
JUNOS Enterprise Routing
by Doug Marschke; Harry Reynolds

Publisher: O'Reilly
Pub Date: March 27, 2008
Print ISBN-13: 978-0-596-51442-6
Pages: 812

Table of Contents
| Index

Overview

Written by the instructors and creators of the JNTCP-ER Certification Exams, JUNOS Enterprise Routing is the
only comprehensive book for Juniper enterprise and edge routing environments. It offers complete coverage of
all the services available to the JUNOS administrator, including JUNOS Enhanced Services (ES). This book is the
official study guide for all three Juniper Enterprise Routing certification exams, and is highly recommended
reading to pass the exams. With its field-guide emphasis on practical solutions, you can easily take the book
beyond the classroom and into working networks as a design, maintenance, and troubleshooting reference par
excellence. JUNOS Enterprise Routing covers all three certification exams in this track:

Juniper Networks Certified Internet Associate (JNCIA-ER)

Juniper Networks Certified Internet Specialist (JNCIS-ER)

Juniper Networks Certified Internet Expert (JNCIE-ER)

With more services such as voice, conference, and multicast on the IP router platform, the market for enterprise
routers is growing exponentially, and the need for certified engineers to keep up with network developments in
protocols and security is paramount. For everyone who works with Juniper enterprise and edge routing
environments, this is a must-have book.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

JUNOS Enterprise Routing
by Doug Marschke; Harry Reynolds

Publisher: O'Reilly
Pub Date: March 27, 2008
Print ISBN-13: 978-0-596-51442-6
Pages: 812

Table of Contents
| Index

Foreword
Credits
Preface
Chapter 1. Introduction to JUNOS Enterprise Routing

Section 1.1. JUNOS Overview
Section 1.2. CLI Review
Section 1.3. Advanced CLI and Other Cool Stuff
Section 1.4. Conclusion
Section 1.5. Exam Topics
Section 1.6. Chapter Review Questions
Section 1.7. Chapter Review Answers

Chapter 2. Interfaces
Section 2.1. Permanent Interfaces
Section 2.2. Transient Interfaces
Section 2.3. Interface Properties
Section 2.4. Interface Configuration Examples
Section 2.5. Interface Troubleshooting
Section 2.6. Conclusion
Section 2.7. Exam Topics
Section 2.8. Chapter Review Questions
Section 2.9. Chapter Review Answers

Chapter 3. Protocol Independent Properties and Routing Policy
Section 3.1. Protocol Independent Properties
Section 3.2. Routing Policy
Section 3.3. Conclusion
Section 3.4. Exam Topics
Section 3.5. Chapter Review Questions
Section 3.6. Chapter Review Answers

Chapter 4. Interior Gateway Protocols and Migration Strategies
Section 4.1. IGP Overview
Section 4.2. RIP Deployment Scenario
Section 4.3. IGP Migration
Section 4.4. Overlay Migration Scenario: RIP to OSPF
Section 4.5. EIGRP-to-OSPF Migration
Section 4.6. Conclusion
Section 4.7. Exam Topics
Section 4.8. Chapter Review Questions
Section 4.9. Chapter Review Answers

Chapter 5. Border Gateway Protocol and Enterprise Routing Policy
Section 5.1. What Is BGP?
Section 5.2. Internal and External BGP
Section 5.3. BGP and the Enterprise
Section 5.4. Asymmetric Link Speed Support
Section 5.5. BGP Deployment: Asymmetric Load Balancing
Section 5.6. Enterprise Routing Policy
Section 5.7. Multihome Beer-Co
Section 5.8. Inbound Policy
Section 5.9. Conclusion
Section 5.10. Exam Topics
Section 5.11. Chapter Review Questions
Section 5.12. Chapter Review Answers

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 6. Access Security
Section 6.1. Security Concepts
Section 6.2. Securing Access to the Router
Section 6.3. Firewall Filters
Section 6.4. Spoof Prevention (uRPF)
Section 6.5. Monitoring the Router
Section 6.6. Conclusion
Section 6.7. Exam Topics
Section 6.8. Chapter Review Questions
Section 6.9. Chapter Review Answers

Chapter 7. Introduction to JUNOS Services
Section 7.1. JUNOS Services
Section 7.2. Layer 2 Services
Section 7.3. Layer 3 Services
Section 7.4. Layer 3 Services Configuration
Section 7.5. Additional Service Options
Section 7.6. Conclusion
Section 7.7. Exam Topics
Section 7.8. Chapter Review Questions
Section 7.9. Chapter Review Answers

Chapter 8. Advanced JUNOS Services
Section 8.1. Route Tables and Next Hop Service Sets
Section 8.2. IPSec VPNs
Section 8.3. NAT
Section 8.4. Combining Services
Section 8.5. The Life of a Packet
Section 8.6. Conclusion
Section 8.7. Exam Topics
Section 8.8. Chapter Review Questions
Section 8.9. Chapter Review Answers

Chapter 9. Class of Service
Section 9.1. What Is IP CoS, and Why Do I Need It?
Section 9.2. IP Differentiated Services
Section 9.3. M7i and J-Series CoS Capabilities
Section 9.4. DiffServ CoS Deployment and Verification
Section 9.5. J-Series Adaptive Shapers and Virtual Channels
Section 9.6. Conclusion
Section 9.7. Exam Topics
Section 9.8. Chapter Review Questions
Section 9.9. Chapter Review Answers

Chapter 10. IP Multicast in the Enterprise
Section 10.1. What Is Multicast?
Section 10.2. Multicast Protocols
Section 10.3. PIM Sparse Mode: Static RP
Section 10.4. Configure PIM Sparse Mode with Bootstrap RP
Section 10.5. PIM-Based Anycast-RP
Section 10.6. Conclusion
Section 10.7. Exam Topics
Section 10.8. Chapter Review Questions
Section 10.9. Chapter Review Answers

Chapter 11. JUNOS Software with Enhanced Services
Section 11.1. JUNOS Software with Enhanced Services Overview
Section 11.2. Migrating from JUNOS to JUNOS Software with Enhanced Services
Section 11.3. Service Migration Case Study: JUNOS to JUNOS Software with Enhanced Services
Section 11.4. Conclusion
Section 11.5. Exam Topics
Section 11.6. Chapter Review Questions
Section 11.7. Chapter Review Answers

Glossary
Colophon
Index

http://lib.ommolketab.ir
http://lib.ommolketab.ir

JUNOS Enterprise Routing

by Doug Marschke and Harry Reynolds

Copyright © 2008 Doug Marschke and Harry Reynolds. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also
available for most titles (safari.oreilly.com). For more information, contact our corporate/institutional sales
department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mike Loukides

Developmental Editor: Patrick Ames

Production Editor: Sumita Mukherji

Copyeditor: Audrey Doyle

Proofreader: Mary Brady

Indexer: Angela Howard

Cover Designer: Karen Montgomery

Interior Designer: David Futato

Illustrator: Jessamyn Read

Printing History:

March 2008: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly
Media, Inc. JUNOS Enterprise Routing, the image of Tengmalm's owl, and related trade dress are trademarks of
O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN: 978-0-596-51442-6

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[M]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Foreword

In 1998, Juniper Networks launched its first product, the M40 router, and in doing so sparked a period of
innovation in IP routing that continues to accelerate. Although the M40 was designed to carry Internet traffic for
Internet service providers (ISPs), the benefits of IP networking were becoming apparent to other companies as
well, and a short time later Juniper began to build routers with the specific goals of the rapidly developing IP
business network market in mind.

The book you're holding exists to help you understand and implement the most critical elements of business
networking using Juniper Networks routers running the JUNOS operating system. JUNOS contains a set of
powerful tools that allow intelligent policies to replace large amounts of basic configuration, which gives the
engineer a brilliantly practical way to deploy services beyond simple routing. JUNOS represents the most
valuable contribution to networking that Juniper has made: it's reliable, flexible, secure, and simple to use, and
an increasing numbers of businesses are finding that these qualities are compelling enough to move to Juniper
and away from legacy "first-generation" routers and their less capable operating systems.

P2.1. Why Enterprise Routing?

Many books have been written about JUNOS, but this book is unique in that it will prepare you to use JUNOS in
an enterprise-centric sense. Enterprise is a term that equipment manufacturers and others use to distinguish
the internal networks of "normal" businesses from the typically larger ones run by service providers, phone
companies, and other network providers. Although there are, of course, similarities, every type of business
requires its own unique set of capabilities from its network infrastructure regardless of its size: financial
institutions have different needs from those of retail chains, which themselves differ from governments and
universities.

Enterprise business networks are not simply small service provider networks. Although some aspects of
networking technology-such as faster interfaces and greater degrees of reliability-continue to be attributes of
both environments, their design goals and operational techniques differ greatly. A service provider usually
maintains a network for the benefit of paying customers who produce revenue, whereas the network of an
enterprise such as a bank has traditionally been viewed as an investment whose operational expense should be
minimized. This essential difference has meant that service providers have usually been seen as the custodians
of network innovation, with enterprises reluctant to invest more than the bare minimum in their infrastructure
because of the uncertainty of real return on their investment.

There are signs that this attitude is changing. Companies in virtually every industry have embraced the idea
that more effective use of their IT infrastructure can make them more competitive and efficient. To that end,
enterprise executives are increasingly interested in innovative ways to capitalize on their investments in data
networks. This trend is most pronounced in data-intensive industries such as banking, finance, and insurance,
but it extends into even less obvious areas such as manufacturing and transportation.

Service provider and enterprise networks continue to be different in terms of their customer base and their
relationship to technology, but networking in general is becoming increasingly important to the competitiveness
of all types of companies. Some of the most outstanding examples of the ways that networking can improve
business fundamentals are those related to developments in IP routing, and many of those developments have
recently come from Juniper Networks.

P2.2. Why Is Routing So Important?

Routing is the hub around which all of IP connectivity revolves. At the simplest level, routing establishes basic
internetwork communications, implements an addressing structure that uniquely identifies each device, and
organizes individual devices into a hierarchical network structure. Traditionally, routers have also served as the
media adapters that have connected remote offices to the headquarters via a WAN. The most recent trend,
though, is to see routers as the integration platforms for a wide variety of network enhancements such as

http://lib.ommolketab.ir
http://lib.ommolketab.ir

security, policy, and services that extend the capabilities of IP to support telephony, video, legacy service
integration, and other applications over a converged network.

This means the router has become the primary control point in the increasingly complex network environment,
holding responsibility for service quality and security, monitoring and efficiency, and other attributes that allow
networks to add value. If you control the routers, you control the network. This is true in a static network, of
course, but even more so in today's typical case of a rapidly evolving enterprise, where migration to fully IP-
based services is underway. This book will show you how you can use Juniper routers to ease this migration and
arrive at a more successful outcome with less work than other platforms would require. This is important
because although the basics of routing remain somewhat the same, the more advanced aspects are under
constant development, and the authors have done a great job of showing you how to address the continually
changing enterprise network environment.

Juniper has long understood that constant change is a fact of today's networks, and has worked to bring new
levels of performance, dependability, and scalability to routing platforms and the software that runs them. CIOs
and IT departments realize that by deploying a more powerful, flexible tool at their networks' control points,
they enable their networks to address new challenges more easily and economically, and that's the best way to
support the competitiveness of their company.

P2.3. How This Book Will Help You

I have known and worked with Doug and Harry for years, and have watched both of them add to their earlier
careers in telecommunications with outstanding work for Juniper and SNT. Both have extensive experience in
training and certification, and both are established authors of educational materials, course guides, and books
that have helped thousands of networking engineers obtain knowledge to set them apart from the competitive
field. Their students and readers have gone on to form an elite group.

This book will serve two purposes for you. First, it will allow you to quickly acquire the knowledge to succeed in
implementing enterprise networks, no matter how advanced, with Juniper Networks routers. Second, it will help
you to prove your knowledge by passing the Juniper Networks Certified Internet Expert (JNCIE-ER) examination,
one of the most highly regarded certifications in the industry. Each chapter's tutorial trains you in the most
essential elements of the subject, and the review questions at the end of each chapter allow you to confirm the
knowledge you've acquired. Doug and Harry have extensive experience in both the practical and the
pedagogical components of this mission, and this book is an excellent example of how theory and practice can
come together in one comprehensive yet concise package.

Juniper Networks routers and the JUNOS operating system are changing the way IT departments are regarding
their IP networks, allowing them to put greater trust in the capabilities of their routing infrastructures and
thereby deliver much greater value to the bottom lines of their organizations. With this book, Doug and Harry
have delivered the tools necessary for every network engineer to add valuable knowledge and skills to his
professional portfolio, and to help his company reap the benefits of the enterprise IP revolution. All that's
required is for you to accept the challenge!

-Matt Kolon

Hong Kong, January 2008

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Credits

P3.1. About the Lead Technical Reviewers

Mario Puras is a Juniper Networks systems engineer supporting major enterprise and state government
accounts in Florida. He has more than 10 years of experience in the networking industry, focusing on providing
routing, switching, and security solutions for large enterprise and service providers. He is JNCIP #119-certified
and holds a JNCIA-FW, JNCIA-WX, and various other industry certifications. Prior to joining Juniper Networks,
Mario served in the U.S. Army and worked at Metrolink, Duro Communications, and Solunet Inc. He is married
to his best friend of 12 years, Stacy.

Jack W. Parks has more than 15 years of experience in IT and has worked in almost every position known in
the realm of IT. Most recently, he has focused on enterprise routing and switching, service provider routing, and
MPLS and VPNs. Jack holds a BS in business information systems from John Brown University and has received
several industry certifications, including CCI #11685, JNCIS-M, JNCIA-SSL, and JNCIA-FWV. After serving eight
years in the U.S. Air Force, Jack transitioned into the corporate world working for service providers in the
enterprise and ISP market spaces. Jack is currently a Juniper systems engineer based in Atlanta.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Preface

The world of enterprise routing with Juniper Networks devices is getting very exciting-new technologies,
products, and network developments are making the enterprise network environment one of the most dynamic
places to be. However, we, the authors, hope to focus that energy by providing you with a detailed and practical
foundation that ensures effective use of JUNOS software in your day-to-day job.

Because we are also involved in the development and testing of certification exams, including those for
enterprise routing, this book does double duty. It is both a field guide and a certification study guide. Readers
who are interested in attaining a Juniper Networks certification level are wise to note that we discuss and cover
topics that are relevant to the official exams (hint, hint), and the end of each chapter provides a listing of
examination topics covered as well as a series of review questions that allow you to test your comprehension.

Regardless of one's certification plans, this one-of-a-kind book will not be obsolete just because you pass an
exam. In fact, we wrote this material to serve as a field guide to be useful almost anytime you log on to a
Juniper Networks router. The extensive use of tutorials, samples of actual command output, and detailed
theoretical coverage go well beyond any certification exam, to provide you with something that can't be
tested-getting things to work the right way, and on the first time. When plan A fails, the material also provides
the steps needed to monitor network operation and quickly identify and resolve the root cause of malfunctions.

As trainers who deal with large numbers of both experienced and inexperienced users on a regular basis, we
have seen it all. Within this guide, you will find the many pearls of our accumulated wisdom, any one of which
can easily pay for this book many times over in increased network uptime and performance.

Some of our chapters tend to be on the longer side, simply because they are packed with detailed information
regarding theory, configuration, and troubleshooting for each topic. Rather than create more chapters, "soft
breaks" and summaries within the chapters are used to identify boundaries within the material that afford a
convenient place to take a breather, or as we often provide in our training classes, a "biology break and
stretch." Dog-ear the pages, write notes in the margins, augment the topology illustrations with something
more akin to your network-just remember that this is a beastly JUNOS book: part exam, part training class,
part knowledge base. It's meant to be used, abused, and put to work. Let's get going.

P4.1. What Is Enterprise Routing?

After you've spent some time in the networking field, you tend to notice that there is rarely a single way to do
things, and in many cases, a single precise definition for terms. After all, often a network engineer's best answer
is "it depends." Such is the case with enterprise routing, so let's start off with a definition question: what is an
enterprise network? Is it a large multinational network used by a manufacturing company; is it a government
network supporting a state or a county; is it a regional network used by a parts distributor; or is it a network
that supports your local dentist's office?

Of course, it's probably all of these, and many more. At a very high level, you can state that an enterprise
network is one that is used to support activities as opposed to generating revenue, as in a service provider's
network. Some might say that if someone pays you to access your network, you are providing a service to him
and you're no longer an enterprise network. But that sweeping statement doesn't really apply if that someone is
paying you to cover your costs to provide that service. So, as you can see, it depends.

Defining an enterprise network also manifests itself into how Juniper Networks defines its products within the
enterprise world. On the one hand, Juniper designates certain hardware platforms as enterprise routers, but
then many enterprise networks require density and throughput options from a platform listed as a service
provider product. From the software side of things, the same issue arrives. Whereas a technology such as IPSec
is used by all types of networks around the globe, is it used more by enterprise networks than by service
provider networks? Some engineers would answer yes to that question, but then, you can't say that a service
provider will never use IPSec.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

From the perspective of hardware platforms, Juniper Networks has designated the following as enterprise
products:

J-series routers to include the J2300, J2320, J2350, J4350, and J6350

M7i and M10i routers

M120 routers

However, larger enterprise networks may find platforms such as the M320 and MX960/480 very useful for their
environments. In fact, the reverse is also true in that a traditional service provider network may very well find
an appropriate need and use for platforms designated as enterprise routers.

The good news in all this is that you have a well-thought-out operating system in JUNOS. The JUNOS software is
a single train of features that operates across all of the various routing platforms. So, whether you run an
enterprise network or a service provider network, and regardless of your actual hardware platform, there is a
single version of software code to load. Although this single code train has lots of hidden benefits, such as
stability, ease of expandability, lower total operational costs, and more, what it really means is the ability to
have the same features available on all devices. So, from a learning perspective, we can talk about the software
and its features without having to constantly caveat our discussion with "except for on this platform" or "only on
these particular platforms." Although such exceptions do occur, and they result from hardware enhancements
that are unique to a particular platform, these cases tend to be exceptions and are infrequent enough to
remember.

Throughout this book, we will attempt to simplify the discussion by limiting ourselves to the J-series platforms
and the M7i router as we discuss the various features and options available to configure. We also focus on those
topics that the vast majority of enterprise networks care about and actually use. We will also define an
enterprise network as one that uses an Internet connection as opposed to a network that provides connectivity
to the Internet as its sole function.

P4.2. Juniper Networks Technical Certification Program (JNTCP)

This book is an official study guide for the JNTCP Enterprise Routing tracks. Use it to prepare and study for the
JNCIA-ER, JNCIS-ER, and JNCIE-ER certification exams. For the most current information on Juniper Networks'
Enterprise Routing certification tracks, visit the JNTCP web site at http://www.juniper.net/certification.

P4.3. How to Use This Book

Let's look at some specifics on how this book can help you. We'll talk about what we cover in the various
chapters, how the book is laid out, and some resources to help you along the way. To start, let's discuss what
you should know before you begin to read this book.

We are assuming a certain level of knowledge on the reader's part. This is important because we are assuming
you to be conversant in the following topic areas:

OSI model

The Open Systems Interconnection (OSI) model defines seven different layers of technology: Physical,
Data Link, Network, Transport, Session, Presentation, and Application. This model allows network

http://www.juniper.net/certification
http://lib.ommolketab.ir
http://lib.ommolketab.ir

engineers and network vendors to easily discuss and apply technology to a specific OSI level. This
segmentation lets engineers divide the overall problem of getting one application to talk to another into
discrete parts and more manageable sections. Each level has certain attributes that describe it and each
level interacts with its neighboring levels in a very well-defined manner.

Switches

These devices operate at Layer 2 of the OSI model and use logical local addressing to move frames
across a network. Devices in this category include Ethernet, Asynchronous Transfer Mode (ATM), and
Frame Relay switches.

Routers

These devices operate at Layer 3 of the OSI model and connect IP subnets to each other. Routers move
packets across a network in a hop-by-hop fashion.

Ethernet

These broadcast domains connect multiple hosts together on a common infrastructure. Hosts
communicate with each other using Layer 2 media access control (MAC) addresses.

Point-to-point links

These network segments are often thought of as WAN links in that they do not contain any end users.
Often, these links are used to connect routers together in disparate geographical areas. Possible
encapsulations used on these links include ATM, Frame Relay, Point-to-Point Protocol (PPP), and High-
Level Data Link Control (HDLC).

IP addressing and subnetting

Hosts using IP to communicate with each other use 32-bit addresses. Humans often use a dotted decimal
format to represent this address. This address notation includes a network portion and a host portion,
which is normally displayed as 192.168.1.1/24.

TCP and UDP

These Layer 4 protocols define methods for communicating between hosts. The Transmission Control
Protocol (TCP) provides for connection-oriented communications, whereas the User Datagram Protocol
(UDP) uses a connectionless paradigm. Other benefits of using TCP include flow control,
windowing/buffering, and explicit acknowledgments.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ICMP

Network engineers use this protocol to troubleshoot and operate a network as it is the core protocol used
by the ping and traceroute (on some platforms) programs. In addition, the Internet Control Message
Protocol (ICMP) is used to signal error and other messages between hosts in an IP-based network.

JUNOS CLI

The command-line interface (CLI) used by Juniper Networks routers, which is the primary method for
configuring, managing, and troubleshooting the router. JUNOS documentation covers the CLI in detail,
and it is freely available on the Juniper Networks web site (http://www.juniper.net).

P4.4. What's in This Book?

The ultimate purpose of this book is to be the single, most complete source for working knowledge related to
Juniper Networks enterprise routing. Although you won't find much focus on actual packet formats and fields,
topics for which there is already plentiful coverage on the Internet and in bookstores, you will find how to
effectively deploy JUNOS technology in your network.

Here's a short summary of the chapters and what you'll find inside:

Chapter 1

This chapter provides an overview of the hardware and software architecture on Juniper enterprise
routers, as well as an overview of the JUNOS CLI for both new and experienced users.

Chapter 2

This chapter provides an overview of JUNOS interface organization. Then it dives into some of the most
common interface types and configurations seen in networks today. Finally, it concludes with a
troubleshooting section with real-life scenarios seen every day.

Chapter 3

This chapter provides a condensed but comprehensive overview of JUNOS Protocol Independent
Properties (PIPs), such as static and aggregate route, and of routing policy, which is used to control route
advertisement, redistribution, and attribute manipulation.

Chapter 4

http://www.juniper.net
http://lib.ommolketab.ir
http://lib.ommolketab.ir

This chapter provides a detailed review of Interior Gateway Protocol (IGP) operation, and then focuses on
multivendor deployments of the Routing Information Protocol (RIP) and Open Shortest Path First (OSPF).
The material also focuses on IGP migration strategies and includes an EIGRP-to-OSPF migration case
study.

Chapter 5

After providing a detailed review of what the Border Gateway Protocol (BGP) is and how it can benefit an
enterprise, this chapter provides a series of case studies that build in complexity, starting with a single
homed network with no Internal BGP (IBGP) speaker and ending with a multihomed-to-multiple-providers
scenario, to include a redundant IBGP route reflection design that avoids running IBGP on all internal
routers. The policy treatment is focused on practical enterprise routing goals, and it details both inbound
and outbound policy that includes autonomous system (AS) path regex matching and BGP attribute
manipulation.

Chapter 6

This chapter provides an overview of a large variety of security concepts and the tools available to deploy
them. These tools include user authentication and authorization, remote access, firewall filters, policers,
Unicast Reverse Path Forwarding, the Simple Network Management Protocol (SNMP), and syslog.

Chapter 7

This chapter provides an overview of the Layer 2 and Layer 3 services that can be deployed on a Juniper
Networks router. Layer 2 services include features such as link bundling and Generic Routing
Encapsulation (GRE), whereas Layer 3 services include stateful firewalls, IPSec, and Network Address
Translation (NAT). This chapter also lays the CLI foundation to discuss more scenarios in Chapter 8.

Chapter 8

This chapter dives into the complex scenarios of the features discussed in Chapter 7. It walks through
various deployed NATs, IPSec virtual private networks (VPNs), IPSec over GRE, and all possible Layer 3
services combined.

Chapter 9

This chapter provides an overview of IP class of service (CoS) and includes a detailed primer on IP
DiffServ. The material then details the similarities and differences in CoS handling between the J-series
and M7i routers, which is a common source of confusion. A practical CoS case study serves as the
foundation for CoS deployment and operational verification. The chapter also demonstrates the J-series-
specific Virtual Channel CoS feature.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 10

Multicast tends to see little deployment and is a common area of confusion. This chapter details IP
multicast concepts, provides an overview of multicast protocols, and then demonstrates several Physical
Interface Module (PIM) sparse mode scenarios, to include PIM sparse mode with static, bootstrap, and
Anycast-RP. Through all the examples, practical verification and fault isolation steps are provided.

Chapter 11

This hot-off-the-press chapter includes the first official coverage of the new JUNOS software with
enhanced services release. This chapter gives you the heads-up needed to understand what JUNOS
software with enhanced services offers, how to migrate from JUNOS to JUNOS software with enhanced
services, and the various things you need to know before deploying JUNOS software with enhanced
services.

In addition, you can also use this book to attain one of the Juniper Networks certification levels related to
enterprise routing. To that end, each chapter in the book includes a set of review questions and exam topics
that have been covered, all of it designed to get you thinking about what you've just read and digested. If
you're not in the certification mode, the questions will provide a mechanism for critical thinking, potentially
prompting you to locate other resources to further your knowledge.

P4.4.1. Topology of This Book

Figure P4-1 displays the topology of the book that appears beginning in Chapter 3. It consists of 11 J-series
routers running version 8.0R1.9 and 2 Cisco routers running IOS Release 12.3(15b). The Cisco routers are
primary employed in Chapter 4, where they are used for both RIP interoperability and as part of an EIGRP-to-
OSPF migration exercise. The topology uses only Fast Ethernet and T1 interfaces; however, other interface
types are examined in Chapter 2. You might recognize the hostnames of the routers-they all relate to a
beverage that was created more than 7,000 years ago (with evidence to consumption) in Mesopotamia. The
names are chosen due to the international appeal of the resultant product and for the resultant food value only,
as beer is an excellent way to preserve the nutritional value of grain.

Figure P4-1. This book's topology

http://lib.ommolketab.ir
http://lib.ommolketab.ir

P4.5. Conventions Used in This Book

The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, file extensions, pathnames, directories, and Unix
utilities

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Constant width

Indicates commands, options, switches, variables, attributes, keys, functions, types, classes,
namespaces, methods, modules, properties, parameters, values, objects, events, event handlers, XML
tags, HTML tags, macros, the contents of files, and the output from commands

Constant width bold

Shows commands and other text that should be typed literally by the user, as well as important lines of
code

Constant width italic

Shows text that should be replaced with user-supplied values

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

P4.6. Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in your own
configuration and documentation. You do not need to contact us for permission unless you're reproducing a
significant portion of the material. For example, deploying a network based on actual configurations from this
book does not require permission. Selling or distributing a CD-ROM of examples from this book does require
permission. Answering a question by citing this book and quoting example code does not require permission.
Incorporating a significant amount of sample configurations or operational output from this book into your
product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author, publisher, and
ISBN. For example: "JUNOS Enterprise Routing by Doug Marschke and Harry Reynolds. Copyright 2008 Doug
Marschke and Harry Reynolds, 978-0-596-51442-6."

If you feel your use of code examples falls outside fair use or the permission given here, feel free to contact us
at permissions@oreilly.com.

P4.7. Comments and Questions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information. You can
access this page at:

http://www.oreilly.com/catalog/9780596514426

or:

http://cubednetworks.com

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly Network, see our web
site at:

http://www.oreilly.com

P4.8. Safari® Books Online

When you see a Safari® Books Online icon on the cover of your favorite technology book, that means the book
is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search thousands of
top tech books, cut and paste code samples, download chapters, and find quick answers when you need the
most accurate, current information. Try it for free at http://safari.oreilly.com.

P4.9. Acknowledgments

The authors would like to gratefully and enthusiastically acknowledge the work of many professionals who
assisted us in the development of the material for this book. Although our names are printed on the book as
authors, in reality no author works alone. The contributions of many people have made this book possible, and
others have assisted us with their technical accuracy, typographical excellence, and editorial inspiration.

Many thanks are owed to the official technical editors of this material. Mario and Jack were extremely
responsive to the demanding needs of our schedule. Your attention to detail and wealth of knowledge no doubt
saved us many an embarrassing bit of errata. To this end, we also thank Colleen Gorman for her fine
developmental editing, and Audrey Doyle for her thorough copyediting, that resulted in a much improved
experience for you, the reader.

We would also like to acknowledge Juniper Networks in general, for the assistance provided on various fronts,
and specifically Monear Jalal, David Ranch, and Jerish Parapurath, for their efforts in making Chapter 11
possible. We also extend thanks to Jonathon Looney, who volunteered to provide a technical review for the
services chapters (Chapter 7, Chapter 8, and Chapter 11), for his detailed knowledge of JUNOS software with
enhanced services, and for the inspiration he provided with regard to the BGP policy treatment. We would also
like to thank Chris Heffner, who provided the routers used for this book via http://www.certified-labs.com/, with
a price that could not be matched-free of charge.

Thanks also to Matt Kolon, for taking time from his busy schedule to evaluate the material, and for his

http://www.oreilly.com/catalog/9780596514426
http://cubednetworks.com
http://www.oreilly.com
http://safari.oreilly.com
http://www.certified-labs.com/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

inspirational Foreword.

And last but not least, special thanks to Jason Rogan and Patrick Ames for their assistance and behind-the-
scenes activations that made this effort possible. They were the ones that really pushed the ideas of two wacky
authors into a reality.

P4.9.1. From Doug Marschke

I would like to acknowledge all my friends who helped me through this very time-consuming and, at times,
stressful effort with many words of encouragement and well-timed stress relievers. I would like to thank Becca
Morris in particular for her free time spent correcting my horrible grammar to avoid embarrassment before
editorial submission. I would also like to thank my roommate, Catherine la O', for putting up with the man
writing in the cave. Of course, I would be remiss if I did not thank my furry quadruped friend, Josh, who was by
my side the entire time, offering a woof to any potential distracters.

P4.9.2. From Harry Reynolds

I would like to acknowledge my wife, Anita, and two lovely daughters, Christina and Marissa, for once again
understanding and accommodating my desire to engage in this project. Also, special thanks to my managers at
Juniper Networks, Corinne Rattay and Sreedhevi Sankar, for their understanding and support. I really appreciate
their willingness to accommodate the occasional glitch in my "day job" schedule that was needed to make this
happen. Lastly, I'd like to thank Doug Marschke (whose name I can never spell, but shall never forget), for
offering me the chance to participate in this project. I take great pride in seeing how far Doug has come in his
professional career and fully expect to find myself working for him one day. You go, Doug!

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 1. Introduction to JUNOS Enterprise Routing

When the founding engineers of Juniper decided to create routers, they took the view of forwarding packets as
quickly as possible (line rate) with services enabled, which spawned the marketing decree "Service without
Compromise."

All Juniper Networks routers share the same common design philosophy, which is to have a clean separation of
the control and forwarding planes. In the M-series, this separation is created in hardware, whereas the J-series
maintains this divide in software. The forwarding plane is referred to as the Packet Forwarding Engine (PFE),
and the control plane is called the Routing Engine (RE).

The RE's primary functions are to manage the PFE, control the router's software (JUNOS), manage the
command-line interface (CLI), provide troubleshooting tools, and maintain the route tables and the master
forwarding table. This forwarding table is passed down to the PFE and is used to forward any transit packet to
the next hop destination. In this way, the RE never has to be directly involved in packet forwarding (i.e.,
process switching), which allows more resources for the actual control functions (see Figure 1-1). One example
is the ability to issue "debug" commands without degrading the performance of the router!

Figure 1-1. Juniper architecture design philosophy

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The route table in JUNOS software is defined as all routes learned from all protocols
(Open Shortest Path First [OSPF], Border Gateway Protocol [BGP0, static, interfaces,
etc.]). The forwarding table provides the "best" routes that will be used to forward
packets based on protocol preference and metrics.

The PFE's sole purpose in life is to forward packets as fast as it can. In an M-series router, the PFE consists of
several application-specific integrated circuits (ASICs) contained on various cards that are placed into the
chassis. In the J-series, the PFE is a virtualized real-time thread with the ASIC functionality modeled with
various APIs and sockets. Since the J-series' PFE is implemented in software, we will examine it in the software
section, but let's take a brief look at the M-series now to better understand the PFE.

In an M-series router, the PFE is not just one physical card in the router, but a series of cards, each containing a
different ASIC. The fundamental building block of the PFE on any M-series router is the Physical Interface Card
(PIC). The PIC is the card that the physical media such as Ethernet, Serial, or Asynchronous Transfer Mode
(ATM) will plug into. This PIC contains an ASIC that will pull and place data on the wire as well as deal with the
actual interface framing. The final piece of the PFE is the compact Forwarding Engine Board (cFEB), which
contains several ASICs that deal with packet storage, forwarding, queuing, and filtering. An M7i contains just a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

single cFEB, whereas an M10i will contain both a primary and a backup cFEB.

The M120 router contains six FEBs that are mapped to chassis slots and provide N+1
standby redundancy.

As previously mentioned, the PFE of a J-series router is virtualized. However, like any router in our networking
universe, it must contain interfaces. The J2320, J2350, J4350, and J6350 enterprise routers have changeable
cards similar to the PIC of an M-series router, called Physical Interface Modules (PIMs) or Enhanced Physical
Interface Modules (EPIMs). The primary difference between a PIM and an EPIM is that EPIMs support higher-
speed interfaces and must be installed in certain slots on the router.

It may seem that the two modules, PIC and PIM, essentially do the same thing, but with
different nomenclature. Although this is true, there is a method behind all the madness,
as PIMs can be used only in J-series routers and PICs can be used only in M/T-series
devices.

1.1. JUNOS Overview

JUNOS software is cool. It just is. The designers of JUNOS software put tremendous thought into making a
stable, robust, and scalable operating system that would be a positive for the router. They were able to learn
from previous vendors' mistakes, and created an OS that other companies will forever use as their model.

The core philosophy of JUNOS software was to create a modular and stable operating system. The
modularization was created by the use of software daemons, and the stability was achieved by choosing a well-
known, open source, and stable kernel of FreeBSD. This kernel is usually hidden to the user, but many features
of FreeBSD have been ported to the command line of JUNOS. The kernel also maintains the forwarding table
synchronization between the RE and the PFE.

Riding on top of the kernel are all the fully independent software processes for routing, CLI, interfaces, and so
forth. Figure 1-2 shows a small subset of these processes; you can show a complete list in the router by issuing
a show system processes command. These processes are fully independent, so a failure of one process will not

affect the other. For example, Figure 1-2 shows the Simple Network Management Protocol (SNMP) process
pulling information from the interface, chassis, and routing processes. If this SNMP process fails or contains a
software bug, it affects only this process and not the others. This is a major shift from other routing vendors
that operated monolithic code where one change in the interface code could affect just about anything without
reason.

Figure 1-2. JUNOS software architecture

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Every Juniper Networks router is created from the same code base, so all run JUNOS software. Since the J-
series did not contain any ASICs for the PFE and certain interface drivers such as high-speed OC-192 links were
deemed unnecessary, a new image had to be created for these devices. This is still JUNOS, however, with
almost the same feature set as the ASIC-driven image.

This means that there is a single image per version for all M/T-series routers regardless
of model number, and a single image per version for all J-series routers. The days of
creating and maintaining large spreadsheets or lists per router are now gone.

The major difference in the J-series image is the inclusion of a new software process called fwdd (forwarding
devices daemon), which acts as the virtualized PFE. It is essentially a series of real-time threads operating over
the kernel, as shown in Figure 1-3. Instead of an ASIC providing the functionality of the PFE, sockets and APIs
will interface with the kernel, providing a deterministic performance.

Figure 1-3. J-series software architecture

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 1. Introduction to JUNOS Enterprise Routing

When the founding engineers of Juniper decided to create routers, they took the view of forwarding packets as
quickly as possible (line rate) with services enabled, which spawned the marketing decree "Service without
Compromise."

All Juniper Networks routers share the same common design philosophy, which is to have a clean separation of
the control and forwarding planes. In the M-series, this separation is created in hardware, whereas the J-series
maintains this divide in software. The forwarding plane is referred to as the Packet Forwarding Engine (PFE),
and the control plane is called the Routing Engine (RE).

The RE's primary functions are to manage the PFE, control the router's software (JUNOS), manage the
command-line interface (CLI), provide troubleshooting tools, and maintain the route tables and the master
forwarding table. This forwarding table is passed down to the PFE and is used to forward any transit packet to
the next hop destination. In this way, the RE never has to be directly involved in packet forwarding (i.e.,
process switching), which allows more resources for the actual control functions (see Figure 1-1). One example
is the ability to issue "debug" commands without degrading the performance of the router!

Figure 1-1. Juniper architecture design philosophy

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The route table in JUNOS software is defined as all routes learned from all protocols
(Open Shortest Path First [OSPF], Border Gateway Protocol [BGP0, static, interfaces,
etc.]). The forwarding table provides the "best" routes that will be used to forward
packets based on protocol preference and metrics.

The PFE's sole purpose in life is to forward packets as fast as it can. In an M-series router, the PFE consists of
several application-specific integrated circuits (ASICs) contained on various cards that are placed into the
chassis. In the J-series, the PFE is a virtualized real-time thread with the ASIC functionality modeled with
various APIs and sockets. Since the J-series' PFE is implemented in software, we will examine it in the software
section, but let's take a brief look at the M-series now to better understand the PFE.

In an M-series router, the PFE is not just one physical card in the router, but a series of cards, each containing a
different ASIC. The fundamental building block of the PFE on any M-series router is the Physical Interface Card
(PIC). The PIC is the card that the physical media such as Ethernet, Serial, or Asynchronous Transfer Mode
(ATM) will plug into. This PIC contains an ASIC that will pull and place data on the wire as well as deal with the
actual interface framing. The final piece of the PFE is the compact Forwarding Engine Board (cFEB), which
contains several ASICs that deal with packet storage, forwarding, queuing, and filtering. An M7i contains just a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

single cFEB, whereas an M10i will contain both a primary and a backup cFEB.

The M120 router contains six FEBs that are mapped to chassis slots and provide N+1
standby redundancy.

As previously mentioned, the PFE of a J-series router is virtualized. However, like any router in our networking
universe, it must contain interfaces. The J2320, J2350, J4350, and J6350 enterprise routers have changeable
cards similar to the PIC of an M-series router, called Physical Interface Modules (PIMs) or Enhanced Physical
Interface Modules (EPIMs). The primary difference between a PIM and an EPIM is that EPIMs support higher-
speed interfaces and must be installed in certain slots on the router.

It may seem that the two modules, PIC and PIM, essentially do the same thing, but with
different nomenclature. Although this is true, there is a method behind all the madness,
as PIMs can be used only in J-series routers and PICs can be used only in M/T-series
devices.

1.1. JUNOS Overview

JUNOS software is cool. It just is. The designers of JUNOS software put tremendous thought into making a
stable, robust, and scalable operating system that would be a positive for the router. They were able to learn
from previous vendors' mistakes, and created an OS that other companies will forever use as their model.

The core philosophy of JUNOS software was to create a modular and stable operating system. The
modularization was created by the use of software daemons, and the stability was achieved by choosing a well-
known, open source, and stable kernel of FreeBSD. This kernel is usually hidden to the user, but many features
of FreeBSD have been ported to the command line of JUNOS. The kernel also maintains the forwarding table
synchronization between the RE and the PFE.

Riding on top of the kernel are all the fully independent software processes for routing, CLI, interfaces, and so
forth. Figure 1-2 shows a small subset of these processes; you can show a complete list in the router by issuing
a show system processes command. These processes are fully independent, so a failure of one process will not

affect the other. For example, Figure 1-2 shows the Simple Network Management Protocol (SNMP) process
pulling information from the interface, chassis, and routing processes. If this SNMP process fails or contains a
software bug, it affects only this process and not the others. This is a major shift from other routing vendors
that operated monolithic code where one change in the interface code could affect just about anything without
reason.

Figure 1-2. JUNOS software architecture

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Every Juniper Networks router is created from the same code base, so all run JUNOS software. Since the J-
series did not contain any ASICs for the PFE and certain interface drivers such as high-speed OC-192 links were
deemed unnecessary, a new image had to be created for these devices. This is still JUNOS, however, with
almost the same feature set as the ASIC-driven image.

This means that there is a single image per version for all M/T-series routers regardless
of model number, and a single image per version for all J-series routers. The days of
creating and maintaining large spreadsheets or lists per router are now gone.

The major difference in the J-series image is the inclusion of a new software process called fwdd (forwarding
devices daemon), which acts as the virtualized PFE. It is essentially a series of real-time threads operating over
the kernel, as shown in Figure 1-3. Instead of an ASIC providing the functionality of the PFE, sockets and APIs
will interface with the kernel, providing a deterministic performance.

Figure 1-3. J-series software architecture

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.2. CLI Review

The tool that will most often be used to configure and troubleshoot the router is the CLI. The JUNOS software
CLI is one of the most user-friendly and feature-rich in the industry. Most users spend years attempting to
master other router vendors' CLIs, whereas JUNOS software can be mastered in just a few hours. Other
configuration methods do exist, such as a web GUI called Jweb (see Figure 1-4), which is often used on the J-
series routers. Note that the operation of Jweb is beyond the scope of this book, so all configuration examples
will be shown via CLI commands instead.

Figure 1-4. Jweb

1.2.1. General CLI Features

The CLI has two modes: operational and configuration. Operational mode is where you can troubleshoot and
monitor the software, router, and network. Configuration mode is where the actual statements for interfaces,
routing protocols, and others are placed.

Every command that can be run in operational mode can also be used in configuration
mode with the additional keyword run. For example, if the command show route is

issued in operational mode, it can be issued as run show route in configuration mode.

When a user first enters the router via Telnet, Secure Shell (SSH), or direct console access, the user will see a
login prompt. After entering the correct username and password, the user will be placed directly into operational
mode. Operational mode will be designated by the > (chevron) character at the router prompt of

username@hostname. As shown here, user doug logs into a router called Hops:

Hops (ttyd0)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

login: doug

Password:

--- JUNOS 8.0R1.9 built 2006-08-11 16:25:40 UTC

doug@Hops>

An exception to being automatically placed into operational mode occurs when you log in as user root. In this

case, the user will actually be placed into the shell (designated by the percent sign) and will have to start the
CLI process manually:

Hops (ttyd0)

login: root

Password:

--- JUNOS 8.0R2.8 built 2006-09-29 09:22:36 UTC

root@Hops% cli

root@Hops>

Most of the commands that you will run in operational mode are show commands, which allow you to gather

information about the routing protocols, interfaces, router's software, and router's hardware. Ping, traceroute,

telnet, and ssh can also be performed from this mode. Finally, some very JUNOS-specific commands, such as

request, restart, and test, may be issued. Request commands perform system-wide functions such as

rebooting, upgrading, and shutting down the router. Restart commands are similar to the Unix-style kill

commands, which allow you to restart certain software processes. Test commands allow verifications for save

configuration files, proactive testing of policies, and interface testing such as BERT (bit error rate testing) and
FEAC (far-end alarm and control) loopbacks.

You should use the restart command with great caution! Depending on the software

process being restarted, the consequences could be severe. Restarting the SNMP
process would probably get you a slap on the wrist, but restarting the routing process
could be a reason to go into hiding on a remote island!

There are a few general JUNOS software CLI features worth mentioning, including command completion,
EMACs-style keys, and pipe commands.

1.2.1.1. Command completion

The command completion feature will save you lots of time and energy, as it provides syntax checking as you
type. Gone are the days when a command is typed on a line and, after pressing Enter, the command is either
invalid or not supported on that version of software. Any error or ambiguity will be detected early, and the
router will present a list of possible valid completions. Command completion is accomplished by using either the
Space bar or the Tab key. Either one will complete a command for you, but the Tab key can also complete
variables such as interface names, IP addresses, filter names, and filenames. For example, to view the
configuration of a certain ATM interface, you would type the following:

doug@Hops> sh<space>ow conf<space>iguration int<space>erfaces

at<tab>-0/2/1 <enter>

Notice that the Space bar is used until a variable is reached and the interface name is used when the Tab key
must be used (as the Space bar completes only commands and not variables).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For the reader with experience using Cisco's IOS, command completion makes for an
easy transition. First, forget about the word IP, as the IOS command show ip route

simply becomes show route in JUNOS. Also, common IOS abbreviations such as sh int

will still work in JUNOS if you type doug@hops> sh<space>ow int<enter>.

In the previous example, the syntax checker went word by word each time the Space bar or Tab key was
pressed, and the minimum characters were typed to avoid ambiguity. What would happen if the syntax checker
noticed an error or incomplete word? It would state this ambiguity and list the possible completions:

user@host> show ip<space>

 ^

'ip' is ambiguous.

Possible completions:

 ipsec Show IP Security information

 ipv6 Show IP version 6 information

1.2.1.2. EMACs

Another useful JUNOS feature set in the router itself is the use of EMACs-style keystrokes when in vt100 mode.
This allows you to move the cursor around the command line or to edit the command line. Some useful EMACs
keystrokes are:

Ctrl-b

Move the cursor back one character.

Ctrl-a

Move the cursor to the beginning of the command line.

Ctrl-e

Move the cursor to the end of the command line.

Ctrl-k

Delete all words from the cursor to the end of the line.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Ctrl-x

Delete or clear the entire line.

Ctrl-l

Redraw the current line.

Ctrl-p

Scroll backward through the previously typed commands. You also can use the Up arrow for this purpose.

Ctrl-n

Scroll forward through the previously typed commands. You also can use the Down arrow for this
purpose.

Ctrl-r

Search the previous CLI history for a search string.

1.2.1.3. Pipe commands

The last important feature to call out in the JUNOS software CLI is the use of pipe commands to control the
output of any command. For example, when a command such as show is issued, the data is placed into a buffer

and is displayed when the Enter key is pressed. A pipe command allows the display buffer to be altered. Many
pipe commands can be used on the router, but let's examine the most common applications and pipe
commands:

count

Count the lines in the output:

doug@Hops> show interfaces terse | count

Count: 29 lines

display

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Show additional data; for example, XML tags or set commands:

Code View:
doug@Hops> show configuration | display set

set version 8.0R2.9

set system host-name Hops

set system backup-router 10.210.8.30

set system backup-router destination 0.0.0.0/0

set system ports console type vt100

set system root-authentication encrypted-password "1G/

pd5odz$eYJi89TZkRxDWitUBB3of0"

set system login class view-only permissions view

set system login user doug uid 2019

set system login user doug class super-user

set system login user doug authentication encrypted-password "1sr.a1nvE$K573iU.

bHSZkLiW9SMWwg."

set system login user lab uid 2021

set system login user lab class super-user

set system login user lab authentication encrypted-password "1/

z4qeiUp$ocnPhXAbz1xzDoTUKRhgm."

set system login user restricted uid 2022

set system login user restricted class view-only

set system login user restricted authentication encrypted-password "1tYpOu.

Hv$tpeT0xf.3pIrlsOZEPNls0"

set system services ftp

set system services ssh

set system services telnet

set system syslog user * any emergency

set system syslog file messages any notice

set system syslog file messages authorization info

set system syslog file cli-commands interactive-commands any

set system syslog file cli-commands archive size 1m

set system syslog file cli-commands archive files 10

set system syslog file config-changes change-log any

set system compress-configuration-files

set interfaces lo0 unit 0 family inet address 192.168.16.1/32

set routing-options static route 0.0.0.0/0 next-hop 10.210.8.30

set routing-options static route 0.0.0.0/0 retain

set routing-options static route 0.0.0.0/0 no-readvertise

except

Omit lines from the output:

Code View:
doug@Hops> show interfaces terse | except fe

Interface Admin Link Proto Local Remote

at-0/2/0 up up

at-0/2/0.100 up up inet 10.0.16.1/24

at-0/2/1 up up

at-0/2/1.100 up up inet 10.0.15.2/24

http://lib.ommolketab.ir
http://lib.ommolketab.ir

dsc up up

fxp0 up up

fxp0.0 up up inet 10.210.8.1/27

fxp1 up up

fxp1.0 up up inet 10.0.0.4/8

 tnp 4

gre up up

ipip up up

lo0 up up

lo0.0 up up inet 192.168.16.1 --> 0/0

lo0.16385 up up inet

lsi up up

mtun up up

pimd up up

pime up up

tap up up

find

Begin the output at the specified string:

Doug@Hops> show interfaces fe-0/0/2 extensive | find traffic

 Traffic statistics:

 Input bytes : 8574 0 bps

 Output bytes : 11923 0 bps

 Input packets: 88 0 pps

 Output packets: 127 0 pps

 Input errors:

 Errors: 0, Drops: 0, Framing errors: 0, Runts: 0, Policed

 discards: 0, L3 incompletes: 0, L2 channel errors: 0, L2 mismatch

 timeouts: 0, FIFO errors: 0, Resource errors: 0

 Output errors:

 Carrier transitions: 1, Errors: 0, Drops: 0, Collisions: 0, Aged

 packets: 0, FIFO errors: 0, HS link CRC errors: 0, MTU errors: 0,

 Resource errors: 0

 Active alarms : None

 Active defects : None

hold

Retain the output in the buffer until cleared:

Code View:
doug@Hops> show route | hold

inet.0: 10 destinations, 10 routes (10 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

http://lib.ommolketab.ir
http://lib.ommolketab.ir

0.0.0.0/0 *[Static/5] 03:47:27

 > to 10.210.8.30 via fxp0.0

10.0.15.0/24 *[Direct/0] 03:02:54

 > via at-0/2/1.100

10.0.15.2/32 *[Local/0] 03:02:54

 Local via at-0/2/1.100

10.0.16.0/24 *[Direct/0] 03:05:15

 > via at-0/2/0.100

10.0.16.1/32 *[Local/0] 03:05:15

 Local via at-0/2/0.100

10.0.21.0/24 *[Direct/0] 03:14:56

 > via fe-0/0/2.0

10.0.21.1/32 *[Local/0] 03:14:56

 Local via fe-0/0/2.0

10.210.8.0/27 *[Direct/0] 03:47:27

 > via fxp0.0

10.210.8.1/32 *[Local/0] 03:47:27

 Local via fxp0.0

192.168.16.1/32 *[Direct/0] 03:14:56

 > via lo0.0

_ _juniper_private1_ _.inet.0: 2 destinations, 2 routes (2 active,

0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

10.0.0.0/8 *[Direct/0] 08:39:21

 > via fxp1.0

10.0.0.4/32 *[Local/0] 08:39:21

 Local via fxp1.0

_ _juniper_private1_ _.inet6.0: 5 destinations, 5 routes (5 active,

0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

fe80::/64 *[Direct/0] 08:39:21

 > via fxp1.0

fe80::200:ff:fe00:4/128

 *[Local/0] 08:39:21

 Local via fxp1.0

fe80::2a0:a5ff:fe12:2775/128

 *[Direct/0] 08:39:21

 > via lo0.16385

fec0::/64 *[Direct/0] 08:39:21

 > via fxp1.0

fec0::10:0:0:4/128 *[Local/0] 08:39:21

 Local via fxp1.0

---(more 100%)---

match

Display only lines with the specified string:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

doug@Hops> show log messages | match "jun 4"

Jun 4 09:04:13 HongKong login: LOGIN_PAM_AUTHENTICATION_ERROR: PAM

authentication error for user lab

Jun 4 09:04:13 HongKong login: LOGIN_FAILED: Login failed for user

lab from host

Jun 4 09:04:16 HongKong login: LOGIN_INFORMATION: User lab logged

in from host [unknown] on device ttyd0

Jun 4 09:07:04 HongKong sshd[3685]: Accepted publickey for root from

10.210.8.28 port 58349 ssh2

Jun 4 09:07:08 HongKong sshd[3690]: Accepted publickey for root from

10.210.8.28 port 62534 ssh2

Jun 4 10:50:45 HongKong mgd[3681]: UI_RESTART_EVENT: User 'lab'

restarting daemon 'Routing protocol daemon'

Jun 4 10:50:45 HongKong rpd[3083]: RPD_SIGNAL_TERMINATE: first

termination signal received

Jun 4 10:50:45 HongKong snmpd[3108]: SNMPD_CLOSE_SA_IPC:

ipc_free_local: closed IPC socket /var/run/rpd_s

no-more

Do not paginate the output:

Code View:
doug@Hops> show system statistics arp | no-more

arp:

 3429 datagrams received

 32 ARP requests received

 243 ARP replys received

 17 resolution requests received

 0 unrestricted proxy requests

 0 received proxy requests

 0 proxy requests not proxied

 0 with bogus interface

 0 with incorrect length

 0 for non-IP protocol

 0 with unsupported op code

 0 with bad protocol address length

 0 with bad hardware address length

 0 with multicast source address

 0 with multicast target address

 0 with my own hardware address

 3 for an address not on the interface

 0 with a broadcast source address

 0 with source address duplicate to mine

 3151 which were not for me

 10 packets discarded waiting for resolution

 16 packets sent after waiting for resolution

 269 ARP requests sent

 32 ARP replys sent

 0 requests for memory denied

 0 requests dropped on entry

 0 requests dropped during retry

http://lib.ommolketab.ir
http://lib.ommolketab.ir

save

Save the output to a file to the user home directory:

doug@Hops> show interfaces | save interface_hops

Wrote 272 lines of output to 'interface_hops'

Multiple pipe commands are treated as a logical AND, meaning the output must match both of the commands
listed. This could come in the form of different pipe commands in the command list or as the same pipe
command listed multiple times. To count how many /27 masks are in your route table, issue this command:

doug@Hops> show route | match /27 | count

Count: 1 lines

In comparison, use the same pipe command on a single line to show all /32 routes that start with a 10.0 prefix:

doug@Hops> show route | match /32 | match 10.0

10.0.15.2/32 *[Local/0] 03:18:28

10.0.16.1/32 *[Local/0] 03:20:49

10.0.21.1/32 *[Local/0] 03:30:30

10.0.0.4/32 *[Local/0] 08:54:55

Pipe commands are not limited to a logical AND, however, as a logical OR operation can also be performed. Do
this by wrapping the string in quotation marks and using the OR operator:

doug@Hops> show route | match "/32|10.0"

10.0.15.0/24 *[Direct/0] 03:22:46

10.0.15.2/32 *[Local/0] 03:22:46

10.0.16.0/24 *[Direct/0] 03:25:07

10.0.16.1/32 *[Local/0] 03:25:07

10.0.21.0/24 *[Direct/0] 03:34:48

10.0.21.1/32 *[Local/0] 03:34:48

10.210.8.1/32 *[Local/0] 04:07:19

192.168.16.1/32 *[Direct/0] 03:34:48

10.0.0.0/8 *[Direct/0] 08:59:13

10.0.0.4/32 *[Local/0] 08:59:13

fec0::10:0:0:4/128 *[Local/0] 08:59:13

1.2.2. Configuration Mode

To actually configure the router, enter configuration mode by typing the word configure in operational mode.

The router prompt will change to the octothorpe (#) symbol:

doug@Hops> configure

Entering configuration mode

[edit]

doug@Hops#

http://lib.ommolketab.ir
http://lib.ommolketab.ir

By default, when entering configuration mode, multiple users can enter the router and make changes at the
same time. To avoid any issues that may arise, you can use the configure exclusive or configure private

command. The former command allows only a single user to configure the router, whereas the latter command
allows multiple users to configure different pieces of the configuration. If you use configure exclusive, no

other users can make changes to the configuration besides the single user that entered exclusively. Using
private mode, each user will get a copy of the current configuration and only changes that they make will be
applied. If two users attempt to make the same change, such as adding an IP address to the same interface, the
change will be rejected and both users will exit configuration mode to resolve their conflict.

In configuration mode, you can add configuration by using a set command. For example, to enable the Telnet

server application on the router, issue this command:

doug@Hops# set system services telnet

The CLI is actually composed of many directories and subdirectories, which will eventually contain the command
that is input. You can think of this as you would a PC, where the hard drive is normally named C:\ and it is
partitioned into directories such as Windows, program files, drivers, and so on. These directories may contain
subdirectories, which will eventually contain files or applications.

Code View:
C:\>dir/w

 Volume in drive C has no label.

 Volume Serial Number is 7806-197A

 Directory of C:\

AUTOEXEC.BAT [Backup]

bi-admin.dat Catalog.LiveSubscribe

[Config.Msi] CONFIG.SYS

[dell] [Dell962]

dlbx.log dlbxscan.log

[Documents and Settings] [drivers]

DVDPATH.TXT [ERDNT]

[f403a5940e14ba07a40a99897c] [HP LJ1160-LJ1320]

HuskyInstallerLog.txt [i386]

INFCACHE.1 [ipv0011]

[ipv0021] [My Downloads]

[nslabs] [Program Files]

[reg_backup] statusclient.log

tmuninst.ini ut.bat

ut9x.bat [WINDOWS]

[Xitami] YServer.txt

 14 File(s) 4,055,509 bytes

 18 Dir(s) 26,173,308,928 bytes free

In JUNOS software, the top level, or C:\, is named edit, with multiple directories partitioned below it. You can

view these directories by using the set ? command:

Code View:
[edit]

doug@Hops# set ?

Possible completions:

> access Network access configuration

> accounting-options Accounting data configuration

http://lib.ommolketab.ir
http://lib.ommolketab.ir

> applications Define applications by protocol characteristics

+ apply-groups Groups from which to inherit configuration data

> chassis Chassis configuration

> class-of-service Class-of-service configuration

> event-options Event processing configuration

> firewall Define a firewall configuration

> forwarding-options Configure options to control packet sampling

> groups Configuration groups

> interfaces Interface configuration

> policy-options Routing policy option configuration

> protocols Routing protocol configuration

> routing-instances Routing instance configuration

> routing-options Protocol-independent routing option configuration

> security Security configuration

> services Service PIC applications settings

> snmp Simple Network Management Protocol configuration

> system System parameters

So, when you issue the command set system services telnet, the system directory is accessed, followed by

the subdirectory services and ending in the command telnet to enable the Telnet service. Figure 1-5 shows a

partial directory tree to illustrate this process. Thankfully, you do not need to memorize the entire hierarchical
tree structure, but it is important to understand the hierarchical structure and how it relates to configuration
mode commands.

Figure 1-5. Subsection of JUNOS configuration tree

The opposite of the set command to remove configuration from the router is the delete command. Usually this

command is used to remove a single line, but you also can use it to remove an entire hierarchy. In the simplest
case, for example, to remove the Telnet service from the router, change the previous set command to a delete

command:

doug@Hops# delete system services telnet

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Be careful when issuing a delete command without noting any specific command, as

this could remove an entire directory and have less than desirable consequences.

You can issue configuration commands such as set and delete from the top root level or from inside a

subdirectory. To navigate to a subdirectory, issue an edit command, which is essentially a change directory

command. If the Telnet service needed to be enabled, you could use an alternative method of moving into the
subdirectory system services and then issuing a short set command:

[edit]

doug@Hops# edit system services

[edit system services]

doug@Hops# set telnet

Using the edit command is not necessary, but it allows the user to issue shorter set commands when

compared to the top level. Just like choosing a color for a new car, you can choose how you want to configure
the router as long as the desired result is achieved. Once in a certain directory, there are multiple ways to
navigate the directory tree using commands such as up, top, and even exit. The up command will move you up

one level in the directory tree or multiple levels if a numerical value is given after the up command:

[edit system services]

doug@Hops# up

[edit system]

doug@Hops# edit services

[edit system services]

doug@Hops# up 2

[edit]

doug@Hops#

From any hierarchy, you can issue the top command to move you up to the root level of the configuration tree.

It has the added functionality of allowing multiple configuration statements after issuing the command, such as
top edit or top set:

[edit system services]

doug@Hops top

[edit]

doug@Hops# edit system services

[edit system services]

doug@Hops# top edit protocols ospf

[edit protocols ospf]

doug@Hops#

Another nice feature of configuration mode allows you to view the configuration that was just completed by
issuing a show command. For instance, to view the configuration of the system services, issue this command:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[edit]

doug@Hops# show system services

ftp;

ssh;

telnet;

Or try yet another way to view the system services, by issuing the show command inside the subdirectory in

question. A show command with no additional arguments shows the configuration from that hierarchy and

below:

[edit]

doug@Hops# edit system services

[edit system services]

doug@Hops# show

ftp;

ssh;

telnet;

After issuing a plethora of set and delete commands, the keen user will notice that no changes have actually

occurred in the router! To apply the changes, a special word-one that is often difficult to say in the real
world-must be used: commit. To understand what is occurring when issuing the commit command, it's best to

examine the different types of configurations that occur in the JUNOS router.

A Juniper Networks router has two configuration files that are always present: the candidate configuration and
the active configuration. The active configuration is the current running configuration in the router, whereas the
candidate configuration is the temporary text file that is being modified while in configuration mode. When the
commit command is issued, the candidate configuration becomes the active configuration if no syntax errors are

detected. In addition, the old active configuration is archived into a file called a rollback 1. So, if a mistake is
made, you can easily recover the old active configuration by issuing a rollback 1. This causes the candidate

configuration to be replaced by the old active configuration. A commit command must then be issued to activate

this rollback file. JUNOS saves not only this last active configuration, but also the previous 49 configurations.
Each time a commit is issued, the archived file shifts down the list of 49. The first commit creates a rollback 1,
the second commit (the old active) becomes rollback 1, the old rollback 1 becomes rollback 2, and so on, down
the line. Figure 1-6 illustrates this rollback process.

Figure 1-6. Configuration and rollback

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Another important rollback command that can be useful is a rollback 0, which copies the active configuration to
the candidate configuration. As an example, imagine that user doug logs into a router and issues a command to

change the hostname of the router to a less desirable name, but does not actually activate the change.

doug@Hops> configure

Entering configuration mode

[edit]

doug@Hops# set system host-name yousmell

[edit]

doug@Hops# exit

The configuration has been changed but not committed

Exit with uncommitted changes? [yes,no] (yes) yes

Exiting configuration mode

doug@Hops> exit

A new user logs into the router, enters configuration mode, and observes that changes have occurred:

doug@Hops> configure

Entering configuration mode

The configuration has been changed but not committed

[edit]

lab@Hops#

It would seem at first glance that the new user is in between a rock and a hard place, but JUNOS has a very
useful pipe command you can use-the compare command. This command allows any two files, including

rollback files, active files, and candidate files, to be compared and the differences displayed. In this example,
the candidate and active configurations will be compared:

[edit]

doug@Hops# show | compare

[edit system]

- host-name Hops;

+ host-name yousmell;

It appears that user doug has been up to his old pranks again, attempting to change the hostname of the

router. If a commit is issued, the hostname Hops will be removed and the hostname yousmell will be added. To

wipe out these statements, a rollback 0 could be issued to stop doug and his mischievous ways:

doug@Hops# rollback 0

load complete

[edit]

lab@Hops# show | compare

One last key point of the two configuration types is that any operational mode command can be issued in
configuration mode as long as the keyword run is issued before the command. For instance:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

lab@Hops# ping

 ^

unknown command.

[edit]

dougHops# run ping 10.210.8.2

PING 10.210.8.2 (10.210.8.2): 56 data bytes

64 bytes from 10.210.8.2: icmp_seq=0 ttl=64 time=0.387 ms

64 bytes from 10.210.8.2: icmp_seq=1 ttl=64 time=0.296 ms

^C

--- 10.210.8.2 ping statistics ---

2 packets transmitted, 2 packets received, 0% packet loss

round-trip min/avg/max/stddev = 0.296/0.342/0.387/0.045 ms

1.2.3. Loading and Saving Configurations

To save the candidate configuration to the user's home directory, you must issue the save command while in

configuration mode.

To save an active configuration, issue a show configuration command and pipe to

save.

It is important to realize which configuration directory you are located in when issuing the save command, as

the command saves from the current hierarchy. To save the entire candidate configuration, issue the save

command from the top of the directory tree:

[edit]

doug@Hops# save junos_is_cool

Wrote 413 lines of configuration to 'junos_is_cool'

Sometimes it is not desirable to save the entire configuration, so to save a portion, simply navigate into the
desired directory to be saved. For instance, if every router in your network has the same system login
information, you may want to save only that portion to load into other routers later:

[edit system login]

doug@Hops# save only_system_login

Wrote 31 lines of configuration to 'only_system_login'

It would be fantastic to eliminate the need to issue manual saves, so system archival allows for the automatic
saving of configurations when issuing a commit or at a set time interval:

doug@Hops# set archival configuration ?

Possible completions:

+ apply-groups Groups from which to inherit configuration data

+ apply-groups-except Don't inherit configuration data from these groups

> archive-sites

 transfer-interval Frequency at which file transfer happens (minutes)

 transfer-on-commit Transfer after each commit

These files can be FTP'd or scp'd off to a server under the archivel-sites configuration. In the example that
follows, every time a commit is issued, the configuration file is sent to an FTP server with user doug, password

http://lib.ommolketab.ir
http://lib.ommolketab.ir

okemos123, and IP address 66.17.3.254, and then into the /config/junos directory:

archival {

 configuration {

 transfer-on-commit;

 archive-sites {

 "ftp://doug:okemos123@66.17.3.254/config/junos";

 }

The opposite of saving a configuration is loading a configuration, which you can accomplish by the load

command. There are several variations of the load command:

doug@Hops# load ?

Possible completions:

 factory-default Override existing configuration with factory default

 merge Merge contents with existing configuration

 override Override existing configuration

 patch Load patch file into configuration

 replace Replace configuration data

 set Execute set of commands on existing configuration

 update Update existing configuration

Although each type of load command has its advantages, we will examine only the most common command

variations here. One of the most common loads is the override command, which replaces the current candidate

configuration with the specified file:

[edit]

doug@Hops# load override junos_is_cool

load complete

The merge switch will also be used often when just a small piece of configuration needs to be added to the

candidate configuration. For instance, you can issue the following command to add the system login
configuration saved previously:

[edit]

doug@Hops# load merge only_system_login

load complete

Since it is highly likely that more than one router will exist in a network, cutting and pasting configurations can
give you a few more hours of free time in your life. There are several ways to cut and paste configurations into
the router, including using variations of the load command, or copying set commands directly into the router.

The oldest JUNOS software method is to use the load command with the terminal option, which opens a

terminal buffer, allowing full or partial configurations to be pasted in:

doug@Hops# load merge terminal

[Type ^D at a new line to end input]

system {

services {

 ftp;

 ssh;

 telnet;

 }

}

load complete

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Cutting and pasting using this method definitely takes some practice, as the proper number of levels and braces
must always be present. The terminal command always assumes that the entire top-level hierarchy is known.

If the upper-level directories are not included, errors will occur and the relative keyword could become very

useful:

[edit]

doug@Hops# load merge terminal

[Type ^D at a new line to end input]

services {

 ftp;

 terminal:2:(7) syntax error: ftp

 [edit services]

 'ftp;'

 syntax error

 ssh;

 telnet;

}

[edit]

 'services'

 warning: statement has no contents; ignored

load complete (1 errors)

Since the pasting started at the services level and not at the system level, the pasting causes errors and does
not complete. One solution is to navigate to the system directory and indicate that the configuration will be
loaded relative to that directory:

[edit]

doug@Hops# edit system

[edit system]

doug@Hops# load merge terminal relative

[Type ^D at a new line to end input]

services {

 ftp;

 ssh;

 telnet;

}

load complete

Or perhaps a simpler method would be to load set commands directly into the router by simply pasting a

carriage return after each set command or by using the load set command:

doug@Hops load set terminal

[Type ^D at a new line to end input]

set system services ftp

set system services ssh

set system services telnet

load complete

1.2.4. S.O.S., I Need Help!

If the router is causing you problems, simply ask it for help. You can accomplish this in a few ways. The first is
with a question mark (?) to display possible command completions:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

doug@Hops# set system login ?

Possible completions:

 announcement System announcement message (displayed after

login)

+ apply-groups Groups from which to inherit configuration

data

+ apply-groups-except Don't inherit configuration data from these

groups

> class Login class

 message System login message

> password

> user Username

The > character indicates a directory that contains subdirectories, + indicates a command that takes multiple

arguments, and no symbol means the command takes a single argument or is in fact the end statement of a
command.

The help command is a secret resource of which few are aware. This displays the same technical documentation

that can also be located online. Sometimes a small piece of a command is remembered but not the full
statement; help can aid in finding that full command by searching through the JUNOS software configuration

tree for a particular string:

doug@Hops# help apropos host-name

set system host-name <host-name>

 Hostname for this router

set system static-host-mapping <host-name>

 Fully qualified name of system

set system services dhcp static-binding <mac-address> host-name

<host-name>

 Hostname for this client

set system syslog host

 Host to be notified

set interfaces <interface_name> services-options syslog host

<host-name>

 Name of host to notify

set accounting-options routing-engine-profile <profile-name> fields

host-name

 Hostname for this router

set services l2tp tunnel-group <name> syslog host <host-name>

 Name of host to notify

set services service-set <service-set-name> syslog host <host-name>

 Name of host to notify

If you encounter a command in the router that needs clarification, you can obtain more information by issuing
the help topic or help reference command. The former will display general usage guidelines for that

command:

Code View:
doug@Hops# help topic ospf hello-interval

 Modifying the Hello Interval

 Routers send hello packets at a fixed interval on all interfaces,

 including virtual links, to establish and maintain neighbor

 relationships. This interval, which must be the same on all routers

 on a shared network, is advertised in the hello interval field in

 the hello packet. By default, the router sends hello packets every

 10 seconds.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 To modify how often the router sends hello packets out of an

 interface, include the hello-interval statement:

 hello-interval seconds;

 For a list of hierarchy levels at which you can configure this

 statement, see the statement summary section for this statement.

 On nonbroadcast networks, the router sends hello packets every 120

 seconds until active neighbors are detected by default. This

 interval is long enough to minimize the bandwidth required on slow

 WAN links. To modify this interval, include the poll-interval

 statement: poll-interval seconds;

+---+

|NOTE: The poll-interval statement is valid for OSPFv2 only. |

+---+

 For a list of hierarchy levels at which you can configure this

 statement, see the statement summary section for this statement.

 Once the router detects an active neighbor, the hello packet

 interval changes from the time specified in the poll-interval time

 statement to the specified in the hello-interval statement.

After you've learned what a certain command accomplishes and when you should use it, you can view the actual
syntax and possible options using the help reference command. It's similar to the manual command seen on

other operating systems:

Code View:
[edit]

doug@Hops# help reference ospf hello-interval

hello-interval

 Syntax

 hello-interval seconds;

 Hierarchy Level

 [edit logical-routers logical-router-name protocols ospf area area-id

 peer-interface

 interface-name],

 [edit logical-routers logical-router-name protocols (ospf | ospf3) area

 area-id

 interface interface-name],

 [edit logical-routers logical-router-name protocols (ospf | ospf3) area

 area-id virtual-link],

 [edit logical-routers logical-router-name routing-instances

 routing-instance-name

 protocols (ospf | ospf3) area area-id interface interface-name],

 [edit logical-routers logical-router-name routing-instances

 routing-instance-name

 protocols (ospf | ospf3) area area-id virtual-link],

 [edit protocols ospf area area-id peer-interface interface-name],

 [edit protocols (ospf | ospf3) area area-id interface interface-name],

 [edit protocols (ospf | ospf3) area area-id virtual-link],

 [edit routing-instances routing-instance-name protocols (ospf | ospf3)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 area area-id

 interface interface-name],

 [edit routing-instances routing-instance-name protocols (ospf | ospf3)

 area area-id

 virtual-link]

 Release Information

 Statement introduced before JUNOS Release 7.4.

 Description

 Specify how often the router sends hello packets out the interface.

 The hello interval must be the same for all routers on a shared

 logical IP network.

 Options

 seconds--Time between hello packets, in seconds.

 Range: 1 through 255 seconds

 Default: 10 seconds; 120 seconds (nonbroadcast networks)

 Usage Guidelines

 See "Modifying the Hello Interval".

 Required Privilege Level

 routing--To view this statement in the configuration.

 routing-control--To add this statement to the configuration.

 See Also

 dead-interval

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.3. Advanced CLI and Other Cool Stuff

Lots of other fantastic configuration options are available, but explaining them all would require a separate
book. The JUNOS documentation contains many time-saving tips, and the JUNOS Cookbook by Aviva Garrett
(O'Reilly) is a great resource too. To whet your appetite, here are three JUNOS software CLI tips.

Most changes that you need to make on a router can be done at only certain times, often referred as
maintenance windows. Since these windows are often at the most inconvenient times for those who have to use
them, changes represented by commit can actually be scheduled:

[edit]

doug@Hops# commit at 07:05

configuration check succeeds

commit at will be executed at 2007-06-10 07:05:00 UTC

Exiting configuration mode

When the commit has been scheduled, other users cannot change any piece of the new locked configuration:

joe@Hops> configure

Entering configuration mode

Users currently editing the configuration:

 doug terminal d0 (pid 11035) on since 2007-06-05 05:04:51 UTC

 commit-at

[edit]

joe@Hops# set system host-name foo

error: configuration database locked by:

 doug terminal d0 (pid 11035) on since 2007-06-05 05:04:51 UTC

 commit at

[edit]

joe@Hops# commit

error: Another commit is pending

If the system needs to be unlocked before the specified time, a clear command can stop the timed action:

joe@Hops# run clear system commit

Pending commit cleared

You can take advantage of another fantastic shortcut when large common pieces of configuration need to be
removed from the router. The router can search through the entire configuration looking for a string and delete
every line that contains that string:

[edit]

jane@R1# wildcard delete interfaces fe-

 matched: fe-0/0/1

 matched: fe-2/0/0

 matched: fe-2/0/1

Delete 3 objects? [yes,no] (no) yes

Lastly, you can make common configuration changes in one large swoop with the replace command. Any string

can replace any other string, with a string being anything from a character to any POSIX 1003.2 expression. For

http://lib.ommolketab.ir
http://lib.ommolketab.ir

example, this command could be useful is when IPs referenced in filters, policies, and so on need to be updated
to a new value:

[edit]

jane@R1# replace pattern 172.17.30.254 with 172.17.30.200

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.4. Conclusion

This chapter provided a quick definition of what enterprise routing is and how Juniper routers fit into this
environment. Then we examined the router's hardware and software design, stressing the key components that
will help make your life easier. Lastly, we reviewed the actual CLI and illustrated the important features. The
CLI is one of the most flexible and user-friendly in the industry, allowing expert status to be achieved in record
time. As your familiarity with the CLI increases, you will discover even more features. Now that we've
established the groundwork, the rest of the book will dive into the specific configuration details.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.5. Exam Topics

We examined the following Enterprise Exam Topics in this chapter:

List the enterprise router product line.

Describe transit and host processing.

Identify the difference between packet flow on the M7i/M10i and on the J-series routers.

Identify key differences between the M7i/M10i and J-series routers.

Describe configuration management.

Identify the features of the JUNOS CLI (CLI modes, prompts, auto-complete, EMACs shortcuts, help, and
pipe).

Identify the commands used in configuration mode (edit, set, delete, and commit).

Identify options for manipulating "saved" configuration files. Include rollback options, load options, and
rollback file locations.

Describe the configuration hierarchy.

Describe active, candidate, and rollback configurations.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.6. Chapter Review Questions

Which of the following two Juniper Networks routers are classified as enterprise routers? (Choose two.)

T640a.

M7ib.

J4350c.

M320d.

1.

Which hardware component controls debugging on the router?

Packet Forwarding Enginea.

Route Processorb.

System Control Boardc.

Routing Engined.

2.

True or False: Since the J-series has only a single processor, there is no Packet Forwarding Engine.3.

Which JUNOS software daemon controls the CLI?

clida.

rpdb.

mgdc.

inetdd.

4.

5.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

d.

Which command would be issued to reboot the router?

request system reboota.

reloadb.

rebootc.

restart routerd.

5.

Which pipe command can you use to find every occurrence of the word error in the syslog file messages?

matcha.

findb.

searchc.

holdd.

6.

What is the default password to enter configuration mode on the router?

junipera.

enableb.

There is no passwordc.

rootd.

7.

Which CLI command should be issued to navigate to the [edit protocols ospf] directory?

cd protocols ospfa.

b.

8.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

a.

edit protocols ospfb.

cd /edit/protocols/ospfc.

dir protocols ospfd.

Which CLI command must be issued to activate configuration changes in the router?

applya.

copyb.

savec.

commitd.

9.

What is the top level of the configuration tree called?

C:/a.

/varb.

editc.

rootd.

10.

Which CLI command should be issued to return to the previously activated configuration?

rollback 1a.

rollback 0b.

rollback activec.

d.

11.

12.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

c.

rollback previousd.

Which command should be issued in the router to find out information about Layer 3 VPNs?

layer 3 vpn ?a.

help topic layer3-vpns overviewb.

help reference layer3-vpn overviewc.

man layer3-vpnd.

12.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.7. Chapter Review Answers

Answer: B, C. The T640 and M320 are valid Juniper Networks router models but are usually deployed in
service provider networks.

1.

Answer: D. The Routing Engine is the component in the router that controls all management functions,
including commands that would be used to debug the router.

2.

Answer: False. The J-series routers do contain a virtualized PFE with API and sockets replacing the ASICs
that are found in the M-series routers.

3.

Answer: C. The CLI is actually a process that runs off the kernel, called mgd. Of the other services listed,
clid is invalid, rpd controls the routing process, and inetd manages network services.

4.

Answer: A. Request commands are used to issue system-wide functions such as rebooting the router. The

rest of the options are invalid CLI commands.

5.

Answer: A. The pipe command match will find every occurrence of a string in the output of the command.

The find command will locate the first occurrence of the string, search is an invalid option, and hold will

hold text without exiting the -More-- prompt.

6.

Answer: C. There is no password to enter configuration mode. Users are allowed into configuration mode
based on access privileges.

7.

Answer: B. To change the directory in configuration mode, use the edit command.8.

Answer: D. To activate the changes in the router, issue a commit command. Of the remaining options,

copy and save are valid CLI commands but are used for configuration management.

9.

Answer: C. When at the top level of the configuration tree, the CLI banner will display the [edit] prompt.10.

Answer: A. The first archive is stored in rollback 1. rollback 0 is used to copy the active configuration

to the candidate configuration, and the other options are not valid rollback commands.

11.

Answer: B. The help topic command displays general information about any topic referenced in the

Juniper documentation. The actual output of the command is as follows:

Code View:
lab@P1R1> help topic layer3-vpns overview

Layer 3 VPN Overview

 In JUNOS software, Layer 3 VPNs are based on RFC 2547bis. RFC

12.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 2547bis defines a mechanism by which service providers can use

 their IP backbones to provide VPN services to their customers. A

 VPN is a set of sites that share common routing information and

 Layer 3 whose connectivity is controlled by a collection of

 policies. The sites that make up a Layer 3 VPN are connected over

 a provider's existing public Internet backbone.

 RFC 2547bis VPNs are also known as BGP/MPLS VPNs because BGP is

 used to distribute VPN routing information across the provider's

 backbone, and MPLS is used to forward VPN traffic across the VPN

 backbone to remote sites.

 Customer networks, because they are private, can use either public

 addresses or private addresses, as defined in RFC 1918, Address

 Allocation for Private Internets. When customer networks that use

 private addresses connect to the public Internet infrastructure,

 overlap with the same private addresses used by other network

 users the private addresses might MPLS/BGP VPNs solve this problem

 by adding a VPN identifier prefix to each address from a

 particular VPN site, thereby creating an address that is unique

 to the VPN and within the public Internet. In addition, each VPN has

 both within its own VPN-specific routing table that contains the

 routing information for that VPN only.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 2. Interfaces

This chapter describes the interface configurations for a Juniper Networks router. It starts with a description of
the types of interfaces, the naming conventions, and the interface properties. It then identifies how to configure
a large variety of interface media, such as T1 interfaces, Fast Ethernet, and Serial interfaces. Lastly, we will
examine common interface problems, concentrating on the tools available to detect these issues.

Before you begin to design a network's routing topology, you should ensure that all the proper physical
connections are in place and are operational. With such a large variance in interface types, this can often be a
challenging task, so it is important to understand how an interface is organized within the JUNOS software.

Juniper Networks routers contain two major categories of interfaces: permanent and transient. Users cannot
remove permanent interfaces, whereas they can move, change, and remove transient interfaces. Other
technical differences exist that are evident when you examine the applications for each interface type.

The interface topics covered in this chapter include:

Permanent interfaces

Transient interfaces

Interface properties

Interface configuration examples

Interface troubleshooting

2.1. Permanent Interfaces

A permanent interface is any interface that is always present on the router (it cannot be altered). These
interfaces can be management interfaces such as Ethernet, software pseudointerfaces such as tunnel interfaces,
or fixed-port LAN/WAN interfaces.

On an M/T-series router, two management interfaces exist:

fxp0

This is an Out of Band (OOB) management Ethernet interface. It is connected to the router's Routing
Engine (RE) and can be used for Out of Band management access to the router. It can also be used to
send management messages such as syslog or Simple Network Management Protocol (SNMP) traps. This
interface is a nontransit interface, which means that traffic cannot enter this interface and exit via a
LAN/WAN interface, nor can it enter a LAN/WAN interface and exit through the management interface.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When running routing protocols, be very careful when using the fxp0 interface. If

you don't configure the routing protocol correctly, you could have a route in your
route table that points to the fxp0 interface and blackhole traffic, since this is a

nontransit interface. To protect yourself from these types of situations, you should
not run any routing protocols over this interface.

fxp1

This is an internal Fast Ethernet or Gigabit Ethernet (depending on the model of router) interface between
the RE and the Packet Forwarding Engine (PFE). This interface is never configured but can be helpful
when troubleshooting router issues. It is only in application-specific integrated circuit (ASIC) platforms
(M/T-series) and not in the virtualized PFE J-series platforms.

Many software pseudointerfaces also exist that the router will create at startup. We will examine many of these
interfaces in depth in Chapter 7. Here is a short list of these interfaces:

lo0

This is a loopback interface that ties to the router itself and not to any one physical interface. This is often
assigned an address to provide a stable address for management traffic and routing protocols, which
allows your router to adapt to network and physical interface failures. Also, when configured with firewall
filters, this interface serves to protect the RE from attacks destined to the router.

sp

This service interface is used when configuring features such as Network Address Translation (NAT),
IPSec, and stateful firewalls.

pd

This Physical Interface Module (PIM) de-encapsulation interface allows a multicast rendezvous point (RP)
to process PIM register messages.

pe

This PIM encapsulation interface is used in multicast to create a unicast PIM register message to send to
the RP.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ip

This is an IP-over-IP encapsulation interface to create IP-in-IP tunnels.

dsc

This is a discard interface, which can be used to silently discard packets. This is often used to create a
choke point for denial of service (DoS) attacks.

tap

This is a virtual Ethernet interface historically used for monitoring on FreeBSD systems. This interface
could be used to monitor discarded packets on a router but is no longer officially supported.

The last type of permanent interface is the fixed LAN/WAN ports found on J-series routers and M7i routers. We
will examine these in depth in the next section.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 2. Interfaces

This chapter describes the interface configurations for a Juniper Networks router. It starts with a description of
the types of interfaces, the naming conventions, and the interface properties. It then identifies how to configure
a large variety of interface media, such as T1 interfaces, Fast Ethernet, and Serial interfaces. Lastly, we will
examine common interface problems, concentrating on the tools available to detect these issues.

Before you begin to design a network's routing topology, you should ensure that all the proper physical
connections are in place and are operational. With such a large variance in interface types, this can often be a
challenging task, so it is important to understand how an interface is organized within the JUNOS software.

Juniper Networks routers contain two major categories of interfaces: permanent and transient. Users cannot
remove permanent interfaces, whereas they can move, change, and remove transient interfaces. Other
technical differences exist that are evident when you examine the applications for each interface type.

The interface topics covered in this chapter include:

Permanent interfaces

Transient interfaces

Interface properties

Interface configuration examples

Interface troubleshooting

2.1. Permanent Interfaces

A permanent interface is any interface that is always present on the router (it cannot be altered). These
interfaces can be management interfaces such as Ethernet, software pseudointerfaces such as tunnel interfaces,
or fixed-port LAN/WAN interfaces.

On an M/T-series router, two management interfaces exist:

fxp0

This is an Out of Band (OOB) management Ethernet interface. It is connected to the router's Routing
Engine (RE) and can be used for Out of Band management access to the router. It can also be used to
send management messages such as syslog or Simple Network Management Protocol (SNMP) traps. This
interface is a nontransit interface, which means that traffic cannot enter this interface and exit via a
LAN/WAN interface, nor can it enter a LAN/WAN interface and exit through the management interface.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When running routing protocols, be very careful when using the fxp0 interface. If

you don't configure the routing protocol correctly, you could have a route in your
route table that points to the fxp0 interface and blackhole traffic, since this is a

nontransit interface. To protect yourself from these types of situations, you should
not run any routing protocols over this interface.

fxp1

This is an internal Fast Ethernet or Gigabit Ethernet (depending on the model of router) interface between
the RE and the Packet Forwarding Engine (PFE). This interface is never configured but can be helpful
when troubleshooting router issues. It is only in application-specific integrated circuit (ASIC) platforms
(M/T-series) and not in the virtualized PFE J-series platforms.

Many software pseudointerfaces also exist that the router will create at startup. We will examine many of these
interfaces in depth in Chapter 7. Here is a short list of these interfaces:

lo0

This is a loopback interface that ties to the router itself and not to any one physical interface. This is often
assigned an address to provide a stable address for management traffic and routing protocols, which
allows your router to adapt to network and physical interface failures. Also, when configured with firewall
filters, this interface serves to protect the RE from attacks destined to the router.

sp

This service interface is used when configuring features such as Network Address Translation (NAT),
IPSec, and stateful firewalls.

pd

This Physical Interface Module (PIM) de-encapsulation interface allows a multicast rendezvous point (RP)
to process PIM register messages.

pe

This PIM encapsulation interface is used in multicast to create a unicast PIM register message to send to
the RP.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ip

This is an IP-over-IP encapsulation interface to create IP-in-IP tunnels.

dsc

This is a discard interface, which can be used to silently discard packets. This is often used to create a
choke point for denial of service (DoS) attacks.

tap

This is a virtual Ethernet interface historically used for monitoring on FreeBSD systems. This interface
could be used to monitor discarded packets on a router but is no longer officially supported.

The last type of permanent interface is the fixed LAN/WAN ports found on J-series routers and M7i routers. We
will examine these in depth in the next section.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.2. Transient Interfaces

Transient interfaces are any interfaces that the user can remove, move, or replace. These include ports on M-
series routers, Physical Interface Cards (PICs), and J-series PIMs. Examples of transient interfaces are Fast
Ethernet, Asynchronous Transfer Mode (ATM), SONET, and T1/E1, as well as service PICs such as tunnels,
multilinks, link services, Adaptive Services PICs (ASPs), and passive monitoring.

2.2.1. Interface Naming

All JUNOS interfaces follow the same naming convention-the interface name followed by three numbers that
indicate the location of the actual interface. The general convention is illustrated by the interface sequence MM-
F/P/T, where:

MM = media type

F = chassis slot number

P = PIC slot number

T = port number

2.2.1.1. Media type

The first part of the interface name is the interface media name (MM) indicating the type of interface. Common
interface media names include:

ae

Aggregated Ethernet, a logical linkage of multiple Ethernet interfaces defined in the IEEE 802.3ad
standard.

at

ATM, which sends fixed 53-byte cells over the transport media. This interface could also be used for ATM
over digital subscriber line (DSL) connections.

br

Physical Integrated Services Digital Network (ISDN) interface.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

e1

Standard digital communication standard over copper at a rate of 2.048 Mbps, used mostly in Europe.

e3

Standard digital communication standard over copper at a rate of 34.368 Mbps, used mostly in Europe.

t1

Basic physical layer standard used by the digital signal level 1 at a rate of 1.544 Mbps, used extensively
in North America.

t3

Basic physical layer standard used by the digital signal level 3 at a rate of 44.736 Mbps, used extensively
in North America.

fe

100 Mbps standard initially created by Xerox in the 1970s for connecting multiple computers together;
referred to as a LAN today.

ge

Higher-speed Ethernet standard at 1 Gbps or 10 Gbps.

se

Interface used for serial communications (one bit at a time). Serial interfaces include standards such as
EIA 530, V.35, and X.21.

ct1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

T1 interface that is channelized by splitting the interface into 24 DSO channels.

2.2.1.2. Chassis slot number

The next part of the interface name is F, a chassis slot number represented by a Flexible PIC Concentrator (FPC)
slot number on an M-series router or a PIM slot number on a J-series router. The M-series routers have two
possible FPC alignments: horizontal slots or vertical slots. The larger M-series routers (M40e, M320) have
vertically mounted FPCs with slot numbers starting at slot 0 and counting from left to right (see Figure 2-1). The
smaller M-series routers (M7i, M10i) have horizontal slots starting at slot 0 and counting from top to bottom
(see Figure 2-2).

Figure 2-1. Vertical FPC slots (M40e and M320)

Figure 2-2. Horizontal FPC slots (M7i and M10i)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The M7i slot 1 is reserved for the Fixed Interface Card slots.

A J-series router does not contain any FPCs but does have PIM slots that are represented by the variable F. All
fixed-port slots are always assigned slot 0, and PIM slots are assigned 1–6 numbering from top to bottom and
left to right (see Figure 2-3).

Figure 2-3. J6350 and J4350 PIM slot numbers

2.2.1.3. PIC slot number

The next part of the interface name is the PIC slot number, represented by the variable P. In M-series routers,
four PICs can fit into a single FPC slot. The slot numbers begin at 0 and continue to the final slot, 3. In M-series
routers, the direction of PIC slot numbering depends on whether the chassis slots are vertically or horizontally
aligned. In a vertically aligned M-series router, the PIC slot number is counted from top to bottom, as shown in
Figure 2-4.

Figure 2-4. PIC slot numbers for M40e and M320

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PIC slot numbering in horizontally aligned systems such as the M7i and M10i is a little less standard. In these
systems, the PIC slot numbering goes from right to left, starting at 0 and ending at slot 3, as shown in Figure 2-
5. The M7i's second FPC slot contains only two possible PIC slot numbers, and as shown in Figure 2-6, slot 2 is
used for the built-in tunnel interface, or Adaptive Services Module (ASM), and slot 3 is used for the fixed
Ethernet interfaces.

Figure 2-5. PIC slot numbers for M7i, M10i, and M20

Figure 2-6. M7i PIC slot numbering

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Life is much simpler in a J-series router that does not have any PIC slot numbers; thus, the interface naming (F)
convention is always set to a value of 0.

It seems counterintuitive that PIC slot numbering is counted from right to left. The
reason harkens back to the first routers (m40), which were vertically aligned FPC slots
with PIC slot numbering from top to bottom. Next came the horizontally aligned FPC slot
(m20), which was essentially a vertically aligned router turned on its side, which caused
the PIC slot to shift to right to left.

2.2.1.4. Port number

The last part of the interface name is represented by the variable T, or the actual physical port number. M-
series routers have port numbers with a variety of schemes depending on the PIC and the router model
(horizontal versus vertical slots). For vertical FPC routers (m40e, M320), port numbers start from the top right
and continue from the bottom to the top and then move right to left. For horizontal FPC routers (m20, m7i,
m10i), port numbers start from the bottom right and then move right to left and from the bottom to the top.
It's easier to see by examining Figure 2-7 through Figure 2-10, which show this sequence in the different
chassis types.

To avoid any confusion or spontaneous brain combustions, remember that the port
number is always written on the PIC itself.

Figure 2-7. Port numbers on a vertical FPC chassis starting at the top right

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 2-8. Port numbers on a vertical FPC chassis starting at the top

Figure 2-9. Port numbers on a horizontal FPC chassis starting at the bottom right

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 2-10. Port numbers on a horizontal FPC chassis starting on the right

The fixed Ethernet ports on the M7i follow the convention of Figure 2-10 and count from
right to left, starting at port 0.

Port numbers are greatly simplified in a J-series router, as all ports are always numbered from left to right. This
includes ports on a PIM (see Figure 2-11) as well any fixed ports on the chassis (see Figure 2-12).

Figure 2-11. Four-port Fast Ethernet E-PIM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 2-12. J2300 dual FE/serial ports with right-to-left numbering

Here are a few M-series example interfaces:

se-1/0/0

Serial interface in FPC slot 1, PIC slot 0, and port 0

fe-0/2/1

Fast Ethernet interface in FPC slot 0, PIC slot 2, and port 2

t1-1/0/1

T1 interface in FPC slot 1, PIC slot 0, and port 1

2.2.1.5. Logical unit and channel numbers

Interfaces also have a logical portion of the name represented by either a unit number or a channel number. A
logical unit is a numerical number that represents the subinterface properties of the router and can be
configured in the range of 0–16,385. This is designated by a period (.) in the interface name. For example:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

fe-0/0/0.0

Unit 0 configured on the Fast Ethernet interface

e3-1/0/2.12

Unit 12 configured on the e3 interface

The other logical division could be a channel number-for example, when breaking up a T1 interface into
multiple DS0 channels (up to 24). Channel values are represented using a colon (:). For example:

ct-1/1/2:14

Channel 14 on a channelized T1 interface

We will cover logical units in depth in "Section 2.3.2," later in this chapter.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.3. Interface Properties

Each interface has two types of properties assigned to it: physical properties and logical properties. Physical
properties are tied to the entire physical port, whereas logical properties affect only that logical portion of the
interface represented by unit numbers or channel numbers.

2.3.1. Physical Properties

A physical property on an interface is any property that should be assigned to the entire physical port.
Depending on the interface media, a large range of properties can be configured, but they can be divided into a
few major categories:

Clocking

This aligns the bits as they are transmitted out of the interface. The clocking can be learned either from
an external source or from the router itself.

Encapsulation

This is the Layer 2 encapsulation that is going to be used on the interface. Examples include Frame Relay,
Point-to-Point Protocol (PPP), and Cisco High-Level Data Link Control (HDLC).

MTU

This is the maximum transmission unit, which is the maximum size of the frame transmitted from the
interface.

Keepalives

These are mechanisms used to verify the operation of the interface. Most encapsulations have keepalives
enabled by default, but you can disable them to aid in troubleshooting.

Layer 1/2 options

These are various bit and byte settings for the interface media. For a T1 interface, this includes byte
encodings, framing, frame check sequences (FCSs), and line buildouts. In comparison, a Fast Ethernet
interface might have options such as flow control, loopbacks, and source address filters.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A physical property should always be configured before any logical identifier, such as a unit number. For
example, the following is a serial interface with no logical properties configured but with physical properties of
encapsulation cisco-HDLC and no-keepalives, and with clocking set to internal:

se-0/0/2 {

 no-keepalives;

 encapsulation cisco-hdlc;

 serial-options {

 clocking-mode internal;

 }

 unit 0;

}

2.3.2. Logical Properties

All router interfaces that will send and receive transit traffic require a logical unit to be configured. This logical
unit creates a division of the physical interface into multiple parts. For instance, an Ethernet interface can be
subdivided into multiple virtual LANs (VLANs), each requiring its own logical unit.

Many router vendors refer to a logical unit as a subinterface; they do not require a
subinterface on every physical interface, whereas a Juniper Networks router does.

Some interface types, such as point-to-point interfaces and non-VLAN-tagged Ethernet interfaces, still require a
logical unit to be configured. This is a unique feature of JUNOS software and may take a little getting used to if
you're coming from other router vendors' hardware. These interfaces require a unit number because any logical
property that needs to be configured must be defined after the unit number definition. The most common types
of logical properties include:

Protocol family

Indicates which Layer 3 protocols can be sent and received on the interface. The router can have one
protocol family per logical unit or multiple families per logical unit configured. The most common family
configured is family inet, which enables the sending and receiving of all packets in the Transmission

Control Protocol/Internet Protocol (TCP/IP) suite (e.g., TCP, User Datagram Protocol [UDP], Internet
Control Message Protocol [ICMP], and IP). Other common families are inet6 (IPv6), Multiprotocol Label
Switching (MPLS), and ISO (ISIS packets).

Protocol address

The Layer 3 family address, such as a family inet IP address.

Virtual circuit address

Circuit identifier used when dividing the physical interface into multiple logical interfaces. These could be

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the VLAN ID, Frame Relay data-link connection identifiers (DLCIs), or ATM virtual path/Virtual Channel
Identifier (VP/VCIs).

