber() and
TopicSession.createDurableSubscriber() methods. You can also use the
Session.createProducer() and Session.createConsumer() methods (added in JMS 1.1) to
create MessageProducers and MessageConsumers that can be cast to their subtypes.

11.2.3. A Generic JMS Client

A JMS client follows the same general sequence of operations, regardless of whether it's using point-
to-point or publish-subscribe messaging, or both. We'll walk through these steps here, using the
point-to-point JMS interfaces to demonstrate. For the most part, the same pseudocode can be used
with the publish-subscribe interfaces by just substituting Topic for Queue in the code samples in this
section.

11.2.3.1. General setup

The very first step for a JMS client is to get a reference to an InitialContext for the JNDI service of
the JMS provider. Full details on the various options for obtaining a JNDI Context can be found in
Chapter 9, but in general, the client will create an InitialContext using a set of Properties that
specify the location and type of the JNDI service associated with the JMS provider:

 Properties props = ...;
 Context ctx = new InitialContext(props);

Next, the JMS client needs to acquire a ConnectionFactory from the JMS provider using a JNDI
lookup. The client would have to know what name the JMS provider used to publish the
ConnectionFactory in JNDI space. Here, we look up a QueueConnectionFactory registered in JNDI
under the name jms/someQFactory:

 QueueConnectionFactory qFactory =
 (QueueConnectionFactory)ctx.lookup("jms/someQFactory");

An administrator would have to set up this ConnectionFactory on the JMS provider and associate it
with this JNDI name on the server.

The client also uses JNDI to find Destinations published by the JMS provider. Here, we look up a
Queue published under the JNDI name jms/someQ:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Queue queue = (Queue)ctx.lookup("jms/someQ");

Once we have a ConnectionFactory and one or more Destinations to talk to, we need to create a
Connection with the JMS provider. This Connection is the conduit through which messages will be
physically sent and received. A Connection has to be started before messages can be received
through it, but a Connection can always be used to send messages, regardless of whether it's started
or stopped. Normally, a client won't start() a Connection until it's ready to receive and process
messages. Here, we use our QueueConnectionFactory to create a QueueConnection and defer starting
it until we create a MessageConsumer to receive messages:

 QueueConnection qConn = qFactory.createQueueConnection(...);

11.2.3.2. Client identifiers

When a client makes a connection to a JMS provider, a client identifier is associated with the client.
The client identifier is used to maintain state on the JMS provider on behalf of the client, and the
state data can persist beyond the lifetime of a client connection. The server-side state can be
retrieved for the client when it reconnects using the same client ID. The only client state information
defined by the JMS specification is durable topic subscriptions (described in "Durable Subscriptions"
later in this chapter), but a JMS provider may support its own state information on behalf of clients as
well. Only one client is allowed to be associated with a client ID (and its state information) on the JMS
provider, so only a single connection with a given client ID can be made to a JMS provider at any
given time.

The JMS client identifier can be set in two ways. A client can set a client ID on any Connections that it
makes with the JMS provider, using the Connection.setClientID() method:

 qConn.setClientID("client-1");

Again, only a single connection with a given client ID is allowed at any given time. If a client with this
same client ID (even this one) already has a connection with the client ID, then an
InvalidClientIDException will be thrown when setClientID() is called. Alternatively, a
ConnectionFactory can be configured on the JMS provider with a client ID that is applied to any
Connections that are created through it. The ConnectionFactory interface doesn't provide a facility for
the client to set the factory's client ID; this is a function that would have to be provided in the JMS
provider's administrative interface. A ConnectionFactory with a preset client ID is, by definition,
intended to be used by a single client.

11.2.3.3. Authenticated connections

When a client creates a connection, it has the option to provide a username and password that will be

http://lib.ommolketab.ir
http://lib.ommolketab.ir

authenticated by the JMS provider. This is done using overloaded versions of the
createXXXConnection() methods on a ConnectionFactory. We can create an authenticated

QueueConnection, for example, with a call like this:

 QueueConnection authQConn =
 qFactory.createQueueSession("JimFarley", "myJMSPassword");

If this is successful, the client will operate under the given principal name and be given the
appropriate rights. JMS providers aren't required to support authentication of connections. If a JMS
provider does support authenticated connections, the principals and access rights will be administered
on the JMS server.

11.2.3.4. Sessions

Once a connection to the JMS provider is established, we need to create one or more Sessions to be
used to send and receive messages. Again, Sessions are a single-threaded context for handling
messages, so we need a separate Session for each concurrent thread that we plan to use for
messaging. Sessions are created from Connections. Here, we create a QueueSession from our
QueueConnection:

 QueueSession qSess =
 qConn.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);

When creating either QueueSessions or TopicSessions, two arguments are used to create the Session.
The first is a boolean flag indicating whether we want the Session to be transacted. (See
"Transactional Messaging" later in this chapter for details on transactional sessions .) The second
argument indicates how we want the Session to acknowledge received messages with the JMS
provider. The three options for the acknowledge mode of a Session are specified using static final
values on the Session class:

Session.AUTO_ACKNOWLEDGE

This instructs the Session to acknowledge messages automatically for the client. A message is
acknowledged when received by the client. If a MessageListener handles the message, then the
acknowledgment is not sent until the listener's onMessage() method returns. If the message is
received because of a call to receive() on a MessageConsumer, then the acknowledgment is
sent immediately after the call to receive() returns.

Session.DUPS_OK_ACKNOWLEDGE

This option instructs the Session to do "lazy acknowledgment": acknowledgments can be
delayed if the Session decides to do so. This could lead to a message being delivered to a client

http://lib.ommolketab.ir
http://lib.ommolketab.ir

more than once, if the delay between delivery and acknowledgment is longer than the JMS
provider's timeout and it assumed the message was never received.

Session.CLIENT_ACKNOWLEDGE

This option is used when the client wants to manually acknowledge messages, by calling the
acknowledge() method on the Message.

11.2.3.5. Sending messages

Messages are sent to Destinations using MessageProducers, which are created from Sessions. When
they are created, producers are associated with a Destination, and any Messages sent using the
producer are delivered to that Destination using the Connection from which the Session was
generated.

In a point-to-point context, the message producers are QueueSenders, generated from QueueSessions
using the Queue the sender should point to:

 QueueSender qSender = qSess.createSender(queue);

Once a producer has been created, the client needs to create and initialize Messages to be sent.
Messages are also created from a Session. Here, we create a TextMessage from our QueueSession and
set its text body to be some interesting text we want to send to the Queue:

 TextMessage tMsg = qSess.createTextMessage();
 tMsg.setText("The sky is blue.");

To actually send the message, we simply invoke the appropriate method on our MessageProducer.
Here, we call send() on our QueueSender:

 qSender.send(tMsg);

Note that it's not necessary to ensure that the underlying Connection (from which we generated our
Session) is started in order to send messages. Starting the Connection is required only to commence
delivery of messages from the Destination to the client.

11.2.3.6. Receiving messages

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Receiving messages involves creating a MessageConsumer that is associated with a particular
Destination. This establishes a consumer with the JMS provider, and the provider is responsible for
delivering any appropriate messages that arrive at the Destination to the new consumer.
MessageConsumers are also generated from Sessions, in order to associate them with a serialized flow
of messages. In a point-to-point context, a QueueReceiver is generated from a QueueSession using its
createReceiver() methods. Here, we simply create a new receiver tied to our Queue. Other options
for creating QueueReceivers are discussed in "Point-to-Point Messaging" later in this chapter.

 QueueReceiver qReceiver = qSess.createReceiver(queue);

By creating a MessageConsumer, all we've done is tell the JMS provider that we want to receive
messages from a particular Destination. We haven't specified what to do with the Messages on the
client side. Since JMS is an asynchronous message delivery system, it uses the same listener pattern
that is used in Swing GUI programming or JavaBeans event handling (two other asynchronous event
contexts). Messages in JMS are processed using MessageListeners. A client needs to implement a
MessageListener with an onMessage() method that does something useful with the Messages coming
from the Destination. Example 11-1 shows a basic MessageListenera TextLogger that simply prints
the contents of any TextMessages it encounters.

Example 11-1. Simple MessageListener implementation

import javax.jms.*;

public class TextLogger implements MessageListener {
 // Default constructor
 public TextLogger() {}

 // Message handler
 public void onMessage(Message msg) {
 // If it's a text message, print it to stdout
 if (msg instanceof TextMessage) {
 TextMessage tMsg = (TextMessage)msg;
 try {
 System.out.println("Received message: " + tMsg.getText());
 }
 catch (JMSException je) {
 System.out.println("Error retrieving message text: " +
 je.getMessage());
 }
 }
 // For other types of messages, print an error
 else {
 System.out.println("Unsupported message type encountered.");
 }
 }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Once a MessageListener has been defined, the client needs to create one and register it with a
MessageConsumer. In our running example, we create one of our TextLoggers and associate it with our
QueueReceiver using its setMessageListener() method:

 MessageListener listener = new TextLogger();
 qReceiver.setMessageListener(listener);

It's important to remember that no messages will be delivered over our underlying Connection until
it's been started. In our running example, we created our QueueConnection but never started it, so
we do that now to start delivery of Messages to our QueueReceiver, and from there to our TextLogger
listener:

 qConn.start();

11.2.3.7. Temporary destinations

A client can create its own temporary destinations, which are Destinations that are visible only to the
Connections that created them, and that live only for the duration of the Connection used to create
them. Although a temporary destination lives only for the life of the Connection it was created from,
it is created using methods on the Session. For example, to create a TemporaryQueue:

 Queue tempQueue = qSession.createTemporaryQueue();

Temporary destinations can be used, for example, to receive responses to messages that are sent
with a JMSReplyTo header:

 TextMessage request = qSession.createTextMessage();
 request.setJMSReplyTo(tempQueue);

They can also be used to exchanging asynchronous messages between threads in the same client.

11.2.3.8. Cleaning up

Connections and Sessions require resources to be allocated by the JMS provider (similar to how JDBC
connections use up resources on an RDBMS), so it's a good idea to free them up explicitly when you
are done with them.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Sessions are closed by simply calling close() on them:

 qSess.close();

When a Session is closed, all MessageConsumers and MessageProducers associated with it are rendered
unusable. If you try to use them to communicate with the JMS provider, they will throw an
IllegalStateException. A call to Session.close() will block until any pending processing of
incoming Messages (e.g., a MessageListener's onMessage() method) is complete.

Closing a Session doesn't close the underlying Connection from which it came. You can close one
Session and open up another one as long as the Connection is active. To close a Connection and free
up its server-side resources, call its close() method:

 qConn.close();

All Sessions (and, subsequently, all of their consumers and producers) generated from a Connection
become unusable once it is closed. The call to Connection.close() will block until incoming Message
processing has completed on all of the Sessions associated with it.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.3. The Anatomy of Messages

Creating a messaging-based application involves more than establishing communication channels
between participants. Players in a message-driven system need to understand the content of the
messages and know what to do with them.

Native messaging systems, such as WebSphere MQ or Microsoft MQ (MSMQ), define their own
proprietary formats for messages. JMS attempts to bridge these native messaging systems by
defining its own standard message format. All JMS clients can interact with any messaging system
that supports JMS. "Supports" in this case can mean one of two things. The messaging system can be
implemented in a native, proprietary architecture, with a JMS bridge that maps the JMS message
formats (and other aspects of the JMS specification) to the native scheme and back again. Or the
messaging system can be written to use the JMS message format as its native format.

JMS messages are made up of a set of standard header fields, optional client-defined properties, and
a body. JMS also provides a set of subclasses of Message that support various types of message
bodies.

11.3.1. Message Header Fields and Properties

Table 11-1 lists the standard header fields that any JMS message can have. The table indicates the
name and type of the field, when the field is set in the message delivery process, and a short
description of the semantics of the field.

Table 11-1. Standard JMS message headers

Field name Data type
When
set

Description

JMSCorrelationID String Before
send

Correlates multiple messages. This field can be used in
addition to the JMSMessageID header as an application-
defined message identifier (JMSMessageIDs are assigned by
the provider).

JMSDeliveryMode Destination During
send

Indicates to the message receiver which Destination the
Message was sent to.

JMSDestination int During
send

Indicates which delivery mode to use to deliver this
message, DeliveryMode.PERSISTENT or
DeliveryMode.NON_PERSISTENT. PERSISTENT delivery
indicates that the messaging provider should take
measures to ensure that the message is delivered despite

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Field name Data type
When
set

Description
measures to ensure that the message is delivered despite
failures on the JMS server. NON_PERSISTENT delivery doesn't
require the provider to deliver the message if a failure
occurs on the JMS server.

JMSExpiration long During
send

The time the message will expire on the provider. If no
client receives the message by this time, the provider drops
the message. It is calculated as the sum of the current time
plus the time-to-live of the MessageProducer that sent the
message. The value is given in milliseconds since the epoch
(January 1, 1970, 00:00:00 GMT). A value of 0 indicates
no expiration time.

JMSMessageID String During
send

A unique message ID assigned by the provider. Message
IDs always start with the prefix "ID:". These IDs are unique
for a given JMS provider. Applications can set their own
message identifier using the JMSCorrelationID header.

JMSPriority int During
send

A provider-assigned value indicating the priority with which
the message will be delivered. JMS providers aren't
required to implement strict priority ordering of messages.
This field is simply a "hint" from the server about how the
message will be handled. Message priorities and how they
are assigned are determined by the configuration of the
JMS provider.

JMSRedelivered boolean Before
delivery

A provider-provided value that indicates to the receiver
that the message may have been delivered in the past with
no acknowledgment from the client. On the sender, this
header value is always unassigned.

JMSReplyTo Destination Before
send

A Destination, set by the sending client, indicating where a
reply message should be sent.

JMSTimestamp long During
send

The time at which the message was handed off to the JMS
provider to be sent. This value is given in milliseconds since
the epoch (January 1, 1970, 00:00:00 GMT).

JMSType String Before
send

A message type, set by the sending client. Some JMS
providers require that this header be set, so it's a good idea
to set it even if your application isn't using it. Some JMS
providers also allow an administrator to configure a set of
message types that will be matched against this header
and used to selectively set handling of the message based
on its type.

These standard message headers are read and written using corresponding accessors on the Message
interface. The JMSTimestamp field, for example, is set using setJMSTimestamp() and read using
getJMSTimestamp().

A client can also create its own custom properties on a Message, using a set of generic property
accessors on the Message interface. Custom message properties can be boolean, byte, short, int,
long, float, double, or String values, and they are accessed using corresponding

measures to ensure that the message is delivered despite
failures on the JMS server. NON_PERSISTENT delivery doesn't
require the provider to deliver the message if a failure
occurs on the JMS server.

JMSExpiration long During
send

The time the message will expire on the provider. If no
client receives the message by this time, the provider drops
the message. It is calculated as the sum of the current time
plus the time-to-live of the MessageProducer that sent the
message. The value is given in milliseconds since the epoch
(January 1, 1970, 00:00:00 GMT). A value of 0 indicates
no expiration time.

JMSMessageID String During
send

A unique message ID assigned by the provider. Message
IDs always start with the prefix "ID:". These IDs are unique
for a given JMS provider. Applications can set their own
message identifier using the JMSCorrelationID header.

JMSPriority int During
send

A provider-assigned value indicating the priority with which
the message will be delivered. JMS providers aren't
required to implement strict priority ordering of messages.
This field is simply a "hint" from the server about how the
message will be handled. Message priorities and how they
are assigned are determined by the configuration of the
JMS provider.

JMSRedelivered boolean Before
delivery

A provider-provided value that indicates to the receiver
that the message may have been delivered in the past with
no acknowledgment from the client. On the sender, this
header value is always unassigned.

JMSReplyTo Destination Before
send

A Destination, set by the sending client, indicating where a
reply message should be sent.

JMSTimestamp long During
send

The time at which the message was handed off to the JMS
provider to be sent. This value is given in milliseconds since
the epoch (January 1, 1970, 00:00:00 GMT).

JMSType String Before
send

A message type, set by the sending client. Some JMS
providers require that this header be set, so it's a good idea
to set it even if your application isn't using it. Some JMS
providers also allow an administrator to configure a set of
message types that will be matched against this header
and used to selectively set handling of the message based
on its type.

These standard message headers are read and written using corresponding accessors on the Message
interface. The JMSTimestamp field, for example, is set using setJMSTimestamp() and read using
getJMSTimestamp().

A client can also create its own custom properties on a Message, using a set of generic property
accessors on the Message interface. Custom message properties can be boolean, byte, short, int,
long, float, double, or String values, and they are accessed using corresponding

http://lib.ommolketab.ir
http://lib.ommolketab.ir

get/setXXXProperty() methods on Message. A boolean header can be set using the

setBooleanProperty() method, for example. Each custom property has to be given a unique name,
specified when the value is set. For example, we could set a custom boolean property with the name
"reviewed" on a message, like so:

 TextMessage tMsg = ...;
 tMsg.setBooleanProperty("reviewed", false);

Custom property names have certain restrictions on them. They have to be valid Java identifiers,
they can't begin with "JMSX" or "JMS_" (these are reserved for JMS-defined and vendor-defined
properties, respectively), and they can't be one of the following reserved words: NULL, trUE, FALSE,
NOT, AND, OR, BETWEEN, LIKE, IN, IS, or ESCAPE. Custom property names are also case-sensitive, so
"reviewed" isn't the same property as "Reviewed".

11.3.2. JMS Message Types

To support various application scenarios, JMS provides the following subclasses of Message, each
providing a different type of message body:

TextMessage

Arguably the most popular type of Message, this has a body that is a simple String. The format
of the String contents is left to the application to interpret. The String may contain a simple
informational phrase, it may contain conversational text input by a user in a collaboration
application, or it may contain formatted text such as XML.

BytesMessage

This type of message contains an array of bytes as its body. BytesMessages can be used to
send binary data in a message, and it can be used to wrap a native message format with a JMS
message.

ObjectMessage

The body of this message is a serialized Java object.

MapMessage

The body of this message is a set of name/value pairs. The names are Strings, and the values
are Java primitive types, like double, int, and String. The values of the entries are accessed
using get/setXXX() methods on MapMessage. Note that these entries are stored in the body of

the message: they aren't message header properties and can't be used for message selection

http://lib.ommolketab.ir
http://lib.ommolketab.ir

(see "Filtering Messages" later in this chapter).

StreamMessage

A StreamMessage contains a stream of Java primitive data types (double, int, String, etc.).
Data elements are written sequentially to the body of the message using various writeXXX()
methods, and they are read sequentially on the receiving end using corresponding readXXX()

methods. If the receiver doesn't know the types of data in the message, they can be
introspected using the readObject() method:

 StreamMessage sMsg = ...;
 Object item = sMsg.readObject();
 if (item instanceof Float) {
 float fData = ((Float)item).floatValue()l
 ...
 }

11.3.3. Accessing Message Content

When a client receives a Message, its body is read-only. Attempting to change the body of a received
Message will cause a MessageNotWriteableException to be thrown.

When a message sender first creates a Message object, the body of the Message is unset. For
TextMessages and ObjectMessages, this means that their body starts with a null value, and for
MapMessages, this means there are no entries in the message body. For BytesMessages and
StreamMessages, their bodies start in write-only mode, and they can't be read by the sending client
until it calls their reset() method. If you create a BytesMessage or StreamMessage and attempt to
read its body content before calling reset() on it, a MessageNotReadableException will be thrown.

A Message's body can be emptied by the sender at any point by calling its clearBody() method. This
reverts its body back to its initial state, but doesn't affect any of the header or property values on the
Message. Calling clearBody() on a BytesMessage or StreamMessage puts its body back into write-only
mode, until a subsequent call to BytesMessage.reset() or StreamMessage.reset() is made. The
sender can clear any custom properties on a Message by calling its clearProperties() method. The
standard JMS header fields have to be updated using their specific accessors on the Message
interface. Receivers of messages can't call clearBody(), clearProperties(), or reset() on a
received Message since the Message is read-only at this point.

11.3.4. Filtering Messages

JMS allows messaging participants to selectively filter what Messages it receives from a JMS provider.
This is done using message selectors, which are expressions that filter messages based on the values
found in their headers and custom properties. The syntax of message selectors is based on SQL92
conditional expressions. A complete description of the JMS message selector syntax is provided in
Appendix E, but let's take a quick look at the concept of message filters.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A message selector is associated with a MessageConsumer when it is created from a Session. Each
type of Session (QueueSession and TopicSession) has overloaded versions of their consumer create
methods that take a message selector as a String argument. For example, the following creates a
QueueReceiver that receives only messages that have a custom property named transaction-type
and whose JMSType header field is acknowledge:

 String selector =
 "JMSType = 'acknowledge' AND transaction-type IS NOT NULL";
 QueueReceiver receiver = qSession.createReceiver(queue, selector);

Message filtering is performed by the JMS provider. When the provider determines that a message
should be delivered to a particular MessageConsumer, based on the rules of the particular message
context (point-to-point or publish-subscribe), it first checks that consumer's message selector, if one
exists. If the selector evaluates to true when the message's headers and properties are applied to it,
then the message is delivered; otherwise, it isn't. Undelivered messages are handled differently,
depending on the message context, as described in the following sections.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.4. Point-to-Point Messaging

Point-to-point messaging involves the sending of messages from one or more senders to a single
receiver through a message queue. Point-to-point messaging is analogous to email messaging: a
client delivers messages to a named mailbox (queue), and the owner of the mailbox (queue) reads
them in the order they were received. Queues attempt to maintain the send order of messages
generated by the sender(s) attached to them. In other words, if sender A sends messages A1, A2,
and A3, in that order, to a queue, then the receiver attached to the queue will receive message 2
after message 1, and message 3 after message 2 (assuming that no message selectors filter out any
of these messages). If there are multiple senders attached to a queue, then the relative order of each
individual sender is preserved by the queue when it delivers the messages, but the queue doesn't
attempt to impose a predefined absolute order on the messages across all senders. So if there is
another sender, B, attached to the same queue as A, and it sends messages B1, B2, and B3, in that
order, then the receiver will receive B2 after B1, and B3 after B2, but the messages from sender A
may be interleaved with the messages from sender B. The receiver may receive the messages in
order A1, A2, B1, A3, B2, B3; the messages may be delivered in order B1, B2, B3, A1, A2, A3; or the
messages may arrive some other order altogether. There is nothing in the JMS specification that
dictates how a JMS provider should queue messages from multiple senders.

Point-to-point messaging is performed in JMS using the queue-related interfaces and classes in the
javax.jms package. Queues are represented by Queue objects, which are looked up in JNDI from the
JMS provider. QueueConnectionFactory objects are looked up in JNDI as well and used to create
QueueConnections. QueueConnections and Queues are used to create QueueSessions, which are in turn
used to create QueueSenders and QueueReceivers.

11.4.1. Sample Client

Example 11-2 shows a full point-to-point messaging client. The PTPMessagingClient is capable of
sending and receiving a message from a given queue, as well as browsing the current contents of the
queue.

Example 11-2. Point-to-point messaging client

import java.util.*;
import javax.naming.*;
import javax.jms.*;

public class PTPMessagingClient implements Runnable {

 // Our connection to the JMS provider. Only one is needed for this client.
 private QueueConnection mQueueConn = null;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // The queue used for message passing
 private Queue mQueue = null;

 // Our message receiver -- need only one
 private QueueReceiver mReceiver = null;

 // A single session for sending and receiving from all remote peers
 private QueueSession mSession = null;

 // The message type we tag all our messages with
 private static String MSG_TYPE = "JavaEntMessage";

 // Constructor, with client name, and the JNDI locations of the JMS
 // connection factory and queue that we want to use
 public PTPMessagingClient(String cFactoryJNDIName, String queueJNDIName) {
 init(cFactoryJNDIName, queueJNDIName);
 }

 // Do all the JMS setup for this client. Assumes that the JVM is
 // configured (perhaps using jndi.properties) so that the default JNDI
 // InitialContext points to the JMS provider's JNDI service.
 protected boolean init(String cFactoryJNDIName, String queueJNDIName) {
 boolean success = true;

 Context ctx = null;
 // Attempt to make connection to JNDI service
 try {
 ctx = new InitialContext();
 }
 catch (NamingException ne) {
 System.out.println("Failed to connect to JNDI provider:");
 ne.printStackTrace();
 success = false;
 }

 // If no JNDI context, bail out here
 if (ctx == null) {
 return success;
 }

 // Attempt to look up JMS connection factory from JNDI service
 QueueConnectionFactory connFactory = null;
 try {
 connFactory = (QueueConnectionFactory)ctx.lookup(cFactoryJNDIName);
 System.out.println("Got JMS connection factory.");
 }
 catch (NamingException ne2) {
 System.out.println("Failed to get JMS connection factory: ");
 ne2.printStackTrace();
 success = false;
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 try {
 // Make a connection to the JMS provider and keep it.
 // At this point, the connection is not started, so we aren't
 // receiving any messages.
 mQueueConn = connFactory.createQueueConnection();
 // Try to find our designated queue
 mQueue = (Queue)ctx.lookup(queueJNDIName);
 // Make a session for queueing messages: no transactions,
 // auto-acknowledge
 mSession =
 mQueueConn.createQueueSession(false,
 javax.jms.Session.AUTO_ACKNOWLEDGE);
 }
 catch (JMSException e) {
 System.out.println("Failed to establish connection/queue:");
 e.printStackTrace();
 success = false;
 }
 catch (NamingException ne) {
 System.out.println("JNDI Error looking up factory or queue:");
 ne.printStackTrace();
 success = false;
 }

 try {
 // Make our receiver, for incoming messages.
 // Set the message selector to receive only our type of messages,
 // in case the same queue is being used for other purposes.
 mReceiver = mSession.createReceiver(mQueue,
 "JMSType = '" + MSG_TYPE + "'");
 }
 catch (JMSException je) {
 System.out.println("Error establishing message receiver:");
 je.printStackTrace();
 }

 return success;
 }

 // Send a message to the queue
 public void sendMessage(String msg) {
 try {
 // Create a JMS msg sender connected to the destination queue
 QueueSender sender = mSession.createSender(mQueue);
 // Use the session to create a text message
 TextMessage tMsg = mSession.createTextMessage();
 tMsg.setJMSType(MSG_TYPE);
 // Set the body of the message
 tMsg.setText(msg);
 // Send the message using the sender
 sender.send(tMsg);
 System.out.println("Sent the message");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 catch (JMSException je) {
 System.out.println("Error sending message " + msg + " to queue");
 je.printStackTrace();
 }
 }

 // Register a MessageListener with the queue to receive
 // messages asynchronously
 public void registerListener(MessageListener listener) {
 try {
 // Set the listener on the receiver
 mReceiver.setMessageListener(listener);
 // Start the connection, in case it's still stopped
 mQueueConn.start();
 }
 catch (JMSException je) {
 System.out.println("Error registering listener: ");
 je.printStackTrace();
 }
 }

 // Perform a synchronous receive of a message from the queue. If it's a
 // TextMessage, print the contents.
 public String receiveMessage() {
 String msg = "-- No message --";
 try {
 Message m = mReceiver.receive();
 if (m instanceof TextMessage) {
 msg = ((TextMessage)m).getText();
 }
 else {
 msg = "-- Unsupported message type received --";
 }
 }
 catch (JMSException je) {
 }
 return msg;
 }

 // Print the current contents of the message queue, using a QueueBrowser
 // so that we don't remove any messages from the queue
 public void printQueue() {
 try {
 QueueBrowser browser = mSession.createBrowser(mQueue);
 Enumeration msgEnum = browser.getEnumeration();
 System.out.println("Queue contents:");
 while (msgEnum.hasMoreElements()) {
 System.out.println("\t" + (Message)msgEnum.nextElement());
 }
 }
 catch (JMSException je) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 System.out.println("Error browsing queue: " + je.getMessage());
 }
 }

 // When run within a thread, just wait for messages to be delivered to us
 public void run() {
 while (true) {
 try { this.wait(); } catch (Exception we) {}
 }
 }

 // Take command-line arguments and send or receive messages from the
 // named queue
 public static void main(String args[]) {
 if (args.length < 3) {
 System.out.println("Usage: PTPMessagingClient" +
 " connFactoryName queueName" +
 " [send|listen|recv_synch] <messageToSend>");
 System.exit(1);
 }

 // Get the JNDI names of the connection factory and
 // queue, from the commandline
 String factoryName = args[0];
 String queueName = args[1];

 // Get the command to execute (send, recv, recv_synch)
 String cmd = args[2];

 // Create and initialize the messaging participant
 PTPMessagingClient msger =
 new PTPMessagingClient(factoryName, queueName);

 // Run the participant in its own thread, so that it can react to
 // incoming messages
 Thread listen = new Thread(msger);
 listen.start();

 // Send a message to the queue
 if (cmd.equals("send")) {
 String msg = args[3];
 msger.sendMessage(msg);
 System.exit(0);
 }
 // Register a listener
 else if (cmd.equals("listen")) {
 MessageListener listener = new TextLogger();
 msger.registerListener(listener);
 System.out.println("Client listening to queue " + queueName
 + "...");
 System.out.flush();
 try { listen.wait(); } catch (Exception we) {}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 // Synchronously receive a message from the queue
 else if (cmd.equals("recv_synch")) {
 String msg = msger.receiveMessage();
 System.out.println("Received message: " + msg);
 System.exit(0);
 }
 else if (cmd.equals("browse")) {
 msger.printQueue();
 System.exit(0);
 }
 }
}

The main() method takes a minimum of three command-line arguments. The first two are the JNDI
names of a target JMS connection factory and queue, in that order. The third argument is a
command indicating what to do:

send

Sends a message, using the next command-line argument as the text of a TextMessage

recv

Registers a listener with the queue and waits for messages to come in

recv_synch

Synchronously polls the queue for the next message that's sent

browse

Sends a request to print the current contents of the queue without emptying it, using a
QueueBrowser

The main() method creates a PTPMessagingClient using the two JNDI names. The constructor
passes these to the init() method, where all of the JMS initialization we've discussed takes place.
The client attempts to connect to its JNDI provider and get its InitialContext first. There are no
properties provided to the InitialContext constructor, so the environment would have to have these
properties specified in a jndi.properties file or on the command line using -D options to the JVM (see
Chapter 9 for details on these JNDI-related system properties). Once the Context is acquired, the
client looks up the QueueConnectionFactory and Queue from JNDI. It also creates a QueueConnection
and a QueueSession, so that it can later create senders and receivers as needed. Finally, the init()
method creates a QueueReceiver from the session, in case it's needed later. The connection hasn't
been started yet, so the receiver is not receiving messages from the JMS provider yet.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Back in the main() method, once the client is created, it's put into a Thread and run. This is useful
for the case in which we're going to wait for messages sent to a listener. Finally, the requested
command is checked. If the command is send, we call the client's sendMessage() method, which
creates a QueueSender and a TextMessage (using the last command-line argument, passed in from the
main() method). Then the message is sent by passing it to the send() method on the QueueSender.
If a "recv" command is given, we create a TextLogger (see Example 11-1) and attach it as a
MessageListener to our QueueReceiver, by calling the client's registerListener() method where the
call to the receiver's setMessageListener() method is made. If a recv_synch command is given,
then we call the client's receiveMessage() method, where the receive() method on the
QueueReceiver is called. This will block until the next message is sent to the queue. Finally, a browse
command causes a call to the client's printQueue() method, where a QueueBrowser is created from
our session, then asked for an Enumeration of the current messages in the queue. Each message is
printed to the console, in the order they would be received.

11.4.2. Browsing Queues

In addition to the conventional use of queues for sending and receiving of messages, a client can also
browse the contents of a queue without actually pulling the messages from the queue. This is done
using a QueueBrowser, which is generated from a client's QueueSession using its createQueueBrowser(
) methods:

 QueueBrowser browser = qSession.createQueueBrowser(queue);

Like QueueReceivers, QueueBrowsers can use message selectors to filter what messages they see in
the queue:

 QueueBrowser filterBrowser =
 qSession.createQueueBrowser(queue, "transaction-type = 'update'");

This QueueBrowser "sees" only messages in the queue that have a transaction-type property set to
update.

To iterate over the messages in the queue, a client asks the browser for an Enumeration of the
messages in the queue that match the browser's message selector, if it has one:

 Enumeration msgEnum = browser.getEnumeration();
 while (msgEnum.hasMoreElements()) {
 Message msg = (Message)msgEnum.nextElement();
 System.out.println("Found message, ID = " + msg.getJMSMessageID());
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Enumeration returns messages in the order that they would be delivered to the client, using the
message selector set on the QueueBrowser. So if you had an existing QueueReceiver and wanted to
look ahead in the queue to see what messages would be delivered based on the current contents of
the queue, you could create a browser using the same message selector as the receiver:

 QueueReceiver recvr = ...;
 QueueBrowser recvrBrowser =
 qSession.createQueueBrowser(queue, recvr.getMessageSelector());

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.5. Publish-Subscribe Messaging

Publish-subscribe messaging involves one or more MessageProducers "publishing" messages to a
particular topic and one or more MessageConsumers "subscribing" to the topic and receiving any
messages published to it. The JMS provider is responsible for delivering a copy of any message sent
to a topic to all subscribers of the topic at the time that the message is received. Unlike point-to-point
messaging, where messages are kept on the queue until a receiver reads them, any messages
received at a topic while a subscriber is not active (e.g., hasn't subscribed to the topic yet or
subscribed and then went out of scope or exited) are lost with respect to that subscriber.

Publish-subscribe messaging is performed in JMS using the topic-related interfaces and classes in the
javax.jms package. Topics are represented by Topic objects, which are looked up in JNDI from the
JMS provider. TopicConnectionFactory objects are looked up in JNDI as well and used to create
TopicConnections. TopicConnections and Topics are used to create TopicSessions, which are in turn
used to create TopicPublishers and TopicSubscribers.

11.5.1. Sample Client

The downloadable source code for this book includes a publish-subscribe client,
PubSubMessagingClient, that mirrors the PTPMessagingClient in Example 11-2. The structure and
function of the client is virtually identical to that described for the PTPMessagingClient, except that
topics, subscribers, and publishers are used instead of queues, receivers, and senders. The only
significant difference with this client is it doesn't have a "browse" option, since browsing a topic is not
possible. As they arrive, topics deliver their messages to any subscribers currently attached to the
topic, otherwise they are dropped, so browsing a topic's contents doesn't make much sense.

11.5.2. Durable Subscriptions

If a client needs to guarantee delivery of messages from a Topic beyond the lifetime of a single
subscriber, it can register a durable subscription with the JMS provider for the target Topic. A durable
subscription to a Topic is made using the createDurableSubscriber() methods on a TopicSession.
In its simplest form, a durable subscriber is created by specifying a Topic and a subscriber name:

 TopicConnection tConn = ...;
 tConn.setClientID("client-1");
 TopicSession tSession =
 tConn.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);
 TopicSubscriber durableSub =
 tSession.createDurableSubscriber(topic, "subscriber-1");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This registers a durable subscription to the Topic under the name "subscriber-1." Durable
subscriptions and their names are associated by the JMS provider with the client ID of the client that
created them (see "Client identifiers" earlier in this chapter for details on client IDs). Here, we're
setting our client ID to "client-1" by calling setClientID() on the TopicConnection.

As long as this TopicSubscriber is live, it will receive any messages published to the Topic, as it
would if it were a nondurable subscriber. But if the subscriber dies (goes out of scope or the client
dies), the JMS provider will retain messages on behalf of the named subscriber (based on its client
identifier), until another durable subscriber attaches to the topic from the same connection using the
same client ID and specifying the same subscriber name. Any pending messages will be delivered to
the new subscriber when it attaches.

It's important to remember that durable subscriptions can be a costly resource on the JMS provider.
The provider will have to create database records, or otherwise allocate server resources, in order to
preserve the subscription information and any pending messages for the client. If there are many
durable subscriptions or if the number of pending messages being held on the server for subscribers
becomes large, this can eventually have a significant impact on the performance of the JMS provider.
So durable subscriptions should be used with discretion.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.6. Unified Messaging

JMS 1.1 introduced new elements to the API that allow messaging clients to use the same interfaces
and methods to do either point-to-point messaging or publish-subscribe messaging. In JMS 1.0 (used
in J2EE 1.3 and earlier environments), a client needed to use the specific subclasses discussed in the
previous sections.

As an example, our previous clients had to explicitly cast the Destination and ConnectionFactory
objects retrieved from the JNDI context in order to create a Session. Our PTPMessagingClient, for
example, had to perform the following sequence of steps in order to create a Session (a
QueueSession, to be more precise):

 Context ctx = new InitialContext();
 QueueConnectionFactory connFactory =
 (QueueConnectionFactory)ctx.lookup(cFactoryJNDIName);
 QueueConnection mQueueConn =
 connFactory.createQueueConnection();
 Queue mQueue = (Queue)ctx.lookup(queueJNDIName);
 QueueSession mSession =
 mQueueConn.createQueueSession(false,
 javax.jms.Session.AUTO_ACKNOWLEDGE);

Note that we've simplified this code from the original code in Example 11-2 by eliminating a lot of
exception handling.

With the new unified API elements added in JMS 1.1, a client can use the common base classes
(Destination instead of Queue or Topic, Connection instead of QueueConnection or TopicConnection,
etc.). With JMS 1.1, we can shorten that code example considerably:

 Context ctx = new InitialContext();
 Connection Factory connFactory =
 ConnectionFactory)ctx.lookup(cFactoryJNDIName);
 Connection mConn = connFactory.createConnection();
 Destination mDestination =
 (Destination)ctx.lookup(destJNDIName);
 Session mSession =
 mConn.createSession(false,
 javax.jms.Session.AUTO_ACKNOWLEDGE);

This generic version of the code to create a Session is made possible by the addition of the
ConnectionFactory.createConnection() method and the Connection.createSession() methods to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the JMS API in Version 1.1. Other new elements in the API, not shown here, allow you to create
MessageConsumers, MessageProducers, and other messaging entities in a generic way.

These new unified messaging aspects in JMS 1.1 allow you to simplify your messaging code quite a
bit. You can create connections and exchange messages the same way no matter which messaging
model is in use. The unified API elements also make it much easier to mix point-to-point and publish-
subscribe messaging operations within the same session/transaction context. The downloadable
source code for this book includes an example called MixedMessagingClient.java that shows how to
merge our point-to-point and publish-subscribe client using the unified API elements in JMS 1.1.

Note that any earlier code that used the explicit Queue and Topic subclasses of the various JMS
interfaces (such as our PTPMessagingClient and PubSubMessagingClient examples) will still work just
fine in a JMS 1.1 environment. But any code that uses the new unified API elements, such as the
preceding example, will work only in JMS 1.1 and later.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.7. Transactional Messaging

JMS supports transactional messaging in two ways. In its simplest form, a Session is created with the
transactional option (the first argument to QueueConnection.createQueueSession() and
TopicConnection.createTopicSession()):

 QueueSession xactSession =
 qConn.createQueueSession(TRUE, Session.AUTO_ACKNOWLEDGE);

When using a transactional Session, the client performs a series of "transactions" with the Session
(sends or receives messages from consumers and producers associated with the Session). These
sends and receives are either committed by calling the Session's commit() method or cancelled by
calling rollback(). If a Session is committed, all of the sends and receives are committed to the
JMS provider, which causes the new state of the Destination(s) affected to be committed. If a
Session is rolled back, all changes to the resources on the JMS provider are rolled back. In either
case, the transaction is closed and a new one is started automatically, for any subsequent messaging
actions.

JMS providers can also support transactional messaging through the Java Transaction API (JTA),
which allows messaging transactions to be integrated with other resources, like databases. For
broader coverage of JTA in a variety of contexts, see Chapter 16. The following material highlights
some transactional details specific to JMS messaging.

JTA-based transactions are distributed: the underlying transactional resources can be distributed
across the enterprise. The JMS API supports transactional messaging with a set of interfaces that
provide access to JTA-aware Connections and Sessions. If a JMS provider supports JTA, it can export
an XAConnectionFactory in its JNDI space. An XAConnectionFactory is used to create XAConnections,
and XAConnections are used to create XASessions. An XASession is a specialization of Session that
overloads the commit() and rollback() methods to implement them within a JTA context. There
are subclasses of these XA interfaces for point-to-point and publish-subscribe messaging. For
example, to create a JTA-aware TopicSession:

 XATopicConnectionFactory xFactory =
 (XATopicConnectionFactory)ctx.lookup("xact-factory");
 XATopicConnection xConn = xFactory.createXATopicConnection();
 XATopicSession xSession = xConn.createXATopicSession();

When a client performs a series of sends/receives with a JTA-aware Session, these actions are
performed in the context of the surrounding UserTransaction, if one exists. For example, if we use
our XATopicSession to create a TopicPublisher (xPublisher) and a TopicSubscriber (xSubscriber),

http://lib.ommolketab.ir
http://lib.ommolketab.ir

we can create our own JTA transaction and use it to commit or roll back a series of message
operations:

 javax.transaction.UserTransaction xaction = ...;
 xaction.start();
 try {
 Message request = ...;
 Message response = ...;
 xPublisher.publish(request);
 response = xSubscriber.receive();
 // Made it here, so commit the topic changes
 xaction.commit();
 }
 catch (JMSException je) {
 // Something bad happened, so cancel the topic changes caused
 // by our message sends/receives
 xaction.rollback();
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 12. Web Services with JAX-RPC
and SAAJ
Web services are a very resilient and powerful tool in the enterprise architecture toolbox. They were
born from the marriage of XML, a very flexible data formatting language, with HTTP and other
similarly ubiquitous communication protocols.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

12.1. What's Covered Here?

There have been a few generations of "web services" over the years. XML-RPC was arguably the first
XML-based services scheme that was used widely, and it is still available today in various
programming environments. More recently, a standard set of protocols for XML-based services has
been defined and adopted by the software community. The primary protocol in this family is the
Simple Object Access Protocol (SOAP).

In this chapter, we cover the standard APIs used in Java for implementing and using SOAP-based
web services. These include the Java API for XML-based RPC (JAX-RPC) and the SOAP with
Attachments API for Java (SAAJ). We will cover the versions included in the J2EE 1.4 specification,
and that translates to JAX-RPC Version 1.1 and SAAJ Version 1.2.

We will also be discussing the Web Services for J2EE specification, Version 1.1. This API is also
required in J2EE 1.4 servers and defines a standard deployment model for web services within a J2EE
environment.

This chapter begins with a general overview of web services and the SOAP and Web Service
Descriptor Language (WSDL) protocols that modern-day web services use predominantly. The bulk of
the chapter, though, discusses how to build web services and web service clients in the Java/J2EE
framework. The examples cover both the standard J2EE approaches to web services (in terms of
APIs, tools, and deployment procedures) as well as the somewhat nonstandard but very popular Axis
web service engine. We've tested the examples discussed in this chapter using both Axis 1.2, the
Apache open source implementation of the JAX-RPC and SAAJ APIs, and the JBossWS engine bundled
in the JBoss 4.0 application server. Both of these web service engines support the JAX-RPC and SAAJ
APIs, but Axis implements a legacy, nonstandard deployment process for web services while JBossWS
implements the newer, standardized deployment process specified in the Web Services for J2EE
specification. In addition, the two engines use slightly different tools for managing the web service
development process. We demonstrate both here, rather than picking one, because while Axis
remains a popular web service engine, the standard web service deployment scheme is the presumed
direction forward and makes for more portable Java-based web services. We also discuss both
engines because contrasting the two deployment schemes highlights the basic issues with web
service deployment in a Java environment and will help you to more easily navigate some other Java
web service environments if the need arises.

This chapter focuses primarily on developing, deploying, and using web services in your enterprise
applications. For additional relevant details, you may want to refer to Appendix A, where we provide
details on the deployment descriptors for JAX-RPC web services, as well as Chapter 21, where we
discuss code annotation facilities that can be used to automatically generate these deployment
descriptors, as well as actual source code, for web services.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

12.2. Brief Introduction to Web Services

Let's start with a brief overview of web services and the basic protocols used in web services: SOAP
and WSDL. If you're already familiar with web services (perhaps from experience developing them on
other platforms) and you want to dive into the details of using web services in Java, you can skip
directly to the next main section, "Java Web Services."

A web service is a software component that communicates using XML-formatted messages,
transmitted over a standard network protocol such as HTTP (the core protocol behind the Web) or
SMTP (the core protocol used by most email servers). These XML messages are formatted using
SOAP. A web service can also (optionally) export a description of the service it provides, which
includes the operations that it can perform and the specific types and formats of the messages it
expects. These service descriptors are typically in WSDL. The WSDL descriptor for a web service
describes the types of data, messages, and operations that a web service supports and where the
service can be located on the network. A client can use this WSDL service description to automatically
generate client-side interfaces to interact with web services.

Web services can also be (optionally) registered with a web service registry. Without a web service
registry, a client needs to acquire the WSDL description of the service through some direct, ad hoc
channel, such as picking up the WSDL from a local file or loading it from a predetermined web site. A
registry based on an industry standard, such as UDDI or ebXML, allows a client to acquire the WSDL
for a service using a well-defined protocol and a protocol that supports more functionality, such as
searching for web services based on their capabilities. Discussion of web service registries and
UDDI/ebXML is outside the scope of this chapter, but if you're interested in using or creating
directories of web services, please consult Java Web Services or Java Web Services in a Nutshell by
Kim Topley, both from O'Reilly.

12.2.1. Simple Object Access Protocol (SOAP)

The SOAP acronym is the butt of more than a few jokes in the industry, since SOAP is not really that
simple, and there are no true objects in the specification. Still, it's easy to remember, which is at
least half of the purpose of most acronyms. SOAP is an industry standard that is managed and
published by the World Wide Web Consortium (W3C). The current version of the SOAP specification
can always be found on the W3C web site at the URL http://www.w3.org/TR/SOAP.

It's important to keep in mind that SOAP defines only the format for the messages that web services
send and receive. It doesn't define an API at all. SOAP defines only how to package a message into a
standard format that can then be delivered using a standard transfer protocol like HTTP or SMTP.
APIs come into the picture when you need to generate and consume SOAP messages within a
particular programming environment.

So what does a SOAP message look like? Well, every SOAP message must include an envelope and a
body. The envelope contains information about how the message is encoded and definitions for
various XML schemas that are used in the message contents. These XML schemas provide

http://www.w3.org/TR/SOAP
http://lib.ommolketab.ir
http://lib.ommolketab.ir

descriptions of various XML elements that are used in the SOAP message and can be used to both
construct and validate SOAP messages and XML documents in general. More details on XML schemas
can be found in Chapter 7. The body of the message contains XML-encoded information. The
information can represent a specific request made by a client to a web service, it can be information
returned as the result of a request, or it can be details on why a web service request failed.

Figure 12-1 shows a sample SOAP message demonstrating a remote procedure call being made by a
client to a web service via HTTP. This sample SOAP message is being sent over HTTP, so HTTP
headers specify the HTTP request type (POST, in this case), the actual contents of the HTTP request,
and the HTTP location to which the request is being sent
(http://myservices.com/myapp/services/peopleFinder in this example). There is also a SOAP-specific
custom header, SOAPAction, that specifies the entry point of the web service that should receive the
enclosed SOAP message if the HTTP URL is not sufficient. In this example, no additional information is
needed to locate the service on the server, so the SOAPAction header is blank. The body of the HTTP
request contains the entirety of the SOAP message being sent to the web service. In this example,
the envelope contains references to a number of XML Schema namespaces being invoked in the
message and an indication that the message is using the default SOAP encoding style for the
message. The header contains a single element, which is using a custom application schema to
specify some kind of access control parameter for the message. Finally, the body of the SOAP
message contains a request to invoke the findPeople operation on the target web service, with a
single argument, an array of SearchArg XML elements.

Figure 12-1. Sample SOAP message

http://myservices.com/myapp/services/peopleFinder
http://lib.ommolketab.ir
http://lib.ommolketab.ir

A SOAP web service, therefore, is a runtime entity that can accept SOAP messages such as the one
shown in Figure 12-1, do what's requested in the message, and generate an appropriate response in
the same general SOAP format.

Luckily, it's unlikely that you'll need to directly parse or generate the SOAP content in these
messages. Instead, you'll rely on a SOAP web service engine of some kind to convert your native
programming entities (objects, data structures, and the like) into SOAP and back again. The process
of converting programming entities to SOAP XML is called serialization (the same term used in RMI
and java.io to refer to converting a Java object to a binary, streamable format). The process of
converting the SOAP XML back into programming entities is called deserialization. In the Java/J2EE
environment, SOAP serialization and deserialization are handled by a Java web service engine, such
as Axis or JBossWS.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

12.2.2. Web Service Description Language (WSDL)

Suppose you've written a web service , and now you want to advertise your service to the world. You
need some way to tell potential users about the serviceto describe things like where the service is
available on the network, what operations it supports, what message formats it expects, and what
message formats your clients can expect to receive in response to their requests. There are a
number of ad hoc ways to do thisyou could post example messages to and from your web service to
demonstrate how a client should interact with the service, you could write up the relevant details as a
help document and post it on a web page somewhere, you could write sample client code for your
web service in various languages and distribute it to potential users.

The problem with all of these approaches is that they're ad hoc and therefore not easily reproducible
for either the web service publisher or the clients. If you write another web service, you need to
create a similar set of sample messages, hand-written documentation, or client libraries, and
developers of clients for the service will need to manually incorporate the new service based on this
ad hoc information. And meanwhile, people offering their own web services are going to describe
them in their own ad hoc way, making the whole situation pretty confusing and error-prone.

Ideally, there would be a standard format for describing web services that could be used by the
publishers and consumers of web services. Publishers of web services would generate the description
of each of their web services in the standard format, and consumers would take these descriptions
and use them to generate calls to the services from their application environments. And since the
web service descriptions are standardized, tools can be written to autogenerate descriptors for web
services and to autogenerate client code from existing service descriptors.

Thankfully, smart people have already thought of this, and the result is WSDL. WSDL is an XML
format that describes web services in terms of the operations that they support and the messages
and data types that these operations expect as arguments and return as responses. WSDL uses a set
of XML entities to describe web services. Example 12-1 shows the general contents of a WSDL
descriptor.

Example 12-1. Skeleton WSDL descriptor

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions
 targetNamespace="http://myserver.com/services/peopleFinder"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <wsdl:types>
 <schema . . .>
 <complexType name="type1">
 . . .
 </complexType>
 . . .
 </schema>
 . . .
 </wsdl:types>
 <wsdl:message name="message1">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <wsdl:part name="messageRequest" type="ns:type1"/>
 </wsdl:message>
 . . .
 <wsdl:portType name="PeopleFinder">
 <wsdl:operation name="findPeople" parameterOrder="args">
 <wsdl:input message="impl:messageRequest"
 name="findPeopleRequest"/>
 <wsdl:output . . ./>
 <wsdl:fault . . ./>
 </wsdl:operation>
 . . .
 </wsdl:portType>
 <wsdl:binding name="peopleFinderSoapBinding"
 type="impl:PeopleFinderImpl">
 <wsdlsoap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="findPeople">
 . . .
 </wsdl:operation>
 </wsdl:binding>
 . . .
 <wsdl:service name="PeopleFinderImplService">
 <wsdl:port binding="impl:peopleFinderSoapBinding"
 name="peopleFinder">
 <wsdlsoap:address
 location="http://myserver.com:8080/services/peopleFinder"/>
 </wsdl:port>
 </wsdl:service>
 . . .
</wsdl:definitions>

In order to make sense of the WSDL format, it helps to think of it in terms of the entities that go into
a WSDL description of a web service. These entities and the bottom-up approach that WSDL uses to
define services are shown in Figure 12-2.

At the beginning of the WSDL food chain are data types , which are the building blocks for SOAP
messages. A data type can be as simple as a string, or it can be a complicated XML structure with
internal hierarchy. Here is the WSDL data type containing data about a person, consisting of three
strings (first name, last name, and ID):

 <?xml version="1.0" encoding="UTF-8"?>
 <wsdl:definitions . . .>
 <wsdl:types>
 <schema . . .>
 <complexType name="Person">
 <sequence>
 <element name="firstName" nillable="true"
 type="soapenc:string"/>
 <element name="lastName" nillable="true"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 type="soapenc:string"/>
 <element name="id" nillable="true"
 type="soapenc:string"/>
 </sequence>
 </complexType>
 </schema>
 . . .
 </wsdl:definitions>

Figure 12-2. WSDL entity model

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A message is one or more data types grouped together. Messages are used as the inputs, outputs,
and faults used by operations . Here is the WSDL definition of a message containing a Person data
entity:

 <wsdl:definitions . . .>
 . . .
 <wsdl:message name="findPersonResponse">
 <wsdl:part name="findPersonReturn" type="impl:Person"/>
 </wsdl:message>
 . . .
 </wsdl:definitions>

An operation represents the atomic unit of work for a web serviceclients invoke operations on the
service to get work done. Port types are groupings of operations into sensible interfaces. The
following example defines a port type that contains a single operation. The operation has input and
output messages as well as fault messages that can be thrown if an error occurs:

 . . .
 <wsdl:portType name="PeopleFinderImpl">
 <wsdl:operation name="findPerson" parameterOrder="args">
 <wsdl:input message="impl:findPersonRequest"
 name="findPersonRequest"/>
 <wsdl:output message="impl:findPersonResponse"
 name="findPersonResponse"/>
 <wsdl:fault message="impl:BadArgumentFault"
 name="BadArgumentFault"/>
 <wsdl:fault message="impl:NoSuchPersonFault"
 name="NoSuchPersonFault"/>
 </wsdl:operation>
 </wsdl:portType>
 . . .

A port type represents a conceptual description of a web service entry point. But a potential client of
the service entry point still needs to know how this port type has been "instantiated." In other words,
how and where is this port callable? Over HTTP or SMTP or some other communication scheme?
Using SOAP or some other encoding protocol? At what physical location(s) on the network? WSDL
provides this information in the form of bindings and physical service descriptions. A binding
describes how a particular port type has been bound to a communication and encoding protocol. The
following shows the PeopleFinderImpl port type bound to SOAP over HTTP, for example:

 . . .
 <wsdl:binding name="peopleFinderSoapBinding" type="impl:PeopleFinderImpl">
 <wsdlsoap:binding style="rpc"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="findPerson">
 <wsdlsoap:operation soapAction="urn:findPerson"/>
 <wsdl:input name="findPeopleRequest">
 <wsdlsoap:body
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://myservices" use="encoded"/>
 </wsdl:input>
 <wsdl:output name="findPeopleResponse">
 <wsdlsoap:body
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://myservices" use="encoded"/>
 </wsdl:output>
 <wsdl:fault name="BadArgumentFault">
 <wsdlsoap:fault
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 name="BadArgumentFault"
 namespace="http://myservices" use="encoded"/>
 </wsdl:fault>
 . . .
 </wsdl:operation>
 </wsdl:binding>
 . . .

Finally, the following shows a WSDL service, which ties the HTTP/SOAP binding of the port type to a
physical address that can be used by clients:

 . . .
 <wsdl:service name="PeopleFinderImplService">
 <wsdl:port binding="impl:peopleFinderSoapBinding" name="peopleFinder">
 <wsdlsoap:address
 location="http://myserver.com:8080//services/peopleFinder"/>
 </wsdl:port>
 </wsdl:service>
 . . .

This hierarchical definition of a service provides a client with all the information it needs to determine
whether it can talk to this service (i.e., does it use protocols and encodings that the client can
handle?) and to actually make a connection to a physical endpoint (in this case, a URL).

12.2.3. Web Service Styles and Encoding

Before we jump into the Java implementations of these web service protocols, this is a good point to
briefly discuss an often confusing aspect of web services: styles and encodings.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As we saw in the previous discussion of SOAP and WSDL, web services are made up of ports. Each
port has one or more operations; each operation has input, output, and fault messages associated
with it; and each of these messages is composed of XML data types. SOAP messages sent to a
service and SOAP messages generated from a service need to be composed in such a way that it is
clear which operation in which port is in effect and how the message types are expressed in the XML
of the message. SOAP messages to and from a service can be formatted in several ways, and these
formatting options boil down to picking a style and an encoding for the body of the SOAP message.

The style of the message refers to how the XML structure of the SOAP body is structured. The two
options for the style are:

RPC

In this style, the XML of the SOAP body is structured to match the operation and message
definitions. The root element of the body is named after the operation name in effect, for
example, and there is one child element for each message (input or output, depending on
whether the operation is receiving or sending the SOAP message). In the WSDL for the service,
each message definition can contain multiple parts, and each part references an XML data type
(one defined in the WSDL, in the standard XML Schema data types, or in an XML data type
imported in the WSDL).

Document

In this style, the root element of the SOAP body is matched to the operation name, but the
contents of the root element are not reflective of the signature of the operation. Instead, a
single XML data type specifies the entire structure of the SOAP message body, and that
structure can be in whatever form you like. In the WSDL for the service, each message
definition contains a single part, and the part references the XML data type that defines the
structure of the message body.

The names of these styles might lead you to assume that RPC style can be used only for bidirectional
procedure calls, while document style can be used only for one-way messaging. But that's not the
case. These styles do lend themselves well to these respective communication styles (hence their
names), but they can actually be used in any context.

The other SOAP formatting option is the encoding of the message. The encoding determines how
data is encoded into XML within the message. The two options for the encoding of service messages
are:

Literal

This option specifies that the XML structure of the data within the message will be totally
specified by XML Schema elements referenced in the WSDL description of the service. The XML
data types in the WSDL (or imported by the WSDL) will be used literally to encode the XML
data in the message.

SOAP-encoded

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This option requests that the message data follow the default encoding rules (and XML
structures) specified in the SOAP specification. These rules specify things like "each data
member on a particular message element will be represented as a child XML element," whereas
the literal encoding style lets you determine whether a particular piece of data should be an
element or an attribute.

The combination of a style and an encoding option results in an overall format for a web service. The
two combinations that are most commonly used are document/literal and RPC/encoded. The details
on when and why these two service formats are preferred (or not) are beyond the scope of this short
tutorial. We mention these details so that you are aware that there are different options in formatting
the SOAP messages for your service, in case interoperability issues arise with your web services, for
example. The web service examples in this chapter all have been implemented and deployed using
the RPC/encoded format.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

12.3. Java Web Services

There are several standard APIs for implementing and using web services in Java. The principal ones
we'll discuss here are the Java API for XML Remote Procedure Calls (JAX-RPC), the SOAP with
Attachments API for Java (SAAJ), and the Web Services for J2EE specification. JAX-RPC and SAAJ are
APIs aimed at helping you develop both web services and web service clients. These web service
clients might be standalone Java applications or code running within a J2EE application (e.g., JSP or
servlet web components, EJBs, etc). The Web Services for J2EE specification describes a standard
approach for the packaging and deployment of web services.

Relative to the standard web service protocols discussed earlier (SOAP, WSDL, etc.), JAX-RPC and
SAAJ together provide a standard Java framework for consuming SOAP messages from web services
and for generating SOAP messages and delivering them to web services. In a sense, you can think of
JAX-RPC and SAAJ as being in the same category as other remote object APIs in Java, such as RMI
and the Java bindings of CORBA. The web service APIs in Java use a different set of protocols to
accomplish their remote object and messaging services.

12.3.1. Mapping SOAP and WSDL to Java

JAX-RPC provides more than just an API for consuming and producing web services. It also defines
standard mappings from SOAP and WSDL entities to Java entities and back again. This is a very
important asset, since it makes it clear how various web service data types will be represented in
Java, and it allows your Java web service clients and implementations to be much more portable
across different JAX-RPC and SAAJ implementations.

Table 12-1 shows the JAX-RPC mapping from standard XML Schema data types to Java types. In all
of these mappings, the xsd: prefix on an XML type refers to an entity defined in the XML Schema
basic data types. Each XML data type has two Java mappings. The first mapping is used by default
for that XML type. The second mapping is used if the XML entity is used in a context in which its
presence is optional. Examples of these "optional" situations are XML elements that are marked as
nillable in their schema, elements whose minOccurs attribute is zero and maxOccurs attribute is
nonzero, and attributes whose use attribute is set to optional without specifying a default value.

Table 12-1. JAX-RPC mappings from XML types to Java types

XML type Java type (default) Java type if optional in XML

xsd:anySimpleType java.net.URI (J2SE 1.4 and later) or

java.lang.String

Same

xsd:anyURI java.lang.String Same

http://lib.ommolketab.ir
http://lib.ommolketab.ir

XML type Java type (default) Java type if optional in XML

xsd:base64Binary byte[] Same

xsd:boolean boolean java.lang.Boolean

xsd:byte byte java.lang.Byte

xsd:date java.util.Calendar Same

xsd:dateTime java.util.Calendar Same

xsd:decimal java.math.BigDecimal Same

xsd:double double java.lang.Double

xsd:float float java.lang.Float

xsd:hexBinary byte[] Same

xsd:int int java.lang.Integer

xsd:integer java.math.BigInteger Same

xsd:long long java.lang.Long

xsd:QName javax.xml.namespace.QName Same

xsd:short short java.lang.Short

xsd:string java.lang.String Same

xsd:time java.util.Calendar Same

xsd:unsignedByte short java.lang.Short

xsd:unsignedInt long java.lang.Long

xsd:unsignedShort int java.lang.Integer

When mapping Java entities into equivalent XML/SOAP entities (e.g., when a Java-based web service
is being published), JAX-RPC specifies the mappings shown in Table 12-2. Notice that Java basic data
types, like int, and their wrapper classes, like java.lang.Integer, are mapped to the same XML data
type, but the wrapper class is mapped with the nillable attribute enabled. A Java int, for example,
will be mapped to an XML Schema like this:

 <xsd:element name="myintvar" type="xsd:int"/>

while a java.lang.Integer will be mapped like this:

 <xsd:element name="myIntegerVar" type="xsd:int" nillable="true"/>

The nillable attribute for the Object data wrappers allows for the situation in which a null value
needs to be mapped from Java to XML.

xsd:base64Binary byte[] Same

xsd:boolean boolean java.lang.Boolean

xsd:byte byte java.lang.Byte

xsd:date java.util.Calendar Same

xsd:dateTime java.util.Calendar Same

xsd:decimal java.math.BigDecimal Same

xsd:double double java.lang.Double

xsd:float float java.lang.Float

xsd:hexBinary byte[] Same

xsd:int int java.lang.Integer

xsd:integer java.math.BigInteger Same

xsd:long long java.lang.Long

xsd:QName javax.xml.namespace.QName Same

xsd:short short java.lang.Short

xsd:string java.lang.String Same

xsd:time java.util.Calendar Same

xsd:unsignedByte short java.lang.Short

xsd:unsignedInt long java.lang.Long

xsd:unsignedShort int java.lang.Integer

When mapping Java entities into equivalent XML/SOAP entities (e.g., when a Java-based web service
is being published), JAX-RPC specifies the mappings shown in Table 12-2. Notice that Java basic data
types, like int, and their wrapper classes, like java.lang.Integer, are mapped to the same XML data
type, but the wrapper class is mapped with the nillable attribute enabled. A Java int, for example,
will be mapped to an XML Schema like this:

 <xsd:element name="myintvar" type="xsd:int"/>

while a java.lang.Integer will be mapped like this:

 <xsd:element name="myIntegerVar" type="xsd:int" nillable="true"/>

The nillable attribute for the Object data wrappers allows for the situation in which a null value
needs to be mapped from Java to XML.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 12-2. JAX-RPC mappings from Java types to XML types

Java type XML type

java.math.BigDecimal xsd:decimal

java.math.BigInteger xsd:integer

boolean xsd:boolean

java.lang.Boolean xsd:booleana

byte xsd:byte

java.lang.Byte xsd:bytea

java.util.Calendar xsd:dateTime

java.util.Date xsd:dateTime

double xsd:double

java.lang.Double xsd:doublea

float xsd:float

java.lang.Float xsd:floata

int xsd:int

java.lang.Integer xsd:inta

long xsd:long

java.lang.Long xsd:longa

short xsd:short

java.lang.Short xsd:shorta

java.lang.String xsd:string

javax.xml.namespace.QName xsd:QName

java.net.URI xsd:anyURI

a This type has the nillable attribute.

On top of these basic data type mappings, JAX-RPC also specifies how various complex XML types
and structures are mapped to Java. Both the SOAP encoding and the WSDL schemas define an XML
Array type, and these are mapped to equivalent Java arrays. An <xsd:complexType> structure is
mapped to an equivalent JavaBean class whose name is mapped from the name attribute of the
complexType, and whose properties are mapped from the elements defined for the complexType using
these mappings.

Finally, in addition to these type mappings, JAX-RPC defines a set of standard mappings from WSDL
entities to Java entities, as depicted in Figure 12-3. This mapping is used in both directions by a Java
web service engine. WSDL entities describing an external web service are mapped into Java entities
for use by a Java client of the web service. A Java web service will also have its WSDL description

http://lib.ommolketab.ir
http://lib.ommolketab.ir

mapped from its interface and implementation classes using this same mapping. A web service
engine will typically provide a tool that will implement this mapping. For clients, the tool will read in a
WSDL file (either from the network or from a local file) and generate a set of equivalent Java code
that can be used by a client to interact with the web service. This generated code serves as a client-
side stub, or proxy, for the web service, performing the runtime mapping of standard Java objects,
data, and method calls into their equivalent SOAP messages and back again. For service
implementations, the tool will parse a set of Java classes that implement a service and generate a
WSDL description for the service.

Figure 12-3. JAX-RPC entity mappings from WSDL to Java

12.3.2. Web Service Deployment

The Web Services for J2EE specification sits next to JAX-RPC and SAAJ as a complementary standard,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

aimed at defining standard approaches for describing web services to Java application servers and for
packaging web services for deployment to these application servers. It plays a role for Java-based
web services analogous to the deployment descriptors and archive formats defined for web
components and EJB components. Describing web services is slightly more complicated, however,
since you not only need to tell the application server about the Java elements that make up your web
service, but you also need to tell it how to handle the mapping from Java objects to SOAP elements
(and vice versa) in cases in which the standard mappings described earlier don't cover everything.
Also, web services in Java can be implemented using a handful of different models (an EJB can serve
as a web service, and so can a regular Java object running in a web container). Supporting these
aspects of Java-based web services makes the deployment of web services in a J2EE environment a
bit more involved in some cases.

In the remainder of this chapter, we're going to look at how to write Java clients for web services,
how to implement web services in Java, and how to deploy Java-based web services. We're starting
with clients because they are the easiestsomeone else has done the hard work of implementing a
web service, and you "only" want to interact with it as a client. Writing Java-based web services isn't
that much more difficult than writing a client, but deploying a web service in a Java application server
involves some extra steps, and various web service engines and application servers introduce their
own spin on this process.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

12.4. Writing Web Service Clients

A client of a service wants to use the service to get something done. When a service is implemented
using SOAP, this means that the client needs to send SOAP messages to the service, targeted at
specific operations and ports provided by the service, and if these ports and operations generate
response messages, the client needs to receive these messages and interpret them.

In order to do this, the client needs a way to map the Java objects and data it has into the ports and
operations and messages exposed by the SOAP service, and back again. You can accomplish this
Jusing JAX-RPC and SAAJ in several ways, which can be roughly grouped into the following three
categories:

Static proxy

This approach involves mapping the service's WSDL descriptor to a set of client-side Java code.
All classes needed by the client are pregenerated by this mapping, and the client uses them to
interact with the service.

Dynamic proxy

This approach is similar to the static proxy, except that the stub used by the client is generated
dynamically by the JAX-RPC runtime instead of using a class file being generated offline by
mapping the WSDL. The client only needs to have a Java interface available that is compatible
with the WSDL description of the service.

Dynamic invocation interface (DII)

In this approach, the client dynamically constructs a call to the target service, specifying all the
particulars of the service explicitly when configuring the service call.

In terms of the mapping we mentioned (from Java to the service's ports, operations, and messages
and back), these three options essentially boil down to doing the mapping once and encoding it
"statically" as a set of concrete Java classes that the client uses (the static proxy approach); doing
the same mapping dynamically at runtime, with the generated classes existing only at runtime (the
dynamic proxy approach); or having the client do the mapping programmatically in its code, with no
service interface classes being generated (the dynamic invocation interface (DII) approach).

Let's see each approach in detail, by creating clients that interact with a very simple web service that
simply echoes a string back to the client. In its WSDL description, this service is named EchoService
and has a single port named echo. This port has a single operation, also called echo, that accepts a
message containing a single string and returns a message containing a single string. It is about as
simple as a web service can get.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

12.4.1. Static Proxy Approach

The static proxy approach for interacting with web services from a Java client is by far the simplest.
It involves generating, prior to runtime, a set of Java artifacts mapped from the WSDL descriptor for
the web service. The Java artifacts generated from the WSDL can be bundled with the client code,
and the client code is very clean, with all the SOAP communication details hidden in generated
Service and Stub implementations. In addition, since you have the actual mapped Java interfaces
and classes on the client side, as a developer you can import these into your IDE and
view/search/exercise these interfaces just like other Java code.

This approach is called the static proxy approach because the mapping performed by the web service
engine results in a set of actual concrete Java class files. The client will use these classes as-is to
interact with the service, and these classes implement a hardcoded mapping of service ports and
operations to Java interfaces and methods, so it's in this sense that the mapping is static.

In Axis, the tool that generates these static proxy classes is called WSDL2Java. It's provided in two
forms: a Java class, org.apache.axis.wsdl.WSDL2Java, that can be invoked from the command line to
perform the mapping, and an Ant task, axis-wsdl2java, that can be used in your Ant build file to do
the same.

If the WSDL for the Echo service were published at the URL
http://mywebservices.com/services/echo?wsdl, we would then use WSDL2Java to generate client
stubs from the command line:

 > java org.apache.axis.wsdl.WSDL2Java
 -o /home/dev/generated-src
 http://mywebservices.com/services/echo?wsdl

This command generates a set of client-side Java classes mapped from the WSDL file and writes the
Java source files into the /home/dev/generated-src directory that was specified using the -o option.
In the case of our echo service, the following interfaces will be generated, according to the JAX-RPC
mapping specifications:

Echo

The echo port in the WSDL is mapped to this interface, which extends java.rmi.Remote. JAX-
RPC specifies that mapped class names should always be mixed-case, so echo becomes the
interface name Echo. Each operation defined in the WSDL for this port type is mapped to a
corresponding method on this interface, and the input and output messages for the operation
are mapped to corresponding Java method arguments and return values. In our case, there is
a single operation defined for the port, also named echo, that has an input message consisting
of a single string and an output message consisting of a single string. This operation is mapped
to an echo() method with a single String argument and a String return value. No SOAP faults
are associated with this operation in the WSDL, so there are no service-specific exceptions in
the echo() method declaration, only the RemoteException required for all RMI remote
methods.

http://mywebservices.com/services/echo?wsdl
http://lib.ommolketab.ir
http://lib.ommolketab.ir

EchoService

In the WSDL, our service is named EchoService, so this Java interface is mapped from it. It
extends the javax.xml.rpc.Service interface from the JAX-RPC API. For each port defined in
the service, there is a get<portname>() method that returns an instance of the Java class

mapped from that port. In our case, there is a getechoPort() method that returns an Echo
stub. because the bound port is named echoPort in the service binding and in our WSDL. Note
that the accessor methods are named after the name used for the port binding, not for the port
definition itself. A single port can be bound to multiple protocols or physical endpoint URLs in
the WSDL file, so the binding name is used to distinguish between them.

The web service engine also needs to provide concrete implementations of these mapped interfaces
for the client to use. The names and implementation details of these concrete implementations are
not specified by the JAX-RPC standard, so using these generated classes directly may tie your client
code to a particular web service engine. In the case of Axis, the following concrete classes are
generated from the WSDL:

EchoBindingStub

This is a concrete implementation of the Echo interface mapped from the port type. This class
serves as a client-side stub: all of the methods mapped from the WSDL operations are
implemented here as calls to the service endpoint.

EchoServiceLocator

This is an implementation of the EchoService interface mapped from the WSDL service. The
get<portname>() methods declared in the interface are implemented here to construct an

appropriate implementation of the interface mapped from the WSDL port type. In this case, the
getecho() method from EchoService is implemented to return an instance of EchoBindingStub,
the Axis concrete implementation of the Echo interface.

These interfaces and classes are mapped into packages according to the namespaces used in the
WSDL for their corresponding XML entities. JAX-RPC does not specify this mappingit's left up to the
web service engine to decide how to deal with this. If you don't tell it otherwise, Axis converts the
namespace of each WSDL entity into a valid package name. For example, if the WSDL file used for
the mapping specifies a namespace for its entities like so:

 <wsdl:definitions targetNamespace="http://myservices/services/echo">
 . . .

then Axis places all of the Java classes into the package myservices.services.echo. Often, this isn't
the desired behaviora client will probably want to have the Java code fit into its own package
structure. Axis allows you to configure the package mapping by specifying a properties file when
invoking the WSDL2Java utility. You can specify a namespace-to-package mapping file using the -N
option on the command line:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 > java org.apache.axis.wsdl.WSDL2Java
 -o /home/dev/generated-src -N nsmap.properties
 http://mywebservices.com/services/echo?wsdl

The namespace-to-package mapping file is a Java properties file, with namespaces as the "property
name" and the corresponding package name as the property value. A mapping file for our previous
example might look like the following:

 http\://myservices/services/echo=com.myapp.soap.echoclient

Here, we're saying that any entities found in the WSDL namespace http://myservices/services/echo
should be mapped to the Java package com.myapp.soap.echoclient. Note the backslash in front of
the colon in the namespace value: Java properties files use colons as an optional separator between
names and values, so we have to escape the colon in the URL to prevent it from being interpreted
this way. When setting up these package mapping files yourself, don't forget to escape the colon
after the URL protocol and colons in front of any port numbers (e.g., http\://myservices.com\:8080).

It's important to remember that the only part of this mapping process that is specified in detail by the
JAX-RPC standard is the mapped port type interface (Echo) and the name of the mapped service
interface (EchoService), both of which are taken from the names and attributes of their
corresponding WSDL entities. The concrete implementation classes of these interfaces can be named
whatever the mapping tool wants to name them. In addition, the mapping tool can choose to map
namespaces to packages in a totally different way if it chooses.

Given all this, the static proxy approach for building a client to a web service simply involves using
the concrete stub class generated by the web service engine's tools. In the case of Axis, a client uses
the EchoSoapBindingStub class to interact with the echo web service. Instances of the stub class are
obtained using the concrete Service implementation as a factory, calling the getecho() method to
generate a stub instance:

 try {

 // Get a stub to the remote service
 Echo echo = new EchoServiceLocator().getechoPort();

 // Invoke the operation and collect the result
 String resp = echo.echo(msg);
 System.out.println("Sent: \"" + msg +
 "\", got response \"" + resp + "\"");
 }
 catch (ServiceException se) {
 System.err.println("Failed to invoke service: " +
 se.getMessage());
 }
 catch (RemoteException re) {

http://myservices/services/echo
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 System.err.println("Error invoking service: " +
 re.getMessage());
 }

The call to getechoPort() on the Service implementation generated by Axis returns an instance of
EchoBindingStub, the proxy for the echo service. When we call the echo() method on the proxy, it
internally constructs the appropriate SOAP message to the web service (based on the information
gleaned from the WSDL), sends the message to the service endpoint, receives the SOAP response,
extracts the string data, and returns it as the result of the method call. In the client code, though,
this is simply a normal-looking method call on a Java object.

You may have noticed that nowhere in the client do we specify the URL location of the web service
(the service endpoint) that is the target of our request. The getechoPort() method on the Service
uses, by default, the endpoint URL found in the WSDL that was used to generate the client-side Java
classes. The endpoint will be found in the service element of the WSDL description, for example:

 . . .
 <wsdl:service name="EchoService">
 <wsdl:port binding="impl:echoSoapBinding" name="echoPort">
 <wsdlsoap:address location="http://myservices.com/services/echo"/>
 </wsdl:port>
 </wsdl:service>
 . . .

If the client needs to contact an alternate instance of the web service running at a different location,
Axis generates an alternate getecho() method on the mapped Service class. This version accepts a
URL to indicate the service endpoint:

 Echo echo =
 new EchoServiceLocator().getechoPort(new URL(
 "http://altserver.com/echo"));
 String resp = echo2.echo(msg);

12.4.2. Dynamic Proxy Approach

The dynamic proxy approach to interacting with a web service does all of the WSDL-to-Java mapping
dynamically. The client asks the web service engine to generate a client stub class on the fly, at
runtime. The client does this by creating a javax.xml.rpc.Service instance that references the WSDL
descriptor for the target service. The client then uses the generic getPort() methods on the Service
to dynamically generate a stub class that can be used to communicate with the target web service. In
the dynamic proxy approach, since no mapped Java interfaces are generated from the WSDL, the
client has to provide its own Java interface for the stub class, and this interface needs to be

http://lib.ommolketab.ir
http://lib.ommolketab.ir

compatible with the service.

The dynamic proxy approach is useful in cases in which a WSDL descriptor for a service is available
but generating mapped Java code beforehand isn't desired or possible for some reason. One reason
for this is portability across Java web service engines. By using the dynamic proxy approach
described next, you avoid using the engine-specific concrete class implementations of the mapped
WSDL interfaces (for Axis, these are the EchoServiceLocator and EchoBindingStub classes described
earlier). So the client code can be more easily run using different web service engines or even
different versions of the same web service engine.

Returning to our echo web service, if we wanted to invoke it using the dynamic proxy approach, we
would do the following:

 import javax.xml.rpc.ServiceFactory;
 import javax.xml.rpc.Service;

 . . .

 // Define an inner class that serves as our stub interface to
 // the echo service
 interface MyEcho extends Remote {
 public String echo(String msg) throws RemoteException;
 }

 . . .

 public void invokeService() {
 String msg = "Hi there";
 try {
 // The WSDL that describes the service we want to contact
 String wsdlLoc =
 "http://myservices.com/services/echo?wsdl";
 // The qualified name of the service within the WSDL doc
 QName serviceName =
 new QName("http://myservices.com/services/echo",
 "EchoService");

 ServiceFactory sFactory = ServiceFactory.newInstance();
 Service service =
 sFactory.createService(new URL(wsdlLoc), serviceName);
 MyEcho echo = (MyEcho)service.getPort(MyEcho.class);
 // Invoke the operation and collect the result
 String resp = echo.echo(msg);
 System.out.println("Sent: \"" + msg +
 "\", got response \"" + resp + "\"");
 }
 catch (ServiceException se) {
 System.err.println("Service generated error: " + se.getMessage());
 }
 catch (RemoteException re) {
 System.err.println("Error invoking service: " + re.getMessage());

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 catch (MalformedURLException mue) {
 System.err.println("Bad service endpoint");
 }
 }
 . . .

Here, our client code creates a ServiceFactory instance by invoking the static
ServiceFactory.newInstance()method that creates a ServiceFactory instance provided by the
resident web service engine in use. We use the ServiceFactory to create a Service that represents
the particular web service we're targeting. The createService() method is called to do this, passing
in the URL for a WSDL document that contains the service description, plus the qualified name of the
target service within the document. In our case, the WSDL defines the service within the namespace
http://myservices.com/services/echo, and the service is named EchoService in the WSDL, so we pass
in a QName, serviceName, that represents this qualified name within the document. Finally, we ask the
Service to dynamically map the target port of the service to our Java interface for the port by calling
the getPort() method on the Service. In the call, we pass in the class we want the generated stub
instance to implement, MyEcho. Service will create a concrete stub class on the fly, this stub class will
extend the class provided in the getPort() call, and it will be connected to the requested port within
the target web service.

The stub interface that the client provides must extend (directly or indirectly) java.rmi.Remote, and
its interface has to be compatible with the WSDL description of the target port. In other words, the
methods on the Java interface have to correspond with the operations defined for the port in the
WSDL, according to the JAX-RPC mapping rules. If the web service engine has any problems doing
the dynamic proxy generation, the getPort() method throws a ServiceException.

You may notice that we did not specify the qualified name of the port when we called getPort() to
generate the stub. We just passed in the stub class that we wanted the generated stub instance to
implement. When this version of getPort() is invoked, the web service engine is responsible for
determining the "best match" between the ports defined in the WSDL document and the stub
interface passed into the getPort() call. In the case of Axis, it first looks for a port type whose name
matches the name of the Java interface. If that fails, it tries to use the first port defined in the WSDL.
In our example, the Java interface name (MyEcho) does not match the target port name in the WSDL
(echo). But only one port is defined in the WSDL, so that one will be mapped by the Axis runtime and
our client will work fine. A more robust approach (and the one you really should use when more than
one port is present in the WSDL) is to use the alternate version of Service.getPort(), which accepts
the qualified name of the target port as well as the desired stub interface. In our case, we would
invoke this version of getPort() like so:

 QName portName =
 new QName("http://localhost:8080/JEnt-examples/services/echo",
 "echo");
 MyEcho echo2 = (MyEcho)service.getPort(portName, MyEcho.class);

12.4.3. Dynamic Invocation Interface (DII) Approach

http://myservices.com/services/echo
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The DII approach puts the most burden on the client, because all of the service mapping details are
provided by the client. But it also offers the most flexibility, since your client can construct a call to
any web service without needing to define a stub interface or generate any proxy code beforehand.
There is no stub class involved at all in the DII approachthe client programmatically constructs the
call to the service itself and is responsible for ensuring that the arguments included in the call
correspond to the messages expected by the web service. The client is also responsible for knowing
what kind of response to expect from the web service.

The DII approach is best suited to situations in which the client can't assume much about the service
to be contacted or simply doesn't have the information about the service prior to runtime. One typical
scenario suited for DII is a service that does not publish a WSDL descriptor. With DII, you can still
talk to the service by programmatically specifying the service configuration. DII is also useful in
contexts in which the web service configuration needs to be externalized from the client
applicationeither in configuration files that are read at runtime or in the user's head. A web service
IDE, for example, might provide a dynamic web service test wizard, allowing the user to specify all
the web service details. The IDE can use DII to generate the actual web service call based on the
user's runtime inputs.

The DII approach involves creating a Service instance, as we saw in the dynamic proxy case. But
instead of asking the Service to map the service to a proxy class, we ask the Service to give us a
raw javax.xml.rpc.Call object that we can configure with all of our service call specifics. Here's our
client of the echo service rewritten to use DII to make the service call:

 // The endpoint, service, port, and operation we want to invoke
 String endpoint = "http://localhost:8080/JEnt-examples/services/echo";
 String serviceName = "EchoService";
 String portName = "echo";
 String operationName = "echo";

 // Some namespaces we'll be using in our client call
 String serviceNS = "http://localhost:8080/JEnt-examples/services/echo";
 String xsdNS = "http://www.w3.org/2001/XMLSchema";
 String jaxrpcNS = "http://java.sun.com/jax-rpc-ri/internal";

 // Create qualified names for the service, port, and operation
 QName serviceQName = new QName(serviceNS, serviceName);
 QName portQName = new QName(serviceNS, portName);
 QName operationQName = new QName(serviceNS, operationName);

 try {
 // Make a service factory
 ServiceFactory factory = ServiceFactory.newInstance();
 // Create a reference to the service
 Service service = factory.createService(serviceQName);
 // Create a call to a particular port on the service
 Call call = service.createCall(portQName);
 // Set the endpoint URL for the call
 call.setTargetEndpointAddress(endpoint);

 // Set the return type of the operation we want to invoke

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 call.setReturnType(new QName(xsdNS, "string"));
 // Set the operation we want to invoke
 call.setOperationName(operationQName);
 // Set the type of the single parameter to the operation
 call.addParameter("message", new QName(xsdNS, "string"),
 ParameterMode.IN);
 // Create the actual operation arguments and put them in an
 // object array
 String msg = "Hi there";
 Object[] opParams = {msg};
 // Invoke the operation and collect the result
 String resp = (String)call.invoke(opParams);
 System.out.println("Sent: \"" + msg +
 "\", got response \"" + resp + "\"");
 }
 catch (ServiceException se) {
 System.err.println("Service generated an error: " + se.getMessage());
 }
 catch (RemoteException re) {
 System.err.println("Communication error: " + re.getMessage());
 }

We start by declaring a number of string parameters that indicate the names of various namespaces
as well as the qualified names of the service, port, and operation we intend to invoke. Then we create
a ServiceFactory as before. But, when we create the Service, we simply provide the qualified name
of the service, with no WSDL description to go along with it. We're constructing the service call
ourselves, and there's no mapping to be done by the web service engine: Service needs to know only
its qualified name. We'll supply all the other details previously extracted from the WSDL when we
configure the call to the service.

Once we have the Service, we ask it to create a Call for us, providing the qualified name of the port
that we want to use. Once the Call is created, we set all of its parametersthe qualified name of the
operation we want to invoke, the return type of that operation, and the type of arguments that the
operation expects. This is all done using XML namespaces and qualified names within these
namespaces to match the configuration of the service. For example, we specify the operation we
want to invoke by setting the operation name on the Call to the qualified name of the target
operation:

 String serviceName = "EchoService";
 String operationName = "echo";
 . . .
 QName operationQName = new QName(serviceNS, operationName);
 . . .

 call.setOperationName(operationQName);

We set the return type of the operation in a similar fashion, but since the operation we want to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

invoke simply returns a string, the qualified name of the return type comes from a standard XML
Schema namespace:

 String xsdNS = "http://www.w3.org/2001/XMLSchema";
 . . .

 call.setReturnType(new QName(xsdNS, "string"));

Once the Call is configured, we invoke the target operation by passing our arguments into the
invoke() method. The arguments are provided in the form of an Object array, which allows for any
kind of arguments that any web service operation might require:

 String msg = "Hi there";
 Object[] opParams = {msg};

 String resp = (String)call.invoke(opParams);

The return value of the invoke() call is the return value of the web service operation, in the form of
an Object, that we then cast to the expected String.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

12.5. Writing Web Services

As you might expect, implementing a SOAP web service is moderately more difficult than just using
one as a client. Thankfully, JAX-RPC and the Java web service engines make the writing of the web
service implementations themselves very simple (even simpler than writing a client, in some cases).
The added complexity of implementing web services comes in the deployment step, which we'll
discuss in the next major section.

12.5.1. Simple Java Web Services

If you look at the static proxy approach for implementing SOAP clients, you may notice a lot of
similarities with the client stubs used in RMI for talking to remote RMI objects. That's not a
coincidence. JAX-RPC uses the RMI programming model to provide a simple way to write web
services in Java. The published interface for the web service is defined as a Remote interface. If we
were implementing our simple echo web service in Java, we could define the interface for the service
as shown in Example 12-2.

Example 12-2. A JAX-RPC service interface

public interface IEcho extends java.rmi.Remote {
 public String echo(String message) throws java.rmi.RemoteException;
}

The implementation for the service is equally simple to define. We just write a concrete
implementation of this Remote interface, as shown in Example 12-3.

Example 12-3. A JAX-RPC service implementation

public class Echo implements IEcho {
 public Echo() {
 super();
 }

 public String echo(String message) throws RemoteException {
 return message;
 }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

That's it. The IEcho interface and the Echo concrete implementation together serve as an
implementation of a web service in Java. As we mentioned earlier, the hard part is deploying a web
service to an application server, which we'll cover shortly. But essentially, a web service engine will
manage this web service, converting SOAP messages targeted for the service into equivalent method
calls on the implementation class and converting the method return values or exceptions into SOAP
messages or faults that are delivered back to the client making the request.

You need to keep a few concerns in mind when writing web services . These concerns are similar to
those you face when writing RMI server objects, but SOAP web services introduce the additional
concern of portability, because clients of your service could be implemented in many different
development environments and languages.

Arguably, the most important issue to keep in mind is the mapping of your Java service
implementation into WSDL and/or SOAP entities. As described earlier, JAX-RPC defines a set of
standard mappings for a specific set of Java types into their corresponding XML Schema entities.
These supported Java types include the basic data types (int, boolean, etc.), their Object wrapper
classes (Integer, Boolean, etc.), Java interfaces that use the JavaBeans pattern, and arrays of these
supported data types. You should make every effort to restrict your service implementations so that
their interfaces expose only these supported Java types. Otherwise, it's likely that you'll run into
interoperability issues with some clients, especially those implemented in other platforms.

As a concrete example, let's take a look at our example "white pages" PeopleFinder application (seen
in Chapters 2, 17, and 18). Suppose we wanted to create a web service, using the RMI programming
model described earlier, which exposes the search capabilities of the PeopleFinder system. If we
looked at this as "just" a Java developer, ignoring any web service mapping or interoperability issues,
we might throw together this Remote interface for our web service:

 public interface PeopleFinder extends java.rmi.Remote {

 public Collection findPeople(Map searchParams)
 throws InvalidSearchException, PersistenceException,
 RemoteException;
 }

This interface makes the implementation of the service trivial. The PersonDAO that is the core of the
system has a search() method that accepts a Map of the search arguments and returns a
Collection of Person objects. By using this same signature for our web service method, our
implementation of the findPeople() operation on the service interface would simply be:

 public class PeopleFinderImpl implements PeopleFinder {
 . . .
 public Collection findPeople(HashMap searchArgs)
 throws InvalidSearchException, PersistenceException {
 return dao.findPeople(searchParamsMap);
 }
 . . .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

The problem we will likely face with the web service is that no standard mappings are defined for
Java collection objects into XML entities. So we don't know how the web service engine will deal with
the Map method argument or the Collection return value. In fact, the web service engine would be
within its rights to just throw this interface back at us and refuse to deploy it. How should it map a
Collection, which by definition is simply a set of Objects? How can the web service engine possibly
map this into WSDL entities in such a way that a client will know what to expect as a response from
the operation? The Collection could contain just about anythingStrings, Integers, complex
JavaBeans structures, and so on. The same goes for the Map argument to the methodwhat should a
web service client pass into this operation in order to get the desired behavior? Strings mapped to
strings, something else? A much more clear, portable, and interoperable interface for our Java web
service would be something like the following, which replaces the collections with arrays of specific
types:

 public interface PeopleFinder extends Remote {

 public Person[] findPeople(SearchArg[] args)
 throws InvalidSearchException, PersistenceException,
 RemoteException;
 }

We've converted the Collection to an explicit array of Person beans, and we've introduced a new
JavaBeans object, SearchArg, that holds a name/value pair representing a search argument:

 public class SearchArg implements Serializable {
 private String mArgName = null;
 private String mArgValue = null;

 public SearchArg() { super(); }
 public SearchArg(String name, String value) {
 setName(name);
 setValue(value);
 }

 public String getName() { return mArgName; }
 public void setName(String argName) { mArgName = argName; }
 public String getValue() { return mArgValue; }
 public void setValue(String argValue) { mArgValue = argValue; }
 }

This makes our service implementation slightly more complicated, of coursewe'll have to convert the
incoming array of SearchArg objects into a Map to pass into the PersonDAO.findPeople() method,
and we'll have to convert the Collection returned from that method call into an array of Person

http://lib.ommolketab.ir
http://lib.ommolketab.ir

objects to return to the client. But we'll have a lot fewer interoperability issues with this version and
fewer issues diagnosing mapping issues with our web service engine as well.

12.5.2. EJB Web Services

In addition to the "straight" Java implementation of a web service described in the previous section,
JAX-RPC and the EJB specifications support the use of session EJBs as web services as well. Put
another way, the previous section showed how to use the RMI programming model to implement a
web service in Java, but you can also use the EJB programming model to implement a web service.
Put yet another way, JAX-RPC and EJB provide a standard way to expose a session EJB component
as a SOAP web service.

Only stateless session beans can support web service clients. Beyond that, the restrictions on the
interface to an EJB that will be exposed as a web service are roughly the same as for web services
implemented using the RMI programming model described in the previous section. You need to be
mindful of the arguments and return values on the methods to be mapped to service operations to
ensure that they can be cleanly mapped using a standard JAX-RPC mapping.

The following is the interface for an EJB implementation of our PeopleFinder service:

 public interface PeopleFinder extends javax.ejb.EJBObject {
 public Person[] findPeople(SearchArg[] args)
 throws InvalidSearchException, PersistenceException,
 RemoteException;
 }

This interface looks very similar to the one we saw earlier using the RMI modelthe only difference is
that we're extending EJBObject instead of Remote, in keeping with the EJB programming model for
components.

Our EJB implementation class, PeopleFinderBean, has an implementation of the findPeople()
method that is virtually identical to our earlier RMI version. The difference here, again, is the use of
the EJB component model, which requires that a session bean have certain callback methods
implemented as well, such as ejbCreate() and setSessionContext(). The purpose and
implementations of these EJB-related methods are covered in Chapter 6.

 public class PeopleFinderBean implements javax.ejb.SessionBean {
 public PeopleFinderBean() {
 super();
 }

 // EJB-related callback methods
 public void ejbActivate() throws EJBException, RemoteException {}
 public void ejbPassivate() throws EJBException, RemoteException {}
 public void ejbRemove() throws EJBException, RemoteException {}
 public void setSessionContext(SessionContext arg0)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 throws EJBException, RemoteException {}
 public void ejbCreate() throws CreateException {}

 // Perform the actual search, using the PersonDAO
 public Person[] findPeople(SearchArg[] args)
 throws InvalidSearchException, PersistenceException {
 Map searchArgsMap = new HashMap();
 for (int i = 0; i < args.length; i++) {
 searchArgsMap.put(args[i].getName(), args[i].getValue());
 }
 Collection people =
 PersonDAO.getInstance().findPeople(searchArgsMap);
 Person[] peopleArray = new Person[people.size()];
 Iterator pIter = people.iterator();
 int i = 0;
 while (pIter.hasNext()) {
 peopleArray[i++] = (Person)pIter.next();
 }
 return peopleArray;
 }
 }

From the standpoint of implementing a web service, this session bean represents a web service
implementation that will be managed by an EJB container, in terms of the lifecycle of the component,
its security services, and so forth. These runtime management services are the real reason that
having this EJB option for implementing a web service is interesting. If, for example, our web service
needs to make heavy use of transactions (with databases, messaging services, ERP systems, etc.),
having the transaction management services of an EJB container for our web service might be very
useful. Similarly, if our web service is expected to receive high load levels from clients, the runtime
instantiation and instance-pooling services of EJB could be valuable as well.

12.5.3. Nonstandard Implementation Schemes

There are several nonstandard, proprietary models for implementing Java-based web services in
addition to the standard approaches specified in the JAX-RPC and related specifications. Typically,
these implementation schemes are meant to provide a faster way to get a web service up and
running but work only with a specific Java web service engine and therefore won't port to alternative
engines.

12.5.3.1. Axis JWS approach

Apache Axis, for example, provides a very simple scheme called JWS for implementing a web service.
You simply take the source file for a concrete Java class, rename it with a .jws extension, and place it
somewhere in your application's web context. Assuming that your web service has the Axis engine
servlet installed to handle all .jws files, the Axis engine automatically processes the .jws file when a
client requests its URL and maps the code found in the JWS file to a web service, complete with a
WSDL descriptor. For example, we could implement our earlier Echo web service using JWS with the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

following Java class:

 public class EchoJWS {
 public String echo(String message) {
 return message;
 }
 }

If we put this Java code into an EchoJWS.jws file in the root of our web application (either in a war
file or in the root of the expanded web application directory, depending on how we're deploying our
application to the application server), then Axis will deploy this as a web service. If our application is
deployed with a context root of myApp on the server myserver.com, the endpoint URL of the web
service will be:

 http://myserver.com/myApp/EchoJWS.jws

and the WSDL for the service will be available at the URL:

 http://myserver.com/myApp/EchoJWS.jws?wsdl

The Axis JWS scheme for implementing web services has a number of limitations. The most
important one is that the mapping process (from Java entities to WSDL and back) is not configurable.
As we'll see in the upcoming section on deploying web services, the ability to configure the mapping
of Java entities (interfaces, JavaBeans, exceptions, etc.) into XML entities for the SOAP service can
be very useful, sometimes critical. If you need to use a complex Java structure that requires a
custom mapping, for example, you cannot use JWS.

In addition to the lack of configurability, JWS-based web services cannot make use of Java packages.
The JWS file must have no package declaration, and the file has to sit in the root of the web
application context, not in a subdirectory. This limits your ability to organize and manage your web
service implementation code and its corresponding endpoint URLs.

So while the JWS scheme implemented in Axis is useful for quick prototypes of simple web services,
it's not likely that it will be sufficient for all of your needs for implementing web services in enterprise
systems.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

12.6. Deploying Web Services

As with the other J2EE components (EJB, web) and resources (JMS Destinations, JavaMail Sessions,
JDBC DataSources, and so on) discussed in this book, web service implementations need to be
deployed to an application server. And, as with these other things, deploying a web service isn't
simply putting your code up on the server. You need to tell the web service engine how to manage
your web services at runtime.

The web service engine is responsible for accepting SOAP requests from clients, converting them into
appropriate method calls on your Java implementation code , and taking the results of those method
calls and converting them into the appropriate SOAP responses to the clients. In order to do this, the
web service engine needs to know the following information for each web service that you want to
deploy:

Java implementation code

What Java code implements the web service, and what aspects of the Java code should be part
of the web service?

Java-to-XML mapping

How should the Java entities in your service implementation (interfaces, data objects,
exceptions, etc.) be converted into SOAP/XML entities and vice versa? This covers both the
description of your web service in the form of a WSDL document and conversions between
SOAP entities and Java entities at runtime when operations are invoked.

This information is provided in the form of deployment descriptors and/or configuration files. These
typically include:

Web service deployment file

This file defines the web services that you want to run, with pointers to the Java classes and
components that serve as the implementation for each service.

Mapping file

This file is used in those cases in which default mappings aren't sufficient and specifies how
Java entities are to be mapped to XML and back.

To deploy a web service, you need to provide this information, package up your Java code (and any
other necessary runtime resources) into an appropriate archive format, and deliver the code and the
configuration information to the application server that will run the web service engine.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The actual deployment and configuration file formats that you will use, and the physical steps you
take to deploy a web service, depend on the particular Java web service engine and application
server in use. The Web Services for J2EE specification (JSR 109) provides a standard model for
deploying web services, along with standard deployment file formats. Web service engines that are
compliant with these specifications will support these deployment descriptors. Other web service
engines still use their own deployment and configuration schemes, but the same basic information
will be needed.

In the following section, we'll examine the standard J2EE model for deploying web services. Following
that, we'll look at the nonstandard deployment model used by Axis.

12.6.1. J2EE Standard Model

As we saw in earlier sections, JAX-RPC defines two approaches for implementing web services: as a
simple Java object using the RMI programming model or as an EJB. In the case of a simple Java
object, the web service is run within a web container, and in the case of an EJB, the web service is
run within an EJB container. The Web Services for J2EE specification spells out how web services are
deployed in each of these cases. It lays out the information that must be provided within the existing
component deployment descriptors (web.xml and ejb-jar.xml) and defines new deployment
descriptors that associate specific components with their corresponding web services, as well as the
mapping information for the various Java-to-XML conversions.

In general, the J2EE deployment model for web services involves the following steps. We'll go into
these in more detail in the sections that follow.

Deploy the implementation component

The web service implementation needs to have a standard component entry in its component
archive. For a Java object, this will be a <servlet> entry in a web.xml deployment descriptor.
For an EJB component, this will be a <session-bean> entry in an ejb-jar.xml deployment
descriptor.

1.

Create a web service deployment descriptor

This takes the form of a webservices.xml file that is included in the component archive (web or
EJB). It lists each web service being deployed within that component archive, linking the web
service to a particular component and specifying the WSDL file for the service and the Java-to-
XML mapping file for the service.

2.

Generate a WSDL descriptor for the web service

Each web service must come bundled with a WSDL descriptor within the component archive,
and the webservices.xml deployment descriptor references the WSDL file for each web service.
This WSDL file can be created from scratch (if you're feeling ambitious), or you can use a tool to
automatically generate a WSDL file from the Java classes that implement your web service
(such as the Java2WSDL tool provided with Axis or the wscompile tool provided with Sun's Java
Web Services Developer Pack (JWSDP)). The webservices.xml file requires a WSDL file for each
web service at deploy time because the Web Services for J2EE specification could not make the

3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

assumption that every Java web service engine would be capable of autogenerating a WSDL
descriptor at runtime and because in some cases you will want to specify your own WSDL file
rather than relying on the default one mapped by a particular web service engine.

Generate a JAX-RPC mapping file for each web service

Each web service must also have a mapping file that specifies how various Java entities in the
implementation are to be mapped into XML entities in the WSDL descriptor. This includes
mapping Java packages to XML namespaces, Java methods to WSDL operations, Java objects to
WSDL data types and messages, and so forth. This mapping file is also in XML format, using a
schema specified in the Web Services for J2EE specification. Again, the specification requires a
mapping file be provided at deployment time because it couldn't assume that all web service
engines would be able to generate the mapping at runtime and because in some cases you will
want to explicitly specify the mapping for your web services (e.g., when custom XML
serializers/deserializers are in use).

4.

As shown in Figure 12-4, the webservices.xml deployment descriptor augments the component
deployment descriptor (web.xml or ejb-jar.xml) in the component module. It enumerates the web
services in the module and references the components (servlets or EJBs) that implement each
service. webservices.xml also references a Java/XML mapping file and a WSDL descriptor for each
web service. These files are also included in the component module archive.

Now let's see how each type of JAX-RPC web service is deployed in detail. We first discuss web
services that are deployed as simple Java classes within a web archive. In this section, we also cover
many of the general details of J2EE web service deployment. We then look at deploying services
implemented as EJB components.

12.6.1.1. Simple Java web services

Web services implemented using simple Java objects are deployed and managed within a web
container. These service implementations are not, themselves, web components (they're just simple
Java objects that follow the RMI programming model). But when you deploy them as web services,
you create <servlet> entries in the web.xml file for them, creating a virtual component for each web
service. To deploy our Echo web service example, we would add the following entry to the web.xml
deployment descriptor for the web archive containing the web service:

 <web-app . . . >
 . . .
 <!-- Echo SOAP service -->
 <servlet>
 <servlet-name>EchoWebService</servlet-name>
 <servlet-class>com.oreilly.jent.people.soap.Echo</servlet-class>
 </servlet>
 . . .
 </web-app>

Figure 12-4. Deploying web services in a J2EE component archive

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You do not need to provide a <servlet-mapping> entry for the virtual web component. These web
service components will not have their URL entry points managed directly by the web container.
Instead, the web service engine will be responsible for mapping endpoint URLs for services (published
in their WSDL files) to the actual web service implementation.

Next, we need a webservices.xml deployment descriptor to include in the web archive. The
webservices.xml file is placed in the WEB-INF directory of the archive, alongside the web.xml
deployment descriptor. A complete web service deployment file for our Echo web service is shown in
Example 12-4.

Example 12-4. webservices.xml deployment descriptor for Echo service

<?xml version="1.0" encoding="UTF-8"?>
<webservices xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/j2ee
 http://www.ibm.com/webservices/xsd/j2ee_web_services_1_1.xsd"
 version="1.1">
 <webservice-description>
 <webservice-description-name>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Echo Web Service
 </webservice-description-name>
 <wsdl-file>WEB-INF/wsdl/EchoWS.wsdl</wsdl-file>
 <jaxrpc-mapping-file>WEB-INF/Echo-mapping.xml</jaxrpc-mapping-file>
 <port-component>
 <port-component-name>Echo</port-component-name>
 <wsdl-port>EchoPort</wsdl-port>
 <service-endpoint-interface>
 com.oreilly.jent.people.soap.IEcho
 </service-endpoint-interface>
 <service-impl-bean>
 <servlet-link>EchoWebService</servlet-link>
 </service-impl-bean>
 </port-component>
 </webservice-description>
</webservices>

The format of the deployment descriptor is specified by a standard XML Schema, referenced as a
namespace in the root <webservices> element of the XML file. Each web service contained in the web
archive needs to have a <webservice-description> enTRy in this file. In our case, we have only one
web service, Echo, so we have a single description entry. The web service entry has a descriptive
name, <webservice-description-name>, followed by several elements that specify the WSDL
descriptor for the service, the Java/XML mapping file for the service, and information about each
WSDL port in the web service. For each port in the web service, the <webservice-description> entry
contains a <port-component> entry that specifies the name of the port in the WSDL file, the Java
interface that the port implementation uses, and a reference to the web component in the web.xml
descriptor that implements the port. In our case, we have a single port in the Echo web service, so
there is a single <port-component> element.

In the war file, the WSDL descriptors for web services are stored in the WEB-INF/wsdl directory, and
each <webservice-description> entry references the relevant WSDL file for its web service. In our
case, the Echo service WSDL descriptor is expected to be in the WEB-INF/wsdl/EchoWS.wsdl file in
the archive, as specified in the <wsdl-file> element in the webservices.xml file. As mentioned earlier,
this WSDL file can be written by hand or (more likely) generated from the Java code that implements
the web service using a tool provided by your web service engine.

Similarly, Java/XML mapping files are placed directly in the WEB-INF directory and are referenced in
the webservices.xml file using the <jaxrpc-mapping-file> element. In our Echo web service, we've
placed the mapping file in WSDL/Echo-mapping.xml within the war file. The mapping file for our Echo
service is shown in Example 12-5.

Example 12-5. Minimal Java/XML mapping file for Echo service

<?xml version="1.0" encoding="UTF-8"?>
<java-wsdl-mapping
 version="1.1"
 xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://www.ibm.com/webservices/xsd/j2ee_jaxrpc_mapping_1_1.xsd">
 <package-mapping>
 <package-type>com.oreilly.jent.people.soap</package-type>
 <namespaceURI>http://soap.people.jent.oreilly.com/</namespaceURI>
 </package-mapping>
</java-wsdl-mapping>

Each mapping file follows a standard XML Schema specified in the Web Services for J2EE standard. At
a minimum, the mapping file is used to specify the conversion between your Java packages and XML
namespaces in the WSDL descriptor. This is all we've done in the mapping file for the Echo service;
using a <package-mapping> element to map any Java entities in the com.oreilly.jent.people.soap
package should be mapped to the XML namespace http://soap.people.jent.oreilly.com in the WSDL.

A compliant web service engine should be able to automatically map everything else in the WSDL and
your Java classes, assuming that:

Only one service and one port are defined in the WSDL.

The WSDL doesn't have any "overloaded" names (i.e., each operation on the port has a unique
name; the port, service, binding, and data type names are all unique; etc.).

All of the port's operations have one input and one output, and all of the messages used contain
at most one part.

All of the exceptions mapped to faults have no special attributes (beyond the typical string
message), and the exceptions do not inherit from RuntimeException or RemoteException.

All of the data types being mapped are within the standard JAX-RPC Java/XML mappings
described earlier.

If your situation falls outside of this profile (e.g., you use Java or WSDL entities that are not covered
by the JAX-RPC mappings, extra parameters on your application-specific exceptions need to be
mapped, etc.), you can include explicit type mappings in your service's mapping file. These mappings
can include Java types to WSDL data types, Java exceptions to SOAP fault types in the WSDL, and
Java interfaces and methods to WSDL service ports and operations. If you do provide any mappings
beyond the package mappings, however, you must provide a mapping for every entity in the WSDL
descriptor for the web service.

Custom type mappings are specified using the following elements, all of which are peers of the
<package-type> element in the mapping file:

<java-xml-type-mapping>

Each element specifies how to map a Java type to one or more XML types. The Java type itself
is mapped to an XML data type in the WSDL, and any properties on the Java type are also
mapped to XML elements within the main XML data type. In the case of our PeopleFinder web
service, we could specify the mapping for the Person XML data type as follows:

http://soap.people.jent.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <java-xml-type-mapping>
 <java-type>com.oreilly.jent.people.Person</java-type>
 <root-type-qname
 xmlns:typeNS="http://soap.people.jent.oreilly.com/types"
 >typeNS:Person</root-type-qname>
 <qname-scope>complexType</qname-scope>
 <variable-mapping>
 <java-variable-name>emailAddresses</java-variable-name>
 <xml-element-name>emailAddresses</xml-element-name>
 </variable-mapping>
 <variable-mapping>
 <java-variable-name>firstName</java-variable-name>
 <xml-element-name>firstName</xml-element-name>
 </variable-mapping>
 <variable-mapping>
 <java-variable-name>lastName</java-variable-name>
 <xml-element-name>lastName</xml-element-name>
 </variable-mapping>
 </java-xml-type-mapping>

This entry maps the Person XML data type to the com.oreilly.jent.people.Person Java bean and
then each subelement of the XML data type is mapped to properties on the Java bean, using
<variable-mapping> elements.

<exception-mapping>

Each of these elements specifies how to map a Java exception to a fault type defined in the
WSDL. Since faults in the WSDL also have a corresponding XML data type defined for them,
also in the WSDL, each fault has two entries in the JAX-RPC mapping file. A <java-xml-type-
mapping> element links the XML data type for the fault to the Java Exception class, and an
<exception-mapping> element maps the WSDL fault element to the Java Exception class. In our
PeopleFinder example, the InvalidSearchException fault could be mapped to the
com.oreilly.jent.people.InvalidSearchException class using the following entry in the JAX-
RPC mapping file:

 <exception-mapping>
 <exception-type>
 com.oreilly.jent.people.InvalidSearchException</exception-type>
 <wsdl-message xmlns:exMsgNS="http://soap.people.jent.oreilly.com/"
 >exMsgNS:InvalidSearchException</wsdl-message>
 <constructor-parameter-order>
 <element-name>message</element-name>
 </constructor-parameter-order>
 </exception-mapping>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<service-interface-mapping>

This element maps a service defined in the WSDL to a Java interface that represents the
service. Each port in the service can also be mapped using <port-name> elements within the
<service-interface-mapping> element. The service definition in the PeopleFinder WSDL can be
mapped to a PeopleFinderWS Java interface using the following mapping entry:

 <service-interface-mapping>
 <service-interface>
 <com.oreilly.jent.people.soap.PeopleFinderWS</service-interface>
 <wsdl-service-name xmlns:serviceNS=
 <"http://soap.people.jent.oreilly.com/">
 <serviceNS:PeopleFinderWS</wsdl-service-name>
 <port-mapping>
 <port-name>PeopleFinderPort</port-name>
 <java-port-name>PeopleFinderPort</java-port-name>
 </port-mapping>
 </service-interface-mapping>

<service-endpoint-interface-mapping>

This element specifies how a particular port binding in the service's WSDL is to be mapped to
corresponding Java entities. The port associated with the binding element in the WSDL
descriptor is mapped to a Java interface, and each operation within the port is mapped to
methods on the Java interface. The following mapping entry maps the binding for the
PeopleFinder port to the com.oreilly.jent.people.soap.PeopleFinder interface, and all of the
operations in the port are mapped to the methods on the PeopleFinder interface:

 <service-endpoint-interface-mapping>
 <service-endpoint-interface>
 com.oreilly.jent.people.soap.PeopleFinder
 </service-endpoint-interface>
 <wsdl-port-type
 xmlns:portTypeNS="http://soap.people.jent.oreilly.com/">
 portTypeNS:PeopleFinder</wsdl-port-type>
 <wsdl-binding
 xmlns:bindingNS="http://soap.people.jent.oreilly.com/">
 bindingNS:PeopleFinderBinding</wsdl-binding>
 <service-endpoint-method-mapping>
 <java-method-name>findPeople</java-method-name>
 <wsdl-operation>findPeople</wsdl-operation>
 <method-param-parts-mapping>
 <param-position>0</param-position>
 <param-type>com.oreilly.jent.people.SearchArg[]</param-type>
 <wsdl-message-mapping>
 <wsdl-message
 xmlns:wsdlMsgNS="http://soap.people.jent.oreilly.com/">
 wsdlMsgNS:PeopleFinder_findPeople</wsdl-message>
 <wsdl-message-part-name>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 arrayOfSearchArg_1</wsdl-message-part-name>
 <parameter-mode>IN</parameter-mode>
 </wsdl-message-mapping>
 </method-param-parts-mapping>
 <wsdl-return-value-mapping>
 <method-return-value>com.oreilly.jent.people.Person[]
 </method-return-value>
 <wsdl-message
 xmlns:wsdlMsgNS="http://soap.people.jent.oreilly.com/">
 wsdlMsgNS:PeopleFinder_findPeopleResponse</wsdl-message>
 <wsdl-message-part-name>result</wsdl-message-part-name>
 </wsdl-return-value-mapping>
 </service-endpoint-method-mapping>
 </service-endpoint-interface-mapping>

Once the WSDL for the web service(s), the webservices.xml deployment descriptor, and the JAX-RPC
mapping file have been created, the services are deployed within a web archive, by adding these files
to the web archive in the appropriate places. The webservices.xml file is placed in the WEB-INF
directory of the archive, with the web.xml file. The JAX-RPC mapping file is also placed in the WEB-
INF directory. The WSDL for the service is typically placed in the WEB-INF/wsdl directory, although
you can technically place your WSDL files anywhere in the archive.

12.6.1.2. EJB web services

Before a stateless session EJB can serve as a web service, its EJB deployment descriptor entry needs
to have a <service-endpoint> entry added to it, to indicate the Java interface that its web service will
expose. Here is the modified deployment descriptor for our PeopleFinder EJB component:

 <?xml version="1.0" encoding="UTF-8"?>
 <ejb-jar xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd"
 version="2.1">
 <enterprise-beans>
 <!-- Declare our PeopleFinder session bean -->
 <session>
 <ejb-name>PeopleFinder-EJB</ejb-name>
 <home>com.oreilly.jent.people.ejb.PeopleFinderHome</home>
 <remote>com.oreilly.jent.people.ejb.PeopleFinder</remote>
 <local-home>
 com.oreilly.jent.people.ejb.PeopleFinderLocalHome
 </local-home>
 <local>com.oreilly.jent.people.ejb.PeopleFinderLocal</local>

 <service-endpoint>
 com.oreilly.jent.people.ejb.PeopleFinder</service-endpoint>
 <ejb-class>com.oreilly.jent.people.ejb.PeopleFinderBean

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 </session>
 </enterprise-beans>
 </ejb-jar>

In this example, we've kept the client and home interfaces for our EJB, but if you are using the EJB
only as a web service, they can be eliminated from the deployment entry for the bean.

Web services implemented as EJB components are deployed in much the same way as services
implemented as simple Java objects. The web services are tied to their EJB components in a
webservices.xml file, each service has a JAX-RPC mapping file and a WSDL file, and all of these files
are deployed within the EJB archive. The webservices.xml file and the JAX-RPC mapping files are
stored in the META-INF directory of the archive, while the WSDL descriptors for the services are
typically stored in the META-INF/wsdl directory. Note that, like services packaged in web archives,
the WSDL files aren't strictly required (according to the specifications) to be contained in the META-
INF/wsdl directory in the EJB archive, but this is a common location in which to put them.

The key difference is in the webservices.xml file. In the case of a service implemented as a session
EJB, the <webservice-description> entry will point to the appropriate EJB component in the EJB
archive rather than to the virtual web component used for simple Java class implementations.
Example 12-6 shows the webservices.xml deployment file for the session EJB implementation of our
PeopleFinder web service.

Example 12-6. Deployment descriptor for EJB-based web service

<?xml version="1.0" encoding="UTF-8"?>
<webservices xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://www.ibm.com/webservices/xsd/j2ee_web_services_1_1.xsd"
 version="1.1">
 <webservice-description>
 <webservice-description-name>
 PeopleFinder Web Service
 </webservice-description-name>

 <wsdl-file>META-INF/wsdl/PeopleFinderWS.wsdl</wsdl-file>
 <jaxrpc-mapping-file>
 META-INF/PeopleFinder-mapping.xml</jaxrpc-mapping-file>
 <port-component>
 <port-component-name>PeopleFinder</port-component-name>
 <wsdl-port>PeopleFinderPort</wsdl-port>

 <service-endpoint-interface>
 com.oreilly.jent.people.ejb.PeopleFinder
 </service-endpoint-interface>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <service-impl-bean>
 <ejb-link>PeopleFinder-EJB</ejb-link>
 </service-impl-bean>
 </port-component>
 </webservice-description>
</webservices>

In this case, we've linked the web service to the EJB named PeopleFinder-EJB in the archive, using
the <service-impl-bean> element of the <port-component> section. We've also set the <service-
endpoint-interface> value to be the remote client interface of the EJB.

The JAX-RPC mapping file for an EJB-based web service is essentially the same as those for simple
Java web services. The only difference is that the mapping of the service endpoint (in the <service-
endpoint-interface-mapping> element) refers to the Java service endpoint interface exposed by the
EJB component.

12.6.2. Axis Deployment Model

Prior to the availability of the Web Services for J2EE specification, Axis and other Java-based web
service engine implementations needed to provide developers with a (nonstandard) deployment
scheme that could be used to deploy web services to their environments. Here, we'll look at the Axis
deployment scheme. We do this for a few reasons. The most important of them is the fact that Axis is
a very popular engine for building and using web services in Java/J2EE environments. But in addition,
the Axis deployment scheme is a good example of a nonstandard approach to deploying web
services, and it compares and contrasts nicely with the newer, standardized approach provided by
JSR 109.

Figure 12-5 depicts the model used by Axis for deploying web services. If you compare this to the
J2EE standard model shown in Figure 12-4, you'll see a lot of similarities. Instead of a
webservices.xml deployment descriptor and JAX-RPC mapping files, Axis uses its own Web Services
Deployment Descriptor (WSDD) format and a separate namespace/package mapping file. Like the
webservices.xml file, the WSDD file for a web service specifies the name of the service and the Java
component (simple Java class, EJB component, etc.) that implements it. The WSDD file also includes
the Java/XML entity mapping details.

Figure 12-5. Axis deployment model

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 12-7 shows a WSDD file that can be used to deploy the simple Java version of our
PeopleFinder web service to an Axis web service engine.

Example 12-7. Axis WSDD deployment descriptor for PeopleFinder
service

<deployment xmlns="http://xml.apache.org/axis/wsdd/"
 xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">
 <service name="peopleFinder" provider="java:RPC">
 <!-- Specify the implementing class for the service -->
 <parameter name="className"
 value="com.oreilly.jent.people.soap.PeopleFinderImpl"/>
 <!-- Specify the methods exposed to SOAP clients -->
 <parameter name="allowedMethods" value="*"/>
 <!-- Specify that Person should be mapped using the Axis JavaBean
 mapping -->
 <beanMapping qname="ns:Person" xmlns:ns="people.jent.oreilly.com"
 languageSpecificType="java:com.oreilly.jent.people.Person"/>
 <!-- SearchArg objects should also be mapped using the JavaBean
 mapping -->
 <beanMapping qname="ns:SearchArg" xmlns:ns="people.jent.oreilly.com"
 languageSpecificType="java:com.oreilly.jent.people.SearchArg"/>
 </service>
</deployment>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The <service> element specifies the details for a particular web service (similar to a <webservice-
description> entry in a webservices.xml file). In our case, we specify that our web service is
implemented as a simple Java class by setting the provider attribute on the <service> element to
java:RPC. The child elements of the service element tell Axis how to deploy our web service. Among
other things, this information contains a set of standard parameters for the web service and a set of
optional Java/XML type mappings.

In our example, we first tell Axis the implementation class for the service, using the className
parameter and setting its value to the fully qualified Java class name of the service implementation,
com.oreilly.jent.people.soap.PeopleFinderImpl. Next, we tell Axis which methods on the
implementation class should actually be exposed as operations in the web service. In our case, all of
the PeopleFinderImpl methods are part of the web service, so we set the allowedMethods parameter
to a wildcard, *.

After these parameters, we specify a few Java/XML type mappings for our service. Axis is able to
automatically map basic Java data types (int, long, float, etc.) and the core Java data classes
(Integer, String, Float, etc.) when they appear in methods on the service implementation class. But
in cases in which the mapping is for a JavaBeans class or when a custom mapping is needed, you
need to specify the mapping details in the WSDD using either a <beanMapping> or <typeMapping>
element. In our case, the only Java types exposed in the PeopleFinderImpl interface are Person and
SearchArg, and they both follow the JavaBeans pattern (in terms of property accessors, default
constructor, etc.). So in both cases, we tell Axis to use its built-in JavaBeans mapper by using the
<beanMapping> element in the WSDD file. In each case, we tell Axis the XML type and the JavaBeans
class for the mapping.

If we had Java types or XML types that required custom mapping logic (e.g., they were not one of
the standard supported data types that can be automatically mapped or we want to bypass the
standard mapping), then you can specify a custom mapping in the WSDD file using a <typeMapping>
element. The <typeMapping> element specifies the XML data type to be mapped (using its qualified
name), the Java class it will be mapped to, and the class names for a serializer (to convert the Java
type to XML) and a deserializer (to convert the XML into the Java type). The serializer and
deserializer classes implement the javax.xml.rpc.encoding.SerializerFactory and
DeserializerFactory interfaces, respectively, from JAX-RPC. Again, writing custom
serializers/deserializers for Java types is outside the scope of this chapter. If you find that you need
to support a nonstandard mapping for some reason, please consult the Axis documentation and code
samples.

One deployment detail that isn't included in the Axis WSDD file is the mapping of XML namespaces to
Java packages. This is handled in a separate namespace mapping file, which we discussed earlier
when we discussed writing web service clients with Axis. These namespace/package mapping files are
used by the WSDL2Java tool in Axis, to generate client-side stubs and/or starter code for the service
implementation. A mapping file can also be used with Axis's Java2WSDL tool to create a WSDL file for
a given Java service implementation class.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 13. Remote Method Invocation
This chapter examines the Java Remote Method Invocation (RMI) APIJava's native scheme for
creating and using remote objects. Java RMI provides the following elements:

Support (API and runtime) for remote object implementations

Support for client interfaces, or stubs , to remote objects

A remote object registry for finding objects on the network

A facility for automatically creating (activating) remote objects on demand

A network protocol for communication between remote objects and their clients

Each of these elements has related Java interfaces within the java.rmi package and its subpackages
and runtime support for the feature as part of the JVM services. Using these interfaces and runtime
services, you can develop remote objects and the clients that use them as part of a distributed
application that resides on hosts across the network.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

13.1. What's Covered Here?

This chapter covers the RMI API and runtime included in the JDK 1.5 (otherwise known as J2SE 5.0).
In key areas, we'll highlight features or behavior that varies in earlier versions of the JDK. The most
notable RMI feature introduced in JDK 1.5 is the dynamic generation of client stubs for RMI remote
objects. This makes the use of the RMI compiler optional since stub classes can now be generated on
demand at runtime by the JVM. If your distributed system includes clients running in 1.4 or older
JVMs, however, you'll still need to generate stub classes with the RMI compiler so that these clients
can interact with your remotely exported objects.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

13.2. Introduction to RMI

RMI is the distributed object system that is built into the core Java environment. You can think of RMI
as a built-in facility for Java that allows you to interact with objects that are actually running in Java
virtual machines on remote hosts on the network. With RMI (and other distributed object APIs we
discuss in other chapters of this book), you can get a reference to an object that "lives" in a remote
process and invoke methods on it as if it were a local object running within the same virtual machine
as your code (hence the name "remote method invocation").

Another way to characterize RMI (and other remote object schemes) is in terms of the granularity of
the distribution that it enables. The Java servlet and JSP APIs, described in Chapters 3 and 4, allow
you to distribute applications at the user interface level. Putting a servlet or JSP frontend on your
server-side object model serves to export a web-based (typically HTML) interface to your application,
which any remote web browser can access. The Java networking APIs, embodied in the java.net\ and
java.io packages, allow you to open up very narrow, low-level data connections to your Java
process, for simple data exchanges or "heartbeat" purposes (make a successful connection and
transmit a few bytes to confirm that a process is alive). RMI and other remote object systems fall
somewhere in between the two. They allow you to export functionality at the object/component level,
allowing remote clients to interact directly with individual objects, in the same way they do with local
objects: using (remote) method calls.

RMI was added to the core Java API in Version 1.1 of the JDK, in recognition of the critical need for
support for distributed objects in distributed application development. Prior to RMI and other remote
object schemes, writing a distributed application involved basic socket programming, in which a "raw"
communication channel was used to pass messages and data between two remote processes. Now,
with RMI and distributed objects, you can "export" an object as a remote object, so that other
remote processes/agents can access it directly as a Java object. So, instead of defining a low-level
message protocol and data transmission format between processes in your distributed application,
you can use Java interfaces as the "protocol" and the exported method arguments become the data
transmission format. The distributed object system (RMI in this case) handles all the underlying
networking needed to make your remote method calls work.

Java RMI is normally a Java-only distributed object scheme; if you are using the default RMI
communication protocol (Java Remote Method Protocol, or JRMP), objects in an RMI-based
distributed application have to be implemented in Java. Some other distributed object schemes, most
notably CORBA , are language-independent, which means that the objects can be implemented in
any language that has a defined binding. With CORBA, for example, bindings exist for C, C++, Java,
Smalltalk, and Ada, among other languages.

The advantages of RMI primarily revolve around the fact that it is "Java-native." Since RMI is part of
the core Java API and is built to work directly with Java objects within the Java VM, the integration of
its remote object facilities into a Java application is almost seamless. And since Java RMI is built on
the assumption that both the client and server are Java objects, RMI can extend Java's internal
garbage-collection mechanisms to provide distributed garbage collection of remotely exported
objects.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you have a distributed application with heterogeneous platform components, some of which are
written in Java and some of which aren't, you have a few choices. You can use RMI, wrapping the
non-Java code with RMI-enabled Java objects using the Java Native Interface (JNI). Near the end of
this chapter, we discuss this first option in some detail to give you a feeling for when this technique
could be useful and when it wouldn't be. Another option is to use another object distribution scheme,
such as CORBA, that supports language-independent object interfaces. Chapter 14 covers the Java
interface to CORBA that is included in the JDK. A third option involves using RMI/IIOP , which allows
RMI objects to communicate directly with remote CORBA objects (implemented in any language
supported by CORBA) over IIOP (Internet Inter-ORB Protocol). We discuss this option in some detail
at the end of this chapter. Finally, a more recent and more popular option for connecting cross-
platform distributed systems is to use SOAP-based web services. Standard support for web services
in Java is provided by the JAX-RPC and SAAJ APIs, both of which are discussed in Chapter 12.

13.2.1. RMI in Action

Before we start examining the details of using RMI, let's look at a simple RMI remote object at work.
We will create an Account object that represents some kind of bank account and then use RMI to
export it as a remote object so that remote clients (e.g., ATMs, personal finance software running on
a PC, etc.) can access it to carry out transactions.

The first step is to define the interface for our remote object. Example 13-1 shows the Account
interface. You can tell that it's an RMI object because it extends the java.rmi.Remote interface.
Another signal that this is meant for remote access is that each method can throw a
java.rmi.RemoteException. The Account interface includes methods to get the account name and
balance and to make deposits, withdrawals, and transfers.

Example 13-1. A remote account interface

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface Account extends Remote {
 // Get the name on the account
 public String getName() throws RemoteException;
 // Get current balance
 public float getBalance() throws RemoteException;
 // Take some money away
 public void withdraw(float amt)
 throws RemoteException, InsufficientFundsException;
 // Put some money in
 public void deposit(float amt) throws RemoteException;
 // Move some money from one account into this one
 public void transfer(float amt, Account src)
 throws RemoteException, InsufficientFundsException;
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The next step is to create an implementation of this interface, which leads to the AccountImpl class
shown in Example 13-2. This class implements all the methods listed in the Account interface and
adds a constructor that takes the name of the new account to be created. Notice that the
AccountImpl class implements the Account interface, but it also extends the
java.rmi.UnicastRemoteObject class. The UnicastRemoteObject class provides the basic remote
functionality for RMI server objects.

Example 13-2. Implementation of the remote account interface

import java.rmi.RemoteException;
import java.rmi.server.UnicastRemoteObject;

public class AccountImpl extends UnicastRemoteObject implements Account {
 // Our current balance
 private float mBalance = 0;
 // Name on account
 private String mName = "";
 // Create a new account with the given name
 public AccountImpl(String name) throws RemoteException {
 mName = name;
 }

 public String getName() throws RemoteException {
 return mName;
 }

 public float getBalance() throws RemoteException {
 return mBalance;
 }
 // Withdraw some funds
 public void withdraw(float amt)
 throws RemoteException, InsufficientFundsException {
 if (mBalance >= amt) {
 mBalance -= amt;
 // Log transaction...
 System.out.println("--> Withdrew " + amt +
 " from account " + getName());
 System.out.println(" New balance: " + getBalance());
 }
 else {
 throw new InsufficientFundsException("Withdrawal request of " +
 amt + " exceeds balance of "
 + mBalance);
 }
 }

 // Deposit some funds
 public void deposit(float amt) throws RemoteException {
 mBalance += amt;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Log transaction...
 System.out.println("--> Deposited " + amt +
 " into account " + getName());
 System.out.println(" New balance: " + getBalance());
 }
 // Move some funds from another (remote) account into this one
 public void transfer(float amt, Account src)
 throws RemoteException, InsufficientFundsException {
 if (checkTransfer(src, amt)) {
 src.withdraw(amt);
 this.deposit(amt);
 // Log transaction...
 System.out.println("--> Transferred " + amt +
 " from account " + getName());
 System.out.println(" New balance: " + getBalance());
 }
 else {
 throw new InsufficientFundsException("Source account balance " +
 "is insufficient.");
 }
 }
 // Check to see if the transfer is possible, given the source account
 private boolean checkTransfer(Account src, float amt) {
 boolean approved = false;
 try {
 if (src.getBalance() >= amt) {
 approved = true;
 }
 }
 catch (RemoteException re) {
 // If some remote exception occurred, then the transfer is still
 // compromised, so return false
 approved = false;
 }
 return approved;
 }
}

Once the remote interface and an implementation of it are complete, you compile both Java files with
your favorite Java compiler. If you are using JDK 1.5 or later for both the server and the client (and
compiled the classes using a 1.5-compliant compiler), you can use them both at this pointthe stubs
and skeletons needed to connect the client to the server will be dynamically generated at runtime.
But if you're using an earlier JDK to run either the client or the server, you'll need to use the RMI
stub/skeleton compiler to generate a client stub and a server skeleton for the AccountImpl object.
The stub and skeleton handle the communication between the client application and the server
object. The RMI compiler is called rmic, and you can invoke it for this example like so:

 % rmic -d /home/classes AccountImpl

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The stub and skeleton classes are generated and stored in the directory given by the -d option
(/home/classes, in this case). This example assumes that the AccountImpl class and the
/home/classes directory are already in your CLASSPATH before you run the RMI compiler.

There's just one more thing we need to do before we can actually use our remote object: register it
with an RMI registry , so that remote clients can find it on the network. The utility class that follows,
AccountServer, does this by creating an AccountImpl object and then binding it to a name in the local
registry using the java.rmi.Naming interface:

 import java.net.MalformedURLException;
 import java.rmi.Naming;
 import java.rmi.RMISecurityManager;
 import java.rmi.RemoteException;

 public class AccountServer {
 public static void main(String argv[]) {
 try {
 System.setSecurityManager(new RMISecurityManager());
 // Make an Account with a given name
 AccountImpl acct = new AccountImpl("JimF");

 // Register it with the local naming registry
 Naming.rebind("JimF", acct);
 System.out.println("Registered account as JimF.");

 // Keep the server process alive indefinitely
 Object dummy = new Object();
 synchronized (dummy) {
 try {
 dummy.wait()
;
 }
 catch (InterruptedException ie) {}
 }
 }
 catch (RemoteException re) {
 System.err.println("Remote exception while" +
 "creating/registering
: "
 + re.getMessage());
 }
 catch (MalformedURLException mue) {
 System.err.println("Bad name given when binding server object: "
 + mue.getMessage());
 }
 }
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

After the AccountServer.main() method is done registering its Account object, it keeps the server
process alive by going into an infinite wait() loop, waiting on a local object that is the target of our
own synchronized block. In a real-world situation, you would probably have more elegant ways to
keep the server alive and kill it off. Or perhaps not, since this approach is simple, but effective.

After you compile the AccountServer class, you can run its main() method to register an Account
with the local RMI registry. First, however, you need to start the registry. With Sun's JDK, the
registry can be started using the rmiregistry utility. On a Unix machine, this can be done like so:

 objhost% rmiregistry &

Once the registry is started, you can invoke the main() method on the AccountServer class simply
by running it:

 objhost% java AccountServer
 Registered account.

Now we have a remote Account object that is ready and waiting for a client to access it and call its
methods. The following client code does just this, by first looking up the remote Account object using
the java.rmi.Naming interface (and assuming that the Account object was registered on a machine
named objhost.org), and then calling the deposit method on the Account object:

 import java.rmi.Naming;

 public class AccountClient {
 public static void main(String argv[]) {
 try {
 // Look up account object
 Account jimAcct = (Account)Naming.lookup("rmi://objhost.org/JimF");

 // Make deposit
 jimAcct.deposit(12000);

 // Report results and balance.
 System.out.println("Deposited 12,000 into account owned by " +
 jimAcct.getName());
 System.out.println("Balance now totals: " + jimAcct.getBalance());
 }
 catch (Exception e) {
 System.out.println("Error while looking up account:");
 e.printStackTrace();
 }
 }
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The first time you run this client, here's what you'd do:

 % java AccountClient
 Deposited 12,000 into account owned by Jim.Farley
 Balance now totals: 12000.0

For the sake of this example, we have made two big assumptions about the environment used to run
the code. First, we assume that the client process and the RMI registry have all the necessary classes
available on their runtime CLASSPATH (i.e., the Account interface and, if needed, the stub classes
generated from the AccountImpl implementation). The second assumption is that the JVMs being
used for the RMI registry, the server process, and the client all have their security permissions set to
allow the various network connections needed for the server to register the Account object and for
the client to get a reference to the Account from the registry. Later in the chapter, we'll see how to
deal with loading classes remotely and dynamically, when the client doesn't necessarily have them
locally. We'll also discuss the security permissions needed to run RMI servers, clients, and registries.
In the meantime, just to see the code running, make sure that all of the example classes are in the
CLASSPATH of the client, the server process, and the RMI registry. Also, to avoid any potential security
permission issues, you can make a special security policy file with the following contents:

 grant {
 permission java.security.AllPermission;
 };

Then run your client and server JVMs using this security policy:

 > java -Djava.security.policy=allpermissions.policy . . .

This policy file will effectively disable all permission checks in the JVM, so it is definitely not
recommended for use in production environments. But it's very handy for experimentation and
debugging purposes.

13.2.2. RMI Architecture

Now that we've seen a complete example of an RMI object in action, let's look at what makes remote
objects work, starting with an overview of the underlying RMI architecture . There are three layers
that comprise the basic remote object communication facilities in RMI:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Stub/skeleton layer

Provides the interface that client and server application objects use to interact with each other.

Remote reference layer

The middleware between the stub/skeleton layer and the underlying transport protocol. This
layer handles the creation and management of remote object references.

Transport protocol layer

The binary data protocol that sends remote object requests over the wire.

These layers interact with one another as shown in Figure 13-1. In this figure, the server is the
application that provides remotely accessible objects, while the client is any remote application that
communicates with these server objects.

In a distributed object system, the distinctions between clients and servers can get pretty blurry at
times. Consider the case in which one process registers a remote-enabled object with the RMI
naming service, and a number of remote processes are accessing it. We might be tempted to call the
first process the server and the other processes the clients. But what if one of the clients calls a
method on the remote object, passing a reference to an RMI object that's local to the client. Now the
server has a reference to and is using an object exported from the client, which turns the tables
somewhat. The "server" is really the server for one object and the client of another object, and the
"client" is a client and a server, too. For the sake of discussion, we refer to a process in a distributed
application as a server or client if its role in the overall system is generally limited to one or the other.
In peer-to-peer systems, in which there is no clear client or server, we refer to elements of the
system in terms of application-specific roles (e.g., chat participant, chat facilitator).

Figure 13-1. The RMI runtime architecture

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As you can see in Figure 13-1, a client makes a request of a remote object using a client-side stub;
the server object receives this request from a server-side object skeleton. A client initiates a remote
method invocation by calling a method on a stub object. The stub maintains an internal reference to
the remote object it represents and forwards the method invocation request through the remote
reference layer by marshaling the method arguments into serialized form and asking the remote
reference layer to forward the method request and arguments to the appropriate remote object.
Marshaling involves converting local objects into portable form so that they can be transmitted to a
remote process. Each object is checked as it is marshaled, to determine whether it implements the
java.rmi.Remote interface. If it does, its remote reference is used as its marshaled data. If it isn't a
Remote object, the argument is serialized into bytes that are sent to the remote host and
reconstituted into a copy of the local object. If the argument is neither Remote nor Serializable, the
stub throws a java.rmi.MarshalException back to the client.

If the marshaling of method arguments succeeds, the client-side remote reference layer receives the
remote reference and marshaled arguments from the stub. This layer converts the client request into
low-level RMI transport requests according to the type of remote object communication being used.
In RMI, remote objects can (potentially) run under several different communication styles, such as
point-to-point object references , replicated objects, or multicast objects. The remote reference layer
is responsible for knowing which communication style is in effect for a given remote object and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

generating the corresponding transport-level requests. In the version of RMI bundled with Sun's JVM
implementations, the only communication style provided out of the box is point-to-point object
references, so this is the only style we'll discuss in this chapter. For point-to-point communication,
the remote reference layer constructs a single network-level request and sends it over the wire to the
sole remote object that corresponds to the remote reference passed along with the request.

On the server, the server-side remote reference layer receives the transport-level request and
converts it into a request for the server skeleton that matches the referenced object. The skeleton
converts the remote request into the appropriate method call on the actual server object, which
involves unmarshaling the method arguments into the server environment and passing them to the
server object. As you might expect, unmarshaling is the inverse procedure to the marshaling process
on the client. Arguments sent as remote references are converted into local stubs on the server, and
arguments sent as serialized objects are converted into local copies of the originals.

If the method call generates a return value or an exception, the skeleton marshals the object for
transport back to the client and forwards it through the server reference layer. This result is sent
back using the appropriate transport protocol, where it passes through the client reference layer and
stub, is unmarshaled by the stub, and is finally handed back to the client thread that invoked the
remote method.

13.2.3. RMI Object Services

On top of its remote object architecture, RMI provides some basic object services you can use in your
distributed application. These include an object naming/registry service , a remote object activation
service, and distributed garbage collection.

13.2.3.1. Naming/registry service

When a server process wants to export some RMI-based service to clients, it does so by registering
one or more RMI-enabled objects with its local RMI registry (represented by the Registry interface).
Each object is registered with a name clients can use to reference it. A client can obtain a stub
reference to the remote object by asking for the object by name through the Naming interface. The
Naming.lookup() method takes the fully qualified name of a remote object and locates the object on
the network. The object's fully qualified name is in a URL-like syntax that includes the name of the
object's host and the object's registered name.

It's important to note that, although the Naming interface is a default naming service provided with
RMI, the RMI registry can be tied into other naming services by vendors. Sun has provided a binding
to the RMI registry through JNDI, for example. See Chapter 9 for more details on how JNDI can be
used to look up objects (remote or otherwise).

Once the lookup() method locates the object's host, it consults the RMI registry on that host and
asks for the object by name. If the registry finds the object, it generates a remote reference to the
object and delivers it to the client process, where it is converted into a stub reference that is returned
to the caller. Once the client has a remote reference to the server object, communication between
the client and the server commences as described earlier. We'll talk in more detail about the Naming
and Registry interfaces later in this chapter.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

13.2.3.2. Object activation service

The remote object activation service was introduced to RMI in JDK 1.2. It provides a way for server
objects to be started on an as-needed basis. Without remote activation, a server object has to be
registered with the RMI registry service from within a running Java virtual machine. A remote object
registered this way is available only during the lifetime of the Java VM that registered it. If the server
VM halts or crashes for some reason, the server object becomes unavailable and any existing client
references to the object become invalid. Any further attempts by clients to call methods through
these now-invalid references result in RMI exceptions being thrown back to the client.

The RMI activation service provides a way for a server object to be activated automatically when a
client requests it. The activation service creates the server object dynamically within a new or
existing virtual machine and obtains a reference to this newly created object for the client that
caused the activation. A server object that wants to be activated automatically needs to register an
activation method with the RMI activation daemon running on its host. We'll discuss the RMI
activation service in more detail later in the chapter.

13.2.3.3. Distributed garbage collection

The last of the remote object services, distributed garbage collection , is a fairly automatic process
that you as an application developer should never have to worry about. Every server that contains
RMI-exported objects automatically maintains a list of remote references to the objects it serves.
Each client that requests and receives a reference to a remote object, either explicitly through the
registry/naming service or implicitly as the result of a remote method call, is issued this remote
object reference through the remote reference layer of the object's host process. The reference layer
automatically keeps a record of this reference in the form of an expirable "lease" on the object. When
the client is done with the reference and allows the remote stub to go out of scope or when the lease
on the object expires, the reference layer on the host automatically deletes the record of the remote
reference and notifies the client's reference layer that this remote reference has expired. The concept
of expirable leases, as opposed to strict on/off references, is used to deal with situations in which a
client-side failure or a network failure keeps the client from notifying the server that it is done with its
reference to an object.

When an RMI object has no further remote references recorded in the remote reference layer, then
its eligibility for garbage collection is based solely on its local references, like any other Java object. If
there are also no local references to the object (this reference list is kept by the Java VM itself as part
of its normal garbage-collection algorithm), the object is marked as garbage and picked up by the
next run of the system garbage collector.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

13.3. Defining Remote Objects

Now that you have a basic idea of how Java RMI works, we can explore the details of creating and
using distributed objects with RMI in more detail. As mentioned earlier, defining a remote RMI object
involves specifying a remote interface for the object, then providing a class that implements this
interface. The remote interface and implementation class are then used by RMI to generate a client
stub and server skeleton for your remote object. The communication between local objects and
remote objects is handled using these client stubs and server skeletons. The relationships among
stubs, skeletons, and the objects that use them are shown in Figure 13-2.

Figure 13-2. Relationships among remote object, stub, and skeleton
classes

When a client gets a reference to a remote object (details on how this reference is obtained come
later) and then calls methods on this object reference, there needs to be a way for the method
request to get transmitted back to the actual object on the remote server and for the results of the
method call to get transmitted back to the client. This is what the generated stub and skeleton

http://lib.ommolketab.ir
http://lib.ommolketab.ir

classes are for. They act as the communication link between the client and your exported remote
object, making it seem to the client that the object actually exists within its Java VM.

Stubs and skeletons are generated from the classes that implement the remote RMI interfaces that
you've exported. The process of generating these stub and skeleton classes is done either
dynamically at runtime (in JDK 1.5 or later JVMs) or by using the RMI compiler . Whether you use the
RMI compiler or use dynamic stub and skeleton generation, the role of these classes in the RMI
runtime are the same. The stub and skeleton classes act as go-betweens for the client application
and the actual server object, respectively. The client stub class implements the remote interface that
you defined, and its implementations of each remote method package up (marshal) the method
arguments provided by the client and transmit them to the server. The skeleton class is responsible
for receiving the method arguments from the RMI runtime after they've been transmitted over the
network. It unpackages (unmarshals) the method arguments and makes the corresponding method
call on the actual remote object implementation on the server. Whatever response the method call
generates (return data or an exception), the results are packaged and transmitted back to the
remote client by the skeleton and the RMI runtime working together. The client stub method (which
is still executing at this point) unpackages the results and delivers them to the client as the result of
its remote method call.

As we saw earlier in the chapter, the first step in creating your remote objects is to define the remote
interfaces for the types of objects you need to use in a distributed object context. This isn't much
different from defining the public interfaces in a nondistributed application, with the following
exceptions:

Every object you want to distribute using RMI has to directly or indirectly extend an interface
that extends the java.rmi.Remote interface.

Every method in the remote interface has to declare that it throws a java.rmi.RemoteException
or one of the parent classes of RemoteException.[*]

[*] Note that prior to Java 1.2, the RMI specification required that every method on a remote interface had to throw

RemoteException specifically. In Java 1.2 and later, this restriction was loosened to allow any superclass of

RemoteException. One reason for this change is to make it easier to define generic interfaces that support both local and

remote objects.

RMI imposes the first requirement to allow it to differentiate quickly between objects that are enabled
for remote distribution and those that aren't. As we've already seen, during a remote method
invocation, the RMI runtime system needs to be able to determine whether each argument to the
remote method is a Remote object or not. The Remote interface, which is simply a tag interface that
marks remote objects, makes it easy to perform this check.

The second requirement is needed to deal with errors that can happen during a remote session.
When a client makes a method call on a remote object, any number of errors can occur, preventing
the remote method call from completing. These include client-side errors (e.g., an argument can't be
marshaled), errors during the transport of data between client and server (e.g., the network
connection is dropped), and errors on the server side (e.g., the method throws a local exception that
needs to be sent back to the remote caller). The RemoteException class is used by RMI as a base
exception class for any of the different types of problems that might occur during a remote method
call. Any method you declare in a Remote interface is assumed to be remotely callable, so every
method has to declare that it might throw a RemoteException or one of its parent interfaces.

In Example 13-1 we saw the Account interface, a remote interface that declares six remote methods:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

getName(), getBalance(), withdraw(), deposit() and TRansfer(). Since we want to use this
interface in an RMI setting, we've declared that the interface extends the Remote interface. In
addition, each method has arguments and return values that are either Remote or Serializable, and
each method is declared as throwing a RemoteException.

With the remote interface defined, the next thing we need to do is write a class that implements the
interface. We saw the implementation of the Account interface, the AccountImpl class, in Example 13-
2. This class has implementations of the six remote methods defined in the Account interface; it also
has a nonremote method, checkTransfer(), to verify that a funds transfer between two accounts
can be made. Notice that the checkTransfer() method doesn't have to be declared as throwing a
RemoteException, since it isn't a remotely callable method. Only the methods that participate in the
remote method protocol of the RMI runtime need to declare that they can throw RemoteException or
one of its parent exceptions. The methods in your implementation class that participate in the RMI
runtime include implementations of any methods declared in the remote interface (withdraw(),
transfer(), etc. in our example) and, if you're extending UnicastRemoteObject, any constructors on
your implementation class. Any other methods you define in your implementation class (like
checkTransfer()) are considered nonremote (i.e., they are callable only from within the local Java
virtual machine where the object exists).

Constructors are required to have RemoteException in their throws clause because an RMI
implementation class that extends UnicastRemoteObject is "exported" and made accessible to remote
method invocations when it is constructed. The RemoteException in the throws clause of the
constructor is required to cover any problems that may occur during the RMI export process. All of
the constructors on UnicastRemoteObject throw RemoteException because they all call the static
UnicastRemoteObject.exportObject() methods internally, so the Java compiler will force you to
include RemoteException in the throws clause of your implementation class.

13.3.1. Key RMI Classes for Remote Object Implementations

As you have probably noticed, our AccountImpl class also extends the UnicastRemoteObject class.
This is a class in the java.rmi.server package that extends java.rmi.server.RemoteServer, which
itself extends java.rmi.server.RemoteObject, the base class for all RMI remote objects. Four key
classes are related to writing server object implementations:

RemoteObject

RemoteObject implements both the Remote and Serializable interfaces. Although the
RemoteObject class is in the java.rmi.server package, it is used by both the client and server
portions of a remote object reference. Both client stubs and server implementations are
subclassed (directly or indirectly) from RemoteObject. A RemoteObject contains the remote
reference for a particular remote object.

RemoteObject is an abstract class that reimplements the equals(), hashCode(), and
toString() methods inherited from Object in a way that makes sense and is practical for
remote objects. The equals() method, for example, is implemented to return true if the
internal remote references of the two RemoteObject objects are equal (i.e., if they both point to
the same server object).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RemoteServer

RemoteServer is an abstract class that extends RemoteObject. It defines a set of static methods
that are useful for implementing server objects in RMI, and it acts as a base class for classes
that define various semantics for remote objects. In principle, a remote object can behave
according to a simple point-to-point reference scheme; it can have replicated copies of itself
scattered across the network that need to be kept synchronized or any number of other
scenarios. JDK 1.1 supported only point-to-point, nonpersistent remote references with the
UnicastRemoteObject class. JDK 1.2 introduced the RMI activation system, so current versions
of the core Java API include another subclass of RemoteServer: Activatable.

UnicastRemoteObject

This is a concrete subclass of RemoteServer that implements point-to-point remote references
over TCP/IP networks. These references are nonpersistent: remote references to a server
object are valid only during the lifetime of the server object. Before the server object is created
(inside a virtual machine running on the host) or after the object has been destroyed, a client
can't obtain remote references to the object. In addition, if the virtual machine containing the
object exits (intentionally or otherwise), any existing remote references on clients become
invalid and generate RemoteException objects if used.

Activatable

This concrete subclass of RemoteServer is part of the RMI object activation facility and can be
found in the java.rmi.activation package. It implements a server object that supports
persistent remote references. If a remote method request is received on the server host for an
Activatable object and the target object is not executing at the time, the object can be started
automatically by the RMI activation daemon.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

13.4. Creating the Stubs and Skeletons

As mentioned earlier, JVMs in the 1.4 or earlier versions of Java require that you generate
stub/skeleton classes using the RMI compiler. Once the interface and implementation classes have
been compiled using the standard Java compiler, the RMI compiler (rmic, in the Sun JDK) is used to
generate the stub and skeleton classes depicted earlier in Figure 13-1. In its simplest form, you can
run rmic with the fully qualified class name of your implementation class as the only argument. For
example, once we've compiled the Account and AccountImpl classes, we can generate the stubs and
skeletons for the remote Account object with the following command (Unix version):

 % rmic AccountImpl

If the RMI compiler is successful, this command generates the stub and skeleton classes,
AccountImpl_Stub and AccountImpl_Skel, in the current directory. The rmic compiler has additional
arguments that let you specify where the generated classes should be stored, whether to print
warnings, and so on. For example, if you want the stub and skeleton classes to reside in the directory
/usr/local/classes, you can run the command using the -d option:

 % rmic -d /usr/local/classes AccountImpl

This command generates the stub and skeleton classes in the specified directory. A full description of
the rmic utility and its options is given in Appendix F.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

13.5. Accessing Remote Objects as a Client

Now that we've defined a remote object interface and its server implementation and generated the
stub and skeleton classes that RMI uses to establish the link between the server object and the
remote client, it's time to look at how you make your remote objects available to remote clients.

13.5.1. The Registry and Naming Services

The first remote object reference in an RMI distributed application is typically obtained through the
RMI registry facility and the Naming interface. Every host that wants to export remote references to
local Java objects must be running an RMI registry daemon of some kind. A registry daemon listens
(on a particular port) for requests from remote clients for references to objects served on that host.
The standard JDK distribution provides an RMI registry daemon, rmiregistry. This utility simply
creates a Registry object that listens to a specified port and then goes into a wait loop, waiting for
local processes to register objects with it or for clients to connect and look up RMI objects in its
registry. You start the registry daemon by running the rmiregistry command, with an optional
argument that specifies a port to listen to:

 objhost% rmiregistry 5000 &

Without the port argument, the RMI registry daemon listens on port 1099. Typically, you run the
registry daemon in the background (i.e., put an & at the end of the command on a Unix system or
run start rmiregistry [port] in a command prompt on a Windows system) or run it as a service at

startup.

Once the RMI registry is running on a host, you can register remote objects with it using one of these
classes: the java.rmi.registry.Registry interface, the java.rmi.registry.LocateRegistry class, or
the java.rmi.Naming class.

A Registry object represents an interface to a local or remote RMI object registry. The bind() and
rebind() methods can register an object with a name in the local registry, where the name for an
object can be any unique string. If you try to bind() an object to a name that has already been
used, the registry throws an AlreadyBoundException. If you think that an object may already be
bound to the name you want to register, use the rebind() method instead. You can remove an
object binding using the unbind() method. Note that these three methods (bind(), rebind(), and
unbind()) can be called only by clients running on the same host as the registry. If a remote client
attempts to call these methods, the client receives a java.rmi.AccessException. You can locate a
particular object in the registry using the lookup() method, while list() returns the names of all
the objects registered with the local registry. Note that only Remote objects can be bound to names in
the Registry. Remote objects are capable of supporting remote references. Standard Java classes
aren't, so they can't be exported to remote clients through the Registry.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The LocateRegistry class provides a set of static methods a client can use to get references to local
and remote registries, in the form of Registry objects. There are four versions of the static
getregistry() method, so that you can get a reference to either a local registry or a remote
registry running on a particular host, listening to either the default port (1099) or a specified port.
There's also a static createRegistry() method that takes a port number as an argument. This
method starts a registry running within the current Java VM on the given local port and returns the
Registry object it creates.

Using the LocateRegistry and Registry interfaces, we can register one of our AccountImpl remote
objects on the local host with the following code:

 AccountImpl server = new AccountImpl("Jim.Farley");
 Registry localRegistry = LocateRegistry.getRegistry();
 try {
 localRegistry.bind("JimF", server);
 }
 catch (RemoteException re) { // Handle failed remote operation }
 catch (AlreadyBoundException abe) { // Already one there }
 catch (AccessException ae) { // Shouldn't happen, but... }

If this operation is successful (i.e., it doesn't raise any exceptions), the local registry has an
AccountImpl remote object registered under the name JimF. Remote clients can now look up the
object using a combination of the LocateRegistry and Registry interfaces or take the simpler
approach and use the Naming class.

The Naming class lets a client look up local and remote objects using a URL-like naming syntax. The
URL of a registered RMI remote object is typically in the format shown in Figure 13-3. Notice that the
only required element of the URL is the actual object name. The protocol defaults to rmi:, the
hostname defaults to the local host, and the port number defaults to 1099. Note that the default
Naming class provided with Sun's JDK accepts only the rmi: protocol on object URLs. If you attempt to
use any other protocol, a java.net.MalformedURLException is thrown by the lookup() method.

Figure 13-3. Anatomy of an RMI object URL

If we have a client running on a remote host that wants to look up the AccountImpl we registered,
and the AccountImpl object is running on a host named rmiremote.farley.org, the client can get a
remote reference to the object with one line of code:

 Account jimsAccount =
 (Acount)Naming.lookup("rmi://rmiremote.farley.org/JimF");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If we have a client running on the same host as the AccountImpl object, the remote reference can be
retrieved using the degenerate URL:

 Account jimsAccount = (Account)Naming.lookup("JimF");

Alternatively, you can use the LocateRegistry and Registry interfaces to look up the same object,
using an extra line of code to find the remote Registry through the LocateRegistry interface:

 Registry rmtRegistry = LocateRegistry.getRegistry("rmiremote.farley.org");
 Account jimsAccount =
 (Account)rmtRegistry.lookup("JimF");

When you look up objects through an actual Registry object, you don't have the option of using the
URL syntax for the name, because you don't need it. The hostname and port of the remote host are
specified when you locate the Registry through the LocateRegistry interface, and the RMI protocol is
implied, so all you need is the registered name of the object. With the Naming class, you can reduce a
remote object lookup to a single method call, but the name must now include the host, port number,
and registered object name, bundled into a URL. Internally, the Naming object parses the host and
port number from the URL for you, finds the remote Registry using the LocateRegistry interface,
and asks the Registry for the remote object using the object name in the URL.

The principal use for the Registry and Naming classes in an RMI application is as a means to
bootstrap your distributed application. A server process typically exports just a few key objects
through its local RMI registry daemon. Clients look up these objects through the Naming facility to get
remote references to them. Any other remote objects that need to be shared between the two
processes can be exported through remote method calls.

13.5.2. Remote Method Arguments and Return Values

As already mentioned, a critical element of executing a remote method call is the marshaling and
unmarshaling of the method arguments and, once the method has executed, the reverse marshaling
and unmarshaling of the method's return value. RMI handles this process for you automatically, but
you need to understand how different types of objects are transmitted from the method caller to the
server object and back again. More importantly, you need to know which types of objects can't be
used in remote method calls at all.

When you call a method on a remote object, the arguments to the method have to be serializable.
That is, they need to be primitive Java data types (like int, float, etc.) or Java objects that
implement java.io.Serializable. The same restriction applies to the return value of the remote
method. This restriction is enforced at runtime, when you actually make the remote method call,
rather than at compile time.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The RMI stub and skeleton layer decides how to send method arguments and return values over the
network, based on whether a particular object is Remote, Serializable, or neither:

If the object is a Remote object, a remote reference for the object is generated, and the
reference is marshaled and sent to the remote process. The remote reference is received on the
other end and converted into a stub for the original object. This process applies to both method
arguments and return values.

If the object is Serializable but not Remote, the object is serialized and streamed to the remote
process in byte form. The receiver converts the bytes into a copy of the original object.

If the method argument or return value is not serializable (i.e., it's not a primitive data type or
an object that implements Serializable), the object can't be sent to the remote client, and a
java.rmi.MarshalException is thrown.

The principal difference between remote and nonremote objects is that remote objects are sent by
reference, while nonremote, serializable objects are sent by copy. In other words, a remote reference
maintains a link to the original object it references, so changes can be made to the original object
through the remote stub. If the server object calls update methods on an argument to a remote
method and you want the updates to be made on the original object on the client side, the argument
needs to be a Remote object that automatically exports a stub to the server object. Similarly, if the
return value of a remote method call is intended to be a reference to an object living on the server,
the server implementation needs to ensure that the object returned is a Remote object.

It's important to consider, whenever you pass either a remote reference or a serializable object from
one VM to another in a remote method argument, whether the classes needed to unmarshal the
method argument are available on the other side of the method call. If the receiver of the remote
method argument has the necessary class definitions (the remote interface and stub class for remote
references or the actual class definition for serializable objects) in its local CLASSPATH or some other
local ClassLoader context, then you're fine. If it doesn't, you need to configure things so that the
receiver of the method call can dynamically load the needed classes from the caller. We discuss how
this happens in "Dynamic Classloading" later in this chapter.

13.5.3. Factory Classes

When a reference to a remote object is obtained through the RMI registry and then used to request
additional remote references, the registered remote object is often referred to as a factory class.

Factory classes are useful in distributed applications that use remote objects, because in most cases
you can't predict beforehand the kind and number of remote objects that will need to be shared
between two processes. To make a remote object visible to clients through the RMI registry service,
you need to explicitly create the object inside a Java VM on the server and then register that object
using the bind() or rebind() method on the Registry. Using remote references obtained through
method calls on factory objects, however, the client application can dynamically request the creation
of new remote objects, without the objects being registered individually with the server registry.

As an example, suppose we're building a remote banking system, using the Account object we've
been working with throughout this chapter. We want to set up a centralized server that provides
account services to remote clients running on PCs, embedded in ATMs, and the like. On the server,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

we could run an RMI registry, create an Account object for every account we have on record, and
register each one with the RMI registry service using the account name. In this scheme, registering
accounts with the RMI registry goes something like this:

 Registry local = LocateRegistry.getRegistry();
 local.bind("Abrams, John", new AccountImpl("John Abrams"));
 local.bind("Barts, Homer", new AccountImpl("Homer Barts"));
 .
 .
 .

As you can imagine, this is quite unwieldy in practice. Starting the server can take a long time, as
thousands of accounts need to be registered, many of them unnecessarily, since many accounts may
not see any activity before the next downtime. More importantly, accounts that are created or closed
during the server's lifetime somehow need to be added to or removed from the RMI registry, as well
as to and from the bank's database of accounts. A much more sensible approach is to define a
factory class for Account objects, along the lines of the following interface:

 import java.rmi.Remote;
 import java.rmi.RemoteException;

 public interface AccountManager extends Remote {
 public Account getAccount(String name) throws RemoteException;
 public boolean newAccount(Account s) throws RemoteException;
 }

AccountManager lets a client ask for an account by name, using the getAccount() remote method.
The method returns a reference to an Account object that corresponds to the account. Once the client
has the Account reference, transactions against the account can be done through method calls on the
Account object. The AccountManager also has a newAccount() method that allows clients to add new
accounts to the manager's underlying database.

The server implementation of the getAccount() method simply needs to look up the named account
in the account database, create an AccountImpl object to represent the account, and return the
object to the remote client as a remote reference. Since Account objects are Remote objects, the RMI
remote reference layer automatically creates a remote reference for the Account object, and the
client that called the getAccount() method receives a stub for the Account object on the server.

Using the factory object to find accounts is more manageable than using the RMI registry. The bank
maintains a database of accounts and their status, so the server implementation of the
AccountManager can access that database directly to find accounts and create corresponding Account
remote objects. Trying to keep the RMI registry in sync with the bank database makes the registry
an unnecessary shadow of the main database of accounts, giving the bank two databases to
maintain.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

13.6. Dynamic Classloading

The RMI runtime system has a dynamic classloading facility that loads the classes it needs while
executing remote method calls. In some situations, you don't need to worry much about how your
application classes are obtained by the various agents in an RMI application. This is especially true if
you have direct access to all hosts involved in the distributed system (i.e., if you can install your
application classes in the local CLASSPATH for each machine participating in the application). For
instance, when discussing the earlier Account example, we assumed all the relevant classes (Account,
AccountImpl, stub, and skeleton classes) were installed on both the client and the server. However, if
your distributed application involves remote agents running on hosts that aren't directly under your
control, you need to understand how RMI loads classes at runtime, so you can ensure that each
remote agent can find the classes it needs in order to run.

As with any Java application, the Java runtime system is responsible for loading the classes needed
to initiate an RMI session. Starting an interaction with a remote object means loading the RMI API
classes themselves, as well as the base interface for the remote object and the stub class for the
remote interface. On the server side, the skeleton class for the remote object and the actual
implementation class need to be loaded in order to run the server object that is being remotely
exported.

The classes that are referenced directly by a given Java class are normally loaded by the same
classloader that loaded the class itself. So, in an RMI client that does a Naming lookup to find a
remote object, the stub interface for the remote object is loaded using the classloader for the class
doing the lookup. If the RMI client is a Java application (started using the java command to invoke
the main() method on an object), the default (local) classloader tries to find the remote interface
locally, from the local CLASSPATH. If the RMI client is an applet loaded in a web page, the
AppletClassLoader TRies to look for the remote interface on the applet's host, in the codebase of the
applet.

The RMI runtime system provides its own classloader, the RMIClassLoader, to augment the default
classloading process just described. The RMIClassLoader loads stubs and skeleton classes for remote
interfaces, as well as the classes for objects used as remote method arguments or return values.
These classes usually aren't explicitly referenced by your RMI application itself, but they are needed
by the RMI runtime system for generating remote references and marshaling/unmarshaling method
arguments and return values.

When it's loading the bytecodes for class definitions, the RMI runtime system first attempts to use
the default classloader for the local context (i.e., an AppletClassLoader for an applet or the system
classloader for a Java application). If the referenced class isn't found using the default local
classloader, the RMIClassLoader tries to load the class bytecodes remotely according to the
procedures explained next.

13.6.1. Configuring Clients and Servers for Remote Classloading

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When the RMI runtime system marshals a remote object stub, method argument, or return value, it
encodes a URL in the marshaled bytestream to tell the process on the receiving end of the stream
where to look for the class file for the marshaled object. If the class for the object being marshaled
was loaded by a nondefault classloader (e.g., the AppletClassLoader or the RMIClassLoader), the
codebase of that classloader is encoded in the marshaled stream. If the class was loaded by the
default classloader from the local CLASSPATH, the value of the java.rmi.server.codebase property for
the Java VM marshaling the object is sent in the stream. This property is not set by default in the
Java VM, so you need to make sure that it's set to a URL that points to the location of the necessary
class files. One way to do this is to include a command-line argument when starting the Java VM, as
in:

 % java -Djava.rmi.server.codebase=http://objhost.org/classes RMIProcess

Here we start a Java process with its codebase set to http://objhost.org/classes/. This means that
any remote process that needs to load classes for objects received from this process during an RMI
session should use this HTTP URL in order to find them (if the classes can't be found on the local
CLASSPATH, that is). This applies either if RMIProcess is serving remote objects itself through an RMI
registry or if RMIProcess is passing objects into methods it is calling on other remote objects. In the
first case, a remote client that needs to load the stub classes for the objects exported by RMIProcess

uses the codebase to find these classes. In the second case, a remote process uses the codebase to
load the classes for method arguments that RMIProcess is passing into remote method calls it makes.

If an RMI runtime system is trying to unmarshal an object stub, method argument, or return value
and it doesn't find the class using the default classloader (e.g., the system classloader, which looks
on the local CLASSPATH first), the RMIClassLoader can use the URL in the marshal stream to look for
the class bytecodes remotely. The RMIClassLoader takes the URL from the marshaled bytestream and
opens a URL connection to the specified host to load the needed classes. If both the local class search
and this remote URL search fail to find the required classes, the unmarshal operation generates an
exception, and the remote method call fails.

Note that in order for a Java runtime system to even attempt to load classes remotely, it has to have
a security manager installed that allows remote classloading. The java.rmi.RMISecurityManager can
be used for this. In both your RMI object server and clients, include the following line before any RMI
calls:

 System.setSecurityManager(new RMISecurityManager());

If you don't set the security manager, the Java VM is allowed to look for classes locally, and your RMI
calls will work only if all of the required classes can be found on the local CLASSPATH.

Another issue with dynamically loading remote classes is that the default Java security policy doesn't
allow all the networking operations required to resolve a class from a remote host. So, if you have an
RMI client or server that needs to resolve classes remotely, you need to use a policy file that opens
up network permissions to allow this. We don't go into all the details of network policies or the syntax
of the security policy file,[2] but at minimum, you need to add the following line to the policy file on
the RMI client:

http://objhost.org/classes/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[2] For details on Java code-level security policies and files, see Java Security by Scott Oaks (O'Reilly).

 permission java.net.SocketPermission "objhost.org", "accept,connect";

This line allows the client to connect to any port on objhost.org and to accept connections from
objhost.org on any of those ports. If you want to make this a bit more restrictive, since we're using
HTTP as the protocol for downloading classes, you really just need port 80 access to/from
objhost.org, so use this line in the policy file instead:

 permission java.net.SocketPermission "objhost.org:80", "accept,connect";

The policy file change is needed in order to bypass the stricter rules imposed by the
RMISecurityManager and allow the RMI runtime to create the network connections it needs. You can
either add this permission to the default policy file used by your Java runtime (if you are using Sun's
JRE, this is in JAVA_HOME/lib/security/java.policy, where JAVA_HOME is the root of your Java
runtime installation), or you can create a custom policy file (perhaps by copying and editing the
default one) and use it specifically for this application. If you've made a modified policy file, you can
specify it on the command line when you start your RMI process, in a similar way to setting the
codebase property in our earlier example:

 % java -Djava.security.policy=mypolicy.txt RMIProcess

As a simple example, suppose we want to use our earlier Account example to export an Account
object on one host and access that Account on another host, where the only class available locally is
the Account interface class itself. On the server, we start an RMI registry [3] and run the
AccountServer class as before, but since we want remote clients to be able to load the stub classes
remotely, we need to set the codebase property to where the clients can find these classes:

[3] Note that in order for the RMI registry to recognize and pass along the codebase property you specify, it has to be started in

such a way that it can't find any of the remotely loaded classes on its CLASSPATH. So start your RMI registry with a CLASSPATH

that doesn't include the stub and skeleton classes, and then run your RMI server with a CLASSPATH that includes all required

classes.

 % java -Djava.rmi.server.codebase=http://objhost.org/classes/ AccountServer
 Registered account.

We've set the codebase to http://objhost.org/classes/, so we have to make sure that an HTTP server
is running on the objhost.org machine and that the necessary class files (e.g., the AccountImpl stub
class) are in the classes directory of that HTTP server's document root.

Now, it may seem strange that we need to provide an HTTP server in order to download classes

http://objhost.org/classes/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

between two RMI processes. If the RMI registry can provide remote objects to remote callers, why
can't it provide class definitions as well? The reason that the designers of the RMI specification did
not tie dynamic classloading to the RMI registry is because they did not want the RMI registry to be a
strictly required element of the RMI architecture. In order to leave open the possibility of using other
naming services to register RMI remote objects (CORBA, LDAP, custom systems), they needed to
keep the RMI registry an optional component. Therefore, dynamic classloading had to be a separate,
but portable, process, hence the HTTP process that exists in the specification. Luckily, as of JDK 1.4,
the ability to customize the behavior of the RMIClassLoader was added to RMI, which opens up the
possibility of implementing other dynamic classloading schemes (if the HTTP scheme doesn't fit your
needs). See the RMI Javadoc for RMIClassLoader and RMIClassLoaderSpi (both in the
java.rmi.server package) for details.

Now we can run the AccountClient class on the remote client as before, but the client's host machine
doesn't have the stub class for the AccountImpl remote object available locally. When the
AccountClient tries to look up the remote Account object, we want the stub class to be loaded
remotely. Two simple changes to our Account example make this possible. First, add a line to the
AccountClient.main() method that sets the RMISecurityManager, in order to allow for remote
classloading:

 import java.rmi.Naming;
 import java.rmi.RMISecurityManager;

 public class AccountClient {
 public static void main(String argv[]) {
 try {
 // Set the RMI security manager,
 // in case we need to load remote classes
 System.setSecurityManager(new RMISecurityManager());

 // Lookup account object
 Account jimAcct = (Account)Naming.lookup("rmi://objhost.org/JimF");
 .
 .
 .

The other change is to use a more lenient policy file when running AccountClient so the necessary
network operations can be performed. Again, we don't discuss the syntax of the policy file here, but
assuming you've put the required policy settings into a file named rmipolicy.txt, you can start the
client like so:

 % java -Djava.security.policy=rmipolicy.txt AccountClient
 Deposited 12,000 into account owned by JimF
 Balance now totals: 12000.0

You'll notice that the -Djava.rmi.server.codebase= option isn't needed here, because the client isn't
providing class definitions to the Account server. If we were passing arguments into remote methods

http://lib.ommolketab.ir
http://lib.ommolketab.ir

called on the Account server, and the classes for these arguments weren't available on the client,
then we would have to set up the AccountClient in a similar way to what we just described for the
Account server (i.e., set up an HTTP-accessible codebase and export it to the server by setting the
java.rmi.server.codebase property of the client's VM).

13.6.2. Loading Classes from Applets

Virtually all the steps we've outlined for running an RMI client to allow it to remotely load classes
apply to applets as well. The only difference is that the classes for applets are loaded using an
AppletClassLoader, which checks the applet's codebase for any classes required to run the applet.
The default security policy for applets already allows for remote loading of classes, since this is how
an applet works in the first place, so there's no need to change the security policy when using RMI
within an applet. All you need to do to ensure that the applet finds the remote interface and stub
class for the RMI object is to put them in the server directory that corresponds to the applet's
codebase.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

13.7. Remote Object Activation

Automatic activation of remote objects was added to RMI as of Java 1.2. The activation subsystem in
RMI provides you with two basic features: the ability to have remote objects instantiated (activated)
on demand by client requests and the ability for remote object references to remain valid across
server crashes, making the references persistent. These features can be quite useful in certain types
of distributed applications.

For example, think back to the AccountManager class we discussed when we talked about factory
objects. We might not want to keep the AccountManager running on our server 24 hours a day;
perhaps it consumes lots of server resources (memory, database connections, etc.), so we don't
want it running unless it is being used. Using the RMI activation service, we can set up the
AccountManager so that it doesn't start running until the first client requests an Account. In addition,
after some period of inactivity, we can have the AccountManager shut down to conserve server
resources and then reactivate the next time a client asks for an Account.

If a remote object is made activatable, it can be registered with the RMI registry without actually
being instantiated. Normally, RMI remote objects (based on the UnicastRemoteObject interface)
provide only nonpersistent references to themselves. Such a reference can be created for a client
only if the referenced object already exists in a remote Java VM. In addition, the remote reference is
valid only during the lifetime of the remote object. The remote object activation service adds support
for persistent remote references that can be created even if the remote object is not running at the
time of the request. This can persist beyond the lifetime of an individual server object.

The key features provided by the RMI activation service include:

The ability to automatically create remote objects, triggered by requests for references to these
objects.

Support for activation groups , in which groups of activatable remote objects are executed in
the same Java VM, which is automatically started by the activation service if needed.

The ability to restart remote objects if they exit or are destroyed due to a system failure of
some kind. This can add a certain degree of fault tolerance to RMI applications.

In the RMI activation system, activatable objects belong to activation groups, and each activation
group runs within its own Java VM. If you don't group your activatable objects, instead simply
assigning a new activation group to each activatable object you create, each object then runs inside a
separate Java VM.

You typically define an activatable remote object by:

Subclassing your remote object implementation from the Activatable class provided in the
java.rmi.activation package

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Providing activation constructors in the server implementation

Registering the object and its activation method with the activation service

If you want remote clients to directly access your activatable object, you also need to register the
object with the RMI registry, so that it can be found by name on the network. You can register an
activatable class with the registry without actually creating an instance of the remote object, as we'll
see shortly.

You can also create an activatable object without subclassing the Activatable class. This might be
necessary if you need to extend another class and the Java single-inheritance limit keeps you from
also extending Activatable. For most of this section, we'll just discuss the case in which you're
subclassing Activatable; we'll mention this other approach only when needed.

13.7.1. Persistent Remote References

The primary difference between an activatable remote object and a nonactivatable one is that a
remote reference to an activatable object doesn't need to have a "live" object behind it. If an
activatable object is not running (e.g., it hasn't been constructed yet, it has been garbage-collected
by its Java VM, or its VM has exited), a remote reference to the object can still be exported to a
client. The client receives a stub, as usual, and can make remote method invocations through the
stub. When the first method is invoked, the activation service running on the server sees that the
object is not active and goes about activating the object for the client. If the object doesn't have a
VM to run in, the activation system starts one. The object is then activated using information that has
been registered with the activation system. This information includes the object's class name, a URL
that can load the class bytecodes if they're not found in the local CLASSPATH, and data to pass into the
object's activation constructor. Once the object has been activated, the method invocation takes
place, and the results are marshaled and sent back to the client.

As long as the object stays running, future method requests are handled as usual. If the object stops
running for some reason (e.g., it is garbage-collected, or its VM dies), the next method request by a
client triggers the activation service again, and the object is reactivated. This is what is meant by
persistent remote references : remote references to activatable objects can persist across multiple
lifetimes of the actual server object.

13.7.2. Defining an Activatable Remote Object

Naturally, before you can register and use an activatable object with the RMI activation system, you
need to define the remote interface and the server implementation for the object. The
java.rmi.activation package provides the classes you need to define an activatable remote object.
You usually define a remote object as activatable by subclassing it from Activatable and defining a
special constructor that activates the object. You also have to register the object with the activation
service on the server host.

Other than that, the implementation of an activatable remote object is similar to that of a
nonactivatable one. Start with a remote interface that contains the methods you want to export from
your object. The interface should extend Remote, and each method should throw a RemoteException
(or, as of Java 1.2, any parent of RemoteException). The server implementation implements this

http://lib.ommolketab.ir
http://lib.ommolketab.ir

interface and extends a concrete implementation of the java.rmi.server.RemoteServer class. Since
you're defining an activatable remote object, you typically extend java.rmi.activation.Activatable
directly and use its constructors to initialize, register, and activate your remote object. If you choose
not to extend Activatable directly, you have to use the static exportObject() methods on the
Activatable class to register your object with the activation runtime system.

13.7.2.1. The Activatable class

The Activatable class has four constructors. Here are signatures for two of them:

 protected Activatable(String src, MarshalledObject data,
 boolean restart, int port) throws RemoteException
 protected Activatable(String src, MarshalledObject data,
 boolean restart, int port, RMIClientSocketFactory csfactory,
 RMIServerSocketFactory ssfactory) throws RemoteException

These two constructors are initialization constructors. Use them when you decide to proactively
create one of your remote objects and register it with the RMI activation service. In this case, the
object already exists when a client first makes a method request on it, but if the object is destroyed,
the next client request causes the object to be reactivated. These constructors register an object with
the local activation service and export the object so that it can receive remote method requests. Both
constructors have the following arguments in common:

The String parameter is a URL that indicates where class bytecodes required by this object can
be located. This information is exported to a remote client so it can dynamically load classes
required to unmarshal method return values, for example. If a null value is passed in for this
argument, remote clients of the activatable object can't dynamically load classes and therefore
need the required classes available locally.

The MarshalledObject parameter provides initialization data for the object; this parameter is
necessary because data is typically sent from the activation daemon's VM to the VM designated
to run the activatable object and the two might not be the same (more on this later).

The boolean flag indicates whether the object should be automatically re-created when its home
VM or its activation group is restarted (e.g., after a server restart).

The int parameter specifies the port on which the object is exported. A port of zero tells the
RMI runtime system to export the object on a random open port.

The second initialization constructor takes custom client and server socket factories that create
socket communications between the server and the clients of the object. Customized socket factories
were added to RMI in Java 1.2.

The other two Activatable constructors have the following signatures:

 protected Activatable(ActivationID id, int port) throws RemoteException

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 protected Activatable(ActivationID id, int port,
 RMIClientSocketFactory csfactory, RMIServerSocketFactory ssfactory)
 throws RemoteException

These constructors are (re)activation constructors. The activation system uses them to activate a
remote object that has received a remote method request, but isn't currently active. The
ActivationID is a persistent ID issued by the activation system for the remote object, and the port
number is the port that exports the remote object. The second constructor again takes custom server
and client socket factories.

The Activatable class also has a set of exportObject() methods that correspond to the constructors
just described. You can use these methods when an activatable object doesn't directly extend the
Activatable class. You call the appropriate exportObject() methods from within the constructors of
the class, so they serve the same function as calling the Activatable constructors during initialization
of an Activatable subclass.

13.7.2.2. Implementing an activatable object

You can implement an activatable remote object in two ways: derive the remote object from the
Activatable class directly and make the required calls to the Activatable constructors in its
constructors or have the class implement a Remote interface and make the required calls to the static
exportObject() methods in its constructors.

In either case, when the activation system activates a remote object, it looks for a constructor on the
class that takes two arguments: an ActivationID and a MarshalledObject. The activation system
calls this constructor, passing in an ActivationID it generates for the object and the
MarshalledObject registered for the activatable object by the first constructor we just discussed.

This means you have to provide a constructor with this signature in your implementation of an
activatable object. In this constructor, you should call either one of the (re)activation constructors on
the Activatable parent class (if your class extends Activatable) or the corresponding
Activatable.exportObject() method (if you didn't extend Activatable). In this call, you pass on the
ActivationID issued by the activation system and specify the port for the exported remote object (a
port number of 0 causes the object to be exported on a random open port).

In addition to this required constructor, you can define other constructors for your remote object
implementation as needed. If you want your object to be reactivatable, any additional constructors
should call one of the initialization constructors on Activatable (using super()) or the corresponding
exportObject() method, passing in a valid source URL and a MarshalledObject to be used as an
argument if the object is reactivated. If the object is destroyed at some point and a subsequent
remote method request is received for it, the activation system reactivates the object by calling the
required (re)activation constructor on the object's class, passing in this MarshalledObject argument.

Example 13-3 shows a partial listing of an activatable implementation of the Account interface from
Example 13-1. The primary differences between this implementation and the nonactivatable one in
Example 13-2 are that this new implementation extends the java.rmi.activation.Activatable class
instead of UnicastRemoteObject, and its constructors support the activation system. We've also
defined a helper class, AccountState, that is used to wrap the account's state information (e.g., its

http://lib.ommolketab.ir
http://lib.ommolketab.ir

name and balance) so that it can be held within a MarshalledObject for initialization data. (This is
described later in this section.)

Example 13-3. An activatable version of the account

import java.rmi.server.UnicastRemoteObject;
import java.rmi.activation.*;
import java.rmi.MarshalledObject;
import java.rmi.RemoteException;
import java.util.List;
import java.util.ListIterator;
import java.io.IOException;

public class ActivatableAccountImpl extends Activatable implements Account {
 // Our current balance
 private float mBalance = 0;
 // Name on account
 private String mName = "";

 // "Regular" constructor used to create a "preactivated" server
 public ActivatableAccountImpl(String name)
 throws RemoteException, ActivationException, IOException {
 // Register and export object (on random open port)
 super(null, new MarshalledObject(new AccountState(name, 0f)), false, 0);
 mName = name;
 }
 // Constructor called by the activation runtime to (re)activate
 // and export the server
 protected ActivatableAccountImpl(ActivationID id, MarshalledObject arg)
 throws RemoteException, ActivationException {
 // Export this object with the given activation ID, on random port
 super(id, 0);
 System.out.println("Activating an account");
 // Check incoming data (account state) passed in with activation request
 try {
 Object oarg = arg.get();
 if (oarg instanceof AccountState) {
 AccountState s = (AccountState)oarg;
 // Set our name and balance based on incoming state
 mName = s.name;
 mBalance = s.balance;
 }
 else {
 System.out.println("Unknown argument type received on activation: " +
 oarg.getClass().getName());
 }
 }
 catch(Exception e) {
 System.out.println("Error retrieving argument to activation");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 }
 // Remainder of implementation is identical to AccountImpl
 // .
 // .
 // .
}

// Define a structure to hold our state information in a single marshalled
// object, so that we can register it with the activation system
class AccountState {
 public float balance = 0f;
 public String name = null;
 public AccountState(String n, float b) {
 name = n;
 balance = b;
 }
}

The first constructor for ActivatableAccountImpl is a public one, used to construct an account for a
user with the given name. The constructor registers the new object with the activation system by
calling the constructor of its parent, Activatable. As we discussed earlier, the first argument to the
Activatable constructor is the URL for the codebase (which is null, in this case, to indicate that we
don't support dynamic classloading). The second argument, the (re)initialization data for the
activatable object, is created by wrapping the state of the account (the name and balance, held in an
AccountState object, a utility class defined at the end of the code listing) in a MarshalledObject. If
the Account needs to be reactivated later, the activation daemon will use this MarshalledObject to
initialize the reactivated Account, as explained later. The third and fourth arguments indicate that we
want the object activated only on demand and that it can be exported on any random available port
on the local machine.

The second constructor is used by the activation system and must be found on your implementation
class when the activation system looks for it during a reactivation attempt. If an object of this type
needs to be activated (or reactivated after a crash of some sort), this constructor is called to create
the remote object. The constructor takes an ActivationID argument, issued by the activation system
and the MarshalledObject that was previously registered for the object with the activation system.
Our ActivatableAccountImpl constructor exports the object by calling the second constructor on the
Activatable class, then initializes itself with the data from the MarshalledObject.

13.7.3. Registering Activatable Objects

There are several ways to register an activatable object with its local activation system. In each case,
the activation system needs to be told how to create (or re-create) the object. The information the
activation system needs to activate an object is encapsulated in the ActivationDesc class. An
ActivationDesc object contains the name of the class for the remote object, a URL with the network
location of the bytecodes for the class, a MarshalledObject to be used as the initialization data for the
object, and the group assignment for the object.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The simplest way to register an Activatable object is to create an instance of the object. In our
example, we've derived our server implementation from the Activatable class, so the public
constructor on the ActivatableAccountImpl class registers the object by calling the necessary
constructor on Activatable. Thus, we can create and register one of these as follows:

 // Make an activation group for the object
 ActivationGroupDesc gdesc = new ActivationGroupDesc(null, null);
 ActivationGroupID gid = ActivationGroup.getSystem().registerGroup(gdesc);
 ActivationGroup.createGroup(gid, gdesc, 0);

 // Make an Account object, which registers itself with activation system
 Account account = new ActivatableAccountImpl(accountName);

 // Register with naming service
 LocateRegistry.getRegistry().rebind(accountName, account);

The first four lines are required to create an activation group for our activatable object. We'll talk
more about activation groups shortly. For now, all you need to know is that this code creates the
default activation group for the current VM. Any remote object that isn't specifically assigned to a
group is placed in this default group.

The activatable object itself is created by calling the public ActivatableAccountImpl constructor. This
constructor registers the object with the activation system by calling the appropriate Activatable
constructor, as we've already discussed. Since we haven't specified an activation group for the
object, it is placed in the default group we just created. If we hadn't created that default group, the
activation system would throw an exception here, when the object is registered.

Aside from the creation of the activation group, this example looks a lot like our other examples of
registering RMI objects. The difference here is that if the process dies off at some point, the
activation system can reactivate the activatable object in a new Java VM using the information
provided in the ActivationDesc for the object. In this case, we're relying on the Activatable
constructor (which is called by our ActivatableAccountImpl constructor) to create and register an
ActivationDesc for our object using the information we passed into it when we called it from our
constructor.

When an object needs to be activated, the activation system first looks up the ActivationDesc for the
object and then looks for the class referenced in the ActivationDesc, using the codebase URL
specified in the ActivationDesc to load the class bytecodes, if necessary. Once the class has been
loaded, the activation system creates an instance of the class by calling the activation constructor,
which takes an ActivationID and a MarshalledObject as arguments. The ActivationID is issued by
the activation system, and the MarshalledObject contains the data previously registered with the
ActivationDesc. In our activatable Account in Example 13-3, the activation system calls the second
constructor on our ActivatableAccountImpl class. The new object passes the ActivationID up to the
Activatable constructor so that it can be recorded, and the account state (name and balance) is
pulled from the MarshalledObject. The Activatable constructor takes care of creating and registering
an ActivationDesc for the object and exporting the object with the activation system.

13.7.3.1. Registering an activatable object without instantiating

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A more complicated but often more useful way to register a remote object is to create an
ActivationDesc for it and then register this information directly with the activation system, without
creating an instance of the object. The static Activatable.register() method accepts an
ActivationDesc object and registers it with the activation system directly. Here's how we can do that:

 // Make a codebase and activation argument for the object
 String src = "http://objhost.org/classes";
 MarshalledObject actArg = new MarshalledObject("MyAccount");

 // Create the ActivationDesc and get a stub for the object
 ActivationDesc desc =
 new ActivationDesc("com.oreilly.jent.rmi.ActivatableAccountImpl",
 src, actArg);
 Account accountStub =
 (Account)Activatable.register(desc);

When we create the ActivationDesc for the object, we specify the name of the class to use for
creating the object, a codebase for finding the class, and a MarshalledObject that is passed to the
object when it's activated. The ActivationDesc is used in the call to the Activatable.register()
method, which returns a RemoteStub for the activatable object. Since we know this stub is for an
object that implements the Account interface, we can safely cast it to an Account. We can also use
this reference to register the remote object with the local RMI naming registry:

 LocateRegistry.getRegistry().bind("Account", accountStub);

Although it is not shown here, note that you also have to create an activation group for the object,
just as we did in our earlier example, before you can register it with the activation service.

So, to recap, we've registered a remote object with the activation system and the RMI naming
registry without actually creating the object itself. When a client tries to look up the object, it gets
back a remote stub, with no active object behind it on the server. When the client calls a method on
the stub, however, the activation system on the server creates the object, using the information in
the ActivationDesc we provided.

13.7.3.2. Passing data with the MarshalledObject

The sole option for passing arguments to activatable objects before they are activated is through the
MarshalledObject contained within the ActivationDesc for the object. However, once the
ActivationDesc is registered with the activation system, you can't dynamically update the contents of
the MarshalledObject. This is a serious problem in our example, if you've been following it closely.
We wrap the account state (the account owner's name and the account balance) and register it with
the activation system just once, when we create or register the object. As clients interact with the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Account, the balance is going to change, but our registered MarshalledObject is not going to change
along with it. If the VM of the Account crashes and the Account is reactivated using the
MarshalledObject registered for it, the balance will be set back to the value it was when the object
was first registered with the activation system.

There are a number of ways to get around this problem and make the initialization arguments more
dynamic. One is to bundle a filename or URL into the MarshalledObject , rather than the data itself.
We could then keep the data behind the file or URL updated with the current state of the Account. At
the point that the object is activated, it can read data from the file or URL and use the up-to-date
data during activation. Alternatively, if this were a real-world example and our account information
were stored persistently in a database, we would just need to pass the account ID in the initialization
parameters, and the Account object could then read the current state of the Account from the
database.

13.7.4. Activation Groups

Every activatable RMI object belongs to an activation group. Each group of activatable objects runs
within the same Java VM on the server host. In essence, activation groups are a way of defining
collections of activatable remote objects that should share the same physical address space. We've
already seen how to set up an activation group, since we had to do this before registering our
activatable object with the activation system. In this section, we'll take a look at creating activation
groups in a bit more detail and discuss what the activation group is actually doing for you.

Activation groups in RMI are more than just a way of organizing remote objects. Each activation
group is responsible for monitoring, activating, and reactivating the objects it contains. Internally,
remote requests from clients are intercepted by an ActivationMonitor that coordinates the
active/inactive status of server objects with the ActivationGroup. If an object needs to be activated,
an Activator is invoked to make the object active within the ActivationGroup. Note that you don't
normally need to interact with the underlying components of the activation system. Simply set up
your ActivationGroup objects and assign activatable objects to them; the activation system does the
rest for you.

An ActivationGroup is created when the first object in the group needs to be activated. The
Activator is responsible for creating a VM for the ActivationGroup to run in and for starting the
ActivationGroup using the information in the registered object's ActivationGroupDesc, if it has one. If
the remote object doesn't have a specified group, a default one is created. The new ActivationGroup
object is then told to activate the requested remote object by calling its newInstance() method. The
arguments the Activator passes into this method are the ActivationID for the new object and the
ActivationDesc that the Activator has registered for the object.

The ActivationDesc gives an ActivationGroup everything it needs to activate the remote object. The
ActivationGroup takes the class name for the object and looks for the class bytecodes. First it checks
the local CLASSPATH, and if that pulls up nothing, it uses the URL in the ActivationDesc to load the
class from the given URL. Once the class is loaded, an instance of the class is created by calling the
activation constructor on the class (e.g., the constructor that has an ActivationID argument and a
MarshalledObject argument). The ActivationID and MarshalledObject come from the call to the
newInstance() method. The new, active remote object is returned to the Activator as a serialized
MarshalledObject. This is done for two reasons. First, the Activator runs in a separate Java VM, so
the active object reference needs to be transferred from one VM to another, and the easiest way to
do this is to serialize it and transmit it in that form. Second, since the object has been bundled into a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MarshalledObject, the Activator doesn't need to load the object's bytecodes unless absolutely
necessary. In most cases, the Activator doesn't need to interact directly with the object itself, so it
doesn't need to waste time loading unnecessary bytecodes.

Each ActivationGroup has an ActivationMonitor associated with it. The ActivationGroup has to tell
the ActivationMonitor whenever an object becomes active or inactive. An activatable object is
responsible for informing its ActivationGroup when it becomes active and inactive, by calling the
group's activeObject() and inactiveObject() methods, respectively. The ActivationGroup, in turn,
passes the information on to the ActivationMonitor by calling identical methods on the monitor
object. When the object becomes inactive, the ActivationMonitor makes note of it and arranges for
the object to be reactivated the next time a method request comes in for it. If an entire
ActivationGroup becomes inactive, the ActivationMonitor is informed through its inactiveGroup()
method. The next request for an object in that group causes the Activator to re-create the group.

13.7.4.1. Registering activation groups

An ActivationGroup is registered with the activation system in roughly the same way as an
activatable object. You have to create an ActivationGroupDesc object that contains the name of the
class for the group, the URL where the class bytecodes can be loaded, and a MarshalledObject that is
given to the ActivationGroup as initialization data. Unlike activatable objects, though, the class of a
group has to be a concrete subclass of ActivationGroup. Register the ActivationGroupDesc by calling
the static ActivationSystem.registerGroup() method, passing in the ActivationGroupDesc. The
ActivationSystem returns an ActivationGroupID that can assign specific objects to the group.

13.7.4.2. Assigning activatable objects to groups

Assign an activatable object to a group by specifying the group ID in the ActivationDesc registered
with the activation system. The ActivationGroupID returned by the
ActivationSystem.registerGroup() method can be passed into the ActivationDesc constructor.

Before you can register a remote object with the activation system, you need to create a group for it.
For our activatable Account example, we can run Java code along the following lines on the object
server (note that we've left out the exception handling):

 // Make an activation group for the object
 ActivationGroupDesc gdesc = new ActivationGroupDesc(null, null);
 ActivationGroupID gid =
 ActivationGroup.getSystem().registerGroup(gdesc);
 ActivationGroup.createGroup(gid, gdesc, 0);

 // Set up ActivationDesc for object
 String codebaseURL = "http://objhost.org/classes";
 String accountName = "Fred";
 MarshalledObject activationArg = new MarshalledObject(accountName);
 ActivationDesc desc =
 new ActivationDesc(gid, "com.oreilly.jent.rmi.ActivatableAccountImpl",
 codebaseURL, activationArg);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Account accountRef = (Account)Activatable.register(desc);
 LocateRegistry.getRegistry().rebind(accountName, accountRef);

Here we're using the ActivatableAccountImpl class and registering a remote object with the
activation system without actually instantiating it. Before we register our remote object, we create an
ActivationGroupDesc, then use it to register and create a new activation group with the activation
system. After we create the activation group (using the ActivationGroup.createGroup() method),
we use the ActivationGroupID for our new group to make an ActivationDesc for our remote object.
We use that to register the object with the activation system. The activation system generates a
remote stub for our object, and we register that with the RMI naming registry.

Since each ActivationGroup is started within its own VM if it's initially activated by the activation
system, grouping objects is a convenient way to partition your remote objects into shared address
spaces on your server.

13.7.5. The Activation Daemon

The heart of the RMI activation system is the activation daemon , which runs on the host for an
activatable object. The activation daemon is responsible for intercepting remote method requests on
activatable objects and orchestrating the activation of the object, if needed.

The activation daemon provided with the Java SDK, rmid, runs a Java VM that includes a
java.rmi.activation.Activator object. The Activator is responsible for keeping a registry of
activatable objects, along with the information needed to activate them. This information is in two
parts: an ActivationDesc object and an optional ActivationGroupDesc. The ActivationGroupDesc
identifies the group of activatable objects to which the object should be added and describes how to
start the group if it doesn't exist. The ActivationDesc includes all information needed to activate the
object itself. An activatable object has to be registered with the activation system in one of the ways
described earlier to be started automatically by the Activator.

If a remote method request is received by the RMI runtime system on a host, and the target object
hasn't been created yet, the Activator is asked to activate it. The Activator looks up the
ActivationDesc (and ActivationGroupDesc, if present) for the object. If the object has an
ActivationGroup assigned to it and the ActivationGroup doesn't exist yet, a Java VM is started for
the group, and the ActivationGroupDesc data is used to start an ActivationGroup object within the
new VM. If the object has no ActivationGroup associated with it, it's given its own ActivationGroup
running in its own VM. The group is then asked to start the requested object, using the
ActivationDesc object registered for the object. Once the ActivationGroup activates the object within
its VM, the Activator is notified, and the now-active remote reference is returned to the RMI runtime
system. The RMI runtime system forwards the remote method request through the reference to the
object, and the return value is exported back to the client as usual.

13.7.5.1. The daemon's dual personality

When you start the rmid daemon, it creates an Activator and then listens on the default port of
1098 for activation requests. There is also a -port command-line option that lets you specify a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

different port for the VM to use. In addition to running the Activator, the rmid daemon also runs its
own RMI Registry. If needed, you can register local objects with the daemon's internal Registry by
specifying the daemon's port when you call the bind() or rebind() method of the Registry. For
example, if rmid is running on its default port of 1098:

 RemoteObject server = ...
 Registry local = LocateRegistry.getRegistry(1098);
 local.bind(server, "Server");

This way, you can consolidate your activation system and your naming service into one VM on your
server.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

13.8. RMI and Native Method Calls

RMI is a Java-only remote object scheme, so it doesn't provide a direct connection between objects
implemented in different languages, as CORBA does. But, using Java's Native Interface API , it is
possible to wrap existing C or C++ code with a Java interface and then export this interface remotely
through RMI.

To demonstrate, let's suppose we have some (legacy) native code that implements the withdrawal,
deposit, and transfer operations for a particular banking system. We can create an implementation of
our Account interface that uses this native code to implement the deposit(), withdraw(), and
TRansfer() methods on our remote interface. The implementation for a NativeAccountImpl is shown
in Example 13-4. The only significant difference between this implementation and our original
AccountImpl is that the deposit(), withdraw(), and TRansfer() methods are declared native, so
the method bodies are not provided here.

Example 13-4. Remote object using a native method implementation

import java.rmi.server.UnicastRemoteObject;
import java.rmi.RemoteException;
import java.util.List;
import java.util.ListIterator;

public class NativeAccountImpl extends
 UnicastRemoteObject implements Account {
 // Our current balance
 private float mBalance = 0;
 // Name on account
 private String mName = "";
 // Create a new account with the given name
 public NativeAccountImpl(String name) throws RemoteException {
 mName = name;
 }

 public String getName() throws RemoteException {
 return mName;
 }
 public float getBalance() throws RemoteException {
 return mBalance;
 }
 // Withdraw some funds
 native public void withdraw(float amt)
 throws RemoteException, InsufficientFundsException;
 // Deposit some funds

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 native public void deposit(float amt) throws RemoteException;
 // Move some funds from another (remote) account into this one
 native public void transfer(float amt, Account src)
 throws RemoteException, InsufficientFundsException;

 // Remainder of implementation is identical to AccountImpl...

We can compile this RMI class and generate the stubs and skeletons for it using the RMI compiler,
just like with our other RMI examples. But once this is done, we need to provide native
implementations for the withdraw(), deposit(), and transfer() methods. To start, we can
generate a C/C++ header file for the native methods using the javah tool:

 % javah -jni -d . NativeAccountImpl

The -jni option tells the javah tool to generate JNI-compliant header files (as opposed to header files
based on the earlier native method interface that shipped with Java 1.0). Invoking this command
generates a JNI C/C++ header file that looks something like the following:

 /* DO NOT EDIT THIS FILE -- it is machine generated */
 #include <jni.h>
 /* Header for class com_oreilly_jent_rmi_NativeAccountImpl */

 #ifndef _Included_com_oreilly_jent_rmi_NativeAccountImpl
 #define _Included_com_oreilly_jent_rmi_NativeAccountImpl
 #ifdef _ _cplusplus
 extern "C" {
 #endif
 // NOTE: Some preprocessor directives deleted for clarity...
 /*
 * Class: com_oreilly_jent_rmi_NativeAccountImpl
 * Method: withdraw
 * Signature: (F)V
 */
 JNIEXPORT void JNICALL Java_com_oreilly_jent_rmi_NativeAccountImpl_withdraw
 (JNIEnv *, jobject, jfloat);

 /*
 * Class: com_oreilly_jent_rmi_NativeAccountImpl
 * Method: deposit
 * Signature: (F)V
 */
 JNIEXPORT void JNICALL Java_com_oreilly_jent_rmi_NativeAccountImpl_deposit
 (JNIEnv *, jobject, jfloat);

 /*

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 * Class: com_oreilly_jent_rmi_NativeAccountImpl
 * Method: transfer
 * Signature: (FLcom/oreilly/jent/rmi/Account;)V
 */
 JNIEXPORT void JNICALL Java_com_oreilly_jent_rmi_NativeAccountImpl_transfer
 (JNIEnv *, jobject, jfloat, jobject);

 #ifdef _ _cplusplus
 }
 #endif
 #endif

The only details worth noting in this header file are the inclusion of the jni.h header file (which is
provided with the Java SDK) and the actual method declarations. The jni.h header file provides
declarations and definitions for all of the data structures and utility methods provided by the JNI API.
The method declarations have a signature that corresponds to the native methods declared on our
Java class. When you invoke the withdraw() method on the NativeAccountImpl, for example, the
Java VM looks for a native method that matches the signature (shown here) for the
Java_com_oreilly_jent_rmi_NativeAccountImpl_withdraw function.

Now all we need to do is implement the C/C++ functions declared in our JNI-generated header file.
This is where we tie our Java methods to some legacy native code. In this case, suppose the native
code is wrapped up in a single C/C++ function called dbInvoke(). This function is available in a
native library on the server platform (e.g., a DLL file on Windows or a shared library on Unix). We
want to use our Java method to invoke this native function to perform various operations on the
database holding our account information, so we can implement the
Java_NativeAccountImpl_withdraw() function along these lines:

 #include <jni.h>
 #include "com_oreilly_jent_rmi_NativeAccountImpl.h"

 JNIEXPORT void JNICALL Java_com_oreilly_jent_rmi_NativeAccountImpl_withdraw
 (JNIEnv * env, jobject me, jfloat amt) {
 // Call the native method that will withdraw the money from the account

 // First, get the name of the account holder from the account object
 jclass acctCls =
 (*env)->FindClass(env, "com/oreilly/jent/rmi/NativeAccountImpl");
 jmethodID nameMID = env.GetMethodID(env, acctCls,
 "getName", "()Ljava/lang/String;");
 jobject nObj = (*env)->CallObjectMethod(env, me, nameMID);
 const char* name = (*env)->GetStringUTFChars(env, (jstring)nObj, 0);

 // Now call the native function to withdraw money from the account
 // stored in the non-JDBC database...
 int err = dbInvoke("update ACCOUNT ...");
 if (err > 0) {
 // IF an error occurs, assume it's a balance problem and throw an
 // InsufficientFundsException

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 jclass excCls =
 (*env)->FindClass(env,
 "com/oreilly/jent/rmi/InsufficientFundsException");
 (*env)->ThrowNew(env, excCls, "Error during withdrawal.");
 }
 }

The first part of the function gets the name of the Account that is the target of the withdrawal. From
native code, this simple method call is rather convolutedfirst, we locate the Java class definition
through the JNI environment, then we get a handle on the method we want to call, and finally we call
the method on the reference to the NativeAccountImpl object passed in as a function argument. The
Java String return value of the getName() method is returned to us in the native environment as a
jobject structure, which we convert to a C/C++ char array. When this is complete, we can then
invoke the native dbInvoke() function to pass SQL commands to the account database. If some kind
of error occurs during the database call, then we throw an exception back to the Java environment.

Once we compile this C/C++ code (linking with the native library that contains the dbInvoke()
function), we can export remote NativeAccountImpl objects. Then remote clients can call the
withdraw(), deposit(), or TRansfer() methods. These remote method calls in turn cause the
invocation of native code on the server, when the object implementation calls its native methods.

Note that in order for the server object to find its native method, the native library containing the
dbInvoke() function has to be loaded into the server object's VM using the System.loadLibrary()
method. You can do this either in the application code that uses the native method or by adding a
static initializer to the class. You can have the library loaded automatically when the
NativeAccountImpl class is referenced:

 static { System.loadLibrary("nativeDB"); }

The System.loadLibrary() method automatically converts the library name that you provide to a
platform-specific filename. So if the previous example is run on a Solaris machine, the Java VM looks
for a library file named libnativeDB.so. On a Windows machine, it looks for nativeDB.dll.

13.8.1. RMI with JNI Versus CORBA

There are pros and cons to using RMI and JNI to export legacy native code using Java remote
objects, as opposed to using CORBA. With CORBA, a CORBA object implemented in the same
language as the native code (C/C++ for our example) is created and exported on the server. Remote
Java clients can get a Java stub to this CORBA object using Java IDL, or any third-party Java CORBA
implementation (see Chapter 14 for details).

One obvious advantage of the CORBA approach is that you don't need to have Java on the server.
Since this is presumably a legacy server, perhaps a mainframe of some sort, finding a stable Java VM
and development kit for the platform may be a problem. If a Java implementation isn't available or if
installing additional software on the legacy server isn't desirable, CORBA is your only option.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

An advantage of the RMI/JNI approach is that you're running Java at both ends of the remote
communication and avoiding the use of CORBA entirely. CORBA is a rich distributed object API, but it
may be overkill for your application. Using the simpler RMI API and keeping your code development
strictly in Java (with some minimal C/C++ to interface to the legacy code) might be an advantage to
you in this case.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

13.9. RMI Over IIOP

Another approach for connecting RMI objects to non-Java objects is the ability for RMI objects to
communicate directly with remote CORBA objects using IIOP , the CORBA network interface
protocol.[4] The standard RMI implementation provided with Java uses an RMI-specific protocol,
JRMP, to communicate over the network. RMI/IIOP allows RMI objects to use the CORBA network
protocol, IIOP, to communicate with other objects. This means that an RMI object using RMI/IIOP
can communicate with a remote CORBA object, regardless of the implementation language of the
CORBA object. Likewise, a CORBA object can interact with your Java RMI objects directly. This really
gives you the best of both worlds, since you can then implement your remote clients using RMI and
use either CORBA or RMI/JNI on the server to interface to any native legacy code.

[4] The RMI/IIOP tools and classes became a standard part of the Java core environment as of JDK 1.3. If you are using an

earlier version of Java, you need to download the RMI/IIOP tools and libraries from http://java.sun.com/products/rmi-iiop.

In order to convert your RMI objects to use IIOP, you need to make some changes:

Any implementation classes should extend javax.rmi.PortableRemoteObject, rather than
java.rmi.server.UnicastRemoteObject.

All your stub and skeleton classes need to be regenerated using the updated rmic compiler
provided with the RMI/IIOP installation. This updated compiler has an -iiop option that
produces stubs and ties (ties refers to skeletons in the CORBA vernacular). These stubs and ties
handle the link between client and server objects, but use IIOP rather than JRMP.

All use of the RMI Naming registry has to be converted to use of JNDI to talk to a CORBA Naming
Service. Objects that you export are bound to names in the CORBA Naming Service through the
JNDI context, and remote objects you look up are accessed from the Naming Service through
the JNDI context.

Instead of using the standard Java casting operator on remote objects you look up, use the
javax.rmi.PortableRemoteObject.narrow() method.

To give you a taste for how to use RMI/IIOP with your RMI classes, let's convert our first Account
example to use RMI/IIOP. First, we need to update the AccountImpl class to extend
PortableRemoteObject. The following fragment of the IIOPAccountImpl class does that:

import javax.rmi.PortableRemoteObject;
import java.rmi.RemoteException;
import java.util.List;
import java.util.ListIterator;
public class IIOPAccountImpl extends PortableRemoteObject implements
Account {
 // Remainder of implementation is identical

http://java.sun.com/products/rmi-iiop
http://lib.ommolketab.ir
http://lib.ommolketab.ir

We can compile the updated IIOPAccountImpl using the regular Java compiler, then use the extended
rmic compiler included with RMI/IIOP to generate IIOP stubs and ties:

 % rmic -iiop -d /home/myclasses IIOPAccountImpl

This generates an IIOPAccountImpl_Stub class and an IIOPAccountImpl_Tie class, which act as the
IIOP stub and tie for the remote object.

In the CORBA world, remote objects are looked up using the CORBA Naming Service, so we need to
update the AccountServer class to use JNDI to register an Account object with a CORBA Naming
Service, rather than the RMI registry. The updated IIOPAccountReg class looks like this:

 import javax.naming.*;
 import java.rmi.*;

 public class IIOPAccountReg {
 public static void main(String argv[]) {
 try {
 // Make an Account with a given name
 IIOPAccountImpl acct = new IIOPAccountImpl("Jim.Farley");

 // Get a reference to CORBA Naming Service using JNDI
 Hashtable props = new Hashtable();
 props.put("java.naming.factory.initial",
 "com.sun.jndi.cosnaming.CNCtxFactory");
 props.put("java.naming.provider.url", "iiop://objhost.org:900");
 Context ctx = new InitialContext(props);

 // Register our Account with the CORBA Naming Service
 ctx.rebind("JimF", acct);
 System.out.println("Registered account.");
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }
 }

Refer to Chapter 7 for details on the properties used to create the JNDI context and what they mean.
All you need to glean from this is that we're trying to connect to a naming service running on
objhost.org, listening to port 900. Once we are connected, we register the new IIOPAccountImpl
object with the naming service using the Context.rebind() method.

Finally, we need to update our client so that it works with RMI/IIOP. Instead of using an RMI registry

http://lib.ommolketab.ir
http://lib.ommolketab.ir

to look up the remote Account object, the client needs to use JNDI to connect to the same CORBA
Naming Service that now hosts our Account object and ask for the Account by name. The updated
IIOPAccountClient is shown here. Notice that we've also changed the client to use the
PortableRemoteObject.narrow() method, instead of just casting the object returned from the
lookup:

 import javax.naming.*;
 import java.rmi.RMISecurityManager;

 public class IIOPAccountClient {
 public static void main(String argv[]) {
 try {
 // Lookup account object
 Hashtable props = new Hashtable();
 props.put("java.naming.factory.initial",
 "com.sun.jndi.cosnaming.CNCtxFactory");
 props.put("java.naming.provider.url", "iiop://objhost.org:900");
 Context ctx = new InitialContext(props);
 Account jimAcct =
 (Account)PortableRemoteObject.narrow(ctx.lookup("JimF"),
 Account.class);
 // Make deposit
 jimAcct.deposit(12000);
 // Report results and balance.
 System.out.println("Deposited 12,000 into account owned by " +
 jimAcct.getName());
 System.out.println("Balance now totals: " + jimAcct.getBalance());
 }
 catch (Exception e) {
 System.out.println("Error while looking up account:");
 e.printStackTrace();
 }
 }
 }

In order to register the server object, we need a CORBA Naming Service running, just as we need an
RMI registry with standard RMI. The RMI/IIOP package includes a special naming service that is
started using the tnameserv utility. This tool is similar to the naming service provided with Java IDL
(and discussed in Chapter 14), but this version is a CORBA Naming Service that also provides JNDI
access. On objhost.org, we need to start the naming service like so:

 objhost% tnameserv -ORBInitialPort 900

Now we can run IIOPAccountReg to register the Account object with the naming service, then run our
IIOPAccountClient to access the Account and make a deposit. All network communications are now
taking place using IIOP rather than the RMI protocol.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

13.9.1. Accessing RMI Objects from CORBA

Since our Account object is now speaking IIOP, we can also access it from other, non-Java CORBA
clients. First, we need to get an IDL interface for the Account interface, which can be done using the
rmic compiler provided with RMI/IIOP. The -idl option generates an IDL mapping of a Java RMI
interface using the Java-to-IDL mapping defined by the CORBA standard. With this IDL mapping, we
can generate language-specific stubs that allow any CORBA client to talk to our Java remote object.
See Chapter 14 for more details on using IDL and generating language-specific interfaces from it.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 14. Java IDL (CORBA)
The Java IDL API provides an interface between Java programs and distributed objects built using the
Common Object Request Broker Architecture (CORBA). CORBA is a standard defined by the Object
Management Group (OMG). It describes architecture, interfaces, and protocols that distributed
objects can use to interact with each other. Part of the CORBA standard is the Interface Definition
Language (IDL), which is an implementation-independent language for describing the interfaces of
remote-capable objects. Standard mappings are defined by the OMG for converting IDL interfaces
into C++ classes, C code, and Java classes, among others (a complete list is provided later in the
chapter). These generated classes use the underlying CORBA framework to communicate with
remote clients and give you the basis for implementing and exporting your own distributed objects.
Java IDL is Sun's implementation of the standard IDL-to-Java mapping and is provided by Sun's JDK
in the org.omg.CORBA package, the org.omg.CosNaming package, and other org.omg.* packages.

Like RMI, Java IDL gives you a way to access remote objects over the network. It also provides the
tools you need to make your objects accessible to other CORBA clients. If you export a Java class
using Java IDL, it's possible to create an instance of that class and publish it through a
naming/directory service. A remote client can find this object, call methods on it, and receive data
from it, just as if it were running on the client's local machine. Unlike RMI, however, objects that are
exported using CORBA can be accessed by clients implemented in any language with an IDL binding
(not just Java).

The CORBA standard is extensive, to say the least. In addition to the basic remote object architecture
and the syntax of IDL, it also includes specifications for several distributed object services , like an
object naming service, a security policy service, and persistent object services. It would be foolhardy
to attempt to cover all these topics completely in one chapter, so we won't. Instead, we'll just cover
the basic features of the CORBA architecture and the IDL syntax. A full reference for IDL syntax is
provided in Appendix G. We'll also look at the Naming Service, which is key to almost every CORBA
application, because it provides a standard way to find remote CORBA objects on the network. After
that, we'll take a look at the Java IDL API and the idlj compiler and how they work together to give
you an interface from your Java code to CORBA objects and services. They also provide the tools you
need to create your own CORBA objects, implemented in Java.

The rest of this chapter is broken down roughly into three parts. In the first part, we'll look at an
overview of the CORBA architecture and how it allows you to create, export, access, and manage
remote objects. In the second part, we'll explore the details of creating your own CORBA objects.
Finally, we'll look at how clients can remotely access your CORBA objects.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

14.1. A Note on Evolving Standards

At the time CORBA support was first made part of the core Java API, the CORBA specification and the
IDL-to-Java binding for CORBA were in a bit of flux. The server-side object adaptor interface (the
interface between remote object implementations and the core CORBA object services) had been
altered significantly by the OMG in Version 2.3 of the CORBA specification. The Basic Object Adaptor
(BOA) interface had been replaced by the Portable Object Adaptor (POA), which, as the name
suggests, provides a portable implementation interface for CORBA server-side objects. This filled a
gap in the specification left by the BOA that led to vendor-specific extensions and, therefore, CORBA
server objects that were dependent on particular vendor Object Request Broker (ORB)
implementations. The standard IDL-to-Java mapping, however, took some time to be updated to
support the new POA, and JDK 1.2 was released before the new version of the Java mapping. As a
stopgap measure, the first version of Java IDL in JDK 1.2 used a server-side object adaptor interface
based on an ImplBase scheme. By the time JDK 1.4 was introduced in beta in 2001, the POA-
compatible version of the IDL-to-Java mapping had been released, and the Java IDL packages, as
well as the IDL-to-Java compiler in JDK 1.4, were based on this mapping. The Java 5.0 environment
updated its Java IDL support only incrementally. Both JDK 1.4 and Java 5.0 support the CORBA 2.3.1
specification.

Another relatively recent addition to the CORBA specifications is the Interoperable Naming Service
(INS) interface, which adds additional utilities and functionality on top of the standard CORBA Naming
Service. INS was incorporated into the CORBA 2.3 specification, and support for it in Java IDL was
introduced in JDK 1.4.

In this chapter, we discuss only the POA version of Java IDL. If you are using JDK 1.4 or later, you
are using a POA-compatible mapping of the CORBA interfaces. If you are using JDK 1.3 or JDK 1.2,
you are using the "pre-POA" version of the IDL-to-Java mapping that Sun used prior to adding the
POA support. Most of the examples in the chapter would need to be revised somewhat to work in a
pre-POA environment. We also limit our discussion to the more recent INS interface rather than the
original Naming Service. Again, if you are using JDK 1.4 or later, you have access to the INS
interface and the Naming Service provided with the Java IDL. The ORB supports these extended
features. If you are using a prior version of the JDK, you have to use the original Naming Service
interface, and the examples here will need to be revised to work in your environment.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

14.2. The CORBA Architecture

At its core, the CORBA architecture for distributed objects shares many features with the architecture
used by Java RMI. A description of a remote object is used to generate a client stub interface and a
server skeleton interface for the object. A client application invokes methods on a remote object
using the client stub. The method request is transmitted through the underlying infrastructure to the
remote host, where the server skeleton for the object is asked to invoke the method on the object
itself. Any data resulting from the method call (return values, exceptions) is transmitted back to the
client by the communication infrastructure.

But that's where the similarities between CORBA and RMI end. CORBA was designed from the start to
be a language-independent distributed object standard, so it is much more extensive and detailed in
its specification than RMI is (or needs to be). For the most part, these extra details are required in
CORBA because it needs to support languages that have different built-in features. Some languages,
like C++, directly support objects, while others, like C, don't. The CORBA standard needs to include a
detailed specification of an object model so that non-object-oriented languages can take advantage
of CORBA. Java includes built-in support for communicating object interfaces and examining them
abstractly (using Java bytecodes and the Java Reflection API). Many other languages don't. So the
CORBA specification includes details about a Dynamic Invocation Interface and a Dynamic Skeleton
Interface (DSI), which can be implemented in languages that don't have their own facilities for these
operations. In languages that do have these capabilities, like Java, there needs to be a mapping
between the built-in features and the features as defined by the CORBA specification.

The rest of this section provides an overview of the major components that make up the CORBA
architecture: IDL, which is how CORBA interfaces are defined; the ORB and Object Adaptor, which
are responsible for handling all interactions between remote objects and the applications that use
them; the Naming Service, which is a standard service in CORBA that lets remote clients find remote
objects on the network; and the inter-ORB communication protocol, which handles the low-level
communication between processes in a CORBA context.

14.2.1. Interface Definition Language

IDL provides the primary way of describing data types in CORBA. IDL is independent of any particular
programming language. Mappings, or bindings, from IDL to specific programming languages are
defined and standardized as part of the CORBA specification. Standard bindings for C, C++,
Smalltalk, Ada, COBOL, Lisp, Python, and Java have been approved by the OMG. Appendix G contains
a complete description of IDL syntax.

The central CORBA functions, services, and facilities, such as the ORB and the Naming Service, are
also specified in IDL. This means that a particular language binding also specifies the bindings for the
core CORBA functions to that language. Sun's Java IDL API follows the Java IDL mapping defined by
the OMG standards. This allows you to run your CORBA-based Java code in any compliant Java
implementation of the CORBA standard, provided you stick to standard elements of the Java binding.
Note, however, that Sun's implementation includes some nonstandard elements; they are highlighted

http://lib.ommolketab.ir
http://lib.ommolketab.ir

in this chapter as appropriate.

14.2.2. The Object Request Broker and the Object Adaptor

The core of the CORBA architecture is the ORB, as shown in Figure 14-1. Each machine involved in a
CORBA application must have an ORB running in order for processes on that machine to interact with
CORBA objects running in remote processes. Object clients and servers make requests through their
ORBs; the ORB is responsible for making the requests happen or indicating why they can't. The client
ORB provides a stub for a remote object. Requests made on the stub are transferred from the client's
ORB to the ORB servicing the implementation of the target object. The request is passed on to the
implementation through an object adaptor and the object's skeleton interface.

Figure 14-1. Basic CORBA architecture

The skeleton interface is specific to the type of object that is exported remotely through CORBA.
Among other things, it provides a wrapper interface that the ORB and object adaptor can use to
invoke methods on behalf of the client or as part of the lifecycle management of the object. The
object adaptor provides a general facility that "plugs" a server object into a particular CORBA runtime
environment. Older versions of the CORBA specification and Java IDL supported a BOA interface,
while newer versions (CORBA 2.3 and later, JDK 1.4 and later) support a POA interface. All server
objects can use the object adaptor to interact with the core functionality of the ORB, and the ORB in
turn can use the object adaptor to pass along client requests and lifecycle notifications to the server
object. Typically, an IDL compiler is used to generate the skeleton interface for a particular IDL
interface; this generated skeleton interface will include calls to the object adaptor that are supported

http://lib.ommolketab.ir
http://lib.ommolketab.ir

by the CORBA environment in use.

14.2.3. The Naming Service

The CORBA Naming Service (sometimes abbreviated to COSNaming, from CORBA Object Services,
Naming) provides a directory naming structure for remote objects. The CORBA Naming Service is one
of the naming and directory services supported by JNDI, so the concepts used in its API are similar to
the general model of Contexts and DirContexts used in JNDI.

The naming tree always starts with a root node, and subnodes of the object tree can be created by
an application. Actual objects are stored by name at the leaves of the tree. Figure 14-2 depicts an
example set of objects registered within a Naming Service directory.[*] The fully qualified name of an
object in the directory is the ordered list of all of its parent nodes, starting from the root node and
including the leaf name of the object itself. So, the full name of the object labeled "Fred" is "Living
thing," "Animal," "Man," "Fred," in that order.

[*] Example adapted from Categories, by Aristotle. Please pardon the categorization "man," as opposed to "human." This is the

typical translation of Aristotle's original Greek, perhaps because political correctness wasn't in fashion in 350 B.C.

Figure 14-2. A naming directory

Each branch in the directory tree is called a naming context, and leaf objects have bindings to specific
names. Each node in the naming directory is represented by an org.omg.CosNaming.NamingContext
object. Each NamingContext can be asked to find an object within its branch of the tree by asking for
the object by name, relative to that particular naming context. You can get a reference to the root
context of the naming directory from an ORB using the resolve_initial_references() method.
Once you have a reference to the root of the naming directory, you can perform lookups of CORBA
objects, as well as register your own CORBA objects with the Naming Service. We'll see more
concrete details of utilizing the CORBA Naming Service in "Putting It in the Public Eye" later in this
chapter.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

14.2.4. Inter-ORB Communication

The CORBA standard includes specifications for inter-ORB communication protocols that can transmit
object requests between various ORBs running on the network. The protocols are independent of the
particular ORB implementations running at either end of the communication link. An ORB
implemented in Java can talk to another ORB implemented in C, as long as they're both compliant
with the CORBA standard and use the same CORBA communication protocol. The inter-ORB protocol
is responsible for delivering messages between two cooperating ORBs. These messages might be
method requests, return types, or error messages. The inter-ORB protocol also deals with differences
between the two ORB implementations, like machine-level byte ordering and alignment. As a CORBA
application developer, you shouldn't have to deal directly with the low-level communication protocol
between ORBs. If you want two ORBs to talk to each other, you need to ensure that they are
compatible in terms of CORBA compliance levels (do they support similar levels of the CORBA
specification?) and that they both speak a common, standard inter-ORB protocol.

The Internet Inter-ORB Protocol (IIOP) is an inter-ORB protocol based on TCP/IP. TCP/IP is by far
the most commonly used network protocol on the Internet, so IIOP is the most commonly used
CORBA communication protocol. Other standard CORBA protocols are defined for other network
environments, however. The DCE Common Inter-ORB Protocol (DCE-CIOP), for example, allows
ORBs to communicate on top of DCE-RPC.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

14.3. Creating CORBA Objects

Now that we have a better understanding of the various components of the CORBA architecture, let's
walk through the creation of CORBA objects using Java IDL. In order to distribute a Java object over
the network using CORBA, you have to define your own CORBA-enabled interface and its
implementation. This involves doing the following:

Writing an interface in the CORBA IDL

Generating a Java base interface, plus a Java stub and skeleton class, using an IDL-to-Java
compiler

Writing a server-side implementation of the Java base interface

We'll walk through these steps one by one, starting with a quick primer on CORBA IDL, followed by
the requirements for creating a Java implementation of an IDL-defined remote object. A full reference
for IDL syntax is provided in Appendix G. The following primer covers the basics needed to follow the
rest of this chapter.

14.3.1. An IDL Primer

The syntax of both Java and IDL were modeled to some extent on C++, so there are a lot of
similarities between the two in terms of syntax. Interfaces in IDL are declared much like classes in
C++ and, thus, classes or interfaces in Java. The major differences between IDL and Java are:

IDL is a declaration language . In IDL, you declare only the names and types for interfaces, data
members, methods, method parameters, and the like. Method implementations are created in
the implementation language you choose (in this case Java), after you've used an IDL compiler
to convert your IDL interface to your target language.

IDL, like C++, includes nonclass data structure definitions , like structs, unions, and
enumerations.

Method parameters in IDL include modifiers that specify whether they are input, output, or
input/output variables. In Java, all primitive data types are passed by value, and all object data
types are passed by reference.

An IDL file can include multiple public interfaces. Only a single public class can be defined in a
given Java file (although Java does allow for multiple inner classes within a single public class
definition and multiple nonpublic classes per file).

Modules, which are similar to Java packages, can be nested within other modules in the same
IDL file, and interfaces in multiple distinct modules can be defined in the same IDL file. In Java,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

you can define a class only within a single package in a single Java file.

14.3.1.1. Modules

Modules are declared in IDL using the module keyword, followed by a name for the module and an
opening brace that starts the module scope. Everything defined within the scope of this module
(interfaces, constants, other modules) falls within the module and is referenced in other IDL modules
using the syntax modulename::x. Suppose that you want all your classes to be contained in a module

called corba, which is part of a larger module called jent (an abbreviation of the title of this book). In
IDL this is declared as follows:

 // IDL
 module com {
 module oreilly {
 module jent {
 module corba {
 interface NeatExample ...
 };
 };
 };
 };

If you want to reference the NeatExample interface in other IDL files, you use the syntax
com::oreilly::jent::corba::NeatExample, which may look familiar to readers who have done C++
programming. Java programmers should note the semicolons following the closing braces on the
module definitions, which are required in IDL but not in Java. A semicolon is also required after the
close of an interface definition.

14.3.1.2. Interfaces

Interfaces declared in IDL are mapped into classes or interfaces in Java. As mentioned earlier, IDL is
used only to declare modules, interfaces, and their methods. Methods on IDL interfaces are always
left abstract, to be defined in the programming language you use to implement the interfaces.

The declaration of an interface includes an interface header and an interface body. The header
specifies the name of the interface and the interfaces it inherits from (if any). Here is an IDL interface
header:

 interface PrintServer : Server { ...

This header starts the declaration of an interface called PrintServer that inherits all the methods and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

data members defined in the Server interface. An IDL interface can inherit from multiple interfaces;
simply separate the interface names with commas in the inheritance part of the header.

14.3.1.3. Data members and methods

The interface body declares all the data members (or attributes) and methods of an interface. Data
members are declared using the attribute keyword. At a minimum, the declaration includes a name
and a type (see Appendix G for a complete list of the basic data types available in IDL and the
mapping to Java types). The declaration can optionally specify whether the attribute is read-only or
not, using the readonly keyword. By default, every attribute you declare is readable and writable (for
Java, this means that the IDL compiler generates public read and write methods for it). Here is an
example declaration for a read-only string attribute:

 readonly attribute string myString;

You declare a method by specifying its name, return type, and parameters, at a minimum. You can
also optionally declare exceptions the method might raise, the invocation semantics of the method,
and the context for the method call (see Appendix G for more details). Here is the declaration for a
simple method that returns a string:

 string parseString(in string buffer);

This declares a method called parseString() that accepts a single string argument and returns a
string value.

14.3.1.4. A complete IDL example

Now let's tie all these basic elements together. Here's a complete IDL example that declares a
module within another module, which itself contains several interfaces:

 module OS {
 module services {
 interface Server {
 readonly attribute string serverName;
 boolean init(in string sName);
 };
 interface Printable {
 boolean print(in string header);
 };

 interface PrintServer : Server {
 boolean printThis(in Printable p);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 };
 };
 };

The first interface, Server, has a single read-only string attribute and an init() method that
accepts a string and returns a boolean. The Printable interface has a single print() method that
accepts a string header. Finally, the PrintServer interface extends the Server interface (hence
inheriting all its methods and attributes) and adds a printThis() method that accepts a Printable
object and returns a boolean. In all cases, we've declared our method arguments as input-only (i.e.,
pass-by-value), using the in keyword.

14.3.2. Turning IDL into Java

Once you've described your remote interfaces in IDL, you need to generate Java classes that act as a
starting point for implementing those remote interfaces in Java using an IDL-to-Java compiler. Every
standard IDL-to-Java compiler can generate the following Java classes from an IDL interface:

A Java interface with the same name as the IDL interface (e.g., Server). This interface includes
Java method declarations that are a mapping of the operations declared in the IDL interface. An
interfaceNameOperations interface (e.g., ServerOperations) is generated that contains these

method declarations. The object's mapped Java interface extends this interface. This same
operations interface is extended by the server-side skeleton interfaces.

A helper class whose name is the name of the IDL interface with Helper appended to it (e.g.,
ServerHelper). The primary purpose of this class is to provide a static narrow() method that
can safely cast CORBA Object references to the Java interface type. The helper class also
provides other useful static methods, such as read() and write() methods that allow you to
read and write an object of the corresponding type using I/O streams.

A holder class whose name is the name of the IDL interface with Holder appended to it (e.g.,
ServerHolder). This class is used when objects with this interface are used as out or inout
arguments in remote CORBA methods. Instead of being passed directly into the remote method,
the object is wrapped with its holder before being passed. When a remote method has
parameters that are declared as out or inout, the server-side method has to be able to update
the argument it is passed and return the updated value. The only way to guarantee this, even
for primitive Java data types, is to force out and inout arguments to be wrapped in Java holder
classes, which are filled with the output value of the argument when the method returns. Also,
inout arguments are initialized with the desired input value before the remote method is called
in Java.

A client stub class, called _interface-nameStub, that acts as a client-side implementation of the

interface. This stub class implements the generated Java interface for the object, but simply
knows how to convert client method calls into ORB requests that are forwarded to the actual
remote object. The stub class for an interface named Server is called _ServerStub.

These classes comprise the "outward-facing" mapping of the CORBA object's interface (the
interfaces that clients of the object use directly). The IDL-to-Java compiler can also generate

http://lib.ommolketab.ir
http://lib.ommolketab.ir

server-side skeleton classes you can use to implement the server-side implementation of the
remote CORBA interface.

A server skeleton class named interfaceNamePOA (e.g., ServerPOA), which implements the
generated interfaceNameOperations interface and extends the POA-related server-side

interfaces. The interfaceNameOperations interface contains Java mappings of all the methods
declared in the IDL definition.

So, in addition to generating a client-side Java mapping of the IDL interface and some helper classes
for the Java interface, the IDL-to-Java compiler also creates subclasses that act as an interface
between a CORBA client and the ORB and between the server-side implementation and the ORB.
Appendix H provides a complete reference for Sun's idlj compiler. We will use this IDL-to-Java tool in
the examples in this chapter. Remember, though, that any Java mapping of the CORBA standard
should include its own IDL-to-Java compiler to generate these Java classes from the IDL interfaces
you write. In addition, the Java that these tools generate should be compliant with the standard IDL
mapping for Java, published by the OMG in the CORBA standard. Tools developed before the POA-
compliant IDL-to-Java mapping will tend to use some nonstandard server-side object adaptor styles,
while those developed after the POA was introduced should generate POA-compliant server skeleton
classes. So when using third-party Java-based CORBA tools and ORBs, it's important to understand
which version of the core CORBA spec and which IDL-to-Java mapping they support.

14.3.2.1. The delegation server-side model

The scheme described earlier (which will be demonstrated in Example 14-1) for the generated
server-side code for a CORBA object is called an inheritance-based model. It depends on the server-
side implementation directly extending a generated class (interfaceNamePOA). There is another
option, called the delegation model, available to you in terms of how you "plug" your server code into
the CORBA environment.

The delegation model is based on a scheme in which a server-side delegate is generated by the IDL
compiler. This delegate extends the generated skeleton class and implements each of the mapped
remote methods by delegating the incoming method request to a delegate object. This delegate
object needs to implement the interfaceNameOperations interface generated by the IDL compiler, but

it doesn't have to extend a concrete or abstract base class. This can prove to be useful in cases in
which you have a preexisting Java class with its own inheritance scheme and want to "export" this
class through CORBA for remote access. Because Java prohibits multiple inheritance of concrete
classes, you don't have the option of extending both the existing class and the generated skeleton
class. With the delegation model, you can define a simple delegate class that extends the preexisting
Java class and implements the interfaceNameOperations interface generated by the compiler. You

can then "publish" an instance of the original class by creating an instance of the new delegate class
and an instance of the generated delegation-based server object and associating the server object
with your delegate.

We won't provide full details of the delegation model here, but it's important to realize that this
option exists. It may prove useful in some situations. There are options available on the IDL-to-Java
compiler to instruct it to generate delegation-based server objects (also referred to as ties). These
compiler options are documented in Appendix H.

14.3.2.2. A simple server class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The IDL interface shown in Example 14-1 is the IDL equivalent of the Account class we defined in
Example 13-1. The interface, named Account, is declared within some nested modules (com, oreilly,
jent, corba) and declares methods similar to the Account example in Chapter 13. Since this is IDL,
the various method argument and return value data types are represented using IDL data types
(e.g., string instead of String and so forth), and method arguments are declared with in, inout, or
out modifiers.

Example 14-1. An account interface defined in IDL

module com {
 module oreilly {
 module jent {
 module corba {
 // Forward-declare the Account interface,
 // for the typedefs below
 interface Account;

 // Declare some useful typedefs: a list
 // of Accounts and of floats
 typedef sequence<Account> AccountList;
 typedef sequence<float> floatList;

 exception InsufficientFundsException {};

 interface Account {
 // Get the name of the account owner
 string getName();
 // The account balance
 float getBalance();
 // Withdraw funds from the account
 void withdraw(in float amt)
 raises (InsufficientFundsException);
 // Deposit funds to the account
 void deposit(in float amt);
 // Transfer funds from the source account
 // to this account
 void transfer(in float amt, in Account src)
 raises (InsufficientFundsException);
 // Similar to above, but perform transfers
 // from a series of source accounts
 void transferBatch(in floatList amts,
 in AccountList srcs)
 raises (InsufficientFundsException);
 };
 };
 };
 };
};

http://lib.ommolketab.ir
http://lib.ommolketab.ir

We can run the idlj compiler on this IDL interface using the following command line (Windows
version):

 C:\>idlj -fall Account.idl

This command creates the five Java classes described in the previous sections: a Java version of the
interface, a helper class, a holder class, a client stub, and a server skeleton. The -fall option tells
the compiler to generate both client-side and server-side mapping interfaces (see Appendix H for
complete details on the command-line arguments for idlj).

The compiler creates the Java interface shown in Example 14-2, in a file named Account.java. This
interface doesn't have much meat to it, because all of the method declarations generated in the
AccountOperations interface are extended by this interface, which is shown in Example 14-3. The
interface declaration in the IDL file is mapped directly to the Account Java interface declaration, with
the interface extending the AccountOperations and org.omg.CORBA.Object interfaces. The module
declarations in the IDL file have been mapped into a com.oreilly.jent.corba package statement at
the beginning of all the generated Java files. The IDL data types have been converted into the
equivalent Java data types, and, since they don't require any special handling in a remote method
call, the in method parameters in IDL are mapped into regular Java input arguments.

Example 14-2. Java mapping of the Account interface

package com.oreilly.jent.corba;

/**
* com/oreilly/jent/corba/Account.java .
* Generated by the IDL-to-Java compiler (portable), version "3.1"
* from src/idl/Account.idl
* Sunday, September 11, 2005 10:40:07 PM EDT
*/

public interface Account
 extends AccountOperations, org.omg.CORBA.Object,
 org.omg.CORBA.portable.IDLEntity
{
} // interface Account

Example 14-3. AccountOperations Java interface

package com.oreilly.jent.corba;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

/**
* com/oreilly/jent/corba/AccountOperations.java .
* Generated by the IDL-to-Java compiler (portable), version "3.1"
* from src/idl/Account.idl
* Sunday, September 11, 2005 10:40:07 PM EDT
*/

public interface AccountOperations
{

 // Get the name of the account owner
 String getName ();

 // The account balance
 float getBalance ();

 // Withdraw funds from the account
 void withdraw (float amt)
 throws com.oreilly.jent.corba.InsufficientFundsException;

 // Deposit funds to the account
 void deposit (float amt);

 // Transfer funds from the source account to this account
 void transfer (float amt, com.oreilly.jent.corba.Account src)
 throws com.oreilly.jent.corba.InsufficientFundsException;

 // source Accounts
 void transferBatch (float[] amts, com.oreilly.jent.corba.Account[] srcs)
 throws com.oreilly.jent.corba.InsufficientFundsException;
} // interface AccountOperations

14.3.2.3. The helper class and narrowing references

The compiler also generates a helper class, called AccountHelper. We won't provide the full code
listing for this generated class here, but it can be found in the downloadable source code examples
available for this book, along with all of the other Java interfaces generated by the IDL-to-Java
compiler from this IDL interface.

The helper class is a standalone utility class that doesn't extend any other interfaces:

 abstract public class AccountHelper { . . . }

As mentioned earlier, the helper class has static methods that let you read and write Account objects
to and from CORBA I/O streams:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public static
 com.oreilly.jent.corba.Account read (org.omg.CORBA.portable.InputStream
 istream)
 public static void write (org.omg.CORBA.portable.OutputStream ostream,
 com.oreilly.jent.corba.Account value)

a type() method that provides the TypeCode for the mapped Account class:

 synchronized public static org.omg.CORBA.TypeCode type ()

and, most importantly, a narrow() method that safely narrows a CORBA org.omg.CORBA.Object
reference into an Account reference:

 public static com.oreilly.jent.corba.Account narrow
 (org.omg.CORBA.Object obj)

Object narrowing is CORBA's equivalent to directly casting object referenceswe discuss why
narrowing is necessary later in this chapter in "Remote Object References and Narrowing." In the
implementation of the narrow() method, the helper class converts a CORBA Object reference to a
reference to a specific type. If the CORBA object can't be narrowed to the requested type (e.g., the
passed object reference is a null reference, the object's TypeCode doesn't match the TypeCode of the
narrowed type), then the narrow() method throws a BAD_PARAM exception.

14.3.2.4. The holder class

The compiler generates a holder class for the Account class, which implements the CORBA Streamable
interface:

 public final class AccountHolder
 implements org.omg.CORBA.portable.Streamable { . . . }

The holder class is a wrapper used when Account objects are called for as out or inout arguments in
an IDL method. All holder classes implement the Streamable interface from the
org.omg.CORBA.portable package, which includes implementations of the _read() and _write()
methods of the Streamable interface:

 public void _read (org.omg.CORBA.portable.InputStream i)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public void _write (org.omg.CORBA.portable.OutputStream o)

This allows holders to be transmitted in remote method calls using these _read() and _write()
methods; these methods handle whatever serialization the object needs. This functionality is similar
to that provided by Java serialization, but CORBA needs its own scheme because it is independent of
any particular language and needs to provide this serialization even if the target language doesn't
provide this feature natively.

A holder contains a single instance of the corresponding CORBA object (an Account, in this example)
as a data member:

 public com.oreilly.jent.corba.Account value = null;

This instance is initialized in the constructor of the holder:

 public AccountHolder (com.oreilly.jent.corba.Account initialValue)
 {
 value = initialValue;
 }

When a holder object is passed into a remote method call as an inout argument, its _write()
method is invoked. This method takes the object instance contained by the holder class, serializes it,
and streams it through the ORB to the remote object server. When the remote method call returns,
the holder's _read() method is invoked to read the (possibly updated) object from the remote
object server, and the holder object replaces its internal value with the updated object.

As an example of using the holder class, let's define another IDL interface that includes a method
that uses an Account as an inout parameter:

 // IDL
 interface AccountManager {
 boolean updateAccount(inout Account account);
 };

The AccountManagerOperations Java interface generated from this IDL interface uses the
AccountHolder class as the type for the corresponding Java method parameter:

 // Java
 public interface AccountManagerOperations
 {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 boolean updateAccount (AccountHolder account);
 } // interface AccountManagerOperations

14.3.2.5. The client stub

The idlj compiler generates a Java client stub (_AccountStub) for our CORBA interface. The client stub
implements the generated Account Java interface and acts as a client-side proxy for a remote
Account object:

 public class _AccountStub
 extends org.omg.CORBA.portable.ObjectImpl
 implements com.oreilly.jent.corba.Account

When a client acquires a reference to a remote Account object (through any of the methods we'll
describe in "Finding and Using Remote Objects" later in this chapter), it actually receives an instance
of this client stub class. The stub has implementations of all the methods from the interface, as
mapped into the AccountOperations interface that is the parent of the Account interface. The stub
class serves as a proxy for a remote server object, and each method implementation in the stub
generates a request to the ORB to make a remote method call on the corresponding server-side
object. The method arguments are bundled up ("marshaled") and passed along with the request to
the ORB. We're not going to go into the details of the stub's method implementations, because you
shouldn't have to worry much about them under normal conditions. But it is enlightening to look at
an example to see how your remote objects do what they do in detail, using the core CORBA
functions. As an example, here is the generated client stub implementation of the getName() method
from our Account interface:

 // Get the name of the account owner
 public String getName ()
 {
 org.omg.CORBA.portable.InputStream $in = null;
 try {
 org.omg.CORBA.portable.OutputStream $out = _request ("getName", true);
 $in = _invoke ($out);
 String $result = $in.read_string ();
 return $result;
 } catch (org.omg.CORBA.portable.ApplicationException $ex) {
 $in = $ex.getInputStream ();
 String _id = $ex.getId ();
 throw new org.omg.CORBA.MARSHAL (_id);
 } catch (org.omg.CORBA.portable.RemarshalException $rm) {
 return getName ();
 } finally {
 _releaseReply ($in);
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 } // getName

As mentioned, when a Java client gets a reference to a remote Account object, it is given one of
these stub objects. The client can make method calls on the stub object, and the stub converts these
calls into corresponding requests to the ORB to invoke the methods on the remote object and send
back the results.

14.3.2.6. Server skeletons

The idlj compiler generates server implementation skeleton classes that follow the POA specification.
The base class for the server implementation of our Account interface is called AccountPOA:

 public abstract class AccountPOA
 extends org.omg.PortableServer.Servant
 implements com.oreilly.jent.corba.AccountOperations,
 org.omg.CORBA.portable.InvokeHandler { . . . }

The particulars of the implementation of this skeleton class follow the POA specification, in terms of
how method invocations are mapped to actual operations on the server object. This helps to
guarantee that your CORBA object implementations will migrate easily between different CORBA ORB
implementations.

14.3.3. Writing the Implementation

So, we've written an IDL interface and generated the Java interface and support classes for it,
including the client stub and the server skeleton. Now we need to create concrete server-side
implementations of all of the methods on our interface. We do this by subclassing from the server-
side skeleton class generated by the idlj compiler. For our example, we need to subclass AccountPOA.
We also need to implement the various methods defined on the Account IDL interface and mapped
through the idlj compiler into the AccountOperations Java interface. The AccountImplPOA class in
Example 14-4 shows the implementation of our server object.

As you look through the implementation class, you'll notice that the method implementations are
similar to the RMI version of the Account server implementation example in Chapter 13. The only real
difference is that this AccountImpl class extends the generated AccountPOA class (and, through it, the
generated AccountOperations interface and the CORBA Servant class), while the RMI server
implementation implements the RMI Account interface and extends
java.rmi.server.UnicastRemoteObject. So in the same way that the two remote object schemes are
analogous to each other in terms of functionality, the particulars of the server implementations in
each case are analogous as well.

Example 14-4. Server implementation of the Account CORBA object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public class AccountImplPOA extends AccountPOA {
 // Our current balance
 private float mBalance = 0;
 // Name on account
 private String mName = "";
 // Create a new account with the given name
 public AccountImplPOA(String name) {
 mName = name;
 }

 public String getName() {
 return mName;
 }
 public float getBalance() {
 return mBalance;
 }
 // Withdraw some funds
 public void withdraw(float amt) throws InsufficientFundsException {
 if (mBalance >= amt) {
 mBalance -= amt;
 // Log transaction...
 System.out.println("--> Withdrew " + amt
 + " from account " + getName());
 System.out.println(" New balance: " + getBalance());
 }
 else {
 throw new InsufficientFundsException("Withdrawal request of " + amt +
 " exceeds balance of " + mBalance);
 }
 }
 // Deposit some funds
 public void deposit(float amt) {
 mBalance += amt;
 // Log transaction...
 System.out.println("--> Deposited " + amt +
 " into account " + getName());
 System.out.println(" New balance: " + getBalance());
 }
 // Move some funds from another (remote) account into this one
 public void transfer(float amt, Account src)
 throws InsufficientFundsException {
 if (checkTransfer(src, amt)) {
 src.withdraw(amt);
 this.deposit(amt);
 // Log transaction...
 System.out.println("--> Transferred " + amt +
 " from account " + getName());
 System.out.println(" New balance: " + getBalance());
 }
 else {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 throw new InsufficientFundsException("Source account balance is less
 " + "than the requested transfer.");
 }
 }
 // Make several transfers from other (remote) accounts into this one
 public void transferBatch(float[] amts, Account[] srcs)
 throws InsufficientFundsException {
 // Iterate through the accounts and the amounts to be
 // transferred from each
 for (int i = 0; i < amts.length; i++) {
 float amt = amts[i];
 Account src = srcs[i];
 // Make the transaction
 this.transfer(amt, src);
 }
 }
 // Check to see if the transfer is possible, given the source account
 private boolean checkTransfer(Account src, float amt) {
 boolean approved = false;
 if (src.getBalance() >= amt) {
 approved = true;
 }
 return approved;
 }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

14.4. Putting It in the Public Eye

We still need to do some work to make the Java implementation of our IDL interface available to
remote clients. We must instantiate one or more instances of our CORBA server implementation and
connect them to an ORB on the server so that they can receive remote method requests. Then clients
need to somehow obtain remote references to our server objects. A client obtains a remote reference
in two fundamental ways: it can get an initial object reference (usually to a CORBA service of some
kind, like a Naming Service) using the ORB.resolve_initial_references() method and somehow
find a reference to the remote object through method calls on the initial object, or it can get a
"stringified" reference to the remote object (either an Interoperable Object Reference (IOR) or an
Interoperable Naming Service (INS) URL) and use the local ORB to convert it to a live object
reference.

For the first case, a remote object needs to be registered in some way with a server-side ORB and
probably with a CORBA service of some kind. Connecting your CORBA object to an ORB enables it to
accept remote method requests from clients. Registering your object with a CORBA service makes it
easier for remote clients to find your object in the first place.

In order for you to register a remote object, you first have to get a reference to an ORB. We'll look at
how to do this, then look at registering the remote object with a Naming Service (the most common
way to "publish" remote objects in a CORBA context). Finally, we'll look at two ways that clients can
use stringified references to access your CORBA object.

14.4.1. Initializing the ORB

Since the ORB is so central to everything in a CORBA environment, the first thing any CORBA process
needs to do (whether it's a CORBA server or client process) is get a reference to an ORB that it can
use to find other objects, access CORBA services, and handle remote method calls. A CORBA
participant initializes its ORB reference by calling one of the static init() methods on the ORB
interface. Each of these methods returns an ORB object that can find CORBA objects and services,
among other things. The standard init() methods provided on an ORB are as follows (Sun's Java
IDL supports all of these standard initialization methods):

public static ORB ORB.init()

Returns a shared (static) ORB instance, called the "singleton ORB." Each call within the same
runtime environment of this version of init() returns the same ORB reference. If used within
an applet context, the ORB has limited abilities. The singleton ORB is used mainly by IDL-
generated classes to perform actions like create TypeCode objects that identify the types of
CORBA objects.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public static ORB ORB.init(String[] args, Properties props)

Creates a new ORB using the given arguments and properties, as discussed in the following
paragraphs.

public static ORB ORB.init(Applet applet, Properties props)

Creates a new ORB within an applet context. The applet's codebase and host are used by the
ORB as the source of various services, such as the Naming Service.

There are two standard properties defined for an ORB that can be set in the call to init(), using
either the String arguments array or a Properties object. These are:

org.omg.CORBA.ORBSingletonClass

Specifies the class to use for the singleton ORB instance returned by the no-argument version
of init().

org.omg.CORBA.ORBClass

Creates ORB instances when the other versions of init() are called.

In both cases, the class name you provide has to implement the org.omg.CORBA.ORB interface. You
can use these two properties to specify a custom ORB implementation, if needed. You may want to
override the default ORB implementation (com.sun.CORBA.iiop.ORB in Java IDL) with one of your own
that has particular performance characteristics, for example. Or you may be running your CORBA
code within an applet and want to ensure that a valid ORB is available no matter what browser
version your applet encounters.

Sun's Java IDL also adds two nonstandard properties: ORBInitialHost and ORBInitialPort. By
default, each ORB.init() method initializes an ORB that looks for its services (naming service, for
example) locally. Java IDL adds these two nonstandard properties to allow your local ORB to defer its
services (naming, trading, and so on) to a remote ORB running on a given host and listening on a
given port. Be careful before you decide to depend on these properties in your application or applet.
They are honored only within Sun's Java IDL implementation of the CORBA standard. If you want
your CORBA application to be portable to any implementation of the standard IDL-to-Java binding
and you want to use a remote Naming Service , you should stick to using a stringified reference to
the remote object, obtained through a secondary communication channel (as we'll discuss shortly).

Any of these properties can be specified within a Properties object, as a command-line option to a
Java application or in a system properties file. As an example, if you want to specify a different host
to use for finding services like the Naming Service, one way to do this is to specify the host explicitly
in the code that initializes the ORB, using a Properties object:

 Properties orbProps = new Properties();
 orbProps.put("org.omg.CORBA.ORBInitialHost", "remote.orb.com");
 ORB myOrb = ORB.init((String[])null, orbProps);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Alternately, you can take command-line arguments passed into your Java code and pass them to the
ORB.init() method to be parsed. Say we have a class named InitRemote with a main method
implemented as follows:

 public class InitRemote {
 public static void main(String[] argv) {
 try {
 ORB myOrb = ORB.init(argv, null);
 ...
 }
 }
 }

In this case, we can specify any ORB properties on the command line using specific argument names.
Notice that when specifying these, you should omit the org.omg.CORBA package prefix on the property
names:

 orbhost% java InitRemote -ORBInitialHost remote.orb.com

Note that you can use the second ORB.init() method with both a String arguments array and a
Properties list specified, even though the examples here haven't shown that.

14.4.2. Registering with a Naming Service

One way to make a server object available to remote clients is to register it with a local CORBA
Naming Service under a specific name. A remote client can then get a reference to the root
NamingContext for the Naming Service and look up the server object by name.

Here are the basic steps that create and register a CORBA object with the ORB:

Initialize an ORB reference.1.

Create an instance of your CORBA server implementation, and get a reference from it that can
be registered with the Naming Service.

2.

Get a reference to the root NamingContext for the Naming Service from the ORB.3.

Construct a name for the object that reflects where you want it to sit in the Naming Service
hierarchy.

4.

5.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.

Bind your object to that name in the Naming Service, using the root NamingContext.5.

Example 14-5 shows the code listing for AccountInitPOA. Since we're dealing with an ORB using the
POA, and the POA is acting as the mediator between our server object and the ORB, we need to use
the POA to obtain a reference to our server object that can be used for registration with the Naming
Service (among other things).

The main() method creates an instance of our AccountImplPrePOA implementation and then registers
the object with the Naming Service. We get a reference to the POA from the ORB using the
resolve_initial_references() method (this time using the standard name for the POA, "RootPOA").
We then make sure that the POA is active by getting its POA manager and calling its activate()
methodevery POA has a POAManager that maintains the runtime state of the POA. Finally, we ask the
POA for a usable reference to our server object by calling its servant_to_reference() method and
converting the resulting Object to an Account reference.

Example 14-5. AccountInitPOA.java

import org.omg.CORBA.*;
import org.omg.CosNaming.*;
import org.omg.PortableServer.POA;

public class AccountInitPOA {
 public static void main(String[] args) {
 try {
 // Initialize an ORB reference
 ORB myORB = ORB.init(args, null);

 // Create an instance of an Account server implementation
 AccountImplPOA acct = new AccountImplPOA(args[0]);

 // Get the root Portable Object Adapter (POA)
 POA rootPOA = (POA)myORB.resolve_initial_references("RootPOA");

 // Activate the POA manager
 rootPOA.the_POAManager().activate();

 // Get an object reference from the implementation
 org.omg.CORBA.Object obj = rootPOA.servant_to_reference(acct);
 Account acctRef = (Account)AccountHelper.narrow(obj);

 // Get the root name context (use the INS interface, so that we can use
 // the simpler name construction process)
 org.omg.CORBA.Object objRef =
 myORB.resolve_initial_references("NameService");
 NamingContextExt nc = NamingContextExtHelper.narrow(objRef);

 // Register the local object with the Name Service.
 // Use the Interoperable Naming Service
 interface to simplify matters
 // and to support URL-formatted names (e.g. "JohnS",

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // "corbaname://orbhost.com#/JohnS", etc.).
 NameComponent[] name = nc.to_name(args[0]);
 nc.rebind(name, acctRef);

 System.out.println("Registered account under name " + args[0]);

 // Go into a wait state, waiting for clients to connect
 myORB.run();
 }
 catch (Exception e) {
 System.out.println(
 "An error occurred while initializing server object:");
 e.printStackTrace();
 }
 }
}

Once we have our usable object reference, we invoke the INS NamingContextExt interface to bind our
server object to a name in the Naming Service. We'll get into the details of the INS interface shortly.

With the object registered, we then invoke the run() method on the ORB. Calling this method
causes the current thread to wait until the ORB shuts down, which leaves our server object active to
respond to client requests delivered to it from the ORB.

Before running this utility object to create and register our CORBA object, we need to start a Naming
Service someplace. A Naming Service daemon listens for Naming Service requests on a specific port
and provides access to the named object directory it manages. In Java IDL, the Naming Service is
started using the tnameserv command:

 objhost% tnameserv &

With that done, we can run our initialization method to register our server object with the ORB:

 objhost% java com.oreilly.jent.corba.AccountInitPOA JimF
 Registered account under name JimF

Now that we've seen the basic steps involved in creating and registering an object with a CORBA
Naming Service, let's look in more detail at binding objects and new contexts within the Naming
Service.

14.4.3. Adding Objects to a Naming Context

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As was discussed earlier, a CORBA Naming Service maintains a hierarchy of named objects that can
be looked up by remote clients. Initially, a CORBA naming directory is empty, with only its root
NamingContext and no objects. The bind() method on a NamingContext object binds a server object
to a name within the context. The bind_new_context() method creates new subcontexts within a
given NamingContext. Using a file directory analogy, calling bind_new_context() on a NamingContext
object is like making a new subdirectory from the current directory, while calling bind() puts a new
file into the current directory.

The Java IDL mapping uses arrays of NameComponent objects to represent the names of subcontexts
within a naming directory. Each NameComponent represents a component of the path to the named
object. A NameComponent contains id and kind string fields that serve to label the component in the
path. Only the id field is significant in determining name uniqueness. So a NameComponent with an id
set to "student" and kind set to an empty string conflicts with a NameComponent with an "student"
and a kind of "doctoral", if both NameComponent objects are relative to the same subcontext. The
NameComponent class has a constructor that takes the id and kind values as arguments. Here's how to
create a single NameComponent:

 NameComponent comp1 = new NameComponent("student", "doctoral");

A complete name path can be composed as an array of these objects:

 NameComponent path[] = { comp1, comp2, ... };

The bind() method takes two arguments: an array of NameComponent objects as the relative name
for the object you're putting into the Naming Service and the server object itself. If you're binding a
server object using the root context of the Naming Service, the name is also the absolute name of
the object in the overall naming directory. If an object is already bound to the name, you can use the
rebind() method with the same arguments, causing the existing object bound to that name to be
replaced by the new object. Note that since the Naming Service is a CORBA service that can be
accessed remotely by other CORBA clients, the objects it contains need to be exportable to these
remote clients. This means that only org.omg.CORBA.Object references can be bound to names within
a NamingContext.

The following code snippet binds a few of our Account objects to names within the root context of a
Naming Service:

 // Get the root naming context
 ORB myORB = ORB.init(...);
 org.omg.CORBA.Object ref =
 myORB.resolve_initial_references("NameService");
 NamingContext rootNC = NamingContextHelper.narrow(ref);

 // Create a few Accounts
 Account acct1 = new AccountImplPOA("JohnSmith");
 Account acct2 = new AccountImplPOA("MaryJones");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Bind them to names in the Naming Service
 NameComponent name1 = new NameComponent("Smith,J", "");
 NameComponent path1[] = { name1 };
 NameComponent name2 = new NameComponent("Jones,M", "");
 NameComponent path2[] = { name2 };
 rootNC.bind(path1, ref1);
 rootNC.bind(path2, ref2);

Before you can bind an object to a name with multiple components, all the subcontexts
(subdirectories) have to be created using the bind_new_context() method on a NamingContext. The
bind_new_context() method takes an array of NameComponent objects as the relative path of the new
context and a reference to the NamingContext object to bind to that location in the overall directory. A
new NamingContext object can be created from an existing one by calling its new_context() method.
If a context already exists at the target name, you can use the rebind_context() method to replace
the existing context with a new one. This is useful for emptying out an entire subcontext without
removing each object individually.

Here is an example that binds some Account objects within various subcontexts representing different
branches of a bank, using the standard Naming Service interfaces; NameComponent and NamingContext
(both from the org.omg.CosNaming package):

 // Initialize the ORB and get the POA and root naming context, as before
 ORB myORB = ORB.init(...);
 POA rootPOA = ...;
 NamingContext rootNC = ...;

 // Create the components to the subcontext paths
 NameComponent branchComp = new NameComponent("bankBranches", "");
 NameComponent cambridgeComp = new NameComponent("Cambridge", "");
 NameComponent bostonComp= new NameComponent("Boston", "");

 // Create a new context, bind it to the path "bankBranches"
 NamingContext ctx = rootNC.new_context();
 NameComponent path[] = { branchComp };
 rootNC.bind_context(path, ctx)

 // Create another context, bind it to the path "bankBranches, Cambridge"
 NamingContext cambridgeCtx = rootNC.new_context();
 path = { branchComp, cambridgeComp };
 rootNC.bind_context(path, cambridgeCtx)

 // Create another context, bind it to the path "bankBranches, Boston"
 NamingContext bostonCtx = rootNC.new_context();
 path = { branchComp, bostonComp };
 rootNC.bind_context(path, bostonCtx);

 // Now we can bind Accounts to a name within any of the new subcontexts.
 // Create a few Account server objects, and get usable client references
 // from the POA.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Account johnAcct = new AccountImplPOA("JohnSmith");
 Account johnRef =
 AccountHelper.narrow(rootPOA.servant_to_reference(johnAcct));
 Account maryAcct = new AccountImplPOA("MarkJones");
 Account maryRef =
 AccountHelper.narrow(rootPOA.servant_to_reference(maryAcct));

 // Bind each Account to a name in the appropriate branch path. Assume
 // that John has his account out of the Cambridge branch, Mary has hers
 // out of the Boston branch.
 NameComponent johnComp = new NameComponent("Smith,J", "");
 NameComponent johnPath[] = { branchComp, cambridgeComp, johnComp };
 rootNC.bind(johnPath, johnRef);
 NameComponent maryComp = new NameComponent("Jones,M", "");
 NameComponent maryPath[] = { branchComp, bostonComp, maryComp };
 rootNC.bind(maryPath, maryRef);

If you try to bind an object or a subcontext to a name within a context that hasn't been created yet,
an org.omg.CosNaming.NamingContextPackage.NotFound exception is thrown.

Note that names used in the bind() or rebind() methods are relative to the NamingContext object
that they're called on. This means we can bind Mary's Account object in the previous example to the
same absolute name within the directory by replacing the last two lines of the example with the
following:

 NameComponent maryRelativePath[] = { maryComp };
 bostonCtx.bind(maryRelativePath, maryRef);

The bostonCtx context is bound to the {"bankBranches", "Boston" } subdirectory, so binding an
object to the name { "Jones,M" } within this context is equivalent to binding it to the full path {
"bankBranches", "Boston", "Jones,M" } from the root context. You can use similar shorthand when
binding new contexts within a directory. In other words, you can bind a context to a relative name
within a subcontext, instead of an absolute name within the root context.

14.4.3.1. A slightly simpler approach: The Interoperable Naming Service

The Interoperable Naming Service (INS) interfaces make both the binding and lookup of objects in a
Naming Service a bit easier. In our previous examples, we bound objects to specific locations in the
naming hierarchy by first creating the subcontexts (subdirectories) we needed, then binding the
remote objects to names within those contexts. In each step, we needed to construct fully qualified
names for both the contexts and the objects we were binding. Prior to the introduction of the INS,
the only way to do this was the way shown in earlier examples: manually construct an array of
NameComponents representing the intended path to the object. Using the INS interfaces and their
support for new types of stringified object references and URLs, it's possible to create new contexts
and bind objects in a slightly simpler way. We can convert stringified object references directly to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

NameComponent arrays using the to_name() method on the org.omg.CosNaming.NamingContextExt
interface. For example, assuming that we've created the necessary subcontexts already, we could
bind John Smith's account to the same path as before by specifying the full path as a string and
converting it using to_name():

 NamingContextExt rootNC = ...;
 String johnURL = "bankBranches/Cambridge/Smith,J";
 NameComponent johnPath[] = rootNC.to_name(johnURL);
 rootNC.rebind(johnPath, johnRef);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

14.5. Finding and Using Remote Objects

Now that we've seen how to implement a CORBA remote object and register it with an ORB, we can
turn our attention to the heart of the matter: client applications that want to use the object. As we
said earlier, every CORBA process needs a reference to an ORB. Once a client application has access
to an ORB, next it must find remote objects to interact with. But before we can discuss finding
remote objects, we need to talk a bit about what remote object references look like in the CORBA
environment.

The whole point of CORBA is to be able to distribute objects across the network and use them from
any point. In order for a local process to make requests of a remote object, it needs to have some
kind of reference to that remote object. This object reference needs to contain enough information
for the local ORB to find the ORB serving the target object and send the request to the remote ORB
using an agreed-upon protocol.

14.5.1. Remote Object References and Narrowing

In most situations, a CORBA client has a reference to a remote object in the form of an object stub.
The stub encapsulates the actual object reference, providing what seems like a direct interface to the
remote object within the local environment. If the client is implemented in C++, Java, or some other
object-oriented language, the object stub is a native object in that language. Other nonobject
languages represent remote object references in whatever way is dictated in the CORBA language
binding for that language.

CORBA includes its own root object class , because some object-programming languages may have
different inheritance structures. In the Java binding for CORBA, all CORBA object references (local or
remote) implement the org.omg.CORBA.Object interface. So, when a client of a remote CORBA object
receives a stub for the object, it actually gets an org.omg.CORBA.Object that serves as a proxy for the
remote object. The org.omg.CORBA.portable.ObjectImpl class provides default client-side
implementations for the methods defined on org.omg.CORBA.Object. Java stubs (generated from the
IDL-to-Java compiler, as discussed earlier) for CORBA objects are actually subclassed from the
ObjectImpl class. Internally, ObjectImpl deals with delegating client requests on the object stub to
the proper target object, whether it's a local or remote object. ObjectImpl implements the
org.omg.CORBA.Object interface and inherently extends the java.lang.Object class, so it provides a
joining point between the CORBA and Java object environments.[*]

[*] In pre-POA versions of Java IDL (JDK 1.2 and 1.3), the server skeletons generated for CORBA interfaces were also

subclassed from ObjectImpl. In POA-compliant versions, the skeletons are subclassed from

org.omg.PortableServer.Servant, which provides an alternative implementation of the org.omg.CORBA.Object interface, as

well as a number of methods specific to servant objects.

A reference to an org.omg.CORBA.Object instance that is connected to a remote object is actually all a
client needs to invoke methods on a remote object. Using the Dynamic Invocation Interface defined
by the CORBA standard, you can create method requests and send them to the remote object
directly through the generic Object interface, as we'll discuss later in this chapter. If your client has

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the actual Java interface for the remote object available at compile time, however, you probably want
to convert the Object reference into a reference of that type, so you can use the interface to call
remote methods directly.

Converting an org.omg.CORBA.Object to a specific remote interface is done by narrowing the object
reference to the corresponding interface type, using type-specific helper classes. We've already seen
how the Java IDL compiler, idlj, creates a helper class from an IDL interface (e.g., AccountHelper).
The helper class includes a narrow() method that safely converts an org.omg.CORBA.Object
reference to a reference of the given type. If the object reference you pass into the narrow()
method is not the type the helper expects, an org.omg.CORBA.BAD_PARAM exception is thrown. This is a
RuntimeException, so it doesn't have to be caught by your code, unless you're trying to test the type
of a CORBA reference for some reason.

This narrow() operation highlights one of the key differences between RMI and CORBA. In the Java
environment, class bytecodes are portable, and all remote object types are objects that can be
specified by their full class names. An RMI client can automatically download the bytecodes for a
remote stub from the object server, if the class for the stub can't be found locally (see Chapter 13 for
more details on the mechanics of remote class loading). CORBA is a language-independent remote
object scheme, so there is no portable way to specify a remote object's native type when a client
obtains a stub reference. In Java, you could do this using the same remote classloading scheme as
RMI, but there isn't a similar scheme available in C or C++, for example. As a result, the stub
reference is initially represented by a basic object type that knows how to forward method requests
to its server object, but doesn't necessarily satisfy the mapped interface for the remote object type
the client is expecting. The client application is forced to "cast" this stub to the correct local type,
using the appropriate narrow() method. In the Java mapping of IDL, this means calling the narrow(
) method on the corresponding helper class. The narrow() method converts the reference, making a
type-specific stub interface that also includes the remote object reference information needed to
forward method requests to the actual object implementation.

14.5.2. Accessing Remote Objects

With that background material out of the way, let's discuss actually finding remote object references.
There are many ways that an object reference can find its way through the ORB into a client
application, but they all boil down to one of these methods:

Getting an initial reference directly from the ORB

Getting an object reference through a method call on another remote object reference

Using a stringified object reference obtained through a secondary channel and converting it to a
live object reference

14.5.3. ORB Initial Object References

In addition to providing core object communication services, an ORB can also provide additional
services, such as a Naming Service, a Trading Service, or a Security Service. These services are
represented as CORBA objects and are typically available through the ORB directly, based on how it

http://lib.ommolketab.ir
http://lib.ommolketab.ir

is configured. The ORB interface provides the resolve_initial_references() method for obtaining
references to the objects that represent these services. Each CORBA service is represented by one or
more object interfaces, and these objects can be asked for using standard names. As we saw earlier
when we registered CORBA objects, the standard name for the Naming Service is "NameService", and
the object representing access to the Naming Service is a NamingContext or NamingContextExt object.
These represent the root of the naming hierarchy.

Once you've initialized your ORB reference (as described in "Initializing the ORB" earlier in this
chapter), you can ask the ORB for a list of the names of the initial objects it has available, using the
list_initial_references() method:

 String names[] = myORB.list_initial_references();

This method returns an array of String objects that contains the names of all initial objects in the
ORB. These names can then be used to get references to the objects through the
resolve_initial_references() method.

Here's how we used resolve_initial_references() to obtain a reference to the Naming Service in
our earlier examples:

 ORB myORB = ORB.init(...);
 org.omg.CORBA.Object nameRef =
 myORB.resolve_initial_references("NameService");

Although the list_initial_references() and resolve_initial_references() methods are a
standard element of the ORB interface, how a particular ORB implements these initial object
references is not standardized. Sun's Java IDL implementation, for example, stores an ORB's initial
object references as root objects in its internal Naming Service.

14.5.4. Getting Objects from Other Remote Objects

In addition to getting remote objects directly from an ORB reference, a client can obtain remote
objects from other remote objects. The most common variation on this approach is to get a reference
to a Naming Service object and then look up objects in the naming directory by name. Another
variation (that we won't cover in detail in this section) is to obtain an application-specific object
reference, either directly from the ORB or through the Naming Service, and use this initial reference
to request other objects. An object used in this way in a distributed application is sometimes called a
factory object.

14.5.4.1. Naming Service lookups

Once you have a NamingContext reference that points to a position (either the root or a subdirectory)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

in a Naming Service, you can look up objects within the context by passing names to its resolve()
method. As before, when we were binding objects, a name is represented by an ordered array of
NameComponent objects. Each NameComponent (both the id field and the kind field) must exactly match
the path to an object within the context in order to successfully find the object. If an object is not
found at a specified name, an org.omg.CosNaming.NamingContextPackage.NotFound exception is
thrown.

So, if a client wants to find the account for Mary Jones, which we stored in the last binding example,
it needs to do the following:

 // Set up the full path to the account
 NameComponent comp1 = new NameComponent("bankBranches", "");
 NameComponent comp2 = new NameComponent("Cambridge", "");
 NameComponent acctName = new NameComponent("Jones,M", "");
 NameComponent acctPath[] = { comp1, comp2, acctName };
 // Find the object in the directory
 org.omg.CORBA.Object acctRef = rootNC.resolve(acctPath);
 Account acct = AccountHelper.narrow(acctRef);

We're assuming that rootNC is a reference to the root context of the Naming Service holding the
Account object references. Note the use of the narrow() method on AccountHelper to "cast" the
generic object reference to an Account object.