The logical unit number when configuring VLAN, Frame Relay, or ATM can be any value from 0–16,385. The
current best practice, however, is to keep the circuit address the same as the unit number for easier
troubleshooting. So, if you have a VLAN ID of 40 configured on your interface, the logical interface should also
be a unit of 40, although it's not required. If you are configuring a point-to-point circuit or non-VLAN-tagged
Ethernet, the logical unit number must be zero. Think of this unit as a placeholder for all the logical properties
that will need to be configured on that interface.

Here is an example of a T1 interface configuration with the default parameters (PPP encapsulation), family

inet support, and an IP address of 66.32.3.2/30. Note that since this is a point-to-point circuit, the unit number

must be configured as unit 0.

t1-0/0/2 {

 unit 0 {

 family inet {

 address 66.32.3.2/30;

 }

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.4. Interface Configuration Examples

A walkthrough of configuration examples, starting with basic examples and then getting into a few more
complex configurations, will help to put this into perspective. The order of the walkthrough uses the following
configuration example:

Fast Ethernet interfaces
Fast Ethernet with VLAN tagging
T1 interface with Cisco HDLC
Serial interface with PPP
Serial interface with Frame Relay
DSL
ISDN
MLPPP

Initially, we will use a step-by-step approach to establish the configuration fundamentals. Then the walkthrough
will move toward configuration results that build on the fundamentals and become advanced. Once you grasp
the fundamentals, you should be able to follow the advanced configurations. At the end of this section, we will
discuss the use of the Virtual Router Redundancy Protocol (VRRP).

2.4.1. Fast Ethernet Interface

First, let's build an interface on router Lager that connects directly to router Porter over the fe-2/0/1

interface.

Check the status of the fe-2/0/1 interface by issuing a show interfaces fe-2/0/1 terse command. JUNOS

software interfaces are automatically "enabled" when the physical connection is wired.

root@Lager> show interfaces terse fe-2/0/1

Interface Admin Link Proto Local Remote

fe-2/0/1 up up

If an interface needs to be administratively disabled, issue the set interfaces

<interface name> disable command.

The interface appears to be physically up, so next, configure the interface to allow IP traffic to flow as well as
add an IP address. Begin by entering configuration mode, dropping down to the hierarchy of the interface, and
configuring the correct family and local IP address:

root@Lager> configure

Entering configuration mode

[edit]

root@Lager# edit interfaces fe-2/0/1

[edit interfaces fe-2/0/1]

root@Lager# set unit 0 family inet address 10.10.20.122/24

Since this is a non-VLAN-tagged Ethernet interface, unit 0 must be used when configuring the logical properties
of family inet.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Also, note that JUNOS software requires a mask for every IP address in the classless interdomain routing (CIDR)
"slash" notation. An absence of the mask can lead to the less desirable result of configuring a /32 subnet on
your interface. (Look for other JUNOS software address issues in "Section 2.5," later in this chapter.)

Verify the configuration and activate the changes by issuing a commit and-quit command:

[edit interfaces fe-2/0/1]

root@Lager# show

unit 0 {

 family inet {

 address 10.10.20.122/24;

 }

}

[edit interfaces fe-2/0/1]

root@Lager# commit and-quit

commit complete

Exiting configuration mode

Verify the status of the interface. Note that the status now includes the logical portion as well as the physical
portion of the interface:

root@Lager> show interfaces terse fe-2/0/1

Interface Admin Link Proto Local Remote

fe-2/0/1 up up

fe-2/0/1.0 up up inet 10.10.20.122/24

Lastly, test connectivity by issuing a ping command toward the other end of the link of Porter:

root@Lager> ping 10.10.20.121

PING 10.10.20.121 (10.10.20.121): 56 data bytes

64 bytes from 10.10.20.121: icmp_seq=0 ttl=64 time=7.758 ms

64 bytes from 10.10.20.121: icmp_seq=1 ttl=64 time=10.394 ms

^C

--- 10.10.20.121 ping statistics ---

2 packets transmitted, 2 packets received, 0% packet loss

round-trip min/avg/max/stddev = 7.758/9.076/10.394/1.318 ms

Notice the Ctrl-C sequence used to break out of the ping command. JUNOS software will

send an endless number of pings unless a break is issued or a specific number of ping
packets are specified with the count command:

root@Lager> ping 10.10.20.121 count 3

PING 10.10.20.121 (10.10.20.121): 56 data bytes

64 bytes from 10.10.20.121: icmp_seq=0 ttl=64 time=16.822 ms

64 bytes from 10.10.20.121: icmp_seq=1 ttl=64 time=20.382 ms

64 bytes from 10.10.20.121: icmp_seq=2 ttl=64 time=10.370 ms

http://lib.ommolketab.ir
http://lib.ommolketab.ir

--- 10.10.20.121 ping statistics ---

3 packets transmitted, 3 packets received, 0% packet loss

round-trip min/avg/max/stddev = 10.370/15.858/20.382/4.144 ms

2.4.2. Fast Ethernet with VLAN Tagging

Continuing with our example, let's add VLAN tagging between Lager and Porter, which is already configured

with a VLAN ID of 100. The first step is to enable VLAN tagging on the physical interface of Lager:

root@Lager> configure

Entering configuration mode

[edit]

root@Lager# edit interfaces fe-2/0/1

[edit interfaces fe-2/0/1]

root@Lager# set vlan-tagging

Next, add a VLAN ID of 100 on logical unit 0:

 [edit interfaces fe-2/0/1]

root@Lager# set unit 0 vlan-id 100

[edit interfaces fe-2/0/1]

root@Lager# show

vlan-tagging;

unit 0 {

 vlan-id 100;

 family inet {

 address 10.10.20.122/24;

 }

}

Juniper routers do not have a default VLAN, as every VLAN must be explicitly configured.
Many switches use a default VLAN of 1, so make sure you explicitly configure a vlan-id

of 1 on the router for connectivity.

Although this is a valid configuration on unit 0, the best practice is to always keep the same unit number as the
VLAN tag, so let's change the unit number with the rename command:

[edit interfaces fe-2/0/1]

root@Lager# rename unit 0 to unit 100

[edit interfaces fe-2/0/1]

root@Lager# show

vlan-tagging;

unit 100 {

 vlan-id 100;

 family inet {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 address 10.10.20.122/24;

 }

}

Lastly, activate the changes, verify the interface status, and test connectivity:

[edit interfaces fe-2/0/1]

root@Lager# commit

commit complete

[edit interfaces fe-2/0/1]

root@Lager# run show interfaces terse fe-2/0/1

Interface Admin Link Proto Local Remote

fe-2/0/1 up up

fe-2/0/1.100 up up inet 10.10.20.122/24

[edit interfaces fe-2/0/1]

root@Lager# run ping 10.10.20.121 count 1

PING 10.10.20.121 (10.10.20.121): 56 data bytes

64 bytes from 10.10.20.121: icmp_seq=0 ttl=64 time=46.668 ms

--- 10.10.20.121 ping statistics ---

1 packets transmitted, 1 packets received, 0% packet loss

round-trip min/avg/max/stddev = 46.668/46.668/46.668/0.000 ms

 [edit interfaces fe-2/0/1]

root@Lager# run show interfaces terse fe-2/0/1

Interface Admin Link Proto Local Remote

fe-2/0/1 up up

Notice the use of the command run to issue the operational mode command ping in

configuration mode.

2.4.3. T1 Interface with Cisco HDLC Encapsulation

The T1 interface is the most popular basic physical layer protocol used by the Digital Signal level 1 (DS1)
multiplexing method in North America. For point-to-point interfaces on Juniper Networks routers, the default
Layer 2 encapsulation is PPP, which differs from many other vendors' default behavior. To quickly interoperate
with those vendors, change the encapsulation to their default setting, which is usually Cisco HDLC. Since we
already showed the step-by-step configuration in the previous configuration, we show here only the result of
adding the correct encapsulation:

t1-0/0/2 {

 encapsulation cisco-hdlc;

 unit 0 {

 family inet {

 address 10.200.8.9/30;

 }

 }

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

An inquiring mind may wonder why the encapsulation has the word cisco in it. Is there a
non-Cisco HDLC? As a matter of fact, there is! There is a standard HDLC protocol (ISO
13239), used in protocols such as X.25 and SDLC. The original specification did not have
multiprotocol support, so Cisco decided to create its own version with this support with
different header fields and definitions. Although this protocol is officially proprietary, the
workings are open and have been implemented by many different router vendors.

2.4.4. Serial Interface with PPP

A serial interface can come in a variety of different physical forms, such as V.35, X.21, and EIA-530. The choice
of physical media often depends on geographical location; V.35 is the most common choice in the United States
and Europe, and X.21 is more common in Japan. Regardless of physical media, all serial interfaces have the
same idea of defining a data circuit-terminating equipment (DCE) device and a data terminal equipment (DTE)
device. The DTE device is the end unit that receives data encoding, clocking, and signal conversion from the
DCE device. In modern communications, the DCE device often takes the form of a channel service unit/data
service unit (CSU/DSU) or a modem; however, when connecting two routers in a back-to-back fashion, one of
the routers takes the role of a DCE.

Router Ale and router Bock have a back-to-back serial connection using V.35 with the default encapsulation of

PPP. Normally, a router will default to DTE mode, but in this case, Ale is automatically chosen as the DCE based

on the detection of a DCE cable. You can observe this detection in the Local mode field of the show interfaces

command:

root@ale# run show interfaces se-1/0/0 extensive | find "serial media"

 Serial media information:

 Line protocol: v.35

 Resync history:

 Sync loss count: 0

 Data signal:

 Rx Clock: OK

 Control signals:

 Local mode: DCE

 To DTE: CTS: up, DCD: up, DSR: up

 From DTE: DTR: up, RTS: up

 DCE loopback override: Off

 Clocking mode: internal

 Clock rate: 8.0 MHz

 Loopback: none

 Tx clock: non-invert

 Line encoding: nrz

Since one of the roles of the DCE is to provide clocking to the DTE, an internal clocking mode needs to be
configured on Ale. This allows Ale to generate a clocking signal toward Bock using the internal clock with a

default clock rate of 8 MHz:

[edit interfaces]

root@ale# show se-1/0/0

serial-options {

 clocking-mode internal;

}

unit 0 {

 family inet {

 address 172.16.1.1/30;

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

Bock has no clocking mode configured and takes the default clock mode of loop-timed, which takes the

transmitted clock from Ale. Bock could also have been configured for DCE mode, which would have the same

result in this case. Here is the Bock configuration:

[edit interfaces se-1/0/1]

root@Bock# show

unit 0 {

 family inet {

 address 172.16.1.2/30;

 }

}

You can verify the local mode, clocking mode, and clock rate on Bock by using the show interfaces command:

[edit interfaces se-1/0/1]

root@Bock# run show interfaces se-1/0/1 extensive | find "serial media"

 Serial media information:

 Line protocol: v.35

 Resync history:

 Sync loss count: 0

 Data signal:

 Rx Clock: OK

 Control signals:

 Local mode: DTE

 To DCE: DTR: up, RTS: up

 From DCE: CTS: up, DCD: up, DSR: up

 Clocking mode: loop-timed

 Clock rate: 8.0 MHz

 Loopback: none

 Tx clock: non-invert

 Line encoding: nrz

Clocking can often be a confusing topic for many users. For back-to-back router
connections, Juniper made it simple by allowing multiple different clocking modes to be
configured and still "do the right thing." The only combinations that will not work for
back-to-back connections are the DCE in loop mode and the DTE in loop or DCE mode.
However, when connecting to a CSU/DSU or a modem, proper care must be taken to
configure the correct clock mode.

2.4.5. Serial Interface with Frame Relay

Frame Relay is a Layer 2 encapsulation that enables the connection of your LAN via a WAN connection to a
Frame Relay node. Frame Relay creates a tunnel called a permanent virtual circuit (PVC) over a private or
leased line to provide connectivity to other sites over the Internet service provider's (ISP's) infrastructure. With
the emergence of DSL and IP-based networks, Frame Relay is not often seen anymore, except in rural areas as
a cheaper, "always on" connection.

To establish a Frame Relay connection with the Frame Relay node, the proper encapsulation of frame-relay

(RFC 1490) must be configured as well as the local circuit identifier for the PVC represented by the logical
property of a dlci number:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

se-1/0/0 {

 encapsulation frame-relay;

 unit 645 {

 description "to R3";

 dlci 645;

 family inet {

 address 172.17.24.130/30;

 }

 }

}

The router can also support back-to-back router connections by configuring one router to operate in DCE mode
or by turning off keepalives on each router. If keepalives are disabled, the router will not wait for any local
management messages to enable that interface. Also, turning keepalives off can help in troubleshooting by
allowing for loopback testing, which we'll discuss later in this chapter.

FRF.15 and FRF.16 are also supported standards that we will discuss in Chapter 7.

2.4.6. ADSL Using PPPoE over ATM

DSL is one of the more popular connection media for both companies and consumers due to the fact that the
local service is provided via a normal phone line with a DSL modem. This connection terminates at the telco
digital subscriber line access multiplexer (DSLAM), a device that concentrates multiple DSL connections
together. Some J-series routers have support for ATM over asymmetrical digital subscriber line (ADSL)-Annex
A for DSL over POTS or Annex B for DSL over ISDN-and symmetric high-speed digital subscriber line (SHDSL)
configurations that allow them to act as the DSL modem at the customer site. The interfaces appear to be ATM
connections but do not support native ATM, only the use of ATM over a DSL connection.

Router PBR has an ADSL Annex A PIM installed in slot 6 and will act as a client to the DSLAM. This connection is

using Point-to-Point Protocol over Ethernet (PPPoE) over ATM for the DSL connection, which requires that two
different interfaces be configured. The first interface that is configured is the physical ATM interface of at-

6/0/0. To configure the interface, the ATM virtual path and virtual channel identities must be the same values

that are provisioned at the DSLAM. The rest of the parameters can be learned from the DSLAM by setting an
operating mode of auto. Since PBR will be using PPPoE, the encapsulation must be configured at both the

physical and the logical layers:

 [edit]

doug@PBR# show interfaces

at-6/0/0 {

 encapsulation ethernet-over-atm;

 atm-options {

 vpi 0;

 }

 dsl-options {

 operating-mode auto;

 }

 unit 0 {

 encapsulation ppp-over-ether-over-atm-llc;

 vci 0.39;

 }

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The next interface that must be configured is the PPPoE internal router interface. This interface maps the
physical interface where PPPoE will be running, sets the access server's name and underlying service to be
requested, and sets an IP address. The IP address can be learned automatically from the access server by
specifying the negotiate-address command, as seen in the configuration of PBR that follows, or by setting the

IP address to be static:

pp0 {

 unit 0 {

 pppoe-options {

 underlying-interface at-6/0/0.0;

 access-concentrator mgmgrand;

 service-name "pppserv@mgmgrand";

 auto-reconnect 5;

 }

 family inet {

 negotiate-address

 }

 }

 }

}

Verify the correct operation of the PPPoE negotiation by issuing the show pppoe interfaces command:

[edit]

doug@PBR# run show pppoe interfaces

pp0.0 Index 68

 State: Session up, Session ID: 4,

 Service name: pppserv@mgmgrand, Configured AC name: mgmgrand,

 Session AC name: mgmgrand, AC MAC address: 00:05:85:ca:7a:a8,

 Session uptime: 00:22:43 ago,

 Auto-reconnect timeout: 5 seconds, Idle timeout: Never,

 Underlying interface: at-6/0/0.0 Index 66

2.4.7. ISDN

ISDN is a protocol designed to run over the circuit-switched telephone network. It allows digital transmission of
both voice and video over your telephone circuit. With the advent of DSL, ISDN is starting to see less
deployment, and today it is common mostly in rural areas or for backup links. When ISDN is configured on a
Juniper Networks router, two interfaces must be configured: a physical interface (br) and a logical dialer

interface (dl0). The physical interface will contain the dialing number information and switch type. In the

following example, br-0/0/4 is configured to use a switch type of etsi, which indicates NET3 for Europe. Also,

a dial pool of pool1 is mapped to the physical interface to tie the interface to a logical unit in the dialer

interface.

Dialer filter:

[edit interfaces]

 br-0/0/4 {

 isdn-options {

 switch-type etsi;

 }

 dialer-options {

 pool pool1;

 }

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The logical dialer interface also needs to be configured. This interface contains the number that needs to be
dialed, an IP address, and a pool to map the logical unit to the physical interface. In the following code snippet,
the dl0 interface is mapped with pool1, which is also configured on the physical interface. The number 12345 is

being dialed, and an IP address of 12.12.12.1 is configured. Also, this ISDN interface is set to establish the
connection only when there is interesting traffic that will be defined in the dialer filter, called dial_filter:

 dl0 {

 unit 0 {

 dialer-options {

 pool pool1;

 dial-string 12345;

 }

 family inet {

 filter {

 dialer dial_filter;

 }

 address 12.12.12.1/24;

 }

 }

 }

This simple filter creates the connection when there are packets that are destined for the IP address of
12.12.12.2 by specifying the note action. All other destinations are ignored by term b because this term

contains no from statement:

[edit]

 firewall {

 family inet {

 dialer-filter dial_filter {

 term a {

 from {

 destination-address {

 12.12.12.2/32;

 }

 }

 then note;

 }

 term b {

 then ignore;

 }

 }

 }

 }

Recall that an ISDN interface could be used as a backup for other interfaces. To configure backup links, the dl0

interface will be mapped to the interface that requires the backup. In this case, fe-0/0/1 is being backed up by

dl0.0:

[edit interfaces fe-0/0/1 unit 0]

 backup-options {

 interface dl0.0;

 }

The ISDN interface will be used if the fe-0/0/1 interface is down. Since Ethernet interfaces are often connected

to switches, the interface could stay in the up state even if the entire path is not reachable.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A protocol called Bidirectional Forwarding Detection (BFD) was developed to solve
Ethernet path issues when the connection is via a hub or switch. BFD is essentially a fast
hello protocol that is media-independent. For details on how BFD operates, see
http://www.ripe.net/ripe/meetings/ripe-48/presentations/ripe48-eof-bfd.pdf.

In this case, it is wise to configure a listing of IP networks that should be reachable when the primary interface
is working. If there is no route to these networks, the ISDN interface will be used. In the following example, a
single network of 13.13.13/24 is used to verify that the primary interface is working by listing that network in a
watch list:

 dl0 {

 unit 0 {

 dialer-options {

 pool pool1;

 dial-string 12345;

 watch-list {

 13.13.13.0/24;

 }

 }

 family inet {

 address 12.12.12.1/24;

 }

 }

 }

An ISDN interface may dial and accept calls from other ISDN devices. To accept a call, an incoming map can be
configured on the dl0 interface:

 dl0 {

 unit 0 {

 dialer-options {

 pool pool1;

 incoming-map {

 caller 384030;

 }

 }

 family inet {

 address 12.12.12.1/24;

 }

 }

 }

To verify whether the ISDN interface is working properly, issue the show isdn and show dialer commands.

The show isdn status command verifies that the ISDN connection is up from Layer 1 to Layer 3, as well as the

type of switch to which the callis connected:

doug@PBR> show isdn status

Interface: br-0/0/4

 Layer 1 status: active

 Layer 2 status:

 CES: 0, Q.921: up, TEI: 64

 Layer 3 status: 1 Active calls

 Switch Type : NI1

http://www.ripe.net/ripe/meetings/ripe-48/presentations/ripe48-eof-bfd.pdf
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Interface Type : USER

 T310 : 10 seconds

 Tei Option : Power Up

The show dialer command will indicate each ISDN channel's individual status. In this case, only channel 2 is

currently active:

doug@PBR> show dialer pools brief

Pool Dialer interface Subordinate interface

 Name State Name Flags Priority

1 dl0.0 Active bc-0/0/4:1 Inactive 1

 bc-0/0/4:1 Inactive 1

 bc-0/0/4:2 Active 1

2.4.8. MLPPP

To incrementally increase the speed of individual PPP links without adding speed to the physical interfaces, the
Multilink Point-to-Point Protocol (MLPPP) was created under RFC 1990. This is essentially a "software" bond of
multiple physical PPP interfaces to form one larger logical link, called a bundle. JUNOS software allows for up to
eight physical interfaces to be assigned to a bundle.

To support MLPPP on any Juniper Networks router, the router must support this special service. This support
could be in the form of an additional hardware PIC on an M-series router, or it could inherit software support on
a J-series router. We discuss services in detail in Chapter 7 and Chapter 8.

The first step is to configure the pseudolink service interface, which takes the form of ls-0/0/0 on a J-series

router, or an ml, lsq, or ls interface on an M-series router depending on the PIC type (see Figure 7-2 in

Chapter 7 for a summary). This interface will take all the same characteristics of a normal PPP interface, such as
an IP address, but will have a logical encapsulation of multilink-ppp. This is configured at the logical layer of

the interface to allow multiple bundles and types of bundleson the same router by configuring multiple unit
numbers. As shown here, the bundle is assigned to logical unit 0:

ls-0/0/0 {

 unit 0 {

 encapsulation multilink-ppp;

 family inet {

 address 172.8.17.30/30;

 }

 }

}

Next, configure the physical interfaces to link the newly created link service interface. In the following example,
interfaces se-1/0/0 and se-1/0/1 are linked to the logical bundle unit 0 on the ls-0/0/0 interface:

se-1/0/0 {

 unit 0 {

 family mlppp {

 bundle ls-0/0/0.0;

 }

 }

}

se-1/0/1 {

 unit 0 {

 family mlppp {

 bundle ls-0/0/0.0;

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

}

To verify the status, issue the show interfaces terse command. Notice that both the serial interfaces and the

link service interfaces are tracked. The link service will be in the up state as long as one of the physical
interfaces is also in the up state. You can modify this by configuring the minimum-links number command

under the link service interface. This command sets the number of physical links that must be in the up state for
the bundle to be labeled up.

root@Bock# run show interfaces terse | match "se|ls-"

ls-0/0/0 up up

ls-0/0/0.0 up up inet 172.17.8.30/30

se-1/0/0 up up

se-1/0/0.0 up up mlppp ls-0/0/0.0

se-1/0/1 up up

se-1/0/1.0 up up mlppp ls-0/0/0.0

2.4.9. GRE

Generic Routing Encapsulation (GRE) is a tunneling protocol that enables the transport of a variety of Layer 3
protocols. The tunnel created by GRE was designed to be "stateless" with no monitoring of the tunnel endpoint.
GRE tunnels are used for a variety of applications, including providing backup links, transporting non-IP
protocols over an IP network, and connecting "islands" of IP networks.

To create a GRE tunnel on a Juniper Networks router, the router must be equipped with Layer 2 service
capabilities, which are native in a J-series router or are available via a hardware PIC in an M-series router. When
these services are enabled on a router, a pseudointerface called gr is created. The interface must be configured

with the source IP address for the GRE packets, the destination of the tunnel, and the families of protocols that
will be carried in the protocol. The GRE tunnel configured in the following case is carrying IP traffic and is using
a source IP address of 10.20.1.38 and a destination of 172.66.13.1. An IP address for the gr-0/0/0 interface is

not required but could be useful for management purposes.

gr-0/0/0 {

 unit 0 {

 tunnel {

 source 10.20.1.38;

 destination 172.66.13.1;

 }

 family inet

 }

}

It is important not to mistake the internal gre interface with the gr interface on the

router. The gre interface is used by the router internally and should not be configured to

create GRE tunnels.

The final piece is mapping actual traffic for use by the GRE tunnel. This is accomplished in a variety of methods
depending on the type of traffic entering the GRE tunnel. Common mapping examples for IP include creating a
static route with a next-up of the gr interface or even running a routing protocol such as Open Shortest Path

First (OSPF) over the interface!

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.4.10. VRRP

Anybody that is using a PC for Internet surfing, music downloads, or gaming uses IP as the network protocol.
The PC will have an IP address assigned as well as a default gateway address to reach any destinations that are
not on the local subnet. In the following code snippet, a PC is using an IP address of 10.70.129.36 with a mask
of 255.255.255.0 and a default gateway of 10.70.129.1:

Microsoft Windows XP [Version 5.1.2600]

(C) Copyright 1985-2001 Microsoft Corp.

C:\Documents and Settings\Douglas Marschke>ipconfig

Ethernet adapter Local Area Connection 3:

 Connection-specific DNS Suffix . : eu-af.regus.local

 IP Address. : 10.70.129.36

 Subnet Mask : 255.255.255.0

 Default Gateway : 10.70.129.1

This default gateway address is either statically defined by the user or learned via the Dynamic Host
Configuration Protocol (DHCP) process. Regardless of the method, the default gateway will be used as the next
hop address for the default route that will be created to reach remote destinations:

Code View:
Microsoft Windows XP [Version 5.1.2600]

(C) Copyright 1985-2001 Microsoft Corp.

C:\Documents and Settings\Douglas Marschke>netstat -r

Route Table

==

Interface List

0x1 MS TCP Loopback interface

0x2 ...00 12 f0 ac 46 d5 Intel(R) PRO/Wireless 2200BG Network

Connection - Packet Scheduler Miniport

0x3 ...00 12 3f 12 d7 59 Broadcom NetXtreme 57xx Gigabit

Controller - Packet Scheduler Miniport

0x20005 ...00 ff e8 25 91 85 Juniper Network Connect Virtual

Adapter

==

Active Routes:

Network Destination Netmask Gateway Interface Metric

 0.0.0.0 0.0.0.0 10.70.129.1 10.70.129.36 20

 10.70.129.0 255.255.255.0 10.70.129.36 10.70.129.36 20

 10.70.129.36 255.255.255.255 127.0.0.1 127.0.0.1 20

 10.255.255.255 255.255.255.255 10.70.129.36 10.70.129.36 20

 127.0.0.0 255.0.0.0 127.0.0.1 127.0.0.1 1

 224.0.0.0 240.0.0.0 10.70.129.36 10.70.129.36 20

 255.255.255.255 255.255.255.255 10.70.129.36 10.70.129.36 1

 255.255.255.255 255.255.255.255 10.70.129.36 2 1

 255.255.255.255 255.255.255.255 10.70.129.36 20005 1

Default Gateway: 10.70.129.1

==

Persistent Routes:

 None

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If the default gateway was a single device and that device failed, a PC would not be able to reach destinations
outside the local subnet. In a fault-tolerant network, it would be ideal to have a backup gateway device, without
having to modify the configuration on the PC, as well as being able to load-share with multiple PCs on the LAN.

VRRP was created to eliminate single points of behavior that are inherent to static default routed networks.
VRRP creates a logical grouping of multiple physical routers to a "virtual" router that will be used as the default
gateway for end hosts. This allows the PC to always maintain the same gateway address even if the physical
gateway has changed (see Figure 2-13). The routers that are part of the same VRRP logical group will share this
"virtual" IP address as well as a "virtual" media access control (MAC) address. Essentially VRRP describes an
election protocol to maintain ownership of this virtual IP (VIP) address and MAC address. One router in the
VRRP group will be the master router, which controls this VIP address unless a failure occurs that results in a
release of that ownership. This failure causes another router to claim ownership of the VIP by issuing a VRRP
message and a gratuitous Address Resolution Protocol (ARP) to claim the virtual MAC address. Once a router
becomes the master, it will periodically advertise VRRP messages to indicate its overall health and reachability.

Figure 2-13. VRRP example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When configuring VRRP for the first time on a Juniper Networks router, it can seem like locating the
configuration is similar to trying to find a needle in a haystack. The configuration will be within the logical
property and will be configured after the family inet address. A VRRP group value (1–255) is assigned on every
router that needs to be part of the virtual router. Also, a VIP address is assigned that the hosts will use as their
gateway address. This could be an address owned by one of the routers in the group or an address taken out of
the address block owned by the LAN. Lastly, a priority value can be configured to change the default value of
100, which is used to elect the master router of the VRRP group. The router with the highest priority value
becomes the master for that group; if the priorities are equal, the tie breaker goes to the highest local LAN IP
address.

lab@LAGER# show interfaces

fe-0/0/1 {

 vlan-tagging;

 speed 100m;

 link-mode full-duplex;

 unit 1115 {

 description LAGER-to-ALE;

 vlan-id 1115;

 family inet {

 address 10.40.1.2/24 {

 vrrp-group 1 {

 virtual-address 10.40.1.200;

 priority 200;

 }

 }

 }

 }

Verify the operation of VRRP with the show vrrp summary command. Router Lager is the master for group 1

due to a higher priority.

[edit interfaces fe-0/0/1]

lab@LAGER# run show vrrp summary

Interface Unit Group Type Address Int state VR state

fe-0/0/1 1115 1 lcl 10.40.1.2 up master

 vip 10.40.1.200

Priority values range from 0–255; however, only values 1–254 are configurable. Priority
0 is reserved for the master router to issue an immediate release of mastership. A
priority of 255 is used if the VIP is an actual interface IP that is owned by that router.

Another option that can be configured is the ability to track the interface priority settings. If an interface goes
down, the advertised priority will be subtracted by a configured value. This could result in a new master router
for the virtual router. This is very useful to ensure upstream reachability. In the example on Lager, a T1

interface is being tracked. If this interface goes down, 150 will be subtracted from the configured priority of
200.

lab@LAGER# show interfaces

fe-0/0/1 {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 vlan-tagging;

 speed 100m;

 link-mode full-duplex;

 unit 1115 {

 description LAGER-to-ALE;

 vlan-id 1115;

 family inet {

 address 10.40.1.2/24 {

 vrrp-group 1 {

 virtual-address 10.40.1.200;

 priority 200;

 track {

 interface t1-0/0/2.0 priority-cost 150;

 }

 }

 }

 }

 }

You can force an interface failure by administratively disabling the T1 interface:

lab@LAGER# top set interfaces t1-0/0/2 disable

[edit interfaces fe-0/0/1]

lab@LAGER# commit

commit complete

The result of this failure is a mastership change, as Lager is now the backup router:

[edit interfaces fe-0/0/1]

lab@LAGER# run show vrrp summary

Interface Unit Group Type Address Int state VR state

fe-0/0/1 1115 1 lcl 10.40.1.2 up backup

 vip 10.40.1.200

Notice in the show vrrp track command that Lager has a configured (cfg) priority value of 200, but a priority

of 50 is currently being used because we've subtracted the cost of 150 from the downed T1 interface:

lab@LAGER# run show vrrp track

Track if State Cost Interface Group Cfg Run VR State

t1-0/0/2.0 down 150 fe-0/0/1.11151 200 50 backup

The default behavior of VRRP is to use preemption, which causes a router with a higher priority to become the
master at any time. When Lager's T1 interface is reenabled, it will again become the master for the virtual

router:

[edit]

lab@LAGER# rollback 1

load complete

[edit]

lab@LAGER# commit

commit complete

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[edit]

lab@LAGER# run show vrrp track

Track if State Cost Interface Group Cfg Run VR State

t1-0/0/2.0 up 150 fe-0/0/1.11151 200 200 master

Since preemption could cause a temporary disruption in the network, a no-preempt command can also be

configured.

Lastly, according to RFC 3768, "A VRRP router SHOULD not forward packets addressed to the VIP Address(es) it
becomes Master for if it is not the owner." That means if we have an IP address that is not owned by any router
and is simply an address from the subnet that was used as the VIP, operational issues may appear. The most
common issue is not being able to ping the virtual address. In the case just examined, 10.40.1.200 was the VIP
address chosen out of the 10.40.1/24 subnet, but it was not actually configured on either Lager or Ale. Juniper

routers allow you to break this rule by configuring the accept-data command to allow the master router to

respond to the VIP address. This will allow testing to occur toward the VIP; however, care must be taken to
avoid unnecessary traffic on the LAN.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.5. Interface Troubleshooting

Interfaces can have a variety of issues depending on the actual interface type, and listing all the possibilities
would require a separate book! Instead, in this section, we will discuss a few common issues that illustrate the
types of troubleshooting commands available on the router.

2.5.1. Address Configuration Issues

Since Juniper Networks routers allow multiple IP addresses to be configured on a single logical unit,
configuration errors can occur if care is not taken. Lager has an IP address of 10.10.20.122 configured on its

fast Ethernet interface with a subnet mask of /24. This was noticed to be a configuration error as the mask
should have been configured for /27.

[edit interfaces fe-2/0/1]

root@Lager# show

vlan-tagging;

unit 100 {

 vlan-id 100;

 family inet {

 address 10.10.20.122/24;

 }

}

Here, the address of 10.10.20.122 is added with the correct subnet of /27:

[edit interfaces fe-2/0/1]

root@Lager# set unit 100 family inet address 10.10.20.122/27

When you view the resultant interface configuration the router appears to contain the duplicate IP addresses
with varying subnet masks. This illustrates the fact that IP addresses are not overridden per logical unit, but
simply are added to the logical unit.

[edit interfaces fe-2/0/1]

root@Lager# show

vlan-tagging;

unit 100 {

 vlan-id 100;

 family inet {

 address 10.10.20.122/24;

 address 10.10.20.122/27;

 }

}

To correct this, the old address with the /24 mask is removed by use of the delete command:

[edit interfaces fe-2/0/1]

root@Lager# delete unit 100 family inet address 10.10.20.122/24

Another solution with the same result is to use the rename command to change the subnet mask from /24 to

/27:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[edit interfaces fe-2/0/1 unit 100]

root@Lager# rename address 10.10.20.122/24 to address 10.10.20.122/27

Since Juniper Networks routers allow placement of multiple addresses on a single logical interface, care must
also be taken to allow for the router to choose the correct source IP address for outgoing packets on that
interface. By default, the source IP address is chosen by using the primary and preferred addresses assigned to
the interface. Each unit can have only one primary address, but each interface can have multiple preferred
addresses. Simply put, a primary address is the address chosen to source local packets out of the interface
destined for a remote network. As shown in the following output, 10.20.20.122 is the only address on the
interface, and as such, it contains both a primary and a preferred flag:

root@Lager# run show interfaces fe-2/0/1.100

 Logical interface fe-2/0/1.100 (Index 67) (SNMP ifIndex 45)

 Flags: SNMP-Traps 0x4000 VLAN-Tag [0x8100.100] Encapsulation: ENET2

 Input packets : 2215

 Output packets: 23

 Protocol inet, MTU: 1500

 Flags: None

 Addresses, Flags: Is-Preferred Is-Primary

 Destination: 10.10.20.96/27, Local: 10.10.20.122,

 Broadcast: 10.10.20.127

Now configure two additional IP addresses, 6.6.6.6 and 6.6.6.4, on the interface and observe the results:

root@Lager# set address 6.6.6.4/24

root@Lager# set address 6.6.6.6/24

[edit interfaces fe-2/0/1 unit 100 family inet]

root@Lager# commit

commit complete

[edit interfaces fe-2/0/1 unit 100 family inet]

root@Lager# run show interfaces fe-2/0/1.100 | find protocol

 Protocol inet, MTU: 1500

 Flags: None

 Addresses, Flags: Is-Preferred Is-Primary

 Destination: 6.6.6/24, Local: 6.6.6.4, Broadcast: 6.6.6.255

 Addresses

 Destination: 6.6.6/24, Local: 6.6.6.6, Broadcast: 6.6.6.255

 Addresses, Flags: Is-Preferred

 Destination: 10.10.20.96/27, Local: 10.10.20.122,

 Broadcast: 10.10.20.127

The primary address has changed to 6.6.6.4, and now two addresses contain the preferred flag: addresses
6.6.6.6 and 10.10.20.122. The preferred address is used as the source IP address if you're trying to reach a
network that is locally attached. In this case, if traffic is destined for 172.16.1.2, the source IP address of
6.6.6.4 is used, but if the destination address is 10.10.20.121, the source IP address of 10.10.20.122 will be
used. JUNOS software by default will choose the primary and preferred addresses based on the lowest IP
address that is configured. The primary address will be the lower IP address configured on the interface, and the
preferred address will be the lowest IP address configured for each local subnet. In the earlier example, traffic
destined to a host on the 6.6.6/24 subnet is sourced from 6.6.6.4. You can modify these defaults by configuring
the appropriate flag (primary or preferred) to the address of choice:

[edit interfaces fe-2/0/1 unit 100 family inet]

root@Lager# set address 10.10.20.122/27 primary

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[edit interfaces fe-2/0/1 unit 100 family inet]

root@Lager# commit

commit complete

The 10.10.20.122 address has now been configured for the primary address of the interface, as indicated by the
show interfaces command:

[edit interfaces fe-2/0/1 unit 100 family inet]

root@Lager# run show interfaces fe-2/0/1.100 | find protocol

 Protocol inet, MTU: 1500

 Flags: None

 Addresses, Flags: Is-Preferred

 Destination: 6.6.6/24, Local: 6.6.6.4, Broadcast: 6.6.6.255

 Addresses

 Destination: 6.6.6/24, Local: 6.6.6.6, Broadcast: 6.6.6.255

 Addresses, Flags: Primary Is-Preferred Is-Primary

 Destination: 10.10.20.96/27, Local: 10.10.20.122,

 Broadcast: 10.10.20.127

[edit interfaces fe-2/0/1 unit 100 family inet]

root@Lager# set address 6.6.6.6/24 preferred

2.5.2. Encapsulation Mismatches

For two routers' interfaces to communicate properly, the same Layer 2 encapsulation must be configured on
each device; depending on the type of encapsulation, this could be a difficult error to determine. A common
interface medium where this could occur is Ethernet. The interface on router Lager is configured to send VLAN

tagged frames on the 10.10.20/24 subnet; however, a ping to router Hangover in that segment fails:

[edit interfaces fe-2/0/1 unit 100]

root@Lager# run ping 10.10.20.121

PING 10.10.20.121 (10.10.20.121): 56 data bytes

^C

--- 10.10.20.121 ping statistics ---

3 packets transmitted, 0 packets received, 100% packet loss

Looking at the statistics on Lager's Ethernet interface, a number of Layer 2 channel errors are recorded:

Code View:
root@Lager# run show interfaces fe-2/0/1 extensive

Physical interface: fe-2/0/1, Enabled, Physical link is Up

 Interface index: 142, SNMP ifIndex: 37, Generation: 143

 Link-level type: Ethernet, MTU: 1518, Speed: 100mbps, Loopback:

Disabled,

 Source filtering: Disabled, Flow control: Enabled

 Device flags : Present Running

 Interface flags: SNMP-Traps Internal: 0x4000

 CoS queues : 8 supported, 8 maximum usable queues

 Hold-times : Up 0 ms, Down 0 ms

 Current address: 00:12:1e:76:1e:29, Hardware address:

00:12:1e:76:1e:29

 Last flapped : 2007-04-05 22:01:18 UTC (1w0d 10:11 ago)

 Statistics last cleared: 2007-04-13 08:10:48 UTC (00:02:18 ago)

 Traffic statistics:

 Input bytes : 0 0 bps

 Output bytes : 230 0 bps

 Input packets: 0 0 pps

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Output packets: 5 0 pps

 Input errors:

 Errors: 0, Drops: 0, Framing errors: 0, Runts: 0, Policed discards:

 0, L3 incompletes: 0, L2 channel errors: 42, L2 mismatch timeouts:

 ,0 FIFO errors: 0, Resource errors: 0

 Output errors:

 Carrier transitions: 0, Errors: 0, Drops: 0, Collisions: 0, Aged

 packets: 0, FIFO errors: 0, HS link CRC errors: 0, MTU errors: 0,

 Resource errors: 0

 Egress queues: 8 supported, 8 in use

.....

To see whether the Layer 2 channel errors are currently increasing or whether they are older counters that have
not been cleared, the monitor interface fe-2/0/1 command is issued. The second column in the following

code snippet shows the interface counter statistics, and the current delta column indicates real-time statistics
recorded since issuing the monitor command. Layer 2 channel errors are currently increasing, as the current

delta counter indicates:

Lager Seconds: 14 Time: 08:13:54

 Delay: 0/0/50

Interface: fe-2/0/1, Enabled, Link is Up

Encapsulation: Ethernet, Speed: 100mbps

Traffic statistics: Current delta

 Input bytes: 0 (0 bps) [0]

 Output bytes: 230 (0 bps) [0]

 Input packets: 0 (0 pps) [0]

 Output packets: 5 (0 pps) [0]

Error statistics:

 Input errors: 0 [0]

 Input drops: 0 [0]

 Input framing errors: 0 [0]

 Policed discards: 0 [0]

 L3 incompletes: 0 [0]

 L2 channel errors: 105 [18]

 L2 mismatch timeouts: 0 Carrier transit [0]

An additional monitor command is now used to verify that the router is sending out the correct packets. The

monitor traffic command is the router's tcpdump[1] utility that allows local router traffic to be observed on a

particular interface. Since Ethernet requires the IP address to MAC address mapping before sending the FRAME,
a series of ARP requests with an 801.1Q (VLAN) header are sent out to the interface with no response received.
The layer2-header switch is used to obtain some Ethernet header information as the monitor command is

usually Layer 3 and Layer 4 only:

[1] tcpdump is a common debugging tool that allows the user to intercept and display IP packets being transmitted or received over a network

interface.

Code View:
[edit interfaces fe-2/0/1 unit 100]

root@Lager# run monitor traffic interface fe-2/0/1 layer2-headers

verbose output suppressed, use <detail> or <extensive> for full protocol decode

Listening on fe-2/0/1, capture size 96 bytes

08:18:09.764757 Out 0:12:1e:76:1e:29 > Broadcast, ethertype 802.1Q (0x8100), length

http://lib.ommolketab.ir
http://lib.ommolketab.ir

46: vlan 100, p 0, ethertype ARP, arp who-has 10.10.20.121 tell 10.10.20.122

08:18:10.564781 Out 0:12:1e:76:1e:29 > Broadcast, ethertype 802.1Q (0x8100), length

46: vlan 100, p 0, ethertype ARP, arp who-has 10.10.20.121 tell 10.10.20.122

08:18:12.214889 Out 0:12:1e:76:1e:29 > Broadcast, ethertype 802.1Q (0x8100), length

46: vlan 100, p 0, ethertype ARP, arp who-has 10.10.20.121 tell 10.10.20.122

08:18:12.814634 Out 0:12:1e:76:1e:29 > Broadcast, ethertype 802.1Q (0x8100), length

46: vlan 100, p 0, ethertype ARP, arp who-has 10.10.20.121 tell 10.10.20.122

08:18:13.414648 Out 0:12:1e:76:1e:29 > Broadcast, ethertype 802.1Q (0x8100), length

46: vlan 100, p 0, ethertype ARP, arp who-has 10.10.20.121 tell 10.10.20.122

08:18:14.314858 Out 0:12:1e:76:1e:29 > Broadcast, ethertype 802.1Q (0x8100), length

46: vlan 100, p 0, ethertype ARP, arp who-has 10.10.20.121 tell 10.10.20.122

^C

7 packets received by filter

0 packets dropped by kernel

[edit interfaces fe-2/0/1 unit 100]

root@Lager#

Router Hangover is then accessed and a ping command toward Lager is issued. The monitor traffic

command is issued at Hangover with similar output, except for a single important difference. While router Lager

is sending out the ARP packets with an 802.1Q header (0 x 8100), router Hangover appears to be sending a

non-VLAN-tagged Ethernet frame (0 x 0806), which is the cause of the Layer 2 channel errors that were
previously discovered:

Code View:
doug@hangover> monitor traffic interface fe-2/0/0 layer2-headers

verbose output suppressed, use <detail> or <extensive> for full protocol decode

Listening on fe-2/0/0, capture size 96 bytes

08:20:32.901733 Out 0:12:1e:75:fa:28 > Broadcast, ethertype ARP (0x0806), length 42:

arp who-has 10.10.20.122 tell 10.10.20.121

08:20:33.801530 Out 0:12:1e:75:fa:28 > Broadcast, ethertype ARP (0x0806), length 42:

arp who-has 10.10.20.122 tell 10.10.20.121

08:20:34.601659 Out 0:12:1e:75:fa:28 > Broadcast, ethertype ARP (0x0806), length 42:

arp who-has 10.10.20.122 tell 10.10.20.121

08:20:35.301622 Out 0:12:1e:75:fa:28 > Broadcast, ethertype ARP (0x0806), length 42:

arp who-has 10.10.20.122 tell 10.10.20.121

08:20:36.001475 Out 0:12:1e:75:fa:28 > Broadcast, ethertype ARP (0x0806), length 42:

arp who-has 10.10.20.122 tell 10.10.20.121

08:20:36.941611 Out 0:12:1e:75:fa:28 > Broadcast, ethertype ARP (0x0806), length 42:

arp who-has 10.10.20.122 tell 10.10.20.121

^C

7 packets received by filter

0 packets dropped by kernel

After correcting the configuration error on Hangover to allow for VLAN encapsulation with the correct VLAN ID,

the ping succeeds and is verified:

Code View:
root@Lager# run monitor traffic interface fe-2/0/1 layer2-headers

verbose output suppressed, use <detail> or <extensive> for full protocol decode

Listening on fe-2/0/1, capture size 96 bytes

08:20:55.076174 In 0:12:1e:75:fa:28 > Broadcast, ethertype 802.1Q (0x8100), length

http://lib.ommolketab.ir
http://lib.ommolketab.ir

60: vlan 100, p 0, ethertype ARP, arp who-has 10.10.20.122 tell 10.10.20.121

08:20:55.076308 Out 0:12:1e:76:1e:29 > 0:12:1e:75:fa:28, ethertype 802.1Q (0x8100),

length 46: vlan 100, p 0, ethertype ARP, arp reply 10.10.20.122 is-at 0:12:1e:76:1e:

29

08:20:55.096237 In PFE proto 2 (ipv4): 10.10.20.121 > 10.10.20.122: ICMP echo

request seq 0, length 64

08:20:55.096272 Out 0:12:1e:76:1e:29 > 0:12:1e:75:fa:28, ethertype 802.1Q (0x8100),

length 102: vlan 100, p 0, ethertype IPv4, 10.10.20.122 > 10.10.20.121: ICMP echo

reply seq 0, length 64

2.5.3. Path MTU Issues

When an IP packet is transiting a network, it is often fragmented so that it can transverse interfaces with
varying sizes of MTUs. However, some applications do not allow this fragmentation, so you must ensure that the
ingress MTU is not larger than a transit MTU for those applications. One simple tool you can use to test whether
the proper MTU is assigned is the packet internet groper (ping) command. Connectivity to a remote system is

confirmed on router Lager by issuing a ping command to an address of 172.17.20.2:

root@Lager> ping 172.17.20.2

PING 172.17.20.2 (172.17.20.2): 56 data bytes

64 bytes from 172.17.20.2: icmp_seq=0 ttl=62 time=7.133 ms

64 bytes from 172.17.20.2: icmp_seq=1 ttl=62 time=10.375 ms

^C

--- 172.17.20.2 ping statistics ---

2 packets transmitted, 2 packets received, 0% packet loss

round-trip min/avg/max/stddev = 7.133/8.754/10.375/1.621 ms

Issue the traceroute command to check the path these packets take to reach the destination. Router Lager

appears to be located two IP systems away from the destination of 172.17.20.2:

root@Lager> traceroute 172.17.20.2

traceroute to 172.17.20.2 (172.17.20.2), 30 hops max, 40 byte packets

 1 10.10.20.121 (10.10.20.121) 18.572 ms 12.953 ms 35.782 ms

 2 172.17.20.2 (172.17.20.2) 9.804 ms 9.497 ms 10.003 ms

The application that is being tested requires an MTU of 1,508 bytes, so a ping of size 1,500 is sent with 8 bytes
of overhead to the remote station:

root@Lager> ping 172.17.20.2 size 1500 count 3

PING 172.17.20.2 (172.17.20.2): 1500 data bytes

1508 bytes from 172.17.20.2: icmp_seq=0 ttl=63 time=11.591 ms

1508 bytes from 172.17.20.2: icmp_seq=1 ttl=63 time=10.580 ms

1508 bytes from 172.17.20.2: icmp_seq=2 ttl=63 time=20.939 ms

--- 172.17.20.2 ping statistics ---

3 packets transmitted, 3 packets received, 0% packet loss

round-trip min/avg/max/stddev = 10.580/14.370/20.939/4.663 ms

The ping succeeds, and at first glance, all appears well, but let's not count our chickens before they hatch!
Some observation into the operation of the ping command is needed before giving the green light of approval.

By default, the ping packet will be sent out with the do-not-fragment bit cleared in the IP header. This means

that although the ping packet will exit the router with a size of 1,508 bytes, it could be fragmented along the
way. So, now issue the ping command with the do-not-fragment flag set and observe the results:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

root@Lager> ping 172.17.20.2 size 1500 count 3 do-not-fragment

PING 172.17.20.2 (172.17.20.2): 1200 data bytes

36 bytes from 10.10.20.121: frag needed and DF set (MTU 1119)

Vr HL TOS Len ID Flg off TTL Pro cks Src Dst

 4 5 00 04cc af90 2 0000 40 01 a809 10.10.20.122 172.17.20.2

36 bytes from 10.10.20.121: frag needed and DF set (MTU 1119)

Vr HL TOS Len ID Flg off TTL Pro cks Src Dst

 4 5 00 04cc af91 2 0000 40 01 a808 10.10.20.122 172.17.20.2

^C

--- 172.17.20.2 ping statistics ---

2 packets transmitted, 0 packets received, 100% packet loss

It appears that the intermediate station cannot handle a packet larger than 1,119 bytes on its outgoing
interface toward the destination, as observed by the ICMP message that is returned. Luckily, we found this out
before the application was deployed, so we were able to correct this problem!

If the outgoing interface on an intermediate system did not contain the proper MTU size,
an ICMP error message will be generated. If the incoming interface was configured with
a smaller-than-needed MTU, the observation will be different. Since the packet is
dropped at input, no ICMP MTU message will be received. Instead, oversize frame errors
would increase on the intermediate system's input interface.

2.5.4. Looped Interfaces

Creating a physical loop on an interface has been a troubleshooting tool for many years. Since the physical path
of a leased line frequently consists of multiple segments, often a problem can be localized by testing the circuit
segment by segment. The idea is to create a loop at the endpoint of the circuit and send a series of tests toward
that endpoint that can determine whether packets are lost or corrupted during transmission. Two types of loops
are supported on most types of interfaces: a remote loop and a local loop. A local loop creates a loop toward
the router, whereas a remote loop is a line loop that is created toward the downstream network device(see
Figure 2-14).

Figure 2-14. Loopback types

Often, the local LEC will go through a series of tests during the provisioning process to ensure that the circuit
integrity includes loopback testing. The circuit may also be left in the looped state to avoid any local alarm

http://lib.ommolketab.ir
http://lib.ommolketab.ir

generation. To see whether a loop is still in place, issue a ping toward the remote end of the circuit. If the
remote end is looped (remote), the ping packets will continue until the Time to Live (TTL) expires, resulting in
ICMP TTL expiration messages.

[edit]

doug@PBR# run ping 10.200.8.10

PING 10.200.8.10 (10.200.8.10): 56 data bytes

36 bytes from 10.200.8.9: Time to live exceeded

Vr HL TOS Len ID Flg off TTL Pro cks Src Dst

 4 5 00 0054 30e2 0 0000 01 01 6325 10.200.8.9 10.200.8.10

36 bytes from 10.200.8.9: Time to live exceeded

Vr HL TOS Len ID Flg off TTL Pro cks Src Dst

 4 5 00 0054 30e3 0 0000 01 01 6324 10.200.8.9 10.200.8.10

36 bytes from 10.200.8.9: Time to live exceeded

Vr HL TOS Len ID Flg off TTL Pro cks Src Dst

 4 5 00 0054 30e6 0 0000 01 01 6321 10.200.8.9 10.200.8.10

^C

--- 10.200.8.10 ping statistics ---

4 packets transmitted, 0 packets received, 100% packet loss

On the remote device, a loop will be indicated (remote or local) by examining the loopback flag in the show

interfaces command:

dougl@closing_time# run show interfaces t1-0/0/2

Physical interface: t1-0/0/2, Enabled, Physical link is Up

 Interface index: 139, SNMP ifIndex: 37

 Link-level type: Cisco-HDLC, MTU: 1504, Clocking: Internal, Speed: T1,

 Loopback: Remote, FCS: 16, Framing: ESF

 Device flags : Present Running

 Interface flags: Point-To-Point SNMP-Traps 16384

 Link flags : No-Keepalives

 CoS queues : 8 supported

 Last flapped : 2007-04-17 16:55:37 UTC (00:02:01 ago)

 Input rate : 200 bps (0 pps)

 Output rate : 224 bps (0 pps)

 DS1 alarms : None

 DS1 defects : None

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.6. Conclusion

An interface is the fundamental building block of any router with a large variety of possible interface types.
Although JUNOS software allows for many different interface types, the general configuration process is
consistent across each type. This also helps when it is time to troubleshoot the problem interface. The specifics
of the media signals will vary, but the operational commands used are the same. Once a router has all its
interfaces, operational routes to remote networks can be configured via routing protocols. We will examine
these protocols in subsequent chapters.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.7. Exam Topics

We examined the following Enterprise Exam Topics in this chapter:

Identify valid options for interface names, logical units, and protocol families within the JUNOS software.

Describe how to monitor interfaces in real time.

Describe the information contained within the show interfaces extensive command.

Describe the uses of network utilities such as ping and traceroute.

Configure MLPPP.

Configure IPv4 addressing.

Implement Frame Relay.

Create VLAN-tagged interfaces.

Provide redundancy and high availability with VRRP.

Link bundling and aggregated interfaces.

Establish point-to-point or point-to-multipoint links with a variety of Layer 2 encapsulations.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.8. Chapter Review Questions

On a J-series router interface, what are the possible values for the PIC slot number?

1a.

0b.

Variable, depending on the physical location of the interfacec.

A range of 0–4d.

1.

Which two interfaces are considered permanent interfaces on a Juniper Networks router? (Choose two.)

lo0a.

fe-0/1/0b.

fxp3c.

fxp0d.

loopback0e.

2.

On a point-to-point interface, which logical unit(s) can be assigned to an interface?

Nonea.

4095b.

100c.

0d.

3.

4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

d.

Which interface name indicates that it is a serial interface in a J-series router that is located in PIM slot 1
and port number 1?

se-1/1a.

se-1/0/1b.

serial1/1c.

se-0/1/1d.

4.

Which JUNOS software command allows for real-time display of interface statistics?

monitor interfacea.

show interface statisticsb.

monitor trafficc.

monitor statisticsd.

5.

True or False: an interface must be administratively enabled before it is operationally in the up status.6.

What is the default Layer 2 encapsulation for a serial interface?

SDLCa.

HDLCb.

X.121c.

PPPd.

7.

What is the maximum number of interfaces that can be added to an MLPPP bundle?

a.

8.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8a.

6b.

16c.

4d.

8.

What is the default clocking mode on a serial interface?

DCEa.

Internalb.

Loopc.

DTEd.

9.

Which CLI command would administratively disable the fe-0/0/0 interface?

no shutdowna.

set interface fe-0/0/0 disableb.

deactivate interface fe-0/0/0c.

disable interface fe-0/0/0d.

10.

True or False: all Juniper Networks routers contain an fxp0 OoB management interface.11.

Which type of interface would be used to create a GRE tunnel?

grea.

b.

12.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

a.

tunnel.0b.

grc.

ip.0d.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.9. Chapter Review Answers

Answer: B. J-series routers do not contain PICs, so this value in the interface name is always set to zero
and is sometimes referred to as the virtual PIC value.

1.

Answer: A, D. fe-0/1/0 is a transient interface, whereas fxp3 and loopback0 are invalid media types.2.

Answer: D. A point-to-point interface has only one valid logical unit number, which is unit 0.3.

Answer B. Every transient interface always takes the form of MM-F/P/T, with F indicating the PIM slot and
T representing the port number.

4.

Answer: A. The monitor statistics command in an invalid command, whereas monitor traffic

displays local TCP/IP traffic and show interfaces does not display information dynamically.

5.

Answer: False. Juniper interfaces are always administratively enabled when installed.6.

Answer: D. The default encapsulation is PPP on all point-to-point interfaces.7.

Answer: A. As of JUNOS software version 8.3, eight interfaces are allowed in a single bundle.8.

Answer: C. A serial interface always attempts to obtain its transmit timing from the line itself, using what
is called loop timing. Other valid options that can be configured include internal and dce. DTE is not a

configurable option.

9.

Answer: B. The only other valid JUNOS software command listed in the answer choices is the deactivate

command. This command comments out the configuration that the running system will ignore.

10.

Answer: False. Only M/T series routers contain an fxp0 OoB management interface. J-series routers must

be managed via console, auxiliary ports, or regular PFE interfaces.

11.

Answer: C The software pseudointerface that is used to create GRE tunnels is the gr interface. The gre

interface is used internally by the router and should not be configured. The ip.0 and tunnel.0 interfaces

are not valid interface types.

12.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 3. Protocol Independent Properties and Routing Policy

This chapter is divided into two main sections. The first section details routing capabilities and features that are
not specific to any particular routing protocol, hence the phrase protocol independent. Although termed
independent, these features often interact with one or more routing protocols, and in some cases may be
required for proper protocol operation! The second half of the chapter investigates JUNOS software routing
policy. Routing policy provides a toolbox that facilitates the control of route distribution, including route filtering
and route attribute manipulation.

In many cases, you combine the functions of Protocol Independent Properties (PIPs) and routing policy to
achieve some goal. For example, a static route is defined using PIP, but this same static route can then be
redistributed, perhaps with a modified attribute such as a route tag or Border Gateway Protocol (BGP)
community, as a result of routing policy.

This chapter exposes the reader to PIP and routing policy in a manner that is analogous to a mechanic being
introduced to each tool comprising a complete toolbox. To continue the analogy, the ways in which tools can be
used, either alone or in combinations, are virtually limitless. For example, your hammer can be used as part of
the repair of a hole in a boat's hull, or it can be used to make the hole, perhaps in an effort to scuttle the craft.
Although the boat may have some opinion, it's safe to say that the tool-the hammer, in this case-is just
happy to be used, with no real concern as to the nature of the task.

The routing and service examples covered in subsequent chapters of this book all make use of the PIP and
policy tools to solve some requirement specific to the example being discussed in that chapter. Since practical
PIP and policy-related applications are provided throughout the remainder of this book, the goal of this chapter
is to expose the reader to the general capabilities and configuration of PIP and policy so that subsequent case
study examples are fully understood.

The PIP topics include:

Static, aggregated, and generated routes

Global preference

Martian routes

Route tables and routing information base (RIB) groups

Autonomous system (AS) number and router ID

Routing policy topics include:

Policy overview, import and export policy

Policy components (terms, match conditions, actions, policy chains)

Route filters

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Advanced policy concepts

3.1. Protocol Independent Properties

PIPs are used for a variety of functions, such as static and aggregate routes, protocol preferences, route tables,
router ID, and so forth. The range of PIPs is configured at the [edit routing-options] hierarchy.

3.1.1. Static, Aggregate, and Generated Routes

Although the use of static routing is sometimes considered bad form, especially during a routing-protocol-based
practical examination, there are many practical applications for static routes, along with their
aggregate/generated counterparts.

Static routing suffers from a general lack of dynamism (though Bidirectional Forwarding Detection [BFD] can
mitigate this issue), which often leads to loss of connectivity during network outages due to the inability to
reroute. Static routes can quickly become maintenance and administration burdens for networks that have
frequent adds, moves, or changes. With that said, static routing is often used at the network edge to support
attachment to stub networks, which, given their single point of entry/egress, are well suited to the simplicity of
a static route.

Static routes are often used to promote stability through advertisement into a routing protocol, such as BGP,
where a single route that is always up is used to represent the connectivity of numerous, more specific routes,
which individually may come and go (flap) due to instability in the attached network's infrastructure. By
suppressing the specifics in favor of a single static route, the world is shielded from the day-to-day flapping
while overall connectivity is preserved.

Static, aggregate, and generated routes are similar in that all are defined statically, and all can have mask
lengths that represent super-nets (aggregated network prefixes), or subnets (extending the network ID into the
host field of a classful address to gain more networks, each with fewer hosts). As such, there is often confusion
about the differences, and why all three types of static routing are needed. Table 3-1 summarizes how these
route types differ.

Table 3-1. Static, aggregate, and generated route comparison

Route
type

Next hop type Comment

Static Discard, reject, IP/interface next hop,
label-switched path (LSP) next hop

Global preference of 5; can be used for forwarding.
Supports qualified and indirect next hops. Activated by
valid next hop.

Aggregate Reject (default), discard Global preference of 130; not used for forwarding,
activated by contributing route. Default reject for matching
traffic.

Generated Preferred contributer (default) or
discard

Default forwarding next hop based on prefered contributer.

3.1.1.1. Next hop types

Static and aggregate routes support various next hop types, some of which provide forwarding and others which
do not. Understanding the differences between one next hop type and another is critical to achieving desired
goals. Here are the specifics for each type of next hop:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Discard

A discard next hop results in the silent discard of matching traffic. Silent here refers to the fact that no
Internet Control Message Protocol (ICMP) error message is generated back to the source of the packet.
You normally choose a discard next hop when the goal is to advertise a single aggregate that represents
a group of prefixes, with the expectation that any traffic attracted by the aggregate route will longest-
match against one of the more specific routes, and therefore be forwarded according to the related next
hop rather than the reject or discard next hop of the aggregate route itself.

The use of discard is best current practice when advertising an aggregate because the generation of ICMP
error messages can consume system resources and may end up bombarding an innocent third party, as
in the case of spoofed source addressing as part of a distributed denial of service (DDoS) attack.

Reject

A reject next hop results in the generation of an ICMP error message reporting an unreachable
destination for matching traffic. This is the default next hop type of an aggregated route and for a
generated route when it has no contributors.

Forwarding

A forwarding next hop is used to move traffic to a downstream node, and it is typically specified as the IP
address of a directly connected device. Matching traffic is then forwarded to the specified next hop. On a
multiaccess network such as a LAN, this involves the resolution of the IP address to a link layer address
through the Address Resolution Protocol (ARP) or some form of static mapping. When directing traffic
over a point-to-point interface, the next hop can be specified as an interface name; however, LAN
interface types require an IP address next hop due to their multipoint nature.

3.1.1.1.1. Forwarding next hop qualifiers

When defining a static route with a forwarding next hop, you can use qualifiers that influence how the next hop
is resolved and handled. Specifically:

resolve

The resolve keyword allows you to define an indirect next hop for a static route, which is to say an IP

forwarding address that does not resolve to a directly connected interface route. For example, you could
specify a static route that points to a downstream neighbor's loopback address. In this case, matching
traffic will result in a recursive lookup against the specified (lo0) next hop to select a directly connected

forwarding next hop. If a parallel connection exists, the failure of the currently used link results in a new
recursive lookup and selection of the remaining link for packet forwarding.

qualified-next-hop

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The qualified-next-hop keyword allows you to define a single static route with a list of next hops that

are individually qualified with a preference. In operation, the most preferred qualified next hop that is
operational-that is, the next hop can be resolved and the interface that is operational is used. When that
next hop is no longer usable, the next-best-qualified next hop is selected. That is to say, when the
primary link is down, the router selects the next preferred next hop, which may point to a low-speed
backup facility.

3.1.1.2. Static versus aggregate routes

Simply realizing that an aggregate/generated route supports a subset of the next hop options supported by a
simple static route does not really explain the real operational mode differences between these route types. A
static route is active whenever it has a viable next hop. This next hop can take the form of discard/reject, which
effectively nails the route up.

3.1.1.2.1. Aggregates need contributing routes

In contrast, both aggregate and generated routes require at least one contributing route to become active. A
contributing route is simply a more specific route that is learned through some other mechanism, such as static
definition or dynamic learning through a protocol such as Open Shortest Path First (OSPF). A route is more
specific, and is therefore able to contribute to an aggregate route (when it has a mask length longer than the
associated aggregate) while sharing the same prefix as the aggregate (as indicated by the aggregate route's
mask length). For example, the aggregate route 10.1/16 can be activated by route 10.1.1/24 because it has a
longer (more specific) mask and shares the same 16 high-order prefix bits as the aggregate route. In contrast,
the route 10.2.2/24 does not contribute to a 10.1/16 aggregate as it does not share the same aggregate prefix.

You can use routing policy to filter the set of routes that are allowed to contribute to an aggregate, which helps
you control when the corresponding aggregate becomes active. Because only active routes are subject to
routing policy, this in turn can influence when a given aggregate is advertised in a routing protocol. For
example, you can filter all other contributes so as to advertise an aggregate for 10.1/16 into BGP based strictly
on the absence or presence of a 10.1.1.0/30 route. By default, the preferred or primary contributing route is
selected from the pool of viable candidates based on global preference. To break preference ties, the
numerically smallest contributing route is preferred.

A given route can contribute only to a single aggregate route. However, an active aggregate route can
recursively contribute to a less specific matching aggregate route. For example, an aggregate route to the
destination 10.1.0.0/16 can contribute to an aggregate route to 10.0.0.0/8.

3.1.1.3. Aggregate versus generated routes

People often get confused about aggregate and generated routes-because both require contributors to become
active and both are assigned the same routing preference of 130. The key difference between the two types of
routes is that an aggregate route is never used for forwarding. Although it may attract plenty of traffic, the next
hop of an aggregate route is either a discard or a reject-no ifs, ands, or buts. In contrast, a generated route
installs the next hop associated with the preferred contributor, and therefore can be used to forward matching
traffic. For this reason, a generated route is sometimes called a route of last resort. This is because in the
general case, traffic typically matches a more specific route and is routed appropriately, just as in the case of an
aggregate route-when the most specific (longest) match is against the generated route itself, it is forwarded to
a gateway of last resort, as identified by the next hop associated with the currently preferred contributor route.

These operational differences are shown via the command-line interface (CLI) at Cider using a 10.10/16

aggregate versus a 10.10/16 generated route:

[edit routing-options]

lab@Cider# show aggregate

route 10.10.0.0/16;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[edit routing-options]

lab@Cider# run show route protocol aggregate detail

inet.0: 10 destinations, 10 routes (10 active, 0 holddown, 0 hidden)

10.10.0.0/16 (1 entry, 1 announced)

 *Aggregate Preference: 130

 Next hop type: Reject

 Next-hop reference count: 2

 State: <Active Int Ext>

 Age: 1:50

 Task: Aggregate

 Announcement bits (1): 0-KRT

 AS path: I (LocalAgg)

 Flags: Depth: 0 Active

 AS path list:

 AS path: I Refcount: 2

 Contributing Routes (2):

 10.10.11.0/24 proto Direct

 10.10.12.1/32 proto Direct

A 10.10/16 aggregate is activated by the presence of directly connected routes that contribute to the
aggregate. Direct routes for multiaccess networks cannot contribute to an aggregate because a forwarding next
hop can not be derived from the mere presence of the local interface, as is possible in the case of a point-to-
point link, where the interface itself can be specified as a next hop.

To reiterate, a generated route remains hidden when only direct multiaccess routes are present to contribute:

[edit routing-options]

lab@Cider# show generate

route 10.10.0.0/16;

[edit routing-options]

lab@Cider# run show route protocol aggregate detail hidden

inet.0: 10 destinations, 10 routes (9 active, 0 holddown, 1 hidden)

10.10.0.0/16 (1 entry, 0 announced)

 Aggregate

 Next hop type: Reject

 Next-hop reference count: 1

 State: <Hidden Int Ext>

 Age: 3:10

 Task: Aggregate

 AS path: I

 Flags: Generate Depth: 0 Inactive

This is because the next hop for a generated route is based on the forwarding next hop of the preferred
contributor, and for a multiaccess type of network, this requires a static or learned route that identifies a next
hop on one of the direct interface routes. In this example, a static route with a forwarding next hop pointing out
Cider's fe-0/0/1.100 interface toward Bock is used to activate the generated route:

Code View:
[edit routing-options]

lab@Cider# set static route 10.10.1/24 next-hop 10.10.11.1

[edit routing-options]

lab@Cider# commit

http://lib.ommolketab.ir
http://lib.ommolketab.ir

commit complete

[edit routing-options]

lab@Cider# run show route 10.10.1/24 detail

inet.0: 11 destinations, 11 routes (11 active, 0 holddown, 0 hidden)

10.10.1.0/24 (1 entry, 1 announced)

 *Static Preference: 5

 Next-hop reference count: 5

 Next hop: 10.10.11.1 via fe-0/0/1.100, selected

 State: <Active Int Ext>

 Age: 17

 Task: RT

 Announcement bits (2): 0-KRT 1-Aggregate

 AS path: I

[edit routing-options]

lab@Cider# run show route protocol aggregate detail

inet.0: 11 destinations, 11 routes (11 active, 0 holddown, 0 hidden)

10.10.0.0/16 (1 entry, 1 announced)

 *Aggregate Preference: 130

 Next-hop reference count: 5

 Next hop: 10.10.11.1 via fe-0/0/1.100, selected

 State: <Active Int Ext>

 Age: 11:34

 Task: Aggregate

 Announcement bits (1): 0-KRT

 AS path: I

 Flags: Generate Depth: 0 Active

 Contributing Routes (1):

 10.10.1.0/24 proto Static

Note that both the 10.10.1.0/24 static route and the resultant generated route share the same forwarding next
hop. As the only viable contributing route, the 10.10.1.0/24 route is the preferred contributor in this example.

3.1.1.4. Route attributes and flags

When you define a static route, you can include various route attributes such as AS path, BGP community, route
tag, metric, and so forth. These attributes may or may not come into play later when the route is redistributed
into a specific routing protocol. For example, OSPF has no notion of a BGP community or AS path, and therefore
these attributes are not injected into OSPF despite being attached to the route. The route attributes can be
defined individually for each route or as part of a default template that is inherited by all related routes, unless
specifically overwritten by a competing attribute.

You can also attach flags to a static route that controls various aspects of how the route is handled or operates.
For example, the no-advertise flag prevents the associated route from being exported into routing protocols,

even when the policy configuration otherwise selects that route for redistribution. You can display the list of
available route attributes and flags with the CLI's ? feature:

Code View:
lab@Cider# set static route 10/8 ?

Possible completions:

 active Remove inactive route from forwarding table

+ apply-groups Groups from which to inherit configuration data

http://lib.ommolketab.ir
http://lib.ommolketab.ir

+ apply-groups-except Don't inherit configuration data from these groups

> as-path Autonomous system path

> bfd-liveness-detection Bidirectional Forwarding Detection (BFD) options

> color Color (preference) value

> color2 Color (preference) value 2

+ community BGP community identifier

 discard Drop packets to destination; send no ICMP unreachables

 install Install route into forwarding table

> lsp-next-hop LSP next hop

> metric Metric value

> metric2 Metric value 2

> metric3 Metric value 3

> metric4 Metric value 4

+ next-hop Next hop to destination

 next-table Next hop to another table

 no-install Don't install route into forwarding table

 no-readvertise Don't mark route as eligible to be readvertised

 no-resolve Don't allow resolution of indirectly connected next hops

 no-retain Don't always keep route in forwarding table

 passive Retain inactive route in forwarding table

> preference Preference value

> preference2 Preference value 2

> qualified-next-hop Next hop with qualifiers

 readvertise Mark route as eligible to be readvertised

 receive Install a receive route for the destination

 reject Drop packets to destination; send ICMP unreachables

 resolve Allow resolution of indirectly connected next hops

 retain Always keep route in forwarding table

> tag Tag string

> tag2 Tag string 2

The reader is encouraged to consult JUNOS software documentation at
http://www.juniper.net/techpubs/software/junos/junos81/swconfig81-routing/html/routing-tables-config.html
for details on the various attributes and flags that can be attached to static or aggregated routes. The
commonly used attributes are demonstrated either in this chapter or within the various scenarios demonstrated
throughout this book. Figure 3-1 illustrates a typical application of a static route via a sample routing topology.

Figure 3-1. Static routing configuration

http://www.juniper.net/techpubs/software/junos/junos81/swconfig81-routing/html/routing-tables-config.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.1.2. Global Route Preference

Routing information can be learned from multiple sources. In order to break ties among equally specific routes
learned through multiple sources, each source is assigned a global preference. It can be said that the global
preference determines the overall believability or "goodness" of a routing source. As such, routes that are
learned through local administrative action-for example, static routes-are more believable than the same
routes learned through a routing protocol such as OSPF. In Cisco IOS, this concept is called administrative
distance. Table 3-2 shows the default protocol preferences for JUNOS software.

Table 3-2. Global protocol preference values

Source Purpose Default
preference

Local Local IP address of the interface 0

Directly connected
network

Subnet corresponding to the directly connected interface 0

Static Static routes 5

RSVP Routes learned from the Resource Reservation Protocol used in
Multiprotocol Label Switching (MPLS)

7

LDP Routes learned from the Label Distribution Protocol used in MPLS 9

OSPF internal route OSPF internal routes such as interfaces that are running OSPF 10

IS-IS Level 1
internal route

Intermediate System-to-Intermediate System Level 1 internal routes
such as interfaces that are running ISIS

15

IS-IS Level 2
internal route

Intermediate System-to-Intermediate System Level 2 internal routes
such as interfaces that are running ISIS

18

Redirects Routes from ICMP redirect 30

Kernel Routes learned via route socket from kernel 40

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Source Purpose Default
preference

SNMP Routes installed by Network Management System through the Simple
Network Management Protocol

50

Router discovery Routes installed by ICMP Router Discovery 55

RIP Routes from Routing Information Protocol (IPv4) 100

RIPng Routes from Routing Information Protocol (IPv6) 100

PIM Routes from Protocol Independent Multicast 105

DVMRP Routes from Distance Vector Multicast 110

Aggregate Aggregate and generated routes 130

OSPF AS external
routes

Routes from Open Shortest Path First that have been redistributed
into OSPF

150

IS-IS Level 1
external route

Routes from Intermediate System-to-Intermediate System Level 1
that have been redistributed into ISIS

160

IS-IS Level 2
external route

Routes from Intermediate System-to-Intermediate System Level 2
that have been redistributed into ISIS

165

BGP Routes from Border Gateway Protocol 170

As with a route metric, numerically lower preference values are preferred. You can alter the default preference
values when needed to accommodate some specific goal, such as route redistribution during an Interior
Gateway Protocol (IGP) migration, which is demonstrated in Chapter 5.

Readers familiar with Cisco Systems may note a few differences between how the two vendors assign
distance/preference. For example, Cisco has a separate distance for Internal BGP (IBGP) versus External BGP
(EBGP) (200 versus 20), whereas Juniper uses the same value. In this case, there is no operational impact
because in the route selection process JUNOS software prefers EBGP over IBGP, resulting in the same behavior
for both vendors. One area where the vendors differ is in regard to IGP versus EBGP distance. Here, Cisco
assigns an OSPF IGP distance of 110; since this is higher than the EBGP distance of 20, it results in the selection
of an EBGP route over an equivalent OSPF route. In the same setup, a Juniper router chooses the OSPF route,
owing to the preference values shown in Table 3-2.

Although you could alter JUNOS software preference to mimic IOS behavior, Juniper created a compatibility
knob for this situation, called advertise-inactive. When applied to an EBGP peering session, this knob results

in the advertisement of the best BGP route that happens to be inactive because of IGP preference. When using
the advertise-inactive option, the JUNOS device continues to use the OSPF copy for forwarding, and the IOS

device uses the EBGP copy to forward. However, from the perspective of an EBGP peer in a neighboring AS,
both vendors appear to behave the same.

3.1.2.1. Floating static routes

A floating static route is nothing more than a static route that has a modified preference, causing it to be less
preferred than a dynamically learned copy. The defaults cause a static route to always be preferred over a
dynamic route. A floating static route is often used to provide backup in the event of a network or protocol
malfunction. When all is operating normally, the static route remains idle because the dynamically learned
routing is preferred. When routing protocol disruption results in the loss of a learned route, the previously
inactive static route becomes active.

SNMP Routes installed by Network Management System through the Simple
Network Management Protocol

50

Router discovery Routes installed by ICMP Router Discovery 55

RIP Routes from Routing Information Protocol (IPv4) 100

RIPng Routes from Routing Information Protocol (IPv6) 100

PIM Routes from Protocol Independent Multicast 105

DVMRP Routes from Distance Vector Multicast 110

Aggregate Aggregate and generated routes 130

OSPF AS external
routes

Routes from Open Shortest Path First that have been redistributed
into OSPF

150

IS-IS Level 1
external route

Routes from Intermediate System-to-Intermediate System Level 1
that have been redistributed into ISIS

160

IS-IS Level 2
external route

Routes from Intermediate System-to-Intermediate System Level 2
that have been redistributed into ISIS

165

BGP Routes from Border Gateway Protocol 170

As with a route metric, numerically lower preference values are preferred. You can alter the default preference
values when needed to accommodate some specific goal, such as route redistribution during an Interior
Gateway Protocol (IGP) migration, which is demonstrated in Chapter 5.

Readers familiar with Cisco Systems may note a few differences between how the two vendors assign
distance/preference. For example, Cisco has a separate distance for Internal BGP (IBGP) versus External BGP
(EBGP) (200 versus 20), whereas Juniper uses the same value. In this case, there is no operational impact
because in the route selection process JUNOS software prefers EBGP over IBGP, resulting in the same behavior
for both vendors. One area where the vendors differ is in regard to IGP versus EBGP distance. Here, Cisco
assigns an OSPF IGP distance of 110; since this is higher than the EBGP distance of 20, it results in the selection
of an EBGP route over an equivalent OSPF route. In the same setup, a Juniper router chooses the OSPF route,
owing to the preference values shown in Table 3-2.

Although you could alter JUNOS software preference to mimic IOS behavior, Juniper created a compatibility
knob for this situation, called advertise-inactive. When applied to an EBGP peering session, this knob results

in the advertisement of the best BGP route that happens to be inactive because of IGP preference. When using
the advertise-inactive option, the JUNOS device continues to use the OSPF copy for forwarding, and the IOS

device uses the EBGP copy to forward. However, from the perspective of an EBGP peer in a neighboring AS,
both vendors appear to behave the same.

3.1.2.1. Floating static routes

A floating static route is nothing more than a static route that has a modified preference, causing it to be less
preferred than a dynamically learned copy. The defaults cause a static route to always be preferred over a
dynamic route. A floating static route is often used to provide backup in the event of a network or protocol
malfunction. When all is operating normally, the static route remains idle because the dynamically learned
routing is preferred. When routing protocol disruption results in the loss of a learned route, the previously
inactive static route becomes active.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The following code sample creates a floating static route by assigning a modified preference that makes the
route less preferred than an OSPF internal route, which has a default preference of 10:

[edit routing-options static route 0.0.0.0/0]

lab@PBR# show

next-hop 172.16.1.1;

preference 11;

[edit routing-options static route 0.0.0.0/0]

lab@PBR# run show route 200.0.0.0

inet.0: 12 destinations, 12 routes (12 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

0.0.0.0/0 *[Static/11] 00:00:06

 > to 172.16.1.1 via fe-0/0/0.412

3.1.3. Martian Routes

JUNOS software supports the concept of martian routes, which is a euphemistic way to describe a route that
should not be present. Most network operators consider local use addressing, as defined in RFC 1918, "Address
Allocation for Private Internets," as an example of martian routes, at least when received outside of the context
of a virtual private network (VPN).

Routes contained in the martian table are excluded from route update processing, which prevents them from
ever being installed into the route table. The martian mechanism provides a consolidated way to filter bogus
routing information from all protocol sources without the use of explicit policy.

You can display martian entries with a show route martians command. In this example, only entries for the

main inet.0 route table are displayed through the table keyword:

[edit routing-options]

lab@Bock# run show route martians table inet.0

inet.0:

 0.0.0.0/0 exact -- allowed

 0.0.0.0/8 orlonger -- disallowed

 127.0.0.0/8 orlonger -- disallowed

 128.0.0.0/16 orlonger -- disallowed

 191.255.0.0/16 orlonger -- disallowed

 192.0.0.0/24 orlonger -- disallowed

 223.255.255.0/24 orlonger -- disallowed

 240.0.0.0/4 orlonger -- disallowed

The default entries permit private use of RFC 1918 private addressing space while filtering prefixes that should
never appear in a route update-for example, the 127.0.0.1 loopback address or the IANA reserved
192.0.0.0/24 network block. You can add entries to the table, which can later be removed using set and

delete, respectively. You cannot explicitly remove predefined martian entries, but you can add new entries that

negate their effect. For example, rather than trying to delete the 0/0 exact allow entry, you negate its effect

by adding a new entry with a competing action. For instance, the default martian table allows the default route,
which in this example is being advertised via OSPF from Bock to Cider:

[edit]

lab@Cider# run show route protocol ospf

inet.0: 11 destinations, 11 routes (11 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

http://lib.ommolketab.ir
http://lib.ommolketab.ir

0.0.0.0/0 *[OSPF/150] 00:00:07, metric 0, tag 0

 > to 10.10.11.1 via fe-0/0/1.100

. . .

224.0.0.5/32 *[OSPF/10] 00:00:27, metric 1

 MultiRecv

The martian table for the inet.0 route table is modified with a set 0/0 exact deny statement, which

overrides the previous entry for the 0/0 exact route. Note that a deny action is the default for any entry in the

martian table:

[edit routing-options martians]

lab@Cider# set 0/0 exact

[edit routing-options martians]

lab@Cider# show

0.0.0.0/0 exact;

After the change is committed, the results are confirmed:

[edit routing-options martians]

lab@Cider# run show route martians table inet.0

inet.0:

0.0.0.0/0 exact -- disallowed

 0.0.0.0/8 orlonger -- disallowed

 127.0.0.0/8 orlonger -- disallowed

 128.0.0.0/16 orlonger -- disallowed

 191.255.0.0/16 orlonger -- disallowed

 192.0.0.0/24 orlonger -- disallowed

 223.255.255.0/24 orlonger -- disallowed

 240.0.0.0/4 orlonger -- disallowed

[edit routing-options martians]

lab@Cider# run show route protocol ospf | match 0.0.0.0

The lack of an OSPF-learned default route at Cider confirms the modified martian table results in ignoring

routing information for the 0/0 route.

3.1.4. Routing Tables and RIB Groups

All JUNOS-based routers maintain a number of route tables that are used for specific purposes. In addition to
the automatically created tables, you can create your own route tables, either indirectly through the use of
virtual routers or Layer 2/Layer 3 VPNs and the related Virtual Route and Forwarding (VRF) tables, or directly
through the use of RIB groups.

Generally speaking, each route table/RIB populates a designated portion of the forwarding table. This creates a
single forwarding table that is partitioned based on a specific route table context. Packets are forwarded based
on this route table context, which allows for distinct forwarding behavior on a per-route-table basis. It's a key
component of any VPN type of service, where per-VRF (per VPN site) route tables are maintained along with a
corresponding VPN-specific forwarding table context.

You can view the contents of a particular route table using the command show route table <table name>. The

general naming convention for route tables takes the form of the protocol family such as inet (Internet) or

inet6, iso (ISO), or mpls, followed by a period and a nonnegative integer. Routing instance table names are

http://lib.ommolketab.ir
http://lib.ommolketab.ir

somewhat the exception here, taking the form of instance-name.inet.0, where the first part consists of a

user-assigned symbolic name, followed by the protocol family and table ID, which is inet.0 in this example.

3.1.4.1. Default route tables

The default route tables created by JUNOS software include:

inet.0

The inet.0 table is the default unicast route table for the IPv4 protocol. This is the main route table used

to store unicast routes such as interface local/direct, static, or dynamically learned routes.

inet.1

The inet.1 table serves as a multicast forwarding cache. This table constrains the various IPv4 (S,G)

group entries that are dynamically created as a result of join state.

inet.2

The inet.2 table houses unicast routes that are used for multicast reverse path forwarding (RPF) lookup,

typically as learned through MP-BGP using SAFI 2. The IPv4 unicast routes stored in this table can be
used by multicast protocols such as the Distance Vector Multicast Routing Protocol (DVMRP), which
requires a specific RPF table. In contrast, PIM does not need an inet.2 because it can perform RPF

checks against the inet.0 table. You can import routes from inet.0 into inet.2 using RIB groups, or

install routes directly into inet.2 from a multicast routing protocol.

inet.3

The inet.3 table contains MPLS LSP information. This table contains the egress address of the MPLS LSP,

along with the LSP name and outgoing interface, and is populated by both RSVP and LSP. The inet.3

table is used when the local router functions as the ingress to an LSP.

instance_name.inet.0

When you configure a VRF or VR routing instance, the resultant instance creates a route table based on
the routing instance's name. For example, defining a Layer 3 VPN instance called ce1 results in the

creation of a route table named ce1.inet.0. A routing instance differs from a logical router in that

various routing instances share a single instance of the routing protocol daemon (rpd), whereas each LR
gets its own instance of rpd, which in turn provides greater isolation. Note that LRs are not supported on
J-series platforms with the 8.0 release used to write this book.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

inet6.0

The inet6.0 table is used to house IPv6 unicast route tables.

bgp.l3vpn.0

The bgp.l3vpn.0 table contains routes learned from other Provider Edge (PE) routers in a Layer 3 VPN

environment via BGP. Routes in this table are copied into a particular Layer 3 VRF when there is a
matching route table.

bgp.l2vpn.0

The bgp.l2vpn.0 table contains routes learned from other PE routers in a Layer 2 VPN environment via

BGP. The related Layer 2 routing information is copied into Layer 2 VRFs based on matching target
communities.

mpls.0

The mpls.0 table houses the MPLS label-switching operations used when the local router is acting as a

transit label-switching router (LSR) in support of LSPs.

iso.0

The iso.0 table houses IS-IS routes, which consist of a network entity title (NET) and a host ID. When

using IS-IS in support of IP routing, you can expect to see only the local router's NET, which is typically
assigned to the loopback interface, because in this context the IS-IS protocol is used to convey IP, not
IS-IS routes.

juniper_private

JUNOS software needs to communicate internally with service Physical Interface Cards (PICs). The
juniper_private tables are created as needed to facilitate these internal communications between the

RE and service PIC hardware.

When you issue a show route command, all tables are listed chronologically starting with inet.0. Within each

table, you will also see the total number of routes in the table and a listing further breaking down active routes
and hidden routes. The following sample output from a show route command displays many of the tables

described earlier, and it is taken from a router configured to support a BGP-signaled Layer 3 VPN using RSVP-

http://lib.ommolketab.ir
http://lib.ommolketab.ir

based LSP transport. The router also has the inet6 and iso families enabled on its loopback interface.

The purpose of the following output display is simply to show a real-world example in which many of the default
route tables are populated and used. The specific details of which routes are present or how a given entry in
some particular table is actually used, are not the focus here, hence a related topology diagram is not needed
for the purpose of simply observing the presence of multiple route tables. Subsequent chapters in this book
expand on these specifics as needed in the context of enterprise routing:

Code View:
user@L3_VPN_router> show route

inet.0: 23 destinations, 23 routes (22 active, 0 holddown, 1 hidden)

+ = Active Route, - = Last Active, * = Both

1.12.1.0/24 *[Direct/0] 00:33:41

 > via ge-1/0/0.0

1.12.1.1/32 *[Local/0] 00:33:41

 Local via ge-1/0/0.0

. . .

10.255.66.50/32 *[OSPF/10] 00:32:53, metric 1

 > to 1.12.1.2 via ge-1/0/0.0

. . .

192.168.64.0/21 *[Direct/0] 5d 02:42:28

 > via fxp0.0

192.168.66.47/32 *[Local/0] 5d 02:42:28

 Local via fxp0.0

192.168.102.0/23 *[Static/5] 5d 02:42:28

 > to 192.168.71.254 via fxp0.0

. . .

224.0.0.5/32 *[OSPF/10] 00:33:41, metric 1

 MultiRecv

_ _juniper_private1_ _.inet.0: 2 destinations, 2 routes (2 active,

0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

10.0.0.0/8 *[Direct/0] 5d 02:41:34

 > via fxp1.0

10.0.0.4/32 *[Local/0] 5d 02:42:28

 Local via fxp1.0

_ _juniper_private2_ _.inet.0: 1 destinations, 1 routes (0 active,

0 holddown, 1 hidden)

ce1.inet.0: 3 destinations, 3 routes (3 active, 0 holddown,

0 hidden)

+ = Active Route, - = Last Active, * = Both

1.1.1.0/24 *[Direct/0] 00:33:41

 > via fe-1/2/0.0

1.1.1.2/32 *[Local/0] 00:33:41

 Local via fe-1/2/0.0

10.255.66.52/32 *[BGP/170] 00:33:24, localpref 100

 AS path: I

 > to 1.1.1.1 via fe-1/2/0.0

iso.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

http://lib.ommolketab.ir
http://lib.ommolketab.ir

47.0005.80ff.f800.0000.0108.0001.0102.5506.6047/152

 *[Direct/0] 5d 02:42:28

 > via lo0.0

mpls.0: 3 destinations, 3 routes (3 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

0 *[MPLS/0] 00:33:41, metric 1

 Receive

1 *[MPLS/0] 00:33:41, metric 1

 Receive

2 *[MPLS/0] 00:33:41, metric 1

 Receive

inet6.0: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

abcd::10:255:66:47/128

 *[Direct/0] 5d 02:42:28

 > via lo0.0

fe80::2a0:a5ff:fe12:47ed/128

 *[Direct/0] 5d 02:42:28

 > via lo0.0

_ _juniper_private1_ _.inet6.0: 4 destinations, 4 routes (4 active,

0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

fe80::/64 *[Direct/0] 5d 02:41:34

 > via fxp1.0

fe80::200:ff:fe00:4/128

 *[Local/0] 5d 02:42:28

 Local via fxp1.0

fec0::/64 *[Direct/0] 5d 02:41:34

 > via fxp1.0

fec0::a:0:0:4/128 *[Local/0] 5d 02:42:28

 Local via fxp1.0

3.1.4.2. User-defined RIBs and RIB groups

You can define additional route tables with the rib keyword. This capability is rarely used, but it is

demonstrated here for completeness. In the following example, the user has configured a custom IPv4 RIB
called inet.69, in which a single static route had been defined:

[edit routing-options]

lab@PBR# show

rib inet.69 {

 static {

 route 10.1.0.0/16 discard;

 }

}

The contents of the user-defined RIB are displayed with a show route table <table name> command:

[edit routing-options]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

lab@PBR# run show route table inet.69

inet.69: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

10.1.0.0/16 *[Static/5] 00:15:53

 Discard

You can group together multiple route tables (RIBs) to form a route table group. Within a group, a routing
protocol can import routes into all the route tables in the group, and it can export routes from a single route
table. Simply put, RIB groups provide a way to copy routing information from one route table to another. In
operation, a RIB group consists of one primary and one or more secondary route tables-the first route table
specified is the primary route table, and any additional route tables function as secondary route tables. The
primary route table determines the address family of the route table group. To configure an IPv4 route table
group, specify inet.0 as the primary route table. To configure an IPv6 route table group, specify inet6.0 as the

primary route table.

Each RIB group must contain one or more route tables that JUNOS software uses as the source of any imported
routes, as specified with the import-rib statement.

In the following example, a rib-group called my_interface_routes is configured to import interface route

entries from inet.0 into inet.2. The my_interface_routes RIB group is defined under the interface-routes

hierarchy, which specifies the protocol (direct) that is used to match against when copying the routes into
inet.2:

[edit routing-options]

lab@PBR# show

interface-routes {

 rib-group inet my_interface_routes;

}

rib-groups {

 my_interface_routes {

 import-rib [inet.0 inet.2];

 }

}

The result of the interface routes RIB group definition is confirmed with a display of the inet.2 table both

before and after the changes are committed:

[edit routing-options rib-groups]

lab@PBR# run show route table inet.2

[edit routing-options rib-groups]

lab@PBR# commit

commit complete

After the commit, the inet.2 table is correctly populated with interface routes, as copied from the inet.0

table:

[edit routing-options rib-groups]

lab@PBR# run show route table inet.2

inet.2: 11 destinations, 11 routes (11 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.10.130.0/24 *[Direct/0] 00:00:04

 > via fe-0/0/0.1141

10.10.130.2/32 *[Local/0] 00:00:04

 Local via fe-0/0/0.1141

10.20.128.3/32 *[Direct/0] 00:00:04

 > via lo0.0

10.20.129.0/24 *[Direct/0] 00:00:04

 > via fe-0/0/0.3141

10.20.129.2/32 *[Local/0] 00:00:04

 Local via fe-0/0/0.3141

10.20.130.0/24 *[Direct/0] 00:00:04

 > via fe-0/0/0.1241

. . .

If desired, you can use import policy to add additional control over which routes are copied between RIBs.

3.1.5. Router ID and Antonymous System Number

The last PIP-related configuration to be discussed is related to the router ID (RID) and BGP AS number.

3.1.5.1. Router ID

Many routing protocols require that the source of routing information be uniquely identified using the concept of
a RID. A RID normally takes the form of an IPv4 address, and in most cases does not have to be reachable to
correctly function as a RID. Stated differently, a router can receive a BGP or OSPF route update from a router
identified as 1.1.1.1, and correctly process the related routing information, even though it may not have a route
to 1.1.1.1. With that said, it is common to use a routable IP address as the RID because this can simplify
operations by enabling pings or telnet to the RID.

You can specify only one RID, and the same value is used by all protocols that require a RID (OSPF, OSPFv3,
and BGP). The current best practice is to base the RID on the router's globally routable lo0 address. You

explicitly configure a RID as follows:

[edit routing-options]

lab@PBR# set router-id 1.1.1.1

[edit routing-options]

lab@PBR# show

router-id 1.1.1.1;

When you explicitly configure a RID that is based on an address assigned to the router's lo0 interface, you will

have to run an explicit IGP instance (typically passive) on that interface to advertise reachability to the RID,
when desired. When a RID is not explicitly configured, the router obtains its RID from the primary address of
the first interface that comes online. This is typically the loopback interface, when it has been assigned a
nonmartian (non-127.0.0.1) address. Because changes in RID are disruptive to protocol operation, it's a good
practice to manually configure a RID to ensure that changes to lo0 addressing do not cause unanticipated

churn.

Historically, JUNOS software automatically advertised a stub route to the interface from which the RID is
obtained. This meant that you did not need to run an IGP instance on the loopback interface to advertise
reachability to the RID. Starting with JUNOS Release 8.5, this behavior has changed. Now, whether you use an
explicit or an automatically generated RID that is lo0-based, you need to enable OSPF on the loopback

interface to advertise reachability to the related loopback address, even when it is the source of an
automatically selected RID.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.1.5.2. Autonomous system number

An autonomous system (AS) number is required for BGP operation; you cannot commit a BGP-related
configuration without also defining the local router's AS number. In this regard, it can be said that the AS
number is not really protocol-independent, but for whatever reason it is configured under [routing-options],

rather than under BGP itself.

Chapter 5 provides a detailed description of what an AS number is and how BGP uses it. The following is a
sample AS number configuration:

lab@PBR# set autonomous-system ?

Possible completions:

 <as_number> Autonomous system number (1..65535)

loops Maximum number of times this AS can be in an AS path

[edit routing-options]

lab@PBR# set autonomous-system 100

[edit routing-options]

lab@PBR# show

autonomous-system 100;

The loops option allows you to configure tolerance for occurrences of the local ASN in received route updates;

normally such an occurrence indicates a BGP routing loop and results in the related route being discarded. There
are certain corner-case scenarios, mostly related to VPNs and the support of EBGP on the PE-CE customer links,
where you might need to alter the default value. Note that the default value of 1 indicates that a route with a
single instance of the local ASN should be discarded. Therefore, to support reception of routes with a single
instance of the local ASN, specify a loop value of 2.

3.1.6. Summary of Protocol-Independent Properties

This section discussed common PIPs that are typically used in enterprise networks. Topics included the creation
of static, aggregate, and generated routes, along with their differences and associated various next hop options.
Global preference, which is used to break ties between competing sources of routing information, was
discussed, as was the configuration of a floating static route-which is simply a static route with an altered
global preference that makes it less preferred than a route learned via a dynamic routing protocol. This section
also described the use and purpose of the default JUNOS software route tables, and how RIBs and RIB groups
are used to create and link route tables. We ended with a description of how the RID can be explicitly configured
or automatically computed, in addition to how the local AS number is configured to support BGP operation.

The next section delves into JUNOS software routing policy, which provides you with complete control over
route exchanges and attribute modification.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 3. Protocol Independent Properties and Routing Policy

This chapter is divided into two main sections. The first section details routing capabilities and features that are
not specific to any particular routing protocol, hence the phrase protocol independent. Although termed
independent, these features often interact with one or more routing protocols, and in some cases may be
required for proper protocol operation! The second half of the chapter investigates JUNOS software routing
policy. Routing policy provides a toolbox that facilitates the control of route distribution, including route filtering
and route attribute manipulation.

In many cases, you combine the functions of Protocol Independent Properties (PIPs) and routing policy to
achieve some goal. For example, a static route is defined using PIP, but this same static route can then be
redistributed, perhaps with a modified attribute such as a route tag or Border Gateway Protocol (BGP)
community, as a result of routing policy.