In addition to finding references to objects (leaf nodes) in the Naming Service, you can also use the
resolve() method on a NamingContext to get a reference to a subcontext (a subdirectory). Just use
the path to the context itself and narrow() it to a NamingContext reference:

 NameComponent cambridgePath[] = { comp1, comp2 };
 org.omg.CORBA.Object ncRef = rootNC.resolve(cambridgePath);
 NamingContext cambridgeContext = NamingContextHelper.narrow(ncRef);

14.5.5. Object URLs

As we've seen, Sun's implementation of Java IDL provides a nonstandard way to initialize an ORB to
reference a remote Naming Service, so that one of the ORB's initial references is to the root context
of the remote Naming Service. But what do you do if you want an object from a remote Naming
Service and your Java IDL implementation doesn't provide a way to directly initialize a reference to
the remote service? Or, worse yet, what if the object that you want isn't stored in a Naming Service
or available through any other CORBA service? How can your client get a reference to the object?

The CORBA standard comes to the rescue again. CORBA defines several ways to represent stringified
object references , or remote object URLs. In other words, you can fully specify a specific CORBA
server object using a URL syntax, which is very similar to the URL syntax used to specify Java RMI
objects in an RMI registry (see Chapter 13 for more details on RMI registry URLs). These object URLs
are called "stringified object references" in the CORBA specifications, because that's exactly what

http://lib.ommolketab.ir
http://lib.ommolketab.ir

they are: strings that can be sent around the network (in email and in configuration files, for
example) and used by clients to obtain a living reference to the object that the URL specifies. So
these object URLs are called "stringified object references" in the same way that you could call HTML
document URLs "stringified document references."

In these URL schemes, the objects being referenced need to be hosted behind an ORB someplace on
the network, and they must have a server process running that is listening for remote method
requests for that object. In some cases, the objects and their request servers can just be connected
directly to the ORB; in other cases, they have to be bound to a name in a Naming Service, with the
Naming Service acting as the method request mediator.

Three basic forms of object URLs are defined in the CORBA standards:

Interoperable Object References (IORs)

These URLs are based on a syntax for representing a remote object reference in the form of a
printable, but not human-readable, string of characters. This stringified object reference
includes enough information for a remote CORBA client to locate the object's home ORB and
convert the string to a runtime stub reference to the object. Two methods on the ORB interface,
object_to_string() and string_to_object(), let you convert a CORBA object reference to
an IOR and back into an object reference. An object doesn't need to be bound to a name in a
Naming Service in order to have an IOR; it simply needs to be exported through an ORB using
an object adaptor, like the POA.

corbaloc URLs

These URLs are a human-readable URL format for object references. They are similar in
purpose to IORs: an object needs to be exported through an ORB for remote access in order to
have a corbaloc URL associated with it. So corbaloc URLs point to a single object accessible
directly through an ORB, without the help of a service of some kind. The same restrictions
apply for making servants accessible through corbaloc URLs as for IORsthe servant object
needs to be connected to an ORB through some kind of object adaptor, like the POA.

corbaname URLs

These URLs are extensions to the corbaloc syntax to allow for references to objects that are
registered with a CORBA Naming Service. The URL format includes additional information that
specifies the object's location (name) in the Naming Service.

Example 14-6 shows AccountInit, a server that creates an instance of our AccountImplPOA and
makes it available for clients to access. In its main() method, it initializes the ORB, then creates an
instance of our Account servant. We're assuming that a POA-compliant version of Java IDL is being
used, so the next thing to do is get a reference to the root POA (using resolve_initial_references(
)) and activate the POA manager, then ask the POA to activate our servant object. By activating our
servant object this way, we're guaranteed that any "direct" IIOP requests (through either an IOR or a
corbaloc URL) will be accepted immediately. Note that in order for the generated IOR to be
acceptable to another ORB, both your ORB and the remote ORB have to be using the same inter-ORB
communication protocol (IIOP, DCE-CIOP, and so on). In this example, we'll assume that our client
and object server are both running IIOP.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 14-6. Initializing an account/getting stringified references

import org.omg.CORBA.*;
import org.omg.CosNaming.*;
import org.omg.PortableServer.POA;
import java.net.InetAddress;
public class AccountInit {

 public static void main(String[] args) {
 try {
 // Initialize an ORB reference
 ORB myORB = ORB.init(args, null);

 // Create an instance of an Account server implementation
 AccountImplPOA acct = new AccountImplPOA(args[0]);

 // Get the root Portable Object Adapter (POA)
 POA rootPOA = (POA)myORB.resolve_initial_references("RootPOA");
 // Activate the POA manager
 rootPOA.the_POAManager().activate();
 // Activate our servant, so that corbaloc and IOR requests will work
 // immediately
 rootPOA.activate_object(acct);

 // Get an object reference from the implementation
 org.omg.CORBA.Object obj = rootPOA.servant_to_reference(acct);
 Account acctRef = (Account)AccountHelper.narrow(obj);

 // Get the root name context (use the INS interface, so that we can use
 // the simpler name construction process)
 org.omg.CORBA.Object objRef =
 myORB.resolve_initial_references("NameService");
 NamingContextExt nc = NamingContextExtHelper.narrow(objRef);

 // Register the local object with the Name Service.
 // Use the Interoperable Naming Service interface to simplify matters,
 // and to support URL-formatted names (e.g. "JohnS",
 // "corbaname://orbhost.com#JohnS", etc.).
 NameComponent[] name = nc.to_name(args[0]);
 nc.rebind(name, acctRef);

 System.out.println("Registered account under name " + args[0]);
 System.out.println("New account created and registered. URLs are: ");
 System.out.println("\nIOR");
 System.out.println("\t" + myORB.object_to_string(acctRef));
 System.out.println("\ncorbaname");
 System.out.println("\tcorbaname:iiop:" +
 InetAddress.getLocalHost().getHostName() +
 "#" + args[0]);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Go into a wait state, waiting for clients to connect
 myORB.run();
 }
 catch (Exception e) {
 System.out.println(
 "An error occurred while initializing server object:");
 e.printStackTrace();
 }
 }
}

Next, we ask the POA to generate an Account reference for us from the servant object; we use this
reference to register the Account with the Naming Service. The request to convert the reference to an
Account reference is necessary because the object implementation class doesn't directly extend the
mapped object interface.

Now that the server object is both connected to the ORB through the POA and registered with a
Naming Service, we can generate various URLs for this object that clients can use to get direct
references to the object. First we get the IOR of the object, using the object_to_string() method
on the ORB. Then we create the corbaname URL for the object, using the local hostname, the port
number of the ORB, and the name the user passed in on the command line and used to register the
object with the Naming Service. Each of these is printed to the console, and we can distribute these
URLs to the clients that need them. Note that we aren't creating a corbaloc URL for our object. This is
because the server-side creation of corbaloc URLs is not standardized; CORBA vendors currently
provide nonstandard ways to generate these in their implementations.

To demonstrate using these URLs, Example 14-7 shows a simple client for our Account server. This
client uses a command-line interface and allows the user to perform transactions on a given Account,
by specifying the Account to use (using its object URL), a transaction type ("deposit", "withdrawal",
or "balance"), and an optional amount (for deposits and withdrawals). After doing the standard ORB
initialization, the client first checks the name of the Account object (the first command-line
argument). If the name of the Account is an object URL (IOR, corbaloc, or corbaname), then the
client simply uses the string_to_object() method on the ORB to get a reference to the specified
Account object and narrows the returned Object to an Account reference using the AccountHelper. If
some other string is passed in, the client assumes the string is a name to be used to do a lookup in
the Naming Service accessible from the ORB and performs the lookup using the standard Naming
Service operations (described earlier). Once the client has the reference to the remote Account
object, the rest is easyjust parse the remaining command-line options given by the user and perform
the requested transaction on the account.

Example 14-7. A client for the account servant

import org.omg.CORBA.*;
import org.omg.CORBA.ORBPackage.*;
import org.omg.CosNaming.*;
import java.util.*;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public class AccountClient {
 public static void main(String args[]) {
 // Initialize the ORB
 ORB orb = ORB.init(args, null);
 org.omg.CORBA.Object ref = null;
 // The object name passed in on the command line
 String name = args[0];
 Account acct = null;
 // See if a stringified object reference/URL was provided
 if (name.startsWith("corbaname") || name.startsWith("corbaloc") ||
 name.startsWith("IOR")) {
 System.out.println("Attempting to lookup " + args[0]);
 ref = orb.string_to_object(args[0]);
 acct = AccountHelper.narrow(ref);
 }
 // Otherwise, do a traditional Naming Service lookup using the
 // services being referenced by our local ORB
 else {
 try {
 ref = orb.resolve_initial_references("NameService");
 }
 catch (InvalidName invN) {
 System.out.println("Couldn't locate a Naming Service");
 System.exit(1);
 }
 NamingContext nameContext = NamingContextHelper.narrow(ref);
 NameComponent comp = new NameComponent(args[0], "");
 NameComponent path[] = {comp};
 try {
 ref = nameContext.resolve(path);
 System.out.println("ref = " + ref);
 acct = AccountHelper.narrow(ref);
 }
 catch (Exception e) {
 System.out.println("Error resolving name against Naming Service");
 e.printStackTrace();
 }
 }

 if (acct != null) {
 // We managed to get a reference to the named account; now check the
 // requested transaction from the command line
 String action = args[1];
 float amt = 0.0f;
 if (action.equals("deposit") || action.equals("withdrawal")) {
 amt = Float.parseFloat(args[2]);
 }
 System.out.println("Got account, performing transaction...");
 try {
 // Did user ask to do a deposit?
 if (action.equals("deposit")) {
 acct.deposit(amt);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 System.out.println("Deposited " + amt + " to account.");
 System.out.println("New balance = " + acct.getBalance());
 }
 // Did user ask to do a withdrawal?
 else if (action.equals("withdrawal")) {
 acct.withdraw(amt);
 System.out.println("Withdrew " + amt + " from account.");
 System.out.println("New balance = " + acct.getBalance());
 }
 // Assume a balance inquiry if no deposit or withdrawal was given
 else {
 System.out.println(
 "Current account balance = " + acct.getBalance());
 }
 }
 catch (InsufficientFundsException ife) {
 System.out.println("Insufficient funds for transaction.");
 System.out.println("Current account balance = " + acct.getBalance());
 }
 catch (Exception e) {
 System.out.println("Error occurred while performing transaction:");
 e.printStackTrace();
 }
 }
 else {
 System.out.println("Null account returned.");
 System.exit(1);
 }
 }
}

To run this example, we first have to have a Naming Service running somewhere, then initialize an
Account object for the client to use:

 orbhost% tnameserv &
 Initial Naming Context:
 IOR:000000000000002b49444c3a6f6d672e6f72672f436f734e616d696e672f4e616d696
 e67436f6e746578744578743a312e30000000000001000000000000007c00010200000000
 0a3132372e302e302e3100041a00000035afabcb0000000020363e1ad7000000010000000
 0000000010000000d544e616d655365727669636500000000000000040000000003000000
 0000000100000001000000200000000000010001000000020501000100010020000101090
 000000100010100
 TransientNameServer: setting port for initial object references to: 900
 Ready.
 orbhost% java com.oreilly.jent.corba.AccountInit JimF
 Registered account under name JimF
 New account created and registered. URLs are:

 IOR

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 IOR:000000000000002349444c3a6f7265696c6c792f6a656e742f636f7262612f4163636
 f756e743a312e300000000000010000000000000068000102000000000a3132372e302e30
 2e3100046600000021afabcb0000000020363f810b0000000100000000000000000000000
 4000000000300000000000001000000010000002000000000000100010000000205010001
 0001002000101090000000100010100

 corbaname
 corbaname:iiop:orbhost#JimF

To perform transactions on this newly created and registered Account object, we run the
AccountClient, passing in one of these object URLs as the "name" of the Account. Here we'll use the
corbaname URL.

 myclient% java com.oreilly.jent.corba.AccountClient corbaname:iiop
 :orbhost#JimF
 Attempting to lookup corbaname:iiop:orbhost#JimF
 Got account, performing transaction...
 Deposited 1000.0 to account.
 New balance = 1000.0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

14.6. What If I Don't Have the Interface?

In the examples we've seen so far, we've always assumed that the Java interfaces for the remote
objects are available at compile time. But what happens if they aren't? You might get a reference to a
CORBA Object from a Naming Service, for example, and not know what interface that object
implements or (more likely) not have that Java interface in the client JVM. We mentioned earlier that
you can use an org.omg.CORBA.Object reference directly to make requests and exchange data with its
remote objectnow we'll briefly look at how the Dynamic Invocation Interface (DII) makes that
possible.

The CORBA standard actually defines two complementary APIs for this purpose. The DII is used by a
CORBA client to make remote method requests of a server object, while the DSI can be used by a
server-side skeleton to forward method invocations to its server implementation object when it
doesn't have the actual servant interface available. Both of these APIs perform the same essential
function: providing a dynamic interface to an object whose interface is not known at compile time.

The DII and DSI may seem like sidebar topics in the CORBA world, but in reality they are at the heart
of CORBA and how it works. When we generate Java stubs and skeletons from IDL interfaces, the
generated code uses the DII and DSI to execute remote method calls. The details of how this is done
are shielded from you, the developer, by the Java interface you use to interact with the remote
object. But it's still worthwhile to understand how CORBA objects implement their distributed nature,
especially in situations in which the Java interface for the remote object is not there and you need to
deal directly with these details.

On a more pragmatic note, in some cases you might find yourself needing the DII or the DSI. In all
the examples we've gone through in this chapter so far, we've assumed that both the server and
client JVMs had all of the relevant interfaces available locally. For clients, we assumed that somehow
they had acquired the IDL-generated Java interface for our objects (Account, etc.). It is safe to
assume you have access to the client machines directly or can provide an easy way for users to
download the required classes themselves as part of some installation process. Since the clients will
obviously need to acquire your client code in the first place, it's usually possible to provide the other
CORBA client classes as well, and the DII isn't needed. But if not (perhaps you want to minimize class
downloads for some reason, for example), then it may be useful to use the DII to create a client that
operates without the need for the object interfaces themselves.

In this section, we take a look at how the DII works and how you might use it in a client. We won't
cover the DSI in this book, since its practical uses are even more limited for the average developer.
Note, however, that the API of the DSI is analogous to that of the DII, so you shouldn't have much
trouble mapping the following explanation to the DSI as well.

14.6.1. Dynamic Invocation Interface

The DII provides abstract representations of remote method requests and their arguments. In simple
terms, this means it includes objects that represent remote method requests and parameters that

http://lib.ommolketab.ir
http://lib.ommolketab.ir

are passed with these method requests. Methods on these objects allow you to set the parameters to
the request, make the request, and get the results. DII's central classes are:

Request

A request to invoke a method on a remote object. Created by the client and issued through the
ORB to the server object.

NamedValue

A named parameter to a method request. Conceptually, this is a name tied to an Any value.
The name of the value must match the name of the parameter as specified in the IDL interface
the remote object satisfies.

NVList

A list of NamedValue parameters used to represent an argument list passed into a remote
method request.

Any

A general argument value. An Any object can contain the Java equivalent of any basic IDL type
or an Object that can be described in IDL.

Context

A list of NamedValue objects used to specify any details of the client environment that shouldn't
be passed as method arguments.

Once you get an org.omg.CORBA.Object reference to a remote object (using any of the approaches
we've already covered), you can create and issue a method request to the object by building a
parameter list for the method call, making a NamedValue object to hold the result, making a Context
object and putting any useful environment values in it, and then using all of these items to create a
Request object that corresponds to a particular method on the object. In general, the various
create_XXX() methods on the ORB interface are used to construct all of these elements of a DII

request, except for the Request itself. That is created by calling _create_request() on the Object
that is the target of the remote method call.

Example 14-8 shows a version of our Account client that uses DII calls to invoke the deposit() or
getBalance() methods on a remote Account object (the case for the withdraw() method is very
similar to the deposit() case, so it's omitted here for the sake of brevity.) The client is structured
very much like the client in Example 14-7, except that the actual calls to the remote Account object
are constructed as DII calls. For the deposit requests, the method has a single float argument and no
return value, so the call to create the Request includes a null NamedValue for the result and an NVList
containing a single NamedValue holding the amount to be deposited. In the case of requests for the
Account balance, the getBalance() method has no arguments and a single float return value, so the
creation of the Request includes a null NVList for the arguments and a NamedValue containing an Any

http://lib.ommolketab.ir
http://lib.ommolketab.ir

object intended to hold a floating-point value.

Example 14-8. Account client DII.java

import org.omg.CORBA.*;
import org.omg.CosNaming.*;

public class AccountClientDII {
 public static void main(String args[]) {
 ORB myORB = ORB.init(args, null);
 try {
 // The object name passed in on the command line
 String name = args[0];
 org.omg.CORBA.Object acctRef = null;
 if (name.startsWith("corbaname") || name.startsWith("corbaloc") ||
 name.startsWith("IOR")) {
 System.out.println("Attempting to lookup " + args[0]);
 acctRef = myORB.string_to_object(args[0]);
 }
 else {
 System.out.println("Invalid object URL provided: " + args[0]);
 System.exit(1);
 }

 // Make a dynamic call to the doThis method
 if (acctRef != null) {
 // We managed to get a reference to the named account; now check the
 // requested transaction from the command line
 String action = args[1];
 float amt = 0.0f;
 if (action.equals("deposit")) {
 amt = Float.parseFloat(args[2]);
 }
 System.out.println("Got account, performing transaction...");
 try {
 // Did user ask to do a deposit?
 if (action.equals("deposit")) {
 // The following DII code is equivalent to this:
 // acct.deposit(amt);

 // First build the argument list. In this case, there's a single
 // float argument to the method.
 NVList argList = myORB.create_list(1);
 Any arg1 = myORB.create_any();
 // Set the Any to hold a float value, and set the value to the
 // amount to be deposited
 arg1.insert_float(amt);
 NamedValue nvArg =
 argList.add_value("amt", arg1, org.omg.CORBA.ARG_IN.value);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Java IDL doesn't implement the get_default_context() operation
 // on the ORB, so we just set the Context to null
 Context ctx = null;
 // Create the request to call the deposit() method
 Request depositReq =
 acctRef._create_request(ctx, "deposit", argList, null);

 // Invoke the method...
 depositReq.invoke();
 System.out.println("Deposited " + amt + " to account.");
 }
 else {
 // The following DII code is equivalent to this:
 // acct.balance();

 // No argument list is needed here, since the getBalance() method
 // has no arguments. But we do need a result value to hold the
 // returned balance
 Any result = myORB.create_any();
 // Set the Any to hold a float value
 result.insert_float(0.0f);
 NamedValue resultVal =
 myORB.create_named_value("result", result,
 org.omg.CORBA.ARG_OUT.value);
 // Java IDL doesn't implement the get_default_context() operation
 // on the ORB, so we just set the Context to null
 Context ctx = null;
 // Create the request to call getBalance()
 Request balanceReq =
 acctRef._create_request(ctx, "getBalance", null, resultVal);

 // Invoke the method...
 balanceReq.invoke();
 System.out.println("Current account balance: " +
 result.extract_float());
 }
 }
 catch (Exception e) {
 System.out.println("Error occurred while performing transaction:");
 e.printStackTrace();
 }
 }
 else {
 System.out.println("Null account returned.");
 System.exit(1);
 }
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Again, note that in most situations you will actually have the Java interface for the remote object
available in your client along with its helper class, so you'll be able to narrow the Object reference to
a specific type and call its methods directly. One exception might be if you're building some kind of
software development tool and you want to provide a dynamic execution utility for the CORBA code
being developed. The previous example demonstrates how a CORBA method call can be carried out
at this lower level, in case you ever find it necessary to do so. And when you're trying to fix a
problem with your CORBA application, it's always better to understand what's going on under the
hood, so to speak.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 15. JavaMail
The JavaMail APIs provide a platform- and protocol-independent framework to build Java-based mail
and messaging applications with a particular focus on Internet email. JavaMail can be used to build
mail clients, but, in an enterprise setting, the primary application for JavaMail is to add electronic mail
capability to large applications. For example, a Java servlet can use JavaMail to implement a web-
based mail reading system, send confirmations and notifications, receive commands from users, or
even communicate with middleware.

Sun included a basic SMTP email class in the first version of the JDK. However, because this class
could only send email, and was available only with Sun's implementation of the JDK, developers who
wished to include more advanced electronic mail capability into their applications generally needed to
start from scratch. The JavaMail API, first introduced in early 1998 and now in Version 1.3, fills this
niche, giving Java applications a complete mail and messaging framework. JavaMail has been part of
J2EE since Version 1.2, and JavaMail 1.3 is included in J2EE 1.4.

Strictly speaking, the JavaMail API isn't really an email API at all. The JavaMail classes provide an
interface to a generic set of messaging functions for creating, storing, and transporting messages.
Developers can extend these classes to implement custom transport protocols and develop
standardized mail applications. As an add-on, the distribution includes implementations of popular
mail-related protocols and a set of helper classes specifically designed to work with email on the
Internet. Since JavaMail includes built-in support for Multipurpose Internet Mail Extensions (MIME)[*]-
formatted messages, this communication can be extremely rich, opening up a range of new
possibilities for large-scale applications.

[*] MIME was originally defined in RFCs 1521 and 1522. These have been replaced by RFCs 2045 through 2049. The complete

set, along with additional information, related RFCs, and helpful links, is available at

http://www.nacs.uci.edu/indiv/ehood/MIME/MIME.html.

http://www.nacs.uci.edu/indiv/ehood/MIME/MIME.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

15.1. Email and JavaMail

The vast majority of JavaMail applications use the system to interact with Internet email. While it's
safe to assume that anyone reading this book has some conceptual familiarity with electronic mail, a
quick overview of Internet-based email from a technical perspective is in order. If you would like
more details about email services, see Programming Internet Email by David Wood (O'Reilly).

The primary mechanism for email transport over the Internet is the Simple Mail Transfer Protocol
(SMTP), as defined in RFC 822. SMTP clients, such as desktop email programs, send messages by
connecting to another SMTP server and transmitting a series of headers followed by a message body.
Once the SMTP server receives a message, it is either stored for access by local users or forwarded to
another SMTP server nearer to its destination. Most ISP and corporate mail servers will accept
messages only for delivery to local users or from local users for delivery elsewhere. In the latter case,
the SMTP server is responsible for determining the appropriate destination for the message.

If the SMTP server determines that a message is for local delivery (for instance, mail.oreilly.com
handles incoming email for O'Reilly Media), it handles the message in a number of ways. Early SMTP-
based email systems just stored the incoming messages in the Unix mailbox format for retrieval off
the local disk by mail reader software. However, as systems grew and mail services became
decoupled from other systems, a need arose for a standardized way to access centralized "post
office" systems that pooled the incoming mail for an entire domain (or, in the case of many ISPs,
multiple domains). At a minimum, this involved providing access to Unix mailboxes over the Internet.
POP, which stands for Post Office Protocol, was the first successful attempt to do this. A mail client
(such as Outlook, PINE, or Eudora) can use POP to connect to a POP server and download the
messages waiting for a particular user. POP has subsequently been replaced with POP-3 (which is
universally supported) and IMAP, a more flexible successor that has rapidly gained acceptance since
Version 4 was introduced in 1994.

Figure 15-1 shows the path of a typical email message from the sender's email client to the
recipient's email client. Note that this is a very simple case, with two SMTP servers relaying mail over
the long haul (like AT&T long distance) and a or IMAP server at the receiving end (acting like a Baby
Bell). Depending on server and client configurations, there may be only one SMTP server involved, or
there may be several as messages are routed from ISP to ISP.

Figure 15-1. Basic email routing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

15.1.1. JavaMail Layers

At this point, we'll give you a brief overview of the JavaMail layers . The abstract layer of the JavaMail
APIs can be divided into three categories: sessions, services, and messages. Sessions contain
information about the current user, mail hosts, and protocols. They serve as factories for various
types of objects. Messages are exactly that: text sent through the mail system. Services allow you to
do useful things with messages and are subdivided (as of JavaMail 1.2) into two categories: stores
and transports. Stores act as containers for sets of messages, while transports route messages from
one site to another.

As we mentioned earlier, most of the JavaMail API consists of abstract classes. When necessary,
however, implementations of those classes are provided by an implementation layer. Implementation
layers may include SMTP, IMAP, NNTP, or POP-3 protocols or a message storage system. The
implementation layer handles the actual message processing tasks.

15.1.2. Installing and Configuring JavaMail

If you're using J2EE 1.3 or 1.4, which include JavaMail 1.2 and 1.3 respectively, you need not
download JavaMail. Otherwise, you can download the standalone JavaMail 1.3 distribution, suitable
for inclusion in any application, from http://java.sun.com/products/javamail. You will also need the
JavaBeans Activation Framework, which contains the javax.activation classes used to handle certain
content formatting tasks. JAF is available from http://java.sun.com/products/javabeans/jaf.

If you're not in a full J2EE configuration, install JavaMail by adding JAF's activation.jar and JavaMail's
mail.jar to your system CLASSPATH or your JDK's lib directory. If you look at the JavaMail archive,
you'll notice some additional jars: mailapi.jar, imap.jar, smtp.jar, and pop3.jar. The mail.jar file
contains the contents of all four files, but you can use the smaller jars to selectively include service
implementations in your environment. Using the smaller jar files helps reduce loading time for
applets. Note that some J2EE application servers may package the JavaMail and JAF classes
differently. Consult your server's documentation for details.

By simply adding these jar files to the CLASSPATH, most JavaMail programs should compile and
execute. However, some additional configuration options are available. JavaMail allows you to set a
number of system properties to provide email-related system defaults. In addition to the eight
properties listed in Table 15-1, each service has its own set of specific properties. Note that you don't
need to set any of these to use the APIs.

Table 15-1. Core JavaMail environment properties

Property Description Default

http://java.sun.com/products/javamail
http://java.sun.com/products/javabeans/jaf
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Property Description Default

mail.store.protocol
Default message store protocol (such as
POP or IMAP).

First message store
specified in the JavaMail
configuration files

mail.transport.protocol
Default message transport protocol (such
as SMTP).

First transport specified in
the JavaMail configuration
files

mail.host
Default host. JavaMail providers will
attempt to connect to this system if no
other host is specified.

The local machine

mail.user
Default username to use when connecting
to a provider. user.name

mail.protocol.host
Default host for a particular protocol. To
set the default IMAP host, use
mail.imap.host. Overrides mail.host .

Value of mail.host

mail.protocol.user
Default user for a particular protocol. To
set the default IMAP user, use
mail.imap.user.

Value of mail.user

mail.from
Return address of the current user. username@host

mail.debug
Whether JavaMail should operate in debug
mode. Debug mode can also be toggled
via the setDebug() method of Session.

false

15.1.2.1. Provider registries

JavaMail is designed to allow third parties to provide service implementations. JavaMail identifies the
installed providers via the javamail.providers and javamail.address.map registry files. When starting
up a JavaMail session, the system searches for javamail.providers files in the following locations:[*]

[*] Note that under JDK 1.1, only one META-INF/javamail.providers file can be found due to classloader limitations.

JAVA_HOME/lib/javamail.providers

META-INF/javamail.providers (in application jar files)

META-INF/javamail.default.providers (in application jar files; generally found only in the
JavaMail mail.jar file)

The first entries found provide the defaults unless specifically changed by the application; if two POP3
providers are found, the first one identified becomes the default.

The javamail.providers file is formatted like this:

mail.store.protocol
Default message store protocol (such as
POP or IMAP).

First message store
specified in the JavaMail
configuration files

mail.transport.protocol
Default message transport protocol (such
as SMTP).

First transport specified in
the JavaMail configuration
files

mail.host
Default host. JavaMail providers will
attempt to connect to this system if no
other host is specified.

The local machine

mail.user
Default username to use when connecting
to a provider. user.name

mail.protocol.host
Default host for a particular protocol. To
set the default IMAP host, use
mail.imap.host. Overrides mail.host .

Value of mail.host

mail.protocol.user
Default user for a particular protocol. To
set the default IMAP user, use
mail.imap.user.

Value of mail.user

mail.from
Return address of the current user. username@host

mail.debug
Whether JavaMail should operate in debug
mode. Debug mode can also be toggled
via the setDebug() method of Session.

false

15.1.2.1. Provider registries

JavaMail is designed to allow third parties to provide service implementations. JavaMail identifies the
installed providers via the javamail.providers and javamail.address.map registry files. When starting
up a JavaMail session, the system searches for javamail.providers files in the following locations:[*]

[*] Note that under JDK 1.1, only one META-INF/javamail.providers file can be found due to classloader limitations.

JAVA_HOME/lib/javamail.providers

META-INF/javamail.providers (in application jar files)

META-INF/javamail.default.providers (in application jar files; generally found only in the
JavaMail mail.jar file)

The first entries found provide the defaults unless specifically changed by the application; if two POP3
providers are found, the first one identified becomes the default.

The javamail.providers file is formatted like this:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 protocol=imap; type=store;
 class=com.sun.mail.imap.IMAPStore;
 vendor=SunMicrosystems,Inc;
 version=1.2;

The semicolon is the field delimiter. The javamail.address.map file is located in the same fashion as
javamail.providers (including the javamail.default.address.map file in mail.jar) and contains
mappings of address types to transport services. For example, messages to RFC 822-formatted
addresses are transported via the SMTP protocol, and this relationship is indicated by a line in the
javamail.address.map file like this one:

 rfc822=smtp

Unless you are developing your own service providers, you probably won't need to alter any of these
files.

15.1.3. The Mail Session

As we mentioned earlier, the JavaMail API provides a Session class that fills two roles. First, it stores
messaging-related properties, both global and user-specific, and provides this information to most
new JavaMail objects via their constructors. Second, it provides factory methods for Store and
transport objects.

The JavaMail API provides two types of Session objects: the default session and local sessions . The
default session is created only once using the static Session.getDefaultInstance() method. There
are two overloaded versions of the getdefaultInstance() method: one accepts a
java.util.Properties object, and one accepts a Properties object and a javax.mail.Authenticator.
The Properties object can be use to set JavaMail system properties.[*] The Authenticator can also
be used to limit access to the default session; if the first call to getdefaultInstance() includes an
Authenticator, all subsequent calls must pass either the same instance of the Authenticator object
or an instance from the same class loader as the original Authenticator object. Note that no
Authenticator implementations are provided with the basic JavaMail distributionyou have to create
your own by subclassing the abstract javax.mail.Authenticator class provided by the API.

[*] The Properties-only version of this method was added in the JavaMail 1.2 release, so if you are running against a stock

J2EE 1.2 installation or the JavaMail 1.1 release, you won't find it. Everything else in this chapter should apply equally to Versions

1.1 and 1.2.

The Session.getInstance() method behaves the same as geTDefaultInstance(), but also provides
a local instance of the Session object that is not shared across the JVM. With this approach, the
Authenticator is used only to determine usernames and passwords for services that require them.

The following code sample retrieves a default session, using the JVM system properties to define
JavaMail properties and using an Authenticator implementation called myAuthenticator. It then tries
to retrieve a second reference to the default session without using an authenticator. If this fails

http://lib.ommolketab.ir
http://lib.ommolketab.ir

(which, in this case, it will), the code gets a local instance instead.

 Session session = Session.getDefaultInstance(System.getProperties(),
 new MyAuthenticator());

 // Try to get it again, without the authenticator; get local
 // instance on failure
 Session sess2 = null;
 try {
 sess2 = Session.getDefaultInstance(System.getProperties(), null);
 } catch(SecurityException se) {
 sess2 = Session.getInstance(System.getProperties(), null);
 }

15.1.3.1. Authenticators

Besides controlling access to the default session, javax.mail.Authenticator objects are also used to
provide usernames and passwords to messaging services such as mail servers. This is accomplished
by extending the abstract Authenticator class and overriding the getPasswordAuthentication()
method, which returns a JavaMail PasswordAuthentication object:

 class BasicAuthenticator extends Authenticator {
 protected PasswordAuthentication getPasswordAuthentication() {
 return new PasswordAuthentication("scott", "tw7182");
 }

The PasswordAuthentication object is simple: it just serves as a container for the two strings. In
most applications, these would be entered by the user via a dialog box or retrieved from some
centralized directory service. Since Authenticator objects are global to the session, the base
Authenticator class contains a number of final methods, which can be used to provide information
about the particular authentication requestfor instance, using getrequestingProtocol() and
getrequestingSite(), the getPasswordAuthentication() code can determine whether to provide
the IMAP login information for mailserver.myco.com or the POP3 login information for pop.prep.edu.

15.1.3.2. Providers

A Session itself doesn't provide any mail-handling capabilitiesit simply provides the means to access
other messaging services. Generally, you will know what sort of messaging protocols and services are
available before sitting down to code your application and won't need to determine them on the fly.
However, the javax.mail.Provider object provides a convenient view of the implementation details
for particular services: the protocol (such as SMTP), the service type (message storage or message
transport), vendor, version, and implementing class name.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For most applications, you don't actually need to worry about the Provider object, because you don't
need access to the object itself to access the features it provides. However, if you do need one, the
getProviders() method of Session will allow you to interrogate the current session to determine
which service providers are installed. This method returns an array of Provider objects describing the
different protocol implementations available to the session. To retrieve the Provider object for a
particular protocol, call the getProvider(String) method and pass it the protocol name, as in the
following:

 mySession.getProvider("smtp");

By default, provider information is specified in the javamail.providers and javamail.default.providers
resource files. This means that if you are using the providers in the Sun JavaMail distribution, you
don't have to do anything to obtain access to the standard services. If you want to programmatically
install your own implementation of a particular protocol, you can pass a vendor-supplied Provider
object to the setProvider() method of Session.

15.1.3.3. URL names

JavaMail provides a number of mechanisms for identifying services, including the system properties
discussed earlier in this chapter. JavaMail services can also be identified via URLs in the form
protocol://server. An IMAP URL, for example, might look like imap://mailserver.cs.edu. The
javax.mail.URLName object is used to encapsulate information about a connection to a mail service.
This can be quite convenient, since it allows all necessary information about a connection to be
assembled in a centralized location. Since service URLs are protocol-specific, this can include an
arbitrary range of precision IMAP URLs, for instance, allow the specification of particular messages
and folders within the IMAP message store.[*]

[*] RFC 2192 contains full information about the IMAP URL scheme. It can be found online at

http://www.faqs.org/rfcs/rfc2192.html.

A URLName object is only a container for connection informationhence the "Name." It doesn't actually
connect to the service it identifies. Instead, it can be passed to various methods of Session, including
getFolder(), getStore(), and gettransport().

URLName objects can be retrieved from existing service connections via the getURLName() method of
Service (we'll look at specific services later in this chapter). They can also be created directly via
three constructors:

 URLName(Stringurl)
 URLName(java.net.URLurl)
 URLName(java.lang.String protocol, java.lang.String host, int port,
 java.lang.String file, java.lang.String username,
 java.lang.String password)

http://www.faqs.org/rfcs/rfc2192.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The first two are fairly straightforward, accepting a raw URL in a String format or encapsulated as a
java.net.URL object. The third optionthe detailed constructorallows you to build up the URL from its
individual components, including some components (i.e., password) that might not be included in the
actual URL at all. Not all options apply to all protocols, so to keep the default value for each field,
pass in null. The obvious exception is the port parameter, which accepts -1 as its default value
indicator.

The other way to associate login information with a URLName (particularly if the URLName was created
by some mechanism other than the detailed constructor) is to associate a PasswordAuthentication
object with the URL. This is done at the session level by using
Session.setPasswordAuthentication(URLName, PasswordAuthentication) and
Session.getPasswordAuthentication(URLName). Once a PasswordAuthentication object has been
associated with a URLName, it will be used to handle authentication for future connections to that URL.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

15.2. Creating and Sending Messages

JavaMail messages are encapsulated within the abstract Message class. Since JavaMail is a transport-
independent API, the default message class is very generic. A standard Message has three attributes:
a subject, a set of headers, and content. The Message class defines get- and set- methods for each
of these. In addition, the Message class implements the Part interface, which defines a set of methods
for dealing with message headers in an abstract fashion and for associating content with the
message. The actual message content is contained in a javax.activation.DataHandler object, part of
the JavaBeans Activation Framework.

Message origins and destinations are set via Address objects. Since Address is abstract, subclasses
are provided to handle particular address types. The basic JavaMail implementation includes an
InternetAddress class for SMTP mail and a NewsAddress class for NNTP (Usenet) news. Note that,
because there is no NNTP service provider included with the JavaMail distribution, the
InternetAddress class is of greater use to most programmers.

The easiest way to create an InternetAddress is to instantiate a new object, passing an RFC-822-
formatted (user@host) address into the constructor:

 InternetAddress addr = new InternetAddress("adams@whitehouse.gov");

If the address format is invalid, an AddressException is thrown. You can also supply a personal name
as a second parameter:

 InternetAddress addr = new InternetAddress(
 "adams@whitehouse.gov", "John Adams");

Error-handling behavior for InternetAddress objects is a little odd. The basic constructor throws an
exception if the address provided doesn't conform to the RFC 822 rules. However, if you supply a
personal name, no AddressException is thrown, even if the address provided is improperly formatted.

JavaMail 1.3 introduced a strict flag to the InternetAddress constructor. However, there appears to
be a bug in the reference implementation that causes this flag to be ignored. You can get around this
by creating an empty InternetAddress object and setting the address property separately. If you
subsequently want to validate the address, you can call the new validate() method. To summarize:

 // No exception:
 InternetAddress address = new InternetAddress("test@", "John Test");
 // Exception! (JavaMail 1.3.2, J2EE 1.4.1 RI)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 InternetAddress address2 = new InternetAddress("test@", false);

 InternetAddress ad1 = new InternetAddress();
 ad1.setAddress("bob@"); // doesn't throw exception
 ad1.validate(); // throws exception

In most cases, this behavior does not make any differenceyou generally want strict parsing, since if
JavaMail cannot understand the address, the mail server probably won't either. But some applications
(such as email to fax gateways) do break the RFC 822 rules, so you should know how to handle
cases like this.

Back to the matter at hand. The JavaMail distribution comes with one Message implementation: the
MimeMessage class, which handles Internet email. Instantiating a simple MimeMessage is easy:

 Message msg = new MimeMessage(session);
 msg.setFrom(new InternetAddress("tip@house.gov"));
 msg.setRecipients(Message.RecipientType.TO,
 InternetAddress.parse("mike@state.ma.us", false));
 msg.setText("We need to discuss a highway project.");

Additional set methods can be called to set other attributes of the message, such as the subject,
header fields, and so on. The Part interface also offers ways to set message content. The simplest is
to use the setText() method, which sets the message content to a text string, with the content
MIME type set to text/plain. The more fine-grained approach is to create a JAF DataHandler object,
assign it content and MIME type, and use the setDataHandler() method to associate the
DataHandler with the message. The equivalent of the setText() call would be:

 javax.activation.DataHandler dh = new javax.activation.DataHandler(
 "We need to discuss a highway project.", "text/plain");
 msg.setDataHandler(dh);

Other content types besides plain text are possible. To send HTML-formatted mail, pass the HTML
into a DataHandler with the content type set to text/html.

15.2.1. Sending Messages

Once a message has been created, sending it is simple. The Address object identifies the type of
address used (Internet email or Usenet news) so that the JavaMail API can determine the appropriate
transport mechanism. The simplest way to do this is to call the static send(Message) method of
transport. This approach uses the default session to determine mail servers (via the environment
properties) and appropriate protocols (via javamail.address.map).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To obtain a little more control, you can retrieve a protocol-specific TRansport object from a Session:

 Transport t = session.getTransport("smtp");
 t.send(msg);

Example 15-1 puts all the pieces together, retrieving the default session, assembling a simple
message, and using the default transport mechanism to send it.

Example 15-1. Sending an SMTP mail message

import javax.mail.*;
import javax.mail.internet.*;
import java.util.Properties;

public class MailSend {
 public static void main(String[] args) {
 Properties props = System.getProperties();
 props.put("mail.smtp.host", "mail.college.edu");
 Session session = Session.getDefaultInstance(props, null);

 try {
 Message msg = new MimeMessage(session);
 msg.setFrom(new InternetAddress("you@yourhost.com"));
 msg.setRecipients(Message.RecipientType.TO,
 InternetAddress.parse("me@myhost.com", false));
 msg.setSubject("Test Message");
 msg.setText("This is the sample Message Text");
 msg.setHeader("X-Mailer", "O'Reilly SimpleSender");
 Transport.send(msg);
 } catch (AddressException ae) {
 ae.printStackTrace(System.out);
 } catch (MessagingException me) {
 me.printStackTrace(System.out);
 }
 }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

15.3. Retrieving Messages

In addition to allowing programs to create and send messages, the JavaMail API also provides
facilities to retrieve incoming messages. This is done via a "message store." For standard Internet
mail, the message store is generally held on a mail server and accessed via a mail client protocol.

JavaMail 1.2 and later distributions include message store implementations for POP-3 and IMAP mail
client protocols. POP-3 is an older protocol that is still used by most ISPs and many corporate
environments. It allows clients to list all available messages, retrieve them, and delete them. POP,
which stands for Post Office Protocol, was designed to work like a post office, acting as a central
clearinghouse for incoming messages and providing a mechanism to deliver those messages to the
recipient.

POP-3 stops at the point of message delivery. IMAP, however, is a newer protocol that allows more
complex message handling. IMAP clients can organize messages into different "folders" on the server,
based on user commands or built-in server filtering rules. In some implementations, the IMAP server
is intended as the final repository for all of a user's messages. The mail client simply accesses the
IMAP folders and retrieves message information as required.

15.3.1. Message Stores

Message stores are accessed via implementations of the Store object. The getStore() method of
Session is used to retrieve a Store implementation. getStore() provides a variety of ways to specify
the desired message retrieval method, using the JavaMail system properties to greater or lesser
degrees. Calling getStore() without any arguments will return a message store based completely on
JavaMail system properties. You can also pass getStore() a text string specifying the protocol to
use, a Provider object, or a URLName object that completely defines the connection. If the message
store provider requested is unavailable, a NoSuchProviderException is thrown:

 Session session = Session.getDefaultInstance(
 System.getProperties(), null);

 try {
 // Get the default message store
 Store defaultStore = session.getStore();

 // Get a store using the default server for IMAP
 Store imapStore = session.getStore("imap");

 // Get the default IMAP store based on a Provider
 Store imapStore2 = session.getStore(session.getProvider("imap"));

 // Get an IMAP store based on a URLName

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Store namedStore = session.getStore(
 new URLName("imap", "imap.my.com", -1, null, "user", "pw"));

 } catch (NoSuchProviderException nsp) {
 }

Once you have a Store object, you need to connect to it before retrieving messages. Store extends
the abstract Service class, which provides generic connection services for both Store and transport
objects, as well as hooks to the JavaMail event model. To connect to the store, use the connect()
method, which comes in three variants. The parameterless version can be used with message stores
that don't require authentication or with authenticated stores that have already had the username
and password specified via a URLName or an Authenticator. The other two versions allow you to
specify the mail host, username, and password or the mail host, port, username, and password. To
use the default value for any of these parameters, pass null (for object parameters) or -1 (for
integer parameters.)

Between the system properties, the getStore() method, and the connect() method, JavaMail
provides a variety of ways to specify the attributes of message stores. This is because different
protocols require different information to successfully connect to a server. The information that is
most directly provided always overrides the system or store defaults.

15.3.2. Handling Incoming Messages

Message stores provide the most general collection of messages possible. However, it is not a good
idea to assume that every message in a system will be collected in the same place. JavaMail supports
grouping of messages into folders. Every message store contains a default folder, represented by a
Folder object. The default folder generally contains one or more subfolders that contain actual
messages. The default folder is retrieved via the getdefaultFolder() method of a Store object.
Subfolders can then be retrieved by calling the getFolder() method on the default folder:

 Folder defaultFolder = myStore.getDefaultFolder();
 Folder inboxFolder = defaultFolder.getFolder("INBOX");

In this example, we first retrieve the default folder from the message store and INBOX folder. This is,
by the way, the standard hierarchy for both IMAP and POP-3 message stores; actual messages are
stored, by default, in the INBOX folder. IMAP message stores allow users to configure a broader
range of folders internally, either via a mail client or by configuring settings on the mail server. These
folders can be nested indefinitely.

After obtaining a folder, you can open it with the Folder.open() method. Folders can be opened in
either read-only or read/write mode, depending on whether the Folder.READ_ONLY or
Folder.READ_WRITE constant is passed to the open() method. For example:

 // Open a folder for read-write access:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 inboxFolder.open(Folder.READ_WRITE);

Example 15-2 connects to a message store located at mail.college.edu, via the IMAP and POP-3
protocols and using an Authenticator to handle usernames and passwords .

Example 15-2. IMAP and POP message retrieval

import javax.mail.*;

public class MailCheck {

 static String mailhost = "mail.college.edu";

 public static void main(String[] args) {

 Session session = Session.getDefaultInstance(System.getProperties(),
 new myAuthenticator());

 try {
 Store imapStore = session.getStore(new URLName("imap://" + mailhost));
 imapStore.connect();
 System.out.println(imapStore.getURLName());
 // Get a default folder, and use it to open a real folder
 Folder defaultFolder = imapStore.getDefaultFolder();
 defaultFolder = defaultFolder.getFolder("INBOX");
 defaultFolder.open(Folder.READ_WRITE);

 Message[] msgs = defaultFolder.getMessages();
 if(msgs != null)
 for (int i = 0; i < msgs.length; i++) {
 System.out.println(msgs[i].getSubject());
 }

 // Now, get it with POP3, using authenticator
 Store popStore = session.getStore("pop3");
 popStore.connect(mailhost, null, null);

 // Get a default folder, and use it to open a real folder
 Folder defaultPopFolder = popStore.getDefaultFolder();
 defaultPopFolder = defaultPopFolder.getFolder("INBOX");
 defaultPopFolder.open(Folder.READ_ONLY);

 msgs = defaultPopFolder.getMessages();
 if(msgs != null)
 for (int i = 0; i < msgs.length; i++) {
 System.out.println(msgs[i].getSubject());
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 } catch (MessagingException me) {
 me.printStackTrace(System.out);
 }
 } // End main()
}

class myAuthenticator extends Authenticator {
 protected PasswordAuthentication getPasswordAuthentication() {
 return new PasswordAuthentication("mailname", "test");
 }
}

15.3.3. Searches and Message Management

JavaMail includes a mechanism for programmatically generating search criteria for finding messages
within folders. Searches are built via the SearchTerm object. SearchTerm is an abstract class with a
single method, match(Message), which returns true or false depending on whether the message
matches the term's criteria. JavaMail provides a number of SearchTerm implementations that allow for
searching on various aspects of a message. SubjectTerm, for instance, does substring matching on
the Subject header. The following code will search a folder for all messages with "Urgent" in the
subject line:

 SearchTerm t = new SubjectTerm("Urgent");
 Message[] msgs = folder.search(t);

More complex searches use the AndTerm, OrTerm, and NotTerm objects, which allow chaining and
nesting of search criteria. Here's how to tell when we haven't gotten something to our editor on time:

 SearchTerm t = new AndTerm(new FromStringTerm("oreilly.com"),
 new SubjectTerm("late"));
 Message[] msgs = folder.search(t);

The search will match messages from oreilly.com in which the subject contains the word "late." You
can nest AndTerm and OrTerm objects as deeply as you want, although performance will obviously
suffer with more complex searches.

The default implementation of the search functionality will rely on the data provided via Message
objects to perform searches. This has the advantage of working regardless of whether the underlying
message store supports search functionality and allows programmers to easily define their own
search terms by extending the SearchTerm class. If the underlying message store does support search
functionality, the implementation has the option of translating the search, wherever possible, into
native terms.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Unsolicited commercial email (spam) is of great concern to many readers, so we offer our
contribution to cleaner inboxes. Example 15-3 will connect to a mailbox and perform a set of subject
searches for strings that generally indicate less than desirable content. Once identified, a copy of the
message is sent to a separate address for monitoring purposes, and the original is deleted.

Example 15-3. SpamCleaner.java

import javax.mail.*;
import javax.mail.internet.*;
import javax.mail.search.*;

import java.util.Properties;

public class SpamCleaner {

 static String mailhost = "imap.mycompany.com";
 static String smtphost = "mail.mycompany.com";
 static String redirectEmail = "spamlog@mycompany.com";

 static String[] badSubjects = {"XXX", "MAKEMONEYFAST", "!!!!"};

 public static void main(String[] args) {

 Properties props = new Properties();
 props.setProperty("mail.smtp.host", smtphost);
 Session session = Session.getDefaultInstance(props, null);

 try {
 Store imapStore = session.getStore("imap");
 imapStore.connect(mailhost, "scott", "yu7xx");

 Folder defaultFolder = imapStore.getDefaultFolder();
 Folder inboxFolder = defaultFolder.getFolder("INBOX");
 inboxFolder.open(Folder.READ_WRITE);

 // Assemble some search criteria, using nested OrTerm objects
 SearchTerm spamCriteria = null;
 for(int i=0; i<badSubjects.length; i++) {
 SubjectTerm st = new SubjectTerm(badSubjects[i]);
 if(spamCriteria == null)
 spamCriteria = st;
 else
 spamCriteria = new OrTerm(spamCriteria, st);
 }

 Message[] msgs = inboxFolder.search(spamCriteria);

 if(msgs != null)
 for (int i = 0; i < msgs.length; i++) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Redirect the message
 Message m = new MimeMessage((MimeMessage)msgs[i]);
 m.setRecipient(Message.RecipientType.TO,
 new InternetAddress(redirectEmail));
 // Clear out the cc: field so we don't loop or anything
 m.setHeader("CC", "");
 Transport.send(m);

 // Now delete the original
 System.out.println(
 "Deleting Message "+msgs[i].getMessageNumber()+":"
 + msgs[i].getSubject());
 msgs[i].setFlag(Flags.Flag.DELETED, true);
 }

 // Close inbox folder, with "Expunge" flag set to true
 inboxFolder.close(true);

 imapStore.close();
 } catch (MessagingException me) {
 me.printStackTrace(System.out);
 }
 } // End main()
}

Example 15-3 also shows how to delete a message from an IMAP message store. Rather than calling
a delete method on a folder or message object, we call the setFlag() method of Message and set the
deletion flag (identified by the Flags.Flag.DELETED constant) to true. You can examine all the flags
set on a particular message by calling the getFlags() method of Message, which returns a Flags
object. However, in most cases, the ability to set the DELETED flag is all you need.

Note that marking a message as deleted doesn't actually delete it. Messages aren't removed from the
message store until the store is expunged. This can be done either by calling the expunge() method
of Folder or passing a Boolean true value to the close() method of Folder. Once a message has
been expunged, the message numbers within the folder (returned by the getMessageNumber()
method of Message) may change.

Example 15-3 shows how to clone a message. JavaMail 1.2 added a new constructor to the
MimeMessage object, which causes the new MimeMessage to be populated with all the fields and content
from the original. The example does something dangerous in assuming that the message retrieved by
the search() function will actually be a MimeMessage. This is fine when using the Sun service
implementations, but a more general version of this program would have to be more careful, either
constructing the new Message object by hand or trying to modify and resend the copy pulled from the
message store (which is generally not allowed).

If you are working with a message store that supports modification of message content, the loop in
Example 15-3 could be replaced with this instead:

 for (int i = 0; i < msgs.length; i++) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Alter the message
 System.out.println("Altering Message "+msgs[i].getMessageNumber()+":"
 + msgs[i].getSubject());
 msgs[i].setSubject("SPAM:" + msgs[i].getSubject());
 msgs[i].saveChanges();
 }

Rather than deleting the message, this code alters the subject line and inserts the word "SPAM:"
before the original subject. The saveChanges() method writes the changes back to the message
stores. However, we can't use this approach with this code because incoming IMAP messages are
read-only.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

15.4. Multipart Messages

Up until now, we haven't discussed viewing or creating messages except at a very simplistic level.
Let's close this chapter by taking a look at the MimeMessage class, the standard Message
implementation for Internet email, and the Multipart class, which allows MIME-formatted messages
that contain multiple parts (for instance, text and HTML versions of content and file attachments).

15.4.1. Displaying Multipart Messages

MimeMessage objects are either single part or multipart. A single-part message has a content-type
attribute matching the content of the message (often "text/plain"); the actual message content is
stored in the message's content attribute, accessed via the getContent() method.

Multipart messages of content types begin with "multipart" and contain a Multipart object as their
content. The Multipart object contains a series of BodyPart objects (in the case of a MIME-formatted
message, these will be MimeBodyPart objects and can be cast as such). Each BodyPart has its own
content type and associated content.

The getContent() and getContentType() methods of Message are actually inherited from the Part
interface, which is also implemented by BodyPart and MimeBodyPart. Part provides another useful
method, isMimeType(), which allows testing for particular content types. The isMimeType() method
will compare only the primary and subcontent types (the types immediately before and after the /
character). So, isMimeType("text/plain") will return true if the MIME type is "text/plain" or
"text/plain; charset=USASCII." You use the wildcard character * in place of the subtype (for example,
"text/*") to match all data with a particular primary type.

Example 15-4 is an enhanced version of the mail viewer from Example 15-2 (although it just pulls
from a single source). It starts by connecting to a POP server and downloading copies of the
messages in the inbox. For each message, the program displays subject and senders and determines
whether the message is multipart or not. If it is, the Multipart object is retrieved and each individual
part is processed. Textual content is written to the screen. Nontextual content with a filename
associated with it, such as a file attachment, is written to disk and the path is displayed.

Example 15-4. Multipart display

import javax.mail.*;
import javax.mail.internet.*;

import java.io.*;

public class MimeShow {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

static String mailhost = "pop.company.com";

public static void main(String[] args) {

 Session session = Session.getDefaultInstance(
 System.getProperties(), null);
 try {
 Store popStore = session.getStore("pop3");
 popStore.connect(mailhost, "username", "password");

 // Get a default folder, and use it to open a real folder
 Folder defaultPopFolder = popStore.getDefaultFolder();
 defaultPopFolder = defaultPopFolder.getFolder("INBOX");
 defaultPopFolder.open(Folder.READ_ONLY);

 Message[] msgs = defaultPopFolder.getMessages();
 if(msgs != null)
 for (int i = 0; i < msgs.length; i++) {
 // Display the message envelope
 System.out.println("\n\r----------------------------------");
 System.out.println("Subject: " + msgs[i].getSubject());
 Address[] from = msgs[i].getFrom();
 if(from != null)
 for(int a = 0; a < from.length; a++)
 System.out.println("From: " + from[a]);

 // Display the content
 if (msgs[i].isMimeType("text/plain")) {
 System.out.println((String)msgs[i].getContent());
 } else if (msgs[i].isMimeType("multipart/*")) {
 Multipart mp = (Multipart)msgs[i].getContent();
 int count = mp.getCount();
 for(int m = 0; m < count; m++) {
 showBodyPart((MimeBodyPart)mp.getBodyPart(m));
 }
 } else if (msgs[i].isMimeType("message/rfc822")) {
 System.out.println("Nested Message");
 } else {
 System.out.println(msgs[i].getContent().toString());
 }
 }// end for

 } catch (MessagingException me) {
 me.printStackTrace(System.out);
 } catch (IOException ie) {
 ie.printStackTrace(System.out);
 }
 } // End main()

 // Show or save a MIME body part; very simple
 public static void showBodyPart(MimeBodyPart p) {
 try {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 String contentType = p.getContentType();
 System.out.println("-- MIME Part: " + contentType);

 if(contentType.startsWith("text/"))
 System.out.println((String)p.getContent());
 else if(p.getFileName() != null) {

 File f = new File(p.getFileName());
 FileOutputStream fos = new FileOutputStream(f);
 byte[] b = new byte[1024];
 InputStream is = p.getInputStream();
 fos.write(b);
 is.close();
 fos.close();
 System.out.println("Attachment saved as " + f.getAbsolutePath());
 } else {
 System.out.println(
 "Cannot display this content type and no filename supplied.");
 }
 } catch(Exception e) {
 System.out.println("Exception Caught: " + e.getMessage());
 }
 } // End showBodyPart()
} // End class

15.4.2. Sending Multipart Messages

Creating a multipart message isn't any more complex than creating a regular MIME message. First,
instantiate a MimeMultipart object, which will serve as a container for the various parts of the
message. For each part, create a MimeBodyPart and set its content via the setContent() method.
Add each body part to the MimeMultipart object using the addBodyPart() method. Finally, add the
Multipart object as the content of a MimeMessage, and send that message normally.

There are, of course, a few wrinkles in the process, particularly when dealing with file attachments.
To attach a file to a message, you need to specify the filename when creating the MimeBodyPart (via
the setFileName() method) and provide the actual file data. Note that the content is provided via
the JavaBeans Activation Framework's DataHandler object, which we discussed earlier in this chapter.
DataHandler objects can be fed via DataSource objects. JAF provides two of these: FileDataSource
and URLDataSource, which are more or less as advertisedone retrieves data from a file, the other from
a URL. In addition to retrieving raw bytes, the DataSource will also provide the DataHandler with an
appropriate content type. Here's how:

 File f = new File("foo.jpg");
 MimeBodyPart mbp = new MimeBodyPart();
 mbp.setFileName(f.getName());
 mbp.setDataHandler(new DataHandler(new FileDataSource(f)));

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 15-5 puts the pieces together. It sends an email to root@company.com from
logs@company.com, with a brief text message and a file attachment containing /var/logs/today.log.

Example 15-5. Sending a multipart message

import javax.mail.*;
import javax.mail.internet.*;
import javax.activation.*;
import java.io.File;
import java.util.Properties;

public class MimeAttach {

 public static void main(String[] args) {
 try {
 Properties props = System.getProperties();
 props.put("mail.smtp.host", "mail.company.com");
 Session session = Session.getDefaultInstance(props, null);

 Message msg = new MimeMessage(session);
 msg.setFrom(new InternetAddress("logs@company.com"));
 msg.setRecipient(Message.RecipientType.TO,
 new InternetAddress("root@company.com"));
 msg.setSubject("Today's Logs");

 Multipart mp = new MimeMultipart();
 MimeBodyPart mbp1 = new MimeBodyPart();
 mbp1.setContent("Log file for today is attached.", "text/plain");
 mp.addBodyPart(mbp1);

 File f = new File("/var/logs/today.log");
 MimeBodyPart mbp = new MimeBodyPart();
 mbp.setFileName(f.getName());
 mbp.setDataHandler(new DataHandler(new FileDataSource(f)));
 mp.addBodyPart(mbp);

 msg.setContent(mp);
 Transport.send(msg);
 } catch (MessagingException me) {
 me.printStackTrace();
 }
 }
}

JavaMail's support for multipart messages opens up some interesting possibilities for using email

http://lib.ommolketab.ir
http://lib.ommolketab.ir

within your enterprise applications. With a few POP or IMAP mailboxes, you can write software that
will exchange messages without any user intervention. This can be used to synchronize configuration
files, exchange XML documents, or even handle more mundane tasks such as generating automated
status emails.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 16. Transactions
Transactions and transactional support are crucial for most J2EE applications. J2EE provides thorough
and solid support for transactions in the form of JTA. This chapter begins with a brief overview of
transaction terminology, including ACID properties and transaction isolation levels as well as the
concepts of local and distributed transactions. It then describes various distributed transaction
scenarios, such as reading a message from a queue and updating information in a database table
within a single transaction. The chapter covers the programmatic transaction model provided by the
JTA but also describes the declarative transaction model used with J2EE components.

Transaction support is an essential part of many Java and J2EE APIs such as JDBC and JMS. This
chapter covers core concepts about transactions, but you'll find more detailed information about
JDBC and JMS in Chapters 8 and 11, respectively. Since EJBs, described in Chapter 6, represent the
standard persistence model for J2EE, EJBs have extensive support for JTA-based transactions.
Hibernate, the open source persistence API discussed in Chapter 20, also provides support for JTA-
based transactions.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

16.1. Transaction Overview

Before delving into the details of how transactions work, let's define some basic terminology. A
transaction is a unit of work, a sequence of operations that succeed or fail as a single unit.
Transactions guarantee that this unit of work either fully completes or is fully rolled back.
Transactions are essential to the successful and robust working of a critical class of enterprise
applications: those that make use of shared networked resources like databases, messaging services,
and the like.

Figure 16-1 shows a simple conceptual model of a transaction. A transaction has three main
operations: begin(), commit(), and rollback(). You start a transaction with the begin()
operation, perform a series of steps, and successfully commit with the commit() operation. You roll
back the transaction by invoking the rollback() operation if a failure occurs.

Figure 16-1. Conceptual model of a transaction

Consider the following example. You want to move money from your checking account into your
savings account. There is an operation to debit the money from the checking account and another
operation to credit the money into the savings account. Both the operations must either succeed
together or fail together. You group the debit and credit operations together in a single transaction.
The complete sequence for this transaction is begin, debit checking account, credit savings account,
commit if successful or roll back if it fails. Therefore, the entire transaction either succeeds or fails as
a single unit. Without a transaction, failure or success of just one operation in this two-operation
transaction will leave the system and the accounts in an inconsistent state. The application is
unreliable if transactions are not implemented correctly.

Transactions enable a simplified programming model because the developers do not need to consider
and program for all the error and exception conditions that can occur when using shared networked
resources . When these errors and exception conditions do occur, transactions help with failure
recovery by restoring the shared resource to a consistent state. The application simply receives and
deals with a corresponding exception generated from the underlying transactional service(s), keeping
with the general approach taken with other Java runtime services. This simplified model frees the
developers from dealing with complex concurrency issues across multiple users and across multiple,
potentially distributed, applications accessing the same networked resource at the same time.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Transactions work closely with one or more resources, as we've already mentioned. Most often, the
resource is a database. Popular databases include Oracle, IBM DB2, Sybase, and MySQL. Other types
of resources such as message-oriented middleware (MOM) destinations can also be transactional. A
transaction does not directly interact with a resource. A resource manager manages the resource;
the resource manager is built into the software that manages the resource (the database or MOM). A
transaction is coordinated with the resource managers using a transaction manager, also known as a
transaction processing (TP) monitor. Traditional standalone TP monitors include BEA Tuxedo, IBM
TXSeries, and IBM CICS. But transaction managers can also be found embedded in resource
managers themselves, such as some relational databases and messaging services and within J2EE
containers and application servers. Figure 16-2 depicts the relationships among resources, resource
managers, and TP monitors.

The transaction manager works by passing the same transaction context to the different resource
managers participating in the transaction. The transaction manager keeps transaction logs of the
work it has asked the resource managers to do.

Figure 16-2. Transaction processing monitor

16.1.1. Transaction Properties

Transactions have four main properties , referred to as ACID properties. Transactions are Atomic,
Consistent, Isolated, and Durable.

Atomic

Implies that the transaction is a unit of work consisting of many operations as a single unit and
that it succeeds or fails as one unit of work. In our bank transfer example, the debit operation
and the credit operation are an atomic unit.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Consistent

Means that the effect of the transaction should leave the system in a known and stable state.
The state of the system must be consistent regardless of whether the transaction succeeds or
fails. In our example, the bank accounts must be in a consistent state whether the debit-credit
transaction succeeds or fails. If the transaction succeeds, the accounts should reflect the
adjusted amounts. If it fails, the transaction manager restores the accounts to their states
before the transaction occurred.

Isolated

Implies that transactions do not intersperse intermediate updates with other transactions. The
transactions execute serially even if clients perform them concurrently. Thus, concurrent
transaction updates are isolated. In our example, if another transaction is acting on the same
accounts while our debit-credit transaction is in progress, the other transaction must either
complete (succeed or fail) before our transaction is executed or our transaction's operations
must be committed or rolled back before the other transaction. The operations of the two
transactions must not be interspersed.

Durable

Means that the effects of a transaction persist. In our banking example, after the successful
completion of the debit-credit transaction, the effect of the transaction on the accounts is
permanent.

16.1.2. Transaction Isolation Problems and Levels

Isolation, the "I" in ACID, can have various levels . Some breaches in strict transaction isolation
might be necessary, or even required, in some contexts. Transaction isolation levels refer to the
degree to which these isolation violations are allowed or prevented. The following section describes
transaction isolation violations and the isolation levels that define the allowed isolation violations in a
given transaction context.

16.1.2.1. Transaction isolation violations

It's easier to understand the various levels if you first understand what could go wrong if we didn't
use various isolation levels to protect the transaction. Consider the following potential isolation
violations that can arise in some transaction contexts:

Dirty read

A dirty read occurs when a transaction reads data that another transaction has changed but
not yet committed.

Nonrepeatable read

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Nonrepeatable reads occur when the same transaction reads the same data twice with different
results. Consider the following scenario. In transaction A, you read data item X. Before
transaction A completes, transaction B updates and commits the data in item X. A later
operation within transaction A reads the same data again and sees the updated value of the
data. The first data read in transaction A is nonrepeatable because transaction B's update has
been allowed to intrude into transaction A's context.

Phantom read

A phantom read occurs when you read data, look again, and it is gone, or when you read data,
look again, and new data suddenly appears. Consider the following scenario. In transaction A,
you execute a query and obtain a result set. Before transaction A completes, transaction B
inserts a row that matches the query used in transaction A, and this insert is allowed to be
committed before transaction A completes. If transaction A executes the same query again, it
will obtain a different set of data. This is a phantom read situation because, despite the
supposed isolation of transactions, new data not created by transaction A has appeared in the
underlying resource.

16.1.2.2. Transaction isolation levels

A transaction isolation level describes the degree to which the access to a resource manager by a
transaction is isolated from the access to the resource manager by other concurrently executing
transactions. This section describes the various transaction isolation levels, as well as the transaction
isolation violations that they prevent or allow.

Read uncommitted

No isolation is provided when a transaction can read uncommitted data. This transaction
isolation level is not useful for most business applications that require the ACID transaction
properties. However, some data warehouse applications, especially those that principally read
rather than update data, find this transaction isolation level useful. Dirty read, nonrepeatable
read, and phantom read isolation violations are allowed at this isolation level.

Read committed

With this isolation level, a transaction cannot read uncommitted data and therefore dirty reads
do not happen. Nevertheless, nonrepeatable reads and phantom reads can occur. This isolation
level is the default in many popular databases such as Oracle.

Repeatable read

With this isolation level, dirty reads and nonrepeatable reads do not occur. Phantom reads can
still occur.

Serializable

http://lib.ommolketab.ir
http://lib.ommolketab.ir

With this isolation level, no isolation violations are allowed. Dirty reads, nonrepeatable reads,
and phantom reads do not occur.

Table 16-1 summarizes the relationship between transaction isolation violations and transaction
isolation levels.

Table 16-1. Transaction isolation violations and levels

Isolation level Dirty read Nonrepeatable read Phantom read

Read uncommitted Possible Possible Possible

Read committed Possible Possible

Repeatable read Possible

Serializable

Given its strict enforcement of transaction isolation, should you always select serializable as the
transaction isolation level? The answer is no, because transaction isolation level and concurrency are
inversely related. The higher the isolation level, the less concurrency you get. With less concurrency,
the performance of the system suffers and the system supports fewer users. Therefore, you need to
find a balance between the safety of higher isolation levels and the greater performance possible at
lower isolation levels. This choice also has an impact on the complexity of your code. With the highest
isolation levels, you need to worry less about concurrency issues in your code because the
transaction manager is dealing with them for you. With lower isolation levels, you need to worry
about the isolation violations that you're letting through, consider whether they might actually occur
or not, and potentially deal with them yourself in your application code.

In many cases, the isolation level decision has been made for you. If your application interacts with a
single relational database, for example, its transaction manager will have a default isolation level
setting that has been optimized by the vendor for typical situations.

16.1.3. Transaction Models

A variety of different transaction models are available. To further complicate matters, each has some
slight variations as well. The flat transaction model (FTM) is the simplest and most common. It
specifies that only one transaction is active at any given time. Can you start another transaction at
the same time? This can be handled in two ways. First, you can disallow starting another transaction.
This is often too rigid, however. A second commonly implemented strategy is to suspend the current
transaction and start a new one. Once the new transaction finishes, the original transaction resumes.
In this scenario, the second transaction might commit while the first transaction rolls back. The
outcome of the second transaction remains successfully committed.

Variations on the flat transaction model are quite common. One popular variation in the JDBC API is
the use of savepoints. With savepoints, the resource periodically saves the work done within a
transaction. Not surprisingly, the savepoint is the point at which the save occurs. The transaction can

http://lib.ommolketab.ir
http://lib.ommolketab.ir

be partially rolled back to a specific savepoint. For more details, see Chapter 8.

Other transaction models, such as the nested transaction model (NTM) and saga, were created to
address some of the shortcomings of the flat transaction model. In NTM, transactions are nested,
forming a tree of transactions with multiple transactions active at the same time. You can emulate
nested transactions with savepoints. A saga is a sequence of flat transactions that work as a single
unit. In the event of a rollback, the partial work is undone by applying compensating transactions to
effectively undo each transaction in the sequence. The flat transactions in a saga are not isolated
from one another.

A slight variation on these transaction models is the use of chained transactions. Some resource
managers can be configured to automatically begin a new transaction once the current one is either
committed or rolled back. This ensures that all operations performed by a client happen within a
transaction, even if the client doesn't explicitly start one. Both the JDBC and JMS APIs implicitly
assume a chained transaction model since they expose commit operations in their APIs, but the start
of a transaction is assumed in the connection process. In JMS, for example, the client makes a
Connection and creates a Session from it, which implicitly begins a transaction with the underlying
message service. A similar model exists in JDBC for creating Connections and Statements.

Having said all this, the JTA itself remains fairly agnostic about the transaction model implemented by
the underlying transaction manager. JTA implementations can support flat or nested transaction
models, for example. If an application attempts to use the JTA to create nested transactions and the
underlying manager supports only a flat model, a suitable Exception is thrown. In practice, most JTA
implementations support only a flat transaction model, since this is sufficient for nearly all application
contexts. In addition, the EJB specification requires only a flat transaction model for the EJB
container's transaction manager. This decision was made in recognition of the fact that flat
transactions are sufficient for the majority of applications out there and to allow vendors to more
easily implement the transactional capabilities of an EJB container with existing transaction
managers.

16.1.4. Distributed Transactions and the JTA

A local transaction is a transaction that communicates with just one resource with no transaction
monitor involved. The resource manager manages a local transaction at the connection level. An
application making a query to a single relational database, for example, can be managed by the
RDBMS resource manager as a local transaction. On the other hand, a distributed or global
transaction is a transaction that covers multiple resource managers and is coordinated by a
transaction monitor. An application that wants to perform a transaction involving operations against
several different database engines and a messaging service, for example, requires a distributed
transaction.

Note that it's not the number or distribution of the clients that determines the need for a distributed
transaction. When two different components in an application ask the application server to coordinate
a transaction that accesses the same resource manager, a distributed transaction is not required. A
single resource manager is involved in the transaction, so the application server can manage the
request using a local transaction instead of a distributed transaction.

Various protocols and standards support, coordinate, and implement distributed transactions. The
most popular standard is the Open Group's XA Protocol (X/Open XA). Others include the Open
Systems Interconnect (OSI) transaction Processing protocol defined by the International Organization

http://lib.ommolketab.ir
http://lib.ommolketab.ir

for Standards (ISO), and Systems Network Architecture (SNA) LU 6.2 defined by IBM.

The application or the application server leverages the JTA API programmatically or declaratively to
manage distributed transactions. In addition to its general-purpose transaction API (found in the
javax.transaction package), the JTA also provides a standard Java mapping of the X/Open XA
protocol in its javax.transaction.xa package. This organization of the JTA interfaces allows the JTA
to support both XA-based transactional systems as well as those that don't support X/Open XA.

A popular implementation of the JTA by application server vendors uses the Java Transaction Service
(JTS). However, JTS usage is not mandatory in J2EE. JTS provides Java bindings for the CORBA
Object Transaction Service (OTS). Since JTS is basically "under the covers" of the application server,
you as a developer need know only about the JTA, which we describe in this chapter.

16.1.5. Distributed Transaction Scenarios

There are many common distributed transaction scenarios . One such scenario is a distributed
transaction that spans a database and message queue. Others we discuss include those that use two
or more databases or message servers. Yet another scenario is a distributed transaction initiated by a
J2EE client that invokes different J2EE components.

16.1.5.1. Database and message queue

In the distributed transaction scenario depicted in Figure 16-3, a transaction spans a database and a
message queue. This scenario is one of the most common distributed transactions in a J2EE
application. For example, an application receives a message on a queue and processes the message.
The application saves the outcome of processing the message to the database. Both the operations,
one on the database and the other on the queue, are part of the same distributed transaction. If the
processing of the message fails midstream, for example, we want both the relational database and
the message queue to be returned to their states before the transaction was attempted.

Figure 16-3. Distributed transaction: Database and message queue

16.1.5.2. Multiple databases

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In the scenario depicted in Figure 16-4, a transaction spans two different databases. An example of
this scenario is a transaction that spans updates to a database maintaining the customer master as
well as updates to another database maintaining the order master. Both the operations, one on the
customer master and the other on the order master, are part of the same distributed transaction.

Figure 16-4. Distributed transaction: Multiple databases

16.1.5.3. Multiple application servers

In the scenario depicted in Figure 16-5, a transaction spans two different application server
instances. An example of this scenario is a tax manager component that runs inside one application
server that invokes methods of a tax service component running inside another server. The first
application server passes along the transaction context to the other server so that the operations
that run on the second application server participate in an overall distributed transaction. Both
application servers follow the JTA specification, ensuring that the transaction is interoperable between
the different server instances, even if the application servers are from different vendors.

16.1.5.4. Client demarcation

In the scenario depicted in Figure 16-6, the client starts a transaction. The client then invokes
components (EJBs, web components, etc.) running on one or more application servers. The client
container propagates the transaction to the various components that the client invokes. This scenario
is similar to the multiple application server scenario, except that an external client initiates the
transaction context rather than code running on one of the application servers.

Figure 16-5. Distributed transaction: Multiple application servers

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 16-6. Distributed transaction: Client demarcation

These distributed transaction scenarios illustrate the necessity of distributed transaction support in
J2EE. The J2EE application server becomes the coordinator of distributed transactions. It coordinates
the transaction across different resources, servers, and components. But how does a distributed
transaction work under the covers? What is the protocol that the transaction coordinator uses to
coordinate disparate resources? The protocol that the transaction coordinator uses is known as two-
phase commit , which we discuss next.

16.1.6. Two-Phase Commit

Two-phase commit is the protocol used to implement distributed transactions between different
resource managers. The two-phase commit protocol ensures the consistency and durability of
distributed transactions by coordinating the states of the various resource managers involved in the
transaction. The two-phase commit protocol kicks in when a commit or rollback is initiated on a
distributed transaction. The commit or rollback can be requested by either the application itself or by
the underlying transaction manager on behalf of the application.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As the name implies, there are two distinct phases in the two-phase commit protocol. The first phase
is known as the prepare phase, and the second phase is known as the commit phase or rollback
phase. In the prepare phase, the transaction manager sends a prepare (to commit) message to
every resource participating in the transaction. Each resource replies back with either a ready
response or an abort response. In the second phase, if any resource responds with abort, the
transaction manager rolls back the whole transaction as depicted in Figure 16-7.[*] If all the
resources respond as ready, the transaction manager commits the entire transaction as depicted in
Figure 16-8. Instead of issuing a commit, the application may issue a rollback as depicted in Figure
16-9.

[*] This figure and the two that follow use the UML sequence diagram format.

Figure 16-7. Rollback in the first phase of a two-phase commit

What happens if the transaction manager never receives a response from one or more of the
underlying resource managers? Every transaction has a timeout value, settable using the
transactionManager.setTransactionTimeout() method. If a response is not received from a
resource manager before this timeout expires, the transaction manager rolls back the entire

http://lib.ommolketab.ir
http://lib.ommolketab.ir

transaction.

Even the protection of the two-phase commit protocol can't prevent unrecoverable issues during a
transaction. One or more of the resource managers involved in a distributed transaction might lose
communications with the transaction manager and decide to make a local decision to commit or roll
back. A unilateral decision by a resource manager to commit or roll back is called a heuristic decision,
and it can

Figure 16-8. Successful commit in two-phase commit

render a distributed transaction inconsistent. An even more catastrophic situation, like a system
crash on the transaction manager or one of the resource managers, could prevent even a heuristic
decision from being made. In these rare situations, you have to resort to the usual array of disaster
recovery measures. Transaction logs from the resource managers and transaction manager can be
reviewed to restore a consistent overall state, and/or data backups can be used to restore the
distributed system to a previous stable state.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

16.1.6.1. Emulating two-phase commit

The resources participating in a two-phase commit must be XA resourcesin other words, they must
support the X/Open XA distributed transaction protocol. Can a non-XA resource participate safely in a
distributed transaction? Normally, the answer is no, but there are workarounds.

Consider the following real-world example in which a non-XA resource needs to participate in a
distributed transaction. You encounter a situation in which the program receives a message from a
queue and updates data in a MySQL database. However, MySQL does not support XA and certain
older versions of MySQL do not support transactions at all. For the data source that connects to the
MySQL database, the transaction manager (in the container and/or application server) can emulate
the two-phase commit protocol by responding on behalf

Figure 16-9. Transaction rollback in two-phase commit

of the underlying non-XA resource manager during two-phase commits. When emulating two-phase
commit, a transaction manager may, for example, always return a ready response during the
prepare phase on behalf of the resource manager. However, the guarantees provided by the two-
phase commit protocol are diminished in this situation. The non-XA resource might be left in an
inconsistent state with compromised data integrity (it might not have been ready when the
transaction manager said it was). Obviously, if you are using a container or application server that
supports two-phase commit emulation, you should use it with care. In addition, some emulating
transaction managers put restrictions on their support for this, such as allowing one and only one
non-XA resource to participate in a distributed transaction.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

16.2. Programmatic Transactions Versus Declarative
Transactions

You can approach coding transactions in two basic ways: programmatically or declaratively. When
possible, declarative transactions are a better choice since they allow the container to manage the
transaction for you, and this saves you from having to put JTA transaction management calls into
your application code. But as we'll see, not every scenario can be adapted to use declarative
transactions. We'll start by examining programmatic transaction management, then discuss how
declarative transaction management can supplant some programmatic calls.

16.2.1. Programmatic Transactions

Typically, you implement transactions in an application using one of the resource-specific transaction
APIs such as JDBC or JMS. If the application requires distributed transactions, you implement the
transaction code using JTA.

The JTA can be used in a number of programming contexts, including web and EJB components,
Swing- or SWT-based desktop clients, and many others. The application code begins a transaction
and then performs some operations against one or more resource managers (databases accessed via
JDBC, message servers accessed through JMS, EJB components accessed via the EJB API, etc.). At
some point, the application decides to either commit or roll back the transaction. The container
managing the application's runtime environment, including its transaction manager, propagates the
transactional context to the different components and resources that the client directly or indirectly
invokes. Figure 16-6 depicts client-managed transaction management.

The JTA exposes these capabilities to applications through the javax.transaction.UserTransaction
interface. Example 16-1 illustrates client-managed transaction management in a generic client
application. A JTA client acquires a UserTransaction from the transaction manager through a JNDI
lookup using a standardized name, java:comp/UserTransaction. The JNDI context used has to be the
same context accessed by the transaction manager handling the distributed transaction (e.g., the
application server managing web or EJB components). Once the client has a UserTransaction, a
transaction is explicitly started by invoking the begin() method of a
javax.transaction.UserTransaction instance. The transaction is committed by invoking the commit(
) method and rolled back by invoking the rollback() method of the UserTransaction instance. The
same UserTransaction reference can be used to start additional transactions if needed. If the
underlying transaction manager supports nested transactions, you can begin a nested transaction by
calling begin() on the UserTransaction before committing or rolling back the current transaction. If
the transaction manager doesn't support nested transactions, attempting to create one this way will
result in a javax.transaction.NotSupportedException.

Example 16-1. Client-managed transaction demarcation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

InitialContext aInitialContext = new InitialContext();
UserTransaction aUserTransaction = (UserTransaction)
 aInitialContext.lookup("java:comp/UserTransaction");
try {
 aUserTransaction.begin();

 PersonHome aPersonHome = (PersonHome)
 aInitialContext.lookup("java:comp/env/ejb/Person");
 Person p = aPersonHome.create(aPersonValue.getEmail(),
 aPersonValue.getPassword());
 p.setWorkPhone(aPersonValue.getWorkPhone());
 p.setHomePhone(aPersonValue.getHomePhone());

 sLogger.info(" created a person with id : " + p.getPersonId());
 aUserTransaction.commit();
} catch (Exception e) {
 try {
 aUserTransaction.rollback();
 } catch (Exception aException) {
 String aMessage =
 "Exception occured in client command.execute transaction rollback";
 sLogger.log(Level.SEVERE, aMessage, aException);
 throw aException;
 }
 String aMessage = "Exception occured in client command.execute ";
 sLogger.log(Level.SEVERE, aMessage, e);
 throw e;
}

16.2.2. Declarative Transactions

Declarative transaction management is similar in concept to declarative security management as
discussed in Chapter 10. In your component deployment descriptors, you declare whether and where
the underlying transaction manager should intercept resource manager requests made by the
application code and perform the necessary transaction management (begin, suspend, commit, or
roll back transactions). Declarative transaction management can also include the specification of
transactional parameters, such as isolation levels. Declarative transaction management facilities are
available in EJB deployment descriptors and in certain Hibernate configuration parameters. Refer to
Chapter 6 and Chapter 20, respectively, for specific details on declaratively configuring transactions
in these contexts. Appendix A provides details on the structure of EJB deployment descriptors as well.

Declarative transaction management can lead to much cleaner separation of business logic and
transaction code, and applications written to depend on declarative transaction management can be
much easier to maintain and evolve. All of the complexity of transaction management is ceded to the
transaction manager, leaving strictly business-related code in the application. However, as mentioned
earlier, in some circumstances, declarative transactions are insufficient and programmatic
transactions are required.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

16.3. Optimistic Concurrency

Consider the following archetypical example. A user selects a widget to edit. The application displays
details about the widget for editing. The user changes the widget's attributes and submits the
changes. This process involves two distinct transactions. The application obtains the widget for the
user to edit in the first transaction. The application updates the widget in the database using a
second transaction, committing the first user's changes. Now, what if another user edited the same
widget before the second transaction of the first user was committed. The second user's changes are
lost! This application behavior is often referred to as the last update/write wins policy. It's also
sometimes called the lost update problem. It's likely that this behavior is not intentional since the
changes are lost silently.

Why don't transaction isolation levels help here? Transaction isolation levels apply only to concurrent
transactions. In our case, we're talking about distinct transactions that conflict with each other in
terms of outcomes. If the application performed both operations within a single transaction, isolation
levels could be used to ensure that two users working concurrently would not conflict with each
other. But with the work broken down into two separate transactions for each user, the lost update
problem is a possibility.

One simple and potentially elegant solution to this problem is optimistic concurrency. Before every
update, you simply ensure that another transaction has not updated the data. There are many ways
to ensure this behavior. The most common way is to use a version identifier. Revisiting the
archetypical example, a user selects a widget to edit. The application displays the details about the
widget to the user for editing. Additionally, the application also keeps track of the version identifier
associated with the widget, perhaps using a field in the relational database storing the widget data.
The user changes the widget's attributes and submits the changes along with the original version
identifier. The changes are successful only if the submitted version identifier matches the version
identifier in the database. Upon successful update, the version identifier is incremented. However,
what if a second user edits the same widget before the first user submits her changes? The action by
the second user updates the version identifier. When the first user submits the changes, the
application rejects the update since the version identifiers do not match. This prevents the first user
from overriding the changes made by the second user. Thus, the changes made by the second user
are not lost! Typically, the first user is presented with the state of the widget as-is (or a merged
state) and is asked to submit the update again.

Using a version identifier is a very common technique. Other techniques, with their own advantages
and disadvantages, are possible including using a timestamp, using checksums, and checking all the
data in the previous row.

This technique is called "optimistic" concurrency because the application is designed to be optimistic
that the likelihood of conflict is minimal by splitting its operations into two separate, independent
transactions. An alternative approach is pessimistic concurrency: you assume that the likelihood of
contention for data is highly likely, and you prevent the conflict explicitly by using a single transaction
and high isolation levels or by locking the data under contention when it is accessed by the first user.

The J2EE specifications do not specify a standard implementation of optimistic concurrency. Instead,
your application code implements it, using approaches such as the one just described. In addition,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the application can delegate the concurrency-handling logic to the database, using database triggers
and/or stored procedures. Application server vendors may also provide proprietary extensions that
implement and support optimistic concurrency.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

16.4. EJB Transaction Management

In this section, we discuss some extended topics related to transaction management with EJB
components. This material complements the introductory section on EJB transaction management
found in Chapter 6. If you are specifically concerned with transaction management related to EJBs ,
we recommend that you read "Transaction Management" in Chapter 6 since it introduces the basic
concepts and some general rules related to both declarative and programmatic transaction
management within EJBs. Once you have that material under your belt, if you feel you need to know
more, come back to this section for additional coverage.

If you're using strictly declarative transaction management within EJBs, this is referred to as
Container-Managed Transaction Demarcation (CMTD). The container is responsible for starting and
committing or rolling back the transactions required by the EJB based on the directives specified in
the deployment descriptor as well as some programmatic hints by the developer in the EJB code. The
container leverages JTA for the transaction management under the covers.

Using programmatic transaction management within EJB components is a bit of a special case,
because the EJB container has a default assumption that it is managing transactions on behalf of its
components. Programmatic transaction management within EJB components is sometimes referred
to as Bean-Managed Transaction Demarcation (BMTD). If an EJB developer chooses to use BMTD in
a bean, then the bean is responsible for transaction operations. The transaction operations can be
performed through resource-specific APIs such as JDBC and JMS, or they can be done explicitly using
JTA. When BMTD is in use, the container's transaction manager still handles all the two-phase commit
issues related to distributed transactions that we discussed earlier, but it assumes that the
application code is handling the start, commit, and rollback of transactions. As mentioned in Chapter
6, BMTD is not allowed for entity beans, even those that manage their own persistence.

16.4.1. BMTD with JTA

Using bean-managed transaction management doesn't necessarily mean that you are using JTA calls
in your EJB code. You could simply be using specific resource manager APIs, like JDBC or Hibernate
for databases or JMS for message servers. But if you do find the need to access and use a JTA
UserTransaction from your BMTD beans (or use any other aspects of the JTA, for that matter), you
need to consider a few things.

As we saw in Example 16-1, you can obtain the JTA transaction from the JNDI context of the EJB
container. EJB also allows you to access the UserTransaction using the getUserTransaction()
method of the javax.ejb.EJBContext, as shown in Example 16-2 for a session EJB.

Example 16-2. Accessing the UserTransaction from the EJBContext

SessionContex mSessionContext = . . .;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

UserTransaction aUserTransaction = mSessionContext.getUserTransaction();
// Now use the UserTransaction to begin/commit/roll back transactions
. . .

If you use BMTD in your bean, it's important to be mindful of how the container is going to manage
clients that make requests of your EJB from within their own transactions. If the client starts its own
transaction and invokes business methods on your BMTD bean, the EJB container will automatically
suspend the client's transaction during the request. Once the request completes, the client's
transaction is resumed. So if your EJB performs no JTA operations during the request, the entire
request operates without any transaction context. But if your EJB starts a new transaction by calling
the begin() method on a UserTransaction, a new transaction is started and the request is processed
under this new transaction context.

Since you are using the JTA API to manage transaction boundaries, the specification prohibits
invoking resource-specific APIs. The EJB specification prohibits invoking the commit() or rollback()
methods of the java.sql.Connection interface. Similarly, you are not allowed to invoke the commit()
and rollback() methods of the javax.jms.Session interface.

The specification also prohibits the getrollbackOnly() and the setRollbackOnly() methods of
javax.ejb.EJBContext, because they are related to CMTD, not BMTD.

In addition to these general behaviors and rules for BMTD beans, there are some special caveats
related to BMTD for particular types and subtypes of EJBs.

16.4.1.1. Stateless session beans and message-driven beans

Since a stateless session bean by definition does not maintain state information on behalf of the
client, a transaction is not allowed to span methods of a stateless bean. The bean method that starts
a transaction must complete the transaction by calling the commit() method or the rollback()
method. If you fail to do so, the container rolls back the transaction, discards the stateless bean
instance, and throws an appropriate exception back to the client (java.rmi.RemoteException for
remote clients, javax.ejb.EJBException for local clients).

This rule also applies to message-driven beans. If you start a transaction in the onMessage() method
of a message-driven bean with BMTD, you must call the commit() method or the rollback()
method within the onMessage() method to complete the transaction. Otherwise, the container rolls
back the transaction and discards the instance of the bean. No exception is thrown back to the client,
obviously, since the client has indirectly invoked the bean by sending a message to a JMS destination.

16.4.1.2. Stateful session beans

The behavior of BMTD with a stateful session bean is a bit more involved. Unlike a stateless session
bean, a transaction started in one method can be left active at the end of the method, and it remains
associated with the stateful session bean instance across subsequent method calls. The transaction
remains in effect for the bean until the commit() method or the rollback() method is called. As
mentioned earlier in this section, a container will always suspend any client transactions during

http://lib.ommolketab.ir
http://lib.ommolketab.ir

requests to BMTD beans. So as long as the transaction started by the bean remains active, all
requests made by clients will operate under this transaction context, until it is committed or rolled
back.

16.4.2. Container-Managed Transaction Demarcation (CMTD)

When an EJB is using CMTD , it is prohibited from invoking JTA operations in any contexts in which
they might interfere with the container's transaction management activities. A bean with CMTD must
not invoke the getUserTransaction() method of javax.ejb.EJBContext. If it does, the container will
throw a java.lang.IllegalStateException. Additionally, the bean must not invoke any
UserTransaction methods from within its business methods, message-listener callbacks, or
ejbTimeout() callbacks. In these same situations, the bean is forbidden from calling commit() or
rollback() on a JDBC Connection or JMS Session.

16.4.2.1. Inducing rollbacks in CMTD

Although application code is not allowed to directly interfere with transaction management under
CMTD, your EJB can induce a transaction rollback by calling the setRollbackOnly() method of the
javax.ejb.EJBContext. At the end of the transaction, the container automatically rolls back instead of
committing the transaction, regardless of the state of the transaction. You can query whether the
current transaction has been marked for rollback by calling the getrollbackOnly() method of the
EJBContext. Calling the getrollbackOnly() method can be useful for avoiding expensive chunks of
transactional code in your EJB. If the results of the code are going to be rolled back regardless, you
can skip the processing then and there.

The container will also roll back a transaction when the EJB code throws a runtime exception. The
container catches the runtime exception and rolls back the transaction. Note that the exception must
be a runtime exception, not a general application exception. A common runtime exception thrown in
these situations is javax.ejb.EJBException.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

16.5. Some Common Programming Scenarios

In this section, we'll look at some of the most common transaction scenarios and we'll examine ways
to leverage transactions effectively.

The subsection "Using a Session Façade" provides a concrete example of how to use CMTD effectively
with an EJB component by minimizing the number of unnecessary transactions and increasing
performance.

The subsection "Using Transaction Attributes with CMTD" illustrates an approach for utilizing
transaction attributes with CMTD EJBs. This approach can help avoid resorting to BMTD in some
situations.

The subsection "Distributed Transactions Involving a JMS Destination and Database" provides a
detailed example of a distributed transaction using both JMS and JDBC resources.

16.5.1. Using a Session Façade

Consider the code fragment in Example 16-3, which uses a Person EJB component. Assume that the
EJB has been deployed using the Required transaction attribute applied to all of its methods. How
many transactions does the user invoke in total? The answer is four. Each EJB method, create(),
setWorkPhone(), setHomePhone(), and getPersonId(), is invoked in a different transaction. This is
most likely not the intended behavior. This code is not only very expensive but also may be incorrect.
For example, if there is some error setting the home phone number, the client might expect the
creation of a person bean instance to fail.

Example 16-3. Direct usage

 PersonHome aPersonHome =
 (PersonHome) aInitialContext.lookup("java:comp/env/ejb/Person");
 Person p = aPersonHome.create
 (aPersonValue.getEmail(), aPersonValue.getPassword());
 p.setWorkPhone(aPersonValue.getWorkPhone());
 p.setHomePhone(aPersonValue.getHomePhone());

 sLogger.info("Created a person with id : " + p.getPersonId());

The most common solution to this problem is using the session façade pattern. In brief, this pattern
involves creating a stateless session bean that acts as a simple frontend, or façade, to hide the
complexity behind it. You refactor the code from the client into a stateless session bean as illustrated

http://lib.ommolketab.ir
http://lib.ommolketab.ir

in Example 16-4. This session bean would also be deployed using the Required transaction attribute
on its methods. If a client invokes the createPersonSameTransaction() method, a transaction begins
and the methods of the Person bean, create(), setWorkPhone(), setHomePhone(), and
getPersonId(), are now invoked in one single transaction.

Example 16-4. Code fragment from session façade

 public PersonValue createPersonSameTransaction(PersonValue aPersonValue) {
 return createPerson(aPersonValue);
 }

 protected PersonValue createPerson(PersonValue aPersonValue) {
 sLogger.info("5 creating person in manager cmtd bean ...");

 try {
 InitialContext aInitialContext = new InitialContext();
 PersonHome aPersonHome =
 (PersonHome) aInitialContext.lookup("java:comp/env/ejb/Person");
 Person p = aPersonHome.create(aPersonValue.getEmail(),
 aPersonValue.getPassword());
 p.setWorkPhone(aPersonValue.getWorkPhone());
 p.setHomePhone(aPersonValue.getHomePhone());

 sLogger.info("Created a person with id : " + p.getPersonId());
 aPersonValue.setPersonId(p.getPersonId());
 } catch (Exception e) {
 String aMessage =
 "exception in manager cmtd bean.createPersonNewTransaction ";
 sLogger.log(Level.SEVERE, aMessage, e);
 throw new EJBException(aMessage, e);
 }

 return aPersonValue;
 }

Is there another way to approach this problem? An alternative is to use client-managed transaction
demarcation as illustrated in Example 16-5. The EJB methods are called directly from the client, but
the client begins and ends its own singular transaction. Example 16-5 illustrates this approach. While
this does solve the problem, the client code has become more complex by taking on programmatic
transaction management. Unless this is strictly necessary (e.g., the client has very specific
transaction boundary needs that don't apply in general), the session façade approach is preferable.

Example 16-5. Client-managed transaction demarcation usage

 InitialContext aInitialContext = new InitialContext();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 UserTransaction aUserTransaction = (UserTransaction)
 aInitialContext.lookup("java:comp/UserTransaction");
 try {
 aUserTransaction.begin();

 PersonHome aPersonHome =
 (PersonHome) aInitialContext.lookup("java:comp/env/ejb/Person");
 Person p = aPersonHome.create(aPersonValue.getEmail(),
 aPersonValue.getPassword());
 p.setWorkPhone(aPersonValue.getWorkPhone());
 p.setHomePhone(aPersonValue.getHomePhone());

 sLogger.info(" created a person with id : " + p.getPersonId());
 aUserTransaction.commit();
 } catch (Exception e) {
 try {
 aUserTransaction.rollback();
 } catch (Exception aException) {
 String aMessage =
 "Exception occured in client command.execute transaction rollback";
 sLogger.log(Level.SEVERE, aMessage, aException);
 throw aException;
 }
 String aMessage = "Exception occured in client command.execute ";
 sLogger.log(Level.SEVERE, aMessage, e);
 throw e;
 }

16.5.2. Using Transaction Attributes with CMTD

Consider the following example. In a very simple object model, there is a Person EJB and a
PersonStatus bean. You would like to create a Person with PersonStatus. However, you would like the
creation of Person to succeed regardless of whether the PersonStatus is valid. Suppose this part of
the EJB is implemented in the form of a createPersonAndStatus() method, as shown in Example 16-
6.

Example 16-6. Create Person and PersonStatus

 public PersonValue createPersonAndStatus(
 PersonValue aPersonValue,
 PersonStatusValue aPersonStatusValue) {
 aPersonValue = createPersonNewTransaction(aPersonValue);
 aPersonStatusValue = createPersonStatus(aPersonValue,
 aPersonStatusValue);
 return aPersonValue;
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If your bean is using CMTD and you wanted to enforce the requirements as detailed, you might set
the transaction attribute for the createPersonAndStatus() method to Required and the transaction
attribute for createPersonNewTransaction() method to RequiresNew. You might expect that this
would cause a new transaction to be created for the createPersonNewTransaction() method,
suspending the one on createPersonAndStatus().

But does the code fragment in Example 16-6 work as intended? Is the createPersonNewTransaction(
) method executed in a new transaction? No! The container uses the same transaction for both
methods because it never has an opportunity to intercept the second method call and start a new
transaction. Example 16-7 illustrates how to invoke the second EJB method through the container,
allowing it to apply the intended transaction attributes.

Example 16-7. Create Person with interception

 public PersonValue createPersonAndStatusNew(
 PersonValue aPersonValue,
 PersonStatusValue aPersonStatusValue
) throws RemoteException {
 aPersonValue = ((ManagerCMTD) mSessionContext.getEJBObject())
 .createPersonNewTransaction(aPersonValue);

 aPersonStatusValue = createPersonStatus(aPersonValue,
 aPersonStatusValue);

 return aPersonValue;
 }

Using the session context, you obtain a client reference to the EJBObject being invoked. You cast the
EJBObject stub to the correct type (ManagerCMTD, in this example) and then invoke the
createPersonNewTransaction() method. Since you invoke the method on a client stub acquired from
the container (just like any other client), the method request will be intercepted by the container, and
it has an opportunity to apply the requested transaction attributes.

16.5.3. Distributed Transactions Involving a JMS Destination and
Database

As discussed in the "Database and message queue" section earlier in this chapter, a distributed
transaction involving a message destination and a database is a common use of distributed
transactions in enterprise applications. Here is a detailed example of such a case. In this example,
the application retrieves and processes a message from a queue and inserts the data into the
database. The entire process, as illustrated in Figure 16-10, from the message retrieval to the
database insert, happens in one transaction.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 16-10. Distributed transaction detailed example

An instance of a message-driven bean, CreatePersonBean retrieves a message from PersonQueue. The
message is of type javax.jms.ObjectMessage. In the onMessage() callback, the message-driven bean
retrieves an instance of PersonValue from the object message. The bean invokes the
createPersonSameTransaction() method on the ManagerCMTD stateless session bean as shown in
Example 16-8. The ManagerCMTD bean persists the data to the database using the Person entity bean.

Example 16-8. CreatePersonBean message-driven bean

 ObjectMessage aObjectMessage = (ObjectMessage) aMessage;
 PersonValue aPersonValue = (PersonValue) aObjectMessage.getObject();
 InitialContext aInitialContext = new InitialContext();
 ManagerCMTDHome aManagerCMTDHome =
 (ManagerCMTDHome) aInitialContext.lookup
 ("java:comp/env/ejb/ManagerCMTD");
 ManagerCMTD aManagerCMTD = aManagerCMTDHome.create();
 aPersonValue = aManagerCMTD.createPersonSameTransaction(aPersonValue);
 sLogger.info("Created a person with id : " + aPersonValue.getPersonId());

To ensure that the message retrieval happens in a transaction, you use CMTD for the
CreatePersonBean as shown in an excerpt from the EJB deployment descriptor in Example 16-9. If
there are any errors or exceptions in the entire process, the entire set of operations in the
transaction is rolled back, including message retrieval from the JMS destination. If configured this
way, the container redelivers the message so that the application makes another attempt to process
the message.

Example 16-9. CMTD configuration for CreatePersonBean

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<container-transaction>
 <description>
 Specify all create person bean methods to run in a transaction
 </description>
 <method>
 <description>All methods of create person Bean</description>
 <ejb-name>CreatePerson</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
</container-transaction>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

16.6. Transaction Best Practices

We recommend the following transaction management best practices :

Use declarative transaction management rather than programmatic transactions whenever
possible.

When using declarative transactions with EJBs, consider using Required as the first choice for a
transaction attribute.

When using distributed transactions, use XA-enabled resources and XA-enabled drivers
whenever possible. Be aware of the limitations of emulating XA for a non-XA resource.

Avoid mixing direct transaction management using JTA with implicit transaction management
done through a resource-specific API such as JDBC or JMS since this complicates the transaction
management picture.

Consider leveraging the session façade design pattern for creating coarse-grained transactions.

Minimize the use of client-managed transactions wherever possible. The session façade can be
useful here.

Carefully evaluate the need and implementation of an optimistic concurrency strategy.

Transactions help you to manage very complex, and even unpredictable, system behavior when
dealing with shared networked resources. But as this chapter has demonstrated, you must learn to
leverage transactions in the most efficient and straightforward manner possible. To that end, having
a solid understanding of transaction terms and concepts such as ACID properties, local versus
distributed transactions, the flat transaction model, two-phase commit, isolation problems and levels,
and optimistic concurrency is essential.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Part II: Open Source Enterprise Tools
The chapters in Part II, like the ones in Part I, serve as both introduction and tutorial for key
enterprise tools. But in this part, each chapter covers a tool that has become a "best practice"
among enterprise Java developers, without actually being a standard Java or J2EE application.
Some of these tools will never be standards, some will advise future standards, some are
already being adapted into Java standards. But regardless, they are invaluable tools and have
proven their worth through their wide adoption in the Java community.

Chapter 17, Ant
Chapter 18, JUnit and Cactus
Chapter 19, Struts
Chapter 20, Hibernate
Chapter 21, Annotations with XDoclet and J2SE Metadata

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 17. Ant
Enterprise software development involves a (sometimes complex) combination of source code,
configuration files, HTML pages, images, and various other assets that need to be processed,
combined, and deployed in order to create a running application. In addition to compiling and running
code, a number of other tasks need to be performed to manage an enterprise project: generating
documentation, running tests against code, interacting with source control systems, and more.

Over the years, several tools have emerged to help manage the various repetitive tasks involved with
developing software. Earlier examples include make and gnumake, command-line tools that have
been used to manage building and packaging code, primarily on Unix systems. make and its variants
utilize a text-based command file, a makefile, that you use to specify how various tasks (compiling
code, generating executables, etc.) are to be carried out, as well as dependencies between various
tasks (e.g., an executable should be generated only if all of the compiled code is up-to-date).

In Java development projects, Ant has emerged as the de facto tool of choice for these types of
tasks. Integrated development environments (IDEs) typically provide build/deploy tools, but Ant
supports these and other development tasks in an independent manner, separate from any specific
IDE. This, along with the nearly ubiquitous support in Java IDEs for editing and exercising Ant
buildfiles, has made Ant a very popular tool for Java development projects. In this chapter, we
provide a brief overview of the basics of Ant and how to write an Ant build script, followed by specific
details on how Ant can assist in enterprise development projects, in terms of building, assembling,
and deploying J2EE components as well as other key development tasks.

This tutorial is meant to be just that: a tutorial. We don't attempt to cover all aspects of the Ant build
model, and we provide details on only a subset of the core tasks that are bundled with Ant. For more
complete coverage, we refer the reader to the official documentation on the Ant project site
(http://ant.apache.org) and to Ant: The Definitive Guide by Steve Holzner, an O'Reilly book devoted
to all things Ant.

http://ant.apache.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

17.1. What Version Is Covered Here?

The examples in this chapter were developed and tested using Ant 1.6.5, downloadable from the Ant
project site at Apache (http://ant.apache.org). Most of these examples should work with earlier
versions of Ant, but in some cases modifications to the scripts will be necessary to make them
backward-compatible, since some core tasks have changed from previous minor versions (1.5.x,
1.4.x), and the property-handling mechanism in Ant has also evolved somewhat from earlier
versions. Wherever possible, we've highlighted aspects of the sample buildfiles that are specific to Ant
1.6 and therefore would need to be ported to older versions.

http://ant.apache.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

17.2. Ant Overview

Ant was developed in part as an improvement to previous build tools like make. At a high level, the
improvements it offers include an improved command file format (using XML as the basis for its
buildfiles) and the ability to extend the tool using Java code rather than shell script commands. In the
past, many developers found the text format of make and its variants to be somewhat arcane and
error-prone (to the point that people developed tools like imake, which provided a metalanguage for
the generation of makefiles). An XML format is much more directly accessible to the average
developer, the syntax rules are clearer since they are based on general XML syntax, and the plethora
of XML tools can be used directly to edit Ant buildfiles.

The ability to extend the build tool using Java code is also an obvious advantage, at least to Java
developers. As we'll see later in this section, tasks in Ant are invoked using XML elements in the
buildfile with a core set of tasks provided with the tool. Custom Ant tasks can also be written using
Java code. This allows for more portable extensibility than earlier shell command systems, since the
syntax of shell commands and their arguments tends to be platform-dependent.

Before we look at the model Ant uses for managing development tasks, let's get familiar with the
terminology of Ant.

Ant is driven from a buildfile that you write. This buildfile defines a set of project-specific targets that
represent specific goals or results that you can request Ant to accomplish. Typical targets might be to
compile a set of Java code, to create a jar archive from a set of files, or to check in a set of files to a
source control system like CVS, Perforce, or Subversion. Targets can be hierarchical in nature (i.e.,
one target may depend on the results of other targets, and a target may directly invoke other targets
in order to accomplish its goal). A target that generates a jar file may depend on another target that
compiles a set of Java files into classes, and it may invoke another target that moves all of the
necessary assets into a temporary area before creating the archive.

Ant executes tasks in order to complete specific targets. A task in Ant can be just about any action
that you can execute from Java, or the system, or both: compile a Java file, move a file from one
directory to another, open a URL and save the contents, and so on. Ant provides a set of core tasks
that perform very common operations, like running the Java compiler on a set of Java files, moving
files, and deleting files. You can also write your own custom Ant tasks if necessary, as mentioned
earlier.

Looking at Ant's build model from the bottom up, it consists of tasks, which are well-defined, general-
purpose utilities. A set of core tasks is included natively in Ant, and custom tasks can also be defined
if needed. Tasks are strung together to define how various targets are accomplished. A project's
targets are defined in a buildfile, which is named build.xml by default, although the file can be named
anything you like.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

17.3. Ant Fundamentals

Before we look at using Ant for tasks specific to enterprise application development, let's run through
the basic mechanics of Ant, for readers who haven't used Ant before. If you've used Ant before, you
can skip this section and jump right to "Enterprise Tasks" later in this chapter.

17.3.1. Buildfiles

When you execute Ant, you specify a command file that it should use to load the definitions of
targets. The buildfile uses an XML format to define the targets and the tasks involved in running each
target. The root XML element of the buildfile is always a <project> element, which defines the name
of the project and the default target that the buildfile will execute (if you don't specify one when
invoking Ant). The <project> element in Ant buildfiles supports the attributes listed in Table 17-1.

Table 17-1. Project element attributes

Attribute
name

Purpose Required

name

Descriptive name of the project, sometimes used by IDEs and other tools to
describe a particular project buildfile. The project name can be accessed in
the buildfile using the ant.project.name built-in property.

No

default
Name of the default target to be invoked when Ant is invoked on this
buildfile with no specific target specified.

Yes

basedir

The root directory where Ant will execute all targets and tasks in this
buildfile. This base directory will be the starting point for any relative paths
used in the buildfile. The base directory can also be specified using the
basedir built-in property. This same property can be used to access the
project's base directory in the buildfile. If the base directory isn't specified, it
defaults to the directory containing the buildfile.

No

Within the root <project> element, you define the targets for your project, with each target
consisting of a series of tasks to execute in order to satisfy the overall target. Example 17-1 shows a
very basic Ant buildfile that contains a single target, hello, that simply prints a message to the
console.

Example 17-1. An extremely simple Ant buildfile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<!-- Simple Ant buildfile; default (and only) target just
 prints "Hello, world" to the console -->
<project name="JEnt-Ant-simple" default="hello">
 <target name="hello">
 <echo message="Hello, world"/>
 </target>
</project>

To execute targets from this buildfile, we would usually place it in a directory with a default filename
of build.xml and invoke Ant on the command line from the directory with the build.xml file:

> ant hello
Buildfile: build.xml

hello:
 [echo] Hello, world

BUILD SUCCESSFUL
Total time: 1 second

In this degenerately simple Ant buildfile, the project is named Jent-Ant-simple, according to the name
attribute on the <project> element. The default attribute on the <project> element is used to
specify the name of the default target that is invoked if this buildfile is run with no target specified.
Within the <project> element, we've defined a single target using a <target> element. The target is
named using the name attribute. Finally, within the target, we've defined the tasks that should be
executed when this target is invoked. In this case, we're using a built-in Ant task named echo, which
echoes a text message to the console.

When we invoked the ant command, Ant first looked in the current directory for the default buildfile,
build.xml. Once the file was found, Ant parsed the buildfile and searched for a target with a name of
hello, the target specified on the command line. Once it found that target in our buildfile, it began
executing the tasks defined within that target. In our case, Ant had to execute only one task, the
echo task that prints our message to the console.

Since we specified that the hello target should be the default, we could also invoke the target by just
running Ant with no arguments:

> ant

This should result in the same console output. If we named our buildfile something other than the
default of build.xml, we could specify the name of the buildfile with the -buildfile option:

> ant -buildfile build.xml hello

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The command-line arguments -file and -f are synonyms for the -buildfile argument.

17.3.2. Defining Targets, Their Tasks, and Their Relationships

As we saw in our very simple example, targets are defined in the Ant buildfile as child <target>
elements of the root <project> element. The <target> element supports the attributes shown in
Table 17-2.

Table 17-2. Target element attributes

Attribute
name

Purpose Required

name
The name of the target, used to reference this target elsewhere in the
buildfile and to invoke it from the command line.

Yes

depends

A list of targets (comma-delimited) on which this target depends. When
this target is invoked, its list of predecessor targets will be invoked before
the tasks in this target are invoked. The predecessor targets are
executed in the order they are listed in the depends attribute, and the
dependencies are handled recursively.

No

if
This target will be executed only if the property named by this attribute
has been set.

No

unless
This target will not execute if the property named by this attribute has
been set.

No

description
A readable description of the target, sometimes used by IDEs and other
tools to display the contents of a buildfile.

No

A buildfile can simply contain a flat collection of independent targets, but often you will want to make
use of target dependencies in order to make things more efficient.

A slightly more involved (and more useful) buildfile is shown in Example 17-2. This sample buildfile
demonstrates basic use of target dependencies.

Example 17-2. Simple target dependencies

<!-- A simple buildfile that compiles a set of Java sources
 from the src directory, placing the results in the classes
 directory, and can also create a jar from the classes -->
<project name="JEnt-Ant-basic" default="archive">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <target name="compile"
 description="Compile all code in src dir to the classes dir">
 <!-- Create the classes dir, if needed -->
 <mkdir dir="classes"/>
 <!-- Compile the java code into classes -->
 <javac srcdir="src" destdir="classes"/>
 </target>
 <target name="archive" depends="compile"
 description="Create an archive from the contents of the classes dir">
 <jar destfile="classes.jar" includes="classes/**"/>
 </target>
 <target name="clean"
 description="Remove all artifacts created from other targets">
 <!-- Remove the classes dir created by the compile target -->
 <delete dir="classes"/>
 <!-- Remove the jar generated by the archive target -->
 <delete file="classes.jar"/>
 </target>
</project>

We've defined three targets here: compile, archive, and clean. The compile target runs javac on a
set of code in the src directory and puts the generated classes into the classes directory. It does this
by first using the built-in mkdir task to create the classes directory (if it doesn't exist) and then
running the built-in javac task, which runs the Java compiler on the source code directory specified in
the srcdir attribute and puts the results in the directory named by the destdir attribute. Additional
details on these built-in tasks can be found in "Core Tasks" later in this chapter.

The archive target creates a jar file from all of the classes in the classes directory, using the built-in
jar task to create the archive. We specified that the archive target depends on the compile target
using the depends attribute on the target definition. This ensures that whenever we run the archive
target, the source code is compiled first and then the archive is created. With this dependency in
place, if we invoke the archive target:

> ant archive

Ant detects the dependency, runs the compile target, and then runs the tasks in the archive target:

Buildfile: build.xml
compile:
 [mkdir] Created dir: classes
 [javac] Compiling 1 source file to /jent/examples/ant/ex-basic/classes
archive:
 [jar] Building MANIFEST-only jar: /jent/examples/ant/ex-basic/classes.jar
 [jar] Building jar: /jent/examples/ant/ex2-jar/classes.jar
BUILD SUCCESSFUL
Total time: 7 seconds

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Finally, we've included a clean target that removes all artifacts generated by the other targets in the
buildfile. It uses the built-in delete task to remove the classes directory created by the compile
target and the jar archive created by the archive target. It's good practice to define a target like this
in your project buildfiles to make it easy to clear out the cruft left from using the buildfile. This can be
helpful, for example, in situations in which you're using a source control system. A developer may
check out the project files (including the Ant buildfile), use Ant to build classes and deploy
components as he works on the code, and at some point he'll want to check in his changes. He will
want to avoid checking in development artifacts, like class files and archives created for deployment
purposes. The clean target allows you and other developers working on the project to clear out any
transient files before checking in their updates.

17.3.3. Properties

So far, all of the targets and tasks we've defined in our examples have been explicitly specifiedall of
the filenames and directory locations have been hardcoded into the buildfile itself. Similar to writing
software, the use of literals like this is not a good long-term approach to managing buildfiles. It
makes your buildfiles inflexible, and when a change is necessary, it typically needs to be made in
several places, which makes errors more likely. In our previous example, the jar file created by the
archive target is named classes.jar. If we wanted to change that to something else (if, for example,
another project or library named its archive by the same name), we'd have to make the change to
both the jar task in the archive target (the destfile attribute would have to be changed), and the
second delete task in the clean target would need to be changed as well.

Ant supports the use of properties to set configurable parameters used in buildfiles. Properties have a
name and a string value, and once they are set, they can be used anyplace a string literal is needed,
such as an attribute value on a target or task.

17.3.3.1. Setting properties

Properties can be set in a number of different ways. The most straightforward way is to use the Ant
<property> element to set a property directly in the buildfile:

<project name="sample" default="compile">
 <property name="java.src.dir" value="src"/>
 . . .

Note that the property task normally sits outside any target definitions so that property values can
be used in any targets that need them. You can include the property task in your target definitions,
but these property settings won't be processed until the target is invoked.

Another way to manage properties is to place them in a separate Java-style properties file, and
import the entire file into the buildfile using a different variation of the property task. Here is how you
would import a properties file using the local path to the file:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<project name="sample" default="compile">
 <property file="build.properties"/>
 . . .

In this example, the file must be named build.properties and located in the same directory as the
buildfile. The property task also allows you to refer to a properties file using a Java-style resource
name (located using the Java classpath) or (as of Ant 1.6) using a URL that refers to a properties file.

You can also load all of the current user's system environment variables using the property task:

. . .
 <property environment="env"/>
. . .

This task defines an Ant property for each environment variable found in the user's system settings.
You refer to these properties using the prefix that you specified in the environment attribute. In our
example, we specified env as the prefix, so an environment variable named CLASSPATH would be
referenced as env.CLASSPATH in our buildfile.

You can load multiple sets of properties, if needed, using multiple instances of the property task. This
can be used for managing distinct collections of properties or overlapping properties settings that
allow individual developers to override default project properties. It's important to remember the
precedence rules for Ant properties in these cases, though. Properties are set in the order that they
are encountered in parsing the buildfile, but the first value encountered for a property wins over any
subsequent ones. In other words, properties in Ant are immutableonce they're set, their value can't
be changed. This can lead to potentially confusing situations, such as:

. . .
 <property name="foobar" value="firstvalue"/>
 <property name="foobar" value="secondvalue"/>
. . .

Because of the precedence rules in Ant, the property named foobar ends up with the value
firstvalue in this case because it encounters the first property task and sets the foobar property
there and the second property setting is ignored. As long as you remember the immutable nature of
properties, it isn't hard to keep these precedence rules straight.

17.3.3.2. Referencing properties

Regardless of how a property is set, it can be referenced within the buildfile using the syntax
${property name}. With our earlier java.src.dir property set, for example, we can reference it

http://lib.ommolketab.ir
http://lib.ommolketab.ir

elsewhere in the buildfile:

. . .
 <target name="compile">
 <javac srcdir="${java.src.dir}" destdir="classes"/>
. . .

We can use properties to improve our example buildfile, as shown in Example 17-3. Here, we're
loading a set of properties from a file named build.properties, shown in Example 17-4 and then using
these properties in place of the string literals we were using in the previous version. The source
directory, for example, is referenced in the compile and clean targets using the value of the
java.src.dir property. With these changes to our example buildfile, we can now make changes to
the project directory structure and reflect them in one place, the build.properties file, rather than
searching through the buildfile for all places affected by a change.

Example 17-3. Simple buildfile using properties

<!-- A simple buildfile that compiles a set of Java sources
 from the src directory, placing the results in the classes
 directory, and can also create a jar from the classes -->
<project name="JEnt-Ant-props" default="archive">
 <property file="build.properties"/>
 <target name="compile"
 description="Compile all source code into the classes dir">
 <!-- Create the classes dir, if needed -->
 <mkdir dir="${java.classes.dir}"/>
 <!-- Compile the java code into classes -->
 <javac srcdir="${java.src.dir}" destdir="${java.classes.dir}"/>
 </target>
 <target name="archive" depends="compile"
 description="Create an archive from the contents of the classes dir">
 <jar destfile="${ant.project.name}.jar"
 includes="${java.classes.dir}/**"/>
 </target>
 <target name="clean"
 description="Remove all artifacts created in other targets">
 <!-- Remove the classes dir created by the compile target -->
 <delete dir="${java.classes.dir}"/>
 <!-- Remove the jar generated by the archive target -->
 <delete file="${ant.project.name}.jar"/>
 </target>
</project>

Example 17-4. build.properties file loaded by buildfile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Location of the Java source, relative to the base directory
of the project
java.src.dir = src

Location of the generated Java classes, relative to the
base directory of the project
java.classes.dir = classes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

17.4. Core Tasks

We've already used a few of the core tasks included with Ant in our earlier examples. Our compile
target uses the javac task, which invokes the Java compiler, and our archive target uses the jar
task, which creates a jar archive from a set of files. In addition to these Java-specific tasks, we've
also seen some general-purpose tasks, like the mkdir task that creates a directory and the delete
task for deleting files and directories.

Many, many other tasks bundled with the Ant distribution can be combined in a virtually infinite set of
combinations to do what you need to do in your development process. We don't intend to document
all of them hereagain, for complete coverage of the core Ant tasks, go to the Ant project site
(http://ant.apache.org) and pick up Ant: The Definitive Guide (O'Reilly). In the following sections, we
briefly discuss some general functional areas that are encountered in nearly every development
project and some of the common ways that Ant supports these needs with its core tasks. These tasks
are the workhorse tasks in Ant that you'll find yourself using over and over again.

17.4.1. File and Directory Tasks

At the heart of any software development effort is the need to do things to files and directories. Files
need to be moved or copied from one place to another, directories need to be created or deleted,
sets of files need to be pulled together into archives in various formats. Naturally, Ant provides
numerous built-in tasks that support these needs.

17.4.1.1. Basic entities

Ant provides some fundamental entities that are used in various tasks to represent files, sets of files,
and paths. Chief among them is the <fileset>. A <fileset> defines a set of files starting from a base
directory. A <fileset> is typically defined as a child element of a task, to indicate a set of files to be
moved, filtered, or otherwise manipulated by the task. The files to be included in the <fileset> can
be specified explicitly by naming them or by using filters. Filters are defined using attributes on the
<fileset> element, child elements of the <fileset>, or both. This entry defines a <fileset>
containing all of the files in the /tmp directory, for example:

. . .
<fileset dir="/tmp" includes="*"/>
. . .

The * matches any set of zero or more characters.

A <fileset> that includes everything in C:/Windows, excluding files ending in .ini, could be defined

http://ant.apache.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

like this:

. . .
<fileset dir="C:/Windows">
 <exclude name="*.ini"/>
</fileset>
. . .

As a final example, if you wanted to include all of the files, recursively, that end in .java or .xml, but
wanted to exclude Ant buildfiles, you would write something like this:

. . .
<fileset dir="${basedir}">
 <include name="**/*.java"/>
 <include name="**/*.xml"/>
 <exclude name="**/build.xml"/>
</fileset>
. . .

The expression ** is a shortcut for any sequence of directories or subdirectories. So **/*.java
matches any file at any level within the chosen base directory that ends in .java.

To make file selections more modular, Ant also includes the concept of a <patternset>. A
<patternset> is a set of file inclusion and exclusion filters that can be given a name and then
referenced by that name whenever they are needed. We might define a <patternset> at the top of
our buildfile, for example, to select all of the Java files in a given directory:

. . .
<patternset id="java.source.patternset">
 <include name="**/*.java"/>
</patternset>
. . .

We can then use this pattern elsewhere in our buildfile when we need to operate only on Java files
under a base directory. A <patternset> can be used in any <fileset> to act as the filter for selecting
the files in the set:

. . .
<fileset dir="${java.src.dir}/java">
 <patternset refid="java.source.patternset"/>
</fileset>
. . .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

We can also use a <patternset> in various tasks that support them as child elements for filtering an
activity. The zip task is one of these, since it allows the use of a <patternset> to specify what files to
include in the zip file it generates:

. . .
<zip destfile="${ant.project.name}-src.zip" basedir="${java.src.dir}/java">
 <patternset refid="java.source.patternset"/>
</zip>
. . .

Note that in both of the previous two examples, we could have also defined the <patternset> in place
rather than referencing the previously defined <patternset> by name.

17.4.1.2. Creating, moving, copying, and deleting

New directories are created using the mkdir task:

. . .
<mkdir dir="/tmp/stuff"/>
. . .

Copying files and directories is done with the copy task. You can copy a file from one place to
another:

. . .
<copy file="${ant.project.name}.ear"
 todir="${jboss.home}/server/default/deploy"/>
. . .

This will create a copy with the same filename as the original file. You can also create a copy with a
different name:

. . .
<copy file="config/app.properties"
 tofile="config/app.properties-orig"/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In addition to the single file attribute, the copy task also accepts <fileset> child elements that
specify the set of files to be copied. So you can, for example, copy the contents of an entire directory
to another location:

. . .
<copy todir="/tmp">
 <fileset dir="${java.src.dir}" includes="**"/>
</copy>
. . .

The copy task has a number of other attributes to control how it behaves, such as whether existing
files should be overwritten in the destination (overwrite) and whether source directories should be
flattened out when the files are copied to a destination file (flatten).

Use the move task to move and rename files. To rename a single file, for example:

. . .
<move file="${ant.project.name}.war" tofile="${ant.project.name}-old.war"/>
. . .

To move a file from one location to another, preserving its original name:

. . .
<move file="${ant.project.name}.ear"
 todir="${jboss.home}/server/default/deploy"/>
. . .

Note that this is similar to our earlier example of using the copy task, but in this case, the file doesn't
remain in its original location.

You can also move whole sets of files from one location to a new directory, using nested <fileset>
elements. To move an entire directory from one place to another:

. . .
<move todir="${jboss.home}/server/default/deploy">
 <fileset dir="war-tmp"/>
</move>
. . .

To move a subset of files from one directory to another, you would use a <fileset> with

http://lib.ommolketab.ir
http://lib.ommolketab.ir

include/exclude filters and <patternset> elements. The following example moves all of the XML files
from the project directory to a directory in /tmp:

. . .
<mkdir dir="/tmp/xml-files"/>
<move todir="/tmp/xml-files">
 <fileset dir="${basedir}">
 <include name="**/*.xml"/>
 </fileset>
</move>
. . .

This entry preserves the subdirectory structures of the original directory. If there were a file
config/web.xml in the original directory, for example, it will be copied into a config/web.xml file in the
new directory.

Optional attributes on the move task mirror those on the copy task. They allow you to control things
such as whether the moved files are flattened into a single directory (flatten) and whether files of
the same name in the destination directory should be overwritten (overwrite).

Deleting files and directories is done with the delete task. Deleting a file is simple:

. . .
<delete file="${ant.project.name}.ear"/>
. . .

Deleting a directory is very similar:

. . .
<delete dir="/tmp/xml-files"/>
. . .

This deletes the directory and all of its contents.

To delete a subset of files and directories in an existing directory, you use nested <fileset> elements
with include/exclude filters. To delete all of the files ending in .tmp in a directory, for example:

. . .
<delete>
 <fileset dir="${basedir}">
 <include name="**/*.tmp"/>
 </fileset>
</delete>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

. . .

17.4.1.3. Making archives

Ant includes several tasks for dealing with file archives of different formats, including Java archives
(jars), tar files, zip files, and bzip2 files.

Java archives can be created and unpacked using the jar and unjar tasks. Creating a jar archive
involves specifying the files to include in the archive and where the archive file should be created. The
simplest use of the jar task is to simply jar up an entire directory. This example creates a jar from
the contents of our project's classes directory, and names the jar file after the name of the project:

. . .
<jar basedir="classes" destfile="${ant.project.name}-lib.jar"/>
. . .

You can, of course, be more selective about what goes into the jar, using all the filtering tools we've
seen earlier. The jar task has includes and excludes attributes that can be used to do basic filters
on what's pulled from the basedir. The following creates a jar from the contents of classes but leaves
out any Java properties files:

. . .
<jar basedir="classes" destfile="${ant.project.name}-lib.jar"
 excludes="**/*.properties"/>
. . .

Nested <fileset> elements can also be used to do more elaborate filtering of the jar contents.

The jar task also includes ways to manage the MANIFEST file for the archive. You can either include
a full MANIFEST file using the manifest attribute, or you can use the task to construct a manifest on
the fly using a manifest child element, specifying the contents of the manifest using attributes and
child elements on the nested manifest element.

The unjar task is used to extract files from a jar archive. To extract all of the contents into a
destination directory:

. . .
<unjar src="${ant.project.name}-lib.jar" dest="${tmpdir}/jar-contents"/>
. . .

You can operate on multiple archives concurrently by specifying one or more <fileset> elements as

http://lib.ommolketab.ir
http://lib.ommolketab.ir

child elements of the unjar task. The following example extracts the contents of all of the Xerces
libraries in our library directory into the project's classes directory:

. . .
<unjar dest="classes">
 <fileset dir="${lib.dir}/xerces-2.6.2">
 <include name="*.jar"/>
 </fileset>
</unjar>
. . .

You can use nested <patternset> elements to select specific subsets of the archive contents to
extract. The following example pulls only the classes that are not in packages starting with javax
from the Xerces libraries:

. . .
<unjar dest="classes">
 <fileset dir="${lib.dir}/xerces-2_6_2">
 <include name="*.jar"/>
 </fileset>
 <patternset>
 <exclude name="javax/**"/>
 </patternset>
</unjar>
. . .

Ant provides support for a number of other popular archive formats as well. The tar/untar tasks
support tar archives, the zip/unzip tasks support archives in the zip format, the gzip/gunzip tasks
support gzipped archives, and the bzip2/bunzip2 tasks support archives in the bzip2 format. We don't
provide examples for all of them since they largely work in a similar fashion to the jar/unjar tasks.
There are some minor format-specific distinctions among the tasks to watch out for. For example,
only the jar task deals with archive manifests since the other archives don't have manifests, and the
tar task has a longfile option that lets you pick one of several ways tar can deal with long
filenames.

17.4.2. Basic Java Tasks

Naturally, Ant provides strong support for basic Java activities, such as compiling code and running
Java standalone applications. When using the Java-related tasks in Ant, it's important to understand
how paths and, specifically, classpaths , are specified in Ant.

17.4.2.1. Paths and classpaths

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Path lists are a common construct in most operating systems. Lists of directory paths are used to
specify where to locate executable programs and support libraries. In Java, the classpath specifies
where to locate classes at runtime. Ant supports both general paths and Java classpaths with the
<path> and <classpath> entities.

A general-purpose path is defined using the <path> element. The directories and files included in the
path are specified using nested <pathelement>, <fileset>, <dirset>, or <filelist> elements. The
<pathelement> element is used to explicitly include a single entry on the path, either a file or a
directory. This example defines a <path> containing the /usr/bin and /usr/local/bin directories:

. . .
<path id="exec.path">
 <pathelement location="/usr/bin"/>
 <pathelement location="/usr/local/bin"/>
</path>
. . .

You can also define colon- or semicolon-separated lists of entries as a property and include these in
your path using a <pathelement> with a path attribute. This entry defines the same <path> as the
previous example:

. . .
<property name="tmp.path" value="/usr/bin:/usr/local/bin"/>
<path id="exec.path2">
 <pathelement path="${exec.path2}"/>
</path>
. . .

When defining path properties like this, you don't need to worry about using the path separator that's
appropriate for the current operating system. Ant will automatically convert the path to the proper
format for the current environment (e.g., semicolons for Windows, colons for Unix).

A <fileset>, <dirset>, or <filelist> is used to add one or more entries to the path in a batch. This
example defines a <path> with the project classes directory and any jars in the Xerces directory:

. . .
<path id="xml.path">
 <pathelement location="classes"/>
 <fileset dir="${lib.dir}/xerces-2_6_2">
 <include name="*.jar"/>
 </fileset>
</path>
. . .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

It's important to note when using a <fileset>, <dirset>, or <filelist> in a path (either a general
path or a classpath) that the order in which the matching entries are added to the path is undefined.
So if the order is important in your case (e.g., you want one library to take precedence over another
because of potentially overlapping class definitions), you should use explicit <pathelement> enTRies
instead.

A <path> can be composed of other <path>s as well, using references to their IDs. We can construct
another <path> that includes everything in our previous example <path>, plus the Xalan jars:

. . .
<path id="extended.xml.path">
 <pathelement refid="xml.path"/>
 <fileset dir="${lib.dir}/xalan-2_6_0/bin">
 <include name="*.jar"/>
 </fileset>
</path>
. . .

Classpaths are defined the same as paths. For example:

. . .
<classpath id="xml.class.path">
 <pathelement refid="xml.path"/>
 <fileset dir="${lib.dir}/xalan-2_6_0/bin">
 <include name="*.jar"/>
 </fileset>
</classpath>
. . .

The difference between a <path> and a <classpath> is that a <path> can be defined outside of any
target definitions and referenced as needed in your buildfile targets. A <classpath> is always a child
element of a task, used to specify where the task will locate its classes.

17.4.2.2. Compiling Java code

Java code is compiled in Ant using the javac task. At heart, the javac task compiles a set of Java
source files and generates a set of classes in a destination directory. At its simplest, using the javac
task requires specifying only a source directory and a destination directory:

. . .
<javac srcdir="${java.src.dir}" destdir="classes"/>
. . .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In this case, the javac task recursively searches the source directory for Java files (those ending in
.java) that are newer than their equivalent class files in the destination directory. "Equivalence" is
defined simply as the .class file with a package and base name that matches the directory and base
filename of the .java file. The javac task does not (by default) attempt to parse the source files to do
more refined equivalence checking.

If you want to compile source code from multiple source directories, you can use nested <src>
elements instead of the srcdir attribute. For example:

. . .
<javac destdir="classes">
 <src path="${common.src.dir}"/>
 <src path="${java.src.dir}"/>
</javac>
. . .

This entry compiles all of the Java files found in the two source directories into the classes directory.

You can be more selective in terms of the source files to be compiled as well. includes and excludes
attributes on the task can be used to specify filters to be applied to the contents of the source
directories, or you can use nested <include>/<exclude> elements.

It's usually necessary to specify the classpath to be used when compiling Java code. By default, the
javac task uses the classpath used to invoke Ant, which often doesn't include key libraries needed for
your project. You can specify the compile classpath using the classpath attribute and a path string,
for example:

. . .
<javac destdir="classes"
 srcdir="${java.src.dir}"
 classpath="${lib.dir}/lib1.jar;${lib.dir}/lib2.jar}" />
. . .

or you can refer to a path defined elsewhere, using the classpathref attribute:

. . .
<path id="proj.compile.classpath">
 <pathelement location="${lib.dir}/lib1.jar"/>
 <pathelement location="${lib.dir}/lib2.jar"/>
</path>
. . .
<javac destdir="classes" srcdir="${java.src.dir}"
 classpathref="proj.compile.classpath"/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

. . .

or you can use a nested <classpath> element, defining the path structure directly within the javac
task invocation:

. . .
<javac destdir="classes" srcdir="${java.src.dir}">
 <classpath>
 <pathelement location="${lib.dir}/lib1.jar"/>
 <pathelement location="${lib.dir}/lib2.jar"/>
 </classpath>
</javac>
. . .

You can use numerous other options to control the compilation process. The compiler attribute
specifies which Java compiler should be used, for example. By default, the compiler associated with
the JVM that is running Ant will be used. The following example specifies that a Java 1.4 compiler
should be used, if available on the system:

. . .
<javac destdir="classes" srcdir="${java.src.dir}" compiler="javac1.4"/>
. . .

If you want to specify a particular compiler for all invocations of the javac task, you can use the built-
in property build.compiler. If a compatible compiler cannot be found in the user's environment when
the task runs, an error will be generated.

Another important option on the javac task is whether to generate debug information in the class
files, using the debug attribute. This is important when dealing with development environments in
which an IDE will need this debug environment in order to provide step-through debugging features.
To include debug information in the class files, set the debug attribute to on:

. . .
<javac destdir="classes" srcdir="${java.src.dir}" debug="on"/>
. . .

Many other options are available, allowing you to specify compiler arguments, how much memory for
the compilation JVM to use, and so on.

17.4.2.3. Running Java programs

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can also run compiled Java code, using the java task. This comes in handy when a Java utility
provided by a tool or vendor hasn't been wrapped by an Ant task or when you want to invoke some
project code from the Ant buildfile, perhaps to test that a build completed successfully.

If you simply want to invoke the main method of a Java class:

. . .
<java classname="org.jaf.MyApp"/>
. . .

If you have a jar archive with a manifest that specifies a main class, you can invoke its main method
like so:

. . .
<java jar="${lib.dir}/app1.jar"/>
. . .