This chapter exposes the reader to PIP and routing policy in a manner that is analogous to a mechanic being
introduced to each tool comprising a complete toolbox. To continue the analogy, the ways in which tools can be
used, either alone or in combinations, are virtually limitless. For example, your hammer can be used as part of
the repair of a hole in a boat's hull, or it can be used to make the hole, perhaps in an effort to scuttle the craft.
Although the boat may have some opinion, it's safe to say that the tool-the hammer, in this case-is just
happy to be used, with no real concern as to the nature of the task.

The routing and service examples covered in subsequent chapters of this book all make use of the PIP and
policy tools to solve some requirement specific to the example being discussed in that chapter. Since practical
PIP and policy-related applications are provided throughout the remainder of this book, the goal of this chapter
is to expose the reader to the general capabilities and configuration of PIP and policy so that subsequent case
study examples are fully understood.

The PIP topics include:

Static, aggregated, and generated routes

Global preference

Martian routes

Route tables and routing information base (RIB) groups

Autonomous system (AS) number and router ID

Routing policy topics include:

Policy overview, import and export policy

Policy components (terms, match conditions, actions, policy chains)

Route filters

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Advanced policy concepts

3.1. Protocol Independent Properties

PIPs are used for a variety of functions, such as static and aggregate routes, protocol preferences, route tables,
router ID, and so forth. The range of PIPs is configured at the [edit routing-options] hierarchy.

3.1.1. Static, Aggregate, and Generated Routes

Although the use of static routing is sometimes considered bad form, especially during a routing-protocol-based
practical examination, there are many practical applications for static routes, along with their
aggregate/generated counterparts.

Static routing suffers from a general lack of dynamism (though Bidirectional Forwarding Detection [BFD] can
mitigate this issue), which often leads to loss of connectivity during network outages due to the inability to
reroute. Static routes can quickly become maintenance and administration burdens for networks that have
frequent adds, moves, or changes. With that said, static routing is often used at the network edge to support
attachment to stub networks, which, given their single point of entry/egress, are well suited to the simplicity of
a static route.

Static routes are often used to promote stability through advertisement into a routing protocol, such as BGP,
where a single route that is always up is used to represent the connectivity of numerous, more specific routes,
which individually may come and go (flap) due to instability in the attached network's infrastructure. By
suppressing the specifics in favor of a single static route, the world is shielded from the day-to-day flapping
while overall connectivity is preserved.

Static, aggregate, and generated routes are similar in that all are defined statically, and all can have mask
lengths that represent super-nets (aggregated network prefixes), or subnets (extending the network ID into the
host field of a classful address to gain more networks, each with fewer hosts). As such, there is often confusion
about the differences, and why all three types of static routing are needed. Table 3-1 summarizes how these
route types differ.

Table 3-1. Static, aggregate, and generated route comparison

Route
type

Next hop type Comment

Static Discard, reject, IP/interface next hop,
label-switched path (LSP) next hop

Global preference of 5; can be used for forwarding.
Supports qualified and indirect next hops. Activated by
valid next hop.

Aggregate Reject (default), discard Global preference of 130; not used for forwarding,
activated by contributing route. Default reject for matching
traffic.

Generated Preferred contributer (default) or
discard

Default forwarding next hop based on prefered contributer.

3.1.1.1. Next hop types

Static and aggregate routes support various next hop types, some of which provide forwarding and others which
do not. Understanding the differences between one next hop type and another is critical to achieving desired
goals. Here are the specifics for each type of next hop:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Discard

A discard next hop results in the silent discard of matching traffic. Silent here refers to the fact that no
Internet Control Message Protocol (ICMP) error message is generated back to the source of the packet.
You normally choose a discard next hop when the goal is to advertise a single aggregate that represents
a group of prefixes, with the expectation that any traffic attracted by the aggregate route will longest-
match against one of the more specific routes, and therefore be forwarded according to the related next
hop rather than the reject or discard next hop of the aggregate route itself.

The use of discard is best current practice when advertising an aggregate because the generation of ICMP
error messages can consume system resources and may end up bombarding an innocent third party, as
in the case of spoofed source addressing as part of a distributed denial of service (DDoS) attack.

Reject

A reject next hop results in the generation of an ICMP error message reporting an unreachable
destination for matching traffic. This is the default next hop type of an aggregated route and for a
generated route when it has no contributors.

Forwarding

A forwarding next hop is used to move traffic to a downstream node, and it is typically specified as the IP
address of a directly connected device. Matching traffic is then forwarded to the specified next hop. On a
multiaccess network such as a LAN, this involves the resolution of the IP address to a link layer address
through the Address Resolution Protocol (ARP) or some form of static mapping. When directing traffic
over a point-to-point interface, the next hop can be specified as an interface name; however, LAN
interface types require an IP address next hop due to their multipoint nature.

3.1.1.1.1. Forwarding next hop qualifiers

When defining a static route with a forwarding next hop, you can use qualifiers that influence how the next hop
is resolved and handled. Specifically:

resolve

The resolve keyword allows you to define an indirect next hop for a static route, which is to say an IP

forwarding address that does not resolve to a directly connected interface route. For example, you could
specify a static route that points to a downstream neighbor's loopback address. In this case, matching
traffic will result in a recursive lookup against the specified (lo0) next hop to select a directly connected

forwarding next hop. If a parallel connection exists, the failure of the currently used link results in a new
recursive lookup and selection of the remaining link for packet forwarding.

qualified-next-hop

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The qualified-next-hop keyword allows you to define a single static route with a list of next hops that

are individually qualified with a preference. In operation, the most preferred qualified next hop that is
operational-that is, the next hop can be resolved and the interface that is operational is used. When that
next hop is no longer usable, the next-best-qualified next hop is selected. That is to say, when the
primary link is down, the router selects the next preferred next hop, which may point to a low-speed
backup facility.

3.1.1.2. Static versus aggregate routes

Simply realizing that an aggregate/generated route supports a subset of the next hop options supported by a
simple static route does not really explain the real operational mode differences between these route types. A
static route is active whenever it has a viable next hop. This next hop can take the form of discard/reject, which
effectively nails the route up.

3.1.1.2.1. Aggregates need contributing routes

In contrast, both aggregate and generated routes require at least one contributing route to become active. A
contributing route is simply a more specific route that is learned through some other mechanism, such as static
definition or dynamic learning through a protocol such as Open Shortest Path First (OSPF). A route is more
specific, and is therefore able to contribute to an aggregate route (when it has a mask length longer than the
associated aggregate) while sharing the same prefix as the aggregate (as indicated by the aggregate route's
mask length). For example, the aggregate route 10.1/16 can be activated by route 10.1.1/24 because it has a
longer (more specific) mask and shares the same 16 high-order prefix bits as the aggregate route. In contrast,
the route 10.2.2/24 does not contribute to a 10.1/16 aggregate as it does not share the same aggregate prefix.

You can use routing policy to filter the set of routes that are allowed to contribute to an aggregate, which helps
you control when the corresponding aggregate becomes active. Because only active routes are subject to
routing policy, this in turn can influence when a given aggregate is advertised in a routing protocol. For
example, you can filter all other contributes so as to advertise an aggregate for 10.1/16 into BGP based strictly
on the absence or presence of a 10.1.1.0/30 route. By default, the preferred or primary contributing route is
selected from the pool of viable candidates based on global preference. To break preference ties, the
numerically smallest contributing route is preferred.

A given route can contribute only to a single aggregate route. However, an active aggregate route can
recursively contribute to a less specific matching aggregate route. For example, an aggregate route to the
destination 10.1.0.0/16 can contribute to an aggregate route to 10.0.0.0/8.

3.1.1.3. Aggregate versus generated routes

People often get confused about aggregate and generated routes-because both require contributors to become
active and both are assigned the same routing preference of 130. The key difference between the two types of
routes is that an aggregate route is never used for forwarding. Although it may attract plenty of traffic, the next
hop of an aggregate route is either a discard or a reject-no ifs, ands, or buts. In contrast, a generated route
installs the next hop associated with the preferred contributor, and therefore can be used to forward matching
traffic. For this reason, a generated route is sometimes called a route of last resort. This is because in the
general case, traffic typically matches a more specific route and is routed appropriately, just as in the case of an
aggregate route-when the most specific (longest) match is against the generated route itself, it is forwarded to
a gateway of last resort, as identified by the next hop associated with the currently preferred contributor route.

These operational differences are shown via the command-line interface (CLI) at Cider using a 10.10/16

aggregate versus a 10.10/16 generated route:

[edit routing-options]

lab@Cider# show aggregate

route 10.10.0.0/16;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[edit routing-options]

lab@Cider# run show route protocol aggregate detail

inet.0: 10 destinations, 10 routes (10 active, 0 holddown, 0 hidden)

10.10.0.0/16 (1 entry, 1 announced)

 *Aggregate Preference: 130

 Next hop type: Reject

 Next-hop reference count: 2

 State: <Active Int Ext>

 Age: 1:50

 Task: Aggregate

 Announcement bits (1): 0-KRT

 AS path: I (LocalAgg)

 Flags: Depth: 0 Active

 AS path list:

 AS path: I Refcount: 2

 Contributing Routes (2):

 10.10.11.0/24 proto Direct

 10.10.12.1/32 proto Direct

A 10.10/16 aggregate is activated by the presence of directly connected routes that contribute to the
aggregate. Direct routes for multiaccess networks cannot contribute to an aggregate because a forwarding next
hop can not be derived from the mere presence of the local interface, as is possible in the case of a point-to-
point link, where the interface itself can be specified as a next hop.

To reiterate, a generated route remains hidden when only direct multiaccess routes are present to contribute:

[edit routing-options]

lab@Cider# show generate

route 10.10.0.0/16;

[edit routing-options]

lab@Cider# run show route protocol aggregate detail hidden

inet.0: 10 destinations, 10 routes (9 active, 0 holddown, 1 hidden)

10.10.0.0/16 (1 entry, 0 announced)

 Aggregate

 Next hop type: Reject

 Next-hop reference count: 1

 State: <Hidden Int Ext>

 Age: 3:10

 Task: Aggregate

 AS path: I

 Flags: Generate Depth: 0 Inactive

This is because the next hop for a generated route is based on the forwarding next hop of the preferred
contributor, and for a multiaccess type of network, this requires a static or learned route that identifies a next
hop on one of the direct interface routes. In this example, a static route with a forwarding next hop pointing out
Cider's fe-0/0/1.100 interface toward Bock is used to activate the generated route:

Code View:
[edit routing-options]

lab@Cider# set static route 10.10.1/24 next-hop 10.10.11.1

[edit routing-options]

lab@Cider# commit

http://lib.ommolketab.ir
http://lib.ommolketab.ir

commit complete

[edit routing-options]

lab@Cider# run show route 10.10.1/24 detail

inet.0: 11 destinations, 11 routes (11 active, 0 holddown, 0 hidden)

10.10.1.0/24 (1 entry, 1 announced)

 *Static Preference: 5

 Next-hop reference count: 5

 Next hop: 10.10.11.1 via fe-0/0/1.100, selected

 State: <Active Int Ext>

 Age: 17

 Task: RT

 Announcement bits (2): 0-KRT 1-Aggregate

 AS path: I

[edit routing-options]

lab@Cider# run show route protocol aggregate detail

inet.0: 11 destinations, 11 routes (11 active, 0 holddown, 0 hidden)

10.10.0.0/16 (1 entry, 1 announced)

 *Aggregate Preference: 130

 Next-hop reference count: 5

 Next hop: 10.10.11.1 via fe-0/0/1.100, selected

 State: <Active Int Ext>

 Age: 11:34

 Task: Aggregate

 Announcement bits (1): 0-KRT

 AS path: I

 Flags: Generate Depth: 0 Active

 Contributing Routes (1):

 10.10.1.0/24 proto Static

Note that both the 10.10.1.0/24 static route and the resultant generated route share the same forwarding next
hop. As the only viable contributing route, the 10.10.1.0/24 route is the preferred contributor in this example.

3.1.1.4. Route attributes and flags

When you define a static route, you can include various route attributes such as AS path, BGP community, route
tag, metric, and so forth. These attributes may or may not come into play later when the route is redistributed
into a specific routing protocol. For example, OSPF has no notion of a BGP community or AS path, and therefore
these attributes are not injected into OSPF despite being attached to the route. The route attributes can be
defined individually for each route or as part of a default template that is inherited by all related routes, unless
specifically overwritten by a competing attribute.

You can also attach flags to a static route that controls various aspects of how the route is handled or operates.
For example, the no-advertise flag prevents the associated route from being exported into routing protocols,

even when the policy configuration otherwise selects that route for redistribution. You can display the list of
available route attributes and flags with the CLI's ? feature:

Code View:
lab@Cider# set static route 10/8 ?

Possible completions:

 active Remove inactive route from forwarding table

+ apply-groups Groups from which to inherit configuration data

http://lib.ommolketab.ir
http://lib.ommolketab.ir

+ apply-groups-except Don't inherit configuration data from these groups

> as-path Autonomous system path

> bfd-liveness-detection Bidirectional Forwarding Detection (BFD) options

> color Color (preference) value

> color2 Color (preference) value 2

+ community BGP community identifier

 discard Drop packets to destination; send no ICMP unreachables

 install Install route into forwarding table

> lsp-next-hop LSP next hop

> metric Metric value

> metric2 Metric value 2

> metric3 Metric value 3

> metric4 Metric value 4

+ next-hop Next hop to destination

 next-table Next hop to another table

 no-install Don't install route into forwarding table

 no-readvertise Don't mark route as eligible to be readvertised

 no-resolve Don't allow resolution of indirectly connected next hops

 no-retain Don't always keep route in forwarding table

 passive Retain inactive route in forwarding table

> preference Preference value

> preference2 Preference value 2

> qualified-next-hop Next hop with qualifiers

 readvertise Mark route as eligible to be readvertised

 receive Install a receive route for the destination

 reject Drop packets to destination; send ICMP unreachables

 resolve Allow resolution of indirectly connected next hops

 retain Always keep route in forwarding table

> tag Tag string

> tag2 Tag string 2

The reader is encouraged to consult JUNOS software documentation at
http://www.juniper.net/techpubs/software/junos/junos81/swconfig81-routing/html/routing-tables-config.html
for details on the various attributes and flags that can be attached to static or aggregated routes. The
commonly used attributes are demonstrated either in this chapter or within the various scenarios demonstrated
throughout this book. Figure 3-1 illustrates a typical application of a static route via a sample routing topology.

Figure 3-1. Static routing configuration

http://www.juniper.net/techpubs/software/junos/junos81/swconfig81-routing/html/routing-tables-config.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.1.2. Global Route Preference

Routing information can be learned from multiple sources. In order to break ties among equally specific routes
learned through multiple sources, each source is assigned a global preference. It can be said that the global
preference determines the overall believability or "goodness" of a routing source. As such, routes that are
learned through local administrative action-for example, static routes-are more believable than the same
routes learned through a routing protocol such as OSPF. In Cisco IOS, this concept is called administrative
distance. Table 3-2 shows the default protocol preferences for JUNOS software.

Table 3-2. Global protocol preference values

Source Purpose Default
preference

Local Local IP address of the interface 0

Directly connected
network

Subnet corresponding to the directly connected interface 0

Static Static routes 5

RSVP Routes learned from the Resource Reservation Protocol used in
Multiprotocol Label Switching (MPLS)

7

LDP Routes learned from the Label Distribution Protocol used in MPLS 9

OSPF internal route OSPF internal routes such as interfaces that are running OSPF 10

IS-IS Level 1
internal route

Intermediate System-to-Intermediate System Level 1 internal routes
such as interfaces that are running ISIS

15

IS-IS Level 2
internal route

Intermediate System-to-Intermediate System Level 2 internal routes
such as interfaces that are running ISIS

18

Redirects Routes from ICMP redirect 30

Kernel Routes learned via route socket from kernel 40

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Source Purpose Default
preference

SNMP Routes installed by Network Management System through the Simple
Network Management Protocol

50

Router discovery Routes installed by ICMP Router Discovery 55

RIP Routes from Routing Information Protocol (IPv4) 100

RIPng Routes from Routing Information Protocol (IPv6) 100

PIM Routes from Protocol Independent Multicast 105

DVMRP Routes from Distance Vector Multicast 110

Aggregate Aggregate and generated routes 130

OSPF AS external
routes

Routes from Open Shortest Path First that have been redistributed
into OSPF

150

IS-IS Level 1
external route

Routes from Intermediate System-to-Intermediate System Level 1
that have been redistributed into ISIS

160

IS-IS Level 2
external route

Routes from Intermediate System-to-Intermediate System Level 2
that have been redistributed into ISIS

165

BGP Routes from Border Gateway Protocol 170

As with a route metric, numerically lower preference values are preferred. You can alter the default preference
values when needed to accommodate some specific goal, such as route redistribution during an Interior
Gateway Protocol (IGP) migration, which is demonstrated in Chapter 5.

Readers familiar with Cisco Systems may note a few differences between how the two vendors assign
distance/preference. For example, Cisco has a separate distance for Internal BGP (IBGP) versus External BGP
(EBGP) (200 versus 20), whereas Juniper uses the same value. In this case, there is no operational impact
because in the route selection process JUNOS software prefers EBGP over IBGP, resulting in the same behavior
for both vendors. One area where the vendors differ is in regard to IGP versus EBGP distance. Here, Cisco
assigns an OSPF IGP distance of 110; since this is higher than the EBGP distance of 20, it results in the selection
of an EBGP route over an equivalent OSPF route. In the same setup, a Juniper router chooses the OSPF route,
owing to the preference values shown in Table 3-2.

Although you could alter JUNOS software preference to mimic IOS behavior, Juniper created a compatibility
knob for this situation, called advertise-inactive. When applied to an EBGP peering session, this knob results

in the advertisement of the best BGP route that happens to be inactive because of IGP preference. When using
the advertise-inactive option, the JUNOS device continues to use the OSPF copy for forwarding, and the IOS

device uses the EBGP copy to forward. However, from the perspective of an EBGP peer in a neighboring AS,
both vendors appear to behave the same.

3.1.2.1. Floating static routes

A floating static route is nothing more than a static route that has a modified preference, causing it to be less
preferred than a dynamically learned copy. The defaults cause a static route to always be preferred over a
dynamic route. A floating static route is often used to provide backup in the event of a network or protocol
malfunction. When all is operating normally, the static route remains idle because the dynamically learned
routing is preferred. When routing protocol disruption results in the loss of a learned route, the previously
inactive static route becomes active.

SNMP Routes installed by Network Management System through the Simple
Network Management Protocol

50

Router discovery Routes installed by ICMP Router Discovery 55

RIP Routes from Routing Information Protocol (IPv4) 100

RIPng Routes from Routing Information Protocol (IPv6) 100

PIM Routes from Protocol Independent Multicast 105

DVMRP Routes from Distance Vector Multicast 110

Aggregate Aggregate and generated routes 130

OSPF AS external
routes

Routes from Open Shortest Path First that have been redistributed
into OSPF

150

IS-IS Level 1
external route

Routes from Intermediate System-to-Intermediate System Level 1
that have been redistributed into ISIS

160

IS-IS Level 2
external route

Routes from Intermediate System-to-Intermediate System Level 2
that have been redistributed into ISIS

165

BGP Routes from Border Gateway Protocol 170

As with a route metric, numerically lower preference values are preferred. You can alter the default preference
values when needed to accommodate some specific goal, such as route redistribution during an Interior
Gateway Protocol (IGP) migration, which is demonstrated in Chapter 5.

Readers familiar with Cisco Systems may note a few differences between how the two vendors assign
distance/preference. For example, Cisco has a separate distance for Internal BGP (IBGP) versus External BGP
(EBGP) (200 versus 20), whereas Juniper uses the same value. In this case, there is no operational impact
because in the route selection process JUNOS software prefers EBGP over IBGP, resulting in the same behavior
for both vendors. One area where the vendors differ is in regard to IGP versus EBGP distance. Here, Cisco
assigns an OSPF IGP distance of 110; since this is higher than the EBGP distance of 20, it results in the selection
of an EBGP route over an equivalent OSPF route. In the same setup, a Juniper router chooses the OSPF route,
owing to the preference values shown in Table 3-2.

Although you could alter JUNOS software preference to mimic IOS behavior, Juniper created a compatibility
knob for this situation, called advertise-inactive. When applied to an EBGP peering session, this knob results

in the advertisement of the best BGP route that happens to be inactive because of IGP preference. When using
the advertise-inactive option, the JUNOS device continues to use the OSPF copy for forwarding, and the IOS

device uses the EBGP copy to forward. However, from the perspective of an EBGP peer in a neighboring AS,
both vendors appear to behave the same.

3.1.2.1. Floating static routes

A floating static route is nothing more than a static route that has a modified preference, causing it to be less
preferred than a dynamically learned copy. The defaults cause a static route to always be preferred over a
dynamic route. A floating static route is often used to provide backup in the event of a network or protocol
malfunction. When all is operating normally, the static route remains idle because the dynamically learned
routing is preferred. When routing protocol disruption results in the loss of a learned route, the previously
inactive static route becomes active.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The following code sample creates a floating static route by assigning a modified preference that makes the
route less preferred than an OSPF internal route, which has a default preference of 10:

[edit routing-options static route 0.0.0.0/0]

lab@PBR# show

next-hop 172.16.1.1;

preference 11;

[edit routing-options static route 0.0.0.0/0]

lab@PBR# run show route 200.0.0.0

inet.0: 12 destinations, 12 routes (12 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

0.0.0.0/0 *[Static/11] 00:00:06

 > to 172.16.1.1 via fe-0/0/0.412

3.1.3. Martian Routes

JUNOS software supports the concept of martian routes, which is a euphemistic way to describe a route that
should not be present. Most network operators consider local use addressing, as defined in RFC 1918, "Address
Allocation for Private Internets," as an example of martian routes, at least when received outside of the context
of a virtual private network (VPN).

Routes contained in the martian table are excluded from route update processing, which prevents them from
ever being installed into the route table. The martian mechanism provides a consolidated way to filter bogus
routing information from all protocol sources without the use of explicit policy.

You can display martian entries with a show route martians command. In this example, only entries for the

main inet.0 route table are displayed through the table keyword:

[edit routing-options]

lab@Bock# run show route martians table inet.0

inet.0:

 0.0.0.0/0 exact -- allowed

 0.0.0.0/8 orlonger -- disallowed

 127.0.0.0/8 orlonger -- disallowed

 128.0.0.0/16 orlonger -- disallowed

 191.255.0.0/16 orlonger -- disallowed

 192.0.0.0/24 orlonger -- disallowed

 223.255.255.0/24 orlonger -- disallowed

 240.0.0.0/4 orlonger -- disallowed

The default entries permit private use of RFC 1918 private addressing space while filtering prefixes that should
never appear in a route update-for example, the 127.0.0.1 loopback address or the IANA reserved
192.0.0.0/24 network block. You can add entries to the table, which can later be removed using set and

delete, respectively. You cannot explicitly remove predefined martian entries, but you can add new entries that

negate their effect. For example, rather than trying to delete the 0/0 exact allow entry, you negate its effect

by adding a new entry with a competing action. For instance, the default martian table allows the default route,
which in this example is being advertised via OSPF from Bock to Cider:

[edit]

lab@Cider# run show route protocol ospf

inet.0: 11 destinations, 11 routes (11 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

http://lib.ommolketab.ir
http://lib.ommolketab.ir

0.0.0.0/0 *[OSPF/150] 00:00:07, metric 0, tag 0

 > to 10.10.11.1 via fe-0/0/1.100

. . .

224.0.0.5/32 *[OSPF/10] 00:00:27, metric 1

 MultiRecv

The martian table for the inet.0 route table is modified with a set 0/0 exact deny statement, which

overrides the previous entry for the 0/0 exact route. Note that a deny action is the default for any entry in the

martian table:

[edit routing-options martians]

lab@Cider# set 0/0 exact

[edit routing-options martians]

lab@Cider# show

0.0.0.0/0 exact;

After the change is committed, the results are confirmed:

[edit routing-options martians]

lab@Cider# run show route martians table inet.0

inet.0:

0.0.0.0/0 exact -- disallowed

 0.0.0.0/8 orlonger -- disallowed

 127.0.0.0/8 orlonger -- disallowed

 128.0.0.0/16 orlonger -- disallowed

 191.255.0.0/16 orlonger -- disallowed

 192.0.0.0/24 orlonger -- disallowed

 223.255.255.0/24 orlonger -- disallowed

 240.0.0.0/4 orlonger -- disallowed

[edit routing-options martians]

lab@Cider# run show route protocol ospf | match 0.0.0.0

The lack of an OSPF-learned default route at Cider confirms the modified martian table results in ignoring

routing information for the 0/0 route.

3.1.4. Routing Tables and RIB Groups

All JUNOS-based routers maintain a number of route tables that are used for specific purposes. In addition to
the automatically created tables, you can create your own route tables, either indirectly through the use of
virtual routers or Layer 2/Layer 3 VPNs and the related Virtual Route and Forwarding (VRF) tables, or directly
through the use of RIB groups.

Generally speaking, each route table/RIB populates a designated portion of the forwarding table. This creates a
single forwarding table that is partitioned based on a specific route table context. Packets are forwarded based
on this route table context, which allows for distinct forwarding behavior on a per-route-table basis. It's a key
component of any VPN type of service, where per-VRF (per VPN site) route tables are maintained along with a
corresponding VPN-specific forwarding table context.

You can view the contents of a particular route table using the command show route table <table name>. The

general naming convention for route tables takes the form of the protocol family such as inet (Internet) or

inet6, iso (ISO), or mpls, followed by a period and a nonnegative integer. Routing instance table names are

http://lib.ommolketab.ir
http://lib.ommolketab.ir

somewhat the exception here, taking the form of instance-name.inet.0, where the first part consists of a

user-assigned symbolic name, followed by the protocol family and table ID, which is inet.0 in this example.

3.1.4.1. Default route tables

The default route tables created by JUNOS software include:

inet.0

The inet.0 table is the default unicast route table for the IPv4 protocol. This is the main route table used

to store unicast routes such as interface local/direct, static, or dynamically learned routes.

inet.1

The inet.1 table serves as a multicast forwarding cache. This table constrains the various IPv4 (S,G)

group entries that are dynamically created as a result of join state.

inet.2

The inet.2 table houses unicast routes that are used for multicast reverse path forwarding (RPF) lookup,

typically as learned through MP-BGP using SAFI 2. The IPv4 unicast routes stored in this table can be
used by multicast protocols such as the Distance Vector Multicast Routing Protocol (DVMRP), which
requires a specific RPF table. In contrast, PIM does not need an inet.2 because it can perform RPF

checks against the inet.0 table. You can import routes from inet.0 into inet.2 using RIB groups, or

install routes directly into inet.2 from a multicast routing protocol.

inet.3

The inet.3 table contains MPLS LSP information. This table contains the egress address of the MPLS LSP,

along with the LSP name and outgoing interface, and is populated by both RSVP and LSP. The inet.3

table is used when the local router functions as the ingress to an LSP.

instance_name.inet.0

When you configure a VRF or VR routing instance, the resultant instance creates a route table based on
the routing instance's name. For example, defining a Layer 3 VPN instance called ce1 results in the

creation of a route table named ce1.inet.0. A routing instance differs from a logical router in that

various routing instances share a single instance of the routing protocol daemon (rpd), whereas each LR
gets its own instance of rpd, which in turn provides greater isolation. Note that LRs are not supported on
J-series platforms with the 8.0 release used to write this book.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

inet6.0

The inet6.0 table is used to house IPv6 unicast route tables.

bgp.l3vpn.0

The bgp.l3vpn.0 table contains routes learned from other Provider Edge (PE) routers in a Layer 3 VPN

environment via BGP. Routes in this table are copied into a particular Layer 3 VRF when there is a
matching route table.

bgp.l2vpn.0

The bgp.l2vpn.0 table contains routes learned from other PE routers in a Layer 2 VPN environment via

BGP. The related Layer 2 routing information is copied into Layer 2 VRFs based on matching target
communities.

mpls.0

The mpls.0 table houses the MPLS label-switching operations used when the local router is acting as a

transit label-switching router (LSR) in support of LSPs.

iso.0

The iso.0 table houses IS-IS routes, which consist of a network entity title (NET) and a host ID. When

using IS-IS in support of IP routing, you can expect to see only the local router's NET, which is typically
assigned to the loopback interface, because in this context the IS-IS protocol is used to convey IP, not
IS-IS routes.

juniper_private

JUNOS software needs to communicate internally with service Physical Interface Cards (PICs). The
juniper_private tables are created as needed to facilitate these internal communications between the

RE and service PIC hardware.

When you issue a show route command, all tables are listed chronologically starting with inet.0. Within each

table, you will also see the total number of routes in the table and a listing further breaking down active routes
and hidden routes. The following sample output from a show route command displays many of the tables

described earlier, and it is taken from a router configured to support a BGP-signaled Layer 3 VPN using RSVP-

http://lib.ommolketab.ir
http://lib.ommolketab.ir

based LSP transport. The router also has the inet6 and iso families enabled on its loopback interface.

The purpose of the following output display is simply to show a real-world example in which many of the default
route tables are populated and used. The specific details of which routes are present or how a given entry in
some particular table is actually used, are not the focus here, hence a related topology diagram is not needed
for the purpose of simply observing the presence of multiple route tables. Subsequent chapters in this book
expand on these specifics as needed in the context of enterprise routing:

Code View:
user@L3_VPN_router> show route

inet.0: 23 destinations, 23 routes (22 active, 0 holddown, 1 hidden)

+ = Active Route, - = Last Active, * = Both

1.12.1.0/24 *[Direct/0] 00:33:41

 > via ge-1/0/0.0

1.12.1.1/32 *[Local/0] 00:33:41

 Local via ge-1/0/0.0

. . .

10.255.66.50/32 *[OSPF/10] 00:32:53, metric 1

 > to 1.12.1.2 via ge-1/0/0.0

. . .

192.168.64.0/21 *[Direct/0] 5d 02:42:28

 > via fxp0.0

192.168.66.47/32 *[Local/0] 5d 02:42:28

 Local via fxp0.0

192.168.102.0/23 *[Static/5] 5d 02:42:28

 > to 192.168.71.254 via fxp0.0

. . .

224.0.0.5/32 *[OSPF/10] 00:33:41, metric 1

 MultiRecv

_ _juniper_private1_ _.inet.0: 2 destinations, 2 routes (2 active,

0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

10.0.0.0/8 *[Direct/0] 5d 02:41:34

 > via fxp1.0

10.0.0.4/32 *[Local/0] 5d 02:42:28

 Local via fxp1.0

_ _juniper_private2_ _.inet.0: 1 destinations, 1 routes (0 active,

0 holddown, 1 hidden)

ce1.inet.0: 3 destinations, 3 routes (3 active, 0 holddown,

0 hidden)

+ = Active Route, - = Last Active, * = Both

1.1.1.0/24 *[Direct/0] 00:33:41

 > via fe-1/2/0.0

1.1.1.2/32 *[Local/0] 00:33:41

 Local via fe-1/2/0.0

10.255.66.52/32 *[BGP/170] 00:33:24, localpref 100

 AS path: I

 > to 1.1.1.1 via fe-1/2/0.0

iso.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

http://lib.ommolketab.ir
http://lib.ommolketab.ir

47.0005.80ff.f800.0000.0108.0001.0102.5506.6047/152

 *[Direct/0] 5d 02:42:28

 > via lo0.0

mpls.0: 3 destinations, 3 routes (3 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

0 *[MPLS/0] 00:33:41, metric 1

 Receive

1 *[MPLS/0] 00:33:41, metric 1

 Receive

2 *[MPLS/0] 00:33:41, metric 1

 Receive

inet6.0: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

abcd::10:255:66:47/128

 *[Direct/0] 5d 02:42:28

 > via lo0.0

fe80::2a0:a5ff:fe12:47ed/128

 *[Direct/0] 5d 02:42:28

 > via lo0.0

_ _juniper_private1_ _.inet6.0: 4 destinations, 4 routes (4 active,

0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

fe80::/64 *[Direct/0] 5d 02:41:34

 > via fxp1.0

fe80::200:ff:fe00:4/128

 *[Local/0] 5d 02:42:28

 Local via fxp1.0

fec0::/64 *[Direct/0] 5d 02:41:34

 > via fxp1.0

fec0::a:0:0:4/128 *[Local/0] 5d 02:42:28

 Local via fxp1.0

3.1.4.2. User-defined RIBs and RIB groups

You can define additional route tables with the rib keyword. This capability is rarely used, but it is

demonstrated here for completeness. In the following example, the user has configured a custom IPv4 RIB
called inet.69, in which a single static route had been defined:

[edit routing-options]

lab@PBR# show

rib inet.69 {

 static {

 route 10.1.0.0/16 discard;

 }

}

The contents of the user-defined RIB are displayed with a show route table <table name> command:

[edit routing-options]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

lab@PBR# run show route table inet.69

inet.69: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

10.1.0.0/16 *[Static/5] 00:15:53

 Discard

You can group together multiple route tables (RIBs) to form a route table group. Within a group, a routing
protocol can import routes into all the route tables in the group, and it can export routes from a single route
table. Simply put, RIB groups provide a way to copy routing information from one route table to another. In
operation, a RIB group consists of one primary and one or more secondary route tables-the first route table
specified is the primary route table, and any additional route tables function as secondary route tables. The
primary route table determines the address family of the route table group. To configure an IPv4 route table
group, specify inet.0 as the primary route table. To configure an IPv6 route table group, specify inet6.0 as the

primary route table.

Each RIB group must contain one or more route tables that JUNOS software uses as the source of any imported
routes, as specified with the import-rib statement.

In the following example, a rib-group called my_interface_routes is configured to import interface route

entries from inet.0 into inet.2. The my_interface_routes RIB group is defined under the interface-routes

hierarchy, which specifies the protocol (direct) that is used to match against when copying the routes into
inet.2:

[edit routing-options]

lab@PBR# show

interface-routes {

 rib-group inet my_interface_routes;

}

rib-groups {

 my_interface_routes {

 import-rib [inet.0 inet.2];

 }

}

The result of the interface routes RIB group definition is confirmed with a display of the inet.2 table both

before and after the changes are committed:

[edit routing-options rib-groups]

lab@PBR# run show route table inet.2

[edit routing-options rib-groups]

lab@PBR# commit

commit complete

After the commit, the inet.2 table is correctly populated with interface routes, as copied from the inet.0

table:

[edit routing-options rib-groups]

lab@PBR# run show route table inet.2

inet.2: 11 destinations, 11 routes (11 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.10.130.0/24 *[Direct/0] 00:00:04

 > via fe-0/0/0.1141

10.10.130.2/32 *[Local/0] 00:00:04

 Local via fe-0/0/0.1141

10.20.128.3/32 *[Direct/0] 00:00:04

 > via lo0.0

10.20.129.0/24 *[Direct/0] 00:00:04

 > via fe-0/0/0.3141

10.20.129.2/32 *[Local/0] 00:00:04

 Local via fe-0/0/0.3141

10.20.130.0/24 *[Direct/0] 00:00:04

 > via fe-0/0/0.1241

. . .

If desired, you can use import policy to add additional control over which routes are copied between RIBs.

3.1.5. Router ID and Antonymous System Number

The last PIP-related configuration to be discussed is related to the router ID (RID) and BGP AS number.

3.1.5.1. Router ID

Many routing protocols require that the source of routing information be uniquely identified using the concept of
a RID. A RID normally takes the form of an IPv4 address, and in most cases does not have to be reachable to
correctly function as a RID. Stated differently, a router can receive a BGP or OSPF route update from a router
identified as 1.1.1.1, and correctly process the related routing information, even though it may not have a route
to 1.1.1.1. With that said, it is common to use a routable IP address as the RID because this can simplify
operations by enabling pings or telnet to the RID.

You can specify only one RID, and the same value is used by all protocols that require a RID (OSPF, OSPFv3,
and BGP). The current best practice is to base the RID on the router's globally routable lo0 address. You

explicitly configure a RID as follows:

[edit routing-options]

lab@PBR# set router-id 1.1.1.1

[edit routing-options]

lab@PBR# show

router-id 1.1.1.1;

When you explicitly configure a RID that is based on an address assigned to the router's lo0 interface, you will

have to run an explicit IGP instance (typically passive) on that interface to advertise reachability to the RID,
when desired. When a RID is not explicitly configured, the router obtains its RID from the primary address of
the first interface that comes online. This is typically the loopback interface, when it has been assigned a
nonmartian (non-127.0.0.1) address. Because changes in RID are disruptive to protocol operation, it's a good
practice to manually configure a RID to ensure that changes to lo0 addressing do not cause unanticipated

churn.

Historically, JUNOS software automatically advertised a stub route to the interface from which the RID is
obtained. This meant that you did not need to run an IGP instance on the loopback interface to advertise
reachability to the RID. Starting with JUNOS Release 8.5, this behavior has changed. Now, whether you use an
explicit or an automatically generated RID that is lo0-based, you need to enable OSPF on the loopback

interface to advertise reachability to the related loopback address, even when it is the source of an
automatically selected RID.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.1.5.2. Autonomous system number

An autonomous system (AS) number is required for BGP operation; you cannot commit a BGP-related
configuration without also defining the local router's AS number. In this regard, it can be said that the AS
number is not really protocol-independent, but for whatever reason it is configured under [routing-options],

rather than under BGP itself.

Chapter 5 provides a detailed description of what an AS number is and how BGP uses it. The following is a
sample AS number configuration:

lab@PBR# set autonomous-system ?

Possible completions:

 <as_number> Autonomous system number (1..65535)

loops Maximum number of times this AS can be in an AS path

[edit routing-options]

lab@PBR# set autonomous-system 100

[edit routing-options]

lab@PBR# show

autonomous-system 100;

The loops option allows you to configure tolerance for occurrences of the local ASN in received route updates;

normally such an occurrence indicates a BGP routing loop and results in the related route being discarded. There
are certain corner-case scenarios, mostly related to VPNs and the support of EBGP on the PE-CE customer links,
where you might need to alter the default value. Note that the default value of 1 indicates that a route with a
single instance of the local ASN should be discarded. Therefore, to support reception of routes with a single
instance of the local ASN, specify a loop value of 2.

3.1.6. Summary of Protocol-Independent Properties

This section discussed common PIPs that are typically used in enterprise networks. Topics included the creation
of static, aggregate, and generated routes, along with their differences and associated various next hop options.
Global preference, which is used to break ties between competing sources of routing information, was
discussed, as was the configuration of a floating static route-which is simply a static route with an altered
global preference that makes it less preferred than a route learned via a dynamic routing protocol. This section
also described the use and purpose of the default JUNOS software route tables, and how RIBs and RIB groups
are used to create and link route tables. We ended with a description of how the RID can be explicitly configured
or automatically computed, in addition to how the local AS number is configured to support BGP operation.

The next section delves into JUNOS software routing policy, which provides you with complete control over
route exchanges and attribute modification.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.2. Routing Policy

This section details JUNOS software routing policy operation and configuration. The actual application of policy
to solve some specific networking requirement is generally left to the protocol-specific coverage found in
subsequent chapters. You configure policy-related options and statements at the [edit policy-options]

hierarchy. Routing policy and firewall filters have a similar syntax in JUNOS software. The former deals with
routes in the control plane, whereas the latter deals with packets in the data plane.

3.2.1. What Is a Routing Policy, and When Do I Need One?

Simply put, routing policy is used to:

Control what routes are installed into the route table for possible selection as an active route

Control what routes are exported from the route table, and into which protocols

Alter attributes of routes, either at reception or at the time of advertisement to other peers

Given that routing policy is used to control the reception and transmission of routing information and to alter
route attributes, it's safe to say that you need routing policy when the default policy does not meet your
requirements.

The specifics of the various default policies are covered later, but to provide an example, consider that, by
default, directly connected routes are not advertised into any routing protocol; in the case of RIP, not even
when RIP is configured to run on those directly connected interfaces. If your goal is to get direct routes
advertised into RIP, the default policy obviously does not meet your needs, and a custom policy must be
written, and applied, to achieve your goal of redistributing direct routes into RIP.

3.2.2. Where and How Is Policy Applied?

You can apply policy in one of two places: either at import or at export. Generally speaking, use a command of
the form set protocols <protocol-name> import to apply an import policy, or use set protocols

<protocol-name> export to apply an export policy. Figure 3-2 illustrates this concept.

Figure 3-2. Policy application and monitoring points

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 3-2 shows routes being received through some protocol, and how import policy serves to filter and adjust
route attributes before they are copied into the route table. In contrast, export policy comes into play when
routes are being selected from the route table for inclusion in transmitted route updates. Once again, the export
policy serves to filter and adjust route attributes to meet the specific needs of the networking environment.

It is worth noting that distance vector protocols such as BGP and RIP actually support the notion of received and
transmitted routes. These protocols support the show route receiving-protocol <protocol-name>

<neighbor-address> and show route advertising-protocol <protocol> <neighbor-address> commands,

which are very useful when troubleshooting or analyzing policy operation. Figure 3-2 shows how the receiving-
protocol form of the command is used to display routes after route filtering, but before attribute manipulation.
In contrast, the advertising-protocol form of the command is executed after all export policy operations,
including route filtering and attribute modification. Simply issue a show route <prefix> command to display a

route as it exists in the route table, which will include any modified attributes resulting from import policy
operations.

3.2.2.1. Applying policy to link state routing protocols

Link state (LS) protocols such as OSPF and IS-IS do not send and receive routes directly. Instead, they flood
link-state advertisement (LSA) packets, which are used to build a topological database from which each router
computes a route table. As such, LS protocols do not support much in the way of import policy. Support for
OSPF import policies that prevent installation of external routes into the route table was only recently added;
and supported in the 8.0 JUNOS software release; it's interesting to note that the current (8.5) documentation
has not yet caught up, and still indicates that OSPF does not support application of import policy (for more
information, see http://www.juniper.net/techpubs/software/junos/junos85/swconfig85-policy/id-
10148641.html#jN1272A. Documentation PR 262917 was raised to get this corrected, by the way.

If you wish to filter LSAs, protocol-specific mechanisms are required to ensure that LS database consistency is
maintained. Chapter 4 covers the concepts of OSPF stub areas and LSA filtering.

You can apply export policy to an LS protocol to effect route redistribution, but the external route is still flooded
in an LSA rather than being sent outright; the result is that the show route receiving protocol and show

route-advertising protocol commands are not effective when dealing with LS protocols.

When you apply policy to an LS protocol, you do so globally, which is to say the policy is not applied to
particular interfaces or areas. In the case of OSPF, you apply export policy at the [edit protocol ospf]

hierarchy:

[edit protocols ospf]

http://www.juniper.net/techpubs/software/junos/junos85/swconfig85-policy/id-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

lab@PBR# show

export test_export; ## 'test_export' is not defined

The CLI warning provides a nice reminder that the related test_export policy does not yet exist. Because the

presence (or absence) or a policy can have a dramatic effect on overall network operation, you will not be able
to commit a configuration with this type of omission. You can define a policy that is never applied-but once
applied, the policy must exist before you can commit the changes.

3.2.2.2. Applying policy to BGP and RIP

Both BGP and RIP support the application of import and export policy, and both support policy application at
different hierarchies. Focusing on BGP for the moment, you can apply a policy at one of three different
hierarchies-global, group, or neighbor. The following code snippet provides an example of this concept:

[edit protocols bgp]

lab@PBR# show

export global_export;

group internal {

 export internal_export;

 neighbor 1.1.1.1 {

 export neighbor_1.1.1.1_export;

}

 neighbor 2.2.2.2;

}

group other {

 neighbor 3.3.3.3;

}

In this example, a policy named global_export is applied at the global level, another policy named

internal_export is applied at the group level, and yet a third policy named neighbor_1.1.1.1_export is

applied at the neighbor level.

A key point, and one that is often misunderstood and that can lead to problems, is that in such a configuration,
only the most explicit policy is applied. A neighbor-level policy is more explicit than a group-level policy, which
in turn is more explicit than a global policy. Hence, neighbor 1.1.1.1 is subjected only to the
neighbor_1.1.1.1_export policy, whereas neighbor 2.2.2.2, lacking anything more specific, is subjected only

to the internal_export policy. Meanwhile, neighbor 3.3.3.3 in group other has no group- or neighbor-level

policy, so it uses the global_export policy.

So, what if you need to have neighbor 1.1.1.1 perform the function of all three policies? Simple-you could write
and apply a new neighbor-level policy that encompasses the functions of the other three, or simply apply all
three existing policies, as a chain, to neighbor 1.1.1.1. Note the use of brackets in the following command to
open a set of values; if desired, each policy can be specified individually:

[edit protocols bgp group internal]

lab@PBR# set neighbor 1.1.1.1 export [global-export internal_export]

[edit protocols bgp]

lab@PBR# show group internal neighbor 1.1.1.1

export [neighbor_1.1.1.1_export global_export internal_export];

As with access control lists (ACLs) or firewall filters, chained policy statements are evaluated in a specific left-to-
right order and only up to the point when a route is either accepted or rejected. As a result, you must consider
factors such as whether a policy makes use of a match-all deny term at its end, which is common for a
standalone policy. However, when applied at the front of a policy chain, the match-all aspect of such a policy

http://lib.ommolketab.ir
http://lib.ommolketab.ir

prevents route processing by any remaining policies. To help illustrate this point, consider two policies, one
named deny, which denies all, and another named accept, which accepts all. Given the nature of the two
policies, you will see a dramatic difference between these two policy chains, even though they are composed of
the same parts:

export [accept deny];

export [deny accept];

Here, the first policy chain results in all routes being accepted, whereas the reverse application results in all
routes being denied. You can use the CLI's insert feature to rearrange the order of applied policies, or simply
delete and reapply the policies to get the order needed. Note that a newly applied policy always takes the
leftmost place in a policy chain, where it becomes the first in line for route evaluation.

We covered a few critical points here, so much so that they bear repeating in another
form. The first point is that when multiple policies are applied at different CLI hierarchies
for the same protocol, only the most specific application is evaluated, to the exclusion of
other, less specific policy applications. Second, a given route is evaluated against a
chain of policies starting with the leftmost policy, up until the route meets a terminating
action of either accept or reject. This leads to ordering sensitivity of both terms within a
policy, and for policies when they are chained together.

Although these points always seem to make sense when you are learning them, they are
somehow easily forgotten during router configuration, when two policies that individually
worked as expected suddenly break when they are combined, or when you mistakenly
believe that a neighbor-level policy is combined with a global or group-level policy, only
to find that your policy behavior is not as anticipated.

3.2.3. Policy Components

Generally speaking, a policy statement consists of one or more named terms, each consisting of two parts: a
from statement that defines a set of match criteria, and a corresponding then statement that specifies the set

of actions to be performed for matching traffic. It is possible to create a policy with a single term, in which case
the eterm can be unnamed, such as in these two examples:

[edit policy-options]

lab@PBR# show

policy-statement explicit_term {

 term 1 {

 from protocol direct;

 then accept;

 }

}

policy-statement implict_term {

 from protocol direct;

 then accept;

}

The two policy statements perform identical functions; both have a match criterion of direct, and both have an

associated action of accept. The explicit term format is generally preferred, because new terms can be added

without the need to redefine the existing term. Note that any new terms are added to the end of the policy
statement, as shown here, where, oddly enough, a new term named new is added to the explict_term policy

statement:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[edit policy-options]

lab@PBR# set policy-statement explicit_term term new from protocol direct

[edit policy-options]

lab@PBR# set policy-statement explicit_term term new then reject

[edit policy-options]

lab@PBR# show policy-statement explicit_term

term 1 {

 from protocol direct;

 then accept;

}

term new {

from protocol direct;

then reject;

}

As with policy chains, term ordering within a policy is significant. In the example, explict_term policy, term 1,

and term new are diametrically opposed, with one accepting and the other denying the same set of direct

routes. Although making little practical sense, it does afford the opportunity to demonstrate term resequencing
with the insert function:

[edit policy-options]

lab@PBR# edit policy-statement explicit_term

[edit policy-options policy-statement explicit_term]

lab@PBR# insert term new before term 1

[edit policy-options policy-statement explicit_term]

lab@PBR# show

term new {

from protocol direct;

then reject;

}

term 1 {

 from protocol direct;

 then accept;

}

There is no practical limit to the number of terms that can be specified in a single policy, or to how many
policies can be chained together.

3.2.3.1. Logical OR and AND functions within terms

It's possible to define a term with multiple match criteria defined under a single from statement. For a match to

occur, all of the from conditions must be met, which is a logical AND. However, for a specific match type, such

as protocol, you can specify multiple values, in which case each protocol match condition functions as a logical

OR. Consider this example:

[edit policy-options]

lab@PBR# show

policy-statement test {

 term 1 {

 from {

 protocol [bgp rip]; ##logical OR within brackets

 interface fe-0/0/0.0; ## logical AND with other match criteria

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 then next term;

 }

}

In this case, a match will occur when a route is learned over the fe-0/0/0 interface and is learned from BGP or

RIP.

3.2.4. Policy Match Criteria and Actions

JUNOS software policy provides a rich set of criteria you can match against, and an equally rich set of actions
that can be performed as a result of a match. The various match and action functions are well documented, so
the goal here is not to re-create the wheel by rehashing each option-as noted at the beginning of this chapter,
the object is to acquaint you with a box of tools; later chapters will provide specific examples of those tools
being used.

3.2.4.1. Policy match criteria

The list of available match criteria is long in the JUNOS software 8.0 release:

Code View:
lab@PBR# set policy-statement test term 1 from ?

Possible completions:

 aggregate-contributor Match more specifics of an aggregate

+ apply-groups Groups from which to inherit configuration data

+ apply-groups-except Don't inherit configuration data from these groups

 area OSPF area identifier

+ as-path Name of AS path regular expression (BGP only)

+ as-path-group Name of AS path group (BGP only)

 color Color (preference) value

 color2 Color (preference) value 2

+ community BGP community

> external External route

 family

 instance Routing protocol instance

+ interface Interface name or address

 level IS-IS level

 local-preference Local preference associated with a route

 metric Metric value

 metric2 Metric value 2

 metric3 Metric value 3

 metric4 Metric value 4

> multicast-scope Multicast scope to match

+ neighbor Neighboring router

+ next-hop Next-hop router

 origin BGP origin attribute

+ policy Name of policy to evaluate

 preference Preference value

 preference2 Preference value 2

> prefix-list List of prefix-lists of routes to match

> prefix-list-filter List of prefix-list-filters to match

+ protocol Protocol from which route was learned

 rib Routing table

> route-filter List of routes to match

 route-type Route type

> source-address-filter List of source addresses to match

+ tag Tag string

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 tag2 Tag string 2

The key takeaway here is that you can match on things such as interface, protocol, route tag, AS path,
communities, source address, metric, and so on. Route filtering based on prefix and mask length is performed
with the route-filter keyword. There is significant power (and complexity) in router filtering, and it is covered

in "Section 3.2.5," later in this chapter.

3.2.4.2. Policy actions

When a match occurs, a wide range of actions are available:

Code View:
[edit policy-options]

lab@PBR# set policy-statement test term 1 then ?

Possible completions:

 accept Accept a route

+ apply-groups Groups from which to inherit configuration data

+ apply-groups-except Don't inherit configuration data from these groups

 >as-path-expand Prepend AS numbers prior to adding local-as (BGP only)

 as-path-prepend Prepend AS numbers to an AS path (BGP only)

 class Set class-of-service parameters

> color Color (preference) value

> color2 Color (preference) value 2

> community BGP community properties associated with a route

 cos-next-hop-map Set CoS-based next-hop map in forwarding table

 damping Define BGP route flap damping parameters

 default-action Set default policy action

> external External route

 forwarding-class Set source or destination class in forwarding table

> install-nexthop Choose the next hop to be used for forwarding

> load-balance Type of load balancing in forwarding table

> local-preference Local preference associated with a route

> metric Metric value

> metric2 Metric value 2

> metric3 Metric value 3

> metric4 Metric value 4

 next Skip to next policy or term

> next-hop Set the address of the next-hop router

 origin BGP path origin

> preference Preference value

> preference2 Preference value 2

 reject Reject a route

> tag Tag string

> tag2 Tag string 2

 trace Log matches to a trace file

Actions include AS path prepending, changing route color (internal tie-breaker), evoking damping, altering local
preference, specifying metric and community, altering a packet's forwarding class, adding a route tag, and so
forth. Key actions include accept and reject, which are termination actions. The next keyword allows you to

skip to the next term, or policy in the chain, and it is useful for shunting routes from one term or policy into
another.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.2.5. Route Filters

The ability to match on specific routes to accept or reject them or to modify some attribute is a critical aspect of
virtually any networking scenario. The majority of JUNOS software routing policy strikes most users as intuitive
and logical, given the easy-to-follow if, then construct of policy syntax.

The exception always seems to be route filtering, because to truly understand how this is performed in JUNOS
software, you must first understand the binary radix tree nature of the route lookup table and how the binary
tree is used in conjunction with route filters.

3.2.5.1. Binary trees

Binary trees have been used in computer science for several decades as a way to quickly locate a desired bit of
information. In the case of route lookup, the goal is to quickly find the longest match for some prefix, with the
corresponding next hop being the information that is sought. The Juniper Networks implementation of a binary
tree is called the J-Tree, and it forms the basis of both route lookup and policy-based route filtering. Figure 3-3
shows the root of a binary tree, along with a few of its branches.

Figure 3-3. A binary tree

Figure 3-3 shows a binary to powers of a decimal chart, to help with understanding the structure of the J-Tree.
For example, the binary sequence 0100 000 equates to a decimal 64, whereas 0110 0000 codes a decimal 96.
In this example, bit 8, which has the decimal power of 128, represents the second set of nodes from the top of
the tree. The top of the tree represents no bit, and the first pair of nodes down represents a test of the MSB,
which is bit 8 in this example, as either 0 (0), or 1 (128).

The binary tree is based on nodes that test the state of a particular bit that makes up the 32-bit IP address or
route prefix. The bit being tested is indicated by the related prefix (mask) length. For example, the top of the
tree is testing no bits, as indicated by the /0 prefix length. All prefixes match when you do not bother to test
any bits, so the top of the tree effectively represents a default route, which is to say when no other patterns
match you are guaranteed to match the first node. Whether such a match, actually results in forwarding

http://lib.ommolketab.ir
http://lib.ommolketab.ir

depends on whether a default route has been installed, but that is another story.

The tree branches to the left when a given bit is a 0, and it branches to the right for a 1. As a result, the first
two nodes below the root represent the state of the most significant bit in the most significant byte, which is
either a 0 or a 1. If it is a 0, you have a 0/1 match, which codes a decimal 0. If that bit is a 1, you have a 1/1
match, which codes a decimal 128. Each node then branches out, based on the test of the next bit, until you
reach the bottom of the tree, which represents a test of all 32 bits (which is sometimes necessary when doing a
route lookup or route filter that is based on a /32 prefix length).

In actual operation, the J-Tree is optimized and can quickly jump to a longest match when other portions of the
tree are eliminated. It could be said that the act of finding a longest match against a binary tree is not so much
finding what you seek as it is quickly eliminating all that cannot be what you want, and then simply looking at
what is left. By way of example, a 32-bit IP address can take more than 4 billion combinations. However, half of
these (2 billion) will have a 0 in the high-order bit position, whereas the other half will have a 1. By simply
testing the status of one bit, you have effectively eliminated one-half of the tree as not being possible to match.
With each subsequent bit test eliminating one-half of the remaining possibilities, you quickly arrive at a node
that either matches all 32 bits of the prefix, or does not match the prefix being evaluated, in which case you
back up one node. That is the longest match for this prefix.

3.2.5.2. Route filters and match types

When you configure a route filter, you specify a starting prefix and initial prefix length, and then include a match
type to indicate whether routes with prefixes longer than the initial value should be considered as matching. Put
another way, a route filter is based on a match against the specified prefix bits, as based on the provided mask,
in addition to the overall mask length of the prefix being evaluated. As such, it can be said that a Juniper route
filter cares as much about the prefix length as it does the prefix itself.

Figure 3-4 illustrates the supported route-filter match types in the context of a J-Tree; it was said before,

and is stated here again, that you cannot effectively use route filters if you do not first understand the operation
of the J-Tree. This is especially true for the through match type, which 99.9% of the time is applied incorrectly,

and therefore does not do what the operator wanted.

Figure 3-4. Route filter match types and the J-Tree

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 3-4 is based on a portion of the J-Tree that represents route 192.168/16. Entries below the starting node
all share the same high-order 16 bits of 192.168, but differ from the root prefix in that they have longer mask
lengths, as shown by the two nodes below the first, each of which is testing bit 17, therefore indicating a /17
mask length.

Each route filter match type is described against the corresponding portion of the figure:

exact

The exact match type is just what it sounds like. To match with exact, both the initial prefix bits must

match, and the prefix length must be equal to the value specified. If the prefix bits do not match, or if the
prefix length is either shorter or longer, the exact match type does not match. Figure 3-4 shows that

route filter 192.168.0.0/16 exact matches only on that node of the J-Tree, to the exclusion of all others.

or-longer

The or-longer match type matches the specified prefix and initial mask length and matches on prefixes

with longer mask lengths when they share the same high-order bits, as indicated by the specified prefix.
In this example, the result is a match against 192.168.0.0/16 itself, as well as 192.168.0/17 and
192.168.128/18 and all longer mask lengths, up to /32.

longer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The longer match type excludes the exact match and catches all routes with the same prefix bits, but

only when their masks are longer than the prefix length specified. The difference between or-longer and

longer is shown in Figure 3-4, where the latter excludes the exact match, which is prefix

192.168.0.0/16 in this case.

upto

The upto match type matches against the initial prefix and mask length, as well as matching prefixes with

masks that are longer than the initial value, upto the ending mask length value. In the example, the

initial prefix of 192.168.0.0/16 matches, as well as all other 192.168 prefixes that have mask lengths
upto the specified value, which is 18 in this example. Therefore, 192.168.192/18 will match, whereas

192.168.1/24 will not.

prefix-length-range

The prefix-length-range match type matches against routes with the same prefix as specified in the

initial mask length, but only when the associated mask falls between the starting and ending values. The
result is that the exact match is excluded, whereas routes with the same high-order prefix bits, but

masks that fall within the specified range, are accepted. This match type is especially useful when the
goal is to filter the route based on mask length alone, which is a common policy within service provider
networks, as many refuse to carry routes with masks longer than 28 in an effort to keep route table size
manageable. To prevent installation of any route with a mask length longer than /28, you can use a
route-filter 0/0 prefix-length-range /28-/32 reject statement. Because the initial prefix length

is 0, all prefix values match, making the decision to reject one that is based strictly on mask length.

It's worth noting that route-filter syntax supports a short form of action linking, in
which the related then action can be specified directly on the route-filter line.

Functionally there is no difference between the short form and adding an explicit
then action.

through

The through match type is generally misunderstood, and it rarely works the way folks think it should.

This is not to say that it is broken, but it has led to this somewhat humorous rule of thumb: "When you
are thinking of using through, think again." In most cases, when people use through, what they wanted

is more of the upto or prefix-length-range type of match. The statement is intended to warn the user

that in most cases, through is not what you really want, and that the decision to use it should be

carefully thought, pardon the pun, through.

A through match type matches the initial prefix and mask length exactly, as well as the ending prefix and

mask length, and matches on the contiguous set of nodes between the two points. The through match

type was originally offered to meet a corner case, in which a customer was found to be using 32 exact
matches, all based on some form of a default route. Although a true default is 0/0, the customer wanted
to ensure that they did not install any 0.0.0.0 prefixes, regardless of mask length. So, rather than a 0.0

exact, 0/1 exact, 0/2 exact ... 0/32 exact, the through match type was created to allow the same

http://lib.ommolketab.ir
http://lib.ommolketab.ir

effect with a single 0/0 through 0/32 statement. This matches the top of the tree, all the way down the

left side to the very bottom, and all contiguous points in between.

In Figure 3-4, the through match type is specified as 192.168.0.0/16 through 192.168.32.0/19. The line

shows the sequence of contiguous matches between the two points, which in this case includes
192.168.0.0/16, 192.168.0.0/17, 192.168.0.0/18, and 192.168.32.0/19. Now ask yourself (and be
honest) is this what you expected a 192.168/16 through 192.168.32/19 to match?

3.2.5.2.1. Longest match wins, but may not....

As with routing in general, route filter processing is based on finding a longest match, and then performing the
action associated with that match. There are cases where this may lead to unexpected behavior because users
do not always take into account the consequences of different match types. Recall that the longest-match
function is based on the high-order prefix bits, whereas the match type focuses more on mask length. Consider
this route-filter example, and what will happen when route 200.0.67.0/24 is evaluated against it:

[edit policy-options policy-statement test_me]

user@host# show

from {

 route-filter 200.0.0.0/16 longer reject;

 route-filter 200.0.67.0/24 longer;

 route-filter 200.0.0.0/8 orlonger accept;

}

then {

 metric 10;

 accept;

}

The question is, will route 200.0.67.0/24 match this term, and if so, is it accepted, is it rejected, or does it have
its metric set to 10 before being accepted? Think carefully, and consider how longest matching is performed,
along with how the match type comes into play.

If you answered "The route does not match, and is neither accepted, nor rejected, and no metric modification is
made," give yourself a well-deserved pat on the back. It's quite OK if you answered differently-this little tidbit
alone may well justify the expenditure for this book (you did pay for this book, right?). The key here is that the
longest match, as based on specified prefix, is against the second route-filter statement-here the first 24 bits
of the prefix do in fact match 200.0.67/24, which is more exact than either 200/8 or 200.0/16. However, the
longest match in this example has a match type of longer, meaning that only a route with a mask length of

/25–/32 with the 24 high-order bits set to 200.0.67 is considered to match.

Because this route has a mask length that is equal to the value specified, it does not match. A given route is
only evaluated against the longest match in a given term. This is to say that if the longest match ends up not
really matching, as shown in this example, other route-filter statements within that same term are not
evaluated. Instead, the route falls through to the next term or policy-or lacking any of those, to the default
policy for the routing protocol in question.

3.2.6. Default Policies

The last hurdle in understanding JUNOS software policy is to be familiar with the default policy associated with
each protocol used in your network. Understanding the default policy is important because it ultimately decides
the fate of any route that is not matched against in your user-defined policy. Some operators rely on the default
policy to do something, and others prefer to ensure that their policy is written to match on all possible routes,
which means the default policy is negated because it never gets a chance to come into play.

3.2.6.1. OSPF (and IS-IS) default policy

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The default import policy for LS protocols is to accept all routes learned through that protocol. Recent JUNOS
software releases support explicit import policy, but only for OSPF, and then only to filter external routes from
being installed into the route table. Such an import policy does not filter external route LSAs from the database,
however.

The default LS export policy is to reject everything. LSA flooding is not affected by export policy, and it is used
to convey routing in an indirect manner in an LS protocol. The result of this flooding is the advertisement of
local interfaces that are enabled to run OSPF, as well as the readvertisement (flooding) of LSAs received from
other routers.

3.2.6.2. RIP default policy

The default RIP import policy is to accept all received RIP routes that pass a sanity check. In contrast, the
default export policy is to advertise no routes. None, zip, nada, zilch. Not even RIP learned routes are
advertised with the default RIP export policy. Although it may be an odd choice of default behavior, the net
effect is that for any practical RIP deployment, you will need to create and apply a custom export policy to
readvertise RIP learned and direct routes for interfaces running RIP to other RIP speakers.

3.2.6.3. BGP default policy

The default BGP import policy is to accept all received BGP routes that pass a sanity check-for example, those
routes that do not have an AS loop, as indicated by the AS path attribute.

The default BGP export policy is to readvertise all learned BGP routes to all BGP speakers, while obeying
protocol-specific rules that prohibit one IBGP speaker from readvertising routes learned from another IBGP
speaker, unless it is functioning as a route reflector.

3.2.7. Advanced Policy Concepts

Congratulations. You have made it to this point, and therefore you now possess an in-depth and practical
understanding of routing policy. This section explores some advanced policy concepts, some of which are quite
interesting but rarely used. The use of regular expressions (regexes) is treated as an advanced topic, but differs
from the remaining topics because the use of AS path or community regex matching is somewhat common,
especially in large networks such as those operated by service providers.

3.2.7.1. Testing policy results

Making a mistake in a route-filter statement can have a dramatic impact on network stability, security, and
overall operation. For example, consider the operator that does not notice that, in the following policy example
(appropriately called whoops), rather than adding the then accept to term 1, as intended, the accept action is

mistakenly added as part of a final, unnamed term. Because this term has no from statement, it matches on all

possible routes and routing sources!

[edit policy-options]

lab@Wheat# show policy-statement whoops

term 1 {

 from {

 route-filter 0.0.0.0/0 prefix-length-range /8-/24;

 }

}

then accept; ###this action is part of an unnamed match all term!

Applying a broken policy such as this in a production network that deals with multiple live BGP feeds could result
in network meltdown when all routes, rather than the expected subset, are suddenly advertised within your
network.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

JUNOS software offers a test policy feature that is designed to avoid this type of problem. You use the test

command to filter routes through the identified policy to determine which routes are accepted (those displayed)
versus rejected.

The test policy command is primarily useful for route-filter testing. You cannot test route redistribution

policies, because the default policy for a policy test is to accept all protocol sources. This means that a given
route filter policy might match against static routes, but the same policy when applied to BGP may not result in
the advertisement of the same static routes. This is because the default policy for BGP does not accept static
routes, whereas the default for the test policy does. As an example, consider this policy:

[edit policy-options]

lab@Wheat# show policy-statement test_route_filter

term 1 {

 from {

 route-filter 0.0.0.0/2 orlonger;

 }

then next policy;

}

term 2 {

 then reject;

}

With the test_route_filter policy shown, the test policy command will match on and accept static, direct,

OSPF, BGP, and routes that match the route filter (routes in the range of 0–63), while the same policy applied
to BGP results in the advertisement of only BGP routes that match the filter. Again, this is because the matching
routes are not explicitly accepted by the test_route_filter policy in this example, and would therefore be

subjected to the default policy for BGP.

A number of static routes that range from 0–192 have been added to router Wheat. The test_route_filter

policy is run against these routes:

lab@Wheat> test policy test_route_filter 82.137.128.0/18

Policy test_route_filter: 0 prefix accepted, 1 prefix rejected

The result confirms that a prefix outside the range of 0–63 is rejected:

lab@Wheat> test policy test_route_filter 6.1.0.0/16

inet.0: 815 destinations, 1500 routes (815 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

6.1.0.0/16 *[Static/5] 00:44:51

 Discard

Policy test_route_filter: 1 prefix accepted, 0 prefix rejected

This result confirms that a prefix inside the range of 0–63 is accepted. To test against all possible routes, use
0/0:

lab@Wheat> test policy test_route_filter 0/0

inet.0: 815 destinations, 1500 routes (815 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.1.0.0/16 *[Static/5] 00:45:05

 Discard

6.2.0.0/22 *[Static/5] 00:45:05

 Discard

. . .

10.0.0.0/8 *[BGP/170] 20:42:56, localpref 100

 AS path: 1282 I

 > to 172.16.1.2 via fe-0/0/0.412

 [BGP/170] 20:42:44, localpref 80

 AS path: 666 1282 I

 > to 172.16.2.2 via fe-0/0/0.423

12.0.48.0/20 *[Static/5] 00:45:05

 Discard

. . .

 Discard

63.207.252.0/22 *[Static/5] 00:45:05

 Discard

Policy test_route_filter: 58 prefix accepted, 759 prefix rejected

The output confirms that both static and BGP routes are matching the route-filter in the test_route_filter

policy. Note again that the policy being tested does not have an explicit accept action, and instead uses the next
policy for matching routes; the acceptance in this case is the result of the default accept-all policy for the test
policy. It's worth stating again that the same policy applied to BGP will advertise only BGP routes that match the
filter, unless you add an explicit accept action to the first term.

3.2.7.2. Community and AS path regex matching

Complete coverage of regex matching is outside the scope of this book. The reader should consult technical
documentation for a full description of the supported matching operators (e.g.,
http://www.juniper.net/techpubs/software/junos/junos85/swconfig85-policy/id-10256235.html#id-10256235,
which describes AS path regex matching).

Here are some general things to be aware of when dealing with regex matching:

Regex matching provides a powerful tool to filter routes based on virtually any conceivable pattern of AS
path or community attributes.

In JUNOS software, community regex matching is POSIX 1003.2-compliant. In contrast, AS path regex
matching is not, because in an AS path regex, a dot, . (the wildcard character), represents an entire AS

number, rather than an atom or specific digit in the AS number.

You can test your regular expression syntax against routes already present in the route table using a show

route community <community-regex> or show route aspath-regex <as-path-regex> command. Once

you feel the expression syntax results in the matches you expect, you can write a policy that uses the
same regex.

To use a community of AS path regexes in a policy, you must first define the regex using a symbolic
name, which is then referenced in the policy.

The following example demonstrates a basic AS path regex:

http://www.juniper.net/techpubs/software/junos/junos85/swconfig85-policy/id-10256235.html#id-10256235
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[edit policy-options]

lab@PBR# show

policy-statement as_path_filter {

 term 1 {

 from {

 protocol bgp;

 as-path sample_as_regex;

 }

 then reject;

 }

}

as-path sample_as_regex "^. 1234 . 1111$";

Note that the symbolic name sample_as_regex is defined outside of any particular policy statement. In this

example, the specified regex will match when the associated route has an AS path consisting of exactly four
entries. The AS path can begin with any AS number, as indicated by the . wildcard (a wildcard matches a

complete AS number in JUNOS software). The second AS number has to be 1234 and can be followed by any
other AS number, but the final AS number entry must be 1111 to match. The ^ and $ characters are anchors,

which force the initial and final matches to be against the beginning and end of the line, respectively.

The as_path_filter policy statement makes use of the defined AS path regex by matching against it in term 1.

Here the result of an AS path regex match is rejection.

Here is a community regex matching example:

[edit policy-options]

lab@PBR# show

policy-statement community_regex_test {

 term 1 {

 from community comm_regex;

 then accept;

 }

}

community comm_regex members "^(.*):(.*)1:(11.1)(.*):(.*)$";

In this example, the comm_regex expression is written to match on a sequence of three community strings, but

only when the first is from any AS number and any community value, and the second is from AS 1 with a
community value of 11x1, where the x represents any decimal value between 0 and 9. This example shows that
for community regex matching, the . wildcard represents a single digit, rather than a complete AS number, as

was the case with AS path regex matching. Lastly, a match is declared only when one additional community
value is present, and like the first community match, any AS number and community string will match given the
use of the wildcard and repetition operators (. and *, respectively).

Additional details and examples of community regex matching are available at
http://www.juniper.net/techpubs/software/junos/junos85/swconfig85-policy/id-10223306.html#id-10223306.

3.2.7.3. Policy subroutines (nesting)

Routes that match a given term in a policy can reference another policy as the associated action. The policy is
called a policy subroutine, or a nested policy. This is a powerful capability that allows you to build modular
policies that, rather than being applied as a policy chain, are called from within a master policy.

A common usage of a policy subroutine takes the form of a martian or bogon filter. Rather than applying the
same martian filter as part of each policy chain, or rather than adding the complete martian filter logic to every
policy you write, you could simply have a term in all your policies that calls the martian policy as a subroutine.

http://www.juniper.net/techpubs/software/junos/junos85/swconfig85-policy/id-10223306.html#id-10223306
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The key to effectively using policy subroutines lies in understanding the result code that is handed back from
the calling policy by the called policy. Figure 3-5 illustrates policy subroutine behavior.

Figure 3-5. Policy subroutines

In Figure 3-5, things begin in the upper left, where a route is handed to the master or calling policy for
evaluation. In this example, the first term in the calling policy has a match criterion specifying from policy

<sub-routine-name>. This directive evokes the called policy for route evaluation; meanwhile, the main policy

suspends its processing pending a result code that is handed back to the calling policy once the called policy
completes its evaluation.

When the called policy/subroutine completes its evaluation, the result is either a 1 or a 0. Here, the former
indicates an accept action by the called policy, and the latter represents a reject action. When the result code

is handed back to the calling policy, a 1 is interpreted as a positive match, which results in the execution of the
calling term's then action. A return of 0 indicates no match, and policy processing continues with the next term.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For reliable operation, you must make sure that all policy subroutines match all routes
with either an accept or a reject action.

You will encounter inconsistent behavior with policy subroutines if the subroutine is not
written to match against all possible routes. This is because when a route is not
matched, the subroutine cannot perform an accept or a reject action, and therefore

returns an empty value to the calling policy. The lack of a definitive result from the
called policy often leads to unpredictable operation in the calling policy.

3.2.7.4. Boolean grouping

We covered the use of policy chains previously-a policy chain is a grouping of policies that are evaluated in
sequence until an accept or reject action is encountered. JUNOS software also supports policy expressions,

which provide Boolean grouping functionality. This is a fancy way to say you can logically AND, OR, or NOT a
given policy. You can find details on policy expressions at
http://www.juniper.net/techpubs/software/junos/junos85/swconfig85-policy/id-10418934.html#id-10418934.

By way of an example, consider the following policy:

[edit policy-options]

lab@PBR# show

policy-statement community_regex_test {

 term 1 {

 from community comm_regex;

 then accept;

 }

}

community comm_regex members "^(.*):(.*)1:(11.1)(.*):(.*)$";

As previously described, this policy matches on, and as a result, accepts routes with a particular community
sequence. What do you feel will happen if a community_regex_test policy is applied as an import with a

Boolean NOT?

[edit protocols bgp]

lab@PBR# set import (!community_regex_test)

[edit protocols bgp]

lab@PBR# show

import (! community_regex_test);

If you guessed that all routes that were formerly accepted will now be rejected, you are correct. The Boolean
NOT inverts the results of policy evaluation, changing an accept (1) to a reject (0), and vice versa.

As a final example, consider this policy expression:

[edit protocols ospf]

lab@PBR# show

export (policy1 && policy2);

The use of the logical AND indicates that for a route to be exported into OSPF, it must be evaluated as true by
both policy1 and policy2. Any route that is evaluated as false or rejected by either policy is not considered

viable for export into OSPF.

http://www.juniper.net/techpubs/software/junos/junos85/swconfig85-policy/id-10418934.html#id-10418934
http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.2.8. Summary of Routing Policy

We just detailed JUNOS software routing policy. The policy framework provides a consistent and easy-to-fathom
environment for all of your route-exchange and attribute-manipulation needs. Although route filters and the
whole J-Tree thing can be a bit daunting when first encountered, the overall logic of a JUNOS policy is easy to
follow, and the consistent way in which they are applied to routing protocols makes network administration that
much easier. With Juniper policy rather than a collection of network statements, default-information-originate
statements, distribute lists, route maps, and so on, you create and advertise a static route into OSPF, or BGP, or
RIP, using the same approach and syntax.

Advanced features such as regex-based AS path and community matching, policy subroutines, and policy
expressions ensure that you can never run out of creative and elegant ways to meet your network's policy
goals.

This section also covered the commands and procedures used to monitor and debug the operation of your
import and export policies.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.3. Conclusion

JUNOS software PIPs and routing policy may not be very sexy by themselves, but together they form the
foundation of virtually all sophisticated network configurations.

The PIP toolbox provides many useful tools that allow you to create static and aggregate routes, create and
group route tables, and alter protocol preferences. Routing policy provides a powerful and consistent set of rules
and syntax that supplies fine-grained control over the exchange of routes, along with modification of route
attributes. Once you understand the basic concepts of import and export policy, you quickly come to appreciate
the elegance of being able to perform similar tasks on different protocols, using the same policy framework,
rather than a collection of mechanisms such as route maps, distribute lists, network statements, and so on,
which may or may not work in a given protocol context.

When combined, PIP and policy yield a powerful mechanism that enables you to bend a network's operation to
suit your will. The skills and concepts covered in this chapter are demonstrated throughout the remainder of this
book, in various real-world and practical scenarios.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.4. Exam Topics

We examined the following Enterprise Exam Topics in this chapter:

PIPs:

Identify static, aggregate, and generated routes.

Describe the configuration of static routes.

Describe the purpose of the default JUNOS software route tables.

Describe global route preference and the concept of a floating static route.

Routing policy:

Identify the two types of policy application.

Identify policy components (terms, match conditions, actions, and policy chains).

Identify points where routing policy may be applied.

Describe the processing of routing policies.

Evaluate the result of a given routing policy.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.5. Chapter Review Questions

After defining an aggregate route for 0/0, you note that the M7i's system board CPU utilization increases.
What might account for this?

The default route is attracting traffic that is not specifically matched, leading to a reject

action and corresponding ICMP error packet generation

a.

The default route is attracting traffic that is not specifically matched, leading to discard and
ICMP error packet generation

b.

The default route is attracting traffic that matches more specific prefixes and is being
forwarded, hence the increased CPU usage

c.

The default route is attracting traffic that matches more specific prefixes and is being
dropped, hence the increased CPU usage

d.

1.

Which of the following defines a floating static route that backs up an OSPF externally learned route?

Set static route 1.1.10/24, next hop t1-0/0/2a.

Set static route 1.1.10/24, next hop t1-0/0/2, preference 11b.

Set static route 1.1.10/24, next hop t1-0/0/2, preference 151c.

Set static route 1.1.10/24, next hop t1-0/0/2, qualified next hopd.

None of the abovee.

2.

You issue the command set routing-options autonomous-system loops 3. What does it do?

Tolerates as many as three instances of the local AS number in transmitted route updatesa.

Tolerates as many as three instances of the local AS number in received route updatesb.

c.

3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

b.

Tolerates as many as two instances of the local AS number in transmitted route updatesc.

Tolerates as many as two instances of the local AS number in received route updatesd.

After defining a generated route for 10/8, you find that the route is inactive, despite having interfaces that
are locally numbered from the 10.x. x.0/24 space. What could account for this?

Your interfaces are all multipoint, and you have not learned any routes over any of them, so
there is no forwarding next hop for the generated route

a.

Your interfaces are all point-to-point, and you have not learned any routes over any of them,
so there is no forwarding next hop for the generated route

b.

You must define an explicit policy to list which routes are allowed to contributec.

Your interfaces are all multipoint, and you have learned routes over them, which makes the
generated route unneeded

d.

4.

What command displays the route table for a Layer 3 VPN routing instance named l3_vpn?

show routea.

show route table l3_vpnb.

show route table l3_vpn.inet.0c.

All of the aboved.

5.

You have configured RIP between three routers connected in a serial chain, but no RIP routes are being
learned. Which policy results in full RIP connectivity for all direct routes?

A RIP import policy of the form:

term 1 {

 from protocol [rip direct];

 then accept;

}

a.

b.

6.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A RIP export policy of the form:

term 1 {

 from protocol [rip direct];

 then accept;

}

b.

A RIP import policy of the form:

term 1 {

 from protocol direct;

 then accept;

}

c.

A RIP export policy of the form:

term 1 {

 from protocol direct;

 then accept;

}

d.

What happens when the static route 192.168.10/24 is evaluated by this policy?

[edit policy-options policy-statement test]

lab@PBR# show

term 1 {

 from {

 protocol bgp;

 route-filter 192.168.0.0/16 orlonger reject;

 route-filter 192.168.10.0/24 exact {

 metric 10;

 accept;

 }

 }

}

Nothing, because no match occursa.

The route is longest-matched against the first route filter and rejectedb.

The route is longest-matched against the second route filter and has its metric set to 10c.

Both b and cd.

7.

What happens if the not policy matches a route with a reject action in the following policy expression?8.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[edit protocols ospf]

lab@PBR# show

export ((! not) && and);

The result is inverted to an accept, and the second policy is evaluateda.

The reject action in the not policy ensures that the AND condition cannot be met, so the

second policy is never evaluated

b.

Both policies are evaluated, and the logical result, which is false because of the reject in the
not policy, is inverted, so the route is accepted

c.

None of the aboved.

8.

What type of import policy can you apply to OSPF?

None; LS protocols do not support the notion of import policies because it breaks database
consistency

a.

You can apply policy to filter certain LSA types, such as AS externals to create a stub areab.

Import policy for OSPF can only be used to filter AS external LSAs from being floodedc.

Import policy for OSPF can be used to prevent installation of AS external routes into the route
table, but has no effect on flooding

d.

9.

In the following configuration, which export policy is peer 1.1.1.1 subjected to?

[edit protocols bgp]

lab@PBR# show

import (! community_regex_test);

export globalize;

group internal {

 export keep_it_on_down_low;

 neighbor 1.1.1.1;

 neighbor 1.1.1.2 {

 export bad_peer_filter;

 }

}

a.

10.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The globalize policya.

The keep_it_on_down_low policyb.

The bad_peer_filter policyc.

The globalize and keep_it_on_down_low policiesd.

First the keep_it_on_down_low, and then the globalize policye.

From where does a Juniper router obtain its RID?

From explicit configuration at the [edit routing-options] hierarchya.

From the first nonmartian address found on the first interface that is foundb.

Both a and bc.

Either a or bd.

11.

You were provided a network diagram that told you to number your network from the 191.255.0.0/16
space. OSPF is enabled and adjacencies are up, but no routers are learning any routes. What can explain
this?

The default OSPF export policies advertise nothing, so you need to apply export policya.

The default OSPF import policy rejects all OSPF routes, so you need to apply import policyb.

You need to modify the martian table with a 191.255.0.0/16 accept statementc.

You need to enable OSPF on the lo0 interface to provide a route to the RID of each router in

the network

d.

12.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.6. Chapter Review Answers

Answer: A. The default next hop type for an aggregate route is reject, which when matched does result

in the M7i's system board having to create an ICMP error. Even with rate-limiting safeguards, these
messages consume system processing, but not forwarding resources.

1.

Answer: C. A floating static needs to have a preference that is less preferred than the route it backs up.
OSPF externals have a preference of 150, so you need a value that is higher; otherwise, the static route
will take precedence over the OSPF route.

2.

Answer: D. The loops argument to the autonomous-system statement affects received route updates

only. Further, whatever value is specified, subtract one for the number of local AS instances that are
permitted. The default setting of 1 will reject any route with 1 instance of the local AS number.

3.

Answer: A. Point-to-point interfaces can contribute to a generated route because an explicit next hop is
not required. LAN interfaces require some route-either static or learned-to activate an aggregate or
generated route. Policy is used to exclude routes from contributing, not to include.

4.

Answer: D. All of the commands listed will display the Layer 3 VPN instance route table. Some are simply
more verbose or more direct by displaying only the table desired.

5.

Answer: B. The default RIP import policy accepts RIP routes. To send direct routes, you need the direct
protocol, and to readvertise RIP learned routes, you need the RIP protocol. The default RIP export policy is
to reject all.

6.

Answer: A. A static route can never match a from protocol BGP condition, so it does not match the term.
There is a logical AND for distinct conditions such as route-filter and protocol when listed under the

same statement.

7.

Answer: A. The negative/reject result of the not policy is inverted, which becomes true, and this enables

the evaluation of the second policy. When the first policy is false, a logical AND can never be satisfied, so
without the ! function, the second policy would not be evaluated in this case.

8.

Answer: D. You cannot use policy to control LSA flooding. Until recently, no import could be applied, and
even now IS-IS does not support any import policy.

9.

Answer: B. Only the most explicit policy is executed, which in this case is the group-level policy because
neighbor 1.1.1 has no neighbor-level export policy.

10.

Answer: D. There can be only one RID in effect at any time, and it is disruptive to change it. The router
uses an explicit value when present; otherwise, it automatically derives one. There is no need to be able
to route to the RID, at least not for proper protocol operation.

11.

12.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Answer: C. You really have to watch those pesky martians....12.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 4. Interior Gateway Protocols and Migration Strategies

This chapter reviews key concepts and characteristics of Interior Gateway Protocols (IGPs) commonly deployed
in enterprise networks. It starts with a brief description of the three most common enterprise IGPs and provides
examples of IGP configuration and operational analysis in a JUNOS software environment. The chapter also
discusses current best practices to minimize network disruption when migrating from one IGP to another, with
configuration examples for Routing Information Protocol to Open Shortest Path First (RIP to OSPF) and
Enhanced Interior Gateway Routing Protocol to OSPF (EIGRP to OSPF) migration. The topics discussed in this
chapter include:

IGP overview

RIP deployment case study

IGP migration

RIP to OSPF migration case study

EIGRP migration case study

From an IGP perspective, a Juniper Networks router supports RIP, the OSPF protocol, and the Intermediate
System-to-Intermediate System (IS-IS) routing protocols. This chapter does not address IS-IS given that it is
normally seen in service provider networks and rarely is found in the enterprise.

It should be noted that Juniper Networks routers do not support the Cisco Systems proprietary Interior Gateway
Routing Protocol (IGRP), or the updated version known as EIGRP. Technical merits aside, licensing restrictions
combined with the closed nature of these protocols prevent Juniper Networks from implementing either of these
IGPs. Given that IGRP/EIGRP was commonly deployed in many small to medium-size enterprises, a large
portion of this chapter focuses on migration strategies designed to ease such a transition between the two
vendors.

4.1. IGP Overview

As its name would imply, the role of an IGP is to provide routing connectivity within or interior to a given routing
domain (RD). An RD is defined as a set of routers under common administrative control that share a common
routing protocol. An enterprise network, which can also be considered an autonomous system (AS), may consist
of multiple RDs, which may result from the (historic) need for multiple routed protocols, scaling limitations,
acquisitions and mergers, or even a simple lack of coordination among organizations making up the enterprise.
Route redistribution, the act of exchanging routing information among distinct routing protocols, is often
performed to tie these RDs together when connectivity is desired.

IGP functions to advertise and learn network prefixes (routes) from neighboring routers to build a route table
that ultimately contains entries for all sources advertising reachability for a given prefix. A route selection
algorithm is executed to select the best (i.e., the shortest) path between the local router and each destination,
and the next hop associated with that path is pushed into the forwarding table to affect the forwarding of
packets that longest-match against that route prefix. The IGP wants to provide full connectivity among the
routers making up an RD. Generally speaking, IGPs function to promote, not limit, connectivity, which is why we
do not see IGPs used between ASs-they lack the administrative controls needed to limit connectivity based on

http://lib.ommolketab.ir
http://lib.ommolketab.ir

routing policy. This is also why inter-AS routing is normally accomplished using an Exterior Gateway Protocol
(EGP), which today takes the form of Border Gateway Protocol (BGP) version 4. We discuss enterprise
application of BGP in Chapter 5.

When network conditions change, perhaps due to equipment failure or management activity, the IGP both
generates and receives updates and recalculates a new best route to the affected destinations. Here, the
concept of a "best" route is normally tied to a route metric, which is the criterion used to determine the relative
path of a given route. Generally speaking, a route metric is significant only to the routing protocol it's
associated with, and it is meaningful only within a given RD. In some cases, a router may learn multiple paths
to an identical destination from more than one routing protocol. Given that metric comparison between two
different IGPs is meaningless, the selection of the best route between multiple routing sources is controlled by a
route preference. The concept of route preference is explored in detail later in this chapter in "Section 4.3.1"
and is also known as administrative distance (AD) on Cisco Systems routers.

In addition to advertising internal network reachability, IGPs are often used to advertise routing information that
is external to that IGP's RD through a process known as route redistribution. Route redistribution is often used
to exchange routing information between RDs to provide intra-AS connectivity. Route redistribution can be
tricky because mistakes can easily lead to lack of connectivity (black holes) or, worse yet, routing loops. To
ensure identical forwarding paths, you may also need to map the metrics used by each routing protocol to
ensure that they are meaningful to the IGP into which they are redistributed. Route redistribution is performed
via routing policy in JUNOS software. We introduce routing policy later in this chapter and cover it in detail in
Chapter 3. On Cisco Systems platforms, redistribution is often performed through some combination of the
redistribute command, through distribute lists, or through route maps and their associated IP access lists.

Although there is a learning curve, it's often a delight for those familiar with the IOS way of performing
redistribution when they realize that JUNOS software routing policy provides the same functionality with a
consistent set of semantics/syntax, for all protocols, and all in one place!

The reader of this book is assumed to have an intermediate level understanding of the IP protocol and the
general operation and characteristics of IGPs that support IP routing. This section provides a review of major
characteristics, benefits, and drawbacks of the IGPs discussed in this chapter to prepare the reader for the
configuration and migration examples that follow.

4.1.1. Routing Information Protocol

RIP is one of the oldest IP routing protocols still in production network use and is a true case of "if something
works, why fix it?" The original specification for RIP (version 1) is defined in RFC 1058, originally published in
June 1988! RIP version 2 (RIPv2) was originally defined in RFC 1388 (1993) and is currently specified in RFC
2453 (1998).

RIP is classified as a Distance Vector (DV) routing protocol because it advertises reachability information in the
form of distance/vector pairs-which is to say that each route is represented as a cost (distance) to reach a
given prefix (vector) tuple. DV routing protocols typically exchange entire route tables among their set of
directly connected peers, on a periodic basis. This behavior, although direct and easy to understand, leads to
many of the disadvantages associated with DV routing protocols. Specifically:

Increased network bandwidth consumption stemming from the periodic exchange of potentially large route
tables, even during periods of network stability. This can be a significant issue when routers connect over
low-speed or usage-based network services.

Slow network convergence, and as a result, a propensity to produce routing loops when reconverging
around network failures. To alleviate (but not eliminate) the potential for routing loops, mechanisms such
as split horizon, poisoned reverse, route hold downs, and triggered updates are generally implemented.
These stability features come at the cost of prolonging convergence.

DV protocols are normally associated with crude route metrics that often will not yield optimal forwarding

http://lib.ommolketab.ir
http://lib.ommolketab.ir

between destinations. The typical metric (cost) for DV protocols is a simple hop count, which is a crude
measure of actual path cost, to say the least. For example, most users realize far better performance
when crossing several routers interconnected by Gigabit Ethernet links, as opposed to half as many
routers connected over low-speed serial interfaces.

On the upside, DV protocols are relatively simple to implement, understand, configure, and troubleshoot, and
they have been around forever, allowing many network engineers a chance to become proficient in their
deployment. The memory and processing requirements for DV protocols are generally less than those of a link
state (LS) routing protocol (more on that later).

To help illustrate what is meant by slow to converge, consider that the protocol's architects ultimately defined a
hop count (the number of routers that need to be crossed to reach a destination) of 16 to be infinity! Given the
original performance of initial implementations, the designers believed that networks over 16 hops in dimension
would not be able to converge in a manner considered practical for use in production networks; and those were
1980s networks, for which demanding applications such as Voice over IP were but a distant gleam in an as yet
grade-school-attending C-coder's eye. Setting infinity to a rather low value was needed because in some
conditions, RIP can converge only by cycling through a series of route exchanges between neighbors, with each
such iteration increasing the route's cost by one, until the condition is cleared by the metric reaching infinity and
both ends finally agree that the route is not reachable. With the default 30-second update frequency, this
condition is aptly named a slow count to infinity.

4.1.1.1. Stability and performance tweaks

Hold downs serve to increase stability, at the expense of rapid convergence, by preventing installation of a
route with a reachable metric, after that same route was recently marked as unreachable (cost = 16) by the
local router. This behavior helps to prevent loops by keeping the local router from installing route information
for a route that was originally advertised by the local router, and which is now being readvertised by another
neighbor. It's assumed that the slow count to infinity will complete before the hold down expires, after which
the router will be able to install the route using the lowest advertised cost.

Split horizon prevents the advertisement of routing information back over the interface from which it was
learned, and poisoned reverse alters this rule to allow readvertisement back out the learning interface, as long
as the cost is explicitly set to infinity: a case of "I can reach this destination, NOT!" This helps to avoid loops by
making it clear to any receiving routers that they should not use the advertising router as a next hop for the
prefix in question. This behavior is designed to avoid the need for a slow count to infinity that might otherwise
occur because the explicit indication that "I cannot reach destination X" is less likely to lead to
misunderstandings when compared to the absence of information associated with split horizon. To prevent
unnecessary bandwidth waste that stems from bothering to advertise a prefix that you cannot reach, most RIP
implementations use split horizon, except when a route is marked as unreachable, at which point it is advertised
with a poisoned metric for some number of update intervals (typically three).

Triggered updates allow a router to generate event-driven as well as ongoing periodic updates, serving to
expedite the rate of convergence as changes propagate quickly. When combined with hold downs and split
horizon, a RIP network can be said to receive bad news fast while good news travels slow.

4.1.1.2. RIP and RIPv2

Although the original RIP version still works and is currently supported on Juniper Networks routers, it's
assumed that readers of this book will consider deploying only RIP version 2. Although the basic operation and
configuration are the same, several important benefits are associated with RIPv2 and there are no real
drawbacks (considering that virtually all modern routers support both versions and that RIPv2 messages can be
made backward-compatible with v1 routers, albeit while losing the benefits of RIPv2 for those V1 nodes).

RIPv2's support of Variable Length Subnet Masking/classless interdomain routing (VLSM/CIDR), combined with
its ability to authenticate routing exchanges, has resulted in a breath of new life for our old friend RIP (pun
intended). Table 4-1 provides a summary comparison of the two RIP versions.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 4-1. Comparing characteristics and capabilities of RIP and RIPv2

Characteristic RIP RIPv2

Metric Hop count (16 max) Hop count (16 max)

Updates/hold down/route
timeout

30/120/180 seconds 30/120/180 seconds

Max prefixes per message 25 25 (24 when authentication is used)

Authentication None Plain text or Message Digest 5 (MD5)

Broadcast/multicast Broadcast to all nodes using all
1s, RIP-capable or not

Multicast only to RIPv2-capable routers using
224.0.0.9 (broadcast mode is configurable)

Support for VLSM/CIDR No, only classful routing is
supported (no netmask in
updates)

Yes

Route tagging No Yes (useful for tracking a route's source; i.e.,
internal versus external)

4.1.2. Open Shortest Path First

The OSPF routing protocol currently enjoys widespread use in both enterprise and service provider networks. If
OSPF can meet the needs of the world's largest network operators, it's safe to say that it should be more than
sufficient for even the largest enterprise network. OSPF version 2 is defined in RFC 2328, but numerous other
RFCs define enhanced capabilities for OSPF, such as support of not-so-stubby areas (NSSAs) in RFC 3101,
Multiprotocol Label Switching (MPLS) Traffic Engineering Extensions (MPLS TE) in RFC 3630, and in RFC 3623,
which defines graceful restart extensions that minimize data plane disruption when a neighboring OSPF router
restarts. OSPF supports virtually all the features any enterprise could desire, including VLSM, authentication,
switched circuit support (suppressed hellos), and MPLS TE extensions, among many more.

OSPF is classified as an LS routing protocol. This is because, unlike a DV protocol that exchanges its entire route
table among directly connected neighbors, OSPF exchanges only information about the local router's links, and
these updates are flooded to all routers in the same area. Flooding ensures that all the routers in the area
receive the new update at virtually the same time. The result of this flooding is a link-state database (LSDB)
that is replicated among all routers that belong to a given area. Database consistency is critical for proper
operation and the assurance of loop-free forwarding topologies. OSPF meets this requirement through reliable
link-state advertisement (LSA) exchanges that incorporate acknowledgment and retransmission procedures.
Each router performs a Shortest Path First (SPF) calculation based on the Dijkstra algorithm, using itself as the
root of the tree to compute a shortest-path graph containing nodes representing each router in the area, along
with its associated links. The metrically shortest path to each destination is then computed, and that route is
placed into the route table for consideration to become an active route by the path selection algorithm.

OSPF advertises and updates prefix information using LSA messages, which are sent only upon detection of a
change in network reachability. LSAs are also reflooded periodically to prevent their being aged out by other
routers. Typically, this occurs somewhere between 30 and 45 minutes, given the default 3,600-second LSA
lifetime. In addition, rather than sending an entire route table or database, these LSAs carry only the essential
set of information needed to describe the router's new LS. Upon sensing a change in their local LSDBs, other
routers rerun the SPF and act accordingly.

OSPF dynamically discovers and maintains neighbors through generation of periodic hello packets. An adjacency
is formed when two neighbors decide to synchronize their LSDBs to become routing peers. A router may choose
to form an adjacency with only a subset of the neighbors that it discovers to help improve efficiency, as
described in the subsequent section, "Section 4.1.2.1."

http://lib.ommolketab.ir
http://lib.ommolketab.ir

It should be no wonder that OSPF has dramatically improved convergence characteristics when one considers its
event-driven flooding of small updates to all routers in an area. This is especially true when contrasted to RIP's
period exchange of the entire route table among directly connected neighbors, who then convey that
information to their neighbors at the next scheduled periodic update.

The downside to all this increased performance is that CPU and memory load are increased in routers as
compared to the same router running a DV protocol. This is because an LS router has to house both the LSDB
and the resulting route table, and the router must compute these routes by executing an SPF algorithm each
time the LSDB changes. Considering that router processing capability and memory tend to increase, while actual
costs tend to decrease for the same unit of processing power, these drawbacks are a more-than-acceptable
trade-off for the benefit of ongoing reduced network loading and rapid convergence. Another drawback to LS
routing protocols is their relative complexity when compared to DV protocols, which can make their operation
difficult to understand, which in turn can make fault isolation more difficult.

OSPF was designed to support Type of Service (ToS)-based routing, but this capability has not been deployed
commercially. This means that a single route table is maintained, and that for each destination, a single path
metric is computed. This metric is said to be dimensionless in that it serves only to indicate the relative
goodness or badness of a path, with smaller numbers considered to be better. Exactly what is better cannot be
determined from the OSPF metric, LSDB, or resulting route table. Whether the OSPF metric is set to reflect link
speed (default), hop count, delay, reliability, or some combination thereof is a matter of administrative policy.

4.1.2.1. Neighbors and adjacencies

Previously, it was noted that OSPF dynamically discovers neighbors using a periodic exchange of hello packets.
It should also be noted that OSPF contains sanity checks that prevent neighbor discovery (and therefore,
adjacency formation) when parameters such as the hello time, area type, maximum transmission unit (MTU), or
subnet mask are mismatched. The designers of the protocol felt it was much easier to troubleshoot a missing
adjacency than the potential result of trying to operate with mismatched parameters, and having dealt with
more than a few misconfigured OSPF networks, the protocol architects were absolutely right.

4.1.2.1.1. The designated router

To maximize efficiency, OSPF does not form an adjacency with every neighbor that is detected, because the
maintenance of an adjacency requires compute cycles and because on multiaccess networks such as LANs, a full
mesh of adjacencies is largely redundant. On multiaccess networks, an election algorithm is performed to first
elect a designated router (DR), and then a backup designated router (BDR). The DR functions to represent the
LAN itself and forms an adjacency with the BDR and all other compatible neighbors (DRother) on the LAN
segment. The DRother routers form two adjacencies across the LAN-one to the DR and one to the BDR. The
neighbor state for DRother neighbors on a DRother router itself is expected to remain in the "two-way" state.
This simply means that the various DRothers have detected each other as neighbors, but an adjacency has not
been formed.

The DR is responsible for flooding LSAs that reflect the connectivity of the LAN. This means that loss of one
neighbor on a 12-node LAN results in a single LSA that is flooded by the DR, as opposed to each remaining
router flooding its own LSA. The reduced flooding results in reduced network bandwidth consumption and
reduced OSPF processing overhead. If the DR fails, the BDR will take over and a new BDR is elected.

OSPF elects a DR and BDR based on a priority setting, with a lower value indicating a lesser chance at winning
the election; a setting of 0 prevents the router from ever becoming the DR. In the event of a tie, the router with
the highest router ID (RID) takes the prize. The OSPF DR Election algorithm is nondeterministic and
nonrevertive, which means that adding a new router with a higher, more preferred priority does not result in the
overthrow of the existing DR. In other words, router priority matters only during active DR/BDR election. This
behavior minimizes the potential for network disruption/LSA flooding when new routers are added to the
network. Thus, the only way to guarantee that a given router is the DR is to either disable DR capability in all
other routers (set their priority to 0), or ensure that the desired router is powered on first and never reboots.
Where possible, the most stable and powerful router should be made the DR/BDR, and a router should ideally
be the DR for only one network segment.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.1.2.2. OSPF router types

OSPF describes various router roles that govern their operation and impact the types of areas in which they are
permitted. To become proficient with OSPF operation and network design, you must have a clear understanding
of the differences between OSPF area types and between the LSAs permitted within each area:

Internal router

Any router that has all its interfaces contained within a single area is an internal router. If attached to the
backbone area, the router is also known as a backbone router.

Backbone router

Any router with an attachment to area 0 (the backbone area) is considered a backbone router. This
router may also be an internal or area border router depending on whether it has links to other,
nonbackbone areas.

Area border router (ABR)

A router with links in two or more areas is an ABR. The ABR is responsible for connecting OSPF areas to
the backbone by conveying network summary information between the backbone and nonbackbone
areas.

Antonymous system boundary router (ASBR)

A router that injects external routing information into an OSPF domain is an ASBR.

4.1.2.3. Areas and LSAs

As previously noted, LS protocols flood LSAs to all routers in the same area in order to create a replicated LSDB
from which a route table is derived through execution of an SPF algorithm. The interplay of these processes can
lead to a downward-scaling spiral in large networks, especially when there are large numbers of unstable links.

As the number of routers and router links within an area grows, so too does the size of the resulting LSDB. In
addition, more links means a greater likelihood of an interface or route flap, which leads to greater need for
flooding of LSAs. The increased probability of LSDB churn leads to an increased frequency of the SPF
calculations that must be performed each time the LSDB changes (barring any SPF hold downs for back-to-back
LSA change events). These conditions combine to form the downward spiral of increased flooding, larger
databases, more frequent SPF runs, and a larger processing burden per SPF run, due to the large size of the
LSDB.

But don't fear: OSPF tackles this problem through the support of areas, which provides a hierarchy of LSDBs. As
a result, LSA flooding is now constrained to each area, and no one router has to carry LS for the entire RD.
Because each area is associated with its own LSDB, a multiarea OSPF network will, for the average router, result
in a smaller LSDB. Each router must maintain an LSDB only for its attached areas, and no one router need

http://lib.ommolketab.ir
http://lib.ommolketab.ir

attach to every area. This is a key point, because in theory it means OSPF has almost unlimited scaling
potential, especially when compared to nonhierarchical protocols such as Cisco's EIGRP or RIP. In addition, with
fewer routers and links, there is a reduced likelihood of having to flood updated LSAs, which in turn means a
reduced number of SPF runs are needed-when an SPF run is needed, it is now executed against a smaller
LSDB, which yields a win-win for all involved.

Routers that connect to multiple areas are called ABRs and maintain an LSDB for each area to which they
attach. An ABR has a greater processing burden than an internal router, by virtue of maintaining multiple
LSDBs, but the processing burden associated with two small LSDBs can still be considerably less than that
associated with a single, large database, for reasons cited earlier. It is common to deploy your most powerful
routers to serve the role of ABRs, because these machines will generally have to work harder than a purely
internal router, given that they must maintain an LSDB per attached area, and have the greater chance of a
resulting SPF calculation. However, the trade-off is being able to use smaller, less powerful routers within each
area (internal routers), because of the reduced LSDB size that results from a hierarchical OSPF design.

Interestingly, OSPF is truly link-state only within a single area due to the scope of LSA flooding being confined
to a single area. An ABR runs SPF for each attached area's LSDB and then summarizes its intraarea LS costs into
other areas in DV-like fashion. This behavior is the reason OSPF requires a backbone area that is designated as
area 0-generally speaking, each ABR generates and receives summaries only from the backbone, which exists
to provide a loop-free environment over which these summaries can be exchanged. Put another way, the
backbone serves to prevent loop formation that could result from the information that is hidden by ABRs when
they summarize the contents of their nonbackbone area LSDBs into simple distance/vector pairs. A router
receiving a summary advertisement uses SPF against that area's LSDB to compute the shortest path to the
router that generated the summary advertisement, and then it simply adds the summary cost, as originally
calculated by the advertising router, to obtain the total path cost.

Having said all this, it is not unheard of to see large, globally spanning OSPF networks consisting of hundreds of
routers successfully deployed within a single OSPF area. There simply are no hard rules regarding the age-old
question of "how many routers can I put into a single area," because too many variables exist. In addition to a
simple router count, one must also consider factors such as link count, link stability, router processing power,
the percentage of external versus internal LSAs, and the general robustness of the protocol's implementation.
The significance of the latter should not be underestimated. A poorly implemented OSPF instance running on the
world's fastest hardware will likely not perform very well, unless, of course, you consider the number of core
files dumped and/or reboots per unit of time, which is a significant IGP benchmark. Seriously, it's bad enough
when one network node keeps rolling over to play dead, but it's worse when instability in a single node rapidly
ripples out to affect the operation of other routers, even those with well-behaved code.

4.1.2.3.1. OSPF area types

OSPF defines several different area types. To truly understand OSPF operation, you must have a clear
understanding of the differences between OSPF area types, and between the LSAs permitted within each area:

Backbone

To ensure loop-free connectivity, OSPF maintains a special area called the backbone area, which should
always be designated as area 0. All other OSPF areas should connect themselves to the backbone for
interarea connectivity; normally, interarea traffic transits the backbone.

Stub

Stub areas do not carry AS external advertisements, with the goal being a reduction of LSDB size for
internal routers within that stub area. Because routers in a stub area see only LSAs that advertise routing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

information from within the OSPF RD, a default route is normally injected to provide reachability to
external destinations. Stub area routers use the metrically closest ABR when forwarding to AS external
prefixes.

Totally stubby area

A totally stubby area is a stub area that only receives the default route from the backbone. Routers in the
totally stubby area do not see OSPF internal routes from other OSPF areas. Their LSDBs represent their
own area and the injected default route, which is now used to reach both AS external and interarea
destinations.

NSSAs

As noted previously, an OSPF stub area does not carry external routes, which means you cannot
redistribute routes into a stub area because redistributed routes are always treated as AS externals in
OSPF. An NSSA bends this rule and allows a special form of external route within the NSSA. Although an
NSSA can originate AS externals into OSPF, external routes from other areas are still not permitted within
the NSSA. This is a case of having one's cake (small LSDB due to not being burdened by externals from
other areas) while eating it too (being allowed to burden other routers with the external routes you
choose to generate). The NSSA's ABRs can translate the special form of external route used in an NSSA
for flooding over the rest of the OSPF domain.

Transit areas

Transit areas pass traffic from one adjacent area to the backbone or to another area if the backbone is
more than two hops away from an area.

4.1.2.3.2. Primary LSA types

LSAs are the workhorse of OSPF in that they are used to flood information regarding network reachability and
form the basis of the resulting LSDB. Table 4-2 describes the LSA types used by modern OSPF networks. It
bears restating that a true understanding of OSPF requires knowledge of what type of routing information is
carried in a given LSA, in addition to understanding each LSA's flooding scope. For example, an LSA with area
scope is never seen outside the area from which it was generated, whereas an LSA with global scope is flooded
throughout the entire OSPF RD, barring any area type restrictions; that is, AS externals are never permitted
within a stub area. Table 4-2 provides a graphical summary of the purpose and scope of the most common LSA
types.

Table 4-2. Common OSPF LSA types

LSA type Generated by/contents/purpose Flooding
scope

Type 1,
router

Generated by all OSPF routers, the Type 1 LSA describes the status and cost of
the router's links.

Area

Type 2,
network

Generated by the DR on a LAN, the Type 2 LSA lists each router connected to the
broadcast link, including the DR itself.

Area

http://lib.ommolketab.ir
http://lib.ommolketab.ir

LSA type Generated by/contents/purpose Flooding
scope

Type 3,
network
summary

Generated by ABRs, Type 3 LSAs carry summary route information between OSPF
areas. Typically, this information is exchanged between a nonbackbone area and
the backbone area, or vice versa. Type 3 LSAs are not reflooded across area
boundaries; instead, a receiving ABR generates its own Type 3 LSA summarizing
its interarea routing information into any adjacent areas.

Area

Type 4,
ASBR
summary

Each ABR that forwards external route LSAs must also provide reachability
information for the associated ASBR so that other routers know how to reach that
ASBR when routing to the associated external destinations. The Type 4 LSA
provides reachability information for the OSPF domain's ASBRs. As with Type 3
LSAs, each ABR generates its own Type 4 when flooding external LSAs into
another area.

Area

Type 5, AS
external LSA

Generated by ASBRs, the Type 5 LSA carries information for prefixes that are
external to the OSPF RD.

Global,
except for
stub areas

Type 7,
NSSA

Generated by ASBRs in an NSSA, the Type 7 LSA advertises prefixes that are
external to the OSPF RD. Unlike the Type 5 LSA, Type 7 LSAs are not globally
flooded. Instead, the NSSA's ABR translates Type 7 LSAs into Type 5 for flooding
throughout the RD.

Area

Type 9 and
Type 10,
opaque LSAs

Generated by enabled OSPF routers to carry arbitrary information without having
to define new LSA types, the Type 9 LSA has area scope and is currently used to
support graceful restart extensions, whereas the Type 10 LSA has global scope
and is used for MPLS TE support.

Type 9,
area; Type
10, global

Figure 4-1. OSPF LSA types and scope

Type 3,
network
summary

Generated by ABRs, Type 3 LSAs carry summary route information between OSPF
areas. Typically, this information is exchanged between a nonbackbone area and
the backbone area, or vice versa. Type 3 LSAs are not reflooded across area
boundaries; instead, a receiving ABR generates its own Type 3 LSA summarizing
its interarea routing information into any adjacent areas.

Area

Type 4,
ASBR
summary

Each ABR that forwards external route LSAs must also provide reachability
information for the associated ASBR so that other routers know how to reach that
ASBR when routing to the associated external destinations. The Type 4 LSA
provides reachability information for the OSPF domain's ASBRs. As with Type 3
LSAs, each ABR generates its own Type 4 when flooding external LSAs into
another area.

Area

Type 5, AS
external LSA

Generated by ASBRs, the Type 5 LSA carries information for prefixes that are
external to the OSPF RD.

Global,
except for
stub areas

Type 7,
NSSA

Generated by ASBRs in an NSSA, the Type 7 LSA advertises prefixes that are
external to the OSPF RD. Unlike the Type 5 LSA, Type 7 LSAs are not globally
flooded. Instead, the NSSA's ABR translates Type 7 LSAs into Type 5 for flooding
throughout the RD.

Area

Type 9 and
Type 10,
opaque LSAs

Generated by enabled OSPF routers to carry arbitrary information without having
to define new LSA types, the Type 9 LSA has area scope and is currently used to
support graceful restart extensions, whereas the Type 10 LSA has global scope
and is used for MPLS TE support.

Type 9,
area; Type
10, global

Figure 4-1. OSPF LSA types and scope

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.1.2.4. OSPF stability and performance tweaks

Breaking a large OSPF domain into multiple areas can have a significant impact on overall performance and
convergence. In addition, most OSPF implementations support various timers to further tune and tweak the
protocol's operation.

The Juniper Networks OSPF implementation is quite optimized and lacks many of the timers and hold downs
that readers may be familiar with in IOS. It is not uncommon to see users new to Juniper asking for JUNOS
software analogs and receiving the standard answer that "they do not exist because they are not needed." The
development engineers at Juniper feel that artificially delaying transmission of an LSA-ostensibly to alleviate
the processing burden associated with its receipt-does nothing except prolong network convergence.

Table 4-3 maps OSPF-related knobs from IOS to their JUNOS software equivalent, when available.

Table 4-3. IOS versus JUNOS software OSPF timers

IOS name JUNOS
software
name

Comment

carrier-delay (0) hold-time (0) Delay notification of interface up/down events to damp
interface transitions. Default is 0, but notification times can
vary based on interrupt versus polled.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IOS name JUNOS
software
name

Comment

timers throttle spf

(spf-start, spf-hold, spf-

max-wait)

spf-delay

(200)

Control the rate of SPF calculation. In JUNOS software, the
value is used for as many as three back-to-back SPF runs, and
then a 5-second hold down is imposed to ensure stability in
the network.

timers throttle lsa all

(lsa-start, lsa-hold, lsa-

max ((0, 5000, 5000)))

N/A By default, JUNOS software sends 3 back-to-back updates
with a 50 msec delay, and then a five-second hold down.

timers lsa arrival N/A Controls the minimum interval for accepting a copy of the
same LSA.

timers pacing flood (33

msec)

transmit-

interval (30

msec)

Delay back-to-back LSA transmissions out the same interface.

ispf N/A Enable incremental SPF calculations; JUNOS software does not
support ISPF but does perform partial route calculations when
the ospf topology is stable and only routing information
changes.

JUNOS software has added an additional optimization in the form of a periodic packet management process
daemon (ppmd) that handles the generation and processing of OSPF (and other protocol) hello packets. The
goal of ppmd is to permit scaling to large numbers of protocol peers by offloading the mundane processing
tasks associated with periodic packet generation. The ppmd process can run directly in the PFE to offload RE
cycles on application-specific integrated circuit (ASIC)-based systems such as the M7i.

In addition to the aforementioned timers, both vendors also support Bidirectional Forwarding Detection (BFD),
which is a routing-protocol-agnostic mechanism to provide rapid detection of link failures, as opposed to waiting
for an OSPF adjacency timeout. Note that interface hold time comes into play only when a physical layer fault is
detected, as opposed to a link-level issue such as can occur when two routers are connected via a LAN switch,
where the local interface status remains up even when a physical fault occurs on the remote link. As of this
writing, IOS support for BFD is limited and varies by platform and software release; Cisco Systems recommends
that you see the Cisco IOS software release notes for your software version to determine support and applicable
restrictions.

4.1.3. Enhanced Interior Gateway Routing Protocol

The EIGRP is an updated version of Cisco Systems' proprietary IGRP. The original version of EIGRP had stability
issues, prompting the release of EIGRP version 1, starting in IOS versions 10.3(11), 11.0(8), and 11.1(3). This
chapter focuses strictly on EIGRP because it has largely displaced IGRP in modern enterprise networks.

EIGRP is sometimes said to be a "DV protocol that thinks it's an LS." EIGRP does in fact share some of the
characteristics normally associated with LS routing, including rapid convergence and loop avoidance, but the
lack of LSA flooding and the absence of the resulting LSDB expose EIGRP's true DV nature. This section
highlights the major operational characteristics and capabilities of EIGRP. The goal is not an exhaustive
treatment of EIGRP's operation or configuration-this subject has been covered in numerous other writings.
Instead, the purpose here is to understand EIGRP to the degree necessary to effectively replace this proprietary
legacy protocol with another IGP, while maintaining maximum network availability throughout the process.

The operational characteristics of EIGRP are as follows:

timers throttle spf

(spf-start, spf-hold, spf-

max-wait)

spf-delay

(200)

Control the rate of SPF calculation. In JUNOS software, the
value is used for as many as three back-to-back SPF runs, and
then a 5-second hold down is imposed to ensure stability in
the network.

timers throttle lsa all

(lsa-start, lsa-hold, lsa-

max ((0, 5000, 5000)))

N/A By default, JUNOS software sends 3 back-to-back updates
with a 50 msec delay, and then a five-second hold down.

timers lsa arrival N/A Controls the minimum interval for accepting a copy of the
same LSA.

timers pacing flood (33

msec)

transmit-

interval (30

msec)

Delay back-to-back LSA transmissions out the same interface.

ispf N/A Enable incremental SPF calculations; JUNOS software does not
support ISPF but does perform partial route calculations when
the ospf topology is stable and only routing information
changes.

JUNOS software has added an additional optimization in the form of a periodic packet management process
daemon (ppmd) that handles the generation and processing of OSPF (and other protocol) hello packets. The
goal of ppmd is to permit scaling to large numbers of protocol peers by offloading the mundane processing
tasks associated with periodic packet generation. The ppmd process can run directly in the PFE to offload RE
cycles on application-specific integrated circuit (ASIC)-based systems such as the M7i.

In addition to the aforementioned timers, both vendors also support Bidirectional Forwarding Detection (BFD),
which is a routing-protocol-agnostic mechanism to provide rapid detection of link failures, as opposed to waiting
for an OSPF adjacency timeout. Note that interface hold time comes into play only when a physical layer fault is
detected, as opposed to a link-level issue such as can occur when two routers are connected via a LAN switch,
where the local interface status remains up even when a physical fault occurs on the remote link. As of this
writing, IOS support for BFD is limited and varies by platform and software release; Cisco Systems recommends
that you see the Cisco IOS software release notes for your software version to determine support and applicable
restrictions.

4.1.3. Enhanced Interior Gateway Routing Protocol

The EIGRP is an updated version of Cisco Systems' proprietary IGRP. The original version of EIGRP had stability
issues, prompting the release of EIGRP version 1, starting in IOS versions 10.3(11), 11.0(8), and 11.1(3). This
chapter focuses strictly on EIGRP because it has largely displaced IGRP in modern enterprise networks.

EIGRP is sometimes said to be a "DV protocol that thinks it's an LS." EIGRP does in fact share some of the
characteristics normally associated with LS routing, including rapid convergence and loop avoidance, but the
lack of LSA flooding and the absence of the resulting LSDB expose EIGRP's true DV nature. This section
highlights the major operational characteristics and capabilities of EIGRP. The goal is not an exhaustive
treatment of EIGRP's operation or configuration-this subject has been covered in numerous other writings.
Instead, the purpose here is to understand EIGRP to the degree necessary to effectively replace this proprietary
legacy protocol with another IGP, while maintaining maximum network availability throughout the process.

The operational characteristics of EIGRP are as follows:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

It uses nonperiodic updates that are partial and bounded. This means that unlike typical DV protocol
operation, EIGRP generates only triggered updates, that these updates report only affected prefixes, and
that the updates are sent to a bounded set of neighbors.

It uses a Diffusing Update Algorithm (DUAL) to guarantee a loop-free topology while providing rapid
convergence. The specifics of DUAL operation are outside the scope of this book; suffice it to say that
DUAL is the muscle behind EIGRP's rapid converge and loop guarantees.

It uses a composite metric that, by default, factors delay and throughput. Also, it supports the factoring of
dynamically varying reliability and loading, but users are cautioned not to use this capability. EIGRP uses
the same metric formula as IGRP, but it multiplies the result by 256 for greater granularity.

It supports VLSM/CIDR and automatic summarization at classful boundaries by default.

It supports unequal cost load balancing using a variance knob.

It supports neighbor discovery and maintenance using multicast.

It automatically redistributes to IGRP when process numbers are the same.

It features protocol-independent modules for common functionality (reliable transport of protocol
messages).

It features protocol-dependant modules for IP, IPX, and AppleTalk that provide multiprotocol routing via
the construction of separate route tables using protocol-specific routing updates.

At first glance, the multiprotocol capabilities of EIGRP may seem enticing. After all, this functionality cannot be
matched by today's standardized routing protocols. There was a time when many enterprise backbones were in
fact running multiple network protocols, and the lure of a single, high-performance IGP instance that could
handle the three most common network suites was hard to resist. However, there has been an unmistakable
trend toward IP transport for virtually all Internetworking suites, including IBM's SNA/SAA. (We have a hard
time recalling the last time we knew of an enterprise still deploying the native Netware or AppleTalk transport
protocols.) In contrast, these proprietary-routed protocols are being phased out in favor of native IP transport,
which serves to render EIGRP's multiprotocol features moot in this modern age of IP internetworking.

EIGRP can load-balance across paths that are not equal in cost, based on a variance setting, which determines
how much larger a path metric can be as compared to the minimum path metric, while still being used for load
balancing. This characteristic remains unique to IGRP/EIGRP given that neither RIP nor OSPF supports unequal
cost load balancing.

4.1.3.1. EIGRP metrics

EIGRP uses a composite metric that lacks a direct corollary in standardized IGPs. EIGRP metrics tend to be large
numbers. Although providing great granularity, these huge numbers represent a real issue for a protocol such
as RIP, which sees any metric greater than 16 as infinity. It's quite unlikely that any enterprise would migrate
from EIGRP to RIP anyway, given the relatively poor performance of RIP and the widespread availability of OSPF
on modern networking devices, so such a transition scenario is not addressed in this chapter.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For reference, the formula used by EIGRP to calculate the metric is:

Metric = [K1 * Bw + K2 * Bw/(256 - Load) + K3 * Delay] * [K5/(Reliability + K4)]

Although the MTU is not used in the calculation of the metric, it is tracked across the path to identify the
minimum path MTU. The K parameters are used to weigh each of the four components that factor into the
composite metric-namely, bandwidth, load, delay, and reliability. The default values for the weighing result in
only K1 and K3 being nonzero, which gives the default formula of Bw + Delay for the metric.

Note that Cisco Systems does not recommend user adjustment of the metric weighting.
So, in practical terms, EIGRP's metric is a 32-bit quantity that represents the path's
cumulative delay (in tens of microseconds) and the path's minimum throughout in Kb/s,
divided by 107 (scaled and inverted).

For EIGRP, the result is then multiplied by 256 to convert from IGRP's 24-bit metric to EIGRP's 32-bit metric. It
should be obvious that one cannot perform a simple one-to-one mapping of legacy EIGRP metrics to OSPF,
given that EIGRP supports a 32-bit metric and OSPF's is only 16-bit. This is not a significant shortcoming in
practice, given that few enterprise networks are composed of enough paths to warrant 4 billion levels of metric
granularity anyway!

Figure 4-2 shows an example network to help illustrate how EIGRP calculates a path metric.

Figure 4-2. EIGRP metric example

Using the default composite metric weighting for the topology shown in Figure 4-2, router r1's metric to reach

10.0.3.0/24 is computed based on the minimum bandwidth and the sum of the path delay, using the formula:

Metric = 256 * (107/minBW Kbs) + (delay sum usec/10)

Plugging in the specifics for this example yields a path metric of 3,870,976 for the path to 10.0.3.0/24, from the
perspective of r1:

Metric = 256 * (107/768) + (20,000 + 1,000 /10)
Metric = 256 * (13021) + (2100)
Metric = 256 * 15121
Metric = 3,870,976

By way of comparison, the same network running OSPF with JUNOS software defaults for OSPF reference

http://lib.ommolketab.ir
http://lib.ommolketab.ir

bandwidth yields a path metric of only 137! A key point here is that although 137 is certainly much smaller than
the 3,870,976 value computed by EIGRP, the range of OSPF metrics, from 1–65,534, should be more than
sufficient to differentiate among the number of links/paths available in even the largest enterprise network.

Also, recall that the OSPF metric is said to be dimensionless, which is to say that a smaller value is always
preferred over larger values, but the exact nature of what is smaller is not conveyed in the metric itself. By
default, OSPF derives its metric from interface bandwidth using a scaling factor, but the scaling factor can be
altered, and the metric can be administratively assigned to reflect any parameter chosen by the administrator.
When all is said and done, as long as a consistent approach is adopted when assigning OSPF metrics, the right
thing should just happen. By way of example, consider a case where OSPF metrics are assigned based on the
economic costs of a usage-based network service. The resultant shortest path measures distance as a function
of economic impact and will result in optimization based on the least expensive paths between any two points.
Thus, OSPF has done its job by locating the shortest path, which in this example means the least expensive
path, given that the administration considers distance to equate to money. We revisit the subject of EIGRP to
OSPF metric conversions in "Section 4.5.3," later in this chapter.

4.1.3.2. EIGRP: A grand past and a dubious future

It's worth restating that, unlike open standards protocols such as RIP and OSPF, EIGRP is proprietary to Cisco
Systems. As a result, only Cisco Systems products can speak EIGRP, both because of the closed nature of the
specification and because of the licensing and patent issues that prevent others from implementing the protocol.
Most enterprise customers (and service providers, for that matter) prefer not to be locked into any solution that
is sourced from a single vendor, even one as large and dominant as Cisco Systems.

EIGRP's lack of hierarchical support significantly limits its use in large-scale networks due to scaling issues.
EIGRP lacks the protocol extensions needed to build a traffic engineering database (TED), as used to support
MPLS applications. Although MPLS is still somewhat rare in the enterprise, it currently enjoys significant
momentum and is in widespread use within service provider networks across the globe. Considering that many
of the requirements of service providers three or four years ago are the same requirements that we are seeing
in the enterprise today, an enterprise would be wise to hedge its bets by adopting protocols that can support
this important technology, should the need later arise.

Support is an important factor that must be considered when deploying any protocol. At one point, it was
difficult to find off-the-shelf or open source protocol analysis for IGRP/EIGRP. Cisco could change the
specification at any time, making obsolete any such tools that exist. At the time of this writing, the Wireshark
analysis program (http://www.wireshark.org/) lists EIGRP support; however, it's difficult to confirm the decode
accuracy without an open standard to reference against.

Given the drawbacks to a single-vendor closed solution, an enterprise should consider the use of open standard
protocols. In the case of IGPs, you gain higher performance, vendor independence, and off-the-shelf support
capabilities. EIGRP's multiprotocol capability aside, the largest IP networks on the planet (those of Internet
service providers [ISPs]) generally run OSPF. Service provider networks are all about reliability, stability, rapid
convergence at a large scale, and the ability to offer services that result in revenue generation-given these IGP
requirements, the reader is left to ponder why service provider networks are never found to be running EIGRP
within their networks.

4.1.4. IGP Summary

IGPs provide the indispensable service of maintaining internal connectivity throughout the myriad link and
equipment failures possible in modern IP internetworks. IGP performance and stability in the face of large
volumes of network change can provide a strategic edge by quickly routing around problems to maintain the
highest degree of connectivity possible.

This section overviewed the RIP, OSPF, and EIGRP protocols to prepare the reader for the following deployment
and IGP migration scenarios. Now is a good time to take a break before you head into the RIP deployment case
study that follows.

http://www.wireshark.org/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 4. Interior Gateway Protocols and Migration Strategies

This chapter reviews key concepts and characteristics of Interior Gateway Protocols (IGPs) commonly deployed
in enterprise networks. It starts with a brief description of the three most common enterprise IGPs and provides
examples of IGP configuration and operational analysis in a JUNOS software environment. The chapter also
discusses current best practices to minimize network disruption when migrating from one IGP to another, with
configuration examples for Routing Information Protocol to Open Shortest Path First (RIP to OSPF) and
Enhanced Interior Gateway Routing Protocol to OSPF (EIGRP to OSPF) migration. The topics discussed in this
chapter include:

IGP overview

RIP deployment case study

IGP migration

RIP to OSPF migration case study

EIGRP migration case study

From an IGP perspective, a Juniper Networks router supports RIP, the OSPF protocol, and the Intermediate
System-to-Intermediate System (IS-IS) routing protocols. This chapter does not address IS-IS given that it is
normally seen in service provider networks and rarely is found in the enterprise.

It should be noted that Juniper Networks routers do not support the Cisco Systems proprietary Interior Gateway
Routing Protocol (IGRP), or the updated version known as EIGRP. Technical merits aside, licensing restrictions
combined with the closed nature of these protocols prevent Juniper Networks from implementing either of these
IGPs. Given that IGRP/EIGRP was commonly deployed in many small to medium-size enterprises, a large
portion of this chapter focuses on migration strategies designed to ease such a transition between the two
vendors.

4.1. IGP Overview

As its name would imply, the role of an IGP is to provide routing connectivity within or interior to a given routing
domain (RD). An RD is defined as a set of routers under common administrative control that share a common
routing protocol. An enterprise network, which can also be considered an autonomous system (AS), may consist
of multiple RDs, which may result from the (historic) need for multiple routed protocols, scaling limitations,
acquisitions and mergers, or even a simple lack of coordination among organizations making up the enterprise.
Route redistribution, the act of exchanging routing information among distinct routing protocols, is often
performed to tie these RDs together when connectivity is desired.

IGP functions to advertise and learn network prefixes (routes) from neighboring routers to build a route table
that ultimately contains entries for all sources advertising reachability for a given prefix. A route selection
algorithm is executed to select the best (i.e., the shortest) path between the local router and each destination,
and the next hop associated with that path is pushed into the forwarding table to affect the forwarding of
packets that longest-match against that route prefix. The IGP wants to provide full connectivity among the
routers making up an RD. Generally speaking, IGPs function to promote, not limit, connectivity, which is why we
do not see IGPs used between ASs-they lack the administrative controls needed to limit connectivity based on

http://lib.ommolketab.ir
http://lib.ommolketab.ir

routing policy. This is also why inter-AS routing is normally accomplished using an Exterior Gateway Protocol
(EGP), which today takes the form of Border Gateway Protocol (BGP) version 4. We discuss enterprise
application of BGP in Chapter 5.

When network conditions change, perhaps due to equipment failure or management activity, the IGP both
generates and receives updates and recalculates a new best route to the affected destinations. Here, the
concept of a "best" route is normally tied to a route metric, which is the criterion used to determine the relative
path of a given route. Generally speaking, a route metric is significant only to the routing protocol it's
associated with, and it is meaningful only within a given RD. In some cases, a router may learn multiple paths
to an identical destination from more than one routing protocol. Given that metric comparison between two
different IGPs is meaningless, the selection of the best route between multiple routing sources is controlled by a
route preference. The concept of route preference is explored in detail later in this chapter in "Section 4.3.1"
and is also known as administrative distance (AD) on Cisco Systems routers.

In addition to advertising internal network reachability, IGPs are often used to advertise routing information that
is external to that IGP's RD through a process known as route redistribution. Route redistribution is often used
to exchange routing information between RDs to provide intra-AS connectivity. Route redistribution can be
tricky because mistakes can easily lead to lack of connectivity (black holes) or, worse yet, routing loops. To
ensure identical forwarding paths, you may also need to map the metrics used by each routing protocol to
ensure that they are meaningful to the IGP into which they are redistributed. Route redistribution is performed
via routing policy in JUNOS software. We introduce routing policy later in this chapter and cover it in detail in
Chapter 3. On Cisco Systems platforms, redistribution is often performed through some combination of the
redistribute command, through distribute lists, or through route maps and their associated IP access lists.

Although there is a learning curve, it's often a delight for those familiar with the IOS way of performing
redistribution when they realize that JUNOS software routing policy provides the same functionality with a
consistent set of semantics/syntax, for all protocols, and all in one place!

The reader of this book is assumed to have an intermediate level understanding of the IP protocol and the
general operation and characteristics of IGPs that support IP routing. This section provides a review of major
characteristics, benefits, and drawbacks of the IGPs discussed in this chapter to prepare the reader for the
configuration and migration examples that follow.

4.1.1. Routing Information Protocol

RIP is one of the oldest IP routing protocols still in production network use and is a true case of "if something
works, why fix it?" The original specification for RIP (version 1) is defined in RFC 1058, originally published in
June 1988! RIP version 2 (RIPv2) was originally defined in RFC 1388 (1993) and is currently specified in RFC
2453 (1998).

RIP is classified as a Distance Vector (DV) routing protocol because it advertises reachability information in the
form of distance/vector pairs-which is to say that each route is represented as a cost (distance) to reach a
given prefix (vector) tuple. DV routing protocols typically exchange entire route tables among their set of
directly connected peers, on a periodic basis. This behavior, although direct and easy to understand, leads to
many of the disadvantages associated with DV routing protocols. Specifically:

Increased network bandwidth consumption stemming from the periodic exchange of potentially large route
tables, even during periods of network stability. This can be a significant issue when routers connect over
low-speed or usage-based network services.

Slow network convergence, and as a result, a propensity to produce routing loops when reconverging
around network failures. To alleviate (but not eliminate) the potential for routing loops, mechanisms such
as split horizon, poisoned reverse, route hold downs, and triggered updates are generally implemented.
These stability features come at the cost of prolonging convergence.

DV protocols are normally associated with crude route metrics that often will not yield optimal forwarding

http://lib.ommolketab.ir
http://lib.ommolketab.ir

between destinations. The typical metric (cost) for DV protocols is a simple hop count, which is a crude
measure of actual path cost, to say the least. For example, most users realize far better performance
when crossing several routers interconnected by Gigabit Ethernet links, as opposed to half as many
routers connected over low-speed serial interfaces.

On the upside, DV protocols are relatively simple to implement, understand, configure, and troubleshoot, and
they have been around forever, allowing many network engineers a chance to become proficient in their
deployment. The memory and processing requirements for DV protocols are generally less than those of a link
state (LS) routing protocol (more on that later).

To help illustrate what is meant by slow to converge, consider that the protocol's architects ultimately defined a
hop count (the number of routers that need to be crossed to reach a destination) of 16 to be infinity! Given the
original performance of initial implementations, the designers believed that networks over 16 hops in dimension
would not be able to converge in a manner considered practical for use in production networks; and those were
1980s networks, for which demanding applications such as Voice over IP were but a distant gleam in an as yet
grade-school-attending C-coder's eye. Setting infinity to a rather low value was needed because in some
conditions, RIP can converge only by cycling through a series of route exchanges between neighbors, with each
such iteration increasing the route's cost by one, until the condition is cleared by the metric reaching infinity and
both ends finally agree that the route is not reachable. With the default 30-second update frequency, this
condition is aptly named a slow count to infinity.

4.1.1.1. Stability and performance tweaks

Hold downs serve to increase stability, at the expense of rapid convergence, by preventing installation of a
route with a reachable metric, after that same route was recently marked as unreachable (cost = 16) by the
local router. This behavior helps to prevent loops by keeping the local router from installing route information
for a route that was originally advertised by the local router, and which is now being readvertised by another
neighbor. It's assumed that the slow count to infinity will complete before the hold down expires, after which
the router will be able to install the route using the lowest advertised cost.

Split horizon prevents the advertisement of routing information back over the interface from which it was
learned, and poisoned reverse alters this rule to allow readvertisement back out the learning interface, as long
as the cost is explicitly set to infinity: a case of "I can reach this destination, NOT!" This helps to avoid loops by
making it clear to any receiving routers that they should not use the advertising router as a next hop for the
prefix in question. This behavior is designed to avoid the need for a slow count to infinity that might otherwise
occur because the explicit indication that "I cannot reach destination X" is less likely to lead to
misunderstandings when compared to the absence of information associated with split horizon. To prevent
unnecessary bandwidth waste that stems from bothering to advertise a prefix that you cannot reach, most RIP
implementations use split horizon, except when a route is marked as unreachable, at which point it is advertised
with a poisoned metric for some number of update intervals (typically three).

Triggered updates allow a router to generate event-driven as well as ongoing periodic updates, serving to
expedite the rate of convergence as changes propagate quickly. When combined with hold downs and split
horizon, a RIP network can be said to receive bad news fast while good news travels slow.

4.1.1.2. RIP and RIPv2

Although the original RIP version still works and is currently supported on Juniper Networks routers, it's
assumed that readers of this book will consider deploying only RIP version 2. Although the basic operation and
configuration are the same, several important benefits are associated with RIPv2 and there are no real
drawbacks (considering that virtually all modern routers support both versions and that RIPv2 messages can be
made backward-compatible with v1 routers, albeit while losing the benefits of RIPv2 for those V1 nodes).

RIPv2's support of Variable Length Subnet Masking/classless interdomain routing (VLSM/CIDR), combined with
its ability to authenticate routing exchanges, has resulted in a breath of new life for our old friend RIP (pun
intended). Table 4-1 provides a summary comparison of the two RIP versions.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 4-1. Comparing characteristics and capabilities of RIP and RIPv2

Characteristic RIP RIPv2

Metric Hop count (16 max) Hop count (16 max)

Updates/hold down/route
timeout

30/120/180 seconds 30/120/180 seconds

Max prefixes per message 25 25 (24 when authentication is used)

Authentication None Plain text or Message Digest 5 (MD5)

Broadcast/multicast Broadcast to all nodes using all
1s, RIP-capable or not

Multicast only to RIPv2-capable routers using
224.0.0.9 (broadcast mode is configurable)

Support for VLSM/CIDR No, only classful routing is
supported (no netmask in
updates)

Yes

Route tagging No Yes (useful for tracking a route's source; i.e.,
internal versus external)

4.1.2. Open Shortest Path First

The OSPF routing protocol currently enjoys widespread use in both enterprise and service provider networks. If
OSPF can meet the needs of the world's largest network operators, it's safe to say that it should be more than
sufficient for even the largest enterprise network. OSPF version 2 is defined in RFC 2328, but numerous other
RFCs define enhanced capabilities for OSPF, such as support of not-so-stubby areas (NSSAs) in RFC 3101,
Multiprotocol Label Switching (MPLS) Traffic Engineering Extensions (MPLS TE) in RFC 3630, and in RFC 3623,
which defines graceful restart extensions that minimize data plane disruption when a neighboring OSPF router
restarts. OSPF supports virtually all the features any enterprise could desire, including VLSM, authentication,
switched circuit support (suppressed hellos), and MPLS TE extensions, among many more.

OSPF is classified as an LS routing protocol. This is because, unlike a DV protocol that exchanges its entire route
table among directly connected neighbors, OSPF exchanges only information about the local router's links, and
these updates are flooded to all routers in the same area. Flooding ensures that all the routers in the area
receive the new update at virtually the same time. The result of this flooding is a link-state database (LSDB)
that is replicated among all routers that belong to a given area. Database consistency is critical for proper
operation and the assurance of loop-free forwarding topologies. OSPF meets this requirement through reliable
link-state advertisement (LSA) exchanges that incorporate acknowledgment and retransmission procedures.
Each router performs a Shortest Path First (SPF) calculation based on the Dijkstra algorithm, using itself as the
root of the tree to compute a shortest-path graph containing nodes representing each router in the area, along
with its associated links. The metrically shortest path to each destination is then computed, and that route is
placed into the route table for consideration to become an active route by the path selection algorithm.

OSPF advertises and updates prefix information using LSA messages, which are sent only upon detection of a
change in network reachability. LSAs are also reflooded periodically to prevent their being aged out by other
routers. Typically, this occurs somewhere between 30 and 45 minutes, given the default 3,600-second LSA
lifetime. In addition, rather than sending an entire route table or database, these LSAs carry only the essential
set of information needed to describe the router's new LS. Upon sensing a change in their local LSDBs, other
routers rerun the SPF and act accordingly.

OSPF dynamically discovers and maintains neighbors through generation of periodic hello packets. An adjacency
is formed when two neighbors decide to synchronize their LSDBs to become routing peers. A router may choose
to form an adjacency with only a subset of the neighbors that it discovers to help improve efficiency, as
described in the subsequent section, "Section 4.1.2.1."

http://lib.ommolketab.ir
http://lib.ommolketab.ir

It should be no wonder that OSPF has dramatically improved convergence characteristics when one considers its
event-driven flooding of small updates to all routers in an area. This is especially true when contrasted to RIP's
period exchange of the entire route table among directly connected neighbors, who then convey that
information to their neighbors at the next scheduled periodic update.

The downside to all this increased performance is that CPU and memory load are increased in routers as
compared to the same router running a DV protocol. This is because an LS router has to house both the LSDB
and the resulting route table, and the router must compute these routes by executing an SPF algorithm each
time the LSDB changes. Considering that router processing capability and memory tend to increase, while actual
costs tend to decrease for the same unit of processing power, these drawbacks are a more-than-acceptable
trade-off for the benefit of ongoing reduced network loading and rapid convergence. Another drawback to LS
routing protocols is their relative complexity when compared to DV protocols, which can make their operation
difficult to understand, which in turn can make fault isolation more difficult.

OSPF was designed to support Type of Service (ToS)-based routing, but this capability has not been deployed
commercially. This means that a single route table is maintained, and that for each destination, a single path
metric is computed. This metric is said to be dimensionless in that it serves only to indicate the relative
goodness or badness of a path, with smaller numbers considered to be better. Exactly what is better cannot be
determined from the OSPF metric, LSDB, or resulting route table. Whether the OSPF metric is set to reflect link
speed (default), hop count, delay, reliability, or some combination thereof is a matter of administrative policy.

4.1.2.1. Neighbors and adjacencies

Previously, it was noted that OSPF dynamically discovers neighbors using a periodic exchange of hello packets.
It should also be noted that OSPF contains sanity checks that prevent neighbor discovery (and therefore,
adjacency formation) when parameters such as the hello time, area type, maximum transmission unit (MTU), or
subnet mask are mismatched. The designers of the protocol felt it was much easier to troubleshoot a missing
adjacency than the potential result of trying to operate with mismatched parameters, and having dealt with
more than a few misconfigured OSPF networks, the protocol architects were absolutely right.

4.1.2.1.1. The designated router

To maximize efficiency, OSPF does not form an adjacency with every neighbor that is detected, because the
maintenance of an adjacency requires compute cycles and because on multiaccess networks such as LANs, a full
mesh of adjacencies is largely redundant. On multiaccess networks, an election algorithm is performed to first
elect a designated router (DR), and then a backup designated router (BDR). The DR functions to represent the
LAN itself and forms an adjacency with the BDR and all other compatible neighbors (DRother) on the LAN
segment. The DRother routers form two adjacencies across the LAN-one to the DR and one to the BDR. The
neighbor state for DRother neighbors on a DRother router itself is expected to remain in the "two-way" state.
This simply means that the various DRothers have detected each other as neighbors, but an adjacency has not
been formed.

The DR is responsible for flooding LSAs that reflect the connectivity of the LAN. This means that loss of one
neighbor on a 12-node LAN results in a single LSA that is flooded by the DR, as opposed to each remaining
router flooding its own LSA. The reduced flooding results in reduced network bandwidth consumption and
reduced OSPF processing overhead. If the DR fails, the BDR will take over and a new BDR is elected.

OSPF elects a DR and BDR based on a priority setting, with a lower value indicating a lesser chance at winning
the election; a setting of 0 prevents the router from ever becoming the DR. In the event of a tie, the router with
the highest router ID (RID) takes the prize. The OSPF DR Election algorithm is nondeterministic and
nonrevertive, which means that adding a new router with a higher, more preferred priority does not result in the
overthrow of the existing DR. In other words, router priority matters only during active DR/BDR election. This
behavior minimizes the potential for network disruption/LSA flooding when new routers are added to the
network. Thus, the only way to guarantee that a given router is the DR is to either disable DR capability in all
other routers (set their priority to 0), or ensure that the desired router is powered on first and never reboots.
Where possible, the most stable and powerful router should be made the DR/BDR, and a router should ideally
be the DR for only one network segment.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.1.2.2. OSPF router types

OSPF describes various router roles that govern their operation and impact the types of areas in which they are
permitted. To become proficient with OSPF operation and network design, you must have a clear understanding
of the differences between OSPF area types and between the LSAs permitted within each area:

Internal router

Any router that has all its interfaces contained within a single area is an internal router. If attached to the
backbone area, the router is also known as a backbone router.

Backbone router

Any router with an attachment to area 0 (the backbone area) is considered a backbone router. This
router may also be an internal or area border router depending on whether it has links to other,
nonbackbone areas.

Area border router (ABR)

A router with links in two or more areas is an ABR. The ABR is responsible for connecting OSPF areas to
the backbone by conveying network summary information between the backbone and nonbackbone
areas.

Antonymous system boundary router (ASBR)

A router that injects external routing information into an OSPF domain is an ASBR.

4.1.2.3. Areas and LSAs

As previously noted, LS protocols flood LSAs to all routers in the same area in order to create a replicated LSDB
from which a route table is derived through execution of an SPF algorithm. The interplay of these processes can
lead to a downward-scaling spiral in large networks, especially when there are large numbers of unstable links.

As the number of routers and router links within an area grows, so too does the size of the resulting LSDB. In
addition, more links means a greater likelihood of an interface or route flap, which leads to greater need for
flooding of LSAs. The increased probability of LSDB churn leads to an increased frequency of the SPF
calculations that must be performed each time the LSDB changes (barring any SPF hold downs for back-to-back
LSA change events). These conditions combine to form the downward spiral of increased flooding, larger
databases, more frequent SPF runs, and a larger processing burden per SPF run, due to the large size of the
LSDB.

But don't fear: OSPF tackles this problem through the support of areas, which provides a hierarchy of LSDBs. As
a result, LSA flooding is now constrained to each area, and no one router has to carry LS for the entire RD.
Because each area is associated with its own LSDB, a multiarea OSPF network will, for the average router, result
in a smaller LSDB. Each router must maintain an LSDB only for its attached areas, and no one router need

http://lib.ommolketab.ir
http://lib.ommolketab.ir

attach to every area. This is a key point, because in theory it means OSPF has almost unlimited scaling
potential, especially when compared to nonhierarchical protocols such as Cisco's EIGRP or RIP. In addition, with
fewer routers and links, there is a reduced likelihood of having to flood updated LSAs, which in turn means a
reduced number of SPF runs are needed-when an SPF run is needed, it is now executed against a smaller
LSDB, which yields a win-win for all involved.

Routers that connect to multiple areas are called ABRs and maintain an LSDB for each area to which they
attach. An ABR has a greater processing burden than an internal router, by virtue of maintaining multiple
LSDBs, but the processing burden associated with two small LSDBs can still be considerably less than that
associated with a single, large database, for reasons cited earlier. It is common to deploy your most powerful
routers to serve the role of ABRs, because these machines will generally have to work harder than a purely
internal router, given that they must maintain an LSDB per attached area, and have the greater chance of a
resulting SPF calculation. However, the trade-off is being able to use smaller, less powerful routers within each
area (internal routers), because of the reduced LSDB size that results from a hierarchical OSPF design.

Interestingly, OSPF is truly link-state only within a single area due to the scope of LSA flooding being confined
to a single area. An ABR runs SPF for each attached area's LSDB and then summarizes its intraarea LS costs into
other areas in DV-like fashion. This behavior is the reason OSPF requires a backbone area that is designated as
area 0-generally speaking, each ABR generates and receives summaries only from the backbone, which exists
to provide a loop-free environment over which these summaries can be exchanged. Put another way, the
backbone serves to prevent loop formation that could result from the information that is hidden by ABRs when
they summarize the contents of their nonbackbone area LSDBs into simple distance/vector pairs. A router
receiving a summary advertisement uses SPF against that area's LSDB to compute the shortest path to the
router that generated the summary advertisement, and then it simply adds the summary cost, as originally
calculated by the advertising router, to obtain the total path cost.

Having said all this, it is not unheard of to see large, globally spanning OSPF networks consisting of hundreds of
routers successfully deployed within a single OSPF area. There simply are no hard rules regarding the age-old
question of "how many routers can I put into a single area," because too many variables exist. In addition to a
simple router count, one must also consider factors such as link count, link stability, router processing power,
the percentage of external versus internal LSAs, and the general robustness of the protocol's implementation.
The significance of the latter should not be underestimated. A poorly implemented OSPF instance running on the
world's fastest hardware will likely not perform very well, unless, of course, you consider the number of core
files dumped and/or reboots per unit of time, which is a significant IGP benchmark. Seriously, it's bad enough
when one network node keeps rolling over to play dead, but it's worse when instability in a single node rapidly
ripples out to affect the operation of other routers, even those with well-behaved code.

4.1.2.3.1. OSPF area types

OSPF defines several different area types. To truly understand OSPF operation, you must have a clear
understanding of the differences between OSPF area types, and between the LSAs permitted within each area:

Backbone

To ensure loop-free connectivity, OSPF maintains a special area called the backbone area, which should
always be designated as area 0. All other OSPF areas should connect themselves to the backbone for
interarea connectivity; normally, interarea traffic transits the backbone.

Stub

Stub areas do not carry AS external advertisements, with the goal being a reduction of LSDB size for
internal routers within that stub area. Because routers in a stub area see only LSAs that advertise routing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

information from within the OSPF RD, a default route is normally injected to provide reachability to
external destinations. Stub area routers use the metrically closest ABR when forwarding to AS external
prefixes.

Totally stubby area

A totally stubby area is a stub area that only receives the default route from the backbone. Routers in the
totally stubby area do not see OSPF internal routes from other OSPF areas. Their LSDBs represent their
own area and the injected default route, which is now used to reach both AS external and interarea
destinations.

NSSAs

As noted previously, an OSPF stub area does not carry external routes, which means you cannot
redistribute routes into a stub area because redistributed routes are always treated as AS externals in
OSPF. An NSSA bends this rule and allows a special form of external route within the NSSA. Although an
NSSA can originate AS externals into OSPF, external routes from other areas are still not permitted within
the NSSA. This is a case of having one's cake (small LSDB due to not being burdened by externals from
other areas) while eating it too (being allowed to burden other routers with the external routes you
choose to generate). The NSSA's ABRs can translate the special form of external route used in an NSSA
for flooding over the rest of the OSPF domain.

Transit areas

Transit areas pass traffic from one adjacent area to the backbone or to another area if the backbone is
more than two hops away from an area.

4.1.2.3.2. Primary LSA types

LSAs are the workhorse of OSPF in that they are used to flood information regarding network reachability and
form the basis of the resulting LSDB. Table 4-2 describes the LSA types used by modern OSPF networks. It
bears restating that a true understanding of OSPF requires knowledge of what type of routing information is
carried in a given LSA, in addition to understanding each LSA's flooding scope. For example, an LSA with area
scope is never seen outside the area from which it was generated, whereas an LSA with global scope is flooded
throughout the entire OSPF RD, barring any area type restrictions; that is, AS externals are never permitted
within a stub area. Table 4-2 provides a graphical summary of the purpose and scope of the most common LSA
types.

Table 4-2. Common OSPF LSA types

LSA type Generated by/contents/purpose Flooding
scope

Type 1,
router

Generated by all OSPF routers, the Type 1 LSA describes the status and cost of
the router's links.

Area

Type 2,
network

Generated by the DR on a LAN, the Type 2 LSA lists each router connected to the
broadcast link, including the DR itself.

Area

http://lib.ommolketab.ir
http://lib.ommolketab.ir

LSA type Generated by/contents/purpose Flooding
scope

Type 3,
network
summary

Generated by ABRs, Type 3 LSAs carry summary route information between OSPF
areas. Typically, this information is exchanged between a nonbackbone area and
the backbone area, or vice versa. Type 3 LSAs are not reflooded across area
boundaries; instead, a receiving ABR generates its own Type 3 LSA summarizing
its interarea routing information into any adjacent areas.

Area

Type 4,
ASBR
summary

Each ABR that forwards external route LSAs must also provide reachability
information for the associated ASBR so that other routers know how to reach that
ASBR when routing to the associated external destinations. The Type 4 LSA
provides reachability information for the OSPF domain's ASBRs. As with Type 3
LSAs, each ABR generates its own Type 4 when flooding external LSAs into
another area.

Area

Type 5, AS
external LSA

Generated by ASBRs, the Type 5 LSA carries information for prefixes that are
external to the OSPF RD.

Global,
except for
stub areas

Type 7,
NSSA

Generated by ASBRs in an NSSA, the Type 7 LSA advertises prefixes that are
external to the OSPF RD. Unlike the Type 5 LSA, Type 7 LSAs are not globally
flooded. Instead, the NSSA's ABR translates Type 7 LSAs into Type 5 for flooding
throughout the RD.

Area

Type 9 and
Type 10,
opaque LSAs

Generated by enabled OSPF routers to carry arbitrary information without having
to define new LSA types, the Type 9 LSA has area scope and is currently used to
support graceful restart extensions, whereas the Type 10 LSA has global scope
and is used for MPLS TE support.

Type 9,
area; Type
10, global

Figure 4-1. OSPF LSA types and scope

Type 3,
network
summary

Generated by ABRs, Type 3 LSAs carry summary route information between OSPF
areas. Typically, this information is exchanged between a nonbackbone area and
the backbone area, or vice versa. Type 3 LSAs are not reflooded across area
boundaries; instead, a receiving ABR generates its own Type 3 LSA summarizing
its interarea routing information into any adjacent areas.

Area

Type 4,
ASBR
summary

Each ABR that forwards external route LSAs must also provide reachability
information for the associated ASBR so that other routers know how to reach that
ASBR when routing to the associated external destinations. The Type 4 LSA
provides reachability information for the OSPF domain's ASBRs. As with Type 3
LSAs, each ABR generates its own Type 4 when flooding external LSAs into
another area.

Area

Type 5, AS
external LSA

Generated by ASBRs, the Type 5 LSA carries information for prefixes that are
external to the OSPF RD.

Global,
except for
stub areas

Type 7,
NSSA

Generated by ASBRs in an NSSA, the Type 7 LSA advertises prefixes that are
external to the OSPF RD. Unlike the Type 5 LSA, Type 7 LSAs are not globally
flooded. Instead, the NSSA's ABR translates Type 7 LSAs into Type 5 for flooding
throughout the RD.

Area

Type 9 and
Type 10,
opaque LSAs

Generated by enabled OSPF routers to carry arbitrary information without having
to define new LSA types, the Type 9 LSA has area scope and is currently used to
support graceful restart extensions, whereas the Type 10 LSA has global scope
and is used for MPLS TE support.

Type 9,
area; Type
10, global

Figure 4-1. OSPF LSA types and scope

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.1.2.4. OSPF stability and performance tweaks

Breaking a large OSPF domain into multiple areas can have a significant impact on overall performance and
convergence. In addition, most OSPF implementations support various timers to further tune and tweak the
protocol's operation.

The Juniper Networks OSPF implementation is quite optimized and lacks many of the timers and hold downs
that readers may be familiar with in IOS. It is not uncommon to see users new to Juniper asking for JUNOS
software analogs and receiving the standard answer that "they do not exist because they are not needed." The
development engineers at Juniper feel that artificially delaying transmission of an LSA-ostensibly to alleviate
the processing burden associated with its receipt-does nothing except prolong network convergence.

Table 4-3 maps OSPF-related knobs from IOS to their JUNOS software equivalent, when available.

Table 4-3. IOS versus JUNOS software OSPF timers

IOS name JUNOS
software
name

Comment

carrier-delay (0) hold-time (0) Delay notification of interface up/down events to damp
interface transitions. Default is 0, but notification times can
vary based on interrupt versus polled.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IOS name JUNOS
software
name

Comment

timers throttle spf

(spf-start, spf-hold, spf-

max-wait)

spf-delay

(200)

Control the rate of SPF calculation. In JUNOS software, the
value is used for as many as three back-to-back SPF runs, and
then a 5-second hold down is imposed to ensure stability in
the network.

timers throttle lsa all

(lsa-start, lsa-hold, lsa-

max ((0, 5000, 5000)))

N/A By default, JUNOS software sends 3 back-to-back updates
with a 50 msec delay, and then a five-second hold down.

timers lsa arrival N/A Controls the minimum interval for accepting a copy of the
same LSA.

timers pacing flood (33

msec)

transmit-

interval (30

msec)

Delay back-to-back LSA transmissions out the same interface.

ispf N/A Enable incremental SPF calculations; JUNOS software does not
support ISPF but does perform partial route calculations when
the ospf topology is stable and only routing information
changes.

JUNOS software has added an additional optimization in the form of a periodic packet management process
daemon (ppmd) that handles the generation and processing of OSPF (and other protocol) hello packets. The
goal of ppmd is to permit scaling to large numbers of protocol peers by offloading the mundane processing
tasks associated with periodic packet generation. The ppmd process can run directly in the PFE to offload RE
cycles on application-specific integrated circuit (ASIC)-based systems such as the M7i.

In addition to the aforementioned timers, both vendors also support Bidirectional Forwarding Detection (BFD),
which is a routing-protocol-agnostic mechanism to provide rapid detection of link failures, as opposed to waiting
for an OSPF adjacency timeout. Note that interface hold time comes into play only when a physical layer fault is
detected, as opposed to a link-level issue such as can occur when two routers are connected via a LAN switch,
where the local interface status remains up even when a physical fault occurs on the remote link. As of this
writing, IOS support for BFD is limited and varies by platform and software release; Cisco Systems recommends
that you see the Cisco IOS software release notes for your software version to determine support and applicable
restrictions.

4.1.3. Enhanced Interior Gateway Routing Protocol

The EIGRP is an updated version of Cisco Systems' proprietary IGRP. The original version of EIGRP had stability
issues, prompting the release of EIGRP version 1, starting in IOS versions 10.3(11), 11.0(8), and 11.1(3). This
chapter focuses strictly on EIGRP because it has largely displaced IGRP in modern enterprise networks.

EIGRP is sometimes said to be a "DV protocol that thinks it's an LS." EIGRP does in fact share some of the
characteristics normally associated with LS routing, including rapid convergence and loop avoidance, but the
lack of LSA flooding and the absence of the resulting LSDB expose EIGRP's true DV nature. This section
highlights the major operational characteristics and capabilities of EIGRP. The goal is not an exhaustive
treatment of EIGRP's operation or configuration-this subject has been covered in numerous other writings.
Instead, the purpose here is to understand EIGRP to the degree necessary to effectively replace this proprietary
legacy protocol with another IGP, while maintaining maximum network availability throughout the process.

The operational characteristics of EIGRP are as follows:

timers throttle spf

(spf-start, spf-hold, spf-

max-wait)

spf-delay

(200)

Control the rate of SPF calculation. In JUNOS software, the
value is used for as many as three back-to-back SPF runs, and
then a 5-second hold down is imposed to ensure stability in
the network.

timers throttle lsa all

(lsa-start, lsa-hold, lsa-

max ((0, 5000, 5000)))

N/A By default, JUNOS software sends 3 back-to-back updates
with a 50 msec delay, and then a five-second hold down.

timers lsa arrival N/A Controls the minimum interval for accepting a copy of the
same LSA.

timers pacing flood (33

msec)

transmit-

interval (30

msec)

Delay back-to-back LSA transmissions out the same interface.

ispf N/A Enable incremental SPF calculations; JUNOS software does not
support ISPF but does perform partial route calculations when
the ospf topology is stable and only routing information
changes.

JUNOS software has added an additional optimization in the form of a periodic packet management process
daemon (ppmd) that handles the generation and processing of OSPF (and other protocol) hello packets. The
goal of ppmd is to permit scaling to large numbers of protocol peers by offloading the mundane processing
tasks associated with periodic packet generation. The ppmd process can run directly in the PFE to offload RE
cycles on application-specific integrated circuit (ASIC)-based systems such as the M7i.

In addition to the aforementioned timers, both vendors also support Bidirectional Forwarding Detection (BFD),
which is a routing-protocol-agnostic mechanism to provide rapid detection of link failures, as opposed to waiting
for an OSPF adjacency timeout. Note that interface hold time comes into play only when a physical layer fault is
detected, as opposed to a link-level issue such as can occur when two routers are connected via a LAN switch,
where the local interface status remains up even when a physical fault occurs on the remote link. As of this
writing, IOS support for BFD is limited and varies by platform and software release; Cisco Systems recommends
that you see the Cisco IOS software release notes for your software version to determine support and applicable
restrictions.

4.1.3. Enhanced Interior Gateway Routing Protocol

The EIGRP is an updated version of Cisco Systems' proprietary IGRP. The original version of EIGRP had stability
issues, prompting the release of EIGRP version 1, starting in IOS versions 10.3(11), 11.0(8), and 11.1(3). This
chapter focuses strictly on EIGRP because it has largely displaced IGRP in modern enterprise networks.

EIGRP is sometimes said to be a "DV protocol that thinks it's an LS." EIGRP does in fact share some of the
characteristics normally associated with LS routing, including rapid convergence and loop avoidance, but the
lack of LSA flooding and the absence of the resulting LSDB expose EIGRP's true DV nature. This section
highlights the major operational characteristics and capabilities of EIGRP. The goal is not an exhaustive
treatment of EIGRP's operation or configuration-this subject has been covered in numerous other writings.
Instead, the purpose here is to understand EIGRP to the degree necessary to effectively replace this proprietary
legacy protocol with another IGP, while maintaining maximum network availability throughout the process.

The operational characteristics of EIGRP are as follows:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

It uses nonperiodic updates that are partial and bounded. This means that unlike typical DV protocol
operation, EIGRP generates only triggered updates, that these updates report only affected prefixes, and
that the updates are sent to a bounded set of neighbors.

It uses a Diffusing Update Algorithm (DUAL) to guarantee a loop-free topology while providing rapid
convergence. The specifics of DUAL operation are outside the scope of this book; suffice it to say that
DUAL is the muscle behind EIGRP's rapid converge and loop guarantees.

It uses a composite metric that, by default, factors delay and throughput. Also, it supports the factoring of
dynamically varying reliability and loading, but users are cautioned not to use this capability. EIGRP uses
the same metric formula as IGRP, but it multiplies the result by 256 for greater granularity.

It supports VLSM/CIDR and automatic summarization at classful boundaries by default.

It supports unequal cost load balancing using a variance knob.

It supports neighbor discovery and maintenance using multicast.

It automatically redistributes to IGRP when process numbers are the same.

It features protocol-independent modules for common functionality (reliable transport of protocol
messages).

It features protocol-dependant modules for IP, IPX, and AppleTalk that provide multiprotocol routing via
the construction of separate route tables using protocol-specific routing updates.

At first glance, the multiprotocol capabilities of EIGRP may seem enticing. After all, this functionality cannot be
matched by today's standardized routing protocols. There was a time when many enterprise backbones were in
fact running multiple network protocols, and the lure of a single, high-performance IGP instance that could
handle the three most common network suites was hard to resist. However, there has been an unmistakable
trend toward IP transport for virtually all Internetworking suites, including IBM's SNA/SAA. (We have a hard
time recalling the last time we knew of an enterprise still deploying the native Netware or AppleTalk transport
protocols.) In contrast, these proprietary-routed protocols are being phased out in favor of native IP transport,
which serves to render EIGRP's multiprotocol features moot in this modern age of IP internetworking.

EIGRP can load-balance across paths that are not equal in cost, based on a variance setting, which determines
how much larger a path metric can be as compared to the minimum path metric, while still being used for load
balancing. This characteristic remains unique to IGRP/EIGRP given that neither RIP nor OSPF supports unequal
cost load balancing.

4.1.3.1. EIGRP metrics

EIGRP uses a composite metric that lacks a direct corollary in standardized IGPs. EIGRP metrics tend to be large
numbers. Although providing great granularity, these huge numbers represent a real issue for a protocol such
as RIP, which sees any metric greater than 16 as infinity. It's quite unlikely that any enterprise would migrate
from EIGRP to RIP anyway, given the relatively poor performance of RIP and the widespread availability of OSPF
on modern networking devices, so such a transition scenario is not addressed in this chapter.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For reference, the formula used by EIGRP to calculate the metric is:

Metric = [K1 * Bw + K2 * Bw/(256 - Load) + K3 * Delay] * [K5/(Reliability + K4)]

Although the MTU is not used in the calculation of the metric, it is tracked across the path to identify the
minimum path MTU. The K parameters are used to weigh each of the four components that factor into the
composite metric-namely, bandwidth, load, delay, and reliability. The default values for the weighing result in
only K1 and K3 being nonzero, which gives the default formula of Bw + Delay for the metric.

Note that Cisco Systems does not recommend user adjustment of the metric weighting.
So, in practical terms, EIGRP's metric is a 32-bit quantity that represents the path's
cumulative delay (in tens of microseconds) and the path's minimum throughout in Kb/s,
divided by 107 (scaled and inverted).

For EIGRP, the result is then multiplied by 256 to convert from IGRP's 24-bit metric to EIGRP's 32-bit metric. It
should be obvious that one cannot perform a simple one-to-one mapping of legacy EIGRP metrics to OSPF,
given that EIGRP supports a 32-bit metric and OSPF's is only 16-bit. This is not a significant shortcoming in
practice, given that few enterprise networks are composed of enough paths to warrant 4 billion levels of metric
granularity anyway!

Figure 4-2 shows an example network to help illustrate how EIGRP calculates a path metric.

Figure 4-2. EIGRP metric example

Using the default composite metric weighting for the topology shown in Figure 4-2, router r1's metric to reach

10.0.3.0/24 is computed based on the minimum bandwidth and the sum of the path delay, using the formula:

Metric = 256 * (107/minBW Kbs) + (delay sum usec/10)

Plugging in the specifics for this example yields a path metric of 3,870,976 for the path to 10.0.3.0/24, from the
perspective of r1:

Metric = 256 * (107/768) + (20,000 + 1,000 /10)
Metric = 256 * (13021) + (2100)
Metric = 256 * 15121
Metric = 3,870,976

By way of comparison, the same network running OSPF with JUNOS software defaults for OSPF reference

http://lib.ommolketab.ir
http://lib.ommolketab.ir

bandwidth yields a path metric of only 137! A key point here is that although 137 is certainly much smaller than
the 3,870,976 value computed by EIGRP, the range of OSPF metrics, from 1–65,534, should be more than
sufficient to differentiate among the number of links/paths available in even the largest enterprise network.

Also, recall that the OSPF metric is said to be dimensionless, which is to say that a smaller value is always
preferred over larger values, but the exact nature of what is smaller is not conveyed in the metric itself. By
default, OSPF derives its metric from interface bandwidth using a scaling factor, but the scaling factor can be
altered, and the metric can be administratively assigned to reflect any parameter chosen by the administrator.
When all is said and done, as long as a consistent approach is adopted when assigning OSPF metrics, the right
thing should just happen. By way of example, consider a case where OSPF metrics are assigned based on the
economic costs of a usage-based network service. The resultant shortest path measures distance as a function
of economic impact and will result in optimization based on the least expensive paths between any two points.
Thus, OSPF has done its job by locating the shortest path, which in this example means the least expensive
path, given that the administration considers distance to equate to money. We revisit the subject of EIGRP to
OSPF metric conversions in "Section 4.5.3," later in this chapter.

4.1.3.2. EIGRP: A grand past and a dubious future

It's worth restating that, unlike open standards protocols such as RIP and OSPF, EIGRP is proprietary to Cisco
Systems. As a result, only Cisco Systems products can speak EIGRP, both because of the closed nature of the
specification and because of the licensing and patent issues that prevent others from implementing the protocol.
Most enterprise customers (and service providers, for that matter) prefer not to be locked into any solution that
is sourced from a single vendor, even one as large and dominant as Cisco Systems.

EIGRP's lack of hierarchical support significantly limits its use in large-scale networks due to scaling issues.
EIGRP lacks the protocol extensions needed to build a traffic engineering database (TED), as used to support
MPLS applications. Although MPLS is still somewhat rare in the enterprise, it currently enjoys significant
momentum and is in widespread use within service provider networks across the globe. Considering that many
of the requirements of service providers three or four years ago are the same requirements that we are seeing
in the enterprise today, an enterprise would be wise to hedge its bets by adopting protocols that can support
this important technology, should the need later arise.

Support is an important factor that must be considered when deploying any protocol. At one point, it was
difficult to find off-the-shelf or open source protocol analysis for IGRP/EIGRP. Cisco could change the
specification at any time, making obsolete any such tools that exist. At the time of this writing, the Wireshark
analysis program (http://www.wireshark.org/) lists EIGRP support; however, it's difficult to confirm the decode
accuracy without an open standard to reference against.

Given the drawbacks to a single-vendor closed solution, an enterprise should consider the use of open standard
protocols. In the case of IGPs, you gain higher performance, vendor independence, and off-the-shelf support
capabilities. EIGRP's multiprotocol capability aside, the largest IP networks on the planet (those of Internet
service providers [ISPs]) generally run OSPF. Service provider networks are all about reliability, stability, rapid
convergence at a large scale, and the ability to offer services that result in revenue generation-given these IGP
requirements, the reader is left to ponder why service provider networks are never found to be running EIGRP
within their networks.

4.1.4. IGP Summary

IGPs provide the indispensable service of maintaining internal connectivity throughout the myriad link and
equipment failures possible in modern IP internetworks. IGP performance and stability in the face of large
volumes of network change can provide a strategic edge by quickly routing around problems to maintain the
highest degree of connectivity possible.

This section overviewed the RIP, OSPF, and EIGRP protocols to prepare the reader for the following deployment
and IGP migration scenarios. Now is a good time to take a break before you head into the RIP deployment case
study that follows.

http://www.wireshark.org/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.2. RIP Deployment Scenario

OK, that's enough of an IGP overview. There's little doubt that the router-jockey readers of this book are
chomping at the bit to start routing some packets! Let's demonstrate basic RIP configuration and operational
mode commands that assist in troubleshooting a RIP operation in a JUNOS software environment.

Figure 4-3 depicts the topology for the Cisco Systems/IOS to Juniper Networks/JUNOS software RIP integration
scenario. It shows the existing Beer-Co RIP network, which currently consists of two Cisco Systems 2600 series
routers running IOS version 12.3(15b) and interconnected by a serial link. Beer-Co is expanding its widget
operation and plans to add two additional locations. Despite the existing infrastructure, the CIO has opted to
become a multivendor shop, and a decision has been made to deploy two Juniper Networks J-series routers. The
existing (and planned) IP addressing is shown and contains a mix of subnetted class A and class C addresses
(just to keep things interesting). Each router's loopback address is also shown, along with a simulated customer
network that is instantiated via a static route (labs commonly use a static route to represent a customer
network for purposes of reducing equipment requirements). Note that the last digit of each router's loopback
address is tied numerically to that router's simulated customer network to help ease requirements on the
reader's memory.

Figure 4-3. RIP topology

As a reminder, recall that in this lab, each router's Fast Ethernet interface is tied to a virtual LAN (VLAN) switch,
and VLAN tags are used to establish links between communicating routers. The subinterface/logical unit of each
interface match the associated VLAN tag value, which is also shown in the figure. You may assume that all
router interface properties are correctly configured to permit communication with directly attached neighbors.
The following code snippets show the Fast Ethernet interface configuration at Cisco router Malt and Juniper

router Ale.

Malt's FastEthernet0/1 interface and subinterface configuration:

interface FastEthernet0/1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 no ip address

 duplex auto

 speed auto

!

interface FastEthernet0/1.69

 encapsulation dot1Q 69

 ip address 192.168.1.1 255.255.255.252

 ip rip authentication mode md5

 ip rip authentication key-chain test

 no snmp trap link-status

Ale's fe-0/0/0 interface and logical unit configuration:

[fe-0/0/0 {

 vlan-tagging;

 unit 69 {

 description Ale-to_Malt;

 vlan-id 69;

 family inet {

 address 192.168.1.2/30;

 }

 }

 unit 1121 {

 description Ale-to_Lager;

 vlan-id 1121;

 family inet {

 address 10.10.129.1/24;

 }

 }

}

4.2.1. Existing RIP Configuration

Before adding the new RIP routers, it makes sense to first inspect the related RIP configuration in the Cisco
platform to get a feel for what RIP configuration tasks will be needed on the Juniper Networks boxes. The RIP-
related configuration parts from router Malt are shown, along with some inline comment as to what each part is

doing:

Malt# show run

Building configuration...

. . .

!

key chain test

 key 1

 key-string jncie

. . .

The key chain configuration is used to provide authentication to various routing protocols, ostensibly RIP, in this
example. The named key chain has a single key that is numbered as 1 using a key value of jncie. Key chains

provide the ability to rotate the current key, based on start and end times (which are not specified in this
example). As of this writing, JUNOS software supports authentication key chains only for the Label Distribution
Protocol (LDP), OSPF, and BGP. RIP supports a single password-MD5 key, which is good for us because that is
just what's needed here:

interface FastEthernet0/1.69

 encapsulation dot1Q 69

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ip address 192.168.1.1 255.255.255.252

 ip rip authentication mode md5

 ip rip authentication key-chain test

 no snmp trap link-status

!

. . .

The two subinterface-level IP rip authentication statements configure RIP authentication for messages sent

out, or received from, the related interface. The commands specify the associated key chain and authentication
approach, which again is MD5 in this example:

router rip

 version 2

 redistribute connected

 redistribute static route-map TAGGING

 network 10.0.0.0

 network 192.168.1.0

 distribute-list 3 out static

 no auto-summary

. . .

This portion of the configuration actually enables the RIP process. Things begin with the specification that RIP
version 2 is to be run. Considering the VLSM in effect, this is a very good choice. The network statements,

which are assumed to fall on classful boundaries, define the set of interfaces on which RIP should operate.
Rather than listing interfaces directly by name, they are indirectly identified through the interface's IP address.
Notice the two forms of route redistribution in effect. The redistribute connected and redistribute static

statements, the latter with an associated route map, serve to redistribute connected and static routes,
respectively. A distribution list could also have been used to control the routes advertised into RIP. The
connected routes will catch the router's serial, Fast Ethernet, and loopback interface subnets. You will have to
wait and see what static route redistribution is doing when you inspect the related route map.

The no-auto-summary statement disables the default (Cisco) behavior of automatically summarizing at classful

network boundaries. When combined with RIP version 2, which conveys a network mask, VLSM/CIDR is
supported.

ip route 0.0.0.0 0.0.0.0 Null0

ip route 200.0.100.0 255.255.255.0 Null0

!

access-list 3 permit 200.0.100.0

access-list 4 permit 0.0.0.0

!

The whole classful addressing concept is totally alien to a Juniper Networks router, as
the boxes were designed in an era well after the concept of class-based addressing had
come and gone. To help illustrate this point, JUNOS software has no need for an ip

classless statement as always seen in IOS, and consistently uses CIDR / notation for

prefix lengths.

This portion of the configuration defines two static routes: the former is a default route and the latter is the
simulated customer network associated with Malt. Both are pointed to null0 as a next hop, which means that

any traffic that longest-matches either of these two routes will be discarded.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This may strike the reader as odd, so some additional explanation is warranted. The assumption is that the real
customer network will be assigned a mask longer than the /24 used by the static route that currently represents
it-for example, a /28. Therefore, packets actually sent to hosts within the customer network will longest-match
against the customer network interface route (longest-match rules), and are thereby spared the ignominious
treatment of a one-way trip to null0 land. If, on the other hand, the customer network interface is down, these

packets are discarded as they now longest-match against the static route-meanwhile, the presence of the
static route is preventing route churn in the rest of the network because it's always being advertised in RIP. This
stability comes with the downside that, during a customer network interface outage, other routers in the RIP
domain have a false belief that hosts on the customer network are still reachable, and the resultant traffic is
forwarded over the enterprise network only to be discarded by the last hop. This technique is somewhat
common in service provider networks, because control plane stability is generally more important than the
network bandwidth that is wasted by forwarding packets across a network only to shunt them to null0.

In the RIP scenario, the two Cisco routers are attached to some other network cloud. Rather than run a routing
protocol or define numerous static routes, the administrator relies on a default route to direct matching traffic
into this cloud. The dotted lines on the drawing represent that this cloud is not part of the actual test bed.

Also, note the two related IP access control lists (ACLs), each matching on one of the two static routes. These
ACLs are in turn referenced by the route map:

route-map TAGGING permit 10

 match ip address 3

 set metric 3

!

route-map TAGGING permit 20

 match ip address 4

 set tag 100

. . .

End

The TAGGING route map first matches against ACL 3 and sets the outgoing metric to 3 for matching prefixes (the

simulated customer network route in this case). The default metric would be 1, so this action simulates a
network that is two router hops farther away than it actually is. This might be done to cause another source of
this route to be preferred (the lower hop count wins), or, perhaps, to limit the scope of stations that can reach
this network (recall that in RIP, 16 means you cannot get there). Like it or not, this is an example of how route
maps are used in IOS to alter route attributes, perhaps just to keep the scenario interesting.

The permit 20 statement evokes ACL 4, which matches the default route for purposes of setting a route tag. In

this example, the tag happens to be based on the router's loopback address. It's common to tag routes that are
redistributed for purposes of tracking down the source of the route when troubleshooting, or for use in policy
matching based on tag values. This is especially important when performing mutual route redistribution, which
is a process prone to routing loops when route filtering precautions are not exercised.

4.2.1.1. Baseline operation

A quick look at the state of the IP route table at router Malt is performed before any modifications are made.

This will serve as the network baseline for future comparison:

Code View:
Malt# show ip route

Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP

 D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

 N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

 E1 - OSPF external type 1, E2 - OSPF external type 2

 i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS

level-2

 ia - IS-IS inter area, * - candidate default, U - per-user s

http://lib.ommolketab.ir
http://lib.ommolketab.ir

tatic route

 o - ODR, P - periodic downloaded static route

Gateway of last resort is 0.0.0.0 to network 0.0.0.0

R 200.0.200.0/24 [120/3] via 10.1.254.2, 00:00:03, Serial0/0

S 200.0.100.0/24 is directly connected, Null0

 10.0.0.0/8 is variably subnetted, 4 subnets, 2 masks

C 10.10.128.100/32 is directly connected, Loopback0

R 10.10.128.200/32 [120/1] via 10.1.254.2, 00:00:03, Serial0/0

C 10.1.254.0/24 is directly connected, Serial0/0

C 10.1.254.2/32 is directly connected, Serial0/0

 192.168.1.0/30 is subnetted, 1 subnets

C 192.168.1.0 is directly connected, FastEthernet0/1.69

 192.168.2.0/30 is subnetted, 1 subnets

R 192.168.2.0 [120/1] via 10.1.254.2, 00:00:04, Serial0/0

S* 0.0.0.0/0 is directly connected, Null0

No real surprises here. Malt has several directly connected routes, in the form of its FA 0/1.69, loopback 0,

and serial 0/0 interfaces. And the two locally defined static routes, 0.0.0.0 and 200.0.0.100, are both pointing

to null0. Lo and behold, Malt has learned three routes via RIP: Barley's FA 0/1.70 route (192.168.2.0), its

loopback interface route (10.10.128.200), and the simulated customer route (200.0.200.0). Note that the
customer route received from Barley demonstrates the effects of the route map. This route's received hop

count is 3 whereas the other two routes advertised by Barley were received with the default value of 1. The

hop count/metric is displayed just after the administrative distance, which for RIP is 120. Here is a summary
view of the RIP routes at Barley:

Barley# show ip route rip

R 200.0.100.0/24 [120/3] via 10.1.254.1, 00:00:14, Serial0/0

 10.0.0.0/8 is variably subnetted, 4 subnets, 2 masks

R 10.10.128.100/32 [120/1] via 10.1.254.1, 00:00:14, Serial0/0

 192.168.1.0/30 is subnetted, 1 subnets

R 192.168.1.0 [120/1] via 10.1.254.1, 00:00:14, Serial0/0

With Barley displaying the same type and number of routes, baseline operation is confirmed.

4.2.2. Summary of RIP Requirements

The operational aspects of the RIP network design, as determined through analysis of the legacy RIP
configuration, are as follows:

RIPv2 (without auto-summarization).

Defaults are in place for update, hold down, and route timeout timers.

MD5 authentication is in effect using key ID 1 with string jncie.

Direct networks are being redistributed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The static route representing an attached customer network is redistributed with an artificially escalated
hop count of 3.

4.2.3. Enter Juniper Networks

Based on the analysis of the IOS RIP configuration, we know what needs to be done at Ale and Lager. To help

mitigate any operational impacts, it is decided to first bring up the RIP peerings between Ale and Lager before

attaching them to the existing RIP backbone.

4.2.3.1. Configure static routes

The configuration begins with the definition of the static route that simulates an attached customer network.
The configuration steps for Ale are:

lab@Ale> configure

Entering configuration mode

[edit]

lab@Ale# edit routing-options

[edit routing-options]

lab@Ale# set static route 200.0.1/24 discard

[edit routing-options]

lab@Ale# show

static {

 route 200.0.1.0/24 discard;

}

With the static route defined, the change is committed and the result confirmed (while still in configuration
mode). In this example, traffic matching the static route is directed to a discard next hop, which means that no
responses will be generated for matching traffic-a true black hole from which nothing will escape. Another
option would be reject, which generates an Internet Control Message Protocol (ICMP) error reporting that the

destination is unreachable. This creates functionality similar to IOS's null0, in that matching traffic will

generate host unreachable error messages. The reject option can assist in troubleshooting, but it consumes

router resources in the form of message generation, which can be an issue during a large-scale denial of service
(DoS) attack, making discard the preferred target for such a route:

[edit routing-options]

lab@Ale# commit

commit complete

[edit routing-options]

lab@Ale# run show route protocol static

inet.0: 6 destinations, 6 routes (6 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

200.0.1.0/24 *[Static/5] 00:00:37

 Discard

4.2.3.2. Configure RIP

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The RIP configuration is now added to Ale. Start by moving to the RIP configuration hierarchy, where the

general options are shown:

Code View:
[edit routing-options]

lab@Ale# top edit protocols rip

[edit protocols rip]

lab@Ale# set ?

Possible completions:

+ apply-groups Groups from which to inherit configuration data

+ apply-groups-except Don't inherit configuration data from these groups

 authentication-key Authentication key (password)

 authentication-type Authentication type

 check-zero Check reserved fields on incoming RIPv2 packets

> graceful-restart RIP graceful restart options

> group Instance configuration

 holddown Hold-down time (10..180 seconds)

+ import Import policy

 message-size Number of route entries per update message (25..255)

 metric-in Metric value to add to incoming routes (1..15)

 no-check-zero Don't check reserved fields on incoming RIPv2 packets

> receive Configure RIP receive options

> rib-group Routing table group for importing RIP routes

 route-timeout Delay before routes time out (30..360 seconds)

> send Configure RIP send options

> traceoptions Trace options for RIP

 update-interval Interval between regular route updates (10..60 seconds)

[edit protocols rip]

lab@Ale# set

It should be apparent that many aspects of RIP are configurable within JUNOS software. Some options are
global, such as the authentication key/type or import/export policy, which means they apply to all groups
(unless negated by a more specific group setting, if available). Other parameters can be specified only at a
subsequent hierarchy. For example, a neighbor can be defined only within a group. You can quickly explore the
options available under send and receive using the command-line interface's (CLI's) ? help utility:

[edit protocols rip]

lab@Ale# set send ?

Possible completions:

 broadcast Broadcast RIPv2 packets (RIPv1 compatible)

 multicast Multicast RIPv2 packets

 none Do not send RIP updates

 version-1 Broadcast RIPv1 packets

[edit protocols rip]

lab@Ale# set receive ?

Possible completions:

 both Accept both RIPv1 and RIPv2 packets

 none Do not receive RIP packets

 version-1 Accept RIPv1 packets only

 version-2 Accept only RIPv2 packets

It's apparent from the display that the send and receive settings globally control the RIP version and whether
multicast (default for v2) or broadcast packets are sent. It just so happens that these same settings can also be
specified on a per-neighbor (interface) basis-recall that in JUNOS software, the more-specific group-level

http://lib.ommolketab.ir
http://lib.ommolketab.ir

configuration hierarchy settings override the less-specific global values. Let's take a quick look at the options
available under a group, which is where you can define neighbors (interfaces) that run RIP:

Code View:
[edit protocols rip]

lab@Ale# set group rip ?

Possible completions:

 <[Enter]> Execute this command

+ apply-groups Groups from which to inherit configuration data

+ apply-groups-except Don't inherit configuration data from these groups

> bfd-liveness-detection Bidirectional Forwarding Detection options

+ export Export policy

+ import Import policy

 metric-out Default metric of exported routes (1..15)

> neighbor Neighbor configuration

 preference Preference of routes learned by this group

 route-timeout Delay before routes time out (30..360 seconds)

 update-interval Interval between regular route updates (10..60 seconds)

| Pipe through a command

Configuration options found at the neighbor level include the import or export keyword, which is used to apply

routing policy to receive or transmit route updates, respectively. Note that when applied at the neighbor level,
any globally defined import or export policies are negated. The router runs either the global or the group policy,
never both, and the router always chooses the most specific application-a neighbor level is more specific than
a global level, of course. You may recall that policy is used to control route exchange and alter route attributes.
The global preference for routes learned from a particular neighbor can also be configured here. Note that in
JUNOS software, the concept of global preference is equivalent to that of IOS's administrative distance-this
value is altered to make a source of routing information more (lower value) or less (higher value) preferred.

The terminology of groups and neighbors may seem a bit confusing at first, given the
way RIP is configured in IOS. JUNOS software is optimized when routing peers with
similar export policy are placed into the same group. As a result, even if you have only
one peer, that neighbor needs to belong to a RIP group. Also, the term neighbor here
actually means interface, given that RIP messages are not unicast to specific machines,
but instead are broadcast or multicast to all RIP speakers on a given link. This means
that specifying a single neighbor in the form of a multiaccess interface results in RIP
communications with all RIP-capable routers on that LAN segment.

4.2.3.2.1. Ale's RIP configuration

Ale's RIP stanza is now configured in accordance with the RIP design guideline discovered when analyzing the

legacy RIP configuration. Recall that the plan is to first establish RIP peerings between Ale and Lager before

trying route exchanges to the Cisco routers (see Figure 4-3). Here is the resulting RIP stanza, along with the
set commands used to create it courtesy of the display set function in the CLI:

[edit protocols rip]

lab@Ale# show

send multicast;

receive version-2;

authentication-type md5;

authentication-key "9cf3rK84oGiHm-VgJ"; ## SECRET-DATA

group rip {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 inactive: neighbor fe-0/0/0.69;

 neighbor fe-0/0/0.1121;

}

[edit protocols rip]

lab@Ale# show | display set

set protocols rip send multicast

set protocols rip receive version-2

set protocols rip authentication-type md5

set protocols rip authentication-key "9cf3rK84oGiHm-VgJ"

deactivate protocols rip group rip neighbor fe-0/0/0.69

set protocols rip group rip neighbor fe-0/0/0.1121

The global send multicast statement ensures that we will only speak to RIPv2 nodes, as RIPv1 routers will not

see multicast updates. The receive version-2 ensures that we process only multicast updates, thereby

configuring the router for RIPv2-only operation. The authentication settings specify a (now ciphered) text string
of jncie and indicates that MD5-based authentication should be used.

JUNOS software always encrypts passwords; IOS requires that the password encryption
service be enabled for the same functionality.

Lastly, notice the two neighbor statements that identify what interfaces RIP should run on. Note that the link to

Malt is currently deactivated (inactive), which means that portion of the configuration will be ignored. This will

result in Ale running RIP only on the fe-0/0/0.1121 interface to Lager. Once RIP has been confirmed between

Ale and Lager, this link will be activated to enable RIP exchanges with the Cisco routers.

The one part of Ale's configuration yet to be addressed is the redistribution into RIP of its connected and

simulated customer static routes. Recall that in JUNOS software, control over what routes enter and leave the
route table and the modification of attributes associated with these routes, is controlled by routing policy. Here
is an example of the JUNOS route policy needed to match the Cisco router's redistribution of connected (direct)
routes and the route map function that sets the metric on a redistributed static route:

Code View:
[edit policy-options policy-statement rip_export]

lab@Ale# show

term 1 {

 from protocol direct;

 then accept;

}

term 2 {

 from {

 protocol static;

 route-filter 200.0.1.0/24 exact;

 }

 then {

 metric 3;

 accept;

 }

}

[edit policy-options policy-statement rip_export]

lab@Ale# show | display set

set policy-options policy-statement rip_export term 1 from protocol direct

set policy-options policy-statement rip_export term 1 then accept

set policy-options policy-statement rip_export term 2 from protocol static

http://lib.ommolketab.ir
http://lib.ommolketab.ir

set policy-options policy-statement rip_export term 2 from route-filter 200.0.1.0/24

exact

set policy-options policy-statement rip_export term 2 then metric 3

set policy-options policy-statement rip_export term 2 then accept

The newly created RIP policy is applied to the RIP group (alternatively, it could be applied globally in this
example) as export, where it will control the exchange of routes that are advertised into RIP. The default RIP

import policy, which is to accept RIP routes, is left unaltered.

[edit]

lab@Ale# set protocols rip group rip export rip_export

[edit]

lab@Ale# show protocols rip

send multicast;

receive version-2;

authentication-type md5;

authentication-key "9cf3rK84oGiHm-VgJ"; ## SECRET-DATA

group rip {

 export rip_export;

 inactive: neighbor fe-0/0/0.69;

 neighbor fe-0/0/0.1121;

}

You may assume that a compatible RIP policy configuration has been added to Lager and that the changes are

committed.

4.2.4. Confirm RIP Operation: Ale and Lager

With the RIP and related static route/policy configuration in place at Ale and Lager, the operation of RIP can be

confirmed. Start with the confirmation that RIPv2 is running, and that it is doing so on the expected interfaces:

lab@Ale> show rip neighbor

 Source Destination Send Receive In

Neighbor State Address Address Mode Mode Met

-------- ----- ------- ----------- ---- ------- ---

fe-0/0/0.1121 Up 10.10.129.1 224.0.0.9 mcast v2 only 1

The output of the show rip neighbor command confirms that Ale is set for v2 operation, and that RIP is

running on its link to Lager. The Up status indicates that the interface is operational, but not that any particular

neighbor has been detected. The In Met column displays the metric value that will be added to any route
updates received over the associated interfaces; by default, each received update has its metric incremented by
one before being placed into the route table.

The general RIP statistics confirm that updates are being sent and received, that no errors are occurring, and
that in the case of Ale, three routes have been learned via RIP, indicating that RIP is operating correctly

between Ale and Lager:

lab@Ale> show rip statistics

RIPv2 info: port 520; holddown 120s.

 rts learned rts held down rqsts dropped resps dropped

 3 0 0 0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

fe-0/0/0.1121: 3 routes learned; 3 routes advertised; timeout 180s;

update interval 30s

Counter Total Last 5 min Last minute

------- ----------- ----------- -----------

Updates Sent 25 11 2

Triggered Updates Sent 1 0 0

Responses Sent 0 0 0

Bad Messages 0 0 0

RIPv1 Updates Received 0 0 0

RIPv1 Bad Route Entries 0 0 0

RIPv1 Updates Ignored 0 0 0

RIPv2 Updates Received 17 11 2

RIPv2 Bad Route Entries 0 0 0

RIPv2 Updates Ignored 0 0 0

Authentication Failures 1 0 0

RIP Requests Received 1 0 0

RIP Requests Ignored 0 0 0

And now we confirm the presence of RIP routes in Ale's route table:

lab@Ale> show route protocol rip

inet.0: 10 destinations, 10 routes (10 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

10.10.128.2/32 *[RIP/100] 00:09:54, metric 2, tag 0

 > to 10.10.129.2 via fe-0/0/0.1121

192.168.2.0/30 *[RIP/100] 00:09:54, metric 2, tag 0

 > to 10.10.129.2 via fe-0/0/0.1121

200.0.2.0/24 *[RIP/100] 00:09:54, metric 4, tag 0

 > to 10.10.129.2 via fe-0/0/0.1121

224.0.0.9/32 *[RIP/100] 00:10:57, metric 1

 MultiRecv

Ale's route table contains the expected RIP routes, considering that RIP is not yet enabled to Malt and Barley.

Notice that Lager has advertised its directly connected loopback interface (10.10.128.2) route to Ale. Also of

note is that the JUNOS software route table displays the local RIP cost, as opposed to the metric received in the
route update. This differs a bit from IOS, which displays the received RIP metric rather than local cost (received
+ 1 by default). The 200.0.0.2/24 static route defined at Lager has been injected into RIP with a metric of 3

due to the action of its export policy-this route is installed in Ale's route table with a local cost of 3 + 1, or 4.

You'll also see that the RIP global preference in JUNOS software is 100.

A later section details additional operational mode commands that assist in debugging RIP operation. But right
now, all seems to be working as expected, so there is not much to debug. Of course, things might change when
tying into the Cisco portion of the network.

4.2.5. Confirm RIP: Juniper Networks to Cisco Systems Integration

With RIP operation in the Juniper and Cisco domains confirmed, it's time to fire up RIP between the two
vendors' boxes to see what happens. RIP is a simple protocol, so what could go wrong? Things start with the
activation of the RIP neighbor (interface) linking Ale to Malt. Similar steps are performed at Lager for its RIP

interface to Barley:

lab@Ale> configure

Entering configuration mode

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[edit]

lab@Ale# activate protocols rip group rip neighbor fe-0/0/0.69

[edit]

lab@Ale# commit

commit complete

4.2.5.1. Confirm route exchange

After a few minutes, RIP updates should have propagated. Let's start with a quick look at RIP statistics at router
Lager, as any problems will likely manifest in the form of an incrementing error counter:

Code View:
[edit]

lab@Lager# run show rip statistics

RIPv2 info: port 520; holddown 120s.

 rts learned rts held down rqsts dropped resps dropped

 10 0 0 0

fe-0/0/0.1121: 3 routes learned; 3 routes advertised; timeout 180s;

update interval 30s

Counter Total Last 5 min Last minute

------- ----------- ----------- -----------

Updates Sent 29 11 2

Triggered Updates Sent 1 0 0

Responses Sent 0 0 0

Bad Messages 0 0 0

RIPv1 Updates Received 0 0 0

RIPv1 Bad Route Entries 0 0 0

RIPv1 Updates Ignored 0 0 0

RIPv2 Updates Received 29 10 2

RIPv2 Bad Route Entries 0 0 0

RIPv2 Updates Ignored 0 0 0

Authentication Failures 0 0 0

RIP Requests Received 0 0 0

RIP Requests Ignored 0 0 0

fe-0/0/0.70: 7 routes learned; 3 routes advertised; timeout 180s;

update interval 30s

Counter Total Last 5 min Last minute

------- ----------- ----------- -----------

Updates Sent 29 11 2

Triggered Updates Sent 1 0 0

Responses Sent 0 0 0

Bad Messages 0 0 0

RIPv1 Updates Received 0 0 0

RIPv1 Bad Route Entries 0 0 0

RIPv1 Updates Ignored 0 0 0

RIPv2 Updates Received 31 11 2

RIPv2 Bad Route Entries 0 0 0

RIPv2 Updates Ignored 0 0 0

Authentication Failures 0 0 0

RIP Requests Received 0 0 0

RIP Requests Ignored 0 0 0

The RIP statistics indicate that all is normal. Lager is confirming that 10 routes have been learned via RIP, with

http://lib.ommolketab.ir
http://lib.ommolketab.ir

three coming from its link to Ale and the balance learned from its link to Barley. Authentication is clearly

working, given the learned routes and no indication of message discards or errors.