These simplistic versions of the java task are usually not sufficient. For one thing, you often need to
provide a classpath that includes all of the required libraries for the Java application. This is done
roughly the same way as specifying a classpath for the javac task. You can specify an explicit
classpath as a string using the classpath attribute:

. . .
<java classpath="${lib.dir}/lib1.jar" classname="org.jaf.MyApp"/>
. . .

or you can refer to a predefined path using the classpathref attribute:

. . .
<path id="proj.run.classpath">
 <pathelement location="${lib.dir}/lib1.jar"/>
</path>
. . .
<java classpathref="proj.run.classpath" classname="org.jaf.MyApp"/>
. . .

or you can use an embedded <classpath> element, specifying the classpath explicitly or by
referencing paths defined elsewhere in the buildfile:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

. . .
<javac classname="org.jaf.MyApp">
 <classpath>
 <pathelement location="${lib.dir}/lib1.jar"/>
 </classpath>
</javac>
. . .

It's also likely that you will need to provide command-line arguments when running the Java
application. You may need to provide arguments that are passed to the Java class in its invocation
arguments, or you may need to pass arguments to the JVM to control its runtime configuration. The
former is done using nested <arg> elements on the java task:

. . .
<java classname="org.jaf.MyApp" classpathref="proj.run.classpath">
 <arg value="-noAudio"/>
 <arg line="-user Jim"/>
</java>
. . .

JVM arguments are specified the same way, except you use a <jvmarg> nested element instead:

. . .
<java classname="org.jaf.MyApp" classpathref="proj.run.classpath">
 <arg value="-user Jim"/>
 <jvmarg value="-Dorg.jaf.MyApp.noAudio=true"/>
</java>
. . .

17.4.3. Miscellaneous Utilities

Besides the categories discussed in the previous sections, you'll find yourself using some other
miscellaneous tasks in Ant over and over.

17.4.3.1. Ant's echo task: System.out.println()

Possibly the most commonly used task in Ant is the echo task, which prints a message to the
standard output. This is useful both for diagnostic messages and for debugging Ant buildfiles that
seem to be misbehaving:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

. . .
<echo message="Compiling a whole mess o' Java code. . ."/>
<javac srcdir="${java.src.dir}" destdir="classes"/>
. . .

17.4.3.2. Calling external programs

We saw earlier how Java programs can be invoked from Ant. You can also invoke other external
programs, using the exec task. This task should be used with caution since it often leads to buildfiles
that are not easily portable to different platforms (or even the same platform with a different
configuration). Still, the exec task is handy in a pinch.

The command to execute is specified with the executable attribute:

. . .
<property name="browser.exec" value="/usr/local/bin/mozilla"/>
<exec executable="${browser.exec}"/>
. . .

Command-line arguments are specified using nested <arg> elements, similarly to the java task:

. . .
<property name="browser.exec" value="/usr/local/bin/mozilla"/>
<property name="project.doc.dir" value="docs"/>
. . .
<exec executable="${browser.exec}">
 <arg value="${project.doc.dir}/index.html"/>
</exec>
. . .

Environment variables can be set for the executable using nested <env> elements. If, for example,
you need to specify the path to be used to find the executable:

. . .
<exec executable="mozilla">
 <env key="PATH" path="/usr/local/bin:/usr/bin"/>
</exec>
. . .

To help make the use of exec more portable, you can use the os attribute to control when the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

command will be executed. If the current platform type (as specified by the JVM's os.name system
property) is listed in the comma-delimited list specified in the os attribute, Ant will attempt to execute
the command; otherwise, it will skip the exec task entirely. This can be used to create a sort of
conditional, platform-specific invocation of a particular type of command, for example:

. . .
<property name="win.browser.exec" value="mozilla.exe"/>
<property name="unix.browser.exec" value="mozilla"/>
<property name="win.browser.path" value="C:\Progra~1\Mozilla"/>
<property name="unix.browser.path" value="/usr/bin:/usr/local/bin"/>
. . .
<exec os="Windows 2000,Windows XP" executable="${win.browser.exec}">
 <env key="PATH" path="${win.browser.path}"/>
</exec>
<exec os="Linux,Solaris,FreeBSD,Mac OS X"
 executable="${unix.browser.exec}">
 <env key="PATH" path="${unix.browser.path}"/>
</exec>
. . .

If this example is run on a Windows 2000 or Windows XP machine, the first exec task will be
executed, since the os.name Java system property will match one of the entries in the os attribute.
This exec task uses the Windows-specific versions of the relevant properties, set to reasonable
defaults for a typical Windows installation of Mozilla. The second exec task will not run because the
os.name value will not match any of the entries in its os attribute.

17.4.3.3. Importing custom Ant tasks

Many application servers and development tools provide their own custom Ant tasks that can be used
in your buildfiles. A J2EE server may provide a task that automatically deploys a component module
to its server, for example. You may decide to write your own custom tasks as well and therefore need
to import them into your buildfiles.

External tasks are imported into a buildfile using the taskdef task. If the classes defining the task are
on the runtime classpath, all you need to do to import a task is to specify the name of the task and
the class that implements it. This example imports a task provided by the BEA WebLogic server
distribution:

. . .
<taskdef name="wldeploy"
 classname="weblogic.ant.taskdefs.management.WLDeploy"/>
. . .

If the classes that implement the imported tasks aren't on the runtime classpath, you can specify the
classpath that taskdef should use, with a nested <classpath> element:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

. . .
<taskdef name="wldeploy"
 classname="weblogic.ant.taskdefs.management.WLDeploy">
 <classpath>
 <pathelement path="${weblogic.home}/server/lib/weblogic.jar"/>
 </classpath>
</taskdef>
. . .

17.4.3.4. Invoking targets

Sometimes it's very useful to call Ant targets programmatically from other targets in your buildfile.
Making one task depend on another using the depends attribute is a limited way to do this. But the
target named in the depends attribute will always be run before the dependent target, and sometimes
you need to check some conditions or set some property values before the supporting target is
called. In these situations, you can use the antcall task to explicitly invoke a target from anywhere
within another target.

Invoking a target is a simple matter of naming the target as an attribute of the antcall task:

. . .
<target name="main-target">
 <!-- Perform some other tasks -->
 <antcall target="sub-target"/>
</target>
. . .

It's important to remember that, when you use the antcall task in a target, Ant executes the
secondary target as if the entire buildfile were reinvoked. By default, all of the property values that
have been set at the point of the antcall execution are inherited by the new Ant runtime, which
effectively makes the new target run as if it were running within the original runtime. If for some
reason you don't want the new target execution to inherit the current property settings, you can use
the inheritAll attribute:

. . .
<antcall target="sub-target" inheritAll="false"/>
. . .

You can also explicitly pass specific property values into the new target using nested <param>
elements:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

. . .
<antcall target="sub-target">
 <param name="param1" value="foo"/>
 <param name="param2" value="bar"/>
</antcall>
. . .

This use of antcall makes the target call similar to a method call, a very effective tool indeed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

17.5. Enterprise Tasks

In addition to the basic Java development tasks we've discussed in the previous sections, enterprise
application development requires special support in terms of managing component development and
testing; assembling and deploying applications; preserving platform portability in the face of different
application server vendors; and managing multiple application environments.

In the following sections, we'll explore each of these areas in terms of the Ant tasks that are relevant
to each and look at some approaches to designing your Ant buildfiles to support each of these
enterprise development issues.

17.5.1. Assembling Components

When developing J2EE components, you need to perform many of the basic Java development tasks
we've already seen: compile Java code into classes, construct a jar file from a set of files, move the
jar file from one place to another, and so forth. Some complexities are introduced when working with
enterprise components, however. Component archives need to be assembled using specific file
layouts. Depending on the application server being used, additional processing of your Java classes or
component archives may be necessary as well.

The jar file formats used for component assemblies are more complicated than the simple class
hierarchies used for libraries. As discussed in Chapter 2 and detailed in Appendix A, component
archives follow a specific structure that dictates where each asset (deployment descriptors, libraries,
classes, etc.) must reside in the archive structure. You could use the basic tasks described in the
earlier sections to construct component archives, of course. You could use the mkdir and copy tasks
to construct the required archive directory structure in a temporary location and then use the jar
task to construct the actual component archive file. But this would require you to correctly interpret
the component archive format and map that into your buildfile yourself (e.g., libraries in a web
archive go into the WEB-INF/lib directory, compiled classes go into the WEB-INF/classes directory,
etc.). Luckily, Ant provides tasks that create J2EE component archives directly, allowing you to
simply specify the required elements of the archive. The Ant tasks assemble these assets into the
standard archive structure for you and provide some other useful shortcuts as well.

17.5.1.1. Web components

The core of Ant's support for assembling web component archives is the war task. This task allows
you to create a web archive by specifying the elements that should be included using task attributes
and subelements in the task declaration. The attributes on the task element specify the name of the
war file to be created and the deployment descriptor for the module. The task supports a set of child
<fileset> elements that allows you to specify the HTML, JSP, and other web assets to be put into the
archive's root directory; the files (other than the deployment descriptor) to be put into the WEB-INF
directory; the Java classes and other classpath-accessible files to be put into the WEB-INF/classes
directory; and the full libraries to be put into the WEB-INF/lib directory.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In our example buildfile, we already have an archive target that creates a simple jar file from the
contents of the project's classes directory. In Example 17-5, we show a new create-wars target that
uses the contents of the classes, config, and web directories in the project to construct a web
component archive. To support this target, we need two new properties in our build.properties file to
specify the location of the configuration and web content directories:

. . .
Location of application configuration files
config.dir = config

Location of all web-related content (HTML files, etc.)
web.dir = web

This maintains our pattern of keeping all project configuration details in one place and referencing
these properties where needed in the buildfile.

Example 17-5. Target for assembly of web archives

. . .
 <!-- Create the web archives needed for this application -->
 <target name="create-wars"
 description="Create the web archives needed for this application"
 depends="compile">
 <!-- Delete any existing war files -->
 <delete>
 <fileset dir=".">
 <include name="*.war"/>
 </fileset>
 </delete>
 <!-- Define a pattern for the set of files within the web dir
 that should be included in the root of the archive. -->
 <patternset id="war.files">
 <include name="**"/>
 </patternset>
 <!-- Define a pattern for the set of classes from the classes
 dir that should be included in the archive -->
 <patternset id="war.classes">
 <include name="**"/>
 </patternset>
 <!-- Define a set of libraries to be included in the archive -->
 <patternset id="war.libs">
 <include name="xercesImpl.jar"/>
 <include name="xml-apis.jar"/>
 <include name="xmlParserAPIs.jar"/>
 </patternset>
 <!-- Invoke the war task -->

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <war warfile="${proj.name}.war"
 webxml="${config.dir}/web.xml">
 <!-- Put any files specified by the war.files patternset in the root
 of the web archive. -->
 <fileset dir="${web.dir}">
 <patternset refid="war.files"/>
 </fileset>
 <!-- Include any classes specified by the war.classes patternset -->
 <classes dir="${java.classes.dir}">
 <patternset refid="war.classes"/>
 </classes>
 <!-- Include any libraries specified by the war.libs patternset -->
 <lib dir="${lib.dir}/xerces-2_6_2">
 <patternset refid="war.libs"/>
 </lib>
 </war>
 </target>
. . .

We've made the create-wars target depend on the compile target to ensure that all of the project
code is compiled before we try to assemble our web module(s). In the target itself, we first clear out
any war files left over from previous runs of this target using the delete task. Since we intend this
target to be the creator of all web archives for the project, we can safely delete all of the files with
the war suffix. Once this is done, we define a few <patternset> elements that specify the set of
general web assets and Java classes to be included in the archive. Here we're simply including the
entire contents of their respective directories in the <patternset> since we have all of our web
content and classes in singular directories, and we want them included in their entirety. But if that
changes and we need to filter elements from each directory or we need to include contents from
multiple subdirectories in the project, we simply need to adjust the <patternset> elements to suit the
new project file structure.

The invocation of the war task itself is fairly straightforward. We specify the name for the war file
using the warfile attribute on the task element using the proj.name property as the base for the
filename. We also specify the deployment descriptor for the archive in the attributes, setting the
webxml attribute to the web.xml file in our config directory. We then use child elements of the war
task to specify files to be included in the root of the archive as well as Java classes that should be
included in the archive. We use the <patternset> elements defined earlier in the target to define the
files to be included in each case.

17.5.1.2. EJB components

Assembling EJB component archives is slightly more complicated than assembling web archives, due
to the application server-specific details that are often required to deploy an EJB module. As
discussed in Chapter 2, these can include vendor-specific deployment files or the need to generate
vendor-specific support classes for the EJB components in your module.

Ant provides support for creating EJB modules from project assets through the ejbjar task, which is
included in its bundled set of optional tasks. The task searches recursively through the directory
specified by its descriptordir attribute, looking for relevant EJB deployment descriptors. For each

http://lib.ommolketab.ir
http://lib.ommolketab.ir

EJB deployment descriptor that it finds, ejbjar builds an EJB archive by parsing the EJB deployment
descriptor, determining the classes that are required for the EJB components. These classes are
copied from the directory specified in the srcdir attribute. Depending on how the ejbjar task is
configured, it can also locate vendor-specific configuration files in the descriptordir directory and
include those in their appropriate locations in the archive. The ejbjar task can also generate vendor-
specific support classes, if configured to do so. Once this is all accomplished, the task writes out a full
EJB module archive to the location specified by the destdir attribute.

As opposed to the war task we saw in the previous section, the ejbjar task is categorized as an
optional task in Ant because it requires external libraries to operate. In the case of ejbjar, the task
requires the Jakarta Byte Code Engineering Library (BCEL) in your classpath when you run Ant since
it uses this library to calculate class dependencies for your EJB components as it determines which
classes need to be included in your EJB archive. The BCEL can be downloaded from the Apache
Jakarta project site (http://jakarta.apache.org/bcel). In order to use the ejbjar task, either you'll
need to have this library on your classpath when you invoke Ant or you'll have to copy the library into
the Ant lib directory.

The ejbjar task can be used either to create generic EJB archives, containing only the standard EJB
deployment descriptor and your classes or to generate EJB modules targeted for a specific application
server. To start, let's define a target that simply generates a generic EJB module from your project
assets, shown in Example 17-6. The create-ejbjars target simply invokes the ejbjar task, indicating
with the task attributes that deployment descriptors will be found in the project configuration
directory (using the descriptordir attribute), that Java classes for the components are to be found in
the project's classes directory (using the srcdir attribute), and that the generated EJB module file
should be written in the project's base directory (using the destdir attribute). The other attributes
we're using on the ejbjar task specify how the task should generate the module archive, in terms of
the name of the jar file (naming), how to calculate dependent classes that need to be included in the
archive (dependency), and so forth.

Example 17-6. Target for generation of EJB modules

. . .
<!-- Create any ejb modules required for this application -->
<target name="create-ejbjars"
 description="Generates an ejb-jar archive for this application"
 depends="compile">
 <!-- Invoke the ejbjar task, looking for deployment descriptors
 in the project config directory. We are using "directory"-based
 naming here, with the name of the directory containing the EJB
 deployment descriptor used as the basis for the ejb-jar filename. -->
 <ejbjar descriptordir="${config.dir}"
 srcdir="${java.classes.dir}"
 destdir="${basedir}"
 naming="directory"
 genericjarsuffix=".jar"
 flatdestdir="true"
 dependency="super">
 <!-- Use local copies of descriptor DTDs, in case we're not online -->
 <dtd publicid=
 "-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN"

http://jakarta.apache.org/bcel
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 location="${lib.dir}/j2ee/dtd/ejb-jar_2_0.dtd"/>
 <!-- Parse only EJB descriptors -->
 <include name="**/*ejb-jar.xml"/>
 </ejbjar>
</target>
. . .

We're using preexisting project properties, java.classes.dir and config.dir, to indicate where the
ejbjar task should find the assets for the EJB module. But in order for the task to work as intended,
we have to put our EJB deployment descriptors into subdirectories of our project's configuration
directory. We've specified that ejbjar should use "directory" naming for the modules it generates, so
the name of the subdirectory should be the name we want for the EJB module file. The name of this
file is important, since application deployment descriptors need to reference the file once it's included
in an application archive. If we had EJB components that we wanted assembled into an archive
named ProfileEJB, for example, and assuming that our config.dir property is set to config, our
configuration directory structure would need to look like Figure 17-1.

Figure 17-1. Sample directory structure for ejbjar task

We've also included a few subelements in our invocation of the ejbjar task. We added a <dtd>
element, specifying a local copy of the EJB deployment descriptor DTD. This is helpful when you're
developing offline; for example, as I write this I'm sitting on an airplane where I have little chance of
making a URL connection to the Sun site where the original copies of the DTD lives.[1] Using local
DTDs can also speed up the parsing process that ejbjar performs since it avoids a network lookup.

[1] Of course, this is helpful to me only because I'm paranoid enough to have copies of all the J2EE schemas and DTDs on my

laptop.

The other child element is an <include> element that limits the scope of the ejbjar task to files in our
configuration directory that end with ejb-jar.xml. This allows us to put other types of deployment
descriptors and configuration files in our configuration directory, without risking a lot of confusion on
the part of ejbjar.

As we already mentioned, this version of our target generates only a generic, standard EJB module
archive. If the EJB container in your application server has additional requirements, such as vendor-
specific deployment descriptors and support classes, you'll need to enhance this target to handle
these additional server-specific requirements. The ejbjar task supports a number of common

http://lib.ommolketab.ir
http://lib.ommolketab.ir

application servers with subelements that can be used to manage vendor-specific details. For
example, if we knew we were going to deploy our EJB components to a JBoss EJB container, we could
use the JBoss-specific subelement of ejbjar, <jboss>, to create an EJB module that can be deployed
directly to a JBoss EJB container. The JBoss-enabled version of our create-ejbjars target is shown in
Example 17-7.

Example 17-7. JBoss-enabled version of the EJB module target

. . .
<!-- Create any ejb modules required for this application -->
<target name="create-ejbjars-jboss"
 description="Generates an ejb-jar archive for this application"
 depends="compile">
 <!-- Invoke the ejbjar task, looking for deployment descriptors
 in the project config directory. We are using "directory"-based
 naming here, where the name of the directory containing the EJB
 deployment descriptor is used as the basis for the ejb-jar filename. -->
 <ejbjar descriptordir="${config.dir}"
 srcdir="${java.classes.dir}"
 destdir="${basedir}"
 naming="directory"
 genericjarsuffix="-generic.jar"
 flatdestdir="true"
 dependency="super">
 <jboss destdir="${basedir}"/>
 <!-- Use local copies of descriptor DTDs, in case we're not online -->
 <dtd publicid=
 "-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN"
 location="${jboss.home}/docs/dtd/ejb-jar_2_0.dtd"/>
 <!-- Parse only EJB descriptors -->
 <include name="**/*ejb-jar.xml"/>
 </ejbjar>
</target>
. . .

The inclusion of the <jboss> child element causes the ejbjar task to look for any JBoss EJB
deployment files (named jboss.xml) wherever it finds a standard EJB deployment descriptor and to
include the JBoss descriptor in the EJB module when it's assembled. Since JBoss automatically
generates any required support classes when the module is deployed, there's nothing else that the
ejbjar task needs to do to make the EJB module deployable in JBoss. But other application servers
require you to pregenerate the support classes for the EJB modules and include them in the module
archive when it's deployed. These tasks can be performed by ejbjar for the application servers that it
supports. For EJB containers not supported by ejbjar, you'll need to handle this in other ways. Some
EJB containers provide custom Ant tasks that you can import and use for processing EJB archives for
deployment, for example.

It's important to note that putting environment-specific details into your buildfiles limits their
portability. Our create-ejbjars-jboss target, for example, will work only in environments using JBoss

http://lib.ommolketab.ir
http://lib.ommolketab.ir

application servers. If I give my project code to you and you want to deploy it in a WebLogic server,
you would need to edit my buildfile to make it work in your environment. As much as possible, you
want to avoid this situation so that the buildfile requires only configuration changes (e.g., to the
build.properties file or any other configuration files that the buildfile references). Ideally, you want to
be in a situation in which other developers can simply replace the default configuration files with ones
that suit their environment, and the rest of the buildfile works as advertised.

"Creating Portable Build Processes" later in this chapter discusses some approaches to making your
buildfiles as portable as possible, especially with regard to enterprise development tasks.

17.5.2. Assembling Applications

Creating J2EE application assemblies in Ant is very straightforward through the use of the built-in ear
task. The ear task is a specialized version of the jar task, so it accepts all of the same child elements
as the jar task. But the ear task automatically creates a jar file with the format of a J2EE application
archive.

Example 17-8 shows a create-ear target that uses our project properties and the Ant ear task to
construct an application archive. We've made the create-ear target depend on the create-wars and
create-ejbjars targets to ensure that our component archives are assembled before we assemble
our application. The ear task has a number of attributes and child elements that can be used to
control its behavior. In our example, we're using the destfile attribute to put the ear file in the root
of the project directory, using the project name as the base of the filename. The deployment
descriptor is set using the appxml attribute, and we're using the application.xml file from the
configuration directory. Finally, we're including any war and jar files found in the root of the project
directory in the application archive using the includes attribute, assuming that they are all web or
EJB component archives built using the create-wars or create-ejbjars targets. If we wanted to be
more selective (e.g., we may not want some jar files included in the application archive), we could
use specific archive filenames in the includes attribute.

Example 17-8. Target for creating application archives

. . .
<!-- Create an application assembly from our web and EJB components -->
<target name="create-app"
 description="Make an application assembly from the component archives"
 depends="create-wars, create-ejbjars">
 <ear destfile="${proj.name}.ear"
 appxml="${config.dir}/application.xml"
 includes="*.war, *.jar">
 </ear>
</target>
. . .

It's important to note that any war or ejb-jar modules created by the create-wars or create-ejbjars

http://lib.ommolketab.ir
http://lib.ommolketab.ir

targets must be referenced in the application.xml descriptor using the same filenames created by
those targets. Unlike the ejbjar task in Ant, the ear task does not automatically parse the application
deployment descriptor and search for the files that must be includedit just pulls in any files
referenced by the combination of the includes and excludes attributes on the ear task. If our
project's proj.name property is set to ShoppingCart, for example, the create-wars target in Example
17-8 will create a war file named ShoppingCart.war. If we also have an EJB deployment descriptor in
a CCardAccount subdirectory of our configuration directory, the create-ejbjars target will create an
EJB jar file named CCardAccount.jar. Since our create-app target is picking up both of these files as-
is, the application.xml file must reference them like so:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE application PUBLIC
 '-//Sun Microsystems, Inc.//DTD J2EE Application 1.3//EN'
 'http://java.sun.com/dtd/application_1_3.dtd'>
<application>
 <display-name>JEnt Ant sample application</display-name>
 <!-- Declare the web component module -->
 <module>
 <web>
 <web-uri>ShoppingCart.war</web-uri>
 <!-- Give the web components a URL root -->
 <context-root>cart</context-root>
 </web>
 </module>
 <!-- Declare the EJB module -->
 <module>
 <ejb>CCardAccount.jar</ejb>
 </module>
</application>

As we saw with assembly of component archives, you may need to consider server-specific details
when assembling application archives. Some application servers make use of their own application-
level configuration files for various details not covered by the standard J2EE deployment descriptor,
for example. If you need to include server-specific files in the ear file, you have to specify them
explicitly using either the includes or excludes attribute or using child <fileset>, <include>,
<exclude>, and <patternset> elements.

17.5.3. Deploying Components and Applications

Once you've compiled your code and assembled some component modules or an entire application
archive, the next logical step is to deploy your code to an application server of some kind. As
discussed in Chapter 2, the specific steps that need to be taken to deploy components and
applications to an application server are server-specificit's done differently in Tomcat, JBoss,
WebLogic, and WebSphere, for example. For some servers, like Tomcat and JBoss, deploying code is
simply a matter of placing the archive file in a deployment directory that the server is configured to
watch for new deployable code. In these cases, writing a target to deploy code is simply a matter of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

using the Ant file-oriented tasks to move or copy the generated archive file to the right place.
Example 17-9 shows a target that deploys our application archive to a JBoss server. We've assumed
here that a property named jboss.home has been set in the build.properties file to point to the root of
the JBoss server installation. In the target, we just copy the application archive file (the target
depends on the create-app target, so we can count on the archive existing) to the default
deployment directory in JBoss, server/default/deploy.

Example 17-9. Target for deploying an application to JBoss

. . .
<!-- Deploy our application to a JBoss server -->
<target name="deploy-app-jboss"
 description="Deploy the application archive to a JBoss server"
 depends="create-app">
 <copy file="${proj.name}.ear"
 todir="${jboss.home}/server/default/deploy"/>
</target>
. . .

Other vendors require you to use bundled deployment tools to deploy code to their application
servers. BEA WebLogic, for example, provides a deployer tool that you use to deploy code to running
WebLogic servers. One form of the tool is a Java class named weblogic.Deployer that can be invoked
from the command line to deploy either a component or application archive. You could use this Java
utility to create a WebLogic version of our deploy target, using the generic java task, as shown in
Example 17-10.

Example 17-10. Target for deploying an application to WebLogic

. . .
<!-- Define a classpath that includes the WebLogic library -->
<path id="weblogic.deploy.classpath">
 <path refid="java.compile.classpath"/>
 <pathelement path="${weblogic.home}/server/lib/weblogic.jar"/>
</path>
<!-- Deploy the application to a WebLogic server -->
<target name="deploy-app-weblogic"
 description="Deploy the application archive to a WebLogic server"
 depends="create-app">
 <java classname="weblogic.Deployer"
 classpathref="weblogic.deploy.classpath">
 <arg line="-adminurl http://${weblogic.http.host}:${weblogic.http.port}"
 />
 <arg line="-user ${weblogic.user}"/>
 <arg line="-password ${weblogic.password}"/>
 <arg line="-name ${proj.name}"/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <arg line="-redeploy ${proj.name}.ear"/>
 </java>
</target>
. . .

In the target, we first set up a classpath to be used to run the WebLogic utility, which includes our
compilation classpath with the necessary WebLogic libraries appended to it. Then we use the java
task to run the utility, using the appropriate arguments required by the utility class. Note that we
also need to define a few more new properties in our build.properties file to support this target, to
indicate the details about the WebLogic server being used when we run the target:

WebLogic-specific properties
weblogic.home=/usr/users/jfarley/servers/dev-81
weblogic.http.host=localhost
weblogic.http.port=8001
weblogic.user=system
weblogic.password=password

Some application servers provide custom Ant tasks that can be imported into your buildfile and used
to drive the deployment process. WebLogic provides such an Ant task. Importing the custom task is
done using the built-in taskdef task, specifying the appropriate classpath to locate the WebLogic
classes:

. . .
<!-- Load the WebLogic Ant tasks from the server libraries -->
<taskdef name="wldeploy"
 classname="weblogic.ant.taskdefs.management.WLDeploy">
 <classpath>
 <path refid="weblogic.deploy.classpath"/>
 </classpath>
</taskdef>
. . .

Since the support classes for the Ant task are located in the same libraries as the weblogic.Deploy
utility, we're just reusing the weblogic.deploy.classpath path that we defined earlier. Once the task
is loaded, we can use it in our buildfile according to the server documentation. A simple example,
roughly equivalent to the previous use of the weblogic.Deployer utility, is shown here:

. . .
<!-- Deploy the application to a WebLogic server -->
<target name="deploy-app-weblogic-ant"
 description="Deploy the application archive to a WebLogic server"
 depends="create-app">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <!-- Invoke the WebLogic wldeploy task to deploy our application -->
 <wldeploy action="deploy"
 source="${proj.name}.ear"
 name="${proj.name}"
 user="${weblogic.user}"
 password="${weblogic.password}"
 adminurl="${weblogic.admin.url}"/>
</target>
. . .

If we wanted our buildfile to be used in additional application server environments (such as Apache
Geronimo or WebSphere), we'd need to write new versions of our application deployment target and
potentially add new server-specific properties to our properties file.

To some degree, we can try to address this portability issue using the Ant built-in task, serverdeploy.
As of Ant 1.6, this task directly supports WebLogic and JOnAS application servers (through server-
specific child elements that invoke the corresponding deployment tools provided by these servers).
The task also includes a generic child element that can be used to invoke other server deployment
tools, assuming that they are provided in the form of a Java class with a main method and that all of
the arguments can be passed into the utility using the command line. The serverdeploy task isn't
sufficient to cover all possible application servers, however (there's no way to use it to deploy an
application to JBoss, for example).

A more general-purpose approach to the application server portability issue is described next.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

17.6. Creating Portable Build Processes

As we've already seen, using Ant for enterprise development projects raises some potential
portability issues with our buildfiles. Certain targets, such as deploying an application archive to an
application server, are necessarily specific to a type of J2EE server and will need to be changed if
another type of application server is used to run the application. These kinds of portability issues
become even more complicated when you need to support multiple development and deployment
environments concurrently and are multiplied again when your project makes use of a source code
repository:

Developer environments often vary in terms of the locations of support libraries, application
server directories, and so on. This requires the editing of the build properties to suit the local
development environment. If these build properties are stored in a file that's checked in with
the project code in a code repository, these changes need to be made each time the project
code is checked out and undone before the development changes are checked back in.

In typical build/test/release development processes, the software being produced needs to be
deployed and executed in one of several server environments, depending on the stage of the
process. These environments are typically configured in different locations and may have
different internal configurations. In addition, the application itself may need to be configured
differently depending on the deployment environmentlocations of resource files, cache and other
memory sizes, and the like may need to be set differently in different environments. Working
around this issue involves the editing of build properties and possibly altering the application
configuration files (such as J2EE deployment descriptors) to suit each environment.

The same software may need to be deployed to different application server types from different
vendors. This may require editing build properties, and possibly the structure of entire targets,
in order to adjust to the different tools and deployment processes required by different servers.

In general, forcing developers and application deployers to edit project buildfiles and property files on
a regular basis complicates development efforts and increases the chance of human error. In general,
it's preferable to have clean, modular ways to insert local configuration details into the build process
so that developers, users, and deployers can simply take the project source files (in the form of a
code repository checkout or a downloadable source archive), insert their local configuration details,
and then use the Ant buildfile to build, test, deploy, and run the project code.

In this section, we offer some basic techniques for managing theses issues when using Ant in order to
make your project buildfiles more portable and, therefore, more useful. We've packaged these
techniques into a template Ant buildfile that is included in the downloadable examples for this book
(see http://www.oreilly.com/catalog/javaentnut3). This template buildfile demonstrates the concepts
we've discussed here and elsewhere in this chapter, and it can be used to bootstrap your own project
buildfile, if needed. Make note, however, that the approaches we discuss in this section about making
buildfiles portable are just some of the many approaches to answering these same issues when using
Ant. Our goal here is to highlight these portability issues and to demonstrate some potentially useful
solutions, not to dictate a single "correct" approach.

http://www.oreilly.com/catalog/javaentnut3
http://lib.ommolketab.ir
http://lib.ommolketab.ir

17.6.1. Hierarchical Property Files

One of the first issues you tend to encounter in multideveloper projects is that developers manage
their environments in very different ways. Software developers typically work on code on a personal
workstation, which may be running Linux, Mac OS X, Windows, or a Unix variant of some kind. These
development environments have libraries and server configurations that are potentially very
heterogeneous. Meanwhile, your Ant buildfile will define various properties that specify where to find
dependent libraries, where relevant application server directories can be found, and so on. These
properties will be defined either directly in the buildfile or in a properties file referenced by the
buildfile. If these properties are defined as default values in a singular location in the project
structure, the average developer will need to edit these project files to suit her local development
environment. If this is a product development project involving several developers across an
organization using a source code repository, the developers will need to avoid checking these buildfile
changes back into the repository when they check in their code changes. When the buildfile structure
changes, they will need to manually merge the new buildfile with their local changes. In the case of
an open source "product" when a person downloads the source distribution to build and deploy
locally, a similar manual editing process will have to be done directly on the project files and redone
in the future for new releases of the open source project.

One solution to this problem is to use hierarchical property files in your Ant buildfile. In this scheme,
you take advantage of the precedence rules used by Ant when defining property values, as discussed
in "Properties" earlier in this chapter. Properties are set once and are invariant once they are
assigned a value. So far in our example buildfiles, we've referenced a single build.properties file that
contains the definition of any required properties. The hierarchical scheme involves first attempting to
reference a local, user-specific properties file and then referencing the project's default properties file.
Our example buildfile could be extended to do this by simply adding another <property> entry before
the entry that loads the build.properties file:

<project name="JEnt Ant portable" default="create-wars">
. . .
 <!-- Import any user-specific build properties for this project -->
 <property file="${user.name}-build.properties"/>
 <!-- Import our default build properties -->
 <property file="build.properties"/>
. . .

The first <property> enTRy looks for a properties file named <username>-build.properties, where
username is the login name of the user. If the file is present, the properties it contains will be defined
first, overriding any property definitions included in the default project build.properties file.

As an example of the usefulness of this scheme, our example build.properties file contains a lib.dir
property that defines the base directory from which all dependent libraries are loaded, as well as
several properties that specify the location of required jar files in this library directory. The project
build.properties file defines default values for all of these properties:

. . .
Directory containing libraries and other software required

http://lib.ommolketab.ir
http://lib.ommolketab.ir

to build and/or run the project code
lib.dir = /usr/local/software
Libraries required by the application code
xerces.home = ${lib.dir}/xerces-2_6_2
xerces.impl.jar = ${xerces.home}/xercesImpl.jar
xerces.jaxp.jar = ${xerces.home}/xml-apis.jar

JUnit libraries
junit.jar = ${lib.dir}/junit-3.8.1/junit.jar
. . .

A developer might check out this project (or download the source distribution) with the intention of
building the project, but they keep their class libraries in their home directory on their workstation.
The developer can simply create a local properties file that overrides the lib.dir property:

jsmith-build.properties: Local settings for the project Ant buildfile
lib.dir = ${user.home}/Software

If the user's login name were jsmith, he would put this into a file named jsmith-build.properties in
the same directory that holds the project build.properties file. Now when he invokes the Ant buildfile,
the libraries will be loaded from the Software directory in the user's home directory, instead of the
default location in /usr/local/software.

You can also do more fine-grained property overrides, if necessary. In our example, there might be
another developer, mjones, who keeps most of the required libraries stored in the default location of
/usr/local/software but keeps the Xerces libraries in another location for some reason. Then mjones
can just override the xerces.home property in her local mjones-build.properties file:

mjones-build.properties: Local overrides
xerces.home = /home/packages/xerces-2_6_2

Various models can be applied for managing these local property files. In our case, we've assumed
the property file will be named using the user's login name and will be located directly in the project
directory structure. In this scheme, we can opt to include each user's property file with the project
files themselves, assuming that usernames are unique among the developers working on the project.
Alternatively, we could force the developers to maintain their local properties files themselves,
copying them into the project directory structure when they check out or download the project
source.

Another model is to reference the local properties file from a location outside of the project directory
structure entirely. This prevents us from allowing developers to include their local properties files in
the project structure directly but makes it easier for developers to manage their local properties files.
They simply have to keep the file in the expected location in their local environment, and the project
buildfile will pick it up automatically. The external location needs to be a directory that can be

http://lib.ommolketab.ir
http://lib.ommolketab.ir

referenced in a portable way by the buildfilethe user's home directory is a perfect candidate since Ant
has the standard user.home system property that references the user's home directory. Under this
model, it doesn't make sense to include the user's login name in the local property filename since it's
implied by the fact that the file is in the user's home directory. But if developers are working on
multiple projects that use this same scheme for managing local properties files, they'll potentially
need multiple local properties files for each project, so the filename should include the name of the
project as well. To implement this model, we would need to alter our buildfile along these lines:

<project name="ProjectX" default="create-wars">
. . .
 <!-- Import any user-specific build properties for this project -->
 <property file="${user.home}/${ant.project.name}-build.properties"/>
 <!-- Import our default build properties -->
 <property file="build.properties"/>
. . .

In this case, if a user wanted to override any of the project properties, he would create a properties
file named ProjectX-build.properties in his home directory and put any local property settings there.

17.6.2. Modular Target Definitions

In the section "Enterprise Tasks," we saw several examples of common J2EE development targets
that needed to be specialized depending on the application server being used. The quick-and-dirty
approach we took in our earlier examples was to create multiple versions of our targets, each one
suited to a different environment (e.g., we created a generic create-ejbjars target and a JBoss-
specific create-ejbjars-jboss version of the same target). This approach isn't very convenient for
developers, since they have to manually invoke each version of each target according to the
application server they're using. It also doesn't scale well if you need to support many different
environments.

One approach to dealing with this issue is to use the import task to import properties and target
definitions that are specific to the server platform being used. The import task is included with Ant as
of Ant 1.6 and simply allows you to import a separate buildfile into another one. The properties,
targets, and other entities defined in the root project element of the imported file are included in the
buildfile as if they were inserted at the point where the import task is used. Using this scheme, we
import the target definitions at the top of our buildfile, like so:

. . .
<!-- Import the default server configuration -->
<import file="${server.config.file}"/>
. . .

Then, our main buildfile targets can be rewritten to be general purpose, simply calling support targets
defined in the imported file. Any server-specific details about the target can be embedded in the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

imported file, and if we want to use a different server platform, we simply replace the imported file
with a different one that contains the same targets, implemented to suit the new platform.

Our create-ejbjars target, for example, can be generalized to be completely server-agnostic, as
shown in Example 17-11.

Example 17-11. Portable EJB archive target

. . .
<!-- Create any ejb modules required for this application -->
<target name="create-ejbjars"
 description="Generates an ejb-jar archive for this application"
 depends="compile">
 <!-- Use the as-create-ejb-jar target to create any EJB modules
 needed for this application. -->
 <antcall target="as-create-ejb-jar">
 <param name="as.ejb.name" value="ProfileEJB"/>
 <param name="as.ejb.desc.dir" value="${config.dir}"/>
 <param name="as.ejb.classes.dir" value="${java.classes.dir}"/>
 <param name="as.ejb.jar.dir" value="${basedir}"/>
 </antcall>
</target>
. . .

All we're doing here is deferring to an as-create-ejb-jar "helper" target, which we expect to be
defined in the imported file. The helper target names are prefixed by as (short for "application
server") to make it easy to distinguish them from the targets defined in the main buildfile itself. When
we invoke the helper target, we pass in a set of property values using child <param> elements on the
antcall task. These parameters are specific to the project itself and include details such as where we
want the archive created, where the EJB component classes can be found, and so on.

With our main buildfile rewritten to invoke these helper targets, we can define the targets in the
imported buildfile to suit the application server being used. In the JBoss "implementation" of the
helper targets, for example, we would define the as-create-ejb-jar target as shown in Example 17-
12.

Example 17-12. JBoss version of the EJB archive "helper" target

. . .
<!-- Target: as-create-ejb-jar
 Creates an EJB archive deployable to the target application server. -->
<target name="as-create-ejb-jar"
 description="Assemble an EJB archive using the project properties">
 <echo message="Generating EJB archive '${as.ejb.name}'"/>
 <!-- Invoke the ejbjar task, looking for deployment descriptors

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 in the ${as.ejb.desc.dir} directory. We are using "directory"-based
 naming here, where the name of the directory containing the EJB
 deployment descriptor is used as the basis for the ejb-jar filename. -->
 <ejbjar descriptordir="${as.ejb.desc.dir}"
 srcdir="${as.ejb.classes.dir}"
 destdir="${as.ejb.jar.dir}"
 naming="directory"
 genericjarsuffix="-generic.jar"
 flatdestdir="true"
 dependency="super">
 <!-- Specify the JBoss variant of ejbjar, to ensure that the JBoss
 deployment descriptors are picked up -->
 <jboss destdir="${as.ejb.jar.dir}"/>
 <!-- Use local copies of descriptor DTDs provided by JBoss, in case we're
 not online -->
 <dtd
 publicid="-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN"
 location="${jboss.home}/docs/dtd/ejb-jar_2_0.dtd"/>
 <!-- Parse only EJB descriptors in files ending with "ejb-jar.xml" -->
 <include name="**/*ejb-jar.xml"/>
 </ejbjar>
</target>
. . .

If someone wants to use our project buildfile in another server environment, all she needs to do is
create a version of the import file with the required helper targets defined for that alternative
platform and import the new set of target definitions into the main buildfile.

To make this approach even more portable, we can use a property to define the name of the
imported file with the target definitions:

. . .
<import file="${server.config.file}"/>
. . .

This way, we can specify the default value for the filename in our build.properties file:

server.config.file = as-config.xml

Then, assuming we're using the hierarchical properties scheme described earlier, a user can specify
an alternative set of target definitions for her local environment in her properties override file:

server.config.file = jfarley-as-config.xml

http://lib.ommolketab.ir
http://lib.ommolketab.ir

17.6.2.1. Importing targets in older Ant versions

As mentioned at the start of this section, the import task was introduced in Ant 1.6. If you're using
an earlier version of Ant, you can still implement modular target definitions, using standard XML
"imports."

An Ant buildfile is an XML file, so you can include entity definitions in the header of the file, per the
XML standard. These are placed inside the DOCTYPE element for the document, which is placed before
any actual content in the file. The following example shows an Ant buildfile defining an entity named
as-config loaded from a local file named as-config.xml and then inserting the entity in the buildfile:

<!DOCTYPE project [
 <!ENTITY as-config SYSTEM "file:./as-config.xml">
]>

<project name=. . .>
. . .
 &as-config;
. . .

According to the syntax rules of XML, anything in the file referenced by the ENTITY element will be
included verbatim at the point that the entity is referenced in the XML document. So we can specify
our target definitions in a separate XML file and import it in a modular way into our buildfile. If we
wanted to change the target definitions to suit the local environment, we could swap out our include
file for the default one, or we could use multiple entities to allow users to override the default target
definitions with their own:

<!DOCTYPE project [
 <!ENTITY as-config SYSTEM "file:./as-config.xml">
 <!ENTITY as-user-config SYSTEM "file:./as-user-config.xml">
]>

<project name=. . .>
. . .
 <!-- Include the user's target definitions first,-->
 <!--so they take precedence-->
 &as-user-config;
 <!--Include the default target definitions -->
 &as-config;
. . .

17.6.3. Putting It All Together

http://lib.ommolketab.ir
http://lib.ommolketab.ir

We've combined all of these portability schemes into a single Ant template, which you can find in the
Chapter 17-Ant/template directory of the source bundle for this book (you can download it from
http://www.oreilly.com/catalog/javaentnut3). The helper targets included in the import file cover the
creation of web and EJB component modules and application archives and deploying applications to
the application server, and we've included versions of the helper targets implemented for a few
popular application servers to demonstrate the concept.

With all of these portability measures applied in a project buildfile, developers or deployers can work
with the project without having to adjust the project buildfiles directly. They simply need to create a
properties file with their custom set of project property values (library paths, filenames, etc.), and an
import file containing target definitions tuned to their application server environment, and away they
go.

http://www.oreilly.com/catalog/javaentnut3
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 18. JUnit and Cactus
Testing software is arguably the most important success factor in software engineering. No matter
how elegant your architecture, no matter how compelling the features and user interface, and no
matter how well a system is marketed, untested or poorly tested software is failure waiting to
happen. Software that's tested is software that works, and working software is a pleasure, or at least
a pleasant surprise.

Software testing has many dimensions. You can perform black box functional testing to determine
whether an application operates correctly from an external standpoint without concern for the
internal workings of the software. You can perform white box functional testing to validate the
internal workings of the system at various levels. You can test the performance of software to
determine how quickly it executes tasks under typical usage levels. You can perform load testing to
determine the load threshold at which the system fails (or executes so slowly that it becomes
effectively useless). You can perform user-acceptance testing, which tests software at an aggregate
level to verify that a system performs acceptably to the target users, with metrics ranging from
functional correctness to speed to interface aesthetics.

Software quality assurance is a subject of study in itself, and we won't presume to summarize it
broadly in a single chapter. Instead, what we cover here is the subset of software testing referred to
as unit testing, which attempts to verify the correct functional behavior of software at various levels
of granularity. A "unit" may be a method on a class, an entire class, a component made up of several
classes, or an entire subsystem of an architecture containing several components or classes. Strictly
speaking, unit testing is typically performed during development on independent units of software,
prior to these units being integrated into a complete application and passed along to other testing
processes, like user interface functional testing, performance testing, and user-acceptance testing.

Why do we limit our discussion to unit testing? Besides the fact that more complete coverage of
testing practices would take several additional chapters, we felt that unit testing tools and techniques
provide the broadest applicability and have a necessary coupling with the enterprise framework being
used to build systems.

Unit testing has broad applicability because it can be leveraged to provide elements of several of the
other flavors of testing we discussed earlier. You can unit test software at a number of levels in your
architecture, providing assurance of not only functional correctness but also a certain amount of
integration testing. If a component uses a number of subcomponents or classes to execute its
functions, testing the functionality of the component ends up testing the integration of these
subelements to some degree. Unit tests can also be fashioned to be either black box tests, purposely
ignorant of the internal workings of the unit being tested, or they can serve as white box tests,
intentionally exercising and validating the internal workings of a unit.

Unit testing is also the tool most likely to be used by the audience we're targeting with this book:
software engineers. Unit testing typically involves writing tests in the same programming
environment as the software units being tested as well as understanding the workings of the software
units at this level (object and component interfaces, data structures, and so on). Software engineers
are uniquely qualified to write these unit tests. In part due to this fact, unit testing is a standard
element in a number of modern software engineering processes, such as extreme programming (XP)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

and all of its many variations, feature-driven development (FDD), and the Unified Process (UP)
defined in conjunction with the Unified Modeling Language (UML).

Finally, unit testing has a close coupling with the enterprise framework used to create applications,
and since this book is focused on a particular enterprise framework (J2EE), it seemed appropriate to
introduce unit testing tools aimed at this framework.

Please don't take our avoidance of performance testing, load testing, or UI functional testing as a
statement that these forms of testing are less important than unit testing. These testing practices are
equally important for creating successful software. But for the reasons given here, we felt that unit
testing was most complementary to the rest of the material in this book and to the target readers of
this book.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

18.1. What's Covered Here?

This chapter demonstrates unit testing using both JUnit 3.8.1 and Cactus 1.7, the latest releases of
both of these tools at the time of this writing.

JUnit is a generic Java unit testing framework that can be used in any Java environment. You can
download this tool from http://www.junit.org. We've written and executed the unit tests
demonstrated in this chapter using a JDK 1.4.2 environment.

Cactus is a JUnit extension that allows you to write tests that execute inside a J2EE container. The
Cactus framework supports unit testing of various J2EE components, like servlets and EJBs, and
other server-side J2EE code, like JSP tags and servlet filters, that depend on a server-side container
environment in order to function. You can download Cactus from http://jakarta.apache.org/cactus.
The Cactus test examples in this chapter were run in JBoss 4.0 and WebLogic 9.0 server
environments.

18.1.1. Other Tools to Consider

We chose to cover JUnit and Cactus in this tutorial because, as with the other tools we've chosen,
these unit testing tools are in wide use and are a good place to start for your testing needs. Of
course, other tools that you can use to supplement or replace the functionality provided by JUnit and
Cactus are available. Some of these include:

MockObjects (http://www.mockobjects.com)

This site provides a set of frameworks for testing code using the mock objects approach, which
is an alternative approach to the in-container testing supported by Cactus. Some of these mock
objects frameworks can be used alone, with JUnit, and with Cactus.

StrutsTestCase (http://strutstestcase.sourceforge.net)

This JUnit extension supports the testing of Struts actions, mappings, and beans. It can be
used with JUnit, with or without Cactus.

http://www.junit.org
http://jakarta.apache.org/cactus
http://www.mockobjects.com
http://strutstestcase.sourceforge.net
http://lib.ommolketab.ir
http://lib.ommolketab.ir

18.2. Unit Testing Concepts

Before we dive into the details of testing Java code using JUnit and testing J2EE components using
Cactus, let's get acquainted with the concepts and issues underlying unit testing in general.

18.2.1. Units and Dependencies

The most obvious question to ask about unit testing is, "What's a unit?" The most conservative
definition of a testable "unit" is an entirely independent module of code that can be tested
autonomously, separate from any other code modules. The tangible interpretation of this idealistic
definition depends on the programming environment being used. In function-based programming
languages, such as C, Perl, and Fortran, a unit is typically defined as a single function. Similarly, a
unit in object-oriented languages like C++, Java, and C# would normally be a class.

Of course, achieving this goal of a totally independent unit of code is not entirely realistic. Virtually
any code module depends on other code modules to function properly. Functional decomposition
encourages algorithms to be broken down into subfunctions that are invoked by higher-order
functions to solve a problem. Object-oriented design has the analogous principle of delegation of
responsibilities to subordinate classes used by higher-order classes to implement particular
behaviors. These common divide-and-conquer approaches to software architecture naturally lead to
interdependencies among code elements.

Given this fact, achieving the goal of unit testing (i.e., verifying the valid operation of each unit in the
system) takes some forethought and planning in terms of defining your test suite. The dependencies
between units need to be understood at a design level, and your tests need to be crafted to exercise
low-level units first and then progress to higher-level units. This "reverse pyramid" approach to
sequencing your tests will help to identify base issues early in a test suite and provide a basic sense
of progress in terms of system stability (the farther you go without failing a test, the more stable the
system, in a loose sense).

18.2.2. Unit Testing Versus Integration Testing

It's important to note at this point the distinction between unit testing and integration testing. While
unit testing strives to verify the correct operation of individual units of code in isolation, integration
testing attempts to verify the correct operation of multiple units working together in a cooperative
fashion, integrated together as they would be in the real runtime environment. In the remainder of
this tutorial chapter on unit testing, we will occasionally stray into the realm of integration testing
with some of our examples. We'd ask the testing experts reading this to forgive us for this breach of
orthodoxy, and we'd ask those who are new to unit testing to remember that the distinction between
unit and integration testing is important and to keep it in mind when designing tests.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

18.2.3. White Box Versus Black Box Testing

It's important to recognize what kind of testing you're attempting when defining a specific test or
even a suite of tests. Black box testing, as mentioned earlier, refers to the testing of the functional
specifications of a unit of code from the standpoint of an external interface specification. White box
testing refers to validating the functionality of a unit from the standpoint of its internal
implementation.

To demonstrate the difference, imagine we are testing a shopping cart module built into an online
commerce system. The shopping cart has well-specified behavior that it must implement: items that
are added stay in the cart until removed, total prices add up correctly, taxable and nontaxable items
are reflected in the overall price, and so forth. In our implementation, we happen to know that the
cart is implemented using an efficient list structure that allocates space for items in blocks of 25.
Once 25 items are added the cart, space for an additional 25 items is added to the list structure.
When those are filled, space for an additional 25 items is added and so on.

If we were writing black box tests for our shopping cart, we would simply encode the behavioral
specifications into tests that exercise that behavior and check for expected results. Our tests would
do things like add an item and verify that it is recorded in the shopping cart, add various
combinations of types of items, and check that the number and price of the items in the cart are
reported correctly.

If we were engaging in white box testing , we would focus on the internal implementation details of
the variable-sized list structure and verify that the shopping cart behaves correctly when the list's
boundary conditions are encountered. Our white box tests would do things like add 25 items, then
add the 26th item and verify that it is recorded correctly, then remove an item so that the item count
falls below 25 again, and verify that the cart data is intact after the extra block of list items is
removed internally.

In practical testing scenarios, you will find yourself creating a mix of black box and white box tests,
sometimes referred to as gray box testing. An initial suite of tests may be strictly based on the
written specifications for a unit and therefore contain only black box tests. Later, as issues are
encountered with the implementation of the unit, they will be fixed and then tests will be added to
the test suite to verify that these issues do not return. This is referred to as regression testing,
ensuring that future changes to the code do not cause the system to regress and exhibit prior bad
behavior. In the end, the test suite for a unit will typically contain both black box and white box tests.
There's no problem with this as long as you're careful to track which white box tests are coupled with
specific implementation details of the code module. If the implementation details change, you want to
be able to easily review these tests to ensure that they are still relevant, to prune tests that are no
longer relevant, and to add new white box tests specific to the new implementation, if needed.

18.2.4. Keep the Tests Simple

If you haven't written tests beforeand if you haven't divined it from the discussion so faryou'll soon
discover the main dilemma with testing: it involves more work. On top of sorting out the
requirements, designing the architecture, and writing the code, there's the additional effort of writing
tests for the code.[1] The benefits of testing, as discussed earlier in this chapter, are conceptually
obvious but sometimes difficult to remember when you're faced with a deadline.

[1] Before the software engineering pundits cry foul, please note that there is no implied order to these steps in the process. I'm

http://lib.ommolketab.ir
http://lib.ommolketab.ir

not suggesting that testing must follow coding (to the ire of XP advocates everywhere) nor am I assuming a waterfall approach to

software development (to the ire of nearly all software engineers).

We mention this here to underscore the value of testing (short-term additional effort leads to big
long-term payoffs) but also to emphasize the importance of keeping your tests as simple as possible
in terms of the structure of the code that drives the tests. You want to maximize the benefits of
testing while minimizing the overhead involved in writing the tests. An overengineered test suite with
an excess of support code will take time to write and more time to extend in the future. And each
new engineer who comes along will need to take some time to learn how the whole test structure
works, on top of figuring out how the actual application code works. At best, you'll be spending more
time on overhead and less time writing application code, but an even worse possibility is that you and
your team members will neglect the unit tests because of frustration or the squeeze of deadlines.
Simple tests obviate these problems to a large degree.

Simple tests also help keep your test results clean and unambiguous. You want to avoid complicating
the picture when it comes to evaluating the test results. If there's a lot of logic tied up in the code
that drives the tests, you run the risk of bugs in the test code masking bugs in the application code
being tested.

18.2.5. Test Coverage

There's an adage in software engineering that states, "If you didn't test it, it doesn't work." In
essence, this implies that you should assume that any code that hasn't been tested will fail at some
point. This principle leads you naturally to the issue of determining what code has been tested and
what code hasn't. In a real-world application, even one of moderate size, it can be difficult to assess
test coverage . There are tools available that can help determine test coverage and tools that insert
themselves into the runtime environment, for example, and monitor what code is executed during a
given test run and report on coverage in the source code. Good, understandable, modular
architectures also help enormously in terms of managing the coverage of test suites. A good object-
oriented design will have well-defined module interfaces, clean delegation of responsibilities among
the modules, and obvious dependencies between the modules, all of which help when defining a test
suite that exercises the full expected functionality of the code under test.

Having said all this, it's also important to be realistic about test coverage. It's unreasonable to expect
to have 100% coverage of your code in your test suite. A software unit, whether it's a function, an
object, a component, or a web service is made up of a set of code consisting of many possible logical
pathways. The code takes input data, does work, and generates some output data. In order to
exhaustively test a given code unit, you would need to provide it with every possible permutation of
input data and invoke the unit so that every single possible logical pathway was traversed and,
therefore, every possible output was generated. Not only is it unreasonable to attempt this for every
unit in your system, it's also not terribly efficient, because in all the possible permutations of data
inputs and code paths, only a subset of them (often a small subset) is relevant to the real usage of
the unit in practice. Determining this critical subset is a context-dependent task, but it's an important
element of effective unit testing.

Also in the category of test coverage is the management of evolving code. Once you accept the goal
of a test suite that covers the critical functionality of your code, you then have to accept the reality
that the test suite must evolve to match the code. If new functionality is added, tests for it need to
be added as well. If functionality is changed or removed, tests need to be altered or removed to suit.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

18.3. JUnit Overview

With this introduction to the concepts of unit testing behind us, let's dive into the technical details of
using JUnit to create and execute unit tests on basic Java code. In a later section, we'll see how
Cactus can be used to test code that must run in a J2EE container.

JUnit is a framework for writing unit tests that consists of a Java API that you use to write your tests
and a set of basic tools that can be used to run your test suites and report on the results.

The JUnit API is provided as two packages: junit.framework contains the core classes that you'll
typically use to define and execute your unit tests while junit.extensions contains some potentially
useful extensions to the core framework classes.

In the JUnit model, tests themselves are represented as TestCase objects. A set of related tests is
organized into a TestSuite. A TestRunner actually drives a suite of tests and reports on the results.
All of these classes are in the junit.framework package. The JUnit framework has several other
classes and interfaces, but these are the primary ones that you'll need to understand to get started.
In keeping with the principle of simplicity we discussed earlier, the JUnit authors kept the class model
in the framework as simple as possible.

The JUnit runtime model is also fairly simple. In a nutshell, executing tests using JUnit typically
involves the following steps:

You invoke a TestRunner on a TestSuite. Some TestRunner implementations allow you to
specify an individual TestCase to be run, but in those cases, the TestRunner simply wraps the
TestCase with a TestSuite and runs the suite. The TestRunner examines the suite of tests by
iterating through the suite, finding each TestCase contained in the suite.

1.

For each TestCase in the suite, the TestRunner determines which tests are to be run. When
adding a TestCase to the suite, you can specify that all tests on the TestCase are to be run, in
which case any method whose name starts with "test" is considered a test method.
Alternatively, you can specify individual test methods on the TestCase, as described in a later
section.

2.

For each test method to be run, the TestRunner calls the TestCase's setUp() method, then
invokes its runTest() method to execute the test method itself. If the specified test method is
not found or is inaccessible (nonpublic), a test failure is generated. You can override the
runTest() method in your TestCase implementations, but this isn't normally necessary unless
you're defining a specialized test harness of some kind. Once the test method completes (either
successfully or with an error or exception of some kind), the tearDown() method on the
TestCase is invoked, allowing you to clean up any resources set up for the test. The tearDown()
method is called whether the test succeeds, fails, or generates an uncaught exception.

3.

If a test method completes without an exception or error being thrown, the test is marked as
passed. If the test method throws an AssertionFailedError (e.g., an assert method call in the

4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

test method failed, or one of the fail() methods was called in the test method), the test is
marked as failed. If an uncaught exception of any other type is thrown by the test method
(e.g., a call in the test method generates a NullPointerException that is not caught and
handled in the test method), the test is marked as an error, meaning that the test encountered
an error that prevented a positive or negative result from being recorded.

4.

Most TestRunner implementations report on the status of each test as it is run. The text-based
junit.textui.TestRunner, for example, prints an F character on the console for each failed test,
an E for each test that resulted in an error, and an unobtrusive dot (.) for each passed test.
Once all of the test methods (in aggregate) have been run, the TestRunner reports on the total
results, typically displaying statistics on the number of successful versus failed tests.

5.

So from your perspective as a developer, unit testing with JUnit involves writing one or more
TestCase subclasses with appropriate test methods on each, optionally organizing them into
TestSuites, and then executing suites of tests through a TestRunner.

18.3.1. Defining Tests by Writing TestCases

A TestCase is meant to represent a set of tests targeted at a specific unit of code. The scope of the
"unit of code" is up to you and how you decide to organize your tests overall, but typically a TestCase
is aimed at a specific class in your overall model. You implement tests for your code unit by
subclassing TestCase and defining test methods on the subclass. Each test method name must start
with "test" and must have the signature:

public void testXXX() { . . . }

This method-naming convention allows the JUnit framework to find test methods through
introspection when automatically invoking tests, as described in the previous section.

Traditionally, each TestCase corresponds to a class to be tested, but nothing in the JUnit framework
enforces this practice. You can write multiple TestCases to test a single class in your design, or a
single TestCase can include tests for multiple classes in your system. The traditional approach of
creating one TestCase for each class is motivated by the need to assess test coverage and to isolate
tests from each other (or at least understand their dependencies). Classes provide a natural
organizing principle in both of these areas.

To demonstrate, Example 18-1 shows a TestCase written for a Person Java bean. The Person class
under test, as well as the rest of the application code used to generate examples in this chapter, are
taken from the PeopleFinder sample application used in Chapters 2 and 17.

Example 18-1. Simple TestCase for the Person class

import junit.framework.TestCase;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public class TestPerson extends TestCase {
 /** Default constructor */
 public TestPerson () {
 super();
 }

 /** Constructor with a name for the test case method */
 public TestPerson (String name) {
 super(name);
 }

 /** Test the name accessors on the Person bean */
 public void testSetName() {
 // Create a fresh person
 Person p = new Person();
 // Set the first and last name fields
 String fName = "John";
 String lName = "Smith";
 p.setFirstName(fName);
 p.setLastName(lName);
 // Verify that the values were accepted and saved
 assertNotNull(p.getFirstName());
 assertEquals(p.getFirstName(), fName);
 assertNotNull(p.getLastName());
 assertEquals(p.getLastName(), lName);
 }

 /** Test the addition of email addresses */
 public void testAddEmail() {
 // Create a fresh person
 Person p = new Person();
 // Set the email address
 String addr = "jsmith@anywhere.com";
 p.addEmailAddress(addr);
 // There should be only a single email address on the person
 assertTrue((p.getEmailAddresses().size() == 1));
 // The email address should be the value we just added
 String addrR = (String)p.getEmailAddresses().iterator().next();
 assertNotNull(addrR);
 assertEquals(addr, addrR);
 }
}

The test class is called TestPerson, which follows a common convention used in JUnit with the
TestCase class name derived by prepending "Test" to the name of the unit under test. Aside from two
constructors that we include here to match those provided by the TestCase base class, the entire
class consists of two test methods. The first, testSetName(), exercises and verifies the operation of
the name accessors on the Person bean, and the other, testAddEmail(), tests the addition of email
addresses to a person.[2] In each of our tests, we first set up some test data by constructing a
Person instance and setting some of its properties, then test for the expected results using the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

assertXXX() methods available in any TestCase.

[2] It's important to note here that some of our unit test examples are intentionally oversimplified. In the case of testAddEmail(),

for example, it's unlikely that you will unit test every accessor in a real-world application. The number of unit tests would explode,

and their usefulness would be suspect anyway since the implementation of setters and getters are typically extremely simple and

not worthy of their own unit tests. But they do make for good examples to demonstrate basic JUnit usage.

18.3.2. Making Assertions in Test Methods

The assertion methods used in a TestCase are inherited from the Assert base class that TestCase
extends. You invoke these assertion methods in the test methods on your TestCases. If the assertion
passes, the method completes normally and the test method continues. If the assertion fails, an
exception is thrown, the test method halts, and a failure is reported by the TestRunner.

Several flavors of assertions are provided for you to use in your test methods:

assertEquals()

These assertion methods allow you to assert that two items have equal values. Several
versions are available, allowing you to compare objects and data items of various types (for
example, Strings, ints, and Objects).

assertFalse()/assertTrue()

These methods can be used to test a predicate (represented as a boolean argument) for either
truth or falsity.

assertNull()/assertNotNull()

These assertions involve checking that a given object is either null or not null.

assertSame()/assertNotSame()

These assertions check to see whether two objects refer to the same object or not.

In our testSetName() method, for example, we used the assertNotNull() method to assert that
the first and last name attributes should not be null after they have been set. We also used the
assertEquals() method to assert that the values should be equal to the intended values.

18.3.3. Failing Tests

A failed assertion causes a test to fail, but in some cases you may need to explicitly fail a test when
you encounter a particular condition in your test method. For these situations, all TestCases also
inherit the fail() methods from the Assert base class. Calling fail() causes the current test

http://lib.ommolketab.ir
http://lib.ommolketab.ir

method to fail immediately. You might need to fail a test explicitly if, for example, expected or
unexpected exceptions are thrown in your test code. Adding the following test to our TestPerson test
case, for example, tests the correct behavior of the equals() method on the Person bean:

public void testEquals() {
 // Set up a test person with some data
 mPerson.setFirstName("John");
 mPerson.setLastName("Jones");
 mPerson.addEmailAddress("jjones@somewhereelse.org");
 try {
 // The equals implementation on Person should
 // always return true when a Person is compared
 // to itself
 assertTrue(mPerson.equals(mPerson));
 }
 catch (Exception e) {
 // Fail if the equals method generates any exceptions
 fail("Unexpected exception: " + e.getMessage());
 }
}

In the test, we set up a Person object and use the equals() method to compare the Person with
itself, asserting that this should always return true by using the assertTrue() method. We've
wrapped the call to equals() with a try/catch block, and in the catch block, we fail the test with a
descriptive message since the equals() method should never throw an exception under these test
conditions.

18.3.4. Managing Test Fixtures

If you look at the tests on our TestPerson test case in Example 18-1 (and our additional testEquals(
) test just shown), you'll notice that, in each test, we're setting up a Person object to serve as the
subject of our test. The baseline set of data used for a unit test is sometimes called the test fixture.
In our TestPerson tests, we always use a single Person object as the test fixture. To support the use
of test fixtures in unit tests, JUnit provides setUp() and tearDown() methods on TestCase. The
setUp() method is invoked before each test method on a TestCase is run, and the tearDown()
method is called after each test method. You can implement these methods to perform any
initialization of data or other resources needed across your test methods and then do any cleanup
afterward.

Example 18-2 shows an updated version of our TestPerson test case, using the setUp() and
tearDown() methods to manage the fixture for the tests. Note that we've omitted some details here,
like the constructors and some of the test methods. In this version of our test case, the test fixture is
a Person object that we construct and initialize. In our tests, like the testSetName() method, we can
now use the Person object as the subject of our tests. Notice that in our testSetName() method,
we've opted to reset the first and last name attributes to local values. You might look on this as a
waste of time (after all, the setUp() method has just initialized the Person object for us), but even
with a test fixture in place, it might be useful to perform some redundant initialization in your test

http://lib.ommolketab.ir
http://lib.ommolketab.ir

methods, such as we've done here, in order to localize expected results in the test method and make
your tests more readable.

Example 18-2. TestPerson with a test fixture

import junit.framework.TestCase;

public class TestPerson extends TestCase {
 private Person mPerson = null;

 . . .

 /** Set up the test fixture before each test */
 protected void setUp() {
 mPerson = new Person();
 // Set the attributes to some defaults
 mPerson.setFirstName("John");
 mPerson.setLastName("Smith");
 }

 /** Clean up the test fixture after each test */
 protected void tearDown() {
 mPerson = null;
 }

 /** Test the name accessors */
 public void testSetName() {
 String fName = "Jane";
 String lName = "Doe";
 mPerson.setFirstName(fName);
 mPerson.setLastName(lName);
 assertNotNull(mPerson.getFirstName());
 assertTrue(mPerson.getFirstName().equals(fName));
 assertNotNull(mPerson.getLastName());
 assertTrue(mPerson.getLastName().equals(lName));
 }

 /** Test the addition of email addresses */
 public void testAddEmail() {
 String addr = "jsmith@anywhere.com";
 mPerson.addEmailAddress(addr);
 // There should be only a single email address on the person
 assertEquals(mPerson.getEmailAddresses().size(), 1);
 // The email address should be the value we just added
 String addrR = (String)mPerson.getEmailAddresses().iterator().next();
 assertNotNull(addrR);
 assertEquals(addr, addrR);
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 . . .
}

It's important to remember that setUp() and tearDown() are called for every test method on a
TestCase. This ensures that each test operates on a clean version of the fixture, but it can also cause
unexpected performance issues if you do a lot of heavy lifting in these methods. If you're testing a
data-caching engine, for example, and load up a large amount of data into the cache before each test
method, it may take a very long time for all of your tests to complete. If you want to initialize a set of
test data once for an entire suite of tests, you can do that in various ways, such as a static initializer
on the TestCase subclass.

Once you've written a TestCase, you'll want to run its tests periodically in order to verify the correct
behavior of the target code. That's the whole point of unit testing, after all. You can run your JUnit
test in a number of ways. The most explicit way is to simply invoke a TestRunner with the full name
of your TestCase class, and it will automatically find and execute all test methods on your TestCase
(using introspection). The following command will run our TestPerson tests using the text-based
TestRunner, for example:

> java junit.textui.TestRunner com.oreilly.jent.people.TestPerson
...
Time: 0.021

OK (3 tests)

Notice that the text-based TestRunner prints a dot (.) for each successful test it runs and prints a
summary of the results. If we ran the same TestCase using the Swing-based TestRunner,
junit.swingui.TestRunner, we'd see the results shown in Figure 18-1.

Figure 18-1. TestPerson executed through the Swing-based TestRunner

http://lib.ommolketab.ir
http://lib.ommolketab.ir

18.3.5. Organizing Tests Using TestSuites

Using a TestRunner to run each of your TestCases is not very practical in situations in which you are
testing a system with many components and therefore many, many TestCase implementations to
manage. Also, you may want to have better control over which specific test methods are executed
and in what order these tests run. Further, you may want to organize groups of tests into categories
that run separately and are managed by different subsets of your development team. There may be
a collection of unit tests for each component of a large enterprise system, for example, and the
teams responsible for each system component may write and manage the corresponding unit tests.
Another set of unit tests might perform specific tests related to integrating these separate
components and might run during integration testing prior to a full system release.

JUnit supports organization of tests in these ways through the TestSuite class. As mentioned earlier,
a TestRunner uses a TestSuite to run all of its tests. If you don't provide one, it simply wraps the
TestCase with a TestSuite and then operates on the new suite.

JUnit offers an abundance of flexibility in terms of how you can organize your tests into suites.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Starting at the most basic level, you can wrap any TestCase with a TestSuite by using the TestCase
as a constructor argument. This example shows how we could create a TestSuite that includes all of
the tests on our TestPerson class:

TestSuite suite = new TestSuite(TestPerson.class);

We can also specify that a TestSuite should include only a specific subset of the tests on a TestCase.
Every TestCase has a constructor that takes a single String argument, interpreted as the name of a
test method to be executed. If a TestCase is constructed with a method name this way and added to
a TestSuite, only that test method will be run on the TestCase when the TestSuite is run through a
TestRunner. If, for example, we wanted to run only our testSetName() test on TestPerson, we'd
construct a TestSuite this way:

TestSuite suite = new TestSuite(new TestPerson("testSetName"));

You can also compose suites with a mix of individual tests and entire TestCase instances, using the
addTest() and addTestSuite() methods on TestSuite:

TestSuite suite = new TestSuite();
// Add the testSetName test from TestPerson
suite.addTest(new TestPerson("testSetName"));
// Add all the tests on the TestPersonDAO class
suite.addTestSuite(TestPersonDAO.class);

As mentioned earlier, a TestRunner always wants to operate on a TestSuite. When you pass a
TestCase to a TestRunner, the runner first checks to see if the TestCase has a static suite() method
on it. If it does, the runner invokes this method and uses the returned suite as the set of tests to run.
If the TestCase has no suite() method, the runner constructs its own suite containing all of the
tests found on the TestCase. If we wanted to limit the testing of Person to include only the
testSetName() and testAddEmail() tests, for example, we could add the following suite() method
to TestPerson:

static public Test suite() {
 TestSuite suite = new TestSuite();
 suite.addTest(new TestPerson("testSetName"));
 suite.addTest(new TestPerson("testAddEmail"));
 return suite;
}

When any TestRunner is used with TestPerson, the runner calls this suite() method and gets back a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

suite containing only these two test methods.

You can use the suite() method to define aggregate TestCases that include groups of tests for your
system. For example, if we had two TestCase subclasses, TestPerson and TestPersonDAO, that tested
the basic model and data access features of the PeopleFinder system, we could define a simple
TestCase that included them to make it easier for us to drive all tests related to this subset of our
system, as shown in Example 18-3.

Example 18-3. Utility TestCase that aggregates other TestCases into a
TestSuite

import junit.framework.Test;
import junit.framework.TestCase;
import junit.framework.TestSuite;

public class AllModelTests extends TestCase {
 public static Test suite() {
 TestSuite suite = new TestSuite("Tests for the PeopleFinder model");
 // First test the Person data bean
 suite.addTestSuite(TestPerson.class);
 // Test the Person DAO, which is dependent on the Person bean
 suite.addTestSuite(TestPersonDAO.class);
 return suite;
 }
}

We could then test all of our model-related unit tests by simply invoking this utility TestCase with a
TestRunner, like so:

> java junit.textui.TestRunner com.oreilly.jent.people.AllModelTests

TestSuites can also be used to impose a certain order on the sequence of tests. In our previous
example, we would likely want to run the tests on our Person bean first, followed by the tests on our
PersonDAO since the PersonDAO has a functional dependency on the Person bean. If the Person bean
tests fail, it is likely that the PersonDAO tests will fail as well (or, at a minimum, the results of the
PersonDAO tests won't mean that much until we're sure that the Person bean works properly).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

18.4. Using JUnit with Ant

The Ant project build tool includes a few built-in tasks that can be used to integrate JUnit tests into
your build scripts. The JUnit support tasks discussed here are included among the optional tasks in
the Ant distribution since, in addition to the core Ant libraries, they also require the JUnit libraries in
order to run. That means that before using these tasks, you need to ensure that you have the
optional Ant tasks as well as the JUnit library in the appropriate CLASSPATH. See Chapter 17 for more
details on general Ant usage.

It's possible, of course, to use the core Java support tasks to drive JUnit in your Ant buildfiles. For
example, we could simply use the java task to invoke a TestRunner on a compiled TestCase, like our
AllModelTests example:

<target name="run-tests"
 description="Run unit tests for the system"
 depends="compile-tests">
 <java classname="junit.textui.TestRunner"
 fork="true">
 <classpath>
 <path refid="java.compile.classpath"/>
 <path location="${java.classes.dir}"/>
 <path location="${junit.jar}"/>
 <path location="${java.test.classes.dir}"/>
 </classpath>
 <arg line="com.oreilly.jent.people.AllModelTests"/>
 </java>
</target>

This isn't too difficultwe invoke the java task with the name of the TestRunner class, and within the
task we define the CLASSPATH to be used (making sure to include both our compiled application
classes and the JUnit library), and we specify the test to be run using an arg child on the java task,
mimicking the use of command-line arguments when invoking a TestRunner from the console. Notice
that we are using the fork option on the java task, which runs JUnit in a separate JVM. We do this
because the TestRunner we are using attempts to exit the JVM when it finishes running the tests, and
naturally this raises a security exception when run within the same JVM as the Ant process.

But the built-in Ant tasks for driving JUnit make even this very simple use case a little bit more
concise, as we see here where we've rewritten the run-tests target to use the built-in junit task:

<target name="run-tests-junit"
 description="Run unit tests for the system"
 depends="compile-tests">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <junit printsummary="on">
 <classpath>
 <path refid="java.compile.classpath"/>
 <path location="${java.classes.dir}"/>
 <path location="${junit.jar}"/>
 <path location="${java.test.classes.dir}"/>
 </classpath>
 <test name="com.oreilly.jent.people.AllModelTests"/>
 </junit>
</target>

For this very simple use of JUnit, the utility of the junit task is pretty minimal. By using the junit
task instead of the general java task, we've avoided having to specify the TestRunner class (the
junit task uses its own internal TestRunner). We also don't need to use the fork option as we did
when using the general java task because the internal TestRunner used by the junit task is written
to operate in the Ant context and doesn't attempt to exit the JVM when it's done. When using the
junit task, however, we do need to turn on the printsummary option, as shown previously, at a
minimum. This prints some basic feedback about the test results in the Ant output. You can set
additional output options using the <formatter> subelement described in "Formatting Test Results"
later in this chapter.

A few other features of the junit task are worth highlighting since they are most directly relevant to
unit testing and the ones you're most likely to use.

18.4.1. Controlling the Build with Unit Tests

The example Ant targets shown earlier run the specified JUnit test case and report the results but
have no impact on the rest of the Ant build process. If any failures or errors are encountered in the
tests, they are reported, but the surrounding build process continues. It's likely that you will want to
use the unit tests as conditions to control different parts of the build process. You want to use your
JUnit tests to catch functional problems before deploying the application, for example. If the tests
succeed, proceed with the deployment; otherwise, don't bother because there are known problems.
This is roughly analogous to the conditional generation of class files by the Java compiler, just later in
the build pipeline, checking functionality instead of syntax. In the case of the compiler, the rule is, if
syntax or other compilation errors are encountered, don't generate a class file. In our buildfile, we
might want to extend this conditional logic and say that if compilation succeeds, run the unit tests to
verify the functional behavior of the code, but if any functional problems are encountered, don't
deploy the compiled code.

Four attributes of the junit task can be used for this purpose: haltonfailure, haltonerror,
failureproperty, and errorproperty. Setting haltonfailure or haltonerror to true causes the
overall build process to stop if any failure or error (respectively) is encountered in the tests. The
failureproperty attribute value is the name of a property to be set if a failure is encountered in the
tests, and the errorproperty plays a similar role for errors.

To demonstrate the use of these attributes, let's take a modified version of the deploy-app target
from the Ant template buildfile (details on the Ant template can be found in Chapter 17). The deploy-
app target depends on the create-app target to create the deployable application file, which in turn

http://lib.ommolketab.ir
http://lib.ommolketab.ir

depends on the code compiling successfully and the component archives (if any) being constructed.
In this modified version of the deploy-app target, we make the target depend on our run-tests
target before we deploy the application using the as-deploy target:

<target name="deploy-app"
 description="Deploy application to application server"
 depends="create-app,run-tests">
 <!-- Deploy the application using the imported deploy target -->
 <antcall target="as-deploy">
 <param name="as.deploy.file"
 value="${basedir}/${ant.project.name}.ear"/>
 <param name="as.deploy.server.id" value="default"/>
 </antcall>
</target>

The haltonfailure and haltonerror attributes are the simplest approach to making the build
conditional on the test results. We can just set these attributes to true when we invoke the junit
task, as shown in this modification of the run-tests target:

<target name="run-tests"
 depends="compile-tests">
 <junit printsummary="on"
 haltonfailure="true">
 <classpath>
 . . .
 </classpath>
 <test name="com.oreilly.jent.people.AllModelTests"/>
 </junit>
</target>

With the haltonfailure attribute set to true, if any of the tests in our AllModelTests test case either
fail or generate an error, the junit task halts the overall Ant build process. If you want the build to
halt only if errors are generated by the tests but continue if any structured failures are encountered,
you would use the haltonerror attribute. Since we've configured our deploy-app target to depend on
the run-tests target, if the junit task aborts the build, the deploy-app target is aborted before it
tries to deploy the application. And if there were other tasks to be run after the deploy-app target,
those would be aborted as well.

We can get more flexibility in dealing with failed tests if we use the failureproperty and
errorproperty attributes. With these attributes in use, instead of blindly halting the build process
when a test fails or generates an error, the junit task simply sets the property named in the
attribute value. We can then use the property as a condition in other parts of our buildfile. For
example, let's change the run-tests target to use the failureproperty attribute instead of the
haltonfailure attribute:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<target name="run-tests"
 depends="compile-tests">
 <junit printsummary="on"
 failureproperty="unit-tests-failed">
 <classpath>
 . . .
 </classpath>
 <test name="com.oreilly.jent.people.AllModelTests"/>
 </junit>
</target>

With this change, if any tests fail or generate an error, the unit-tests-failed property is set. We can
use this condition however we'd like in the rest of the buildfile. In our case, we'd like the deploy-app
target to be skipped if any unit tests fail. So we can set the unless attribute on the deploy-app target
to unit-tests-failed, indicating that the target should be run unless this property is set:

<target name="deploy-app"
 depends="create-app,run-tests"
 unless="unit-tests-failed">
. . .

Since the target depends on the run-tests target, run-tests is run first, setting the property if any
tests fail. The deploy-app target's unless attribute is then checked, and the target is skipped if the
property is set. But if any additional targets or tasks are queued to be run (e.g., the deploy-app
target was invoked as part of another target), these subsequent tasks still execute unless they are
also made conditional on the test property.

Note that the <test> subelement on the junit task also has if and unless attributes that you can
use to conditionally run the tests themselves. We might have multiple <test> elements, for example,
and we want to stop running tests once the first error or failure is encountered. If the surrounding
junit task is using the failproperty attribute as shown earlier, we can use the unless attribute on
the <test> elements to do this, like so:

<target name="run-tests"
 depends="compile-tests">
 <junit printsummary="on"
 failureproperty="unit-tests-failed">
 <classpath>
 . . .
 </classpath>
 <test name="com.oreilly.jent.people.TestPerson"
 unless="unit-tests-failed"/>
 <test name="com.oreilly.jent.people.TestPersonDAO"
 unless="unit-tests-failed"/>
 </junit>
</target>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

18.4.2. Running Batches of Tests

So far, we've used only the <test> subelement of the junit task to run single TestCases. The junit
task also supports the running of multiple tests through the use of the batchtest subelement. The set
of tests to be run is specified using a <fileset> element that contains either the test classes or their
Java source files. So if we wanted to execute every test found in the directory where we compiled our
test classes, we would do something like this:

<target name="run-tests"
 depends="compile-tests">
 <junit printsummary="on"
 failureproperty="unit-tests-failed">
 <classpath>
 . . .
 </classpath>
 <batchtest unless="unit-tests-failed">
 <fileset dir="${java.test.classes.dir}">
 <include name="**/*.class"/>
 </fileset>
 </batchtest>
 </junit>
</target>

Notice that we're also using the unless attribute here since batchtest supports both the if and
unless attributes.

In the previous example, we used the test classes to specify the batch to run. We can also use the
Java source files, like so:

<target name="run-tests"
 depends="compile-tests">
 <junit printsummary="on"
 failureproperty="unit-tests-failed">
 <classpath>
 . . .
 </classpath>
 <batchtest unless="unit-tests-failed">
 <fileset dir="${java.test.src.dir}">
 <include name="**/*.java"/>
 </fileset>
 </batchtest>
 </junit>
</target>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can use multiple <test> and <batchtest> elements in your junit task. In our example, we might
want to run our suite of model tests using a <test> element and selectively run some of our other
tests using the <fileset> in a <batchtest> element:

<target name="run-tests"
 depends="compile-tests">
 <junit printsummary="on"
 failureproperty="unit-tests-failed">
 <classpath>
 . . .
 </classpath>
 <test name="com.oreilly.jent.people.AllModelTests"/>
 <batchtest>
 <fileset dir="${java.test.classes.dir}">
 <include name="**/TestDataUtils.class"/>
 <include name="**/TestDBUtils.class"/>
 </fileset>
 </batchtest>
 </junit>
</target>

18.4.3. Formatting Test Results

Running tests and detecting failures are useful in their own right within an Ant buildfile, but even
more useful is collecting the results of the tests for viewing, reporting, and analysis. You might, for
example, use a nightly build process that does a fresh build of all your system code followed by a run
of your unit tests. In that situation, you'll want to collect the results and report them on a web page
or through email to the members of the development team.

The format and destination of the test results can be controlled using the <formatter> subelement on
the junit task. You can also use attributes on the junit task to generate test output: the
printsummary attribute on the junit task prints a one-line summary after each <test> or <batchtest>
runs (as we've done in all our previous examples), and the showoutput attribute prints the output
from all tests. But the output generated using the junit attributes is written only to the Ant output
console, which is useful for eyeballing the results as the tests are running, but not very useful for
other reporting purposes. The <formatter> element lets you write the results to a file and format the
results in various ways.

When you use the <formatter> element, you have to specify the type of the formatter. The simplest
way to do this is using the type attribute. Three supported formatter types are xml, plain, and brief.
The plain and brief types generate the test results in a plain-text format, while the xml type
generates results in an XML format suitable for postprocessing.

The following example runs our model tests using the plain formatter:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<target name="run-tests"
 depends="compile-tests">
 <junit printsummary="on">
 <classpath>
 . . .
 </classpath>
 <formatter type="plain"/>
 <test name="com.oreilly.jent.people.AllModelTests"/>
 </junit>
</target>

If we don't adjust the destination of the results output, it will be written by the formatter to a file
named TEST-<test case classname>.txt. In our case, the results are stored in the file TEST-
com.oreilly.jent.people.AllModelTests.txt, and the contents look something like this:

Testsuite: com.oreilly.jent.people.AllModelTests
Tests run: 3, Failures: 0, Errors: 0, Time elapsed: 0.033 sec

Testcase: testSetName took 0.017 sec
Testcase: testAddEmail took 0.001 sec
Testcase: testEquals took 0 sec

Note that each individual test case that is run through a <test> or <batchtest> element generates its
own separate results file, formatted according to the specified formatter. That means each <test>
element generates a results file, and each test matched by the <fileset> of a <batchtest> element
generates its own results file as well.

If we ran the same tests with the xml format type, the results would be placed in a file named TEST-
com.oreilly.jent.people.AllModelTests.xml and would look like this:

<?xml version="1.0" encoding="UTF-8" ?>
<testsuite name="com.oreilly.jent.people.AllModelTests"
 tests="3" failures="0" errors="0" time="0.16">
 <properties>
 <property name="java.vendor" value="Apple Computer, Inc."></property>
 . . .
 </properties>
 <testcase name="testSetName"
 classname="com.oreilly.jent.people.TestPerson"
 time="0.014"></testcase>
 <testcase name="testAddEmail"
 classname="com.oreilly.jent.people.TestPerson"
 time="0.0010"></testcase>
 <testcase name="testEquals" classname="com.oreilly.jent.people.TestPerson"
 time="0.0"></testcase>
 <system-out><![CDATA[]]></system-out>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <system-err><![CDATA[]]></system-err>
</testsuite>

The XML format has a root <testsuite> element whose elements include the name of the test class
that was run and summary data about the overall run. The first child element is a <properties>
element that contains all of the Ant property values as they were set when the test was run. This
information is useful for debugging purposes, but also helps you to ensure consistency across test
runs. We've (mercifully) truncated the properties list in the sample results shown.

After the properties, the results of each test are output as <testcase> elements. Finally, any output
that might have been printed to the system output or error streams is listed as <system-out> and
<system-err> elements, respectively. In our case, the tests didn't write anything to output, so these
elements are empty.

You can include a <formatter> element as a child of the junit task itself or specify <formatter>
elements within individual <test> and <batchtest> elements. If a <formatter> is specified on a <test>
or <batchtest> element, it overrides the main formatter for that test or set of tests.

If the standard text or XML formats aren't sufficient for your needs, you can write a custom formatter
of your own by subclassing the
org.apache.tools.ant.taskdefs.optional.junit.JUnitResultFormatter bundled with the Ant
distribution. However, since the XML format provides all of the result data, you can also use an XSLT
transformation to convert the results into whatever format you need (for example, text, HTML, PDF,
or another XML format). Ant even provides another optional task, junitreport, which facilitates this.
You can specify a set of XML test result files, and the junitreport task will merge the XML files into a
single document and apply an XSLT stylesheet to the merged XML file to generate a final output
report. The junitreport task has default stylesheets that generate an HTML-formatted report file, but
you can provide your own as well. See the Ant documentation on the junitreport task for more
details.

You can control (to a degree) the destination of the formatted results as well, using the extension
attribute on the <formatter> element, and the outfile attribute on the <test> element. As we
mentioned earlier, each built-in formatter (xml, plain, or brief) has a default file extension (.xml for
the XML formatter and .txt for the plain and brief formatters). You can override these by specifying
your own extension using the extension attribute on the <formatter> element, for example:

<junit . . .>
 . . .
 <formatter type="xml" extension=".fooxml"/>
 . . .
</junit>

Each <test> element can also have an outfile attribute, which overrides the base filename of the
results file for that test. Note that one of the disadvantages of using the <batchtest> element is that
you can't override the default filenames of the results files for the matching tests.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

18.5. Testing Enterprise Components with Cactus

As we've seen, JUnit is a very capable tool for defining, running, and reporting on unit tests for basic
Java code, such as the data access classes, model classes, and utility classes in your system.
Enterprise components, however, present a unique challenge when it comes to unit testing. In order
to effectively and accurately test enterprise components , you need to have a way to drive the
components (i.e., provide them with the environment settings and inputs that they'll encounter at
runtime) and capture the results so that they can be verified against expected results.

At a high level, the two general approaches to testing enterprise components are:

Mock objects model

In this scheme, the enterprise component is instantiated in a standard Java virtual machine,
and the inputs and environment settings for the component are simulated using special
implementations called mock objects. The advantage of the mock objects model is that it can
be applied in any environment and does not require a full enterprise server environment. The
disadvantage is that your components are not tested in a true container environment, which
could lead to inaccurate or misleading test results in some cases.

In-container testing

In this scheme, the enterprise components run within an actual container environment, and the
test environment drives the tests, either from within the server environment or externally
through a special client. This approach has the advantage of testing the components in a more
realistic environment using an actual J2EE container to process the inputs and exercise the
container. This approach has the disadvantage of being more complicated to implement: a
container-enabled server has to be available to test the components, and managing the test
runs (driving the tests and collecting the results) is complicated by the fact that the tests are
running within a server environment.

In this part of the chapter, we discuss Cactus, which is an extension of JUnit managed by the Apache
Jakarta project. Cactus is an in-container enterprise testing framework. We are not covering mock
objects approaches here because, for the most part, the principles we discussed in the earlier JUnit
material can be used to manage mock objects tests. In terms of alternative in-container testing
frameworks, we chose to discuss Cactus for the same reasons we chose other enterprise tools in this
book: it is popular, it has an active development effort behind it, and it works well with other popular
enterprise tools, such as Ant, various IDEs, and J2EE servers of various types.

18.5.1. The Cactus Model and Architecture

Cactus uses a proxy architecture to run server-side tests, as shown in Figure 18-2. A JUnit
TestRunner invokes a Cactus-based TestCase, and the TestCase invokes a Cactus proxy on a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

designated server. The Cactus proxy runs inside the server's web container, taking requests from
clients to run specific tests. The Cactus proxy runs the tests on behalf of the client, and the tests
exercise various server-side components to test their behavior. The proxy collects the results
(success, failure, or error) and returns them to the client to be reported. The Cactus TestCase (the
client in this model) accepts the results and passes them on to the TestRunner, and the TestRunner
reports the results just as it does for "regular" JUnit tests.

Figure 18-2. Cactus runtime model

As the figure indicates, testing your server-side code with Cactus involves enhancing your application
archive to include the necessary Cactus libraries as well as your Cactus-based unit tests, and then
driving these tests through a Cactus proxy using a testing client of some sort. So to use Cactus to
test your enterprise applications, you need to understand the process used by the Cactus proxies to
drive your test, the different types of proxies that Cactus provides for running different flavors of test
cases, the types of test clients provided by Cactus for invoking your server-side tests, how Cactus
unit tests are actually written, and how to "Cactus-enable" your enterprise application archive to
allow your unit tests to be run.

18.5.1.1. The Cactus test process

Let's look at the deeper details behind the Cactus test process shown in Figure 18-2. These details
are essentially the same regardless of what kind of test you're running and which Cactus proxy is
handling the tests.

1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Starting a test run that includes Cactus tests is the same as any JUnit test run. You start a
TestRunner and tell it which tests to run.

1.

For each test method to be executed, the TestRunner invokes the runTest() method on the
corresponding TestCase it's asked to run. Again, this is no different from any other JUnit tests.

2.

If a given test is a Cactus test (i.e., it extends one of the Cactus TestCase base classes as
described in "Writing Cactus Tests" later in this chapter), its runTest() method checks for a
begin(WebRequest) method on the TestCase and tries to execute it before running each test
included in the TestCase. This method can be used to initialize any general resources or do any
setup required by all tests. The WebRequest argument is a Cactus object that represents the
simulated web request that will be passed to your test. You can use this object in the begin()
method to add parameters such as required headers or URL arguments to the request. Again,
begin() is called before each test method on the TestCase, so it should do only general-
purpose setup applicable to all tests.

3.

If the test method to be run is called testXXX(), runTest() looks for a beginXXX(WebRequest)

method on the TestCase and executes it before running the test. This method serves the same
general purpose as begin() (that is, adding URL arguments, HTTP headers, and the like to the
request sent to the test proxy) but is specific to a particular test method.

4.

At this point, the runTest() method on the TestCase connects to the appropriate Cactus proxy
on the test server and asks it to run the target test method on this TestCase. Any parameters
or header values set in the WebRequest object by the begin() or beginXXX() methods are

passed to the server proxy. The proxy that is contacted depends on the type of TestCase being
run. If the TestCase implements ServletTestCase, the ServletRedirector proxy is invoked. A
JspTestCase is run through the JspRedirector, and a FilterTestCase is run through the
FilterRedirector. There are system properties that Cactus uses to locate the test server and
the proxies running there. They are detailed in "Running Cactus Tests," later in this chapter.

5.

The Cactus proxy accepts the test run request and creates an instance of the target TestCase
on the server. The proxy creates Cactus wrappers for all the necessary web context objects
(i.e., servlet tests are given an HttpServletRequest and HttpServletResponse, ServletConfig,
and ServletContext). These objects wrap the real context objects generated as part of the web
call and ensure that the tests see realistic responses when context information is requested
(e.g., the servlet URL available from an HttpServletRequest is representative of the web
component being tested, not the Cactus proxy). These web context objects are set as member
variables on the TestCase (tHRough the Cactus base classes that they extend).

6.

With the TestCase primed, the proxy now acts as the test driver and calls the setUp(),
testXXX(), and tearDown() methods on the TestCase, in order. The setUp() and tearDown()

methods can be used for server-side initialization and cleanup for each test to be run, as
opposed to the begin() and end() methods, which perform initialization and cleanup on the
client side of the Cactus proxy. The test method should exercise the server-side code it's
supposed to test (invoke a servlet, JSP, JSP custom tag, servlet filter, EJB, or any other server-
side code you want to test). Assertions and failures should be used just as with regular JUnit
tests. A failure or uncaught exception generated by the test is picked up by the Cactus proxy
and reported back to the caller.

7.

Back on the client side of the Cactus proxy, the results of the test method are collected by the
TestRunner. After each test method finishes, the corresponding endXXX(WebResponse) method on

the TestCase is run (if it exists), letting you do any test-specific verification of the response

8.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

returned by the test call. Then the generic end(WebResponse) method is called, allowing you to
perform any generic verification of the response. In either of these methods, you can use
assertions and failures as you would in your test method. Note that both of these method calls
(endXXX() and end()) are done on the TestCase instance on the client side of the proxy.

8.

The three test proxies provided by Cactus alter this general test process in terms of the context
objects that they provide to the TestCase, as described next.

18.5.1.2. Cactus test proxies

Cactus provides three types of proxies (called "redirectors" in the Cactus documentation) for driving
your server-side tests. Each proxy is implemented as a different type of web component to test
server-side code that needs to be run in various web contexts:

Servlet proxy

This test proxy is a servlet that exercises tests from within a servlet runtime context. This
provides tests with access to servlet runtime objects, such as HttpServletRequest,
HttpServletResponse, ServletConfig, and ServletContext objects. The servlet proxy is useful
for testing servlets or for testing server-side code that may be invoked from a servlet, like EJBs
or server-side utility code.

JSP proxy

This test proxy is a JSP that exercises tests from a JSP context. This provides tests with access
to JSP runtime objects, such as the JSP PageContext. The JSP proxy is useful for testing JSPs,
JSP custom tags, or other server-side code that may be invoked from a JSP.

Servlet filter proxy

This test proxy is a servlet filter that exercises tests from a servlet filter context. This provides
tests with access to runtime objects available using a servlet filter, such as the FilterConfig.
The servlet filter proxy is useful for testing servlet filters or other server-side code that may be
invoked from a servlet filter.

In order to make use of these test proxies, they need to be added to the web.xml deployment
descriptor of a web module. To deploy the servlet proxy, your deployment descriptor will need the
following <servlet> element and a <servlet-mapping> similar to the one shown in Example 18-4.

Example 18-4. web.xml entries for Cactus servlet proxy

. . .
<servlet>
 <servlet-name>ServletRedirector</servlet-name>
 <servlet-class>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 org.apache.cactus.server.ServletTestRedirector
 </servlet-class>
</servlet>
. . .
<servlet-mapping>
 <servlet-name>ServletRedirector</servlet-name>
 <url-pattern>/ServletRedirector</url-pattern>
</servlet-mapping>
. . .

To deploy the JSP proxy, you'll need the entries shown in Example 18-5.

Example 18-5. web.xml entries for Cactus JSP proxy

. . .
<servlet>
 <servlet-name>JspRedirector</servlet-name>
 <jsp-file>/jspRedirector.jsp</jsp-file>
</servlet>
. . .
<servlet-mapping>
 <servlet-name>JspRedirector</servlet-name>
 <url-pattern>/JspRedirector</url-pattern>
</servlet-mapping>
. . .

To deploy the servlet filter proxy, you'll need the entries shown in Example 18-6.

Example 18-6. web.xml entries for Cactus servlet filter proxy

. . .
<filter>
 <filter-name>FilterRedirector</filter-name>
 <filter-class>
 org.apache.cactus.server.FilterTestRedirector
 </filter-class>
</filter>
. . .
<filter-mapping>
 <filter-name>FilterRedirector</filter-name>
 <url-pattern>/FilterRedirector</url-pattern>
</filter-mapping>
. . .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Note that the proxy implementations (the classes that implement the servlet and servlet filter proxies
and the JSP for the JSP proxy) need to be available in your web archive as well. The classes are
included in the main Cactus jar file, and the JSP proxy file is found in the Cactus distribution. The
Cactus proxies also require a set of support libraries, which are included in the Cactus distribution.
The whole point of having the proxies included in the web archive is to execute your unit tests, so the
test classes, plus any application code that they test, also need to be included in the web archive.

You can make all of the Cactus-related enhancements to your web archive by hand, if you choose. If
you are using Ant to build your project, Cactus also provides an Ant task called cactifywar that you
can use to make these enhancements automatically. Before using the Cactus tasks, you'll need to
load them into your buildfile. You can then use the tasks to augment a war file that you've already
created:

<!-- Include the Cactus Ant tasks -->
<taskdef resource="cactus.tasks">
 <classpath>
 <pathelement location="${cactus.home}/lib/junit-3.8.1.jar"/>
 <pathelement location="${cactus.home}/lib/cactus-1.7.1.jar"/>
 <pathelement location="${cactus.home}/lib/cactus-ant-1.7.1.jar"/>
 <pathelement
 location="${cactus.home}/lib/commons-httpclient-2.0.jar"/>
 <pathelement
 location="${cactus.home}/lib/commons-logging-1.0.3.jar"/>
 <pathelement location="${cactus.home}/lib/aspectjrt-1.1.1.jar"/>
 </classpath>
</taskdef>
. . .
<!-- Create a Cactus-enhanced version of our war file -->
<cactifywar srcfile="myapp.war"
 destfile="myapp-test.war">
 <!-- Add our test classes to the war's classes dir -->
 <classes dir="test-classes" includes="**/*.class"/>
</cactifywar>

The <taskdef> shown here loads all of the Cactus-supplied Ant tasks from the Cactus jars. The
cactus.home variable referenced in the example must be set to the directory where Cactus is
installed.

The invocation of cactifywar in the example takes the web archive myapp.war, adds the Cactus
proxy entries to the web.xml file, adds the Cactus libraries to the WEB-INF/lib directory of the
archive, puts the JSP proxy jspRedirector.jsp into the root of the web archive, and adds our test
classes to the WEB-INF/classes directory in the archive. The cactifywar task is a specialization of the
built-in war task included with Ant, so it supports all of the war options. You can use the <lib> or
<classes> elements, for example, to add additional classes required by your tests but not included in
the original war file. In addition, the cactifywar task supports <servletredirector>,
<jspredirector>, and <filteredirector> subelements that can be used to customize the URL
mappings used for the proxies. If, for example, you want the JSP proxy to be accessible at the URL

http://lib.ommolketab.ir
http://lib.ommolketab.ir

/runtests/jspproxy, you could use the <jspredirector> element like so:

<!-- Create a Cactus-enhanced version of our war file -->
<cactifywar srcfile="myapp.war"
 destfile="myapp-test.war">
 <!-- Add our test classes to the war's classes dir -->
 <classes dir="test-classes" includes="**/*.class"/>
 <!-- Specify a custom mapping for the JSP proxy -->
 <jspredirector mapping="/runtests/jspproxy"/>
</cactifywar>

The cactifywar task adds the appropriate mapping entries in the generated web.xml file and, instead
of the default mapping shown in Example 18-5, the JSP proxy is given the following mapping as
specified in the <jspredirector> element:

. . .
<servlet>
 <servlet-name>JspRedirector</servlet-name>
 <jsp-file>/jspRedirector.jsp</jsp-file>
</servlet>
. . .
<servlet-mapping>
 <servlet-name>JspRedirector</servlet-name>
 <url-pattern>/runtests/jspproxy</url-pattern>
</servlet-mapping>
. . .

18.5.2. Writing Cactus Tests

Luckily, all of the proxy-based test processing discussed in the previous sections is handled internally
for you by Cactus. Writing a Cactus test is just a matter of extending one of the provided TestCase
subclasses and implementing your test methods. Of course, we're talking about testing server-side
code, so there's the added complexity of ensuring that the server code sees the same context
information that it will in the production environment. But the Cactus framework does a lot to make
this as simple as possible.

Cactus provides three subclasses of TestCase that you can use as the base of your own server tests:
ServletTestCase, JspTestCase, and FilterTestCase, all within the org.apache.cactus package.
Choosing between these TestCase variations is very simple. If your server tests need to run within
the context of a servlet, use ServletTestCase; if they need to run in the context of a JSP, use
JspTestCase; if they need to run in the context of a servlet Filter, use FilterTestCase. Each Cactus
TestCase subclass makes context-specific objects available to the tests. A ServletTestCase has
HttpServletRequest and HttpServletResponse objects, the HttpSession associated with the "client,"
and the ServletConfig. A JspTestCase has access to all of these objects plus the JSP PageContext and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the JspWriter output stream. A FilterTestCase has access to the HttpServletRequest and
HttpServletResponse objects as well as the FilterConfig and FilterChain objects needed in a servlet
Filter context. These context objects can be manipulated by your test code prior to invoking the
code being tested, and they can be checked after the test runs to ensure that the expected results
were generated.

18.5.2.1. Introduction to Cactus tests: Testing servlets

Let's start by writing tests for a servlet. If you're not already familiar with the servlet programming
model and servlets' lifecycle within the web container, you should refer to Chapter 3.

Specifically, we're going to write tests for a servlet that implements the search functionality in the
person directory application from Chapter 2. The servlet being tested is PeopleFinderServlet (found
in the com.oreilly.jent.people.servlet package in the sample code bundle). It accepts URL
arguments that specify the first name, last name, and email search terms, searches the underlying
data source for people that match, and generates a web page showing the results. We won't actually
list the code for the servlet before writing our tests (which should make extreme programming
advocates happy). Instead, we'll write tests according to how we expect the servlet to behave (based
on hypothetical functional specifications).

Since we're testing a component that requires a servlet context in order to be tested, we define our
TestCase as an extension of ServletTestCase. We'll start with a single test on our TestCase
implementation, which is shown in Example 18-7.

Example 18-7. Servlet test example

// Imports omitted...

public class TestPeopleFinderServlet extends ServletTestCase {
 /** Common servlet instance, which serves as our test fixture */
 private PeopleFinderServlet mPFServlet = null;

 /** Constructors inherited from ServletTestCase */
 public TestPeopleFinderServlet() {
 super();
 }
 public TestPeopleFinderServlet(String name) {
 super(name);
 }
 public TestPeopleFinderServlet(String name, Test t) {
 super(name, t);
 }

 /** Set up the test fixture. In this case, create the servlet instance */
 protected void setUp() {
 // Create the servlet instance. We also initialize the servlet
 // here, so that we know it's done only once. If any tests

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // require an uninitialized servlet for some reason, the
 // test will have to create its own servlet instance.
 mPFServlet = new PeopleFinderServlet();
 try {
 mPFServlet.init(this.config);
 }
 catch (ServletException se) {
 fail("Unexpected servlet exception while setting up test case: "
 + se.getMessage());
 }
 }

 /** Invoked on the "client side" (within the test runner) before
 * asking the proxy to run the validSearch test */
 public void beginValidSearch(WebRequest request) {
 // Add a search parameter
 request.addParameter(PersonDAO.FIRST_NAME, "John");
 }

 /** Test method, run on the server side by the proxy. This test ensures
 * that a valid response is generated from a valid search request */
 public void testValidSearch() {
 // Simply invoke the servlet's doGet() method, using
 // the request constructed in the begin method
 invokeGet();
 }

 /** Invoked on the "client side" (within the test runner) after the
 * proxy runs the validSearch test and sends a response to
 * the test runner */
 public void endValidSearch(WebResponse response) {
 // Since this was a valid search, there should be no "Error"
 // text in the response HTML, and a "Search Results" header
 // should be included
 assertTrue((response.getText().indexOf("Error:") < 0) &&
 (response.getText().indexOf("Search Results") >= 0));
 }

 /** Tear down the test fixture. Invoke the servlet's destroy method,
 * to ensure any servlet cleanup occurs */
 protected void tearDown() {
 mPFServlet.destroy();
 mPFServlet = null;
 }

 // Utility methods used by the tests
 /** Invoke the get method on the servlet in our fixture. If any
 * exceptions are generated, fail the test.*/
 private void invokeGet() {
 try {
 mPFServlet.doGet(this.request, this.response);
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 catch (IOException ioe) {
 fail("Unexpected IO exception: " + ioe.getMessage());
 }
 catch (ServletException se) {
 fail("Unexpected servlet exception: " + se.getMessage());
 }
 }
}

In our TestPeopleFinderServlet test case, we have a single test method, testValidSearch(), that
exercises the basic functions of the servlet and tests for an appropriate response. To drive this test,
we've written a beginValidSearch() method that adds a set of URL arguments to the web request.
As depicted earlier in Figure 18-2, the beginValidSearch() method is invoked on the "client" side of
the test session, prior to making the HTTP request to the Cactus proxy. Our beginValidSearch()
method has the required method signature as dictated by Cactus: the base of the method name
(after the "begin") matches the base of the test method name (after the "test"), it is public, has a
void return type, and takes a single WebRequest argument. The WebRequest encapsulates the details of
the actual HTTP request that is generated and passed on to the Cactus proxy when it is asked to
invoke the test method. In our beginValidSearch() method, we add a URL argument whose name is
taken from the PersonDAO.FIRST_NAME constant (the name that the servlet uses to look up this
argument) and with a value of "John". According to our understanding of the servlet being tested,
this should be considered a valid search request.

The testValidSearch() method itself simply invokes the servlet being tested, using the invokeGet(
) utility method we've defined on our test case. In the invokeGet() method, we use a test fixture
consisting of an instance of the PeopleFinderServlet class and simply invoke the servlet's doGet()
method, passing along the HttpServletRequest and HttpServletResponse objects available in the
ServletTestCase member variables. The request will include the URL arguments that we added in our
beginValidSearch() method, so we just need to get the request processed by our servlet.

This approach to testing a servlet (directly constructing a servlet instance and exercising its methods)
may seem a bit odd to those familiar with J2EE component development. Components are always
constructed by their corresponding containers, and the component methods are invoked by
containers while being managed at runtime. But handling servlets and other components directly is
useful and sometimes necessary when writing Cactus tests. If you need to invoke utility methods on
your components with specific input arguments, for example, you'll need direct access to a
component instance, and you'll need to construct one yourself to make that happen since web
containers do not directly expose servlets and JSP components for programmatic access. Another
reason to use a direct servlet instance is to allow you to control the initialization of the component.
You can adjust the contents of the ServletConfig object passed into the servlet's init() method
before its request-handling methods are executed.

You can, however, choose to exercise a servlet that has been deployed in the standard way within a
web container as long as it's the same web container in which the Cactus tests are being run. First,
you'll need to ensure that the servlet being tested has been deployed in the application containing the
Cactus proxy and the Cactus tests being run. This entails the usual servlet deployment detailsthe web
deployment descriptor (web.xml) needs to have a servlet entry and at least one servlet-mapping
enTRy for the servlet being tested. Then, in your Cactus test, during the execution of one of the
testXXX() methods on the server side of the proxy, you can forward the HTTP request and response

pair provided by the proxy to the servlet by using the RequestDispatcher available through the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ServletContext. If our PeopleFinderServlet has been deployed and mapped to the relative URL
/search-servlet, for example, we can use this approach to invoke the servlet managed by the
container:

try {
 RequestDispatcher dispatcher =
 config.getServletContext().getRequestDispatcher("/search-servlet");
 dispatcher.forward(request, response);
}
catch (IOException ioe) {
 fail("Unexpected IO exception: " + ioe.getMessage());
}
catch (ServletException se) {
 fail("Unexpected servlet exception: " + se.getMessage());
}

This approach offers you the advantage of fidelity: the servlet component is being tested while
operating in the same runtime environment that it will experience when it is "live." But you can use
this approach only for tests that can be executed using an HTTP request to the web component.

Taking a look at the initialization of our Cactus test fixture, we see that, just as with any JUnit test,
we initialize our test fixture in the setUp() method and clean up the fixture in the tearDown()
method. In setUp(), we initialize our servlet instance by constructing an instance and then calling its
init() method, passing in the ServletConfig object member variable provided to all
ServletTestCase instances. The Cactus proxy initializes this and other servlet context variables that
our TestPeopleFinderServlet test case inherited from the Cactus ServletTestCase class. We invoke
the servlet's init() method in our fixture setup routine to ensure that it is properly initialized before
exercising its functionality in our tests. In a sense, we're (partially) taking on the role of the servlet
container here and going through the expected lifecycle callbacks of the servlet component. In the
tearDown() method, we invoke the servlet's destroy() method and then remove our reference to
the instance so it can be garbage-collected.

Finally, in our endValidSearch() method, we check the response from the servlet against what we
expected, given the request that we made of it. This method is executed on the "client" side of the
Cactus proxy, after the test method has been run. Each endXXX() method takes a single

WebResponse argument, which is a Cactus object that encapsulates the results returned to the "client"
from the proxy on the server. In our case, we check to make sure that the returned HTML does not
contain the text string Error:, which we know (from our hypothetical functional specifications for the
servlet) should be included in any response to an invalid or failed search request. We also check to be
sure that the response HTML includes a Search Results banner, as expected in a valid search result.

In this example test, we made use of both the beginXXX() and endXXX() methods to initialize the

request parameters and check the response, respectively. In some cases, one or both of these will
not be necessary. For example, our test servlet is supposed to treat a lack of search arguments as an
invalid search. We can test for this behavior by adding the following test method to our
TestPeopleFinderServlet:

public void testNoSearchArguments() {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Invoke the doGet method on the servlet using the request
 // that was generated through the proxy. This request should
 // include no search arguments since we have not added any in
 // a begin method.
 invokeGet();
}

public void endNoSearchArguments(WebResponse response) {
 // The response should contain the key phrase "Invalid search",
 // indicating a bad search request
 assertTrue(response.getText().indexOf("Invalid search") >= 0);
}

Note that we do not have a beginNoSearchArguments() method defined here because we do not need
to add anything to the servlet request before running the test. In fact, we explicitly avoid adding any
URL arguments to trigger the functionality being tested (a bad search, lacking any search
arguments).

In other cases, we may not need either the beginXXX() or endXXX() method for a particular test. A

typical example is tests that exercise utility methods on a component. Our PeopleFinderServlet, for
example, has a static utility method named personToHTML() that accepts a Person Java bean as an
argument and returns an HTML snippet that represents that person's information. We don't need to
prepare any request information, or test any response information, to perform this test. We simply
need a standard test method that creates a sample Person object, passes it through the utility
method, and checks the results:

/** Test the HTML conversion util on PeopleFinderServlet */
public void testPeopleToHTML() {
 // Create a sample person
 String fname = "Andy";
 String lname = "Long";
 String eAddr = "andy.long@buffaloimports.org";
 Person samplePerson = new Person();
 samplePerson.setFirstName(fname);
 samplePerson.setLastName(lname);
 samplePerson.addEmailAddress(eAddr);
 // Create the expected HTML output from the converter
 StringBuffer sampleHTML = new StringBuffer();
 sampleHTML.append("<tr bgcolor=\"#EEEEEE\"><td>")
 .append(lname).append("</td><td>").append(fname)
 .append("</td><td>").append(eAddr).append("</td></tr>");
 // Now apply the method to our Person and validate the results
 String result = PeopleFinderServlet.personToHTML(samplePerson);
 assertEquals(result, sampleHTML.toString());
}

In this specific test, we don't really need the Cactus framework to allow us to exercise the component

http://lib.ommolketab.ir
http://lib.ommolketab.ir

within a servlet container. We could run this test with a standard JUnit TestCase since we're not
making use of any of the servlet context parameters. But since you typically want to test functionality
that requires a servlet context (that includes, for example, request and response data), you may find
yourself mixing simple tests like this with more complicated tests that require the full proxy
framework of Cactus.

18.5.2.2. Testing JSPs

If you're not already familiar with programming JSPs and their lifecycle within the web container, you
should refer to Chapter 4.

Testing JSPs using Cactus is very similar to testing servlets. The same proxy scheme is used to set up
context information, such as request parameters and cookies that are needed by the JSP to function
properly. The JSP under test is invoked by forwarding the HTTP request to the page from within your
test case, similar to our servlet test example in the previous section. To support JSP-specific context
parameters, such as the various scopes of page variables (such as page, session, and request),
Cactus provides a JspTestCase that can be used as the base class for JSP-related unit tests. The
proxy that corresponds to this type of test operates as a JSP page and provides wrapped JSP context
parameters (specifically, the JSPWriter and PageContext) to the test, in addition to the standard
servlet context parameters.

The test shown in Example 18-8 demonstrates a typical JspTestCase. In this case, the TestSearchJSP
test case is testing the proper behavior of the search.jsp page from our PeopleFinder example
application. The test itself is almost identical to the valid search test in our TestPeopleFinderServlet
from Example 18-7. This isn't surprising since both components are web components and they both
function identically in this regard (i.e., they expect the same inputs and generate roughly the same
output).

Example 18-8. Sample JSP test case

// Imports omitted...

public class TestSearchJSP extends JspTestCase {

 // Constructors omitted...

 /** Set up the request on the "client" side of the proxy */
 public void beginValidSearch(WebRequest request) {
 // Add a search parameter to the request
 request.addParameter(PersonDAO.FIRST_NAME, "John");
 }

 /** Pass the valid search request to the page */
 public void testValidSearch() {
 // Invoke the target page by forwarding the request
 invokePage();
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 /** Check for the appropriate response on the "client" side of the proxy */
 public void endValidSearch(WebResponse response) {
 // Since this was a valid search, there should be no "Error"
 // text in the response HTML
 assertTrue((response.getText().indexOf("Error:") < 0) &&
 (response.getText().indexOf("Search Results") >= 0));
 }

 /** Utility method that forwards the request to the target page */
 private void invokePage() {
 try {
 // Forward the request to the search JSP
 this.pageContext.forward("/search");
 }
 catch (ServletException se) {
 fail("Unexpected servlet exception: " + se.getMessage());
 }
 catch (IOException ioe) {
 fail("Unexpected I/O exception: " + ioe.getMessage());
 }
 }
}

One noticeable difference is in how the JSP is invoked in our invokePage() utility method. Here,
we're using the JSP PageContext object to forward the request from the Cactus proxy to the target
JSP, using the mapped URL /search where we expect the JSP to be deployed. In our
TestPeopleFinderServlet test case, we showed two ways we could pass a request to a target servlet.
We could invoke the forward() method on the RequestDispatcher retrieved from the
ServletContext, or we could manually construct a servlet instance, initialize it, and invoke its doGet(
) or doPost() method. The first approach (using RequestDispatcher.forward()) is roughly
equivalent to the PageContext.forward() approach, and we could do the same thing here in our
JspTestCase. When testing a JSP, however, it's not convenient for us to manually "construct" an
instance of the target JSP and invoke it programmatically. The web container is responsible for
parsing the JSP, converting it into a servlet instance, and sending the resulting web component the
web requests. So the only viable approach for testing JSPs is to forward the test request directly to
the deployed JSP through the web container.

If your tests require access to only the standard servlet context parameters (request, response,
session data, and the ServletConfig), you can use a ServletTestCase to test your JSPs just as well
as a JspTestCase. In fact, JspTestCase uses ServletTestCase as its base class. But if your tests need
to modify the variables in the various scopes available to JSPs, you'll need access to the JSP
PageContext, which is available only to JspTestCase instances.

18.5.2.3. Testing JSP custom tags

If you're not familiar with programming JSP custom tags and their lifecycle within the web container,
you should refer to Chapter 4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

JSP custom tags are a common part of J2EE web application architectures since they allow you to
cleanly inject functionality into JSPs in the form of page tags that invoke Java code.

Several approaches to testing custom tags using Cactus are available. You can use a JspTestCase,
such as those shown in the previous section, to exercise JSPs that contain the tag under test. In your
endXXX() methods, you can test the response for specific content that the tag is expected to

generate. The JSPs that you use can be either actual application pages or JSPs created specifically to
test the target tags. Using specially constructed JSPs has its advantages: you can simplify the JSP to
include only the elements necessary to test the tag, and you isolate your tests from the structure of
your application's design.

You can also test a custom tag more directly, but in a slightly more artificial fashion, by
programmatically constructing a tag instance within a JspTestCase. Continuing with our progressive
PeopleFinder example, the search page uses the SearchTag custom JSP tag to actually perform the
search. We can directly test our custom tag using a JspTestCase, as shown in the TestSearchTag test
case shown in Example 18-9.

Example 18-9. Test case for a custom JSP tag

// Imports omitted...

public class TestSearchTag extends JspTestCase {
 /** An instance of the SearchTag being tested */
 private SearchTag mTag = null;

 // Constructors omitted...

 /** Initialize our test fixture */
 public void setUp() {
 // Make a tag instance
 mTag = new SearchTag();
 // Set its JSP context
 mTag.setPageContext(this.pageContext);
 }

 /** Clean up our test fixture */
 public void tearDown() {
 // Call the context popBody() method, which will ensure that
 // it emits its generated content from the tag, if any
 this.pageContext.popBody();
 // Release the tag reference
 mTag = null;
 }

 public void testValidSearch() {
 // Set the name of the page variable where the results are to be
 // stored
 mTag.setVarName("people");
 // Set the first name search attribute on the tag

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 mTag.setFirstNamePattern("John");
 // Invoke the tag's doStartTag(), performing the search
 mTag.doStartTag();
 // If the tag performed as expected, there should be no
 // error message in "people-error", and a non-null collection
 // in the "people" page variable
 assertNull(this.pageContext.findAttribute("people-error"));
 assertNotNull(this.pageContext.findAttribute("people"));
 }
}

In our test, we're using a test fixture that includes an instance of a custom tag, stored in the member
variable mTag. We set up the fixture in our setUp() method by constructing an instance of the tag
and setting its JSP PageContext to the context provided to us by the JSP Cactus proxy. Again, this
emulates (partially) the management of the tag performed by a JSP engine within a web container.
In our tearDown() method, we clean up our fixture by invoking the popBody() method on the
PageContext. This ensures that the content generated by our tag, if any, is flushed into the response,
so that it can be checked for validity. In our case, the SearchTag doesn't generate any content, so the
call to popBody() isn't necessary, but we include it here for completeness.

Our tag, SearchTag, performs a search against a set of person data using the search attributes
defined on the tag. It stores the results as a collection of Person objects in the page variable specified
by the varName attribute on the tag. If an error occurs, the tag generates an error string and stores it
in a page variable named <varName>-error, where <varName> is the value of the varName attribute.
Our testValidSearch() test method tests the behavior of the tag when it's given a valid search
request. We set the value of the varName attribute, and then we set the firstNamePattern attribute to
"John". With the attributes set, we invoke the tag's doStartTag() method to exercise the tag's
search functions. After the doStartTag() method returns, we test the results directly by checking
the page variables through the PageContext. Since we're strictly testing the functionality of the tag
and not any surrounding JSP, there's no need to set request arguments in a beginValidSearch()
method. And since the results we need to test are JSP page variables that are available immediately
after the tag is finished processing, we can check the results directly in our test method and have no
need to check the HTTP response in the endValidSearch() method.

18.5.2.4. Testing servlet filters

If you're not already familiar with servlet filters and their role in the management of servlets and
JSPs, you should refer to Chapter 3.

Tests for servlet filters require their own Cactus proxy implementation and Cactus TestCase base
class since filter tests need access to the filter context parameters, similar to servlet tests and JSP
tests and their respective context parameters. Filter tests implement the FilterTestCase base class,
which provides the tests with wrappers for the FilterConfig and FilterChain objects associated with
the filter request.

We're going to write a test for a LoginFilter that is used to authenticate users as they request web
resources. The code for the filter isn't shown here (again, in part to save space, in part to cater to
orthodox extreme programming advocates). But the expected functionality of the filter is fairly

http://lib.ommolketab.ir
http://lib.ommolketab.ir

simple. The filter maintains the authenticated ID of the user in a session variable, whose name is
given by the value of the LoginFilter.AUTHN_ID_VAR constant. If a web request is picked up by the
filter and the corresponding session does not have this variable, the filter checks for two request
parameters, LoginFilter.USER_VAR and LoginFilter.PASSWORD_VAR, and these are compared against
a set of username/password data in an attempt to authenticate the user. If either of these checks
succeed (the session variable is present or the login parameters check out), the filter passes the
request down the filter chain, allowing the user access to the target page or web component. If the
session variable isn't present and the request parameters are not present in the request or if they
don't match any known users, it's assumed the user still needs to be logged in, and he's redirected to
a login page whose URL is given by the filter's loginURI property. This login page is expected to
prompt the user for a username and password and redirect him back to the original resource that
was requested.

Based on this description, the TestLoginFilter test in Example 18-10 partially tests the functionality
of the filter when a user makes a request without any login credentials. The test case uses an
instance of the LoginFilter as its test fixture, constructing and initializing the filter in its setUp()
method and destroying it in its tearDown() method. While initializing the filter, we invoke its init()
method, passing in the wrapped FilterConfig inherited from FilterTestCase and initialized by the
Cactus proxy.

Example 18-10. Test case for a servlet filter

// Imports omitted. . .

public class TestLoginFilter extends FilterTestCase {
 /** An instance of the filter under test */
 private LoginFilter mFilter = null;

 // Constructors omitted. . .

 /** Set up for tests */
 public void setUp() {
 // Construct and initialize the filter instance
 mFilter = new LoginFilter();
 try {
 mFilter.init(this.config);
 }
 catch (ServletException se) {
 fail("Unexpected servlet exception: " + se.getMessage());
 }
 }

 public void tearDown() {
 mFilter.destroy();
 mFilter = null;
 }

 /** Ensure that the filter performs a redirect when no authentication
 * credentials are present in the user session, and no login username and
 * password are provided as request parameters */

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public void testLoginRedirect() {
 // Ensure that the user session is clear of our authentication
 // credentials
 HttpSession session = this.request.getSession();
 if (session != null) {
 session.removeAttribute(LoginFilter.AUTHN_ID_VAR);
 }
 try {
 // Invoke the filter
 mFilter.doFilter(this.request, this.response, this.filterChain);
 }
 catch (IOException ioe) {
 fail("Unexpected I/O exception while invoking filter: "
 + ioe.getMessage());
 }
 catch (ServletException se) {
 fail("Unexpected servlet exception while invoking filter: "
 + se.getMessage());
 }
 }

 public void endLoginRedirect(WebResponse response) {
 // The response should contain an HTTP "MOVED TEMPORARILY"
 // status with a redirect
 assertEquals("Unexpected status code seen in response",
 response.getStatusCode(),
 HttpServletResponse.SC_MOVED_TEMPORARILY);
 }
}

In our single test, testLoginRedirect(), we ensure that the filter is given a clean request by clearing
the session of the authentication variable, if it's present from a previous user request (e.g., another
earlier test method may have set the session variable). Then we pass the request and response
objects to the filter's doFilter() method, along with the wrapped FilterChain inherited from
FilterTestCase. If the filter operates as expected, this should generate a redirect status in the
response, which we check in the endLoginRedirect() method. Note that we do not need to define a
beginLoginRedirect() method in this case because there are no request parameters to initialize. In
fact, for the purposes of this test, we need the request to have none of the login request parameters
in order to force the redirect we're testing.

In our example test, we're programmatically creating an instance of the filter being tested and
exercising its methods directly. Just as with servlets and JSPs, we also have the option of testing a
live filter that has been deployed in the web container. The advantages and disadvantages of the two
approaches are similar to the servlet case, and there are times when one or the other approach will
be needed, depending on the test. Using a direct filter instance allows you to exercise any methods
on the filter, including utility methods that are not directly called by the web container. Exercising a
live filter, on the other hand, gives you more fidelity in terms of seeing the true behavior of the
component in its natural context. But there are some complications to consider, such as configuring
the filter so that it can be tested cleanly, without interfering with the testing of other components in
the application. In our PeopleFinder application, for example, our LoginFilter would normally be

http://lib.ommolketab.ir
http://lib.ommolketab.ir

mapped to "cover" the entire application to ensure that only authorized users are using the functions
in the system. But for the purposes of testing, this would complicate our testing of the web
components (servlets and JSPs). With the LoginFilter in place, we'd have to ensure that all of our
servlet and JSP tests attach valid authentication credentials to the test requests by initializing the
session variable checked by the LoginFilter. This complicates our other tests, forcing them to
include details about another part of the system. So for testing purposes, we would likely set up a
special test configuration for the application, where the various web components being tested are
deployed without the LoginFilter protecting them.

Another point to consider about servlet filters and in-container testing: take care that your
application's servlet filters are not applied to the Cactus test proxies. If, for example, you define a
filter mapping in your web.xml file that covers all URLs in the application, like so:

<filter-mapping>
 <filter-name>LoginFilter</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

You will also be inserting this filter in front of the Cactus test proxies that will be added to your
application when it's deployed for testing. Your filters may interfere with the proper functioning of the
Cactus proxies, so you should be careful to control your mappings so application filters are applied
only to your application components. As discussed in "Cactus test proxies" earlier in this chapter, you
can control the way Cactus proxies are mapped to URLs in your application, so you should be able to
find a way to manage the various mappings appropriately.

18.5.2.5. Testing EJBs and component types

We've seen how various J2EE web components (servlets, filters, JSPs, JSP custom tags) can be
tested using the Cactus framework. Cactus can also be useful for testing other J2EE components
since it provides a way to run a test from inside a container environment. This ability to test from
within a container can be critical in many situations. There may be functionality on the components
that can be exercised only from within a container, for example. The most extreme example of this is
EJBs that expose only a local client interface. It's not possible to test this interface from a standalone
JVM running standard JUnit tests because a remote JVM will need a remote interface. You could
create remote interfaces for the purposes of testing, but then you wouldn't really be testing the
component as it will be used in the production environment. You'll also be adding new, unnecessary
code to your system that is simply there to support testing.

When writing a Cactus test for other J2EE components and for general server-side utility classes,
you'll need to decide which Cactus base class to use for your test. In most cases, the choice isn't
critical. Generally, when testing an EJB component, for example, you can extend your test from
ServletTestCase, FilterTestCase, or JspTestCase equally well. Any of these will allow your tests to
be driven by a server-side Cactus proxy. If your components or other server code need to be driven
from a particular type of web component, though, you'll need to use the corresponding type of test
case as the base classes for your tests so that you can properly initialize and exercise the
component. A real-world example of this is an authorization service that is invoked from within a
servlet filter in the system. The authorization service could be designed to check the user credentials

http://lib.ommolketab.ir
http://lib.ommolketab.ir

and, based on their assigned roles and permissions, route the user to different areas in the
application based on settings provided in the filter's initialization parameters. Any tests you wrote for
this service would be best written as an extension of FilterTestCase so that all the necessary context
parameters are available to pass to the service.

As a demonstration of testing other J2EE code with Cactus, Example 18-11 shows
TestPeopleFinderEJB, which tests the EJB from the PeopleFinder sample application.

Example 18-11. Sample Cactus test for an EJB component

// Imports omitted...

public class TestPeopleFinderEJB extends ServletTestCase {
 private PeopleFinder mFinderBean = null;
 private static Logger sLog =
 Logger.getLogger(TestPeopleFinderEJB.class.getName());

 // Constructors omitted. . .

 /** Create an instance of the EJB component under test */
 protected void setUp() {
 // Initialize an EJB reference
 String beanName = "java:comp/env/ejb/PeopleFinder";
 try {
 InitialContext ctx = new InitialContext();
 PeopleFinderHome home =
 (PeopleFinderHome)PortableRemoteObject.narrow(
 ctx.lookup(beanName), PeopleFinderHome.class);
 this.mFinderBean = home.create();
 }
 catch (NamingException ne) {
 fail("Unable to lookup EJB component using name '" +
 beanName + "': " + ne.getMessage());
 }
 catch (CreateException ce) {
 fail("Unable to create PeopleFinder bean: " + ce.getMessage());
 }
 }

 /** Clean up our EJB instance */
 protected void tearDown() {
 try {
 mFinderBean.remove();
 mFinderBean = null;
 }
 catch (RemoveException re) {
 fail("Removal of EJB in fixture failed: " + re.getMessage());
 }
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Verify that the EJB correctly rejects a query with no arguments
 public void testNoSearchArguments() {
 // Try to pass in an empty parameter set
 try {
 mFinderBean.findPeople(new SearchArg[0]);
 fail("PeopleFinder allowed an empty search");
 }
 catch (InvalidSearchException ise) {
 sLog.info("PeopleFinder correctly rejected an empty search");
 }
 catch (PersistenceException pe) {
 fail("Unexpected persistence exception: " + pe.getMessage());
 }
 }
}

Our test case extends ServletTestCasenot for any particular reason, just to allow our test to be
driven by a server-side Cactus proxy. We could just as easily have extended our test from
JspTestCase or FilterTestCase.

Our test maintains a handle on a PeopleFinder EJB component in its fixture. The setUp() method
looks up the EJB home interface through the server's JNDI context and then creates an EJB
reference. Our tearDown() method invokes the remove() method on the reference and then sets
the fixture variable to null. Our only test method, testNoSearchArguments(), verifies that the EJB
correctly rejects a search request that has no search parameters included. We have no
beginNoSearchArguments() and endNoSearchArguments() methods because the functionality we're
testing doesn't require any particular web context information like request parameters or session
data.

18.5.2.6. Testing asynchronous code

Even with the Cactus proxy architecture and its ability to test J2EE code running in a container
environment, some distributed and asynchronous architectures are difficult to test programmatically
using a unit test framework. Typical examples in the J2EE realm are JMS message handlers,
message-driven EJBs, and message-oriented SOAP services implemented using JAX-RPC or SAAJ. In
these situations, a message or request of some kind is generated and sent to the target handler. The
handler processes the message or request and generates a response or some side effects. In a
typical test scenario, you'll want to generate specific inputs and verify the results of the handler's
processing of those inputs. It's problematic in these cases because of the asynchronous and
distributed nature of the handlers. A JMS message handler, for example, will take an indeterminate
amount of time to be notified of the message by the JMS service. Once it has been notified, it may
generate side effects on the server or generate a response message. If the only result generated by
the JMS message handler is a response message, we can simply poll for the response message within
the Cactus test and verify its structure:

. . .
public void testJMSResponse() {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 QueueReceiver recvr = . . .;
 QueueSender sender = . . .;
 Message testMsg = . . .;
 // Send the test message
 sender.send(testMsg);
 // Poll for the expected response
 Message response = recvr.receive();
 // Validate response
 . . .
}
. . .

But even this simple case is complicated a bit by the fact that the handler may fail to generate a
message, meaning that we need to give up waiting for a message after some period of time and then
fail the test. But how long do we wait? Is 30 seconds too long? Two minutes? Sometimes these
questions can be answered by using maximum delay thresholds that have been defined as
requirements on the system. By definition, if a response is not received in this time, the handler has
failed. We're mixing functional testing and performance testing in this situation, but at least we can
define our test in a concrete way and validate the results.

If the handler generates side effects only on its side of the asynchronous interaction, your test must
have direct access to the side effects and be able to verify them. In some cases, this is possiblefor
example, when the JMS handler makes modifications to data stored in an RDBMS that we can check
from the test code. But there's still the issue of knowing when to check the results. How do we know
when the handler has received the message and finished processing it?

There are a number of approaches to dealing with this. The right answer for you depends on how and
what you need to test with regard to your asynchronous, distributed subsystems. A couple of possible
approaches are:

Use mock objects.

In the JMS case, for example, rather than creating a real JMS message and delivering it to your
handler through a real JMS service, you can create a mock Message and invoke the onMessage(
) callback on the handler directly. This will unit test the handler code, which is usually the goal.
And the removal of the JMS service from the picture converts the test scenario from an
asynchronous situation to a synchronous one (when the onMessage() method completes, the
handler is finished and all of its side effects should be committed).

Use white box testing instead of black box testing.

Rather than testing the functioning of the handler as a black box, pull apart the handler logic
and test its individual elements as a set of white box tests. If a SOAP service operation, for
example, invokes objects A, B, and C to respond to a particular request, write a series of unit
tests that exercises these same server-side objects in the same way as the SOAP service. This
also eliminates the asynchronous communications from the mix and tests the equivalent
functionality, but at the cost of managing your test suite against the implementation details to
ensure that your white box tests remain consistent with the unit's implementation.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

18.5.3. Running Cactus Tests

Cactus tests are run using a JUnit TestRunner, just like standard JUnit tests. The difference is that the
TestRunner needs to be run in such a way that it "knows" where to find the Cactus server-side
proxies so that the Cactus tests can pass their test requests along to be run in the server
container(s).

Cactus uses a set of Java properties to define the network location of its proxies. These properties
are set in a cactus.properties file that's read from the classpath used to run the TestRunner, or they
can be specified using command-line arguments to the JVM. The properties that Cactus supports are
shown in Table 18-1.

Table 18-1. Cactus runtime properties

Property name Description

cactus.contextURL
The base URL for the various Cactus web proxies. This property
is required.

cactus.servletRedirectorName

The name to which the Cactus servlet proxy is mapped in the
test application's web.xml deployment descriptor. The default
value for this is "ServletRedirector", which is the name used by
default by the cactifywar Ant target when it adds the Cactus
proxies to your web.xml file.

cactus.jspRedirectorName
Same as above, but this specifies the name for the JSP proxy.
The default value is "JspRedirector".

cactus.filterRedirectorName
Same as above, but this specifies the name of the servlet filter
proxy. The default value is "FilterRedirector".

When using a standalone JUnit TestRunner (such as the text-based TestRunner we used in our JUnit
examples or a TestRunner integrated with an IDE like Eclipse), we can set these properties in a
cactus.properties file and ensure that this properties file is in the classpath when we invoke the
TestRunner. The cactus.contextURL property is the only one that is strictly requiredthe others are
needed only if you used custom mappings for the Cactus proxies when you added them to your test
application. So a minimal cactus.properties file would be:

Set the base URL for the Cactus proxies
cactus.contextURL = http://localhost:8080/jent-peopleFinder-test

If any Cactus tests are run with this properties file, the ServletTestCase tests will attempt to connect
to the servlet proxy at the URL http://localhost:8080/jent-peopleFinder-test/ServletRedirector, the
JspTestCase tests will talk to the JSP proxy at http://localhost:8080/jent-peopleFinder-

http://localhost:8080/jent-peopleFinder-test/ServletRedirector
http://localhost:8080/jent-peopleFinder-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

test/JspRedirector, and so on.

With this properties file in our classpath somewhere, we can invoke Cactus tests from the command
line just as we did with regular JUnit tests:

> java junit.textui.TestRunner
com.oreilly.jent.people.servlet.TestPeopleFinderServlet
...
Time: 5.763

OK (3 tests)

Of course, we still need to ensure that the application server running our test application (and the
Cactus proxies) is up and running before we do this.

This same approach can be used to run Cactus tests using JUnit facilities built into IDEs like Eclipse.
Simply configure the JUnit tool to include the proper cactus.properties file in its runtime classpath,
and it will be able to drive your server-side Cactus tests along with standard JUnit tests.

18.5.3.1. Running Cactus tests with Ant

We can also use the standard junit Ant task to drive our Cactus tests if we want. Just as with the
other TestRunner examples, we need to make sure that the appropriate cactus.properties file is in the
classpath of the junit task when we invoke it:

<target name="run-server-tests-junit">
 <junit printsummary="on"
 showoutput="true">
 <classpath>
 <!-- Add the application classes and the test classes -->
 <path refid="java.test.compile.classpath"/>
 <path location="${java.test.classes.dir}"/>
 <!-- Add the directory containing the cactus.properties -->
 <path location="${config.dir}"/>
 </classpath>
 <test name="com.oreilly.jent.people.servlet.TestPeopleFinderServlet"/>
 </junit>
</target>

Notice that we're including all of the application classes (specified elsewhere as the value of the
java.test.compile.classpath path), and the test classes themselves (specified using the
java.test.classes.dir directory, where the test classes are compiled). Again, before invoking the
junit task, we'll need to ensure that the test application server is up and running. If we have Ant
targets defined to start the test server, we could add those as dependencies on this testing target.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As an alternative to driving server-side Cactus tests using Ant, Cactus includes the cactus Ant task.
This task essentially plays the same role as the junit task (in fact, cactus is implemented as an
extension of the junit task). The difference is that cactus also starts up the test application server
before running the Cactus tests you specify and shuts down the application server after it runs the
tests. This task is especially useful when you're using one or more dedicated application servers for
testing, and when the application servers are running locally, allowing the cactus task to start and
stop them.

Of course, in order to start and stop the application server running the test application, the cactus
task needs to be told about the server configuration (such as what type of server it is and where it is
installed). The cactus task supports several popular server types, including JBoss, WebLogic, and
Tomcat. It does this with specific subelements that you use to specify the server parameters. As an
example, the following target uses the cactus task to drive a set of tests run in a local JBoss server:

<target name="run-server-tests-cactus">
 <cactus earfile="${basedir}/${ant.project.name}-test.ear"
 printsummary="yes">
 <classpath>
 <path refid="java.test.compile.classpath"/>
 <pathelement location="${java.test.classes.dir}"/>
 </classpath>
 <containerset>
 <jboss3x dir="/tools/servers/jboss-3.2.5"
 config="default"
 port="8080"/>
 </containerset>
 <test name="com.oreilly.jent.people.AllServerTests"/>
 </cactus>
</target>

In the main <cactus> element, we specify the test application archive file to be deployed for testing
using the earfile attribute. The cactus task also supports the other attributes used with the junit
task to toggle summary output, forking options, and the like. Within the cactus task, we specify the
classpath needed to run the tests. The cactus task needs this information in order to run the
specified tests in an internal TestRunner. Notice that we do not have to provide a cactus.properties
file in the classpath when using the cactus task. We are specifying the test application archive to run,
and the cactus task can extract the mappings for the Cactus proxies from this. The base URL for the
proxies will be constructed from the server parameters given in the server-specific child elements.

Next, we specify one or more application servers to be used to run the test application and the tests,
using the <containerset> child element. Each server used to run the tests is specified as a child
element of <containerset>. In this example, we've specified a single JBoss 3.x server, installed in the
/tools/servers/jboss-3.2.5 directory. We're using the default server from this JBoss installation,
running on port 8080. If you are using a server not directly supported by the cactus task with its own
child element, you can use the <generic> element within the <containerset>. This element lets you
specify other Ant targets that should be used to start and stop the application server you're using as
well as the HTTP port for the server's web container. You can then implement the start and stop
targets in Ant to suit the particular application server in use.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

18.5.3.2. Running Cactus tests using ServletTestRunner

Possibly the simplest way to run your Cactus tests is to use the ServletTestRunner provided with
Cactus. This TestRunner is actually a servlet that you can invoke from any web browser. You deploy
the ServletTestRunner servlet with your test application, mapping it to a particular URL in your
application's web context by adding entries like the following to your test application's web.xml file:

<servlet>
 <servlet-name>ServletTestRunner</servlet-name>
 <servlet-class>
 org.apache.cactus.server.runner.ServletTestRunner
 </servlet-class>
</servlet>

. . .

<servlet-mapping>
 <servlet-name>ServletTestRunner</servlet-name>
 <url-pattern>/ServletTestRunner</url-pattern>
</servlet-mapping>

This servlet requires the Cactus libraries in order to run, but these will already be included in your
test application to support your Cactus tests.

Once the ServletTestRunner is deployed, you can invoke specific TestCase or TestSuite classes using
the suite URL argument to the servlet. Assuming that our server is running locally on port 8080, that
the context root for the test application is jent-peopleFinder-test, and that the mapping shown here
is used for the ServletTestRunner, then to run our TestPeopleFinderServlet test case, we'd go to our
browser and navigate to the URL:

http://localhost:8080/jent-peopleFinder-test/ServletTestRunner?
suite=com.oreilly.jent.people.servlet.TestPeopleFinderServlet

If all goes well, the results will be returned to the browser as an XML file, as shown in Figure 18-3.

Figure 18-3. Results of TestPeopleFinderServlet

http://localhost:8080/jent-peopleFinder-test/ServletTestRunner?
http://lib.ommolketab.ir
http://lib.ommolketab.ir

This output format is pretty raw, useful only in browsers that render XML directly (like Mozilla Firefox
or Internet Explorer) or when you want to take the XML output and postprocess it yourself to
generate a report. If you'd prefer to have the results provided in a different output format, the
ServletTestRunner allows you to specify an XSL transform file to process the output of the test run.
Just include the XSL transform file in your test application's web archive and tell the
ServletTestRunner where to find it by setting a servlet init parameter named xsl-stylesheet. Cactus
provides a default stylesheet called cactus-report.xsl that transforms the XML output into HTML. If
we put this file in the styles directory of our web archive, we could optionally apply it to the test
output by adding the <init-param> element to the servlet web.xml entry as shown here:

<servlet>
 <servlet-name>ServletTestRunner</servlet-name>
 <servlet-class>
 org.apache.cactus.server.runner.ServletTestRunner
 </servlet-class>
 <init-param>
 <param-name>xsl-stylesheet</param-name>
 <param-value>styles/cactus-report.xsl</param-value>
 </init-param>
</servlet>

We can then choose to apply this transform to the test output by including a "transform" URL
argument (with any value) to the URL used to invoke the ServletTestRunner. The result will look like
Figure 18-4.

Figure 18-4. Transforming output from TestPeopleFinderServlet with XSL

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 19. Struts
If you browse to the home page of the Apache Struts project (http://struts.apache.org), you will
discover in the first sentence or two what Struts is: Struts is an open source framework for building
Java web applications. Each of the key words in this brief definition of Struts encapsulates a crucial
dimension of its overall scope and requires some expansion.

http://struts.apache.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

19.1. The Scope of Struts

Struts is open source. We wouldn't normally belabor the open source nature of Struts, except that
Struts was one of the first widely adopted open source Java projects. Unlike many of the other APIs
presented in this book, Struts did not emerge from Sun Microsystems or from the Java Community
Process, and there is no Java Specification Request for it. The original version came from the
keyboard of a single individual, Craig McClanahan, who had contributed to Apache JServ and Tomcat
and who is now the architect of the Sun Java Studio Creator. In part due to this single point of origin
and the need to "scratch an itch" (the desire for a robust web application framework that could
support internationalization), Struts has its idiosyncrasies and some irregular naming conventions.
Indeed, JSF (Chapter 5) may be seen in some ways as a more refined response to Struts, and
McClanahan was a cospecification lead for JSF.

As of January 2005, Struts was considered finished, and the Struts team now refers to it as Struts
Classic. Their new offering will be Struts Shale, a JSF-based framework.

As an open source project, you get the Struts code under a generous license. While Struts is mature
and stable, it's good to have the source so that you can adapt it as necessary. (Indeed, we urge you
to download the source from http://struts.apache.org and study it as you read this chapter; we will
be making occasional references to the code.) In open source fashion, you can add fixes of your own
and feed them back into the code base, thus giving back to the Struts community. Even if you don't
contribute a bug fix yourself, there is some possibility that a bug you discover in a current release
and report to the Struts project will be fixed for a later release.

Struts is a framework. Struts is designed to take some of the tedium out of web development. At its
best, it provides techniques for dealing with common problems according to the best known
practices; at the very least, it provides techniques that work fairly well. Struts provides a large
number of features for designing sophisticated web applicationsthere are classes to support
internationalization,[1] to enable a number of different data access strategies, and to render your
information using several different presentation layers. In short, Struts provides the foundation for a
web-based application so that you can get on with your domain-specific job of coding.

[1] Internationalization was one of the original motivators for Strutssee Craig McClanahan's blog entry on the subject at

http://blogs.sun.com/roller/page/craigmcc/20040927.

Struts is for building web applications. It is not a web application, and it does not build the application
for you. Because it is a tool, and only a tool, it can be used badly.

The Struts home page also tells us that the framework encourages application architectures based on
the model-view-controller (MVC) pattern. Struts implements what the Sun Blueprints[2] call the
Model 2 architecture, in which a servlet (or its delegate) manages client interaction and business logic
execution, while presentation is located primarily in JSP pages. The MVC pattern allows for a clean
separation of the modelbroadly speaking, the code that deals with your business problemand the
view, or presentation. Orchestrating these two areas of responsibility is the controller, which provides
for communication between the model and the view. Users interact with views, and the controller
mediates between the views and the modelpassing state changes from the model back to the view
and converting user activities from the view into operations that can be performed on the model. The

http://struts.apache.org
http://blogs.sun.com/roller/page/craigmcc/20040927
http://lib.ommolketab.ir
http://lib.ommolketab.ir

separation of view and model has a few big benefits. First, by decoupling the view from the model, it
is much more likely that you'll be able to redesign the "skin" of an application without needing to
touch the code that deals with business rules, data access, or communication with other services.
Second, the division of responsibilities in code between model and view frequently matches the
differences in skills on a development team. By splitting the concerns of the view and the model into
different components, your staff can specialize in the areas they know best: the HTML and JSP
developers can work with the view, and the backend specialists can work with the model. Finally,
separating user interface code from business code can make both parts easier to test.

[2] See Designing Enterprise Applications with the J2EE Platform(Addison-Wesley).

Struts is not the only MVC framework for web applications out there. Other worthy projects include
WebWork and Maverick. Struts, however, was among the first web application frameworks that
provided definite value to developers. It has a large mind share, making it a less risky choice for
architects concerned about finding qualified developers to maintain their applications in the future.

And then there's JSF. While Struts and JSF can coexist, the choice between them is a matter of
orientation. With Struts, you are essentially modeling and mapping the request/response structure of
HTTP. The events to which you respond are fundamentally those of the client browser, while with JSF,
the events are those of your user interface components. JSF does more for you, and you will likely
find that you are writing less code; this is true for the JSF example in this book. Typically with JSF,
you will yield more control to the framework. JSF was also designed to work well with tools; your IDE
may be able to generate much of the code for a JSF application, in the same way that Swing or AWT
components may be developed on the fly. As the Cockney proverb has it, "You pays your money and
you takes your choice," except that, given the generous licensing of both Struts and JSF, you will pay
for your choice in time, not money.

This chapter focuses on the architecture of Struts and the key classes that make up its version of the
MVC pattern. The chapter also presents some of the Struts features that make it a useful framework
for a basic application. You may find that Struts is more than you need for a simple application. Most
applications grow, however, and it is often the case that choosing an appropriate framework such as
Struts in the early stages can make refactoring easier later on.

Before we get started, here's a caveat. Struts is a large project, and we will not discuss certain
important features of Struts, such as its ability to manage more than one "module," its support for
internationalization, and its provisions for non-HTML page representations (e.g., WML) and non-JSP-
rendering APIs (e.g., Velocity). We will not provide exhaustive accounts of all of the tags and
attributes that may be defined in the Struts configuration file, the Struts validator configuration files,
and the Struts Tags API. For discussion of all of these features and a complete reference to Struts,
see O'Reilly's Programming Jakarta Struts by Chuck Cavaness. In this chapter, we will stick to the
most common case: HTML pages rendered by JSP.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

19.2. The Sample Application

To illustrate some of the most important features of Struts, we provide an application called Library-
Struts. Library-Struts allows you to log in as a user (a Borrower or a Librarian) and add books, check
out books, and list all of the books. This sample application has the same functionality as the
example in the JSF chapter (in fact, the JSF application was developed first, and the Struts version is
a port).[3] For a high-level description of the purpose of this application, see Chapter 5. For readers
attempting to make a choice between Struts and JSF, a comparison of these chapters and the sample
applications may be illuminating.

[3] Perhaps the only known port from JSF to Struts?

To run the sample Struts application, you will need Version 1.2.4 of Struts (http://struts.apache.org)
and a Servlet 2.3 (or later) compatible container such as JBoss Version 4 (http://www.jboss.org).
The downloadable package of examples for this book, available at
http://www.oreilly.com/catalog/javaentnut3, includes an Ant script for building the application and
deploying it to JBoss.

http://struts.apache.org
http://www.jboss.org
http://www.oreilly.com/catalog/javaentnut3
http://lib.ommolketab.ir
http://lib.ommolketab.ir

19.3. The Development Process with Struts

Prefatory to creating a Struts application, you must do three basic things. First, determine what
views will be displayed, especially the forms in the application, the data they will collect, and the
actions that will be linked to the data collected. Second, record those decisions in an XML
configuration file for the Struts controller (struts-config.xml), representing the forms and actions.
Third, write the classes representing the forms and actions. It is crucial to note that different
developers may tackle these tasks in a different order. If you are working from existing
requirements, you would likely move straight to the XML configuration file. If application flow and
data may be defined piecemeal, you might start working on some form and action classes and
integrate them gradually into your configuration file. If you are a new Struts developer, you will likely
find that you are constantly moving back and forth between the configuration file, your views, and
your Java code; you will also find that, while reading this chapter, you will need to move back and
forth between the section discussing the Struts configuration file and the other aspects of a Struts
project. This tension between what belongs in the configuration file and what belongs in the other
resources has motivated a number of Struts tools such as IDE plug-ins, XDoclet templates, and so
forth; but, as with many frameworks, until you have experienced the pain, you won't obtain much
gain from using them.

Here is a sample to-do list for getting your Struts application off the ground:

Steps 1-4: Determine views, actions, and flow

Enumerate all of the views that will be sent to the browser. Typically these are JSP pages.1.

For each view with HTML form data, itemize the groups of parameters that actions will process.
You will implement these as Struts ActionForm beans. At this point, you might also consider any
validations that are required on these parameters.

2.

Define all of the "actions" that your application must perform. Typically these are behaviors that
respond to parameterized data submitted by an HTML form using the HTTP POST method. You
will implement these as Struts Action classes.

3.

Determine the flow of your application. To do this, you will need to decide on the possible
outcomes of each page and to what other action or page control should be directed, according
to each outcome.

4.

Step 5: Configure

Write the Struts configuration file that defines for Struts the relationships between views (JSP),
actions (Action classes), and groups of parameters (ActionForm classes).

1.

Steps 6-7: Write code

1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Write your JSPs, Action classes, and ActionForm classes.1.

Compile your code and build your application for deployment.2.

Let's take a look at the sample application with this to-do list in mind and consider, in order, a view
(item 1), its form data (item 2), the action that will respond to form data (item 3), and to what page
the user should be directed after the form data has been processed (item 4). Items 5 and 6 will be
addressed through the rest of the chapter. For item 7, compiling and building your application, see
the file layout and Ant script with the code bundle.

After the librarian logs in (username: librarian; password: librarian), one option is to follow the Book
Administration link and change the status of individual books from checked out to checked in or vice
versa. Figure 19-1 shows what the page looks like in my browser.

Figure 19-1. Library administration page

Following our to-do list (and at the risk of being repetitive):

Clearly this is a dynamic view of some datathe books that are in the Library. One book is
currently checked out: Crawford and Kaplan's J2EE Design Patterns (it must be a good one!).
The view is represented with a JSP file, /view/adminbooks.jsp.

1.

The form data for this view is the list of checkboxes in the third column. (Typically a form has a
submit button; throughout the application, we detect changes in form inputs with JavaScript
and submit the form immediately; this lends the application a more "event-driven" feel.) The
form data is represented by a Java class, AdminBooksActionForm, extending the Struts
ActionForm class.

2.

3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When a checkbox's state is changed, Java code will change the state of an object that holds all
the data pertinent to the Library. This action is represented by another Java class,
AdminBooksAction, extending the Struts Action class.

3.

Once the checkbox state changes have been registered in the Library, we return the user to this
very page. In other words, the "forward" upon successful completion of the action is to
/view/adminbooks.jsp. The relationship between the view, the form, the action, and the forward
is represented by an ActionMapping, an object that is created by Struts when it reads its
configuration file, struts-config.xml. If the user wants to go do something else, she clicks the
Return Home link.

4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

19.4. The Struts Controller

In a moment we will discuss the Struts approach to the MVC controller and then provide detail on the
building-block classes, org.apache.struts.action.Action and org.apache.struts.action.ActionForm.
But first we should take a step back and look at the nail for which Struts is attempting to be the
hammer. In many web applications, the basic HTTP interaction is not especially complicated. An HTTP
request includes at least the name of a resource and zero or more parameters. Based on the name of
the resource and the parameters, control must be handed off to specialized code that performs an
action. The action determines what response is appropriate; this HTTP response is then encoded and
returned to the requester, typically with HTML as the message body. So far, so good.

But in ad hoc web programming, it is all too easy to handle each of these tasks in an idiosyncratic
way. For example, a developer might write a servlet to handle a request and might create his own
methods and conventions for validating parameters (ensuring that certain parameters are
syntactically valid phone numbers, perhaps). Meanwhile, another coder, working primarily on GET
requests, writes her own method for validating parameters. Clearly, there are organizational and
maintenance issues here with the existence of two modules doing similar tasks, maintained by two
different people. But the larger issue is that there are well-known patterns for handling such
minutiaeand if handled once, and well, those patterns become amenable to all of the good features
we associate with object-oriented programming: encapsulation, separation of responsibilities,
inheritance where appropriate, and the rest. In fact, validation is small potatoes compared to the
main course of organizing the management of actions in a systematic way. When it comes to the
more elaborate requirement of making it easy to rearrange the relationships between requests,
actions, and responses, we need a framework such as Struts to provide an object representing each
piece in request/response processing.

Struts provides an object encapsulating each of the features in our earlier summary of request
processing. It's worth noting at this point a significant difference between Struts and JSF. In Struts,
the developer is exposed more directly to the underlying request processing, whereas in JSF, much
more of the detail of request processing is handled by the framework. This distinction also affects our
discussion of these two frameworks. For Struts, you will find that we frequently talk about classes
and methods, whereas in JSF, we talk about XML declarations that define the "wiring" of the
relationships between beans. Let's look at request processing again, but from the point of view of
Struts.

The starting point is the connection between the servlet container and Struts. Struts typically
monopolizes all requests in your web application with its own implementation of
javax.servlet.Servlet (org.apache.struts.action.ActionServlet). Control is passed to this Servlet
by the container. It is this ActionServlet that chooses which class should handle any particular
request. The choice is based on settings in an XML file so that you can change the control flow
without recompiling.

An Action class handles the request and extends org.apache.struts.action.Action. This Action
class has an execute method that you will almost always want to override. It is passed the request
and response instances that the ActionServlet receives as well as references to the form that
contains the parameter data and a "mapping" that defines the control flow.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

An ActionForm represents the parameter data. Once again, you extend a Struts class:
org.apache.struts.action.ActionForm.

Now for some more detail on each of these fundamental classes.

19.4.1. The ActionServlet

The fundamental feature of Struts is a servlet, org.apache.struts.action.ActionServlet, which
delegates incoming HTTP GET and POST requests to a request processor
(org.apache.struts.action.RequestProcessor) and from there to special-purpose handlersinstances
of the action classes.

Specify the Struts ActionServlet and a mapping for it in the web.xml file for the application:

 <servlet>
 <servlet-name>Struts Action Servlet</servlet-name>
 <servlet-class>org.apache.struts.action.ActionServlet</servlet-class>
 <init-param>
 <param-name>config</param-name>
 <param-value>/WEB-INF/struts-config.xml</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>

 <servlet-mapping>
 <servlet-name>Struts Action Servlet</servlet-name>
 <url-pattern>*.do</url-pattern>
 </servlet-mapping>

The servlet-name value can be anything you like, although it should be descriptive. You should also
specify a parameter named config whose value defines the location of a Struts-specific XML
configuration file. The default value for the location of this configuration file is /WEB-INF/struts-
config.xml (for more details, see "The Struts Configuration File" later in this chapter). It is
conventional to specify this file even when you are using the default location so that it is obvious in
your web.xml where the Struts-specific configuration lives. Struts must perform its configuration
work before any requests are served, so the <load-on-startup> element is essential to ensure that
Struts initializes first (note: if you have a singleton class that should be initialized when Struts starts,
see "Struts Plug-ins" later in this chapter). All requests to URL patterns matching *.do will be handled
by the Struts ActionServlet. Mapping Struts actions to the .do extension is conventional. Some
Struts developers map a path to the Struts ActionServlet, which can be handy if you want to provide
J2EE security for the path that is mapped to Struts actions (see Chapter 10) or put a servlet filter in
front of your Struts actions (see Chapter 3). Note that if you're using Struts modules, you must use
extension mapping.

When ActionServlet is initialized by the servlet container, it performs a number of tasks. It initializes
Struts "modules," it sets up Struts-managed DataSources, it initializes Struts plug-ins, and it reads in
and processes the Struts configuration file.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Once initialized, the ActionServlet will satisfy requests that are passed to it by the container. When
doGet() or doPost() is called, ActionServlet immediately calls a protected method that then
delegates to an instance of a RequestProcessor .

19.4.2. The RequestProcessor

If you've downloaded the source to Struts, open the source for
org.apache.struts.action.RequestProcessor and follow along. Understanding how this class uses
resources is the key to becoming an adept Struts developer. By the way, here as elsewhere with
Struts, the source reveals a number of tidbits that can be quite helpful; as a tiny but useful example,
you will see where Struts provides debug messages to the console.

When an HTTP GET or POST request is passed to the process method of RequestProcessor, the
following tasks are performed in this order:

If the request is a multipart request, it is handled by a special processor
(org.apache.struts.upload.MultipartRequestWrapper). Multipart requests are typically file
uploads.[4]

[4] To learn more about uploading and Struts, see recipe 7.10 in Bill Siggelow's Jakarta Struts Cookbook
(O'Reilly).

1.

The path is extracted from the request. This path will be used as the basis for selecting a
"mapping" (an instance of ActionMapping) in step 7, which in turn will determine the selection of
the ActionForm (step 9) and Action (step 12) for handling the request (step 13). (The
relationship between the mapping, the Action, and the ActionForm is defined in the struts-
config.xml filesee "The Struts Configuration File" later in this chapter.)

2.

If the controller has been configured to select the locale automatically, the user's locale is set.
This locale will be the basis for the choice of a resource bundle with defining properties for that
locale. (For more information, see the internationalization section of the current Struts User
Guide at http://struts.apache.org or Chapter 12 of O'Reilly's Programming Jakarta Struts.)

3.

The controller sets content and caching headers, if so configured.4.

The method processPreprocess() is called. If you extend the class RequestProcessor and
override this method, you may conduct some preprocessingfor instance, you might add special
attributes to the request or you might manipulate the session data. (We provide an example of
a custom RequestProcessor later.)

5.

Messages that were "cached" for display in the prior request are removedin particular, error
messages managed by the org.apache.struts.action.ActionErrors class and the
<html:errors> tag are removed.

6.

Based on the path extracted in step 2, the ActionMapping for the current request is looked up.7.

Roles are checked for the request and mapping; if the user is not allowed to proceed, the
processor doesn't continue.

8.

9.

http://struts.apache.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.

The ActionForm, if any, is determined based on the ActionMapping. If an ActionForm is found, it
is prepopulated. If the ActionForm has been configured to require validation, it is validated.

9.

If a forward has been specified for this mapping, the request is forwarded. (For discussion of
redirects and forwards, see the sections on "Servlet Responses" and "Request Dispatching" in
Chapter 3.)

10.

If an include has been specified for this mapping, the inclusion takes place.11.

The Action specified for the mapping is looked up or created.12.

The action is processed, returning an ActionForward that specifies what is to be done next.13.

The returned ActionForward's path is processed, meaning that either a servlet-style forward is
performed via a RequestDispatcher or a redirect response is returned.

14.

The key steps in this process are the ones that select the ActionMapping based on the path, populate
and validate the ActionForm, acquire the Action, process the Action, and then return the
ActionForward.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

19.5. The Action Class

The Action class is an adapter between servlet requests and your business logic. In other words, it is
appropriate for your Action class to handle issues such as gathering data from the user interface,
controlling flow through the application, and shaping the data for presentation. But it is inappropriate
for the Action class itself to handle business functions. For example, if your Action class is updating a
database itself, you have probably inappropriately put business functions into the web tier.

You will need to extend org.apache.struts.action.Action for each Action you want to define. The
most important method to override is execute(). This example is from AdminBooksAction:

 public ActionForward execute(ActionMapping mapping, ActionForm form,
 HttpServletRequest request, HttpServletResponse response)
 throws Exception {
 AdminBooksActionForm adminBooksForm = (AdminBooksActionForm) form;

 Map books = getLibrary().getBooks();

 // First set all books to checked in
 List bookList = getLibrary().getBookList();
 Iterator i = bookList.iterator();
 while (i.hasNext()) {
 Book book = (Book) i.next();
 if (book != null) {
 book.setCheckedOut(false);
 }
 }

 // Now based on the checks in the form, set checked books
 // to "checked out"
 String[] picks = adminBooksForm.getPicks();
 if (picks != null) {
 for (int j = 0; j < picks.length; j++) {
 ((Book) books.get(picks[j])).setCheckedOut(true);
 }
 }
 return mapping.findForward("adminbooks");
 }

This Action handles the form submission from /view/adminbooks.jsp. The pattern here is classic and
is simply a version of the request processor's earlier tasks list but with the focus on the Action:

1.

2.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The browser submits form data via an HTTP POST.1.

The controller (RequestProcessor) interprets the path requested by the HTTP POST
(/adminBooks.do) and uses the path to find the appropriate Action (AdminBooksAction). Then
the controller populates the form bean (AdminBooksActionForm).

2.

The controller calls the action's execute method, passing a reference to the form bean.3.

AdminBooksAction obtains a reference to a component of the model with getLibrary(
).getBooks(). (getLibrary() is a superclass method in LibraryBaseAction.) In a more
complicated application, the model might be accessed via a database connection or a message
queue. The model might be anything else that should be manipulated based on user activity. We
might also obtain a reference to a remote business object (say a stateless session EJB) whose
state will be changed. In this example, the Map of books is simply a reference to data within the
Library singleton.

4.

AdminBooksAction checks the properties from the form bean. Based on information submitted
via the form bean, changes are made in the model.

5.

If need be, the Action adds, removes, or changes request and session scope attributes. (In the
specific case of AdminBooksAction, no such changes are made.)

6.

AdminBooksAction uses the ActionMapping passed in via the execute method to look up an
ActionForward to which Struts should pass control. In this case, we simply return an
ActionForward named adminbooks (defined in the global-forwards section of struts-config.xml)
that is aimed back at the path for a Struts Action that sets up the checkboxes for the
/view/adminbooks.jsp page.

7.

The controller forwards control to the appropriate view, specified by the ActionForward.8.

The view renders the page for the browser.9.

We have now covered enough information to look at this in schematic form in Figure 19-2follow the
numbers from the browser at the top.

Figure 19-2. Struts components satisfying a request

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Of course, your Action is playing its part in the larger context of Struts, so for more of the story, we
must zoom out to the RequestProcessor .

19.5.1. RequestProcessor and Actions

The Struts RequestProcessor will instantiate only one instance of your Action class; multiple threads
will use the class at the same time. This means the class must be threadsafe: your instance and
static variables must not store data for any specific request. Basically, your Actions are essentially
delegates of the Struts RequestProcessor.

Before control is handed over to your action, the RequestProcessor calls the processPreprocess(
)method. If you extend RequestProcessor and implement your own processPreprocess(), you will
have a convenient means to perform some common tasks that run before all calls to the execute
methods of Actions. In the example application, a UserSession object is used to aggregate all

http://lib.ommolketab.ir
http://lib.ommolketab.ir

information associated with a user; a custom RequestProcessor ensures that the UserSession object
is always available:

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;

import org.apache.struts.action.RequestProcessor;

public class LibraryRequestProcessor extends RequestProcessor {

 protected boolean processPreprocess(HttpServletRequest request,
 HttpServletResponse response) {
 UserSession userSession = null;
 HttpSession session = request.getSession();
 if (session != null) {
 userSession = (UserSession) session
 .getAttribute(WebGlobals.USER_SESSION_KEY);
 if (userSession == null) {
 userSession = new UserSession();
 session.setAttribute(WebGlobals.USER_SESSION_KEY, userSession);
 }
 }
 return super.processPreprocess(request, response);
 }
}

Your custom RequestProcessor must be specified in the Struts configuration file via the <controller>
element:

 <controller
 processorClass=
 "com.oreilly.jent.struts.library.ui.LibraryRequestProcessor"/>

Developers often provide convenience methods in a "base" Action class. In the example,
LibraryBaseAction provides a protected method for retrieving a reference to a UserSession (which is
available because of the work done in the LibraryRequestProcessor.processPreprocess() method).
Here it is:

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpSession;

import org.apache.struts.action.Action;

public abstract class LibraryBaseAction extends Action {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 protected Library getLibrary() {
 return (Library) servlet.getServletContext().getAttribute(
 WebGlobals.LIBRARY_KEY);
 }

 /**
 * Return the UserSession from the session.
 *
 * @param request
 * @return the UserSession
 * @throws RuntimeException
 */
 protected UserSession getUserSession(HttpServletRequest request) {
 HttpSession session = (HttpSession) request.getSession();
 if (session == null) {
 throw new RuntimeException("Couldn't get a reference to the Session");
 }
 UserSession userSession =
 (UserSession) session.getAttribute(WebGlobals.USER_SESSION_KEY);
 if (userSession == null) {
 throw new RuntimeException
 ("Couldn't retrieve UserSession attribute from Session");
 }
 return userSession;
 }
}

The combination of overriding RequestProcessor.processPreprocess() to ensure that resources are
available for an Action's execute method, coupled with convenience methods in a "base" Action that
access such resources, can be a very helpful way to organize your code and avoid bloated Action
classes and copy-and-paste-style code copying.

19.5.2. The Struts Configuration File

Much of the power of Struts derives from its configuration file . Little is hardwired in the Struts
management of your application's logic since the names for specific components, as well as the
relationships between cooperating components, are specified in the struts-config.xml file. Because of
this deployment-time level of abstraction, it is frequently possible to tweak a Struts setting, or
substitute an implementation of some functionality, without recompiling any of your code. The struts-
config.xml file provides control over the display name and description of your application, data
sources that will be managed by Struts, form beans, action mappings, the specific implementation of
the controller class, message resources, and Struts plug-ins, as well as exceptions and forwards that
are available to actions globally. Typically you will find that you will define most of these elements.

As mentioned earlier, the location of the Struts configuration file is defined in the web.xml file as a
parameter ("config") on the definition of the ActionServlet. The conventional value is WEB-

http://lib.ommolketab.ir
http://lib.ommolketab.ir

INF/struts-config.xml. The struts-config.xml file for the sample application starts and ends like this:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE struts-config PUBLIC
 "-//Apache Software Foundation//DTD Struts Configuration 1.2//EN"
 "http://jakarta.apache.org/struts/dtds/struts-config_1_2.dtd">

<struts-config>

 <!-- Omitted -->

</struts-config>

Below the root element (<struts-config>), we define a number of elements that are found in almost
all Struts applications. The DTD for the struts-config.xml file specifies that they must appear in this
order; none are required (for a complete rundown of the elements, you will need to study the online
Struts documentation and the DTD for the configuration file
(http://jakarta.apache.org/struts/dtds/struts-config_1_2.dtd). Table 19-1 lists elements that are
frequently used in Struts applications.

Table 19-1. Typical configuration elements

Element name Purpose

<form-beans> Defines the form beans (ActionForms).

<global-forwards>

Defines names for "forwards," paths to which you can pass control. By
specifying a name here, you can decouple the name used for a specific
resource. Thus, instead of referring to login.jsp, you can refer to the
forward named loginshould it happen that you need to introduce a new
login JSP (perhaps login2.jsp), you can change the forward path in the
configuration file without having to change any of your references
elsewhere.

<action-mappings>
Defines the mappings (the relationship between a path, an Action, and an
ActionForm).

<controller>
The controller to use. If not specified, the default,
org.apache.struts.action.RequestProcessor, will be used.

<message-resources> The name of a properties file that defines name/value pairs for messaging.

<plug-in>
A plug-in is a class that implements the interface
org.apache.struts.action.PlugIn.

http://jakarta.apache.org/struts/dtds/struts-config_1_2.dtd
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The struts-config.xml file for the sample application (Example 19-1) uses all of these elements (for
the sake of this illustration, we have removed some internal comments regarding aspects of the
application you might want to change).

Example 19-1. struts-config.xml

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE struts-config PUBLIC
 "-//Apache Software Foundation//DTD Struts Configuration 1.2//EN"
 "http://jakarta.apache.org/struts/dtds/struts-config_1_2.dtd">

<struts-config>
 <form-beans>
 <form-bean name="LoginForm"
 type="com.oreilly.jent.struts.library.ui.LoginActionForm"/>

 <form-bean name="BookDisplayForm"
 type="com.oreilly.jent.struts.library.ui.BookDisplayActionForm"/>
 <form-bean name="AddBookForm"
 type="org.apache.struts.validator.DynaValidatorForm">
 <form-property name="title" type="java.lang.String"/>
 <form-property name="author" type="java.lang.String"/>
 <form-property name="isbn" type="java.lang.String"/>
 <form-property name="addBookAction" type="java.lang.String"/>
 </form-bean>
 <form-bean name="AdminBooksForm"
 type="com.oreilly.jent.struts.library.ui.AdminBooksActionForm"/>
 </form-beans>

 <global-forwards>
 <forward name="home" path="/home.do"/>
 <forward name="login" path="/login/index.jsp"/>
 <forward name="logout" path="/logout.do"/>
 <forward name="viewbooks" path="/view/listbooks.jsp"/>
 <forward name="addbook" path="/view/addbook.jsp"/>
 <forward name="adminbooks" path="/adminBooksSetup.do"/>
 </global-forwards>

 <action-mappings>
 <action path="/home" parameter="/home.jsp"
 type="org.apache.struts.actions.ForwardAction" />
 <action path="/login" name="LoginForm"
 scope="request" validate="true" input="/login/index.jsp"
 type="com.oreilly.jent.struts.library.ui.LoginAction">
 <forward name="success" path="/login/success.jsp" redirect="false"/>
 <forward name="failure" path="/login/index.jsp" redirect="false"/>
 </action>
 <action path="/logout"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 type="com.oreilly.jent.struts.library.ui.LogoutAction"/>
 <action path="/bookDisplay" name="BookDisplayForm" scope="session"
 type="com.oreilly.jent.struts.library.ui.BookDisplayAction"/>
 <action path="/addBook" name="AddBookForm" scope="request"
 validate="true" input="/view/addbook.jsp"
 type="com.oreilly.jent.struts.library.ui.AddBookAction"/>
 <action path="/adminBooksSetup" name="AdminBooksForm" scope="request"
 type="com.oreilly.jent.struts.library.ui.AdminBooksSetupAction">
 <forward name="adminBooksView" path="/view/adminbooks.jsp"
 redirect="false"/>
 </action>
 <action path="/adminBooks" name="AdminBooksForm" scope="request"
 type="com.oreilly.jent.struts.library.ui.AdminBooksAction"/>
 </action-mappings>

 <controller processorClass=
 "com.oreilly.jent.struts.library.ui.LibraryRequestProcessor"/>

 <message-resources parameter="application"/>

 <plug-in className="org.apache.struts.validator.ValidatorPlugIn">
 <set-property
 property="pathnames"
 value="/WEB-INF/validator-rules.xml,/WEB-INF/validation.xml"/>
 </plug-in>

 <plug-in className="com.oreilly.jent.struts.library.ui.LibraryPlugIn"/>

</struts-config>

First we define our form beans. The form bean LoginForm is bound to a class we wrote,
LoginActionForm. Another alternative is to define a form bean dynamically, using DynaActionForm or a
subclass. For dynamic form beans, the <form-property> element provides a means to define a
property, giving it a name and type. An additional attribute not shown here is initial, allowing you
to provide a value that will be injected into the form bean when it is created.

Global forwards are extremely useful for providing common names for places to which control should
be directed. Notice that the path can be an ordinary JSP or a path into the Struts ActionServlet; to
forward to an action, you must make sure that you are observing the servlet's URL pattern specified
in web.xml (in the example, we append .do to the name of the action's path).

The <action-mappings> element comprises a list of <action> elements, which define ActionMappings.
Yes, that's right; even though what is being defined is an ActionMapping, the name is <action>. The
<action> element may be the single most significant element in the entire Struts configuration file, so
let's pause to describe its attributes in Table 19-2 (note that the definitions in the Purpose column are
quotations or paraphrases from the documentation in the DTD).

Table 19-2. Attributes for struts-config.xml <action> element

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attribute
name

Purpose

path
The relative path of the submitted request, starting with a / character, and without the
filename extension if extension mapping is used.

name
Name of the form bean, if any, that is associated with this action mapping. That is, the
name must correspond to the name of a form-bean.

type
Fully qualified Java class name of the Action subclass that will process requests for this
action mapping.

scope
The scope (request or session) that is used to access our ActionForm bean, if any.
Optional if name is specified, otherwise not valid. The default scope is session.

validate

Set to true if the validate method of the ActionForm bean should be called prior to
calling the Action object for this action mapping or set to false if you do not want the
validate method called. The default value is true.

input

The relative path of the action or other resource to which control should be returned if
a validation error is encountered. Valid only when name is specified. Required if name is
specified and the input bean returns validation errors. Optional if name is specified and
the input bean does not return validation errors.

Look at this action mapping:

<action path="/adminBooks" name="AdminBooksForm" scope="request"
 type="com.oreilly.jent.struts.library.ui.AdminBooksAction"/>

It says, when a request is made to the relative path within the application context, /adminBooks.do,
create in request scope an instance of the ActionForm type bound to the form bean named
AdminBooksForm if it has not already been created. The Action to which execution should be delegated
is AdminBooksAction. The form will be validated (since the default value of the validate attribute is
true and we haven't specified it). By the way, a hidden assumption here is that the validation will
never fail (no input attribute is specified). This seems a safe bet since only checkbox information is
being submitted. To be sure, an evildoer might write a program to post a naughty value into the
form; to barricade yourself against this possibility, specify an input attribute.

The <controller> element defines the ControllerConfig bean, whose details are beyond the scope of
this discussion. When left out, the standard Struts request processor
(org.apache.struts.action.RequestProcessor) will be used. For reasons described earlier, our
application uses a custom request processor, which is specified with the processorClass attribute.

The <message-resources> element defines the message resource bundle for localization. The default
class uses the parameter attribute to provide the base name of the resource bundle properties file. So
in this case, the file will be application.properties. Note that message templates for error messages
are found here.

The <plug-in> element defines any Struts plug-ins; the <className> element provides the fully
qualified Java class name of the plug-in. The subordinate <set-property> element gives you the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

means to pass initialization data to the plug-in. The idiom you see here for setting up the Struts
validator is typical.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

19.6. Views in Struts

Views present information from the model. The typical view architecture used with Struts is JSP, but
in fact, any servletthat is, any path mapped by the container to which Struts can forward controlcan
serve as a view. We will stick to JSP because it is so common, but increasingly developers are
becoming interested in view frameworks with simpler syntax or other niceties, such as Velocity.
Thankfully, Struts can still be used if you decide to pursue these alternatives.

The interesting question regarding views is how they communicate with Actions and the request
processor. Views need to transfer data in two ways. First, they must be able to pick up data that is
provided to them by Actions. This part is easy: an Action puts objects into request or session scope,
just as any servlet would; references to these objects may then be retrieved by the JSP from request
or session scope directly through Java scriplets referencing the HttpServletRequest or HttpSession
objects or through tags, such as those provided by JSTL (JSP Standard Tag Library) or the Struts Tag
Libraries (more on this topic later in this chapter).

The second requirement for data transfer in the view is to obtain values that should be displayed in a
form. Enter the ActionForm.

19.6.1. The ActionForm Class

As we discuss the ActionForm class, please refer to Figure 19-2. The key to understanding
ActionForms is to notice that they are situated at a number of places in the request/response
lifecycle. In particular, form data gets to an Action via an ActionForm parameter on the execute
method, and an ActionForm bean can be tapped by Struts tags to ensure that form data is populated
correctly in a JSP.

A class extending ActionForm represents the parameters submitted by an HTTP POST request. Your
ActionForm must have JavaBeans-style getters and setters. In addition, you may override utility
methods from the base ActionForm. The reset method is called by the framework to return the
instance to its original state, and the validate method is called after population to give your
ActionForm a chance to verify that its values are acceptable. Example 19-2 shows an ActionForm that
represents the username and password fields for a login form.

Example 19-2. Login ActionForm

import javax.servlet.http.HttpServletRequest;

import org.apache.struts.action.ActionErrors;
import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionMapping;
import org.apache.struts.action.ActionMessage;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import org.apache.struts.action.ActionMessages;

public class LoginActionForm extends ActionForm {

 private String username;
 private String password;

 public String getUsername() {
 return username;
 }

 public void setUsername(String username) {
 this.username = username;
 }

 public String getPassword() {
 return password;
 }

 public void setPassword(String password) {
 this.password = password;
 }

 public ActionErrors validate(ActionMapping mapping,
 HttpServletRequest request) {
 ActionErrors actionErrors = new ActionErrors();
 if (password == null || password.trim().length() == 0) {
 actionErrors.add(ActionMessages.GLOBAL_MESSAGE, new ActionMessage(
 "errors.required", "Password"));
 }
 if (username == null || username.trim().length() == 0) {
 actionErrors.add(ActionMessages.GLOBAL_MESSAGE, new ActionMessage(
 "errors.required", "Username"));
 }
 return actionErrors;
 }
}

19.6.1.1. Validation

After the Struts controller populates the bean properties, it calls the validate method to give your
ActionForm an opportunity to return to Struts any errors that are encountered. In LoginActionForm
(see Example 19-2), we require a value for the username and password properties, so when those
properties are null or contain only whitespace, we generate an ActionMessage object representing the
error message that should be conveyed back to the view. We return an instance of ActionErrors that
includes a list of all ActionMessages encountered. (Before Struts 1.2, ActionErrors was used to
represent an error; that class is deprecated in favor of ActionMessage.)

The first parameter on the ActionErrors.add() method is ActionMessages.GLOBAL_MESSAGE. This key

http://lib.ommolketab.ir
http://lib.ommolketab.ir

is used elsewhere in Struts to look up the list of ActionErrors from the scope (request or session)
where the ActionForm is stored. ActionMessage has a number of constructors. Here we use the
constructor that accepts two String parameters. The first is the name of a property
(errors.required) defined in application.properties. This property gives the error message template
that should be used to display the error to the user. The second parameter is the name of the field
for which we are noting an error; this field name will be plugged into the template. Here are the error
formatting properties and values from application.properties:

errors.required={0} is required.
errors.minlength={0} must be at least {1} characters.
errors.credentials.login=Login Error Unable to log you in - username and password
combination not found.
errors.isbn.length=ISBN must be 10 characters.

Thus in our example, if the username is missing, the error message template {0} is required. will
be obtained via the key errors.required, and the {0} will be filled by the word Username.

19.6.1.2. Scope

Remember that a specific ActionForm class is bound to a name in the struts-config.xml file. That
name is referenced in an <action> element:

<action path="/bookDisplay" name="BookDisplayForm" scope="session"
 type="com.oreilly.jent.struts.library.ui.BookDisplayAction"/>

This definition can also include an attribute defining the scope in which the ActionForm instance will
live. If the ActionForm instance is needed for only one request/response sequence, specify request
scope. You may also specify session scope if the ActionForm should be preserved from Action to
Action. For instance, if you have actions that must "look back" to forms that have been submitted in
earlier request/response interactions (say, for a wizard), session scope provides you with a means to
keep that data available. In the example application, there is little need to use session scope because
each Struts Action puts its response into request scope. There is one exception, however. In our
BookDisplayForm, we want the "safe mode" (which suppresses the Check In/Check Out buttons) to be
"sticky," so that it stays on no matter where the user navigates in the application. By putting the
form into session scope, the very same form bean is available (and reutilized) every time the page is
displayed. Thus once we turn on safe mode, the mode is persistent, even if you move off of the
page.[5] Indeed, it is sticky even if we log outthis is just one reason why logout operations typically
invalidate their sessions.

[5] Also notice that, since the same form is reused, the same book will be selected if we click Return Home and then go back to

View Books. To experiment with this, change the scope to request scope, redeploy, and observe how safe mode is forgotten after

clicking the Return Home link. This is because a form bean in request scope is created afresh every time it is needed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

19.6.1.3. The ActionForm and the JSP

Let's look at how this ActionForm is utilized in the JSP page that makes up a login page.

To create a page with a form and its associated ActionForm and Action, the Struts developer must
typically manipulate five or six files:

The Struts configuration file (struts-config.xml).

The JSP page that includes the HTML form. This JSP page will include Struts tags to reference an
Action and tags from the JSTL.

The Java code for the ActionForm that defines the parameters for the HTML form's POST action.

The Java code for the Action that defines what should be done with the parameters.

A Struts property file (typically application.properties).

Additionally, if you are using the Struts validator, validation definitions will be in a file such as
validation.xml.

Here's a JSP that uses our LoginActionForm:

<%@ include file="/includes/setup.inc" %>
<html>
 <head>
 <title>
 Struts Library Login
 </title>
 <link rel="stylesheet" type="text/css"
 href='<c:url value="/css/app.css"/>'>
 </head>
 <body>
 <h1>
 Struts Library Login
 </h1>
 <hr>
 In order to borrow or add books you must log into the Library
 application.
 <html:errors/>
 <html:form action="/login" focus="username">
 <table>
 <tr>
 <td>
 Username:
 </td>
 <td>
 <html:text property="username"/>
 </td>
 </tr>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <tr>
 <td>
 Password:
 </td>
 <td>
 <html:password property="password" redisplay="false"/>
 </td>
 </tr>
 </table>
 <p>
 <html:submit/>
 </p>
 </html:form>
 </body>
</html>

The first line of the JSP is a static include of setup.inc that we use in all of the JSPs in the sample
application. This include file defines the prefixes used in the application for the Struts tags and JSTL
tags. Additionally, a reference to the current list of books is copied into request scope from a member
of an application-scoped reference to the singleton instance of
com.oreilly.jent.struts.library.model.Library (see LibraryPlugIn.java). To learn about the JSTL
<c:set> and <c:url> tags, see Chapter 4.

Moving down the page, the first Struts-specific item is the <html:errors/> tag. Any errors found
during the form validation phase will be displayed here. Notice that this tag is XML, not HTML.
Therefore, you must always provide a close tag. We might have written
<html:errors></html:errors>, but we are using the XML shorthand syntax for an "empty" tag
<html:errors/>.

The form is defined with the <html:form>, <html:text>, and <html:password> tags. Struts tags are
discussed in more detail later in this chapter; for now, note that these tags are rendered to HTML
tags such as <form>, <input type="text">, and <input type="password">. In the <html:form> tag,
the value (/login) of the required action attribute defines the action mapping in struts-config.xml to
which the Struts ActionServlet will delegate the POST request.

If you are running the application, a useful exercise at this point is to look at the HTML that is
produced by this assortment of Struts and JSTL tags:

 <form name="LoginForm" method="post"
 action="/jent-struts/login.do">
 <table>
 <tr>
 <td>

 Username:
 </td>
 <td>
 <input type="text" name="username" value="">
 </td>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </tr>
 <tr>
 <td>
 Password:
 </td>

 <td>
 <input type="password" name="password" value="">
 </td>
 </tr>
 </table>
 <p>
 <input type="submit" value="Submit">
 </p>
 </form>

As you can see from the generated HTML, Struts has made a number of substitutions. The most
important one is that the action attribute on the form has the value /jent-struts/login.do Struts has
included the context path (/jent-struts) as well as appended the .do extension (specified in the
servlet mapping in the web.xml file), marking this as a Struts target that will be intercepted by the
Struts servlet.[6]

[6] Perhaps you are wondering, as I did, how Struts figures out that you have mapped the ActionServlet to *.do since the

developer is not required to define this mapping in any Struts configuration file. This information is not available through any of

the standard classes such as ServletConfig. If you study the Struts source, you will discover that the Struts ActionServlet

itself parses your web.xml file to dig up the mapping.

Now let's look briefly at the login action mapping in struts-config.xml:

 <action path="/login" name="LoginForm" scope="request"
 validate="true" input="/login/index.jsp"
 type="com.oreilly.jent.struts.library.ui.LoginAction">
 <forward name="success" path="/login/success.jsp"
 redirect="false"/>
 <forward name="failure" path="/login/index.jsp"
 redirect="false"/>
 </action>

Notice that the name of the form (LoginForm) is defined in struts-config.xml; the form name is not
referenced directly in the JSP. Because LoginForm is mapped to the LoginActionForm class in the
struts-config.xml file, you can control which specific class defines the form properties without
changing your JSP.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

19.7. Struts Tags

Struts was one of the first frameworks to provide a library of custom JSP tags . The Struts tags
provide an amazing array of utilities useful in JSP; also, they provide access to Struts objects so that
you don't have to include Java snippets in your pages. Since the introduction of JSTL, the most
common practice is to prefer a JSTL tag when its functionality is similar to an equivalent Struts tag.
Struts tags are still very handy for integrating the rendering of pages to Struts data structures such
as Actions and ActionForms. In general, JSTL and Struts tags cohabitate quite well, with one
exception: internationalization. For internationalization, you are advised to stick to JSTL or to Struts,
because their strategies for bundling up the internationalized versions are different.

There are too many Struts tags to describe in this chapter; we will focus here on the tags and tag
attributes that are used in the code example. If you have never used a tag library, read the
discussion of JSTL in Chapter 4 first.

In the next section, we'll look at the core tags for HTML rendering, obtaining bean properties, and
forwarding requests to Struts Actions. These tags are in the Struts tag libraries named html, bean,
and logic. For each library, you must include a directive at the top of each page that references the
particular library, associating it with a prefix of your choosing. (The prefix names html, bean, and
logic are conventional, but you may change them to avoid namespace collisions with other tag
libraries you might be using.) It is typical to put these directives into an include file that is then
included in all of your pages. For instance, in the example code, the list of directives for including
Struts tags looks like this (in includes/setup.inc):

<%@ taglib prefix="html"
 uri="http://jakarta.apache.org/struts/tags-html" %>
<%@ taglib prefix="bean"
 uri="http://jakarta.apache.org/struts/tags-bean" %>
<%@ taglib prefix="logic"
 uri="http://jakarta.apache.org/struts/tags-logic" %>

And the inclusion is just this single line:

<%@ include file="/includes/setup.inc" %>

19.7.1. Form Handling and Form Tags

What we are going to describe now is the magic by which Struts tags orchestrate the mapping of
form fields to bean properties, get those properties validated, and in the case of errors, redisplay

http://lib.ommolketab.ir
http://lib.ommolketab.ir

those form fields to the user for correction. First the nuts and bolts regarding syntax and tying the
various files together.

19.7.1.1. <html:form>

You use the <html:form> tag in your JSP to render an HTML form tag. The layout of your Struts tags
for a typical form follows the same structure as an HTML form. Here's a compressed version of the
login form from Example 19-2:

<html:form action="/login" focus="username">
 Username: <html:text property="username"/>
 Password: <html:password property="password" redisplay="false"/>
 <html:submit/>
</html:form>

<html:text>, <html:password>, and <html:submit> map to the obvious HTML tags; more about that in
a moment.

Notice the action attribute. For the action attribute, specify a path that is defined for an action
mapping in your struts-config.xml file. So in this case, the form data will be posted to the Struts
action with the path /login. Here's the action mapping defined in struts-config.xml for the path /login:

<action path="/login" name="LoginForm" scope="request"
 validate="true" input="/login/index.jsp"
 type="com.oreilly.jent.struts.library.ui.LoginAction">
 <forward name="success" path="/login/success.jsp" redirect="false"/>
 <forward name="failure" path="/login/index.jsp" redirect="false"/>
</action>

Notice that the Struts ActionForm to be used is looked up from the struts-config.xml file based on the
action mapping. So in this case, the name of the ActionForm to be used is LoginForm, which is defined
in struts-config.xml as follows:

<form-bean name="LoginForm"
 type="com.oreilly.jent.struts.library.ui.LoginActionForm"/>

This level of indirection means that you can change parameters associated with form handling (e.g.,
the scope of a form) without changing your JSP. Or you might swap in a different ActionForm that
provides more sophisticated validation.

The resulting HTML is:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<form name="LoginForm" method="post"
 action="/jent-struts/login.do">
 Username: <input type="text" name="username" value="">
 Password: <input type="password" name="password" value="">
 <input type="submit" value="Submit">
</form>

The most significant transformation is the rendering of the HTML action attribute with the appropriate
context for your application, along with the addition of the file type (specified by you in the Struts
servlet parameters in web.xml) that the container will recognize as a request for the Struts servlet.

Now for the magic. The first thing an <html:form> tag does is find the ActionForm object (the form
bean) associated with the ActionMapping. If the form bean doesn't exist, it will create it. When the
form is submitted, form data will be loaded into the bean and then the validate method will be called
(generating an ActionErrors object). If the validation fails, Struts will forward to the page specified
for the ActionMapping's "input" attribute. Typically, this is the same page that displayed the original
form (though it needn't be). And with the <html:errors> tag, this page can display the errors that
were encountered. Meanwhile, since the very same form bean is used, the form will be prepopulated
with the invalid values so that the user may correct them.

19.7.1.2. <html:text>, <html:password>, and <html:submit>

Individual HTML form elements can be specified through a matching Struts tag. In the previous
example, for instance, the Struts <html:text> tag will be rendered as an HTML input tag with the
type attribute set to text. Similarly, the <html:password> tag is rendered as an HTML input tag with
type set to password. The value of the property tag ties the particular Struts tag to the property on
the form-bean. You can also easily associate a property value with an <html:submit> tag. By this
means, you can provide two submit buttons with the same property name but different values, and
then, in your Action, differentiate between them. For instance, in the form on /view/addbook.jsp, we
define two submit buttons like so:

<html:submit property="addBookAction" value="Add Book"/>
<html:submit property="addBookAction" value="Verify"/>

On the backend in AddBookAction, we skip adding the book if only the Verify button were pressed:

 public ActionForward execute(ActionMapping mapping, ActionForm form,
 HttpServletRequest request, HttpServletResponse response)
 throws Exception {
 DynaActionForm addBookForm = (DynaActionForm) form;
 String addBookAction = addBookForm.getString("addBookAction");
 if (!"Verify".equals(addBookAction)) {
 String title = addBookForm.getString("title");
 String author = addBookForm.getString("author");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 String isbn = addBookForm.getString("isbn");
 Book book = new Book(title, isbn, author);
 getLibrary().addBook(book);
 return mapping.findForward("home");
 }
 return mapping.findForward("addbook");
 }

19.7.1.3. <html:select>, <html:options>, and <html:checkbox>

Struts provides tags that can render all of the standard HTML input widgets. These tags can be
enormously convenient because they provide help with iterating over the elements in a Collection to
generate the complete HTML. For example, observe the code using <html:select> for generating an
HTML <select> tag:

<html:select property="trackingID" size="10" onchange="submit()">
 <html:options collection="bookList"
 property="trackingID" labelProperty="title"/>
</html:select>

The surrounding form is bound to the action with path /bookDisplay, which uses the form-bean
BookDisplayForm, which is bound to the BookDisplayActionForm, which contains the property
TRackingId. (That's a lot of interaction, but you will find that you are conducting this kind of code
tracing on a regular basis with Struts.) Based on the user's selection, trackingId will be populated
after the form is submitted. To enumerate the books associated with each trackingId, we use the
page-scoped variable bookList, which is bound to a Collection of Books. The Struts tag
<html:options> takes the reference to the collection, iterates through it, and renders an HTML
<option> tag with the value coming from Book.trackingId and the display text coming from
Book.title.

Our use of the <html:checkbox> tag is quite simple: when the box is checked, we submit immediately
thanks to the JavaScript embedded in the onchange attribute:

<html:checkbox property="safeModeChange" onchange="submit()"/>

(Tying the checkbox to the form submission provides for some cheap "event handling"; you can also
use an <html:checkbox> to represent an ordinary checkbox input.) Then the Action handling the form
checks the value of the property associated with the checkbox.

19.7.1.4. <html:multibox>

If you need to render a checkbox whose value is determined by the loop in which the checkbox is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

enclosed, use an <html:multibox>. Here's an example (simplified version from adminbooks.jsp in the
example):

<c:forEach var="book" items="${library.bookList}">
 <html:multibox property="picks" onclick="submit()">
 <c:out value="${book.trackingID}"/>
 </html:multibox>
</c:forEach>

In this code fragment, the JSTL <c:forEach> tag is used to iterate through the individual books. The
<html:multibox> tag defines the form-bean property that will be populated when the checkbox is
checked. The actual value of each generated checkbox is pulled from the trackingID property of each
book in the list. The JSTL <c:out> tag renders the property value of the book bean's trackingID
property.

19.7.2. Additional Tags

The additional tags we discuss handle a variety of important functions, including links, errors, and
forwards.

19.7.2.1. <html:link>

The <html:link> tag renders an HTML <a> tag. You specify the value of the link using one of the
following required attributes: forward, action, href, or page. The forward and action attributes take
the names of Struts forwards and actions as their values. Using one of these attributes allows you to
update your struts-config.xml file to change the destinations of links without having to change your
JSP files. If you use the href attribute, its value is used directly as the value of the generated href
attribute. The page attribute provides support for server-relative URIs: the context path and module
prefix (if you are using Struts modules) will be automatically added to the value given for this
attribute.

Other attributes on the <html:link> tag allow you to specify URL parameters, as well as mappings for
all of the standard attributes for the HTML <a> tag.

Here's a simple example of the <html:link> tag, using the forward attribute to specify the target of
the link:

<html:link forward="login">
 Log In
</html:link>

If we now browse to this page and view the generated HTML source, we will see this substitution
based on information from the struts-config.xml file (assuming you're using the sample config file

http://lib.ommolketab.ir
http://lib.ommolketab.ir

provided with the example code for this chapter):

<a href="/jent-struts
/login/index.jsp;jsessionid=7A505454F6FC979CE94F5AEA76775BA3">Log
In

The <html:link> tag conveniently utilizes HttpServletResponse.encodeURL() from the Servlet API to
rewrite the URL, adding the context name (/Jent-Struts-example), the path for the forward
(/login/index.jsp), and the standard session ID token and value.

19.7.2.2. <html:errors>

We discussed error handling in our earlier section on the ActionForm class. To recap, validation is
conducted in an ActionForm's validate method; when a validation fails, your code adds an
ActionMessage to an ActionErrors object. The validate method returns a reference to the
ActionErrors object, which Struts then puts into request or session scope (by default, under the key
Globals.ERROR_KEY) where you can pick it up in a JSP and display it to your users.

Instead of working your way through the ActionErrors with your own code, you can use the
<html:errors> tag to display whatever ActionErrors are available. The display of the errors can be
controlled by defining message keys in your message resources file (typically application.properties).
The key names and their functions are shown in Table 19-3 (the descriptions are quoted verbatim
from the Struts API documentation).

Table 19-3. Key names for <html:errors>

Key Description

errors.header
Text that will be rendered before the error messages list. Typically, this message
text will end with to start the error messages list.

errors.footer
Text that will be rendered after the error messages list. Typically, this message
text will begin with to end the error messages list.

errors.prefix Text that will be rendered before each individual error in the list.

errors.suffix Text that will be rendered after each individual error in the list.

The Struts API documentation suggests extremely plain markup for error formatting, which is a good
bet for getting something that looks decent in most contexts. But you can also reference custom
styles or invoke any other HTML that will make your errors look pretty. Here are the definitions of
these attributes for the sample application:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

errors.header=<div class="validationWarning">
errors.footer=</div>

errors.prefix=
errors.suffix=

Each of these values may be overridden by an attribute on the tag (header, footer, prefix, or
suffix), but the typical scenario is to define this markup once in the message resources file and then
invoke the tag with no attributes. In the sample application, we display errors on the pages that
display the login form and the form for adding booksthe invocation of <html:errors> is simply:

<html:errors/>

Note that Struts clears out the errors from the previous page (see step 6 in "The RequestProcessor"
earlier in this chapter).

19.7.2.3. <logic:forward>

At times, you want a non-Struts JSP to take the user to a page managed by Struts. The classic use
for this is to take a request to the application's welcome page (defined in web.xml) and have it
handled by Struts. For example, our index.jsp forwards the request to the global forward home:

<%@ include file="/includes/setup.inc" %>
<logic:forward name="home"/>

The global forward home is bound to the path /home.do which returns home.jsp.

19.7.3. Using the JSTL Expression Language in Struts Tags

Everything you learned in Chapter 4 regarding the JSTL EL can be used in the attributes of Struts
tags. In your Struts download in the contrib/struts-el/lib directory, you will find a struts-el.jar file that
may be used in place of struts.jar. In your taglibs directives, now define your HTML tags like this:

<%@ taglib prefix="html-el"
 uri="http://jakarta.apache.org/struts/tags-html-el" %>

Now you can use dynamic expressions as the values of attributes on Struts tags. For example:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<html-el:link forward="${home}">Return to Home Page</html-el:link>

In this example, we make the choice of the forward attribute dynamic, based on the value of the
home page attribute.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

19.8. Struts Plug-ins

Struts plug-ins are used for defining operations that should occur when Struts is starting up and
shutting down.

The PlugIn interface defines init() and destroy() methods that are called at the start and end of
the application lifecycle. The most common plug-in is the Struts validator. But the plug-in
infrastructure is a great way to get Struts to call your own initialization routines. Because the init()
method is passed a reference to the Struts ModuleConfig, it is particularly helpful for initializations
that require some knowledge of what's going on within Struts. If your initialization routines are
generic, you should implement them simply as a javax.servlet.ServletContextListener. In the
example application, it is helpful to put a reference to the Library model into the application context.
Here's the complete LibraryPlugIn:

import javax.servlet.ServletException;

import org.apache.struts.action.ActionServlet;
import org.apache.struts.action.PlugIn;
import org.apache.struts.config.ModuleConfig;

public class LibraryPlugIn implements PlugIn {

 public void destroy() {
 }

 public void init(ActionServlet actionServlet, ModuleConfig moduleConfig)
 throws ServletException {
 actionServlet.getServletContext().setAttribute(WebGlobals.LIBRARY_KEY,
 new Library());
 }

}

Now any Struts Action or JSP page can easily retrieve a reference to the singleton Library by looking
it up from the application context. For example, in view/adminbooks.jsp, we can use the reference to
the library to loop through the books:

<c:forEach var="book" items="${library.bookList}">

This is a trivial example, but as you can see, implementing a Struts PlugIn is a convenient technique
for any kind of initialization routine.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

19.9. DynaActionForms and the Struts Validator

After the early versions of Struts were released, it became clear that there were certain ActionForm
idioms that were so conventional, it would be helpful to introduce ways to declare such ActionForms
without requiring Java code to be written. For example, most ActionForms are nothing more than
ordinary JavaBeans with getters and setters for very common property types: Strings, ints,
Booleans, and so forth. Similarly, validations observed certain conventions: some fields were
required, others were required and needed to be sequences of digits forming integers, and so forth.

Enter DynaActionForms and the Struts validator .

org.apache.struts.action.DynaActionForm is a subclass of ActionForm that creates properties on the
fly through the Java Reflection API. In your Struts config file, you simply declare that your form is
bound to a DynaActionForm, and then write XML to define the properties. Instead of accessing the
properties through explicit method calls (e.g., getUsername()), you call a generic get method with
the name of the property (for example, get("Username")).

We will focus on a subclass of DynaActionForm that provides for writing even less code (or more XML!)
called org.apache.struts.validator.DynaValidatorForm. With DynaValidatorForm, we can not only
declare our properties in XML, we can also define standard validations that will be exercised by the
Struts validator (a Struts PlugIn).

The example application provides two versions of the LoginForm. One version is implemented through
Java code; the other is implemented through declarations in the Struts configuration file, binding the
form to an instance of org.apache.struts.validator.DynaValidatorForm. To observe the difference
between the Java implementation of the LoginForm and the dynamic version, you will need to look at
the comments in struts-config.xml, LoginAction.java, and index.jsp. In each of these three files, there
are lines to be commented in or out depending on whether you want to use the Java implementation
of LoginForm or the dynamic version. Additionally, the dynamic version depends on three more files:
validator-rules.xml, validation.xml, and application.properties.

For the DynaValidatorForm version, the LoginForm is defined in struts-config.xml:

<form-bean name="LoginForm"
 type="org.apache.struts.validator.DynaValidatorForm">
 <form-property name="username" type="java.lang.String"/>
 <form-property name="password" type="java.lang.String"/>
</form-bean>

Voila! You have just saved yourself about 30 lines of Java code.[7] LoginAction.java requires a bit of
tweaking, because now the username and password values are retrieved through the generic get
method on DynaValidatorForm:

[7] For another example of using a DynaValidatorForm, see the comments in struts-config.xml regarding the form bean

http://lib.ommolketab.ir
http://lib.ommolketab.ir

BookDisplayForm. For this example, we have to extend DynaValidatorForm to handle checkbox values.

DynaActionForm loginForm = (DynaActionForm) form;
String username = (String) loginForm.get("username");
String password = (String) loginForm.get("password");

The final components you will need to look at are the two configuration files validation.xml and
validator-rules.xml, which work together, and index.jsp. The validator-rules.xml file is a standard file
that comes with Struts. You add it the web archive under /WEB-INF; you will not have to change this
file unless you are introducing validations of your own. The validation.xml file contains your
requirements for validation; it also goes under /WEB-INF. References to both of these files must be
present in the declaration of the Struts validator plug-in in struts-config.xml:

<plug-in className="org.apache.struts.validator.ValidatorPlugIn">
 <set-property
 property="pathnames"
 value="/WEB-INF/validator-rules.xml,/WEB-INF/validation.xml"/>
</plug-in>

The validation.xml file is where you define the mappings between your form fields and the validations
that are required for them. Here's an extract of our validation.xml that defines the validations for the
LoginForm (for the full story on the structure of this file and the elements that comprise a validation
declaration, see Chapter 11 in O'Reilly's Programming Jakarta Struts):

<form name="LoginForm">
 <field property="username" depends="required">
 <msg name="required" key="errors.required"/>
 <arg0 key="login.username"/>
 </field>
 <field property="password" depends="required">
 <msg name="required" key="errors.required"/>
 <arg0 key="login.password"/>
 </field>
</form>

In this extract from validation.xml, we specify the validations for the fields username and password of
the form LoginFormthe depends attribute of the <field> element specifies the names of the validations
that must be executed when the request processor calls the validator() method on the ActionForm
(i.e., the DynaValidatorForm). The <msg> element defines the name of the key in
application.properties that should be used as an error message template when the validation fails.
Thus, in application.properties, we have defined the property errors.required as {0} is required.
The <arg0> element provides the key for the name of the field to fill into the {0} in the error message
template.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

We have left the last bit of magic for last. The Struts validator plug-in provides for client-side
validation (through JavaScript) as well as server-side validation. To enable this, you must provide
some additional code in the JSP. To the <html:form> tag, you must add an onsubmit attribute to
ensure that the appropriate dynamically generated JavaScript is called for the particular form. The
revised <html:form> tag looks like this:

<html:form action="/login" focus="username"
 onsubmit="return validateLoginForm(this);">

And to generate the JavaScript itself, we add, after the </html:form> close tag, an <html:javascript>
tag:

<html:javascript formName="LoginForm"/>

In "The ActionForm and the JSP" earlier in this chapter, we discuss routine validation through the
validate() method that may be overridden when implementing an ActionForm. In the default
implementation, if you enter nothing for your credentials during login, you will see error messages in
the page. These messages are the results of server-side validation conducted by the Java
implementation.

Now when you attempt to log in with empty credentials, you should see validation messages in the
form of JavaScript pop-ups. Thanks to the Struts validator plug-in, you have just saved yourself the
pain of writing and debugging JavaScript.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 20. Hibernate
Object relational mapping (ORM) frameworks provide application developers with the ability to focus
on the high-level language of the domain instead of the lower-level language of a database.
Hibernate is a framework that allows you to interact with your relational data in an object-centric
fashion. Hibernate's mapping strategy allows you to convert your object-oriented schema into a
database schema and vice versa. This means that as a Java programmer, you interact only with Java
to get your database work done. Hibernate takes care of bridging the gap between your code and the
database.

Just as important, Hibernate's API is pluggable. Though it comes with a variety of services out of the
box, whenever you don't like one of them, you can replace it. For example, Hibernate provides a local
transaction manager for single connections to a single datasource. If you need cross-database
transactions, you can simply plug in the JTA instead. This pluggability allows Hibernate to be used in
a broad array of situations since it plays well with its surroundings.

We wrote this chapter and the accompanying code with the beta versions of Hibernate 3.0. Some of
the behavior and interfaces in the framework may change slightly by the time the book is published.
Before we get started, here's a caveat: Hibernate is a big subject, and several books are available.
We recommend Better, Faster, Lighter Java by Bruce Tate and Justin Gehtland and Hibernate: A
Developer's Notebook by James Elliott, both from O'Reilly.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

20.1. The Sample Application

In order to focus on the features and requirements of Hibernate, we are using a relatively simple
application as an example. The application will track the students, professors, classes, and
departments of a university. Through this framework, we'll be able to demonstrate the configuration,
mapping, and manipulation of persistent domain objects.

The application will consist of five major domain classes:

Department

Will contain multiple classes and professors but no students

UniversityClass

Will have a single professor and multiple students, will belong to a single department, and will
have a single syllabus

Syllabus

Will belong to a UniversityClass; every Syllabus will be unique to a specific UniversityClass

Professors

Will teach one or more classes but have a single primary department

Students

Will attend multiple classes but have no formal association with either a Professor or a
Department

In addition, we'll introduce the Person interface to serve as a common ancestor between Professor
and Student. Last, we need to add a layer to manage persistent domain objects. For other
applications, you might decide to add a Data Access Object (DAO) with a façade layer on top. We
decided that a DAO layer was overkill for such a small application, so we omitted it.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

20.2. Principles of Hibernate

Often, programmers tend to skip introductory material and move right to the code. Sometimes we
skip the code examples too and just pull up a seat at the keyboard and start hacking. Tempting as it
may be to do so, plowing ahead without understanding the principles that Hibernate was built on is a
dangerous thing to do. While persistence frameworks are meant to make life easier, they can be your
worst nightmare if you don't understand the principles that drive the framework.

20.2.1. Transparency

First and foremost, Hibernate strives to be a transparent service provider. When authoring an
application, your customer derives value not from the choice of tools you use to create an
implementation but from the domain model you create to solve his real-world problems. That domain
model should be as testable, portable, and deployable as possible. Hibernate goes to great lengths to
ensure that your application is as minimally dependent on it, its libraries, and its own dependencies
as possible.

This means that the domain objects themselves are oblivious to the persistence mechanism you
employ. They implement no interfaces, extend no base classes, refer to no APIs, nor even make any
design concession to the Hibernate framework. The persistence logic and APIs are encapsulated away
in the façade layer, allowing your domain objects to be truly domain-specific.

20.2.2. Reflection

Any ORM framework must provide a way to dynamically generate SQL CRUD (create, read, update,
delete) statements to bridge the chasm between the running application and the persistence store.
When things change in the domain, the framework has to know about them to persist them to the
data store and vice versa. This means that the ORM framework has to have knowledge of the
specifics of not only the class definitions but also the runtime instances of those classes.

That kind of dynamic knowledge can come from one (or more) of three sources:

Reflection

The framework can combine mapping files with runtime reflection to generate CRUD
statements based on current values.

Bytecode injection

The framework can instrument your compiled domain classes, injecting new code paths that

http://lib.ommolketab.ir
http://lib.ommolketab.ir

automatically generate CRUD statements or related metadata.

Code generation

The framework can, through a more detailed mapping scheme, allow you to decorate your
domain with metadata that will become Java code when run through a preparsing step.

When most Java programmers are asked for their first thoughts about the Reflection API, the word
that pops from their mouths is "slow." While it's true that calls made through reflection are
necessarily slower than native calls with direct manipulation of Java classes, the difference between
the two has been closing with each release of the JVM. The Hibernate team explicitly chose reflection
because it has minimal impact on the build process for an application and because the impact of
having a few reflective calls will be hidden by any actual access to the database, which is where most
applications incur most of their operational cost.

The other two choices, bytecode injection and code generation, change the build process of an
application and result in code being inserted into your domain classes. While not inherently bad, the
Hibernate team chose instead to keep your domain classes unencumbered with extraneous service
code by choosing reflection.

20.2.3. Java, JDBC, and RDBMS

Hibernate is a framework that specifically provides for transparent persistence of Java objects over
JDBC[1] to a relational database management system. This specificity allows Hibernate to provide
performance optimizations and general ease-of-use features that would otherwise be more difficult.

[1] For more information on JDBC, see Chapter 8.

20.2.4. Pluggability

Hibernate provides a variety of services to an application: transaction management, caching,
optimizations, and so on. These services might be adequate for a broad spectrum of applications, but
sometimes application requirements call for specific service providers or features from the service
that the Hibernate version cannot support. Hibernate allows for almost every service in its libraries to
be replaced by a third-party implementation, usually through nothing more than a change to the
configuration files.

20.2.5. Performance

Hibernate is designed to provide high-performance access to a relational database. In the most basic
sense, the Hibernate API is designed to favor patterns and programming decisions that allow for high
concurrency by not holding open JDBC connections for longer than absolutely necessary. Additionally,
Hibernate caches SQL statements to be executed as late as possible in large batches and holds
prepared statements for faster execution. Through optimization techniques like lazy loading and
proxy initialization, Hibernate gives developers still more control over the performance of their

http://lib.ommolketab.ir
http://lib.ommolketab.ir

applications. Last, through a series of debugging and monitoring features, developers can learn
detailed information about how well their application performs both at development and deployment
time.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

20.3. Configuration and Mapping

Hibernate applications need two separate sets of configuration information. The first is global metadata
that connects the Hibernate framework to your specific persistence store and provides the framework with
any information about finding, connecting to, and manipulating that store. The second is the mappings
that connect your domain objects to the tables where they will be persisted, also defining the relationships
between your classes and how those relationships will manifest in the database.

20.3.1. Global Configuration

Hibernate needs to be told where to find the database that your application will be using and how to
connect to it. Additionally, you can configure a variety of services to be provided to your application from
the Hibernate framework. You can do this programmatically using the Configuration and Hibernate
classes provided in the Hibernate APIs (see "The Hibernate API " later in this chapter) or you can do it
declaratively.

The declarative settings can be placed in one of two files:

hibernate.properties

hibernate.cfg.xml

Both formats offer the same features but with a different syntax. Creating either file and placing it within
your application's classpath will automatically configure Hibernate with the settings therein. If both files are
present on the classpath, both are read in, and the hibernate.cfg.xml settings are used to override the
settings in the hibernate.properties file. And, of course, you can also override any of these settings
programmatically.

The XML format has become popular among developers for Hibernate settings because of the familiarity
and expressiveness of XML as well as the common use of XML configuration formats in a variety of
contexts. J2EE deployment descriptors, application server configuration files, and the Hibernate mapping
files all use XML file formats, for example. For the sake of simplicity, however, we use the properties file
format for our examples here. Translating these to the XML format is fairly straightforward.

At a bare minimum, the configuration should specify the location and type of the database you are using
as well as the default access credentials to use to establish a connection (see Example 20-1).

Example 20-1. Sample hibernate.properties file

hibernate.dialect org.hibernate.dialect.MySQLDialect
hibernate.connection.driver_class com.mysql.jdbc.Driver
hibernate.connection.url jdbc:mysql://localhost/registration
hibernate.connection.username registration
hibernate.connection.password registration

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The first line in the preceding configuration is especially importantit tells Hibernate what flavor of database
you are using so that the framework can generate acceptable SQL queries, using the correct types. See
the Hibernate documentation for a full list of available dialects; the framework supports all major database
vendors.

After the basics, Hibernate provides a wide array of further configuration choices that you can add to
hibernate.properties or hibernate.cfg.xml . Following are several options, broken down by category. The
list is not exhaustive, but we find these settings to be particularly helpful. Again, we present these for the
properties file format onlyequivalent options are available in the XML format as well.

20.3.1.1. Debugging

hibernate.show_sql

Set this to true to have Hibernate dump each SQL statement it generates to stdout. This is
invaluable if you are trying to find problems in the data being transferred or performance
bottlenecks, but be aware that turning it on causes a performance degradation.

hibernate.generate_statistics (new in 3.0)

Set this to TRue to have Hibernate create and track a series of metrics about your application. You
can access these metrics individually using the getStatistics() method of SessionFactory , but the
easiest way to use this data is to call SessionFactory.getStatistics().logSummary() , which
outputs a summary of statistics for the application that looks like Example 20-2 .

Example 20-2. Hibernate statistics output

2005-03-16 17:07:33,950 INFO [org.hibernate.stat.StatisticsImpl] - Logging statistics....
2005-03-16 17:07:33,953 INFO [org.hibernate.stat.StatisticsImpl] - start time: i
1111010849088
2005-03-16 17:07:33,958 INFO [org.hibernate.stat.StatisticsImpl] - sessions opened: 1
2005-03-16 17:07:33,961 INFO [org.hibernate.stat.StatisticsImpl] - sessions closed: 1
2005-03-16 17:07:33,964 INFO [org.hibernate.stat.StatisticsImpl] - flushes: 0
2005-03-16 17:07:33,967 INFO [org.hibernate.stat.StatisticsImpl]
- connections obtained: 1
2005-03-16 17:07:33,980 INFO [org.hibernate.stat.StatisticsImpl] - second level cache
puts: 0
2005-03-16 17:07:34,052 INFO [org.hibernate.stat.StatisticsImpl] -
second level cache hits: 0
2005-03-16 17:07:34,069 INFO [org.hibernate.stat.StatisticsImpl] -
second level cache misses: 0
2005-03-16 17:07:34,073 INFO [org.hibernate.stat.StatisticsImpl] - entities loaded: 2
2005-03-16 17:07:34,077 INFO [org.hibernate.stat.StatisticsImpl] - entities updated: 0
2005-03-16 17:07:34,083 INFO [org.hibernate.stat.StatisticsImpl] - entities inserted: 0
2005-03-16 17:07:34,086 INFO [org.hibernate.stat.StatisticsImpl] - entities deleted: 0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2005-03-16 17:07:34,089 INFO [org.hibernate.stat.StatisticsImpl] - entities fetched
(minimize this): 0
2005-03-16 17:07:34,092 INFO [org.hibernate.stat.StatisticsImpl] - collections loaded: 0
2005-03-16 17:07:34,099 INFO [org.hibernate.stat.StatisticsImpl] - collections updated: 0
2005-03-16 17:07:34,137 INFO [org.hibernate.stat.StatisticsImpl] - collections removed: 0
2005-03-16 17:07:34,141 INFO [org.hibernate.stat.StatisticsImpl] - collections
recreated: 0
2005-03-16 17:07:34,145 INFO [org.hibernate.stat.StatisticsImpl] - collections fetched
(minimize this): 0
2005-03-16 17:07:34,149 INFO [org.hibernate.stat.StatisticsImpl] - queries executed to
database: 1
2005-03-16 17:07:34,152 INFO [org.hibernate.stat.StatisticsImpl] - query cache puts: 0
2005-03-16 17:07:34,156 INFO [org.hibernate.stat.StatisticsImpl] - query cache hits: 0
2005-03-16 17:07:34,171 INFO [org.hibernate.stat.StatisticsImpl] - query cache misses: 0
2005-03-16 17:07:34,175 INFO [org.hibernate.stat.StatisticsImpl] - max query time:
635ms

You can use the statistics to track down bottlenecks in your code and understand the effects of different
configuration and API usage strategies on your system's performance.

20.3.1.2. Other JDBC properties

hibernate.connection.pool_size

Set the size of the connection pool, if using a poolable provider.

hibernate.connection.isolation

The default isolation level for transactions. The allowed values are those specified in the
java.sql.Connection interface. See Chapter 16 for more details on transaction isolation levels.

20.3.1.3. Transaction management

hibernate.transaction.factory_class
jta.UserTransaction, hibernate.transaction.manager_lookup_class

Set these to replace Hibernate's provided local transaction manager with the JTA implementation
from your container.

20.3.1.4. Optimization

http://lib.ommolketab.ir
http://lib.ommolketab.ir

hibernate.jdbc.fetch_size
hibernate.jdbc.use_scrollable_resultset

Optimize Hibernate's use of JDBC and its connection-level properties.

hibernate.cglib.use_reflection_optimizer

Replaces as much use of reflection with bytecode injection as possible.

20.3.1.5. JNDI

hibernate.connection.datasource
hibernate.jndi.url
hibernate.jndi.class

Configure Hibernate to use JNDI to find a container-managed datasource.

20.3.1.6. SQL

hibernate.query.substitutions

A collection of name/value pairs specifying token replacement options when creating Hibernate
Query Language (HQL) queries. You can use this to replace SQL tokens with more convenient
replacements (e.g., true=1 , false=0).

20.3.2. The Hibernate Type System

When you begin writing mapping files, you can use either Java native types or Hibernate types to match
your Java properties to their database field counterparts. It is usually preferable to use the Hibernate
types since they are there to provide the bridge between the Java type system and your database vendor's
type system. The Hibernate types provide mappings for every major Java native type, such as int , double
, string , date , time , boolean , and so on.

If the types provided are not sufficient to suit your needs, you can extend (or even replace) the existing
definitions by writing your own conversions. To add your own conversion type, you have to write a class
that implements org.hibernate.UserType (if it is a single Java value mapping to a single database column)
or org.hibernate.CompositeUserType (if it is a combination of one or more properties and/or one or more
columns). You can then add this new conversion class to the type mappings available and use it for your
domain objects. If you need even more specialized mappings, Hibernate provides a bevy of alternate
implementations for you, like UserCollectionType and ParameterizedType .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

20.3.3. Class Mappings

Once you configure Hibernate to locate your database, next you have to map your domain model onto the
database schema. Bear in mind that Hibernate is Java-centric, not data-centric, meaning that you provide
mappings for your classes, not your tables. Each persistable class in your model has to have a mapping file
(or portion of a collected mapping file). Each class must map to one root table. If your class is represented
in the data store by multiple tables, you will have to either decompose the class into multiple, smaller
classes or create a database view that spans the physical tables. Hibernate supports database views
transparently; some databases, however, do not provide this feature.

Class mappings are stored in files that fit the pattern <classname>.hbm.xml . Each Hibernate mapping file
should specify the appropriate Hibernate DTD version that it is based on. The mapping must then specify
the class name being mapped, including the full package name. You can use a convenience attribute on
the <hibernate-mapping> element called package to set the default package name for the mapping so that
you don't have to keep typing it everywhere, as shown in Example 20-3 .

Example 20-3. Sample class mapping (Professor.hbm.xml)

<hibernate-mapping package="com.oreilly.jent">
 <class name="Professor" table="professors">
 <!-- ... -->
 </class>
</hibernate-mapping>

Mapping files are often placed in the same directory as the classes they map. However, you can place
them anywhere on the classpath. If you prefer a separate mapping folder, by all means configure your
application that way. Just make sure that Hibernate has access to the folder where the mapping files
reside.

20.3.3.1. Unique IDs

Every persistable class must have one property or a combination of properties that can be used to
uniquely identify the row in the database where the instance lives. The mapping file uses the <id> element
to specify this property or combination and tell Hibernate how to manage its value. The ID value can either
be controlled by your application or you can let the database handle it.

Example 20-4 shows a simple class from our application, Professor .

Example 20-4. Professor.java

public class Professor {
 private Long id;
 private String firstName;
 private String lastName;
 // getters/setters elided for brevity...
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 20-5 is the mapping file for it, showing the application-assigned ID strategy.

Example 20-5. Class mapping for Professor (Professor.hbm.xml)

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC
"-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping package="com.oreilly.jent.hibernate">

<class name="Professor" table="professors">
 <id name="id" column="professor_id"
 type="long">
 <generator class="assigned"/>
 </id>
</class>

When using application-assigned IDs, you are in charge of the logic that generates those IDs and manages
their uniqueness. Attempting to persist an object whose ID is either unpopulated or a duplicate of an
existing record causes Hibernate to throw exceptions.

If you would rather allow the database to manage IDs, you can choose from a variety of methods,
depending on what your database supports. You can choose sequence tables (for example, if you are using
Oracle), HiLo algorithms, guids and uuids, or plain old autoincrementing fields. You can specify the
particular strategy you want, or you can let Hibernate choose for you by specifying the "native" generator
class. Our demo app uses autoincrementing fields in a MySQL database, so our ID mapping in
Professor.hbm.xml actually looks like this:

...
<id name="id" column="professor_id" type="long">
 <generator class="increment"/>
</id>
...

20.3.3.2. Properties

The mapping file then provides metadata for each persistable property of your class. Not every property
needs to be persistable; if the property doesn't appear in your mapping file, Hibernate ignores its existence
entirely. This can be useful for volatile or calculated properties or properties whose values must be looked
up from a nonrelational data store (like an XML file).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When mapping persistent properties, at a bare minimum, you have to specify the name of the property
and the name of the column it maps to. Optionally, you can specify the type, but Hibernate can also
discern the type via reflection on the class itself, so unless the standard Hibernate mapping is insufficient
for your needs, you can just omit the type from your mapping. The demo application supplies types
everywhere for clarity. Extending our Professor mapping to add the firstName and lastName properties,
the full mapping file now becomes:

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC
 "-//Hibernate/Hibernate Mapping DTD//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping package="com.oreilly.jent.hibernate">

<class name="Professor" table="professors">
 <id name="id" column="professor_id"
 type="long">
 <generator class="increment"/>
 </id>
 <property name="firstName" column="first_name"
 type="string"/>
 <property name="lastName" column="last_name"
 type="string"/>
</class>

20.3.4. Collection Types

So far, we've been working with what Hibernate calls "first-class" objects. Any instance of Professor is
unique, and Hibernate manages the identity constraints of each instance of Professor to ensure that you
access only a single instance per record at any given time. Quite often, though, your domain classes will
have a collection property of simple value types that needs to be persisted. For example, every Professor
might have one or more email addresses, which are just represented as simple String s. You don't want to
create a first-class persistent object from them, but you do need to map them to a table in the database.

The schema is shown in Example 20-6 .

Example 20-6. SQL for creating the Professor database

CREATE TABLE 'professors' (
 'professor_id' int(11) NOT NULL auto_increment,
 'first_name' varchar(25) NOT NULL,
 'last_name' varchar(50) NOT NULL,
 PRIMARY KEY ('professor_id')
)
CREATE TABLE 'emails' (
 'professor_id' int(11) NOT NULL,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 'email' varchar(255) NOT NULL
)

Professor s might have 0, 1, or many email addresses in the corresponding table. The domain will
represent the collection of email addresses as a java.util.Set :

public class Professor {
 private Long id;
 private String firstName;
 private String lastName;
 private Set emails;
 // getters/setters elided for brevity...
}

The last step is the mapping. When creating the mapping, you have to tell Hibernate which property is the
collection of values, what table to go to when looking up the values, and what the foreign key relationship
is. In our case, the property is called emails , the table is also called emails , and we've mimicked the
primary key field from our professors table in the new emails table (professor_id). Here's the relevant
excerpt from Professor.hbm.xml :

...
<set name="emails" table="emails">
 <key column="professor_id"/>
 <element column="email" type="string"/>
</set>
...

When mapping collections, you can choose Set , Map , List , Bag , or Array as the collection type. Each has
its own distinct syntax for the mapping file.

20.3.5. Relationship Mappings

The biggest challenge for an ORM framework is mapping the relationships between persistent classes and
defining the rules for loading and saving those relationships. Hibernate provides mapping tools for even the
most complex domain models, with relationship mappings for one-to-one , one-to-many, and many-to-
many relationships both unidirectionally and bidirectionally. In addition, Hibernate allows for lazy
associations between objects, which means Hibernate postpones loading the related classes until they are
needed.

20.3.5.1. One-to-one

In our University application, each UniversityClass has a single Syllabus , and each Syllabus is unique

http://lib.ommolketab.ir
http://lib.ommolketab.ir

to that class. Example 20-7 and Example 20-8 show a partial listing of the domain classes.

Example 20-7. UniversityClass.java

public class UniversityClass {
 private Long id;
 private String name;
 private Syllabus syllabus;
 //getters/setters elided for clarity...
}

Example 20-8. Syllabus.java

public class Syllabus {
 private Long id;
 private String abstract;
 private String fulltext;
 private UniversityClass uclass;
 //getters/setters elided for clarity...
}

In our example, UniversityClass is the primary object in the relationship, and we'll consider it the parent.
Syllabus is the dependent, or child, object. The relational schema we'll generate will look like Example 20-
9 .

Example 20-9. SQL for creating the University database

CREATE TABLE 'university_classes' (
 'university_class_id' int(11) NOT NULL auto-increment,
 'name' varchar(255) NOT NULL,
 'syllabus_id' int(11),
 PRIMARY KEY ('university_class_id')
)
CREATE TABLE 'syllabus' (
 'syllabus_id' int(11) NOT NULL auto-increment,
 'abstract' varchar(255) NOT NULL,
 'fulltext' text,
 PRIMARY KEY ('syllabus_id')
)

Notice the foreign key relationship: each record in university_classes points to a record in syllabus .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

According to our domain classes shown earlier, the relationship is bidirectional (each endpoint has a public
property exposing the other endpoint). Therefore, the mapping has to exist in both class's mapping files.
The mapping of the class whose primary key is the foreign key to the other table (in this case, Syllabus)
is fairly straightforward. We'd simply add this entry to the Syllabus.hbm.xml mapping file:

...
<one-to-one name="uClass" property-ref="syllabus"/>
...

This entry tells Hibernate that the Syllabus class has a property called uClass that is at one end of a one-
to-one relationship and that the other end can be found in a property called syllabus on whatever type
the uClass property is. The mapping for UniversityClass is slightly more complex, as shown in this
excerpt from the UniversityClass.hbm.xml file:

...
<many-to-one name="syllabus" column="syllabus_id"
 unique="true"/>
...

Right away, you'll notice the many-to-one designation, even though we are mapping a one-to-one
relationship. That's because the physical representation of the one-to-one looks just like the physical
relationship of a many-to-one (a foreign key lookup in the database), but in this case we know we should
find only a single match, hence the unique=true attribute. Hibernate will now manage this relationship,
throwing exceptions if you ever try to create two records in one table that map to a single record in the
other. The column attribute tells Hibernate which field in the record maps to the primary key column of the
associated table. We've used the same name (syllabus_id) on both sides, but that is not a requirement.

20.3.5.2. One-to-many and many-to-one

One-to-one relationships are interesting, but the most common form of relationship mapping in most
object domains is the bidirectional one-to-many . In this relationship type, one object is the parent, and it
has multiple children. The children are bound to their parent and only their parent; if they are moved to
another parent, the association with the original parent is severed. In our demo application, there is a one-
to-many relationship between several classes. Let's look at Professor and UniversityClass .

Each Professor teaches one or more classes, but each class is taught by a single Professor . If you switch
Professor s for a class, the original Professor no longer has to show up on Tuesdays at 9:30, so the
original relationship must be severed. Here's the updated SQL for the relevant tables:

CREATE TABLE 'professors' (
 'professor_id' int(11) NOT NULL auto_increment,
 'first_name' varchar(25) NOT NULL,
 'last_name' varchar(50) NOT NULL,
 PRIMARY KEY ('professor_id')
)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CREATE TABLE 'university_classes' (
 'university_class_id' int(11) NOT NULL auto-increment,
 'name' varchar(255) NOT NULL,
 'syllabus_id' int(11),
 'professor_id' int(11) NOT NULL,
 PRIMARY KEY ('university_class_id')
)

The professors table is the same as in the earlier example, but the university_classes table now has a
column to hold the ID of the professor teaching it.

The changes to the domain classes, UniversityClass and Professor , are simple. Here's UniversityClass :

public class UniversityClass {
 private Long id;
 private String name;
 private Syllabus syllabus;
 private Professor professor;
}

And here is Professor :

public class Professor {
 private Long id;
 private String firstName;
 private String lastName;
 private Set emails;
 private Set classes;
}

Once again, you have to provide mapping support in the files for both domain classes. The Professor
mapping has to specify the collection type while the UniversityClass has to specify merely the foreign key
mapping. Here's the change to the mapping in Professor.hbm.xml :

...
<set name="classes">
 <key column="professor_id"/>
 <one-to-many class="UniversityClass"/>
</set>
...

http://lib.ommolketab.ir
http://lib.ommolketab.ir

And here's the change to UniversityClass.hbm.xml :

...
<many-to-one name="professor" column="professor_id" not-null="true"/>
...

Whenever a Professor instance is loaded, Hibernate will now know how to find and instantiate all the
UniversityClass es that the Professor teaches. Likewise, loading any UniversityClass prompts Hibernate
to find the associated Professor .

20.3.5.3. Many-to-many

Many-to-many relationships are more difficult to represent in a database. These types of relationships
require a join table , an intermediate entity that has a foreign key relationship to each of the two primary
tables. You could map such a relationship by creating a first-class object that maps to the join table and
then creating one-to-many relationships from each primary class to the join class, or you just perform the
many-to-many mapping directly without adding the third domain model. Though the Hibernate team
recommends the former approach, experience shows that many people choose the latter.

In our application, the relationship between Student s and UniversityClass es is a classic many-to-many
relationship. Student s are supposed to enroll in (and attend) multiple classes per semester, and classes
are supposed to have multiple students attending. The SQL to create the relevant tables is listed next. The
university_classes table is the same as in our earlier example, but the new students and
students_classes tables hold basic student information and links each student to one or more classes:

CREATE TABLE 'university_classes' (
 'university_class_id' int(11) NOT NULL auto-increment,
 'name' varchar(255) NOT NULL,
 'syllabus_id' int(11),
 'professor_id' int(11) NOT NULL,
 PRIMARY KEY ('university_class_id')
)
CREATE TABLE 'students' (
 'student_id' int(11) NOT NULL auto-increment,
 'firstName' varchar(25) NOT NULL,
 'lastName' varchar(50) NOT NULL,
 PRIMARY KEY ('student_id')
)
CREATE TABLE 'students_classes' (
 'student_id' int(11) NOT NULL,
 'university_class_id' int(11) NOT NULL
)

Each end of the domain relationship now has to have a property that is a collection of the other end of the
relationship. Here's the updated UniversityClass class:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public class UniversityClass {
 private Long id;
 private String name;
 private Syllabus syllabus;
 private Professor professor;
 private Set students;
}

Here is the new Student class to represent student data:

public class Student {
 private Long id;
 private String firstName;
 private String lastName;
 private Set classes;
}

Finally, each class's mapping has to specify the collection properties and join table specifics to create the
full, bidirectional relationship. We'd have the following mapping in the Student.hbm.xml file:

...
<set name="classes" table="students_classes">
 <key column="student_id"/>
 <many-to-many column="university_class_id" class="UniversityClass"/>
</set>
...

The following mapping entry would go in the UniversityClass.hbm.xml file:

...
<set name="students" table="students_classes" inverse="true">
 <key column="university_class_id"/>
 <many-to-many column="student_id" class="Student"/>
</set>
...

The relationship in UniversityClass is marked inverse=true . This makes the Student the "parent" in the
relationship, and Hibernate will not try to insert or modify the properties of the relationship if the changes
are made only from the UniversityClass side.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

20.3.5.4. Proxies

All of the relationship mapping that we have described up until now is very powerful but has one large
downside. Without due care and consideration, a single load of any single record in the database could
cause a cascading load effect that eventually loads the entire database. This is an unacceptable scenario in
any but the tiniest applications; not only would the load time be staggering, but the resource consumption
would be unmanageable.

Instead, using lazy loading strategies, you should carefully manage what gets loaded and when. There are
two different kinds of lazy initialization: proxies, for one-to-one mappings, and lazy collections, for one-to-
many and many-to-many.

Declaring that a class can be proxied means that whenever that class appears on the "to-one" end of a
relationship, instead of returning the object itself, Hibernate creates and returns an impersonator. This
impersonator implements an interface or derives from a concrete class, as specified in the mapping file.
However, it does not read any data from the database. Instead, whenever any of its properties are
accessed for the first time, it asks Hibernate to load the values from the database at that moment. This
delays the resource consumption and network round-trips until absolutely necessary, and, if that proxy is
never utilized, the read never happens.

To declare a class to be "proxy-able," you merely append the proxy attribute to the class mapping
definition. For example, the Professor class will be proxied by a dynamically derived subclass of Professor
. The updated Professor.hbm.xml file would look like the following:

<class name="Professor" proxy="Professor">
 <!-- other mapping information -->
</class>

Later in this chapter, we'll introduce polymorphic mapping strategies. At that time, we'll formally introduce
a new member of the domain, the Person interface. If you use such a domain model, you can choose to
have the proxy be an implementation of any interface your domain class implements, so the mapping
could become:

<class name="Professor" proxy="Person">
 <!-- other mapping information -->
</class>

With this mapping in place, the following scenario could play out:

The application loads an instance of UniversityClass .1.

Hibernate finds and loads the record for that UniversityClass instance.2.

Hibernate traverses the many-to-many relationship between UniversityClass and Student , loading
each Student and placing her in the students set of UniversityClass .

3.

4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.

3.

Hibernate sees the relationship between UniversityClass and Professor , but does not load the
associated Professor , instead creating a dynamic instance of a class that implements Person (as
seen in the earlier mapping).

4.

Hibernate returns the UniversityClass instance to the application.5.

The application accesses the students collection of the UniversityClass ; no further database access
is required since the collection was already loaded.

6.

The application accesses the Professor property of the UniversityClass ; Hibernate performs a read
on the database and populates all the underlying property data.

7.

You should be aware of several caveats when using proxies. First, if you are using classes that exist in a
complex inheritance hierarchy, the proxy you receive from Hibernate cannot be cast to other members of
that hierarchy. Second, if a class designated with the proxy attribute appears on the "to-many" side of a
relationship, the collection will be populated by actual instances of the persistent class, not instances of the
proxy. Proxies are returned only when on the "to-one" side of an association.

20.3.5.5. Lazy loading

When you want to perform lazy loading on the "to-many" side of a relationship, the mapping strategy is
very different. The proxy designation is an attribute of the class itself; whenever that class appears as a
"to-one" association, the proxy will be used. When declaring lazily loaded collections, the mapping is an
attribute of the relationship itself. So, if you want to declare that the students property of UniversityClass
be lazily initialized, you would add lazy="true" to the relationship mapping in UniversityClass.hbm.xml :

...
<set name="students" table="students_classes" lazy="true">
 <key column="university_class_id"/>
 <many-to-many column="student_id" class="Student" inverse="true"/>
</set>
...

Instead of returning proxies of the objects in the collection, Hibernate returns a Hibernate-specific
implementation of the collection interface itself. If you are using a Set , Hibernate returns an instance of
org.hibernate.collection.PersistentSet . If you are using a Map , you'll get an
org.hibernate.collection.PersistentMap and so forth.

If your application never makes use of the collection, the values of the objects in the collection are never
loaded from the database. However, any access to the collection causes the entire collection to be loaded
(barring advanced optimizations like scrollable result sets). This means any access of any individual
element of the collection or any summary information (like the size of the collection). To determine the
size of a collection, Hibernate would have to perform the actual select in order to determine the full result
set of the join; if Hibernate must execute the full select anyway, it might as well return the results to the
collection to prevent executing it again later.

20.3.5.6. Special note about lazy initialization

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As we have not, as yet, covered the Hibernate API and usage patterns, we cannot speak adequately about
the problem of disconnected objects, lazy loading, and the LazyInitializationException . For now, it is
enough to say that anytime Hibernate needs to access the database, there must be an open JDBC
connection to the database and the object for whom access is being made must be associated with that
connection. Any attempt to access the database to populate lazily loaded associations without an open
connection will result in a LazyInitializationException . We'll learn how to avoid this problem in "The
Hibernate API " later in this chapter.

20.3.6. Polymorphic Mappings

Hibernate is built to supply relational mappings for Java, an advanced object-oriented programming
language. Java provides full object-oriented design capabilities, which includes polymorphic inheritance.
Hibernate must therefore support this feature. The lack of high-quality support for polymorphism was a
major drawback in the EJB 1.x and 2.x specifications.

When creating an inheritance hierarchy, you can choose between concrete inheritance (base class/derived
class) or interface inheritance (interface/implementation). Hibernate supports both methods with the same
tools and techniques. In our demo application, we'll be using interface inheritance to model the persons in
our university. Both the Professor and Student classes represent people and they share some common
properties, namely an ID, first name, and last name, and a Set of UniversityClass es. Our Person domain
object is modified to become:

public interface Person {
 Long id;
 String firstName;
 String lastName;
}

Let's also add a couple of properties to Professor and Student that are specific to each:

public class Professor implements Person {
 private Long id;
 private String firstName;
 private String lastName;
 private Set classes;
 private Set emails;
 private String degree;
}
public class Student implements Person {
 private Long id;
 private String firstName;
 private String lastName;
 private Set classes;
 private String ssn;
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Hibernate provides three strategies for mapping such an inheritance chain, which are discussed next. The
simplest version (table per class hierarchy) is easiest to map and set up in the database, but it is also the
least data-normalized schema.

20.3.6.1. One table per class hierarchy

In this strategy, you create a single table that holds all instances of all classes in a single inheritance chain.
This necessarily means that you will have some fields on some rows with null values. It also means that
the table has to have a special field (called the discriminator field) to determine which class each row is
supposed to map to.

Example 20-10 shows the schema for our combined person table.

Example 20-10. SQL for the combined person table

CREATE TABLE 'person' (
 'person_id' int(11) NOT NULL auto-increment,
 'person_type' varchar(15) NOT NULL,
 'first_name' varchar(25) NOT NULL,
 'last_name' varchar(50) NOT NULL,
 'ssn' varchar(11) NULL,
 'degree' varchar(11) NULL,
 PRIMARY KEY ('person_id')
)

The person_type field is our discriminator value. It is not mapped as a property on any of our domain
classes but rather is used as metadata for the mapping itself. The ssn and degree fields are members of
our derived types, and since there will be rows in the table that map to the other type (and hence these
fields will not have values), the fields themselves must be marked so that they can contain NULL values.

When mapping any of the inheritance hierarchies, we move away from having a single mapping file per
class to creating one mapping file for the entire hierarchy. The <class> element maps to the root of the
hierarchy and then you use special subclass elements to represent the children. To map a tree that goes
deeper than two levels, the subclasses can have their own subclasses. We'll create a mapping file starting
with our Person interface, as shown in Example 20-11 .

Example 20-11. Mapping for the Person interface

<hibernate-mapping package="com.oreilly.jent.hibernate">
<class name="Person" table="person" polymorphism="explicit">
 <id name="id" column="id" type="long">
 <generator class="native"/>
 </id>
 <!-- Tells Hibernate which column is used to determine the type of a given
 row -->
 <discriminator column="person_type" type="string"/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <property name="firstName" column="first_name" type="string"/>
 <property name="lastName" column="last_name" type="string"/>
 <!-- Defines a specific implementation of the interface -->
 <subclass name="Professor"
 discriminator-value="professor">
 <property name="degree" column="degree"
 type="string"/>
 <set name="classes" lazy="true">
 <key column="person_id"/>
 <one-to-many class="UniversityClass"/>
 </set>
 </subclass>
 <!-- Defines a second implementation of the interface -->
 <subclass name="Student"
 discriminator-value="student">
 <property name="ssn" column="identifier"
 type="string"/>
 <set name="classes" table="students_classes" lazy="true">
 <key column="person_id"/>
 <many-to-many class="UniversityClass"
 column="university_class_id"/>
 </set>
 </subclass>
</class>
</hibernate-mapping>

With this mapping, Hibernate can populate all properties of any instance loaded from the Person table.
Hibernate also provides full type fidelity for any loaded instance; when you load an instance of a Student ,
even if you ask for it as a Person , you can cast the result down to a Student .

20.3.6.2. One table per class

With this strategy, you create a separate table for every class in the hierarchy (whether or not it is a
concrete class). This provides the highest degree of data normalization but makes the actual mapping
somewhat more complex. Our schema would become:

CREATE TABLE 'person' (
 'person_id' int(11) NOT NULL auto-increment,
 'first_name' varchar(25) NOT NULL,
 'last_name' varchar(50) NOT NULL,
 PRIMARY KEY ('person_id')
)
CREATE TABLE 'students' (
 'person_id' int(11) NOT NULL,
 'ssn' varchar(11) NOT NULL,
 PRIMARY KEY ('person_id')
)
CREATE TABLE 'professors' (

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 'person_id' int(11) NOT NULL,
 'degree' varchar(25) NOT NULL,
 PRIMARY KEY ('person_id')
)

The person table is now the primary table where the autoincrementing ID is created. The dependent
tables, students and professors , utilize the person_id as the primary key but do not mark it as
autoincrementing since the value will always be supplied by the root table. Notice also that the ssn and
degree fields no longer have to accept NULL values since rows will be added to the dependent tables only
for actual instances of that class.

As you'll see in Example 20-12 , there are not many changes to the mapping except that you no longer
need the discriminator column, the subclasses become joined subclasses, and you have to specify the table
they live in.

Example 20-12. Updated Person mapping file using a table per class

<hibernate-mapping package="com.oreilly.jent.hibernate">
<class name="Person" table="person" polymorphism="explicit">
 <id name="id" column="id" type="long">
 <generator class="native"/>
 </id>
 <property name="firstName" column="first_name" type="string"/>
 <property name="lastName" column="last_name" type="string"/>
 <!-- Defines a specific implementation of the interface -->
 <joined-subclass name="Professor" table="professors">
 <key column="person_id"/>
 <property name="degree" column="degree"
 type="string"/>
 <set name="classes" lazy="true">
 <key column="person_id"/>
 <one-to-many class="UniversityClass"/>
 </set>
 </joined-subclass>
 <!-- Defines a second implementation of the interface -->
 <joined-subclass name="Student" table="students">
 <key column="person_id"/>
 <property name="ssn" column="identifier"
 type="string"/>
 <set name="classes" table="students_classes" lazy="true">
 <key column="person_id"/>
 <many-to-many class="UniversityClass"
 column="university_class_id"/>
 </set>
 </joined-subclass>
</class>
</hibernate-mapping>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Hibernate can now determine the actual type of an instance by whether or not it matches a row in the
specific subclass table.

20.3.6.3. One table per concrete class

This mapping would require only two tables in our application, one each for Professor and Student . This
method is also not optimally normalized since you have repeated columns defined in the two tables (each
has first_name and last_name , for example). Furthermore, those columns have to have identical names
so that Hibernate can map them correctly. Otherwise, this strategy looks very similar to the one-table-per-
class strategy.

20.3.7. Mapping Tools

Creating appropriate mappings is the heart and soul of a good Hibernate application. Making sure that
your relationships are efficiently modeled, that lazy initialization is established when necessary, and that
the right type mappings are used is a time-consuming process. Beyond that, you then have to actually
create the domain classes and the data schema.

The Hibernate team ships a variety of tools that you can use to ease the burden on your development
team. There are command-line tools that can generate one or more of the artifacts (Java code, mapping
files, or database schema) from the others. You can use existing tools like XDoclet or Middlegen to turn
code decoration into mapping files (see Chapter 21 for general details on XDoclet). There's a set of plug-
ins available for Eclipse, IntelliJ Idea, and most other IDEs. Finally, there's a standalone product available
from the Hibernate team called Hibernate Console (formerly Hibern8IDE) that allows you to put your
mappings to the test.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

20.4. The Hibernate API

Now that we've covered how to map your domain onto a database, we'll examine using the Hibernate
API to actually perform database operations. The various portions of the API are treated separately.
A Hibernate application will usually make use of most of what you see here, though Interceptors and
Events are somewhat less common than the others.

20.4.1. Configuration and Hibernate

Hibernate provides a class, org.hibernate.cfg.Configuration, that serves as the entry point to your
application's interaction with the database. You use the Configuration class to load mapping files,
specify global options, and retrieve metadata about your schema and objects.

If you are using the hibernate.properties or hibernate.cfg.xml files and they are in the classpath of
your application, the easiest way to configure Hibernate is to create an instance of Configuration and
call the configure method:

Configuration cfg = new Configuration().configure();

The configure method can take no arguments, as shown, in which case Hibernate will search for the
first matching configuration file. Optionally, you can pass a String, url, File, or Document to the
method to load the configuration file from an alternate location.

This step needs to be taken only once per application lifetime. Parsing the configuration properties
and establishing the global settings for Hibernate is a relatively lengthy and expensive process. The
application should execute the step only once and cache the resulting instance of Configuration
somewhere from which it can be retrieved later.

20.4.2. SessionFactory

After establishing the configuration settings, you use the configuration instance to create an instance
of org.hibernate.SessionFactory. The SessionFactory generates actual connections to the data
store. Usually, you should create only one SessionFactory per application lifetime. Keep a reference
to that SessionFactory for use throughout the application.

SessionFactory factory = cfg.buildSessionFactory();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In special cases, such as when you have to connect to multiple data stores, you will need multiple
SessionFactorys. If your application must communicate with multiple databases, you must provide
multiple sets of configuration properties and multiple connection wrappers. In this scenario, you
would create multiple properties files (datastore1.hibernate.properties and
datastore2.hibernate.properties) and load them each manually:

Configuration cfg1 =
 new Configuration.configure("datastore1.hibernate.properties");
Configuration cfg1 =
 new Configuration.configure("datastore2.hibernate.properties");

From each instance of configuration, you would build a separate SessionFactory. For example:

SessionFactory factory1 = cfg1.buildSessionFactory();

20.4.3. Session

The Session object is the real meat of the Hibernate API . Session instances wrap logical JDBC
connections. We say "logical" because the Session does not necessarily have to have an open JDBC
connection; the connection could be in a closed state or have been released to the connection pool.
Regardless, the Session instance is the only way to access the actual database connection in
Hibernate, and it is the primary vehicle through which persistence operations are performed.

You retrieve an instance of Session by calling SessionFactory.openSession(). Hibernate creates an
instance of Session but does not retrieve an open JDBC connection from the pool. That act is delayed
until you use the Session in such a way as to require a connection. From that moment on, the
Session has an open JDBC connection to use until you release the connection, by calling either
Session.disconnect() or Session.close() (more on this in a minute).

Once the physical connection is established, you should use the Session to do your work as quickly as
possible and then release the connection. The longer your application waits to release the connection,
the higher the likelihood of a concurrency conflict on the databases. Remember always that JDBC
connections are rare, valuable resources and should be used as quickly as possible and released for
others to use.

Whenever you use the Session, you should use appropriate error-handling blocks. The standard
usage pattern is shown in Example 20-13.

Example 20-13. Standard Session try/catch/finally usage pattern

Session session = null;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

try {
 session = factory.openSession();
 // Use the Session
} catch (Exception ex) {
 // Handle exceptions
} finally {
 if(null! = session) session.close();
}

20.4.3.1. Loading objects

The primary uses of the Session are to load and save first-class Hibernate objects. To load an
instance of a persistent class, you have to tell Hibernate what kind of object you are looking for as
well as the unique ID that allows Hibernate to find the specific instance:

// Load a UniversityClass
UniversityClass class =
 (UniversityClass)session.load(UniversityClass.class, new Long(1));

If you use the Session to load instances from an inheritance hierarchy, you specify the specific
subclass you want to load or the base class if you don't care. Hibernate will not load the wrong type
in response to such a request; if you ask for an instance of Professor, but provide the ID of a
Student, Hibernate will return an ObjectNotFoundException.

// Load a Professor
Professor prof =
 (Professor)session.load(Professor.class, new Long(2));
// Load a Person
Person person =
 (Person)session.load(Person.class, new Long(1));

When any of these load commands is issued, the lazy initialization rules you established in your
mapping files are applied. Loading the UniversityClass will cause all its Students to be loaded at the
same time unless the students collection is designated as a lazy collection.

20.4.3.2. Saving new objects

Adding new objects is just as straightforward as loading them. First, create an instance of the given
persistent class. Then, use the Session to save the object. If there are conflicts when you attempt
the save, Hibernate will throw detailed exceptions to explain the problem.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// Create a new Professor
Professor prof = new Professor();
prof.setFirstName("Jim");
prof.setLastName("Jacobs");
Session session = null;
try {
 session = factory.openSession();
 session.save(prof);
} catch (Exception ex) {
 // Handle the exception
} finally {
 if(null! = session) session.close();
}

Earlier, we established that our persistent class IDs were going to be managed by the database,
which means we don't have to set our new Professor's ID property. Hibernate will recognize that the
ID property is in an uninitialized state and fill in the value for us during the save procedure. After the
successful execution of the save, the value is populated.

We also know that our Professor can have a collection of email addresses. Adding them is simple:

Professor prof = new Professor();
prof.setFirstName("Jim");
prof.setLastName("Jacobs");
prof.getEmails.add("jjacobs@directional.edu");
prof.getEmails.add("jim_j@other.obscure.journal.com");
// Then save as before

The emails table will now have two new entries, each with a foreign key relationship back to the new
record of the person table where our new Professor resides.

We also know that the Professor can teach one or more UniversityClasses. We can create them all
at once using a single Session:

Professor prof = new Professor();
prof.setClasses(new HashSet()); // empty initial collection
// Set prof properties ...
UniversityClass english = new UniversityClass();
english.setName("English 101");
UniversityClass lit = new UniversityClass();
lit.setName("Literature 105");
session.save(english);
session.save(lit);
prof.getClasses.add(english);
prof.getClasses.add(lit);
session.save(prof);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In this example, we could have called session.save() on the three new objects in any order we
desired; it is easier to keep track of them if you call save on the children first, then the parent.

20.4.3.3. Updating existing objects

The simplest scenario for managing updates is to perform modifications to a loaded instance while
the loading Session is still open. Modifications will be made to the underlying record when the session
is flushed or the transaction is committed (we'll discuss the details later in this chapter). There is no
need to tell Hibernate to perform the update; it will notice if the state of the persistent object has
changed and push the update automatically.

Session session = null;
try {
 session = factory.openSession();
 Professor prof = (Professor)session.load(Professor.class, new Long(3));
 // Just got her doctorate
 prof.setDegree("PhD");
 session.flush();
} catch (Exception ex) {
 // Handle exception
} finally {
 if(null! = session) session.close();
}

20.4.3.4. Retrieving multiple objects

Sometimes, loading a single object at a time is not sufficient. You need to load an entire collection of
objects, whether that is the entirety of a table or just a selected portion. The Session object exposes
a set of methods that allows you to execute a query against the database (for more details, see
"Query" and "HQL (Hibernate Query Language)," later in this chapter). In its simplest format, the
query API allows you to specify a persistent class and some criteria for loading from its table(s).
Using this query, you can retrieve a List of the results, an iterator to the list, or a scrollable result
set.

List professors = session.createQuery("from Professor").list();
Iterator studentIterator = session.createQuery("from Student").iterate();

What if you wanted to find a filtered set of results? For example, all Professors with a PhD? You could
iterate through the list of all Professor objects, query the property using geTDegree(), and just keep
the matches, or you could use the createQuery() method.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

List professors =
 session.createQuery("from Professor where degree = 'PhD'").list();

This is much faster than iterating over the objects in Java because the database is optimized to
provide this kind of filtering, the number of rows returned is minimized, and the number of objects
created is likewise kept to a minimum. For more details about the kinds of queries you can execute,
see "Query and "HQL (Hibernate Query Language)," later in this chapter.

20.4.3.5. Connection management

While you are using a Session, you can perform three distinct operations to cause the state of the
Session to be written to the database. They are:

Session.flush()

Session.connection().commit()

Session.close()

Flushing the Session causes the state of the objects associated with the Session to be synchronized
with the state of the database. This is critical to understand: saves, updates, and deletes do not get
persisted to the data store until the Session is flushed. Flushing can occur multiple times during the
lifetime of a single Session. Updates between flushes are cached in the Session and executed as a
batch when a flush is triggered (either explicitly, by calling Session.flush(), or implicitly, as part of
another call, like Session.close()).

Using a previous example, the three saves are all cached until the flush happens at the end of the
method:

Professor prof = new Professor();
prof.setClasses(new HashSet()); // empty initial collection
// Set prof properties ...
UniversityClass english = new UniversityClass();
english.setName("English 101");
UniversityClass lit = new UniversityClass();
lit.setName("Literature 105");
session.save(english);
session.save(lit);
prof.getClasses.add(english);
prof.getClasses.add(lit);
session.save(prof);
session.flush();

Conversely, several calls to Session.flush() could be interspersed throughout the method to keep
the state of the Session synchronized with the database during long-running methods.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you attempt to flush a Session and the underlying state of the data has changed, say because
another user has modified the record you are working with after you originally loaded it, Hibernate
will throw a StaleStateException. In order to recover from this, you must refresh the state of the
object you were persisting by calling Session.refresh(staleobject). This will update the object in
memory to match the current values in the database. Then, you must reapply your changes and
attempt the flush again.

When you are through using the Session, it is imperative that you close it. That's why, in previous
code examples, the Session.close() appears in a finally block, ensuring that it gets called. Closing
the Session not only released the JDBC connection back to the pool but also released references to
persistent objects that were associated with the session, allowing the garbage collector to collect
them (as long as your application code has released its references as well). Any call to
Session.close() automatically invokes Session.flush() as well.

If you would like to be able to release connections to the connection pool but not terminate the
Session (and therefore orphan all the persistent objects associated with the session), you can use the
lighter-weight Session.disconnect()/Session.reconnect() pair of methods. Disconnect simply
drops the JDBC connection back into the pool. Persistent objects are still associated with the Session,
and you can still manipulate their properties, but nothing will be flushed back to the database. Calling
Session.flush() while the session is disconnected will result in a HibernateException. Likewise,
manipulating lazy associations that haven't been initialized while disconnected will raise a
LazyInitializationException. To get a new JDBC connection from the pool, simply call
Session.reconnect and all your functionality will be returned.

20.4.3.6. Disconnected objects

It is perfectly acceptable to load objects from the database and then close the Session that was used
to load them. Objects in this state are considered disconnected. You may pass them around, access
and modify their properties, and call methods on them in this state. The only exception is that you
may not access lazily loaded associations that have not been initialized yet since there is no open
Session to use to retrieve the lazy data.

If you need to then persist the changes to the disconnected object, you can associate it with a new
Session. You have several choices for doing so. First, if the state of the object is unchanged since the
original Session was closed, you can use the Session.lock() method to associate the object with
the new session. You must specify the lock mode you wish to use (none, read, upgrade, or write):

Session session1 = factory.openSession();
Professor prof = (Professor)session.load(Professor.class, new Long(2));
session1.close();
// Do other work
Session session2 = factory.openSession();
session2.lock(prof, LockMode.WRITE);
prof.setDegree("PhD");
session2.close(); // Causes a flush

If the state of the object has changed, or has the possibility of having changed, since the original
Session was closed, but the new Session has not loaded its own version of that instance, you can use

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the Session.update() method to associate the object with the new Session. If that Session turns out
to have its own loaded copy of that instance, Hibernate will throw a HibernateException explaining
that there is an identity conflict in the new Session.

Session session1 = factory.openSession();
Professor prof = (Professor)session.load(Professor.class, new Long(2));
session1.close();
// Do other work
Session session2 = factory.openSession();
session2.update(prof);
prof.setDegree("PhD");
session2.close(); // Causes a flush

Finally, if the new Session is known to have its own version of the disconnected instance, you can use
Session.merge to merge the values from the disconnected copy into the new Session's connected
copy.

20.4.4. Query

Hibernate's Query class gives you an object-oriented way to manage repeatable, parameterized
queries to the database. For full details about what is possible using HQL, see the HQL section later in
this chapter. To create a Query, use the Session.createQuery() method we used earlier:

Query getprofs = session.createQuery("from Professor");

While such a query might be useful (it can be cached and executed multiple times), it does not
provide much benefit over directly executing it. What would be more useful is if the query required
one or more parameters. Creating a cached, parameterized query is convenient programmatically (it
is easy to set the parameters and reexecute the query), more efficient since the statement has been
prepared already, and more secure, because parameter values are never treated as potentially
executable code (thus they mitigate the risk of SQL injection attacks).

Query getprofsbydegree =
 session.createQuery("from Professor where degree = :degree");
getprofsbydegree.setString("degree", "PhD");
List results = getprofsbydegree.list();

The named-parameter strategy is the most convenient, as you can specify the parameter values in
any order. If you prefer, you can use standard JDBC-style numbered parameters, but bear in mind
that the first parameter in a Hibernate query is parameter 0, not 1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

20.4.5. Interceptors

It seems these days that if a framework doesn't offer some kind of aspect-oriented programming
technique, then it can't be considered "modern" or "complete." Therefore, Hibernate offers the
Interceptor interface and a strategy for connecting the interceptor to a session. Bear in mind,
interceptors are configured either per-session or once globally, and each session can have only a
single interceptor associated with it. Writing good, general interceptors can then become an exercise
in cramming a lot of code into a single class.

The interceptor interface is large and complex. It allows you to trap a variety of different events in
the Session: for example, onLoad, onDelete, onFlushDirty, and beforeTransactionCompletion. The
interceptor gets the first crack at these events; if you need to cancel the rest of the event from the
interceptor, you have to throw a CallbackException, which will unwind the stack before the Session
can complete the action.

Let's just look at the onSave() method of the interface:

public boolean onSave(Object o, Serializable serializable,
 Object[] objects, String[] strings,
 Type[] types) throws CallbackException {
 return false;
}

The method returns a boolean value, which is to notify Hibernate if you have modified any of the
values passed into the method (the object or any of its properties). The parameters themselves seem
complex but are in fact quite straightforward:

Object o

The persistent object being operated on

Serializable serializable

The ID of the object

Object[] objects

An array of (only) the persistent property values of the object

String[] strings

An array of (only) the persistent property names of the object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Type[] types

An array of (only) the persistent property types of the object

Interceptors are often used for security or logging purposes. A common security interceptor looks like
this:

public boolean onSave(Object o, Serializable serializable,
 Object[] objects, String[] strings, Type[] types)
 throws CallbackException {

 // A custom Authorize class that implements
 // your business security rules
 if(!Authorize.isAuthorized(o))
 throw new CallbackException
 ("Current user not authorized to save this object.");
 return false;
}

To associate the interceptor with a specific Session, you specify it during the call to
SessionFactory.openSession():

Session session = factory.openSession(new SecurityInterceptor());

Conversely, you can associate it with every Session by setting it on the Configuration object:

Configuration cfg = new Configuration().configure();
cfg.setInterceptor(new SecurityInterceptor());

20.4.6. Events

Brand new in Hibernate 3.0, Events replace the old Lifecycle interface for providing an alternate
event-listening strategy. The Lifecycle interface was implemented by your domain objects to
provide event callbacks on individual persistent instances. This made your domain objects decidedly
nontransparent; they had direct references to the Hibernate libraries and were now cluttered with
extraneous, non-domain-related code.

Instead, Hibernate now supplies a series of interfaces, one for each event published by the Session.
To create a listener, you write a class that implements the chosen event interface or derives from one
of the supplied default implementations of those interfaces. Then, you configure Hibernate to
recognize your event.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Each event interface provides a single method that you implement to handle the inbound call. The
methods all have slightly different signatures based on the activity they represent, but they all start
with a parameter called event that allows you access to the entity being acted on and any context
data associated with the call. Example 20-14 shows our security interceptor, rewritten as a
SaveOrUpdate event listener.

Example 20-14. SecureUpdateListener.java

public class SecureUpdateListener
 extends org.hibernate.event.DefaultUpdateEventListener {
 public Serializable onSaveOrUpdate(SaveOrUpdateEvent event)
 throws HibernateException {
 if(!Authorize.isAuthorized(event.getEntity())
 throw new HibernateException("Not authorized.");
 return super.onSaveOrUpdate(event);
 }
}

To configure Hibernate to utilize the listener, you can set it programmatically:

Configuration cfg = new Configuration().configure();
cfg.setListener("saveOrUpdate", new SecureUpdateListener());

Or declaratively (say, in hibernate.cfg.xml):

<hibernate-configuration>
 <session-factory>
 ...
 <listener type="saveOrUpdate"
 class="SecureUpdateListener"/>
 </session-factory>
</hibernate-configuration>

You can use the same class to listen for multiple events. Just implement all the appropriate interfaces
on that class, implement the methods on those interfaces, and use the same class name for each
event that you are listening on. Hibernate creates a singleton instance of each listener to use, so the
same instance will be used across the different event calls. Bear in mind that, as with interceptors,
you can configure only a single listener per event type in your application. Setting the listener again
replaces the original listener with the new one and does not append it to the call chain.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

20.5. HQL (Hibernate Query Language)

Database applications, no matter how object-oriented, need to have direct access to the underlying
database from time to time. We've already seen some reasons why (filtering data by parameterized
query). The need for queries breaks down into the following categories:

Retrieve a collection of objects from the database all at once

Retrieve a sorted collection of objects from the database all at once

Retrieve nonobject values from the database

Retrieve summary information from the database

All four of these categories involve either collecting persistent objects or avoiding them altogether,
making the direct object/relational mapping strategy an obstacle.

Hibernate provides Hibernate Query Language (HQL) and the Query interface to allow you to execute
statements that meet these goals. Hibernate Query Language looks an awful lot like SQL. HQL
queries can have a SELECT clause, a FROM clause, and a WHERE clause. You can, if you choose, author
direct SQL statements as HQL queries; as long as the database can perform the query, the query will
execute. On the other hand, you can use object-oriented notation instead of data-oriented notation in
your HQL queries. This means, instead of using table and field names, you can use class and property
names, or any mix of the two.

20.5.1. FROM

The FROM clause of an HQL query tells Hibernate where to look for the requested values. You can use
either the name of one or more persistent classes, the name of one or more tables in the database,
or any combination thereof. When all you want is for Hibernate to return one or more first-class
persistent objects, you can issue an HQL query consisting of nothing but the FROM clause:

List professors = session.createQuery("FROM Professor").list();

Hibernate doesn't require a SELECT clause because, by default, results will include every field in the
table that is needed to create a Professor instance. Without a WHERE clause, the query returns every
row in the table.

20.5.2. SELECT

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can use the SELECT clause to provide aliases to the first-class objects being returned or to return
values other than first-class persistent types. For example, if you wanted to return just the last
names of all professors, you could use the following query:

List profLastNames =
 session.createQuery("SELECT lastName from Professor").list();

The result is a List of String values, one for each Professor, containing just the last-name field.
Asking for multiple values returns a list of arrays containing the values in order:

Iterator profNames =
 session.createQuery("SELECT firstName, lastName from Professor").list().
 iterator();
while(profNames.hasNext()) {
 Object[] names = profNames.next();
 // firstname == names[0]
 // lastname == names[1]
}

20.5.3. WHERE

The WHERE clause can contain any specific kind of filtering or grouping criteria that your database
vendor supports. If you use a database that allows subqueries, HQL will happily allow you to use
subqueries. Standard equality, comparison, and join notations are all available. If you attempt to use
a SQL feature that is unavailable on your database platform, Hibernate will throw a SQL exception
when it tries to execute the command on the database.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

20.6. Hibernate Services

Hibernate provides a variety of services to you, whether through native Hibernate libraries or third-
party libraries that you can download along with the core framework. For the purposes of this
chapter, we'll examine just three: transaction management, caching support, and security. Many
others are available, and you can learn about them in Hibernate's excellent online documentation.

20.6.1. Transactions

Most database applications require transactions in order to provide some level of assurance around
updates to the tables. Hibernate provides a fully ACID-compliant local transaction manager for use
with applications talking to a single database.[2] You can make use of the transaction provider with
minimal effort, but it is often useful to be explicit about your use of transactions in your data code.
This means making use of Hibernate's TRansaction object.

[2] For more information on transactions, see Chapter 16.

When beginning transactional work against a single database, you can explicitly begin a transaction
within an open Session:

Session session = factory.openSession();
Transaction tx = session.beginTransaction();

Remember that the Session object does not actually grab a JDBC connection from the pool until you
make a call that requires data access. The call to beginTransaction forces the Session to retrieve a
connection because a transaction is meaningless without a connection as context.

Once a transaction has been established, you can do your data work. Any usage of the Session to
access the database between the call to beginTransaction and a call to transaction.commit() will be
considered part of the local transaction; there is no need to associate each specific data operation
with the transaction. When you have finished all the transactional work, call transaction.commit().
If exceptions are thrown during the course of the method, you must explicitly roll back the
transaction, close the Session, and handle your errors. The overall pattern looks like this:

Session session = null;
Transaction tx = null;
try {
 session = factory.openSession();
 tx = session.beginTransaction();
 Professor p = session.load(Professor.class, new Long(1));
 UniversityClass class = new UniversityClass();
 class.setName("English 333");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 p.getClasses.add(class);
 Student s = session.load(Student.class, new Long(4));
 s.setSss("111-111-1111");
 tx.commit();
} catch (Exception ex) {
 if(null! = tx) tx.rollback();
 // report error, etc.
} finally {
 if(null! = session) session.close();
}

Local atomic transactions like this are scoped to a single connection. You should always be explicit
about manually committing your transactions; never assume that calling Session.close() will result
in the appropriate behavior, because whether or not a transaction closed in this way commits or rolls
back is a function of your database and your connection provider.

Because the transaction is scoped to a single connection, we know that it cannot survive a call to
Session.close(). Likewise, transactions do not survive calls to Session.disconnect(), either. Since
disconnect drops the physical connection back into the pool and the connection is the containing
context of a transaction, disconnecting the Session has the exact same consequences as closing the
session out from under the transaction. Once again, you should explicitly commit or roll back the
transaction before calling either disconnect or close.

The explicit transaction strategy is great for local atomic transactions, but useless in the face of a
distributed transaction for several reasons:

A distributed transaction, by definition, spans multiple databases. A single Session object
(wrapping a JDBC connection) connects only to a single data source. The explicit transaction
object lives within a Session. Therefore, it cannot be used to talk to more than one database.

Distributed, managed transactions do not like it if you attempt to commit them prematurely.
The container and the JTA decide when a transaction is to be committed, and calling tx.commit(
) would result in an exception being thrown.

Likewise, distributed transactions are not happy when explicitly rolled back. Again, the container
and the JTA manage these decisions.

To use the JTA to take part in a distributed, managed transaction, you have to first replace the
Hibernate local transaction manager with the JTA. This is accomplished by adding these configuration
settings to hibernate.properties:

hibernate.connection.datasource = java:/your/datasource
hibernate.transaction.factory_class =
 org.hibernate.transaction.JTATransactionFactory
hibernate.transaction.manager_lookup_class =

 org.hibernate.transaction.<Vendor>TRansactionManagerLookup

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In the preceding snippet, you would use the transaction lookup manager appropriate to your
container by replacing <Vendor> with JBoss, WebLogic, or one of the other manager implementations

provided with Hibernate.

Once the configuration is set, Hibernate relies on the container to manage transactions. Whenever
Hibernate is called, it attempts to associate with the current global JTA transaction in effect. If there
isn't one, it creates one for the length of the current call. As long as the container is around, your
application can safely ignore all Transaction API calls. The JTA transaction either already exists or is
created directly by Hibernate, so you do not have to call Session.beginTransaction(). The
transaction is committed by the JTA and container based entirely upon rules in the deployment
descriptor, so you never have to call transaction.commit(). To force a rollback of the transaction,
you simply raise an exception that makes it back to the container. The container will roll back the
transaction automatically, so you don't have to call tx.rollback(). All you have to do is write code
that accesses the database.

20.6.2. Caching

Beware of premature optimization. Too many times, development teams implement performance
improvement strategies before ever measuring actual performance, or even finding out what an
acceptable performance range might look like. If it weren't for the fact that most performance gains
come at the expense of other, equally important concerns (simplicity, ease of maintenance, ease of
testing), it wouldn't be a big problem.