Next, confirm whether any RIP routes are present in the route table of Lager:

Code View:
[edit]

lab@Lager# run show route protocol rip

inet.0: 18 destinations, 18 routes (18 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

0.0.0.0/0 *[RIP/100] 00:16:35, metric 2, tag 200

 > to 192.168.2.1 via fe-0/0/0.70

10.1.254.0/24 *[RIP/100] 00:16:35, metric 2, tag 0

 > to 192.168.2.1 via fe-0/0/0.70

10.1.254.1/32 *[RIP/100] 00:16:35, metric 2, tag 0

 > to 192.168.2.1 via fe-0/0/0.70

10.10.128.100/32 *[RIP/100] 00:16:35, metric 3, tag 0

 > to 192.168.2.1 via fe-0/0/0.70

10.10.128.200/32 *[RIP/100] 00:16:35, metric 2, tag 0

 > to 192.168.2.1 via fe-0/0/0.70

10.10.128.1/32 *[RIP/100] 00:16:29, metric 2, tag 0

 > to 10.10.129.1 via fe-0/0/0.1121

192.168.1.0/30 *[RIP/100] 00:16:29, metric 2, tag 0

 > to 10.10.129.1 via fe-0/0/0.1121

200.0.1.0/24 *[RIP/100] 00:16:29, metric 4, tag 0

 > to 10.10.129.1 via fe-0/0/0.1121

200.0.100.0/24 *[RIP/100] 00:16:35, metric 5, tag 0

 > to 192.168.2.1 via fe-0/0/0.70

200.0.200.0/24 *[RIP/100] 00:11:44, metric 4, tag 0

 > to 192.168.2.1 via fe-0/0/0.70

224.0.0.9/32 *[RIP/100] 00:16:50, metric 1

 MultiRecv

RIP routes are present. The routes learned through RIP include the serial link between Malt and Barley

(10.1.254.0/24 and associated host routes), the two simulated customer networks (200.0.100/24 and
200.0.200/24), and the RIP peering network for the link between Malt and Ale (192.168.2.0/30). Also present

are the /32 routes for Malt's and Barley's loopback 0 interfaces (10.10.128.100 and 10.10.128.200). The

default route is present, and it's correctly pointing to neighbor Barley, given the metric should be less via this

path than forwarding through Ale to reach the default advertised by Barley.

The RIP routes at Barley are examined next:

Code View:
Barley# show ip route rip

R 200.0.1.0/24 [120/4] via 10.1.254.1, 00:00:27, Serial0/0

R 200.0.2.0/24 [120/3] via 192.168.2.2, 00:00:25, FastEthernet0/1.70

R 200.0.100.0/24 [120/3] via 10.1.254.1, 00:00:27, Serial0/0

 10.0.0.0/8 is variably subnetted, 7 subnets, 2 masks

R 10.10.128.100/32 [120/1] via 10.1.254.1, 00:00:27, Serial0/0

R 10.10.129.0/24 [120/1] via 192.168.2.2, 00:00:25, FastEthernet0/1.70

R 10.10.128.1/32 [120/2] via 10.1.254.1, 00:00:27, Serial0/0

R 10.10.128.2/32 [120/1] via 192.168.2.2, 00:00:25, FastEthernet0/1.70

 192.168.1.0/30 is subnetted, 1 subnets

R 192.168.1.0 [120/1] via 10.1.254.1, 00:00:27, Serial0/0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The display confirms that RIP exchanges are working between the Juniper Networks routers and the Cisco
boxes; Barley has a RIP route for both of Ale's and Lager's simulated customer networks (200.0.1/24 and

200.0.2/24) as well as the link between Ale and Lager (10.10.129.0/24), in addition to the /32 loopback

addresses assigned to Ale and Lager (10.10.128.1 and 10.10.128.2).

4.2.5.2. Confirm forwarding path

A traceroute is performed from Lager to the simulated network on Barley to validate the data plane and

resulting forwarding paths (the no-resolve switch ensures that the local router does not waste time trying to

perform reverse Domain Name System [DNS] lookups on the resulting IP addresses in the event that DNS is not
configured in the lab):

[edit]

lab@Ale# run traceroute no-resolve 200.0.200.1

traceroute to 200.0.200.1 (200.0.200.1), 30 hops max, 40 byte packets

 1 192.168.1.1 9.498 ms 9.705 ms 10.127 ms

 2 10.1.254.2 19.700 ms 20.004 ms 20.073 ms

 3 10.1.254.2 19.772 ms !H * 20.392 ms !H

The traceroute results are as expected; router Ale crossed two routers to reach the simulated customer

network, and as previously noted, the null0 action of the longest match resulted in ICMP host unreachable

messages, as indicated by the !H in the return. The results seem to indicate that RIPv2 is working between

JUNOS software and IOS. Congratulations!

4.2.5.2.1. RIP troubleshooting scenario

Actually, nothing in the realm of internetworking works the first time. In fact, the results of that traceroute
should have gotten you thinking a bit. Given the RIP topology, Ale should have two equal cost paths to the

simulated customer network attached to Barley. After all, it's two hops to reach Barley via Malt, but also two

hops to reach Barley via Lager. Knowing that JUNOS software automatically performs load balancing over as

many as 16 equal cost paths, you'd expect to see Ale with two equal cost routes for the 200.0.200/24 route.

Unfortunately, previous displays confirm this is not the case. A similar condition exists at Lager with regard to

the simulated customer route at Malt.

There are a few tools for troubleshooting this type of issue in JUNOS software. One approach is protocol tracing,
used to show the RIP messages being sent and received, and the overall results of RIP message processing.
Tracing is similar to the IOS debug feature. Given that RIP is a DV protocol, you can also avail yourself of the
show route advertising-protocol and the show route receiving-protocol commands. As their names

imply, these commands display what routes the local router is advertising out a given interface or what routes
are being received (learned) from a particular neighbor. The process begins at router Lager:

[edit]

lab@Lager# run show route advertising-protocol rip ?

Possible completions:

<neighbor> IP address of neighbor (local for RIP and RIPng)

The command syntax help string of ? is useful here because it reminds us that for the RIP form of this

command, you must specify the local interface address; recall that RIP generates broadcast or multicast
updates to all neighbors on the link, so unlike BGP, where a specific neighbor address is specified, it's the local
IP address for RIP.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[edit]

lab@Lager# run show route advertising-protocol rip 10.10.129.2

inet.0: 18 destinations, 18 routes (18 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

10.10.128.2/32 *[Direct/0] 02:31:29

 > via lo0.0

192.168.2.0/30 *[Direct/0] 02:31:29

 > via fe-0/0/0.70

200.0.2.0/24 *[Static/5] 02:32:10

 Discard

The result leaves something to be desired-something such as a route advertisement for the 200.0.200/24
route, that is! The receiving-protocol form of the command is used to confirm that whatever is wrong is at

least symmetrical:

lab@Lager# run show route receive-protocol rip ?

Possible completions:

 <peer> IP address of neighbor

Note that for the receiving-protocol command, RIP requires the specification of a specific neighbor IP

address, which in turn is reachable via a RIP-enabled interface (a good way to look at this is to consider that
transmitted updates are sent to all neighbors, but received updates come from a specific neighbor-a source IP
address is never of the multicast/broadcast form):

[edit]

lab@Lager# run show route receive-protocol rip 10.10.129.1

inet.0: 18 destinations, 18 routes (18 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

10.10.128.1/32 *[RIP/100] 01:01:13, metric 2, tag 0

 > to 10.10.129.1 via fe-0/0/0.1121

192.168.1.0/30 *[RIP/100] 01:01:13, metric 2, tag 0

 > to 10.10.129.1 via fe-0/0/0.1121

200.0.1.0/24 *[RIP/100] 01:01:13, metric 4, tag 0

 > to 10.10.129.1 via fe-0/0/0.1121

The preceding output proves that, like Lager, Ale is not readvertising the 200.0.100/24 route learned from

Malt. For added verification, we configure RIP tracing at Ale.

Code View:
[edit protocols rip]

lab@Ale# set traceoptions file rip_trace

[edit protocols rip]

lab@Ale# set traceoptions flag ?

Possible completions:

 all Trace everything

 auth Trace RIP authentication

 error Trace RIP errors

 expiration Trace RIP route expiration processing

 general Trace general events

 holddown Trace RIP hold-down processing

 normal Trace normal events

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 packets Trace all RIP packets

 policy Trace policy processing

 request Trace RIP information packets

 route Trace routing information

 state Trace state transitions

 task Trace routing protocol task processing

 timer Trace routing protocol timer processing

 trigger Trace RIP triggered updates

 update Trace RIP update packets

[edit protocols rip]

lab@Ale# set traceoptions flag update detail

[edit protocols rip]

lab@Ale# commit

No one wants a tool he can't use when he needs it. JUNOS software protocol tracing is
much like Cisco Systems' debug in that it's a great way to gain insight into the operation
of a given protocol, especially when things are not working. The upside is that you can
deploy tracing on a Juniper Networks router, in a production network, with little to no
operational impact-that is, the manual does not warn against using tracing, which is
the case for debug in IOS. With that said, it is a best practice to enable tracing only
when needed and only at the level of detail needed, and then to remove the tracing
configuration when the job is done.

Also note that the Juniper Networks architecture cleanly separates the control and
forwarding planes, which means that you can monitor interface traffic (tcpdump) or
trace protocol operation only when it is sourced from or destined to the local router's
Routing Engine (RE). You cannot monitor or trace transit traffic unless a sampling
configuration is used to sample/mirror such traffic out of a specific interface.

This example shows the RIP tracing options along with a sample RIP tracing configuration. Here, traffic matching
the update flag is written to a file called rip_trace. Various other trace flags exist and are useful when dealing

with specific issues, such as using the auth flag when you suspect an authentication problem. The rip_trace file

is monitored in real time with the monitor start command:

Code View:
[edit protocols rip]

lab@Ale# run monitor start rip_trace

. . .

Aug 15 02:00:30.039884 Update job: sending 20 msgs; nbr: fe-0/0/0.1121;

group: rip; msgp: 0x876a000.

Aug 15 02:00:30.039916 nbr fe-0/0/0.1121; msgp 0x876a000.

Aug 15 02:00:30.039985 0.84.1.20/0x46c25e20: tag 3, nh

0.0.0.0, met 0.

Aug 15 02:00:30.040011 10.10.128.1/0xffffffff: tag 0, nh

0.0.0.0, met 1.

Aug 15 02:00:30.040027 192.168.1.0/0xfffffffc: tag 0, nh

0.0.0.0, met 1.

Aug 15 02:00:30.040041 200.0.1.0/0xffffff00: tag 0, nh

0.0.0.0, met 3.

Aug 15 02:00:30.040053 sending msg 0x876a004, 4 rtes

(needs MD5)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Aug 15 02:00:30.040691 Update job done for nbr fe-0/0/0.1121

group: rip

Aug 15 02:00:32.560426 received response: sender 10.10.129.2,

command 2, version 2, mbz: 0; 5 routes.

Aug 15 02:00:32.560579 10.10.128.2/0xffffffff: tag 0, nh

0.0.0.0, met 1.

Aug 15 02:00:32.560645 192.168.2.0/0xfffffffc: tag 0, nh

0.0.0.0, met 1.

Aug 15 02:00:32.560694 200.0.2.0/0xffffff00: tag 0, nh

0.0.0.0, met 3.

*** monitor and syslog output disabled, press ESC-Q to enable ***

You can enter the Esc-q key sequence to suspend trace output to the screen while information is still being
written to the trace field. Pressing Esq-q again resumes output to the screen. It's nice to be able to enable
tracing and suspend it on demand so that you can read what has been painted to the screen, without having to
type something such as "undebug IP rip," all while your screen is overflowing with debug data. Use the monitor

stop command to stop tailing the logfile. The monitor list command shows any logfiles that are being

monitored.

The RIP tracing information relating to neighbor fe-0/0/0.1121 confirms the results of the show route-

advertising protocol command; namely that Lager is not readvertising routes that it learns via RIP to other

RIP neighbors. Having seen what there is to be seen, RIP tracing is diligently removed:

[edit protocols rip]

lab@Ale# delete traceoptions

[edit protocols rip]

lab@Ale# commit

commit complete

4.2.6. The Problem

Think back to your knowledge of JUNOS software routing policy; you'll recall that an export policy is the entity
responsible for taking active routes from the route table and placing them into outgoing protocol updates.
Because the problem route is in the route table, is active, and is confirmed as not being advertised to another
RIP neighbor, it would seem to be a classic case of broken export policy. But why is our export broken?

In JUNOS software, all protocols have a default import and export policy. The default import policy for RIP is to
accept all (sane) RIP routes, as you might expect. However, the default RIP export policy is to advertise
nothing; not even routes learned through RIP! Put another way, and for whatever reason, the configuration of
RIP in JUNOS software is not a simple matter of router rip combined with a few network statements. You will

almost always want the RIP router to propagate routes learned via RIP; to do this you will need to add explicit
export policy.

You already have a RIP export policy in effect to advertise the direct (connected) and the simulated customer
static routes. Therefore, a quick modification will put things right again in RIP land:

Code View:
[edit policy-options policy-statement rip_export]

lab@Ale# show

term 1 {

 from protocol direct;

 then accept;

}

term 2 {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 from {

 protocol static;

 route-filter 200.0.1.0/24 exact;

 }

 then {

 metric 3;

 accept;

 }

}

[edit policy-options policy-statement rip_export]

lab@Ale# set term 3 from protocol rip

[edit policy-options policy-statement rip_export]

lab@Ale# set term 3 then accept

[edit policy-options policy-statement rip_export]

lab@Ale# show

term 1 {

 from protocol direct;

 then accept;

}

term 2 {

 from {

 protocol static;

 route-filter 200.0.1.0/24 exact;

 }

 then {

 metric 3;

 accept;

 }

}

term 3 {

 from protocol rip;

 then accept;

}

A similar change is also made (and committed) to the export policy at Lager. After a few minutes, the results

are confirmed:

[edit]

lab@Lager# run show route receive-protocol rip 10.10.129.1

inet.0: 19 destinations, 19 routes (19 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

10.1.254.2/32 *[RIP/100] 00:01:22, metric 3, tag 0

 > to 10.10.129.1 via fe-0/0/0.1121

10.10.128.100/32 *[RIP/100] 01:31:13, metric 3, tag 0

 to 192.168.2.1 via fe-0/0/0.70

 > to 10.10.129.1 via fe-0/0/0.1121

10.10.128.1/32 *[RIP/100] 01:31:07, metric 2, tag 0

 > to 10.10.129.1 via fe-0/0/0.1121

192.168.1.0/30 *[RIP/100] 01:31:07, metric 2, tag 0

 > to 10.10.129.1 via fe-0/0/0.1121

http://lib.ommolketab.ir
http://lib.ommolketab.ir

200.0.1.0/24 *[RIP/100] 01:31:07, metric 4, tag 0

 > to 10.10.129.1 via fe-0/0/0.1121

200.0.100.0/24 *[RIP/100] 01:31:13, metric 5, tag 0

 > to 192.168.2.1 via fe-0/0/0.70

 to 10.10.129.1 via fe-0/0/0.1121

_ _juniper_private1_ _.inet.0: 2 destinations, 2 routes (2 active,

0 holddown, 0 hidden)

The show route-receiving protocol rip command at Lager confirms that Ale is now correctly readvertising

RIP routes learned from Malt. You can also see the effects of the modified export policy in the show route-

advertising protocol rip command issued at Lager:

[edit]

lab@Lager# run show route advertising-protocol rip 10.10.129.2

inet.0: 19 destinations, 19 routes (19 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

0.0.0.0/0 *[RIP/100] 01:31:24, metric 2, tag 200

 > to 192.168.2.1 via fe-0/0/0.70

10.1.254.0/24 *[RIP/100] 01:31:24, metric 2, tag 0

 > to 192.168.2.1 via fe-0/0/0.70

10.1.254.1/32 *[RIP/100] 01:31:24, metric 2, tag 0

 > to 192.168.2.1 via fe-0/0/0.70

10.10.128.200/32 *[RIP/100] 01:31:24, metric 2, tag 0

 > to 192.168.2.1 via fe-0/0/0.70

10.10.128.2/32 *[Direct/0] 03:05:21

 > via lo0.0

192.168.2.0/30 *[Direct/0] 03:05:21

 > via fe-0/0/0.70

200.0.2.0/24 *[Static/5] 03:06:02

 Discard

200.0.200.0/24 *[RIP/100] 01:26:33, metric 4, tag 0

 > to 192.168.2.1 via fe-0/0/0.70

Lager's output confirms that it too is now readvertising RIP learned routes. As a final verification, the route

table at Lager is inspected for the customer network associated with Malt:

[edit]

lab@Lager# run show route 200.0.100.0

inet.0: 19 destinations, 19 routes (19 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

200.0.100.0/24 *[RIP/100] 01:33:57, metric 5, tag 0

 > to 192.168.2.1 via fe-0/0/0.70

 to 10.10.129.1 via fe-0/0/0.1121

The route's presence with two forwarding next hops confirms the earlier suspicion that there should be multiple
equal cost paths for some RIP destinations in this lab topology. From Lager's there are now two equal cost

paths to 200.0.100/24-one via Barley and the other through Ale.

4.2.7. RIP Deployment Summary

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RIP really is a simple protocol, and configuring JUNOS software to interoperate with IOS for RIP was, for the
most part, pretty straightforward. The most common problem you'll encounter with this scenario is unfamiliarity
with the default RIP export policy, which is not intuitive, to say the least. This section demonstrated basic RIP
configuration and operational mode commands that assist in troubleshooting RIP operation in a JUNOS software
environment.

The next section addresses ways to migrate a network from one IGP to another, a concept called IGP migration.
Once again, now is an opportune time to take a break before moving on.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.3. IGP Migration

This section examines current best practices for IGP migration, referring to the exchange of a network's
existing, or legacy, IGP with a different version of IGP. Generally, the overall goals are to minimize network
disruption while also taking the opportunity to improve on the network's design and operation. The IGP plays a
critical role in the operation of any IP network. Upgrading a legacy network's IGP can result in dramatic
performance improvements and new service capabilities, and can align a company with an open standards-
based solution, which in turn facilitates a best-of-breed decision among networking boxes.

IGP migration is an excellent time to clean house, so to speak, by reevaluating all aspects of the current
network's design. Some factors to consider include:

The potential for readdressing to better accommodate hierarchical design and route summarization

The number and types of routers needed

How those routers interconnect (WAN/LAN technologies may have evolved since the original network
deployment)

Ways to improve reliability

The need to maintain high network availability may preclude significant redesign. Usually a compromise must be
reached between the need for availability versus potential optimizations, based on the specifics unique to each
enterprise. In some cases, a new backbone is deployed in parallel (the integration model), which affords the
luxury of complete redesign at the cost of additional gear.

4.3.1. IGP Migration: Common Techniques and Concerns

Before discussing specific migration approaches, it makes sense to examine some of the issues and
considerations common to all approaches. General factors and concepts applying to IGP migrations include the
following:

Global route preference

IGP transitions often touch on the concept of global route preference, which is known as administrative
distance in IOS. A route's global preference indicates the overall goodness of a source of routing
information and is used to break ties when two or more protocols announce reachability to the same
prefix. Recall that longest match always rules; therefore, a longest-matching RIP route will always be
preferred over a less specific version (a shorter netmask) that is learned from a more preferred protocol.
For example, a /24 OSPF internal route will lose to a /32 RIP route every day of the week despite its
much lower, and therefore preferred, preference. Global preference breaks ties only when routes with the
same level of specificity are learned by multiple routing protocols.

Route redistribution

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Route redistribution is the act of exchanging route information among different routing protocols and is a
common aspect of most IGP migration strategies. In many cases, you will not configure all routers for the
new IGP at the same time and will maintain connectivity between IGP domains by redistributing routes
between the new and legacy IGPs at select routers. Because this will typically be mutual, also known as
bidirectional route redistribution, you must remain ever-vigilant or else fall victim to the effects of routing
loops. Accurate policy is needed to ensure that routes originating within IGP A that are sent into IGP B
are never redistributed back into IGP A, and vice versa.

Concurrent IGP operation

Many migration scenarios will require that a device be configured to run instances of both the old and the
new IGPs at the same time. The first issue here is whether the device offers support for both protocols.
For example, running EIGRP on a Juniper Networks router is simply not an option. Then there are matters
of performance-can the device be expected to run two instances of an IGP and still operate reliably?
There are numerous cases of IGP migration (ones that were planned to occur with little or no disruption,
we might add) that instead melted down when a box started rebooting or peers start flapping, all
because of insufficient memory or CPU power when tasked with running both IGPs concurrently. This is
something that is often not considered when testing a migration scenario in a lab, where boxes may be
running at far lower memory and CPU levels than they would in the production environment.

As a general rule, you can safely run both IGPs concurrently if an existing device's CPU load is less than
50% while its memory load is less than 60%. If the device's CPU or memory load is higher, you should
consider a device upgrade or a migration approach that does not place both IGPs in service at the same
time.

Network cleanup and design

IGP migration is an opportune time to rid your network of excess baggage and poor design characteristics
that may have evolved in an ad hoc fashion over the years. Before migration, you should make sure your
network documentation is accurate and that you have reduced as much clutter as possible by removing
any unauthorized or unneeded addresses, networks, peers, protocols, and so forth. Careful thought
should be leveled at the design of the new IGP. Will it be flat or hierarchical? Does the existing addressing
model accommodate? How will metrics be mapped between the old and new IGPs? Where will you place
ABRs and ASBRs, and which routers should function as the DRs on LAN segments?

4.3.2. IGP Migration Models

Several proven approaches to IGP transitions have been developed over the years, and most of these
approaches share common elements to one degree or another. Each enterprise network is unique, and the
specifics of your network design, your standards for acceptable levels of disruption, and your budget will come
into play when deciding on a specific approach. The migration strategies are presented in an order representing
easiest to most difficult. The more difficult strategies are often combined with a more extensive network
redesign given the work already being performed.

4.3.3. The Overlay Model

The overlay model is generally considered the most straightforward IGP migration approach. The overlay is best
suited to networks that have a similar before and after logical topology. For example, if the legacy network is a
flat RIP network and the proposed design is a single area OSPF network, logically both networks are flat and IGP
migration will be straightforward. Using an overlay approach to move from a flat to a hierarchical network can

http://lib.ommolketab.ir
http://lib.ommolketab.ir

be rife with difficulties. For example, a flat network's addressing scheme may not accommodate a sound
hierarchical design, and the placement of nodes may not accommodate the desired location or level of
redundancy for things such as ABRs.

Figure 4-4 illustrates a network running both the legacy (RIP) and the new (OSPF) IGPs. Because Layer 2
switching is often used in the access and aggregation layers, the focus of most IGP migrations is centered on
the core layer-the techniques demonstrated here are applicable for access and aggregation layer migrations as
well. Note how both IGPs are configured at the same time, that the new IGP is initially set to be less preferred
(both OSPF preference values are larger than RIP's default 100), and that each router sends updates for both
IGPs in a ships-in-the-night fashion, meaning that neither IGP is aware of the other's operation.

Figure 4-4. The overlay model

The overlay model hinges on all devices having the ability to run both the old and the new IGPs concurrently,
and it makes heavy use of route preference to keep the new IGP's routes from becoming active, and therefore
installed in the forwarding table, until all aspects of the new IGP's operation are determined to be satisfactory.
When ready to make the cutover, the route preference is altered to have the routers prefer the new IGP's
routes. Ideally, this is all done in parallel, because having some devices use one IGP's routes while other routers
use a different IGP's routes can lead to loops stemming from variances between each protocol's take on the best
route. In many cases, the odds of which can be improved by the careful mapping of old to new metrics, the
forwarding paths of both protocols will be identical and you can get away with an incremental, box-at-a-time
shift in protocol preference. When the new IGP's operation is deemed stable, the old IGP is decommissioned by
removing its configuration from each router (there is no need to perform this in parallel, as you are now using
the new IGP). It's a good idea to keep a copy of the old configuration around, and you should consider using the
deactivate function of the JUNOS software CLI to comment out the old IGP's stanza, all the while knowing that

you can safely bring it back at any time by activating that portion of the configuration.

4.3.4. The Redistribution Model

The redistribution model is often used when an overlay approach is not workable due to a migration from a flat
to a hierarchical design or because some of the devices cannot run both IGPs concurrently. The latter condition
may be due to lack of device support or because of performance limitations. Section 4.3.4 illustrates a before-
and-after view of a network that, given the shift to a hierarchical design, represents a good candidate for the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

route redistribution model.

The first phase of the migration from RIP to OSPF is shown in Figure 4-6. Here, backbone routers Ale and Lager

are configured to run both RIP and OSPF concurrently, with the OSPF backbone being formed as a result. The
arrow shows a RIP update sent by Malt and received by Ale, where it will be injected into the nascent backbone

as a Type 5 AS external LSA. Though not shown, routes originating in the OSPF backbone undergo a similar
process whereby they are injected into the RIP domain to maintain full connectivity. It is critical to stress that
controls must be in place to ensure that routes are never redistributed back into the RD from where they
originated, unless your goal is a network-wide test of the IP Time to Live (TTL) mechanism. A well-planned
addressing approach always makes the filtering of route updates easier, as does a consistent approach to route
tagging (where supported by the protocol). The use of route tags makes control over route redistribution much
easier to configure and consequently far less prone to human error.

Figure 4-5. The redistribution model

Figure 4-6. Route tagging in the redistribution model to control route exchange

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Once again, the OSPF preference is altered to be less preferred than that of the original IGP, as was the case in
the overlay model. The default global preference for JUNOS software is 100 for RIP and 10/150 for OSPF
internal and AS external, respectively. Setting these preferences to 101/110 achieves the goal of ensuring that
RIP is preferred. This step ensures that the backbone will always prefer routes in their native RIP form, thus
avoiding routing loops and suboptimal routing. By way of example, consider that without this step, router
Barley's 200.0.200/24 route might be initially learned by Lager as an OSPF route, via a RIP update that was

generated by Malt and then redistributed into OSPF by Ale. By this time, Lager should have also received a RIP

update for the same prefix direct from Barley. If the preferences are such that Lager prefers OSPF externals

over RIP, we would have an extra hop as Lager forwards packets for 200.0.200/24 route over the OSPF

backbone through Ale, rather than the direct shot via Barley.

In this example, the default JUNOS software route preferences would have resulted in
the desired behavior. When redistributed into OSPF, the RIP routes take the form of AS
externals, which by default have a preference of 150, which makes them less preferred
than RIP anyway. Nonetheless, it's recommended that you always explicitly set
preferences. It's rarely a good idea to leave such things to chance in your network!

The next phase of the migration is depicted in Figure 4-7, where routers PBR and Stout have been converted to

OSPF and placed into Area 2. The specific approach taken to make this change could have been that of an
overlay, where the routers run RIP and OSPF concurrently, or as a hot cutover that removed the old and added

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the new IGP in one fell swoop. Such cutovers are made a little less stressful with the "nothing happens until you
commit" nature of JUNOS software. IOS users would likely paste such changes in from a configuration file to try
to minimize disruption. It ends with routers Barley and Malt remaining in the RIP domain along with the

associated interfaces on Ale and Lager. The next phase of the migration is an iterative process that repeats the

same procedure on Barley and Malt to create Area 1. The IGP migration is completed with removal of any RIP

remnants from the configurations of Area 0 routers Ale and Lager.

Figure 4-7. Route redistribution IGP migration: Phase 2

4.3.5. The Integration Model

The integration model is also well suited to IGP migrations that transition from a flat to a hierarchical design,
especially when a significant IP readdressing and/or network infrastructure upgrade is planned as part of the
migration. In the integration model, a new backbone network is deployed and tied to the legacy backbone,
where mutual route redistribution is performed. Portions of the legacy network are transitioned to the new
backbone in a phased manner. This type of migration is not hitless, but its does afford a near green-field chance
to redesign your IGP while confining down time to those segments that are actively being transitioned. Once all
segments have been migrated to the new backbone, the legacy backbone is decommissioned. This process is
shown in Section 4.3.5, which begins with the legacy backbone and moves on to the buildout of a new backbone
and the migration of one network segment. The process ends with the rightmost diagram showing all network

http://lib.ommolketab.ir
http://lib.ommolketab.ir

segments transitioned to the new backbone and removal of the legacy backbone infrastructure.

Figure 4-8. The integration model

You'll again find mutual route redistribution at play, and also this requires strict control to prevent routes from
being sent back to their originating IGP. As each network segment is transitioned, you may be able to deploy an
overlay approach or you might be forced into a hot cutover based on equipment capability and the level of
network redesign (e.g., any renumbering that is also planned).

It goes without saying, but we will state it here anyway, that the integration model represents the largest
degree of effort and capital expenditure. There is the cost of new equipment and new backbone buildout, and
then the sustaining costs of both the legacy and new backbones as segments are transitioned. During these
transitions, there may be significant renumbering and a need to deploy the new backbone protocol on routers as
they become part of the new IGP.

4.3.6. IGP Migration Summary

Networks, like people, evolve and change over time. Many networks are still running yesterday's IGP and could
benefit from a facelift in the interior routing department. Or maybe your network is running some proprietary
routing protocol and you have decided that it is time to add another vendor to the network, for whatever
reason. Either way, the techniques and concepts discussed here can help to minimize disruption and make the
shift to a new IGP as pain-free as possible.

In the next section, you will put this theory into practice as you migrate a network from RIP to the OSPF
protocol.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.4. Overlay Migration Scenario: RIP to OSPF

Just when you are considering some well-deserved time off, given the success of the recently deployed RIPv2
internetwork, you receive notification from the new CIO that the Beer-Co network must migrate to OSPF as part
of a modernization initiative. Beer-Co has conducted a design review and determined that a single OSPF area
with the ability to expand to a hierarchal design in the near future is required.

Considering the migration methods described in the previous section and the current design criteria, you
propose an overlay-based migration. The reasons for this recommendation include the following:

Both the legacy and planned networks are flat.

Both the legacy Cisco and new Juniper Networks gear support the legacy and new IGPs.

It's the most direct migration strategy, and you are still smarting from tilting at RIP.

Figure 4-9 shows the before, during, and after networks. In the middle, both IGPs are running, but altered
preferences ensure that RIP routes remain active, which provides you the chance to verify all aspects of OSPF
before its routes become active. The key to the overlay model is altered protocol preferences, and the figure
also shows the beginning, initial modification, and final preference values for RIP and OSPF internal/external
routes.

Figure 4-9. RIP-to-OSPF overlay topology

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The critical point occurs before OSPF is activated (especially in IOS, where changes take effect immediately as
they are entered). Both the internal and external preferences are set so that RIP remains unperturbed until you
are ready to retire it. Failing to ensure that OSPF external preference is set lower (is more preferred) than RIP
leads to a Frankenstein-like forwarding model that has the simulated customer networks and redistributed
loopback routes forwarding over OSPF paths while the internal routes continue to forward via RIP.

The Juniper boxes are configured first (recall that, until you commit, no change takes effect, so you have a
safety net of rollback or commit confirmed in case you do not like the results). The OSPF stanza is displayed at
Ale along with the associated set commands using the CLI's show | display set command. The

authentication key value jncie is reused here. Also of note are the altered preference values for OSPF internal

and external routes-that authentication is configured at the area level while the specifics are set on a per-
interface basis:

Code View:
[edit protocols ospf]

lab@Ale# show

preference 105;

external-preference 106;

export ospf_export; ## 'ospf_export' is not defined

area 0.0.0.0 {

 authentication-type md5;

 interface fe-0/0/0.69 {

 authentication {

 md5 1 key "9Yb4JD3nCu0I.PF/"; ## SECRET-DATA

 }

 }

 interface fe-0/0/0.1121 {

 authentication {

 md5 1 key "9WitXNbiHmTQn4ajq"; ## SECRET-DATA

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 }

}

[edit protocols ospf]

lab@Ale# show | display set

set protocols ospf preference 105

set protocols ospf external-preference 106

set protocols ospf export ospf_export

set protocols ospf area 0.0.0.0 authentication-type md5

set protocols ospf area 0.0.0.0 interface fe-0/0/0.69 authentication

md5 1 key "9Yb4JD3nCu0I.PF/"

set protocols ospf area 0.0.0.0 interface fe-0/0/0.1121 authentication

md5 1 key "9WitXNbiHmTQn4ajq"

Like RIP, OSPF requires an export policy for route redistribution, and the CLI's copy feature is evoked to save

some effort:

Code View:
[edit protocols ospf]

lab@Ale# top edit policy-options

[edit policy-options]

lab@Ale# copy policy-statement rip_export to policy-statement

ospf_export

[edit policy-options]

lab@Ale# edit policy-statement ospf_export

[edit policy-options policy-statement ospf_export]

lab@Ale# show

term 1 {

 from protocol direct;

 then accept;

}

term 2 {

 from {

 protocol static;

 route-filter 200.0.1.0/24 exact;

 }

 then {

 metric 3;

 accept;

 }

}

term 3 {

 from protocol rip;

 then accept;

}

Looking over the copy of the RIP policy, now in its renamed ospf_export form, it seems that the only term that

is out of place is term 3 and the bit about matching RIP. You certainly do not want any RIP-to-OSPF

redistribution in this example! We remove term 3 (committing the changes) and make similar changes to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Lager:

[edit policy-options policy-statement ospf_export]

lab@Ale# delete term 3

After a few moments, the OSPF adjacency status is confirmed between Ale and Lager. Recall that Malt and

Barley have not been configured with OSPF at this time:

[edit]

lab@Ale# run show ospf interface

Interface State Area DR ID BDR ID Nbrs

fe-0/0/0.1121 DR 0.0.0.0 10.10.128.1 10.10.128.2 1

fe-0/0/0.69 DR 0.0.0.0 10.10.128.1 0.0.0.0 0

The output from the show ospf interface command confirms that OSPF is running on the desired interfaces

and that local router Ale has won the DR election on both of its interfaces. Considering that Ale is alone (zero

neighbors have been detected) on its fe-0/0/0.69 interface, its DR status on that segment should be no

surprise. You can also verify the area 0 setting and that the only other router on the fe0-0/0/0.1121 link has

delegated itself to be the backup DR. Remember that priority and RID factor only during an active election.
Given the matched priority and Ale's lower RID (its lo0 address is lower than Lager's), this must be a case of

Ale having been configured for OSPF first. The first non-0 priority router up always becomes the DR:

[edit]

lab@Ale# run show ospf neighbor

 Address Interface State ID Pri Dead

10.10.129.2 fe-0/0/0.1121 Full 10.10.128.2 128 38

The show ospf neighbor command verifies that a full adjacency has been formed between Ale and Lager,

which is a very good sign indeed:

[edit]

lab@Ale# run show route protocol ospf

inet.0: 19 destinations, 22 routes (19 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

10.10.128.2/32 [OSPF/105] 00:01:03, metric 1

 > to 10.10.129.2 via fe-0/0/0.1121

192.168.2.0/30 [OSPF/105] 00:01:03, metric 2

 > to 10.10.129.2 via fe-0/0/0.1121

200.0.2.0/24 [OSPF/106] 00:01:03, metric 3, tag 0

 > to 10.10.129.2 via fe-0/0/0.1121

224.0.0.5/32 *[OSPF/10] 00:07:52, metric 1

 MultiRecv

Showing the routes learned via OSPF confirms several important points. One is simply that routes are being
learned via OSPF (Lager's 10.10.126.2 loopback and the 192.168.2.0 link to Barley), and equally significant is

that none of these learned OSPF route are currently active.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Unlike IOS, which requires that you run OSPF on the loopback interface to advertise its
associated route, JUNOS software automatically advertises a stub route to the default
address used as the source of the RID, assuming that a RID has not been explicitly set
under [routing-options]. Because the lo0 interface is the first to be activated, the

lo0 interface's primary address is used as the RID. In contrast, for IOS it is common to

either run a passive OSPF instance on the loopback interface or to redistribute the
connected router into OSPF, as shown in the following example.

A final confirmation that our route preference changes are working comes when we display the route to Lager's

customer network at Ale:

[edit]

lab@Ale# run show route 200.0.2.0

inet.0: 19 destinations, 22 routes (19 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

200.0.2.0/24 *[RIP/100] 02:47:22, metric 4, tag 0

 > to 10.10.129.2 via fe-0/0/0.1121

 [OSPF/106] 00:09:29, metric 3, tag 0

 > to 10.10.129.2 via fe-0/0/0.1121

Perfect! Ale has both OSPF and RIP copies of the customer route. The key thing here is that the original RIP

version is, and has always been, active. Unlike RIP, the displayed OSPF route metric does not reflect Ale's

interface costs to reach Lager. With the default scaling factor of 100,000,000, the cost for Ale's Fast Ethernet

interface is 1 (you can confirm this with a show ospf interface detail command), so you might expect to

see Ale display a cost of 4 for the 200.0.0.2/24 prefix. The reason for this situation is that the OSPF_export

policy at Lager did not bother to specify a Type 1 external metric, so the default Type 2 metric is generated,

and by OSPF standards this metric is never incremented by other routers. A sample of a policy modification that
alters the metric type is provided, along with the results observed back at Ale. These changes are then rolled

back to restore the initial behavior:

Code View:
[edit policy-options policy-statement ospf_export]

lab@Lager# show

term 1 {

 from protocol direct;

 then accept;

}

term 2 {

 from {

 protocol static;

 route-filter 200.0.2.0/24 exact;

 }

 then {

 metric 3;

 external {

 type 1;

 }

 accept;

 }

}

[edit]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

lab@Ale# run show route 200.0.2.0

inet.0: 19 destinations, 22 routes (19 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

200.0.2.0/24 *[RIP/100] 03:03:06, metric 4, tag 0

 > to 10.10.129.2 via fe-0/0/0.1121

 [OSPF/106] 00:02:35, metric 4, tag 0

 > to 10.10.129.2 via fe-0/0/0.1121

With the OSPF overlay working on the Juniper Networks portion of the network, we place the equivalent
configuration into effect at the Cisco boxes. It is critical that the modified OSPF preference (setting both the
internal and external to a distance higher than RIP's) be the first thing configured to help ensure that RIP is not
impacted-in IOS land, changes go into effect as soon as they are entered. By default, IOS assigns the same
administrative distance to OSPF internals and externals (and interarea, for that matter), so we should adopt the
same approach-as long as the distance for all OSPF routes is less preferred than RIP, it will be OK. The
commands entered on Malt are shown. Similar commands are also entered on Barley.

Code View:
Malt# configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

Malt(config)# router ospf 10

Malt(config-router)# distance 125

Malt(config-router)# area 0 authentication message-digest

Malt(config-router)# redistribute static route-map TAGGING

% Only classful networks will be redistributed

Malt(config-router)# network 10.0.0.0 0.255.255.255 area 0

Malt(config-router)# network 192.168.2.0 0.0.0.3 area 0

Malt(config-router)# default-information originate route-map FOO

Malt(config-router)# exit

Malt(config)# interface fastEthernet 0/1.69

Malt(config-subif)# ip ospf message-digest-key 1 md5 jncie

Malt(config-router)# exit

Malt(config)# interface serial 0/0

Malt(config-subif)# ip ospf message-digest-key 1 md5 jncie

Malt(config)# route-map FOO permit 20

Malt(config-route-map)# match ip address 4

Malt(config-route-map)# set tag 100

Malt(config-subif)# ̂ Z

Malt#

*Mar 1 04:01:28.603: %SYS-5-CONFIG_I: Configured from console by

console

*Mar 1 04:01:30.495: %OSPF-5-ADJCHG: Process 10, Nbr 10.10.128.1 on FastEthernet0/

1.69 from LOADING to FULL, Loading Done

The resultant OSPF portion of the configuration is shown next, along with the new route map. Note the log
message in the previous capture reporting an up adjacency on Malt's fa 0/1.69 interface. This is a good

indication that we have compatible OSPF settings between the Cisco and Juniper routers.

router ospf 10

 log-adjacency-changes

 area 0 authentication message-digest

 redistribute static route-map TAGGING

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 network 10.0.0.0 0.255.255.255 area 0

 network 192.168.2.0 0.0.0.3 area 0

 default-information originate route-map FOO

 distance 125

!

. . .

route-map FOO permit 20

 match ip address 4

 set tag 100

!

The configuration creates an OSPF instance identified as 10, enables MD5 authentication in area 0, redistributes
and route-maps the same routes used in the RIP example, and enables OSPF area 0 in the serial 0/0 and fa

0/1.60 interfaces. Note that in the IOS implementation, OSPF will not redistribute a default static route. You

must use the default-information originate command instead. Using the preexisting TAGGING route map did

not work, so a new route map named FOO was created. It's things such as this that make you appreciate the

consistent nature of JUNOS software routing policy.

In an approach that is similar to JUNOS software OSPF configuration, the specific MD5 key ID and key value are
set under each interface. The difference is that for JUNOS software, this was done within the OSPF configuration
proper, whereas for IOS, it is under the interface configuration. The OSPF authentication settings are also shown
for one of Malt's interfaces:

interface FastEthernet0/1

 no ip address

 duplex auto

 speed auto

!

interface FastEthernet0/1.69

 encapsulation dot1Q 69

 ip address 192.168.1.1 255.255.255.252

 ip rip authentication mode md5

 ip rip authentication key-chain test

 ip ospf message-digest-key 1 md5 jncie

 no snmp trap link-status

!

After a few moments, the OSPF status is analyzed on Malt:

Code View:
Malt# show ip ospf interface fastEthernet 0/1.69

FastEthernet0/1.69 is up, line protocol is up

 Internet Address 192.168.1.1/30, Area 0

 Process ID 10, Router ID 10.10.128.100, Network Type BROADCAST,

Cost: 1

 Transmit Delay is 1 sec, State BDR, Priority 1

 Designated Router (ID) 10.10.128.1, Interface address 192.168.1.2

 Backup Designated router (ID) 10.10.128.100, Interface address

192.168.1.1

 Timer intervals configured, Hello 10, Dead 40, Wait 40,

Retransmit 5

 oob-resync timeout 40

 Hello due in 00:00:05

 Index 3/3, flood queue length 0

 Next 0x0(0)/0x0(0)

 Last flood scan length is 1, maximum is 1

 Last flood scan time is 0 msec, maximum is 4 msec

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Neighbor Count is 1, Adjacent neighbor count is 1

 Adjacent with neighbor 10.10.128.1 (Designated Router)

 Suppress hello for 0 neighbor(s)

 Message digest authentication enabled

 Youngest key id is 1

The show ip ospf interface command for Malt's fa 0/1.69 verifies the presence of a neighbor with RID

10.10.128.1 (Ale's loopback address/RID) and confirms the authentication and timer settings that are in effect.

As expected, Ale remains the DR because in OSPF, this DR election is not revertive.

Malt# show ip ospf neighbor

Neighbor ID Pri State Dead Time Address Interface

10.10.128.1 128 FULL/DR 00:00:38 192.168.1.2 FastEthernet0/1.69

10.10.128.200 0 FULL/ - 00:00:36 10.1.254.2 Serial0/0

The show ip ospf neighbor command confirms the expected adjacencies to both Barley and Ale. We next

display a simulated customer route to confirm that the RIP copy is still being used at the Cisco boxes:

Malt# show ip route 200.0.2.0

Routing entry for 200.0.2.0/24

 Known via "rip", distance 120, metric 4

 Redistributing via rip

 Last update from 10.1.254.2 on Serial0/0, 00:00:03 ago

 Routing Descriptor Blocks:

 * 10.1.254.2, from 10.1.254.2, 00:00:03 ago, via Serial0/0

 Route metric is 4, traffic share count is 1

 192.168.1.2, from 192.168.1.2, 00:00:14 ago, via FastEthernet0/1.69

 Route metric is 4, traffic share count is 1

The output confirms that the RIP version of the route is still active. Unfortunately, IOS displays only the active
route, making it hard to confirm that OSPF shadow versions also exist. The LSDB is inspected to make this
determination:

Code View:
Malt# show ip ospf database external adv-router 10.10.128.2

 OSPF Router with ID (192.168.1.1) (Process ID 120)

 OSPF Router with ID (10.10.128.100) (Process ID 10)

 Type-5 AS External Link States

 LS age: 97

 Options: (No TOS-capability, DC)

 LS Type: AS External Link

 Link State ID: 10.10.128.2 (External Network Number)

 Advertising Router: 10.10.128.2

 LS Seq Number: 80000006

 Checksum: 0x2858

 Length: 36

 Network Mask: /32

 Metric Type: 2 (Larger than any link state path)

 TOS: 0

 Metric: 0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Forward Address: 0.0.0.0

 External Route Tag: 0

 Routing Bit Set on this LSA

 LS age: 397

 Options: (No TOS-capability, DC)

 LS Type: AS External Link

 Link State ID: 200.0.2.0 (External Network Number)

 Advertising Router: 10.10.128.2

 LS Seq Number: 80000006

 Checksum: 0x92B6

 Length: 36

 Network Mask: /24

 Metric Type: 2 (Larger than any link state path)

 TOS: 0

 Metric: 3

 Forward Address: 0.0.0.0

 External Route Tag: 0

The external (in fixed code) argument to the show ip ospf database command filters the output such that

only AS LSAs sent by Lager are shown. The adv-router argument specified Lager's OSPF RID to identify it from

all other sources of AS external LSAs in the OSPF RD. The output confirms that Lager's customer route

(200.0.2/24) is being advertised into OSPF.

4.4.1. RIP-to-OSPF Migration: Cutover to OSPF

With various aspects of OSPF operation confirmed, it's time to make the cut from RIP to OSPF. This should be a
nondisruptive process, but as with all IGP migration procedures, it's best to perform the cutover in a
maintenance window as added insurance-the interplay of complex internetworking protocols is sometimes hard
to predict. The actual transition normally occurs in two phases. First, make the OSPF routes active, and then,
after you confirm proper operation, remove all traces of the legacy protocol and reset the new protocol to its
default preference values.

To achieve the first goal you could reconfigure the OSPF internal and external preferences to be more preferred
than RIP, or you could alter RIP's preference to be less preferred than OSPF. Either way, if something blows up,
you can roll back or simply remove the OSPF configuration, and return to RIP operation while determining what
went wrong. Given that IOS is now set with a single preference for both OSPF and RIP, the amount of change is
a wash. On the JUNOS devices, it will be easier to change the one RIP preference rather than both OSPF values.
Therefore, the plan is to set the RIP administrative distance to 126 on the IOS devices, while setting the RIP
preference to 107 on the JUNOS devices. In both cases, the change will make RIP a less-preferred protocol.

The changes are shown for the Juniper router Ale. Similar commands are also executed at Lager:

[edit protocols]

lab@Ale# set rip group rip preference 107

The RIP administrative distance is altered on both IOS boxes:

Malt# conf terminal

Enter configuration commands, one per line. End with CNTL/Z.

Malt(config)# router rip

Malt(config-router)# distance 126

http://lib.ommolketab.ir
http://lib.ommolketab.ir

After a few moments, it's confirmed that the OSPF version of Lager's 200.0.2.0 route is now preferred at

Barley:

Barley# show ip route 200.0.2.0

Routing entry for 200.0.2.0/24

 Known via "ospf 10", distance 125, metric 3, type extern 2, forward

metric 1

 Last update from 192.168.2.2 on FastEthernet0/1.70, 00:03:42 ago

 Routing Descriptor Blocks:

 * 192.168.2.2, from 10.10.128.2, 00:03:42 ago, via FastEthernet0/1.70

 Route metric is 3, traffic share count is 1

Back at the Juniper side of things, you should make a similar determination as to which set of routes is
preferred. Note how routes learned through multiple sources are clearly shown in JUNOS software, and that the
active versions of these routes are now OSPF-based:

Code View:
lab@Ale# run show route

inet.0: 19 destinations, 26 routes (19 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

0.0.0.0/0 *[OSPF/106] 00:00:25, metric 1, tag 200

 > to 10.10.129.2 via fe-0/0/0.1121

 [RIP/107] 06:14:07, metric 2, tag 100

 > to 192.168.1.1 via fe-0/0/0.69

10.1.254.0/24 *[OSPF/105] 00:08:03, metric 66

 > to 10.10.129.2 via fe-0/0/0.1121

 [RIP/107] 06:14:07, metric 2, tag 0

 > to 192.168.1.1 via fe-0/0/0.69

10.1.254.1/32 *[RIP/107] 04:14:22, metric 3, tag 0

 > to 10.10.129.2 via fe-0/0/0.1121

10.1.254.2/32 *[RIP/107] 06:14:07, metric 2, tag 0

 > to 192.168.1.1 via fe-0/0/0.69

10.10.128.100/32 *[OSPF/105] 00:08:03, metric 67

 > to 10.10.129.2 via fe-0/0/0.1121

 [RIP/107] 06:14:07, metric 2, tag 0

 > to 192.168.1.1 via fe-0/0/0.69

10.10.128.200/32 *[OSPF/105] 00:08:03, metric 3

 > to 10.10.129.2 via fe-0/0/0.1121

10.10.128.1/32 *[Direct/0] 3d 21:34:05

 > via lo0.0

10.10.128.2/32 *[OSPF/105] 00:08:03, metric 1

 > to 10.10.129.2 via fe-0/0/0.1121

 [RIP/107] 05:45:43, metric 2, tag 0

 > to 10.10.129.2 via fe-0/0/0.1121

10.10.129.0/24 *[Direct/0] 2d 22:32:39

 > via fe-0/0/0.1121

10.10.129.1/32 *[Local/0] 3d 21:34:05

 Local via fe-0/0/0.1121

192.168.1.0/30 *[Direct/0] 2d 22:32:39

 > via fe-0/0/0.69

192.168.1.2/32 *[Local/0] 3d 06:03:32

 Local via fe-0/0/0.69

192.168.2.0/30 *[OSPF/105] 00:08:03, metric 2

 > to 10.10.129.2 via fe-0/0/0.1121

 [RIP/107] 05:45:43, metric 2, tag 0

 > to 10.10.129.2 via fe-0/0/0.1121

http://lib.ommolketab.ir
http://lib.ommolketab.ir

200.0.1.0/24 *[Static/5] 2d 07:10:57

 Discard

200.0.2.0/24 *[OSPF/106] 00:08:03, metric 3, tag 0

 > to 10.10.129.2 via fe-0/0/0.1121

 [RIP/107] 05:45:43, metric 4, tag 0

 > to 10.10.129.2 via fe-0/0/0.1121

200.0.100.0/24 *[OSPF/106] 00:08:03, metric 3, tag 0

 > to 10.10.129.2 via fe-0/0/0.1121

 [RIP/107] 06:14:07, metric 4, tag 0

 > to 192.168.1.1 via fe-0/0/0.69

200.0.200.0/24 *[OSPF/106] 00:08:03, metric 3, tag 0

 > to 10.10.129.2 via fe-0/0/0.1121

224.0.0.5/32 *[OSPF/10] 03:14:39, metric 1

 MultiRecv

224.0.0.9/32 *[RIP/100] 00:08:03, metric 1

 MultiRecv

The display shows the default route in its OSPF and RIP forms, both of which are tagged due to route-map
actions. Here, Ale has installed the default generated by Barley (tag 200), with the RIP version learned directly

from Malt also listed (tag 100). The JUNOS software CLI's matching function is used to identify any remaining

active RIP routes. The \ is used here to escape the * character, so it is not incorrectly expanded as a shell

wildcard, rather than a specific match condition:

[edit protocols]

lab@Ale# run show route protocol rip | match *

+ = Active Route, - = Last Active, * = Both

10.1.254.1/32 *[RIP/107] 04:16:48, metric 3, tag 0

10.1.254.2/32 *[RIP/107] 06:16:33, metric 2, tag 0

224.0.0.9/32 *[RIP/100] 00:10:29, metric 1

Besides the multicast route associated with RIPv2, only the /32 host routes from the Malt- Barley serial link

are still active as a RIP route. This is not an issue, as the related subnet 10.1.254.0/24 is correctly advertised
into OSPF (see the previous route display). These results confirm that it's safe to remove RIP from the
internetwork. Things begin first at the Juniper Networks boxes:

[edit]

lab@Ale# delete protocols rip

And then the change occurs at the Cisco boxes:

Malt# conf terminal

Enter configuration commands, one per line. End with CNTL/Z.

Malt(config)# no router rip

Malt(config)# ^Z

Malt#

Though not shown, the related RIP policy and route maps can now be safely removed. After a few moments of
waiting, no angry users surface, and OSPF routing is verified at Ale. Perhaps it's now time for that vacation....

[edit]

lab@Ale# run show route protocol rip

inet.0: 16 destinations, 16 routes (16 active, 0 holddown, 0 hidden)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

_ _juniper_private1_ _.inet.0: 2 destinations, 2 routes (2 active,

0 holddown, 0 hidden)

No more RIP routes, as planned:

[edit]

lab@Ale# run show route 200.0.200.0

inet.0: 16 destinations, 16 routes (16 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

200.0.200.0/24 *[OSPF/106] 00:16:20, metric 3, tag 0

 > to 10.10.129.2 via fe-0/0/0.1121

The active route is still OSPF, and a traceroute confirms identical connectivity:

[edit]

lab@Ale# run traceroute 200.0.200.1 no-resolve

traceroute to 200.0.200.1 (200.0.200.1), 30 hops max, 40 byte

packets

 1 10.10.129.2 17.647 ms 14.877 ms 14.854 ms

 2 192.168.2.1 8.879 ms 10.982 ms 9.878 ms

 3 192.168.2.1 10.287 ms !H * 10.282 ms !H

4.4.2. Before You Go, Can You Set Up Area 1 Real Quick?

So, the CIO of Beer-Co is so impressed with the success of the RIP-to-OSPF migration that you have been asked
to bring up an Area 1 attachment to router PBR. This is to be a stub area, with a default route injected by the

area's ABR so that PBR can reach the various OSPF external destinations now present in the new network. Figure

4-10 shows the new topology. You may assume that interface parameters are correctly set.

Figure 4-10. A hierarchical OSPF network

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In Figure 4-10's example, PBR's fe-0/0/1 interface has been looped back (to ensure that it's declared up, even

if not connected), and five VLANs have been created, each with an IP address in the form of 200.10.x.1/24. All
five of these logical interfaces have been placed into OSPF area 1, which has been set as a stub area. PBR's

OSPF and fe-0/0/1 configuration is as follows:

Code View:
[edit]

lab@PBR# show interfaces fe-0/0/1

vlan-tagging;

fastether-options {

 loopback;

}

unit 1 {

 vlan-id 1;

 family inet {

 address 200.10.1.1/24;

 }

}

unit 2 {

 vlan-id 2;

 family inet {

 address 200.10.2.1/24;

 }

}

unit 3 {

 vlan-id 3;

 family inet {

 address 200.10.3.1/24;

 }

}

unit 4 {

 vlan-id 4;

 family inet {

 address 200.10.4.1/24;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

}

unit 5 {

 vlan-id 5;

 family inet {

 address 200.10.5.1/24;

 }

}

[edit]

lab@PBR# show protocols ospf

area 0.0.0.1 {

 stub;

 interface fe-0/0/1.1;

 interface fe-0/0/1.2;

 interface fe-0/0/1.3;

 interface fe-0/0/1.4;

 interface fe-0/0/1.5;

 interface fe-0/0/0.1141;

}

Meanwhile, a compatible OSPF area 1 configuration has been added at Ale:

[edit protocols ospf area 0.0.0.1]

lab@Ale# show

stub default-metric 10;

interface fe-0/0/0.1141;

Note that to inject a default route into the stub, you must specify a default metric. After a few moments, OSPF
operation is confirmed at PBR. The show ospf neighbor command confirms that the adjacency to Ale is

established:

[edit protocols ospf]

lab@PBR# run show ospf neighbor

 Address Interface State ID Pri Dead

10.10.130.1 fe-0/0/0.1141 Full 10.10.128.1 128 39

The display of OSPF routes verifies the presence of the default route, injected by ABR router Ale, and reveals an

absence of AS externals, which are not permitted in a stub network. Only LSA types 1, 2, and 3 are permitted in
a stub area-the OSPF route table at PBR contains only intraarea and interarea routes, thus confirming this

aspect of OSPF stub area operation:

[edit]

lab@PBR# run show ospf route

Prefix Path Route NH Metric NextHop Nexthop

 Type Type Type Interface addr/label

10.10.128.1 Intra Area BR IP 1 fe-0/0/0.1141 10.10.130.1

0.0.0.0/0 Inter Network IP 11 fe-0/0/0.1141 10.10.130.1

10.10.128.1/32 Intra Network IP 1 fe-0/0/0.1141 10.10.130.1

10.10.128.2/32 Inter Network IP 2 fe-0/0/0.1141 10.10.130.1

10.10.129.0/24 Inter Network IP 2 fe-0/0/0.1141 10.10.130.1

10.10.130.0/24 Intra Network IP 1 fe-0/0/0.1141

10.10.131.0/24 Inter Network IP 3 fe-0/0/0.1141 10.10.130.1

192.168.1.0/30 Inter Network IP 2 fe-0/0/0.1141 10.10.130.1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

192.168.2.0/30 Inter Network IP 3 fe-0/0/0.1141 10.10.130.1

200.10.1.0/24 Intra Network IP 1 fe-0/0/1.1

200.10.2.0/24 Intra Network IP 1 fe-0/0/1.2

200.10.3.0/24 Intra Network IP 1 fe-0/0/1.3

200.10.4.0/24 Intra Network IP 1 fe-0/0/1.4

200.10.5.0/24 Intra Network IP 1 fe-0/0/1.5

PBR relies on the ABR-generated default route to reach external destinations because AS external LSAs are not

advertised into stub areas:

[edit protocols ospf]

lab@PBR# run show route 200.0.200.1

inet.0: 21 destinations, 21 routes (21 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

0.0.0.0/0 *[OSPF/10] 00:04:31, metric 11

 > to 10.10.130.1 via fe-0/0/0.1141

You can add the no-summaries keyword to the area 1 configuration at the stub area's ABR (Ale) to also filter

Type 3 network summary LSAs, which also result in the use of a default route for interarea destinations. With
this change, a totally stubby area is born:

[edit protocols ospf area 0.0.0.1]

lab@Ale# set stub no-summaries

[edit protocols ospf area 0.0.0.1]

lab@Ale# commit

The results are confirmed at PBR, whose LSDB just got much smaller:

[edit]

lab@PBR# run show ospf route

Prefix Path Route NH Metric NextHop Nexthop

 Type Type Type Interface addr/label

10.10.128.1 Intra Area BR IP 1 fe-0/0/0.1141 10.10.130.1

0.0.0.0/0 Inter Network IP 11 fe-0/0/0.1141 10.10.130.1

10.10.128.1/32 Intra Network IP 1 fe-0/0/0.1141 10.10.130.1

10.10.130.0/24 Intra Network IP 1 fe-0/0/0.1141

200.10.1.0/24 Intra Network IP 1 fe-0/0/1.1

200.10.2.0/24 Intra Network IP 1 fe-0/0/1.2

200.10.3.0/24 Intra Network IP 1 fe-0/0/1.3

200.10.4.0/24 Intra Network IP 1 fe-0/0/1.4

200.10.5.0/24 Intra Network IP 1 fe-0/0/1.5

[edit protocols ospf]

lab@PBR# run show route 192.168.1.1

inet.0: 16 destinations, 16 routes (16 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

0.0.0.0/0 *[OSPF/10] 00:01:41, metric 11

 > to 10.10.130.1 via fe-0/0/0.1141

4.4.2.1. A final task: Aggregate network summaries into the backbone

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Area 1 is now quite optimized, but it has been called to your attention that the five 200.10.x.1/24 networks
owned by PBR are being flooded into the backbone as individual Type 3 network summary LSAs. This is normal

for OSPF, but your CIO wants to run a tight ship and has asked that you generate a single summary LSA into
area 0 in place of the current five. Before making changes, you confirm that the CIO has correctly described the
network summary situation by displaying Type 3 LSAs generated by ABR Ale. Note that these summaries are in

backbone area 0.

[edit]

lab@Lager#run show ospf database netsummary advertising-router

10.10.128.1

 OSPF link state database, Area 0.0.0.0

 Type ID Adv Rtr Seq Age Opt Cksum Len

Summary 10.10.130.0 10.10.128.1 0x80000003 421 0x22 0xc449 28

Summary 10.20.128.3 10.10.128.1 0x80000002 421 0x22 0x46bd 28

Summary 200.10.1.0 10.10.128.1 0x80000002 421 0x22 0xb11f 28

Summary 200.10.2.0 10.10.128.1 0x80000002 421 0x22 0xa629 28

Summary 200.10.3.0 10.10.128.1 0x80000002 421 0x22 0x9b33 28

Summary 200.10.4.0 10.10.128.1 0x80000002 421 0x22 0x903d 28

Summary 200.10.5.0 10.10.128.1 0x80000002 421 0x22 0x8547 28

Taking note of Lager's current area 0 LSDB state, you make a change to the area 1 portion of Ale, which

results in the summarization of matching network summary LSAs:

[edit protocols ospf area 0.0.0.1]

lab@Ale# set area-range 200.10/16

[edit protocols ospf area 0.0.0.1]

lab@Ale# show

stub default-metric 10 no-summaries;

area-range 200.10.0.0/16;

interface fe-0/0/0.1141;

The area-range statement replaces individual network summaries that fall within the configured range with a

single network summary representing the entire range. Adding the restrict keyword as part of the area-

range statement serves to block any network summaries that are equal in length to the area-range's mask. In

other words, the area-range is normally a longer function with regard to prefix length, but adding the restrict

keyword alters this match type to that of orlonger. The latter results in filtering of any summaries equal in

length to the specified area-range prefix length.

Your work is confirmed with a look at the network summaries now advertised into area 0 by Ale:

[edit]

lab@Lager# show ospf database netsummary advertising-router

10.10.128.1

 OSPF link state database, Area 0.0.0.0

 Type ID Adv Rtr Seq Age Opt Cksum Len

Summary 10.10.130.0 10.10.128.1 0x8000000a 9 0x22 0xb650 28

Summary 10.20.128.3 10.10.128.1 0x80000009 9 0x22 0x38c4 28

Summary 200.10.0.0 10.10.128.1 0x80000001 9 0x22 0xbe14 28

As a final check, the connectivity from Cisco router Barley to one of the 200.10.x.1/24 networks on PBR is

confirmed:

Barley# traceroute 200.10.1.1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Type escape sequence to abort.

Tracing the route to 200.10.1.1

 1 192.168.2.2 4 msec 4 msec 12 msec

 2 10.10.129.1 8 msec 4 msec 12 msec

3 200.10.1.1 4 msec 8 msec 8 msec

Awesome! This result completes the RIP-to-OSPF migration. This example also touched on stub area and area-
range summarization configuration.

4.4.3. RIP Migration with the Overlay Model Summary

This section demonstrated a typical RIP-to-OSPF IGP migration using the overlay model. This was demonstrated
in a multivendor environment to help show that the principles and procedures are somewhat universal, albeit
with slightly varied command syntax that serves only to confuse the innocent. The modification of global route
preferences allowed a smooth, hitless transition. Once the new IGP was found to be operating as expected, a
quick change of preference resulted in use of the new IGP's forwarding paths while retaining the legacy IGP's
configuration (and legacy protocol neighbors/adjacency state), in the event that the change needs to be backed
out quickly. The migration ends with the removal of all legacy IGP traces from the router configurations.

This section also showed the conversion of a flat OSPF network into a hierarchical design that included the
function of stub networks, totally stubby networks, and area-range syntax to consolidate network summaries as
they enter the backbone.

Now is a good time to take another break. The next section continues our discussion of IGP migration, but this
time in the context of an EIGRP-to-OSPF scenario.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.5. EIGRP-to-OSPF Migration

This section demonstrates a smooth migration from a legacy EIGRP network to a hierarchical OSPF IGP. You
could take many approaches to facilitate such a migration. The best approach will depend on numerous factors,
such as device support of old and new IGPs and whether new equipment is being added, and if so, whether it's
added to replace or augment an existing network's infrastructure. Also of consideration is the legacy network's
design with regard to addressing and hierarchy, in combination with the design goals for the new network's
efficiency and scalability.

The tactic demonstrated here is of the route redistribution variety. But considering that Juniper Networks
routers have never spoken EIGRP, a bit of the integration model has to be at work as well-after all, a new
backbone is being built out. It is acknowledged that leveraging existing network infrastructure will be of prime
concern for most enterprises, and therefore that a typical EIGRP-to-OSPF migration will center on the phased
reconfiguration of existing IOS devices to begin running the new and stop running the old IGP. This chapter
demonstrates a migration approach in which Juniper Networks routers are added to form a new OSPF backbone
while minimal changes are made to the legacy infrastructure to accommodate communications between the
EIGRP and OSPF domains.

The solution demonstrated accommodates graceful growth of the OSPF backbone while the legacy EIGRP
backbone is phased out. The migration goals for this scenario are as follows:

There should be a minimal impact to the existing IOS configurations and existing EIGRP backbone
operation.

The solution should accommodate a phasing out of the legacy backbone IGP (though not necessarily the
current devices) toward an all-OSPF backbone.

The solution should be as simple as possible and be workable for small-to-large-scale enterprise
migrations.

The design must minimize the impact of large numbers of AS external LSAs for low-end routers.

4.5.1. Mutual Route Redistribution

To make this scenario work, mutual route redistribution is needed between EIGRP and OSPF. As always, you
must ensure that routes are redistributed only once, because loops will violate the "minimal impact to existing
backbone" criterion. In addition, route preference adjustments may be needed to ensure optimal routing,
depending on the default preferences for internal versus external EIGRP and OSPF between the two vendors.

As much as you might prefer to have all this happen on the JUNOS software devices, the
simple fact is that they cannot run EIGRP, while the Cisco boxes support both EIGRP and
OSPF. This means the redistribution work will have to occur in IOS land. From the
viewpoint of the Juniper routers, however, this is just another OSPF network, albeit one
with a lot of tagged AS externals.

Figure 4-11 provides the topology and addressing specifics to assist the reader in tracking down which devices

http://lib.ommolketab.ir
http://lib.ommolketab.ir

and IGPs own which routes.

Figure 4-11. EIGRP-to-OSPF migration topology

Figure 4-12 provides the summary plan of action, as derived from the design criteria provided.

Figure 4-12. EIGRP-to-OSPF migration plan overview

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The overall plan is to add an OSPF process on the Cisco routers that redistributes connected, static, and EIGRP
learned routes after adding a tag value to these routes. In this case, the tag chosen is based on the EIGRP
domain's AS (process) number (it could be any unique value, however). In addition, the existing EIGRP
configuration is modified to redistribute OSPF into EIGRP after tagging these routes in a similar fashion. In both
cases, the first step in the respective route maps is to deny any routes that already have the EIGRP process tag
value. It's critical that the deny action occur first, as the whole point of the route tags is to simplify the blocking
of routes that originated in EIGRP from being redistributed back onto EIGRP from OSPF. Likewise, we need to
block routes that originated in OSPF from being sent back into OSPF by EIGRP; the same tag value is also used
for this filtering requirement.

Recall that redistribution of connected, static, or EIGRP routes into OSPF results in Type 5 AS external LSAs,
which are in turn flooded over the entire OSPF domain (except stub areas). This is a significant point, because
one of the design goals is to minimize the impact of large numbers of external LSAs on low-end routers. This is
why the new, nonbackbone OSPF areas are configured as NSSA areas in this example. As with the stub area
example, the default route injected by the ABRs provides connectivity to the external destinations-for example,
EIGRP-and the NSSA capability accommodates future placement of an ASBR to originate AS external routes
from these areas as needed.

4.5.1.1. The JUNOS software OSPF configuration

On the JUNOS software side, things are pretty straightforward, and the OSPF and related policy bits are shown
for Ale.

Code View:
[edit]

lab@Ale# show protocols ospf

export static;

area 0.0.0.0 {

 interface fe-0/0/0.69;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 interface fe-0/0/0.1121;

}

area 0.0.0.1 {

 nssa {

 default-lsa default-metric 10;

 }

 interface fe-0/0/0.1141;

}

[edit]

lab@Ale# show policy-options policy-statement static

term 1 {

 from {

 protocol static;

 route-filter 200.0.1.0/24 exact;

 }

 then accept;

}

The OSPF export policy redistributes the simulated customer static route into OSPF. No route tagging is being
performed here, because if tag 100 were added, these routes would be filtered from redistribution into the
EIGRP domain. Area 1 is configured as an NSSA, and a default route is configured (via the default-metric

statement) for use by routers within the NSSA when routing AS external destinations. Recall that all the EIGRP
routes will be become AS externals once they are injected into the OSPF domain, making the presence of the
default route in stub areas critical for maintaining connectivity. The configuration of JUNOS software router
Stout is shown for completeness, but there is not much to say, except that its area 2 is compatibly configured

as an NSSA.

[edit]

lab@stout# show protocols ospf

area 0.0.0.2 {

 nssa;

 interface fe-0/0/0.2131;

}

4.5.1.2. The IOS configuration

The real work is being done on the IOS side because these devices are able to run both the old and the new
IGPs.

Before adding the new OSPF process to any of the legacy Cisco routers, you must first verify that they have the
capacity to run both IGPs without encountering performance issues. The current best practice is to confirm that
CPU and memory use are less than 50% to 60%, respectively. If the router is already running short of
resources, adding a new IGP and related redistribution may well push it over the limit. Older routers that are
already having trouble keeping up should be replaced or upgraded before proceeding.

The show memory and show processes command output indicates that Beer-Co's IOS boxes are not heavily

taxed, so we are free to proceed:

Malt# show mem stat

 Head Total(b) Used(b) Free(b) Lowest(b) Largest(b)

Processor 82B00CC0 18493864 6288376 12205488 12000052 11685420

 I/O 3C00000 4194304 2013112 2181192 2174960 2181148

Malt# show processes cpu sorted

CPU utilization for five seconds: 0%/0%; one minute: 0%;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

five minutes: 0%

 PID Runtime(ms) Invoked uSecs 5Sec 1Min 5Min TTY Process

 3 15492 3513 4409 0.31% 0.80% 0.26% 0 Exec

 1 0 2 0 0.00% 0.00% 0.00% 0 Chunk Manager

 2 4 2527 1 0.00% 0.00% 0.00% 0 Load Meter

 4 320 2958 108 0.00% 0.00% 0.00% 0 OSPF Hello

. . . .

Having determined sufficient resource capacity, the migration proceeds; the modified portions of Cisco router
Malt are shown here:

Code View:
router eigrp 100

 redistribute connected

 redistribute static

 redistribute ospf 10 metric 10 100 255 1 1500 route-map OSPF_EIGRP

 network 10.0.0.0

 no auto-summary

!

router ospf 10

 network 192.168.1.0 0.0.0.3 area 0

 redistribute eigrp 100 metric 4 route-map EIGRP_OSPF subnets

 redistribute static metric 3 route-map EIGRP_OSPF subnets

 redistribute connected tag 100 subnets metric 2

!

access-list 3 permit any

!

route-map OSPF_EIGRP deny 10

 match tag 100

!

route-map OSPF_EIGRP permit 20

 match ip address 3

 set tag 100

!

route-map EIGRP_OSPF deny 10

 match tag 100

!

route-map EIGRP_OSPF permit 20

 match ip address 3

 set tag 100

The modified portions of the IOS configuration are highlighted to help to call out the delta. The EIGRP process
was instructed to redistribute routes from the OSPF process identified as "10," setting the EIGRP bandwidth,
delay, reliability, loading, and MTU values to 10, 100, 255, 1, and 1500, respectively. The redistribution is
controlled by the logic in the route map named OSPF_EIGRP.

The entire OSPF process is new and was added to integrate with the new Juniper router-based backbone.
Because connected routes could not be filtered through the existing EIGRP_OSPF route map, tagging for the

connected routes is configured directly on the distribute line.

In contrast, both static and EIGRP routes are being redistributed through the control of the common
EIGRP_OSPF route map. The subnet keyword inverts the default behavior of redistributing only classful

networks. Lastly, you'll see that OSPF area 0 is configured to run on the link connecting Malt to Ale.

Both route maps make use of an initial deny term for any route with a tag value of 100. Remaining routes are

http://lib.ommolketab.ir
http://lib.ommolketab.ir

then matched against the match-all IP access list 3, with the result being the addition of tag value 100. When
combined, the operation of the two route maps serves to ensure that a route is never redistributed back into the
IGP from where it originated, which should prevent loop formation.

You use JUNOS software routing policy to combine the various effects of IOS's
distribute, distribute-list, ACL, and route-map functions. For example, here is a

policy example that functions to reject and tag routes, much as the EIGRP_OSPF route

map does, albeit for RIP and OSPF given the lack of EIGRP support. The RIP_to_OSPF

policy is applied to the OSPF protocol as an export policy to redistribute only untagged
RIP routes into OSPF, at which time a tag value of 100 is added:

[edit policy-options]

regress@plato# show policy-statement RIP_to_OSPF

term 1 {

 from tag 100;

 then reject;

}

term 2 {

 from protocol rip;

 then {

 tag 100;

 accept;

 }

}

[edit policy-options]

regress@plato# show policy-statement RIP_to_OSPF | display set

set policy-options policy-statement RIP_to_OSPF term 1 from tag 100

set policy-options policy-statement RIP_to_OSPF term 1 then reject

set policy-options policy-statement RIP_to_OSPF term 2 from protocol rip

set policy-options policy-statement RIP_to_OSPF term 2 then tag 100

set policy-options policy-statement RIP_to_OSPF term 2 then accept

To better understand how the tagging works, refer back to Figure 4-12 and then consider an EIGRP (or
connected, or static) route x that originates in the EIGRP domain and is evaluated for redistribution into OSPF.
According to the EIGRP_OSPF route map, the first action is to deny any route with the tag value 100. Because

route x originates within EIGRP, it has no tag and therefore the route falls to the next term. Action 20 adds tag
100 to the route and sends it into OSPF. Route x, which is now an OSPF Type 5 LSA, is then flooded into the
OSPF RD, where it arrives at Cisco router Barley. In most cases, Barley will already have a more preferred

EIGRP route to this destination (recall that it originated in EIGRP to begin with), but if not, it will install the
OSPF route to x, as learned from Malt's OSPF advertisement.

Now Barley's OSPF process considers OSPF route x for redistribution into EIGRP. Fortunately, the first term in

its OSPF_EIGRP route map denies any routes with tag 100. This action serves to prevent route x from being sent

back into its originating EIGRP IGP. Any routes that originate in the OSPF domain, regardless of whether they
are internal or AS external, arrive at Barley with no tag. This permits the redistribution of these routes into the

EIGRP process, after they have been tagged. This tag will in turn keep router Malt from sending the route back

into the OSPF domain.

4.5.1.2.1. What about route preferences?

Referring back to Figure 4-11, you can see the default preferences for the route sources used in this example.
At first glance, it seems that we want both Malt and Barley to prefer all OSPF routes regardless of whether

they are internal or external. This is to ensure that both Cisco routers forward directly into the OSPF cloud when

http://lib.ommolketab.ir
http://lib.ommolketab.ir

routing to OSPF originated routes, rather than backhauling over the EIGRP backbone because they prefer a
redistributed EIGRP version of the same route. This is fortunate here because the OSPF routes redistributed into
EIGRP are considered EIGRP externals, and the default distance for these routes is 170, making them less
preferred than the native OSPF copy with a default distance of 110.

The default settings mean that the EIGRP domain will always prefer a learned OSPF route over the same copy in
the (redistributed) external EIGRP form. The JUNOS software boxes have only one IGP, so there is no need to
alter any preference there, of course. Time will tell whether we need to revisit this thinking....

4.5.2. Confirm EIGRP/OSPF Mutual Route Redistribution

With all routers configured, confirm proper redistribution and forwarding. Begin at Cisco router Malt, where the

IP route table is displayed:

Code View:
Malt# show ip route

Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP

 D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

 N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

 E1 - OSPF external type 1, E2 - OSPF external type 2

 i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

 ia - IS-IS inter area, * - candidate default, U - per-user static route

 o - ODR, P - periodic downloaded static route

Gateway of last resort is not set

O E2 200.0.200.0/24 [110/3] via 192.168.1.2, 00:05:09, FastEthernet0/1.69

O IA 200.10.4.0/24 [110/3] via 192.168.1.2, 00:05:09, FastEthernet0/1.69

O IA 200.10.5.0/24 [110/3] via 192.168.1.2, 00:05:09, FastEthernet0/1.69

O E2 200.0.1.0/24 [110/0] via 192.168.1.2, 00:05:09, FastEthernet0/1.69

O IA 200.10.1.0/24 [110/3] via 192.168.1.2, 00:05:09, FastEthernet0/1.69

O E2 200.0.2.0/24 [110/0] via 192.168.1.2, 00:05:09, FastEthernet0/1.69

O IA 200.10.2.0/24 [110/3] via 192.168.1.2, 00:05:09, FastEthernet0/1.69

S 200.0.100.0/24 is directly connected, Null0

O IA 200.10.3.0/24 [110/3] via 192.168.1.2, 00:05:10, FastEthernet0/1.69

 10.0.0.0/8 is variably subnetted, 11 subnets, 2 masks

D 10.10.128.200/32 [90/2297856] via 10.1.254.2, 03:10:02, Serial0/0

O 10.10.129.0/24 [110/2] via 192.168.1.2, 00:05:10, FastEthernet0/1.69

O 10.10.128.1/32 [110/1] via 192.168.1.2, 00:05:10, FastEthernet0/1.69

O IA 10.10.130.0/24 [110/2] via 192.168.1.2, 00:05:14, FastEthernet0/1.69

O 10.10.128.2/32 [110/2] via 192.168.1.2, 00:05:14, FastEthernet0/1.69

O IA 10.10.131.0/24 [110/3] via 192.168.1.2, 00:05:14, FastEthernet0/1.69

O IA 10.20.128.4/32 [110/3] via 192.168.1.2, 00:05:14, FastEthernet0/1.69

O IA 10.20.128.3/32 [110/2] via 192.168.1.2, 00:05:14, FastEthernet0/1.69

C 10.10.128.100/32 is directly connected, Loopback0

C 10.1.254.0/24 is directly connected, Serial0/0

C 10.1.254.2/32 is directly connected, Serial0/0

 192.168.1.0/30 is subnetted, 1 subnets

C 192.168.1.0 is directly connected, FastEthernet0/1.69

 192.168.2.0/30 is subnetted, 1 subnets

O 192.168.2.0 [110/3] via 192.168.1.2, 00:05:14, FastEthernet0/1.69

From a quick look, it seems that all the routes are there: PBR's five 200.10.x/24 routes as network summaries

(interarea), the simulated customer routes from Ale and Lager as AS externals, and their loopback/OSPF

interface routes appearing as OSPF internals (intraarea). It certainly appears that these routes are preferred in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

their OSPF form, despite their being redistributed into EIGRP at Barley, which is desired behavior for optimal

routing between the EIGRP and OSPF domains. Note how Barley's loopback 0 address (10.10.128.200) is

displayed as an EIGRP learned internal route with a distance of 90.

To confirm that the OSPF routes are really being redistributed into EIGRP (IOS displays only the active route),
the EIGRP topology table for one of PBR's 200.0.1.0/24 routes is shown here:

Malt# show ip eigrp topology 200.0.1.0

IP-EIGRP (AS 100): Topology entry for 200.0.1.0/24

 State is Passive, Query origin flag is 1, 1 Successor(s), FD is

256025600

 Routing Descriptor Blocks:

 192.168.1.2, from Redistributed, Send flag is 0x0

 Composite metric is (256025600/0), Route is External

 Vector metric:

 Minimum bandwidth is 10 Kbit

 Total delay is 1000 microseconds

 Reliability is 255/255

 Load is 1/255

 Minimum MTU is 1500

 Hop count is 0

 External data:

 Originating router is 10.10.28.100 (this system)

 AS number of route is 10

 External protocol is OSPF, external metric is 0

 Administrator tag is 100 (0x00000064)

The route's presence is confirmed in the EIGRP topology table, and the tag value of 100 proves that the
OSPF_EIGRP route map is working.

4.5.2.1. Troubleshoot a preference issue

Overall, the output from the show ip route command at Malt is what you want to see. There is one problem,

however, with respect to the simulated customer route owned by Barley: the display shows that Malt prefers

the OSPF external version of the 200.0.200/24 route because the EIGRP external distance is higher (less
preferred) than OSPF's (as noted previously, this is part of the migration plan). This occurs only for the
simulated customer routes because EIGRP is set to run on the serial and loopback interfaces as a result of the
network 10.0.0.0 statement. These routes are therefore considered internal to the EIGRP process and they

have a distance of 90. In contrast, the simulated customer static route is redistributed into EIGRP, making it an
EIGRP external. This situation results in an extra hop when Malt tries to reach Barley's customer network, and

vice versa:

Malt# trace 200.0.200.1

Type escape sequence to abort.

Tracing the route to 200.0.200.1

 1 192.168.1.2 4 msec 8 msec 8 msec

 2 10.10.129.2 8 msec 8 msec 8 msec

 3 192.168.2.1 12 msec 8 msec 12 msec

4 192.168.2.1 !H !H *

Rethinking the default preferences, it was correct to assert that all OSPF routes would be preferred over EIGRP
externals, which for the majority of our routes is exactly what is desired. The redistributed statics are causing
issues with this plan, however. Changing OSPF external preferences may fix the issue with the problematic
static routes, but will then create problems for the other OSPF routes that are now doing what they should be
doing.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Some possible solutions include running EIGRP passively on the related customer interface so that the route is
advertised as an EIGRP internal. This solution requires an actual interface (or loopback instance), and these
statics were used to reduce gear requirements in the first place. Still, no new gear is needed for an IOS
loopback 1 interface. Or, you could define a static route, but this represents administrative work and may lead
to a black hole if the legacy EIGRP backbone fails. Using a qualified/recursive static should result in traffic falling
back to the learned OSPF version should the static route's next hop become unreachable, but this would need to
be tested to make sure of failover behavior. Yet another solution would be to simply tolerate the inefficient
routing, given that connectivity is still provided and the condition should be transient as the EIGRP network is
phased out. Being a purist, you opt to alter the IOS configurations to add a new loopback instance that will run
EIGRP on behalf of the simulated customer network. Such changes are shown here:

!

interface Loopback1

 ip address 200.0.100.1 255.255.255.0

!

. . .

router eigrp 100

 redistribute connected

 redistribute static

 redistribute ospf 10 metric 10 100 255 1 1500 route-map OSPF_EIGRP

 network 10.0.0.0

network 200.0.100.0

passive-interface Loopback1

 no auto-summary

A new loopback instance has been defined to represent the simulated customer network that previously was
represented by a static route. The static route has also been removed (not shown), and the EIGRP process is
configured to run passively on the loopback 1 interface. The passive declaration ensures that CPU cycles are not
wasted on the EIGRP neighbor discovery that is doomed to fail, given the lonely neighborhood that is loopback
1. And yes, loopback 0 should be set to be passive for the same reasons, but that is saved for another day.
After similar changes are made at Barley, the active EIGRP routes are displayed and the previous traceroute is

repeated:

Malt# showip route eigrp

D 200.0.200.0/24 [90/2297856] via 10.1.254.2, 00:11:42, Serial0/0

 10.0.0.0/8 is variably subnetted, 11 subnets, 2 masks

D 10.10.128.200/32 [90/2297856] via 10.1.254.2, 04:24:16,

Serial0/0

Malt# traceroute 200.0.200.1

Type escape sequence to abort.

Tracing the route to 200.0.200.1

1 10.1.254.2 16 msec 12 msec *

Excellent, just what you wanted to see. Before moving on, traceroutes to a few other destinations in the OSPF
domain are executed for added confirmation. Note that the simulated customer network routes at Ale and

Lager are set to discard, so you should expect no reply from them:

Malt# trace 10.20.128.3

Type escape sequence to abort.

Tracing the route to 10.20.128.3

 1 192.168.1.2 4 msec 4 msec 12 msec

 2 10.20.128.3 4 msec 8 msec 8 msec

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Malt# trace 200.10.5.1

Type escape sequence to abort.

Tracing the route to 200.10.5.1

 1 192.168.1.2 8 msec 8 msec 8 msec

 2 200.10.5.1 4 msec 20 msec 100 msec

The traceroutes to the loopback address and OSPF area 1 routes on PBR are successful and are observed to take

a reasonable forwarding path. Similar results are observed at Barley:

Barley# trace 200.10.2.1

Type escape sequence to abort.

Tracing the route to 200.10.2.1

 1 192.168.2.2 20 msec 4 msec 12 msec

 2 10.10.129.1 4 msec 28 msec 12 msec

3 200.10.2.1 8 msec 8 msec 8 msec

Let's temporarily down the OSPF adjacency at Malt (traffic will reroute through Barley) to confirm that Malt

falls back to the EIGRP versions of the OSPF domain's routes and actually begins to forward through Barley:

Malt(config)# interface fastEthernet 0/1

Malt(config-if)# sh

Malt(config-if)# ^Z

. . .

After a few moments, the route table is again displayed at Malt:

Code View:
Malt# show ip route

Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP

 D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

 N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

 E1 - OSPF external type 1, E2 - OSPF external type 2

 i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

 ia - IS-IS inter area, * - candidate default, U - per-user static route

 o - ODR, P - periodic downloaded static route

Gateway of last resort is not set

D 200.0.200.0/24 [90/2297856] via 10.1.254.2, 00:31:34, Serial0/0

D EX 200.10.4.0/24 [170/256537600] via 10.1.254.2, 00:00:36, Serial0/0

D EX 200.10.5.0/24 [170/256537600] via 10.1.254.2, 00:00:36, Serial0/0

D EX 200.0.1.0/24 [170/256537600] via 10.1.254.2, 00:00:36, Serial0/0

D EX 200.10.1.0/24 [170/256537600] via 10.1.254.2, 00:00:36, Serial0/0

D EX 200.0.2.0/24 [170/256537600] via 10.1.254.2, 00:00:36, Serial0/0

D EX 200.10.2.0/24 [170/256537600] via 10.1.254.2, 00:00:36, Serial0/0

C 200.0.100.0/24 is directly connected, Loopback1

D EX 200.10.3.0/24 [170/256537600] via 10.1.254.2, 00:00:37, Serial0/0

 10.0.0.0/8 is variably subnetted, 11 subnets, 2 masks

D 10.10.128.200/32 [90/2297856] via 10.1.254.2, 04:44:10, Serial0/0

D EX 10.10.129.0/24 [170/256537600] via 10.1.254.2, 00:00:37, Serial0/0

D EX 10.10.128.1/32 [170/256537600] via 10.1.254.2, 00:00:37, Serial0/0

D EX 10.10.130.0/24 [170/256537600] via 10.1.254.2, 00:00:39, Serial0/0

D EX 10.10.128.2/32 [170/256537600] via 10.1.254.2, 00:00:39, Serial0/0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

D EX 10.10.131.0/24 [170/256537600] via 10.1.254.2, 00:00:39, Serial0/0

D EX 10.20.128.4/32 [170/256537600] via 10.1.254.2, 00:00:39, Serial0/0

D EX 10.20.128.3/32 [170/256537600] via 10.1.254.2, 00:00:39, Serial0/0

C 10.10.128.100/32 is directly connected, Loopback0

C 10.1.254.0/24 is directly connected, Serial0/0

C 10.1.254.2/32 is directly connected, Serial0/0

 192.168.1.0/30 is subnetted, 1 subnets

D EX 192.168.1.0 [170/256537600] via 10.1.254.2, 00:00:34, Serial0/0

 192.168.2.0/30 is subnetted, 1 subnets

D EX 192.168.2.0 [170/2172416] via 10.1.254.2, 00:00:40, Serial0/0

The display confirms that the EIGRP versions of the redistributed OSPF routes are now active. A traceroute
confirms the expected forwarding path, given the down fa 0/0 interface at Malt:

Malt# traceroute 200.10.5.1

Type escape sequence to abort.

Tracing the route to 200.10.5.1

 1 10.1.254.2 12 msec 12 msec 12 msec

 2 192.168.2.2 20 msec 16 msec 20 msec

 3 10.10.129.1 116 msec 24 msec 20 msec

 4 200.10.5.1 48 msec 28 msec 36 msec

Malt#

Malt's fa 0/1 interface is returned to operation and the OSPF adjacency is allowed to reform. You should then

inspect the route table to ensure that the network state has returned to the initial state. Issues with route
redistribution/preference are often timing-dependent, and you may find that after a failure, the network does
not return to the desired state. Here, expect to find that the OSPF versions of the routes are again preferred
over the EIGRP version:

Code View:
Malt#

*Mar 1 06:02:24.202: %OSPF-5-ADJCHG: Process 10, Nbr 10.10.128.1 on FastEthernet0/1.

69 from LOADING to FULL, Loading Done

Malt#

Malt# show ip route eigrp

D 200.0.200.0/24 [90/2297856] via 10.1.254.2, 00:36:14, Serial0/0

 10.0.0.0/8 is variably subnetted, 11 subnets, 2 masks

D 10.10.128.200/32 [90/2297856] via 10.1.254.2, 04:48:48, Serial0/0

Malt#

The display confirms that the native OSPF routes are again active, being they are preferred over redistributed
EIGRP copies. This validates that the network is able to fail over, and then switch back to a steady state.
Connectivity between the two RDs has already been demonstrated, so let's conclude our IGP migration
verification with some selective captures in the OSPF domain, starting by examining the "large" external LSA
database now on backbone routers:

[edit]

lab@Ale# run show ospf database extern

 OSPF AS SCOPE link state database

 Type ID Adv Rtr Seq Age Opt Cksum Len

Extern 10.1.254.0 10.10.28.100 0x8000000b 850 0x20 0xe0c4 36

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Extern 10.1.254.0 10.10.28.200 0x8000000b 783 0x20 0x86ba 36

Extern 10.1.254.1 10.10.28.200 0x8000000b 783 0x20 0x7cc3 36

Extern 10.1.254.2 10.10.28.100 0x8000000b 850 0x20 0xccd6 36

Extern 10.10.128.100 10.10.28.100 0x80000009 1607 0x20 0xfbbc 36

Extern 10.10.128.100 10.10.28.200 0x80000009 1531 0x20 0xb59c 36

Extern 10.10.128.200 10.10.28.100 0x80000009 1607 0x20 0x242e 36

Extern 10.10.128.200 10.10.28.200 0x80000009 1531 0x20 0xb53a 36

Extern *200.0.1.0 10.10.128.1 0x80000005 2101 0x22 0x87c7 36

Extern 200.0.2.0 10.10.128.2 0x80000005 2427 0x22 0x76d6 36

Extern 200.0.100.0 10.10.28.100 0x8000000d 592 0x20 0xdda2 36

Extern 200.0.100.0 10.10.28.200 0x80000002 526 0x20 0xad77 36

Extern 200.0.200.0 10.10.28.100 0x80000002 351 0x20 0xb76d 36

Extern 200.0.200.0 10.10.28.200 0x80000002 526 0x20 0x4979 36

Well, it seems that large truly is a subjective term. However, more than 10 Type 5 LSAs are in the backbone
area's database, and considering the small scope of the EIGRP network in this lab example, it's safe to say that
a large enterprise could easily generate hundreds if not thousands of these AS external LSAs.

[edit]

lab@Ale# run show ospf database extern detail | match tag

 Type 2, TOS 0x0, metric 2, fwd addr 0.0.0.0, tag 0.0.0.100

 Type 2, TOS 0x0, metric 2, fwd addr 0.0.0.0, tag 0.0.0.100

 Type 2, TOS 0x0, metric 2, fwd addr 0.0.0.0, tag 0.0.0.100

 Type 2, TOS 0x0, metric 2, fwd addr 0.0.0.0, tag 0.0.0.100

 Type 2, TOS 0x0, metric 2, fwd addr 0.0.0.0, tag 0.0.0.100

 Type 2, TOS 0x0, metric 4, fwd addr 0.0.0.0, tag 0.0.0.100

 Type 2, TOS 0x0, metric 4, fwd addr 0.0.0.0, tag 0.0.0.100

 Type 2, TOS 0x0, metric 2, fwd addr 0.0.0.0, tag 0.0.0.100

 Type 2, TOS 0x0, metric 0, fwd addr 0.0.0.0, tag 0.0.0.0

 Type 2, TOS 0x0, metric 0, fwd addr 0.0.0.0, tag 0.0.0.0

 Type 2, TOS 0x0, metric 2, fwd addr 0.0.0.0, tag 0.0.0.100

 Type 2, TOS 0x0, metric 4, fwd addr 0.0.0.0, tag 0.0.0.100

 Type 2, TOS 0x0, metric 4, fwd addr 0.0.0.0, tag 0.0.0.100

 Type 2, TOS 0x0, metric 2, fwd addr 0.0.0.0, tag 0.0.0.100

Next, the CLI's matching function, combined with the detail switch, allows confirmation that most of these

externals originated in the EIGRP domain, given that the majority are sporting a tag with an EIGRP process
number.

The new OSPF network was designed to be hierarchical to promote scaling. To take this a step further, let's also
deploy NSSAs to reduce the processing demands on nonbackbone routers. Internal routers within a stub area do
not see any AS external LSAs, which in this type of a migration can substantially reduce their load. Confirm this
fact at router PBR:

[edit]

lab@PBR# run show ospf database

 OSPF link state database, Area 0.0.0.1

 Type ID Adv Rtr Seq Age Opt Cksum Len

Router 10.10.128.1 10.10.128.1 0x8000000c 273 0x20 0xac79 48

Router *10.20.128.3 10.20.128.3 0x80000008 928 0x20 0x6124 108

Network *10.10.130.2 10.20.128.3 0x80000007 928 0x20 0x7b49 32

Summary 10.10.128.2 10.10.128.1 0x80000008 2223 0x20 0xda30 28

Summary 10.10.129.0 10.10.128.1 0x80000008 2073 0x20 0xe328 28

Summary 10.10.131.0 10.10.128.1 0x80000008 1773 0x20 0xd731 28

Summary 10.20.128.4 10.10.128.1 0x80000007 1473 0x20 0x5aa4 28

Summary 192.168.1.0 10.10.128.1 0x8000000b 625 0x20 0x9a9c 28

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Summary 192.168.2.0 10.10.128.1 0x80000006 573 0x20 0xa396 28

NSSA 0.0.0.0 10.10.128.1 0x80000008 423 0x20 0xa1ea 36

NSSA 200.0.1.0 10.10.128.1 0x80000005 2373 0x20 0x89c5 36

Note the absence of Type 4 and Type 5 LSAs, and the presence of the default route, which provides the internal
stub area routers with a route to external destinations.

[edit]

lab@PBR# run show route 200.0.200.4

inet.0: 23 destinations, 23 routes (23 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

0.0.0.0/0 *[OSPF/150] 04:26:43, metric 11, tag 0

 > to 10.10.130.1 via fe-0/0/0.1141

This last display confirms the use of the default route for AS external destinations by the internal NSSA router
PBR.

With initial connectivity confirmed, the EIGRP-to-OSPF migration can proceed through a phased movement of
legacy EIGRP segments to the new OSPF backbone. Alternatively, the EIGRP domain can be shrunk back by
increasing the scope of the OSPF domain and moving the EIGRP redistribution points until there is no EIGRP left.

4.5.3. EIGRP-to-OSPF Migration Summary

This section demonstrated how you can integrate a new OSPF backbone into an existing EIGRP infrastructure,
while maintaining loop-free connectivity through careful use of route filtering. Filtering is needed to ensure that
those routes are redistributed only once. The example used route tags to simplify filtering. Address-based filters
can also work, especially if the two IGP domains have distinct numbering that can easily be summarized.

Mutual route redistribution is always a bit tricky, and careful thought should be leveled against any migration
plan to try to head off potential issues stemming from protocol preferences or incomplete route filtering. In this
example, the interaction of OSPF and EIGRP external preferences created a problem for static routes
redistributed into EIGRP. Although connectivity was maintained and no loops were formed, the condition
resulted in suboptimal forwarding for some destinations. The specifics of this example allowed the creation of a
new loopback interface, which then ran a passive instance of EIGRP to stand in for the static route, yielding
optimal connectivity for all destinations in the test bed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.6. Conclusion

The IGP is a critical component in any enterprise network. The IGP functions to provide optimal connectivity to
interior destinations in the face of changing network conditions. To perform this function, the IGP must balance
the opposing forces of rapid convergence against instability and routing loops. A well-designed and
implemented IGP can easily spell the difference between a high-performing network and an ongoing litany of
trouble tickets and support calls.