Caching is an optimization technique; the idea behind caching is to prevent unnecessary trips to the
database. If data is unlikely to change much, or is only read but never written or written but not
read, you can save time and processing power by short-circuiting the round-trip before it gets
started. Since database applications are almost always performance-bound to the network and I/O
costs of hitting the database server, this is an appropriate first stop on the optimization path.

Hibernate provides two main kinds of caching: a Query cache and the more general second-level
cache. The Query cache is built into the Hibernate framework, while the second-level cache is
implemented in a third-party library, and there are several choices of implementation. Both strategies
should be used carefully.

The problem with caching is that the application has to maintain a duplicate, local version of data in
the central data store. Reads (or writes) happen to the local cache, which prevents the round-trip
and the overhead of invoking the database APIs. The downside is that managing the lifecycle of the
cache is complicated; what happens when the database changes? How should the cache be updated?
What should happen if changes to the cache can't be pushed back onto the database? The extra layer
of indirection is useful, but comes at the price of complexity.

20.6.2.1. The second-level cache

It turns out that, all along now, Hibernate has been busily caching data for you, without your
knowledge. The Session itself is a cache of data. The state of each object, during the course of a
transaction, is maintained in the Session. This makes sense. When you load an object in a Session,
you wouldn't want to make a round-trip back to the database each time you access a property on the
object. The Session caches those values for you. When the transaction is committed and the Session

http://lib.ommolketab.ir
http://lib.ommolketab.ir

is closed, the cache is destroyed.

Sometimes you need a cache that spans the transaction boundary. When accessing data that is
either infrequently or never updated, you may find it faster to load the data once, place it in the local
cache, and access it from there for future needs. You'll want that data to stick around between
Sessions and be accessible from any Session. Because of these requirements, you need something
beyond the Session class itself to manage the cache.

The second-level cache is implemented in the EHCache library. You can replace it with any library
that implements the Hibernate interface for cache management. Currently, appropriate libraries are
EHCache, OSCache, SwarmCache, the JBoss TreeCache, Java Caching System or JCS (though it is
deprecated now and will disappear altogether in future versions), and even a plain old hashtable,
though this is frowned upon for anything but simple testing.

EHCache allows you to use an in-memory or disk-based cache. When you configure it, you can
establish your own rules for what objects are added to the cache and when they are removed from it.
The in-memory store uses the LinkedHashMap for actual storage if you are using JDK 1.4 or 5.0;
otherwise, it uses the Apache Commons LRUMap. The disk storage version uses several well-known
locations for the data to be persisted.

To enable EHCache, you have to set the global cache property, normally in the global configuration
file, hibernate.properties:

hibernate.cache.provider_class = net.sf.ehcache.hibernate.Provider

After that, it's just a matter of configuring which objects, queries, and collections you want to cache.
This sounds simple; remember, second-level caches are not notified by the database when changes
have been made to the underlying store. The caches need to be expired intelligently if there are likely
to be concurrency conflicts. Caches should be used for data that is seldom or never written.

To enable the cache for a given persistent class, add the appropriate caching directive to the mapping
file. For example, you might imagine that the classes in the various departments use the same
textbooks year in and year out (the pace of change in textbooks is glacially slow, after all), and this
data could be considered relatively static. The UniversityClass would be extended to include a new
textbooks property:

private Set textbooks;
// Accessor methods elided

And a new class, TextBook, would be added:

public class TextBook {
 private String title;
 private String author;
 private String isbn;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Accessor methods elided
}

The mapping for TextBook would mark it as a cacheable class; since the data is unlikely to change
much, we could have a generous expiration limit on the cache and prevent lots of round-trips to the
database:

<hibernate-mapping package="com.oreilly.jent.hibernate">
 <class name="TextBook">
 <cache usage="read-only"/>

 <!-- rest of mapping elided -->
 </class>
</hibernate-mapping>

When specifying the caching strategy, you can use read-only, which means that the underlying data
has no chance of being written to while the cache is in effect. Other strategies are read-write, for
data that may change out from underneath the cache, and nonstrict-read-write.

The read-write and read-only cache strategies both use synchronized access to the cache, meaning
that the cache is thread safe and cache consumers are guaranteed to get the most recent version of
an object available in the cache. nonstrict-read-write is still threadsafe but does not guarantee that
each consumer will get the most recent version of any given object. nonstrict-read-write is the
most efficient cache strategy, but it requires more thought and planning for the developer who must
anticipate retrieving stale objects from the cache.

20.6.2.2. The Query cache

The Query cache utilizes the second-level cache. Its job is to retain the results of a frequently run
query. The full results are not cached, however. The Query cache maintains two separate physical
caches: one for the ids of the returned results, and one for the timestamp of each id. When queries
whose results have been cached are executed again, Hibernate retrieves the id cache and looks up
the values in the second-level cache. This prevents wasted resources by preventing double storage of
items, but it also means that you cannot just implement the Query cache without the second-level
cache being enabled.

20.6.3. Security

Hibernate 3.0 introduces a new declarative security model for securing access to your persistent
classes. Based on the Java Authorization Contract for Containers (JACC) and the Java Authentication
and Authorization System (JAAS),[3] Hibernate now allows you to map user roles to actions you can
perform on persistent classes:

[3] For more information on JACC and JAAS, see Chapter 10.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<listener type="pre-delete"
 class="org.hibernate.secure.JACCPreDeleteEventListener"/>
<listener type="pre-update"
 class="org.hibernate.secure.JACCPreUpdateEventListener"/>
<listener type="pre-insert"
 class="org.hibernate.secure.JACCPreInsertEventListener"/>
<listener type="pre-load"
 class="org.hibernate.secure.JACCPreLoadEventListener"/>

Remember, once these are installed, you can't add any more listeners for these events. Now all that
remains is to configure your access permissions. Permissions are established globally in the
configuration file.

<grant role="depthead" entity-name="Professor" actions="*"/>
<grant role="professor" entity-name="Student" actions="read"/>

In order for all this to work, your application must already support a JAAS login, and the roles you
use in the configuration must map to the roles provisioned by the JAAS login module.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

20.7. Conclusion

Hibernate has changed the landscape for persistence management. Its popularity, and the popularity
of similar ORM packages for Java, has all but eliminated the idea that developers should manage
JDBC on their own. Likewise, Hibernate has shown that a high-performance, robust persistence
framework can remain lightweight and transparent to your domain model. Hibernate has had such an
influence on the persistence landscape that the next version of the EJB specification is going to look
remarkably like what you've seen here today. Learning Hibernate isn't just a good idea nowit is a
form of future proofing as well.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 21. Annotations with XDoclet and
J2SE Metadata
Code annotations can simplify enterprise development tasks. They allow you to place metadata about
your code directly into your code and then use this metadata in various ways, such as automatically
generating artifacts related to the code (documentation, deployment descriptors, and configuration
files), running reports of various kinds over the code, and even generating supplementary code.

There are currently a number of annotation-related tools and libraries available through open source
projects as well as tools available for specific Java IDEs and application server environments. In
addition, a standard code metadata facility was added to the language as of J2SE 5.0.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

21.1. What's Covered Here?

In this chapter, we will be discussing two complementary annotation systems: XDoclet and J2SE
annotations. XDoclet is arguably the most popular open source annotation tool in the Java
community. We'll examine various ways that you can use the annotations available in XDoclet to
make enterprise development tasks easier. The examples shown in this chapter were written using
XDoclet 1.2.3.

We also provide an overview of the J2SE 5.0 annotation facility, which is now part of the Java
language and is the basis for various proposed annotation extensions to key Java enterprise APIs like
EJB and JAX-RPC. The annotation facility built into J2SE is based on the JSR-175 specification. The
J2SE annotation examples shown in this chapter were developed using J2SE 5.0 update 2.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

21.2. What Are Code Annotations?

If you write Java code and document your code (one doesn't necessarily imply the other, sadly), you
are already familiar with a particular kind of code annotation: Javadoc tags. With Javadoc, you put
metadata about the code (like the author, references to other related classes, and descriptions of the
meanings of methods) into the code itself, in the form of annotations. You then run a tool (in this
case, the Javadoc generator) over the code to generate HTML documentation from these
annotations.

Generalized annotation schemes follow this same basic model. The difference is that you can do
much more than just generate documentation (as useful as that is). Code annotations can be used to
generate deployment descriptors, configuration files, and even Java code, as shown in Figure 21-1.

Figure 21-1. General model for code annotations

As depicted in the figure, annotations are inserted as markup directly in your code. As an example,
here's an XDoclet annotation specifying some deployment settings for a web component:

/**
 * @web.servlet
 * name="ShoppingCart"
 * display-name="The Shopping Cart Servlet"
 */
public class ShoppingCartServlet extends HttpServlet {
 . . .
}

When you're dealing with enterprise development scenarios, annotating your code in a structured
way can benefit you in a number of ways:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Reduce development effort

An annotation system allows you to mark up your code directly and then use this markup
information to automatically generate all the trappings required for the context at hand. A
deployment descriptor, for example, can be generated using some basic settings provided in a
set of code annotations. The annotation processor can generate the proper XML structure and
insert default values for any unspecified but required deployment settings.

Simplify code management

Annotations are embedded in the code, which makes tracking, updating, and finding key
metadata about the code much easier. Similar to the principle of Javadoc annotations for
documentation, keeping the metadata with the code makes it much easier to keep the
information in line with the current state of the code and vice versa.

Make your code more flexible

If you use annotations consistently across your project code, they can be a significant aid when
it comes time to refactor your code in certain ways. If, for example, you consistently generate
deployment descriptors using annotations, you can very easily deploy your code to various
types and versions of J2EE application servers simply by altering the parameters used by the
annotation processor.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

21.3. Annotation Tools

A number of annotation facilities are available for the Java environment. We already mentioned
Javadoc, which is built into Java and is aimed at autogeneration of HTML documentation for Java
code. Javadoc is somewhat extensible in itself. You can write your own custom Javadoc processor to
take code with Javadoc comments and generate your own documentation formats. You can also
define your own custom Javadoc tags and handle them in your custom Javadoc handlers.

Javadoc is, however, aimed principally at documentation-oriented code annotations and is used
almost exclusively for that purpose. Since this book is about enterprise application development, we
discuss XDoclet and J2SE annotationsannotation tools that are particularly relevant to enterprise
contexts. XDoclet includes a wide array of predefined annotations for enterprise development, and
J2SE annotations are being used to define standard annotations in the next versions of key enterprise
Java APIs.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

21.4. XDoclet Tutorial

XDoclet is a toolset built on top of the Javadoc annotation mechanism. The XDoclet toolset is an open
source project, currently managed on SourceForge. Essentially, XDoclet provides a suite of
predefined custom Javadoc tags designed for use in various development scenarios, such as
developing web and EJB components, implementing web services, integrating Hibernate persistence
management, deploying components to specific application servers, and so on. Annotating your code
is done using these Javadoc tags within code comments. XDoclet includes a set of Ant tasks that are
used in your buildfiles to process the annotations and generate the appropriate outputs.

21.4.1. Annotating Your Code

XDoclet annotations can be applied to specific entities in your Java code:

Classes or interfaces

Methods and constructors

Member variables

These annotations look a lot like standard Javadoc comments. The general syntax for XDoclet
annotations is:

@tag-group.tag-name param1="value1" param2="value2"

The tags are organized into groups, indicated by the tag-group label, and each tag has a unique
name within its group, indicated by the tag-name. A tag can optionally accept one or more
parameters, which are provided in the annotation using the syntax shown here. You can also put
parameters on lines following the tag line. The XDoclet processor will consider all subsequent
parameter lines to belong to the initial tag you specify. So the previous example could also be put
into your code as:

@tag-group.tag-name
 param1="value1"
 param2="value2"

XDoclet annotations always reside within a Javadoc comment, and the location of the comment
(class, method, or member variable) determines the level of the annotation. Here is a class-level

http://lib.ommolketab.ir
http://lib.ommolketab.ir

XDoclet annotation:

/**
 * Class: MyNeatServlet
 * @author Jim Farley
 *
 * @web.servlet
 * name="neat-servlet"
 */
public class MyNeatServlet extends HttpServlet {
 . . .

In this case, the annotation tag group is web, and the tag name is servlet. The annotation has a
single parameter, name, with a value of neat-servlet. The web.servlet annotation applies at the class
level because it sits within a class-level Javadoc comment.

A method annotation would look like this:

public class MyDataObject {
 . . .
 /**
 * Description property
 *
 * @hibernate.property
 * column="DESC"
 */
 public String getDescription() { . . . }
 . . .
}

The hibernate.property annotation sits within a Javadoc comment for the getdescription()
method, so it applies to that method.

A member-level (also called a field-level) annotation is not as common in XDoclet but still useful in
some situations. A member annotation sits in a member-level Javadoc comment, as shown in this
example:

public class MyEJB extends EntityBean {
 . . .
 /**
 * @ejb.resource-ref res-name="jdbc/MyDBPool"
 */
 protected DataSource mDBPool = null;
 . . .
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

21.4.2. Processing XDoclet Annotations

The only way to process XDoclet annotations right now is to use the provided XDoclet Ant tasks in an
Ant buildfile. Each XDoclet Ant task is intended for a particular development context and processes a
targeted subset of the available annotations. The webdoclet Ant task, for example, is aimed at
developing various types of web components (servlets, JSPs, custom JSP tags) and processes
annotations from the web group and a few related annotation groups. The ejbdoclet task, on the
other hand, is for EJB component development and can process annotations in the ejb and related
annotation groups.

More complete details on the general topic of writing Ant buildfiles can be found in Chapter 17. Here,
we'll just look at the basics of how to import the XDoclet tasks into your buildfile. In the following
sections, we'll take a look at a few key scenarios to demonstrate how the XDoclet Ant tasks are used
to process some of the commonly used annotations.

Adding the XDoclet tasks to your buildfile is the same as adding any other custom Ant tasks. You use
the taskdef task to define a new task that is implemented by classes in the XDoclet libraries. The
dependent classes for the task are specified using a nested <classpath> element. In Example 21-1,
we "import" the webdoclet task from the XDoclet libraries.

Example 21-1. Importing the webdoclet task into an Ant buildfile

<property name="xdoclet.home" value="/usr/local/xdoclet-1.2.3"/>
<!-- Include the XDoclet webdoclet Ant task -->
<taskdef name="webdoclet"
 classname="xdoclet.modules.web.WebDocletTask">
 <classpath>
 <path>
 <fileset dir="${xdoclet.home}/lib">
 <include name="*.jar"/>
 </fileset>
 </path>
 <path refid="java.compile.classpath"/>
 </classpath>
</taskdef>

We're using an xdoclet.home property to point to the root of the XDoclet installation, just as a
convenience. In the taskdef task, we specify that we're defining a task named webdoclet and that it
is implemented by the class xdoclet.modules.web.WebDocletTask. This class will be located in the
<classpath> we define within the taskdef. In our <classpath>, we're including two sets of <path>
elements. First, we're adding all of the XDoclet jars using a fileset that includes any file ending in
.jar in the XDoclet lib directory. Following this, we add the <classpath> named
java.compile.classpath (whose definition is not shown here). The <classpath> that's specified in the
taskdef will be used whenever the task is used in the buildfile. In the case of the XDoclet webdoclet

http://lib.ommolketab.ir
http://lib.ommolketab.ir

task, the <classpath> has to include all of the web component librariesthe servlet and JSP libraries at
a minimum, possibly others depending on the webdoclet options you use. The
java.compile.classpath path used here must include the jars for the servlet and JSP packages,
pulled from whatever application server we're using. Note that you can also set the classpath for the
task at the point in the buildfile where you actually use the task. Setting the classpath here in the
taskdef can be convenient when the imported tasks will be used several times in the buildfile with the
same base classpath.

To add other XDoclet tasks to our buildfile, we would repeat these previous steps above, specifying
different task names and implementation classes. The ejbdoclet task definition would be imported as
shown in Example 21-2. In this case, since the ejbdoclet task will need to have access to the EJB
libraries (javax.ejb, etc.), we'll need to ensure that these classes are included in the
java.compile.classpath <path> element.

Example 21-2. Importing the ejbdoclet task into an Ant buildfile

<!-- Include the XDoclet ejbdoclet Ant task -->
<taskdef name="ejbdoclet"
 classname="xdoclet.modules.ejb.EjbDocletTask">
 <classpath>
 <path>
 <fileset dir="${xdoclet.home}/lib">
 <include name="*.jar"/>
 </fileset>
 </path>
 <path refid="java.compile.classpath"/>
 </classpath>
</taskdef>

Once the tasks have been defined and imported into the buildfile, you can use them like other Ant
tasks, nested within your build targets. In the following example, we use the webdoclet task inside of
a create-war target to generate a web.xml deployment descriptor from the source code before
assembling the web archive (war) file:

<target name="create-war">
 <!-- Generate a web.xml file using annotations on the
 web components -->
 <webdoclet destDir="${web.dir}">
 <fileset dir="${src.dir}">
 <include="**/web/*Servlet.java"/>
 </fileset>
 <deploymentdescriptor
 servletspec="2.4"
 destinationFile="web.xml"/>
 </webdoclet>

 <!-- Assemble the classes, deployment descriptor, etc.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 into a web archive, using the Ant built-in war task -->
 <war warfile="myapp.war" webxml="${web.dir}/web.xml">
 . . .
 </war>
</target>

Aside from the general details of invoking the webdoclet Ant task, you should also note here that the
war task that follows the webdoclet task is reading in the web.xml deployment descriptor being
generated by the webdoclet task. The deployment descriptor is being generated directly from
annotations found in the servlet source code. This ability to extract key code artifacts directly from
source code annotations is an important benefit provided by XDoclet and other annotation-driven
facilities.

21.4.3. Generating Deployment Descriptors

We just saw an example of generating a web deployment descriptor using XDoclet , but now let's look
in more detail at using XDoclet to assist in the generation of deployment descriptors for your J2EE
components.

21.4.3.1. "Pure" annotation-driven deployment descriptors

The most straightforward approach is to have the entire deployment descriptor generated entirely
from code annotations. In this case, the code annotations include all of the information to be placed
in the deployment descriptor. If we wanted to generate a web.xml deployment descriptor for our
application's web components, for example, we would use annotations in the web group in XDoclet
and place them as needed in the web component code.

As a simple example, suppose we had a PeopleFinderServlet that we wanted to deploy using a
single URL mapping. First, we'd need to let XDoclet know that our class is a servlet, using the
web.servlet annotation, and we would use the web.servlet-mapping annotation to indicate how to
map the deployed web component to a URL. Example 21-3 shows the annotated source code for the
PeopleFinderServlet class.

Example 21-3. Annotated servlet code

/**
 * Class: PeopleFinderServlet
 *
 * @author Jim Farley
 *
 * XDoclet tags:
 *
 * @web.servlet
 * name="PeopleFinderServlet"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 * display-name="PeopleFinder Servlet"
 *
 * @web.servlet-mapping
 * url-pattern="/pf"
 *
 */
public class PeopleFinderServlet extends HttpServlet {
 // Servlet implementation details omitted
 . . .
}

In the web.servlet annotation, we're indicating some minimal information about the web
componenta component name and display name to be used in the deployment descriptor. In the
web.servlet-mapping annotation, we indicate that we want the component mapped to the /pf URL
within the application's overall web context.

We would process this annotated source in our Ant buildfile using the webdoclet task, as shown here:

<target name="create-war">
 <!-- Generate a web.xml file using annotations on the
 web components -->
 <webdoclet destDir="${web.dir}">
 <fileset dir="${src.dir}">
 <include="**/PeopleFinderServlet.java"/>
 </fileset>
 <deploymentdescriptor
 servletspec="2.4"
 destinationFile="web.xml"/>
 </webdoclet>
 . . .
</target>

This example is very similar to our previous Ant example, except that we're specifically processing
the PeopleFinderServlet source file, rather than all source files whose class names end in Servlet.
We are trying to generate only a web.xml deployment descriptor, so we use the
<deploymentdescriptor> child element of the webdoclet task. In the <deploymentdescriptor>
element, we use the servletspec attribute to indicate the version of the servlet specification that our
application server supports. This will influence the DTD/schema that XDoclet references in the
generated deployment descriptor and in some cases the structure of the generated XML itself (though
not in this simple example). The destinationFile attribute indicates where we want the deployment
descriptor file deposited.

If we ran this task on the source code shown in Example 21-3, XDoclet would generate the
deployment descriptor shown in Example 21-4. This is a complete and valid deployment descriptor
that we could use to deploy the PeopleFinderServlet to a Servlet 2.4 web container.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 21-4. XDoclet-generated web deployment descriptor

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">
 <distributable/>

 <!-- XDoclet comments omitted... -->

 <servlet>
 <display-name>PeopleFinder Servlet</display-name>
 <servlet-name>PeopleFinderServlet</servlet-name>
 <servlet-class>
 com.oreilly.jent.people.annotation.PeopleFinderServlet
 </servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>PeopleFinderServlet</servlet-name>
 <url-pattern>/pf</url-pattern>
 </servlet-mapping>

</web-app>

The generated web.xml file properly references the XML schema for the Servlet 2.4 deployment
descriptor, and all of the deployment information that we placed in our code annotations has been
placed into its proper locations in the web.xml file. And if we change the source code, we have the
annotations right there in the code and we can keep them up-to-date as the code changes. The
web.xml file is automatically regenerated each time we run the appropriate task in our Ant buildfile.

Many application servers require a supplementary deployment descriptor or other configuration file in
order to specify server-specific deployment details (see Chapter 2 for more information about
deploying applications). XDoclet can generate these descriptors as well for a set of supported
application servers. If we're using JBoss 4.0 to run our web components, for example, we can ask
XDoclet to generate a JBoss web deployment descriptor by adding the <jbosswebxml> element to our
webdoclet task:

<target name="create-war">
 <!-- Generate a web.xml file using annotations on the
 web components -->
 <webdoclet destDir="${web.dir}">
 <fileset dir="${src.dir}">
 <include="**/PeopleFinderServlet.java"/>
 </fileset>
 <deploymentdescriptor

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 servletspec="2.4"
 destinationFile="web.xml"/>
 <jbosswebxml
 version="4.0"
 destinationFile="jboss-web.xml"/>
 </webdoclet>
 . . .
</target>

In the <jbosswebxml> subelement, we're specifying that we want a deployment file for a JBoss 4.0
server and that we want the file saved to the file jboss-web.xml. If we ran this modified version of
our create-war target on the source code in Example 21-3, the result would be the following JBoss
web deployment file:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE jboss-web
 PUBLIC "-//JBoss//DTD Web Application 2.4//EN"
 "http://www.jboss.org/j2ee/dtd/jboss-web_4_0.dtd">
<jboss-web>
 <!-- XDoclet comments omitted -->
</jboss-web>

There's nothing interesting here because there are no details in our code annotations that need to be
reflected in a JBoss deployment file. XDoclet has a set of server-specific annotations that can be used
to generate these deployment files as well. If, for example, our web component required a resource
reference to a DataSource, we could add annotations to our servlet class to indicate the resource
reference needed in the web.xml file as well as the entry to be placed in the JBoss web deployment
file. The servlet code with the additional annotations is shown here:

/**
 * @web.servlet
 * name="PeopleFinderServlet"
 * display-name="PeopleFinder Servlet"
 *
 * @web.servlet-mapping
 * url-pattern="/pf"
 *
 * @web.resource-ref
 * name="jdbc/MyDataSource"
 * type="javax.sql.DataSource"
 * auth="Container"
 *
 * @jboss.resource-ref
 * res-ref-name="jdbc/MyDataSource"
 * jndi-name="jdbc/DataSourceX"
 *

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 */
public class PeopleFinderServlet extends HttpServlet {
 . . .
}

The web.resource-ref annotation is used to specify the resource reference required by the web
component. In this case, we're declaring that a DataSource is needed at jdbc/MyDataSource in the
JNDI namespace. The jboss.resource-ref annotation indicates how this resource reference should be
handled in the JBoss web deployment file. In this case, we're declaring that the jdbc/MyDataSource
JNDI reference should be linked to the jdbc/DataSourceX JNDI resource on the JBoss server.

If we run our earlier Ant target again using these updated annotations, our web.xml file will now look
like this:

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">
 <distributable/>
 <servlet>
 <display-name>PeopleFinder Servlet</display-name>
 <servlet-name>PeopleFinderServlet</servlet-name>
 <servlet-class
 >com.oreilly.jent.annotation.web.PeopleFinderServlet
 </servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>PeopleFinderServlet</servlet-name>
 <url-pattern>/pf</url-pattern>
 </servlet-mapping>

 <resource-ref>
 <res-ref-name>jdbc/MyDataSource</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>
</web-app>

The new resource-ref enTRy in web.xml was generated because of the new web.resource-ref
annotation we added to the source file. Similarly, the new jboss.resource-ref annotation we added
to the source file will be reflected in the new JBoss web deployment file:

<?xml version="1.0" encoding="UTF-8"?>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<!DOCTYPE jboss-web
 PUBLIC "-//JBoss//DTD Web Application 2.4//EN"
 "http://www.jboss.org/j2ee/dtd/jboss-web_4_0.dtd">
<jboss-web>
 <resource-ref>
 <res-ref-name>jdbc/MyDataSource</res-ref-name>
 <jndi-name>jdbc/DataSourceX</jndi-name>
 </resource-ref>
</jboss-web>

21.4.3.2. Mixed models: Deployment using annotations and external data

The preceding annotation examples work very well when we are deploying a set of components in a
specific environment, where the deployment details do not vary. But suppose we handed this system
over to another developer working in a different environment. The other environment might require
different deployment details: modified URL mappings for the web components, different resource
names on the application server, and perhaps even a different application server altogether with its
own extended deployment files.

In a situation like this, it would be bad practice to have to change the source code of the application
in order to deploy it. Even though you are modifying "only" annotations and those annotations are
inside of comments that shouldn't affect compiled code behavior, some basic principles still apply:
source code should encode the behavior of the system globally, and anything that needs to be
localized to a particular environment should happen in externalized configuration files and build
scripts that are distinctly separate from the source code.

Thankfully, XDoclet recognizes the need, in some cases, for having some deployment data reside in
external sources (external to the source code, that is). It supports this practice in two ways.
Deployment data sitting in external files can be merged with the deployment data generated from
annotations, using the mergeDir options on the XDoclet Ant tasks. In addition, XDoclet annotations
can use Ant property names to parameterize the values of their properties. This allows you to put
deployment parameters into the Ant buildfile (or in separate properties files loaded into the Ant
buildfile), and they will be automatically applied when the parameterized annotation is processed.

As an example of using the merged deployment descriptor approach, suppose we have a situation in
which the URL mapping of particular web components needs to be set on a per-environment basis.
Perhaps other web applications are being deployed in these environments and in some cases the
default URL mappings are conflicting. We could alter our servlet example to remove the URL mapping
annotation and instead use a separate XML file to provide the URL mappings for the web
components. The <deploymentdescriptor> subelement on the webdoclet task supports the use of a
mergeDir attribute. When annotated files are being processed for deployment-related annotations,
the webdoclet processor will check this directory for specific XML files containing segments of the
deployment descriptor to be merged together with the generated deployment data to produce the
final web.xml file. In our case, we want to provide servlet mappings in an external file, and webdoclet
expects these to be in a file named servlet-mappings.xml. So we would make a servlet-
mappings.xmlfile in our mergeDir that looks like this:

<servlet-mapping>
 <servlet-name>PeopleFinderServlet</servlet-name>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <url-mapping>/my-pf-context</url-mapping>
</servlet-mapping>

Assuming that this file sits in a directory called config/xdoclet-merge in our project area, then we
would modify our call to the webdoclet task in our Ant file to look like this:

<webdoclet destDir="${web.dir}">
 <fileset dir="${src.dir}">
 <include name="**/PeopleFinderServlet.java"/>
 </fileset>
 <deploymentdescriptor
 servletspec="2.4"
 mergeDir="config/xdoclet-merge"
 destinationFile="web.xml"/>
</webdoclet>

If we ran this task on the annotated code shown in Example 21-3, the resulting web.xml file would
look like the following:

<?xml version="1.0" encoding="UTF-8"?>
<web-app
 xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">
 <distributable/>
 <servlet>
 <display-name>PeopleFinder Servlet</display-name>
 <servlet-name>PeopleFinderServlet</servlet-name>
 <servlet-class
 >com.oreilly.jent.annotation.web.PeopleFinderServlet</servlet-class>
 </servlet>

<servlet-mapping>
 <servlet-name>PeopleFinderServlet</servlet-name>
 <url-mapping>/my-pf-context</url-mapping>
</servlet-mapping>

 <servlet-mapping>
 <servlet-name>PeopleFinderServlet</servlet-name>
 <url-pattern>/pf</url-pattern>
 </servlet-mapping>
</web-app>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The highlighted servlet mapping came from the servlet-mappings.xml file while the rest of the
web.xml file came from processing the annotations in the source code. The webdoclet task supports a
specific XML merge file for each section of a web deployment descriptor: servlets, filters, listeners,
resource references, and so on. You can decide in your context what deployment information is truly
universal and belongs in the source code and what needs to be localized to the environment and
therefore placed in one of these externalized XML fragments.

XDoclet also allows you to use Ant properties to parameterize your annotations. This applies to any
XDoclet annotations, not just the web-related ones we're showing here. In our case, rather than
using an external, merged XML file to specify a localized servlet mapping, we could place the URL
mapping value in our Ant buildfile, as the value of a property called pf.servlet.context:

<property name="pf.servlet.context" value="/pf-ant-param"/>
<webdoclet destDir="${generated.web.dir}">
 <fileset dir="${java.src.dir}">
 <include name="**/PeopleFinderServlet.java"/>
 </fileset>
 <deploymentdescriptor
 servletspec="2.4"
 destinationFile="web.xml"/>
</webdoclet>

We could then reference this Ant parameter in our code annotation:

/**
 * @web.servlet
 * name="PeopleFinderServlet"
 * display-name="PeopleFinder Servlet"
 *
 * @web.servlet-mapping
 * url-pattern="${pf.servlet.context}"
 *
 */
public class PeopleFinderServletParam extends HttpServlet {
 . . .
}

Our web.xml file will now be generated with the value of the pf.servlet.context Ant property
injected. This value will be read at the time the XDoclet Ant task is run, so in our case the web.xml
file will end up looking like this:

<?xml version="1.0" encoding="UTF-8"?>
<web-app
 xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">
 <distributable/>
 <servlet>
 <display-name>PeopleFinder Servlet</display-name>
 <servlet-name>PeopleFinderServlet</servlet-name>
 <servlet-class>PeopleFinderServlet</servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>PeopleFinderServlet</servlet-name>
 <url-pattern>/pf-param</url-pattern>
 </servlet-mapping>
</web-app>

21.4.4. Generating Source Code

Generating documentation, deployment files, and general configuration files from code annotations
can be a powerful tool, as we've just seen. But some code annotations provided with XDoclet actually
generate other Java source code. We'll take a look at two specific examples: generating support
interfaces for SOAP web services and generating client and home interfaces for EJB components.

21.4.4.1. Web services

As we discussed in our web services coverage in Chapter 12, a SOAP service can be implemented in
JAX-RPC using a simple RMI programming model. We won't review all the details of writing JAX-RPC
web services here (refer to Chapter 12 for those details). We'll just stick to the basics here to
demonstrate how annotations can help with code generation.

With JAX-RPC, a Remote interface is used to declare the methods that will be mapped into operations
on the SOAP service, and a concrete Java class provides the implementations of these methods.
There is a direct relationship between the implementation methods and the declared methods on the
Remote interface, so it can be useful to have the Remote interface automatically generated from the
implementation class. Otherwise, each time you adjust the implementation class (change the
signature of a web service method or add a new service method), you need to manually update the
corresponding Remote interface to keep the two in sync.

XDoclet supports this with the web group of annotations in combination with the service-endpoint
subtask of the webdoclet Ant task. Example 21-5 shows a modified version of one of the JAX-RPC
SOAP service implementations we looked at in Chapter 12, PeopleFinderServiceImpl. Notice that
we've added a web.servlet annotation at the class level and a web.interface-method annotation on
each method that we want exposed in the SOAP service interface.

Example 21-5. Annotated JAX-RPC service implementation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

/**
 * PeopleFinderImpl: Implementation of our remote PeopleFinder interface
 *
 * XDoclet tags:
 *
 * @web.servlet
 * name="PeopleFinderService"
 */
public class PeopleFinderServiceImpl {
 public PeopleFinderImpl() throws RemoteException {}

 /**
 * @web.interface-method
 */
 public Person[] findPeople(SearchArg[] args)
 throws InvalidSearchException, PersistenceException,
 RemoteException {
 . . .
 }

 /**
 * @web.interface-method
 */
 public Person findPerson(String id)
 throws InvalidSearchException, PersistenceException,
 RemoteException {
 . . .
 }

 /** Utility method for retrieving a database connection */
 private Connection getConnection() {
 . . .
 }
}

To process these annotations, we still use the same webdoclet Ant task we used earlier to generate
web deployment descriptors. In this case, though, we want to generate source code related to our
web service implementation. So we use a different subtask to the webdoclet task, service-endpoint,
as shown in Example 21-6. The service-endpoint subtask is used to generate JAX-RPC service
interfaces for any classes annotated as web components with the web.servlet tag that also have one
or more methods annotated as web service operations using the web.service-interface tag.

Example 21-6. Using the webdoclet task to generate JAX-RPC interfaces

<target name="create-ws">
 <webdoclet destDir="${ws.src.dir}">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <fileset dir="${src.dir}">
 <include name="**/PeopleFinderServiceImpl.java"/>
 </fileset>
 <service-endpoint/>
 </webdoclet>
</target>

If we run this Ant target on the source code in Example 21-5, the service interface shown in Example
21-7 will be generated into the ws.src.dir directory.

Example 21-7. Generated web service interface

/*
 * Generated by XDoclet -- Do not edit!
 */

/**
 * service_endpoint_interface_for arguments: [Ljava.lang.String;@35b92e
 */
public interface PeopleFinderService
 extends java.rmi.Remote{
 public Person[] findPeople(SearchArg[] args)
 throws InvalidSearchException, PersistenceException,
 java.rmi.RemoteException;

 public Person findPerson(java.lang.String id)
 throws InvalidSearchException, PersistenceException,
 java.rmi.RemoteException;
}

Notice that the class name for the generated service interface was taken from the name parameter
provided on the web.servlet annotation. The two methods on the interface are the two marked with
the service-interface tag in the source. Notice as well that the getConnection() method on the
service implementation was not mapped to the generated interface because it was not annotated.

21.4.4.2. EJBs

Many developers are put off by the complexity of writing EJBs because of the many code artifacts
that have to be generated. As described in Chapter 6, an EJB component can include one or more
home interfaces, one or more client interfaces, a bean implementation class, and a custom primary
key class (for certain entity bean situations) in addition to the deployment descriptor. Since all of
these artifacts have specific relationships with one another (defined by the EJB specification), this
seems like an ideal context for code annotations to help out. In fact, XDoclet began as a tool to assist
in the development of EJBs and has since grown and been generalized to many other contexts, some

http://lib.ommolketab.ir
http://lib.ommolketab.ir

of which we've already explored.

The ejb tag group in XDoclet contains a set of EJB-oriented annotations. Many of these are meant to
generate deployment descriptor information, similar to the web annotations we saw in the previous
section. But here we will take a look at using annotations to generate some of the actual source code
that makes up an EJB component.

Example 21-8 shows an annotated version of the implementation class for the ProfileManager EJB
discussed in Chapter 6. In the class-level comments, we've inserted an ejb.bean annotation
indicating that the name of the EJB should be ProfileManager and that it is a stateless session bean.
This EJB implementation has a single create method, so we've annotated that method with an
ejb.create-method tag. Finally, the bean has a single business method, getProfile(), and we've
annotated that with an ejb.interface-method tag. On this tag, we've set the view-type property to
both to indicate that we want this business method to be exposed in both the remote and local client
interfaces for this EJB, if either or both are generated.

Example 21-8. Annotated EJB implementation class

/**
 * @ejb.bean
 * name="ProfileManager"
 * type="Stateless"
 */

// Imports omitted...

public class ProfileManagerBean implements SessionBean {
 // Store session context
 private SessionContext mContext = null;

 public ProfileManagerBean() {}

 /** Activate notification method */
 public void ejbActivate() {}

 /** Remove notification method */
 public void ejbRemove() {}

 /** Passivation notification method */
 public void ejbPassivate() {}

 /** Container session context accessor */
 public void setSessionContext(SessionContext context) {
 mContext = context;
 }

 /**
 * No-argument create() -- nothing to initialize in this case.
 *
 * @ejb.create-method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 */
 public void ejbCreate() {}

 /**
 * Get a profile for a named person
 *
 * @ejb.interface-method
 * view-type=both
 */
 public ProfileBean getProfile(String name)
 throws NoSuchPersonException {
 ProfileBean profile = new ProfileBean(name);
 return profile;
 }
}

We use the same general approach to process these annotations as with any other XDoclet
annotations: we run the appropriate XDoclet Ant task over the source code. In this case, we're
dealing with EJBs and tags from the ejb group, so we use the ejbdoclet task rather than the
webdoclet task we've been using so far. A sample target that makes use of the ejbdoclet task to
process our ProfileManagerBean source code is shown in Example 21-9.

Example 21-9. Ant target for processing EJB annotations

<target name="gen-ejb-code">
 <!-- Generate EJB home and client interfaces from an
 annotated bean implementation class -->
 <ejbdoclet destDir="${generated.ejb.dir}"
 ejbSpec="2.1">
 <fileset dir="${java.src.dir}">
 <include name="**/ProfileManagerBean.java"/>
 </fileset>
 <remoteinterface/>
 <localinterface/>
 <homeinterface/>
 <localhomeinterface/>
 </ejbdoclet>
</target>

Since our goal here is to generate support source code, we've used only subtasks of the ejbdoclet
task related to generating code. The <remoteinterface>, <localinterface>, <homeinterface>, and
<localhomeinterface> elements are included to indicate that we want these respective pieces of code
generated for us from the annotations found in the source files included in the <fileset>.

If we run this target against the annotated source code in Example 21-8, XDoclet will generate

http://lib.ommolketab.ir
http://lib.ommolketab.ir

remote and local client interfaces for our EJB (named ProfileManager and ProfileManagerLocal) and
remote and local home interfaces (named ProfileManagerHome and ProfileManagerLocalHome). The
names of these interfaces are generated automatically, based on the name parameter provided on the
ejb.bean annotation. We could have specified the names of these interfaces using additional
annotations in the source, but, for this example, the automatically generated interface names are
fine.

The generated remote client interface, ProfileManager, is shown in Example 21-10, and the remote
home interface, ProfileManagerHome is shown in Example 21-11. The local versions are nearly
identical, so we won't show them here. Notice that the ProfileManager client interface contains a
declaration for the getProfile() method that was annotated with an ejb.interface-method tag in
the source for the implementation class. Also notice that the ProfileManagerHome home interface
contains a declaration for a single no-argument create() method because we annotated the
corresponding ejbCreate() method in the bean class with an ejb.create-method tag.

Example 21-10. Generated remote client interface

/*
 * Generated by XDoclet -- Do not edit!
 */

/**
 * Remote interface for ProfileManager.
 */
public interface ProfileManager
 extends javax.ejb.EJBObject{
 public ProfileBean getProfile(java.lang.String name)
 throws NoSuchPersonException, java.rmi.RemoteException;
}

Example 21-11. Generated remote home interface

/*
 * Generated by XDoclet -- Do not edit!
 */

/**
 * Home interface for ProfileManager
 */
public interface ProfileManagerHome
 extends javax.ejb.EJBHome{
 public static final String COMP_NAME="java:comp/env/ejb/ProfileManager";
 public static final String JNDI_NAME="ProfileManager";

 public ProfileManager create()
 throws javax.ejb.CreateException,java.rmi.RemoteException;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

You'll also notice a few static String members defined in the remote home interface. These variables
were generated from the name parameter on the ejb.bean annotation and represent default JNDI
mappings that XDoclet will generate for the EJB in any application server configuration files we ask it
to generate. So these static variables are a convenience for any client code that makes use of this
EJB component.

Keep in mind that we are showing you only a small part of the options available in these XDoclet
annotations and Ant tasks. You can, for example, generate a deployment descriptor for the EJB
component as well by just adding a deploymentdescriptor subtask to the ejbdoclet task:

<target name="gen-ejb-code">
 <ejbdoclet destDir="${ejb.dir}"
 ejbSpec="2.1">
 <fileset dir="${src.dir}">
 <include name="**/ProfileManagerBean.java"/>
 </fileset>
 <homeinterface/>
 <localhomeinterface/>
 <remoteinterface/>
 <localinterface/>
 <deploymentdescriptor/>
 </ejbdoclet>
</target>

Running this version of the gen-ejb-code target will generate the same client and home interfaces as
before and also the EJB deployment descriptor shown in Example 21-12.

Example 21-12. Generated EJB deployment descriptor

<?xml version="1.0" encoding="UTF-8"?>

<ejb-jar xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd"
 version="2.1">
 <description><![CDATA[No Description.]]></description>
 <display-name>Generated by XDoclet</display-name>

 <enterprise-beans>

 <!-- Session beans -->
 <session >

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <description><![CDATA[]]></description>

 <ejb-name>ProfileManager</ejb-name>

 <home>ProfileManagerHome</home>
 <remote>ProfileManager</remote>
 <local-home>ProfileManagerLocalHome</local-home>
 <local>ProfileManagerLocal</local>
 <ejb-class>ProfileManagerBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>

 </session>
 <!-- Various XDoclet comments omitted... -->
 </enterprise-beans>
 <!-- Various XDoclet comments omitted... -->
</ejb-jar>

21.4.5. Other Annotations

XDoclet has many other uses that we haven't seen in our examples. Just in the web and ejb tag
groups are many other annotations and parameters on these annotations that you can use to
generate all the other parts of their respective deployment descriptors as well as configuration files
for other application servers and other code artifacts.

But there are a number of other tag groups you may find useful, depending on what kinds of
enterprise development you are doing. We mention a few key ones here:

@wsee

This tag group contains annotations that can be used to generate JAX-RPC namespace
mapping files for web services. This can be as useful as generating deployment descriptors for
J2EE components, allowing you to keep your mapping file in sync with the source code as it
evolves. There is a wseedoclet Ant task that can be used to process these annotations.

@hibernate

This set of annotations can be used to mark up data objects, allowing you to generate the
Hibernate mapping files and configuration files for a set of JavaBeans that you want to persist
using Hibernate. The hibernatedoclet Ant task is used to process these annotations.

@jsf

These annotations can be used to mark up JavaServer Faces code, such as managed
JavaBeans, validators, and converters, and use these annotations to generate JSF
configuration files. These annotations are processed using the webdoclet task by including the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

facesconfigxml subtask.

We'd encourage you to explore the XDoclet documentation to learn about some of the other
capabilities that might be useful to you.

21.4.6. Custom XDoclet Annotations

It is possible to write your own XDoclet annotations, if you need to do that. Some reasons you may
feel the need to define your own annotations might include:

Custom configuration files that you've defined in your application

Design patterns that you've adopted that require support code that can be generated from base
classes plus some annotations

Third-party libraries that you are using to implement key service interfaces in your system,
where these implementation classes can be autogenerated from annotations placed in the
interfaces

The details of writing custom XDoclet tags and processors is beyond the scope of this chapter, but it
essentially boils down to writing a template file to specify the structure of the output you want
generated from your code annotations, or writing a custom tag handler class that will be invoked at
runtime when one of your tags is encountered. It's also possible to define your own custom Ant task
for processing your tags, although in many cases, it's possible to just use the generic doclet Ant task
provided with XDoclet to process a set of code using a template file you provide. For more details,
consult the XDoclet developer's documentation.

21.4.7. A Word of Caution

As we mentioned earlier in the chapter, you need to temper your use of code annotations with some
practical considerations. Deployment descriptors, configuration files, and other code artifacts are
often separate from the source code for a good reason. Some configuration parameters need to be
localized to the target deployment environment, for example, and if you have several environments
to deal with (development, test, and production; developers A, B, and C; or clients X, Y, and Z), you
don't want to be forced to edit the source code to deploy your system across these environments.
Make use of Ant properties to parameterize your annotations, or make use of externalized
configuration file fragments, as we demonstrated in our web deployment descriptor examples. These
practices, in conjunction with the general Ant localization tactics discussed in Chapter 17, should give
you all the power you need to both take advantage of code annotations yet maintain the ability to
easily deploy your applications in various environments.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

21.5. J2SE Annotations Tutorial

J2SE 5.0 introduced a standard, generalized annotation model to the Java language itself. J2SE
annotations are an actual part of the Java language syntax, with annotations inserted directly into
your code (not just within comments, as you do with Javadoc tags). These annotations can be
processed using a standard annotation processing tool provided with J2SE 5.0 environments, or you
can write your own Java code to access and process annotations.

J2SE annotations differ from XDoclet annotations in two key ways. First, J2SE annotations are part of
the actual language syntax. These annotations are supported directly by Java compilers, and new
annotations are defined much like new classes and interfaces, using Java interface-like declarations.

The other difference is a temporary one. At this writing, the general infrastructure for defining and
using J2SE annotations has been introduced in Java 5.0, and a few standard annotations are part of
the core Java API. Annotations and processing tools based on J2SE annotations aimed at enterprise
development (e.g., generating deployment descriptors or code artifacts for components) are still in
development, as part of the next round of specifications in the web, EJB, and web services spaces,
among others.

In the meantime, and even after these standard enterprise annotations are available, XDoclet and
J2SE annotations are complementary tools that you can use together to ease the development and
management of enterprise systems.

21.5.1. General Programming Model

Before we launch into some examples of J2SE annotations, you should note that the core
annotations, and the support interfaces and enumerations we reference here, all reside in the
java.lang and java.lang.annotation packages in the core Java API. We've omitted the imports of
various java.lang.annotation elements in some of our examples for brevity.

J2SE annotations use the @ character to denote the start of code annotations, keeping with the
convention set by Javadoc and XDoclet annotations. As with these other annotations, J2SE
annotations can be used to assign metadata at various levels in your Java classes (class, method,
and member variable). More formally, a J2SE annotation can be used anywhere that standard Java
modifiers (like public, private, protected, or static) can be used.

Example 21-13 demonstrates the general syntax of J2SE annotations. The example shows a simple
Java file with a class-level and method-level J2SE annotation. The name of the annotation
immediately follows the @ character, and an annotation can optionally include a comma-delimited set
of parameter values that are enclosed in parentheses immediately after the annotation name. These
parameter values typically take the form of name=value, as in the Test annotation in the example. If

the annotation accepts only a single parameter, as in the SuppressWarnings annotation, the
parameter value can be given without providing the name. If an annotation takes no parameters, the
annotation has no parameters or parentheses following it in the source, as in the Deprecated
annotation.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 21-13. Sample code using J2SE annotations

@SuppressWarnings("serial")
public class Sample implements Serializable {
 @Deprecated
 public String doThis(String target) { return target + " done"; }

 @Test(success="Success", failure="doThat call failed")
 public int doThat() { return this.hashCode(); }
}

In the following sections, we'll first look at the set of standard annotations that is built into the J2SE
environment. Then we'll look at defining your own custom annotations.

21.5.2. Core Annotations

J2SE 5.0 provides a handful of standard annotations as part of the core Java API. These annotations
are directly embedded in the Java environment. Currently, there are two categories of these core
annotations. The first is compiler-related annotations. These annotations are general-purpose ones,
used in source code to influence the checks performed at compile time. The @Override,
@SuppressWarnings, and @Deprecated annotations fall into this category. We give a quick introduction
to these annotations in the remainder of this section.

The other core annotations are used in the definition of other annotations, and they are sometimes
called meta-annotations. The @Target, @Retention, @Inherited, and @Documented annotations fall into
this category. We'll see the @Target and @Retention meta-annotations in action in the next section.
To read about the @Inherited and @Documented annotations, see the more detailed coverage of
annotations in Java in a Nutshell (O'Reilly).

21.5.2.1. @Override

This annotation is used to mark methods that are intended to override methods from their parent
classes. You use this annotation to avoid the common error of intending to override a parent method
but getting the signature slightly wrong. In most cases, the compiler will simply treat the method as
an overloaded version of the parent's method and let it pass with no warning. The @Override
annotation tells the compiler to fail outright if a method doesn't override a method in the parent
class.

Here's a sample base class, Base, with a default implementation of a getIdentifier() method:

public class Base {
 /** Get the ID of this thing */
 public String getIdentifier() {
 return this.getClass().getName();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
}

Now let's make a subclass of Base, named Child, with which we attempt to override the
getIdentifier() method. Unfortunately, the signature is incorrect, and we've actually overloaded
getIdentifier() rather than overridden it.

public class Child extends Base {
 /** Get the ID of this thing */
 public String getIdentifier(String type) {
 return type + ":" + this.getClass().hashCode();
 }
}

The Child class doesn't break any syntax rules, though, so the compiler will happily compile it with no
errors. We can explicitly state that the getIdentifier() method in Child is meant to override a
parent implementation by using the @Override annotation:

public class Child extends Base {
 /** Get the id of this thing */
 @Override
 public String getIdentifier(String type) {
 return type + this.getClass().hashCode();
 }
}

If we compile this annotated code, the compiler will now generate an error:

wunderkatzen[tcsh]> javac Base.java Child.java
Child.java:3: method does not override a method from its superclass
 @Override
 ^
1 error

If you've ever struggled to find a subtle bug like this in a large collection of classes, the ability to
annotate your overrides like this is a real boon. Now the compiler can warn you, for example, if you
refactor your code and unintentionally break the inheritance chain.

21.5.2.2. @SuppressWarnings

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The @SuppressWarnings annotation is used to filter out warnings that you do not want to see in the
compiler output. Suppose, for example, we've implemented a Serializable data object in our system
but would rather not specify a serial version ID, opting to allow the java.io runtime to generate a
default one for us. Some compilers will complain about Serializable classes that do not provide their
own serial version ID, but we can suppress these warnings using the @SuppressWarnings annotation:

@SuppressWarnings("serial")
public class MySerializable implements Serializable {
 public MySerializable() {
 super();
 }
}

Note that each compiler can choose its own naming convention for warning types for the
@SuppressWarnings annotation. We assume here that the compiler is using "serial" to designate the
serializable warnings we want to filter out, which is the designation used by the Sun J2SE 5.0
implementation. In addition, general support for the @SuppressWarnings annotation is optional as of
this writing, so some Java 5.0 compilers may not even honor it. But support for it should firm up in
future revisions of compilers, and the naming convention for compiler warnings should become more
consistent as well.

21.5.2.3. @Deprecated

The @Deprecated annotation plays essentially the same role as the existing @Deprecated tag in
Javadoc. You can use the @Deprecated annotation to mark classes and methods that may be removed
in future versions of the code. The compiler will generate warnings when code uses these marked
classes or methods to encourage developers to remove them from their code.

21.5.3. Creating and Using Custom Annotations

To demonstrate how to create and use your own J2SE annotations, we're going to use the context of
a Java programming course. As the teacher of this course, you naturally create a number of code
examples to demonstrate key principles discussed in class. You find yourself writing up detailed
guides for the source code, highlighting key areas in the source code that participants should consult
for examples relevant to various points discussed in class. Wouldn't it be nice, you think to yourself, if
I could put these instructional highlights directly into the code and then generate the code guides
directly from the annotated source code? J2SE annotations to the rescue.

Example 21-14 shows a definition of a simple annotation called @Learn. This annotation is a simple
marker annotation because it takes no arguments. It simply marks the annotated item, similarly to
the @Deprecated built-in annotation. Note that the syntax for defining an annotation is very similar to
writing a Java interface. The annotation type uses the @interface modifier to distinguish it from a
regular interface.

Example 21-14. Custom marker annotation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import java.lang.annotation.*;

@Target({ ElementType.TYPE,
 ElementType.METHOD,
 ElementType.CONSTRUCTOR,
 ElementType.FIELD })
@Retention(RetentionPolicy.RUNTIME)
public @interface Learn {}

In our example, we're making use of some of the built-in meta-annotations that are used to modify
annotation definitions themselves. The first one in our example, @Target, is used to specify the code
elements that are relevant for this annotation. Values from the ElementType enumeration are used to
specify the allowable code locations. In our case, we want to use the @Learn annotation on classes
and interfaces (TYPE), on methods (METHOD), on constructors (CONSTRUCTOR), and on member variables
(FIELD). We could also specify LOCAL_VARIABLE for local variables in methods, PACKAGE for package-
level annotations, and PARAMETER for annotations on method arguments. If there is no @Target
annotation on an annotation definition, the annotation can be used anywhere. In our case, we're
going to write a processor for these annotations and we don't want to insert annotations that won't
be handled, so we explicitly name the cases we support with the @Target annotation. If we try to use
our @Learn annotation on any code elements not specified in the @Target meta-annotation, we'll
receive an error from the compiler.

The other meta-annotation we've used is @Retention. This annotation controls when and how we can
access the annotation and its parameters, if any. This meta-annotation takes a single parameter, one
of the three values in the RetentionPolicy enumeration: SOURCE, CLASS, or RUNTIME. The SOURCE value
indicates that the annotation should be retained only in the source, so the compiler can discard it
while processing the source code. The CLASS value is the default, and it indicates that the annotation
should be retained in the compiled class file but not loaded into the Java runtime. The RUNTIME value
indicates that we want the annotation to be available at runtime for processing. We're using the
RUNTIME setting because we want to write our own Java program to process the @Learn annotations in
our source.

Once we compile our annotation, we can use it in our source code to annotate elements that are
interesting from an instructional standpoint, as in this example:

// Imports omitted...
@Learn
public class CourseExample extends HttpServlet {
 @Learn
 private Context mCtx = null;

 @Learn
 protected CourseExample() {
 super();
 }

 @Learn

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 private String doSomethingInteresting() {
 . . .
 }

 private void thisMethodHasNoInstructionalValue() {}

 @Learn
 public void doPost(HttpServletRequest request,
 HttpServletResponse response) {
 . . .
 }
}

Note that, if we define our custom annotation with a package, we need to import the annotation from
that package in order to use it in source code. So in our example, if @Learn were defined in the
package com.oreilly.jent.annotations, the CourseExample class would need to import it in the same
way that external classes and interfaces need to be imported:

import com.oreilly.jent.annotations.Learn;
. . .

This version of our @Learn annotation is a decent start, but we will quickly realize that we need more
metadata in order to make this useful. First of all, we need to be able to put some descriptive text
with the @Learn annotations to tell the students why this is valuable from an instructional perspective.
We can extend our @Learn annotation to include a single text parameter, as shown in Example 21-15.

Example 21-15. @Learn annotation with a single parameter

import java.lang.annotation.*;

@Target({ ElementType.TYPE,
 ElementType.METHOD,
 ElementType.CONSTRUCTOR,
 ElementType.FIELD })
@Retention(RetentionPolicy.RUNTIME)
public @interface Learn {
 String value();
}

Annotation parameters are defined using no-argument methods on the annotation interface, and the
return type of the method indicates the type of the parameter. Annotation parameters are limited in
terms of supported types. They can be primitive types (int, float, etc.), Strings, Classes,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

enumerated types, other annotations, or arrays of any of these.

Normally, you specify the value of an annotation parameter using the following syntax, providing the
name of the parameter with its value:

@Learn(value="You can learn a lot from this class (no pun intended)")
public class Example { . . . }

If an annotation has a single parameter named value, however, you can eliminate the parameter
name from the annotation when you use it, like so:

@Learn("You can learn a lot from this class (no pun intended)")
public class Example { . . . }

With this extended @Learn annotation, we can beef up our code markup quite a bit:

// Imports omitted...
@Learn("This servlet demonstrates the use of the XYZ design pattern.")
public class CourseExample extends HttpServlet {
 @Learn("As discussed in lesson 4, the use of the Context member" +
 " is meant to simplify the rest of the servlet code")
 private Context mCtx = null;

 @Learn("This no-argument constructor will become interesting " +
 "in module 3")
 protected CourseExample() {
 super();
 }

 @Learn("Examine this method to see the \"keep it simple\" principles "
 + "discussed in module 2.")
 private String doSomethingInteresting() {
 . . .
 }

 private void thisMethodHasNoInstructionalValue() {}

 @Learn("Notice that we have a doPost(), but no doGet()")
 public void doPost(HttpServletRequest request,
 HttpServletResponse response) {
 . . .
 }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

We might even decide to extend our @Learn annotation even more, with another String parameter to
indicate the relevant course module and a boolean flag to indicate whether the text of the annotation
should be included only in the guide for its relevant module or in all module guides:

import java.lang.annotation.*;

@Target({ ElementType.TYPE,
 ElementType.METHOD,
 ElementType.CONSTRUCTOR,
 ElementType.FIELD })
@Retention(RetentionPolicy.RUNTIME)
public @interface Learn {
 String value();
 String moduleId() default "*";
 boolean moduleOnly() default false;
}

Notice that we've specified a default value for our moduleId and moduleOnly parameters, which allows
us to leave those parameters unspecified when we use the annotation in code. This feature of
annotations is useful in its own right, but in our example, it can help us avoid a lot of backward-
compatibility issues with existing annotations in our code. Our existing @Learn annotations have only
a single String parameter, and they will all still be valid with this new version of our @Learn
annotation since the new parameters all have defaults. But, we can also make use of the new
parameters where they are useful, like so:

// Imports omitted...
@Learn("This servlet demonstrates the use of the XYZ design pattern.")
public class CourseExample extends HttpServlet {
 @Learn(value="As discussed in lesson 4, the use of the Context member" +
 " is meant to simplify the rest of the servlet code",
 moduleId="1")
 private Context mCtx = null;

 @Learn(value="This no-argument constructor is used in our Cactus tests",
 moduleId="3",
 moduleOnly=true)
 protected CourseExample() {
 super();
 }

 @Learn(value="Examine this method to see the \"keep it simple\""
 + " principles discussed in module 2."
 moduleId="2")
 private String doSomethingInteresting() {
 . . .
 }

 private void thisMethodHasNoInstructionalValue() {}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 @Learn("Notice that we have a doPost(), but no doGet()")
 public void doPost(HttpServletRequest request,
 HttpServletResponse response) {
 . . .
 }
}

21.5.4. Processing Annotations at Runtime

Defining and using custom annotations is all well and good, but they're really interesting only when
we process the annotations to do something useful. Any annotations that are available at runtime
(i.e., in their definitions, they've been marked with an @Retention annotation with a value of
RetentionPolicy.RUNTIME), you can access these annotations at runtime using the extensions to the
Reflection API introduced in Java 5.0.

In our example, we want to process our @Learn annotations and generate HTML guides to the source
code for the participants in our course. To accomplish this, we could write a simple Java class like
LearnProcessor, shown in Example 21-16.

Example 21-16. Utility class for processing @Learn annotations

// Imports omitted...
public class LearnProcessor {
 public static void main(String[] args) {
 if (args.length < 2) {
 System.err.println("USAGE: . . .");
 System.exit(1);
 }
 String targetClassname = args[0];
 try {
 // Look up the class provided in the arguments
 Class targetClass = Class.forName(targetClassname);
 // Output the page header and start the table structure.
 // If the class is annotated with a Learn tag, include the
 // notation in the table as well.
 if (targetClass.isAnnotationPresent(Learn.class)) {
 Learn annot =
 (Learn)targetClass.getAnnotation(Learn.class);
 outputHeader(targetClass, annot.value());
 }
 else {
 outputHeader(targetClass, null);
 }
 // Check each member variable on the class, and output
 // any notations found
 Field[] fields = targetClass.getDeclaredFields();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 for (int i = 0; i < fields.length; i++) {
 if (fields[i].isAnnotationPresent(Learn.class)) {
 Learn annot =
 (Learn)fields[i].getAnnotation(Learn.class);
 outputFieldNotation(fields[i], annot.value());
 }
 }
 // Check each constructor on the class, and output a notation
 // for any that have a Learn annotation
 Constructor[] cons = targetClass.getConstructors();
 for (int i = 0; i < cons.length; i++) {
 if (cons[i].isAnnotationPresent(Learn.class)) {
 Learn annot =
 (Learn)cons[i].getAnnotation(Learn.class);
 outputConstructorNotation(cons[i], annot.value());
 }
 }
 // Check each method on the class, and output a notation
 // for any methods that have a Learn annotation
 Method[] methods = targetClass.getMethods();
 for (int i = 0; i < methods.length; i++) {
 if (methods[i].isAnnotationPresent(Learn.class)) {
 Learn annot =
 (Learn)methods[i].getAnnotation(Learn.class);
 outputMethodNotation(methods[i], annot.value());
 }
 }
 // Print the page footer
 outputFooter(targetClass);
 }
 catch (ClassNotFoundException cnfe) {
 System.err.println("Class \"" + targetClassname
 + "\" not found");
 }
 }
 // Output methods omitted...
 . . .
}

This is a simple utility class that's meant to be run from the command line, passing in the full name of
the annotated class to be processed. We first attempt to load the class from the CLASSPATH using
Class.forName() and then we use reflection to check for annotations on the class. First, we check
for annotations at the class level itself, using the isAnnotationPresent() method, and if there is an
@Learn annotation on the class, we call our outputHeader() method with the value parameter from
the annotation:

 if (targetClass.isAnnotationPresent(Learn.class)) {
 Learn annot =
 (Learn)targetClass.getAnnotation(Learn.class);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 outputHeader(targetClass, annot.value());
 }

We then retrieve the fields declared on the class using the getFields() method and iterate over
them, checking for @Learn annotations and calling the appropriate output method for each one found.
We repeat the basic processing for the class constructors and methods.

We've omitted the details of the output methods here, but if we ran our LearnProcessor over the
CourseExample class shown earlier, like so:

> java LearnProcessor CourseExample

it would not be hard to imagine generating HTML as shown in Figure 21-2.

Figure 21-2. HTML guide generated from @Learn annotations

21.5.5. The Future of J2SE Annotations

If you compare XDoclet annotations to J2SE annotations, you'll quickly note that XDoclet is largely a
set of predefined annotations that are handy for enterprise development, while J2SE is a tool for
creating annotations that doesn't (yet) include any predefined annotations for things like generating
deployment descriptors or web service interfaces.

Fortunately, work is afoot to define standard annotations, based on the J2SE annotation syntax, for a
variety of types of enterprise development. The JAX-RPC 2.0 specification (in draft at this moment)
includes standard annotations that allow us to annotate JAX-RPC service implementation classes in
much the same way that the XDoclet wsee tag group does. A JAX-RPC service implementation will be

http://lib.ommolketab.ir
http://lib.ommolketab.ir

annotated something like this in JAX-RPC 2.0:

@WebService
public class PeopleFinderImpl {
 . . .
 @WebMethod
 public Person[] findPeople(SearchArg[] args)
 throws InvalidSearchException, PersistenceException {
 . . .
 }
}

Standard annotations are being defined in the EJB 3.0 specification (also in draft) that will allow you
to indicate EJB types (stateful, stateless, entity), annotate business methods, specify persistence
mappings, automatically generate remote and local interfaces, and more. See the end of Chapter 6
for a look at these annotations.

In the meantime, J2SE is useful in its own right as a general annotation facility, and XDoclet provides
a wealth of enterprise-oriented annotations that you can use right now.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Part III: Appendixes
This part of the book contains summary and reference information. It consists of the following
appendixes:

Appendix A, J2EE Deployment Descriptor Reference
Appendix B, JavaServer Faces Tag Libraries
Appendix C, Enterprise JavaBeans Query Language Syntax
Appendix D, SQL Reference
Appendix E, JMS Message Selector Syntax
Appendix F, RMI Tools
Appendix G, IDL Reference
Appendix H, Java IDL Tools

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Appendix A. J2EE Deployment Descriptor
Reference
This appendix provides a short reference to the J2EE deployment descriptors for components and
resources. We describe the J2EE 1.4 descriptor formats here. Deployment descriptors for earlier
versions of the J2EE specifications will vary slightlywe highlight discrepancies in key areas. The full
deployment model and the mechanics of assembling and deploying J2EE components are described in
Chapter 2.

The sections that follow contain annotated deployment descriptors for the various components
available in J2EE environments (web, EJB, web service). These annotated descriptors are an attempt
to complement the standard XML schemas that are available from http://java.sun.com/xml/ns/j2ee.

Each section provides details on a specific deployment descriptor schema. At the beginning of the
section is a high-level summary diagram that shows the first level of XML elements available in the
descriptor, and if needed, subsections of the XML structure are described by more detailed diagrams
that follow. These XML structure diagrams follow the format described in the Preface.

Figure A-1. Web deployment descriptor overview

http://java.sun.com/xml/ns/j2ee
http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A.1. Web Components (web.xml)

Web components are deployed using a web.xml deployment descriptor. The high-level descriptor
layout for web deployment descriptors is shown in Figure A-1. In all the diagrams in this section,
deployment elements that were introduced in the Servlet 2.4 specification are labeled with a "2.4"
indicator. All other elements were present in the 2.3 (and possibly earlier) version of the Servlet
specification.

The format for an empty web.xml file is shown in Example A-1.

Example A-1. Web deployment descriptor header

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">
 . . .
</web-app>

The example shows the XML schema for the Servlet 2.4 deployment descriptor being referenced from
the default location on the java.sun.com server. To reference the Servlet 2.3 DTD instead (e.g., if
you are using a J2EE 1.3 application server like JBoss 3.x or a Servlet 2.3 container like Tomcat 4.x),
you should start your deployment descriptor with the following DOCTYPE element and no schema
reference:

<!DOCTYPE web-app PUBLIC
 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>
 . . .
</web-app>

A.1.1. General Cross-Component Settings

The elements shown in Figure A-2 are used for deployment settings that apply across the web
components in the web archive.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The elements in this section of the web deployment descriptor are demonstrated in the annotated
descriptor segment shown in Example A-2.

Figure A-2. General web archive deployment settings

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example A-2. Annotated general deployment settings

<web-app . . . >
 <!-- Display name for the web application. -->
 <display-name>name</display-name>
 <!-- Description of the web application. -->
 <description>desc</description>
 <!-- Icon for representing the web application visually in tools,
 such as IDEs and app management tools. -->
 <icon>
 <small-icon>/icons/my-small-icon.jpg</small-icon>
 <large-icon>/icons/my-large-icon.jpg</large-icon>
 </icon>
 <!-- The presence of this element indicates to the web container
 that this web application can be safely distributed in clustered
 servlet containers. It may also trigger additional runtime
 checks by the container, for things like Serializable data
 in Session parameters. -->
 <distributable/>
 <!-- These elements declare context parameters that
 are made available to all servlets in this module, using the
 getInitParameter() method on their ServletContexts. -->
 <context-param>
 <!-- Description of the context parameter. -->
 <description>The default color for the sky</description>
 <!-- Name of the init parameter. -->
 <param-name>sky-color</param-name>
 <!-- Value of the init parameter. The value is always
 retrieved by the servlet as a String (the return type of the
 getInitParameter() method). -->
 <param-value>blue</param-value>
 </context-param>
 <!-- Defines the session parameters for all components in this
 module. The only config parameter allowed as of Servlet 2.4 is the
 session timeout period. -->

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <session-config>
 <!-- Defines the length of time a session will live without
 any activity by the user. The time is given in minutes. -->
 <session-timeout>30</session-timeout>
 </session-config>
 <jsp-config>
 <!-- Each taglib element specifies the mapping of a custom tag library
 URI (used in a taglib directive in a JSP) to a Tag Library Description
 TLD file within
 the web archive that should be used to define the tags. -->
 <taglib>
 <!-- The URI serves as an identifier used in a JSP
 file to load a given tag library. The URI in the JSP
 taglib directive is matched to this taglib-uri element,
 and the corresponding TLD file is loaded for the JSP. -->
 <taglib-uri>http://my.jsp.app/taglibs/commerce</taglib-uri>
 <!-- The location, relative to the root of the web application
 context, of the TLD file for
 the tag library. -->
 <taglib-location>WEB-INF/taglibs/commerce.tld</taglib-location>
 </taglib>
 <!-- This element defines groups of JSP pages within the web archive,
 and various parameters for handling of the JSPs in the group. -->
 <jsp-property-group>
 <!-- The URL pattern that defines the JSP group. -->
 <url-pattern>/admin</url-pattern>
 <!-- If set to true, any JSP EL expressions in the
 JSPs will not be parsed. -->
 <el-ignored>false</el-ignored>
 <!-- Specifies the character encoding of the pages.
 This value must match any pageEncoding directives used
 in the JSP pages themselves. Valid character encoding
 values can be found at www.iana.org. -->
 <page-encoding>US-ASCII</page-encoding>
 <!-- If true, any page scripting elements in the
 JSPs in this group will be rejected as invalid. -->
 <scripting-invalid>false</scripting-invalid>
 <!-- Indicates that all pages in the URL pattern
 are to be interpreted as XML-based JSP pages, rather
 than depending on other factors, like file suffixes. -->
 <is-xml>true</is-xml>
 <!-- If present, the named page element (HTML or
 JSP) is included, as an include directive, in the
 beginning of every JSP in the group. -->
 <include-prelude>/my/company-header.jsp</include-prelude>
 <include-prelude>/my/admin-header.jsp</include-prelude>
 <!-- If present, the named page element
 (HTML or JSP) is included, as an include directive, at
 the end of each JSP in the group. -->
 <include-coda>/my/admin-footer.jsp</include-coda>
 <include-coda>/my/company-footer.jsp</include-coda>
 </jsp-property-group>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </jsp-config>
 <!-- These elements are used to define a mapping from a file extension
 to a MIME type. This can be used for special data types that the
 web components will generate for the user or to override the
 settings of the underlying HTTP server. -->
 <mime-mapping>
 <!-- The file extension (suffix) to be mapped. Examples are
 "gif", "txt", "xls". -->
 <extension>txt</extension>
 <!-- The MIME type to be broadcast to web clients for files with
 the above extension. -->
 <mime-type>text/plain</mime-type>
 </mime-mapping>
 <!-- An ordered list of welcome files, used to automatically
 resolve client requests for URLs that resolve to directories rather
 than specific JSP pages or servlets. The files listed here will be
 searched for in order within the target directory, and if one is found
 in the directory, it will be served to the user. -->
 <welcome-file-list>
 <!-- Each welcome-file element contains a single filename. -->
 <welcome-file>index.jsp</welcome-file>
 <welcome-file>index.html</welcome-file>
 </welcome-file-list>
 <!-- Each error-page element contains a mapping
 from an HTTP error code or Java exception type, to the URL for an error
 page. When the error or exception is encountered, the client will be
 redirected to the error page. -->
 <error-page>
 <!-- Each error-page element must contain either an error-code
 specification that contains a valid HTTP error code (e.g., "500"), or
 an exception-type element that contains the fully qualified class name
 for a Java exception (e.g., "java.lang.NumberFormatException"). -->
 <error-code>404</error-code>
 <!-- The URL of the error page the user should be sent to if the
 HTTP error code or Java exception is encountered. The location has to
 be a relative path within the web archive file and starts
 with a '/'. -->
 <location>/my/error/page.html</location>
 </error-page>
 <error-page>
 <exception-type>my.app.exception</exception-type>
 <location>/my/error/page2.html</location>
 </error-page>
 <!-- A list of mappings of locales to character encodings.
 Requests that are associated with a specific locale will
 have the responses encoded using the character sets
 specified below. -->
 <locale-encoding-mapping-list>
 <!-- Specify that requests tagged with the China/Tiawan
 locale are encoded using the Big5 character set. -->
 <locale-encoding-mapping>
 <locale>zh_TW</locale>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <encoding>Big5</encoding>
 </locale-encoding-mapping>
 <!-- Specify that any English locales (US, UK, etc.) are
 encoded using UTF-8 -->
 <locale-encoding-mapping>
 <locale>en_US</locale>
 <encoding>UTF-8</encoding>
 </locale-encoding-mapping>
 </locale-encoding-mapping-list>
. . .
</web-app>

A.1.2. Web Component Declarations

Web components (servlets and JSPs) are declared and configured in this section of the deployment
descriptor. Figure A-3 shows an overview of the elements present in this segment of the descriptor.

Example A-3 shows sample web component declarations , annotated with descriptive comments.

Figure A-3. Web component declarations

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example A-3. Annotated web component declarations

<web-app . . .>
 . . .
 <!-- Each web component in this module is declared with a servlet
 element. This element is used for both servlets and JSP files.
 JSP files do not strictly require a servlet element, since they
 have a default URL mapping (their relative path within the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 web archive). But they do need an entry if any other configuration
 is needed for the JSP. -->
 <servlet>
 <!-- Description of component. -->
 <description>desc</description>
 <!-- Display name for the component, used in tools. -->
 <display-name>name</display-name>
 <!-- Icon used to represent the web component in tools. -->
 <icon>
 <small-icon>/icons/my-small-servlet-icon.jpg</small-icon>
 <large-icon>/icons/my-large-servlet-icon.jpg</large-icon>
 </icon>
 <!-- Name to be used to refer to this component elsewhere in
 this deployment descriptor. -->
 <servlet-name>MyServlet</servlet-name>
 <!-- A declaration of either the fully qualified
 servlet class name (servlet-class) or the absolute path to the
 JSP file within the web archive (jsp-file). -->

 <!-- role="strong"><jsp-file>/my/jsp/file.jsp</jsp-file> -->
 <servlet-class>my.servlet.classname</servlet-class>
 <!-- Declare initialization parameters that will be
 accessible to this component through the getInitParameter() method
 on its ServletConfig object. -->
 <init-param>
 <!-- Description of the init parameter. -->
 <description>desc</description>
 <!-- Name of the init parameter. -->
 <param-name>name</param-name>
 <!-- Value of the init parameter. The value is always
 retrieved by the servlet as a String (the return type of the
 getInitParameter() method). -->
 <param-value>value</param-value>
 </init-param>
 <!-- Used to indicate whether and when this web component should
 be loaded when the enclosing web application is started. The value
 of this element is a single integer that is used to determine the
 order in which components will be loaded. A negative integer allows
 the container to load the component whenever it wants during startup.
 A non-negative integer puts the component in a load order, lower-
 numbered components are loaded first. Components with the same value
 are loaded in an undetermined order by the container. -->
 <load-on-startup>42</load-on-startup>
 <!-- Indicates a user role that should be used to run this
 web component. If this element is not provided, the role(s) of the
 client will be applied while the request is processed. -->
 <run-as>
 <!-- Description of the run-as role. -->
 <description>desc</description>
 <!-- The role this component should always be run as. The
 role name should match the name of a security-role element in
 this deployment descriptor. -->
 <role-name>name</role-name>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </run-as>
 <!-- Declare security roles referenced in
 this web component. These roles are made available at runtime
 through the HttpServletRequest.isUserInRole() method. -->
 <security-role-ref>
 <!-- A text description of the role. -->
 <description>desc</description>
 <!-- The role name as used in the web component code. -->
 <role-name>Administrator</role-name>
 <!-- Normally, the role-name must have a corresponding
 security-role defined in the web.xml file. Alternatively,
 you can link the role-name to another security-role entry
 using the role-link element. -->
 <role-link>admin</role-link>
 </security-role-ref>
 </servlet>
 <!-- These elements are used to define mappings from
 URLs to servlet components defined above. For example, to map a
 filter to everything in the "images" directory: "/images/*"; to map
 a filter to all PDF files: "*.pdf"; to map to a specific document or
 component, use the full URL, e.g., "/docs/intro.html".-->
 <servlet-mapping>
 <!-- The name of the servlet/JSP component. This name must match
 the servlet-name of a servlet element defined above. -->
 <servlet-name>MyServlet</servlet-name>
 <!-- The URL pattern that is to be mapped to the servlet/JSP. The
 pattern uses the same syntax as that used for filter mappings. For
 example, to map a servlet to everything in the "tools" directory:
 "/tools/*", to map a servlet to all PDF files: "*.pdf"; to map to a
 specific URL, use the full URL, e.g., "/tools/login". -->
 <url-pattern>/admin/login</url-pattern>
 </servlet-mapping>
. . .
</web-app>

A.1.3. Web Handler Declarations

You can define two kinds of web handlers in the deployment descriptor, filters and listeners. Web
filters are executed prior to the delivery of requests to specific web components or documents.
Listeners are notified of events during the runtime management of the components, such as the
creation and deletion of user sessions. The deployment elements relevant to web handlers are shown
in Figure A-4.

Example A-4 shows sample web handler declarations annotated with descriptive comments.

Figure A-4. Web handler deployment elements

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example A-4. Annotated web handler declarations

<web-app . . .>
 . . .
 <!-- Declare a filter that can be applied to incoming requests for
 servlets or static URLs. Filters are mapped to servlets and URLs
 using filter-mapping elements, below. -->
 <filter>
 <!-- Description of filter. -->
 <description>Description</description>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <!-- Display name, to represent the filter in tools. -->
 <display-name>Filter display name</display-name>
 <!--Icon for representing the filter in tools. -->
 <icon>
 <small-icon>/icons/my-small-filter-icon.jpg</small-icon>
 <large-icon>/icons/my-large-filter-icon.jpg</large-icon>
 </icon>
 <!-- Name for the filter, to be used in filter-mappings. -->
 <filter-name>MyFilter</filter-name>
 <!-- The fully qualified class name of the filter. The class
 must implement the javax.servlet.Filter interface. -->
 <filter-class>my.filter.classname</filter-class>
 <!-- Define initialization parameters. These parameters
 are accessed by the filter using the getInitParameter() method on its
 FilterConfig. -->
 <init-param>
 <!-- Description of the init parameter. -->
 <description>desc</description>
 <!-- Name of the init parameter. -->
 <param-name>param-name</param-name>
 <!-- Value of the init parameter. The value is always
 retrieved by the filter as a String (the return type of the
 getInitParameter() method). -->
 <param-value>param-value</param-value>
 </init-param>
 </filter>
 <!-- These elements are used to
 determine which filters to apply to client requests for given
 URLs. These filter mappings are checked in order to determine
 all of the filters applicable to a given resource. All of the
 matching filters make up an ordered chain of filters that are called in
 sequence before the actual servlet or URL resource is accessed. -->
 <filter-mapping>
 <!-- Name of the filter to be applied. The name must match the
 filter-name for a filter element above. -->
 <filter-name>MyFilter</filter-name>
 <!-- Specify the servlet/JSP name or URL(s) the filter should be applied
 to. Either a url-pattern or servlet-name must be provided. The
 value of the url-pattern follows the rules of servlet mappings. For
 example, to map a filter to everything in the "images" directory:
 "/images/*"; to map a filter to all PDF files: "*.pdf"; to map to a
 specific URL, use the full URL, e.g., "/docs/intro.html". If a
 servlet-name is used, it has to match the name in a servlet-mapping
 element, above. -->
 <url-pattern>/filterurl</url-pattern>
 <!-- <servlet-name>name</servlet-name> -->
 </filter-mapping>
 <!-- These elements declare listeners that should be
 applied to the web application. Listeners must implement one of the
 EventListener interfaces defined in the javax.servlet and
 javax.servlet.http packages. -->
 <listener>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <!-- The fully qualified class name of the listener. -->
 <listener-class>my.listener.classname</listener-class>
 </listener>
 . . .
</web-app>

A.1.4. Security Configuration

The deployment information includes the configuration of security constraints on the application.
These include the declaration of abstract authorization roles, specifications of security levels (access
and data protection) on subsets of the web application, and the manner in which users should be
authenticated. Figure A-5 shows the elements in this section of the deployment descriptor.

Example A-5 shows sample security constraints annotated with descriptive comments.

Figure A-5. Security constraint elements

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example A-5. Annotated security constraints

<web-app . . .>
 . . .
 <!-- Each security-role element declares a security
 role used by web components in this archive. Each named role must be
 mapped to a physical group/identity within the runtime security
 environment of the web container/J2EE server.-->
 <security-role>
 <!-- A description of the role. -->
 <description>My admin role, used for super-users</description>
 <!-- Name of the role, as used in the rest of this descriptor. -->
 <role-name>admin</role-name>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </security-role>
 <!-- Define security constraints on subsets of the application. The
 application subset is defined by the web-resource-collection
 element, and the constraints are defined in the auth-constraint
 and user-data-constraint elements. -->
 <security-constraint>
 <!-- Display name for the constraint. -->
 <display-name>Security setting for admin area</display-name>
 <!-- Define the domain of this constraint, using one or more
 URL patterns, plus optional HTTP method filters. -->
 <web-resource-collection>
 <!-- Name for the resource. -->
 <web-resource-name>Admin-pages</web-resource-name>
 <!-- Description of the subset of the application. -->
 <description>The admin area of the application</description>
 <!-- One or more URL patterns that define the set of the
 application being constrained. -->
 <url-pattern>/admin/*</url-pattern>
 <url-pattern>/admin-docs/*</url-pattern>
 <!-- One or more HTTP method filters, that further refine
 the constraint to apply to only specific types of
 requests. -->
 <http-method>GET</http-method>
 <http-method>POST</http-method>
 </web-resource-collection>
 <!-- Define the role(s) that are allowed to access this subset
 of the application. -->
 <auth-constraint>
 <!-- Role name, must match an entry in the
 security-role section -->
 <role-name>admin</role-name>
 </auth-constraint>
 <!-- Declare the degree to which data should be protected as
 it is transmitted from the server to the client. -->
 <user-data-constraint>
 <!-- Description of the constraint. -->
 <description>Ensure admin ops are encrypted</description>
 <!-- Set the transport guarantee to one of NONE (no special
 handling required), INTEGRAL (data must not be changed in
 transit), and CONFIDENTIAL (data must not be observable
 by outside parties during transit). -->
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
 </security-constraint>
 <!-- This element is used to configure how authentication should be
 handled by the web application. -->
 <login-config>
 <!-- The type of authentication the web application
 should use. Allowed values are "BASIC" (for HTTP Basic
 authentication using the web server), "FORM" (to use your own
 login forms), "DIGEST" (more secure but less-supported web
 server login), and "CLIENT-CERT" (to use public-key

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 authentication between the client and the server). -->
 <auth-method>FORM</auth-method>
 <!-- When BASIC authentication is chosen, this element
 indicates which realm, as defined in the web server and/or
 application server, to use for authentication. -->
 <realm-name>app-users</realm-name>
 <!-- If FORM authentication is chosen, this element
 provides the information on how form logins will be handled. -->
 <form-login-config>
 <!-- The absolute location, as a path within the
 war file, of the page to be used for form-based login
 authentication. -->
 <form-login-page>/admin/login</form-login-page>
 <!-- The error page, where users will be sent
 when authentication fails. -->
 <form-error-page>/auth/error.jsp</form-error-page>
 </form-login-config>
 </login-config>
 . . .
</web-app>

A.1.5. Component References

If your web components depend on other components (such as EJBs or web services), you declare
these component references in the deployment descriptor to allow the container a chance to verify
the availability of these dependencies. Figure A-6 shows the deployment elements used for
component references.

Example A-6 shows sample component references, annotated with descriptive comments.

Figure A-6. Component reference elements

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example A-6. Annotated component references

<web-app . . .>
 . . .
 <!-- An ejb-ref element is used to specify a remote
 reference to an EJB used by web components in this archive. The
 ejb-local-ref element is used to declare a reference using local
 EJB interfaces. The presence of an ejb-ref entry in a client's
 deployment descriptor is simply a placeholder that indicates that
 the client refers to this EJB using the indicated name, and
 therefore the expected EJB must be available. At deploy time,
 if the EJB named here can't be resolved in the environment, then
 the deployment tools can catch this and raise a deployment-time
 error, avoiding a runtime error. -->
 <ejb-ref>
 <!-- Description of the EJB's use. -->
 <description>The cart EJB</description>
 <!-- The JNDI name used by the application client to look up
 the home interface for this EJB. The name is relative to the
 java:comp/env context. The J2EE specification.
 recommends (but does not require) preceding JNDI references for
 EJBs with "ejb/". This name has to resolve, eventually, to a real
 EJB home of the type described in this ejb-ref. This means that
 the name used here has to be mapped (using the J2EE server's
 native tools) to a JNDI name that is the same as the deployed JNDI
 name of an EJB component, or an ejb-link element has to be given
 here that links this name directly to an EJB component in the same
 application archive (ear). -->
 <ejb-ref-name>ejb/ShoppingCartEJB</ejb-ref-name>
 <!-- The type of EJB referenced. Allowed values are
 "Entity" or "Session" (message-driven beans have no home
 interfaces). -->
 <ejb-ref-type>Session</ejb-ref-type>
 <!-- The fully qualified class name of the remote home interface. -->
 <home>my.ejb.ShoppingCartHome</home>
 <!-- The fully qualified class name of the remote client interface -->
 <remote>my.ejb.ShoppingCart</remote>
 <!-- This element can be used to link this EJB reference to
 another EJB component in the same enclosing application jar file.
 The value of the link is the name of the EJB, as specified in the
 ejb-name element in its deployment descriptor. You can also
 prepend the linked name with a relative path to the ejb-jar file
 of the target EJB, followed by a '#', e.g.,
 "../ejbs/dataEJBs.jar#Person". This can be useful when there are
 multiple EJBs with the same ejb-name in the same application.
 If no ejb-link element is provided, then the EJB reference will
 simply be resolved directly to the JNDI name implied by the
 ejb-ref-name, e.g., "java:comp/env/ejb/name". An EJB home of the
 expected type should be deployed to that name in order for
 the reference to be resolved correctly. -->

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <ejb-link>ShoppingCart-remote</ejb-link>
 </ejb-ref>
 <!-- Similar to the ejb-ref element, except this reference uses local
 client and home interfaces, for those cases where the EJB is
 running within the same application server instance -->
 <ejb-local-ref>
 <!-- JNDI reference name. -->
 <ejb-ref-name>ejb/ShoppingCartEJB-local</ejb-ref-name>
 <!-- Type of EJB being referenced. -->
 <ejb-ref-type>Session</ejb-ref-type>
 <!-- Local home interface class name. -->
 <local-home>my.ejb.ShoppingCartLocalHome</local-home>
 <!-- Local client interface. -->
 <local>my.ejb.ShoppingCartLocal</local>
 <!-- Link this reference to an EJB in the same application archive. -->
 <ejb-link>ShoppingCart-local</ejb-link>
 </ejb-local-ref>
 <!-- Declare a dependence on a JAX-RPC interface to a SOAP web service.
 At a minimum you need to specify a reference name and the JAX-RPC
 interface to the service, but you can also specify a number of other
 details. -->
 <service-ref>
 <description>Neat web service</description>
 <display-name>Reference to web service X</display-name>
 <icon>
 <small-icon>/icons/my-small-icon.jpg</small-icon>
 <large-icon>/icons/my-large-icon.jpg</large-icon>
 </icon>
 <!-- JNDI name used by the web components to reference the
 JAX-RPC interface to the service. -->
 <service-ref-name>service/MyWebService</service-ref-name>
 <!-- The interface/class that the service interface is expected
 to satisfy. This can be a custom interface, perhaps one
 mapped from the service WSDL, or it can simply be the JAX-RPC
 Service interface, which all service interfaces must implement.
 The container is responsible for verifying that the service
 interface actually implements the interface given here. -->
 <service-interface>javax.xml.rpc.Service</service-interface>
 <!-- The path (within the web archive) to the WSDL for the service. -->
 <wsdl-file>WEB-INF/wsdl/myservice.wsdl</wsdl-file>
 <!-- The path (within the web archive) to the JAX-RPC mapping file,
 specifying how to map between XML entities and Java entities
 for the service. -->
 <jaxrpc-mapping-file>WEB-INF/myservice-mapping.xml</jaxrpc-mapping-file>
 <!-- The qualified name for the service within the WSDL file -->
 <service-qname>com.mypartner:cool-service</service-qname>
 <!-- Declare that the web components require a specific port from
 the service to be mapped to a JAX-RPC interface. -->
 <port-component-ref>
 <!-- The interface that the mapped port must implement. -->
 <service-endpoint-interface>my.service.endpoint
 </service-endpoint-interface>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <!-- You can optionally link this port reference to a JAX-RPC
 port component within the same application archive. The
 link value should match a port-component-name in a
 deployed webservices.xml deployment descriptor in one
 of the web or EJB archives in this application. -->
 <port-component-link>MyServicePort</port-component-link>
 </port-component-ref>
 <!-- The handler element is used to specify handlers for
 this service. -->
 <handler>
 <!-- A name for the handler. -->
 <handler-name>MySOAPHandler</handler-name>
 <!-- The full class name of the handler. The class must
 implement the javax.xml.rpc.handler.Handler interface -->
 <handler-class>my.soap.handler</handler-class>
 <!-- Specify initialization parameters, passed into the
 handler's init() method as part of the HandlerInfo -->
 <init-param>
 <!-- Name of the parameter. -->
 <param-name>param1</param-name>
 <!-- Value of the parameter. -->
 <param-value>value1</param-value>
 </init-param>
 <!-- The SOAP actor role that the handler should play as it
 processes the SOAP request. -->
 <soap-role>urn:my-service</soap-role>
 <!-- The qualified name of the SOAP header to be processed
 by the handler. -->
 <soap-header>com.partner:header1</soap-header>
 <!-- Name of the WSDL port for the handler.-->
 <port-name>service-port-x</port-name>
 </handler>
 </service-ref>
 . . .
</web-app>

A.1.6. Resources and Environment Entries

When web components require various external resources and environment entries, they are
declared in the deployment descriptor using the elements shown in Figure A-7. The resources that
can be declared include resource factories that generate connections to services (e.g., a JDBC
DataSource that generates Connections to databases or JMS ConnectionFactory objects that generate
Connections to JMS messaging services), resources themselves (e.g., URLs or JMS destinations), or
basic environment data (e.g., string or numeric values, or basic data objects). All of the entities
declared in this section of the descriptor are accessed at runtime through JNDI lookups and therefore
need to be present in the server's JNDI service when the application is deployed.

Example A-7 shows sample resource declarations and environment entries, annotated with

http://lib.ommolketab.ir
http://lib.ommolketab.ir

descriptive comments.

Figure A-7. Elements for resource and environment entries

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example A-7. Annotated resource and environment entries

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<web-app . . .>
 . . .
 <!-- A reference to a resource factory used by the
 web components. A resource factory is used to create connections
 to a managed service. Exampes of factories configurable using a
 resource-ref are JDBC DataSources, JMS ConnectionFactories, and
 JavaMail Sessions. You can also configure your own custom factories.
 The presence of a resource-ref entry in a deployment descriptor is
 simply a placeholder that indicates that the client refers to this
 resource using the indicated name, and therefore the expected
 resource must be deployed in the application server at the specified
 JNDI name. At deploy time, if the resource named here can't be
 resolved in the environment, then the container can catch this and
 raise a deployment-time error, avoiding a runtime error. -->
 <resource-ref>
 <!-- Description of the resource factory. -->
 <description>JMS connection factory for message service</description>
 <!-- JNDI name, relative to java:comp/env, used to look
 up the resource factory. -->
 <res-ref-name>jms/notify-connection</res-ref-name>
 <!-- Class of the resource factory. -->
 <res-type>javax.jms.QueueConnectionFactory</res-type>
 <!-- Authorization model for the factory, either Container or
 Application. -->
 <res-auth>Container</res-auth>
 <!-- This entry specifies whether connections obtained from the
 resource factory are shareable (Shareable)
 or not (Unshareable). -->
 <res-sharing-scope>Shareable</res-sharing-scope>
 </resource-ref>
 <!-- A reference to a general managed object used by the web components.
 A resource-env-ref was used prior to J2EE 1.4 to declare JMS
 destinations. In J2EE 1.4, JMS destinations are declared in the
 message-destination and message-destination-ref elements below. -->
 <resource-env-ref>
 <!-- Description of the env. resource. -->
 <description>Message queue for notifications</description>
 <!-- JNDI name, relative to java:comp/env, used to look up the
 resource in the environment. -->
 <resource-env-ref-name>jms/notify-queue</resource-env-ref-name>
 <!-- Java type of the resource. -->
 <resource-env-ref-type>javax.jms.Queue</resource-env-ref-type>
 </resource-env-ref>
 <!-- Used to create environment entries that the
 application client can access at runtime through JNDI in the
 java:comp/env context. -->
 <env-entry>
 <!-- Description of the environment entry. -->
 <description>Message notification alert threshold</description>
 <!-- JNDI name, relative to java:comp/env, used to look

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 up the env entry. -->
 <env-entry-name>email-alert-threshold</env-entry-name>
 <!-- The Java type of the entry value. The only types
 allowed for application client entries are Boolean, Byte,
 Character, String, Short, Integer, Long, Float, Double. -->
 <env-entry-type>java.lang.Integer</env-entry-type>
 <!-- The value of the entry. The string used here will be used
 to initialize an instance of the type specified in
 the env-entry-type element, by passing it into its
 constructor. -->
 <env-entry-value>12</env-entry-value>
 </env-entry>
 <!-- Declare names for message destinations that will be used to resolve
 the message destination references below. The message destinations
 declared here must be resolved during deployment to actual, physical
 JMS destinations that are appropriate for the usage declared in the
 corresponding message-destination-ref elements. -->
 <message-destination>
 <description>Another queue used for notifications</description>
 <display-name>Another notify queue</display-name>
 <icon>
 <small-icon>icons/my-small-jms-icon.jpg</small-icon>
 <large-icon>icons/my-large-jms-icon.jpg</large-icon>
 </icon>
 <!-- Declare a logical name for the message destination. -->
 <message-destination-name>my-notify-queue</message-destination-name>
 </message-destination>
 <!-- Declare a reference to a message destination, as it is used within
 the components in this archive. This maps a JNDI name to one of the
 message destinations declared above, and specifies the type of
 destination expected and how the components use the destination. -->
 <message-destination-ref>
 <!-- Specify the JNDI name (relative to java:comp/env) used by the
 components to reference this destination. -->
 <message-destination-ref-name
 >jms/notify-queue2</message-destination-ref-name>
 <!-- Specify the type of destination expected (Queue or Topic). -->
 <message-destination-type>javax.jms.Queue</message-destination-type>
 <!-- Specify how the components use the destination, in terms of
 message direction (Consumes, Produces, or ConsumesProduces).-->
 <message-destination-usage>Produces</message-destination-usage>
 <!-- A link to a message destination, using its logical name. -->
 <message-destination-link>my-notify-queue</message-destination-link>
 </message-destination-ref>
 . . .
</web-app>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A.2. Enterprise JavaBeans (ejb-jar.xml)

Enterprise JavaBean components are deployed using a ejb-jar.xml deployment descriptor. The high-
level descriptor summary for EJB deployment descriptors is shown in Figure A-8. The following
sections provide details on each section of the descriptor. In all the diagrams in this section,
deployment elements that were introduced in the EJB 2.1 specification are labelled with a "2.1"
indicator. All other elements were present in the 2.0 (and possibly earlier) version of the EJB
specification.

The format for an empty ejb-jar.xml file is shown in Example A-8.

Figure A-8. EJB deployment descriptor overview

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example A-8. EJB deployment descriptor header

<ejb-jar xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd"
 version="2.1">
 . . .
</ejb-jar>

The example references the XML schema for the EJB 2.1 deployment descriptor from the default
location on the java.sun.com server. To reference the EJB 2.0 DTD instead (e.g., if you are using a
J2EE 1.3 application server like JBoss 3.x or an EJB 2.0 container plug-in), you should start your
deployment descriptor with the following DOCTYPE element and no schema reference:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<!DOCTYPE ejb-jar PUBLIC
 "-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN"
 "http://java.sun.com/dtd/ejb-jar_2_0.dtd">
<ejb-jar>
 . . .
</ejb-jar>

A.2.1. Session EJB Declarations

Figure A-9 shows the elements used to declare session EJBs in your deployment descriptor.

Example A-9 shows sample session EJB declarations, annotated with descriptive comments.

Figure A-9. Session EJB declarations

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example A-9. Annotated session EJB declarations

<ejb-jar . . .>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 . . .
 <enterprise-beans>
 <!-- Declare session EJBs included in this archive. -->
 <session>
 <!-- A description of the session EJB being declared. -->
 <description>desc</description>
 <!-- A display name to be used in various tools. -->
 <display-name>name</display-name>
 <!-- Icon to display in tools. -->
 <icon>
 <small-icon>my/icon/file</small-icon>
 <large-icon>my/icon/file</large-icon>
 </icon>
 <!-- A unique name to be used to refer to this EJB component,
 either within this DD or from other deployment
 descriptors in the same application assembly. Note that
 this name is not a JNDI name, it is simply a label used
 to refer to this EJB from other descriptor elements. -->
 <ejb-name>MySessionEJB</ejb-name>
 <!-- The fully qualified class name of the remote home
 interface for this EJB. A session EJB must have either
 a remote or local home interface, but doesn't require
 both. If an EJB has a remote home interface, it must
 have a remote client interface as well. -->
 <home>my.home.interface</home>
 <!-- The remote client interface for this EJB. A session EJB
 must have either a remote or local client interface,
 but doesn't require both. If an EJB has a remote home
 interface, it must have a remote client interface as
 well. -->
 <remote>my.remote.interface</remote>
 <!-- This specifies the fully qualified class name of the
 local home interface for this EJB. A session EJB must
 have either a remote and/or local home interface, but
 doesn't require both. If an EJB has a local home
 interface, it must have a local client interface as
 well. -->
 <local-home>my.local.home.interface</local-home>
 <!-- This declares the fully qualified class name for the
 local client interface for this EJB. A session EJB
 must have either a remote or local client interface,
 but doesn't require both. If an EJB has a local home
 interface, it must have a local client interface as
 well. -->
 <local>my.local.interface</local>
 <!-- If you want to expose a SOAP service interface to your
 session bean, you must indicate here the JAX-RPC service
 interface your service will implement. Only stateless
 session beans can be published as web services. You'll also
 need to include a webservices.xml deployment descriptor
 with your EJB archive, to fully describe the web service
 (see section "Web Services - (webservices.xml)"). -->

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <service-endpoint>my.jaxrpc.service.interface</service-endpoint>
 <!-- The fully qualified name of the implementation class for
 the EJB. -->
 <ejb-class>my.impl.class</ejb-class>
 <!-- The type of the session bean. Allowed values are
 "Stateful" or "Stateless". The EJB container uses the
 session-type to determine what type of lifecycle
 management to apply to the bean. It also allows the
 server's deployment tools to validate the EJB (e.g.,
 check its interfaces for required callbacks). -->
 <session-type>Stateless</session-type>
 <!-- The type of transaction management used by this EJB. The
 allowed values are "Bean" and "Container". The EJB
 container uses this value to determine what transaction
 management rules to apply to the EJB at runtime. -->
 <transaction-type>Container</transaction-type>
 <!-- Descriptions of the env-entry, ejb-ref, ejb-local-ref,
 resource-ref, and resource-env-ref elements can be
 found in Examples A-6 and A-7. -->
 <env-entry>
 <description>This env entry ...</description>
 <env-entry-name>env-var</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>var-value</env-entry-value>
 </env-entry>
 <ejb-ref>
 <description>A remote EJB I use...</description>
 <ejb-ref-name>ejb/remoteEJB</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <home>other.ejb.home.interface</home>
 <remote>other.ejb.client.interface</remote>
 <ejb-link>other-ejb-name</ejb-link>
 </ejb-ref>
 <ejb-local-ref>
 <description>A local EJB I use...</description>
 <ejb-ref-name>ejb/localEJB</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <local-home>other.ejb.localhome.interface</local-home>
 <local>other.ejb.localclient.interface</local>
 <ejb-link>other-ejb-name2</ejb-link>
 </ejb-local-ref>
 <resource-ref>
 <description>A resource factory I use...</description>
 <res-ref-name>jdbc/MyDB</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>Shareable</res-sharing-scope>
 </resource-ref>
 <resource-env-ref>
 <description>A resource I use...</description>
 <resource-env-ref-name>jms/MyQueue</resource-env-ref-name>
 <resource-env-ref-type>javax.jms.Queue

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </resource-env-ref-type>
 </resource-env-ref>
 <!-- A security-role-ref element declares a security
 role name that is used in this EJB component. Its use
 here is similar to its use in web components (see Example
 A-3). In EJBs, the role named here is used in a call
 to isCallerInRole() on the EJBContext. There must be a
 corresponding security-role element in the
 assembly-descriptor section of the descriptor, matching
 either the role-link value (if present) or the role-name
 (if no role-link is present). -->
 <security-role-ref>
 <!-- A text description of the role. -->
 <description>My admin role...</description>
 <!-- The role name as used in the EJB code. -->
 <role-name>admin</role-name>
 <!-- The role name referenced in the code can be linked
 to another security-role element (see the
 assembly-descriptor in Example A-13). If a
 role-link is not present, then the name used in the
 role-name must be declared as a security-role in the
 assembly-descriptor. -->
 <role-link>main-admin-role</role-link>
 <!-- -->
 </security-role-ref>
 <!-- The security-identity element is used to specify what
 identity is used to execute the methods of the EJB.
 If the use-caller-identity child element is used, then
 the identity of the caller is used to execute the EJB
 methods, and this identity is passed on to any EJB or
 other resources the EJB methods may invoke. If the run-as
 element is used, then the specified role name is used to
 execute the methods. -->
 <security-identity>
 <run-as>
 <role-name>admin</role-name>
 </run-as>
 </security-identity>
 </session>
 . . .
 </enterprise-beans>
 . . .
</ejb-jar>

A.2.2. Message-Driven EJB Declarations

Figure A-10 shows the elements used to declare message-driven beans.

Example A-10 shows sample message-driven EJB declarations, annotated with descriptive comments.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure A-10. Message-driven EJB declarations

Example A-10. Annotated message-driven EJB declarations

<ejb-jar . . .>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 . . .
 <enterprise-beans>
 . . .
 <!-- A message-driven element declares a message-driven EJB
 contained in this archive. -->
 <message-driven>
 <description>desc</description>
 <display-name>name</display-name>
 <icon>
 <small-icon>my/icon/file</small-icon>
 <large-icon>my/icon/file</large-icon>
 </icon>
 <!-- For descriptions of the following elements, see the
 session element in Example A-9. -->
 <ejb-name>MyMessageEJB</ejb-name>
 <ejb-class>my.impl.class</ejb-class>
 <messaging-type>javax.jms.MessageListener</messaging-type>
 <transaction-type>Container</transaction-type>
 <!-- The activation-config specifies parameters to be used
 when initializing the message destination associated with
 this message-driven bean. The standard properties that can
 be set for JMS-based EJBs are acknowledgeMode,
 messageSelector, destinationType, and
 subscriptionDurability. Specific application servers may
 support other property values in their messaging
 implementations (especially non-JMS ones), but you can't
 expect these to be honored by other app servers. -->
 <activation-config>
 <!-- The messageSelector property specifies a message
 selector to be used to filter messages received by
 the bean. The value must be a valid JMS message
 selector expression -- see Appendix E for the
 syntax of message selectors. -->
 <activation-config-property>
 <activation-config-property-name
 >messageSelector</activation-config-property-name>
 <activation-config-property-value>

 X = 'a' AND Y = 'b'
 </activation-config-property-value>
 </activation-config-property>
 <!-- The acknowledgeMode property declares how the bean
 acknowledges receipt of messages, if the EJB uses
 bean-managed transaction management (specified in
 the transaction-type element). The allowed values
 are "Auto-acknowledge" or "Dups-ok-acknowledge",
 corresponding to the JMS acknowledge types. If this
 element is not present, then "Auto-acknowledge"
 is assumed. -->
 <activation-config-property>
 <activation-config-property-name>
 acknowledgeMode</activation-config-property-name>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <activation-config-property-value>
 Auto-acknowledge</activation-config-property-value>
 </activation-config-property>
 <!-- The destinationType property is a hint to the EJB
 container as to what kind of JMS destination this
 bean should be associated with. The value should be
 full class name of the JMS destination type. -->
 <activation-config-property>
 <activation-config-property-name>
 destinationType</activation-config-property-name>
 <activation-config-property-value>
 javax.jms.Queue</activation-config-property-value>
 </activation-config-property>
 <!-- If a topic destination is specified, this element
 indicates whether a durable subscription should be
 used for this EJB or not. Allowed values are
 "Durable" or "NonDurable". If no value is provided,
 then the durability of the subscription is at the
 discretion of the EJB container. -->
 <activation-config-property>
 <activation-config-property-name>subscriptionDurability
 </activation-config-property-name>
 <activation-config-property-value>
 Durable</activation-config-property-value>
 </activation-config-property>
 </activation-config>
 <!-- For full descriptions of the env-entry, ejb-ref,
 ejb-local-ref, resource-ref, and resource-env-ref elements,
 see Examples A-6 and A-7. -->
 <env-entry>
 <description>entry desc</description>
 <env-entry-name>name</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>value</env-entry-value>
 </env-entry>
 <ejb-ref>
 <description>desc</description>
 <ejb-ref-name>ejb/name</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <home>homeClassName</home>
 <remote>remoteClass</remote>
 <ejb-link>ejbName</ejb-link>
 </ejb-ref>
 <ejb-local-ref>
 <description>desc</description>
 <ejb-ref-name>ejb/name</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <local-home>homeClassName</local-home>
 <local>remoteClass</local>
 <ejb-link>ejbName</ejb-link>
 </ejb-local-ref>
 <resource-ref>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <description>desc</description>
 <res-ref-name>jdbc/name</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>Shareable</res-sharing-scope>
 </resource-ref>
 <resource-env-ref>
 <description>desc</description>
 <resource-env-ref-name>context/name</resource-env-ref-name>
 <resource-env-ref-type>
 javax.jms.Queue</resource-env-ref-type>
 </resource-env-ref>
 <!-- For a full description of the security-identity element,
 see Example A-9. -->
 <security-identity>
 <run-as>
 <role-name>admin</role-name>
 </run-as>
 </security-identity>
 </message-driven>
 . . .
 </enterprise-beans>
 . . .
</ejb-jar>

A.2.3. Entity EJB Declarations

Figure A-11 shows the descriptor elements used to declare entity EJBs.

Example A-11 shows sample entity EJB declarations, annotated with descriptive comments.

Figure A-11. Entity EJB declarations

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example A-11. Annotated entity EJB declarations

<ejb-jar . . .>
 . . .
 <enterprise-beans>
 . . .
 <!-- Each entity element declares an entity EJB contained in the
 archive. In addition to the basic EJB details (home, client,
 implementation classes, etc.), the elements here describe how

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 persistence should be managed for the entity bean, and for CMP,
 details on the abstract schema elements to be used for this
 EJB. -->
 <entity>
 <description>My entity EJB</description>
 <display-name>my-entity-ejb</display-name>
 <!-- Icon for tools. -->
 <icon>
 <small-icon>my/icon/file</small-icon>
 <large-icon>my/icon/file</large-icon>
 </icon>
 <!-- For descriptions of the following elements, see the
 session element in Example A-9. -->
 <ejb-name>MyEntityEJB</ejb-name>
 <home>my.home.interface</home>
 <remote>my.remote.interface</remote>
 <local-home>my.local.home.interface</local-home>
 <local>my.local.interface</local>
 <ejb-class>my.impl.class</ejb-class>
 <!-- Indicate how the persistence for the entity EJB is managed.
 Allowed options are "Bean" or "Container". In you use
 bean-managed persistence, then you must provide the
 necessary persistence logic code in your EJB class. If
 you use container-managed persistence, there are
 additional deployment elements that must be defined
 below. -->
 <persistence-type>Container</persistence-type>
 <!-- The fully qualified class name of the type used for this
 EJB's primary key. -->
 <prim-key-class>classname</prim-key-class>
 <!-- Indicates whether the EJB's methods are reentrant or
 not. -->
 <reentrant>false</reentrant>
 <!-- Indicates the version of container-managed persistence
 to be used for this EJB. Allowed values are "1.x",
 indicating CMP as defined in the EJB 1.1 specification,
 or "2.x", indicating CMP as defined in EJB 2.0/2.1. If this
 element isn't present, an EJB 2.x container will assume
 the value is 2.x. This element should be used only with
 EJBs that specify container-managed persistence in the
 persistence-type above. -->
 <cmp-version>2.x</cmp-version>
 <!-- If CMP is used, this element specifies the abstract
 "table" name for the EJB, to be used in EJB-QL queries. -->
 <abstract-schema-name>MyEntity</abstract-schema-name>
 <!-- If CMP is used, these elements declare the container-
 managed fields present on the EJB. -->
 <cmp-field>
 <!-- A description of the field. -->
 <description>A persisted field...</description>
 <!-- The name of the CMP field. In EJB 2.x CMP, the field
 name is an abstract "column" name, used in EJB-QL

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 queries. It also implies the presence of
 JavaBean-style get/set accessors for this field on
 the EJB implementation class. -->
 <field-name>myPersistentField</field-name>
 </cmp-field>
 <!-- If CMP is used and if the EJB has a single-field primary
 key, this element is used to specify which cmp-field is
 the EJB's primary key. If the EJB has multiple fields
 in its primary key, then a primary key class must be
 used, and the primary key class (declared in the
 prim-key-class element above) must have public data
 members that map to cmp-fields on this EJB. -->
 <primkey-field>primkey-fieldname</primkey-field>
 <!-- For descriptions of the env-entry, ejb-ref, ejb-local-ref,
 resource-ref, and resource-local-ref elements, see
 Examples A-6 and A-7.-->
 <env-entry>
 <description>This env entry ...</description>
 <env-entry-name>env-var</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>var-value</env-entry-value>
 </env-entry>
 <ejb-ref>
 <description>A remote EJB I use...</description>
 <ejb-ref-name>ejb/remoteEJB</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <home>other.ejb.home.interface</home>
 <remote>other.ejb.client.interface</remote>
 <ejb-link>other-ejb-name</ejb-link>
 </ejb-ref>
 <ejb-local-ref>
 <description>A local EJB I use...</description>
 <ejb-ref-name>ejb/localEJB</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <local-home>other.ejb.localhome.interface</local-home>
 <local>other.ejb.localclient.interface</local>
 <ejb-link>other-ejb-name2</ejb-link>
 </ejb-local-ref>
 <resource-ref>
 <description>A resource factory I use...</description>
 <res-ref-name>jdbc/MyDB</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>Shareable</res-sharing-scope>
 </resource-ref>
 <resource-env-ref>
 <description>A resource I use...</description>
 <resource-env-ref-name>jms/MyQueue</resource-env-ref-name>
 <resource-env-ref-type>javax.jms.Queue
 </resource-env-ref-type>
 </resource-env-ref>
 <!-- For descriptions of the security-role-ref and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 security-identity elements, see Example A-3. -->
 <security-role-ref>
 <description>My admin role</description>
 <role-name>admin</role-name>
 <role-link>main-admin-role</role-link>
 </security-role-ref>
 <security-identity>
 <use-caller-identity/>
 </security-identity>
 <!-- If CMP is used, query elements are used to define the
 logic behind finder and select methods, using EJB-QL. -->
 <query>
 <!-- A description of the query. -->
 <description>This is a finder query...</description>
 <!-- A declaration of the finder or select method that
 this query is bound to. -->
 <query-method>
 <!-- The name of the select or finder method. -->
 <method-name>findByMyPersistentField</method-name>
 <!-- A list of the method arguments, used to
 distinguish overloaded finder or select
 methods. The method-param elements must be
 listed here in order of the corresponding method
 signature. An empty method-params element can
 be used if the method has no arguments or if
 there is only a single version of the named
 method. -->
 <method-params>
 <!-- Each method-param element specifies the
 fully qualified Java type of a parameter
 in the method. -->
 <method-param>my.finder.arg.type</method-param>
 </method-params>
 </query-method>
 <!-- Used to specify whether EJBs returned as the result
 of this query method should be returned using their
 remote or local client interfaces. Allowed values
 are "Remote" or "Local". -->
 <result-type-mapping>Local</result-type-mapping>
 <!-- The ejb-ql element contains the EJB-QL query string
 that defines this finder or select method. See
 Appendix C for a full description of the EJB-QL
 syntax. -->
 <ejb-ql>SELECT e FROM my-ejb-table e WHERE
 e.my-persistent-field IS NOT NULL</ejb-ql>
 </query>
 </entity>
 <entity>
 <ejb-name>MySlaveEJB</ejb-name>
 <ejb-class>my.slave.ejb.class</ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>my.slave.primkey.class</prim-key-class>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <reentrant>false</reentrant>
 </entity>
 . . .
 </enterprise-beans>
 . . .
</ejb-jar>

A.2.4. Entity EJB Relationship Declarations

Figure A-12 shows the elements used to declare relationships between entity EJBs.

Example A-12 shows sample entity relationship declarations, annotated with descriptive comments.

Figure A-12. Entity EJB relationship declarations

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example A-12. Annotated entity EJB relationship declarations

<ejb-jar . . .>
 . . .
 <!-- The relationships element defines persistence relationships
 between CMP entity EJBs and specifies how to manage the
 persistent relationships. -->
 <relationships>
 <!-- An overall description of the relationships. -->
 <description>desc</description>
 <!-- Each ejb-relation element declares a persistence relationship
 between two CMP entity EJBs declared in this archive. -->
 <ejb-relation>
 <!-- Description of the relation. -->
 <description>desc</description>
 <!-- A unique name for the relation. -->
 <ejb-relation-name>name</ejb-relation-name>
 <!-- The two roles involved in the relationship are defined
 with two relationship-role elements. Each element
 defines one end of the relation. -->
 <ejb-relationship-role>
 <!-- Description of the role. -->
 <description>The master role in the relation</description>
 <!-- The name of the role in the relationship. -->
 <ejb-relationship-role-name>master
 </ejb-relationship-role-name>
 <!-- The multiplicity of this end of the relationship.
 Allowed values are "One" or "Many". -->
 <multiplicity>One</multiplicity>
 <!-- If this element is present, it indicates that a
 deletion of the EJB on the other end of the
 relationship should invoke a cascading delete
 of the EJB(s) on this end of the relationship. -->
 <cascade-delete/>
 <!-- The name of the EJB (from its ejb-name element) to be
 used for this end of the relationship. -->
 <relationship-role-source>
 <!-- A description of the role source. -->
 <description>desc</description>
 <!-- The name of the EJB at this end of the
 relationship. The name must correspond to the
 ejb-name element of a CMP EJB declared in this
 ejb-jar. -->
 <ejb-name>MyEntityEJB</ejb-name>
 </relationship-role-source>
 <!-- A field name to be used to access this relationship
 from the source EJB. If this element is present,
 JavaBean-style get/set accessors will be assumed to
 exist on the EJB implementation class to access the
 EJBs at the other end of this relationship. If this
 element is not present, then the relationship

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 cannot be accessed from this EJB. -->
 <cmr-field>
 <description>This field...</description>
 <cmr-field-name>slaves</cmr-field-name>
 </cmr-field>
 </ejb-relationship-role>
 <!-- The opposite role to that defined above. -->
 <ejb-relationship-role>
 <description>desc</description>
 <ejb-relationship-role-name>slave
 </ejb-relationship-role-name>
 <multiplicity>Many</multiplicity>
 <cascade-delete/>
 <relationship-role-source>
 <description>desc</description>
 <ejb-name>MySlaveEJB</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <description>This field...</description>
 <cmr-field-name>master</cmr-field-name>
 </cmr-field>
 </ejb-relationship-role>
 </ejb-relation>
 </relationships>
 . . .
</ejb-jar>

A.2.5. Cross-Component Runtime Settings

Figure A-13 shows the elements used to define cross-component runtime settings for EJB
components.

Example A-13 shows sample cross-component runtime settings, annotated with descriptive
comments.

Figure A-13. Cross-component runtime settings

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example A-13. Annotated cross-component runtime settings

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<ejb-jar . . .>
 . . .
 <!-- This element contains various cross-component details about
 how the EJBs contained in the ejb-jar file should be managed at
 runtime. These details can be changed at deployment time by the
 application assembler. -->
 <assembly-descriptor>
 <!-- Each security-role element declares a security role used in
 EJBs in this ejb-jar module. Each named role must be mapped
 to a physical group/identity within the runtime security
 environment of the EJB/J2EE server. -->
 <security-role>
 <!-- Description of the role. -->
 <description>desc</description>
 <!-- The name of the role. This name must be mapped to a
 physical group/identity in the security environment
 in the EJB/J2EE server. -->
 <role-name>main-admin-role</role-name>
 </security-role>
 <!-- Each method-permission element declares the permissions to
 be used to control access to EJB methods. -->
 <method-permission>
 <!-- Description of the method permission. -->
 <description>desc</description>
 <!-- Each permission must include either a list of role-name
 elements, indicating the roles being given permissions to
 execute the methods in this method-permission, or it must
 include an empty "unchecked" element, indicating that
 the methods specified in the list are to be executed
 without checking the client's identity. If a list of
 role-name elements is given, each role-name must match a
 security-role defined above. -->
 <unchecked/>
 <!-- A list of one or more method elements, specifying the
 set of methods whose permissions are being set. Each
 method element specifies one or more methods on a
 specific EJB in this archive. Wildcards are used to
 indicate multiple methods. -->
 <method>
 <!-- Description of the method. -->
 <description>This method set...</description>
 <!-- The name of the EJB whose methods are being specified.
 The ejb-name element must match the ejb-name element
 of an EJB declared in this descriptor. -->
 <ejb-name>MySessionEJB</ejb-name>
 <!-- Limits the method definitions to a specific interface
 on the EJB. Allowed values of the method-intf
 element are "Home" for the remote home interface,
 "Remote" for the remote client interface,
 "LocalHome" for the local home interface, and "Local"
 for the local client interface. If this element is
 not present, the methods are chosen from all of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 these interfaces on the EJB. -->
 <method-intf>Local</method-intf>
 <!-- The name of the method(s). The allowed values are
 either a full method name, or an asterisk, "*",
 indicating that all of the EJB's methods (limited
 by the method-intf, if present) are being selected. -->
 <method-name>setName</method-name>
 <!-- A specification of the parameters in the method
 signature. This element can be used to chose a
 specific method when a method name has been
 overloaded in an EJB. -->
 <method-params>
 <!-- Each method-param element specifies the
 fully qualified Java type of a parameter in
 the method. -->
 <method-param>java.lang.String</method-param>
 </method-params>
 </method>
 </method-permission>
 <!-- Used to specify how transactions should be managed for a set
 of methods on an EJB. -->
 <container-transaction>
 <!-- Description of the element. -->
 <description>The transactions here...</description>
 <!-- A set of method(s) for which transaction management is
 being defined. The method element is described above
 as part of the method-permission element. -->
 <method>
 <description>This method...</description>
 <ejb-name>MyEntityEJB</ejb-name>
 <method-intf>Remote</method-intf>
 <method-name>getName</method-name>
 <method-params/>
 </method>
 <!-- The transaction support to be offered by the method(s)
 specified above. Allowed values are "NotSupported",
 "Supports", "Required", "RequiresNew", "Mandatory",
 and "Never". -->
 <trans-attribute>NotSupported</trans-attribute>
 </container-transaction>
 <!-- Declare message destinations (queues or topics)
 used by components in this module. Any destinations
 declared here will need to be configured in the target
 application server. -->
 <message-destination>
 <message-destination-name
 >MyMessageDestination</message-destination-name>
 </message-destination>
 <!-- An exclude-list can be used to specify methods on the EJBs
 in this archive that should not be called by any clients. -->
 <exclude-list>
 <!-- Description of exclude list. -->

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <description>These methods are excluded...</description>
 <!-- List of methods that should be considered uncallable.
 The method element is described fully in the
 method-permission element, above. -->
 <method>
 <description>Tis method is dangerous...</description>
 <ejb-name>MyEntityEJB</ejb-name>
 <method-name>doSomethingBad</method-name>
 <method-params>
 <method-param>java.lang.Object</method-param>
 </method-params>
 </method>
 </exclude-list>
 </assembly-descriptor>
 <!-- If this element is present, the J2EE server's deployment tools
 should generate a jar file with the given filename that contains
 all of the classes (including container-generated classes) required
 by a client in order to use the contained EJB components. These
 classes include remote and local stub implementations for the EJB's
 remote home and client interfaces, among other things. This jar
 file can then be included in other J2EE components or application
 clients if they reference the EJBs in this archive. -->
 <ejb-client-jar>myClientJar.jar</ejb-client-jar>
</ejb-jar>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A.3. Application Archives (application .xml)

Enterprise application archives (ears) contain collections of component archives (web, EJB, and so
on) that make up an application. An application.xml deployment descriptor is used to declare and
configure the component archives, as well as declare applicationwide security roles. Figure A-14
shows the structure of the application deployment descriptor.

Example A-14 shows a sample application deployment descriptor, annotated with descriptive
comments. Note that this example uses the application descriptor schema from the J2EE 1.4
specification, referencing the schema from the default location on the java.sun.com server. To use
the J2EE 1.3 application descriptor DTD, you would need to replace the application element tag and
its schema reference with the following empty tag and DOCTYPE enTRy:

<!DOCTYPE application PUBLIC
 "-//Sun Microsystems, Inc.//DTD J2EE Application 1.3//EN"
 "http://java.sun.com/dtd/application_1_3.dtd">
<application>
 . . .
</application>

Figure A-14. Application archive deployment descriptor overview

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example A-14. Annotated application deployment descriptor

<?xml version="1.0" encoding="UTF-8"?>
<application xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/application_1_4.xsd"
 version="1.4">
 <!-- Description of the application, for tools. -->
 <description>This application is...</description>
 <!-- Display name of the application. -->
 <display-name>My Application</display-name>
 <!-- Icons to be used to represent the app in tools. -->
 <icon>
 <small-icon>my/icon/file</small-icon>
 <large-icon>my/large/icon/file</large-icon>
 </icon>
 <!-- Each module element specifies an archive containing
 components or clients that are part of the application. -->
 <module>
 <!-- The connector element references the archive file for

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 a set of JCA Connectors. The file reference is relative
 to the root of the enterprise application archive (ear) file. -->
 <connector>myConnector.rar</connector>
 <!-- The alt-dd element can be used in any of the module
 variations, to specify a deployment descriptor that should
 be used in lieu of the descriptor in the component archive.
 The descriptor must be of the appropriate format for the
 type of archive, and the file reference is made relative
 to the root of the ear file. -->
 <alt-dd>my-alt-rar-dd.xml</alt-dd>
 </module>
 <module>
 <!-- Include the specified EJB archive in the application. -->
 <ejb>myEJBs.jar</ejb>
 </module>
 <module>
 <!-- Include the specified J2EE client jar in the application. -->
 <java>myClient.jar</java>
 </module>
 <module>
 <!-- Include the specified web archive in the application. -->
 <web>
 <!-- The location of the web archive (war) file -->
 <web-uri>myWebComps.war</web-uri>
 <!-- The web context root to use for the web components in
 this archive. -->
 <context-root>myapp</context-root>
 </web>
 </module>
 <!-- The security-role element can be used here much as it is used
 in individual archive deployment descriptors
, but the roles
 declared here can be used in any components in the archives
 specified in the module entries above. See section X for
 additional information on the security-role element. -->
 <security-role>
 <description>desc</description>
 <!-- Name of the role, which must be mapped to a physical role
 in the application server's runtime environment. -->
 <role-name>app-level-admin</role-name>
 </security-role>
</application>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A.4. Web Services (webservices.xml)

SOAP web services are implemented in J2EE using JAX-RPC, and service implementations can take
the form of a basic Java bean deployed as a web component or a stateless session EJB component.
In either case, a webservices.xml deployment descriptor is used within the component archive (the
war file or ejb-jar.xml file) to declare and configure the web services implemented by the
components in the archive.

Figure A-15 shows the overall XML schema structure used in webservices.xml files.

Example A-15 shows sample web service declarations, annotated with descriptive comments.

Figure A-15. Web service declarations

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example A-15. Annotated web service declarations

<?xml version="1.0" encoding="UTF-8"?>
<webservices xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/j2ee_web_services_1_1.xsd"
 version="1.1">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <description>Web services contained in my application</description>
 <display-name>Web services</display-name>
 <icon>
 <small-icon>icons/my-small-ws-icon.jpg</small-icon>
 <large-icon>icons/my-large-ws-icon.jpg</large-icon>
 </icon>
 <!-- Each webservice-description element defines a full web service
 implemented somewhere in the surrounding component archive (web
 or EJB). Each service specifies a WSDL file and a JAX-RPC
 mapping file contained in the archive and one or more ports
 that can be invoked by clients. Each port is described here,
 in terms of the WSDL port element that it implements, the Java
 entities that implement it, and optional runtime settings. -->
 <webservice-description>
 <description>This service...</description>
 <display-name>A service</display-name>
 <icon>
 <small-icon>icons/small-ws1-icon.jpg</small-icon>
 <large-icon>icons/large-ws1-icon.jpg</large-icon>
 </icon>
 <!-- A unique name for this service definition. This name must be
 unique within the surrounding archive. -->
 <webservice-description-name
 >MyWebService</webservice-description-name>
 <!-- Indicate the location of the WSDL file that describes this
 service. The location is specified as a relative path from
 the root of the surrounding archive. In web archives, the WSDL
 file is typically placed in the WEB-INF directory. In EJB
 archives, it is placed in the META-INF directory. -->
 <wsdl-file>WEB-INF/myservice.wsdl</wsdl-file>
 <!-- Indicate the location of the JAX-RPC mapping file for this
 service. The location is specified as a relative path from the
 root of the surrounding archive. This XML file describes how
 to map between SOAP XML and Java entities. The mapping file
 is typically placed in the WEB-INF directory in web archives
 and in the META-INF directory in EJB archives. See Section X
 for a full reference on JAX-RPC mapping files. -->
 <jaxrpc-mapping-file
 >WEB-INF/myservice-mapping.xml</jaxrpc-mapping-file>
 <!-- Each port on the service is declared with a port-component
 element. -->
 <port-component>
 <description>A port provided by this service...</description>
 <display-name>Service port X</display-name>
 <icon>
 <small-icon>icons/my-small-port-icon.jpg</small-icon>
 <large-icon>icons/my-large-port-icon.jpg</large-icon>
 </icon>
 <!-- A unique name, within the surrounding archive, for this
 port component. This name can be used in web and EJB
 descriptors within service-ref entries, as the value
 of a port-component-link. -->

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <port-component-name>MyServicePort</port-component-name>
 <!-- The qualified name (QName) of the port within the
 service's WSDL description. -->
 <wsdl-port>MyServicePort</wsdl-port>
 <!-- The Java interface that is used in the Java binding of
 the port. -->
 <service-endpoint-interface>com.my.service.interface
 </service-endpoint-interface>
 <!-- Specify the component within this archive or application
 that implements this port. The service-impl-bean element
 can either point to the servlet-name of a web component,
 by using the servlet-link element, or it can point
 to the ejb-name of an EJB component, by using an ejb-link
 element. -->
 <service-impl-bean>
 <servlet-link>MyServiceWebComponent</servlet-link>
 </service-impl-bean>
 <!-- The handler element is used to specify custom SOAP
 message handlers that should be put in place for this port
 in the service. Handlers can be triggered for any message
 targeted at the port, or they can handle specific
 messages based on their header entries. -->
 <handler>
 <!-- A name for the handler. -->
 <handler-name>MySOAPHandler</handler-name>
 <!-- The full class name of the handler. The class must
 implement the javax.xml.rpc.handler.Handler interface. -->
 <handler-class>com.my.soap.handler</handler-class>
 <!-- Specify initialization parameters, passed into the
 handler's init() method as part of the HandlerInfo. -->
 <init-param>
 <!-- Name of the parameter. -->
 <param-name>param1</param-name>
 <!-- Value of the parameter. -->
 <param-value>value1</param-value>
 </init-param>
 <!-- The qualified name (QName) of a SOAP header to be
 processed by the handler. -->
 <soap-header>com.partner-header1</soap-header>
 <!-- A SOAP actor role that the handler should play as it
 processes the SOAP request. -->
 <soap-role>urn:my-service</soap-role>
 </handler>
 </port-component>
 </webservice-description>
</webservices>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A.5. Web Service Java/WSDL Mappings

When deploying JAX-RPC web services in a J2EE application, each web service must have a mapping
file that describes how the Java entities in the service implementation and the XML entities in the
WSDL are mapped to each other. The mapping file is included in the component archive and specified
in the webservices.xml deployment descriptor. Figure A-16 shows the structure of JAX-RPC mapping
files.

Example A-16 shows sample Java/WSDL mappings , annotated with descriptive comments.

Figure A-16. Web services Java/WSDL mappings

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example A-16. Annotated Java/WSDL mappings

<?xml version="1.0" encoding="UTF-8"?>
<java-wsdl-mapping
 xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/j2ee_jaxrpc_mapping_1_1.xsd"
 version="1.1">
 <!-- Each package-mapping element specifies how a Java package
 is mapped to an XML namespace in the WSDL for the service. -->
 <package-mapping>
 <!-- The Java package for the mapping. -->
 <package-type>com.my.service.datatypes</package-type>
 <!-- The XML namespace to be mapped to this package. -->
 <namespaceURI>my-service-ns</namespaceURI>
 </package-mapping>
 <!-- Each java-xml-type-mapping element specifies how to map an
 XML element to a corresponding Java type. -->
 <java-xml-type-mapping>
 <!-- The full classname of the Java type. -->
 <java-type>com.my.service.datatypes.type1</java-type>
 <!-- The WSDL entity is identified using its qualified name (QName).
 If the WSDL entity has an anonymous QName, then an
 anonymous-type-qname element is used here. Otherwise, a
 root-type-qname element should be used. -->
 <root-type-qname>my-service-ns:type1</root-type-qname>
 <!-- Each qualified name must be scoped to the WSDL element type,
 by specifying simpleType, complexType, or element here. -->
 <qname-scope>complexType</qname-scope>
 <!-- If the WSDL entity has child elements that need to be mapped
 to corresponding properties on the Java type, then one or
 more variable-mapping elements can be used here. -->
 <variable-mapping>
 <!-- The name of the Java property or public data member for
 the mapping. -->
 <java-variable-name>id</java-variable-name>
 <!-- This empty element is used to indicate that the Java
 variable listed above is a public data member, not a
 JavaBeans property. -->
 <data-member/>
 <!-- The corresponding WSDL entity is specified as either
 an XML element, using an xml-element-name; an XML attribute,
 using an xml-attribute-name element; or an XML xsd:any
 element, using the empty xml-wildcard element -->
 <xml-attribute-name>id</xml-attribute-name>
 </variable-mapping>
 </java-xml-type-mapping>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <!-- Each exception-mapping entry maps a WSDL fault entity to a
 Java exception. -->
 <exception-mapping>
 <!-- The fully qualified Java class name of the exception -->
 <exception-type>com.my.service.BadParameterException</exception-type>
 <!-- This element specifies the qualified name (QName) of the
 WSDL message for the fault. -->
 <wsdl-message>my-service-ns:BadParameterFaultMessage</wsdl-message>
 <!-- If the fault message has more than one part, you need to use
 this element to indicate which part is being mapped here. -->
 <wsdl-message-part-name>fault-part</wsdl-message-part-name>
 <!-- If the mapped WSDL fault element is a complex type, you can
 specify the order in which its elements are mapped to the
 constructor arguments on the exception class. -->
 <constructor-parameter-order>
 <!-- The name of an an element of the complex WSDL type. -->
 <element-name>fault-message</element-name>
 </constructor-parameter-order>
 </exception-mapping>
 <!-- Each service-interface-mapping element maps a WSDL service entity
 to a corresponding set of Java interfaces. At a minimum, the
 service itself must be mapped to a corresponding Java interface,
 but you can also specify how each port in the service is mapped
 to a getX method on generated service interfaces. -->
 <service-interface-mapping>
 <!-- The fully qualified class name of the Java interface
 for the WSDL service. This can be preexisting, or it
 can be generated using tools in your web service engine. -->
 <service-interface>com.my.service.interface</service-interface>
 <!-- The qualified name of the WSDL service entity. -->
 <wsdl-service-name>my-service-ns:service1</wsdl-service-name>
 <!-- Each port-mapping entry generates a getX method on any service
 interfaces that are automatically generated using this
 mapping file. If "JavaName" is given as the java-port-name
 below, then a getJavaName() method will be generated on the
 service interface, and calling this method will return a
 Java interface for the port named in the port-name element -->
 <port-mapping>
 <!-- The WSDL port name to be bound to the Java name below. -->
 <port-name>port1</port-name>
 <!-- The name to use for the getX method on the generated
 service interface. In this case, the method will be
 getPort1, which will return a Java binding for the
 WSDL port named port1. -->
 <java-port-name>Port1</java-port-name>
 </port-mapping>
 </service-interface-mapping>
 <!-- Each service-endpoint-interface-mapping element specifies how a
 WSDL port is to be mapped to corresponding Java entities. -->
 <service-endpoint-interface-mapping>
 <!-- The fully qualified Java class for the port interface. -->
 <service-endpoint-interface>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 com.my.service.port1</service-endpoint-interface>
 <!-- The qualified name of the WSDL port to be mapped. -->
 <wsdl-port-type>my-service-ns:port1</wsdl-port-type>
 <!-- The qualified name of the binding of the WSDL port to be mapped.
 A given WSDL port can potentially be associated with multiple
 bindings (e.g., HTTP and SMTP bindings of the same service), so
 this element is needed to uniquely identify the port/binding
 being mapped. -->
 <wsdl-binding>urn:my-service-ns/port1-binding1</wsdl-binding>
 <!-- Each service-endpoint-method-mapping element defines how a
 method on the Java interface is mapped to specific operations
 on the WSDL port being mapped. If a default mapping is being
 used, you don't need to include any method mappings here, but
 these method mappings can be useful for customizing the
 mapping. -->
 <service-endpoint-method-mapping>
 <!-- The name of the Java method being mapped. -->
 <java-method-name>doServiceOperation1</java-method-name>
 <!-- The name of the WSDL operation within the port being mapped -->
 <wsdl-operation>serviceOperation1</wsdl-operation>
 <!-- If the operation uses a wrapped element with the same name
 as the operation, then this element should be present. -->
 <wrapped-element/>
 <!-- The Java method arguments can be mapped to input messages
 on the WSDL operation using method-param-parts-mapping
 elements. -->
 <method-param-parts-mapping>
 <!-- The position of the method argument in the Java method
 argument list. The position is indexed from zero. -->
 <param-position>0</param-position>
 <!-- The Java type of the method argument. -->
 <param-type>java.lang.String</param-type>
 <!-- The corresponding WSDL message is specified with this
 element. -->
 <wsdl-message-mapping>
 <!-- The qualified name of the WSDL message. -->
 <wsdl-message>
 my-service-ns:operation1Input1</wsdl-message>
 <!-- The part of the message being mapped. If the method
 is using a wrapped element (i.e., the wrapped-element
 entry is specified in the method mapping), then
 this part name references the name of a child element
 in the wrapped element. If the method is not using
 a wrapped element, then the part name here references
 WSDL message part name. -->
 <wsdl-message-part-name>
 elementPart1</wsdl-message-part-name>
 <!-- This indicates whether the mapping is inbound only
 (with respect to the SOAP service), outbound only,
 or both directions. The allowed values are IN, OUT,
 or INOUT. -->
 <parameter-mode>INOUT</parameter-mode>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <!-- If this element is present, then this mapping
 is from a Java parameters to a SOAP header, rather
 than a WSDL message. -->
 <soap-header/>
 </wsdl-message-mapping>
 </method-param-parts-mapping>
 <!-- The mapping of the output messages (if there are any) on
 the WSDL operation to the Java return type of the method
 can be specified using this element. -->
 <wsdl-return-value-mapping>
 <!-- The fully qualified Java type of the method return
 value. -->
 <method-return-value></method-return-value>
 <!-- The qualified name of the WSDL message being mapped. -->
 <wsdl-message>
 my-service-ns:operation1Output1</wsdl-message>
 <!-- The part of the message being mapped. If the method
 is using a wrapped element (i.e., the wrapped-element
 entry is specified in the method mapping), then
 this part name references the name of a child element
 in the wrapped element. If the method is not using a
 wrapped element, then the part name here references
 the WSDL message part name. -->
 <wsdl-message-part-name>
 elementPart1</wsdl-message-part-name>
 </wsdl-return-value-mapping>
 </service-endpoint-method-mapping>
 </service-endpoint-interface-mapping>
</java-wsdl-mapping>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Appendix B. JavaServer Faces Tag
Libraries
The JavaServer Faces API includes two JSP tag libraries that are used to create the user interface for
your applications. The JSF tag library is divided into two parts. The HTML tag library provides tags to
produce HTML output, and the core tag library provides utilities that are not specific to the HTML
rendering model.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

B.1. JSF Core Tags

The JSF core tags provide access to all of the JSF features that do not directly relate to HTML
rendering. Many of the HTML tags rely on core tags to specify optional features, such as validation
functionality.

To use the JSF core tags in a JSP file, you must include the following statement in the file header:

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>

Use of f as the tag namespace prefix is both conventional and highly recommended but not required.

B.1.1. <f:actionListener>

Adds an action listener implementation to the surrounding UIComponent tag, such as an
<h:commandLink>. The tag must specify the fully qualified class name of a class implementing the
javax.faces.event.ActionListener interface. If you wish to handle action events via a method on a
backing bean, use the appropriate attribute on the UI component tag instead.

Table B-1. Attribute for <f:actionListener>

Attribution Description

type The fully qualified class name of a class that implements the ActionListener interface

B.1.2. <f:attribute>

Adds an attribute to the surrounding tag. Using this tag is functionally equivalent to setting the
attribute value in the parent tag. Values set on the parent component supersede any attributes set
using this tag.

Table B-2. Attributes for <f:attribute>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attribute Description

name The name of the attribute to set

value The value of the attribute to set

B.1.3. <f:convertDateTime>

Converts the value contained by the surrounding component (such as an <h:outputText> tag) into a
formatted date and time value.

Table B-3. Attributes for <f:convertDateTime>

Attribute Description

dateStyle
Date format, as defined by java.text.DateFormat. Valid values are default, short,
medium, long, and full.

locale Locale to use for date formatting and parsing.

pattern
Custom formatting pattern for this converter. Supersedes dateStyle, type, and
timeStyle.

timeStyle
Time format, as defined by java.text.DateFormat. Valid values are default, short,
medium, long, and full.

timeZone
String or TimeZone object used to interpret time zone information when parsing time
values.

type String value, either date, time, or both. Default is date.

B.1.4. <f:convertNumber>

Converts the value contained by the surrounding component (such as an <h:outputText> tag) into a
formatted numerical value.

Table B-4. Attributes for <f:convertNumber>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attribute Description

currencyCode String specifying the ISO-4217 currency code used for currency formatting.

currencySymbol Currency symbol.

groupingUsed
Boolean value specifying whether grouping separators (such as commas in
U.S. formatted numbers) will be used.

integerOnly
Boolean value specifying whether only the integer component of the
input/output will be included.

locale
String or Locale object specifying the number styles to be used in this
conversion.

maxFractionDigits
Integer value specifying the maximum number of digits to include in the
fractional component of the output.

maxIntegerDigits
Integer value specifying the maximum number of digits to include in the
integer component of the output.

minFractionDigits
Integer value specifying the minimum number of digits to include in the
fractional component of the output.

minIntegerDigits
Integer value specifying the minimum number of digits to include in the
integer component of the output.

type Specifies parsing as a number, currency, or percentage. The default is number.

B.1.5. <f:converter>

Adds a converter to a UI component, based on the converter ID specified in the faces-config.xml file.
While class names are often used as converter IDs, this tag does not tag a class name.

Table B-5. Attributes for <f:converter>

Attribute Description

converterId A converter ID specified in the JSF configuration file for the application

B.1.6. <f:facet>

Defines a facet for a component. Facets are used by various components, such as <h:dataTable>, to
override particular display attributes. Each facet tag contains a set of additional tags that will be used
instead of or in addition to the regular tag body in particular circumstances. For example, the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<h:dataTable> tag supports facets named header and footer that are used to render a header and a
footer before and after iterating over a collection.

Table B-6. Attributes for <f:facet>

Attribute Description

name
The name of this facet. Valid facet names depend on the component containing the
facet.

B.1.7. <f:loadBundle>

Loads a resource bundle from the classpath and binds it to a variable. Once bound, the resource
bundle can be accessed via the JSF expression language using the normal map syntax.

Table B-7. Attributes for <f:loadBundle>

Attribute Description

basename The fully qualified name of the resource bundle

var The variable to bind this resource bundle to

B.1.8. <f:param>

Associates a parameter with a component. The meaning of the parameter depends on the component
it is associated with. For example, parameters passed to the <h:outputFormat> tag are used to
provide substitution values within a string.

The binding and id attributes are rarely used.

Table B-8. Attributes for <f:param>

Attribute Description

name The name of this parameter. This attribute is optional.

value The value of the parameter. This may be a JSF EL expression.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attribute Description

binding
Property expression indicating the bean to which this component is bound. Not normally
used with this tag.

id Overrides the ID of this component.

B.1.9. <f:selectItem>

Describes an item for use within a multiselection component, such as an <h:selectManyCheckbox>.

Table B-9. Attributes for <f:selectItem>

Attribute Description

itemDescription Description of the item, intended primarily for development tool use

itemDisabled Boolean expression indicating whether this item is disabled

itemLabel Textual label for the item

itemValue Value that will be passed back to the server as a request parameter for this item

value
JSF EL expression evaluating to a SelectItem object containing the information
for this item

B.1.10. <f:selectItems>

Adds a set of javax.faces.model.SelectItem objects, as indicated by the value binding or value, to
the parent component.

Table B-10. Attributes for <f:selectItems>

Attribute Description

binding
Property expression indicating the bean to which this component is bound. Not normally
used with this tag.

id Overrides the component identifier for this component.

binding
Property expression indicating the bean to which this component is bound. Not normally
used with this tag.

id Overrides the ID of this component.

B.1.9. <f:selectItem>

Describes an item for use within a multiselection component, such as an <h:selectManyCheckbox>.

Table B-9. Attributes for <f:selectItem>

Attribute Description

itemDescription Description of the item, intended primarily for development tool use

itemDisabled Boolean expression indicating whether this item is disabled

itemLabel Textual label for the item

itemValue Value that will be passed back to the server as a request parameter for this item

value
JSF EL expression evaluating to a SelectItem object containing the information
for this item

B.1.10. <f:selectItems>

Adds a set of javax.faces.model.SelectItem objects, as indicated by the value binding or value, to
the parent component.

Table B-10. Attributes for <f:selectItems>

Attribute Description

binding
Property expression indicating the bean to which this component is bound. Not normally
used with this tag.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attribute Description

id Overrides the component identifier for this component.

value JSF EL expression pointing to a List or array of SelectItem objects.

B.1.11. <f:subview>

A container tag for JSF components within a separate JSP page included within a JSF view (via
<jsp:include> or similar mechanisms).

Table B-11. Attributes for <f:subview>

Attribute Description

binding
Property expression indicating the bean to which this component is bound. Not normally
used with this tag.

id Overrides the ID of this component.

rendered
True or false, indicating whether or not this subview should be rendered. This may be a
JSF EL expression that evaluates to a Boolean.

B.1.12. <f:validator>

Adds a validator to the parent UI input component, based on the validator ID specified in the faces-
config.xml file. While class names are often used as validator IDs, this tag does not tag a class name.

Validators must be specified within the tag for the input component that they are responsible for
validating.

Table B-12. Attribute for <f:validator>

Attribute Description

validatorId A validator ID specified in the JSF configuration file for the application

B.1.13. <f:validateDoubleRange>

id Overrides the component identifier for this component.

value JSF EL expression pointing to a List or array of SelectItem objects.

B.1.11. <f:subview>

A container tag for JSF components within a separate JSP page included within a JSF view (via
<jsp:include> or similar mechanisms).

Table B-11. Attributes for <f:subview>

Attribute Description

binding
Property expression indicating the bean to which this component is bound. Not normally
used with this tag.

id Overrides the ID of this component.

rendered
True or false, indicating whether or not this subview should be rendered. This may be a
JSF EL expression that evaluates to a Boolean.

B.1.12. <f:validator>

Adds a validator to the parent UI input component, based on the validator ID specified in the faces-
config.xml file. While class names are often used as validator IDs, this tag does not tag a class name.

Validators must be specified within the tag for the input component that they are responsible for
validating.

Table B-12. Attribute for <f:validator>

Attribute Description

validatorId A validator ID specified in the JSF configuration file for the application

B.1.13. <f:validateDoubleRange>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Adds a double range validator to the parent UI input component. With this tag in place, the parent
component will accept values only within the boundaries specified by the tag. Both attributes are
optional, although omitting both is silly.

Table B-13. Attributes for <f:validateDoubleRange>

Attribute Description

maximum The maximum value the field will accept (optional)

minimum The minimum value the field will accept (optional)

B.1.14. <f:validateLength>

Adds a length validator to the parent UI input component. With this tag in place, the parent
component will accept only input that meets the minimum and maximum length constraints specified.
You may specify a minimum length, a maximum length, or both.

Table B-14. Attributes for <f:validateLength>

Attribute Description

maximum The maximum allowable length for the associated field (optional)

minimum The minimum allowable length for the associated field (optional)

B.1.15. <f:validateLongRange>

Adds a long range validator to the parent UI input component. With this tag in place, the parent
component will accept only values within the boundaries specified by the tag. This tag may be used to
validate integer types as well as longs.

Table B-15. Attribute for <f:validateLongRange>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attribute Description

maximum The maximum value the field will accept (optional)

minimum The minimum value the field will accept (optional)

B.1.16. <f:valueChangeListener>

Adds a value change listener implementation to the surrounding UIComponent tag, such as
<h:inputText>. The tag must specify the fully qualified class name of a class implementing the
javax.faces.event.ValueChangeListener interface. If you wish to handle action events via a method
on a backing bean, use the appropriate attribute on the UI component tag instead.

Table B-16. Attribute for <f:valueChangeListener>

Attribute Description

type
The fully qualified class name of a class that implements the ValueChangeListener
interface

B.1.17. <f:view>

This tag provides the root element for a JSF view. This tag must be present on every JSF JSP, and
user interface component tags must be included within this tag.

Table B-17. Attributes for <f:view>

Attribute Description

locale Overrides the locale for this view

B.1.18. <f:verbatim>

Embeds markup in a JSF page.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table B-18. Attribute for <f:verbatim>

Attribute Description

escape
Boolean value indicating whether to escape <, > and & characters, allowing output of
readable HTML. Defaults to false.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

B.2. JSF HTML Tags

The JSF HTML tags provide access to components that relate specifically to the HTML rendering
model, including all of the standard HTML input components.

Several tag attributes are shared by all of the HTML tags or all of the tags in a particular category,
such as the data input tags.

Table B-19. Shared tag attributes

Attribute Description Supported by

binding
A JSF EL expression identifying a backing bean
property to bind this component to.

All tags (but not
relevant for some)

converter
The name of a data converter instance associated
with this component.

Input and output tags

id

A custom identifier for this component, allowing
access to the underlying HTML element via
JavaScript.

All tags

rendered
Boolean expression indicating whether this
component and its children should be rendered.

All tags

required

A Boolean expression indicating whether data must
be entered into the component in order to perform
an action on the surrounding form.

Input tags

styleClass

Specifies the name of the CSS style to be applied to
the generated element. Multiple styles can be
specified via a comma-separated list.

All but <h:column>
and <h:inputHidden>

validator
The name of a validator associated with this
component.

Input tags

value

A JSF EL expression indicating the current value of
this component. Used for values that are not
manipulated by the user. For user-entered data, the
binding attribute should be used instead.

Input, output, and
control tags

valueChangeListener

JSF EL expression identifying an event-handling
method for use when the value of an input
component changes. All value change listeners in a
view will be processed when the view is submitted.

Input tags

B.2.1. Pass-Through Attributes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Since the JSF HTML tags are responsible for rendering HTML for consumption by the browser, they
include pass-through attributes for standard HTML attributes and for DHTML event attributes, which
are used to integrate JavaScript with your application. To minimize repetition, we'll summarize the
pass-through attributes here rather than include them with each individual tag.

All standard HTML 4.0 elements are supported by the corresponding JSF UI tags. The most common
attributes are listed in Table B-20. Specific interpretation of some of these values depends on the
element itself.

Table B-20. Common HTML 4.0 pass-through elements

Attribute Description

accesskey
Identifies a hotkey that will give focus to an element (usually used in accessible
browsers in combination with an external command).

accept The content type or types generated by the form.

alt Alternative text to display for this component in nongraphical browsers.

border Width of the element's border, in pixels.

charset Character set in use.

cols Number of columns in a text area.

coords Coordinates for image map elements.

dir Text direction.

disabled Indicates whether or not a form input element is disabled.

maxlength The maximum length of the input allowed in a field.

readonly Indicates that an input component is read-only.

rows Number of rows in a TEXTAREA.

shape
The shape of an image map region. Acceptable values are default, circle, poly, and
rect.

size The size of an input field, for display purposes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attribute Description

style Inline CSS stylesheet information for the current element.

tabindex
The tab index for this element. Used by the browser to determine the order in which
fields receive focus when the user presses the Tab key.

target The name of the target frame for a link or a form submission.

title
A description of the element's content, generally used to create more easily accessible
applications.

width The width of this element.

The DHTML pass-through attributes are listed in Table B-21. Like the HTML 4.0 attributes, DHTML
attributes are only supported for HTML components that originally supported the attribute.

Table B-21. DHTML pass-through attributes

Attribute Description

onblur Script invoked when an element loses focus

onchange Script invoked when an element's value changes

onclick Script invoked when an element is clicked on

ondblclick Script invoked when an element is double-clicked on

onfocus Script invoked when an element gains focus

onkeydown Script invoked when a key is pressed while the element has focus

onkeypress Script invoked when a key is pressed and released while the element has focus

onkeyup Script invoked when a key is released

onmousedown
Script invoked when the mouse is clicked while the pointer is positioned over the
element

onmousemove Script invoked when the mouse moves over the element

onmouseout Script invoked when the mouse moves out of the element

style Inline CSS stylesheet information for the current element.

tabindex
The tab index for this element. Used by the browser to determine the order in which
fields receive focus when the user presses the Tab key.

target The name of the target frame for a link or a form submission.

title
A description of the element's content, generally used to create more easily accessible
applications.

width The width of this element.

The DHTML pass-through attributes are listed in Table B-21. Like the HTML 4.0 attributes, DHTML
attributes are only supported for HTML components that originally supported the attribute.

Table B-21. DHTML pass-through attributes

Attribute Description

onblur Script invoked when an element loses focus

onchange Script invoked when an element's value changes

onclick Script invoked when an element is clicked on

ondblclick Script invoked when an element is double-clicked on

onfocus Script invoked when an element gains focus

onkeydown Script invoked when a key is pressed while the element has focus

onkeypress Script invoked when a key is pressed and released while the element has focus

onkeyup Script invoked when a key is released

onmousedown
Script invoked when the mouse is clicked while the pointer is positioned over the
element

onmousemove Script invoked when the mouse moves over the element

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attribute Description

onmouseout Script invoked when the mouse moves out of the element

onmouseover Script invoked when the mouse moves over the element

onreset Script invoked when the form is reset

onselect Script involved when text within the element is selected

onsubmit Script invoked when the form is submitted

B.2.2. <h:column>

Represents a column of data within a multicolumn user interface component. See <h:dataTable> for
more information.

B.2.3. <h:commandButton>

Renders an HTML form submission button element and wires the button to an outcome.

Table B-22. Attributes for <h:commandButton>

Attribute Description

action

JSF EL expression specifying the navigation outcome from clicking this button. The
outcome may be hardcoded or produced by a backing bean method that returns a
string.

actionListener
Method binding for an action listener for this button. Must map to a valid listener
method.

image
Absolute or relative URL pointing to an image file. If specified, the type attribute
will be ignored and the button will be generated as type image.

immediate

Indicates that the results of pressing this button should be applied to the
application immediately (during the first phase of JSF request processing, before
validation) rather than during the Invoke Application phase.

type The type of button. Valid values are submit and reset.

value The text displayed on the button.

onmouseout Script invoked when the mouse moves out of the element

onmouseover Script invoked when the mouse moves over the element

onreset Script invoked when the form is reset

onselect Script involved when text within the element is selected

onsubmit Script invoked when the form is submitted

B.2.2. <h:column>

Represents a column of data within a multicolumn user interface component. See <h:dataTable> for
more information.

B.2.3. <h:commandButton>

Renders an HTML form submission button element and wires the button to an outcome.

Table B-22. Attributes for <h:commandButton>

Attribute Description

action

JSF EL expression specifying the navigation outcome from clicking this button. The
outcome may be hardcoded or produced by a backing bean method that returns a
string.

actionListener
Method binding for an action listener for this button. Must map to a valid listener
method.

image
Absolute or relative URL pointing to an image file. If specified, the type attribute
will be ignored and the button will be generated as type image.

immediate

Indicates that the results of pressing this button should be applied to the
application immediately (during the first phase of JSF request processing, before
validation) rather than during the Invoke Application phase.

type The type of button. Valid values are submit and reset.

value The text displayed on the button.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

B.2.4. <h:commandLink>

Renders an HTML link, which, when clicked, will submit the current view for processing by the JSF
engine.

Table B-23. Attributes for <h:commandLink>

Attribute Description

action

JSF EL expression specifying the navigation outcome from clicking the link. The
outcome may be hardcoded or produced by a backing bean method that returns a
string.

actionListener
Method binding for an action listener for this button. Must map to a valid listener
method.

charset The character encoding of the resource at the other end of the link.

immediate

Indicates that the results of clicking the link should be applied to the application
immediately (during the first phase of JSF request processing, before validation)
rather than during the Invoke Application phase.

type The content type associate with the link (HTML pass-through).

value The link text.

B.2.5. <h:dataTable>

Renders an HTML table, iterating through a set of JavaBeans and processing the body content for
each bean. This tag also supports two facets, header and footer, for creating table headers and
footers.

Table B-24. Attributes for <h:dataTable >

Attribute Description

first Index of the first row of data to display. Defaults to 0, which is the first row.

rows Number of rows to display. If omitted or set to 0, all rows will be displayed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attribute Description

value

Valid values for this attribute are an array, a collection, a
javax.faces.model.DataModel, a java.sql.ResultSet, a
javax.servlet.jsp.jstl.sql.ResultSet, or a javax.sql.RowSet.

var
The name of a request-scoped variable to which each object in the underlying data
model will be assigned.

columnClasses

A comma-separated list of CSS classes to be applied, in order, to the columns in
the table. Multiple classes may be applied to a single column by separating them by
spaces within the comma-separated list. If there are more columns than CSS
classes, the extra columns will not have stylesheet information.

footerClass CSS class to apply to footer elements.

headerClass CSS class to apply to header elements.

rowClasses

Comma-separated list of CSS classes to be applied in sequence to the rows within
the table. If there are more rows than CSS classes, the sequence will repeat until
the table is complete.

width Width of the table.

B.2.6. <h:form>

Root element for an HTML form. Accepts attributes for all standard HTML form tag elements.

Table B-25. Attributes for <h:form>

Attribute Description

enctype
The content type used to submit the form. The default is application/x-www-form-
urlencoded.

B.2.7. <h:graphicImage>

Renders an HTML tag.

Table B-26. Additional attributes for <h:graphicImage>

value

Valid values for this attribute are an array, a collection, a
javax.faces.model.DataModel, a java.sql.ResultSet, a
javax.servlet.jsp.jstl.sql.ResultSet, or a javax.sql.RowSet.

var
The name of a request-scoped variable to which each object in the underlying data
model will be assigned.

columnClasses

A comma-separated list of CSS classes to be applied, in order, to the columns in
the table. Multiple classes may be applied to a single column by separating them by
spaces within the comma-separated list. If there are more columns than CSS
classes, the extra columns will not have stylesheet information.

footerClass CSS class to apply to footer elements.

headerClass CSS class to apply to header elements.

rowClasses

Comma-separated list of CSS classes to be applied in sequence to the rows within
the table. If there are more rows than CSS classes, the sequence will repeat until
the table is complete.

width Width of the table.

B.2.6. <h:form>

Root element for an HTML form. Accepts attributes for all standard HTML form tag elements.

Table B-25. Attributes for <h:form>

Attribute Description

enctype
The content type used to submit the form. The default is application/x-www-form-
urlencoded.

B.2.7. <h:graphicImage>

Renders an HTML tag.

Table B-26. Additional attributes for <h:graphicImage>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attribute Description

ismap Indicates that this image is associated with a server-side image map

usemap The name of a client-side image map definition associated with this image

value The path to the image

B.2.8. <h:inputHidden>

Renders a hidden form field. Used primarily when using JSF to generate forms that will be submitted
to non-JSF destinations.

Table B-27. Attributes for <h:inputHidden>

Attribute Description

value The value for the field, if no binding is used

B.2.9. <h:inputSecret>

Renders an HTML password field. Supports pass-through attributes for the <input> HTML tag.

B.2.10. <h:inputText>

Renders an HTML text input field. Supports pass-through attributes for the <input> HTML tag.

B.2.11. <h:inputTextarea>

Renders an HTML text area input field. The content of the text area is specified by the value or
binding attributes, not, as in the HTML <textarea> tag, by the tag contents.

Table B-28. Attributes for <h:inputTextarea>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attribute Description

cols The number of columns in this text area

rows The number of rows in this text area

title Title of this text area, used for accessible browsing

value JSF EL expression evaluating to the value of the text area, if no binding is used

B.2.12. <h:message>

Displays messages, such as validation errors, associated with a particular component. Specifically,
the tag will display a single message associated with a particular component.

The various style and class attributes of this tag allow you to specify a CSS class for particular
message types or to directly define the style to be used.

Table B-29. Attributes for <h:message>

Attribute Description

for Specifies the ID of the component to display a message for. Required.

showDetail Indicates whether the message detail will be displayed. Default is true.

showSummary Indicates whether the message summary will be displayed. Default is false.

errorClass CSS style class for messages with severity level ERROR.

errorStyle CSS style for messages with severity level ERROR.

fatalClass CSS style class for messages with severity level FATAL.

fatalStyle CSS style for messages with severity level FATAL.

infoClass CSS style class for messages with severity level INFO.

infoStyle CSS style for messages with severity level INFO.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attribute Description

warnClass CSS style class for messages with severity level WARN.

warnStyle CSS style for messages with severity level WARN.

B.2.13. <h:messages>

Displays an HTML table or list containing all of the messages for the current view. The standard style
and styleClass attributes should be used to provide formatting.

The defaults for the showDetail and showSummary attributes are the reverse of the defaults for the
<h:message> tag.

Table B-30. Attributes for <h:messages>

Attribute Description

globalOnly
Indicates that only global messages (not associated with a particular component) are
to be displayed. Default is false.

layout
Format to use when displaying the list of messages. Options are "list" (the default)
and "table".

showDetail Indicates whether the message detail will be displayed. Default is false.

showSummary Indicates whether the message summary will be displayed. Default is TRue.

errorClass CSS style class for messages with severity level ERROR.

errorStyle CSS style for messages with severity level ERROR.

fatalClass CSS style class for messages with severity level FATAL.

fatalStyle CSS style for messages with severity level FATAL.

infoClass CSS style class for messages with severity level INFO.

infoStyle CSS style for messages with severity level INFO.

warnClass CSS style class for messages with severity level WARN.

warnClass CSS style class for messages with severity level WARN.

warnStyle CSS style for messages with severity level WARN.

B.2.13. <h:messages>

Displays an HTML table or list containing all of the messages for the current view. The standard style
and styleClass attributes should be used to provide formatting.

The defaults for the showDetail and showSummary attributes are the reverse of the defaults for the
<h:message> tag.

Table B-30. Attributes for <h:messages>

Attribute Description

globalOnly
Indicates that only global messages (not associated with a particular component) are
to be displayed. Default is false.

layout
Format to use when displaying the list of messages. Options are "list" (the default)
and "table".

showDetail Indicates whether the message detail will be displayed. Default is false.

showSummary Indicates whether the message summary will be displayed. Default is TRue.

errorClass CSS style class for messages with severity level ERROR.

errorStyle CSS style for messages with severity level ERROR.

fatalClass CSS style class for messages with severity level FATAL.

fatalStyle CSS style for messages with severity level FATAL.

infoClass CSS style class for messages with severity level INFO.

infoStyle CSS style for messages with severity level INFO.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attribute Description

warnClass CSS style class for messages with severity level WARN.

warnStyle CSS style for messages with severity level WARN.

B.2.14. <h:outputFormat>

Outputs formatted text output, following the rules for the java.text.MessageFormat class. To pass
parameters to the message formatter, embed one or more <f:param> tags in the body of the
<h:outputFormat> tag.

Table B-31. Attributes for <h:outputFormat>

Attribute Description

value The string to format

B.2.15. <h:outputLabel>

Generates an HTML <label> tag for a component.

Table B-32. Attributes for <h:outputLabel>

Attribute Description

for The ID of the component that this label references

B.2.16. <h:outputLink>

Generates an HTML link tag (<a>) around a specified piece of content. To display a link, the
<h:outputLink> tag must surround another JSF tag, such as <h:outputText> , <h:graphicImage>, or
<f:verbatim>, that provides the link text or image.

Table B-33. Additional attributes for <h:outputLink>

warnClass CSS style class for messages with severity level WARN.

warnStyle CSS style for messages with severity level WARN.

B.2.14. <h:outputFormat>

Outputs formatted text output, following the rules for the java.text.MessageFormat class. To pass
parameters to the message formatter, embed one or more <f:param> tags in the body of the
<h:outputFormat> tag.

Table B-31. Attributes for <h:outputFormat>

Attribute Description

value The string to format

B.2.15. <h:outputLabel>

Generates an HTML <label> tag for a component.

Table B-32. Attributes for <h:outputLabel>

Attribute Description

for The ID of the component that this label references

B.2.16. <h:outputLink>

Generates an HTML link tag (<a>) around a specified piece of content. To display a link, the
<h:outputLink> tag must surround another JSF tag, such as <h:outputText> , <h:graphicImage>, or
<f:verbatim>, that provides the link text or image.

Table B-33. Additional attributes for <h:outputLink>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attribute Description

title An optional title for this link

value The destination of this link

B.2.17. <h:outputText>

Outputs a bound value or a specified value.

B.2.18. <h:panelGrid>

Generates an HTML table. Each JSF user interface component within the body of the tag will be used
as a cell value. To combine multiple JSF elements into a single cell, enclose them in an
<h:panelGroup> component.

This tag supports a header and footer facet (see <f:facet>) for rendering table headers and footers.

Table B-34. Attributes for <h:panelGrid>

Attribute Description

bgcolor Background color for this table, as a color constant or RGB value.

border Width of the border around this table, in pixels. The default is 0.

cellpadding Specifies the amount of space between the border of a cell and its contents.

cellspacing
Specifies the spacing between cells within the table and between cells and the edge
of the table.

columnClasses

A comma-separated list of CSS classes to be applied, in order, to the columns in
the table. Multiple classes may be applied to a single column by separating them by
spaces within the comma-separated list. If there are more columns than CSS
classes, the extra columns will not have stylesheet information.

columns
Specifies the number of columns in this table. The number of rows is determined
automatically.

footerClass CSS class to apply to any footer generated for this table.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attribute Description

frame

Indicates which sides of the table will be visible. Values are none (default), above,
below, hsides (top and bottom), vsides (right and left), lhs (left side), rhs (right
side), box (all four sides, with a line), and border (all four sides, width specified by
the border attribute).

headerClass CSS class to apply to any header generated for this table.

rowClasses

Comma-separated list of CSS classes to be applied in sequence to the rows within
the table. If there are more rows than CSS classes, the sequence will repeat until
the table is complete.

rules

Indicates which rules will be rendered between cells in the table. Values are none
(the default), groups (between groups of rows only), rows (between individual
rows), cols (between columns), and all (between all rows and columns).

summary Summary of the contents of this table.

B.2.19. <h:panelGroup>

Groups several JSF components (contained in the tag body) into a single unit. Panel groups are used
to control component rendering en masse and to group components for use within the <h:panelGrid>
tag.

B.2.20. <h:selectBooleanCheckbox>

Renders an HTML checkbox, bound to a Boolean property on a backing bean or from a Boolean value
attribute.

B.2.21. <h:selectManyCheckbox>

Renders a set of checkboxes. The binding for the component must be an array or a collection capable
of holding the selected values. The content of the set of checkboxes must be provided via an
<f:selectItems> tag or a set of one or more <f:selectItem> tags embedded within the body of the
<h:selectManyCheckbox> tag.

Table B-35. Attributes for <h:selectManyCheckbox>

Attribute Description

frame

Indicates which sides of the table will be visible. Values are none (default), above,
below, hsides (top and bottom), vsides (right and left), lhs (left side), rhs (right
side), box (all four sides, with a line), and border (all four sides, width specified by
the border attribute).

headerClass CSS class to apply to any header generated for this table.

rowClasses

Comma-separated list of CSS classes to be applied in sequence to the rows within
the table. If there are more rows than CSS classes, the sequence will repeat until
the table is complete.

rules

Indicates which rules will be rendered between cells in the table. Values are none
(the default), groups (between groups of rows only), rows (between individual
rows), cols (between columns), and all (between all rows and columns).

summary Summary of the contents of this table.

B.2.19. <h:panelGroup>

Groups several JSF components (contained in the tag body) into a single unit. Panel groups are used
to control component rendering en masse and to group components for use within the <h:panelGrid>
tag.

B.2.20. <h:selectBooleanCheckbox>

Renders an HTML checkbox, bound to a Boolean property on a backing bean or from a Boolean value
attribute.

B.2.21. <h:selectManyCheckbox>

Renders a set of checkboxes. The binding for the component must be an array or a collection capable
of holding the selected values. The content of the set of checkboxes must be provided via an
<f:selectItems> tag or a set of one or more <f:selectItem> tags embedded within the body of the
<h:selectManyCheckbox> tag.

Table B-35. Attributes for <h:selectManyCheckbox>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attribute Description

layout
Specifies the order in which the checkboxes should be laid out. Options are
lineDirection (the default) and pageDirection (a vertical arrangement).

B.2.22. <h:selectManyListbox>

Renders a listbox using the HTML <select> tag. The binding for the component must be an array or a
collection capable of holding the selected values. The contents of the listbox must be provided via an
<f:selectItems> tag or a set of one or more <f:selectItem> tags embedded within the body of the
<h:selectManyListbox> tag.

Table B-36. Attributes for <h:selectManyListbox>

Attribute Description

size Indicates the number of items to display on screen at once

B.2.23. <h:selectManyMenu>

Generates a multiselection menu. For HTML rendering, this is equivalent to a <select> tag with the
multiple attribute set to true and the size attribute set to 1. We're not saying that this is an entirely
useless tag for HTML user interfaces, but let's just say we haven't found a use for it either.

Like <h:selectManyListbox>, the menu contents must be provided via an <f:selectItems> tag or a
set of <f:selectItem> tags.

B.2.24. <h:selectOneListbox>

Renders a listbox using the HTML <select> tag. The binding for the component must be an array or a
collection capable of holding the selected values. The contents of the listbox must be provided via an
<f:selectItems> tag or a set of one or more <f:selectItem> tags embedded within the body of the
<h:selectManyListbox> tag.

The listbox rendered by the tag allows only a single item to be selected at a time.

Table B-37. Attribute for <h:selectOneListbox>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attribute Description

size Indicates the number of items to display on screen at once

B.2.25. <h:selectOneMenu>

For HTML, this tag is about as useful as the <h:selectManyMenu> tag, which isn't particularly useful.
Renders a menu item, allowing a single selection. Slightly more useful for WML or other non-HTML
output formats that support a native menu component.

B.2.26. <h:selectOneRadio>

Generates a set of radio buttons using a set of selection items.

Table B-38. Additional attributes for <h:selectOneRadio>

Attribute Description

layout
Specifies the order in which the radio buttons should be laid out. Options are
lineDirection (the default) and pageDirection (a vertical arrangement).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Appendix C. Enterprise JavaBeans Query
Language Syntax
EJB Query Language (EJB QL) was introduced in the EJB 2.0 specification and enhanced in EJB 2.1
as a scheme for specifying the logic for finder and select methods on EJBs using container-managed
persistence (CMP). As described in detail in Chapter 6, the CMP model in EJB 2.1 includes an abstract
schema defined around your entity beans and their relationships, where beans become abstract
tables, the CMP fields on the beans become abstract columns of sorts, and the relationships between
beans act as abstract foreign key constraints. EJB QL allows you to specify queries based on this
abstract schema, to be used by the container in the implementation of finder and select methods for
your entity beans.

EJB QL is similar in syntax (naturally) to SQL, but is much simpler, since EJB QL needs to deal only
with selecting beans and CMP fields from the abstract schema. EJB QL can't be used to update or
delete entity beans (the bean client interfaces are used for that), and it can't be used to adjust the
structure of the abstract schema. "Schema changes" are accomplished using the ejb-jar.xml
deployment descriptor: new entity beans are defined, or unneeded ones are removed, and the
deployment descriptor is adjusted to include/exclude these beans and define relationships between
them. Full details on EJB deployment descriptors can be found in Appendix A, and some examples of
their use are shown in Chapter 6.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

C.1. Basic Structure of EJB QL Queries

EJB QL queries contain the following four clauses:

SELECT clause (required)

Indicates what beans or CMP fields are being returned

FROM clause (required)

Indicates what subset of the abstract schema is being queried

WHERE clause (optional)

Indicates optional conditional logic to use in selecting the results

ORDER BY clause (optional) (added in EJB 2.1)

Indicates how the results should be sorted when returned

So an EJB QL query takes the following high-level form:

SELECT <select clause> FROM <from clause>
 [WHERE <where clause>] [ORDER BY <sort clause>]

Queries are declared in an EJB deployment descriptor using the following format:

...
<entity>
 ...
 <query>
 ...
 <ejb-ql>
 <[!CDATA[SELECT p FROM Person p WHERE p.name IS NOT NULL
 ORDER BY p.lastName, p.firstName]]>
 </ejb-ql>
 ...
 </query>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

...
</entity>
...

The complete syntax for EJB deployment descriptors can be found in Appendix A.

In a query, the FROM clause specifies the domain of the abstract schema that is being queried. This is
done by declaring variables that are bound to different elements of the abstract schema. The SELECT
clause is used to specify what elements of the schema you want returned as the result set, as a
subset of the domain defined by the FROM clause. The optional WHERE clause is used to specify the
conditions used to match the elements to return, and the optional ORDER BY clause is used to order
the result set by one or more data fields contained in the results.

Since the FROM clause defines the variables involved in the query, we'll start there, then describe the
SELECT clause. After these required clauses, we discuss the optional WHERE clause and its conditional
expressions and the optional ORDER BY clause for sorting the returned results.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

C.2. FROM Clause

The FROM clause in an EJB QL query declares the subset of elements from the abstract schema that is
the target of the query. Any elements referenced in the conditional expressions in the WHERE clause as
well as the element that is specified as the return type in the SELECT clause must be included in the
FROM clause declarations.

The FROM clause is made up of a list of variable declarations. Each variable is declared with a type and
a unique variable name. Variable names can be any valid Java identifier. The types of the variables
are taken from the abstract schema elements defined by the entity EJBs. These variables are
declared as either range variables or collection member variables.

C.2.1. Range Variables

Range variables are query variables that take the type of one of the entity EJBs in your abstract
schema. They are called range variables because their actual value can range over any of the actual
entities present in the persistent store at the time that the query is executed (limited by the
conditions in the WHERE clause, if present). For example, we used the following EJB QL query for one
of the finder methods on our Profile EJB in Chapter 6:

SELECT OBJECT(p) FROM ProfileBean p WHERE p.entriesBytes IS NULL

In this query, the FROM clause declares a single range variable, p, and it's declared to range over the
EJB type ProfileBean. ProfileBean is the abstract schema type that we declared for our Profile EJB.
This is analogous to declaring a query variable in SQL that ranges over the rows in a particular table.
In the case of EJB QL, rather than being satisfied by any of the rows in a table, the variable can take
the value of any instance of the EJB present in the persistent store.

You can also optionally use the AS operator when declaring range variables:

SELECT OBJECT(p) FROM ProfileBean AS p WHERE p.entriesBytes IS NULL

The AS operator is simply an optional syntactic element and doesn't have any affect on the query
itself.

You can declare multiple range variables of the same type in the FROM clause, of course:

SELECT OBJECT(p1) FROM ProfileBean p1, ProfileBean p2 WHERE ...

http://lib.ommolketab.ir
http://lib.ommolketab.ir

C.2.2. Collection Member Variables

A collection member variable is declared to range over the values obtained from an entity bean's
container-managed relationship fields (CMR fields). These variables are declared using a path
expression (prefixed by the IN operator) that specifies the particular CMR field on the bean. For
example, suppose we extend our Profile EJB example to include a Person entity bean that contains a
one-to-many CMR field that refers to all the Profiles owned by the Person. We made a similar
extension in Chapter 6, but in that case, we defined the relationship as one-to-one. Here, to
demonstrate the collection member variable, we assume it's one-to-many. We can declare a
collection member variable that ranges over all Profiles owned by a Person with an EJB QL query,
such as:

SELECT DISTINCT OBJECT(prof) FROM Person p, IN(p.profiles) prof WHERE ...

In the FROM clause, we declare a range variable p that ranges over all Person beans, then declare a
collection member variable prof that ranges over the members of the profiles cmr-field on the
matching Person beans. This type of the collection member variable is the abstract schema type of
the collection members. In this case, the profiles CMR field contains ProfileBean EJBs, so that is
the type of the prof variable.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

C.3. SELECT Clause

As with standard SQL queries, the SELECT clause in EJB QL can specify what you want returned from
the persistent store. The SELECT clause takes the form:

SELECT [DISTINCT] [<schema variable> | <aggregation expression>]

The clause contains a single variable reference to indicate the type of result returned by the query, or
an aggregation function can be used to calculate some formula on the results. The optional DISTINCT
operator specifies that the return results should be unique. The variable reference can either be to a
specific variable declared in the FROM clause, or it can be a path expression that refers to a single-
valued CMR field on an abstract schema type. In our previous example, we used a specific variable
reference:

SELECT OBJECT(p) FROM ProfileBean AS p WHERE p.entriesBytes IS NULL

This SELECT clause specifies OBJECT(p) as the return value of the query. If a single query variable is
being used in the SELECT clause, then it has to be qualified with the OBJECT operator. The p variable is
declared in the FROM clause as a range variable with type ProfileBean, so the query results are one or
more ProfileBeans that match the conditions in the WHERE clause. In our other query example:

SELECT DISTINCT OBJECT(prof) FROM Person p, IN(p.profiles) prof WHERE ...

the SELECT clause specifies OBJECT(prof) as the return value of the query. The prof variable is
declared in the FROM clause as a collection member variable that refers to the profiles CMR field in
the Person bean. This CMR field contains EJBs with the abstract schema type of ProfileBean, so the
query results again are ProfileBean objects.

You can also use path expressions to specify the return type of the query. Suppose, for example, that
our Person abstract schema type has a one-to-one relationship named employer with an
Organization bean that represents the organization that employs the person. We can use a path
expression in our SELECT clause to have the query return the Organizations of the selected Person
beans:

SELECT DISTINCT p.employer FROM Person p WHERE ...

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Note that the path expression has to be single-valued. If a CMR field is many-valued, then you need
to declare a collection member variable in the FROM clause and refer to that variable in the SELECT
clause. We did this in the previous example when we used the prof variable to refer to the
ProfileBeans associated with the Person beans selected by the query.

If the EJB QL query is for a finder method, then the type specified in the SELECT clause has to be the
abstract schema type of an EJB, since finder methods can only return EJB references. If the query is
for a select method, then the SELECT clause can also specify CMP fields on abstract schema types,
using a path expression. If, for example, our Person bean has a name CMP field, we could use the
following query for a select method on the Person bean:

SELECT p.name FROM Person p WHERE ...

In this case, the return type of the select method needs to match the type of the name CMP field.

C.3.1. Aggregation expressions

EJB 2.1 introduced several aggregation functions that can be used within the SELECT clause of
queries. The argument to these aggregation functions is a path expression or a variable reference.
The aggregation functions supported in EJB 2.1 are:

AVG

Calculate the average of the values of the argument. The argument data must be numeric.

COUNT

Return the number of results found in the argument expression.

MAX

Return the maximum value found in the argument expression. The argument data can be any
orderable types (numeric, string, character, date).

MIN

Return the minimum value found in the argument expression. The argument data can be any
orderable type (numeric, string, character, date).

SUM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Return the sum of the values in the aggregate expression. The argument data must be
numeric.

You can also optionally use the DISTINCT keyword before the argument expression in aggregation
functions. Any duplicate values are removed from the set before the function is applied to them. NULL
values are always removed from the data set before applying the aggregation function, regardless of
whether you use DISTINCT or not.

The following example returns the number of people whose first names are John:

SELECT COUNT(p) FROM Person p WHERE p.firstName = 'John'

This example returns the number of different first names contained in the Person data:

SELECT COUNT(DISTINCT p.firstName) FROM Person p

This example returns the average age of all people:

SELECT AVG(p.age) FROM Person p

This example returns (alphabetically) the last names of all the people in the database:

SELECT MAX(p.lastName) FROM Person p

C.3.2. DISTINCT Queries

The DISTINCT option is used in the SELECT clause to specify that any duplicate values in the result set
should be eliminated. It makes sense only when used in EJB QL queries for methods that return a
Collection of some kind. If a finder or select method returns a single value, then the result set needs
to be unique by definition. If a select method is declared as a java.util.Set, then the results set has
to be distinct, so the EJB container has to assume the DISTINCT keyword in these cases even if it's
not specified in the EJB QL for the method. For example, if we have a select method, such as the
following, defined in an EJB implementation class:

public abstract java.util.Set ejbSelectPreferredClients(...)
 throws FinderException;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

and we put this entry in our ejb-jar.xml deployment descriptor to specify the EJB QL for this method:

<ejb-ql>
 <?[CDATA[SELECT OBJECT(c) FROM Customers c WHERE c.preferred IS NOT NULL]]>
</ejb-ql>

the EJB container still executes the query as if the DISTINCT clause had been included in the EJB QL.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

C.4. WHERE Clause

The WHERE clause of an EJB QL query is used to specify conditional logic that is used to select a subset
of the beans references in the FROM clause. Any beans that you want to refer to in your conditional
query logic must be declared in the FROM clause of the query.

The syntax of the WHERE clause mirrors the syntax of SQL WHERE clauses. The WHERE clause is made up
of literals and variables composed into various conditional expressions. The variables used in a WHERE
clause can be query variables declared in the FROM clause, path expressions derived from the query
variables, or input parameters provided in the arguments to the corresponding finder or select
method. The conditional expressions in the WHERE clause can be composed using arithmetic operators,
comparison operators, or logical operators.

C.4.1. Literals

Literals are strings, numeric values, or Boolean values. String literals are enclosed in single quotes:

SELECT OBJECT(p) FROM ProfileBean p WHERE p.name = 'Fred'

If you want to include a single quote in a literal, use two single quotes:

SELECT OBJECT(p) FROM ProfileBean p WHERE p.name = 'Fred''s profile'

Numeric literals can be either exact integer values or approximate floating-point values. Integer
values are specified using a sequence of digits with no decimal point:

SELECT OBJECT(prof) FROM ProfileBean prof WHERE prof.id < 1000

Floating-point values are specified using either scientific notation or a numeric value with a decimal
point:

SELECT OBJECT(p) FROM Person p WHERE p.salary >
 +5e4 AND p.overhead < 1.32

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Floating-point values can be in the range supported by the Java double type.

Boolean literals are specified using true or false. These values are case-insensitive.

C.4.2. Variables

Variables used in expressions in a WHERE clause can be query variables declared in the FROM clause,
input parameter variables that refer to arguments to the finder or select method, or path expressions
based on query variables or input parameter variables.

C.4.2.1. Simple query variables

Query variables can be used directly in conditional expressions when it is necessary to directly
compare abstract schema types. This makes sense only in comparison expressions in which the
equality of two entity beans is being compared. For example:

SELECT OBJECT(p) FROM Person p1, Person p2, Organization o1, Organization
 o2 WHERE o1 = p1.employer AND o2 = p2.employer AND o1 = o2 AND ...

In this case we're comparing the two Organization beans for equality. Equality between entity beans
is based on the equality of their primary keys, (e.g., if the two primary keys are equal, then the two
entities are considered equal).

C.4.2.2. Input parameter variables

Input variables refer to the arguments of the query's finder or select method. They are specified
using a $ followed by the integer index (starting with 1) of the method argument. For example, if we
are defining a query for a finder method declared with the following signature:

abstract public Collection findEmployees(String companyName);

We can refer to the string argument in the query using an input parameter variable:

SELECT OBJECT(e) FROM Person e, Organization o
 WHERE o.name = $1 AND e.employer = o

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If the input variable is an entity bean object with an abstract schema type, you can also use the input
parameter variable in path expressions. For example, if we have a finder method on our Person bean:

abstract public Collection findCoWorkers(Person p);

a corresponding query might be:

SELECT OBJECT(w) FROM Person w, Organization o
 WHERE $1.employer = o AND w.employer = o

Input parameter variables can be used only in comparison expressions that use the basic comparison
operators and the MEMBER OF comparison operator, as described in "Comparison operators" later in
this appendix.

C.4.2.3. Path expression variables

Path expressions are specified using either query variables or input parameter variables. A path
expression is a variable followed by one or more dot-delimited CMP field or CMR field references. In
one of our earlier examples, we used a path expression to refer to the name CMP field on the
Organization bean:

SELECT OBJECT(e) FROM Person e, Organization o
 WHERE o.name = $1 AND e.employer = o

Here, the path expression o.name uses the query variable Organization o declared in the FROM clause
and then refers to the CMP field name on the variable.

References to cmr-fields on variables can be referenced further in multilevel path expressions. For
example, a simplified version of the previous query is:

SELECT OBJECT(e) FROM Person e WHERE p.employer.name = $1

Here, we're referencing the CMR field employer on the Person bean, then further referencing the CMP
field name on the resulting Organization. Referencing CMR fields in path expressions is possible only if
the relationship is navigable from the bean at the root of the reference. So in this case, we're
assuming that the employer CMR field is navigable from the Person bean, which allows us to reference
it as an Organization and then further reference the name CMP field on the Organization.

Path expressions can evaluate to either single values or collection values. If, for example, a CMR field

http://lib.ommolketab.ir
http://lib.ommolketab.ir

is one-to-many or many-to-many, a reference to it in a path expression is collection-valued. Path
expressions that are collection-valued can be used only in comparison expressions using the IS EMPTY
operator or the MEMBER OF operator (described in "Comparison operators" later in this appendix).

C.4.3. Functions

EJB QL also includes several built-in functions that can be applied to literals, variables, or values
derived from other expressions. They are listed in Table C-1.

Table C-1. EJB QL built-in functions

Function Description

CONCAT(<string1>,<string2>) Concatenates the two strings and returns a string value.

SUBSTRING(<string>,<start>,

<length>)

Extracts the specified substring from the first argument, and
returns a string value or null if the specified substring can't be
extracted (e.g., the start position is greater than the length of the
string). The <start> argument is indexed from 1.

LOCATE(<string1>,<string2>

[,<start>])

Finds the index of the location of <string1> in <string2>, optionally
starting at the specified location in <string2>. The return value is
an integer index, indexed from 1. If <string1> is not found in
<string2>, a value of 0 is returned.

LENGTH(<string val>) Returns the number of characters in the string value as an integer
value.

ABS(<numeric val>) Returns the absolute value of the given numeric value. The return
type is the same as the type of the numeric expression used as the
argument.

SQRT(<floating-point val>) Returns the square root of the given floating-point value as a
double.

C.4.4. Conditional Expressions

Conditional expressions are composed of a sequence of one or more other expressions, joined
together by logical AND or OR operators. A single expression is made up of literals and/or variables
joined by operators to result in a Boolean value. Conditional expressions follow the usual
evaluation/precedence rules: they are evaluated left to right, taking into account operator
precedence rules (as discussed next) and grouping of expressions using parentheses.

The operators available in EJB QL for creating conditional expressions fall into three categories:
logical operators , arithmetic operators , and comparison operators .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

C.4.4.1. Logical operators

The logical operators in EJB QL are NOT, AND, and OR, in precedence order, with the usual semantics:
NOT is the unary negation operator, AND is the binary intersection operator, and OR is the binary union
operator. These can be applied to any expressions that evaluate to a Boolean value.

C.4.4.2. Arithmetic operators

Arithmetic operators are applied to numeric variables and literals. They are listed in Table C-2.

Table C-2. Arithmetic operators

Operator Description

+<numeric expression> Unary positive operator. Specifies a positive literal value or a variable
with an unchanged sign.

-<numeric expression> Unary negation operator. Specifies a negative literal or a variable
whose sign is negated.

<numeric exp> * <numeric
exp>

Binary multiplication.

<numeric exp> / <numeric
exp>

Binary division.

<numeric exp> +
<numeric exp>

Binary addition.

<numeric exp> - <numeric
exp>

Binary subtraction.

C.4.4.3. Comparison operators

The comparison operators are used to perform various value and range comparisons on variables and
are listed in Table C-3. Some comparison operators can be applied only to variables of a certain
typethese restrictions are mentioned in the description where applicable.

Table C-3. Comparison operators

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Operators Description Examples

<exp> = <exp>

<exp> <> <exp>

Equality and inequality operators, respectively. The two
operands to these operators must be of compatible types:
two Strings, two entity beans with the same abstract
schema type, or two compatible numeric values.

...FROM Person p

WHERE p.age =
65

...FROM
Employee p

WHERE p.dept
<>

'Finance'

...FROM
Employee p

WHERE p.title =

'Director'

...FROM Person
p1,

Person p2
WHERE

p1 <> p2 AND...

...FROM
Organization a,

Person p,

IN(p.affiliations)
b

WHERE a = b...

<exp> > <exp>

<exp> >= <exp>

<exp> < <exp>

<exp> <= <exp>

Greater-than, greater-than-or-equal, less-than, less-than-
or-equal operators, respectively. These operators can be
applied only to numeric and String values, not to entity
beans.

...FROM Item b

WHERE b.size >
4

...FROM Item a,
Item b

WHERE b.name
>

a.name

...FROM Item b

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Operators Description Examples

WHERE b.size
<= 4

...FROM Item a,
Item b

WHERE b.name
>= a.name

<arith exp1>

[NOT] BETWEEN

<arith-exp2>

AND <arith-exp3>

Checks whether a given numeric value is between two
other numeric values. The NOT operator checks that the
first numeric value is not within the range. If any
arithmetic expression used in a BETWEEN operator is null,
the entire expression evaluates to NULL (boolean
"unknown").

...FROM Person p
WHERE

p.age BETWEEN
18

AND 65

...FROM Person
p, Rate r

WHERE p.salary

NOT BETWEEN
r.base

AND 1.05 *
r.base

<string-exp>

[NOT] IN (str-literal

[,str-literal]*)

Checks whether a given string value is contained (or not
contained) in a list of string literals. The string values are
matched exactly. If the string value to compare to the set
is null, the expression evaluates to NULL (boolean
"unknown").

...WHERE
p.name IN

('John','Mary')

...WHERE p.dept
NOT IN

('Finance',

'Human
Resource',

'Corporate')

<string-exp>

[NOT] LIKE
<pattern>[ESCAPE
<esc-char>]

Compares a string value to a pattern. The pattern consists
of a sequence of characters, where _ is a wildcard that
stands for any single character, and % stands for any
sequence of characters. If you want to use the literal _
and % characters in the pattern, escape them with a
character and specify the escape character with the
optional ESCAPE clause. If the string to compare is null,
the value of the LIKE expression is NULL (boolean
"unknown").

...WHERE o.title
LIKE

'%Professor%'

...WHERE
p.state_prov

NOT LIKE
'%Province'

WHERE b.size
<= 4

...FROM Item a,
Item b

WHERE b.name
>= a.name

<arith exp1>

[NOT] BETWEEN

<arith-exp2>

AND <arith-exp3>

Checks whether a given numeric value is between two
other numeric values. The NOT operator checks that the
first numeric value is not within the range. If any
arithmetic expression used in a BETWEEN operator is null,
the entire expression evaluates to NULL (boolean
"unknown").

...FROM Person p
WHERE

p.age BETWEEN
18

AND 65

...FROM Person
p, Rate r

WHERE p.salary

NOT BETWEEN
r.base

AND 1.05 *
r.base

<string-exp>

[NOT] IN (str-literal

[,str-literal]*)

Checks whether a given string value is contained (or not
contained) in a list of string literals. The string values are
matched exactly. If the string value to compare to the set
is null, the expression evaluates to NULL (boolean
"unknown").

...WHERE
p.name IN

('John','Mary')

...WHERE p.dept
NOT IN

('Finance',

'Human
Resource',

'Corporate')

<string-exp>

[NOT] LIKE
<pattern>[ESCAPE
<esc-char>]

Compares a string value to a pattern. The pattern consists
of a sequence of characters, where _ is a wildcard that
stands for any single character, and % stands for any
sequence of characters. If you want to use the literal _
and % characters in the pattern, escape them with a
character and specify the escape character with the
optional ESCAPE clause. If the string to compare is null,
the value of the LIKE expression is NULL (boolean
"unknown").

...WHERE o.title
LIKE

'%Professor%'

...WHERE
p.state_prov

NOT LIKE
'%Province'

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Operators Description Examples

...WHERE
p.version LIKE

'v_1._' ESCAPE
'\'

<exp> IS [NOT]
NULL

Checks if the value of the expression is null. The
expression must be single-valued and not evaluate to a
collection.

...FROM Person o

WHERE
o.employer

IS NOT NULL

...FROM
Publication p

WHERE p.title

IS NULL

<collection-exp> IS
[NOT] EMPTY

Checks whether a given collection-valued expression is
empty. The collection expression must evaluate to a
collection of entity beans.

...FROM Person p

WHERE p.profiles

IS NOT EMPTY

...FROM Order o

WHERE o.items

IS EMPTY

<exp> [NOT]
MEMBER OF
<collection-exp>

Checks whether a given single value is contained within a
given collection. The value being checked for membership
must be a singular value (not a collection), and the
collection expression must evaluate to a collection of
entity beans.

...FROM Person
p,

Organization o

WHERE p
MEMBER OF

o.employees

...FROM Item i,

Warehouse w
WHERE

i NOT MEMBER
OF

w.backorders

...WHERE
p.version LIKE

'v_1._' ESCAPE
'\'

<exp> IS [NOT]
NULL

Checks if the value of the expression is null. The
expression must be single-valued and not evaluate to a
collection.

...FROM Person o

WHERE
o.employer

IS NOT NULL

...FROM
Publication p

WHERE p.title

IS NULL

<collection-exp> IS
[NOT] EMPTY

Checks whether a given collection-valued expression is
empty. The collection expression must evaluate to a
collection of entity beans.

...FROM Person p

WHERE p.profiles

IS NOT EMPTY

...FROM Order o

WHERE o.items

IS EMPTY

<exp> [NOT]
MEMBER OF
<collection-exp>

Checks whether a given single value is contained within a
given collection. The value being checked for membership
must be a singular value (not a collection), and the
collection expression must evaluate to a collection of
entity beans.

...FROM Person
p,

Organization o

WHERE p
MEMBER OF

o.employees

...FROM Item i,

Warehouse w
WHERE

i NOT MEMBER
OF

w.backorders

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

C.5. ORDER BY Clause

EJB 2.1 introduced an ORDER BY clause, to mimic the functionality of the corresponding SQL clause.
With an ORDER BY clause, you can instruct the container to sort the results of the query before
returning them to the calling application. This can save programming time and potentially be more
efficient than doing the sort in the application code. Note the key word, "potentially." If the EJB
container is using an underlying relational engine to presort the results, then it's likely that this will
be much faster than sorting the data yourself in Java code. But there are no guarantees about the
expected performance of the container's sort algorithms, so using ORDER BY is not only a
convenience, but also a leap of faith.

Note that, if you use an ORDER BY clause in your EJB QL, then the SELECT clause must specify either a
single range variable (e.g., OBJECT(p)) or a simple path expression (e.g., p.firstName).

The ORDER BY clause has the following syntax:

ORDER BY <order item> [, <order item>]*

Each order item must be an orderable field of the entity specified in the SELECT clause. For example, if
we wanted to select all people with the first name Judy, and order them by their last names, then
we'd use a query such as:

SELECT OBJECT(p) FROM Person p WHERE p.firstName = 'Judy'
 ORDER BY p.lastName

If we wanted to select all people, and sort them by last name and then by first names, we would use
a query something like this:

SELECT OBJECT(p) FROM Person p
 ORDER BY p.lastName, p.firstName

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Appendix D. SQL Reference
There are dozens of different database management systems on the market today, from nearly as
many vendors. Developing applications that are more or less database-independent requires a
standardized interface to the underlying data. Since the early 1980s, this interface has been SQL, a
sophisticated database manipulation language.[1]

[1] The acronym expands out to either Structured Query Language (based on the original IBM acronym from the 1970s) or

Standard Query Language (which has been more popular in recent years). Perhaps because of this confusion, most people just

say "SQL," pronounced either "see-quell" or "ess-cue-ell."

Unlike Java, SQL is a declarative language. It allows users to specify particular actions on the
database and retrieve the results of those actions. It specifies a set of standardized data types and
standard error messages, but it lacks procedural constructs. There are no conditionals or loops
standard in SQL.

There are several versions of the SQL standard. SQL-86 and SQL-89 have been superceded by SQL-
92, which is supported by most database vendors, although there are a number of platform-specific
variations. Many databases also include additional data types, operators, and functions beyond those
specified in the SQL-92 standard. In addition, there are three levels of SQL-92 conformance: entry-
level, intermediate, and full. Many products support only the entry-level SQL-92 standard, leaving
out some advanced features. JDBC drivers are supposed to provide entry-level functionality and, for
the most part, they do.

This appendix presents a brief introduction to the structure of a relational database system and a
quick reference to the most commonly used SQL commands. The complete set of SQL commands is
simply too large to cover here; even a concise SQL reference can run to several hundred pages. We
have endeavored to provide the information that most client-side programmers need. For a complete
introduction to most aspects of SQL, we highly recommend SQL Clearly Explained by Jan Harrington
(AP Professional).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

D.1. Relational Databases

Data storage and retrieval are two of the biggest tasks facing most enterprise applications. There are
lots of ways to store data on a disk, but for large-scale applications, a relational database
management system (RDBMS) is far and away the most popular choice.

Data in an RDBMS is organized into tables, which contain rows and columns. You can think of an
individual table as a spreadsheet with a little more organization: column data types are fixed, and
there may be rules governing the formatting of each column. This alone is enough for a database
system (plain DBMS). A relational database system has one other key attribute: individual tables can
be related based on some common data. Figure D-1 shows three tables in a relational structure. The
CUSTOMERS table is related to the ORDERS table based on the CUSTOMER_ID field, and the ORDERS table is
related to the ITEMS table based on the ORDER_ID field. SQL provides a standardized means of
accessing the data in tables and working with the relationships between tables.

Figure D-1. Three related tables

The highest-level organizational concept in an RDBMS system is a cluster.[2] A cluster contains one
or more catalogs, which are usually the highest-level object a programmer ever has to deal with. A
catalog contains a group of schemas. A schema contains a group of tables and other objects and is
generally assigned to a particular application or user account. Generally, the database administrator
is responsible for dealing with clusters and catalogs. Most users work within a particular schema.

[2] The naming comes from the older SQL standards, where a cluster represented physical storage space. This is no longer the

case, but the name persists.

To reference a table within a particular schema, separate the schema name and the table name with

http://lib.ommolketab.ir
http://lib.ommolketab.ir

a dot:

schema_name.table_name

To reference a particular column within a particular schema:

schema_name.table_name.column_name

To set a particular schema as the default, use the SET SCHEMA SQL statement:

SET SCHEMA schema_name

When you log into a database, you are generally assigned a default schema. When accessing tables
within the default schema, you may omit the schema name.

When creating new objects, the names you assign to them must be unique within the schema. SQL-
92 allows names up to 128 characters, including letters, numbers, and the underscore (_)
character.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

D.2. Data Types

Each column in a table has a particular data type associated with it. SQL-92 defines a fairly broad set
of data types . Different RDBMS packages provide extensions to these basic types, for multimedia
data, Java objects, and so on. Oracle's NUMBER data type, for instance, allows database designers to
specify the exact precision of integer and floating-point data types. The basic SQL-92 types are listed
in Table D-1. The names in parentheses are SQL-92-specified alternates for the main type names.

Table D-1. SQL-92 data types

SQL data type Description

INTEGER (INT)
A signed integer value. The number of bits represented is
implementation-dependent.

SMALLINT
A smaller signed integer value, used when storage or memory is
at a premium. Generally 8 bits but implementation-dependent.

NUMERIC

A signed fixed-precision decimal. When creating a NUMERIC, you
must specify the total length of the number (including the decimal
point) and the number of decimal places. NUMERIC(8, 4) allows
three digits, a decimal point, and four more digits.

DECIMAL
Defined the same way as a NUMERIC but may store additional
precision (more decimal places).

REAL
A single-precision floating-point value. Range and accuracy are
implementation-dependent.

DOUBLE PRECISION (DOUBLE)
A double-precision floating-point value. Range and accuracy are
implementation-dependent, but are equal to or better than a REAL.

BIT
A fixed number (one or more) of bits. A length specifier (BIT(n)) is

optional. The default size is 1 bit.

BIT VARYING

Storage for up to n bits (BIT VARYING (n)). Many databases have

alternate implementations of this data type, such as Oracle's
VARBINARY.

DATE A date value (day, month, and year).

TIME A time value. Precision is implementation-dependent.

TIMESTAMP A date and time.

CHARACTER (CHAR)
A fixed-length character string. Specified as CHAR(n). Unused

characters are padded with blanks. The default size is 1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SQL data type Description

CHARACTER VARYING (VARCHAR)
A variable length string, up to size n. Specified as VARCHAR(n).

INTERVAL A date or time interval. Not directly supported by JDBC.

Note that the data types given here aren't the same as those in Table 8-1 in Chapter 8. When
mapping between SQL types and Java types, a JDBC driver matches the physical data type (either
SQL-92 or database-specific) and the closest Java type. For example, calling the getType() method
of ResultSet on a BIT VARYING field generally returns a Types.LONGVARBINARY value. This translation
allows most JDBC programs to switch between different databases without losing functionality. Also,
many databases implement additional types: the FLOAT type is so common that many people think it
is required by the specification.

CHARACTER VARYING (VARCHAR)
A variable length string, up to size n. Specified as VARCHAR(n).

INTERVAL A date or time interval. Not directly supported by JDBC.

Note that the data types given here aren't the same as those in Table 8-1 in Chapter 8. When
mapping between SQL types and Java types, a JDBC driver matches the physical data type (either
SQL-92 or database-specific) and the closest Java type. For example, calling the getType() method
of ResultSet on a BIT VARYING field generally returns a Types.LONGVARBINARY value. This translation
allows most JDBC programs to switch between different databases without losing functionality. Also,
many databases implement additional types: the FLOAT type is so common that many people think it
is required by the specification.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

D.3. Schema Manipulation Commands

SQL includes two broad classes of commands. The first class is schema manipulation commands ,
which allow the creation, modification, and deletion of high-level database objects such as tables.
This section describes these commands. We've provided a syntax summary for each command. In
case you aren't familiar with the style, items in square brackets are optional or not always required,
while items in curly braces are either always required or required within the context of some optional
item. A vertical bar (|) indicates a choice, while an ellipsis indicates that an entry may be repeated
any number of times. Items in uppercase constant width are part of the SQL statement, while items
in lowercase constant width italic represent names and values that you supply when using the

statement.

D.3.1. CREATE TABLE

As its name says, the CREATE TABLE command creates a table. Here's the syntax:

CREATE [[GLOBAL | LOCAL] TEMPORARY] TABLE table_name

 ({ column_name { data_type | domain_name } [column_size]

 [column_constraint...] ... }

 [DEFAULT default_value], ...

 [table_constraint], ...
 [ON COMMIT { DELETE | PRESERVE } ROWS])

Here's a simple example:

CREATE TABLE BOOKS
 (
 TITLE VARCHAR (25) PRIMARY KEY,
 AUTHOR VARCHAR(25) NOT NULL DEFAULT 'Unknown',
 EDITION INTEGER,
 PRICE NUMBER(6,2)
)

The PRIMARY KEY and NOT NULL identifiers are column constraints. The NOT NULL constraint prevents
any entry in a column from being set to null. Here, it's combined it with a default value. PRIMARY KEY
identifies the column that's used as the primary key (or main unique identifier) for the table. If a
table has a primary key column (it doesn't have to), there can be only one such column; no row has
a null value in the primary key column, and no two rows have the same primary key.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A table constraint affects every row in the table. UNIQUE is a common example:

CREATE TABLE BOOKS
 (
 TITLE VARCHAR (25),
 AUTHOR VARCHAR(25),
 EDITION INTEGER,
 PRICE NUMBER(6,2),
 UNIQUE
)

Used as a table constraint, UNIQUE indicates that each row in the table must have a unique
combination of values. You can also specify particular columns that must form a unique combination:

UNIQUE(TITLE, AUTHOR, EDITION)

This mandates only unique title/author/edition combinations. Note that UNIQUE can also be used as a
column constraint.

We can use PRIMARY KEY as a table constraint to specify more than one column as the primary key:

CREATE TABLE BOOKS
 (
 TITLE VARCHAR (25) NOT NULL,
 AUTHOR VARCHAR(25) NOT NULL,
 EDITION INTEGER NOT NULL,
 PRICE NUMBER(6,2),
 PRIMARY KEY (TITLE, AUTHOR, EDITION)
)

Since entry-level SQL-92 requires that primary keys remain not null, we use NOT NULL column
constraints on the primary key columns in this case.

D.3.2. ALTER TABLE

The ALTER TABLE command allows you to modify the structure of an existing table. Here's the syntax:

ALTER TABLE table_name

 { ADD [COLUMN] column_name definition }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 { ALTER [COLUMN] column_name definition

 { SET DEFAULT default_value } | { DROP DEFAULT } }
 { DROP [COLUMN] COLUMN_NAME [RESTRICT | CASCADE] }

 { ADD table_constraint_definition}

 { DROP constraint_name [RESTRICT | CASCADE] }

Note that the modifications you can make are somewhat limited. While you can add and remove
columns (subject to the requirements of any constraints that may have been placed on the table),
you can't reorder columns. To perform major changes, you generally need to create a new table and
move the existing data from the old table to the new table.

Here's a statement that adds two columns to a table:

ALTER TABLE BOOKS
 ADD PUBLISHED_DATE DATE,
 ADD PUBLISHER CHAR (30) NOT NULL

Note that the ability to specify multiple operations in an ALTER TABLE command is not part of the SQL
specification, although most databases support this functionality.

Here's how to change the type of a column:[3]

[3] If you look back at the syntax for ALTER TABLE, you'll see that the official syntax for this kind of operation is ALTER, although

most databases use MODIFY instead.

ALTER TABLE BOOKS
 MODIFY PUBLISHER VARCHAR (25)

When this statement runs, the database attempts to convert all existing data into the new format. If
this is impossible, the modification fails. In the previous example, if any record has a publisher entry
of more than 30 characters, the statement might fail (exact behavior depends on the
implementation). If you are converting from a character field to, say, an integer field, the whole
ALTER TABLE command might fail entirely. At the minimum, such a change requires that all entries
contain a valid string representation of an integer.

To allow null values in the PUBLISHER column, use MODIFY:

ALTER TABLE BOOKS
 MODIFY PUBLISHER NULL

To remove the PUBLISHER column entirely, use DROP:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ALTER TABLE BOOKS
 DROP PUBLISHER

The ALTER TABLE command is not required for entry-level SQL-92 conformance. Due to its extreme
usefulness, however, it is supported by most DBMS packages, although it often varies from the
standard. More esoteric features, such as the RENAME command, aren't supported by most packages.
In general, it is not safe to count on anything beyond the basic ADD, DROP, and MODIFY (ALTER)
commands.

D.3.3. DROP

The DROP command allows you to permanently delete an object within the database. For example, to
drop the BOOKS table, execute this statement:

DROP TABLE BOOKS

DROP also can delete other database objects, such as indexes, views, and domains:

DROP INDEX index_name

DROP VIEW view_name

DROP DOMAIN domain_name

Once something has been dropped, it is usually gone for goodcertainly once the current transaction
has been committed, but often before.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

D.4. Data Manipulation Commands

Empty tables aren't very useful, and, even once they've been populated with data, we need some
way of getting that data back out. The SQL data manipulation commands allow you to read data from
a table and to create, update, and remove existing data.

D.4.1. SELECT

The SELECT statement is the most important statement in SQL and also the most complex. It allows
you to retrieve data from a table or a set of tables. Here's the syntax:

SELECT [DISTINCT]

 { summary_function, ... }

 | { data_manipulation_expression, ... }

 | { column_name, ... }
FROM

 { { table_name [AS correlation_name] }

 | { subquery [AS correlation_name] }

 | joined_tables}

[WHERE predicate]

[GROUP BY column_name,... [HAVING group_selection_predicate]]
[{ UNION | INTERSECT | EXCEPT } [ALL]

 [CORRESPONDING [BY (column_name, ...]]

 select_statement| { TABLE table_name}

 | table_value_constructor]

[ORDER BY {{output_column [ASC | DESC]}, ...}

 | {{positive_integer [ASC | DESC]}, ...}]

The simplest possible SELECT, which displays all columns of all rows of a single table, looks like this:

SELECT * FROM BOOKS

If this statement is executed in a command-line SQL interpreter, the output might look like this:

TITLE | AUTHOR | EDITION | PRICE
---------------------+------------------+---------+-------

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Me | Garrison Keillor | 1 | 24.99
Bleak House | Charles Dickens | 57 | 8.99
A Tale Of Two Cities | Charles Dickens | 312 | 4.99

To sort the output by title, we can add an ORDER BY clause to the statement:

SELECT * FROM BOOKS ORDER BY TITLE

Now the output is:

TITLE | AUTHOR | EDITION | PRICE
---------------------+------------------+---------+-------
A Tale Of Two Cities | Charles Dickens | 312 | 4.99
Bleak House | Charles Dickens | 57 | 8.99
Me | Garrison Keillor | 1 | 24.99

To select just the TITLE and AUTHOR columns:

SELECT TITLE, AUTHOR FROM BOOKS

To select a subset of records, use the WHERE clause:

SELECT * FROM BOOKS WHERE PRICE < 10.0

This returns the Charles Dickens books, but not the Garrison Keillor book. You can have multiple
criteria:

SELECT * FROM BOOKS WHERE PRICE < 10.0 OR EDITION = 1

This returns all three books. If we had specified a price less than 10 and an edition equal to 1, we
wouldn't have received any records back. The various predicates you can use are listed in Table D-2.
Note that not all of the more esoteric ones (such as LIKE) are supported by all databases.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table D-2. SQL predicates

Operator Meaning

= Equals

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

!= or < > Not equal to (some implementations may support only one)

LIKE Wildcard match

IS NULL Checks for a null value

IN Checks to see if a value is contained within a set

BETWEEN Checks to see if a date value is between two other date values

The final four predicates in the table can be used with the NOT modifier (e.g., NOT LIKE, IS NOT NULL,
etc.).

D.4.1.1. String comparisons

The = operator can generally be used for exact string comparisons . The LIKE operator allows
wildcard searches using two wildcard characters: % to match any number of characters, and _ to
match, at most, one character. Here's a query that selects all records that have a LAST_NAME that
contains the letters "for":

SELECT LAST_NAME FROM CUSTOMERS WHERE LAST_NAME LIKE '%for%'

This matches last names like Buford, Crawford, and Trefor, but may not match Fordham, since most
databases implement LIKE in a case-sensitive manner (Microsoft Access is a notable exception to this
rule). Case-insensitive searches generally require a single-case version of the column or the use of a
case-adjusting function (we'll discuss functions later in this appendix).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

D.4.1.2. Subqueries and joins

The IN predicate allows you to check whether a value appears in another set of values. The simplest
way to use this feature is in a SQL statement like this:

SELECT * FROM BOOKS WHERE PRICE IN (5.95, 4.95, 7.95)

This is simply another form for:

SELECT * FROM BOOKS WHERE PRICE = 5.95 OR PRICE = 4.95 OR PRICE = 7.95

But we can do something more interesting with IN. Let's assume that we have a table, called PRICES,
that holds all the prices we want to search on. In this case, we can generate the set of values using
another query, as follows:

SELECT * FROM BOOKS WHERE PRICE IN
 SELECT PRICE FROM PRICES

Note that we didn't put parentheses around the second SELECT statement; use parentheses only
when you are specifying the entire list manually.

Subqueries like this are useful, but they still restrict the output columns to those of a single table.

Rather than using subqueries , two tables are normally connected via a join. A join allows a query to
include references to multiple tables and to restrict the output based on the relations between those
tables. The basic join is an equi-join (or inner join): data in two tables is linked based on a shared
value. An order-tracking database might include a CUSTOMERS table and an ORDERS table. The
CUSTOMERS table has a customer identifier (CUSTOMER_ID) as its primary key. The ORDERS table also has
a CUSTOMER_ID column, although not as a primary key, since there may be more than one order per
customer (see Figure D-1 earlier in this appendix for a graphical representation of these tables).
Here's the SQL to combine the two tables based on the CUSTOMER_ID column:

SELECT * FROM CUSTOMERS, ORDERS WHERE ORDERS.CUSTOMER_ID =
 CUSTOMERS.CUSTOMER_ID

Since it's an equi-join, it works just as well the other way around:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SELECT * FROM CUSTOMERS, ORDERS WHERE CUSTOMERS.CUSTOMER_ID =
 ORDERS.CUSTOMER_ID

In SQL-92, a JOIN operator performs the same operation with a slightly different syntax:[4]

[4] Note that some databases allow you to use JOIN without the ON clause. In this case, the join operates on columns that have

the same name.

SELECT CUSTOMERS.CUSTOMER_ID, CUSTOMERS.NAME, ORDERS.ORDER_ID, ORDERS.TOTAL
 FROM CUSTOMERS INNER JOIN ORDERS ON CUSTOMERS.CUSTOMER_ID =
 ORDERS.CUSTOMER_ID

This example indicates the specific columns to return. Using the data shown in Figure D-1, the output
of this query might look like this:

CUSTOMER_ID | NAME | ORDER_ID | TOTAL
------------+------------+----------+--------
 1 | Bob Copier | 4 | 72.19
 1 | Bob Copier | 6 | 21.07

Note that some databases require you to use INNER JOIN instead of JOIN, while others allow just JOIN
because inner joins are the default join.

To join on more than one table, use multiple JOIN statements. Here we add an ITEMS table that
includes the ORDER_ID from the ORDERS table:

SELECT * FROM ITEMS JOIN ORDERS JOIN CUSTOMERS

This query joins the CUSTOMERS and ORDERS tables based on CUSTOMER_ID, and the ORDERS and ITEMS
tables based on ORDER_ID. The join is performed from left to right, so this three-table join goes from
the largest table to the smallest table.

As useful as the JOIN keyword is, it is not required for entry-level SQL-92 implementations, so here's
a three-column join using the syntax we started with:

SELECT CUSTOMERS.CUSTOMER_ID, CUSTOMERS.NAME, ORDERS.ORDER_ID, ORDER.TOTAL,
 ITEMS.ITEM_NO, ITEMS.COST FROM CUSTOMERS, ORDERS, ITEMS
 WHERE ORDERS.CUSTOMER_ID = CUSTOMERS.CUSTOMER_ID
 AND ITEMS.ORDER_ID = ORDERS.ORDER_ID

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Again, using the data shown in Figure D-1, the output from this query might look as follows:

CUSTOMER_ID | NAME | ORDER_ID | TOTAL | ITEM_NO | COST
------------+------------+----------+-------+---------+-------
 1 | Bob Copier | 4 | 72.19 | 1280 | 16.72
 1 | Bob Copier | 4 | 72.19 | 4129 | 41.10
 1 | Bob Copier | 4 | 72.19 | 3017 | 14.37

So far, all we've talked about is equi-joins, (or inner joins). There are also outer joins, which don't
require a matching key in both tables. An outer join includes all the records from one table and any
records from another table that match the primary key of the first table. If there are no
corresponding records in the second table, those columns are simply left blank in the result. Outer
joins are divided into left outer and right outer joins. In a left join, the primary key table is on the
left, and in a right join, it is on the right. Here's the syntax for a LEFT JOIN (or LEFT OUTER JOIN) on
CUSTOMERS and ORDERS:

SELECT CUSTOMERS.CUSTOMER_ID, CUSTOMERS.NAME, ORDERS.ORDER_ID, ORDERS.TOTAL
 FROM CUSTOMERS LEFT JOIN ORDERS ON CUSTOMERS.CUSTOMER_ID =
 ORDERS.CUSTOMER_ID

This includes all the customer records and order records for all the customers that have them. Here's
some possible output using the data shown in Figure D-1.

CUSTOMER_ID | NAME | ORDER_ID | TOTAL
------------+--------------+----------+--------
 1 | Bob Copier | 4 | 72.19
 1 | Bob Copier | 6 | 21.07
 2 | John Stapler | |

If we were to do a RIGHT JOIN on CUSTOMERS and ORDERS, the result would be the same as an inner
join, since there are no records in ORDERS that don't have a match in CUSTOMERS.

D.4.1.3. Groups

The GROUP BY clause allows you to collapse multiple records into groups with a common field. For
instance, to select all the records in the BOOKS table grouped by AUTHOR:

SELECT AUTHOR FROM BOOKS GROUP BY AUTHOR

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This returns one row for each distinct author in the table. This query is not really that useful though,
since we can do the same thing with the DISTINCT keyword (SELECT DISTINCT). However, we can use
an aggregate function on each of the groups to do something more useful:

SELECT AUTHOR, COUNT(*) FROM BOOKS GROUP BY AUTHOR

This query returns two columns: the author and the number of books by that author in the table.
Here's the output, based on the BOOKS table we used earlier:

AUTHOR | COUNT(*)
-----------------+----------
Charles Dickens | 2
Garrison Keillor | 1

We'll talk more about aggregate functions later in this appendix.

D.4.2. INSERT

The INSERT statement loads data into a table. Here's the syntax:

INSERT INTO table_name

 [(column_name, ...)]

 subquery | { VALUES (val1, val2,...) } | DEFAULT VALUES

To load static data, simply specify the table and the actual data:

INSERT INTO CUSTOMERS VALUES (3, 'Tom Fax', '617 555-1214')

This statement inserts the values 3, Tom Fax, and 617 555-1214 into the first three fields of a new row
in the CUSTOMERS table. If there are more than three fields in the CUSTOMERS table, this statement fails.
If you don't want to insert into every column, you can specify the columns you want to insert into:

INSERT INTO CUSTOMERS (CUSTOMER_ID, NAME) VALUES (3, 'Tom Fax')

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Note, however, that this kind of statement can fail if we don't provide a value for a field that is
specified as NOT NULL.

To add more than one row at a time and to add data from other tables, we can specify a subquery
rather than a set of specific values. To fill the JUNKMAIL table with values from the CUSTOMERS and
ADDRESSES tables, run this query:

INSERT INTO JUNKMAIL (NAME, ADDR, CITY, STATE, ZIP)
 SELECT NAME, ADDR, CITY, STATE, ZIP FROM CUSTOMERS JOIN ADDRESSES

The database first performs a join on CUSTOMERS and ADDRESSES. It matches on the CUSTOMER_ID field
and outputs the NAME field from CUSTOMERS and the other fields from ADDRESSES. The rows from the
join are then inserted into the JUNKMAIL table, which can now be used to fill our mailboxes with
catalogs.

D.4.3. UPDATE

The UPDATE statement modifies data in one or more existing rows. It consists of one or more SET
statements and an optional WHERE clause. If the WHERE clause is not present, the operation is
performed on every row in the table. Here's the syntax:

UPDATE table_name

 SET { column_name = { value | NULL | DEFAULT }, ...}

 [{ WHERE predicate }

 | { WHERE CURRENT OF cursor_name }]

Here's an example that updates a few fields:

UPDATE ADDRESSES
 SET ADDR = '1282 Country Club Drive', STATE='CA'
 WHERE CUSTOMER_ID = 432

This statement sets the ADDR and STATE fields of the ADDRESSES table to particular values on all records
where CUSTOMER_ID equals 432. Sometimes we do want to run an UPDATE on all records. Here's an
example that makes sure all the STATE fields are in uppercase:

UPDATE ADDRESSES SET STATE = UPPER(STATE)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Note how we can use a field from the table itself in the SET statement.

The WHERE CURRENT OF clause allows you to update the row at the current cursor location in a
multiple-table row. This is not something that JDBC programmers need to concern themselves with,
although it can be of interest to an underlying JDBC 2.0 or JDBC 3.0 driver.

D.4.4. DELETE

DELETE is very simple: it removes rows from a table. Here's the syntax:

DELETE FROM table_name

 [{ WHERE predicate }

 | { WHERE CURRENT OF cursor_name}]

To delete all the rows in ORDERS:

DELETE FROM ORDERS

To delete a specific record:

DELETE FROM ORDERS WHERE ORDER_ID = 32

Once a row has been deleted, there is no way to recover it.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

D.5. Functions

SQL is not a procedural language, but it does provide some data-transformation capabilities. In
addition to the string concatenation operator (||), the SQL-92 specification defines two sets of
functions: aggregate and value.

D.5.1. Aggregate Functions

In the section on the SELECT statement, we saw an aggregate function used to count the number of
records within a group. Mainly aggregate functions act on all the records of query, counting rows,
averaging fields, and so forth. For example, here's how to count the number of rows returned by a
SELECT statement:

SELECT COUNT(*) FROM CUSTOMERS

Instead of returning each row of the CUSTOMERS table, this query returns a single-column, single-row
result that contains the number of records in CUSTOMERS.

The other aggregate functions are AVG, SUM, MAX, and MIN. Unlike COUNT, which works on either a
single column or all columns, the other functions work on only a single column. AVG and SUM can be
applied against numerical data types only (integers, reals, etc.) while MAX and MIN work with any data
type. Here are some examples:

SELECT MIN(AGE) FROM GUESTS
SELECT MAX(NAME) FROM GUESTS
SELECT AVG(AGE), SUM(AGE) FROM GUESTS

D.5.2. Value Functions

Value functions work on particular column values and return modified data. Some of them also
generate values from system information.

D.5.2.1. Date/time functions

There are three date and time functions that retrieve the current date, current time, and current
timestamp, respectively, from the database:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CURRENT_DATE

CURRENT_TIME[(precision)]

CURRENT_TIMESTAMP[(precision)]

CURRENT_TIME and CURRENT_TIMESTAMP accept an optional precision level, which specifies the decimal
fractions of a second to be included in the time portion of the value. The current time zone is used
with all these functions.

Here's how you might use these functions in a query:

SELECT * FROM ORDERS WHERE ORDER_DATE = CURRENT_DATE
INSERT INTO VISITORS (VISIT_TS) VALUES (CURRENT_TIMESTAMP)

Some databases have platform-specific commands that duplicate this functionality (these commands
often predate SQL -92). Oracle's SYSDATE is one example. Note that these functions aren't required
for entry-level SQL-92.

D.5.2.2. String manipulation functions

The concatenation operator, ||, has been around since before the SQL-92 standard. It allows you to
concatenate multiple column values and string literals. Say we have a table that contains FIRST_NAME
and LAST_NAME fields, and we want to display them in a "last, first" form. Here's a SQL statement that
returns a single column that does just that:

SELECT LAST_NAME || ', ' || FIRST_NAME FROM CUSTOMERS

In addition, the SQL-92 standard defines a number of other functions that can be used in SQL
statements. UPPER and LOWER convert a column into uppercase or lowercase, respectively:

SELECT UPPER(LAST_NAME) FROM CUSTOMERS
SELECT LOWER(FIRST_NAME) FROM CUSTOMERS

These functions can also be used in WHERE predicates, for example, to produce a case-insensitive
search:

SELECT * FROM CUSTOMERS WHERE UPPER(FIRST_NAME) LIKE 'WILL%'

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Most databases support UPPER and LOWER, but they are required only for full SQL-92 conformance, not
entry-level conformance.

The TRIM function removes characters from one or both ends of a string:

TRIM ([[LEADING | TRAILING | BOTH] [character] FROM] string)

Calling trIM on a string trims leading CURRENT_TIME and CURRENT_TIMESTAMP and trailing whitespace.
Here's how to trim just leading blanks:

SELECT TRIM(LEADING ' ' FROM FIRST_NAME) FROM CUSTOMERS

And here's how to trim all "-" characters from both sides of a string:

SELECT TRIM(BOTH '-' FROM FIRST_NAME) FROM CUSTOMERS

Like UPPER and LOWER, trIM is required only for full SQL-92 conformance, although it is supported by
most database implementations.

The SUBSTRING command extracts a given number of characters from a larger string. It is defined as:

SUBSTRING (source_string FROM start_pos FOR number_of_characters)

For example, to get each customer's initials, we might use the following query:

SELECT SUBSTRING (FIRST_NAME FROM 1 FOR 1),
 SUBSTRING(LAST_NAME FROM 1 FOR 1)

SUBSTRING is required only for intermediate-level SQL-92 conformance.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

D.6. Return Codes

The SQL-92 standard defines a set of SQLSTATE return codes . SQLSTATE is defined as a five-character
string, with the leftmost two characters defining the error class, and the remaining three characters
defining the error subclass. Some database vendors may extend these return codes; classes
beginning with the numbers 5 tHRough 9 and letters I tHRough Z are reserved for such
implementation-specific extensions. The SQLSTATE code for a particular JDBC action can be retrieved
via the getSQLState() method of SQLException. Table D-3 lists the SQLSTATE return codes defined in
SQL-92.

Table D-3. SQL-92 SQLSTATE return codes

Class Class definition Subclass Subclass definition

00 Successful completion 000 None

01 Warning 000 None

 001 Cursor operation conflict

 002 Disconnect error

 003 Null value eliminated in set function

 004 String data, right truncation

 005 Insufficient item descriptor areas

 006 Privilege not revoked

 007 Privilege not granted

 008 Implicit zero-bit padding

 009
Search expression too long for
information schema

 00A
Query expression too long for
information schema

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class Class definition Subclass Subclass definition

02 No data 000 None

07 Dynamic SQL error 000 None

 001
Using clause doesn't match dynamic
parameters

 002
Using clause doesn't match target
specifications

 003 Cursor specification can't be executed

 004
Using clause required for dynamic
parameters

 005
Prepared statement not a cursor
specification

 006
Restricted data type attribute
violation

 007 Using clause required for result fields

 008 Invalid descriptor count

 009 Invalid descriptor index

08 Connection exception 000 None

 001
SQL client unable to establish SQL
connection

 002 Connection name in use

 003 Connection doesn't exist

 004
SQL server rejected establishment of
SQL connection

 006 Connection failure

 007 Transaction resolution unknown

0A Feature not supported 000 None

 001 Multiple server transactions

21 Cardinality violation 000 None

02 No data 000 None

07 Dynamic SQL error 000 None

 001
Using clause doesn't match dynamic
parameters

 002
Using clause doesn't match target
specifications

 003 Cursor specification can't be executed

 004
Using clause required for dynamic
parameters

 005
Prepared statement not a cursor
specification

 006
Restricted data type attribute
violation

 007 Using clause required for result fields

 008 Invalid descriptor count

 009 Invalid descriptor index

08 Connection exception 000 None

 001
SQL client unable to establish SQL
connection

 002 Connection name in use

 003 Connection doesn't exist

 004
SQL server rejected establishment of
SQL connection

 006 Connection failure

 007 Transaction resolution unknown

0A Feature not supported 000 None

 001 Multiple server transactions

21 Cardinality violation 000 None

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class Class definition Subclass Subclass definition

22 Data exception 000 None

 001 String data, right truncation

 002 Null value, no indicator

 003 Numeric value out of range

 005 Error in assignment

 007 Invalid date-time format

 008 Date-time field overflow

 009 Invalid time zone displacement value

 011 Substring error

 012 Division by zero

 015 Internal field overflow

 018 Invalid character value for cast

 019 Invalid escape character

 021 Character not in repertoire

 022 Indicator overflow

 023 Invalid parameter value

 024 Unterminated C string

 025 Invalid escape sequence

 026 String data, length mismatch

 027 Trim error

23 Integrity constraint violation 000 None

22 Data exception 000 None

 001 String data, right truncation

 002 Null value, no indicator

 003 Numeric value out of range

 005 Error in assignment

 007 Invalid date-time format

 008 Date-time field overflow

 009 Invalid time zone displacement value

 011 Substring error

 012 Division by zero

 015 Internal field overflow

 018 Invalid character value for cast

 019 Invalid escape character

 021 Character not in repertoire

 022 Indicator overflow

 023 Invalid parameter value

 024 Unterminated C string

 025 Invalid escape sequence

 026 String data, length mismatch

 027 Trim error

23 Integrity constraint violation 000 None

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class Class definition Subclass Subclass definition

24 Invalid cursor state 000 None

25 Invalid transaction state 000 None

26 Invalid SQL statement name 000 None

27 Triggered data change violation 000 None

28 Invalid authorization specification 000 None

2A
Syntax error or access rule violation in
direct SQL statement 000 None

2B Dependent privilege descriptors still exist 000 None

2C Invalid character set name 000 None

2D Invalid transaction termination 000 None

2E Invalid connection name 000 None

33 Invalid SQL descriptor name 000 None

34 Invalid cursor name 000 None

35 Invalid condition number 000 None

37
Syntax error or access rule violation in
dynamic SQL statement 000 None

3C Ambiguous cursor name 000 None

3F Invalid schema name 000 None

40 Transaction rollback 000 None

 001 Serialization failure

 002 Integrity constraint violation

 003 Statement completion unknown

42 Syntax error or access rule violation 000 None

24 Invalid cursor state 000 None

25 Invalid transaction state 000 None

26 Invalid SQL statement name 000 None

27 Triggered data change violation 000 None

28 Invalid authorization specification 000 None

2A
Syntax error or access rule violation in
direct SQL statement 000 None

2B Dependent privilege descriptors still exist 000 None

2C Invalid character set name 000 None

2D Invalid transaction termination 000 None

2E Invalid connection name 000 None

33 Invalid SQL descriptor name 000 None

34 Invalid cursor name 000 None

35 Invalid condition number 000 None

37
Syntax error or access rule violation in
dynamic SQL statement 000 None

3C Ambiguous cursor name 000 None

3F Invalid schema name 000 None

40 Transaction rollback 000 None

 001 Serialization failure

 002 Integrity constraint violation

 003 Statement completion unknown

42 Syntax error or access rule violation 000 None

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class Class definition Subclass Subclass definition

44 With check option violation 000 None44 With check option violation 000 None

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Appendix E. JMS Message Selector Syntax
JMS message selectors are used by JMS clients to filter the messages that a JMS server delivers to a
given MessageConsumer. A message selector is provided (optionally) when a MessageConsumer is
created, using either the QueueSession. createReceiver() or the TopicSession.createSubscriber(
) method.

A message selector is a string that specifies a predicate to be applied to each message that the
provider wants to deliver to a MessageConsumer. If the predicate evaluates to true, then the message
is delivered; if false, then the message is not delivered. In point-to-point messaging, when messages
are filtered out by a message selector, the message will remain on the queue until the client
eventually reads it or the message times out and the server removes it from the queue. In publish-
subscribe messaging, messages that are filtered are never delivered to the subscriber.

In this chapter, we provide the full syntax of JMS message selectors. For more details on using JMS in
general, see the tutorial in Chapter 11.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

E.1. Structure of a Selector

A message selector is made up of one or more Boolean expressions, joined together by logical
operators and grouped using parentheses. For example:

(<expression1> OR <expression2> AND <expression3>) OR

 (<expression4> AND NOT <expression5>) . . .

A message selector is evaluated left to right in precedence order. So in this example, expression2 will
be evaluated followed by expression3 (since AND has higher precedence than OR), and if they evaluate
to false, then expression1 will be evaluated and so on.

Expressions are made up of literal values, identifiers (referring to either message headers or
properties), conditional operators, and arithmetic operators.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

E.2. Identifiers

An identifier refers to either a standard JMS header field name or a custom message property name.
Any JMS header field name can be used as an identifier, except for JMSDestination, JMSExpiration,
JMSRedelivered, and JMSReplyTo. JMSDestination and JMSReplyTo are Destination values, and
message selector operators support only numeric, Boolean, or string values. The time at which
message selectors are applied to messages is not specified in the JMS specification, so using the
value of JMSExpiration wouldn't provide a consistent, well-defined result. Using JMSRedelivered in a
selector could result in unexpected results. If, for example, a selector checks for JMSRedelivered
being true, the first delivery attempt by a provider will fail the selector since the redelivered flag
should be false, but the provider could then immediately redeliver the message and pass the selector,
making the redelivered part of the predicate ineffective.

Identifier names are case-sensitive and follow the same general rules as Java identifiers . They must
start with a valid Java identifier start character as determined by the
java.lang.Character.isJavaIdentifierStart() methode.g., a letter, currency symbol, or
connecting punctuation character like "_"and must contain valid Java identifier characters as
determined by the Character.isJavaIdentifierPart() method. You cannot use the following
reserved words for identifiers: NULL, TRUE, FALSE, NOT, AND, OR, BETWEEN, LIKE, IN, IS, or ESCAPE.

The type of an identifier is the type of the header field or property being referenced as its value was
set in the message. It's important to remember that the evaluation of an identifier in a message
selector does not apply type conversion functions according to the context that it's used in. If you
attempt to refer to a numeric property value in an expression with a string comparison operator, for
example, then the expression will always evaluate to false. If the named header field or property is
not present in a message, then the identifier evaluates to a NULL value.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

E.3. Literals

String literals are indicated with single quotes. For example:

JMSType = 'updateAck'

If you need to use a single quote in a string literal, you use two single quotes. For example:

JMSCorrelationID = 'Joe''s message'

Numeric literals are either integer values or floating-point values. Integer values follow the rules for
Java integer literals. They are all numerals, with no decimal point, and can have a value in the same
range as a Java long value. For example:

42, 149, -273

Floating-point literals follow the syntax of Java floating-point literals. They are all numerals with a
decimal point:

3.14, 98.6, -273.0

or are in scientific notation:

31.4e-1, 6.022e23, 2.998e8

Literals can also be the Boolean values trUE or FALSE.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

E.4. Operators

Operators are used to compose identifiers and literals into larger expressions. Operators can be
logical operators , arithmetic operators, or comparison operators.

E.4.1. Logical Operators

The logical operators are NOT, AND, and OR. These are in precedence order. These have the usual
Boolean logic semantics. If a logical operator is applied to header fields or properties whose value is
NULL, then the following rules apply:

ANDing a NULL value with a FALSE value evaluates to FALSE; ANDing a NULL with a trUE or NULL
value evaluates to a NULL (or unknown) value.

ORing a NULL value with a trUE value evaluates to trUE; ORing a NULL with a FALSE or a NULL
value evaluates to a NULL (or unknown) value.

Applying NOT to a NULL value evaluates to a NULL (or unknown) value.

E.4.2. Arithmetic Operators

The arithmetic operators, in precedence order, are + and - (unary); * and /; and + and - (binary).
These have the usual arithmetic semantics. Any arithmetic operator that is applied to one or more
NULL values evaluates to a NULL value.

E.4.3. Comparison Operators

The comparison operators can be loosely grouped into equality comparisons and range comparisons.
The basic equality comparison operators, in precedence order, are =, >, >=, <, <=, and <>. These
binary operators have to be applied to two values of the same type, else the expression will always
evaluate to FALSE. If either value is NULL, then the result of the comparison is NULL. There are also the
equality operators IS NULL and IS NOT NULL to compare a value to NULL. An equality operator can
also be used to check for the presence of a header or property. For example:

timezone IS NOT NULL AND country = 'United Kingdom'

There are also set and range comparison operators. The BETWEEN operator can be used to check the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

range of numeric values. For example:

userid BETWEEN 00000000 AND 09999999
currRate NOT BETWEEN 0.0 AND 0.9999

The IN operator can be used to perform membership operations on string values:

JMSType IN ('msgAck', 'queryAck', 'updateAck')
JMSType NOT IN ('msgBroadcast', 'synchMessage')

There is also a string comparison operator, LIKE, that allows for wildcard matching on string values. A
pattern is used for the right side of the LIKE operator. The pattern consists of a valid string literal
where the underscore character, _, matches against any single character, while the % character
matches any sequence of zero or more characters. For example:

JMSType like '%Ack'
label not like 'Step _'

The _ and % characters can be used in these string comparison operators if they are escaped by \. For
example:

slogan LIKE '99 44/100\% pure'

http://lib.ommolketab.ir
http://lib.ommolketab.ir

E.5. Expressions

Expressions are simply literals and identifiers assembled together using the various operators
described before. A message selector must eventually evaluate to a Boolean value, so its combination
of expressions must be structured to result in a Boolean value. Expressions can be grouped in a
message selector using parentheses in order to control the order of evaluation.

Arithmetic expressions are composed of arithmetic operators used with numeric literals and identifier
values. Arithmetic expressions can be combined to form compound arithmetic expressions. For
example:

(userid + 10000) / (callerid - 10000)

Conditional expressions are made up of comparison and logical operators used with numeric, string,
or Boolean literals or identifiers and evaluate to TRUE, FALSE, or NULL (i.e., unknown). Conditional
expressions can also be combined to form compound conditional expressions. For example:

(JMSType like '%Ack') AND ((userid + 10000) / (callerid - 10000) < 1.0)

Notice that, although the last example includes an arithmetic expression "fragment," [(userid +
10000) / (callerid - 1000)], it becomes part of a conditional expression when used with a
comparison operator with the numeric literal 1.0.

Every complete message selector must be a conditional expression. A message selector that
evaluates to trUE matches the message; one that evaluates to FALSE or NULL does not match the
message.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Appendix F. FRMI Tools
In this appendix, the tools documented are the default RMI-related tools shipped with Sun's
implementation of the JDK. Other vendors may ship their own versions of these tools with different
behavior and options than those described here, or they may provide their own toolset altogether.
Consult your vendor's documentation for details.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

rmic: The Java RMI Compiler JDK 1.1 and later

Synopsis

 rmic [options] fully-qualified-classnames

Description

The rmic compiler generates the stub and skeleton classes for remote objects that you've written.
The rmic compiler is capable of generating stubs and skeletons for both the Java Remote Method
Protocol (JRMP) or the CORBA Internet Interoperable Object Protocol (IIOP). Once you've compiled
your remote objects using a standard Java compiler, such as javac, you need to run rmic, specifying
the class names of your RMI implementation classes using their full packages.

For example, suppose you define an interface named utils.remote.TimeServer that extends
java.rmi.Remote and write an implementation of this interface called utils.remote.TimeServerImpl.
After compiling both with a Java compiler, you can run rmic, specifying utils.remote.TimeServerImpl
as the class name argument.

The native RMI remote method protocol, JRMP, was updated in Java 2 Version 1.2. The rmic compiler
in JDK 1.2 and later supports the generation of stubs that are compatible with JRMP Version 1.1, 1.2,
or both. A key difference between the two is that 1.1 required the generation of both stub and
skeleton classes for a remote interface, while 1.2 requires only the stub class (the server-side
skeleton operations are implemented dynamically by the RMI runtime). The -vcompat, -v1.1, and -
v1.2 options, described in the next section, control what flavor of stubs and skeletons are generated
when you run rmic.

Running rmic with 1.1 compatibility generates a skeleton class for each remote object type, named
xxx_Skel, where the xxx is the name of the remote interface. The skeleton is responsible for receiving

client requests on a server object and dispatching these requests to the actual remote object. A stub
class, named xxx_Stub, is also generated; this is used for client references to the remote object.

When a client gets a reference to a remote object, it receives an instance of the stub class, which
forwards any method requests to the server object over the network. In our example, the stub and
skeleton classes would be called utils.remote.TimeServer_Stub and utils.remote.TimeServer_Skel,
respectively. When using just 1.2 compatibility (e.g., the -v1.2 option), only the stub classes are
generated.

Both the stub class and the skeleton class implement the same remote interface as your remote
object implementation, so they can be type cast to the remote interface.

IIOP-compatible stubs and skeletons can also be generated with rmic, using the -iiop option. In
CORBA parlance, the skeletons are called ties. The concepts are the same as JRMP-compatible stubs
and skeletons, except that the generated classes speak the IIOP protocol, and the class names are

http://lib.ommolketab.ir
http://lib.ommolketab.ir

_rmtinterface_stub and _rmiimpl_tie (rmtinterface is the class name of the RMI remote interface,
and rmiimpl is the class name of the RMI object implementation). It's also important to note that,
when using IIOP-compatible stubs and skeletons, a client has to use the
javax.rmi.PortableRemoteObject.narrow() method to safely cast remote object references to their
expected remote interface type, rather than just using the Java cast operator.

Options

-always

-alwaysgenerate

Applicable only when used with the -idl or -iiop option. They tell rmic to regenerate the stub

and tie classes, regardless of the timestamps on the classes.

-bootclasspath pathlist

Allows you to override the path used by rmic to find its bootstrap classes. This is useful if a
custom RMI runtime implementation is used. The directories in the list are separated by colons
in Unix environments (Linux, Mac OS X, etc.) and by semicolons in Windows environments.

-classpath pathlist

Provides the classpath rmic uses to find any required classes (remote object implementation,
remote interface, and classes referenced by these). This option overrides the environment
CLASSPATH and the default classpath. The directories in the list are separated by colons in Unix
environments (including Mac OS X) and by semicolons in Windows environments.

-d path

The destination directory where the compiler should write the class files that are generated. If
a -d option is given, the package of the generated classes places the stubs and skeletons in
their proper subdirectories in the given destination. If the directories don't exist, rmic creates
them for you. If no -d option is given, the stubs and skeletons are still generated to have the
same package as the remote implementation, but the class files are placed in the current
directory (e.g., the compiler assumes -d).

-depend

Forces the compiler to attempt to recompile interdependent classes whose class files are out of
date with each other. Without this option, the compiler attempts to recompile only class files
explicitly referenced in the command-line options. Note that this option was removed in Java
5.0, since it was seen as redundant with the same capabilities in the javac compiler.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

-extdirs path

Overrides the location of runtime extensions. Normally, extensions are found in a standard
location in the JRE, such as lib/ext. This option allows you to specify a custom directory to find
these extension libraries.

-factory

Applicable only if used with the -idl option. It tells rmic to generate declarations for initializers
for value types in the generated IDL, using the IDL factory keyword. This option is relevant
only if your RMI-IIOP implementation class uses CORBA Objects By Value. This option was
removed in Java 5.0.

-g

Includes debugging information in the generated stub and skeleton classes; for use with Java
debuggers.

-idl

Uses the rmic compiler to generate CORBA IDL interfaces for your RMI remote objects,
generating according to the CORBA Java Language to IDL Mapping specification. Note that the
implementation class specified needs to be implemented as an RMI-IIOP remote object, as
described in Chapter 13. Remote objects that support only JRMP can't use the IIOP protocol
and can't have IDL interfaces generated for them. The -factory, -idlModule, -noValueMethods,
and -idlFile options are allowed only when used with the -idl option. The -d option can
control where the IDL files are generated.

-idlFile javapackage[.class] idlfile

Valid only when used with the -idl option. It overrides the default mapping of IDL entities in
the Java class to an IDL file. For example, to have the IDL from any entities in the jent.corba
package mapped into a jententities.idl file:

 > rmic -idl -idlFile jent.corba jententities.idl
 jent.corba.MyIIOPObjImpl

-idlModule javapackage[.class] idlmodule

Valid only when used with the -idl option. It overrides the default package mapping of IDL
entity references, allowing you to specify another IDL module to map them to in the generated
IDL. For example, if you want the generated IDL to map entities referenced in the Java
jent.corba package to a custom corba::custom::mod module:

 > rmic -idl -idlModule jent.corba corba::custom::mod
 jent.corba.MyIIOPObjImpl

http://lib.ommolketab.ir
http://lib.ommolketab.ir

-iiop

Instructs the compiler to generate IIOP-compatible stubs and ties instead of JRMP stubs and
skeletons. The implementation class specified needs to be implemented as an RMI-IIOP remote
object, as described in Chapter 13. The -always, -alwaysgenerate, -nolocalstubs, -
noValueMethods, and -poa options are allowed only when used with the -iiop option. The -d
option can control where the stub and tie classes are generated.

-J[javaoption]

Passes the option immediately following the -J to the Java interpreter. There should be no
spaces between the -J and the option to be passed to the interpreter.

-keep

-keepgenerated

Keeps the Java source files for the stub and skeleton classes generated by the compiler. The
Java files will be written to the same directory as the class files, with or without a -d option
specified. Without the -keep or -keepgenerated option present, the Java source files will be
removed after the stub and skeleton classes are generated.

-nolocalstubs

Used with the -iiop option, to instruct the compiler to avoid generating IIOP stubs that are
optimized for local clients. Without this option, the generated stub classes attempt to detect
whether the client is running in the same process as the servant and optimizes the IIOP
operations. With this option, these checks aren't generated, and the stub assumes that the
servant is always remote.

-noValueMethods

Used in conjunction with the -idl option, to instruct the compiler to avoid generating
valuetype methods and initializers in the generated IDL.

-nowarn

Instructs the rmic compiler to eliminate warning messages from its output. Only errors
encountered during compilation are reported.

-poa

Used with the -iiop option, -poa tells rmic to generate POA-compatible servants. The
generated server class inherits from the org.omg.PortableServer.Servant interface rather than

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the default org.omg.CORBA_2_3.portable.ObjectImpl interface.

-vcompat

Creates stub and skeleton classes that are compatible with both JDK 1.1 and 1.2 (and later)
versions of RMI. This option is enabled by default in JDK 1.4 and earlier and doesn't need to be
specified in those environments. In Java 5.0, the default was switched to -v1.2.

-verbose

Prints verbose messages as compilation takes place, including which class is being compiled
and class files that are loaded during compilation.

-v1.1

Creates stub and skeleton classes that are compatible with the JDK 1.1 version of RMI. These
classes may not run in a 1.2 or higher Java runtime environment, unless its RMI runtime
supports 1.1 compatibility.

-v1.2

Creates stub and skeleton classes that are compatible with the JDK 1.2 and higher RMI
runtime. These classes will not run in a 1.1 Java runtime environment. This option is the
default as of Java 5.0 and doesn't need to be specified in those environments. Prior to Java
5.0, the default was -vcompat.

Environment

CLASSPATH

An ordered list of directories, zip files, and/or jar files the rmic compiler uses to look for
classes. This list is separated by colons in Unix environments (Linux, Mac OS X, etc.) and by
semicolons in Windows environments. The list is searched, in order, for a given class when it is
encountered during compilation. The compiler automatically appends the system classpath to
the CLASSPATH, if it is specified. If the CLASSPATH isn't set in the environment, the compiler uses
the current directory and the system CLASSPATH as its classpath. The CLASSPATH environment
variable is overridden by the -classpath option to rmic.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

rmid: The RMI Activation Daemon JDK 1.2 and later

Synopsis

 rmid [options]

Description

The rmid command starts an RMI activation daemon on the local host. The activation daemon
services all requests to register activatable objects and is responsible for activating objects due to
client requests to invoke methods on them.

If no port option is given, the activation daemon runs on a default port of 1098. Internally, the
activation daemon creates a java.rmi.activation.Activator and its own RMI naming registry
(listening to port 1098). The daemon binds a java.rmi.activation.ActivationSystem object to the
name java.rmi.activation.ActivationSystem in its internal registry.

The rmid daemon provided by Sun requires you to specify a security policy file on the command line,
using the -J option:

 > rmid -J-Djava.security.policy=myrmid.policy ...

This policy file determines what operations are allowed when launching JVMs for activation groups.
For example, a policy file for rmid might include permissions such as the following:

 grant {
 permission com.sun.rmi.rmid.ExecPermission
 "/opt/rmid/bin/*";
 permission com.sun.rmi.rmid.ExecOptionPermission
 "-Djava.security.policy=/usr/rmi-app/act-group.policy";
 };

This allows rmid to execute any commands in the /opt/rmid/bin directory and to start any activation
groups using the command-line option to invoke the security policy file act-group.policy. When
registering activation groups, you can specify what commands to use to start the group's JVM, what
command-line arguments to include, and what Java properties to override using the -D option for the
JVM. Permission to run the specified commands has to be given to rmid in its policy file using
com.sun.rmi.rmid.ExecPermission enTRies. The ability to add command-line options to the activation
startup command is granted using com.sun.rmi.rmid.ExecOptionPermission enTRies.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can also control the application of security policies using the sun.rmi.activation.execPolicy JVM
option on the rmid command:

 > rmid -J-Dsun.rmi.activation.execPolicy=<default|policyClass|none> ...

If this option isn't used or is used with the value default, the java.security.policy file determines the
ability of the activator to execute commands and add command-line options to the JVM startup
commands. If a class name is provided as the value of this option, then instead of using the security
policy file, call checkExecCommand() on this class before activating groups:

 public void checkExecCommand(ActivationGroupDesc desc, String[] command)
 throws SecurityException {
 if (command or options are not allowed) {
 throw new SecurityException(...);
 }
 }

If the value of the execPolicy property is none, rmid won't do any checking of security policies before
running activation commands.

Options

-C< cmdlineOption>

Uses the given option as a command-line option to the Java VM for each activation group
started by the daemon. This can pass default properties to the VMs, for example, or set their
memory limits to some default value. The Java interpreter option should immediately follow the
-C option, with no spaces.

-J[javaoption]

Anything immediately following the -J is passed as an option to the underlying Java interpreter.
There should be no spaces between -J and the option to be passed to the interpreter.

-log path

Uses the given directory for any logging or temporary files needed by the activation daemon. If
this option isn't specified, the daemon writes its logfiles to a new directory named log in the
current directory.

-port portnum

Uses the specified port for the internal registry started by the activation daemon. If this option

http://lib.ommolketab.ir
http://lib.ommolketab.ir

isn't given, the daemon's internal naming registry runs by default on port 1098 of the local
host. If you want the activation daemon's registry to listen to the default RMI registry port,
start the daemon with this command (Unix version):

 $ rmid -port 1099 &

-stop

Stops any activation daemon currently running on the port specified with the -port option or
the default port of 1098 if none is specified.

Environment

CLASSPATH

An ordered list of directories, zip files, and/or jar files the rmid daemon uses to look for classes.
This list is separated by colons in Unix environments and semicolons in Windows environments.
The list is searched, in order, for a given class when it is encountered during execution. The
daemon automatically appends the system CLASSPATH to the classpath, if it is specified. If the
CLASSPATH isn't set in the environment, the daemon uses the current directory and the system
CLASSPATH as its classpath.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

rmiregistry: The Java RMI Object Registry JDK 1.1 and later

Synopsis

 rmiregistry [port]

Description

The rmiregistry command starts a remote object naming registry on the current host. The RMI
registry binds remote objects to names, so that remote clients can request object references by
name. It uses the object references to invoke methods.

Internally, the rmiregistry command uses the java.rmi.registry.LocateRegistry class to instantiate
a registry object. If no port is provided, the default port for the registry is 1099. Typically, the
registry is run in the background on a server and remains running for the lifetime of the objects it
contains. If the registry crashes and the registry is running in a separate Java VM from the actual
remote objects, the remote objects are still available over RMI, and any remote references to these
objects that existed before the crash are still valid. However, all the name bindings the objects had in
the registry are lost and need to be re-created after a new registry is started.

Options

-J[javaoption]

Anything immediately following the -J is passed as an option to the underlying Java interpreter.
There should be no spaces between the -J and the option to be passed to the interpreter.

Environment

CLASSPATH

An ordered list of directories, zip files, and/or jar files the rmiregistry command uses to look
for classes. This list is separated by colons in Unix environments and semicolons in Windows
environments. It is searched, in order, for a given class when it is encountered during
execution. The registry automatically appends the system CLASSPATH to the classpath, if it is
specified. If the CLASSPATH isn't set in the environment, the daemon uses the current directory
and the system CLASSPATH as its classpath.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

serialver: The RMI Serial Version Utility JDK 1.1 and later

Synopsis

 serialver [options] fully-qualified-classnames

Description

The serialver utility generates a serial version ID you can use to mark a given class definition to track
its versions as it evolves. The utility returns a static int member declaration you can paste into your
Java class definition. For example, this command:

 % serialver AccountImpl

generates output something like:

 AccountImpl: static final long serialVersionUID = 37849129093280989384L;

If versioning of your remote object classes becomes a problem for clients, this utility can tag a class
with a version ID that can be checked to see if the proper version is being exported by your server
for a given client or if its local version is out of date. Serial version IDs are used by Java object
serialization to uniquely identify class definitions and should be placed on any Serializable classes
that you implement.

Options

-classpath pathlist

Provides the classpath serialver uses to find any required classes or resources. This option
overrides the environment CLASSPATH and the default classpath. The directories in the list are
separated by colons in Unix environments (including Mac OS X) and by semicolons in Windows
environments.

-J[javaoption]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Anything immediately following the -J is passed as an option to the underlying Java interpreter.
There should be no spaces between the -J and the option to be passed to the interpreter.

-show

Uses the graphical version of the tool. The GUI interface allows you to type a fully qualified
class name and click a button to see the serial version ID generated.

Environment

CLASSPATH

An ordered list of directories, zip files, and/or jar files the serialver utility uses to look for
classes. This list is separated by colons in Unix environments and semicolons in Windows
environments. The list is searched, in order, for a given class when it is encountered during
execution. The utility automatically appends the system CLASSPATH to the classpath, if it's
specified. If the CLASSPATH isn't set in the environment, the utility uses the current directory
and the system CLASSPATH as its classpath.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Appendix G. IDL Reference
This chapter serves as a quick reference for CORBA's language-independent Interface Definition
Language (IDL). It also gives a summary of the Java mapping of IDL (i.e., how IDL interface
definitions are mapped by an IDL-to-Java compiler into equivalent Java interfaces.) For a complete,
definitive reference on IDL and the Java mapping of IDL, consult the IDL specification issued by the
OMG.

Since this reference combines an IDL reference with an overview of the Java mapping of IDL, we'll be
using a combination of IDL and Java examples throughout. In order to make it clear which language
is being used in each example, we've stolen a convention from the CORBA standards documents: a
comment preceding the example code indicates which language is in use.

IDL, as the name implies, is a language for defining object interfaces. IDL is language-neutral, so
interfaces defined in IDL can be converted to objects implemented in any language with an IDL
mapping. One way to think of the role that IDL plays is to imagine that you already have a set of
interacting objects defined, and IDL is a way to export a subset of those interfaces so that they can
be accessed by remote entities. Any member variables or operations that you define in the IDL
interfaces will be visible and accessible by remote entities, providing they can obtain a reference to
instances of these interfaces (refer to Chapter 14 for more details on the use of CORBA objects). If
you proceed this way, the definitions of the variables and operations on the IDL interfaces would
have to match those on the actual implementations you are exporting, according to the rules of the
IDL mapping to the language they are written in.

Of course, this is not the typical way that you use IDL in practice.[1] You usually want to do an
abstract design of a distributed application and its set of objects first, define the IDL interfaces for the
objects that need to be used remotely, then compile these IDL interfaces into language-specific
interfaces. Then implementations of the interfaces can be written in whatever programming language
you are using. You are free to add additional operations and member variables to your language-
specific implementations, but these features won't be accessible remotely unless you add them to the
corresponding IDL interface.

[1] One notable exception is the task of wrapping legacy code with a CORBA frontend, but even here you would normally use

middleware objects to interface directly to the legacy code.

The five high-level entities that you can define in an IDL specification are:

Modules, which act as namespaces

Interfaces to objects (with their operations and data attributes)

Data types

Constants

Exceptions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

These high-level entities are listed here in roughly hierarchical order. Modules contain other modules,
interfaces, data types, constants, and exceptions. Interfaces contain data types, constants, and
exceptions that are specific to that interface, along with the operations and attributes for the
interface. We'll look at the IDL syntax used to define each of these, and in each case we'll see how
the IDL is mapped into equivalent Java code. Before we do that, let's go over some of the basics of
IDL: the keywords , identifiers, comments, and various types of literals.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

G.1. IDL Keywords

Table G-1 lists the reserved keywords in the IDL language.

Table G-1. IDL reserved keywords

abstract float sequence

any in short

attribute inout string

boolean interface struct

case local supports

char long switch

const module true

context native truncatable

custom Object typedef

default octet union

double oneway unsigned

enum out ValueBase

exception private valuetype

factory public void

false raises wchar

fixed readonly wstring

These keywords are case-sensitive. They can't be used as identifiers in any IDL construct.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

G.2. Identifiers

Identifiers can name various IDL constructs, such as modules, interfaces, and constants. In IDL, an
identifier has to follow these rules:

It can be any length of alphanumeric characters from the ISO Latin-1[2] character set (e.g., a-
z, A-Z, 0-9, plus various characters with accents, graves, tildes, etc.), and the underscore
character (_).

[2] This refers to the ISO standard 8859, "Information Processing8-bit single-byte coded graphic character setsPart 1: Latin

alphabet No. 1," ISO 8859-1:1987. You can find a listing of the character set in the HTML 4.0 standard at

http://www.w3.org/TR/html4.

All characters in an identifier are significant.

The first character must be an alphabetic character.

Identifiers are case-insensitive, in the sense that two identifiers that differ only by case are
considered a name collision and will cause an IDL compiler error. This rule stems from the fact
that IDL needs to be mappable into many implementation languages, some of which are case-
insensitive.

Identifiers must be spelled and capitalized consistently throughout an IDL file.

All IDL identifiers share the same namespace, so interfaces, modules, user-defined types, and
so on within the same scope all must have unique identifiers. An interface named List and a
module named List within the same scope will cause a name collision and an IDL compiler
error. See "Naming Scopes" later in this appendix for more details.

G.2.1. Mapping Identifiers to Java

An IDL-to-Java compiler attempts to map all IDL identifiers unchanged into equivalent Java
identifiers.

An exception is the case in which a mapped identifier conflicts with an identifier created automatically
by the IDL compiler. IDL interfaces, for example, when they are mapped to Java, have two additional
Java interfaces created for them, named using the name of the original interface with Helper and
Holder appended (see Chapter 14 for details on the purpose of these generated interfaces). So an
interface named List will be mapped into a Java interface named List, but will also cause the
creation of a Java interface named ListHelper and another named ListHolder. If there is another
identifier in the IDL file that you've named ListHelper or ListHolder, its mapped Java identifier will
have an underscore prepended to it (e.g., _ListHelper, _ListHolder), to avoid a conflict with the
generated interface names. In general, identifiers automatically generated by the IDL compiler have
precedence over other identifiers declared explicitly in the IDL file.

http://www.w3.org/TR/html4
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The other exception to the general rule of directly mapping IDL identifiers to Java identifiers is with a
mapping that conflicts with Java keywords. In these cases, the mapped Java identifier has an
underscore prepended to it. If, for example, you declared a constant named package (not a reserved
keyword in IDL), it is mapped into a Java variable named _package.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

G.3. Comments

Comments in IDL follow the format of C, C++, and Java comments . A block comment starts with the
character sequence /* and ends with the character sequence */. A line comment begins with the
character sequence //, and ends at the end of the line on which it begins.

G.3.1. Mapping Comments to Java

There are no rules for mapping IDL comments to Java. Many IDL-to-Java compilers will simply drop
comments from IDL files during the conversion to Java, since in many cases, the comments refer to
the IDL code and may not be totally relevant in the generated Java code.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

G.4. Basic Data Types

IDL supports the basic data types shown in Table G-2. The table also shows the Java type that each
is mapped to according to the standard IDL Java mapping. Note that there isn't a standard mapping
defined for the long double IDL type, because Java doesn't have a basic data type that supports the
precision required. Another important thing to note is that Java doesn't support unsigned types, such
as unsigned short. So you'll see in the table that IDL short and unsigned short are both mapped to
the Java short data type. You should be aware of this when writing implementations of IDL-
generated Java interfaces, since it is up to you to either ensure that their values remain positive or
deal with the fact that their values may in fact be set to negative values.

Table G-2. IDL basic data types, sizes, and Java mappings

IDL type specifier Required size Java data type

short 16 bits short

long 32 bits int

long long 64 bits long

unsigned short 16 bits short

unsigned long 32 bits int

unsigned long long 64 bits long

char 8 bits char

wchar Implementation-dependent char

string Unlimited java.lang.String

string<size> size chars java.lang.String

wstring Unlimited java.lang.String

wstring<size> size wchars java.lang.String

boolean Implementation-dependent boolean

octet 8 bits byte

Any Implementation-dependent org.omg.CORBA.Any

float IEEE single precision float

double IEEE double precision double

long double IEEE double extended Not supported

fixed 31 decimal digits java.math.BigDecimal

http://lib.ommolketab.ir
http://lib.ommolketab.ir

G.4.1. Strings and Characters

There are two character types included in IDL : char and wchar. A char represents an 8-bit character
from a single-byte character set, such as ASCII. A wchar represents a wide character from any
character set, including multibyte character sets like Kanji. The size of a wchar is implementation-
specific.

We've included the IDL string and wstring data types in this table as well, although technically they
should be considered constructed data types (arrays of a basic data type, characters). Since they're
so frequently used, it's useful to have them together with all of the IDL basic data types.

A string is the equivalent of an array of chars, and a wstring is an array of wchars. In both cases,
there are two ways to specify a string type: with or without a size specification or in angle brackets
following the type name. If you provide a size specification in your IDL declaration (e.g., string<10>
name), the language mapping is responsible for enforcing the bounds limits of the string. If you don't
provide a size specification, the string is allowed to grow to any size, limited only by the
implementation language.

If support for a multibyte character set is important for your application, then it's best to declare all
of your character and string data as wchars and wstrings. This way you'll be sure to get multibyte
support in languages that support it.

G.4.1.1. Mapping strings and characters to Java

In the IDL Java mapping, both char and wchar are mapped to the Java char type, and both string
and wstring types are mapped to the java.lang.String class. In Java, the char type represents a 2-
byte Unicode character and can therefore support multibyte character sets by default.

When marshaling and unmarshaling data items during remote method calls, the ORB is responsible
for performing bounds checks on the data members being set. If a value exceeds the bounds limits
declared for the string member in the IDL specification of the interface, then an
org.omg.CORBA.BAD_PARAM exception is thrown. If a character in a string falls outside the range
supported by IDL, then an org.omg.CORBA.DATA_CONVERSION exception is thrown.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

G.5. Constants and Literals

Literals are explicit values inserted into IDL code. Sometimes literals are used to specify a default
value for interface attributes or to declare the value for a constant. Literals can be Boolean (TRue or
false), numeric (integer, floating point, or fixed point), or character-based (a single character or a
string).

Literals are most often used in IDL to initialize the value of constants . Constants are named variables
that are restricted from being modified after being initialized. In IDL, a constant is declared using the
syntax:

// IDL

const <type spec> <identifier> = <value>;

where <type spec> is any valid basic data type or declared interface type, <identifier> is any valid
IDL identifier, and <value> is any IDL expression that evaluates to a literal value. The initialization

expression can be a simple literal or it can be a complex expression combining multiple literals using
logical or mathematical operators. You could declare a few useful numeric constants as follows, for
example:

// IDL
const float half = 1 / 2;
const float quarter = 1 / 4;

Most of the operators present in C/C++, such as addition (+), subtraction (-), multiplication (*), and
the logical and bitwise operators (|, &, ^, ||, &&, etc.) are supported by IDL.

G.5.1. Mapping Constants to Java

If an IDL constant is declared within an interface definition, then the constant is mapped to a public
static final static member on the corresponding Java interface.

If the IDL constant is declared outside of an interface definition, then a Java interface is created to
hold the constant value as a public static final value. The generated interface has the same name
as the IDL identifier given to the constant, and the static class member has the name value. So this
IDL constant declaration:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// IDL
const float PI = 3.1416;
interface GeometricOperators {
 const long maxDims = 3;
 ...

causes the generation of a Java GeometricOperators interface:

public interface GeometricOperators extends foobarOperations,
 org.omg.CORBA.Object, org.omg.CORBA.portable.IDLEntity
{
 public static final int maxVals = (int)((int)-3);
 ...

as well as a separate interface to hold the IDL constant PI that is declared outside of any interface:

// Java
public final class PI {
 public static final float value = (float) (3.1416D);
}

In your Java code, you can reference the value of PI using PI.value, and the value of the interface-
specific constant using GeometricOperators.maxDims.

G.5.2. Boolean Literals

There are two Boolean literals (naturally) in IDL. They are specified using the keywords TRue and
false. Their IDL type is boolean. In Java, they are mapped into the boolean values TRue and false.

G.5.3. Numeric Literals

G.5.3.1. Integer literals

An integer value in IDL can be declared in decimal, octal, or hexadecimal notation. Any sequence of
digits that doesn't start with a zero is considered a decimal integer value. If the sequence is all digits
but starts with a zero, it's assumed to be an octal value. If the literal starts with 0X or 0x, it's taken to
be a hexadecimal value.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

G.5.3.2. Floating-point literals

A floating-point literal is a decimal integer, optionally followed by a decimal point and a fractional
component and/or by the letter e or E followed by an exponent expressed as a decimal integer. Either
the fractional component (with the decimal point) or the exponent (with the e or E) must be present
for the literal to be interpreted as a floating-point value and not an integer. Similarly, either the initial
integer component or the decimal point must be present. So, for example, these are valid floating-
point literals:

2.34
0.31416e1
3E19
.0003413

G.5.3.3. Fixed-point literals

A fixed-point literal consists of a decimal integer, optionally followed by a decimal point and fractional
component (expressed as a decimal value), followed by the letter d or D. Either the integer
component or the fractional component must be present. The decimal point is optional. The trailing d
or D must be present in order for the literal to be interpreted as a fixed-point value. The following are
all valid fixed-point literals:

1.50d
.025d
1.333D
12d

G.5.3.4. Mapping numeric literals to Java

Numeric literals are mapped by taking into account the context in which they are used. Typically a
literal initializes a constant, and the declared type of the constant has to be checked to determine
whether the literal is valid for the type and how it should be mapped to a Java literal. For example,
these two similar IDL constant declarations:

// IDL
const short largeVal = 2000;
const float largeFloatVal = 2000;

are mapped by Sun's idlj compiler to these Java declarations:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// Java
public static final short largeVal = (short) (2000);
public static final float largeFloatVal = (float) (2000);

Sun's idlj compiler does some type and range checking on the IDL literal before converting it to its
Java form and inserting it into the cast operation shown previously. For example, if we change the
first constant declaration to:

// IDL
const short largeVal = 2e5;

the idlj compiler emits an error saying that the value is too large for a short variable.

G.5.4. Character Literals

A character literal is a character specification enclosed in single quotes (e.g., 'a'). Character literals
can be specified only with elements of the ISO 8859-1 character set. Some characters need to be
specified with a sequence of more than one character. These include characters that are nonprintable
or the single- and double-quote characters that are used to delimit string and character literals .
These characters are specified with escape sequences, which start with a backslash character. Table
G-3 lists the escape sequences supported by IDL and the nonprintable characters they represent.

Table G-3. IDL escape sequences

Escape sequence Meaning

\a Alert

\\ Backslash

\b Backspace

\r Carriage return

\" Double quote

\f Formfeed

\x## (e.g., \x4e) Hexadecimal number

\n Newline

\### (e.g., \012) Octal number

\? Question mark

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Escape sequence Meaning

\' Single quote

\t Tab

\v Vertical tab

Character literals, including the escape sequences listed in Table G-3, are converted unchanged into
Java literals.

G.5.5. String Literals

A string literal is a sequence of characters delimited by double-quote (") characters. If two string
literals are adjacent to each other in an IDL file, then they are concatenated. So in this example:

// IDL
const string acctHolder = "Jim " "Farley";

the generated Java code is:

// Java
public static final String acctHolder = "Jim Farley";

If you want to use the double-quote character in a string literal, you have to use its escape sequence
(see Table G-3).

\' Single quote

\t Tab

\v Vertical tab

Character literals, including the escape sequences listed in Table G-3, are converted unchanged into
Java literals.

G.5.5. String Literals

A string literal is a sequence of characters delimited by double-quote (") characters. If two string
literals are adjacent to each other in an IDL file, then they are concatenated. So in this example:

// IDL
const string acctHolder = "Jim " "Farley";

the generated Java code is:

// Java
public static final String acctHolder = "Jim Farley";

If you want to use the double-quote character in a string literal, you have to use its escape sequence
(see Table G-3).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

G.6. Naming Scopes

Each IDL file that you create defines a namespace or naming scope for identifiers that you declare
within that file. This namespace is further subdivided into nested scopes whenever you declare a new
module, interface, structure, union, or exception in your IDL file. You can think of the naming scope
within an IDL file as a sort of naming directory. By default, you start at the root of the directory, and
each time you open a declaration of one of these items, you start a new subdirectory of the naming
directory, named after the identifier you use for the item.

You can specify scopes using the :: delimiter, which is analogous to the . delimiters in Java class
names or the / or \ delimiters in file directories. The root scope for the IDL file is represented as ::
by itself, and nested scopes are specified by adding their names, such as ::utils::math::MatrixOps.
The names in a scope name can refer to any identifiers that might exist in each scope. In this
example case, utils and math might refer to modules (the math module is declared within the utils
module), and MatrixOps might refer to an interface declared within the math module. The
intermediate elements of a scoped name must refer to one of the IDL elements that define their own
scopes (listed previously), but the final element of a scoped name can refer to any item with its own
identifier, including constants, data members on interfaces, and so forth.

Within any particular scope in the naming scope of an IDL file (including the root scope), all identifiers
within that scope must be unique. Separate nested scopes off of one parent scope can have identical
identifiers declared within them and can share identifiers with their parent scope as well, but two
identifiers at the same level within a scope can't be the same. So you can legally declare the following
in an IDL file:

// IDL
module utils {
 interface math {
 const float PI = 3.1416;
 };
 interface baking {
 const string PI = "apple";
 };
};

The two definitions of PI (::utils::math::PI and ::utils::baking::PI) don't conflict, since each has
a distinct absolute scoped name within the IDL file. You can't, however, declare a constant named
math within the utils module, since its fully scoped name is also ::utils::math, and conflicts with
the name of the math interface.

Scoped names that begin with :: are absolute names and are relative to the root file scope of the IDL
file. Names that don't start with :: are relative to the local scope in which they appear. So in our
previous example, we could add two new constants to our math interface that use scoped names to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

reference our versions of PI:

// IDL
module utils {
 interface math {
 const float PI = 3.1416;
 const float PIsquared = PI * PI;
 const string PIOfTheDay = ::utils::baking::PI;
 };
 interface baking {
 const string PI = "apple";
 };
};

The reference to PI in the definition of the PIsquared constant is relative to the ::utils::math scope,
so it refers to the float constant. The reference to PI in the PIOfTheDay definition is absolute and
references the string definition of PI in the baking interface.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

G.7. User-Defined Data Types

In addition to the basic data types already described, IDL supports user-defined data types, which
are aggregations of these basic types. These complex data types include arrays, sequences,
enumerations, and constructed data types that you define yourself using structs and unions. We'll go
over each of these in detail in this section.

Complex data types are used in IDL by first giving them a type name, then using the type name
wherever you would use a basic data type name or an interface type name (e.g., declaring attributes,
method arguments, etc.). A name can be assigned to a complex data type in different ways:

With structures, unions, and enumerations, the name is included in the declaration of the data
type.