Historically, enterprise networks needed to support multiple routed protocols, and the dominance of Cisco
Systems in these early years resulted in widespread deployment of its proprietary IGRP and EIGRP IGP
solutions. Since that time, most enterprise networks have completed a migration to an all-IP routing
infrastructure. Simply stated, the world seems to have settled on the mantra "IP over everything, and
everything over IP." Although EIGRP does a good job at routing IP, its closed nature, coupled with its lack of
routing hierarchy and MPLS TE support, cast serious concerns over its future high-performance enterprise
networks.

Over the years, several tried and proven strategies have been developed to ease the pain and disruption that
often accompany IGP migration. Whether an enterprise chooses to deploy JUNOS software or not, these
migration techniques can get your legacy network weaned off of EIGRP and onto an open standard such as
OSPF.

Juniper Networks routers support all standardized IGPs, and their implementation has been successfully
battletested in the planet's largest service provider networks. The same OSPF code running in the multiterabit
iron of the Juniper Networks flagship TX Matrix core router can also be found purring away in the smallest
enterprise-targeted Juniper devices. Although historically designed for service provider networks, Juniper
Networks continues to evolve its IGP implementation to meet the needs of both its service provider and
enterprise customers.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.7. Exam Topics

We covered the following Enterprise Exam Topics in this chapter:

The role and function of an IGP

Operational characteristics of RIP, RIPv2, OSPF, and IGRP/EIGRP

RIP and OSPF configuration on Juniper Networks routers

Operational analyses of RIP and OSPF on Juniper Networks routers

The overlay, redistribution, and integrated IGP migration models

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.8. Chapter Review Questions

Which of the following defines split horizon?

Sending routes out the interface they were learned froma.

Sending routes out the interface they were learned from with infinite metricb.

Holding a recently unreachable route in the table for a fixed time to allow other routers to be
notified

c.

Not sending routes out the interface they were learned fromd.

1.

When you configure RIP on a Juniper Networks router, how do you specify what interfaces the protocol
should operate on?

You use a network statement with a network maska.

You use a network statement with a wildcard maskb.

You specify interface names and logical units explicitly as part of RIP neighbor configurationc.

You use routing policyd.

None of the abovee.

2.

What command displays the RIP routes a Juniper Networks router is sending out to a given interface?

This is not possible given the LS nature of RIPa.

show route protocol ripb.

show route advertising-protocol rip <neighbor>c.

d.

3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

c.

show route receiving-protocol rip <neighbor>d.

Which type of router generates a Type 2 LSA?

Internala.

ABRb.

ASBRc.

DRd.

4.

Which is true regarding a stub area in OSPF?

A stub area uses a default to reach interarea destinationsa.

A stub area imports external routes as Type 7 LSAsb.

A stub area does not receive Type 3 summary LSAs from the backbonec.

A stub area has no OSPF routers in itd.

5.

When you add a new OSPF router to a LAN, what factor(s) determine whether it will become the DR?

Its priority settinga.

The RIDb.

Whether any other routers are already operating on that LANc.

All of the aboved.

6.

What determines which route will be active when a given prefix is learned by multiple routing protocols?

a.

7.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The lowest metrica.

The path with the fewest hopsb.

The protocol with the highest numerical preference is chosenc.

The protocol with the lowest numerical preference is chosend.

7.

Which syntax at an ABR would suppress individual summaries for routes in the 10.0/16 block in area 1
while replacing them with a single summary?

[edit protocols ospf area 0.0.0.1]

set area-range 10.0/16 restrict

a.

[edit protocols ospf area 0.0.0.0]

set area-range 10.0/16

b.

[edit protocols ospf area 0.0.0.1]

set area-range 10.0/16

c.

This is not possible; LSAs cannot be filtered without breaking LS protocol operationd.

8.

Which is true regarding the overlay migration model?

You first set the legacy IGP to be less preferred than the new IGPa.

You first set the new IGP to be less preferred than the legacy IGPb.

Route redistribution is needed to maintain connectivity through the migrationc.

A new backbone is neededd.

9.

What is the primary mechanism for loop prevention in the redistribution model?

A common LSDB ensures a loop-free topologya.

Strict controls that ensure routes are not redistributed back to their originating IGPb.

c.

d.

10.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

b.

Setting the new IGP to be more preferred than the legacy IGPc.

A careful mapping of metrics between originating and receiving IGPsd.

What types of authentication are supported in JUNOS software for OSPF?

Simple passworda.

MD5 checksumb.

Hitless key chain of MD5 keys/checksumsc.

All of the aboved.

11.

Which configuration will inject a default route into stub area 1?

area 0.0.0.1 {

stub default-metric 10 no-summaries;

area-range 10.0.0.0/16 restrict;

}

a.

area 0.0.0.0 {

stub default-metric 10;

}

b.

area 0.0.0.1 {

stub no-summaries;

area-range 10.0.0.0/16 restrict;

}

c.

area 0.0.0.1 {

stub default-metric;

area-range 10.0.0.0/16 restrict;

}

d.

12.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.9. Chapter Review Answers

Answer: D. Split horizon rules prevent a router from readvertising routing information back out the same
interface it was learned from; poisoned reverse alters this behavior to permit such updates as long as they
have an infinite metric.

1.

Answer: C. You specify RIP-enabled interfaces by name and unit number, under the [edit protocols

rip group <name> neighbor] hierarchy.

2.

Answer: C. The show route advertising protocol <protocol> <neighbor> command is used to display

the route the local router is sending out an interface to a neighbor for RIP/BGP, respectively. The
receiving-protocol form of this command shows the routes being learned over an interface.

3.

Answer: D. Only designated routers, which are elected only on multiaccess networks, generate Type 2
network summary LSAs. This LSA type is used to report the list of OSPF neighbors (including the DR itself)
attached to the multiaccess segment.

4.

Answer: C. Stub areas do not receive summary LSAs from the backbone. They rely on an injected default
route to reach interarea and AS external destinations.

5.

Answer: D. All of the factors listed influence whether a given router can become the DR. Recall that DR
election is not revertive. A router's ID and priority come into play only during an active DR election.

6.

Answer: D. The protocol with the numerically lowest preference (or administrative distance) is considered
more "reliable" and is chosen as the source of the active route.

7.

Answer: A. Your goal is to filter from area 1 into area 0, so the area-range statement needs to be applied

to area 1. The restrict keyword filters the specifics, leaving on the summary.

8.

Answer: B. To avoid disruption, the legacy protocol must operate until all aspects of the new IGP have
been put in place and confirmed. The new IGP has to be less preferred than the original until you are
ready to actually make the switchover.

9.

Answer: B. You must diligently use filtering mechanisms to ensure that routes are never redistributed back
into the IGP from where they originated, or else loops will likely form.

10.

Answer: D. For OSPF, JUNOS software supports simple passwords, MD5, and a key chain of MD5 secrets.
RIP does not support key chain authentication as of the JUNOS software 8.3 release.

11.

Answer: A. JUNOS software will generate a default route only when a metric value is specified using the
default-metric command.

12.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

12.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 5. Border Gateway Protocol and Enterprise Routing
Policy

This chapter reviews the Border Gateway Protocol (BGP) version 4 operation and key attributes to accommodate
a detailed discussion of BGP enterprise applications. BGP is all about the control of routing information between
autonomous systems (ASs). Emphasis is placed on the use of routing policy to facilitate load balancing and
common enterprise applications of inbound and outbound routing requirements when customers are dual-
homed to different service providers. The topics covered include:

BGP overview and enterprise applications

External BGP (EBGP) peering with asymmetric load balancing

BGP policy for the enterprise

BGP dual-homing scenario with route reflection and outbound policy

Implementation of a dual-homed inbound policy by manipulating BGP attributes

Juniper Networks routers offer extensive feature support for BGP. In fact, the list of supported standards is too
long to be valuable here. Consult the BGP overview in the JUNOS documentation to confirm the list of supported
RFCs and drafts for your particular JUNOS software release.

5.1. What Is BGP?

BGP is an interdomain routing protocol, which means it operates between networks that are under different
administrative control-making BGP an Exterior Gateway Protocol (EGP) that operates between ASs. An AS is
defined as a group of IP networks operated by one or more network operators that has a single, clearly defined
routing policy.

BGP is a path-vector routing protocol that relies on the uniqueness of AS path numbers for loop prevention.
Rather than advertising a simple vector (prefix), as in the case of the Routing Information Protocol (RIP), BGP's
reachability information is a prefix with associated attributes that describe the path to that prefix. The rich set of
supported attributes in turn allows for an equally rich set of policy actions.

BGP is somewhat unique in that it uses a reliable Transmission Control Protocol (TCP)-based transport for its
control and update messages. Reliable transport means there is no need for periodic route updates, which is
really, really good, considering that a full BGP table typically comprises more than 220,000 routes! BGP does
generate periodic keepalive traffic in the absence of route update activity to ensure that the underlying TCP
transport is still functional.

BGP version 4 has been in use for more than two decades, with the current version (BGP 4) originally defined in
RFC 1654 back in 1994. This RFC was obsoleted by RFC 1771, which in turn was obsoleted by the current
specification, RFC 4271. The fact that BGP still enjoys a growing deployment base, with no replacement looming
on the horizon, is a testament to the architects' forward-thinking design. BGP is based on the use of parameter
type, parameter length, and parameter value tuples (sometimes called tag length values, or TLVs). It is these
TLVs that provide the inherent extensibility without the need for significant protocol changes. You want IPv6

http://lib.ommolketab.ir
http://lib.ommolketab.ir

address family support? Simple; just define a new network layer reachability information (NLRI) attribute. You
need route reflection? No problem; add some new attributes to communicate cluster and originator ID
information. Meanwhile, the basic operation and protocol mechanisms remain unaltered and, in many cases,
backward-compatible.

5.1.1. Inter-AS Routing

In several regards, you can think of BGP as the antithesis of an Interior Gateway Protocol (IGP). For example,
an IGP functions within an AS and strives to promote connectivity, whereas a BGP operates between ASs and
tends to limit connectivity. That last point may require a bit more clarification. An IGP normally actively seeks to
discover routing peers (neighbor discovery). Once the neighbors are found, routes are exchanged and
connectivity is promoted by virtue of always seeking the best path between endpoints. BGP, on the other hand,
has to be explicitly told which neighbors to peer with, and then the use of administrative policy is used to filter
and modify routing information to select the "best" route that meets the network operator's defined policy. The
word best is quoted here because when routing between ASs, the concept of what constitutes a best path is
cloudy at best. For example, a company may choose to filter large portions of BGP connectivity from best path
consideration, based solely on a local policy that does not allow the use of a specific competitor's backbone.
Exactly why such a policy is in place is not the question, although many good answers spring to mind, including
potential concerns of corporate espionage. The point here is that with BGP, you are normally as concerned
about restriction/ignoring routing information as you are about receiving it in the first place. The IGP is focused
on getting you there, whereas BGP is more concerned with how you get there.

Figure 5-1 illustrates a simple interdomain routing scenario, where each AS is represented by a cloud. The cloud
is, of course, the universal symbol for "don't ask, don't tell." This is to say that specifics of each AS are left to
the administrators of that network and are generally not known outside of that scope. It might be possible for a
transit network to deploy an avian-based transport technology, as per RFC 1149;[2] as long as they meet their
service level agreements (SLAs), the details of how they manage to pull it off are typically not a matter of
concern.

[2] RFC 1149 is one of the more notorious "less than serious" RFCs, as indicated by its April 1 publication date.

Figure 5-1. Interdomain routing with BGP

http://lib.ommolketab.ir
http://lib.ommolketab.ir

BGP operates on the links that tie these networks together, in effect serving as the public face of each network.
The BGP speakers in each AS advertise network reachability to the ASs they are configured to peer with, under
the confines of their specific export policy. In like fashion, each BGP speaker filters received information through
its respective import policy before placing what remains into its route table for consideration for the active route
selection process. Figure 5-1 shows that Provider D's policy prevents the advertisement of the 10.0.20/24 prefix
from Site 2 to Provider A. Provider A will have to receive the Site 2 prefix from Provider B. As a result, the two
customer sites will be forwarding over additional AS hops to reach each other. This point helps to demonstrate
that for BGP, connectivity is as much a matter of politics as it is performance.

5.1.2. BGP Route Attributes

BGP advertises route reachability (NLRI), along with various attributes that describe the path to that prefix. The
terms NLRI, route, and prefix are synonymous and are used interchangeably in this chapter. This section
describes key BGP path attributes. Policy discussions later in this chapter require that you understand what
these attributes do and how you work with them to achieve your routing goals.

All BGP route attributes fall into one of the following categories based on whether all BGP speakers are expected
to understand the attribute and whether the attribute has local-AS or end-to-end scope:

Well-known mandatory

A well-known mandatory attribute must be supported by all BGP speakers and must be present in all BGP
updates that contain an NLRI.

Well-known discretionary

A well-known discretionary attribute must be supported by all BGP speakers and may or may not be
present in a given NLRI update.

Optional transitive

An optional transitive attribute is an optional attribute that may not be understood by all speakers and is
expected to transit the local AS, even if it is not understood by the local speaker.

Optional nontransitive

An optional nontransitive attribute is an optional attribute that may not be understood by all speakers
and does not transit the local AS-that is, it is not readvertised to another, remote AS.

Common BGP path attributes include:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Next hop

The next hop is a mandatory attribute that carries the IP address of a BGP speaker (or a third party when
permitted) to identify where packets should be forwarded when using the associated route. The next hop
is changed by default for EBGP and is unchanged for Internal BGP (IBGP); however, this default behavior
can be altered with policy.

Local preference

Local preference is a well-known discretionary attribute used to influence BGP path selection with regard
to the desired egress point for traffic from within an AS. Traffic flows toward the peer advertising the
highest (most preferred) local preference. Local preference is present only in IBGP updates
(nontransitive).

AS path

The mandatory attribute AS path lists the AS numbers that will be crossed when forwarding to the
associated NLRI. The AS path attribute is used for loop prevention and influences path selection in
accordance with the motto "the fewer ASs in a path, the better." Each AS adds its AS number to the front
of the current AS sequence when generating EBGP updates; the lack of updated AS path information in
IBGP updates is why IBGP speakers are not permitted to readvertise routes learned from IBGP back to
other IBGP speakers. By default, BGP discards any route advertisement that contains its local AS number
in the AS path, because this indicates that the route has already passed through the local AS once; that
is, a loop has formed.

Origin

The origin code is a well-known, mandatory attribute that identifies the original source of a route as being
learned from an IGP, EGP, or unknown source. In route selection, a BGP speaker will prefer IGP to EGP,
and EGP to unknown. Origin is present in all route updates and is subject to modification with policy
(transitive).

Multiple exit discriminator

The multiple exit discriminator (MED) attribute is an optional, nontransitive attribute, which means that
some BGP speakers may not understand or use MED. MED is added on updates sent over EBGP links, and
is then advertised by IBGP within the receiving AS to influence its outbound routing. However, the MED
attribute does not transit beyond the AS into which it was originally advertised-BGP speakers in
upstream ASs either receive no MED or receive a new MED value created by that peering AS.

MED functions like a conventional routing metric in that speakers prefer the route with the lowest MED
when all preceding decision points are equal. The MED advertised by the originating AS to an adjacent AS
provides a clue to the adjacent AS regarding what links should be used for egress from the neighbor AS
back toward the originating AS, and therefore what links are used as ingress to the local AS. Stated
differently, the MED is used by the local AS to influence the routing decisions in an adjacent AS for traffic

http://lib.ommolketab.ir
http://lib.ommolketab.ir

that is inbound to the local AS. When absent, JUNOS software assumes an MED value of 0, which is the
most preferred setting. In contrast, the absence of a local preference is assumed to be a value of 100.

Community

The community attribute allows for the arbitrary grouping of routes that share one or more
characteristics via the addition of a common community tag value. The community tags can be used for a
variety of purposes, such as route filtering and attribute modification. For example, all routes learned
from customers may be assigned the community value of 65000:100. When this community is seen on a
route, the local policy will set a more preferred local preference. As another example, consider the well-
known community, no-export. When attached to a route, this community tells the adjacent AS that the
associated route should not be readvertised to any remote ASs.

5.1.3. BGP Path Selection

A BGP speaker that is presented with two or more updates, specifying the same prefix, performs a route
selection process to select the best BGP path for that prefix. Once the best path is selected, the route is
installed in the route table, where it may become active if the same prefix is not being learned by a protocol
with a better global preference. The JUNOS software BGP path selection process consists of the following
decision steps:

Can the BGP next hop be resolved?1.

Prefer the path with the highest local preference value.2.

Prefer the path with the shortest AS-path length.3.

Prefer the path with the lowest origin value.4.

Prefer the path with the lowest MED value.5.

Prefer the path learned using EBGP over paths learned using IBGP.6.

Prefer paths with the lowest IGP metric:

Examine route tables inet.0 and inet.3 for the BGP next hop, and then install the physical

next hop(s) for the route with the better preference.

a.

For preference ties, install the physical next hop(s) found in inet.3.b.

For preference ties within the same route table, install the physical next hop(s) where thec.

7.

8.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

b.

greater number of equal-cost paths exists.
c.

Prefer paths with the shortest cluster length.8.

Prefer routes from the peer with the lowest router ID (RID), unless multipath is enabled:

For external routes from different ASs, do not alter the active route based on the lowest RID
to prevent MED oscillation.

a.

9.

Prefer routes from the peer with the lowest peer ID (BGP peering address), unless multipath is enabled.10.

Configuring the multipath option deactivates the last two decision points, which are normally used as tie
breakers. When multipath is enabled, all paths that are equal up to step 9 are installed in the route table.
Multipath supports EBGP and IBGP, but is normally associated with EBGP sessions because IBGP will often
achieve its load-balancing functionality through the underlying IGP when equal cost paths to the IBGP speaker
exist. Use multipath for IBGP when two or more IBGP speakers advertise the same prefix and you wish to install
both speakers as viable next hops.

Figure 5-2 demonstrates the BGP path selection process at work.

Figure 5-2. BGP path selection

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Here, NLRI 10.0.20/24 is originated into BGP by AS 65000. Note that when advertised to ASs 65010 and 65069,
this NLRI is associated with an AS path attribute that consists of a single AS and has an origin value of "I"
indicating IGP learned. This value could be a default value for redistribution of static routes into BGP or the
result of policy setting. The NLRI is then readvertised into AS 65069 by AS 65010. Initially, routers R1 and R2
prefer their local copy of this path, so both R1 and R2 select it as active and advertise the NLRI to all IBGP
peers, which means that R3 receives two updates for the same path. In this example policy, R2 causes the
route to be sent into IBGP with a modified local preference value of 80. Also note that the route received from
AS 65010 has an AS sequence that is one AS longer than the route sent to R2 directly from AS 65000.

Running through the path selection process steps listed previously, it's safe to assume that R3 will make a
decision early in the process, preferring the copy of the route with a default local preference of 100. Had both
local preference values been the same, the selection criterion would now become the shortest AS path length,
resulting in R3 forwarding through R2. Note that R1 and R2 will also send their 10.0.20/24 updates to each
other. This means that R2 prefers the path through R1, and therefore now sends another update to R1 and R3,
withdrawing its earlier IBGP update for 10.0.20/24. The example also helps to demonstrate how local
preference is used to influence the egress point in the local AS.

JUNOS software is designed to display all valid BGP paths, and even includes the reason why a given path was
not selected. This greatly simplifies the network administrator's job when the goal is to make a currently
inactive path the active path; policy can be applied to alter the criterion that leads to the original path being
preferred. Here's the output from a show route detail command, to illustrate this point:

Code View:
user@host> show route 10.0.20/24 detail

inet.0: 52 destinations, 94 routes (52 active, 0 holddown, 0 hidden)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.0.20.0/24 (3 entries, 1 announced)

 *BGP Preference: 170/-201

 Source: 192.168.32.1

 Next hop: 10.222.28.2 via fe-0/0/0.0, selected

 Protocol next hop: 192.168.32.1 Indirect next hop:

858b4e0 73

 State: <Active Int Ext>

 Local AS: 65069 Peer AS: 65069

 Age: 18:57 Metric2: 3

 Task: BGP_65432.192.168.32.1+1042

 AS path: 65000 65010 I

 Localpref: 100

 Router ID: 192.168.32.1

 BGP Preference: 170/-101

 Source: 10.222.29.2

 Next hop: 10.222.29.2 via ge-0/1/0.0, selected

 State: <Ext>

 Inactive reason: Local Preference

 Local AS: 65069 Peer AS: 65069

 . . .

 Localpref: 80

From the sample output, it is quite clear that because of the local preference comparison, the path through
192.168.32.1 is preferred. Knowing that this BGP route was not chosen due to the local preference value makes
it a relatively simple task to change the selection of the path through 192.168.32.1 by setting its preference to
be higher than 100.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 5. Border Gateway Protocol and Enterprise Routing
Policy

This chapter reviews the Border Gateway Protocol (BGP) version 4 operation and key attributes to accommodate
a detailed discussion of BGP enterprise applications. BGP is all about the control of routing information between
autonomous systems (ASs). Emphasis is placed on the use of routing policy to facilitate load balancing and
common enterprise applications of inbound and outbound routing requirements when customers are dual-
homed to different service providers. The topics covered include:

BGP overview and enterprise applications

External BGP (EBGP) peering with asymmetric load balancing

BGP policy for the enterprise

BGP dual-homing scenario with route reflection and outbound policy

Implementation of a dual-homed inbound policy by manipulating BGP attributes

Juniper Networks routers offer extensive feature support for BGP. In fact, the list of supported standards is too
long to be valuable here. Consult the BGP overview in the JUNOS documentation to confirm the list of supported
RFCs and drafts for your particular JUNOS software release.

5.1. What Is BGP?

BGP is an interdomain routing protocol, which means it operates between networks that are under different
administrative control-making BGP an Exterior Gateway Protocol (EGP) that operates between ASs. An AS is
defined as a group of IP networks operated by one or more network operators that has a single, clearly defined
routing policy.

BGP is a path-vector routing protocol that relies on the uniqueness of AS path numbers for loop prevention.
Rather than advertising a simple vector (prefix), as in the case of the Routing Information Protocol (RIP), BGP's
reachability information is a prefix with associated attributes that describe the path to that prefix. The rich set of
supported attributes in turn allows for an equally rich set of policy actions.

BGP is somewhat unique in that it uses a reliable Transmission Control Protocol (TCP)-based transport for its
control and update messages. Reliable transport means there is no need for periodic route updates, which is
really, really good, considering that a full BGP table typically comprises more than 220,000 routes! BGP does
generate periodic keepalive traffic in the absence of route update activity to ensure that the underlying TCP
transport is still functional.

BGP version 4 has been in use for more than two decades, with the current version (BGP 4) originally defined in
RFC 1654 back in 1994. This RFC was obsoleted by RFC 1771, which in turn was obsoleted by the current
specification, RFC 4271. The fact that BGP still enjoys a growing deployment base, with no replacement looming
on the horizon, is a testament to the architects' forward-thinking design. BGP is based on the use of parameter
type, parameter length, and parameter value tuples (sometimes called tag length values, or TLVs). It is these
TLVs that provide the inherent extensibility without the need for significant protocol changes. You want IPv6

http://lib.ommolketab.ir
http://lib.ommolketab.ir

address family support? Simple; just define a new network layer reachability information (NLRI) attribute. You
need route reflection? No problem; add some new attributes to communicate cluster and originator ID
information. Meanwhile, the basic operation and protocol mechanisms remain unaltered and, in many cases,
backward-compatible.

5.1.1. Inter-AS Routing

In several regards, you can think of BGP as the antithesis of an Interior Gateway Protocol (IGP). For example,
an IGP functions within an AS and strives to promote connectivity, whereas a BGP operates between ASs and
tends to limit connectivity. That last point may require a bit more clarification. An IGP normally actively seeks to
discover routing peers (neighbor discovery). Once the neighbors are found, routes are exchanged and
connectivity is promoted by virtue of always seeking the best path between endpoints. BGP, on the other hand,
has to be explicitly told which neighbors to peer with, and then the use of administrative policy is used to filter
and modify routing information to select the "best" route that meets the network operator's defined policy. The
word best is quoted here because when routing between ASs, the concept of what constitutes a best path is
cloudy at best. For example, a company may choose to filter large portions of BGP connectivity from best path
consideration, based solely on a local policy that does not allow the use of a specific competitor's backbone.
Exactly why such a policy is in place is not the question, although many good answers spring to mind, including
potential concerns of corporate espionage. The point here is that with BGP, you are normally as concerned
about restriction/ignoring routing information as you are about receiving it in the first place. The IGP is focused
on getting you there, whereas BGP is more concerned with how you get there.

Figure 5-1 illustrates a simple interdomain routing scenario, where each AS is represented by a cloud. The cloud
is, of course, the universal symbol for "don't ask, don't tell." This is to say that specifics of each AS are left to
the administrators of that network and are generally not known outside of that scope. It might be possible for a
transit network to deploy an avian-based transport technology, as per RFC 1149;[2] as long as they meet their
service level agreements (SLAs), the details of how they manage to pull it off are typically not a matter of
concern.

[2] RFC 1149 is one of the more notorious "less than serious" RFCs, as indicated by its April 1 publication date.

Figure 5-1. Interdomain routing with BGP

http://lib.ommolketab.ir
http://lib.ommolketab.ir

BGP operates on the links that tie these networks together, in effect serving as the public face of each network.
The BGP speakers in each AS advertise network reachability to the ASs they are configured to peer with, under
the confines of their specific export policy. In like fashion, each BGP speaker filters received information through
its respective import policy before placing what remains into its route table for consideration for the active route
selection process. Figure 5-1 shows that Provider D's policy prevents the advertisement of the 10.0.20/24 prefix
from Site 2 to Provider A. Provider A will have to receive the Site 2 prefix from Provider B. As a result, the two
customer sites will be forwarding over additional AS hops to reach each other. This point helps to demonstrate
that for BGP, connectivity is as much a matter of politics as it is performance.

5.1.2. BGP Route Attributes

BGP advertises route reachability (NLRI), along with various attributes that describe the path to that prefix. The
terms NLRI, route, and prefix are synonymous and are used interchangeably in this chapter. This section
describes key BGP path attributes. Policy discussions later in this chapter require that you understand what
these attributes do and how you work with them to achieve your routing goals.

All BGP route attributes fall into one of the following categories based on whether all BGP speakers are expected
to understand the attribute and whether the attribute has local-AS or end-to-end scope:

Well-known mandatory

A well-known mandatory attribute must be supported by all BGP speakers and must be present in all BGP
updates that contain an NLRI.

Well-known discretionary

A well-known discretionary attribute must be supported by all BGP speakers and may or may not be
present in a given NLRI update.

Optional transitive

An optional transitive attribute is an optional attribute that may not be understood by all speakers and is
expected to transit the local AS, even if it is not understood by the local speaker.

Optional nontransitive

An optional nontransitive attribute is an optional attribute that may not be understood by all speakers
and does not transit the local AS-that is, it is not readvertised to another, remote AS.

Common BGP path attributes include:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Next hop

The next hop is a mandatory attribute that carries the IP address of a BGP speaker (or a third party when
permitted) to identify where packets should be forwarded when using the associated route. The next hop
is changed by default for EBGP and is unchanged for Internal BGP (IBGP); however, this default behavior
can be altered with policy.

Local preference

Local preference is a well-known discretionary attribute used to influence BGP path selection with regard
to the desired egress point for traffic from within an AS. Traffic flows toward the peer advertising the
highest (most preferred) local preference. Local preference is present only in IBGP updates
(nontransitive).

AS path

The mandatory attribute AS path lists the AS numbers that will be crossed when forwarding to the
associated NLRI. The AS path attribute is used for loop prevention and influences path selection in
accordance with the motto "the fewer ASs in a path, the better." Each AS adds its AS number to the front
of the current AS sequence when generating EBGP updates; the lack of updated AS path information in
IBGP updates is why IBGP speakers are not permitted to readvertise routes learned from IBGP back to
other IBGP speakers. By default, BGP discards any route advertisement that contains its local AS number
in the AS path, because this indicates that the route has already passed through the local AS once; that
is, a loop has formed.

Origin

The origin code is a well-known, mandatory attribute that identifies the original source of a route as being
learned from an IGP, EGP, or unknown source. In route selection, a BGP speaker will prefer IGP to EGP,
and EGP to unknown. Origin is present in all route updates and is subject to modification with policy
(transitive).

Multiple exit discriminator

The multiple exit discriminator (MED) attribute is an optional, nontransitive attribute, which means that
some BGP speakers may not understand or use MED. MED is added on updates sent over EBGP links, and
is then advertised by IBGP within the receiving AS to influence its outbound routing. However, the MED
attribute does not transit beyond the AS into which it was originally advertised-BGP speakers in
upstream ASs either receive no MED or receive a new MED value created by that peering AS.

MED functions like a conventional routing metric in that speakers prefer the route with the lowest MED
when all preceding decision points are equal. The MED advertised by the originating AS to an adjacent AS
provides a clue to the adjacent AS regarding what links should be used for egress from the neighbor AS
back toward the originating AS, and therefore what links are used as ingress to the local AS. Stated
differently, the MED is used by the local AS to influence the routing decisions in an adjacent AS for traffic

http://lib.ommolketab.ir
http://lib.ommolketab.ir

that is inbound to the local AS. When absent, JUNOS software assumes an MED value of 0, which is the
most preferred setting. In contrast, the absence of a local preference is assumed to be a value of 100.

Community

The community attribute allows for the arbitrary grouping of routes that share one or more
characteristics via the addition of a common community tag value. The community tags can be used for a
variety of purposes, such as route filtering and attribute modification. For example, all routes learned
from customers may be assigned the community value of 65000:100. When this community is seen on a
route, the local policy will set a more preferred local preference. As another example, consider the well-
known community, no-export. When attached to a route, this community tells the adjacent AS that the
associated route should not be readvertised to any remote ASs.

5.1.3. BGP Path Selection

A BGP speaker that is presented with two or more updates, specifying the same prefix, performs a route
selection process to select the best BGP path for that prefix. Once the best path is selected, the route is
installed in the route table, where it may become active if the same prefix is not being learned by a protocol
with a better global preference. The JUNOS software BGP path selection process consists of the following
decision steps:

Can the BGP next hop be resolved?1.

Prefer the path with the highest local preference value.2.

Prefer the path with the shortest AS-path length.3.

Prefer the path with the lowest origin value.4.

Prefer the path with the lowest MED value.5.

Prefer the path learned using EBGP over paths learned using IBGP.6.

Prefer paths with the lowest IGP metric:

Examine route tables inet.0 and inet.3 for the BGP next hop, and then install the physical

next hop(s) for the route with the better preference.

a.

For preference ties, install the physical next hop(s) found in inet.3.b.

For preference ties within the same route table, install the physical next hop(s) where thec.

7.

8.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

b.

greater number of equal-cost paths exists.
c.

Prefer paths with the shortest cluster length.8.

Prefer routes from the peer with the lowest router ID (RID), unless multipath is enabled:

For external routes from different ASs, do not alter the active route based on the lowest RID
to prevent MED oscillation.

a.

9.

Prefer routes from the peer with the lowest peer ID (BGP peering address), unless multipath is enabled.10.

Configuring the multipath option deactivates the last two decision points, which are normally used as tie
breakers. When multipath is enabled, all paths that are equal up to step 9 are installed in the route table.
Multipath supports EBGP and IBGP, but is normally associated with EBGP sessions because IBGP will often
achieve its load-balancing functionality through the underlying IGP when equal cost paths to the IBGP speaker
exist. Use multipath for IBGP when two or more IBGP speakers advertise the same prefix and you wish to install
both speakers as viable next hops.

Figure 5-2 demonstrates the BGP path selection process at work.

Figure 5-2. BGP path selection

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Here, NLRI 10.0.20/24 is originated into BGP by AS 65000. Note that when advertised to ASs 65010 and 65069,
this NLRI is associated with an AS path attribute that consists of a single AS and has an origin value of "I"
indicating IGP learned. This value could be a default value for redistribution of static routes into BGP or the
result of policy setting. The NLRI is then readvertised into AS 65069 by AS 65010. Initially, routers R1 and R2
prefer their local copy of this path, so both R1 and R2 select it as active and advertise the NLRI to all IBGP
peers, which means that R3 receives two updates for the same path. In this example policy, R2 causes the
route to be sent into IBGP with a modified local preference value of 80. Also note that the route received from
AS 65010 has an AS sequence that is one AS longer than the route sent to R2 directly from AS 65000.

Running through the path selection process steps listed previously, it's safe to assume that R3 will make a
decision early in the process, preferring the copy of the route with a default local preference of 100. Had both
local preference values been the same, the selection criterion would now become the shortest AS path length,
resulting in R3 forwarding through R2. Note that R1 and R2 will also send their 10.0.20/24 updates to each
other. This means that R2 prefers the path through R1, and therefore now sends another update to R1 and R3,
withdrawing its earlier IBGP update for 10.0.20/24. The example also helps to demonstrate how local
preference is used to influence the egress point in the local AS.

JUNOS software is designed to display all valid BGP paths, and even includes the reason why a given path was
not selected. This greatly simplifies the network administrator's job when the goal is to make a currently
inactive path the active path; policy can be applied to alter the criterion that leads to the original path being
preferred. Here's the output from a show route detail command, to illustrate this point:

Code View:
user@host> show route 10.0.20/24 detail

inet.0: 52 destinations, 94 routes (52 active, 0 holddown, 0 hidden)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.0.20.0/24 (3 entries, 1 announced)

 *BGP Preference: 170/-201

 Source: 192.168.32.1

 Next hop: 10.222.28.2 via fe-0/0/0.0, selected

 Protocol next hop: 192.168.32.1 Indirect next hop:

858b4e0 73

 State: <Active Int Ext>

 Local AS: 65069 Peer AS: 65069

 Age: 18:57 Metric2: 3

 Task: BGP_65432.192.168.32.1+1042

 AS path: 65000 65010 I

 Localpref: 100

 Router ID: 192.168.32.1

 BGP Preference: 170/-101

 Source: 10.222.29.2

 Next hop: 10.222.29.2 via ge-0/1/0.0, selected

 State: <Ext>

 Inactive reason: Local Preference

 Local AS: 65069 Peer AS: 65069

 . . .

 Localpref: 80

From the sample output, it is quite clear that because of the local preference comparison, the path through
192.168.32.1 is preferred. Knowing that this BGP route was not chosen due to the local preference value makes
it a relatively simple task to change the selection of the path through 192.168.32.1 by setting its preference to
be higher than 100.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.2. Internal and External BGP

We have already used the terms Internal BGP and External BGP (IBGP/EBGP) a few times leading up to this
point. It's time to explore what this terminology signifies. For the most part, BGP operation is the same when
operating internally to an AS versus externally to a remote AS, but Table 5-1 summarizes the key differences.

Table 5-1. IBGP and EBGP

Characteristic/attribute IBGP EBGP

Local AS added to AS path No Yes

Next hop overwritten No Yes

New MED added No; the MED received on an EBGP link
can be advertised via IBGP within the
local AS

Yes

Local preference Yes No

Peering address Normally loopback, recursive lookup
provided by IGP, Time to Live (TTL) =
64

Normally peers directly to interface
address, no recursion or IGP needed,
TTL = 1

Update received from EBGP, is
sent to:

All IBGP peers Other EBGP peers

Update received from IBGP, is
sent to:

No IBGP peers All EBGP peers

Although the differences may seem trivial, they can have a significant impact. For example, because IBGP
updates do not alter the AS path attribute, loops become a concern, and this leads to the restriction that IBGP
speakers cannot readvertise an IBGP update to other IBGP speakers, which leads to the requirement that IBGP
speakers must be fully meshed.

The next hop-handling differences often lead to IBGP routes that are hidden because the receiver cannot resolve
the associated BGP next hop. By default, the next hop identifies the EBGP speaker in the adjoining AS, and often
the IGP will not carry this route, thereby leading to an unreachable next hop. An IBGP export policy that
overwrites the BGP next hop, typically to the IBGP peering address, is normally used to resolve this issue (no
pun intended).

The MED attribute is normally added only when a route is advertised over an EBGP peering, and its absence
may be interpreted as the lowest or highest possible value, depending upon implementation-Juniper assumes
the lowest value, which is 0. In contrast, local preference is present only in IBGP updates, and by standard is
assumed to be 100 when absent. When received from an EBGP peer, the MED value can be advertised to other
speakers within that AS using IBGP.

The peering differences are significant for several reasons. EBGP normally peers to a neighbor using an address
on the directly connected link between the routers. As a result, no route recursion is needed to resolve the BGP
peering address to a next hop forwarding address, given that they are one and the same. This means that an
IGP, to include static routing, is normally not required to support EBGP peering. It also means that loss of the
directly connected network/peering interface results in loss of the EBGP session. For security reasons, the TTL
for EBGP sessions is set to 1 by default, which prevents attempts to peer from a remote link. This behavior is
altered by configuring multihop on the EBGP session. Lastly, a local-address (referred to as update-source in

IOS) is normally not used for an EBGP session, because by default, it is sourced from the same directly

http://lib.ommolketab.ir
http://lib.ommolketab.ir

connected network interface that the two BGP routers are peering over; therefore, the source and destination
addresses for the BGP session will be from the same, directly connected subnet.

IBGP, in contrast, is normally configured to peer between the loopback addresses of the routers. This provides
resiliency from the failure of individual networks or interfaces. IBGP inherently supports multihop, which is good
because IBGP neighbors can be located anywhere with the AS and often do not share a link. A recursive route
lookup is needed to resolve the loopback peering address to an IP forwarding next hop, and thus this service is
normally provided by the network's underlying IGP. When defining a BGP loopback peering session, you need to
correctly match the source address used by the local peer to ensure that it matches the session definition at the
remote peer. Recall that by default, the router will source traffic from its egress interface, which will not be the
loopback interface, and this can make the incoming connection request appear to come from an undefined peer.

5.2.1. Scaling IBGP with Route Reflection

The previous sections touched on the fact that IBGP speakers should be fully meshed due to the restrictions that
IBGP has on readvertising updates to other IBGP speakers. When BGP was first envisioned more than 20 years
ago, conventional wisdom was that the global Internet would consist of only a few ASs, and that each AS would
have a few BGP speakers, and that these speakers would be dealing with a few hundred routes. Recall also that
the VP of IBM once announced a worldwide market for mainframes to be around 10 units! Maintaining a full
IBGP mesh among a few routers is trivial, but doing so among hundreds of routers is nearly impossible.

Given the modern reality of transit provider networks needing to run IBGP on virtually every router in their AS,
and that there may be hundreds of these routers, you can quickly conclude that maintaining a full mesh of IBGP
sessions quickly becomes unmanageable. The formula to compute the number of sessions required for a full
mesh is v * (v - 1)/2, where v is the number of BGP speakers. Using the formula, we see that for 10 IBGP
speakers, a total of 45 IBGP sessions are needed (10 * (9)/2 = 45). Increase the number of speakers by a mere
50%-to 15-and the number of sessions required increases geometrically to 105! It's clear that the full-mesh
model simply does not scale; soon routers would exhaust all their control plane resources just maintaining all
their BGP sessions. A solution was needed, and route reflection, as currently defined in RFC 4456, provides a
remarkably elegant solution to what could have been a significant protocol shortcoming. Figure 5-3 shows a
small IBGP cloud before and after route reflection is added.

Figure 5-3. BGP route reflection

Note that in the first example, an IBGP session is missing, resulting in a less than full mesh, which in turn leads

http://lib.ommolketab.ir
http://lib.ommolketab.ir

to holes in the BGP topology. In the second example, however, R2 has been configured to perform reflection,
using but a single command to assign a cluster ID. The only change made to clients R1, R3, and R4 is the
removal of their now unneeded IBGP sessions.

Route reflection adds two new attributes to IBGP updates to address concerns about BGP loops that would
otherwise occur, given that IBGP updates do not modify the AS path. These attributes are added by the route
reflector when it first touches a client's route. Configuration of reflection is performed only on the route reflector
itself; no configuration changes are needed for a route reflector client, other than perhaps to decommission
unneeded IBGP peering definitions to other clients in the same cluster.

The cluster list attribute identifies the route reflection clusters that the route has visited, whereas the originator
ID attribute identifies the route's original source. These attributes are processed by route reflectors to prevent
loops by ensuring that IBGP updates are echoed only once to each reflector client and nonreflector client.
Simply put, a cluster's reflector will not readvertise an IBGP update into cluster ID n, when cluster ID n is
already present in the cluster list attribute. The reflector also uses the originator ID attribute to ensure that
updates are never sent back to the client that originated the route. Note that the route reflector first performs
the best path selection process on all updates and reflects only the paths it chooses as best.

You typically want the forwarding topology to differ from the reflection topology, which is to say that packets
can be forwarded directly between two BGP speakers, despite their learning each other's routes through a
reflector. If the IGP's shortest path does not lead through the reflector, the packets should not flow through the
reflector. Care must be taken with any next hop self-policy applied to a reflector to ensure that it does not
rewrite the next hop on IBGP routes that it is reflecting-doing so will force extra hops on packets that now
need to cross the reflector. A next hop self-policy is often applied to IBGP updates to rewrite the BGP next hop
of EBGP learned routes with the peering address of the local speaker. This prevents problems with internal
speakers not being able to resolve the next hop originally received in the EBGP update, which is set to the
remote EBGP speaker's peering address and normally not altered in IBGP updates.

5.2.1.1. Route reflection and redundancy

Reflection can represent a single point of failure, making it common to add redundancy by deploying multiple
reflectors. Normally, each reflector IBGP peers with each client in the cluster, and the two route reflectors are
then joined via a nonclient IBGP session. There always seems to be endless debate in such designs as to
whether each reflector should be assigned the same or a unique cluster ID. Figure 5-4 illustrates the two design
alternatives.

Figure 5-4. Route reflection redundancy

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In most cases, a design using unique cluster IDs-which technically results in two route reflector clusters, each
having one reflector-is considered the best approach for maintaining connectivity in the event of failures. This
is because the reflectors do not see their own cluster ID in the updates they send each other via the route
reflector-route reflector IBGP session, and therefore the reflectors will learn of both their intracluster and
intercluster paths, resulting in a more complete BGP table at the reflectors. For example, if the R3-R1 IBGP
session should fail, R1 is still able to reach R3 via the path learned from R2 in cluster 2.2.2.2. The dual-cluster
approach does have the drawback of increased BGP route state at the reflectors, prompting some to prefer the
shared cluster ID model.

We discussed the main drawback to the shared cluster ID approach earlier-namely, the potential for client-to-
reflector session loss and the resultant lack of connectivity. However, if we assume loopback-based peering,
there is actually little risk to the shared cluster model. This is because it's extremely unlikely that a client-to-
reflector IBGP session will be lost while the client is still able to maintain connectivity to the rest of the network.
You should use unique cluster IDs if you're using interface-based peering so as to provide tolerance for failure of
individual interfaces.

5.2.1.2. Scaling IBGP: Confederations

A BGP confederation effectively divides a large AS into smaller, mini ASs known as a member ASs. Within each
member AS, you normally find a full IBGP mesh, but route reflectors can also be deployed as part of a
confederation solution. It's normal to see member ASs assigned AS numbers from the private numbering space
because member AS numbers are not seen external to the AS confederation anyway. Because the number of
routers within each sub-AS is relatively small, maintaining a full IBGP mesh is manageable. To the outside
world, all these confederation shenanigans are hidden, and the entire AS confederation is represented by a
single AS number.

Confederation use is rare in enterprise networks, and we will not explore the subject here other than to mention
that Juniper routers offer full support for BGP confederations. For more information on BGP confederations,
consult JUNOS software documentation or RFC 3065, "Autonomous System Confederations for BGP."

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.3. BGP and the Enterprise

The preceding section provided a targeted review of BGP's operational characteristics and scaling approaches.
BGP is normally associated with Internet service provider (ISP) networks that offer transit services for Internet
traffic. This section focuses on how BGP can be applied to meet the routing needs of enterprise networks.

5.3.1. When Should an Enterprise Run BGP?

BGP is a sophisticated routing protocol that can help to optimize an enterprise's routing, but that doesn't mean
all enterprise networks will see a benefit from its deployment. An enterprise decision to run BGP normally hinges
on the benefits that can be gained by making intelligent outgoing routing decisions and by using BGP attributes
in an attempt to influence how upstream networks route toward your network to help control which links are
used for ingress traffic. The common factor to both of these scenarios is a network with at least two external
connections-such a network is considered to be dual-homed. Enterprise networks with a single attachment to a
service provider will normally not benefit by running BGP and should simply use a static default route. When
dual-attached to the same provider, two static defaults can be used to achieve some measure of outbound load
balancing.

5.3.1.1. A word about AS numbers

Although likely obvious by now, we must state that to run BGP you must first have an AS number. Like IP
addresses, there are both public and private AS number pools. Public AS numbers are assigned by a Regional
Internet Registry-for example, ARIN for the Americas, Caribbean, and sub-Saharan Africa, APNIC for Asia
Pacific, or RIPE for Europe, the Middle East, and Northern Africa.

Historically, the ASN space was limited by the use of a 2-byte value, which permitted a maximum of 65,535
ASs. Support of 4-byte coding for ASNs, which can provide more than 4 billion unique ASNs, is defined in draft-
ietf-idr-as4 and is supported in JUNOS software.

An enterprise should expect to justify its need to the Regional Internet Registry when applying for a public ASN.
Requirements vary, but normally you qualify for a public ASN only when your network is multihomed and has a
single, clearly defined routing policy that is different from its providers' routing policies. This brings up a key
point about BGP, policy, and dual homing. When you are attached to a single upstream provider, from the
perspective of the rest of the world your policy must, by definition, match that of your provider. This is because
only one external view of that enterprise's routes is being made available, and this view is based on your
provider's policy. BGP can still be used when connected to a single upstream provider, but in these cases, you
will often configure the routers with an ASN from the private AS space. The provider will then strip the private
ASN and replace it with its ASN when announcing these routes to other networks. The private ASN space, which
is technically allocated to the IANA itself, ranges from 64,512–65,534, inclusive. These numbers are often used
to number subconfederations within a confederated AS.

5.3.2. ASN Portability

An organization may obtain its ASN directly from a regional numbering authority or as part of its service
agreement with a local provider, which in this case functions as a Local Internet Registry (LIR) by delegating
ASNs (and address blocks) from its assigned pool. In most cases, ASNs obtained from an LIR will not be
portable if you later decide to move to a new provider. This situation is similar to nonportable IP address blocks,
which stay with the provider should you choose to obtain service elsewhere. Although AS renumbering is
certainly less work than IP renumbering, both can be disruptive and time-consuming-careful thought should be
given to the potential need for ASN portability when planning your BGP deployment.

5.3.2.1. Dual-homed: Single versus multiple providers

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Being dual-homed is a great way to improve performance and reliability. But do all dual-homed environments
warrant use of BGP? In most cases, this is a function of whether the enterprise is dual-homed to the same or to
different upstream providers. Figure 5-5 shows the two types of dual-homing arrangements. Note that both
models support multiple attachments to the same ISP, whether for reasons of redundancy or added capacity. In
fact, the simplest form of the dual-homed single-provider/dual-provider model is to use a single router with dual
links. Relying on a single device for all external connectivity suffers obvious reliability concerns, and it is
assumed rare for all but the smallest of enterprise networks.

Figure 5-5. BGP dual homing

Running BGP is normally overkill when you are dual-homed to the same provider, especially when the parallel
connections are in close geographic proximity. This is because you are pretty much at the mercy of your
provider's policy, and BGP cannot do much to alter the way traffic enters or exits your network-your global
view of the Internet must match that of your provider because it is the only view you receive. An enterprise with
this type of connectivity is often well served with a simple static default route. Load balancing can occur in one
of two ways. For a single router with dual attachments, the load balancing occurs at that router, using the
underlying IGP (static) to map prefixes or flows to one of the two links. This router is in turn configured to
advertise a default route into the IGP to attract nonlocal traffic. When dual routers are used, each with a single
provider uplink, it's common to see each router generate and advertise a default route into the IGP, while they
in turn each have a static default pointing toward that router's provider uplink.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.4. Asymmetric Link Speed Support

The use of asymmetric link speeds for redundant attachment to the same provider is common in both models.
When running BGP, the bandwidth community can be used to provide unequal cost load balancing proportionate
to the link speed. In contrast, static routing over asymmetric links is typically done by directing all traffic over
the high-speed link until it becomes unavailable, at which point the traffic is switched to the lower-speed
secondary. In JUNOS software, this is accomplished with a static route along with a qualified next hop. A
qualified next hop is a list of next hops with varying preferences/metrics that are used in order of their
preference, based on the ability to resolve the associated next hop. The following code snippet shows how a
dual-homed customer could configure all traffic to egress on a high-speed T3 link, unless the T3 interface/next
hop becomes unavailable, at which point the traffic will switch to the qualified next hop with the next most
preferred (next lowest) preference:

[edit routing-options static]

ruser@router# show

route 0.0.0.0/0 {

 qualified-next-hop 10.0.1.1 {

 preference 20;

 interface t3-1/0/0.0;

 }

 qualified-next-hop 10.0.1.5 {

 preference 30;

 interface t1-2/0/0.0;

 }

}

5.4.1. Which Routers Should Run IBGP?

Great! You've made it this far, which shows that you still feel your network either justifies use of BGP, or simply
needs a puppy. From this point forward, this chapter assumes a network that is dual-homed to multiple
providers, as is your desire for fine-grained control over how traffic enters and exits your network. Having
reached this determination, the next logical question is, "Where should I configure BGP?" Knowing where to run
EBGP is pretty straightforward; you must configure EBGP on the routers that peer to other ASs. The real
question is where do you have to run IBGP, and this is a very, very good question indeed.

First, consider that most service provider networks run both an IGP and an IBGP on all of their core routers.[3]

[3] The notable exception here is the "BGP free core," typically based on Multiprotocol Label Switching (MPLS) to avoid the need for full routing

state in the core.

Service providers need to run BGP on all their routers to ensure that the Internet core remains a default free
routing zone, and because no service provider in its right mind would (intentionally) try to redistribute a full BGP
table into its IGP. For the first point, any transit network that does not carry full Internet routing, and therefore
relies on some type of default route, will be prone to loops. If the network is not running BGP on all transit
routers, and there is no default route, the implication is that the IGP is in fact carrying a full Internet route
table. Even the best implemented IGPs are not intended to carry hundreds of thousands of external routes,
making such a design implausible given the sheer size of Internet route tables.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

It's interesting to note that JUNOS software does not have the concept of IGP-BGP
synchronization, making a no synchronization configuration statement unnecessary.

In IOS, the BGP process expects the IGP to have a copy of each route before that route
can be advertised by BGP, unless, of course, you have turned off synchronization. This is
why disabling synchronization is the first step in almost any IOS configuration. Consider
this one less command to get BGP up and running on a Juniper!

By running BGP on all its routers, a service provider does not rely on a default route, and it can mercifully spare
its IGP an ignoble meltdown. By running both protocols, the IGP is left to do what it does best: providing
connectivity between the loopback interfaces used for IBGP peering, while BGP routes keep the transit traffic
from looping about and also provide needed administrative policy controls.

5.4.2. No Transit Services

Service provider networks are richly interconnected to the outside world, and they are optimized for making
money by transporting traffic that neither originates on nor terminates in their networks. This is, after all, what
makes them transit service providers. In contrast, an enterprise network is concerned with the transport of its
own traffic, albeit sometimes needing to venture offsite to obtain required information. By not providing transit
services, an enterprise can avoid running IBGP on every router. When possible, the network should be designed
so that the BGP speakers are geographically localized, thus minimizing the portions of the network that need to
run BGP. Figure 5-6 provides a sample topology to illustrate this concept.

Figure 5-6. Which routers need to run IBGP?

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The figure shows a network topology that runs BGP for its own connectivity, not for providing
transit/connectivity services to other networks. The BGP speakers have been positioned near the network's edge
and in geographic proximity, in an effort to constrain the scope of routers that need to run BGP. Routers R1
through R3 are BGP-enabled and speak EBGP to their attached service providers and IBGP among themselves.
BGP is needed between these routers because Internet-destined traffic originating within the enterprise can
arrive at any of these, and the consistent BGP tables ensure that traffic egresses the network according to local
policy, even if some additional hops across the backbone are needed to reach the desired egress point.

A default route is generated by two of the IBGP speakers and is injected into the IGP to provide the non-BGP-
speaking routers with external connectivity. The use of a generated route, as opposed to a simple static route,
allows the withdrawal of an advertised default when the BGP speaker has problems with its EBGP session-the
generated route is made active by the presence of learned EBGP routes. Internal routers simply select the
remaining default route that is metrically closest to maintain their external connectivity.

5.4.3. The Impact of Accepting Specifics Versus a Default from Your Provider

The need to run IBGP on routers that do not speak EBGP is normally a function of whether the enterprise's
import policy accepts only a default route or is configured to accept specific routes. In the latter case, you will
need to run BGP on any routers that are used to interconnect your EBGP/IBGP-speaking nodes to prevent
routing loops. Figure 5-7 provides an example of how inconstant routing knowledge can lead to a routing loop.
The inconsistency arises from forwarding state that is known to the BGP speakers only while other routers rely
on a default route. If all routers accepted only a default or the same set of specifics, this condition would not
arise.

Figure 5-7. Routing loop from lack of BGP routing knowledge

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In this example, routers R1 and R2 are running EBGP with import policies that accept specific routes. Both
routers IBGP-peer to each other. All other routers are running an IGP only. Things begin at step 1 in Figure 5-7,
where both R1 and R2 generate a default route that is injected into Open Shortest Path First (OSPF). Step 2
shows Provider B advertising the 10.0.1/24 prefix, which is accepted by R2, given its import policy that accepts
specifics and rejects the default route. R2 advertises this route to R1 over the IBGP session at step 3. R1 installs
this route as active in this example because the same route learned from ISP A will have a longer AS path
length.

Things begin to go wrong at step 4 in Figure 5-7, when R4 decides to avail itself of the default route to forward
a packet to destination 10.0.1.1. In this example, R4 sends the packet to R3, but sending it directly to R1 would
not change things in the long run. Recall that R3 is not running BGP and is therefore relying on the default route
to reach this destination, as did R4. If R3 decides to forward to the default it learned from R2, everything is
alright. But there is a 50% chance that it will decide to forward to the default route it learns from R1. As a BGP
speaker, R1 has specific routing information for this prefix, which it learned over its IBGP session to R2. R1's
routing decision determines that the packet should be forwarded toward the protocol next hop advertised by R2,
that is, R2's loopback address. The result of R1's recursive route lookup on R2's loopback address may be the
decision to forward the packet over the R1-R2 link or over the set of R1-R2-R3 links, as determined by IGP
metrics. If R1 forwards the packet back to R3, a loop is formed, given that R3 has already handled this packet
and decided to send it to R1.

Two solutions present themselves:

Enable IBGP on R3

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you enable IBGP on R3, and then fully mesh the IBGP speakers, R3 would have never used the default
route to forward this packet and would have sent it directly to R2 for dispatch into AS B.

Reject specifics

If the import policy at R1 and R2 is altered to accept only a default, this route could be redistributed into
the IGP. The EBGP learned version of the default route will remain active at both R1 and R2, even if the
BGP speakers readvertise the default route to each other, owing to the route selection step that prefers
EBGP learned over IBGP learned routes. Now, when a packet addressed to 10.0.1.1 arrives at R1, it
longest-matches against the default route learned from Provider A and is not sent back to either R2 or
R3, so no loops form.

Although the second solution prevents a routing loop, sending to ISP A is probably not the optimal way for this
enterprise to reach prefix 10.0.1.0/24. This helps to illustrate why accepting specific routes, and then running
IBGP among the routers that can be used to transit between EBGP speakers, is generally the optimal way for an
enterprise to deploy BGP.

5.4.4. Summary of Enterprise BGP Requirements

To summarize, an enterprise should consider running EBGP when it is multihomed, to take advantage of the
optimal routing and routing controls provided by BGP. The enterprise should run IBGP on any router that runs
EBGP, and it must carefully consider what other routers should be IBGP-enabled. Recall that IBGP requires a full
mesh or the use of route reflection/confederations for proper operation. Because BGP is not redistributed into
your IGP, failing to run IBGP on all routers will result in those routers not having a complete view of BGP
reachability. Normally, a generated default route is injected into the IGP to accommodate external routing for
the non-BGP speakers. Remember that BGP will need to be enabled on routers that are expected to provide
transit service between your EBGP speakers when the enterprise policy is to accept specific routes from your
service providers to prevent against routing loops. Rejecting specifics and accepting only a default route lessens
this requirement, as described earlier.

This section gave a comprehensive review of BGP and its key capabilities and operational characteristics. We
also discussed how BGP can benefit an enterprise by helping to make optimized outbound routing decisions, and
when all goes to plan, to also help influence your peer's outbound decisions to effect better control of how traffic
arrives at your network's boundaries.

You may consider taking a brief break before diving into the next section. Some of the hands-on scenarios are a
bit lengthy because of the numerous inclusions of actual router output, which are added to ensure that the
reader is able to follow the details of the case study.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.5. BGP Deployment: Asymmetric Load Balancing

Having made it through the protocol overview and enterprise application section, it is now time to apply your
knowledge of BGP and JUNOS software to the first of three practical BGP deployment scenarios.

The first scenario begins when the CIO at Beer-Co seizes upon the organization's newfound appreciation for all
things BGP by applying for a public ASN and detailing a BGP deployment plan that ultimately involves dual-
homing to multiple providers. BGP deployment will occur in a phased approach, and you have been selected to
head up phase 1: establishment of the initial BGP peering and related policy to Botnet in AS 34.

The deployment goals for initial BGP peering with Botnet are as follows:

Establish EBGP interface-based peering to Botnet/AS 34.

Use import policy to reject all but the default route that originates within Botnet/AS 34.

Use export policy to advertise a single aggregate route that represents Beer-Co's internal prefixes.

Use a static route to direct traffic to the backup link only in the event of BGP session disruption, and to
ensure that traffic switches back to the primary upon service restoration.

Redistribute a default route to provide external reachability for internal Beer-Co routers.

Figure 5-8 details the current Beer-Co internal topology and the newly activated access links to Botnet.

Figure 5-8. Beer-Co to Botnet peering

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 5-8 shows that Botnet is attached to other service providers, and to a particular customer, Brewer Inc.,
which has been assigned a 192.168.34.0/24 address block. The numbers enclosed within parentheses represent
the range of route prefixes that Botnet is expected to advertise. In this example, these routes are instantiated
as locally defined static routes, complete with associated AS numbers and origin code. This technique helps to
simulate the learning, and subsequent readvertisement, of BGP routes between Botnet and its BGP peers. The
customer route shown for provider Brewer, which is 192.168.34.0/24 in this case, is set to a reject next hop so
that reachability can be confirmed, even when the customer site does not exist. Note that you expect to receive
an Internet Control Message Protocol (ICMP) destination unreachable message due to the reject-style next hop,
but this error message serves to validate reachability for our purposes.

Note also that Beer-Co has redundant links to Botnet. The huge disparity in link speed (100 Mbps versus 1.5
Mbps) drives the decision to use the faster link as a primary with the second link used only in the event of
problems on the primary interface or a related BGP peering session. Care must be taken to ensure that the
static route used to direct traffic over the secondary link is less preferred than any BGP routes learned from AS
34, which is not the default behavior given that a static route is more preferred than any dynamically learned
one. A mistake here could easily mean paying for a 100 Mbps pipe while throughput is limited to a paltry 1.544
Mbps!

5.5.1. Validate Baseline Operation

Configuration gets underway at router Yeast with the definition of a generated static route. Recall that a

generated route differs from an aggregated route in that the former has a forwarding next hop determined by
the most preferred contributing route. In contrast, an aggregate route can only point to a discard or reject next
hop. The generated route is redistributed into OSPF to provide connectivity to Internet destinations for Beer-
Co's internal routers.

The OSPF configuration for area 0 is preexisting, and all routers have a similar configuration-the OSPF stanza

http://lib.ommolketab.ir
http://lib.ommolketab.ir

at Porter is displayed, along with its adjacency status:

lab@Porter> show configuration protocols ospf

area 0.0.0.0 {

 interface fe-0/0/1.1331;

 interface fe-0/0/1.2332;

 interface t1-0/0/2.0;

}

lab@Porter> show ospf neighbor

 Address Interface State ID Pri Dead

10.20.131.2 fe-0/0/1.1331 Full 10.20.128.4 128 33

10.10.8.2 fe-0/0/1.2332 Full 10.30.1.1 128 36

10.10.10.1 t1-0/0/2.0 Full 10.10.12.3 128 32

The single-area OSPF configuration at Porter matches the topology in Figure 5-8, and the router has all three

expected OSPF adjacencies; one each to routers Stout, Yeast, and Bock. The routes being learned by OSPF are

displayed and piped through the command-line interface's (CLI's) match function to show only those routes with

a /32 network mask. These routes represent the loopback addresses assigned to each router (they are the only
/32 IP addresses assigned), and therefore provide a quick sanity check of internal reachability.

lab@Porter> show route protocol ospf | match /32

10.10.12.3/32 *[OSPF/10] 00:05:54, metric 3

10.20.128.3/32 *[OSPF/10] 00:05:54, metric 2

10.20.128.4/32 *[OSPF/10] 00:23:46, metric 1

10.30.1.1/32 *[OSPF/10] 00:22:18, metric 1

224.0.0.5/32 *[OSPF/10] 01:03:03, metric 1

The output confirms a route to the loopback addresses of Stout, Yeast, PBR, and Bock. The metric values

associated with each route seem reasonable in this topology. The default scaling factor of 100 Mbps assigns a
Fast Ethernet interface a cost of 1, which results in avoidance of the T1 link between Bock and Porter. Porter

therefore sees an OSPF cost of 3 to reach the loopback interface of Bock via Stout and PBR. Next, the route to

Brewer Inc. is displayed:

lab@Porter> show route 192.168.34.0

lab@Porter>

The output confirms that Porter cannot route to the 192.168.34/24 route associated with Brewer Inc., which

also confirms the lack of a default route in area 0. As a final verification step, reachability is confirmed to the
EBGP peering addresses on both the primary and secondary links between Botnet and Yeast:

lab@Yeast> ping 84.10.113.1 count 1

PING 84.10.113.1 (84.10.113.1): 56 data bytes

64 bytes from 84.10.113.1: icmp_seq=0 ttl=64 time=26.887 ms

--- 84.10.113.1 ping statistics ---

1 packets transmitted, 1 packets received, 0% packet loss

round-trip min/avg/max/stddev = 26.887/26.887/26.887/0.000 ms

lab@Yeast> ping 84.10.109.7 count 1

PING 84.10.109.7 (84.10.109.7): 56 data bytes

64 bytes from 84.10.109.7: icmp_seq=0 ttl=64 time=12.255 ms

--- 84.10.109.7 ping statistics ---

1 packets transmitted, 1 packets received, 0% packet loss

http://lib.ommolketab.ir
http://lib.ommolketab.ir

round-trip min/avg/max/stddev = 12.255/12.255/12.255/0.000 ms

5.5.2. Configure Generated Route

A generated default route that uses policy to constrain the set of contributing routes to the direct route
associated with the backup peering link to Botnet. The premise here is that in normal operation, Yeast will have

two default routes: one learned through BGP that points to the primary Botnet peering, and a second,
generated default route pointing to the secondary peering. Route preference adjustments are made to ensure
that the BGP route will be preferred when available. Loss of the BGP session results in the generated static route
becoming active. Either way, an OSPF export policy redistributes the default route, be it learned or generated,
into OSPF. The default route is withdrawn only in the event that Yeast loses its BGP session at the same time as

its t1-0/0/2 interface goes down, in which case the decision to forego guaranteed diverse routing for the

primary and secondary circuits may come into question.

The configuration starts with the static route and, at this stage, is quite straightforward. By beginning with the
generated default, you have a chance to test failover to secondary link behavior before the primary link is
brought up. It's always a good idea to periodically confirm operation of backup links during a maintenance
window, rather than waiting until your primary fails. The generated route portion of Yeast's configuration is

displayed:

[edit]

lab@Yeast# show routing-options generate

route 0.0.0.0/0 policy gen_default;

[edit]

lab@Yeast# show policy-options policy-statement gen_default

term 1 {

 from {

 protocol direct;

 route-filter 84.10.113.0/31 exact;

 }

 then accept;

}

term 2 {

 then reject;

}

The configuration results in the generation of a 0/0 route that, when matched, will forward over the next hop
assigned to the preferred contributing route. Here, the set of possible contributors is constrained by the policy
named gen_default, which matches only on the 84.10.113.0/31 route assigned to the t1-0/0/2 interface. The

policy's second term guarantees that no other route can contribute by rejecting all remaining routes and
sources. Operation of the generated route is verified:

[edit]

lab@Yeast# run show route protocol aggregate detail

inet.0: 17 destinations, 17 routes (17 active, 0 holddown, 0 hidden)

0.0.0.0/0 (1 entry, 1 announced)

 *Aggregate Preference: 130

 Next-hop reference count: 2

 Next hop: via t1-0/0/2.0, selected

 State: <Active Int Ext>

 Age: 10:07

 Task: Aggregate

 Announcement bits (1): 0-KRT

 AS path: I

 Flags: Generate Depth: 0 Active

 Contributing Routes (1):

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 84.10.113.0/31 proto Direct

The highlighted portions of the output confirm that all is working to plan with the generated route. A default
route is present, it is currently active (there is no BGP learned version yet), and traffic matching this route will
be directed out the t1-0/0/2 interface. Further, the expected number of contributing routes, 1, is shown, and

that route matches the direct route for the secondary peering. Note that the route is considered to be of the
type aggregate, and that the preference for this route is 130. Thinking ahead, you'll recall that this route

ultimately needs to be less preferred than any BGP learned version, and that the default preference for BGP is
170. The generated route's preference is set to be just higher than BGP's, so it will be less preferred when a
BGP learned version becomes available.

[edit]

lab@Yeast# set routing-options generate route 0.0.0.0/0 preference 175

The T1 interface is briefly brought down, and the show route command is repeated to validate that the

generated route's fate tracks that of the t1-0/0/2 interface.

[edit]

lab@Yeast# set interfaces t1-0/0/2 disable

[edit]

lab@Yeast# commit

commit complete

[edit]

lab@Yeast# run show route protocol aggregate detail

inet.0: 16 destinations, 16 routes (15 active, 0 holddown, 1 hidden)

The command output does not display any active aggregate routes. The highlight calls out that one route, of an
as-yet-unknown type, is hidden, however. To display a hidden route, add the hidden switch. Here, the display

confirms that the hidden route is, in fact, the generated default-the route is now hidden because of a lack of
contributors:

[edit]

lab@Yeast# run show route protocol aggregate detail hidden

inet.0: 16 destinations, 16 routes (15 active, 0 holddown, 1 hidden)

0.0.0.0/0 (1 entry, 0 announced)

 Aggregate

 Next hop type: Reject

 Next-hop reference count: 3

 State: <Hidden Int Ext>

 Age: 1:19:04

 Task: Aggregate

 AS path: I

 Flags: Generate Depth: 0 Inactive

The change is rolled back and committed (not shown) at Yeast to ensure that the t1-0/0/2 interface is no

longer disabled. Next, a policy is written to redistribute a default route from any protocol source. The
ospf_default policy is applied to the OSPF protocol as export:

[edit]

lab@Yeast# show policy-options policy-statement ospf_default

term 1 {

 from {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 route-filter 0.0.0.0/0 exact;

 }

 then accept;

}

[edit]

lab@Yeast# show protocols ospf export

export ospf_default;

The ospf_default policy is written to be protocol-agnostic, because the goal is to have an active default route

stemming from either BGP or the aggregate protocol sources. If you prefer a tight ship, you could always add a
logical OR match condition for the two protocols, aggregate and bgp. After committing the changes, an OSPF

learned default route is confirmed in area 0 at router PBR:

lab@PBR> show route 192.168.34.0

inet.0: 20 destinations, 20 routes (20 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

0.0.0.0/0 *[OSPF/150] 00:03:04, metric 0, tag 0

 > to 10.20.129.1 via fe-0/0/0.3141

Great! As planned, the longest match for the 192.168.34/24 route to Brewer Inc. at PBR is now the OSPF

learned default route. A traceroute verifies connectivity to Botnet customers from within Beer-Co. The
traceroute has an auspicious beginning, but it soon degrades to timeouts:

lab@PBR> traceroute 192.168.34.1 no-resolve

traceroute to 192.168.34.1 (192.168.34.1), 30 hops max, 40 byte

packets

 1 10.20.129.1 14.345 ms 9.916 ms 8.099 ms

 2 10.20.131.1 11.864 ms 30.002 ms 20.016 ms

 3 10.10.8.2 9.901 ms 29.991 ms 9.984 ms

 4 * * *

5 *^C

lab@PBR>

The traceroute result shows the expected routing path through Beer-Co's intranet- from PBR to Stout, and

then to Porter-and it makes it as far as the 10.10.8.2 address assigned to Yeast's fe-0/0/1.2332 interface.

This makes it seem like there's a problem on the Porter- Yeast link, except that previous observations showed

that the OSPF adjacency was stable. To narrow down the issue, a ping is generated from Yeast, but this time it

is sourced from the router's loopback interface. This is an important point because it will reveal any potential
routing issues that may impact Botnet's ability to route back into Beer-Co's 10/8 address block.

lab@Yeast> ping 84.10.113.1 count 1

PING 84.10.113.1 (84.10.113.1): 56 data bytes

64 bytes from 84.10.113.1: icmp_seq=0 ttl=64 time=16.750 ms

--- 84.10.113.1 ping statistics ---

1 packets transmitted, 1 packets received, 0% packet loss

round-trip min/avg/max/stddev = 16.750/16.750/16.750/0.000 ms

lab@Yeast> ping 84.10.113.1 count 1 source 10.30.1.1

PING 84.10.113.1 (84.10.113.1): 56 data bytes

--- 84.10.113.1 ping statistics ---

1 packets transmitted, 0 packets received, 100% packet loss

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Eureka! The default ping, as sourced from the shared direct connection, succeeds, whereas the loopback
sourced ping fails. This demonstrates a routing problem within Botnet. It is not uncommon to encounter
difficulties such as this. After a few phone calls, you are assured that everything is (now) in order with the newly
installed static route back to your network; it seems that confusion stemmed from Botnet's misunderstanding
that BGP would be used to advertise an aggregate for your network, and it shall-once it's up and running, that
is. The traceroute is repeated, and its successful completion indicates that you are ready to move on to BGP
configuration.

lab@PBR> traceroute 192.168.34.1 no-resolve

traceroute to 192.168.34.1 (192.168.34.1), 30 hops max, 40 byte

packets

 1 10.20.129.1 14.807 ms 9.827 ms 9.949 ms

 2 10.20.131.1 19.967 ms 40.010 ms 13.579 ms

 3 10.10.8.2 16.439 ms 10.131 ms 9.777 ms

 4 84.10.113.1 39.727 ms !N 40.154 ms !N 17.789 ms !N

Recall that in this lab, you expect an ICMP unreachable error message for the final hop because a static route
pointing to a reject next hop is used within Botnet to simulate the Brewer Inc. network.

5.5.3. Configure Initial BGP Peering

With the backup link and its associated static routing/generated route confirmed, you'll move on to the task of
configuring BGP. In addition to the BGP session, you also need to create an aggregate route representing Beer-
Co's internal reachability, along with the export policy needed to advertise it into EBGP. The aggregate route is
critical because it enables remote ASs to route toward Beer-Co. An import policy that rejects all but a Botnet-
originated default route is also needed. In most cases, you will want to write and apply policy before the BGP
session is actually activated to guard against unwanted side effects that stem from receiving or advertising
undesired routes, or worse yet, before hitting a platform scaling limit that leads to an unpredictable operation.

We must emphasize that enterprise routing platforms are not always capable of handling
a full BGP table, especially when the same platform is also taxed with value-added
services such as stateful firewalls, Network Address Translation (NAT), virtual private
network (VPN) tunnels, and so on. Exceeding platform scaling limits can result in control
plane instability and possible forwarding plane impact. Care should be exercised to
factor the effects of route table size, the number of routing peers, the impact of enabled
services, and internal resource consumption for managing interfaces (IFDs/IFLs) and
Address Resolution Protocol (ARP) tables before adding a new protocol or service to any
production router. When in doubt, simulation testing should be performed. When
simulation is not possible, you should closely monitor device operation and resource
usage as new peers and services are activated to prevent operational problems caused
by resource exhaustion.

As of this writing, Juniper Networks recommends that J-series routers expected to handle a full BGP route table,
in conjunction with services being enabled, have 1 GB of memory. The J2300 platform serving the role of Yeast

in this network is equipped with only 256 MB of DRAM. However, the limited set of BGP routes known to exist in
this lab, combined with the absence of enabled services and lack of need for scaling in other dimensions such as
support of large numbers of interfaces or ARP entries, affords the liberty of adding the import policy after the
EBGP session is established. This method is adopted here to help demonstrate the effects of import policy using
a before-and-after approach.

We've already stated this, but we will say it one more time. It is highly recommended that you write and apply

http://lib.ommolketab.ir
http://lib.ommolketab.ir

both your export and import policies before you attempt to establish any EBGP peerings. Failing to do this could
result in router meltdown due to excessive BGP table size or the potential for unwanted routing
exchange/forwarding behavior. The JUNOS software candidate configuration and commit functionality makes it
easy to build and apply a policy before any of the changes take effect at commit time.

The BGP configuration begins at Yeast with configuration of the local router's ASN. The ASN is configured under

the [edit routing-options] hierarchy, rather than within the BGP stanza, where you may expect to find it

when you are familiar with the IOS way of configuring BGP:

[edit]

lab@Yeast# edit routing-options

[edit routing-options]

lab@Yeast# set autonomous-system 1282

You next define a BGP group to house the 84.10.109.7 neighbor associated with the Botnet peering. At a
minimum, you must create the group, declare the group type as internal or external, specify the peer, and in
the case of an external group, specify the ASN associated with the peer. The resulting BGP stanza is displayed
along with the set commands that created it:

[edit protocols bgp]

lab@Yeast# show

group as_34 {

 type external;

 peer-as 34;

 neighbor 84.10.109.7;

}

[edit protocols bgp]

lab@Yeast# show | display set

set protocols bgp group as_34 type external

set protocols bgp group as_34 peer-as 34

set protocols bgp group as_34 neighbor 84.10.109.7

To better evaluate the impact of adding EBGP to Yeast, the current memory and CPU usage is examined before

the changes are committed:

[edit protocols bgp]

lab@Yeast# run show task memory summary

Memory InUse: 3101 kB [2%] Max: 3383 kB [2%]

[edit protocols bgp]

lab@Yeast# run show chassis routing-engine

Routing Engine status:

 Temperature 56 degrees C / 132 degrees F

 CPU temperature 56 degrees C / 132 degrees F

 DRAM 256 MB

 Memory utilization 88 percent

 CPU utilization:

 User 0 percent

 Real-time threads 10 percent

 Kernel 4 percent

 Idle 86 percent

 Model RE-J.1

 Serial ID AA06500394

 Start time 2007-08-07 07:04:45 UTC

 Uptime 21 days, 17 hours, 52 minutes, 44 seconds

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Load averages: 1 minute 5 minute 15 minute

 0.27 0.15 0.09

The output from the show task memory command displays memory usage from the perspective of rpd, the

routing daemon. In this case, it's rather low, indicating that rpd is having an easy time. The show chassis

routing-engine command output shows that the Routing Engine's (RE's) CPE is largely idle. J-series platforms

preallocate a chunk of physical memory to the real-time forwarding thread, which accounts for the seemingly
high memory usage of 88% on an otherwise idle box.

With the pre-BGP resource snapshot in place, the new BGP configuration is committed at Yeast. After a few

moments, BGP session status is determined with a show bgp summary command:

Code View:
[edit protocols bgp]

lab@Yeast# commit and-quit

commit complete

Exiting configuration mode

lab@Yeast> show bgp summary

Groups: 1 Peers: 1 Down peers: 1

Table Tot Paths Act Paths Suppressed History Damp State Pending

inet.0 0 0 0 0 0 0

Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn State|#Active/

Received/Damped...

84.10.109.7 34 0 0 0 0 11 Active

The command output shows that Yeast is actively trying to establish its BGP session to peer 84.10.109.7. This

is a good sign, but it's not as good as an established session. A status of idle, for example, indicates that the
router cannot even begin to initiate a session, likely because of no route to the peering address. BGP will retry
its connection every 30 seconds or so, making patience a virtue here. About a minute later, the status is again
displayed:

Code View:
lab@Yeast> show bgp summary

Groups: 1 Peers: 1 Down peers: 0

Table Tot Paths Act Paths Suppressed History Damp State Pending

inet.0 434 434 0 0 0 0

Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn State|# Active/

Received/Damped...

84.10.109.7 34 285 7 0 0 2:25

801/801/0 0/0/0

The output confirms BGP session establishment-the highlighted display indicates that a total of 801 routes
have been learned from the 84.10.109.7 peering, and that all of the received routes have been selected as
active. It also notes the total number of routes learned from this peer and the number of routes currently
damped, respectively. In this example, Botnet has advertised a total of 831 routes, all of which are currently
active at Yeast.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As of this writing, a full BGP feed is approximately 230,000 routes. Obviously, the BGP
table used in this lab is a bit smaller. The goal here is to have enough routes to simulate
a real BGP experience, without the hassle of obtaining a live feed.

You can view details for the peering session with a show bgp neighbor command. The display includes any

negotiated options, session hold time, supported NLRI queued messages, and so on:

Code View:
lab@Yeast> show bgp neighbor

Peer: 84.10.109.7+179 AS 34 Local: 84.10.109.8+2333 AS 1282

 Type: External State: Established Flags: <ImportEval Sync>

 Last State: OpenConfirm Last Event: RecvKeepAlive

 Last Error: None

 Options: <Preference PeerAS Refresh>

 Holdtime: 90 Preference: 170

 Number of flaps: 0

 Peer ID: 84.10.109.1 Local ID: 10.30.1.1 Active Holdtime: 90

 Keepalive Interval: 30 Peer index: 0

 Local Interface: fe-0/0/0.3233

 NLRI advertised by peer: inet-unicast

 NLRI for this session: inet-unicast

 Peer supports Refresh capability (2)

 Table inet.0 Bit: 10000

 RIB State: BGP restart is complete

 Send state: in sync

 Active prefixes: 801

 Received prefixes: 801

 Suppressed due to damping: 0

 Advertised prefixes: 0

 Last traffic (seconds): Received 8 Sent 8 Checked 8

 Input messages: Total 296 Updates 280 Refreshes 0 Octets 15175

 Output messages: Total 18 Updates 0 Refreshes 0 Octets 368

 Output Queue[0]: 0

Here the output shows that the EBGP session to Botnet is in the established state, that it supports IPv4 unicast
NLRI, that the session has negotiated the BGP refresh option, and that the hold time is 90 seconds, which leads
to a 30-second keepalive timer. The refresh option allows a BGP speaker to request that its peer resend
previously advertised routing information. This is useful when a change in import policy may result in
acceptance of a route that was previously denied. Without refresh, the BGP session would have to be bounced
to force the peer to resend routes. Recall that BGP uses TCP transport, so there is, in theory, no reason for a
BGP speaker to ever readvertise routing information that it has already sent.

The receipt of valid BGP routing is confirmed by displaying BGP routes in the route table:

Code View:
lab@Yeast> show route protocol bgp detail

inet.0: 818 destinations, 819 routes (818 active, 0 holddown, 0 hidden)

0.0.0.0/0 (2 entries, 1 announced)

 *BGP Preference: 170/-101

 Next-hop reference count: 1602

 Source: 84.10.109.7

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Next hop: 84.10.109.7 via fe-0/0/0.3233, selected

 State: <Active Ext>

 Local AS: 1282 Peer AS: 34

 Age: 2:26:23

 Task: BGP_34.84.10.109.7+179

 Announcement bits (2): 0-KRT 3-OSPFv2

 AS path: 34 I

 Localpref: 100

 Router ID: 84.10.109.1

6.1.0.0/16 (1 entry, 1 announced)

 *BGP Preference: 170/-101

 Next-hop reference count: 1602

 Source: 84.10.109.7

 Next hop: 84.10.109.7 via fe-0/0/0.3233, selected

 State: <Active Ext>

 Local AS: 1282 Peer AS: 34

 Age: 9:04

 Task: BGP_34.84.10.109.7+179

 Announcement bits (1): 0-KRT

 AS path: 34 666 420 11537 668 1455 I

 Localpref: 100

 Router ID: 84.10.109.1

. . .

The display confirms many active BGP routes at Yeast. The highlights call out key route attributes such as the

AS path, the origin of the route, the forwarding next hop, and local/remote ASNs. This example shows that a
default route is advertised, and the AS path, by virtue of the single entry for 34, confirms that this route
originates within AS 34. In contrast, the route to 6.1/16 indicates an origin in AS 1455, and subsequent
transversal of ASs 668, 11537, 420, 666, and 34 (Botnet), before arriving at Beer-Co. Note that these routes
have an assumed local preference of 100 as per BGP standards. A local preference value attribute is not
attached to any of these routes because this attribute is not supported on EBGP links.

The announcement bits for the 0/0 BGP route indicate that it is being redistributed into OSPF. Because only
active routes are subject to export policy, this implies that the BGP version of the default route must be
preferred over the generated one. This is easily confirmed:

lab@Yeast> show route 0.0.0.0/0

inet.0: 818 destinations, 801 routes (818 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

0.0.0.0/0 *[BGP/170] 00:26:28, localpref 100

 AS path: 34 I

 > to 84.10.109.7 via fe-0/0/0.3233

 [Aggregate/175] 16:56:59

 > via t1-0/0/2.0

The display shows that the BGP default is active with a preference of 170, and the highlights show that traffic
matching this default route will be forwarded over the high-speed BGP peering link. Should the BGP session
malfunction, Yeast will lose the BGP version of the default and fall back to the generated copy, which in turn

forwards traffic over the secondary T1 link.

To confirm what routes are being received, or sent, to a specific BGP peer, use the show route-advertising

protocol or show route receive-protocol command:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

lab@Yeast> show route receive-protocol bgp 84.10.109.7

inet.0: 818 destinations, 801 routes (818 active, 0 holddown, 0 hidden)

 Prefix Nexthop MED Lclpref AS path

* 0.0.0.0/0 84.10.109.7 34 I

* 129.1.0.0/16 84.10.109.7 34 11537 3112 3112 I

* 129.2.0.0/16 84.10.109.7 34 11537 10886 27 I

* 129.7.0.0/16 84.10.109.7 34 11537 4557 7276 I

* 129.7.0.0/17 84.10.109.7 34 11537 4557 7276 I

* 129.7.128.0/19 84.10.109.7 34 11537 4557 7276 I

* 129.7.160.0/19 84.10.109.7 34 11537 4557 7276 I

* 129.7.192.0/19 84.10.109.7 34 11537 4557 7276 I

* 129.7.224.0/19 84.10.109.7 34 11537 4557 7276 I

* 129.8.0.0/16 84.10.109.7 34 11537 2153 2152

11422 2150 I

---(more)---[abort]

lab@Yeast> show route advertising-protocol bgp 84.10.109.7

lab@Yeast>

The show route receive-protocol bgp 84.10.109.7 command confirms the receipt of prefixes from neighbor

84.10.109.7. You can add the detail or extensive switch to see additional information. In contrast, the show

route advertising-protocol bgp 84.10.109.7 command confirms that no routing information is being sent

back to Botnet. This is expected, given that recent JUNOS software releases no longer echo received BGP routes
back to their source, and because the default BGP export policy is to advertise active BGP routes. Here, all the
active BGP routes were learned from neighbor 84.10.109.7; hence, there is nothing for Yeast to advertise back.

Readers familiar with the IOS display format for BGP routes may appreciate the terse switch:

Code View:
lab@Yeast> show route protocol bgp terse

inet.0: 818 destinations, 801 routes (818 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

A Destination P Prf Metric 1 Metric 2 Next hop AS path

* 0.0.0.0/0 B 170 100 >84.10.109.7 34 I

* 129.1.0.0/16 B 170 100 >84.10.109.7 34 11537 3112 3112 I

* 129.2.0.0/16 B 170 100 >84.10.109.7 34 11537 10886 27 I

* 129.7.0.0/16 B 170 100 >84.10.109.7 34 11537 4557 7276 I

* 129.7.0.0/17 B 170 100 >84.10.109.7 34 11537 4557 7276 I

* 129.7.128.0/19 B 170 100 >84.10.109.7 34 11537 4557 7276 I

* 129.7.160.0/19 B 170 100 >84.10.109.7 34 11537 4557 7276 I

* 129.7.192.0/19 B 170 100 >84.10.109.7 34 11537 4557 7276 I

* 129.7.224.0/19 B 170 100 >84.10.109.7 34 11537 4557 7276 I

* 129.8.0.0/16 B 170 100 >84.10.109.7 34 11537 2153 2152 11422

2150 I

* 129.10.0.0/16 B 170 100 >84.10.109.7 34 11537 10578 156 I

* 129.11.0.0/16 B 170 100 >84.10.109.7 34 11537 20965 786 I

. . .

In the preceding display, the local preference is shown under the Metric 1 column. Before moving on, you gauge
the effects of running BGP by again analyzing resource utilization at Yeast:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

lab@Yeast> show task memory summary

Memory InUse: 3289 kB [2%] Max: 3383 kB [2%]

lab@Yeast> show chassis routing-engine

Routing Engine status:

 Temperature 56 degrees C / 132 degrees F

 CPU temperature 55 degrees C / 131 degrees F

 DRAM 256 MB

 Memory utilization 89 percent

 CPU utilization:

 User 0 percent

 Real-time threads 10 percent

 Kernel 1 percent

 Idle 89 percent

 Model RE-J.1

 Serial ID AA06500394

 Start time 2007-08-07 07:04:45 UTC

 Uptime 21 days, 18 hours, 44 minutes, 58 seconds

 Load averages: 1 minute 5 minute 15 minute

 0.01 0.04 0.04

The output confirms very little change to resource consumption. However, we must stress that you are dealing
with a very small number of peers (1) and a very limited set of routes (800 or so), and that these routes are
stable, resulting in very little ongoing BGP process churn.

5.5.4. Configure Initial BGP Policy

The initial BGP peering session is confirmed operational. To complete this task, you now create and apply both
BGP import and export policy. The former is to reject all received BGP routes except a default route that
originates in AS 34. The latter needs to advertise a single 10/8 aggregate to represent the internal connectivity
of Beer-Co. An import policy is created and displayed at Yeast:

[edit]

lab@Yeast# show policy-options policy-statement as_34_import

term 1 {

 from {

 protocol bgp;

 as-path 34_originate;

 route-filter 0.0.0.0/0 exact;

 }

 then accept;

}

term 2 {

 from protocol bgp;

 then reject;

}

[edit]

lab@Yeast# show policy-options as-path 34_originate

"^34$";

[edit]

lab@Yeast# show protocols bgp group as_34 import

import as_34_import;

The as_34_import policy matches on a specific route (0/0) and route source (BGP), and forces the associated

http://lib.ommolketab.ir
http://lib.ommolketab.ir

AS path to match the AS regular expressions defined in 34_originate. The AS path regular expression functions

to guarantee that only a default route that originates in AS 34 will be accepted-all routes originating within AS
34 will have an AS path list that starts and ends with 34; the associated regex uses the ^ and $, respectively, to

force AS 34 to be the first and last AS number in the list. The as_34_import policy is applied to the as_34 BGP

group at import, and the results are confirmed.

[edit]

lab@Yeast: run show route protocol bgp

inet.0: 818 destinations, 819 routes (18 active, 0 holddown, 800 hidden)

+ = Active Route, - = Last Active, * = Both

0.0.0.0/0 *[BGP/170] 02:34:36, localpref 100

 AS path: 34 I

 > to 84.10.109.7 via fe-0/0/0.3233

The output confirms that only the default route is accepted and installed into the route table, resulting in some
800 routes being hidden.

Generally speaking, the output of the show route receive-protocol command

displays routing information as received, before import policy is applied. The exception
to this rule is route filtering, which occurs before the show route receive-protocol

command output is compiled. This means that if your import policy is set to remove a
given community, you can expect to see the community (that is to be removed) in the
show route receive-protocol output, but not when the route is installed into the

route table, because your import policy will have taken effect and will have removed the
specified community. In contrast, if your import policy uses route-filter syntax to

reject routes, these routes will not be observed in either the route table or the output of
a show route receive-protocol command. This condition is demonstrated here, where

only the 0/0 default that is accepted by import policy route filtering is displayed:

lab@Yeast> show route receive-protocol bgp 84.10.109.7

inet.0: 818 destinations, 819 routes (18 active, 0 holddown, 800 hidden)

 Prefix Nexthop MED Lclpref AS path

* 0.0.0.0/0 84.10.109.7 34 I

Add the hidden keyword to display received routes that are hidden, perhaps due to

route filtering actions.

Your export policy requires that you define a 10/8 aggregate, and then advertise this aggregate into BGP. At
this time, it's assumed that Botnet is routing back into your AS using its static route that points to the slow-
speed T1 interface, making this a critical step for proper operation. In theory, it has configured its network to
prefer a BGP learned version of the 10/8 route, which results in use of the high-speed link for inbound traffic
once you advertise the route through BGP. Here are the aggregate route definition and BGP export policy:

[edit]

lab@Yeast# show routing-options aggregate

route 10.0.0.0/8;

[edit]

lab@Yeast# show policy-options policy-statement as_34_export

term 1 {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 from {

 protocol aggregate;

 route-filter 10.0.0.0/8 exact;

 }

 then accept;

}

[edit]

lab@Yeast# show protocols bgp group as_34 export

export as_34_export;

After committing the change, the aggregate route is confirmed active and advertised to Botnet via EBGP:

lab@Yeast> show route protocol aggregate

inet.0: 801 destinations, 451 routes (18 active, 0 holddown, 432 hidden)

+ = Active Route, - = Last Active, * = Both

0.0.0.0/0 [Aggregate/175] 17:57:54

 > via t1-0/0/2.0

10.0.0.0/8 *[Aggregate/130] 00:00:13

 Reject

lab@Yeast> show route advertising-protocol bgp 84.10.109.7

inet.0: 801 destinations, 451 routes (18 active, 0 holddown, 432 hidden)

 Prefix Nexthop MED Lclpref AS path

* 10.0.0.0/8 Self I

The 10/8 aggregate route is active, which is good given that only active routes can be redistributed through
policy. Note that unlike the generated route, the aggregate route has a nonforwarding next hop, which happens
to be the default reject-style next hop in this case. Traffic routed into Beer-Co should normally match a more
specific route (OSPF or direct) and be forwarded toward that destination. If not, the traffic is shunted to reject,
and an ICMP error message is generated reporting an unreachable destination. The show route advertising-

protocol command confirms that a single route, the 10/8 aggregate, is advertised to Botnet.

For final verification, the previous traceroute is repeated at PBR:

lab@PBR> traceroute 192.168.34.1 no-resolve

traceroute to 192.168.34.1 (192.168.34.1), 30 hops max, 40 byte packets

 1 10.20.129.1 53.267 ms 13.506 ms 10.634 ms

 2 10.20.131.1 9.955 ms 9.985 ms 9.996 ms

 3 10.10.8.2 9.977 ms 10.042 ms 10.034 ms

 4 84.10.109.7 15.349 ms !N 24.503 ms !N 19.968 ms !N

The traceroute again succeeds, but this time the final hop is 84.10.109.7; this confirms that the high-speed
primary interface is now used to forward traffic into AS 34. This completes the initial BGP peering scenario.

5.5.5. Use BGP for Asymmetric Load Balancing

While congratulating you on the fine work, the CIO of Beer-Co respectfully suggests that you find a way to use
the secondary link also. After all, 1.544 Mbps is nothing to sneeze at, and paying for a backup circuit that will
never see any use except during a primary outage can be painful.

The most direct solution to this problem is to bring up a second EBGP session to Botnet and simply enable BGP

http://lib.ommolketab.ir
http://lib.ommolketab.ir

multipath. The multipath option removes the tie-breakers from the active route decision process, thereby
allowing otherwise equal-cost BGP routes learned from multiple sources to be installed into the forwarding table.
Once multiple next hops are installed in the forwarding table, a specific forwarding next hop is selected by the
default JUNOS software per-prefix load-balancing algorithm. This process hashes against a packet's source and
destination addresses to deterministically map the prefix paring onto one of the available next hops. Per-prefix
mapping works best when the hash function is presented with a large number of prefixes, such as might occur
on an Internet peering exchange, and it serves to prevent packet reordering among pairs of communicating
nodes.

An enterprise network will normally want to alter the default behavior to evoke a "per-packet" load-balancing
algorithm. Per-packet is quoted here because its use is a misnomer that stems from the historic behavior of the
original Internet Processor ASIC. In reality, current Juniper Networks routers support per-prefix (default) and
per-flow load balancing. The latter involves hashing against various L3 and L4 headers, including portions of the
source address, destination address, transport protocol, incoming interface, and application ports. The effect is
that now individual flows are hashed to a specific next hop, resulting in a more even distribution across available
next hops, especially when routing between fewer source and destination pairs. With per-packet load balancing,
packets comprising a communication stream between two endpoints may be resequenced, but packets within
individual flows maintain correct sequencing.

Whether you opt for per-prefix or per-packet load balancing, the extreme asymmetry of the Botnet access links
presents a technical challenge. Either way, the prefixes/flows that are mapped to the T1 link will exhibit
degraded performance when compared to those flows that map to the FE access link, and worse yet, with heavy
traffic loads, any attempt at 50/50 load balancing is likely to result in total saturation of the T1 link and session
disruption stemming from packet loss.

Fortunately, the Juniper BGP implementation supports the notion of a bandwidth community. This extended
community encodes the bandwidth of a given next hop, and when combined with multipath, the load-balancing
algorithm will distribute flows across the set of next hops proportional to their relative bandwidths. Put another
way, if you have a 10 Mbps and a 1 Mbps next hop, on average nine flows will map to the high-speed next hop
for every one that uses the low speed.

As of this writing, use of BGP bandwidth community is supported only with per-packet
load balancing.

The current configuration task is divided onto two parts:

Configure a second EBGP peering session, enable multipath, and define an import policy to tag routes with
a bandwidth community that reflects link speed.

Enable per-packet (really per-flow) load balancing for optimal distribution of traffic.

You start with the definition of the second EBGP peering session at Yeast. Though not shown here, the

generated default route is removed from the configuration because it is no longer needed. Recall that you now
expect two default routes, both learned from BGP, with proportionate load balancing when both routes are
active:

 [edit]

lab@Yeast# show protocols bgp

group as_34 {

 type external;

 import as_34_import;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 export as_34_export;

 peer-as 34;

 neighbor 84.10.109.7;

 neighbor 84.10.113.1;

}

The new session shares the same group-level import and export policy, which results in accepting only a default
route and the advertisement of only the 10/8 aggregate. After a minute or so, you confirm successful
establishment of the second Botnet peering session:

Code View:
[edit]

lab@Yeast# run show bgp summary

Groups: 1 Peers: 2 Down peers: 0

Table Tot Paths Act Paths Suppressed History Damp State Pending

inet.0 1602 1 0 0 0 0

Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn State|#Active/Received/

Damped...

84.10.109.7 34 824 329 0 0 2:42:55 1/801/0

0/0/0

84.10.113.1 34 462 3 0 0 6 0/801/ 0

0/0/0

The display confirms establishment of the second peering session. Of special interest is the fact that 801 routes
have been learned over each session, and only one of these routes is active, for only one of the sessions. Recall
that the goal here is to receive an active default route from each peering. For additional details, we display the
default route:

Code View:
[edit]

lab@Yeast# run show route protocol bgp detail

inet.0: 818 destinations, 1619 routes (18 active, 0 holddown, 1600

hidden)

0.0.0.0/0 (2 entries, 1 announced)

 *BGP Preference: 170/-101

 Next-hop reference count: 802

 Source: 84.10.109.7

 Next hop: 84.10.109.7 via fe-0/0/0.3233, selected

 State: <Active Ext>

 Local AS: 1282 Peer AS: 34

 Age: 2:46:39

 Task: BGP_34.84.10.109.7+179

 Announcement bits (2): 0-KRT 3-OSPFv2

 AS path: 34 I

 Localpref: 100

 Router ID: 84.10.109.1

 BGP Preference: 170/-101

 Next-hop reference count: 801

 Source: 84.10.113.1

 Next hop: 84.10.113.1 via t1-0/0/2.0, selected

 State: <NotBest Ext>

 Inactive reason: Update source

 Local AS: 1282 Peer AS: 34

 Age: 3:50

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Task: BGP_34.84.10.113.1+179

 AS path: 34 I

 Localpref: 100

 Router ID: 84.10.109.1

The display shows that each BGP peer is advertising the 0/0 route, and it confirms that only one version of the
route is active. This active route is learned through peer 84.10.109.7, and as such the route shows a single
forwarding next hop of fe-0/0/0.3233. There is no hope of any load balancing until both of the next hops for

both BGP routes are installed into the forwarding table. The problem here is called out by the update source

inactive reason. According to documentation, this indicates that a route was not selected due to characteristics
associated with the source, which means either the RID or the BGP peering address. These last two steps in the
active route selection process exist to break ties, which is exactly what has happened here. Because both
peering sessions terminate on the same router (Hops), the RID is the same, and therefore the route learned

from the numerically lowest peering address is selected. To disable the tie-breaking rules and allow use of
multiple otherwise equal-cost BGP routes, you must enable multipath:

[edit]

lab@Yeast# set protocols bgp group as_34 multipath

[edit]

lab@Yeast# commit

commit complete

The change is confirmed by the presence of both the 84.10.109.7 and 84.10.113.1 BGP next hops in the show

route display:

Code View:
[edit]

lab@Yeast# run show route protocol bgp detail

inet.0: 818 destinations, 1619 routes (18 active, 0 holddown, 1600

hidden) 0.0.0.0/0 (2 entries, 1 announced)

 *BGP Preference: 170/-101

 Next-hop reference count: 1

 Source: 84.10.109.7

 Next hop: 84.10.109.7 via fe-0/0/0.3233, selected

 Next hop: 84.10.113.1 via t1-0/0/2.0

 State: <Active Ext>

 Local AS: 1282 Peer AS: 34

 Age: 2:54:43

 Task: BGP_34.84.10.109.7+179

 Announcement bits (2): 0-KRT 3-OSPFv2

 AS path: 34 I

 Localpref: 100

 Router ID: 84.10.109.1

 BGP Preference: 170/-101

 Next-hop reference count: 801

 Source: 84.10.113.1

 Next hop: 84.10.113.1 via t1-0/0/2.0, selected

 State: <NotBest Ext>

 Inactive reason: Update source

 Local AS: 1282 Peer AS: 34

 Age: 11:54

 Task: BGP_34.84.10.113.1+179

 AS path: 34 I

 Localpref: 100

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Router ID: 84.10.109.1

The display still shows that only one route is active, but without the tie-breakers in effect, the next hops
associated with both routes have been installed for use, thereby enabling load balancing. Your next goal is to
adjust the as_34_import policy to tag routes with a bandwidth community, based on the peering from where

they are learned. You start by defining the two extended bandwidth communities. The format of this community
is bandwidth:asn:bandwidth_value, where the bandwidth is entered in bytes per second. The actual values

entered are not as important as having the correct ratio because it is the ratio that actually determines the
percentage of flows/prefixes mapped to each next hop:

[edit policy-options]

lab@Yeast# show community bw_slow

members bandwidth:1287:193000;

[edit policy-options]

lab@Yeast# show community bw_fast

members bandwidth:1287:12500000;

The bw_slow and bw_fast communities are set to reflect the byte-per-second rates of a T1 and Fast Ethernet

interface, respectively. The ratio of the two is approximately .01544, meaning that for every 100 prefixes/flows,
you expect to see 1.5 of them mapped to the T1. In the Juniper implementation, the flow count is rounded up,
giving us an expected spread of 2 flows mapped to the T1 for every 98 mapped to the Fast Ethernet. The
existing as_34_import policy is rewritten, and the modified policy is displayed:

Code View:
[edit]

lab@Yeast# show policy-options policy-statement as_34_import

term slow_peer {

 from {

 protocol bgp;

 neighbor 84.10.113.1;

 as-path 34_originate;

 route-filter 0.0.0.0/0 exact;

 }

 then {

 community add bw_slow;

 accept;

 }

}

term fast_peer {

 from {

 protocol bgp;

 neighbor 84.10.109.7;

 as-path 34_originate;

 route-filter 0.0.0.0/0 exact;

 }

 then {

 community add bw_fast;

 accept;

 }

}

term reject-all {

 then reject;

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The new as_34_import policy makes use of a from neighbor match condition to tag the matching route with

the identified bandwidth community. In theory, this can also be done as part of an export policy within Botnet,
but this puts reliance on the administration of the remote AS, which may involve delays and the potential for
billing and mistakes. Expected operation is verified by once again displaying details about the active BGP route:

Code View:
[edit policy-options]

lab@Yeast# run show route protocol bgp detail

inet.0: 818 destinations, 1619 routes (18 active, 0 holddown, 1600

hidden) 0.0.0.0/0 (2 entries, 1 announced)

 *BGP Preference: 170/-101

 Next-hop reference count: 1

 Source: 84.10.109.7

 Next hop: 84.10.109.7 via fe-0/0/0.3233 balance 98%

 Next hop: 84.10.113.1 via t1-0/0/2.0 balance 2%, selected

 State: <Active Ext>

 Local AS: 1282 Peer AS: 34

 Age: 3:48:08

 Task: BGP_34.84.10.109.7+179

 Announcement bits (2): 0-KRT 3-OSPFv2

 AS path: 34 I

 Communities: bandwidth:1287:12500000

 Localpref: 100

 Router ID: 84.10.109.1

 BGP Preference: 170/-101

 Next-hop reference count: 801

 Source: 84.10.113.1

 Next hop: 84.10.113.1 via t1-0/0/2.0, selected

 State: <NotBest Ext>

 Inactive reason: Update source

 Local AS: 1282 Peer AS: 34

 Age: 1:05:19

 Task: BGP_34.84.10.113.1+179

 AS path: 34 I

 Communities: bandwidth:1287:193000

 Localpref: 100

 Router ID: 84.10.109.1

The highlights in the show route output confirm that balancing now occurs in proportion to link speed, as

required. To complete this task, a per-packet load-balancing policy must be placed into effect at Yeast. A policy

named lb_per_packet is created, and it is applied to the main routing instance's forwarding table:

[edit]

lab@Yeast# show policy-options policy-statement lb_per_packet

then {

 load-balance per-packet;

 accept;

}

[edit]

lab@Yeast# show routing-options forwarding-table

export lb_per_packet;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The lb_per_packet policy matches on all possible routes and effectively converts the system from per-prefix to

per-flow load balancing. The effect of your work is confirmed back on router PBR, where traceroutes are

performed. The test traffic is sourced from various IP addresses owned by PBR in an attempt to trigger the per-

flow hashing function to use both next hops. Note that by enabling per-flow load balancing, fewer bits are made
available for hashing against the source address/destination address pair. The result is that without a wide
degree of source address/destination address variance, there is a good chance that all test traffic will hash to
the same next hop. To accurately test Juniper per-prefix or per-flow load balancing, a large number of flows
should be generated, preferably from a traffic source. Put another way, as the number of flows/prefixes
increases, so too does the likelihood of observing ideal balancing among the set of available next hops. Bearing
this in mind, the bw_slow community is temporarily set to equal bw_fast so that we can expect a 50/50 load-

balancing split. This will increase the chances of observing load balancing at play with the limited number of
flows available in the lab setup.

lab@PBR> traceroute 192.168.34.1 no-resolve source 10.20.129.2

traceroute to 192.168.34.1 (192.168.34.1) from 10.20.129.2, 30 hops

max, 40 byte packets

 1 10.20.129.1 14.553 ms 9.782 ms 8.084 ms

 2 10.20.131.1 21.914 ms 9.935 ms 9.988 ms

 3 10.10.8.2 10.081 ms 19.865 ms 10.002 ms

 4 84.10.113.1 15.697 ms !N 14.286 ms !N 18.954 ms !N

The final hop of the traceroute to Brewer Inc.'s 192.168.34.1 route is the 84.10.113.1 address associated with
the low-speed Botnet peering link. In this example, test traffic is explicitly sourced from the 10.20.129.2
address on the PBR- Stout link, which happens to be the same IP address that the packet would normally take.

Next, a different flow is created by generating an ICMP echo packet from the same source address, but to a
different host address (.100), on the 192.168.34.0/24 subnet. The goal here is to try and trigger a different flow
hashing result by altering some of the bits used in the flow hashing algorithm. Here, we change both the
protocol (ICMP versus UDP), and some of the bits in the addresses's host ID.

lab@PBR> ping 192.168.34.100 rapid count 1 source 10.20.129.2

PING 192.168.34.100 (192.168.34.100): 56 data bytes

36 bytes from 84.10.109.7: Destination Net Unreachable

Vr HL TOS Len ID Flg off TTL Pro cks Src Dst

 4 5 00 0054 5e00 0 0000 3d 01 b186 10.20.129.2 192.168.34.100

.

--- 192.168.34.100 ping statistics ---

1 packets transmitted, 0 packets received, 100% packet loss

The destination unreachable error message generated by 84.10.109.7 proves that the ICMP test packet was
forwarded over the high-speed Botnet peering link. Satisfied that per-flow load balancing is working, you restore
the bw_slow community to its previous value and take a well-deserved break.

[edit]

lab@Yeast# rollback 1

load complete

[edit]

lab@Yeast# show | compare

[edit policy-options community bw_slow]

- members bandwidth:1287:12500000;

+ members bandwidth:1287:193000;

[edit]

lab@Yeast# commit

commit complete

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.5.6. Initial BGP Peering Summary

This section showed you an example of how to configure and verify basic EBGP peering using JUNOS software.
We also showed the use of routing policy to filter received routes and to control the routes that you advertise,
along with the redistribution of a BGP-learned default route into your IGP to provide external reachability for
non-BGP speakers within your AS. You also saw how to use a static route with an altered global preference (a
concept known as a floating static route in IOS speak) to back up a BGP peering, and how the BGP bandwidth
community is used to provide asymmetric load balancing based on link speed.

The next section explores typical enterprise applications of BGP routing policy, which in turn prepares you for
the increasingly complicated BGP deployment scenarios that follow later in this chapter. Now is a good time to
take a break, perhaps to think back over the points covered in this section or just to clear your mind for the
outbound and inbound policy discussions in the next section.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.6. Enterprise Routing Policy

You have now been exposed to various applications of JUNOS software routing policy, here and in earlier
chapters. We discussed the operational theory of routing policy in detail in Chapter 3. In summary, import
routing policy is responsible for placing routes into the route table, possibly with modified attributes, and export
policy is responsible for placing copies of routes into outgoing routing protocol updates, again possibly with
modified attributes. The complexity of an organization's policy is typically tied directly to the degree of its
interconnectivity requirements. An enterprise that is single-homed needs very little policy; in most cases, such
an attachment does not even warrant use of BGP!

This section focuses on applying JUNOS software routing policy to meet the needs of an enterprise that is dual-
homed to different providers.

5.6.1. Inbound and Outbound Routing Policies

In a majority of cases, a dual-homed enterprise network will have distinctly different inbound and outbound
policies. Your inbound policy is intended to control how traffic enters your AS from other networks, whereas
your outbound policy dictates how traffic leaves your AS to enter other networks. You use specific instances of
export and import policy to facilitate your organization's inbound and outbound policy goals.

Achieving your inbound policy goals can be difficult, or even impossible, given that you do not have direct
control over the outbound policies of the networks that you peer with. In the end, each network operator has
complete control of its local outbound policy, so at best your inbound policy can influence its policy decisions
only within the limits that are permitted by that network's outbound policy. In some cases, achieving your
inbound policy goals may require selecting ISPs that are willing to work with your needs-this is a political, not a
technical, issue. In contrast, you have complete control over your outbound policy. Simply put, it's your
network, and you can configure it to do whatever you want in this regard.

As with most network design considerations, each network must carefully weigh its policy desires against the
potential costs, measured in increased administrative/support burdens, potential economic impacts,
performance considerations, equipment capabilities, and so on. The network then must decide on a set of
policies that best balance all of the factors involved.

5.6.2. Common Policy Design Criteria

Although the specifics always vary, many common elements drive most policy decisions:

Topology-driven

A topology-driven policy is based on the physical connectivity of your network and is typically concerned
with locating the lowest-cost (lowest-metric) path for traffic. In many cases, a topology-driven policy will
use IGP metrics to locate the best egress point, and in turn will send the IGP metric as the MED in EBGP
updates. Recall that MED is like a true metric, in that lower values are preferred. If your peer honors
MEDs in their decision process, this should result in traffic entering your AS at the point that is metrically
closest to the actual destination. You can set the MED in BGP policy using the metric keyword. Support

for automatically tracking the IGP metric is also provided.

The topology-driven model is the easiest to implement because in most cases, you leave all attributes
unmodified and simply rely on the route selection algorithm to select the best route, which will normally
be the shortest path (the fewest number of ASs, best origin, lowest MED, and lowest IGP metric).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Primary/secondary

A primary/secondary policy is based on the preferential use of a primary access link. Motivations for a
primary/secondary model tend to be performance-driven, but can also factor economic, reliability, or
security concerns. The last factor, security, is often overlooked. Knowing that all your traffic leaves and
enters on the same set of links greatly simplifies deployment of stateful firewalls and NAT devices. This is
because state instantiated by the transmission of traffic is readily available to match against the return
traffic. Sending traffic out of one device, and having the response handled at a different access point by a
different device, makes stateful services quite complex.

In a strict primary/secondary model, no traffic should use the secondary links unless the primary link
becomes unavailable. In contrast, in a loose model, some traffic, perhaps based on topology
considerations, is allowed to use the secondary, even when the primary is operating. Your design should
also factor the desire to revert back to a primary after service is restored. A revertive design switches
back to the primary, but this behavior can cause issues when chronic problems plague the primary link.
This is because ongoing disruption occurs each time traffic is redirected to and from the bouncing primary
circuit. Here, a nonrevertive policy that promotes stability over other factors such as cost, or raw
bandwidth, would be preferred.

Using equal capacity links in conjunction with a strict primary/secondary model provides the highest
degree of redundancy because either link can handle the offered load with equal performance. With the
loose variation, usable bandwidth can be the sum of both link capacities; therefore, the failure of either
link reduces overall capacity and may impact performance. This is also true of a strict model that uses
asymmetric link speeds to save on bandwidth costs.

Load-sharing

A load-sharing policy attempts to maximize use of all available resources by spreading traffic over the set
of available access points. This is typically performed on a per-prefix basis, where some set of routes is
mapped to one link while another set is mapped to a different link. In a failure scenario, traffic from
affected links is switched to the next most preferred operational link.

5.6.2.1. A word on outbound/inbound versus export/import policy

Before moving on, it's worth noting that there is somewhat of a reverse relationship between your
inbound/outbound policy and the type of JUNOS software routing policy that is applied to your EBGP session.
For example, you will normally use export policy when you wish to instantiate an inbound policy to control how
other networks route traffic into your AS. Likewise, you normally use import policy to adjust attributes in
received routes that in turn affect your outbound policy-for example, setting local preference on routes as they
are received from an EBGP peer.

If that were not confusing enough, you will likely find that in many cases, you can achieve the same effect using
either an import or an export policy. For example, local preference can be set at reception from an EBGP peer
using an import policy or when sending the route to other IBGP speakers using an export policy. In fact, you
may use an import to set an attribute to some local value, and then use an export to send a modified value to
other peers. Wherever possible, you should take a consistent approach to help minimize support burdens and
overall network complexity.

5.6.2.2. Know your ISP's policy

Because your BGP speakers are expected to interact with those under the control of your ISP, it pays to be

http://lib.ommolketab.ir
http://lib.ommolketab.ir

familiar with your ISP's general policies. For example, many ISPs set route attributes within their network,
based on the receipt of certain communities attached by their customers. As another example, consider that
there is no point in advertising a prefix with a /32 network mask if your ISP's policy is not to accept any routes
with a prefix length longer than /28.

Most providers use local preference to prefer routes from their customers over those learned from their peers,
filter route updates based on prefix lengths, and filter updates received from their customers to ensure that
they are not acting as transit peers. Providers often post their policies on public web sites where the information
can be used to comparison-shop when seeking service.

5.6.3. Enterprise Policy Summary

This section broke down the seemingly daunting task of BGP and policy into the categories of inbound and
outbound policies, which helps to make things more manageable. In most cases, an enterprise will need to be
dual-homed to take full advantage of the power of BGP and JUNOS software routing policy. Remembering that
you use export policy to affect your inbound routing goals, and use import policy for your outbound goals, helps
to eliminate a lot of potential confusion.

By default, BGP settles on a topology-based model, but in many cases you will want to alter this behavior based
on your organization's needs and desires. You have direct control over your own network's output routing,
making that part of the equation straightforward. Effectively establishing a desired inbound policy means you
have managed to influence the outbound action of routers in a remote network, which are not under your direct
control. That is the mark of a true BGP policy guru.

In the next section, you will begin to apply complex enterprise routing policies, right after you multihome the
network by adding a new EBGP peering and deploy a route-reflected IBGP topology within Beer-Co.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.7. Multihome Beer-Co

Beer-Co's initial BGP peering with Botnet in AS 34 is operating successfully, and it's time to bring up a second
EBGP session to Borgnet in AS 420. When multihomed to dual providers, the true benefit of BGP and its policy
controls can be fully realized. Figure 5-9 provides the new BGP peering topology and illustrates how Borgnet
connects to service provider Darknet in AS 666, which is also peered with Botnet. It seems that things could get
quite interesting here.

Figure 5-9. Beer-Co goes multihomed with a connection to Borgnet

The figure shows key details of each AS. These include the EBGP peering router's name, its loopback address,
and the set of routes that originate within that AS and the customer routes associated with that network. The
figure calls out three particular customer prefixes within Borgnet, Darknet, and Botnet, which are assigned to
customers Cap-co Inc., Bottles Inc., and Brewer Inc., respectively. The 192.168.xx/24 prefixes associated with
these extranet partners demonstrate the effects of inbound and outbound policy actions in the following
sections.

In this scenario, Beer-Co's IGP consists of an area 0 backbone with two stub areas. Area border routers (ABRs)
PBR and Stout originate an OSPF default route into their respective stub areas.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The design goals for the new BGP peering arrangement are as follows:

Deploy new import policy at routers Yeast and PBR to accept only routes that originate in the peering AS,

including a default route generated by both providers.

Establish the new EBGP peering session between PBR and Wheat and advertise a 10/8 aggregate.

Configure loopback-based IBGP peering on a minimal set of routers as needed for loop-free transport
within Beer-Co.

Use route reflection to reduce the total number of IBGP sessions and ensure no single point of failure.

Establish an outbound policy that prefers each peer's customer routes, with all other destinations using
the Borgnet link as a revertive primary.

The result of the initial BGP multihoming task is a (default) topology-driven inbound policy and a hybrid
outbound policy that combines elements of the topology-driven and primary models. Route filtering and route
reflection are used to minimize BGP processing demand on routers with limited memory.

To help put these requirements into a functional perspective, the expected behavior is summarized as follows:

EBGP speakers accept only peer customer routes (customer routes).

When sending to customer routes, forward directly to the AS that owns that route when the related
peering session is operational.

When sending to other BGP destinations, all BGP speakers use the default route associated with the
primary peering to Borgnet.

Routers in stub areas use a default to reach the closest ABR, at which point BGP forwarding takes effect.

The failure of any access link should not sever communications; upon restoration, traffic should again
adhere to the loose primary outbound policy.

5.7.1. Implement Beer-Co's Outbound Policy

Configuration begins by creating the import policy at PBR that accepts only those routes that originate within

Borgnet. The intention is to protect the relatively small access router from the potentially harmful effects
associated with the receipt of a full BGP route table from Wheat. Similar policy actions will also be performed at

Yeast. The effect is a topology-driven outbound routing model for the routes owned by each peering AS, and

the use of the metrically closest default route for destinations that originate outside of these ASs; for example,
the 128/8 and 192.168.66/24 routes that are originated by the nonadjacent AS Darknet.

This type of BGP import policy normally uses an AS path regular expression because it greatly simplifies the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

matching criteria against the numerous route prefixes that could originate within a given AS. In this example,
the routes owned by Borgnet are shown as being in the range of 6–82, making a route filter feasible. However,
you also need to consider its internal/direct routes, in this case the 172.16.1.3 loopback address of Wheat.

When really tight control is needed, you can always combine the effects of route filters and AS path regular
expressions. The import policy created for PBR uses an AS path regular expression to only accept routes with

one or more instances of ASN 420. The regular expression is written in this manner to accommodate the
potential of AS path prepending within Borgnet. This way, even if there are 10 instances of ASN 420 in the
prefix, the route is still considered to have originated within that specific AS. PBR's import policy is displayed:

[edit policy-options]

lab@PBR# show

policy-statement as_420_import {

 term 1 {

 from {

 protocol bgp;

 as-path as_420_originate;

 }

 then accept;

 }

 term 2 {

 then reject;

 }

}

as-path as_420_originate "^420+$";

The first term of the as_420_import policy accepts routes from BGP with an AS path matching the named

expression as_420_originate. The second term defeats the default BGP import policy, which is to accept all

(sane) BGP routes. The AS path regular expression uses the ^ and $ anchors to force a match against the start

and end of the AS path attribute, respectively. The + multiplier indicates that the proceeding pattern (420) must

appear at least once, but can appear multiple times. The combined effect is a match against any AS path
attribute that begins and ends with the value 420, which may contain zero or more repetitions of that same
value. The as_34_import policy at Yeast is modified to accept all BGP routes originating in AS 34:

Code View:
[edit]

lab@Yeast# show policy-options policy-statement as_34_import

term slow_peer {

 from {

 protocol bgp;

 neighbor 84.10.113.1;

 as-path 34_originate;

 route-filter 0.0.0.0/0 exact;

 }

 then {

 community add bw_slow;

 accept;

 }

}

term fast_peer {

 from {

 protocol bgp;

 neighbor 84.10.109.7;

 as-path 34_originate;

 route-filter 0.0.0.0/0 exact;

 }

 then {

 community add bw_fast;

 accept;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

}

term reject-all {

 then reject;

}

The highlights call out sections of the exiting policy that are removed to meet the new route filtering criterion.
Now, rather than accepting only a default route, Yeast accepts all routes that originate in AS 34.

5.7.2. EBGP Peering to AS 420

With the import policy defined, you need a BGP stanza with which to apply it. The EBGP peering definition at PBR

is pretty straightforward:

[edit]

lab@PBR# show protocols bgp

group as_420 {

 type external;

 import as_420_import;

 neighbor 172.16.1.1 {

 peer-as 420;

 }

}

The newly created as_420_import policy has been applied as import. The commit failure offers a friendly

reminder that, for BGP to operate, a local ASN is required. This is quickly remedied:

[edit]

lab@PBR# commit

[edit protocols]

 'bgp'

 Error in neighbor 172.16.1.1 of group as_420:

must define local autonomous system when enabling BGP

error: configuration check-out failed

[edit]

lab@PBR# set routing-options autonomous-system 1282

[edit]

lab@PBR# commit

commit complete

BGP session status is verified with a show bgp summary command:

Code View:
[edit]

lab@PBR# run show bgp summary

Groups: 1 Peers: 1 Down peers: 0

Table Tot Paths Act Paths Suppressed History Damp State Pending

inet.0 806 123 0 0 0 0

Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn State|#Active/

Received/Damped...

172.16.1.1 420 356 257 0 0 2:06:57

http://lib.ommolketab.ir
http://lib.ommolketab.ir

123/806/00/0/0

The EBGP session to Borgnet is established, as confirmed by the x/x/x field that summarizes active routes,

received routes, and damped routes, respectively. This display also begins to validate the as_420_import

policy, in that only 123 of the 806 routes received are active. The presence of hidden routes, ostensibly due to
filtering, is confirmed:

Code View:
[edit]

lab@PBR# run show route hidden detail

inet.0: 825 destinations, 826 routes (143 active, 0 holddown, 682 hidden)

64.8.12.1/32 (1 entry, 0 announced)

 BGP /-101

 Next-hop reference count: 929

 Source: 172.16.1.1

 Next hop: 172.16.1.1 via fe-0/0/0.412, selected

 State: <Hidden Ext>

 Local AS: 1282 Peer AS: 420

 Age: 2:19:43

 Task: BGP_420.172.16.1.1+1530

 AS path: 420 666 I

 Localpref: 100

 Router ID: 172.16.1.3

128.3.0.0/16 (1 entry, 0 announced)

 BGP /-101

 Next-hop reference count: 929

 Source: 172.16.1.1

 Next hop: 17^C[abort]

---(more)---

. . .

The summary portion of the show route hidden detail command confirms both a large number of hidden

routes (682) and that the hidden route displayed has an AS path that does not indicate origin in AS 420. This
shows that the route is hidden due to your AS path-based import filtering. The CLI's AS path regular expression
filter is used for final confirmation:

[edit]

lab@PBR# run show route aspath-regex ^420+$ | match path

 AS path: 420 I

 AS path: 420 I

 AS path: 420 I

 AS path: 420 I

 AS path: 420 I

. . .

[edit]

lab@PBR# run show route aspath-regex ^420+$ | match path | count

Count: 124 lines

The regex-filtered show route display verifies that all matching routes have an AS path consisting of only AS

420. The CLI's count function is then used to confirm that PBR has received a total of 124 routes from Borgnet

http://lib.ommolketab.ir
http://lib.ommolketab.ir

that pass the as_420_import policy. One of these should be a default route that is used to reach BGP

destinations that do not originate in either AS 34 or AS 420:

[edit]

lab@PBR# run show route

inet.0: 825 destinations, 826 routes (143 active, 0 holddown, 682 hidden)

+ = Active Route, - = Last Active, * = Both

0.0.0.0/0 *[OSPF/150] 02:24:20, metric 0, tag 0

 > to 10.20.130.1 via fe-0/0/0.1241

 [BGP/170] 00:28:13, localpref 100

 AS path: 420 I

 > to 172.16.1.1 via fe-0/0/0.412

The show route display at PBR confirms the receipt of a BGP default route but shows a potential problem as

well; PBR also receives the default route redistributed into OSPF by Yeast, and it prefers the OSPF version due

to global preference (known as administrative distance in IOS land).

The goal of your hybrid topological/primary outbound routing policy is to have routers forward to peer customer
routes using a topology model that hands traffic directly to the AS that owns those routes, while a default route
is used to reach filtered BGP destinations over the primary Borgnet peering. To meet the requirements, this
default route should always direct traffic over the Borgnet link when it is operational. Therefore, in normal
operation, all routers must prefer the default route advertised by PBR over any copy advertised by Yeast.

In the current setup, a BGP learned default route from AS 34 is being redistributed into OSPF at router Yeast.

Recall that this was necessary because up until now, Yeast was the only BGP speaker in Beer-Co. Given that

you are now, or soon will be, deploying IBGP among a set of Beer-Co's internal routers, the need to redistribute
the default into OSPF can be revisited. The stub area routers already rely on an OSPF default generated by each
area's ABR, so this discussion centers on what is done for routers PBR, Bock, Stout, Porter, and Yeast. Figure

5-10 details the plan of action for IBGP deployment on Beer-Co's backbone.

Figure 5-10. Beer-Co IBGP deployment details

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 5-10 shows that all OSPF area 0 routers will be configured to run IBGP. Recall from an earlier discussion
that deciding which routers need to run IBGP is a function of whether your import policy accepts only a default,
and whether intermediate routers are in the forwarding path between EBGP speakers. Also recall that an EBGP
speaker should always be enabled for IBGP unless there is only one BGP speaker in your network. Because your
EBGP speakers are accepting only specific prefixes, IBGP should be enabled on any router that can forward
traffic between the speakers. In this example, that means Stout, Bock, and Porter must support IBGP. Because

the backbone routers will run BGP, they can learn the default route through BGP; this means that redistribution
of the BGP default into OSPF is no longer necessary. With this understanding, the ospf_default export policy is

removed at Yeast.

[edit]

lab@Yeast# delete policy-options policy-statement ospf_default

[edit]

lab@Yeast# delete protocols ospf export

The effect of this change is confirmed at PBR, where now only the BGP version of the default route is present

and is therefore made active:

[edit]

lab@PBR# run show route

inet.0: 827 destinations, 827 routes (145 active, 0 holddown, 682 hidden)

+ = Active Route, - = Last Active, * = Both

http://lib.ommolketab.ir
http://lib.ommolketab.ir

0.0.0.0/0 *[BGP/170] 17:26:08, localpref 100

 AS path: 420 I

 > to 172.16.1.1 via fe-0/0/0.412

5.7.3. Export Beer-Co Aggregate to Borgnet

The requirements state that PBR should advertise a single 10/8 aggregate to its EBGP peers representing Beer-

Co's internal connectivity. The same approach used at Yeast is brought to bear here. Specifically, an aggregate

route is defined and policy is created to export it to Wheat in AS 420:

[edit]

lab@PBR# show routing-options aggregate

route 10.0.0.0/8;

lab@PBR# show policy-options policy-statement as_420_export

term 1 {

 from {

 protocol aggregate;

 route-filter 10.0.0.0/8 exact;

 }

 then accept;

}

[edit]

lab@PBR# show protocols bgp group as_420 export

export as_420_export;

Validation of the as_420_export policy is straightforward:

[edit]

lab@PBR# run show route advertising-protocol bgp 172.16.1.1

inet.0: 827 destinations, 827 routes (145 active, 0 holddown, 682 hidden)

 Prefix Nexthop MED Lclpref AS path

* 10.0.0.0/8 Self I

Although not shown, a similar state of EBGP learned and advertised routes is also confirmed to exist at router
Yeast, except that is has learned the 129–133 and 192.168.34/24 customer routes from AS 34. This completes

the EBGP peering and initial import policy phases of the BGP multihoming scenario. It is time to add IBGP to the
network.

5.7.3.1. Monitor system load

Before adding EBGP to Yeast, system resources were analyzed using the show chassis routing-engine and

show task memory commands. Now that EBGP has been added, it is a good idea to reexamine resource usage.

If the router is having a hard time maintaining its current EBGP load for whatever reason, obviously the addition
of IBGP sessions will not help matters. The hidden set task accounting command is used to get a better feel

for how much burden BGP itself is adding to the router.

Hidden commands are hidden because Juniper Networks support engineers feel
inappropriate use can cause operational problems. As a general rule, you should never
issue hidden commands on a production network router unless a support engineer has
instructed you to do so.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This command displays the resource consumption of the various components of the routing daemon (rpd) and

is hidden because it requires the router's resources to run, which could make a bad situation worse. Because
there is no reason to believe that any of Beer-Co's routers are actually running short on resources, task
accounting is enabled (note that there is no CLI auto-completion, hence the term hidden). After a few moments,
the results are displayed, and task accounting is turned back off. Task accounting should be enabled only when
needed, and then only long enough to get the information desired. Also note that set task accounting on is

an operational mode command:

lab@PBR> set task accounting on

Task accounting enabled.

lab@PBR>

After a few moments, the results are displayed:

lab@PBR> show task accounting

Task accounting is enabled.

Task Started User Time System Time Longest Run

Scheduler 425 0.004 0.007 0.000

LMP Client 75 0.001 0.002 0.000

Memory 6 0.000 0.000 0.000

OSPFv2 I/O./var/run/ppmd_ 120 0.001 0.002 0.000

BGP RT Background 32 0.000 0.000 0.000

OSPFv2 100 0.000 0.001 0.000

BFD I/O./var/run/bfdd_con 29 0.000 0.000 0.000

BGP_420.172.16.1.1+1530 38 0.000 0.001 0.000

KRT 12 0.000 0.000 0.000

Redirect 2 0.000 0.000 0.000

MGMT_Listen./var/run/rpd_ 2 0.000 0.000 0.000

SNMP Subagent./var/run/sn 3 0.000 0.000 0.000

The output indicates that the EBGP peering at PBR is not consuming appreciable system resources. Note that

instability and resulting route flaps (repeated route withdrawals and readvertisement) could change this
situation. BGP route damping is used to buffer the effects of flapping routes when needed. In operation, once an
unstable prefix is damped, subsequent updates/withdrawals are ignored for a specified period to preserve the
local router's control plane resources.

Task accounting is again disabled to prevent unnecessary resource usage:

lab@PBR> set task accounting off

Task accounting disabled.

5.7.4. IBGP Peering Within AS 1282

Referring back to Figure 5-10 and the scenario's design requirements, it's obvious that you need to configure
IBGP on the backbone routers. Route reflection is used to minimize the total number of IBGP sessions required.
Dual route reflectors are deployed for redundancy, in this case using the same cluster ID. The use of loopback-
based IBGP peering means that the potential for session disruption to one reflector, but not the other, is
virtually nonexistent, making the lack of cluster 1.2.8.2 updates over the route reflector-route reflector IBGP
session a nonissue. Using the same cluster ID on both reflectors reduces the BGP routing information base (RIB)
size on the reflectors because they filter updates received from each other that contain the shared cluster ID.
Note that the two route reflectors peer to each other as nonclients. The same cluster ID value is configured on
both reflectors. In this example, the cluster ID is based on Beer-Co's ASN 1282.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Configuration of route reflection begins with creation of the route reflector-route reflector IBGP peering session
on Porter:

[edit]

lab@Porter# set routing-options autonomous-system 1282

[edit]

lab@Porter# edit protocols bgp group 1282_rr

[edit protocols bgp group 1282_rr]

lab@Porter# set type internal neighbor 10.10.12.3

[edit protocols bgp group 1282_rr]

lab@Porter# set local-address 10.20.12.2

[edit protocols bgp group 1282_rr]

lab@Porter# top show routing-options

autonomous-system 1282;

[edit protocols bgp group 1282_rr]

lab@Porter# show

type internal;

local-address 10.20.12.2;

neighbor 10.10.12.3;

With definition of the local system's ASN under the routing-options stanza complete, you create a BGP group

called 1282_rr; this group is designated as an internal group, making the configuration of a peer-as

unnecessary. The highlights show how a loopback-based peering session is defined through specification of the
neighbor's loopback address in conjunction with a local-address statement representing the local loopback

address. The use of the local-address statement is crucial for proper loopback peering. Omitting the local-

address, which is known as update-source in IOS, results in a session that is sourced from whatever interface

the session is routed over. Because the remote router is configured to peer with a loopback address, the
incoming session, which is now sourced from a physical interface's IP, appears unexpected, and peering is
refused. Generally speaking, you can omit the local-address from one end, as both ends try to form a

connection by default, but best practices for loopback peering call for both ends to be configured symmetrically.

A similar configuration is added to Bock:

[edit protocols bgp group 1282_rr]

lab@Bock# show

type internal;

local-address 10.10.12.3;

neighbor 10.10.12.2;

After a minute or two, the reflector-to-reflector IBGP session status is verified:

Code View:
[edit]

lab@Porter# run show bgp summary

Groups: 1 Peers: 1 Down peers: 1

Table Tot Paths Act Paths Suppressed History Damp State Pending

inet.0 0 0 0 0 0 0

Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn State|#Active/

Received/Damped...

10.10.12.3 1282 0 0 0 0 4:35 Idle

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Things do not look good at Porter. The Idle state implies that the BGP session cannot even be routed, let

alone established. A glance at Bock shows an Active state, meaning that the router is at least able to route its

TCP session toward its peer and is therefore actively trying to establish a TCP connection:

Code View:
[edit protocols bgp group 1282_rr]

lab@Bock# run show bgp summary

Groups: 1 Peers: 1 Down peers: 1

Table Tot Paths Act Paths Suppressed History Damp State Pending

inet.0 0 0 0 0 0 0

Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn State|#Active/

Received/Damped...

10.10.12.2 1282 0 8 0 0 2:33 Active

5.7.4.1. Troubleshoot an IBGP peering problem

Attention is focused at Porter because its BGP session status is the lesser/worse of the two. Because loopback-

based peering requires an IGP to resolve the forwarding next hop used to reach the session's target loopback
address, it's reasonable to begin fault isolation with the IGP infrastructure. The first step is to confirm whether
Porter has a route to Bock's loopback address:

[edit]

lab@Porter# run show route 10.10.12.3

inet.0: 20 destinations, 21 routes (20 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

10.10.12.3/32 *[OSPF/10] 02:24:59, metric 3

 > to 10.20.131.2 via fe-0/0/1.1331

The output confirms that Porter has an OSPF learned route to Bock's loopback address. A traceroute is

performed between the IBGP peering addresses. This is achieved by sourcing the traceroute from Porter's

loopback address, as highlighted:

[edit]

lab@Porter# run traceroute 10.10.12.3 source 10.10.12.2

traceroute to 10.10.12.3 (10.10.12.3) from 10.10.12.2, 30 hops max,

40 byte packets

 1 10.20.131.2 (10.20.131.2) 12.790 ms 14.714 ms 5.128 ms

 2 10.20.129.2 (10.20.129.2) 24.976 ms 9.342 ms 9.845 ms

 3 10.10.12.3 (10.10.12.3) 10.103 ms 27.564 ms 31.800 ms

The traceroute succeeds, and in so doing vindicates the IGP as the source of the IBGP peering problem. From a
loopback-based IBGP perspective, all that is required of the IGP is a route between loopback addresses, and
clearly that part is working here. The next step is to add BGP protocol tracing to see whether that sheds any
light. Tracing is added to Porter, and the trace file is monitored in real time using the monitor start

command:

[edit protocols bgp]

lab@Porter# show traceoptions

file bgp_trace;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

flag open detail;

[edit protocols bgp]

lab@Porter# commit

commit complete

[edit protocols bgp]

lab@Porter# run monitor start bgp_trace

BGP trace output is observed after a minute or so; use the clear bgp neighbor <peer address> command to

help expedite activity when you are impatient:

Code View:
*** bgp_trace ***

Sep 1 01:49:02.088247

Sep 1 01:49:02.088247 BGP RECV 10.10.12.3+1601 -> 10.10.12.2+179

Sep 1 01:49:02.088335 BGP RECV message type 1 (Open) length 45

Sep 1 01:49:02.088423 BGP RECV version 4 as 1282 holdtime 90 id

10.10.12.3 parmlen 16

Sep 1 01:49:02.088447 BGP RECV MP capability AFI=1, SAFI=1

Sep 1 01:49:02.088460 BGP RECV Refresh capability, code=128

Sep 1 01:49:02.088469 BGP RECV Refresh capability, code=2

Sep 1 01:49:02.088508

Sep 1 01:49:02.088508 BGP SEND 10.10.12.2+179 -> 10.10.12.3+1601

Sep 1 01:49:02.088537 BGP SEND message type 1 (Open) length 29

Sep 1 01:49:02.088552 BGP SEND version 4 as 1282 holdtime 90 id

10.10.12.2 parmlen 0

Sep 1 01:49:02.088566

Sep 1 01:49:02.088566 BGP SEND 10.10.12.2+179 -> 10.10.12.3+1601

Sep 1 01:49:02.088583 BGP SEND message type 3 (Notification) length 21

Sep 1 01:49:02.088689 BGP SEND Notification code 2 (Open Message

Error) subcode 5 (authentication failure)

Sep 1 01:49:02.089581 bgp_pp_recv: NOTIFICATION sent to 10.10.12.3+1601

proto): code 2 (Opelist

monitor start "bgp_trace" (Last changed Sep 1 01:49:02)

(Message Error) subcode 5 (authentication failure), Reason: no group

for 10.10.12.3+1601 (proto) from AS 1282 found (peer idled), dropping

him

The highlights call out key aspects of the trace. Things begin when Porter receives a BGP session open from

Bock. Note that this session is correctly sourced between the loopback addresses associated with routers Bock

and Porter. Porter responds with a notification message that reports an authentication failure. In the BGP

context, this type of message means that an unknown peer has tried to establish a peering session. BGP
normally communicates only with explicitly configured peers (unless you add the allow <prefix> keyword). The

last highlight is telling-the local system reports that this peer does not belong to any configured groups. The
lack of Porter-initiated BGP session requests is expected here; recall that its connection is in the idle state,

which means that it cannot begin to form a session, so there would be nothing to trace.

The IBGP configuration is examined with extra scrutiny, because you are sure that Porter has peer 10.10.12.3

configured in the 1282_rr group:

[edit protocols bgp]

lab@Porter#

*** monitor and syslog output disabled, press ESC-Q to enable ***

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[edit protocols bgp]

lab@Porter# show

traceoptions {

 file bgp_trace;

 flag open detail;

}

group 1282_rr {

 type internal;

 local-address 10.20.12.2;

 neighbor 10.10.12.3;

}

The IBGP configuration problem at Porter jumps out and slaps you in the head, emitting a d'oh-like sound that

echoes between your ears. The local-address statement incorrectly specifies a nonexistent address. This

accounts for the local state of idle because the router cannot create a packet with a spoofed address! This
effectively puts the 1282_rr group into an idle state, which in turn leads to the authentication failure for the

session initiated by Bock. The tracing configuration is removed, the mistake is corrected, and session status is

confirmed to be operational a short time later:

Code View:
[edit protocols bgp]

lab@Porter# delete traceoptions

[edit protocols bgp]

lab@Porter# set group 1282_rr local-address 10.10.12.2

[edit protocols bgp]

lab@Porter# run show bgp summary

Groups: 1 Peers: 1 Down peers: 0

Table Tot Paths Act Paths Suppressed History Damp State Pending

inet.0 0 0 0 0 0 0

Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn State|#Active/

Received/Damped...

10.10.12.3 1282 5 6 0 0 1:52 0/0/0

0/0/0

5.7.4.2. Configure route reflection

The configuration for cluster 1.2.8.2 is now added to each reflector. Here is Bock's 1282_clients group:

[edit protocols bgp group 1282_clients]

lab@Bock# show

type internal;

local-address 10.10.12.3;

##

Warning: requires 'bgp-reflection' license

##

cluster 1.2.8.2;

neighbor 10.20.128.3;

neighbor 10.20.128.4;

neighbor 10.30.1.1

The 1282_rr_clients group is similar to the previously created 1282_rr group, except for the inclusion of a

cluster ID, which makes the local router a route reflector for all peers in that group. All three client loopback

http://lib.ommolketab.ir
http://lib.ommolketab.ir

addresses are configured, making them clients for cluster 1.2.8.2. The nag warning in the display reminds you
that, for the J-series, BGP route reflection is considered to be a value-added service that requires separate
licensing. The J-series soft license model means you can expect the feature to work properly, even when
unlicensed, but you can also expect a lack of Juniper Networks support and ongoing nags at each commit. You
normally obtain feature licenses from the distributor that sold you the router. You make a note to get a license,
and for now move on with configuration. A similar configuration is added to Porter.

A note on next-hop self and route reflectors is in order here. It is common to have an

IBGP export policy on EBGP speakers that sets the advertised next hop to the IBGP
speaker's peering address to eliminate issues with other routes not being able to resolve
the EBGP next hop originally advertised by the remote AS. Applying such a policy for
routes that are reflected among clients can easily result in suboptimal forwarding, as
traffic will be forced to transit the reflector. In most cases, you want the reflection
topology to be independent of the forwarding topology, and leaving the next hop
unchanged on reflected routes achieves this goal.

IBGP configuration at routers PBR, Stout, and Yeast is similar. Each router gets an IBGP group that defines

loopback peering to each reflector. The use of redundant route refection doubles the total number of IBGP
sessions needed for this network, bringing the total to 13. This is still far fewer than the 20 sessions needed to
form a full mesh among five routers if reflection were not used. Here is the configuration of client Stout:

[edit protocols bgp group 1282_clients]

lab@stout# top show routing-options

autonomous-system 1282;

[edit protocols bgp group 1282_clients]

lab@stout# show

type internal;

local-address 10.20.128.4;

neighbor 10.10.12.3;

neighbor 10.10.12.2;

After the new 1282_clients peer group is added to client routers PBR, Stout, and Yeast, IBGP session status is

confirmed at client Stout:

Code View:
[edit protocols bgp group 1282_clients]

lab@stout# run show bgp summary

Groups: 1 Peers: 2 Down peers: 0

Table Tot Paths Act Paths Suppressed History Damp State Pending

inet.0 0 0 0 0 0 0

Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn State|#Active/

Received/Damped...

10.10.12.2 1282 13 14 0 0 6:19 0/0/0 0/0/0

10.10.12.3 1282 20 22 0 0 9:57 0/0/0 0/0/0

[edit protocols bgp group 1282_clients]

lab@stout# run show route protocol bgp

inet.0: 20 destinations, 20 routes (20 active, 0 holddown, 0 hidden)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The output is a bit of a mixed bag of results. On the one hand, both IBGP sessions are established to the
reflectors; on the other hand, no routes are being learned over either session. Oddly, a show route

advertising-protocol bgp command at PBR confirms that it is readvertising its EBGP learned routes to

reflector Bock:

[edit protocols bgp group 1282_clients]

lab@PBR# run show route advertising-protocol bgp 10.10.12.2

inet.0: 827 destinations, 827 routes (145 active, 0 holddown, 682 hidden)

 Prefix Nexthop MED Lclpref AS path

* 0.0.0.0/0 172.16.1.1 100 420 I

* 6.1.0.0/16 172.16.1.1 100 420 I

* 6.2.0.0/22 172.16.1.1 100 420 I

. . . .

If PBR is advertising routes to the reflector, why are these routes not being reflected to the cluster's clients?

5.7.4.3. Troubleshoot BGP next hop reachability

Attention shifts to the reflectors, given that the missing routes were last observed being sent to them, while
nothing is seen coming back from them. The show route receive-protocol bgp command output on reflector

Bock implies that no routes are being received, which is not possible, given that PBR's output shows it

advertised routes to Bock, and the underlying TCP transport guarantees delivery!

[edit protocols bgp group 1282_clients]

lab@Bock# run show route receive-protocol bgp 10.20.128.3

inet.0: 825 destinations, 950 routes (19 active, 0 holddown, 930 hidden)

The presence of hidden routes is noted, so you investigate by adding the hidden switch:

[edit protocols bgp group 1282_clients]

lab@Bock# run show route receive-protocol bgp 10.20.128.3 hidden

inet.0: 825 destinations, 950 routes (19 active, 0 holddown, 930 hidden)

 Prefix Nexthop MED Lclpref AS path

 0.0.0.0/0 172.16.1.1 100 420 I

6.1.0.0/16 172.16.1.1 100 420 I

. . .

The output confirms that the BGP routes advertised by PBR are in fact hidden at Bock. This explains the lack of

reflection to other clients, because active routes only are subject to advertisement. The extensive switch is

added to get as much detail as possible, but the output does not contain any additional information:

[edit protocols bgp group 1282_clients]

lab@Bock# ...protocol bgp 10.20.128.3 hidden extensive

inet.0: 825 destinations, 950 routes (19 active, 0 holddown, 930 hidden)

 0.0.0.0/0 (2 entries, 0 announced)

 Nexthop: 172.16.1.1

 Localpref: 100

 AS path: 420 I

. . .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The limited set of information displayed does include the route's associated BGP next hop, which here
represents the address assigned to Wheat for use on its EBGP peering to PBR. Recalling that the BGP route

selection process begins with a decision as to whether the next hop is reachable, you display the route to
172.16.1.1 at Bock:

[edit protocols bgp group 1282_clients]

lab@Bock# run show route 172.16.1.1

The output, or more correctly the lack thereof, confirms that the issue is one of BGP next hop reachability. The
show route resolution unresolved detail command is used to confirm this fact:

[edit protocols bgp group 1282_clients]

lab@Bock# run show route resolution unresolved detail

Tree Index 1

133.3.0.0/16

 Protocol Nexthop: 84.10.109.7

 Indirect nexthop: 0 -

132.252.0.0/16

 Protocol Nexthop: 84.10.109.7

 Indirect nexthop: 0 -

. . . .

The display confirms that route reflector Bock is unable to resolve the EBGP next hop attached to the routes it

learns from Yeast. There are several common solutions to this classic problem. Recall that by default, the BGP

next hop is updated only on EBGP links. You could alter this behavior with a next-hop self policy on the EBGP

speakers, which is then applied as an IBGP export policy to update the next hop of each route as it is
readvertised to other IBGP speakers.

Never apply a next-hop self policy as import for an EBGP session because the

resulting routes appear to be looped and are hidden.

Another way to fix the unreachable next hop is to advertise the EBGP peering subnet into your IGP. You should
do this by running a passive IGP instance on your EBGP peering links. The passive mode guarantees that an
adjacency cannot form to the remote AS, which could be very, very bad (IGPs lack policy controls for
interdomain routing, and combining two large IGPs into a single, larger one may push routers beyond their
limits).

An IBGP export to affect next-hop self behavior solves the problem. The changes made to PBR's configuration

are also placed into effect at Yeast:

[edit]

lab@PBR# show policy-options policy-statement next_hop_self

term 1 {

 from protocol bgp;

 then {

 next-hop self;

 }

}

[edit]

lab@PBR# show protocols bgp group 1282_clients export

export next_hop_self;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The BGP summary display back at Stout confirms that route reflection is working:

Code View:
[edit protocols bgp group 1282_clients]

lab@stout# run show bgp summary

Groups: 1 Peers: 2 Down peers: 0

Table Tot Paths Act Paths Suppressed History Damp State Pending

inet.0 1612 806 0 0 0 0

Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn State|#Active/

Received/Damped...

10.10.12.2 1282 163 84 0 0 41:18 806/806/0

0/0/0

10.10.12.3 1282 259 92 0 0 44:56 0/806/0

0/0/0

The highlights show that Stout is receiving the same number of BGP routes from both reflectors, which is

expected. Recall that BGP tie-breaking rules prefer routes learned from the router with the lowest RID, which is
Porter in this case. You could enable multipath for IBGP to install both copies of the routes into the forwarding

table. However, in this example, it does not buy anything, given that both copies point to the same forwarding
next hop address. We will rely on the IGP to perform load balancing if there are multiple equal cost paths.
Details for the customer route to Brewer Inc. are displayed to confirm various attributes for the route, including
why the copy learned from Porter is preferred:

Code View:
[edit protocols bgp group 1282_clients]

lab@stout# run show route 192.168.34.0 detail

inet.0: 826 destinations, 1632 routes (826 active, 0 holddown, 0 hidden)

192.168.34.0/24 (2 entries, 1 announced)

 *BGP Preference: 170/-121

 Next-hop reference count: 2732

 Source: 10.10.12.2

 Next hop: 10.20.131.1 via fe-0/0/1.1331, selected

 Protocol next hop: 10.30.1.1

 Indirect next hop: 8791128 262144

 State: <Active Int Ext>

 Local AS: 1282 Peer AS: 1282

 Age: 30 Metric2: 2

 Task: BGP_1282.10.10.12.2+179

 Announcement bits (2): 0-KRT 4-Resolve tree 1

 AS path: 34 I (Originator) Cluster list: 1.2.8.2

 AS path: Originator ID: 10.30.1.1

 Communities: bandwidth:1287:12500000

 Localpref: 120

 Router ID: 10.10.12.2

 BGP Preference: 170/-121

 Next-hop reference count: 2732

 Source: 10.10.12.3

 Next hop: 10.20.131.1 via fe-0/0/1.1331, selected

 Protocol next hop: 10.30.1.1

 Indirect next hop: 8791128 262144

 State: <NotBest Int Ext>

 Inactive reason: Router ID

 Local AS: 1282 Peer AS: 1282

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Age: 4:29 Metric2: 2

 Task: BGP_1282.10.10.12.3+179

 AS path: 34 I (Originator) Cluster list: 1.2.8.2

 AS path: Originator ID: 10.30.1.1

 Communities: bandwidth:1287:12500000

 Localpref: 120

 Router ID: 10.10.12.3

5.7.5. Confirm Outbound Policy Operation

The EBGP and IBGP peering is established within your network, and route reflection is confirmed operational.
The verification of your output policy is performed at IBGP speaker Stout. Recall that Ale and Lager use the

OSPF default to forward packets to their respective ABRs, which in turn now have BGP routing state and are
expected to make the correct outbound forwarding decision.

Things start with traceroutes to customer networks in peering ASs Borgnet and Botnet:

lab@stout> traceroute 192.168.42.1

traceroute to 192.168.42.1 (192.168.42.1), 30 hops max, 40 byte packets

 1 10.20.129.2 (10.20.129.2) 6.360 ms 59.843 ms 15.233 ms

 2 172.16.1.1 (172.16.1.1) 10.191 ms !N 8.985 ms !N 10.114 ms !N

lab@stout> traceroute 192.168.34.1

traceroute to 192.168.34.1 (192.168.34.1), 30 hops max, 40 byte packets

 1 10.20.131.1 (10.20.131.1) 40.976 ms 34.719 ms 2.141 ms

 2 10.10.8.2 (10.10.8.2) 10.009 ms 18.695 ms 8.191 ms

 3 84.10.109.7 (84.10.109.7) 32.183 ms !N 19.530 ms !N 19.790 ms !N

The results match the topological aspects of Beer-Co's outbound policy- Stout is using the specific routes it has

learned from the EBGP peering routers to forward directly to the peer AS that owns the customer route. The
point being stressed here is that this aspect of outbound policy is a side effect of the route filtering performed at
the EBGP-speaking routers. Yeast, for example, filters the copy of Cap-Co's 192.168.42/24 route when it is

readvertised from Botnet because that route did not originate within AS 34. This means that although there are
two copies of customer route 192.168.42/24, both copies identify the same BGP next hop, which is PBR in this

example. There are two copies of this route because of the redundant route reflector design. Refer back to the
previous show route display for full details. The following (filtered) display calls out that both copies of the

192.168.42/24 route point to the same BGP egress point, despite being learned from two different reflectors:

lab@stout> show route 192.168.42.0 detail | match next

 Next-hop reference count: 496

 Next hop: 10.20.129.2 via fe-0/0/0.3141, selected

 Protocol next hop: 10.20.128.3

 Indirect next hop: 8791000 262142

 Next-hop reference count: 496

 Next hop: 10.20.129.2 via fe-0/0/0.3141, selected

 Protocol next hop: 10.20.128.3

 Indirect next hop: 8791000 262142

Things are not so perfect when it comes to destinations that are filtered by both EBGP speakers-for example,
the 192.168.66/24 Bottle Inc. route. Because the BGP speakers are relying on a learned default route, which
has equal specificity for all such filtered destinations, special steps are required to meet the stated outbound
policy to avoid a tie-breaker situation between the otherwise equal-cost versions of the default route. Recall
that in this example, all IBGP speakers should prefer the default route learned through PBR and use the one

learned from Yeast only when the PBR session is disrupted.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The route to Bottle Inc. is shown at Stout:

Code View:
lab@stout> show route 192.168.66.0 detail

inet.0: 577 destinations, 1134 routes (577 active, 0 holddown, 0 hidden)

0.0.0.0/0 (2 entries, 1 announced)

 *BGP Preference: 170/-101

 Next-hop reference count: 499

 Source: 10.10.12.3

 Next hop: 10.20.129.2 via fe-0/0/0.3141, selected

 Protocol next hop: 10.20.128.3

 Indirect next hop: 8791000 262142

 State: <Active Int Ext>

 Local AS: 1282 Peer AS: 1282

 Age: 1:15 Metric2: 1

 Task: BGP_1282.10.10.12.3+179

 Announcement bits (2): 0-KRT 4-Resolve tree 1

 AS path: 420 I (Originator) Cluster list: 1.2.8.2

 AS path: Originator ID: 10.20.128.3

 Localpref: 100

 Router ID: 10.10.12.3

 BGP Preference: 170/-101

 Next-hop reference count: 1729

 Source: 10.10.12.2

 Next hop: 10.20.131.1 via fe-0/0/1.1331, selected

 Protocol next hop: 10.30.1.1

 Indirect next hop: 8791128 262144

 State: <Int Ext>

 Inactive reason: IGP metric

 Local AS: 1282 Peer AS: 1282

 Age: 1:15 Metric2: 2

 Task: BGP_1282.10.10.12.2+179

 AS path: 34 I (Originator) Cluster list: 1.2.8.2

 AS path: Originator ID: 10.30.1.1

 Communities: bandwidth:1287:12500000

 Localpref: 100

 Router ID: 10.10.12.2

The output confirms that Stout relies on a BGP learned default to reach destinations in nonadjacent ASs. The

highlights show that Stout has learned of two copies of the default, one reflected by Bock that originates at PBR

and the other via Porter, which originated at Yeast. In this example, the failure to adjust BGP attributes has

left route selection to the default algorithm, which here selects the lowest metric IGP path, given that all other
factors up to that decision step are the same. Your goal is to ensure that all IBGP speakers prefer the default
advertised by PBR-this is not the case, so additional policy action is needed to meet the design requirements.

The most direct way to alter which BGP routes are preferred by IBGP speakers is to adjust local preference:

lab@PBR# show protocols bgp group 1282_clients export

export [next_hop_self prefer_Borgnet_transit];

[edit]

lab@PBR# show policy-options policy-statement prefer_Borgnet_transit

term 1 {

 from {

 protocol bgp;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 route-filter 0.0.0.0/0 exact;

 }

 then {

 local-preference 110;

 }

}

After committing the change, the result is confirmed back at Stout:

lab@stout> show route 192.168.66.0

inet.0: 577 destinations, 1134 routes (577 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

0.0.0.0/0 *[BGP/170] 00:02:47, localpref 110, from 10.10.12.2

 AS path: 420 I

 > to 10.20.129.2 via fe-0/0/0.3141

 [BGP/170] 00:02:47, localpref 110, from 10.10.12.3

 AS path: 420 I

 > to 10.20.129.2 via fe-0/0/0.3141

Why Only Two Copies of the Default?

You may be wondering why a router such as Stout is not receiving four copies of the BGP default

route. Given that it receives two copies of the 192.168.42/24 route that is advertised only by PBR,

you might expect twice as many copies for a route that is sent by both PBR and Yeast. The answer

lies in the active route selection process performed by the reflectors. Each reflector readvertises
only routes that are locally active. Because each reflector learns of route 192.168.42/24 from a
single source (PBR), each reflector installs the route as active and both reflect it to their clients. In

contrast, the default route is learned by each reflector from both PBR and Yeast, and each

reflector chooses the copy it considers best, reflecting only that copy to its clients.

As a result, if the current network were to lose one of its EBGP speakers, there would still be two
copies of the default route at each client. The difference is that now both copies will be the same
route, as advertised by the remaining EBGP speaker. The same result occurs if the local preference
of one default route is altered, causing it to be preferred by both reflectors.

There are still two copies of the default route, one learned from each reflector, but now both copies identify PBR

as the protocol next hop. Therefore, using either version results in a forwarding path that directs traffic to
nonadjacent ASs over the Borgnet peering. Both reflectors now prefer the route advertised by PBR because of

its higher preference value. A traceroute is performed to confirm a normal forwarding path, and then the EBGP
session at PBR is cleared to confirm fallback to Botnet:

lab@stout> traceroute 192.168.66.1

traceroute to 192.168.66.1 (192.168.66.1), 30 hops max, 40 byte packets

 1 10.20.129.2 (10.20.129.2) 9.087 ms 8.966 ms 29.973 ms

 2 172.16.1.1 (172.16.1.1) 9.289 ms 9.886 ms 9.868 ms

 3 172.16.2.2 (172.16.2.2) 30.022 ms !N 15.394 ms !N 23.853 ms !N

The EBGP session is clear at PBR:

[edit]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

lab@PBR# run clear bgp neighbor 172.16.1.1

Cleared 1 connections

And now the traceroute takes the secondary path via Botnet:

lab@stout> traceroute 192.168.66.1

traceroute to 192.168.66.1 (192.168.66.1), 30 hops max, 40 byte packets

 1 10.20.131.1 (10.20.131.1) 39.481 ms 18.973 ms 20.043 ms

 2 10.10.8.2 (10.10.8.2) 159.897 ms 199.206 ms 10.097 ms

 3 84.10.109.7 (84.10.109.7) 39.908 ms 19.261 ms 13.438 ms

 4 84.10.110.1 (84.10.110.1) 16.441 ms !N 44.843 ms !N 34.459 ms !N

After a few minutes, PBR's EBGP session should be reestablished, making its default once again preferred,

causing transit traffic to switch back (revertive behavior) to the Borgnet peering:

lab@stout> traceroute 192.168.66.1

traceroute to 192.168.66.1 (192.168.66.1), 30 hops max, 40 byte packets

 1 10.20.129.2 (10.20.129.2) 9.980 ms 8.803 ms 9.848 ms

 2 172.16.1.1 (172.16.1.1) 20.031 ms 29.300 ms 19.929 ms

 3 172.16.2.2 (172.16.2.2) 9.851 ms !N 9.394 ms !N 29.928 ms !N

The final verification is performed at stub router Lager, which has no BGP routes and uses the stub area default

to reach its ABR:

lab@Lager> show route protocol bgp

inet.0: 19 destinations, 19 routes (19 active, 0 holddown, 0 hidden)

No BGP routes are present because Lager is not running BGP:

lab@Lager> show route 192.168.66.0

inet.0: 19 destinations, 19 routes (19 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

0.0.0.0/0 *[OSPF/10] 05:19:25, metric 11

 > to 10.10.131.2 via fe-0/0/0.2131

lab@Lager> show route 192.168.34.0

inet.0: 19 destinations, 19 routes (19 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

0.0.0.0/0 *[OSPF/10] 05:19:30, metric 11

 > to 10.10.131.2 via fe-0/0/0.2131

Lager uses the OSPF default to reach all AS external destinations:

lab@Lager> traceroute 192.168.34.1

traceroute to 192.168.34.1 (192.168.34.1), 30 hops max, 40 byte packets

 1 10.10.131.2 (10.10.131.2) 10.507 ms 10.555 ms 9.706 ms

 2 10.20.131.1 (10.20.131.1) 17.896 ms 21.192 ms 20.007 ms

 3 10.10.8.2 (10.10.8.2) 39.897 ms 19.354 ms 20.043 ms

 4 84.10.109.7 (84.10.109.7) 19.780 ms !N 19.619 ms !N 19.887 ms !N

http://lib.ommolketab.ir
http://lib.ommolketab.ir

lab@Lager> traceroute 192.168.42.1

traceroute to 192.168.42.1 (192.168.42.1), 30 hops max, 40 byte packets

 1 10.10.131.2 (10.10.131.2) 8.841 ms 8.663 ms 9.940 ms

 2 10.20.129.2 (10.20.129.2) 19.825 ms 9.554 ms 9.726 ms

 3 172.16.1.1 (172.16.1.1) 9.979 ms !N 9.345 ms !N 10.121 ms !N

lab@Lager> traceroute 192.168.66.1

traceroute to 192.168.66.1 (192.168.66.1), 30 hops max, 40 byte packets

 1 10.10.131.2 (10.10.131.2) 8.731 ms 8.681 ms 10.097 ms

 2 10.20.129.2 (10.20.129.2) 19.732 ms 9.801 ms 9.650 ms

 3 172.16.1.1 (172.16.1.1) 9.872 ms 9.606 ms 9.856 ms

 4 172.16.2.2 (172.16.2.2) 39.847 ms !N 19.351 ms !N 29.992 ms !N

Lager forwards all external traffic to its ABR. The ABR (PBR in this case) then uses its BGP knowledge to make

an optimal forwarding decision that adheres to Beer-Co's outbound routing policy. This completes the
multihomed outbound routing policy scenario.

5.7.6. Dual-Homing and Outbound Policy Summary

In this section, you added a second EBGP peering and deployed IBGP on the necessary subset of routers within
the Beer-Co network. A redundant route reflection topology was used to minimize the number of IBGP peerings
while eliminating single points of failure.

With multihoming in place, you implemented an outbound policy that was a hybrid of the topology driven and
strict primary/secondary models. This was achieved via an import policy that accepted only a subset of the
routes advertised by your external BGP peers. This filtering allows an optimal routing decision for the specific
routes that are accepted, while significantly reducing hardware requirements associated with handling full BGP
feeds. The use of local preference ensured that a specific BGP learned default route is used for all other
destinations, which in turn provided the strict primary/secondary (with revertive behavior) aspect of the sample
outbound policy.

The next section builds upon this foundation by delving into the mechanics of implementing a typical inbound
policy by manipulating BGP path attributes through the use of BGP export policy.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.8. Inbound Policy

Referring back to Figure 5-9, it strikes you that the Beer-Co network has come a long way in recent weeks. The
network has migrated from being single-homed to one provider to being multihomed to multiple providers, and
you have successfully implemented a hybrid outbound policy based on a topology-driven model for peers and a
primary/secondary model for transit. With these aspects of BGP operation in check, attention is focused on your
company's inbound policy goals.

The use of stateful firewalls and NAT at the EBGP egress points greatly benefits from symmetric routing. By this,
we mean that if a packet is routed to Destination X out of router PBR, ideally the response traffic will return

along the same path to ingress back on router PBR. The symmetric routing paths tend to produce symmetric

performance, which can be reason enough when asymmetric peering links are present, but the real goal here is
to ensure that response traffic correctly matches against the dynamic state created when the outbound request
was processed by the border router's stateful firewall.

The design goals for inbound policy indicate they should mirror your outbound policy-namely, that peers should
route directly into your AS while transit traffic should arrive via the peering with Borgnet when available. In the
previous section, local preference made steering traffic toward the desired EBGP speaker/egress point a
straightforward matter. But as previously stated it's generally quite easy to control how traffic flows within your
own network. The real art and finesse of BGP policy comes to bear when the goal is to influence traffic flow in a
remote network that is not under your direct control. The Beer-Co inbound policy should provide the following
behavior:

Topological policy for peers, which should route directly into Beer-Co when the peering session is up

Revertive primary/secondary traffic for nonadjacent ASs, which should ingress at PBR when that peering

session is up

Table 5-2 summarizes the BGP attributes that can impact the policy/routing actions of a remote network. As a
rule, attributes that are evaluated sooner in the path selection process are more likely to have an impact than
those that are evaluated later. For example, altering local preference, which is evaluated at step 2 of 10, is
likely to have some impact, whereas changing origin code, which is evaluated at step 4 of 10, is less likely to
change a peer's forwarding behavior. The table uses parentheses to identify at which step of the 10-step
decision process a given attribute is evaluated. Refer back to "Section 5.1.3" for details on these steps.

Table 5-2. BGP attributes that influence speakers in other networks

Attribute Mechanism Scope/caveat

AS path AS path prepending impacts AS path
selection criteria (step 3 of 10).

Global, in that once added, ASNs cannot be removed
from the AS path list.

Origin Altering origin impacts path selection
criteria (step 4 of 10).

Global, but can be overwritten by intervening networks.

MED Altering MED impacts MED selection
criteria (step 5 of 10).

Adjacent AS only; MEDs are nontransitive. Generally,
useful only for influencing link selection when all links
terminate at the same adjacent AS.

Communities Tagged routes are treated to some
pre-agreed action, such as altered
local preference.

Generally adjacent AS only. Many network operators strip
all community tags upon ingress to their network, and
again at egress.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

It warrants restating that in all cases, the receiving ASs' policy can thwart even the most skilled attempts at
controlling their outbound routing. For example, they can set a higher local preference, which means that AS
path length is never even considered, which in turn negates any AS path prepending action you may perform in
the hope of altering their path selection. This is why a detailed understanding of each peer AS's policies, and a
good working relationship with their administrators, is always beneficial.

The most difficult aspect of the desired inbound policy is the need to influence the routing actions of Darknet,
which does not peer directly with your AS. The goal is to make Darknet prefer the 10/8 aggregate it learns
through Borgnet such that it uses the advertisement learned from Botnet only when the former is unavailable.

Using MED is out of the question here because the MED, being nontransitive, does not transit the networks you
peer with. Also, PBR has a single attachment to Borgnet, so there is no use for MED there. MED could be used

on the Yeast/Botnet peering to help steer ingress traffic over the high-speed link, but this is not the current

focus. Communities are likely not an option because you are not a Darknet customer, and it's quite likely that
they do not take action on communities attached to noncustomer routes; besides, communities may be stripped
when the routes are exchanged between Borgnet and Darknet.

Before settling on a solution, it's noted that both of Beer-Co's BGP peers have a published policy regarding the
use of customer routes with specific community tags. This policy results in a modified local preference setting
within that peer's network. Table 5-3 provides the community-to-local preference mappings.

Table 5-3. Peer AS community-to-local preference mappings

Community value Modified local preference

ASN:110 110

ASN:100 100

ASN:90 90

ASN:80 80

After careful consideration, it appears that the main problem in achieving the desired inbound behavior lies with
the route selection algorithm in nonadjacent AS Darknet. Because you do not peer directly with this AS, the use
of MED, and likely communities, is out. This narrows your choice to AS path prepending as the primary
mechanism for influencing path selection within AS 666.

Figure 5-11 shows the state of affairs with regard to path selection for the 10/8 prefix in router Darknet.

Figure 5-11. 10/8 route selection in Darknet

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The figure shows that Darknet receives BGP updates for Beer-Co's 10/8 aggregate from both AS 420 and AS 34.
Because all attributes are equal in this example, including the AS path length, the active path selected at Water

is determined by which advertisement is learned first. To demonstrate, the 10/8 route is displayed at Water:

Code View:
[edit]

lab@Water# run show route 10/8 detail

inet.0: 812 destinations, 1324 routes (812 active, 0 holddown, 0 hidden)

10.0.0.0/8 (2 entries, 1 announced)

 *BGP Preference: 170/-101

 Next-hop reference count: 946

 Source: 84.10.110.2

 Next hop: 84.10.110.2 via fe-0/0/0.3243, selected

 State: <Active Ext>

 Local AS: 666 Peer AS: 34

 Age: 41:35

 Task: BGP_34.84.10.110.2+4664

 Announcement bits (2): 0-KRT 1-BGP RT Background

 AS path: 34 1282 I Aggregator: 1282 10.30.1.1

 Localpref: 100

 Router ID: 84.10.109.1

 BGP Preference: 170/-101

 Next-hop reference count: 682

 Source: 172.16.2.1

 Next hop: 172.16.2.1 via fe-0/0/0.423, selected

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 State: <Ext>

 Inactive reason: Active preferred

 Local AS: 666 Peer AS: 420

 Age: 39:41

 Task: BGP_420.172.16.2.1+179

 AS path: 420 1282 I Aggregator: 1282 10.20.128.3

 Localpref: 100

 Router ID: 172.16.1.3

The output shows that Water installed the path through AS 34 as the active path, and that the desired primary

path is currently not preferred, simply because it was not learned first. Recall that for an EBGP learned route,
step 9 of the active route selection process, which normally prefers the lower RID, is not performed due to MED
oscillation issues. Instead, EBGP learned routes eliminate steps 9 and 10 to simply prefer the route that is
learned first. Because this condition is timing-dependent, if something happens to the 10/8 advertisement from
Botnet, the situation is reversed:

[edit]

lab@hops# run clear bgp neighbor 84.10.110.1

Cleared 1 connections

After waiting for the Botnet/Darknet EBGP peering to reform, the path to 10/8 is again displayed at Water:

[edit]

lab@Water# run show route 10/8

inet.0: 812 destinations, 1370 routes (812 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

10.0.0.0/8 *[BGP/170] 00:43:43, localpref 100

 AS path: 420 1282 I

 > to 172.16.2.1 via fe-0/0/0.423

 [BGP/170] 00:00:29, localpref 100

 AS path: 34 1282 I

 > to 84.10.110.2 via fe-0/0/0.3243

The display confirms that the tie-breaking action of prefer first-learned is not going to reliably produce the
desired inbound policy; nor would relying on the RID/peering address tiebreakers for that matter. This looks like
a classic example of how AS path prepending can help to steer path selection by remote networks-in this case,
one that you do not even peer with. If the export policy at Yeast is altered to add an extra instance of the local

AS number, the AS path length selection criterion should result in the path through AS 420 always being
preferred by Darknet routers when available.

5.8.1. AS Path Prepend to Influence Nonadjacent AS Path Selection

Previous analysis of the policy showed that increasing the AS path length for the 10/8 prefix that Darknet learns
from Botnet should result in the desired behavior of nonadjacent ASs routing to your network using Botnet as
the primary transit AS.

The existing as_34_export policy is displayed at Yeast:

[edit]

lab@Yeast# show policy-options policy-statement as_34_export

term 1 {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 from {

 protocol aggregate;

 route-filter 10.0.0.0/8 exact;

 }

 then accept;

}

The as_34_export policy is modified to add two extra instances of ASN 1282 to the 10/8 update-based on

Figure 5-11, it appears that only one instance is required, but extra padding should help to ensure that Darknet
prefers the path through Borgnet and provides an additional safety margin to accommodate the potential for
topology changes between Borgnet and Darknet. Such a routing change might result in transit through
additional ASs and a corresponding increase in the AS path length over the preferred path.

[edit policy-options policy-statement as_34_export]

lab@Yeast# show

term 1 {

 from {

 protocol aggregate;

 route-filter 10.0.0.0/8 exact;

 }

 then {

 as-path-prepend "1282 1282";

 accept;

 }

}

The effects are examined from the perspective of router Water in the Darknet AS:

Code View:
[edit]

lab@Water# run show route 10/8 detail

inet.0: 812 destinations, 1370 routes (812 active, 0 holddown, 0 hidden)

10.0.0.0/8 (2 entries, 1 announced)

 *BGP Preference: 170/-101

 Next-hop reference count: 684

 Source: 172.16.2.1

 Next hop: 172.16.2.1 via fe-0/0/0.423, selected

 State: <Active Ext>

 Local AS: 666 Peer AS: 420

 Age: 53:05

 Task: BGP_420.172.16.2.1+179

 Announcement bits (2): 0-KRT 1-BGP RT Background

 AS path: 420 1282 I Aggregator: 1282 10.20.128.3

 Localpref: 100

 Router ID: 172.16.1.3

 BGP Preference: 170/-101

 Next-hop reference count: 990

 Source: 84.10.110.2

 Next hop: 84.10.110.2 via fe-0/0/0.3243, selected

 State: <Ext>

 Inactive reason: AS path

 Local AS: 666 Peer AS: 34

 Age: 59

 Task: BGP_34.84.10.110.2+4730

 AS path: 34 1282 1282 I Aggregator: 1282 10.30.1.1

 Localpref: 100

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Router ID: 84.10.109.1

The output confirms that chance has been removed from the path selection process for the 10/8 prefix at Water.

The longer AS path in the 10/8 prefix learned from the Botnet AS ensures that AS 666 always prefers to route
through Borgnet to reach Beer-Co, unless that path is withdrawn (due to problems with the PBR- Wheat

peering), at which point it falls back to the Botnet path.

To the casual observer, Beer-Co has met its inbound policy goals, all with a single-line addition to an existing
export policy to affect AS path prepending. BGP policy is not really that hard, it would seem. Before heading out
the door, you decide to confirm failover behavior. This begins by deactivating the secondary EBGP session to
confirm that all traffic arrives at the Borgnet peering:

 [edit]

lab@Yeast# deactivate protocols bgp group as_34

[edit]

lab@Yeast# commit

Traceroutes are now performed from routers within the adjacent and nonadjacent ASs. In most cases, you will
need to inspect each AS's routing view, perhaps through a looking glass service, to confirm their forwarding
paths.

What Is a Looking Glass?

A looking glass is basically a publicly accessible route server that allows you to view Internet
routing, from the perspective of that particular route server. You use a looking glass to see the
effects of that network's import policy and active route selection process, by displaying which BGP
paths it has installed as active. You can also gauge the relative stability of a prefix, from the view
of that looking glass, by examining how long a route has been known. The following example
makes use of an AT&T looking glass, as listed at http://www.nanog.org/lookingglass.html, to
display its view of the route to Juniper Networks:

-------------- route-server.ip.att.net ---------------

User Access Verification Username: rviews

route-server>sho ip rou juniper.net

Routing entry for 207.17.136.0/22, supernet

 Known via "bgp 65000", distance 20, metric 0

 Tag 7018, type external

 Last update from 12.123.1.236 2w3d ago

 Routing Descriptor Blocks:

 * 12.123.1.236, from 12.123.1.236, 2w3d ago

 Route metric is 0, traffic share count is 1

 AS Hops 3

 Route tag 7018

route-server>sho ip bgp 207.17.136.0/22

BGP routing table entry for 207.17.136.0/22, version 181930

Paths: (18 available, best #13, table Default-IP-Routing-Table)

 Not advertised to any peer

 7018 2914 14203, (received & used)

 12.123.29.249 from 12.123.29.249 (12.123.29.249)

 Origin IGP, localpref 100, valid, external

 Community: 7018:5000 7018:33051

. . .

http://www.nanog.org/lookingglass.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The output suggests that AT&T has learned this route from 18 different speakers, that the prefix is
stable (given that the last update was more than two weeks ago), and that the AS path to reach
this prefix from within AT&T is 7018 (AT&T WorldNet), 2914 (Verio), and finally, 14203 (Juniper
Networks itself).

All routers in the test network advertise their loopbacks (or an encompassing aggregate route) into BGP. All
traceroutes are conducted between loopback addresses because full connectivity is expected among the prefixes
used for loopback addressing.

[edit]

lab@Wheat# run traceroute 10.10.12.2 source 172.16.1.3

traceroute to 10.10.12.2 (10.10.12.2), 30 hops max, 40 byte packets

 1 172.16.1.2 (172.16.1.2) 17.316 ms 10.118 ms 21.751 ms

 2 10.20.129.1 (10.20.129.1) 12.798 ms 9.507 ms 9.711 ms

 3 10.10.12.2 (10.10.12.2) 16.981 ms 22.462 ms 19.689 ms

The traceroute to Porter's loopback address succeeds from within AS 420:

[edit]

lab@Water# run traceroute 10.10.12.2 source 64.8.12.1

traceroute to 10.10.12.2 (10.10.12.2), 30 hops max, 40 byte packets

 1 172.16.2.1 (172.16.2.1) 106.100 ms 17.772 ms 10.472 ms

 2 172.16.1.2 (172.16.1.2) 9.423 ms 9.373 ms 9.842 ms

 3 10.20.129.1 (10.20.129.1) 20.042 ms 39.411 ms 19.786 ms

 4 10.10.12.2 (10.10.12.2) 10.109 ms 9.390 ms 94.337 ms

The traceroute to Porter's loopback address succeeds from within AS 66:

Code View:
[edit]

lab@hops# run traceroute 10.10.12.2 source 84.10.109.1

traceroute to 10.10.12.2 (10.10.12.2) from 84.10.109.1, 30 hops max, 40 byte packets

 1 84.10.110.1 45.013 ms 125.144 ms 25.062 ms

 2 172.16.2.1 8.442 ms 19.978 ms 9.940 ms

 3 172.16.1.2 30.019 ms 9.885 ms 9.849 ms

 4 10.20.129.1 16.135 ms 10.130 ms 13.433 ms

 5 10.10.12.2 15.628 ms 24.492 ms 16.888 ms

And finally, the traceroute to Porter's loopback address succeeds from within AS 34. So far so good, so the

EBGP peering session to AS 34 is reactivated. After waiting for the EBGP session to Botnet to re-form, the
traceroutes are repeated:

[edit]

lab@Wheat# run traceroute 10.10.12.2 source 172.16.1.3

traceroute to 10.10.12.2 (10.10.12.2), 30 hops max, 40 byte packets

 1 172.16.1.2 (172.16.1.2) 9.914 ms 8.950 ms 9.571 ms

 2 10.20.129.1 (10.20.129.1) 19.977 ms 19.534 ms 19.824 ms

 3 10.10.12.2 (10.10.12.2) 9.886 ms 9.498 ms 9.848 ms

http://lib.ommolketab.ir
http://lib.ommolketab.ir

lab@Water> traceroute 10.10.12.2 source 64.8.12.1

traceroute to 10.10.12.2 (10.10.12.2), 30 hops max, 40 byte packets

 1 172.16.2.1 (172.16.2.1) 19.317 ms 12.022 ms 16.594 ms

 2 172.16.1.2 (172.16.1.2) 9.889 ms 9.364 ms 10.281 ms

 3 10.20.129.1 (10.20.129.1) 19.596 ms 19.528 ms 7.891 ms

 4 10.10.12.2 (10.10.12.2) 21.967 ms 49.523 ms 9.720 ms

The results from Borgnet and Darknet are as before, and both are as expected. Things are not ideal from the
perspective for Botnet, however:

Code View:
[edit]

lab@hops# run traceroute 10.10.12.2 source 84.10.109.1

traceroute to 10.10.12.2 (10.10.12.2) from 84.10.109.1, 30 hops max, 40 byte packets

 1 84.10.110.1 (84.10.110.1) 8.589 ms 8.666 ms 10.118 ms

 2 172.16.2.1 (172.16.2.1) 29.935 ms 19.230 ms 20.005 ms

 3 172.16.1.2 (172.16.1.2) 20.021 ms 19.588 ms 19.710 ms

 4 10.20.129.1 (10.20.129.1) 9.916 ms 9.298 ms 10.128 ms

 5 10.10.12.2 (10.10.12.2) 21.422 ms 17.796 ms 14.098 ms

The traceroute from Botnet clearly shows that the traffic is failing to arrive at the peering exchange for that AS,
resulting in extra AS hops as the traffic is directed over the primary path. This is a violation of the desired
inbound policy. Displaying the route to 10/8 at Botnet confirms the problem and sheds lights on its cause:

Code View:
[edit]

lab@hops# run show route 10/8 detail

inet.0: 817 destinations, 1069 routes (817 active, 0 holddown, 0 hidden)

10.0.0.0/8 (3 entries, 1 announced)

 *BGP Preference: 170/-101

 Next-hop reference count: 750

 Source: 84.10.110.1

 Next hop: 84.10.110.1 via fe-0/0/0.3243, selected

 State: <Active Ext>

 Local AS: 34 Peer AS: 666

 Age: 43:41

 Task: BGP_666.84.10.110.1+179

 Announcement bits (2): 0-KRT 2-BGP RT Background

 AS path: 666 420 1282 I Aggregator: 1282 10.20.128.3

 Localpref: 100

 Router ID: 64.8.12.1

 BGP Preference: 170/-101

 Next-hop reference count: 126

 Source: 84.10.109.8

 Next hop: 84.10.109.8 via fe-0/0/0.3233, selected

 State: <Ext>

 Inactive reason: Active preferred

 Local AS: 34 Peer AS: 1282

 Age: 4:36

 Task: BGP_1282.84.10.109.8+2957

 AS path: 1282 1282 1282 I Aggregator: 1282 10.30.1.1

 Localpref: 100

 Router ID: 10.30.1.1

 BGP Preference: 170/-101

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Next-hop reference count: 126

 Source: 84.10.113.0

 Next hop: 84.10.113.0 via t1-0/0/2.0, selected

 State: <NotBest Ext>

 Inactive reason: Not Best in its group

 Local AS: 34 Peer AS: 1282

 Age: 4:32

 Task: BGP_1282.84.10.113.0+3127

 AS path: 1282 1282 1282 I Aggregator: 1282 10.30.1.1

 Localpref: 100

 Router ID: 10.30.1.1

IP internetworks are complicated systems, and with any such systems, making a change in one place can have
unexpected consequences somewhere else. Before you added AS path prepending, both peer ASs had no
problems preferring Beer-Co's 10/8 aggregate as learned directly from Beer-Co. This was because an AS path
length of 1 is very hard to beat. The use of AS path prepending, in an attempt to make Darknet prefer the path
through the Borgnet AS, has inadvertently altered the path selection in peer AS 34.

Even worse is that this situation results in path selection that is tied to the order in which routes are learned.
Timing-related route selection issues are difficult to troubleshoot because administrative actions on one
front-say, attribute modification-may trigger a change in the order that routes are learned. This can easily
lead to an incorrect belief that policy changes are behind the altered path selection, when in reality things may
change back at the next outage. Fortunately, there is a straightforward solution to this problem: community
tags.

5.8.2. Use Communities to Influence Peer AS

Referring back to Table 5-3, notice that you can affect the local preference value within your peer ASs by
attaching a specific community to your route updates. Because local preference is evaluated before AS path
length, altering the local preference of the 10/8 route within AS 34 should be just the ticket. This change
ensures that AS 34 always prefers the 10/8 learned directly from the Beer-Co peering regardless of the related
AS path length.

Your changes begin with the definition of named communities. In this example, you need to set the 10/8 local
preference to a value higher than 100, which is the default. Here, multiple communities are defined, but only
the 110 community definition is required and used:

[edit]

lab@Yeast# show policy-options

. . .

community 100 members 1282:100;

community 110 members 1282:110;

community 70 members 1282:70;

community 80 members 1282:80;

community 90 members 1282:90;

community bw_fast members bandwidth:1287:12500000;

community bw_slow members bandwidth:1287:193000;

as-path 34_originate "^34$";

as-path 34_trans "^34.+$";

The existing as_34_export policy is altered to add the appropriate community, which is 110 in this example:

[edit policy-options policy-statement as_34_export]

lab@Yeast# show

http://lib.ommolketab.ir
http://lib.ommolketab.ir

term 1 {

 from {

 protocol aggregate;

 route-filter 10.0.0.0/8 exact;

 }

 then {

 community add 110;

 as-path-prepend "1282 1282";

 accept;

 }

}

The results are confirmed at router Hops in AS 34:

Code View:
[edit]

lab@hops# run show route 10/8 detail

inet.0: 817 destinations, 1069 routes (817 active, 0 holddown, 0 hidden)

10.0.0.0/8 (3 entries, 1 announced)

 *BGP Preference: 170/-111

 Next-hop reference count: 2

 Source: 84.10.109.8

 Next hop: 84.10.109.8 via fe-0/0/0.3233

 Next hop: 84.10.113.0 via t1-0/0/2.0, selected

 State: <Active Ext>

 Local AS: 34 Peer AS: 1282

 Age: 12

 Task: BGP_1282.84.10.109.8+2957

 Announcement bits (2): 0-KRT 2-BGP RT Background

 AS path: 1282 1282 1282 I Aggregator: 1282 10.30.1.1

 Communities: 1282:110

 Localpref: 110

 Router ID: 10.30.1.1

 BGP Preference: 170/-111

 Next-hop reference count: 126

 Source: 84.10.113.0

 Next hop: 84.10.113.0 via t1-0/0/2.0, selected

 State: <NotBest Ext>

 Inactive reason: Update source

 Local AS: 34 Peer AS: 1282

 Age: 12

 Task: BGP_1282.84.10.113.0+3127

 AS path: 1282 1282 1282 I Aggregator: 1282 10.30.1.1

 Communities: 1282:110

 Localpref: 110

 Router ID: 10.30.1.1

 BGP Preference: 170/-101

 Next-hop reference count: 749

 Source: 84.10.110.1

 Next hop: 84.10.110.1 via fe-0/0/0.3243, selected

 State: <Ext>

 Inactive reason: Local Preference

 Local AS: 34 Peer AS: 666

 Age: 1:11:39

 Task: BGP_666.84.10.110.1+179

 AS path: 666 420 1282 I Aggregator: 1282 10.20.128.3

 Localpref: 100

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Router ID: 64.8.12.1

Excellent! AS 34 now prefers the route learned directly from Beer-Co, and it still has a valid alternate path in
the event of BGP session disruption to Beer-Co. The primary peering link is now deactivated to verify failover to
the secondary and reversion back to the primary upon restoration:

[edit]

lab@PBR# deactivate protocols bgp group as_420

Traceroutes are now performed from adjacent and nonadjacent ASs:

Code View:
[edit]

lab@Wheat# run traceroute 10.10.12.2 source 172.16.1.3

traceroute to 10.10.12.2 (10.10.12.2) from 172.16.1.3, 30 hops max, 40 byte packets

 1 172.16.2.2 (172.16.2.2) 8.411 ms 8.980 ms 9.840 ms

 2 84.10.110.2 (84.10.110.2) 20.057 ms 29.367 ms 9.886 ms

 3 84.10.113.0 (84.10.113.0) 19.999 ms 39.343 ms 20.021 ms

 4 10.10.12.2 (10.10.12.2) 13.796 ms 15.536 ms 19.873 ms

lab@Water> traceroute 10.10.12.2 source 64.8.12.1

traceroute to 10.10.12.2 (10.10.12.2) from 64.8.12.1, 30 hops max, 40 byte packets

 1 84.10.110.2 (84.10.110.2) 30.620 ms 21.427 ms 19.623 ms

 2 84.10.113.0 (84.10.113.0) 30.052 ms 16.285 ms 12.970 ms

 3 10.10.12.2 (10.10.12.2) 20.066 ms 35.912 ms 13.312 ms

[edit]

lab@hops# run traceroute 10.10.12.2 source 84.10.109.1

traceroute to 10.10.12.2 (10.10.12.2) from 84.10.109.1, 30 hops max, 40 byte packets

 1 84.10.113.0 (84.10.113.0) 8.924 ms 28.830 ms 9.856 ms

 2 10.10.12.2 (10.10.12.2) 9.846 ms 9.697 ms 9.795 ms

The results prove continued connectivity for both adjacent and nonadjacent ASs, with all traffic now arriving at
the only functional peering exchange. The desired failover behavior is working. The Borgnet peering session is
now reactivated to test the revertive behavior:

[edit]

lab@PBR# rollback 1

load complete

After session establishment, traceroutes are again performed to verify revertive primary behavior. Recall that
the goal is to have peers route directly into AS 1282 while nonadjacent ASs route toward the Borgnet peering to
ingress at PBR:

Code View:
[edit]

lab@Wheat# run traceroute 10.10.12.2 source 172.16.1.3

traceroute to 10.10.12.2 (10.10.12.2) from 172.16.1.3, 30 hops max, 40 byte packets

 1 172.16.1.2 (172.16.1.2) 19.252 ms 12.858 ms 16.050 ms

 2 10.20.129.1 (10.20.129.1) 9.900 ms 9.498 ms 9.686 ms

 3 10.10.12.2 (10.10.12.2) 19.985 ms 19.611 ms 19.615 ms

http://lib.ommolketab.ir
http://lib.ommolketab.ir

lab@Water> traceroute 10.10.12.2 source 64.8.12.1

traceroute to 10.10.12.2 (10.10.12.2) from 64.8.12.1, 30 hops max, 40 byte packets

 1 172.16.2.1 (172.16.2.1) 9.220 ms 8.755 ms 29.928 ms

 2 172.16.1.2 (172.16.1.2) 9.844 ms 9.609 ms 9.873 ms

 3 10.20.129.1 (10.20.129.1) 29.962 ms 19.311 ms 20.003 ms

 4 10.10.12.2 (10.10.12.2) 9.862 ms 29.366 ms 29.967 ms

[edit]

lab@hops# run traceroute 10.10.12.2 source 84.10.109.1

traceroute to 10.10.12.2 (10.10.12.2) from 84.10.109.1, 30 hops max, 40 byte packets

 1 84.10.113.0 (84.10.113.0) 9.691 ms 8.756 ms 9.864 ms

 2 10.10.12.2 (10.10.12.2) 19.969 ms 29.445 ms 9.859 ms

The results confirm desired inbound policy behavior, thereby concluding the EBGP multihomed enterprise
routing scenario. For completeness, the complete protocols and policy stanzas for EBGP routers PBR and Yeast,

reflector Porter, and client Stout are shown.

Here is router PBR's configuration:

Code View:
[edit]

lab@PBR# show policy-options | no-more

policy-statement as_420_export {

 term 1 {

 from {

 protocol aggregate;

 route-filter 10.0.0.0/8 exact;

 }

 then accept;

 }

}

policy-statement as_420_import {

 term 1 {

 from {

 protocol bgp;

 as-path as_420_originate;

 }

 then accept;

 }

 term 2 {

 then reject;

 }

}

policy-statement next_hop_self {

 term 1 {

 from protocol bgp;

 then {

 next-hop self;

 }

 }

}

policy-statement prefer_Borgnet_transit {

 term 1 {

 from {

 protocol bgp;

 route-filter 0.0.0.0/0 exact;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 then {

 local-preference 110;

 }

 }

}

as-path as_420_originate "^420+$";

[edit]

lab@PBR# show protocols

bgp {

 group as_420 {

 type external;

 import as_420_import;

 export as_420_export;

 neighbor 172.16.1.1 {

 peer-as 420;

 }

 }

 group 1282_clients {

 type internal;

 local-address 10.20.128.3;

 export [next_hop_self prefer_Borgnet_transit];

 neighbor 10.10.12.3;

 neighbor 10.10.12.2;

 }

}

ospf {

 area 0.0.0.0 {

 interface fe-0/0/0.3141;

 interface fe-0/0/0.1241;

 }

 area 0.0.0.1 {

 stub default-metric 10;

 interface fe-0/0/0.1141;

 }

}

Here is router Yeast's configuration:

Code View:
[edit]

lab@Yeast# show policy-options | no-more

policy-statement as_34_export {

 term 1 {

 from {

 protocol aggregate;

 route-filter 10.0.0.0/8 exact;

 }

 then {

 community add 110;

 as-path-prepend "1282 1282";

 accept;

 }

 }

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

policy-statement as_34_import {

 term slow_peer {

 from {

 protocol bgp;

 neighbor 84.10.113.1;

 }

 then {

 community add bw_slow;

 }

 }

 term fast_peer {

 from {

 protocol bgp;

 neighbor 84.10.109.7;

 }

 then {

 community add bw_fast;

 }

 }

}

policy-statement as_34_originate {

 term 1 {

 from {

 protocol bgp;

 as-path 34_originate;

 }

 then accept;

 }

 term 2 {

 then reject;

 }

}

policy-statement lb_per_packet {

 then {

 load-balance per-packet;

 accept;

 }

}

policy-statement next_hop_self {

 term 1 {

 from protocol bgp;

 then {

 next-hop self;

 }

 }

}

community 100 members 1282:100;

community 110 members 1282:110;

community 70 members 1282:70;

community 80 members 1282:80;

community 90 members 1282:90;

community bw_fast members bandwidth:1287:12500000;

community bw_slow members bandwidth:1287:193000;

as-path 34_originate "^34$";

as-path 34_trans "^34.+$";

[edit]

lab@Yeast# show protocols | no-more

bgp {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 group as_34 {

 type external;

 import [as_34_import as_34_originate];

 export as_34_export;

 peer-as 34;

 multipath;

 neighbor 84.10.109.7;

 neighbor 84.10.113.1;

 }

 group 1282_clients {

 type internal;

 local-address 10.30.1.1;

 export next_hop_self;

 neighbor 10.10.12.3;

 neighbor 10.10.12.2;

 }

}

ospf {

 area 0.0.0.0 {

 interface fe-0/0/1.2332;

 }

}

Here is route reflector Porter's configuration:

Code View:
[edit]

lab@Porter# show policy-options

[edit]

lab@Porter# show protocols | no-more

bgp {

 group 1282_rr {

 type internal;

 local-address 10.10.12.2;

 neighbor 10.10.12.3;

 }

 group 1282_clients {

 type internal;

 local-address 10.10.12.2;

 ##

 ## Warning: requires 'bgp-reflection' license

 ##

 cluster 1.2.8.2;

 neighbor 10.20.128.4;

 neighbor 10.20.128.3;

 neighbor 10.30.1.1;

 }

}

ospf {

 area 0.0.0.0 {

 interface fe-0/0/1.1331;

 interface fe-0/0/1.2332;

 interface t1-0/0/2.0;

 }

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Here is client Stout's configuration:

Code View:
[edit]

lab@stout# show policy-options

[edit]

lab@stout# show protocols | no-more

bgp {

 group 1282_clients {

 type internal;

 local-address 10.20.128.4;

 neighbor 10.10.12.3;

 neighbor 10.10.12.2;

 }

}

ospf {

 area 0.0.0.0 {

 interface fe-0/0/0.3141;

 interface fe-0/0/1.1331;

 }

 area 0.0.0.2 {

 stub default-metric 10;

 interface fe-0/0/0.2131;

 }

}

5.8.3. BGP Inbound Policy Summary

This section demonstrated ways in which a dual-homed enterprise can manipulate BGP path attributes to
achieve a desired inbound policy goal. The example demonstrated the need for both AS path manipulation and
the use of BGP communities, which worked together to influence the routing decisions of both adjacent and
nonadjacent ASs.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.9. Conclusion

BGP can have a dramatic impact on the operation of an enterprise network when the network is multihomed,
and even more so when it is multihomed to multiple providers. BGP itself is not a very complex protocol, but the
myriad ways in which its attributes are acted upon, and the cascading effects of advertising only what the local
speaker considers the best route, often lead to an unanticipated result. To the uninitiated, this often leads to
confusion and what might seem to be unpredictable behavior. JUNOS software provides a complete set of
diagnostic tools, from the CLI's operational mode displays to the extensive protocol tracing, which makes most
BGP problems easy to diagnose. For example, the way the software displays why a given BGP path was not
selected makes changing the results for that BGP decision step a straightforward matter, that is, whatever
attribute caused the route to lose should be modified.