A typedef can be used to assign a name to a specific type (basic or complex).

Before we go on to see how complex data types are declared in IDL, let's take a look at how typedefs
are used to assign type names to these complex data types.

G.7.1. Typedefs

A typedef is used to associate a name with another data type. The syntax of an IDL typedef is:

typedef <type_spec> <identifier>

The <type_spec> can be any basic IDL data type, a user-defined data structure (structure, union, or
enumeration), an IDL interface type, or a sequence. The <identifier> can be a simple IDL identifier,

or it can include dimension specifications for an array. So the following are all valid typedef
statements:

// IDL

typedef short myShort;
typedef long longArray[2][2];
typedef PrintServer pserver;

After declaring these typedefs in your IDL file, you can use myShort, longArray, and pserver as type
names when declaring method arguments, return values, or interface attributes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

G.7.1.1. Mapping typedefs to Java

If an IDL typedef refers to a basic IDL type, then the Java equivalent to that type is used wherever
the typedef identifier is used. So our myShort typedef shown in the previous section is replaced by
the Java type short wherever it's used.

Any typedefs that refer to user-defined types are replaced by the mapped Java class or interface for
the target IDL type. If the type used in an IDL typedef is itself a typedef, then its target type is found
and so on until a final user-defined type or basic IDL type is found. So in this example:

// IDL
struct LinkedList {
 any item;
 any next;
};
typedef LinkedList DefList;
typedef DefList MyList;

wherever either DefList or MyList appears in the IDL file, it is mapped to the Java class generated
for the LinkedList type, since both refer (directly or indirectly) to that type.

A helper class is also generated for each typedef, providing the usual helper methods in terms of the
underlying mapped type. So a myShortHelper class is generated from our example, but its methods
are declared in terms of the underlying short type (e.g., its read() method returns a short). If the
underlying type is a sequence or array, then a holder class is also generated for the typedef.

G.7.2. Arrays

Arrays can be declared only within the context of a typedef. Once you've assigned the array type to a
type name using the typedef, you can use the new type name to declare array members on
interfaces. Since IDL doesn't provide a way to initialize array values, you can't declare array
constants in IDL, since constants have to be initialized in their declaration.

To declare an array, simply add dimensions in brackets to a variable identifier. For example, to define
a two-dimensional array of short values:

// IDL
typedef short short2x2Array[2][2];

IDL requires that you specify explicitly each dimension of the array, in order to support mappings to
languages that have a similar requirement.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

G.7.2.1. Mapping arrays to Java

Arrays are mapped into Java as arrays (naturally). So if we used our short2x2Array type defined
earlier in an IDL interface:

// IDL
interface MatrixOps {
 attribute short2x2Array identity2D;
 ...

the corresponding Java code would look like so:

// Java
public interface MatrixOps {
 short[][] identity2D();
 void identity2D(short[][] arg);
 ...

We'll look more at how interface attributes are mapped to Java later, but you can infer from this that
the short IDL array is mapped into a short array in Java. The attribute is mapped into a get and set
method for that attribute, and since Java doesn't allow array type specifiers to include dimensions,
our declaration that the identity2D attribute be a 2 x 2 array has been lost in the mapping. It's up to
you to provide an implementation of this interface that enforces the intended dimensions of the array
within the Java interface.

In addition to the mapping of the array type to equivalent type specifiers, each array typedef in IDL
causes the generation of corresponding helper and holder classes in Java. The type name specified in
the IDL typedef is used as the prefix for the xxxHelper and xxxHolder class names. So our

short2x2Array type has a short2x2ArrayHelper class and a short2x2ArrayHolder class generated for
it. The helper class provides the static methods that read and write the array type over CORBA I/O
streams, when the array type is used as a method argument or return type. These methods enforce
the array dimensions that you dictate in your IDL typedef; if the array is not of the correct type when
being marshaled, then the write() method throws an org.omg.CORBA.MARSHAL exception. The holder
class is used whenever you use your array type as an inout or out method argument. For more
details on the purposes on helper and holder classes, see Chapter 14.

G.7.3. Sequences

An IDL sequence is a one-dimensional array. To declare a sequence, you need to declare the type of
the elements in the sequence and, optionally, the maximum size of the sequence:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// IDL
typedef sequence<long, 2> longVector;
typedef sequence<short> unboundedShortVector;
typedef sequence<sequence<float, 2> > coordVector;

Like arrays, sequences have to be declared within a typedef, and then the new type name can be
used for typing attributes, method arguments, and return values. Notice in our last example that the
elements in a sequence can themselves be a sequence. Also notice that, if you don't provide a bound
for a sequence of sequences, you need to put a space between the two > brackets, so that they
aren't parsed as a >> operator.

G.7.3.1. Mapping sequences to Java

Sequences are mapped to Java almost identically to how arrays are. A sequence of a given IDL type
becomes a Java array of the equivalent Java type. Sequences of sequences become two-dimensional
arrays, and so forth. Holder and helper classes are generated for each sequence typedef as well,
using the type name specified in the typedef. The write() method on the helper class enforces any
size bounds that you specify on the sequence, throwing an org.omg.CORBA.MARSHAL exception if they
don't match.

G.7.4. Structs

A fixed data structure is declared using the struct construct in IDL. A struct is declared using the
following syntax:

// IDL

struct <type name> {

 <data member>;

 <data member>;
 ...
};

The type name is any valid identifier in IDL. Each data member is specified using a type spec and an

identifier used to reference the member (similar to attributes on an interface, described later). You
can use basic data types, arrays, sequences, and any other typedefs as types for members of a
struct. You can declare a recursive structure (a structure that includes members of its own type) by
using a sequence declaration:

// IDL
struct LispStringList {
 string car;
 sequence<LispStringList> cdr;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

};

G.7.4.1. Mapping structs to Java

An IDL struct is mapped into a public final Java class with the same name as the struct. Each
member of the struct is mapped to a public instance member on the Java class. The Java class
includes a default constructor that leaves the member variables uninitialized and a constructor that
accepts a value for each member. Our previous example struct is mapped to the following Java
class:

// Java
public final class LispStringList {
 // Instance variables
 public String car;
 public LispStringList[] cdr;
 // Constructors
 public LispStringList() { }
 public LispStringList(String _car, LispStringList[] _cdr) {
 car = _car;
 cdr = _cdr;
 }
}

Each struct also has a Java holder class generated for it, which is used to marshal the data type
when it's used as an inout or out method argument or as a method return value.

G.7.5. Enumerations

An enumeration in IDL declares an ordered list of identifiers, whose values are assigned in ascending
order according to their order in the enumeration. An enumerator is given a type name so that the
elements of the enumeration can be referenced. The syntax for declaring an IDL enumeration is:

// IDL
enum <type name> { <element name>, <element name>, ... };

The elements in the enumeration are guaranteed to be assigned actual values so that the comparison
operators in the implementation language will recognize the order of the elements as specified in the
enum declaration. So the first element is less than the second, the second is less than the third, and
so on. An example enum declaration follows:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// IDL
enum ErrorCode { BadValue, DimensionError, Overflow, Underflow };

G.7.5.1. Mapping enumerations to Java

Each enumerated type that you declare in IDL is mapped to a public final Java class of the same
name as the enumeration. The class holds a single private int instance member. A single private
constructor is generated for the class, which takes an int argument used to initialize the value
member.

For each element of the enumeration, two components are added to the Java class: a static final
int data member and a static instance of the generated Java class. The static data member
generated for each element is given a value that enforces the order of the elements in the
enumeration, and the static class instance generated for each element is initialized with this same
value. The static class instance is given the same name as the element in the enumeration, and the
static data member is given the element's name prepended with an underscore. These two
representations for each element of the enumeration let you reference the element value using either
a corresponding int value or the generated Java class type. If the enumerated type is used as a
method argument or return value in an IDL interface, your Java implementation will have to use the
object versions of the elements.

Our example enumeration generates a Java class like the following:

// Java
public class ErrorCode implements org.omg.CORBA.portable.IDLEntity
{
 private int _value;
 private static int _size = 4;
 private static ErrorCode[] _array = new ErrorCode [_size];

 public static final int _BadValue = 0;
 public static final ErrorCode BadValue = new ErrorCode(_BadValue);
 public static final int _DimensionError = 1;
 public static final ErrorCode DimensionError =
 new ErrorCode(_DimensionError);
 public static final int _Overflow = 2;
 public static final ErrorCode Overflow = new ErrorCode(_Overflow);
 public static final int _Underflow = 3;
 public static final ErrorCode Underflow = new ErrorCode(_Underflow);

 public int value ()
 {
 return _value;
 }

 public static ErrorCode from_int (int value)
 {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 if (value >= 0 && value < _size)
 return _array[value];
 else
 throw new org.omg.CORBA.BAD_PARAM ();
 }

 protected ErrorCode (int value)
 {
 _value = value;
 _array[_value] = this;
 }
}

So we can refer to the elements in the enumeration in our Java code using any of the following
forms:

// Java
int error1 = ErrorCode._BadValue;
ErrorCode error2 = ErrorCode.Overflow;
int error2Val = error2.value();

Each enumerated type also has a holder class generated for it, which is used whenever the
enumerated type is used in IDL as an out or inout method argument. Although not strictly required
by the IDL-Java mapping as defined by the OMG, an enumerated type might also have a helper class
generated for it.

G.7.6. Unions

IDL unions are similar in nature to discriminated unions in C and C++. A single tag field, or
discriminator, is used to determine the data element held by the union. Depending on the value of
the discriminator field, a particular instance of the union type may hold a different data member. The
union is declared using a switch statement to declare the various possible formats, or branches, of
the union structure:

// IDL

union <type name> switch (<discriminator type>) {

 case <tag value>:

 [<data element>;]

 case <tag value>:

 [<data element>;]
 ...
 [default:]

 <data element>;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

};

The discriminator for the union is declared using only the type for the discriminator (no identifier is
given to the discriminator, since there is only a single discriminator per union type). The type for the
discriminator must be an integer, character, Boolean, or enumerated type (no strings, structs,
unions, arrays, or sequences allowed).

Each branch in the switch defines a data element that represents the value of the union if its
discriminator is a given value. Each data member identifier in a union switch has to be unique.
Multiple cases can be mapped to the same data element by listing them sequentially within the
switch. A single optional default case can be given for any values not given their own cases. So for
example, the following union:

// IDL
typedef sequence<long, 2> Coord2d;
typedef sequence<long, 3> Coord3d;
union MultiCoord switch (short) {
 case 1:
 long pos;
 case 2:
 Coord2d val2d;
 case 3:
 default:
 Coord3d val3d;
};

declares a type named MultiCoord, which represents a one-, two-, or three-dimensional coordinate,
depending on the value of its discriminator value. The default is for the coordinate to be 3-D, so the
case for a discriminator value of 3 is the same as the default case. Since a union can have only a
single data member per case, you have to use typedef types for the coordinate values. Depending on
the discriminator value, the union contains either a simple integer position, a Coord2D type that is
declared as a sequence of two integer values, or a Coord3D type that is a sequence of three integer
values.

If the discriminator value is given a value not listed in a case, the union consists of the data member
in the default case, if present. If there is no default case, the union has only its discriminator value
and no data members.

G.7.6.1. Mapping unions to Java

Each IDL union is mapped to a public final Java class of the same name as the union identifier. The
class contains a single, default constructor. The class has some kind of data member for maintaining
the value of the union discriminator (the details of which aren't dictated by the IDL-to-Java mapping)
and a discriminator() method for accessing it as a short value. The standard also doesn't specify
how data members for the union are implemented in the Java class. Each branch that you specify in
the IDL union is mapped to an accessor method and modifier method for that branch; these methods

http://lib.ommolketab.ir
http://lib.ommolketab.ir

are named after the identifier given to the data member in the branch. If you use one of the modifier
methods to set that branch of the union type, then the discriminator is automatically set to the
corresponding value. If you attempt to access the value from a branch and the union is not set to
that branch, then a CORBA::BAD_OPERATION exception (org.omg.CORBA.BAD_OPERATION in Java) is
thrown. The return value types and method arguments for the discriminator() method and the
case accessor/modifier methods are determined based on the standard type conversion rules for
mapping IDL to Java.

Our MultiCoord union example is mapped to the following Java class by Sun's idltojava compiler:

// Java
public final class MultiCoord implements org.omg.CORBA.portable.IDLEntity
{
 private int _pos;
 private int[] _val2d;
 private int[] _val3d;
 private short _discriminator;
 private boolean _uninitialized = true;

 public MultiCoord ()
 {
 }

 public short discriminator ()
 {
 if (_uninitialized)
 throw new org.omg.CORBA.BAD_OPERATION ();
 return _discriminator;
 }
 public int pos ()
 {
 if (_uninitialized)
 throw new org.omg.CORBA.BAD_OPERATION ();
 verifypos (_discriminator);
 return _pos;
 }

 public void pos (int value)
 {
 _discriminator = 1;
 _pos = value;
 _uninitialized = false;
 }

 private void verifypos (short discriminator)
 {
 if (discriminator != 1)
 throw new org.omg.CORBA.BAD_OPERATION ();
 }

 public int[] val2d ()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 {
 if (_uninitialized)
 throw new org.omg.CORBA.BAD_OPERATION ();
 verifyval2d (_discriminator);
 return _val2d;
 }

 public void val2d (int[] value)
 {
 _discriminator = 2;
 _val2d = value;
 _uninitialized = false;
 }

 private void verifyval2d (short discriminator)
 {
 if (discriminator != 2)
 throw new org.omg.CORBA.BAD_OPERATION ();
 }

 public int[] val3d ()
 {
 if (_uninitialized)
 throw new org.omg.CORBA.BAD_OPERATION ();
 verifyval3d (_discriminator);
 return _val3d;
 }

 public void val3d (int[] value)
 {
 _discriminator = 3;
 _val3d = value;
 _uninitialized = false;
 }

 public void val3d (short discriminator, int[] value)
 {
 verifyval3d (discriminator);
 _discriminator = discriminator;
 _val3d = value;
 _uninitialized = false;
 }

 private void verifyval3d (short discriminator)
 {
 if (discriminator == 1 || discriminator == 2)
 throw new org.omg.CORBA.BAD_OPERATION ();
 }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Notice that Sun's idlj compiler implements the data branches in the union using a set of data
members, one for each branch of the union. Other IDL -to-Java compilers can choose to implement
the union differently.

In this example, the default case and the third case share the same branch, so no accessor or
modifier method is generated for the default case. If we have a default case that is separate from all
other explicit cases in the union (i.e., has its own branch), then an accessor and modifier method is
generated for its branch as well. If two explicit cases are mapped to the same branch in the switch,
then the Java modifier method generated for that branch sets the discriminator value to the value of
the first case included for that branch. In these cases, another modifier method, which takes a
second argument that is the value for the discriminator, is also generated. As an example, if we want
to use a Coord2D for both 1D and 2D coordinates, we can modify our IDL union to have both case 1
and case 2 use the same branch:

typedef sequence<long, 2> Coord2d;
typedef sequence<long, 3> Coord3d;
union MultiCoord switch (short) {
 case 1:
 case 2:
 Coord2d val2d;
 case 3:
 Coord3d val3d;
 default:
 Coord3d valDef;
};

In this situation, the generated Java has an additional method included for the val2d branch:

public void val2d (short discriminator, int[] value) { ... }

This allows you to set the union to that branch and also specify which discriminator is intended. This
can be useful in some cases, such as our modified MultiCoord example, where the value of the
discriminator determines the usage for the object.

If no explicit default case is given in the union and if the listed cases don't completely cover the
possible values for the discriminator, then the generated Java class includes a single method named
default() that takes no arguments and returns a void. This serves as the modifier for the default
case, setting the union discriminator to some unused value.

The union also has a holder and helper class generated for it in the mapped Java.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

G.8. Exceptions

You can define exceptions in IDL, which are used to signal errors or other unusual circumstances that
may occur during a remote method call. Exceptions are declared with a unique name and an optional
set of data attributes:

// IDL

exception identifier { <data member>; <data member>; ...};

Each data member on the exception type is simply a type specification followed by a unique identifier
for the data member. The data is used to provide the caller with additional information about what
went wrong during the remote method call.

Using our geometric examples from earlier, we might define an exception that is thrown when a
MultiCoord with unexpected dimensions is passed into a method:

// IDL
exception BadDimension {
 short expected;
 short passed;
};

The server object raising one of these exceptions can set these data values, and the client making
the request can read these values to interpret what went wrong.

Exceptions can be declared within any module or interface scope in your IDL file.

G.8.1. Standard Exceptions

In addition to user-defined exceptions, a set of standard exceptions is defined within the CORBA
module. These standard exceptions can be raised by any method, even though they aren't listed
explicitly in the method definition. These exceptions can be referenced in IDL using the CORBA:: scope
(e.g., CORBA::BAD_PARAM). The standard CORBA exceptions are listed in Table G-4. Every standard
CORBA exception includes two data members: an unsigned long minor error code, which can further
specify the type of error that occurred, and a completion_status enum that can be one of
COMPLETED_YES, COMPLETED_NO, and COMPLETED_MAYBE. These status values indicate that before the
exception was raised, the method was either completed, was never initiated, or is in an unknown
state, respectively.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table G-4. Standard CORBA exceptions

Exception name Meaning

BAD_CONTEXT Failure while accessing the context object.

BAD_INV_ORDER Some methods were called out of their expected order.

BAD_OPERATION An invalid method was called.

BAD_PARAM An invalid argument was passed into a method.

BAD_TYPECODE A bad type code was used.

CODESET_INCOMPATIBLE
The underlying protocol code sets between the client and the server
are incompatible.

COMM_FAILURE A communication failure occurred.

DATA_CONVERSION Error while converting data.

FREE_MEM Failed to free some memory.

IMP_LIMIT Some implementation limit was exceeded.

INITIALIZE The ORB initialization failed.

INTERNAL An internal ORB error occurred.

INTF_REPOS Error attempting to access interface repository.

INV_FLAG An invalid flag was given.

INV_IDENT Invalid identifier syntax was encountered.

INV_OBJREF An invalid object reference was encountered.

INV_POLICY
An operation couldn't be performed because of incompatible security
policy settings.

INVALID_TRANSACTION An invalid transaction was used.

MARSHAL An error occurred while marshaling method arguments or results.

NO_IMPLEMENT The implementation for the method is not available.

NO_MEMORY Failed to allocate dynamic memory needed to execute the request.

NO_PERMISSION Not allowed to execute the method.

NO_RESOURCES There were insufficient resources for the request.

NO_RESPONSE No response received for request.

OBJ_ADAPTER The object adapter encountered an error.

OBJECT_NOT_EXIST The referenced object doesn't exist on the server.

PERSIST_STORE An error occurred while accessing persistent storage.

TRANSACTION_REQUIRED An operation requiring a transaction was called without one.

TRANSACTION_ROLLEDBACK
A transactional operation didn't complete because its transaction was
rolled back.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Exception name Meaning

TRANSIENT A transient error occurred, but the method can be tried again.

UNKNOWN An error occurred that the ORB couldn't interpret.

G.8.2. Mapping Exceptions to Java

User-defined exceptions are mapped to public final Java classes that extend
org.omg.CORBA.UserException, which is derived directly from java.lang.Exception. Otherwise, the
exception is mapped to Java in the same way as structs, as described previously. Each data member
is mapped to a public data member of the corresponding type, and a set of constructors is defined
for the exception class.

TRANSIENT A transient error occurred, but the method can be tried again.

UNKNOWN An error occurred that the ORB couldn't interpret.

G.8.2. Mapping Exceptions to Java

User-defined exceptions are mapped to public final Java classes that extend
org.omg.CORBA.UserException, which is derived directly from java.lang.Exception. Otherwise, the
exception is mapped to Java in the same way as structs, as described previously. Each data member
is mapped to a public data member of the corresponding type, and a set of constructors is defined
for the exception class.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

G.9. Module Declarations

A module is a name-scoping construct in IDL. It's similar to packages in Java or LISP or to
namespaces in C++. A module is declared with the module keyword, followed by an identifier for the
module and then the body of the module, enclosed in braces:

// IDL

module identifier { ... };

Modules can contain IDL interface definitions, constants, or user-defined types, such as typedefs,
structs, unions, and enumerations.

G.9.1. Mapping Modules to Java

Modules in IDL are mapped to packages in Java, and nested modules are mapped to subpackages,
with the innermost module being mapped to the rightmost subpackage. If we have the following
interfaces and modules defined in IDL:

// IDL
module util{
 interface MatrixOps { ... };

 module dbase {
 interface Query { ... };
 };
};

the generated Java code includes an interface named MatrixOps, starting with this package
statement:

// Java
package util;

and another interface named Query, with this package statement:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// Java
package util.dbase;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

G.10. Interface Declarations

An IDL interface is just a collection of data attributes and methods that define the semantics of the
interface. Declaring an interface is another way to create a new data type in IDL, but unlike structs
and unions, an interface can have both data members and methods that can be called on objects of
its type. An interface is also a name-scoping construct, similar to a module. You can declare an IDL
interface and simply include a set of constants that you want associated with that interface name. In
this case, you have to specify the interface scope in order to refer to the constants from within other
scopes.

An interface consists of the following elements:

// IDL

interface identifier [: inheritance spec] {

 interface body
};

The interface identifier can be any valid IDL identifier. The body of the interface can contain any of
the following constructs:

A user-defined type (struct, union, typedef, enum)

A constant declaration

An interface-specific exception declaration

Data attributes

Methods or operations

We've already seen the syntax for the first three of these items in earlier sections of this IDL
overview. They become part of an interface simply by being declared within the braces of the body of
the interface. In the next few sections, we'll see how to define interface attributes and methods , and
then we'll look at how inheritance of IDL interfaces works.

G.10.1. Attributes

Attributes are data members that belong to interfaces. To readers familiar with JavaBeans, declaring
an attribute on an interface is roughly analogous to adding a property to a Java bean. An attribute in
an IDL interface indicates that the interface provides some way to read and (in most cases) write the
attribute value.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The syntax for declaring an attribute within an interface body is:

// IDL

[readonly] attribute <type spec> <identifier> [, <identifier>, ...];

The attribute is signified by the attribute keyword, following by a type specification for the attribute
and an identifier name. You can declare multiple attributes of the same type by providing their
identifiers in a comma-delimited list after the type specifier:

// IDL
attribute short coord_x, coord_y, coord_z;

The type specifier can be any valid type, including IDL basic types, other interfaces, and user-defined
types previously defined or declared in a typedef. For example:

// IDL
enum ErrorCode { BadValue, DimensionError, Overflow, Underflow };

interface AttrTest {
 struct coord {
 short x;
 short y;
 };
 attribute ErrorCode lastError;
 readonly attribute coord COG;
 attribute string name;
};

The optional readonly keyword can precede the attribute declaration. This indicates that the attribute
can only be read externally and not directly written. This typically means that the value of this
attribute is set only as a side effect of some other method(s). In our example, the COG attribute may
represent the center of gravity of some geometric object, and we'll want that to be recomputed only
as the result of other methods that change the geometry of the object.

G.10.2. Methods

Methods (or operations, to use the IDL vernacular) provide a way for remote clients to interact with
the objects defined by an interface. A method declaration in IDL is composed of an identifier for the
method, the type of data returned by the method, and a list of data arguments or parameters that
the method accepts. An IDL method can also (optionally) be declared to use specific call semantics,
to possibly raise certain exceptions during its execution, and to accept certain context variables from

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the client environment.

The syntax of a method declaration within an IDL interface is:

// IDL

[<call semantics>] <return type> <identifier> ([<param>, <param>, ...])

[<exception clause>] [<context clause>];

The only required elements in a method declaration are the method identifier and the return type, so
an example of the simplest form of method declaration is:

// IDL
boolean doSomething();

This method simply returns a boolean flag when it is complete. It doesn't accept any arguments, uses
the default call semantics, doesn't raise a nonstandard exception, and accepts no context variables
from the client environment.

The return type for an IDL method can be any valid type, including user-defined types such as structs
and other interfaces. If a method doesn't return any data, then the return type should be declared as
void.

The identifier for a method is a valid IDL identifier. In IDL, two methods in the same interface can't
have the same identifier (i.e., there is no method overloading, as there is in C++ and Java).

G.10.2.1. Arguments

The arguments to a method on an interface are declared within the parentheses following the method
identifier and are separated by commas. The syntax for an individual method argument is:

<arg direction> <arg type> <identifier>

The identifier is any valid IDL identifier, and the argument type is any valid IDL type, including user-
defined types.

The direction specification indicates whether the argument is passed into the server, returned from
the server, or both. The direction specification can have one of three values: in, out, or inout. An
argument tagged as in is passed only from the client to the server object. An argument tagged as
out is not taken from the client, but its value is set by the server and returned if the method returns
successfully. An inout argument is passed in both directions; the object/data from the client is
passed to the server, and the server may modify the data and have the updates returned back to the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

client if the method returns successfully.

For example, suppose we want to change the doSomething() method that we just declared, have it
pass a directive to the server object in the form of a string, telling it what to do, and have another
string passed in as the thing to act on. In this case, we want the first argument (the string directive)
to be input-only, and we want the modified object to be passed in and returned in its changed state.
So we declare the method as follows:

boolean doSomething(in string whatToDo, inout string whatToDoItTo);

If a method raises an exception during its execution, then the values of any out or inout arguments
to the method are undefined. They may or may not have been modified by the method before the
exception was raised and execution was halted.

G.10.2.2. Exceptions

If a method on an interface can raise any exceptions during its execution, then you have to declare
this in IDL by adding a clause to the method declaration that lists all of the exceptions that can be
raised by the method. This is similar to the tHRows clause on Java methods. The syntax for the raises
clause looks like:

// IDL

raises (<exception type>, <exception type>, ...)

Every exception that you list in this clause has to be defined earlier.

Every method that you declare on an IDL interface can potentially throw one of the standard ORB
exceptions that we mentioned earlier (see Table G-4). You can't list these standard exceptions in the
raises clause for your methods.

For example, suppose we define our own BadDirective exception for our doSomething() method,
which is raised if the client passes in a string directive that the server object doesn't understand. We
modify the method declaration to look like the following:

// IDL
boolean doSomething(in string whatToDo, inout string whatToDoItTo)
 raises (BadDirective);

Again, we have to declare the BadDirective exception, and any data it contains, earlier in the IDL file.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

G.10.2.3. Context values

IDL supports the concept of a client context, which can contain name/value pairs that describe the
client's environment in some way. You might have an authenticated username stored in the client's
context, for example. The name of a value is a string, and its value is an Any object. The interface to
the context is provided by the IDL Context interface, and a mapping of this interface must be
provided in any language-specific binding of the CORBA standard.

You can add a context clause to your method declarations, which indicates which client context
variables should be propagated to the server when the method is invoked. The server object can then
query these context variables during the execution of the method. The syntax for adding a context
clause to your method declaration is:

// IDL

context (<var name>, <var name>, ...)

Each <var name> is a string literal that names the context variable to be propagated to the server

when the method is called.

Suppose that when we invoke our doSomething() method we want to be able to log who is making
the request. We'll look for a username variable in the client context and assume that it is the
authenticated identity of the client. We can specify that this context variable should be included in the
method call by adding a context clause to our method declaration:

// IDL
boolean doSomething(in string whatToDo, inout string whatToDoItTo)
 raises (BadDirective) context ("username");

A Java client might use this method like so:

// Java
// Get our context
Context ctx = ORB.get_default_context();
// Add our username to the context
Any username = new Any();
username.insert_string("JimF");
ctx.set_one_value("username", username);
// Call the remote method
obj.doSomething("anything", "entity");

Since we declared the doSomething() method to include the username context variable in its
invocations, this variable appears in the server's context and can be queried during execution of the
method.[3]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[3] Sun's implementation of the Java IDL binding doesn't support context variables. The Context interface is available in the Java

IDL API, but context clauses on IDL methods aren't represented in the generated Java code, and no context data is transferred to

the server.

You might ask when this context feature can be used as opposed to adding a method argument to
the method declaration. We could have just as easily added another string argument to our
declaration for the doSomething() method:

boolean doSomething(in string whatToDo, inout string whatToDoItTo,
 in string username) raises BadDirective;

One argument for using context variables is to make things easier on the client when certain data for
a method is optional. Rather than including an explicit argument and forcing the user to add a nil
value of some kind to the method call (null in Java, for example), you can make the optional data a
context variable and the user can choose to set it or not. In most cases, you'll find the context
variables used rarely, if at all.

G.10.2.4. Call semantics

If you don't specify any call semantics at the start of your method declaration, then the default
semantics are "at most once." This means that if a method call returns with no exceptions, then the
method was called a single time on the server object. If an exception is raised, then the method is
called at most once (the exception occurred either before the method was invoked or during
execution of the method).

You can choose to use alternate call semantics for your method by including a call attribute at the
start of your method declaration. In the current CORBA standard, only a single alternative is
available, which is called "best-effort" semantics. In this case, whether the method call returns
successfully or not, there's no guarantee that the method was actually invoked on the server object.
The difference between the default semantics and best-effort semantics is roughly equivalent to the
difference between TCP and UDP IP network connections and their handling of data packets.

Specify best-effort call semantics by adding the keyword oneway to the start of your method
declaration:

// IDL
oneway void tryToDoSomething(in whatToDo);

If you specify that a method is oneway, then the return type of the method has to be void, and it
can't have any out or inout arguments. The method is effectively called asynchronously, so the client
can't synchronously receive return data from the server object.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

G.10.3. Interface Inheritance

You can inherit attributes and methods from other IDL interfaces by deriving your interface from
them. The syntax for declaring the inheritance of an interface in its header is:

interface identifier : <parent interface>, <parent interface>, ... {

The parent interfaces can be any predefined interfaces, in the same module as this interface or in
different modules. If the parent interfaces are from other modules, you need to use the :: scope
specifier to identify them.

G.10.3.1. Method and attribute inheritance

A derived interface inherits all of the attributes and methods from its parent interfaces. Although IDL
allows for multiple inheritance, it's illegal to have two inherited attributes or methods with the same
identifier. You also can't declare an attribute or method within your interface with the same name as
an inherited attribute or method (i.e., overload a method or attribute). So if you have two interfaces
declared as follows:

// IDL
interface A {
 boolean f(int float x);
};
interface B {
 void f();
};

you can't define a new interface that derives from both of these interfaces, since the definition of the
method f() is ambiguous. Notice that, unlike C++ and Java, IDL uses only the name for the method
as its unique identifier, and not the entire method signature. This rule is a result of IDL's
multilanguage support, since some languages may be similarly limited.

G.10.3.2. Constant, type, and exception inheritance

A derived interface also inherits any constants, user-defined types, or exceptions defined in its parent
interfaces. They can be referred to in the derived interface as if they had been defined within the
interface. If we define the following base interface, for example:

// IDL
interface Server {
 exception ServiceInterrupted {};

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 boolean doSomething(in string what) raises (ServiceInterrupted);
};

we can use the ServiceInterrupted exception that we defined within the Server interface in another
interface by naming its scope:

// IDL
interface PrintServer {
 boolean printSomething(in string what)
 raises (Server::ServiceInterrupted);
};

Alternatively, we could derive the PrintServer from the Server interface, and then the exception can
be used as if it existed in the PrintServer scope:

// IDL
interface PrintServer : Server {
 boolean printSomething(in string what) raises (ServiceInterrupted);
};

It is legal to define constants, types, and exceptions in a derived interface using the same names as
those in its parent interfaces. If you do this, though, you need to refer to them unambiguously in
your interface declaration, using fully scoped names if necessary. If you declare your own
ServiceInterrupted exception in the PrintServer interface, for example, you need to provide a scope
for the exception in the raises clause, in order for the IDL compiler to know which version you're
referring to:

// IDL
interface PrintServer : Server {
 exception ServiceInterrupted { string printerName; };
 boolean printSomething(in string what)
 raises (PrintServer::ServiceInterrupted);

If you don't provide a scope, the IDL compiler throws back an error about ServiceInterrupted being
ambiguous.

G.10.3.3. IDL early binding

It's important to realize that IDL does "early binding" of constants, user-defined types, and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

exceptions as it compiles your IDL. This means that the definition of a constant, type, or exception is
bound to a particular reference within an interface as it's encountered in your IDL filenot after all
definitions have been examined. If we have the following IDL definitions, for example:

// IDL
struct Coord {
 short x;
 short y;
};

interface GeometricObj {
 attribute Coord cog;
};

interface GeometricObj3D : GeometricObj {
 struct Coord {
 short x;
 short y;
 short z;
 };
 attribute Coord cog3D;
};

then the cog attribute in the GeometricObj interface is the global Coord type (with x and y members
only), since at the time that the cog attribute is encountered in the IDL file, this is the binding
definition for Coord. The GeometricObj3D interface inherits this attribute with this type, but the cog3D
attribute declared in the GeometricObj3D interface is the GeometricObj3D::Coord type (with x, y, and z
members), since at that point, the Coord struct within the GeometricObj3D scope is defined and is
the default reference of the relative Coord type used in the cog3D declaration.

G.10.4. Mapping Interfaces to Java

As you might expect, each interface that you define in IDL is mapped to a public interface in Java.
Helper and holder classes are also generated for each interfacethe names of these interfaces are
generated using the identifier of the IDL interface, with Helper and Holder appended to it.

The Java interface extends the org.omg.CORBA.Object interface. Any inheritance specification that you
provide in your IDL interface is mapped directly to interface inheritance in Java, using extends
clauses. So our earlier PrintServer example, inheriting from Server, is mapped into a Java interface
that begins with the following:

// Java
public interface GeometricObj3D
 extends org.omg.CORBA.Object, GeometricObj { ...

http://lib.ommolketab.ir
http://lib.ommolketab.ir

G.10.4.1. Helper and holder classes

The helper class generated for an interface includes a static narrow() method that allows you to
safely downcast a CORBA Object reference to a reference of the interface type. If the Object isn't of
the expected type, then an org.omg.CORBA.BAD_PARAM exception is thrown. The helper class also
includes other static methods that let you read or write objects of the interface type over I/O streams
or insert/extract an object of this type from an Any value.

The holder class is used whenever the interface is used as the type for an out or inout method
argument. The holder class is responsible for marshaling the contents of the object to the server
object for the method call (for inout arguments), and then unmarshaling the (possibly updated)
return value. The holder class has a constructor defined that lets you wrap the holder around an
existing instance of the original interface, and it has a public value member that lets you access the
object argument both before and after the method call. You can see more details on using holder
classes in Chapter 14.

G.10.4.2. Attributes

Each attribute that you declare on the IDL interface is mapped into two accessor methods, each with
the same name as the attribute. So an attribute declared within an IDL interface as follows:

// IDL
attribute string name;

is mapped into these two methods on the corresponding Java interface:

// Java
String name();
void name(String n);

If you include the readonly tag on your IDL attribute declaration, the Java interface has only the read
accessor method and not the update accessor.

G.10.4.3. Methods

Methods declared on your IDL interface are mapped one-to-one to methods on the Java interface.
The return values and any in arguments are mapped directly to their corresponding types in Java.
Any out or inout arguments in the IDL method are mapped to their holder classes in the Java
method. This includes basic IDL types, which have their own holder classes defined for them in the
standard Java mapping. So this IDL method:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// IDL
boolean setPrintServer(in PrintServer server,
 out PrintServer previousServer,
 out long requestsHandled);

be mapped into the following Java method on the corresponding interface:

// Java
boolean setPrintServer(PrintServer server,
 PrintServerHolder previousServer,
 IntHolder requestsHandled);

Notice that the last argument is declared a long in IDL, which is mapped to int in Java. The
IntHolder class is therefore used in the mapped Java method.

To use this method, we have to create holder objects for the output parameters, then check their
values after the method call.

// Java
PrintServer newServer = ...;
PrintServerHolder prevHolder = new PrintServerHolder();
IntHolder numReqHolder = new IntHolder();

xxx.setPrintServer(newServer, prevHolder, numReqHolder);
int numReq = numReqHolder.value;
PrintServer prevServer = prevHolder.value;

We don't need to initialize the contents of the holders, since they are being used for out parameters.
If they are used for inout parameters, we have to initialize their contents at construction time or set
their value members directly.

If there is a raises clause on your IDL method declaration, then it is mapped to an equivalent throws
clause on the Java method. The context clause and call semantics (oneway) on an IDL method
declaration affect only the implementation of the generated Java method, not its signature.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

G.11. Value Type Declarations

Value types are a new IDL construct introduced when Objects by Value was adopted in the CORBA
specification, for Version 2.3. Prior to the adoption of Objects by Value, there were two argument-
passing semantics available in IDL. Interface types were passed by reference, and basic data types
were passed by value. But there wasn't any way to pass an object by value between remote agents,
in the way that Java serialization provides when using Java RMI. The CORBA Objects by Value
specification extends IDL to include a new entity, called a value type, that is similar in syntax to an
interface or a struct.

Value types are declared using the valuetype IDL keyword:

valuetype Coord3DVal { ... };

Any entity declared as a valuetype is passed by value when used as the argument to an operation. In
other words, the servant of the operation receives a copy of the entity, not a remote reference to the
entity residing on the caller, as is the normal case for IDL interfaces.

Value types can be declared with a custom modifier, which indicates that it will use custom
marshaling code provided by the developer in an implementation class:

custom valuetype Coord3DValCustom { ... };

This modifier alters the nature of the generated "native" code, as described in the next section.

Value types can also inherit other value types , which have semantics similar to interface inheritance:
the value type inherits all of the attributes, operations, state members, and initializers of its
parent(s). The syntax of value type inheritance is the same as interface inheritance:

valuetype childVal : parentVal { ... };

Value type definitions can contain everything an interface can, as well as state members and
initializers. Any members declared as state members are considered part of the state of the value
type, which needs to be marshaled and transmitted over the network when this valuetype is used in
a remote operation call. Any attributes declared in a valuetype aren't considered part of the state
that is passed by valueinstead, they're considered part of the local state of the entity. State members
are declared using either a public or private modifier, followed by a type specification and the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

declaration of the member identifier itself. Public state members are publicly available to the
application code; private members are accessible only in the implementation code and during
marshal operations. It's the responsibility of the language mapping to determine how this is
implemented in a particular language.

An initializer is a declaration of a constructor for this valuetype. Initializer declarations are identical to
operation declarations, except that they start with a special factory modifier. An initializer should
have arguments that are sufficient for the entity's state to be initialized fully.

For example, suppose we want to declare an object-like version of our Coord3d typedef, in that we
want our Coord3d to be able to have operations of its own. But we still want to be able to pass these
coordinates by value in remote operations. We can declare a new valuetype:

valuetype Coord3DVal {
 // The state that should be passed by value
 private Coord3d coord;
 // A local short attribute, not passed in remote operations
 attribute short localShort;
 // Initializer for this type
 factory makeCoord(in long x, in long y, in long z);
 // Operations to access state, etc.
 long getX();
 long getY();
 long getZ();
};

The Coord3DVal valuetype has a single state member, coord, that holds the coordinate value as a
Coord3D (our earlier typedef). This state data is marshaled and passed by value when a Coord3DVal is
used as an argument in a remote operation. The coord member is declared as private, so it is not
directly accessible to the application code. The Coord3DVal also has a local attribute, localShort, that
is not considered part of the state and is not transferred in remote operation calls. We declare a
single initializer, makeCoord(), for our valuetype, which takes the three coordinate values for the
Coord3d state member. Finally, our valuetype has some operations that provide access to the
individual coordinate values of the Coord3d state member.

G.11.1. Mapping Valuetypes to Java

For the most part, valuetypes are mapped to Java along the same lines as interfaces, but with some
key differences. A valuetype is mapped into an abstract Java class of the same name, rather than
into a Java interface. Each attribute is mapped to instance variables in the same manner that
interface attributes are mapped, using accessors that suit the modifiers on the attribute. State
members, however, are mapped directly to instance variables. Public state members are mapped to
public instance variables, and private state members become protected instance variables. Regular
IDL operations are mapped to methods on the Java class in the same way as interface operations.
Initializers, however, are mapped into a separate Java interface, named xxxValueFactory, where xxx

is the name of the valuetype. Each initializer declared in the IDL valuetype is mapped to an
equivalent method on the xxxValueFactory interface. To complete the mapping of the valuetype, you

http://lib.ommolketab.ir
http://lib.ommolketab.ir

need to provide concrete implementations of both the mapped abstract class and the
xxxValueFactory interface.

Our Coord3dVal valuetype is mapped by idlj to the following Java abstract class:

public abstract class Coord3DVal implements org.omg.CORBA.portable.StreamableValue
{

 // The state that should be passed by value
 protected int coord[] = null;

 private static String[] _truncatable_ids = {
 test.Coord3DValHelper.id ()
 };

 public String[] _truncatable_ids() {
 return _truncatable_ids;
 }

 // A local short attribute, not passed in remote operations
 public abstract short localShort ();

 // A local short attribute, not passed in remote operations
 public abstract void localShort (short newLocalShort);

 // Operations to access state, etc.
 public abstract int getX ();

 public abstract int getY ();

 public abstract int getZ ();

 public void _read (org.omg.CORBA.portable.InputStream istream)
 {
 this.coord = test.Coord3dHelper.read (istream);
 }

 public void _write (org.omg.CORBA.portable.OutputStream ostream)
 {
 test.Coord3dHelper.write (ostream, this.coord);
 }

 public org.omg.CORBA.TypeCode _type ()
 {
 return test.Coord3DValHelper.type ();
 }
}

The generated class inherits from org.omg.CORBA.portable.StreamableValue, which ensures that it is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

streamable over an I/O stream. The generated _write() and _read() methods provide the code to
marshal and unmarshal this value type when it is passed in a remote CORBA method call.

In addition, a Coord3DValValueFactory interface is generated to hold our single initializer method:

public interface Coord3DValValueFactory extends
 org.omg.CORBA.portable.ValueFactory
{
 // Initializer for this type
 Coord3DVal makeCoord (int x, int y, int z);
}

Once you provide the concrete implementations of these interfaces, an application creates one of
these valuetypes by constructing a concrete subclass of the Coord3DValValueFactory interface and
calling its makeCoord() method to obtain a Coord3DVal. This object can then be passed by value into
any CORBA remote method.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Appendix H. HJava IDL Tools
This appendix provides details on the IDL-related tools provided with Sun's JDK implementation.
Other JDK implementations or J2EE environments may supply their own versions of these tools, or
other tools altogether. Consult your vendor's documentation for details on their tools.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

idlj: The Java IDL Compiler Since JDK 1.3

Synopsis

 idlj [options] IDLfile

Description

The idlj compiler generates Java source files from interfaces, modules, and type descriptions defined
in IDL. The compiler implements the standard IDL-to-Java mapping defined by the OMG.

The idlj compiler accepts the standard IDL preprocessor directives, such as #include, which includes
declarations from another IDL file, and #define, which defines symbols to be used for conditional
compilation with #ifdef directives.

Run with no arguments at all, idlj generates all the client-side Java classes mapped from the specified
IDL file. To generate both client and server-side Java bindings, you need to use the -fall option
described later.

As of JDK 1.4, idlj generates POA-compliant server-side classes. The server skeletons inherit from
org.omg.PortableServer.Servant and use the POA operations to implement the skeleton. In JDK 1.3,
idlj generates server classes based on the nonstandard ImplBase inheritance scheme. The ImplBase
scheme can also be used in JDK 1.4, by using the -oldImplBase option described later.

Options

-d symbol

Defines the named symbol during preprocessing of the IDL file. Invoking idlj:

 % idlj -d foobar Account.idl

is equivalent to placing the following preprocessing directive at the top of the Account.idl file:

 #define foobar

http://lib.ommolketab.ir
http://lib.ommolketab.ir

-emitAll

By default, idlj emits Java mappings only for entities found directly in the specified IDL file. This
options causes idlj to emit Java mappings for all entities found in this file and in any files
#include'd in the file.

-f< side>

Controls whether to generate client- and/or server-side mappings and which flavor of mappings
to generate. The following values are supported:

client

Default value. Emits only the client-side mappings for the IDL entities.

server

Emits only the server-side mappings. In JDK 1.3, it generates ImplBase-style skeletons
by default; as of JDK 1.4, it generates POA-compliant skeletons by default.

serverTIE

Emits server-side mappings based on the TIE delegation model. See Chapter 14 for more
details on the TIE model.

all

Generates both client and server mappings. This is equivalent to specifying -fclient -
fserver on the command line.

allTIE

Generates both client and server mappings, but the server mappings follow the TIE
delegation model. This is equivalent to specifying -fclient -fserverTIE on the command
line.

-i < path>

The given path should be used to search for files specified in #include directives found in the
IDL file. You can include multiple paths using multiple -i options on the command line, or you
can use a delimited list of paths with a single -i option. The paths are delimited by colons on
Unix variants (Linux, Mac OS, Solaris, etc.), and by semicolons on Windows.

-J< javaoption>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Passes the specified option directly to the underlying Java virtual machine. There is no space
between the -J and the option. For example, use the following to run the JVM in verbose mode:

 > idlj -J-verbose ...

-keep

Don't overwrite a generated file if it already exists. By default, the compiler overwrites existing
Java files. This is handy if you've customized generated Java files and want to only regenerate
other files emitted from the IDL.

-noWarn

Don't print warning messages if encountered when compiling the IDL.

-oldImplBase

This version of idlj generates POA-compliant server classes by default. This option instructs
the compiler to generate the ImplBase-style server skeletons used in older versions of Java IDL
(1.3 and 1.2).

-pkgPrefix < entity> < prefix>

Overrides the normal package prefix given to the named entity. Normally entities such as an
IDL module, interface, value type, and so on are placed into a package based on the modules it
falls within. This option lets you override this procedure for a given entity using a specific
package name.

-pkgTranslate < moduleName> < newName>

Wherever the string specified by <moduleName> is found in an IDL identifier, it's replaced with
the <newName> in the generated Java files. For example, if you have an IDL file containing a
module Servers with an interface PrintServer, this invocation of idlj:

 > idlj -pkgTranslate Servers com.myorg.Servers servers.idl

causes the PrintServer interface to map to the package com.myorg.Servers. You can use multiple -
pkgTranslate options on the command line.

-skeletonName < prefix>%< postfix>

It allows you to customize the name of generated server skeletons, where % represents the
name of the IDL interface being mapped. If you have an IDL file containing an interface
PrintServer, the following:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 > idlj -skeletonName foo%bar servers.idl

generates a server skeleton class named fooPrintServerbar, in a file of the same name. By default,
skeletons are named <interfaceName>POA if POA-compliant server classes are generated; they are
named _<interfaceName>ImplBase if ImplBase-style server classes are generated. This custom

naming scheme is applied only to the skeleton files, it doesn't affect any TIE delegates (use the -
tieName option to customize these).

-td < path>

The given path should be used as the destination for the generated Java source files. If a Java
class is mapped to a Java package, the compiler automatically creates subdirectories in the
given destination to store the Java files. If this option isn't used, the compiler generates the
Java files in the current directory.

-tieName < prefix>%< postfix>

This option allows you to customize the name of generated TIE delegates, where % represents
the name of the IDL interface being mapped. If you have an IDL file containing an interface
named PrintServer, the following:

 > idlj -fallTIE -tieName foo%bar servers.idl

generates a TIE delegate class named fooPrintServerbar, in a file of the same name. By default, TIE
delegate classes are named <interfaceName>POATie if POA-compliant server classes are generated;
they are named <interfaceName>_Tie if ImplBase-style server classes are generated. This naming

scheme is applied only to the TIE files; it doesn't affect any skeletons. Use the -skeletonName option
to customize these.

-verbose

Runs the compiler in verbose mode, printing out progress messages as the IDL is parsed.

-version

Prints the version information for idlj. The compiler doesn't compile any files when this option
is specified; it simply prints the version and exits.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

orbd: Naming Service Daemon Since JDK 1.4

Synopsis

 orbd -ORBInitialPort <ns-port> [options]

Description

The orbd tool is a server daemon that runs a CORBA Naming Service. It's a replacement for the
tnameserv tool, which is still provided as part of Sun's JDK (described later). orbd supports both
transient and persistent CORBA servants running within its Naming Service. For transient naming
services, orbd can be used in a similar fashion to tnameserv. The Naming Service is started and told
to listen on a particular port using the -ORBInitialPort option, and CORBA servants are registered
directly to this Naming Service on the given port. These servants are transient, in the sense that their
references in the Naming Service last only for the lifetime of the orbd process.

To access the persistent services of orbd, you must use servertool (described later in the appendix).
The orbd daemon has a persistent reference manager internally and a database of persistent
references. The daemon can use these to reinitialize a servant if it dies or to reinitialize a servant
reference if the orbd daemon dies and is restarted. On their own, CORBA servants can access the
default transient services of orbd, but servertool can invoke orbd's persistent reference services
using an internal protocol between itself and orbd. To make a CORBA servant persistent, register it
with orbd using the servertool command interface.

To start the orbd daemon, run it from the command line with (at a minimum) an initial port specified:

 > orbd -ORBInitialPort 1050

If you want to register persistent CORBA server objects with orbd, start servertool using the same
port so that it connects to the running orbd process:

 > servertool -ORBInitialPort 1050

This presents the servertool command-line interface, which allows you to register CORBA servers
with orbd, as described later.

Options

http://lib.ommolketab.ir
http://lib.ommolketab.ir

-defaultdb < path>

Specifies the directory where orbd should maintain its persistent information in a file called
orbd.db. By default, the current directory is used for this file.

-J< javaoption>

Passes the given option directly to the underlying Java virtual machine. There is no space
between the -J and the option. For example, to run the JVM in verbose mode, use:

 > orbd -J-verbose ...

-ORBInitialPort < portnum>

Required. The standard CORBA property controls the initial port used for services, such as the
Naming Service. Normally it's optional for CORBA servants and tools, but the orbd daemon
requires that this option be specified on the command line. The default port for the Naming
Service is port 900, but on some Unix variants, ports less than 1024 are restricted to root
access, so you need to specify a higher port number, such as 1050.

-port < port>

Customizes the port number used by orbd for requests to reactivate persistent servers. This
option is useful when the default port of 1049 isn't available.

-serverPollingTime <time>

Sets the frequency (in milliseconds) with which the daemon checks on its persistent servers. If
not specified, the default time is 1000 ms.

-serverStartupDelay < time>

Sets the delay orbd inserts between the time it restarts a persistent server and the time it
forwards the next request targeted for that server. This gives the server a chance to initialize
itself. If not specified, the default time is 1000 ms.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

servertool Since JDK 1.4

Synopsis

 servertool -ORBInitialPort <ns-port> [options] [commands]

Description

The servertool is used with the orbd Naming Service to provide persistent CORBA server objects. A
CORBA server registered with an orbd daemon using servertool is managed as a persistent named
server. If the server object dies, the next request made of that server through orbd causes orbd to
reactivate the server object using information in orbd's persistent store. This information is registered
with orbd using servertool's command interface.

Options

-J< javaoption>

The given option is passed directly to the underlying Java virtual machine. There is no space
between the -J and the option. For example, to run the JVM in verbose mode, use:

 > servertool -J-verbose ...

-ORBInitialPort < ns-port>

Required. This is the standard CORBA property that controls the initial port used for services
such as the Naming Service. Normally it's optional for CORBA servants and tools, but the
servertool requires it be specified on the command line. The default port for the Naming
Service is port 900, but on some Unix variants, ports less than 1024 are restricted to root
access, so you need to specify a higher port number, such as 1050. The port number specified
when starting servertool should match the ORBInitialPort used to start the orbd daemon.

Commands

The following commands are executed using the servertool command line or prompt. You can specify
a single command from the list on the command line when you invoke servertool; servertool executes
the command and exits. If you don't provide a command on startup, servertool presents a prompt,
allowing you to execute the command.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

getserverid -applicationName < appName>

Prints the server identifier for a server object, given its application name.

help

Prints a list of the available commands.

list

Lists details about all the persistent servers registered with the orbd daemon.

listactive

Lists details about all currently active server objects (i.e., all servers that are registered and
running, not awaiting activation or reactivation).

listappnames

Lists the application names for all the persistent servers registered with the orbd daemon.

locate -serverid < serverID> [-endpointType < type>]

locate -applicationName < +> [-endpointType < type>]

Prints details of the ports used by the ORB(s) created for a particular server object. The server
object can be specified using either its server identifier (obtained using the getserverid, list, or
listactive commands) or using its application name (obtained using the list, listappnames, or
listactive commands). If an endpoint type is specified, only ports of that type are listed. The
only port type that seems to be supported in Sun's JDK is IIOP_CLEAR_TEXT.

If the specified server object isn't running when this command is invoked, it is activated.

locateperorb -serverid < serverID> [-orbid < orbID>]

locateperorb -applicationName < appName> [-orbid < orbID>]

The same as locate, except that it allows you to specify a specific ORB started by the server
object and prints ports only for that ORB. If no -orbid option is used, an empty ORB name
(i.e., " ") is used. The names given to ORBs that are started by a given server object are
obtained using the orblist command.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

orblist -serverid < serverID>

orblist -applicationName < appName>

Lists the identifiers for the ORBs created by a server object. If the specified server object isn't
running, it is activated.

quit

Quits the servertool process but doesn't stop the orbd daemon.

register -server < serverClass> -classpath < pathlist> [-applicationName < name>] [-
args < serverArgs>] [-vmargs < javaoptions>]

Registers a new CORBA server object with the persistent naming services of orbd. The -server
option specifies the fully qualified name of a server object that registers CORBA objects with
the Naming Service. The specified class must have a main() method, which is executed by the
daemon to activate and reactivate the CORBA server. The server object is activated
automatically when this register command is invoked. If the server object also has an install(
) method with the following signature:

 public static void install(org.omg.CORBA.ORB orb)

then this method is also invoked once when this command is invoked in servertool. This provides a
way for the server object to have a one-time setup of persistent resources.

The -classpath option specifies where to search for the classes required by the server object.

The -applicationName option specifies a name to associate with the server object. This name is used
in the information printed by the list, listappnames, and listactive commands and can also unregister
a server object using the unregister command.

The -args option specifies arguments to give to the server object when its main() method is
invoked.

The -vmargs option specifies arguments to pass to the JVM when the server object is activated.

shutdown -serverid < serverID>

shutdown -applicationName < appName>

Shuts down (deactivates) a server object registered with the ORB. If the server class has a
shutdown() method, it's called when this method is invoked.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

startup -serverid <serverID>

startup -applicationName <appName>

Manually reactivates a server object. If the specified server is already running, the command
returns an error and does nothing.

unregister -serverid < serverID>

unregister -applicationName < appName>

Removes a server object from the Naming Service's persistence services. The server object can
be referenced using either its server identifier (which can be obtained using the getserverid,
list, or listactive commands) or using its application name (which can be obtained using the list,
listappnames, or listactive commands).

If the server object has a static uninstall() method with the signature:

 public static void uninstall(org.omg.CORBA.ORB orb)

then this method is invoked when unregister is called on the server object. This lets the server
object clean up any persistent resources.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

tnameserv: Transient Naming Service Daemon Since JDK 1.2

Synopsis

 tnameserv [options]

Description

The tnameserv daemon is a transient implementation of the CORBA Naming Service provided with
Java IDL. tnameserv allows remote CORBA objects to bind to names with the naming directory of the
service. Remote clients can connect to tnameserv through standard CORBA APIs and ask for
references to these objects by name or browse through the objects bound to names in the directory.
This daemon runs a Naming Service implementation whose object bindings persist only for the
lifetime of the daemon process. The orbd tool, described earlier, provides both persistent and
transient naming services.

Options

-J< javaoption>

Passes the given option directly to the underlying Java virtual machine. There is no space
between the -J and the option. For example, use the following to run the JVM in verbose mode:

 > tnameserv -J-verbose ...

-ORBInitialPort < portnum>

Listens to the specified port for client requests on the Naming Service. The default port is 900.
This option corresponds to the Java property org.omg.CORBA.ORBInitialPort.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

About the Authors
Jim Farley is a technology strategist, architect, manager, and author. His current focus is his role as
the technology solutions architect for the Harvard Business School, working to assemble enterprise
systems for both the instructional and back-office operations at the school. Jim also consults for
various organizations in strategic technology and development, lectures in the computer science
department at Harvard's Division of Continuing Education, and publishes articles in a number of
forums. Jim's history with computing, enterprise and otherwise, has spanned numerous domains,
including manufacturing, artificial intelligence, multimedia, collaboration tools, and content
management.

William Crawford has developed web-based enterprise applications since 1995, including one of the
first web-based electronic medical record systems, and some of the first enterprise-level uses of
Java. He's also consulted for Children's Hospital Boston, Harvard Medical Center, and several Fortune
500 companies. He was chief technology officer at Invantage, Inc., and principal software architect at
Perceptive, Informatics, Inc. He is also the coauthor of O'Reilly's J2EE Design Patterns and Java
Servlet Programming. Will has taken a temporary leave from enterprise Java development to pursue
MBA and MS degrees at MIT.

Prakash Malani has extensive experience in architecting, designing, and developing software in
many application domains, such as entertainment, finance, retail, medicine, communications, and
interactive television. He practices and mentors leading technologies such as J2EE, the Unified
Modeling Language (UML), and XML. Prakash also teaches (and preaches) best practices and design
patterns at institutions such as California State Polytechnic University, Pomona. He has published
various articles in industry-leading publications including JavaWorld and WebLogic Developers
Journal.

John G. Norman has been developing web-based products and services for more than 10 years,
and has been working with technology since he was introduced in the mid 1970s to an IBM 1130
running FORTRAN and APL. Since 1999 he's worked on social networking products, business
analytics, and e-commerce at companies such as Cambridge Incubator, Veritas Medicine, Elytics, and
H3.com, where he is currently the chief software architect. John has taught literature at Ohio State,
new media at the New School, and engineering at Harvard University's Extension Division. He holds a
PhD in English literature from Harvard.

Justin Gehtland, a professional programmer, instructor, speaker, and pundit since 1992, has
developed real-world applications using VB, COM, .NET, Java, Perl, and a slew of obscure
technologies since relegated to the trash heap of history. His focus on "connected" applications led
him to COM+, ASP/ASP.NET, and JSP. Justin is the coauthor of Effective Visual Basic and Windows
Forms Programming in Visual Basic .NET (both Addison-Wesley). He is currently the Agility columnist
on TheServerSide.NET, works as a consultant through his company Relevance, LLC, and teaches for
DevelopMentor.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing
personality and life into potentially dry subjects.

The animal appearing on the cover of Java Enterprise in a Nutshell, Third Edition, is a sand dollar
(Echinarachnius parma). The sand dollar is a flattened, rigid, disk-shaped marine invertebrate related
to sea urchins and sea stars. It is found in large numbers on the sandy bottoms in the coastal waters
of many parts of the world. The sand dollar's shell, or test, is often perforated with petal-shaped slots
arranged around a central point. The mouth is located in this central position on the underside of the
shell. The shell is covered with spines of varying lengths. These spines aid the sand dollar in
locomotion and enable it to burrow just below the surface of the sandy bottom. In this sand, the sand
dollar finds the tiny organic material it feeds on, pushing the food toward its mouth with tiny tube
feet. Additional tube feet on the upper side of the sand dollar are used for breathing.

The sand dollar's flower-like appearance and its abundance in many parts of the world have made it a
favorite of shell collectors. Scientists have also taken an interest in this small invertebrate. The sand
dollar is frequently used in the study of mitosis, the process of cell division. It is believed that a better
understanding of mitosis may lead to a better understanding of cancer.

Abby Fox was the production editor for Java Enterprise in a Nutshell, Third Edition. Norma Emory was
the copyeditor, and Genevieve Rajewski was the proofreader. Matt Hutchinson and Marlowe Shaeffer
provided quality control. Lydia Onofrei, Loranah Dimant, and Jansen Fernald provided production
assistance. Johnna VanHoose Dinse wrote the index.

Edie Freedman designed the cover of this book, using a 19th-century engraving from the Dover
Pictorial Archive. Karen Montgomery produced the cover layout with Adobe InDesign CS using
Adobe's ITC Garamond font.

David Futato designed the interior layout. This book was converted by Keith Fahlgren from Microsoft
Word to FrameMaker 5.5.6 with a format conversion tool created by Erik Ray, Jason McIntosh, Neil
Walls, and Mike Sierra that uses Perl and XML technologies. The text font is Linotype Birka; the
heading font is Adobe Myriad Condensed; and the code font is LucasFont's TheSans Mono Condensed.
The illustrations that appear in the book were produced by Robert Romano, Jessamyn Read, and
Lesley Borash using Macromedia FreeHand MX and Adobe Photoshop CS. The tip and warning icons
were drawn by Christopher Bing. This colophon was written by Clairemarie Fisher O'Leary.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

& (ampersand), combining with search filter

* (asterisk) wildcard character in LDAP searches

| (vertical bar), | (OR) operator, combining with search filter

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

abstract persistence schema, entity beans

acceptChanges() (CachedRowSet)

Account interface (example)

 defining and implementing

AccountClient class (example)

AccountImpl class (example)

 implementation of Account class

AccountReg class (example)

ACID properties, transactions

acknowledge() (Message)

Action class, Struts

 RequestProcessor

action tags, JSPs

 JavaBeans and

ActionForm class, Struts

ActionServlet, Struts and

Activatable class 2nd 3rd 4th

 constructors

activating

 activation groups

 defining activatable objects

 passing arguments to activatable objects before activation

 registering activatable objects

 registering objects

 RMI activation service, features of

 rmid activation daemon

ActivationDesc class

ActivationGroup class

 entire group, becoming inactive

ActivationGroupDesc class

ActivationGroupID class

ActivationID class 2nd

ActivationMonitor class

Activator interface

 activatable objects registry

 active object references, transferring

activeObject() (ActivationGroup)

addBatch()

 CallableStatement interface

 PreparedStatement interface

 Statement interface

http://lib.ommolketab.ir
http://lib.ommolketab.ir

addNamingListener(), EventContext and EventDirContext

addRowSetListener() (RowSet)

aggregate functions, SQL

AlreadyBoundException class

ALTER TABLE statement (SQL)

AND operator, combining search filter with

annotations

 introduction

 J2SE tutorial

 tools

 XDoclet

 custom

 deployment descriptors

 processing

ANSI-92 SQL state codes

Ant

 application assemblies

 application deployment

 buildfiles

 portability

 properties

 targets

 builds, unit tests

 component deployment

 introduction

 JUnit and

 batch testing

 test result format

 overview

 property files

 targets, modular

 tasks

 directory tasks

 enterprise

 file tasks

 Java tasks

 utilities

 versions

Apache

 Ant and

 Cocoon content management system

 Xalan (XSLT transformer)

 Xerces parser

 XML project

APIs

 distributed computing and

 Enterprise JavaBeans and 2nd

 Hibernate API

 configuration and

 events

 interceptors

 Query class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Session object

 SessionFactory

 IDL

 J2EE security

 JACC

 Java RMI

 JAXP

 JCE

 JNDI

 JSF

 JSP

 JTA 2nd

 messaging

 Servlet API 2nd

 web UIs

appendChild()

applets

 classes, loading 2nd

 deployment, Java drivers and

 JDBC-ODBC Bridge, requirements for using

application archives

 deployment descriptors

application assembly 2nd

 Ant

 example

 module declaration

 security

application clients

application layer security

 authentication

 authorization

 declarative vs. programmatic

application.xml, deployment descriptors

applications

 database, debugging

 object references (application-specific)

 server, network hardware and

 web applications

 structure

archives, application archives

arguments

 IDL methods

 initialization constructors

 remote methods

arithmetic operators

 JMS message selectors

arrays

 IDL

 update counts

assembling applications, Ant

assembly, introduction

assertion methods (JUnit)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

attachments to email messages

attributes

 Attributes interface

 DOM 2nd

 IDL interfaces

 parsing with SAX

authentication

 application layer security

 Authenticator class

 client connections to JMS provider

 EJB-tier

 JAAS and

 JNDI and

 usernames and passwords 2nd

 web-tier

Authenticator class

 final methods for information about an authentication request

authorization

 application layer security

 EJB-tier

auto-commit mode (transactions) 2nd

Axis deployment model

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

backing beans, JSF

BAD_PARAM class

base document element (XML)

batch testing, JUnit and Ant

batch updates (JDBC)

BatchUpdateException class

bean implementation (EJBs)

bind()

 Context interface

 NamingContext interface

 Registry interface

bind_new_context() (NamingContext)

binding

 languages to CORBA

 names to objects in naming service

 objects to contexts

 remote objects to names

bindings

 for naming events

 listing for JNDI context

black box testing

BLOBs (binary large objects)

BMP (bean-managed persistence)

BMTD (Bean-Managed Transaction Demarcation)

body tags, JSP

Boolean literals, IDL

branch, CORBA naming directory

browse command

browsers, transforming XML into HTML for

browsing

 message queues

 naming systems

buildfiles (Ant)

 portability

 properties

 targets

builds (Ant), unit tests

built-in objects, JSP

business logic in EJB component model

BytesMessage class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

C/C++ languages

 IDL interfaces, converting to Java

 Java and IDL syntax, modeled upon

 nonclass data structure definitions

 wrapping code with Java interface

CachedRowSet object

caching in Hibernate

Cactus 2nd

 architecture

 asynchronous code testing

 model

 running tests

 test proxies

 testing enterprise components

 testing JSPs

 testing process

 testing servlet filters

 testing servlets

 writing tests

call semantics, IDL methods

CallableStatement interface

 stored procedures

casting

 CORBA remote objects to specific remote interfaces

 Node to Element object and adding attributes

 returned Context or DirContext for event source

catch blocks (SQLException)

cd command (NamingShell application)

changed transactions

character literals, IDL

characters

 char strings

 CLOBs (character large objects) 2nd

 IDL

characters()

children of a context, listing

ClassCastException class

classes

 activatable remote objects

 activation groups

 configuring clients and servers

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 container-specific

 DII

 inner

 Java, IDL interfaces vs.

 loading dynamically

 loading remote

 mapping, Hibernate configuration

 names for (JDBC)

 public

 remote interface, implementing

 RMI, for remote object implementations

 security

 stubs and skeletons, generating

classloading, models for deployment

 RMI

classpath

 Ant

 local default class loader

 RMI registry

clearBatch() (Statement)

clearBody() (Message)

clearParameters() (PreparedStatement)

clearProperties() (Message)

client interfaces (EJBs)

client stub interfaces (EJBs)

client stubs 2nd 3rd 4th 5th

 classes, loading

 classes, regenerating (RMI/IIOP)

 compiling

 configuring for remote class loading

 idltojava compiler, generating 2nd

 Java to CORBA object

 language-specific, generating

 original objects, changing

 relationships with skeletons and remote objects

 remote object classes

 remote objects, not instantiated

 RemoteObject as superclass for

 RMI architecture

clients

 as Java objects (RMI)

 authenticated JMS connections

 distinguishing from servers in distributed object system

 EJB client

 factory classes

 freeing resources from connections and sessions

 general setup

 identifiers for

 Java IDL (CORBA)

 JMS

 key interfaces

 looking up remote object and calling method on it

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 messaging

 point-to-point messaging

 receiving messages

 remote method arguments and return values

 remote method requests, server objects

 RMI 2nd

 RMI registry and naming services

 sending messages

 sessions

 setting RMISecurityManager for class loading

 SMTP

 stringified object reference, using

 temporary destinations, creating

 web services

 DII approach

 dynamic proxy approach

 static proxy approach

 writing

CLOBs (character large objects) 2nd

 Clob class

cloneNode() (Node)

cloning a message

close()

 Connection interface 2nd

 Folder class

 Session interface

clusters, RDBMS

CMP (container-managed persistence), entity beans (EJBs)

CMR (container-managed relationship) fields

 EJB relationships

CMTD (container-managed transaction demarcation) 2nd

 EJBs, transactions and 2nd

code compile, Ant tasks

codebase for non-default class loader classes

collection member variables

 EJB QL

collection types, Hibernate configuration

columns

 data types

 Java objects, storing in database tables

 null values in

 values, retrieving

commands

 rmid

 rmiregistry

 SQL

 data manipulation

 DELETE

 INSERT

 schema manipulation commands

 SELECT

 UPDATE

http://lib.ommolketab.ir
http://lib.ommolketab.ir

comments

 IDL

 XML, ignoring with DOM parser

commit phase, distributed transactions

commit()

 Connection interface

 XASession class

committing transactions

 auto-commit mode

communication protocols

 comparison operators

 EJB QL statements

 SQL statements

 IIOP

 IMAP and POP-3

 JRMP

 POP and SMTP

 SOAP

 transport protocol layer, RMI

comparison operators

 JMS message selectors

compiling code, Ant tasks

component model, EJB

component modules

 assembly

 deployment descriptors

 EJB

 jar files

 web

component references, deployment descriptors and

components

 deployment and

compound names

CompoundName class

concurrency

 support information

 transactions, optimistic

conditional expressions

 arithmetic operators

 EJB QL functions

 functions, comparison operators

 logical operators

configuration

 Hibernate

 class mapping

 collection types

 global configuration

 polymorphic mappings

 relationship mappings

 types

 Hibernate API

 JNDI services

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 naming conventions

 JSF

 Struts

configuration information in database metadata

connect() (Service)

Connection interface 2nd

 createStatement()

 isolation modes, listed

 JMS provider connections

 setSavepoint()

 transactions (JDBC), managing

connection pooling

ConnectionFactory interface 2nd

ConnectionPoolDataSource interface

connections to JMS provider, closing at session end

connections, database

 pooling

constants, IDL

 InitialContext

 mapping to Java

constructors

 Activatable class

 activatable objects

 ActivationDescr class

 for remotely loaded classes

 in server implementation

 NameComponent class

 reactivation

 remote object, initializing, registering, activating

 RMI implementation classes, throwing RemoteException

containers

 EJB session beans

 EJBs 2nd

 servlet containers

content management systems

ContentHandler interface

Context interface 2nd

 keys for JNDI property names

 rebind() method

context values, IDL methods

contexts

 binding objects to

 browsing a naming system

 creating and destroying

 JNDI

 listing bindings of

 listing children for

 looking up objects

 naming system providers

cookies

CORBA

 adding objects to NamingContext

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 architecture

 creating objects

 DII API

 distributed object services

 DSI API

 IDL

 IIOP 2nd

 IORs

 language independence

 Naming Service, registering server object with

 object references, narrowing

 ORBs

 remote classes, finding

 remote object references

 RMI objects, accessing from

 RMI with JNI vs.

 root object class

CREATE TABLE statement (SQL)

createAttribute() (Document)

createAttributeNS() (Document)

createConsumer() (Session)

createDurableSubscriber() (TopicSession) 2nd

createElement() (Document)

createElementNS() (Document)

createProducer() (Session)

createPublisher() (TopicSession)

createQueueBrowser() (QueueSession)

createQueueSession() (QueueConnection)

createReceiver() (QueueSession) 2nd

createRegistry() (LocateRegistry)

createSender() (QueueSession)

createStatement() (Connection) 2nd 3rd

createSubcontext()

 Context interface

 DirContext interface

createSubscriber() (TopicSession) 2nd

createTopicSession() (TopicConnection)

Crimson parser

cross-database APIs

cursor position (result sets)

customizing

 JMS message properties

 URI resolution for XSL files

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

data grids, JSF tables

data manipulation statements, SQL

data sources for multipart email messages

data types

 binary and character (large objects)

 columns, returning (ResultSet)

 custom message properties

 DatabaseMetaData methods, returning

 declaring

 IDL

 characters

 strings

 user-defined

 in remote method arguments

 Java handling

 Java types corresponding to

 Java/SQL mapping

 large

 object, Java handling of

 primitive

 relational databases and

 serialization

 SOAP messages and

 SOAP, mapping to Java

 SQL

 stored procedures output

 streams of in messages

 WSDL, mapping to Java

DatabaseMetaData interface

 scrolling and concurrency support

databases

 accessing (result sets)

 changes, losing

 commands, database-independent (JDBC)

 configuration information, obtaining

 connections

 creating

 differences among systems

 editing data, inserting and deleting rows (ResultSet)

 insertions, preventing (transactions)

 interacting with JDBC

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Java-aware

 JDBC drivers

 null values, handling

 null values, inserting

 objects (Java types), inserting

 relational

 SQL and

 scalar functions

 SQL strings, processing

 stored procedures 2nd

 tables, displaying contents of

 transactions

 update counts, getting

 updateable ResultSet, differences

 web applications

DataSource interface

date/time functions, SQL

dates and times, JDBC classes for

DCE-CIOP (DCE Common Inter-ORB Protocol)

debugging database applications, using warnings for

declarations

 IDL interfaces

 web components, deployment descriptors and

 XML

declarative transactions

DefaultHandler class

defining

 activatable remote objects 2nd

 key RMI classes for implementations

 remote RMI objects

 writing class to implement remote interface

delegates (CORBA remote object stubs)

DELETE statement (SQL)

deleteRow() (ResultSet)

deleting

 message from IMAP store

 rows from ResultSet

deployment

 applications, Ant

 component references

 components (Ant)

 EJBs

 entity beans

 security-related attributes

 introduction

 J2EE

 container-specific classes

 descriptors

 server-specific configuration

 JNDI configuration services

 message-driven EJBs

 physical

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 resource references

 runtime classloding models

 web services

 Axis model

 J2EE

 Java implementation code

deployment descriptors 2nd

 application archives

 component modules

 EJBs 2nd

 web components

 web services

 WSDL mappings

 XDoclet

 XML

Destination interface

destinations for messages

 addresses

 temporary, clients creating

destroySubcontext() (Context)

development tools

 Ant

 Cactus

 Hibernate

 Java Annotation

 JUnit

 Struts

 XDoclet 2nd

development, Struts and

DII (Dynamic Invocation Interface) 2nd 3rd

 web service clients 2nd

DirContext interface

 createSubcontext()

<%@ > directives

directives in JSP

directory services

 accessing

 creating directory entries

 modifying directory entries

 search command

 search controls

 search criteria

 search results

 searching a directory

directory tasks (Ant)

directory trees, servlet context

dirty reads (transactions)

DISTINCT option, SELECT clause

distributed applications

 remote interfaces, defining

 with Java and non-Java components

distributed component model

http://lib.ommolketab.ir
http://lib.ommolketab.ir

distributed computing

 EJB component model

 garbage collection

 Java RMI, garbage collection

 transactions

distributed objects

 clients and servers, distinguishing

 CORBA standard services

 RMI, interacting with

distributed transactions

 JMS destination

 scenarios

 two-phase commit

Document class

Document Type Definitions

DocumentBuilder interface 2nd

DocumentBuilderFactory class 2nd

DocumentCondenser class (DOM example)

DocumentFragment class

DOM (Document Object Model) 2nd

 element attributes

 extending trees

 getting a parser

 manipulating DOM trees

 navigating DOM tree

DOMImplementation interface

DOMParser class

DOMResult class

DOMSource class

DriverManager class

drivers, JDBC

 currently available, listing of

 escape sequences, translating

 JDBC-ODBC Bridge 2nd

 loading (example)

 null values

 registering with DriverManager

 results sets (scrollable and updateable)

 support levels, accommodating

 types, listing of

DROP statement (SQL)

DSI (Dynamic Skeleton Interface) API 2nd

DTDs (Document Type Definitions)

 orders.xml document (example)

 validating XML document against with SAX parser

DynaActionForms, Struts

dynamic class loading (RMI)

 configuring clients and servers for

 loading classes from applets

Dynamic Invocation Interface (DII) API 2nd 3rd

Dynamic Method Interface (CORBA)

dynamic proxy, web services clients 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Dynamic Skeleton Interface (DSI) API 2nd

dynamic web pages

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

e-commerce

ear files

ear task

EJB (Enterprise JavaBeans)

 bean implementation

 beans

 creating

 finding

 client stub interfaces

 code artifacts

 component model

 overview

 component modules

 components 2nd

 container callbacks

 message-driven beans

 containers

 deployment

 security-related attributes

 deployment descriptors 2nd 3rd

 distributed components

 distributed computing and

 enterprise computing scenarios

 e-commerce for mail-order business, enabling

 transactional integrity for e-commerce business

 entity beans 2nd

 abstract persistence schema

 BMP

 CMP

 container callbacks

 deployment

 finder methods

 implementation

 lifecycle

 primary keys

 select methods

 handles

 home interfaces

 identities

 deployment

 interfaces

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 client interfaces

 home interfaces 2nd

 JTA (Java Transaction API)

 local clients

 message-driven beans 2nd

 container callbacks

 deployment

 object implementation

 packages

 remote clients

 session beans

 container management

 stateful

 stateless

 transaction support

 testing, Cactus

 transactions

 BMTD

 CMTD 2nd

 session facade

 tutorial

 version 3.0

 version covered

 web services

 deployment

EJB API

EJB client

EJB object

EJB QL

 finder and select methods

 FROM clause

 collection member variables

 range variables

 functions

 conditional expressions

 ORDER BY clause

 query structure

 SELECT clause

 DISTINCT option

 WHERE clause

 literals

 variables

ejb-jar files

 Ant buildfiles

 creating from bean classes

ejb-jar.xml, deployment descriptors

EJB-tier authentication

EJB-tier authorization

element nodes

elements, XML

 attributes (DOM)

 parsing with SAX 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

email

 basics of

 JavaMail and

empty elements (XML)

encodings, web services

endDocument()

enterprise computing

 mail-order enterprise

 scenarios

enterprise tasks, Ant

entity beans (EJBs) 2nd

 abstract persistence schema

 BMP

 CMP

 container callbacks

 deployment

 finder methods

 implementation

 lifecycle

 primary keys

 select methods

entity reference nodes (XML), expanding (DOM parser)

enumerations, IDL

environment entries, deployment descriptors and

equals() (RemoteObject)

error handling

 naming services 2nd

 servlet responses

 status codes

 servlet responses and

error() (ErrorHandler)

ErrorHandler interface

errors

 binding remote objects to names

 in remote sessions

 JDBC, handling

 marshaling exception

 remote object URLs

escape sequences

 components (JDBC)

 dates (example)

 dates (ISO)

 stored procedures, accessing (JDBC)

event notification, JNDI

 listen command

 registering event listeners

 sources of events

 writing event listeners

EventContext interface

 addNamingListener()

EventDirContext interface

 addNamingListener()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 filters specifying target of listener

events

 asynchronous, JMS

 Hibernate API

 JSF user interface

 synchronicity in SAX parsing cycle

exceptions

 IDL 2nd

 standard

 IDL methods

 JNDI

 name, object not found at specified

 object references, narrowing (CORBA)

 objects, binding to NamingContext

 servlets

execute() (Statement)

executeBatch()

 PreparedStatement interface

 Statement interface

executeQuery() (Statement)

executeUpdate()

 PreparedStatement interface

 Statement interface

expirable leases on remote objects

exportObject() (Activatable)

 using instead of initialization constructors

expression tag

<%- %> expression tag

expression tags

expressions

 message selectors (JMS)

 nesting in searches

expunge() (Folder)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

factory classes

 custom, client and server socket

 defining (example)

 for remote object references

 for XML parsers

factory objects

failed tests (JUnit)

fatalError() (ErrorHandler)

file tasks (Ant)

FileDataSource class

filesystem factory class (JNDI)

filtering

 messages

 QueueBrowser, using

filters

 listener targets for naming services

 request dispatching

 search filter strings

 servlets

fixed-point literals, IDL

flat transaction model (FTM)

floating-point literals

 IDL

flow control, JSTL

folders, message

forms

 servlet requests

 Struts tags

 validation, JSF

forName() (Class)

forward-only result sets

fragments of documents (Document fragment nodes)

framework, Struts as

FROM clause

 EJB QL

 collection member variables

 range variables

 HQL

FTM (flat transaction model)

functions

 C/C++, invoking with Java methods

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 conditional expressions

 comparison operators

 EJB QL

 conditional expressions

 scalar (databases)

 SQL

 aggregate

 value functions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

garbage collection

 distributed, for RMI objects 2nd

 RMI

generic property accessors

get() (Attributes)

get/setProperty() methods, Message interface

getAsciiStream() (ResultSet)

getAttributes() (Node) 2nd

getAutoCommit() (Connection)

getBinaryStream()

 Blob class

 ResultSet interface

getBytes() (Blob)

getCharacterStream() (Clob)

getClassName() (NameClassPair)

getColumnCount() (ResultSetMetaData)

getColumnLabel() (ResultSetMetaData)

getColumns() (ResultSetMetaData)

getColumnTypeName() (ResultSetMetaData)

getConnection() (DriverManager)

getDefaultFolder() (Store)

getDefaultInstance() (Session)

getDefaultTransactionIsolation() (DatabaseMetaData)

getDOMImplementation()

getErrorCode() (SQLException)

getFeature() (TransformerFactory)

getFirstChild() (Node)

getFlags() (Message)

getFloat() (CallableStatement)

getFolder() (Session) 2nd

getInstance() (Session)

getMaxConnections() (DatabaseMetaData)

getMessageNumber() (Message)

getMetaData() (Connection)

getMoreResults() (Statement)

getName() (NameClassPair)

getNewBinding() (NamingEvent)

getNextException() (SQLException)

getNextSibling() (Node)

getNodeType() (Node)

getNodeValue() (Node)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

getObject()

 Binding class

 ResultSet interface

getOldBinding() (NamingEvent)

getPasswordAuthentication() (Authenticator)

getPrivileges() (ResultSetMetaData)

getProviders() (Session)

getRegistry() (LocateRegistry)

getRequestingProtocol() (Authenticator)

getRequestingSite() (Authenticator)

getResultSet() (Statement)

getSQLState() (SQLException)

getStore()

 Session class

 Store class

getString() (ResultSet)

getSubString() (Clob)

getTableTypes() (ResultSetMetaData)

getTransport() (Session)

getUnicodeStream() (ResultSet)

getUpdateCount() (Statement)

getURL() (DatabaseMetaData)

getURLName() (Service)

getWarnings()

 CallableStatement interface

 Connection interface

 PreparedStatement interface

 ResultSet interface

 Statement interface

getXMLReader() (SAXParser)

global configuration, Hibernate

groups, SELECT statement (SQL)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

handlers

 EJBs

handlers, SAX

 ContentHandler interface

 DefaultHandler class

 ErrorHandler interface

hardware (networks), server applications and

hashCode() (RemoteObject)

HEAD requests

header files (JNI C/C++), generating with javah

headers

 IDL interfaces

 JMS messages 2nd

helper classes

helper classes, IDL/Java conversion

Hibernate

 caching

 configuration

 class mappings

 collection types

 global configuration

 polymorphic mappings

 relationship mappings

 types

 HQL (Hibernate Query Language)

 introduction

 Java and

 JDBC and

 performance

 pluggability

 RDBMS and

 reflection

 sample application

 security

 transactions

 transparency

Hibernate API

 configuration and

 events

 interceptors

 Query class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Session object

 SessionFactory

hierarchical property files (Ant)

holder classes, IDL

 IDL/Java conversion

 objects, passing as inout

home interfaces (EJBs) 2nd

 JNDI and

hosts

 ORBs, specifying

 RMI registry daemon, running

HTML

 converting XML file into with XSL stylesheet

 document condenser (DOM)

HTML tags, JSF

HTTP requests

HTTP responses

HTTP servlets

HttpServletRequest interface

HttpServletResponse interface

HttpSessionBindingListener

hyperlinks, JSPs

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

id field (NameComponent)

identifiers

 IDL

 mapping to Java

 JMS clients

IDL (Interface Definition Language) 2nd 3rd

 comments

 constants

 mapping to Java

 CORBA-enabled interface, defining

 data types

 characters

 strings

 user-defined

 declaration language

 default ORB implementation

 describing in CORBA

 example, complete

 exceptions

 standard

 identifiers

 mapping to Java

 initial object references, storing as root objects in Naming Service

 interface declarations

 interface inheritance

 interfaces

 attributes

 declarations

 mapping to Java

 methods

 Java RMI interface, mapping to

 Java stubs to CORBA objects

 Java, differences from

 Java-to-IDL-mapping

 keywords

 literals

 Boolean

 character literals

 numeric

 string literals

 methods

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 arguments

 call semantics

 context values

 exceptions

 modules

 declarations

 naming scopes

 Naming Service 2nd

 properties (nonstandard)

 properties (standard)

 remote method using inout parameter

 RMI vs.

 sequences

 tools

 naming service daemon

 orbd

 servertool

 tnameserv

 Transient Naming Service Daemon

 unions

 value types

IDL compiler

IDL tools

 IDL compiler

 idlj

IDL-to-Java compiler

 stub and skeleton classes, generating

ignoreableWhitespace()

IIOP (Internet Inter ORB Protocol)

IMAP protocol

 URLs

implementation

 beans (EJBs)

 EJB objects

 web services

importNode() (Document)

inactiveGroup() (ActivationGroup)

inactiveObject() (ActivationGroup)

incoming messages, handling

inheritance, interface inheritance, IDL

init()

 ORB class

 PTPMessagingClient (example)

 servlet initialization and

initial context, JNDI

 command for loading

 NamingShell application, establishing for

initial references, listing (ORB)

InitialContext interface

 obtaining from JNDI service of JMS provider

initialization constructors

initialization methods (ORBs)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

initialization, servet contexts

inner classes

input parameter variables

input/output, from XSLT transformations

INSERT statement (SQL)

insertBefore()

insertRow() (ResultSet)

integration testing, unit testing and

interceptors, Hibernate API

interface inheritance, IDL

interfaces

 client (EJBs)

 client stub interfaces (EJBs)

 CORBA IDL

 DOM, mapping to node types

 home interfaces (EJBs) 2nd

 JNDI and

 HttpServletRequest

 IDL

 attributes

 declarations

 mapping to Java

 methods

 JMS

 JSF events

 remote object, unknown

 ServletContext

 ServletRequest

internationalization, JSTL and

Internet Inter-ORB Protocol (IIOP)

InternetAddress class

Interoperable Object References 2nd

IORs

isNull() (ResultSet)

ISO date escape sequences (JDBC)

isolation levels, transactions 2nd

 JDBC support, listed

isolation, transactions

 levels

 violations

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

J2EE (Java 2 Enterprise Edition)

 deployment

 container-specific classes

 descriptors

 server-specific configuration

 security

 limitations

 overview

 transport layer security

 XML Encryption

 web services deployment

J2SE (Java 2 Standard Edition)

 annotations tutorial

JAAS (Java Authentication and Authorization Service)

 authentication and

JACC (Java Authorization Contract for Containers)

JAF (JavaBeans Activation Framework)

 JavaMail, using with

 mail messages, assigning content and MIME type

JAR (Java Archive) files

 activation.jar (JAF)

 application, finding XML parser

 mail.jar (JavaMail)

Java

 and XML

 DOM

 IDL, differences (list)

 JAXP

 SAX

 using XML documents

Java annotations

 overview

 tools

Java API for XML Registries (JAXR)

Java beans, scope

Java classes, IDL interfaces vs.

Java IDL

 overview

Java objects

Java packages (IDL modules vs.)

Java Remote Method Protocol (JRMP)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Java Runtime Environment (JRE)

Java Servlet API

Java VM

 activation daemon

 activation groups

 codebase property for nondefault class loaders

 libraries (native functions), loading

 running

Java-aware databases

java.rmi package

java.rmi.activation package

java.rmi.server package

java.rmi.server.codebase property

java.sql package

JavaBeans

 JSP action tags

 RowSet interface

javah tool, generating JNI C/C++ header files

JavaMail 2nd

 authenticators, username and password

 creating messages

 displaying

 email and

 incoming messages, handling

 installing and configuring

 layers

 message stores

 multipart messages

 provider registries

 providers of messaging services

 retrieving messages

 searches and message management

 sending messages 2nd

 sessions

 URL names

javax.servlet.GenericServlet class

javax.servlet.http.HttpServlet class

Javax.servlet.Servlet interface

JAX-RPC (Java API for XML Remote Procedure Calls) 2nd 3rd 4th

 introduction

 SOAP and

 Web service clients

 writing web services

 WSDL and

JAXP (Java API for XML Processing) 2nd 3rd

 custom URI resolution

 data sources

 determining data source support

 DOM

 generating SAX parsers

 getting a DOM parser

 parser objects and XSLT processors

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 parser or processor, getting

 transformation classes

 XSLT

JAXR (Java API for XML Registries)

JCE (Java Cryptography Extension)

JDBC (Java Database Connectivity)

 architecture

 basic functionalities (example)

 batch updates

 BLOB and CLOB objects

 commands, database-independent

 currently available drivers, listing of

 data types, mapping to primitive Java types

 date and time classes

 drivers 2nd

 escape syntax, stored procedures

 Hibernate and

 JDBC-ODBC Bridge 2nd

 metadata

 platform independence

 registering

 ResultSet (Version 2.0 vs. 1.0)

 savepoints

 SQL statements

 transactions

 types of

 URLs

JDBC-ODBC Bridge Drivers

 URLs

JDBMS systems, storing Java objects

JDK, RMI registry daemon

JMS (Java Message Service) 2nd

 accessing content of

 browsing queues

 client (example)

 clients

 durable subscriptions

 elements of

 filtering

 header fields and properties

 key interfaces

 message selectors

 expressions

 identifiers

 literals

 operators

 structure

 messages

 point-to-point and publish-subscribe styles

 point-to-point messaging

 publish-subscribe messaging

 transactional messaging

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 types of

JMSReplyTo header

JMX (Java Management Extensions)

JNDI (Java Naming and Directory Interface) 2nd

 API and SPI (service provider interface)

 architecture

 binding objects to

 browsing a naming system

 command for loading initial context

 configuration services

 naming conventions

 contexts

 CORBA Naming Service, registering remote object with

 creating and destroying contexts

 directories, searching

 directory entries, creating

 directory entries, modifying

 directory services, accessing

 EJBs, home interfaces

 event notification

 InitialContext class

 introduction

 JMS provider, services for 2nd

 listing bindings of

 listing children of

 looking up object in naming system (example)

 looking up objects

 naming system service providers

 NamingShell application

 registering event listeners

 remote objects, binding to CORBA Naming Service

 running the shell

 search command

 search controls

 search criteria

 search results

 sources of events

 writing event listeners

JNI (Java Native Interface)

 using with RMI vs. using CORBA

 wrapping C/C++ code with

joins, SELECT statement (SQL)

JRE (Java Runtime Environment)

JRMP (Java Remote Method Protocol)

JSF (JavaServer Faces) 2nd

 actions

 dynamic

 applications

 sample

 structure

 configuration file

 forms, validation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 introduction

 lifecycle

 managed beans

 action methods

 backing beans

 model beans

 managed beans and

 navigation rules

 dynamic actions and

 sample application

 tables

 data grids

 editing

 panel grids

 user interface, events

 validation

 custom validators

 forms

 messages

 views

 web UI components

<f:actionListener> JSF core tag

<f:convertNumber> JSF core tag

<f:convertDateTime> JSF core tag

<f:attribute> JSF core tag

<f:loadBundle> JSF core tag

<f:facet> JSF core tag

<f:converter> JSF core tag

<f:selectItems> JSF core tag

<f:selectItem> JSF core tag

<f:param> JSF core tag

<f:validator> JSF core tag

<f:validateLength> JSF core tag

<f:validateDoubleRange> JSF core tag

<f:subview> JSF core tag

<f:view> JSF core tag

<f:verbatim> JSF core tag

<f:valueChangeListener> JSF core tag

<f:validateLongRange> JSF core tag

JSF core tags

 <f:actionListener>

 <f:attribute>

 <f:convertDateTime>

 <f:converter>

 <f:convertNumber>

 <f:facet>

 <f:loadBundle>

 <f:param>

 <f:selectItem>

 <f:selectItems>

 <f:subview>

 <f:validateDoubleRange>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <f:validateLength>

 <f:validateLongRange>

 <f:validator>

 <f:valueChangeListener>

 <f:verbatim>

 <f:view>

JSF EL

<h:dataTable> JSF HTML tag

<h:commandLink> JSF HTML tag

<h:commandButton> JSF HTML tag

<h:column> JSF HTML tag

<h:inputHidden> JSF HTML tag

<h:graphicImage> JSF HTML tag

<h:form> JSF HTML tag

<h:message> JSF HTML tag

<h:inputTextarea> JSF HTML tag

<h:inputText> JSF HTML tag

<h:inputSecret> JSF HTML tag

<h:outputLabel> JSF HTML tag

<h:outputFormat> JSF HTML tag

<h:messages> JSF HTML tag

<h:panelGrid> JSF HTML tag

<h:outputText> JSF HTML tag

<h:outputLink> JSF HTML tag

<h:selectManyMenu> JSF HTML tag

<h:selectManyListbox> JSF HTML tag

<h:selectManyCheckbox> JSF HTML tag

<h:selectBooleanCheckbox> JSF HTML tag

<h:panelGroup> JSF HTML tag

<h:selectOneRadio> JSF HTML tag

<h:selectOneMenu> JSF HTML tag

<h:selectOneListbox> JSF HTML tag

JSF HTML tags

 <h:column>

 <h:commandButton>

 <h:commandLink>

 <h:dataTable>

 <h:form>

 <h:graphicImage>

 <h:inputHidden>

 <h:inputSecret>

 <h:inputText>

 <h:inputTextarea>

 <h:message>

 <h:messages>

 <h:outputFormat>

 <h:outputLabel>

 <h:outputLink>

 <h:outputText>

 <h:panelGrid>

 <h:panelGroup>

 <h:selectBooleanCheckbox>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <h:selectManyCheckbox>

 <h:selectManyListbox>

 <h:selectManyMenu>

 <h:selectOneListbox>

 <h:selectOneMenu>

 <h:selectOneRadio>

 pass-through attributes

JSF tag library

JSP API

JSPs (JavaServer Pages)

 action tags

 JavaBeans and

 ActionForm class, Struts

 custom tags, testing

 directives

 dynamic web pages

 EL

 expression tags

 granularity of

 hyperlinks

 introduction

 Java beans, scope

 objects, built-in

 overview

 tags

 communications

 custom

 EL and

 libraries

 whitespace and

 testing, Cactus

JSTL (JSP Standard Tag Library)

 internationalization and

 URLs and

JSTL EL, Struts tags

<c:when> JSTL tag

<c:set> JSTL tag

<c:remove> JSTL tag

<c:out>JSTL tag

<c:if> JSTL tag

<c:choose> JSTL tag

<c:otherwise> JSTL tag

<c:forEach> JSTL tag

<c:url> JSTL tag

<fmt:message> JSTL tag

<fmt:bundle> JSTL tag

<fmt:setBundle> JSTL tag

JSTL tags

 <c:choose>

 <c:forEach>

 <c:if>

 <c:otherwise>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <c:out>

 <c:remove>

 <c:set>

 <c:url>

 <c:when>

 for internationalization

 <fmt:bundle>

 <fmt:message>

 <fmt:setBundle>

JTA (Java Transaction API) 2nd 3rd

 transactions, distributed

JUnit

 Ant and

 batch testing

 build control

 test result format

 assertion methods

 Cactus

 failed tests

 introduction

 overview

 runtime model

 test fixtures

 TestCases

 TestSuites

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

keywords

 escape sequences (JDBC)

 IDL

kind field (NameComponent)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

language independence

 CORBA

 inter-ORB communications

large data types

lazy loading, Hibernate relationships

LDAP (Lightweight Directory Access Protocol)

 creating InitialContext with factory class

 directory servers, prohibiting new entries in

 search filter strings

leaf, CORBA naming directory

leases, expirable (on remote objects)

libraries

 native code, wrapping with Java

 native functions, loading

 tag libraries, JSP

lifecycle of servlet

LIKE statement

list() (Context)

list() (Registry)

list_initial_references() (ORB)

listBindings() (Context)

literals

 IDL

 Boolean

 character literals

 numeric

 string literals

 JMS message selectors

 WHERE clause, EJB QL

loadLibrary() (System)

local clients, EJBs

local names of XML elements

LocateRegistry interface

 remote objects, looking up

locatorsUpdateCopy() (DatabaseMetaData)

logical operators

 conditional expressions

 JMS message selectors

login information, associating with URLName objects

logins, database

looking up objects in naming systems

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 JNDI context

lookup() (Naming) 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

mail-order enterprise

main()

 AccountReg class (example)

 PTPMessagingClient (example)

MalformedURLException class

managed beans

 JSF

 action methods

 backing beans

 model beans

 scope

many-to-many relationships

many-to-one relationships

MapMessage class

mapping

 constants to Java (IDL)

 IDL identifiers to Java

 IDL interfaces to Java

 IDL to Java

 object-oriented languages to CORBA specifications

 requests, servlet contexts

MarshalException class 2nd

marshaling

 encoding URL in marshaled bytestream

 unmarshaling method arguments

MarshalledObject class 2nd

match() (SearchTerm)

message destinations

Message interface 2nd 3rd

 subclasses with different message bodies

message selectors (JMS)

 expressions

 identifiers

 literals

 operators

 arithmetic

 comparison

 logical

 structure

message validation, JSF

message-driven beans (EJBs) 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 container callbacks

 deployment

message-oriented middleware (MOM)

MessageConsumer interface 2nd 3rd 4th

MessageListener interface

 implementation (example)

MessageProducer interface 2nd

messages, JMS

 accessing content of

 filtering

 header fields and properties

messaging

 JavaMail

 JMS

messaging clients

messaging provider

metadata, JDBC

method permissions, EJB deployment

methods

 IDL

 arguments

 call semantics

 context values

 exceptions

 IDL interfaces 2nd

 parameter modifiers

 return values or exceptions

 servlet contexts

Microsoft

 ODBC 2nd

 Windows

MIME types

 JavaMail support for

 multipart messages, creating

MimeMessage class

model beans, JSF

modifiers (IDL methods)

modifyAttributes() (DirContext)

modules

 application assembly

 IDL, declarations

modules (IDL)

 nesting within files

MOM (message-oriented middleware)

moveToCurrentRow() (ResultSet)

moveToInsertRow() (ResultSet)

multicast objects (remote object communication)

multipart messages

 displaying

 sending

Multipurpose Internet Mail Extensions (see MIME types)

MVC (model-view-controller)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Struts

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

NameAlreadyBoundException class

NameClassPair class

NameComponent class 2nd

NamedNodeMap class

NamedValue class

names

 children of Context (JNDI)

 fully-qualified, for remote objects

NamespaceChangeListener interface

NamespaceChangeLogger class (example)

namespaces

 support for, requesting

 XML 2nd

naming context, obtaining object reference from

naming conventions

 JNDI configuration services

 two-level binding

Naming interface 2nd 3rd

 looking up remote objects (example)

 lookup()

naming scopes, IDL

Naming Service (CORBA) 2nd

 references, narrowing

naming service daemon (IDL)

naming services

 binding names to objects

 converting to JNDI for communication with CORBA

 JNDI, looking up object

 non-RMI, using to register RMI remote objects

 registering server object with

 RMI 2nd

naming systems

 browsing

 service providers for JNDI

NamingContext interface

NamingEnumeration interface

NamingEvent interface

NamingException class

namingExceptionThrown() (NamingListener interface)

NamingManager class

NamingShell application

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 cd command

 create command

 destroy command

 help and exit commands

 initctx command

 list command

 listen command

 running the shell

 search command

narrow()

 NamingContextHelper class

 PortableRemoteObject interface 2nd

native code, RMI and

Native Interface API

native messaging systems

 proprietary message formats

 wrapping messages with JMS format

native-API partly-Java drivers

native-protocol all-Java drivers

navigation rules, JSF

 dynamic actions

NDS (Novell Directory Services)

nesting search expressions

net-protocol all-Java drivers

network protocols, CORBA

networks, heterogeneous nature of

newInstance()

 ActivationGroup class

 DocumentBuilderFactory class

 parser or processor, retrieving from Java program

 SAXParserFactory class

 TransformerFactory class

NewsAddress class

next() (ResultSet)

NNTP (Usenet) news, addresses

nodes, DOM

 importing into documents

 listing of important types

 manipulating

non-object-oriented languages (CORBA specifications and) 2nd

nonclass data structure definitions (C++ and IDL)

NoPermissionException class

NotFound class 2nd

Novell Directory Services (NDS)

NTM (nested transaction model)

null values

 database columns

 inserting with PreparedStatement

 rows, inserting

nullsAreSortedHigh() (DatabaseMetaData)

numeric literals, IDL

 fixed-point

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 floating-point

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Object interface

 CORBA

 direct communication with remote object

 remote method requests, sending

object registry (RMI)

object relational mapping (ORM)

object serialization

 marshaling method arguments

 remote method arguments

 unmarshaling

object-oriented database management systems (OODBMS)

object-oriented programming

 Java

 languages, mapping to CORBA specifications

object_to_string() (ORB)

objectAdded() (NamespaceChangeListener)

ObjectChangeListener interface

 implementation (example)

ObjectImpl class

ObjectMessage class

objectRemoved() (NamespaceChangeListener)

objects

 activation service

 adding to NamingContext (CORBA)

 binding to NamingService

 CORBA

 creating

 data types, IDL vs. Java handling of

 distributed garbage collection

 EJBs

 implementation

 Java types, inserting into databases

 JSP, built-in

 naming/registry service

 non-serializable, throwing MarshalException

 remote

 remote distribution, enabled

 remote vs. nonremote

 storing and manipulating, support for

 subcontexts

 support for

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 transport methods, deciding

ODBC (Open Database Connectivity)

 JDBC URL subprotocol (odbc)

oj (outer join) keyword

OMG, Java IDL mapping

one-to-many relationships

one-to-one relationships

onMessage() (MessageListener) 2nd

OODBMS (object-oriented database management systems)

open source tools

open source, Struts as

open(), Folder class

OperationNotSupportedException class

operators

 arithmetic

 JMS message selectors

 combining search filters with

 comparison

 JMS message selectors

 logical

 JMS message selectors

 SQL predicates

optimistic concurrency, transactions

OR operator, combining search filter with

Oracle databases

 JDBC-Thin driver, URLs for

 PL/SQL stored procedure (example)

ORBClass property

ORBInitialHost property

ORBInitialPort property

ORBs (Object Request Brokers)

 communications between

 default implementation (IDL)

 implementation not standardized

 initializing

 listing

 properties, specifying (methods)

 reference, initializing

 remote object references

 services provided

 stringified object references and

ORBSingletonClass property

ORDER BY clause, EJB QL

order processing form (XML)

 converting from SAX into HTML with XSL

 transforming into SAXResult

order processing with SAX parser (example)

org.omg.CORBA package 2nd

org.omg.CORBA.portable package

org.omg.CosNaming package 2nd

org.w3c.dom package

ORM (object relational mapping)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

outer join keyword

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

packaged

packaging EJBs

panel grids, JSF tables

parameters

 batch updates (CallableStatement)

 clearing (PreparedStatement)

 specifying, prepareStatement()

 stored procedures

parse(), SAXParser class

parsers for XML

 creating with JAXP

 DocumentBuilder class

 DOM

 getting a parser

 handlers

 manipulating DOM trees

 navigating DOM tree

 retrieving from a Java program

 SAX

 using

Part interface

 setting message content

pass-through attributes, JSF HTML tags

passwords

 for database connections

 JavaMail, authenticating 2nd

 JNDI contexts, authenticating

path expression variables

paths, Ant

peer-to-peer systems

 client vs. server

 clients and servers in

performance

 databases, precompiled SQL statements and

 escape-sequence processing, affecting

 factory class vs. RMI registry

 Hibernate

 transaction isolation levels vs.

persistence

 remote object references

 remote references 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

physical deployment

platform independence (JDBC)

plug-ins, Struts

pluggability, Hibernate

point-to-point messaging 2nd

 browsing queues

 object references

 queueing messages

 receiving messages

 XA interfaces for

policy, security

polymorphic mappings, Hibernate

pooling database connections

POP (Post Office Protocol)

POP-3 protocol

PortableRemoteObject interface 2nd

ports

 activation daemon

 exported remote objects, specifying for

 for exported objects, specifying

 ORBs, specifying

 registry daemons, listening on

POST requests

prepare phase, distributed transactions and

prepareCall()

 CallableStatement interface

 Connection interface

PreparedStatement interface 2nd

 batch updates

 parameters, setting (example)

 setBlob() and setClob()

prepareStatement() (Connection)

primary keys, entity beans (EJBs)

primitive data types

 streams of, in JMS messages

printQueue()

printWarnings() (SQLWarning)

processing orders with SAX parser (example)

processors, XSL

processors, XSLT

 retrieving from a Java program

programmatic transactions

properties

 buildfiles (Ant)

 JavaMail system

 jaxp.properties, setting default XML parser

 JMS messages

 JMS messages, clients creating

 JNDI context

 ORB initialization

 transactions

property files, Ant

http://lib.ommolketab.ir
http://lib.ommolketab.ir

providers of messaging services, accessing with JavaMail

proxies, Hibernate relationship mappings

public classes

publish-subscribe messaging

 client (example)

 creating publishers and subscribers

 durable subscriptions

 XA interfaces for

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Query class, Hibernate API

query variables

QueueBrowser class

QueueConnection interface

QueueConnectionFactory interface

queueing messages

QueueReceiver interface 2nd

 associating MessageListener with

QueueSender interface

QueueSession interface

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

range variables

 EJB QL

RDBMS (relational database management system)

 clusters

 Hibernate and

reactivation constructors 2nd

read-only result sets

rebind()

 Context interface 2nd

 Registry class

receive() (QueueReceiver)

receiving messages, JMS client

recv command

recv_synch command

references

 remote object, persistence of

 to local and remote registries, obtaining

RefFSContextFactory class

reflection, Hibernate

register() (Activatable)

registerGroup() (ActivationSystem)

registering

 AccountReg class (example)

 activatable remote objects

 activation groups

 JNDI event listeners

 listen command

 remote objects on local host

 server object with CORBA Naming Service

 without instantiating

registerListener()

 PTPMessagingClient class (example)

registerOutParameter() (CallableStatement)

registries, JavaMail providers

Registry interface 2nd

 remote objects, looking up

registry, RMI 2nd

 activatable class, registering

 dynamic class loading and

 factory classes

 local and remote, obtaining references to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 registering remote objects without activation

 run by rmid activation daemon

 services provided

 vendor implementations of

relational databases

 not object-oriented

 SQL and

relationship mappings, Hibernate configuration

relationships

 many-to-many

 many-to-one

 one-to-many

 one-to-one

remote clients, EJBs

remote interface 2nd

 defining for remote objects

 implementation (example)

 objects enabled for remote distribution, tagging

 remote exceptions, declaring

 specifying for remote objects

 stub and skeleton classes

remote methods

 arguments

 executing with DII and DSI

 implementation, server (IDL/Java conversion)

 inout parameter

 out or inout arguments

 return values

remote objects

 activatable, defining 2nd

 activating

 activation daemon

 activation groups

 activation service (RMI)

 binding to CORBA Naming Service (JNDI)

 binding to names

 class names, finding

 classes (RMI registry)

 clients accessing

 defining

 defining activatable objects

 delegates

 factory classes

 getting from other remote objects

 IDL (interfaces, describing)

 implementing 2nd

 interaction, starting

 interface, defining

 interfaces not available

 looking up with LocateRegistry and Registry interfaces

 looking up with Naming interface

 native code, exporting (RMI and JNI)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 nonremote objects vs.

 persistent remote references

 references as printable character strings

 registering

 registering activatable objects

 remote reference, generating

 stubs, skeletons and objects, relationships among

remote references

 clients, obtaining (IDL/Java conversion)

 copying objects vs.

 CORBA

 expiring

 factory classes for

 finding, methods for

 persistence of 2nd 3rd

 point-to-point, nonpersistent

 RMI

 stubs (server objects)

 to client stubs

RemoteException class 2nd

RemoteObject class

RemoteServer class 2nd

removeChild()

repeatable reads (transactions) 2nd

replaceChild()

replication (remote objects)

request dispatching

 filters

Request interface

request level

RequestProcessor, Struts

 Action class and

requests

 JSF

 servlets

 dispatching

 forms

 HEAD

 HTTP

 POST

 web service

reset()

 BytesMessage class

 StreamMessage class

resolve_initial_references() (ORB) 2nd 3rd 4th

resource adapters

resource management

 cleaning up JMS connections and sessions

 database connections, closing

 for servers, factory objects and

resources

 deployment and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 deployment descriptors and

resources, transactions

responses, servlets

 error handling

 request dispatching

Result interface

result sets

 deleting rows

 multiple

 SQL queries

 structure, discovering

 updateable

ResultSet interface 2nd

 BLOBs and CLOBs

 cursor location (JDBC 2.0)

 JDBC 1.0 vs. JDBC 2.0

 large, handling

 navigating

 result set types, listed

 rows, inserting, deleting, editing data

 scroll-sensitive, updateable

 updating (single table without joins)

ResultSetMetaData interface

 database table, contents and data types (example program)

retrieving JavaMail messages

 handling incoming messages

 message stores

 searches and message management

return codes, SQL

return values (remote methods)

 serializable, required

RMI (Remote Method Invocation)

 accessing RMI objects from CORBA

 activation daemon 2nd

 activation groups

 architecture

 classes, loading

 clients, accessing remote objects

 compiler 2nd

 configuring clients and servers for

 converting to JNDI to communicate with CORBA

 defining activatable object

 distributed garbage collection

 dynamic class loading

 factory classes

 from applets

 interfaces (elements)

 key RMI classes for implementations

 language dependence

 naming/registry

 native method calls and

 object registry

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 object services

 persistent remote references

 registering activatable objects

 registering remote objects

 registry

 registry and naming services

 remote method arguments and return values

 remote object activation 2nd

 serial version utility

 serialver utility

 stub/skeleton layer

 stubs and skeletons, creating

 using with JNI vs. using CORBA

 writing class to implement remote interface

rmi protocol (object URLs)

RMI tools

RMI/IIOP 2nd

 RMI communicating with CORBA remote objects

 TCP/IP protocol base

 tnameserv utility

rmic (RMI compiler)

 IDL mapping of Java RMI interface, generating

 stub and skeleton classes, generating 2nd 3rd

 updated, RMI/IIOP

RMIClassLoader class

rmid activation daemon

 RMI registry, running

rmid command

RMIProcess class

RMISecurityManager class 2nd

 setting for remote class loading

rollback phase, distributed transactions

rollback()

 CMTD and

 Connection interface 2nd

 stateless session beans and

 XASession class

rolling back transactions

root (CORBA naming directory)

root object class (CORBA)

rows

 accessing

 editing data, inserting or deleting

 insertions, preventing

 navigating (ResultSet)

RowSet interface

RowSetListener interface

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

SAAJ (SOAP with Attachments API for Java)

 introduction

 web service deployment

 web services and

 clients, writing

savepoints (JDBC 3.0)

SAX (Simple API for XML parsing) 2nd

 ContentHandler interface

 DefaultHandler class

 DOM, combining with to parse XML documents

 ErrorHandler interface

 handlers

 parser, using

 transforming XML document to SAXResult

SAXParser class

 parsing document directly from

SAXParserFactory class 2nd

SAXParserFactoryImpl class

SAXResult class

SAXSource class

scalar database functions

scope

 Java beans, in JSPs

 JSF managed beans

 naming scopes, IDL

 request level

 Struts ActionForm beans 2nd

scoping

 searches

 targets for JNDI event listeners

scrolling

 result sets 2nd

 support information (DatabaseMetaData)

SearchControls class

searching

 directories

 JavaMail messages

 search command

 search controls

 search criteria

 search results

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SearchResult class

SearchTerm class

security

 application assembly

 application layer security

 authentication

 authorization

 authentication

 EJB-tier

 web-tier

 authorization

 EJB-tier

 web-tier

 configuration

 deployment descriptors and

 CORBA policy services

 EJB deployment

 Hibernate

 J2EE

 limitations

 overview

 XML encryption

 JAAS and

 servlets

 SSO (Single Sign-On)

 transport layer security

 confidentiality

 integrity

 web components

 EJB-tier authentication

 EJB-tier authorization

 web-tier authentication

 web-tier authorization

 web-tier transport-level security

security manager, remote class loading, allowing

security policies

 changing to allow remote class loading

 remote class resolution

 remote classes, loading

SELECT clause

 EJB QL

 DISTINCT option

 HQL

SELECT statement (SQL)

 groups

 joins

 string comparisons

 subqueries

semicolons (IDL vs. Java)

send command

send()

 QueueSender class 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Transport class

sending JMS messages 2nd

 multipart

sendMessage()

separator characters in JNDI compound names

sequences, IDL

Serializable interface

 remote method arguments

serialization

 holder class objects

 MarshalledObject

 primitive data types

 remote method arguments

 Streamable object (CORBA)

serialver utility

server skeletons 2nd

 classes, loading

 classes, regenerating (RMI/IIOP)

 compiling

 converting remote request into method call on server object

 generating with rmic 2nd

 method invocations, forwarding to server implementation object

 relationships with remote objects and stubs

 RemoteObject as superclass for

 RMI architecture

server tool (IDL)

servers

 as Java objects (RMI)

 configuring for remote class loading

 constructing with given name

 distinguishing from clients in distributed object system

 EJB

 J2EE, support for JMS

 Java implementation, lacking

 LDAP, prohibiting directory entries

 native libraries, loading

 registering RMI-enabled objects

 registering with CORBA Naming Service

 remote activation of server objects

 remote interface, implementing

 remote requests, handling

 resource management

 RMI

 implementing with RemoteServer

 loading skeleton and implementation classes

 RMI/JNI or CORBA, interface to native code

 SMTP

_ServerStub class

Service class

 retrieving URLName objects

service providers, JavaMail implementations

Services API

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Servlet API 2nd

 exceptions

 javax.servlet.GenericServlet class

 javax.servlet.http.HttpServlet class

 javax.servlet.Servlet interface

servlet contexts

 directory tree

 initialization

 methods

 request mapping

ServletContext interface

ServletRequest interface

servlets 2nd

 containers

 cookies

 environment

 exceptions

 filters

 granularity of

 HTTP

 in e-commerce application (example)

 initialization, custom

 instantiating parser factories in

 lifecycle

 requests

 dispatching

 forms

 HEAD

 HTTP

 POST

 responses

 error handling

 request dispatching

 security

 session tracking

 testing servlets (Cactus)

 testing, Cactus

 writing

session beans (EJBs)

 container management

 stateful

 stateless

 transaction support

session facade, EJB transactions

Session interface, JMS provider/client sessions

Session object

 Hibernate API

session tracking

SessionFactory, Hibernate API

sessions

 acknowledging received messages

 authenticators for usernames and passwords

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 closing

 JavaMail

 JMS

 providers of messaging services

 transactional messaging

setAutoCommit() (Connection)

setBlob() (PreparedStatement)

setBytes() (Blob)

setClientID() (TopicConnection)

setClob() (PreparedStatement)

setDataHandler()

setDocumentLocator()

setEscapeProcessing() (Statement)

setFeature() (SAXParserFactory)

setFlag() (Message)

setMessageListener() (QueueReceiver) 2nd

setNamespaceAware()

 DOMParser class

 SAXParser class

 SAXParserFactory class

setNodeValue() (Node)

setNull() (PreparedStatement)

setObject() (PreparedStatement)

setReturningObjFlag() (SearchControls)

setSavepoint() (Connection)

setSearchScope() (SearchControls) 2nd

setString()

 Clob class

 PreparedStatement interface

setText() (Part)

setTransactionIsolation() (Connection)

setURIResolver() (Transformer)

setValidating()

 DOMParser class

 SAXParser class

 SAXParserFactory class

SMTP (Simple Mail Transfer Protocol)

 addresses for mail

SOAP (Simple Object Access Protocol)

 introduction

 mapping to Java

 messages

 data types

socket programming, RMI vs.

sockets, customized factories for

software testing

source code, XDoclet and

Source interface

spam, searching for and deleting

SPI (service providers interface)

 JNDI 2nd

 separator characters for compound names

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SQL (Structured Query Language)

 ALTER TABLE statement

 ANSI-92 SQL state codes

 CREATE TABLE statement

 data types 2nd

 DATE, TIME, and TIMESTAMP

 DROP statement

 executing as batch

 executing multiple

 executing multiple queries simultaneously

 functions

 aggregate

 value functions

 mapping to Java primitive types

 precompiled, running repeatedly

 query results

 relational databases

 return codes

 SQL-92

 statements

 data manipulation

 DELETE

 INSERT

 schema manipulation

 SELECT

 UPDATE

 statements in JDBC

 stored procedures

SQLException class 2nd

SQLWarning class

SSO (Single Sign-On), security

start() (QueueConnection)

startDocument() (Content Handler)

startElement() (ContentHandler) 2nd

Statement interface 2nd

 PreparedStatement vs. Statement objects

 queries, executing multiple

static methods (helper class)

static proxy, web services clients 2nd

Store class

stored procedures (databases)

 batch updates

Streamable interface

StreamMessage class

StreamResult class

StreamSource class

string literals, IDL

string manipulation functions

 SQL

String objects (arrays), initial objects listing

string_to_object() (ORB)

stringified object references 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

strings

 comparisons, SELECT statement (SQL)

 DatabaseMetaData methods

 IDL

 Java, converting to native

 object references as printable characters

 read-only attribute (IDL)

 SQL, processing (databases)

structs, IDL

Struts

 Action class

 RequestProcessor

 ActionForms

 DynaActionForms

 ActionServlet and

 as framework

 as open source

 configuration file

 introduction

 MVC controller

 plug-ins

 RequestProcessor

 Action class and

 sample application

 tags

 form handling

 JSTL Expression Language

 validator

 views

 ActionForm class

 scope

 validation

stub and skeleton classes, regenerating for RMI/IIOP

stub/skeleton layer, RMI

stubs

 as remote references to server objects

 client and server

 converting from stringified object references

styles, web services

stylesheets

subcontexts (NamingService), binding objects to

subqueries, SELECT statement (SQL)

subscriptions to topics

Sun Microsystems

 Crimson XML parser

 JNDI API classes and providers (web site)

 RowSet implementations

support for transactions, databases

synchronous messaging

System class, loading native libraries

system properties for XML parsers

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

tables

 JSF

 data grids

 editing

 panel grids

 modifying structure

<%= %> tag

<% %> tag

<%! %> tag

tags

 attributes of

 JSP

 action tags

 communication

 custom

 EL and

 libraries

 whitespace and

 JSTL

 Struts

 form handling

 JSTL Expression Language

 text within, parsing

 XML

targets (Ant)

 buildfiles

 modular

tasks (Ant)

 directory tasks

 enterprise

 file tasks

 Java tasks

 classpaths

 code compile

 paths

 running programs

TCP/IP

 remote references, point-to-point

 RMI/IIOP and

templates, XSL

temporary destinations for messages, creation by JMS clients

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TestCases (JUnit)

testing

 black box testing

 Cactus

 asynchronous code

 enterprise components

 JSPs

 process

 servlet filters

 test proxies

 testing EJBs

 writing tests

 coverage

 EJBs, Cactus

 result formatting

 white box testing

TestSuites (JUnit)

text nodes

TextMessage interface 2nd

thread safety, parser factories and

threads

 database updates, performing

 PTPMessagingClient (example)

threadsafe servlets

ties (CORBA skeletons)

Time class

timestamps

 JMS message headers

 Timestamp class

tnameserv utility (RMI/IIOP)

TopicConnection interface

TopicConnectionFactory interface

topics, publish-subscribe messaging

 durable subscriptions to

TopicSession interface

 creating publishers

toString() (RemoteObject)

tracking sessions

TRANSACTION_READ_UNCOMMITTED class

transactional messaging

transactions

 best practices

 changed transactions

 concurrency, optimistic

 connections supporting

 declarative

 distributed

 JMS destination

 scenarios

 two-phase commit

 EJBs

 BMTD

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 CMTD 2nd

 session facade

 Hibernate

 isolation

 levels 2nd

 violations

 JDBC supporting, listed

 models

 changed transactions

 NTM

 operations

 overview

 programmatic

 properties

 resources

 rolling back to savepoint

 setting

 XML documents for

transformation, XSLT, JAXP data sources

Transformer class

 setURIResolver()

TransformerFactory class 2nd

 getFeature()

Transient Naming Service Daemon (IDL)

transparency, Hibernate

transport layer security

 confidentiality

 integrity

 web-tier transport-level security

transport protocols, RMI architecture

tree structure, DOM

 extending trees

 manipulating (DocumentCondenser example)

 navigating

troubleshooting

two-level name binding

typedefs, IDL

Types class

types, Hibernate

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

unbind(), Registry interface

UnicastRemoteObject class 2nd

 nonpersistent references

 RemoteException and

unions, IDL

unit testing

 Ant builds

 dependencies

 integration testing and

 introduction

 tools

 units

Unix systems, RMI registry daemon

unmarshaling

 classes, finding

UPDATE statement (SQL)

updateBlob() (ResultSet)

updateClob() (ResultSet)

updating

 batch updates (JDBC)

 existing rows, editing data

 JDBC 2.0 support

 SQL UPDATE statements

 support information (DataBaseMetaData)

 update counts 2nd

URIs, resolving for XSL files

URLDataSource class

URLs

 bundling into MarshalledObject

 class file name, encoding (marshaling)

 class names, loading

 context provider, for JNDI

 database connections, using for

 for class bytecodes

 for JavaMail services

 JDBC

 JSTL and

 object names, fully qualified

 odbc subprotocol

 RMI remote objects

Usenet news, addresses for

http://lib.ommolketab.ir
http://lib.ommolketab.ir

user-defined data types, IDL

 arrays

 enumerations

 sequences

 structs

 typedefs

 unions

usernames and passwords

 for database connections

 JavaMail 2nd

utilities, Ant

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

validating XML documents against DTDs

validation (JSF)

 custom validators

 forms

 messages

value functions, SQL

value types, IDL

variables

 collection member variables

 EJB QL

 input parameter

 JSTL

 path expression

 query variables

 range variables

 WHERE clause

 EJB QL

vendor naming services, RMI registry and

views, Struts

 ActionForm class

 scope

 validation

virtual machine

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

W3C (World Wide Web Consortium)

 DOM

 XML specification, web site

wait()

warning() (ErrorHandler)

warnings (SQL)

wasNull() (ResultSet)

web applications

 databases and

 non-HTML content

 structure

web components

 deployment descriptors

 component references

 cross-component settings

 declarations

 resources

 security configuration

 web handler declarations

 security

 EJB-tier authentication

 EJB-tier authorization

 web-tier authentication

 web-tier authorization

 web-tier transport-level security

web handlers, deployment descriptors and

web services

 clients

 DII approach

 dynamic proxy approach

 static proxy approach

 writing

 deployment

 Axis mode

 J2EE

 Java implementation code

 SAAJ and

 deployment descriptors

 development

 EJB web services

 encodings

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 implementation

 introduction

 overview

 SAAJ and 2nd

 styles

 writing, simple services

web UIs

 components

WEB-INF directory

web-tier authentication

web-tier authorization

web-tier transport-level security

web.xml deployment descriptor

 component references

 cross-component settings

 resources

 security configuration

 web component declarations

 web handler declarations

WebRowSet interface

well-formed XML documents 2nd

WHERE clause

 EJB QL

 literals

 variables

 HQL

white box testing

whitespace

 handling by SAX XML parser

 JSP tags

wildcard searches

 DatabaseMetaData methods

 escape sequences, JDBC

Windows systems

 filename separator character

 RMI registry daemon

World Wide Web Consortium

WSDL (Web Services Description Language) 2nd

 mapping to Java

 mappings, deployment descriptors

 operations

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

XAConnectionFactory class

XAConnections class

Xalan XSL engine

XASessions class

XDoclet 2nd

 annotations

 custom

 deployment descriptors

 processing

 source code generation

 tutorial

Xerces parser (Apache)

XML

 advantages of

 deployment descriptors

 documents, using

 DTDs (orders.xml example)

 getting a parser

 handlers

 JAXP 2nd

 JAXP data sources

 manipulating DOM trees

 navigating DOM tree

 parser or processor, getting

 parsing with DOM

 parsing with SAX

 specification, web site for

 using a SAX parser

 well-formed XML

XML Encryption

XML Schema

XMLReader class

XSL stylesheets

XSLT (XSL for Transformations)

 JAXP data sources

 JAXP processors for

http://lib.ommolketab.ir
http://lib.ommolketab.ir

	Java Enterprise in a Nutshell, 3rd Edition
	Table of Contents
	Copyright
	Preface
	What's New in This Edition
	Contents of This Book
	Java Programming Resources
	Examples Online
	Conventions Used in This Book
	Using Code Examples
	Safari® Enabled
	Comments and Questions
	Acknowledgments

	Part I: The Java Enterprise APIs
	Chapter 1. Introduction
	Section 1.1. Enterprise Computing Defined
	Section 1.2. Enterprise Computing Demystified
	Section 1.3. Standard Java Enterprise APIs
	Section 1.4. De Facto Standard Enterprise Development Tools
	Section 1.5. An Enterprise Computing Scenario
	Section 1.6. Other Enterprise APIs

	Chapter 2. Application Assembly and Deployment
	Section 2.1. J2EE Application Assembly Model
	Section 2.2. Component Modules
	Section 2.3. Application Assemblies
	Section 2.4. Deploying J2EE Applications

	Chapter 3. Java Servlets
	Section 3.1. Getting a Servlet Environment
	Section 3.2. Servlet Basics
	Section 3.3. Web Applications
	Section 3.4. Servlet Requests
	Section 3.5. Servlet Responses
	Section 3.6. Custom Servlet Initialization
	Section 3.7. Security
	Section 3.8. Servlet Filters
	Section 3.9. Thread Safety
	Section 3.10. Cookies
	Section 3.11. Session Tracking
	Section 3.12. Databases and Non-HTML Content

	Chapter 4. JavaServer Pages
	Section 4.1. JSP Basics
	Section 4.2. JSP Actions
	Section 4.3. The JSP Expression Language
	Section 4.4. JSP Standard Tag Library
	Section 4.5. Custom Tags
	Section 4.6. Wrapping Up

	Chapter 5. JavaServer Faces
	Section 5.1. The Sample Application
	Section 5.2. Structure of a JSF Application
	Section 5.3. Managed Beans
	Section 5.4. The JSF Expression Language
	Section 5.5. JSF Actions and Views
	Section 5.6. Building Tables
	Section 5.7. Validation
	Section 5.8. Moving on with JSF

	Chapter 6. Enterprise JavaBeans
	Section 6.1. What Version Is Covered Here?
	Section 6.2. EJB Component Model Overview
	Section 6.3. EJB Tutorial
	Section 6.4. Deploying EJBs
	Section 6.5. Using Enterprise JavaBeans
	Section 6.6. Session Bean Specifics
	Section 6.7. Entity Beans
	Section 6.8. Message-Driven Beans
	Section 6.9. Transaction Management
	Section 6.10. EJB 3.0

	Chapter 7. Java and XML
	Section 7.1. Using XML Documents
	Section 7.2. Java API for XML Processing
	Section 7.3. SAX
	Section 7.4. DOM
	Section 7.5. XSLT

	Chapter 8. JDBC
	Section 8.1. JDBC Architecture
	Section 8.2. Connecting to the Database
	Section 8.3. Statements
	Section 8.4. Results
	Section 8.5. Handling Errors
	Section 8.6. Prepared Statements
	Section 8.7. BLOBs and CLOBs
	Section 8.8. Metadata
	Section 8.9. Transactions
	Section 8.10. Stored Procedures
	Section 8.11. Escape Sequences
	Section 8.12. RowSets

	Chapter 9. JNDI
	Section 9.1. JNDI Architecture
	Section 9.2. A Simple Example
	Section 9.3. Introducing the Context
	Section 9.4. Looking Up Objects in a Context
	Section 9.5. The NamingShell Application
	Section 9.6. Listing the Children of a Context
	Section 9.7. Creating and Destroying Contexts
	Section 9.8. Binding Objects
	Section 9.9. Accessing Directory Services
	Section 9.10. Modifying Directory Entries
	Section 9.11. Creating Directory Entries
	Section 9.12. Searching a Directory
	Section 9.13. Event Notification

	Chapter 10. J2EE Security
	Section 10.1. Basic Security Concepts
	Section 10.2. A Look at Java and J2EE Security Standards
	Section 10.3. Declarative Security Versus Programmatic Security
	Section 10.4. Web Component Security
	Section 10.5. EJB Component Security
	Section 10.6. Other J2EE Security Topics
	Section 10.7. Limitations of J2EE Security

	Chapter 11. Java Message Service
	Section 11.1. JMS in the J2EE Environment
	Section 11.2. Elements of Messaging with JMS
	Section 11.3. The Anatomy of Messages
	Section 11.4. Point-to-Point Messaging
	Section 11.5. Publish-Subscribe Messaging
	Section 11.6. Unified Messaging
	Section 11.7. Transactional Messaging

	Chapter 12. Web Services with JAX-RPC and SAAJ
	Section 12.1. What's Covered Here?
	Section 12.2. Brief Introduction to Web Services
	Section 12.3. Java Web Services
	Section 12.4. Writing Web Service Clients
	Section 12.5. Writing Web Services
	Section 12.6. Deploying Web Services

	Chapter 13. Remote Method Invocation
	Section 13.1. What's Covered Here?
	Section 13.2. Introduction to RMI
	Section 13.3. Defining Remote Objects
	Section 13.4. Creating the Stubs and Skeletons
	Section 13.5. Accessing Remote Objects as a Client
	Section 13.6. Dynamic Classloading
	Section 13.7. Remote Object Activation
	Section 13.8. RMI and Native Method Calls
	Section 13.9. RMI Over IIOP

	Chapter 14. Java IDL (CORBA)
	Section 14.1. A Note on Evolving Standards
	Section 14.2. The CORBA Architecture
	Section 14.3. Creating CORBA Objects
	Section 14.4. Putting It in the Public Eye
	Section 14.5. Finding and Using Remote Objects
	Section 14.6. What If I Don't Have the Interface?

	Chapter 15. JavaMail
	Section 15.1. Email and JavaMail
	Section 15.2. Creating and Sending Messages
	Section 15.3. Retrieving Messages
	Section 15.4. Multipart Messages

	Chapter 16. Transactions
	Section 16.1. Transaction Overview
	Section 16.2. Programmatic Transactions Versus Declarative Transactions
	Section 16.3. Optimistic Concurrency
	Section 16.4. EJB Transaction Management
	Section 16.5. Some Common Programming Scenarios
	Section 16.6. Transaction Best Practices

	Part II: Open Source Enterprise Tools
	Chapter 17. Ant
	Section 17.1. What Version Is Covered Here?
	Section 17.2. Ant Overview
	Section 17.3. Ant Fundamentals
	Section 17.4. Core Tasks
	Section 17.5. Enterprise Tasks
	Section 17.6. Creating Portable Build Processes

	Chapter 18. JUnit and Cactus
	Section 18.1. What's Covered Here?
	Section 18.2. Unit Testing Concepts
	Section 18.3. JUnit Overview
	Section 18.4. Using JUnit with Ant
	Section 18.5. Testing Enterprise Components with Cactus

	Chapter 19. Struts
	Section 19.1. The Scope of Struts
	Section 19.2. The Sample Application
	Section 19.3. The Development Process with Struts
	Section 19.4. The Struts Controller
	Section 19.5. The Action Class
	Section 19.6. Views in Struts
	Section 19.7. Struts Tags
	Section 19.8. Struts Plug-ins
	Section 19.9. DynaActionForms and the Struts Validator

	Chapter 20. Hibernate
	Section 20.1. The Sample Application
	Section 20.2. Principles of Hibernate
	Section 20.3. Configuration and Mapping
	Section 20.4. The Hibernate API
	Section 20.5. HQL (Hibernate Query Language)
	Section 20.6. Hibernate Services
	Section 20.7. Conclusion

	Chapter 21. Annotations with XDoclet and J2SE Metadata
	Section 21.1. What's Covered Here?
	Section 21.2. What Are Code Annotations?
	Section 21.3. Annotation Tools
	Section 21.4. XDoclet Tutorial
	Section 21.5. J2SE Annotations Tutorial

	Part III: Appendixes
	Appendix A. J2EE Deployment Descriptor Reference
	Section A.1. Web Components (web.xml)
	Section A.2. Enterprise JavaBeans (ejb-jar.xml)
	Section A.3. Application Archives (application .xml)
	Section A.4. Web Services (webservices.xml)
	Section A.5. Web Service Java/WSDL Mappings

	Appendix B. JavaServer Faces Tag Libraries
	Section B.1. JSF Core Tags
	Section B.2. JSF HTML Tags

	Appendix C. Enterprise JavaBeans Query Language Syntax
	Section C.1. Basic Structure of EJB QL Queries
	Section C.2. FROM Clause
	Section C.3. SELECT Clause
	Section C.4. WHERE Clause
	Section C.5. ORDER BY Clause

	Appendix D. SQL Reference
	Section D.1. Relational Databases
	Section D.2. Data Types
	Section D.3. Schema Manipulation Commands
	Section D.4. Data Manipulation Commands
	Section D.5. Functions
	Section D.6. Return Codes

	Appendix E. JMS Message Selector Syntax
	Section E.1. Structure of a Selector
	Section E.2. Identifiers
	Section E.3. Literals
	Section E.4. Operators
	Section E.5. Expressions

	Appendix F. FRMI Tools
	rmic: The Java RMI Compiler
	rmid: The RMI Activation Daemon
	rmiregistry: The Java RMI Object Registry
	serialver: The RMI Serial Version Utility

	Appendix G. IDL Reference
	Section G.1. IDL Keywords
	Section G.2. Identifiers
	Section G.3. Comments
	Section G.4. Basic Data Types
	Section G.5. Constants and Literals
	Section G.6. Naming Scopes
	Section G.7. User-Defined Data Types
	Section G.8. Exceptions
	Section G.9. Module Declarations
	Section G.10. Interface Declarations
	Section G.11. Value Type Declarations

	Appendix H. HJava IDL Tools
	idlj: The Java IDL Compiler
	orbd: Naming Service Daemon
	servertool
	tnameserv: Transient Naming Service Daemon

	About the Authors
	Colophon
	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