EBGP and IBGP are similar, but they have key differences in the way they are typically configured and in how
they operate. This chapter detailed those differences and demonstrated typical EBGP physical peering and IBGP
loopback-based peering. Because IBGP does not rewrite the next hop, you will often need a next hop self-policy
or some other method of advertising the external EBGP peering address into your IGP.

Bringing up BGP peerings is really just the start of the process. BGP is all about policy and administrative control
over route exchanges, and therefore forwarding paths. Outbound policy controls how your network chooses to
reach destinations and is relatively easy to implement as you control all aspects of your own network's
operation. Inbound policy is far trickier, because here you are attempting to impact decisions made in remote
ASs, over which you have no direct control. A detailed understanding of the BGP attributes that reach into, and
beyond, other networks increases the probability that remote networks will bend to your will, resulting in
ingress traffic patterns that optimize those factors that matter most within your organization.

The large size of BGP tables means that careful consideration should be leveled as to which routers need to run
the protocol and on the import policy that determines which prefixes are accepted. The careful application of
policy can easily reduce a BGP table from more than 230,000 routes to a more manageable set that can be
distributed among lower-end routers. A partial table can be used to make intelligent routing decisions that
optimize network resources and performance. When a full BGP table is not feasible, some form of a default
route is used to balance the remaining prefixes or to direct the network traffic to a primary egress point as local
policy dictates.

Route reflection is often used to reduce the burden of maintaining a full IBGP mess among a network's IBGP
speakers, and when combined with route filtering, it allows the deployment of BGP on even the smallest of
enterprise routers.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.10. Exam Topics

We examined the following Enterprise Exam Topics in this chapter:

Explain the use of BGP.

Differentiate between IBGP and EBGP sessions.

Policies to control route advertisement.

Miscellaneous BGP configuration options.

Load-balancing BGP routes.

ISP multihoming scenarios.

Configure an IBGP route reflection topology.

Configure EBGP sessions.

Identify BGP attributes that can be modified using policies.

Implement a BGP policy for routing traffic over multiple ISP connections.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.11. Chapter Review Questions

What BGP attribute guards against loops?

MEDa.

Barring an IBGP speaker from resending IBGP updatesb.

Cluster IDc.

AS pathd.

1.

What BGP attribute is most likely to influence egress from your AS?

AS patha.

Local preferenceb.

MEDc.

Cluster lengthd.

None of the abovee.

2.

What BGP attribute is mostly likely to influence a remote AS that you do not peer with?

This is not possible given the local scope of BGPa.

AS pathb.

MEDc.

Local preferenced.

3.

4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

d.

Which of the following correctly describes how IBGP differs from EBGP?

IBGP peers to the interface address while EBGP peers to loopbacksa.

IBGP updates do not alter the next hop attributeb.

EBGP updates do not alter the next hopc.

EBGP requires a full meshd.

4.

When export policy is specified at the global, group, and neighbor levels, which policy is executed?

Only the least specific, which is global exporta.

Only the most specific, which is neighbor-level exportb.

All three are chained, and the global, group, and neighbor policies are executedc.

None of the above; export can be defined only at the group leveld.

5.

When you issue a show bgp summary command, what is indicated by the Active state?

The router is actively trying to form the BGP session; you should waita.

The session is established and active; you are doneb.

The router is unable to even route the session; you should suspect a routing problemc.

At least one route has been received and made actived.

6.

What command displays the routes you are receiving from a BGP peer?

show route advertising-protocol bgpa.

b.

7.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

a.

show route receive-protocol bgpb.

show route protocol bgpc.

show ip route bgpd.

Which type of JUNOS software policy is normally applied at an EBGP speaker to achieve an organization's
outbound policy?

Export policya.

Import policyb.

Inbound policyc.

Outbound policyd.

8.

When implementing loopback-based peering, what is the purpose of the local-address statement?

It ensures that the router sources the connection from its loopback addressa.

It ensures that the router sources the connection from the interface closest to the session
target

b.

It eliminates the need for recursive route lookup in EBGP peeringc.

It eliminates the need for recursive route lookup in IBGP peeringd.

9.

Which of the following is/are true regarding route reflection on a J-series router?

A license is required for support, not operationa.

A single command is needed on the reflectorb.

New attributes are needed to prevent route loopingc.

d.

10.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

c.

Reflectors can hide parts of the topology because they reflect only their choice of best routed.

All of the abovee.

When configuring BGP in JUNOS software, where is the local router's AS defined?

At the [edit protocols bgp] hierarchya.

At the [edit routing-options] hierarchyb.

At the [edit protocols bgp group] hierarchyc.

At the [edit protocols bgp group <group name> neighbor] hierarchyd.

11.

In the following display, why is the route learned from 84.10.109.8 not active?

Code View:
inet.0: 817 destinations, 1069 routes (817 active, 0 holddown, 0 hidden)

10.0.0.0/8 (3 entries, 1 announced)

 *BGP Preference: 170/-101

 Next-hop reference count: 750

 Source: 84.10.110.1

 Next hop: 84.10.110.1 via fe-0/0/0.3243, selected

 State: <Active Ext>

 Local AS: 34 Peer AS: 666

 Age: 43:41

 Task: BGP_666.84.10.110.1+179

 Announcement bits (2): 0-KRT 2-BGP RT Background

 AS path: 666 420 1282 I Aggregator: 1282 10.20.128.3

 Localpref: 100

 Router ID: 64.8.12.1

 BGP Preference: 170/-101

 Next-hop reference count: 126

 Source: 84.10.109.8

 Next hop: 84.10.109.8 via fe-0/0/0.3233, selected

 State: <Ext>

 Inactive reason: Active preferred

 Local AS: 34 Peer AS: 1282

 Age: 4:36

 Task: BGP_1282.84.10.109.8+2957

 AS path: 1282 1282 1282 I Aggregator: 1282 10.30.1.1

 Localpref: 100

 Router ID: 10.30.1.1

 BGP Preference: 170/-101

 Next-hop reference count: 126

12.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Source: 84.10.113.0

 Next hop: 84.10.113.0 via t1-0/0/2.0, selected

 State: <NotBest Ext>

 Inactive reason: Not Best in its group

 Local AS: 34 Peer AS: 1282

 Age: 4:32

 Task: BGP_1282.84.10.113.0+3127

 AS path: 1282 1282 1282 I Aggregator: 1282 10.30.1.1

 Localpref: 100

 Router ID: 10.30.1.1

When all else is equal, an EBGP speaker prefers the first route learneda.

When all else is equal, an IBGP speaker prefers the first route learnedb.

When all else is equal, the router prefers the route with best preferencec.

The AS path is shorterd.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.12. Chapter Review Answers

Answer: D. The AS path attribute records each AS that a route update has passed through, and is updated
on EBGP links. A BGP speaker discards received updates that contain the local ASN in the AS path.

1.

Answer: B. The local preference attribute is evaluated early in the BGP decision process, before AS path,
MED, origin, and so on.

2.

Answer: B. The AS path attribute has global significance; once a value has been added, no other speaker
can remove that ASN from the list because this would break BGP's loop prevention. The AS path is
considered early in the selection process, and so has a good chance of impacting forwarding decisions in
remote ASs. MED does not transit the peer AS, local preference is not supported on EBGP links, and
communities can be stripped.

3.

Answer: B. The next hop is unchanged on IBGP updates, but it is rewritten on EBGP links. EBGP does not
require a full mesh, because the AS path is updated on EBGP links.

4.

Answer: B. JUNOS software applies only the most specific policy applications, and a neighbor level is more
specific than a group level, which is more specific than a global level. If you need a particular neighbor to
execute what you consider a global, group, and neighbor policy, all three must be changed at the neighbor
level.

5.

Answer: A. The Idle state indicates an inability to route the session, and an established session is
displayed with an x/x/x, for active, received, and damped routes, respectively.

6.

Answer: B. The show route protocol bgp command shows all routes learned via BGP, not those from a

given neighbor.

7.

Answer: B. By filtering and setting attributes in received routes, you most directly impact how your
network in turn sends to external destinations. Export policy is normally used to influence peers in the
remote AS to affect your inbound policy goals.

8.

Answer: A. Loopback-based peering requires that the router source the connection from its loopback
interface to match the definition at the remote peer. A recursive route lookup is always required for a
loopback-based peering because the remote router's loopback address can never be direct, and therefore
must be resolved to a direct forwarding next hop via an IGP, to include a static route.

9.

Answer: E. All of the options listed are true.10.

Answer: B. The local router's autonomous number is configured under routing options. The peer AS
number is configured at the group or neighbor level for EBGP groups.

11.

Answer: A. The RID and peering address tie breakers are replaced by first-learned for EBGP learned routes12.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only. In this example, all three routes have the same local preference, global preference, and AS path
length.

12.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 6. Access Security

This chapter discusses the techniques of securing the router via different types of access security. Access
security is a broad term that includes the creation of users with various authorization levels or allowing access
to particular services or networks. Also included in access security is verifying that the router has not been
compromised and is performing as you expected. The topics covered include:

Security concepts

Securing access to the router

Firewall filters and policers

Spoof prevention

Router monitoring

6.1. Security Concepts

Everybody wants to have a secure network, but providing that security is often a very complex and difficult
process due to the multiple levels that need to be examined. For example, it does not do much good if you
provide very detailed filters and access privileges on a router, when the physical access is an unlocked door in a
wiring closet at a remote location. Security must not be an afterthought; it must be designed literally from the
ground up, from physical access to the network to filters that allow only certain types of traffic. When
implementing security at any layer, design toward the security concepts that are displayed in Figure 6-1:
integrity, availability, and confidentiality. These concepts will help to build the network's circle of trust.

Figure 6-1. Security circle of trust

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The first concept of security design is to ensure the integrity of the data. In other words, the data should not be
altered in any way without purpose. This includes data that could be modified by unauthorized personnel, but
does not exclude data manipulation by authorized personnel. Many network breaches are sourced from an
"insider," someone who either works or did work for the company. This could be a disgruntled employee who
decides to wreak havoc on the network because he never received his new office stapler! Also, data integrity
implies that the data is consistent across internal and external access-that is, a user should not have the
experience of making changes to a device from home only to discover that those changes were never
propagated to the network.

The next concept is availability, which is access to reliable and consistent data. You can divide availability into
two parts: data that needs to be accessible and the network elements to reach that system. This requires
elements such as system redundancy, along with Out-of-Band (OoB) network access to routers and switches.
For example, a router that is under a denial of service (DoS) attack may prevent remote access from one
location to fail; however, is there another way to reach the router to thwart the attack? Design your network
with the correct security tools; and most important, and often overlooked, make sure the tools actually work
before disaster strikes. In other words, what good does it do to have protection in place if you cannot log in to
the system to implement your tools or monitor and troubleshoot the devices? In recent years, horrible events
such as terrorist attacks, earthquakes, and tsunamis have reopened many people's eyes to the importance of
availability and redundancy.

Lastly is the confidentiality of the data; this means ensuring that unauthorized disclosure has not been
unintentionally or intentionally given. In the modern age of thumb drives, BlackBerry devices, Treos, and PCs,
the ability to access information has never been greater, and so are the security vulnerabilities. How many
times have users left themselves logged in to a cybercafé somewhere? It takes just a few seconds for an evil
network engineer lurking in the shadows to notice the open PC, log in to a router session that has been left
open, delete the configuration, and walk away, ecstatic.

Are you getting scared yet? We hope so. A security expert without any fear is a very naïve one! Security must
take a multiphase and dynamic approach; you will make mistakes, but the objective is to learn from those
mistakes, use the tools available to you, and make the necessary corrections so that you avoid those mistakes
later. Always remember: security is a process and not an event! As Homer said, "Even a fool may be wise after
the event." As we examine each topic in the remaining chapters, remember to think of the security circle of
trust and where each feature fits and enables your security to be a circle without holes.

6.1.1. Summary of Security Concepts

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Most people find the security concepts presented here to be somewhat common sense. The issue is that humans
are inherently lazy, and security by its very definition tends to get in the way of our need to access information.
The need for connectivity often overshadows the need to secure those communications, until the damage is
done and it is too late to plug the holes. Always keep these security principles in mind when designing a new
network or hardening an existing one.

The next section details ways to secure access to the router itself, which is a critical aspect of an overall security
plan.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 6. Access Security

This chapter discusses the techniques of securing the router via different types of access security. Access
security is a broad term that includes the creation of users with various authorization levels or allowing access
to particular services or networks. Also included in access security is verifying that the router has not been
compromised and is performing as you expected. The topics covered include:

Security concepts

Securing access to the router

Firewall filters and policers

Spoof prevention

Router monitoring

6.1. Security Concepts

Everybody wants to have a secure network, but providing that security is often a very complex and difficult
process due to the multiple levels that need to be examined. For example, it does not do much good if you
provide very detailed filters and access privileges on a router, when the physical access is an unlocked door in a
wiring closet at a remote location. Security must not be an afterthought; it must be designed literally from the
ground up, from physical access to the network to filters that allow only certain types of traffic. When
implementing security at any layer, design toward the security concepts that are displayed in Figure 6-1:
integrity, availability, and confidentiality. These concepts will help to build the network's circle of trust.

Figure 6-1. Security circle of trust

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The first concept of security design is to ensure the integrity of the data. In other words, the data should not be
altered in any way without purpose. This includes data that could be modified by unauthorized personnel, but
does not exclude data manipulation by authorized personnel. Many network breaches are sourced from an
"insider," someone who either works or did work for the company. This could be a disgruntled employee who
decides to wreak havoc on the network because he never received his new office stapler! Also, data integrity
implies that the data is consistent across internal and external access-that is, a user should not have the
experience of making changes to a device from home only to discover that those changes were never
propagated to the network.

The next concept is availability, which is access to reliable and consistent data. You can divide availability into
two parts: data that needs to be accessible and the network elements to reach that system. This requires
elements such as system redundancy, along with Out-of-Band (OoB) network access to routers and switches.
For example, a router that is under a denial of service (DoS) attack may prevent remote access from one
location to fail; however, is there another way to reach the router to thwart the attack? Design your network
with the correct security tools; and most important, and often overlooked, make sure the tools actually work
before disaster strikes. In other words, what good does it do to have protection in place if you cannot log in to
the system to implement your tools or monitor and troubleshoot the devices? In recent years, horrible events
such as terrorist attacks, earthquakes, and tsunamis have reopened many people's eyes to the importance of
availability and redundancy.

Lastly is the confidentiality of the data; this means ensuring that unauthorized disclosure has not been
unintentionally or intentionally given. In the modern age of thumb drives, BlackBerry devices, Treos, and PCs,
the ability to access information has never been greater, and so are the security vulnerabilities. How many
times have users left themselves logged in to a cybercafé somewhere? It takes just a few seconds for an evil
network engineer lurking in the shadows to notice the open PC, log in to a router session that has been left
open, delete the configuration, and walk away, ecstatic.

Are you getting scared yet? We hope so. A security expert without any fear is a very naïve one! Security must
take a multiphase and dynamic approach; you will make mistakes, but the objective is to learn from those
mistakes, use the tools available to you, and make the necessary corrections so that you avoid those mistakes
later. Always remember: security is a process and not an event! As Homer said, "Even a fool may be wise after
the event." As we examine each topic in the remaining chapters, remember to think of the security circle of
trust and where each feature fits and enables your security to be a circle without holes.

6.1.1. Summary of Security Concepts

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Most people find the security concepts presented here to be somewhat common sense. The issue is that humans
are inherently lazy, and security by its very definition tends to get in the way of our need to access information.
The need for connectivity often overshadows the need to secure those communications, until the damage is
done and it is too late to plug the holes. Always keep these security principles in mind when designing a new
network or hardening an existing one.

The next section details ways to secure access to the router itself, which is a critical aspect of an overall security
plan.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.2. Securing Access to the Router

The goal of this chapter is to secure the network in Figure 6-2, which consists of three routers-Ale, PBR, and

Bock-that are running Open Shortest Path First (OSPF) as the Interior Gateway Protocol (IGP). PBR connects to

multiple Internet service providers (ISPs) via the Border Gateway Protocol (BGP). Various types of traffic are
sent and received from the two ISPs, including web browsing, email, and a variety of remote accounting and
engineering applications. The first step will be to secure access to Ale, PBR, and Bock so that only authorized

users have access to each router.

Figure 6-2. Network topology

6.2.1. User Authentication

There are two types of users on a Juniper Networks router-a nonroot user and a root user, both of which must
be secured. Recall that user root is the only user who is predefined by default, accessible only via the console
port without any default password. You must set a root password before the router will allow you to commit the
configuration. To set up a root password, issue to the user the root-authentication keyword under the [edit

system] level:

lab@Bock# set system root-authentication ?

Possible completions:

+ apply-groups Groups from which to inherit configuration

 data

+ apply-groups-except Don't inherit configuration data from these

 groups

 encrypted-password Encrypted password string

 load-key-file File (URL) containing one or more ssh keys

 plain-text-password Prompt for plain text password (autoencrypted)

> ssh-dsa Secure shell (ssh) DSA public key string

> ssh-rsa Secure shell (ssh) RSA public key string

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Remember that user root is very powerful. When logged in as root, you are placed

directly into the kernel in the form of a BSD shell! As a result, root can log in only via

the console port, by default. You can enable Secure Shell (SSH) by using the set

system services ssh root-login allow command.

The password can either be a plain-text password that will be encrypted automatically in the configuration, an
SSH key, or an encrypted string for copying and pasting to other routers. In this case, a password of
Bia&abi55a is supplied:

lab@Bock# set system root-authentication plain-text-password

New password:

Retype new password:

When issuing a plain text password, JUNOS has some default requirements for password
length and content. The password must be between six and 128 characters and must
contain one change of case or special character. You can modify these defaults under
[edit system password].

Once the password is set on Bock, it automatically becomes encrypted:

lab@Bock# show system root-authentication

encrypted-password "1i0LTVCdC$2jViYwTCG.kET399/uF/y0";

SECRET-DATA

The encrypted string is now copied to other routers (PBR and Ale) without needing knowledge of the actual

password:

lab@PBR# load merge terminal relative

[Type ^D at a new line to end input]

encrypted-password "1i0LTVCdC$2jViYwTCG.kET399/uF/y0";

SECRET-DATA

load complete

[edit system root-authentication]

lab@PBR# show

encrypted-password "1i0LTVCdC$2jViYwTCG.kET399/uF/y0";

SECRET-DATA

Next, nonroot users are configured. These users can be defined with local user passwords and permissions, or
an external server such as RADIUS or TACACS could be used. In either case, three items need to be configured
for the user:

Username

Permissions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Password

A user or user template must always be configured on the router, but the permissions and password could be
configured on an external server. To illustrate the possible options, this scenario has the following six
requirements:

Define two local users, doug and harry, and provide them with maximum access.1.

A group will be created for the NOC group consisting of 15 engineers. Each NOC engineer will have his
own username, but will share the same permissions of read-only commands and maintenance commands
for troubleshooting.

2.

A group will be created for the design engineer group, consisting of three engineers. This group will have
full access to all command-line interface (CLI) commands, except for the restart and request

commands.

3.

All users will be authenticated using a RADIUS server with a shared secret of "brianbosworth."4.

Authorization is defined on the local router.5.

If the RADIUS server is down, only harry and doug may log in to the router.6.

One user that is not explored in this case study is the remote user. This is a user that
could be created for use on the router if the authenticated user does not exist on the
local router or if the authenticated user's record in the authentication server specifies a
local user. You can think of this as a default fallback account.

Each user defined must be associated with a login class, which assigns the permissions for a user. The login
class can be one of the four default classes listed in Table 6-1, or a custom-defined class.

Table 6-1. Predefined JUNOS user classes

Class Permissions

superuser or super-user All

read-only View

operator Clear, Network, Reset, Trace, View

unauthorized None

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Users harry and doug require maximum access, so it makes sense to use a predefined JUNOS software class

called super-user. Here we show the step-by-step process for harry only, as user doug has identical steps:

lab@Ale# set system login user harry class super-user authentication

plain-text-password

New password:

Retype new password:

[edit]

lab@Ale# show system login

user harry {

 class super-user;

 authentication {

 encrypted-password "1oOspqmHP$jlxUul0cAgPq3j88/7WQP/";

 ## SECRET-DATA

 }

}

For brevity and sanity, the configuration examples show one router, but the reader
should assume that the configuration is copied to all routers in the network.

Next, a group of 15 NOC engineers are defined. Since configuring 15 local users will be a pain to manage and
tiresome to type, we will use a user template. A user template allows multiple users defined on the RADIUS
server with unique passwords to be grouped to a single local Juniper user. Since a predefined class will not
satisfy the authorization level for the NOC engineers of read-only and maintenance commands, we will define a
custom class:

[edit system login]

lab@Ale# set class ops permissions [view maintenance trace]

Refer to the access-privilege technical documentation to see each command that is
allowed for every permission setting.

Next, we assign the user ops the new class, also called ops:

[edit system login]

lab@Ale# set user ops class ops

[edit system login]

lab@Ale# show class ops

permissions [trace view maintenance];

lab@Ale# show user ops

uid 2000;

class ops;

The RADIUS server will then have 15 users defined that all map to the same Juniper-local user of ops. For

http://lib.ommolketab.ir
http://lib.ommolketab.ir

example, the configuration for 2 of the 15 users using a RADIUS server would be similar to the following:

bruiser Auth-Type = Local, Password = "iamaDog"

 Service-Type = Login-User,

 Juniper-Local-User-Name = "ops"

josh Auth-Type = Local, Password = "plumper1"

 Service-Type = Login-User,

 Juniper-Local-User-Name = "ops"

The design engineer group requirement will also use a template but will make use of special allow and deny

commands that we can also define in a class. If the permission bits that are set are too broad, we can deny
individual commands within the permission settings. (And vice versa; if we need an additional command or set
of commands that go beyond the permission setting, we can allow them.) These allow and deny statements

could be a single command or a group of commands using regular expressions. They are also separated in
allow or deny operational mode commands or configuration mode:

[edit system login]

lab@Ale# set class design ?

Possible completions:

 allow-commands Regular expression for commands to allow explicitly

 allow-configuration Regular expression for configure to allow explicitly

+ apply-groups Groups from which to inherit configuration data

+ apply-groups-except Don't inherit configuration data from these groups

 deny-commands Regular expression for commands to deny explicitly

 deny-configuration Regular expression for configure to deny explicitly

 idle-timeout Maximum idle time before logout (minutes)

 login-alarms Display system alarms when logging in

 login-tip Display tip when logging in

+ permissions Set of permitted operation categories

The design engineer's class will have the permission bits set to all, and all commands that start with r

(request and restart) will be disallowed:

[edit system login]

lab@Ale# set class design permissions all

[edit system login]

lab@Ale# set class design deny-commands "^r.*$"

lab@Ale# set user design class design

Regular expressions are beyond the scope of the book, but here is a list of common
operators:

. (any character)

* (zero or more characters)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

^ (start of string to which the regex is applied)

$ (end of string to which the regex is applied)

? (zero or one character)

As mentioned, we can define users locally on the router or on an external server such as RADIUS or TACACS. In
this chapter's case study, we specified a RADIUS server earlier, in requirement 4. The RADIUS server's IP
address and secret password are configured:

[edit system]

design@Ale# set radius-server 10.20.130.5 secret brianbosworth

For the system to use the RADIUS server, we must configure the authentication-order statement. This

indicates which order of authentication method should be used, with the default being the local router database
only. In this section of our case study, we must decide between the following configuration choices:

authentication-order [radius password]1.

authentication-order [radius]2.

In either configuration, the local database will be consulted if the RADIUS server is down, so the difference
between the two options is evident when the RADIUS server returns a reject. This reject could be caused by a
mistyped password or a username that is not defined in the RADIUS server. In option 1, the RADIUS server
returns the reject and the local database will be consulted. Option 2 consults the local database only if the
RADIUS server is unresponsive; processing stops if the server returns a reject message. The requirements

state that the RADIUS server should always be used when available (as specified in option 1). If the RADIUS
server is not available, users doug and harry will be allowed to log in using the local database since they are

the only users with locally defined passwords on the router. These users are also defined on the RADIUS server:

 doug Auth-Type = Local, Password = "superbowlshuffle5"

 Service-Type = Login-User

Here is a complete system login configuration that meets all six of the criteria specified earlier:

Code View:
[edit system]

design@Ale# show

host-name Ale;

authentication-order radius password;

ports {

 console type vt100;

}

root-authentication {

 encrypted-password "$1$85xXcov4$fLHtgMlqxRSg24zO8Kbe81"; ##

 SECRET-DATA

}

radius-server {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 10.20.130.5 secret "9KdgW87db24aUcydsg4Dj69A0RSWLN24ZNd.5TFAt";

 ## SECRET-DATA

}

login {

 class design {

 permissions all;

 deny-commands "^r.*$";

 }

 class ops {

 permissions [trace view maintenance];

 }

 user design {

 uid 2004;

 class design;

 user harry {

 uid 2001;

 class super-user;

 authentication {

 encrypted-password "1oOspqmHP$jlxUul0cAgPq3j88/7WQP/";

 ## SECRET-DATA

 }

 }

 user doug {

 uid 2003;

 class superuser;

 authentication {

 encrypted-password "1ocs3AXkS$JdlQW7z4ZIJblfFZD.fqH/";

 ## SECRET-DATA

 }

 }

 user ops {

 uid 2000;

 class ops;

 }

}

services {

 ftp;

 ssh;

 telnet;

}

syslog {

 user * {

 any emergency;

 }

 file messages {

 any notice;

 authorization info;

 }

 file config-changes {

 change-log any;

 }

}

Lastly, to verify that the user has the correct permissions, log in to the router and issue a show cli

authorization command:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Code View:
design@Ale> show cli authorization

Current user: 'design ' class 'design'

Permissions:

 admin --Can view user accounts

 admin-control--Can modify user accounts

 clear --Can clear learned network information

 configure --Can enter configuration mode

 control --Can modify any configuration

 edit --Can edit full files

 field --Special for field (debug) support

 floppy --Can read and write from the floppy

 interface --Can view interface configuration

 interface-control--Can modify interface configuration

 network --Can access the network

 reset --Can reset/restart interfaces and daemons

 routing --Can view routing configuration

 routing-control--Can modify routing configuration

 shell --Can start a local shell

 snmp --Can view SNMP configuration

 snmp-control--Can modify SNMP configuration

 system --Can view system configuration

 system-control--Can modify system configuration

 trace --Can view trace file settings

 trace-control--Can modify trace file settings

 view --Can view current values and statistics

 maintenance --Can become the super-user

 firewall --Can view firewall configuration

 firewall-control--Can modify firewall configuration

 secret --Can view secret configuration

 secret-control--Can modify secret configuration

 rollback --Can rollback to previous configurations

 security --Can view security configuration

 security-control--Can modify security configuration

 access --Can view access configuration

 access-control--Can modify access configuration

 view-configuration--Can view all configuration (not including

 secrets)

Individual command authorization:

 Allow regular expression: none

 Deny regular expression: ^r.*$

 Allow configuration regular expression: none

 Deny configuration regular expression: none

6.2.2. Remote Access

After the users are configured on the router, we must decide what kind of remote access will be provided to the
router, as all methods are disabled by default. Here are the possible options:

Dynamic Host Configuration Protocol (DHCP)

Provides dynamic IP assignment from a pool of addresses to clients attached to the interface on a J-series
router only. This option is most often used for the auto-installation feature.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Finger

A protocol to get information about a user logged in to the router. This protocol is no longer used on a
large scale and should never be enabled on the router:

% finger lab@10.20.128.3

[10.20.128.3]

Login: lab Name:

Directory: /var/home/lab Shell: /usr/sbin/cli

On since Mon Sep 24 00:31 (UTC) on ttyd0, idle 0:01

No Mail.

No Plan.

%

FTP

Provides file transfer services. Although FTP is a widely used protocol, it transfers files in plain text, which
can lead to security issues. When possible, you should use secure copy (SCP).

Rlogin

The Remote login protocol, which allows remote login to the CLI. This Unix utility has several security
flaws and was used only in private environments. This utility is enabled by a hidden command on the
router and should never be enabled on the router.

A hidden command is a command that does not show up when you use ? in the

CLI and does not autocomplete with the Space bar. One of the most famous
hidden commands in JUNOS software is show version and haiku. Try it yourself

if you want to read some really bad poetry!

SSH

Allows for two devices to communicate over an encrypted tunnel. This ensures not only availability, but
also data integrity and confidentiality. When SSH is enabled, this automatically enables SCP.

Telnet

A common protocol to remotely manage a system developed in 1969. Telnet transits all data in clear

http://lib.ommolketab.ir
http://lib.ommolketab.ir

text, so you should use SSH when possible.

Web management

Enables the use of the jweb web GUI on the router for management and configuration. These can be
either encrypted or unencrypted Hypertext Transfer Protocol (HTTP) connections.

JUNOScript server

Enables the router to receive commands from a JUNOScript server via clear text or Secure Sockets Layer
(SSL) connections.

Netconf

The Network Configuration protocol, which is defined in RFC 4741 and uses XML for configuration and
messages. Netconf is the Internet Engineering Task Force (IETF) standard created as a replacement for
the Simple Network Management Protocol (SNMP) and is based on JUNOScript.

The most secure methods of remote access on the router will be SSH and transferring files using SCP. To enable
any service, simply set it under the [edit system services] directory:

[edit system services]

lab@Ale# set ?

Possible completions:

+ apply-groups Groups from which to inherit configuration

 data

+ apply-groups-except Don't inherit configuration data from these

 groups

> dhcp Configure DHCP server

> finger Allow finger requests from remote systems

> ftp Allow FTP file transfers

> netconf Allow NETCONF connections

> service-deployment Configuration for Service Deployment (SDXD)

 management application

> ssh Allow ssh access

> telnet Allow telnet login

> web-management Web management configuration

> xnm-clear-text Allow clear text-based JUNOScript connections

> xnm-ssl Allow SSL-based JUNOScript connections

Each service will have a variety of options, such as setting a maximum number of connections, rate-limiting the
inbound connections, and choosing a certain protocol version.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

XML Tags

JUNOScript is a tool you can use to configure and manage the router. Every JUNOS output and
configuration contains XML tags that can be referenced by a JUNOScript client. Here is an example
of a configuration and an operational command that displays the XML tags for each field:

Code View:
lab@PBR> show system users | display xml

<rpc-reply xmlns:junos="http://xml.juniper.net/junos/8.0R2/junos">

 <system-users-information xmlns="http://xml.juniper.net/junos/

 8.0R2/junos">

 <uptime-information>

 <date-time junos:seconds="1190796857">8:54AM</date-time>

 <up-time junos:seconds="207372">2 days, 9:36</up-time>

 <active-user-count junos:format="1 user">1</active-user-

 count>

 <load-average-1>0.06</load-average-1>

 <load-average-5>0.02</load-average-5>

 <load-average-15>0.00</load-average-15>

 <user-table>

 <user-entry>

 <user>lab</user>

 <tty>d0</tty>

 <from>-</from>

 <login-time junos:seconds="1190593874">Mon12AM</login-time>

 <idle-time junos:seconds="0">-</idle-time>

 <command>-cli (cli)</command>

 </user-entry>

 </user-table>

 </uptime-information>

 </system-users-information>

 <cli>

 <banner></banner>

 </cli>

</rpc-reply>

lab@PBR> show configuration routing-options | display xml

<rpc-reply xmlns:junos="http://xml.juniper.net/junos/8.0R2/junos">

 <configuration>

 <routing-options>

 <static>

 <route>

 <name>10.10.128.1/32</name>

 <next-hop>10.10.111.1</next-hop>

 </route>

 </static>

 </routing-options>

 </configuration>

 <cli>

 <banner></banner>

 </cli>

lab@Ale# set system services ssh ?

Possible completions:

 <[Enter]> Execute this command

http://lib.ommolketab.ir
http://lib.ommolketab.ir

+ apply-groups Groups from which to inherit configuration data

+ apply-groups-except Don't inherit configuration data from these groups

 connection-limit Maximum number of allowed connections (1..250)

+ protocol-version Specify ssh protocol versions supported

 rate-limit Maximum number of connections per minute

 (1..250)

 root-login Configure root access via ssh

 | Pipe through a command

In this case, SSH is enabled on the router using the default parameters of 150 connection attempts and 75
active sessions per minute:

[edit]

lab@Ale# set system services ssh

Bock then initiates a session to Ale. The first connection will need to establish the RSA fingerprint for

authentication:

lab@Bock> ssh 10.10.128.1

The authenticity of host '10.10.128.1 (10.10.128.1)' can't be

established.

RSA key fingerprint is 5d:f5:51:91:51:0e:ff:54:0c:f4:0a:07:51:3b:70:3a.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '10.10.128.1' (RSA) to the list of known

hosts.

lab@10.10.128.1's password:

--- JUNOS 8.0R2.8 built 2006-09-29 09:22:36 UTC

lab@Ale> exit

Connection to 10.10.128.1 closed.

However, once Ale is added to the list of known hosts, future sessions do not require reverification:

lab@Bock> ssh 10.10.128.1

lab@10.10.128.1's password:

--- JUNOS 8.0R2.8 built 2006-09-29 09:22:36 UTC

lab@Ale>

When SSH is enabled on the router, it also automatically enables SCP to initiate secure file exchanges. You can
upload or download files using variations of the file copy command. In this case, PBR transfers a file called

test to Ale. PBR must add Ale into its good hosts file:

lab@PBR> file copy test lab@10.10.128.1:test.txt

The authenticity of host '10.10.128.1 (10.10.128.1)' can't be

established.

RSA key fingerprint is 5d:f5:51:91:51:0e:ff:54:0c:f4:0a:07:51:3b:70:3a.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '10.10.128.1' (RSA) to the list of

known hosts.

lab@10.10.128.1's password:

test 100% 9480 9.3KB/s 00:00

After Ale is learned as a host, future transfers will pass the authentication check because both Ale and PBR

know each other as trusted hosts:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

lab@PBR> file copy test2 lab@10.10.128.1:test2.txt

lab@10.10.128.1's password:

test 100% 9480 9.3KB/s 00:00

6.2.3. Summary of Access Security

Routers are the very fabric of any IP-based network, making it critical that access be limited to only those users
that are authorized to access the system, and only for those tasks they are authorized to perform. JUNOS
software provides a variety of tools, ranging from local and remote authentication and authorization to secure
access and file transfer protocols, which make it easy to secure the router from unauthorized access and many
forms of DoS attacks.

The next section details packet-based (stateless) firewall filtering and policing capabilities, which are another
critical aspect of a total security solution.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.3. Firewall Filters

To protect the router, you can deploy packet filters to allow only certain traffic into the router's control plane
(Routing Engine [RE]). These filters have different names on each router OS, but they still operate in the same
stateless manner. On a Cisco device, these filters are called access lists, and on a Juniper router, they are called
firewall filters. These filters look similar to the policy we discussed in Chapter 3; however, filters operate on the
actual data-forwarding plane. Table 6-2 provides a comparison of the two features.

Table 6-2. Firewall filters versus routing policies

Feature Firewall filter Routing policy

Operates in... Forwarding plane Control plane

Match keyword from from

Action keyword then then

Match attributes Packet fields Route attributes

Default action Discard Depends on default policy

Applied to... Interfaces Routing protocols/tables

Named terms required Yes No

Chains allowed Yes Yes

Absence of from statement Match all Match all

Firewall filter syntax takes a human-friendly, intuitive form:

firewall {

 family inet {

 filter filter-1 {

 term term-1 {

 from {

 protocol tcp;

 destination-port telnet;

 }

 then {

 accept;

 }

 }

 }

 }

}

This filter matches on Telnet traffic and accepts the packets. As observed, the syntax is very similar to a routing
policy with the match conditions in the from term and the actions specified in a then term.

6.3.1. Filter Processing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Similar to a policy, a filter is made up of multiple terms, and each term is examined in the order listed. If there
is a match in a term and there is a terminating action, no other term is examined (see Figure 6-3). Terminating
actions are:

accept

Allows the packet through the filter

discard

Silently discards the packet

reject

Discards the packet with an Internet Control Message Protocol (ICMP) error message (the default is
administratively prohibited)

Action modifier

Any action modifier, such as log, count, syslog, and so on

The presence of an action modifier such as count without an explicit accept, discard,

or reject will result in a default action of accept. If the desired action is to discard or

reject the packet, it must be explicitly configured.

If the packet does not match any terms in the filter it is discarded.

Figure 6-3. Filter processing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You also can apply multiple filters to the interface, and in this case it operates in the same fashion down the
filter list until there is a terminating action. If no match occurred in the filter list, the packet is discarded (see
Figure 6-4).

Figure 6-4. Filter chaining

6.3.2. Filter Match Conditions

When examining the possible match conditions, the general rule of thumb is that if it is a field in the IP,
Transmission Control Protocol (TCP), User Datagram Protocol (UDP), or ICMP header, it is probably a potential
match:

Code View:
lab@PBR# set firewall family inet filter foo term 1 from ?

Possible completions:

> address Match IP source or destination address

+ apply-groups Groups from which to inherit configuration

 data

+ apply-groups-except Don't inherit configuration data from these

 groups

> destination-address Match IP destination address

+ destination-port Match TCP/UDP destination port

+ destination-port-except Do not match TCP/UDP destination port

 destination-prefix-list Match IP destination prefixes in named

 list

+ dscp Match Differentiated Services (DiffServ) code

 point

+ dscp-except Do not match Differentiated Services (DiffServ)

 code point

+ esp-spi Match IPSec ESP SPI value

+ esp-spi-except Do not match IPSec ESP SPI value

 first-fragment Match if packet is the first fragment

+ forwarding-class Match forwarding class

+ forwarding-class-except Do not match forwarding class

 fragment-flags Match fragment flags

+ fragment-offset Match fragment offset

+ fragment-offset-except Do not match fragment offset

+ icmp-code Match ICMP message code

+ icmp-code-except Do not match ICMP message code

+ icmp-type Match ICMP message type

+ icmp-type-except Do not match ICMP message type

> interface Match interface name

+ interface-group Match interface group

http://lib.ommolketab.ir
http://lib.ommolketab.ir

+ interface-group-except Do not match interface group

> interface-set Match interface in set

+ ip-options Match IP options

+ ip-options-except Do not match IP options

 is-fragment Match if packet is a fragment

+ packet-length Match packet length

+ packet-length-except Do not match packet length

+ port Match TCP/UDP source or destination port

+ port-except Do not match TCP/UDP source or destination

 port

+ precedence Match IP precedence value

+ precedence-except Do not match IP precedence value

> prefix-list Match IP source or destination prefixes in

 named list

+ protocol Match IP protocol type

+ protocol-except Do not match IP protocol type

> source-address Match IP source address

+ source-port Match TCP/UDP source port

+ source-port-except Do not match TCP/UDP source port

> source-prefix-list Match IP source prefixes in named list

 tcp-established Match packet of an established TCP connection

 tcp-flags Match TCP flags

 tcp-initial Match initial packet of a TCP connection

+ ttl Match IP ttl type

+ ttl-except Do not match IP ttl type

The match conditions fall into three general categories: numeric, address, and bit field matches (see Table 6-3).

Table 6-3. General match conditions

Numeric matches Address matches Bit fields

Protocol fields Source address IP options

Port numbers Destination address TCP flags

Class of service (CoS) fields Source-prefix lists IP fragmentation

ICMP type codes Destination-prefix lists Time to Live (TTL)

A term can have zero or many match conditions specified. The absence of a from statement creates a match all

condition, whereas multiple match conditions are treated as a logical AND or OR depending on common versus
uncommon match conditions. A common match is treated as a logical OR, which the router will group together
in square brackets. The filter example matches on TCP or UDP packets:

filter example {

 term common {

 from {

 protocol [tcp udp];

 }

 }

}

An uncommon match is treated as a logical AND. You can combine these logical ANDs and ORs in the same term

http://lib.ommolketab.ir
http://lib.ommolketab.ir

with limitless possibilities. Adding to the example, the following filter matches on TCP or UDP packets and port
123:

filter example {

 term common {

 from {

 protocol [tcp udp];

 port 123;

 }

 }

}

Also, numeric matches such as port or protocol values can either take the numeric match or the more user-
friendly keywords. For example, the first term and second term of the filter called same are equivalent, but the

second term is written in a more efficient and user-friendly method:

firewall {

 filter same {

 term numbers {

 from {

 protocol 6;

 port 23;

 }

 then accept;

 }

 term user-friendly {

 from {

 protocol tcp;

 port telnet;

 }

 then accept;

 }

 }

}

Bit field matching such as IP options and TCP flags also support numeric values or more
user-friendly terms. In these cases, the numeric support must be written in hex format,
so a TCP flag match for SYN packets could be written with the keyword syn or the value

0x2. No reason to break out the hex converter-make life easy and use the keywords!

6.3.2.1. Can your mother read this?

When writing a filter, always try to adhere to the KISS (Keep It Short and Simple) method. An individual
security element may not be that difficult, but when combined with other security functions as a whole, it can
contribute to a large web of complexity. In other words, try to create a filter that the average network engineer
can understand without compromising any security. A great start to reach this goal is to use the alpha names
for protocol, port numbers, and bit fields instead of the actual numerical values. Additionally, JUNOS has even
more to offer using text synonyms to map common bit mappings. These allow the casual reader to quickly
understand a filter at a glance and avoid panicked and hysterical research to find what service maps to a
numerical value (see Table 6-4).

Table 6-4. Text synonyms

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Text
synonym

Match
equivalent

Common use

first-

fragment

Offset = 0, MF =
1.

Match on the first fragment of a packet for counting and logging.

is-fragment Offset does not
equal zero.

Protect from fragmented DoS attacks.

tcp-

established

ACK or RST. Allow only established TCP sessions over an interface. This option does
not implicitly check that the protocol is TCP. Use the TCP match condition.

tcp-initial SYN and not ACK. Allow sessions to be initiated either inbound or outbound.

6.3.3. Filter Actions

Besides the terminating actions that we already discussed (accept, discard, and reject), other action

modifiers are commonly used. These include:

count <counter name>

Counts the total number of packets and bytes that match a term. You can view counters with the show

firewall command.

log

Records the packet header information and stores the information in memory on the router, which limits
the size to approximately 400 entries and clears upon a router reboot. To view the log, issue a show

firewall log command.

syslog

Records the packet header information and stores the log into a file or sends it to a syslog server. The
syslog facility of the firewall will allow any local file to be created for this information.

policer

Rate-limits traffic based on bandwidth and burst size limits (discussed later in this chapter).

forwarding-class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Sends packets to a forwarding class, which maps to a queue.

sample

Creates cflowd export records.

next term

Allows packets to match a term and then move on to the next term listed. Since the presence of any
action modifier implies an accept, this action allows packets to pass through to the next term. This is

often deployed when all packets need to be counted before being rejected farther in the chain.

6.3.4. Applying a Filter

The final step after writing the filter is to actually apply it to the interface. You can apply filters to either transit
or nontransit traffic. To apply a filter to transit traffic, apply the filter to any Packet Forwarding Engine (PFE)
interface as either an input or an output filter or as part of a list of filters. Filters are applied on a logical unit
basis:

Code View:
lab@hops# set interfaces fe-0/0/0 unit 0 family inet filter ?

Possible completions:

+ apply-groups Groups from which to inherit configuration data

+ apply-groups-except Don't inherit configuration data from these groups

 group Group to which interface belon

 input Name of filter applied to received packets

+ input-list List of filter modules applied to received packets

 output Name of filter applied to transmitted packets

+ output-list List of filter modules applied to transmitted packets

You can apply a single filter with the input or output command, or a list with input-

list or output-list, so why the option for both? Historically in JUNOS, only a single

filter could be applied per direction per unit, but in later code the concept of a list was
created. It is recommended that even if just a single filter is being applied to an
interface, to use the list command. This adds flexibility in adding more filters to the

chain at a later time.

To protect traffic to the router itself (local traffic), you can apply a filter of filter-list to the loopback interface
(see Figure 6-5). Local traffic is any packet that is destined to the router itself, such as routing protocols, ICMP,
SSH, and other management protocols.

Figure 6-5. Transit versus loopback filters

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.3.5. Case Study: Transit Filters

It is common to see a filter applied to the router's connection to the Internet. Before sitting down to begin
typing away on the router, always write down the goals of the filter. In this case study, all outbound traffic from
the network to the Internet is allowed while some traffic from the Internet will be filtered. The goals here are as
follows:

TCP connections are only allowed to be initiated outbound to the Internet, except to access a local web
server.

No fragmented ICMP or UDP packets should be allowed.

TCP fragments are allowed.

UDP packets should be allowed inbound for traceroutes and return traffic for outbound UDP connections.

Ping and traceroute are allowed outbound.

Traceroute is allowed inbound.

First create a prefix list for the internal subnets, which in this case are as follows:

10.10.128/22

10.20.128/22

10.10.12/22

[edit]

lab@PBR# set policy-options prefix-list internal-subnets 10.10.128/22

[edit]

lab@PBR# set policy-options prefix-list internal-subnets 10.20.128/22

[edit]

lab@PBR# set policy-options prefix-list internal-subnets 10.20.12/22

http://lib.ommolketab.ir
http://lib.ommolketab.ir

lab@PBR# show policy-options prefix-list internal-subnets

10.10.128.0/22;

10.10.12.0/22;

10.20.128.0/22;

Now the filter called internet-in will be examined with each term explained to match on the five goals stated

at the beginning of this case study. First, we define our first term to allow established TCP sessions inbound,
which are destined for internal subnets in the first term. The keyword tcp-established allows only packets

with a TCP flag of ack or rst. As a result of the implicit deny, all at the end of the filter list, this term will also

accomplish task 1, in allowing only outbound TCP sessions. Also, the fragment-offset keyword allows for

unfragmented packets or first packet fragments to be received as only the first fragmented packet has the
headers needed for the check:

lab@PBR# show firewall family inet

filter internet-in {

 term allow-established-tcp-sessions {

 from {

 destination-prefix-list {

 internal-subnets;

 }

 fragment-offset 0;

 tcp-established;

 protocol tcp;

 }

 then accept;

 }

Next, TCP connections are allowed to the web server at 10.20.12.9 using port numbers https (443) and 8080.
Port 80 connections are not allowed toward this web server to add an additional layer of security:

 term allow-webserver-connections {

 from {

 destination-address {

 10.20.12.9/32;

 }

 protocol tcp;

 destination-port [https 8080];

 }

 then accept;

 }

UDP and ICMP fragments are denied as these types of packets are normally used in popular DoS attacks. The
fragment-offset command is matching on all ICMP and UDP fragments, including the first packet. If is-

fragment and first-fragment were used, two terms would have been required:

term deny-udp-icmp-frags {

 from {

 fragment-offset 0-8191;

 protocol [icmp udp];

 }

 then {

 discard;

 }

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TCP fragments are allowed, however. Recall that the is-fragment keyword matches on all fragments except the

first fragment, which was matched in the first term of the filter:

 term allow-tcp-frags {

 from {

 is-fragment;

 protocol tcp;

 }

 then {

 accept;

 }

 }

Next, incoming UDP packets are allowed to internal subnets that are not fragments. This is to allow return traffic
for outbound UDP sessions as well as inbound traceroute packets that use UDP inbound:

 term allow-udp {

 from {

 destination-prefix-list {

 internal-subnets;

 }

 protocol udp;

 }

 then accept;

 }

Lastly, ping and traceroute are allowed outbound. Since this is an input filter, the return traffic is actually being
allowed in for both ping (echo replies) and traceroute (time exceed messages). Additionally, unreachable
messages are allowed in for any possible outbound error responses:

 term allow-some-icmp-outbound {

 from {

 destination-prefix-list {

 internal-subnets;

 }

 protocol icmp;

 icmp-type [echo-reply time-exceeded unreachable];

 }

 then accept;

 }

}

The filter is applied to both WAN interfaces on router PBR as the input list of one to allow for filter additions at a

later date:

Code View:
lab@PBR# show interfaces

fe-0/0/0 {

 vlan-tagging;

 unit 412 {

 description PBR-to-Wheat;

 vlan-id 412;

 family inet {

 rpf-check;

 filter {

 input-list internet-in;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 address 172.16.1.2/24;

 }

 }

 unit 413 {

 description PBR-to-Water;

 vlan-id 413;

 family inet {

 rpf-check fail-filter match-spoofs;

 filter {

 input-list internet-in; }

 address 64.8.12.6/27;

6.3.6. Case Study: Loopback Filters

Next, traffic destined to the router itself needs to be secured. The goals of this case study are to allow:

OSPF traffic

BGP traffic from configured peers only

SSH from internal subnets

Virtual Router Redundancy Protocol (VRRP) packets

Ping and traceroute

Domain Name System (DNS) replies

SNMP and Network Time Protocol (NTP)

First, define a prefix list for the internal subnets in your network:

lab@PBR# show policy-options

prefix-list internal-subnets {

 10.10.128.0/22;

 10.10.12.0/22;

 10.20.128.0/22;

}

Since BGP traffic should be from configured peers only, the apply-path command is used to avoid any IP

change issues or neighbor additions that may happen in the future. The apply-path allows configuration

elements to be matched when the prefix-list is applied by using regular expressions. In this case, this will

create a list of BGP peers for every BGP group configured due to the match all * regular expression:

prefix-list bgp-configured-peers {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 apply-path "protocols bgp group <*> neighbor <*>";

}

The filter protect-router is created with the first term allowing SSH traffic to and from the router due to the

port command, which matches on either the source or destination port:

 filter protect-router {

 term allow-ssh {

 from {

 source-prefix-list {

 internal-subnets;

 }

 protocol tcp;

 port ssh;

 }

 then accept;

 }

Create a term to allow for OSPF packets:

 term allow-ospf {

 from {

 protocol ospf;

 }

 then accept;

 }

Then take advantage of the prefix list that was previously created to allow only the configured BGP peer's
traffic:

 term allow-bgp {

 from {

 source-prefix-list {

 bgp-configured-peers;

 }

 protocol tcp;

 port bgp;

 }

 then accept;

 }

Allow VRRP traffic:

 term allow-vrrp {

 from {

 protocol vrrp;

 }

 then accept;

 }

Don't forget about DNS replies. Since these are stateless, filter the return traffic so that DNS resolution is
allowed in:

 term dns-replies {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 from {

 protocol udp;

 source-port 53;

 }

 then accept;

 }

SNMP is allowed:

 term snmp {

 from {

 protocol udp;

 port [snmp snmptrap];

 }

 then accept;

 }

Also allowed are UDP packets with a TTL of 1 for traceroute to operate:

 term traceroute {

 from {

 protocol udp;

 ttl 1;

 }

 then accept;

 }

Allow pings, traceroutes, and error messages:

 term allow-icmp {

 from {

 protocol icmp;

 icmp-type [echo-request echo-reply time-exceeded

 unreachable];

 }

 then accept;

 }

NTP is also allowed:

 term allow-ntp {

 from {

 prefix-list {

 internal-subnets;

 }

 protocol udp;

 port ntp;

 }

 then accept;

 }

Lastly, there is a term that denies all other traffic (which is the default) but allows this traffic to be counted as
well as logged to a syslog file:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 term match-denied {

 then {

 count bad-packets;

 syslog;

 discard;

 }

 }

 }

}

The filter is then applied to the loopback interface as an input filter. Even though it is just a single filter, it is
added as a list for future expansion:

lab@PBR# set interface lo0.0 family inet filter input-list

protect-router

This is a good point to dust off the commit confirmed to make sure the filter does not break the current

network or, worse yet, lock you out of the router:

[edit]

lab@PBR# commit confirmed

commit confirmed will be automatically rolled back in 10 minutes unless

confirmed

commit complete

commit confirmed will be rolled back in 10 minutes

[edit]

lab@PBR# commit

commit complete

6.3.7. Policers

To rate-limit traffic entering an interface, you can deploy a policer. The policers that are implemented in the
Juniper router are token-based and use the IP packet to limit based on bandwidth and bursts. The bandwidth is
measured as the average number of bits in over a one-second interval (see Figure 6-6). The burst size is the
number of bytes that can exceed the bandwidth constraints.

Figure 6-6. Bandwidth limit

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The burst size is what implements the policer's "token"-based behavior. The burst size will set the initial and
maximum sizes of a bucket in bytes (tokens) that would be accessed each time data needs to be sent. As a
packet is sent, the bucket bytes (tokens) are removed from the bucket. If there are not enough tokens to send
the packet, the packet will be policed. The bucket is then replenished at the bandwidth rate.

In Figure 6-7, a packet that bursts above the bandwidth limit is nonetheless sent, as there are enough tokens in
the bucket. After the packet is sent, the tokens are decreased based on the packet size.

Figure 6-7. Initial burst

Then, some time later, another packet needs to be sent that is also above the bandwidth limit. Since there are
no longer enough tokens left in the bucket, the packet is policed (see Figure 6-8).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 6-8. Empty token bucket

As time goes by, the bucket will replenish at a rate equal to the bandwidth limit. When a new packet arrives, it
can be sent, as tokens are now available in the bucket. This process continues over a one-second interval, and
the result is a rate equal to the bandwidth limit (see Figure 6-9).

Figure 6-9. Token bucket replenishing

6.3.7.1. Burst-size limit mystery

The setting of the burst size has always seemed to be a mystery for many operators. Set this value too low, and
potentially all packets will be policed. Set the value too high, and no packets will be policed. The rule of thumb
is that the burst size should never be lower than 10 times the maximum transmission unit (MTU). The

http://lib.ommolketab.ir
http://lib.ommolketab.ir

recommended value is to set the amount of traffic that can be sent over the interface in five milliseconds. So, if
your interface is a Fast Ethernet interface, the minimum is 15,000 bytes (10 * 1,500), and the recommended
value would be 62,500 bytes (12,500 bytes/ms * 5).

6.3.7.2. Policer actions

Once the policer limits have been configured, you must choose the action taken if a packet exceeds the policer.
Two types of policing are available: soft policing and hard policing. Hard policing specifies that the packet will be
dropped if it exceeds the policer's traffic profile. Soft policing simply marks the packet or reclassifies the packet,
which could change the probability of the packet being dropped at the egress interface during times of
congestion. Soft policing is implemented by either setting the packet loss priority (PLP) setting on the packet or
by placing the packet into a different forwarding class. We will examine these concepts further in Chapter 9.

6.3.7.3. Configuring and applying policers

Policers are configured under the [edit firewall] level. The policer will be named and then the burst size will

be applied in bytes/second, the bandwidth limit in bits/second, or the percentage of interface bandwidth set
along with the policer action. For example:

policer simple {

 if-exceeding {

 bandwidth-limit 50m;

 burst-size-limit 15k;

 }

 then discard;

}

Once you have configured the policer, you must apply it to an interface. You can do this in one of two ways:
either by applying the policer directly underneath the interface or by referencing the policer name in the firewall
filter. If you apply the policer directly to the interface, no match conditions can be used. If you reference the
policer in a filter, specific types of traffic can be policed as the entire toolkit of filter actions is allowed. You can
apply both an interface policer and a policer in a filter at the same time. In this case, a kind of hierarchical
policing is used as interface policers are evaluated before input filters and after output filters. Figure 6-10 shows
policer processing.

Figure 6-10. Policer processing

Since you can apply the same filter to multiple interfaces, you can apply the same
policer to multiple interfaces. In this case, the aggregate bandwidth of all the interfaces
is examined before any policing parameters. To avoid this behavior and create a
separate instance for each interface, include the interface-specific command in the

filter. This will create unique policers and counters for each interface to which the filter is
applied.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.3.7.4. Policer example

In this section, we will examine a very simple two-level policer that:

Limits virtual LAN (VLAN) 1241 to 1 MB with a burst size of 5,000 bytes

Limits FTP to 10% of the bandwidth and ICMP to 500,000 bits per second

First, the policers are defined under the firewall level:

Code View:
lab@Bock# show firewall

policer total-int {

 if-exceeding {

 bandwidth-limit 1m;

 burst-size-limit 5k;

 }

 then discard;

}

policer limit-ftp {

 if-exceeding {

 bandwidth-percent 10;

 burst-size-limit 500k;

 }

 then discard;

}

policer police-icmp {

 if-exceeding {

 bandwidth-limit 500k;

 burst-size-limit 500k;

 }

 then discard;

}

Then a filter is created to match on FTP and ICMP traffic to limit each application to certain thresholds. The
interface-specific keyword is used to create a unique instance if the filter if applied to multiple interfaces.

This is required if a policer is referenced that uses bandwidth percentage such as the limit-ftp policer:

Code View:
firewall {

 family inet {

 filter police-traffic {

 interface-specific;

 term police-ftp {

 from {

 protocol tcp;

 port [ftp ftp-data];

 }

 then policer limit-ftp;

 }

 term police-icmp {

 from {

 protocol icmp;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 then policer police-icmp;

 }

 term catch-all {

 then accept;

 }

 }

 }

}

Apply the filter and policer to the interface:

lab@Bock# show interfaces fe-0/0/0

vlan-tagging;

unit 1241 {

 description Bock-to-PBR;

 vlan-id 1241;

 family inet {

 filter {

 input-list police-traffic;

 }

 policer {

 input total-int;

 }

 address 10.20.130.1/24;

 }

}

To verify whether the policer is applied, issue a show interfaces policers command:

Code View:
lab@Bock> show interfaces policers

Interface Admin Link Proto Input Policer Output Policer

fe-0/0/0 up up

fe-0/0/0.1241 up up inet total-int-fe-0/0/0.1241-inet-i

gr-0/0/0 up up

ip-0/0/0 up up

ls-0/0/0 up up

lt-0/0/0 up up

mt-0/0/0 up up

pd-0/0/0 up up

pe-0/0/0 up up

sp-0/0/0 up up

sp-0/0/0.16383 up up inet

fe-0/0/1 up up

fe-0/0/1.100 up up inet

t1-0/0/2 up up

t1-0/0/2.0 up down inet

t1-0/0/3 up up

dsc up up

gre up up

ipip up up

lo0 up up

lo0.0 up up inet

lo0.16385 up up inet

http://lib.ommolketab.ir
http://lib.ommolketab.ir

lsi up up

mtun up up

pimd up up

pime up up

pp0 up up

tap up up

To examine whether packets are exceeding the traffic parameters, view the policer counters. For interface
policers, you can see packet counts with the show policer command:

lab@Bock> show policer total-int-fe-0/0/0.1241-inet-i

Policers:

Name Packets

total-int-fe-0/0/0.1241-inet-i 5

Policers that are referenced in a firewall filter automatically get counters created for them based on the policer
name, interface applied, and direction. You can view these in the same command as normal counters for filters,
with the show firewall command:

lab@Bock> show firewall

Filter: fe-0/0/0.1241-i

Policers:

Name Packets

police-icmp-police-icmp-fe-0/0/0.1241-i 0

limit-ftp-police-ftp-fe-0/0/0.1241-i 0

Filter: _ _default_bpdu_filter_ _

Filter: police-traffic

Policers:

Name Packets

police-icmp-police-icmp 0

limit-ftp-police-ftp 0

A difficulty is determining how much traffic the policer is allowing to ascertain if the exceeding parameters are
too large or too small. You can do this using the policer counters, interface statistics, and a little math. First,
determine the byte-per-packet size the policer sees by dividing the bytes by the number of packets as seen by
the policer counter. Then, multiply the egress rate in packets per second by the per-packet size and 8 bits to
get the bytes per second.

For example, say the policer counter claimed 1,406,950 bytes and 18,494 packets exceeded the policer. This
would calculate to an average per-packet size of 76 bytes (1,406,950/18,494). Then, via the show interfaces

command, the interface rate would be determined to be 203 packets per second (pps). So, 203 pps multiplied
by 76 bytes divided by a packet time of 8 bits per second will provide a bytes-per-second rate of 123,424,
which should be close to the configured bandwidth rate.

6.3.8. Summary of Firewall Filters and Policers

Stateless firewall filters offer the advantage of high-speed processing, which allows you to maintain local control
plane and transit security at near-wire-rate speeds. The easy-to-read and intuitive nature of JUNOS filter and
policer syntax makes it easy to create, deploy, monitor, and modify filters.

You may also consider the use of stateful firewall filtering, which provides for enhanced packet and application
layer processing, using the techniques covered in Chapter 7, Chapter 8, and Chapter 11. The flexibility of JUNOS
software allows you to choose which solution is best for a specific set of needs and, when desired, to use both

http://lib.ommolketab.ir
http://lib.ommolketab.ir

types of filtering for an optimal security and performance solution.

The next section details ways in which JUNOS can help to prevent the use of bogus source addressing, which is
a common occurrence in a distributed DoS (DDoS) attack.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.4. Spoof Prevention (uRPF)

Many distributed DoS attacks take advantage of address "spoofing" by randomly selecting an address in the
source field of IP packets. In some attacks, this source address is deterministic to the target network under
attack. In other words, this address will be taken out of the network's address block to create attacks on other
internal machines generating ICMP error messages or other traffic back to the spoofed addresses. You can
protect yourself from these types of attacks by applying ingress filtering at the edge of your network, which
denies incoming packets with addresses out of the network's address block. This filtering has traditionally been
solved with an inbound packet filter.

Referring back to the topology in Figure 6-2, note that three internal address blocks are assigned to PBR, Ale,

and Bock's network:

10.10.128/22
10.20.128/22
10.10.12/22

So, a simple filter would deny any addresses from those address blocks coming from the WAN connection off
PBR:

Code View:
[edit firewall]

lab@PBR# show

family inet {

 filter spoof-prevention {

 term my-addresses {

 from {

 source-address {

 10.10.128.0/22;

 10.20.128.0/22;

 10.10.12.0/22;

 }

 }

 then {

 count spoofs;

 log;

 discard;

 }

 }

 term allow-rest {

 then count no-spoof;

 }

 }

}

Apply the firewall filter as an input filter on fe-0/0/0.412 and fe-0/0/0.413:

Code View:
lab@PBR# show interfaces fe-0/0/0

vlan-tagging;

unit 412 {

 description PBR-to-Wheat;

 vlan-id 412;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 family inet {

 filter {

 input-list spoof-prevention;

 }

 address 172.16.1.2/24;

 }

}

unit 413 {

 description PBR-to-Water;

 vlan-id 413;

 family inet {

 filter {

 input-list spoof-prevention;

 }

 address 64.8.12.6/27;

 }

}

After applying the filter, we can see that spoofed addresses are being properly denied over PBR's fe-0/00.413

interface, as shown in the firewall log:

Code View:
lab@PBR> show firewall log

Log :

Time Filter Action Interface Protocol Src Addr Dest Addr

01:39:18 pfe D fe-0/0/0.413 ICMP 10.10.12.3 10.20.128.3

01:39:17 pfe D fe-0/0/0.413 ICMP 10.10.12.3 10.20.128.3

01:39:16 pfe D fe-0/0/0.413 ICMP 10.10.12.3 10.20.128.3

01:39:15 pfe D fe-0/0/0.413 ICMP 10.10.12.3 10.20.128.3

01:39:14 pfe D fe-0/0/0.413 ICMP 10.10.12.3 10.20.128.3

01:39:13 pfe D fe-0/0/0.413 ICMP 10.10.12.3 10.20.128.3

01:39:12 pfe D fe-0/0/0.413 ICMP 10.10.12.3 10.20.128.3

01:39:11 pfe D fe-0/0/0.413 ICMP 10.10.12.3 10.20.128.3

01:39:10 pfe D fe-0/0/0.413 ICMP 10.10.12.3 10.20.128.3

01:39:09 pfe D fe-0/0/0.413 ICMP 10.10.12.3 10.20.128.3

The problem with ingress firewall filters is that you must update them manually when an address block or
network changes. A more dynamic method that has been developed to prevent spoofing is called unicast
Reverse Path Forwarding (uRPF). RPF is a mechanism that is used in multicast networks to avoid looping based
on the source IP address (the reverse path), not the destination IP address. In essence, the source IP address is
compared against the route table to see whether it was learned over that interface. If the packet was received
via the incoming interface on which it was learned, it is accepted; if not, the packet will be dropped.

This concept has now been extended to Unicast packets for spoof prevention to create dynamic filters based on
the route table. The mechanism will remain the same, in that the source IP address will need to be "verified" for
incoming packets. Unicast RPF can operate on one of two modes:

Strict

The incoming packet must be received on the interface that would be used to forward traffic to the source

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IP address. Strict mode is the default.

Loose

The incoming packet's source address must be in the route table.

Strict mode provides a reliable, simple, fast, and cheap filter at the edge of any network. The configuration to
enable strict mode is quite simple; just add the rpf-check command under the proper interface:

lab@PBR# show interfaces fe-0/0/0

vlan-tagging;

unit 412 {

 description PBR-to-Wheat;

 vlan-id 412;

 family inet {

 rpf-check;

 address 172.16.1.2/24;

 }

}

unit 413 {

 description PBR-to-Water;

 vlan-id 413;

 family inet {

 rpf-check;

 address 64.8.12.6/27;

 }

}

Verify that uRPF is enabled by looking for the uRPF flag in the interface:

[edit]

lab@PBR# run show interfaces fe-0/0/0.413 | match uRPF

 Flags: uRPF

The packets that fail the RPF check are automatically counted on the interface:

[edit]

lab@PBR# run show interfaces fe-0/0/0.413 extensive | match RPF

 Flags: uRPF

 RPF Failures: Packets: 8, Bytes: 672

Strict mode is the preferred solution when possible, but it does run into some problems under certain scenarios.
In particular, it assumes symmetrical traffic flows. In the case of a BGP multihoming environment or redundant
IGP paths, this may not always be the case.

Remember that the default load balancing for a Juniper router is to choose a single next
hop to install in the forwarding table per destination.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PBR is multihomed to two ISPs (see Figure 6-11) and receives the same set of routes from each; however, only

the route received from autonomous system (AS) 666 is active.

Figure 6-11. Multihoming

Code View:
lab@PBR# run show bgp summary

Groups: 2 Peers: 2 Down peers: 0

Table Tot Paths Act Paths Suppressed History Damp State Pending

inet.0 497 249 0 0 0 0

Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn

State|#Active/Received/Damped...

64.8.12.5 666 1239 1114 0 0 9:15:56 248/248/0

0/0/0

172.16.1.1 420 1354 1238 0 0 9:15:26 0/248/0

0/0/0

This means that any traffic received from AS 420 that is an inactive route will fail the RPF check. An example is
the 128.3/16 address block:

[edit]

lab@PBR# run show route 128.3.3.4

inet.0: 264 destinations, 513 routes (264 active, 0 holddown, 1 hidden)

+ = Active Route, - = Last Active, * = Both

128.3.0.0/16 *[BGP/170] 09:20:20, localpref 100

 AS path: 666 11537 293 16 I

 > to 64.8.12.5 via fe-0/0/0.413

 [BGP/170] 09:19:50, localpref 100

 AS path: 420 666 11537 293 16 I

 > to 172.16.1.1 via fe-0/0/0.412

Since JUNOS performs uRPF against active paths only, in order to allow for multihoming or asymmetric traffic
flows you can configure a feature called feasible paths. This knob allows every possible path in the route table to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

be considered, including active and inactive paths. You enable this global command for the entire router under
the [edit routing-options] stanza:

lab@PBR# show routing-options

aggregate {

 route 10.10.128.0/22;

 route 10.20.128.0/22;

 route 10.10.12.3/32;

}

autonomous-system 1282;

forwarding-table {

 unicast-reverse-path feasible-paths;

}

Loose RPF provides less security, as it verifies only that the route is in the route table and does not check which
interface it points to. This is more of a route presence check than an actual verification of the reverse path. The
only benefit would be for route martians, or packets that are not currently being routed. One such example
could be a private RFC 1918 address if only publicly routable addresses are used in the network. Since loose
mode sacrifices directionality, it is not a recommended approach to spoof prevention and has limited scope.

Another problem with loose mode occurs when a default route is present in the table. In
this case, every packet would pass the check and thus uRPF checks would be negated.
Strict mode with a default route will still verify that the packet entered on the interface
to which the default route points.

To enable loose mode on an interface, specify the loose command after turning on uRPF:

lab@PBR# set interfaces fe-0/0/0.412 family inet rpf-check mode loose

Other filters could still be applied to the interface when uRPF mode is enabled; in this case, the input filter is
examined first, and the uRPF checks process only the traffic that passes this filter. Due to this processing, it is
hard to perform a log action for packets that failed the RPF filter. In this instance, you can configure a fail filter.
A fail filter is performed after the RPF check and on all traffic that has failed the RPF check (see Figure 6-12).

Figure 6-12. Firewall filter and uRPF relationship

You can use a fail filter to:

Allow traffic that would normally fail an RPF check, such as DHCP on a LAN interface

Allow traffic that would normally fail an RPF check to be accepted and counted

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Allow failed traffic to be processed by a filter modifier such as counting or logging

An example of the first filter could be DHCP requests that would always fail an RPF check:

filter rpf-dhcp {

 term dhcp {

 from {

 source-address {

 0.0.0.0/32;

 }

 destination-address {

 255.255.255.255/32;

 }

 }

 then accept;

 }

 }

 }

If traffic that fails the RPF check should be further examined, you also can use a fail filter. The following filter
would be able to log all packets that are failing the RPF check:

filter match-spoofs {

 term 1 {

 then {

 log;

 discard;

 }

 }

}

Apply the fail filter to the interface:

[edit interfaced fe-0/0/0]

lab@PBR# show

unit 413 {

 description PBR-to-Water;

 vlan-id 413;

 family inet {

 rpf-check fail-filter match-spoofs;

 address 64.8.12.6/27;

 }

}

View the packets that are failing uRPF by examining the firewall log:

Code View:
lab@PBR# run show firewall log

Log :

Time Filter Action Interface Protocol Src Addr Dest Addr

02:23:59 pfe D fe-0/0/0.413 ICMP 10.10.12.3 10.20.128.3

02:23:58 pfe D fe-0/0/0.413 ICMP 10.10.12.3 10.20.128.3

02:23:57 pfe D fe-0/0/0.413 ICMP 10.10.12.3 10.20.128.3

02:23:56 pfe D fe-0/0/0.413 ICMP 10.10.12.3 10.20.128.3

http://lib.ommolketab.ir
http://lib.ommolketab.ir

02:23:55 pfe D fe-0/0/0.413 ICMP 10.10.12.3 10.20.128.3

02:23:54 pfe D fe-0/0/0.413 ICMP 10.10.12.3 10.20.128.3

02:23:53 pfe D fe-0/0/0.413 ICMP 10.10.12.3 10.20.128.3

02:23:52 pfe D fe-0/0/0.413 ICMP 10.10.12.3 10.20.128.3

6.4.1. Summary of Spoof Prevention

Current best practices suggest that all source addresses should be validated as close to the ingress point of
traffic as is possible. Historically, the added processing led to poor forwarding performance due to a lack of
processing resources. This often resulted in a total lack of address enforcement, and the resulting ease in which
DDoS attacks can be successfully launched.

The unique design of JUNOS software allows you to enable spoof prevention features while still maintaining a
high level of forwarding performance.

The next section details ways that JUNOS can help monitor the router to actively and proactively determine the
presence of attacks.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.5. Monitoring the Router

Once the access configuration is in place, you should monitor the router for health and analysis. The two
primary methods of remote monitoring are via SNMP and syslog (system logging). SNMP is a way to gather
statistics and other event information off the router, whereas syslog is used to gather various log messages off
the router. To validate these types of messages, you should use proper time and date stamping, which is often
implemented by using NTP.

6.5.1. Syslog

Syslog was originally developed as a method to send information for the sendmail application in BSD, but it was
so useful that it was extended to other applications and operating systems. Essentially, syslog is a standard way
to send log messages across an IP network.

Syslog describes the actual transport mechanism used to send these messages and is often used to describe the
actual application that is sending them. Originally, it was an "industry" standard and was not attached to an
informational RFC until 2001, with RFC 3164, "The BSD Syslog Protocol."

Syslog messages are sent over UDP with a destination port of 514. The IP transport mechanism is defined and
not the actual syslog content. It is left to the discretion of the application or system coder to create an
informative message to the receiver. The message always contains a message severity level and a facility level.
The facility level can be defined as the type of message that is being sent, and the severity level indicates the
message's importance. Table 6-5 defines the severity levels.

Table 6-5. Syslog severity levels

Numerical code Severity

0 Emergency: system is unusable

1 Alert: action must be taken immediately

2 Critical: critical conditions

3 Error: error conditions

4 Warning: warning conditions

5 Notice: normal but significant condition

6 Informational: informational messages

7 Debug: debug-level messages

Table 6-6 lists the facility levels that are available in JUNOS.

Table 6-6. Syslog facility levels

Facility Description

Any All facilities (all messages)

Authorization Authentication and authorization attempts

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Facility Description

Change-Log Changes to the configuration

Conflict-Log Specified configuration is invalid on the routing platform type

Daemon Actions performed or errors encountered by system processes

DFC Events related to dynamic flow capture

Firewall Packet filtering actions performed by a firewall filter

FTP Actions performed or errors encountered by the FTP process

Interactive commands Commands executed by the user interface

Kernel Actions performed or errors encountered by the JUNOS kernel

PFE Actions performed or errors encountered by the Packet Forwarding Engine

User Actions performed or errors encountered by user-space processes

The default system log is called "messages"; you can view it with the show log messages command:

Code View:
lab@PBR> show log messages

Nov 20 06:00:00 PBR newsyslog[2858]: logfile turned over due to size>128K

Nov 21 09:47:59 PBR login: LOGIN_PAM_AUTHENTICATION_ERROR: PAM authentication error

 for user lab

Nov 21 09:47:59 PBR login: LOGIN_FAILED: Login failed for user lab from host

Nov 21 09:48:03 PBR login: LOGIN_INFORMATION: User lab logged in from host [unknown]

 on device ttyd0

Nov 21 09:48:06 PBR mgd[2978]: UI_DBASE_LOGIN_EVENT: User 'lab' entering

 configuration mode

Nov 21 09:54:36 PBR mgd[2978]: UI_DBASE_LOGOUT_EVENT: User 'lab' exiting

 configuration mode

Nov 21 09:54:55 PBR mgd[2978]: UI_REBOOT_EVENT: System rebooted by 'lab'

Nov 21 09:55:09 PBR /kernel: KERNEL_MEMORY_CRITICAL: System low on free memory,

 notifying init (#1).

Nov 21 09:55:09 PBR rpd[2800]: Received low-memory signal: no job active, 34 free

 pages

Nov 21 09:55:09 PBR rpd[2800]: Processing low memory signal

Nov 21 09:55:49 PBR shutdown: reboot by lab:

Nov 21 09:55:49 PBR init: watchdog (PID 2768) terminate signal sent

Nov 21 09:55:49 PBR init: chassis-control (PID 2770) terminate signal sent

Nov 21 09:55:49 PBR init: alarm-control (PID 2771) terminate signal sent

Nov 21 09:55:49 PBR craftd[2772]: craftd_user_conn_shutdown: socket 8, errno = 0

Nov 21 09:55:49 PBR init: craft-control (PID 2772) terminate signal sent

Nov 21 09:55:49 PBR snmpd[2811]: SNMPD_CLOSE_SA_IPC: ipc_free_local: closed IPC

 socket /var/run/craft

Nov 21 09:55:49 PBR init: management (PID 2773) terminate signal sent

Nov 21 09:55:49 PBR init: inet-process (PID 2775) terminate signal sent

Nov 21 09:55:49 PBR init: syslogd (PID 2682) terminate signal sent

Nov 21 09:55:49 PBR init: ecc-error-logging (PID 2779) terminate signal sent

Nov 21 09:55:49 PBR init: forwarding (PID 2780) terminate signal sent

Nov 21 09:55:49 PBR init: usb-control (PID 2781) terminate signal sent

Nov 21 09:55:49 PBR init: mib-process (PID 2799) terminate signal sent

Nov 21 09:55:49 PBR snmpd[2811]: SNMPD_CLOSE_SA_IPC: ipc_free_local: closed IPC

 socket /var/run/mib2d

Change-Log Changes to the configuration

Conflict-Log Specified configuration is invalid on the routing platform type

Daemon Actions performed or errors encountered by system processes

DFC Events related to dynamic flow capture

Firewall Packet filtering actions performed by a firewall filter

FTP Actions performed or errors encountered by the FTP process

Interactive commands Commands executed by the user interface

Kernel Actions performed or errors encountered by the JUNOS kernel

PFE Actions performed or errors encountered by the Packet Forwarding Engine

User Actions performed or errors encountered by user-space processes

The default system log is called "messages"; you can view it with the show log messages command:

Code View:
lab@PBR> show log messages

Nov 20 06:00:00 PBR newsyslog[2858]: logfile turned over due to size>128K

Nov 21 09:47:59 PBR login: LOGIN_PAM_AUTHENTICATION_ERROR: PAM authentication error

 for user lab

Nov 21 09:47:59 PBR login: LOGIN_FAILED: Login failed for user lab from host

Nov 21 09:48:03 PBR login: LOGIN_INFORMATION: User lab logged in from host [unknown]

 on device ttyd0

Nov 21 09:48:06 PBR mgd[2978]: UI_DBASE_LOGIN_EVENT: User 'lab' entering

 configuration mode

Nov 21 09:54:36 PBR mgd[2978]: UI_DBASE_LOGOUT_EVENT: User 'lab' exiting

 configuration mode

Nov 21 09:54:55 PBR mgd[2978]: UI_REBOOT_EVENT: System rebooted by 'lab'

Nov 21 09:55:09 PBR /kernel: KERNEL_MEMORY_CRITICAL: System low on free memory,

 notifying init (#1).

Nov 21 09:55:09 PBR rpd[2800]: Received low-memory signal: no job active, 34 free

 pages

Nov 21 09:55:09 PBR rpd[2800]: Processing low memory signal

Nov 21 09:55:49 PBR shutdown: reboot by lab:

Nov 21 09:55:49 PBR init: watchdog (PID 2768) terminate signal sent

Nov 21 09:55:49 PBR init: chassis-control (PID 2770) terminate signal sent

Nov 21 09:55:49 PBR init: alarm-control (PID 2771) terminate signal sent

Nov 21 09:55:49 PBR craftd[2772]: craftd_user_conn_shutdown: socket 8, errno = 0

Nov 21 09:55:49 PBR init: craft-control (PID 2772) terminate signal sent

Nov 21 09:55:49 PBR snmpd[2811]: SNMPD_CLOSE_SA_IPC: ipc_free_local: closed IPC

 socket /var/run/craft

Nov 21 09:55:49 PBR init: management (PID 2773) terminate signal sent

Nov 21 09:55:49 PBR init: inet-process (PID 2775) terminate signal sent

Nov 21 09:55:49 PBR init: syslogd (PID 2682) terminate signal sent

Nov 21 09:55:49 PBR init: ecc-error-logging (PID 2779) terminate signal sent

Nov 21 09:55:49 PBR init: forwarding (PID 2780) terminate signal sent

Nov 21 09:55:49 PBR init: usb-control (PID 2781) terminate signal sent

Nov 21 09:55:49 PBR init: mib-process (PID 2799) terminate signal sent

Nov 21 09:55:49 PBR snmpd[2811]: SNMPD_CLOSE_SA_IPC: ipc_free_local: closed IPC

 socket /var/run/mib2d

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Nov 21 09:55:49 PBR init: routing (PID 2800) terminate signal sent

Nov 21 09:55:49 PBR rpd[2800]: RPD_SIGNAL_TERMINATE: first termination signal

 received

Nov 21 09:55:49 PBR init: l2-learning (PID 2801) terminate signal sent

Nov 21 09:55:49 PBR init: vrrp (PID 2802) terminate signal sent

Nov 21 09:55:49 PBR snmpd[2811]: SNMPD_CLOSE_SA_IPC: ipc_free_local: closed IPC

 socket /var/run/vrrpd

Nov 21 09:55:49 PBR rpd[2800]: RPD_OSPF_NBRDOWN: OSPF neighbor 10.20.130.1

 (fe-0/0/0.1241) state changed from Full to Down due to KillNbr

 (event reason: interface went down)

Nov 21 09:55:49 PBR init: sampling (PID 2803) terminate signal sent

Nov 21 09:55:49 PBR init: class-of-service (PID 2804) terminate signal se

Many of the syslog messages will have headers specified in uppercase letters that you can input into the help
command specifying which facility the message was logged on, the severity level, a description, and a
recommended action. Looking at the log entry for November 21, one such header is noted as
RPD_OSPF_NBRDOWN:

Nov 21 09:55:49 PBR rpd[2800]: RPD_OSPF_NBRDOWN: OSPF neighbor 10.20.130.1

 (fe-0/0/0.1241) state changed from Full to Down due to KillNbr

 (event reason: interface went down)

You can examine this message using the help syslog command, which indicates that an OSPF neighbor went

down due to an event:

Code View:
lab@PBR> help syslog RPD_OSPF_NBRDOWN

Name: RPD_OSPF_NBRDOWN

Message: OSPF neighbor <neighbor> (<interface>) state changed from

 <old-state> to <new-state> due to <event> (event reason:

 <event-reason>)

Help: OSPF neighbor adjacency was terminated

Description: An OSPF adjacency with the indicated neighboring router was

 terminated. The local router no longer exchanges routing

 information with, or directs traffic to, the neighboring router.

Type: Event: This message reports an event, not an error

Severity: notice

You can create custom logs by specifying a filename, facility, message facility, and location to send the
message. The message can either be stored in a local file, sent to a syslog server, sent to the console, or sent
to a user or group of users when logged in to the router.

The factory default configuration enables three system logs: two logs that are sent to a file, and one log that is
sent to any user that is logged in. Although the default system log receives all information as specified with the
any keyword, you can create other files for easier log parsing:

syslog {

 user * {

 any emergency;

 }

 file messages {

 any any;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 authorization info;

 }

 file interactive-commands {

 interactive-commands any;

 }

}

6.5.1.1. Case study: Syslog

To avoid having to specify every syslog option available, let's examine a realistic example with specific goals.
The goals are as follows:

Increase the default size of the messages file to 1 MB and the number of archives to 15.

Send all messages to a syslog server with a domain name of syslog.underdogssf.com.

Ensure that all messages sent to the syslog server are in the same format as the Cisco routers in your
network.

Create a syslog file to log all firewall filter log information.

Each syslog file that is created on a Juniper Networks router is stored in the file directory var/log and is given a
size of 128 KB on a J-series router and 1 MB on an M-series router. When the file is full, the file is cleared, an
archive is created of the old data, and the file is written to again. For example, once 128 KB of data is written
into the messages file, that file will be cleared and the information will be moved into a message.0 file. When
the messages file is filled up again, the old data is archived into messages.0 and the old messages.0 now
becomes messages.1. This will continue for 10 archives until the data is written. In the case study, you should
increase the default number of archives to 15 and the file size to 1 MB. You can do this with the following
archive configuration:

[edit system syslog]

lab@PBR# set file messages archive files 15 size 1M

[edit system syslog]

lab@PBR# show file messages

any notice;

authorization info;

archive size 1m files 15;

Next, syslog messages need to be sent to a syslog server:

[edit system syslog]

lab@PBR# set host syslog.underdogssf.com any any

The default JUNOS message does not send the priority (facility value and severity) of the syslog message, which
could cause issues when trying to parse the output at the receiver. Cisco routers by default do send this priority
field; to ensure that both vendors send the same message format, configure the explicit-priority keyword:

[edit system syslog]

lab@PBR# set host syslog.underdogssf.com explicit-priority

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Lastly, a new syslog file is created to log firewall entries:

[edit system syslog]

lab@PBR# set file fw-log firewall info

Here is the complete stanza:

[edit system syslog]

lab@PBR# show

user * {

 any emergency;

}

host syslog.underdogssf.com {

 any any;

 explicit-priority;

}

file messages {

 any notice;

 authorization info;

 archive size 1m files 15;

}

file interactive-commands {

 interactive-commands any;

}

file fw-log {

 firewall info;

}

6.5.2. SNMP

SNMP is a standard protocol used for a network management station to receive information for the router (or
agent; see Figure 6-13). The manager can poll the router for router health information such as memory
utilization, link status, or firewall filter statistics in the form of a GET command. The router can also send event
information to the network manager without polling, in a process called a TRAP.

Figure 6-13. SNMP concept

The data structure that is used to carry information is called a Management Information Base (MIB). An MIB has
a structure in the format of a tree that defines groups of objects into related sets. These MIBs are identified by
an Object Identifier (OID), which names the object. The leaf of the OID contains the actual managed objects.
MIBs are defined into two categories: standard and enterprise-specific. Standard MIBs are defined by the IETF
in various RFCs, whereas enterprise-specific MIBs are defined by the vendor and must be compiled into the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

management station. Here is an example of MIB data taken from a network manager:

SNMPv2-MIB::sysDescr.0 = STRING: M120 - Okemos, MI

SNMPv2-MIB::sysObjectID.0 = OID: JUNIPER-MIB::jnxProductNameM120

SNMPv2-MIB::sysUpTime.0 = Timeticks: (80461526) 9 days, 7:30:15.26

SNMPv2-MIB::sysContact.0 = STRING: Doug Marschke - x8675309

SNMPv2-MIB::sysName.0 = STRING: PBR-3

SNMPv2-MIB::sysLocation.0 = STRING: Okemis, MI USA - Rack 4

SNMPv2-MIB::sysServices.0 = INTEGER: 4

To configure SNMP on a Juniper router, you must specify a community string on the router. This acts as a
password to verify incoming SNMP information on the management station:

[edit snmp]

lab@PBR# set community sample

[edit snmp]

lab@PBR# show

community sample;

Juniper Networks routers support SNMP v1, SNMP v2, and SNMP v3.

With this basic configuration, SNMP GETs can be received on any interface from any management statement. It
is recommended that access is restricted to particular interfaces and clients:

lab@PBR# show

interface fe-0/0/0.1141;

community sample {

 clients {

 10.10.12.4/32;

 0.0.0.0/0 restrict;

 }

}

Also, the router may want to initiate some information in the form of TRAPs. TRAPs are sent to a specified list of
targets and are defined by categories. Possible categories include:

Authentication

User login authentication failures

Chassis

Chassis and environmental notifications

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Configuration

Notification of configuration changes

Link

Link status changes

Remote operations

Remote operation notifications

Rmon-alarm

Events for RMON alarms

Routing

Routing protocol information such as neighbor status changes

Services

Events for additional JUNOS services such as Network Address Translation (NAT) and stateful firewall

Sonet-alarm

A variety of SONET alarms such as loss of light, BER defects, and so on

Start-up

Warm and cold boots

http://lib.ommolketab.ir
http://lib.ommolketab.ir

VRRP events

VRRP events such as mastership changes

In the following example, a TRAP group called health is added to the SNMP configuration that sends chassis

and link TRAPs to station 10.10.12.4:

lab@PBR# show

interface fe-0/0/0.1141;

community sample {

 clients {

 10.10.12.4/32;

 0.0.0.0/0 restrict;

 }

}

trap-group health {

 categories {

 chassis;

 link;

 }

 targets {

 10.10.12.4;

 }

}

By default, both SNMP v1 and v2 TRAPs are sent. You can overwrite this by specifying a
version under the TRAP group.

It may also be useful to walk down the MIB tree to verify information in the MIB and for troubleshooting
purposes. To perform an SNMP walk on the router, issue the show snmp mib <object> command. In this case,

the system MIB is examined on the router:

Code View:
lab@PBR> show snmp mib walk system

sysDescr.0 = Juniper Networks, Inc. j6300 internet router, kernel JUNOS 8.0R2.8 #0:

 2006-09-29 09 Build date: 2006-09-29 08:22:29

 UTC Copyright (c) 1996-2006 Juniper Networks, Inc.

sysObjectID.0 = jnxProductNameJ6300

sysUpTime.0 = 50415199

sysContact.0

sysName.0 = PBR

sysLocation.0

sysServices.0 = 4

6.5.3. NTP

When examining logs, it is essential to ensure that the proper date and time are recorded for each event. You
can set the time and date manually on each router using the set date command:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

lab@PBR> set date ?

Possible completions:

 <time> New date and time (YYYYMMDDhhmm.ss)

 ntp Set system date and time using Network Time Protocol servers

However, since many devices are likely to be managed at once, each with slightly different clock speeds and
drift, it is virtually impossible to keep all the clocks on every device synchronized. NTP was developed for the
purpose of clock synchronization. NTP works in one of three modes:

Client

A client has a one-way synchronization with a server.

Symmetric active

There is equal peer synchronization with each other's local clock.

Broadcast

The server sends periodic broadcast messages on shared media, and clients listen to these messages for
synchronization.

NTP uses a concept of clock strata to define the distance from the clock reference and the accuracy. A stratum 0
clock is the reference clock (such as an atomic clock), and each level of peering relationship decreases in
accuracy and stratum level (see Figure 6-14).

Figure 6-14. NTP stratum levels

http://lib.ommolketab.ir
http://lib.ommolketab.ir

All NTP configurations are set under [edit system ntp]. In the following configuration, Bock is configured in

client mode with a server of 10.20.130.5. Also, a boot server is configured to allow the initial clock setting to be
set at boot time:

lab@Bock> show configuration system ntp

boot-server 10.20.130.5;

server 10.20.130.5;

If a router is configured for NTP and the clocks are more than 128 seconds apart, the synchronization process
will fail. In the past, to recover from that scenario, the operator either rebooted the device with the boot server
configuration or set the date manually within 128 seconds. JUNOS software now allows you to synchronize the
device by simply issuing the set date ntp command and avoiding a reboot:

Code View:
lab@Bock> set date ntp 10.20.130.5

10 Feb 13:50:21 ntpdate[794]: step time server 10.20.130.5 offset 0.000163 sec

To verify that NTP has worked correctly, issue the show ntp associations command and look for the * next to

the remote IP:

lab@Bock> show ntp associations

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 remote refid st t when poll reach delay offset jitter

==

*10.20.130.5 LOCAL(0) 11 u 10 64 17 0.491 12.991 10.140

Check the correct time:

lab@Bock> show system uptime

Current time: 2007-11-22 03:53:35 UTC

System booted: 2007-11-20 04:58:58 UTC (1d 22:54 ago)

Protocols started: 2007-11-20 04:59:24 UTC (1d 22:54 ago)

Last configured: 2007-11-22 03:40:02 UTC (00:13:33 ago) by lab

 3:53AM up 1 day, 22:55, 1 user, load averages: 0.19, 0.10, 0.03

You also can change the time zone in the router by issuing a set system time-zone command:

lab@Bock# set system time-zone ?

Possible completions:

 <time-zone> Time zone name or POSIX-compliant time zone string

 Africa/Abidjan

 Africa/Accra

 Africa/Addis_Ababa

 Africa/Algiers

 Africa/Asmera

---(more 5%)---[abort]

6.5.4. Is NTP REALLY Working?

The show ntp associations command is often a source of mass confusion and terror for operators, as there is

no distinct "broken field." The synchronization process will be indicated by interpreting the delay and offset
fields, as well as by noting the presence or absence of a * character.

Here is an example of an association that has failed. Notice the space in front of the 10.20.130.5 as well as the
zeros is the delay and offset fields. This is an indication that no messages have been sent at all!

lab@Bock> show ntp associations

 remote refid st t when poll reach delay offset jitter

===

10.20.130.5 0.0.0.0 0 u 12 64 0 0.000 0.000 4000.00

In comparison, here is another association that failed; however, notice that there are values in the delay and
offset fields. These indicate that NTP messages have been exchanged but synchronization has not been
achieved, as no * has been displayed next to the remote peer. The large offset is usually an indication that the

clocks are too far apart (above the 128-second threshold):

lab@Bock> show ntp associations

 remote refid st t when poll reach delay offset jitter

==

10.20.130.5 LOCAL(0) 11 u 25 64 37 0.492 2542804 4000.00

After issuing a set date ntp command, the clocks synchronize without having to reboot the router. Note the

more sane offset value and the presence of the illustrious star next to the remote peer address:

lab@Bock> show ntp associations

 remote refid st t when poll reach delay offset jitter

http://lib.ommolketab.ir
http://lib.ommolketab.ir

===

*10.20.130.5 LOCAL(0) 11 u 10 64 17 0.491 12.991 10.140

3:53AM up 1 day, 22:55, 1 user, load averages: 0.19, 0.10, 0.03

Since NTP uses a step process to synchronize the clocks after issuing the set date ntp

command, the association could still appear to be broken. This is normal for NTP, so just
sit back, enjoy a drink, and after three to five minutes, everything should be working as
normal.

6.5.5. Summary of Router Monitoring

Many types of attacks and network abuse leave telltale signs, if the operator only takes the time to look for
them. The Unix underpinnings of JUNOS software offer full syslogging capabilities, which when synchronized to
other routers via the NTP protocols can provide invaluable forensics when problems are being investigated.
Using SNMP to remotely monitor network operations to include the receipt of asynchronous TRAPs reporting
anomalous conditions provides an excellent way to adopt a more proactive stance toward securing your
network.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.6. Conclusion

When the router is deployed in the network, you must secure it properly to protect your network, investments,
and hard work. The first step is to configure the proper users with access privileges. Depending on the number
of users, the local router or an external server database may be used to hold this information, or an external
server.

Once the users are in place, you need to deploy packet filters to protect the router. These filters may be very
elaborate or quite simple depending on your security policies. Also, you may need to rate-limit some
applications in your network using policers.

It also does not do much good to have a secure router if you can't gather router health and other statistical
information from it. Therefore, you also should deploy standard protocols such as SNMP, syslog, and NTP to
achieve these management goals.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.7. Exam Topics

We examined the following Enterprise Exam Topics in this chapter:

List the various user authentication methods.

Describe the uses of login classes.

Describe authentication order.

Describe system logging.

Identify the configuration of a stateless packet filter.

Secure the router by applying packet filters to protect the Routing Engine.

Evaluate the result of a given stateless packet filter.

Configure SNMP.

Customize class templates with varying permissions and commands.

Configure and operate the Network Time Protocol.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.8. Chapter Review Questions

What is the default password on the router?

Junipera.

Ciscob.

There is no passwordc.

Enabled.

1.

Which predefined login class allows the user to have access rights to any login command?

Privilegeda.

Super-userb.

Privileged execc.

Power-userd.

2.

What is the default action at the end of a firewall filter chain?

Discarda.

Rejectb.

Acceptc.

Do nothingd.

3.

Which interface would you apply to a filter to protect the router's local traffic?

a.

4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

fxp1a.

fxp0b.

managec.

lo0d.

4.

Which command is used to view all firewall filter counters, including counters automatically created in
policers?

show countersa.

show policerb.

show interfaces filters countersc.

show firewalld.

5.

Which two features can you use to protect your network against spoofed IP addresses? (Choose two.)

Firewall filtersa.

Spoof routesb.

Unicast reverse path forwardingc.

Secondary addressesd.

6.

Which three parameters are specified in a policer? (Choose three.)

Bandwidth limita.

Policer actionb.

c.

7.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

b.

Bucket levelc.

Burst sized.

Leak ratee.

Choose two possible reasons for using a fail filter using uRPF. (Choose two.)

Allow packets to pass through RPFa.

Log packets that fail RPFb.

Implement NATc.

Send traffic through a tunneld.

8.

Which syslog facility logs all CLI commands?

cli-commandsa.

accountingb.

change-logc.

interactive-commandsd.

9.

In which directory are all logfiles stored?

/var/home/usera.

/logb.

/var/home/logc.

d.

10.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

c.

/var/logd.

/sysloge.

Which feature of SNMP v2 acts as a password to authenticate SNMP messages?

MIBsa.

Communitiesb.

OIDc.

TRAPsd.

11.

Which command allows NTP synchronization without a router reboot?

set system ntpa.

request system time updateb.

set date ntpc.

set ntp boot-serverd.

12.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.9. Chapter Review Answers

Answer: C. There is no default password on a Juniper router in the factory default configuration. A single
user, root, will be configured with no password.

1.

Answer: B. The class of superuser allows users to issue any command that they desire on the router. The

other options listed are not supported classes.

2.

Answer: A. At the end of a filter chain, if a packet has not matched any other term, it will be discarded.
Special care must always be taken when writing a filter to allow traffic that would otherwise be denied by
the final implicit discard at the end of the filter.

3.

Answer D. If a filter is applied to the loopback interface, any traffic local to the router can be protected,
including routing protocol, ICMP, and FTP traffic.

4.

Answer: D. You can use the show firewall command to view counters defined in any firewall filter. Also,

any policer that is referenced in a filter will have a counter automatically created and viewed by this
command. The show policer command will only show the counter for policers applied directly to the

interface.

5.

Answer: A, C. Both firewall filters and Unicast RPF will help to avoid packets with spoofed IP addresses.
Unicast RPF could provide for more dynamic and automatic filtering.

6.

Answer: A, B, D. Policers must specify bandwidth and burst size limit. Also, once a packet hits one of the
limits, an action to either hard- or soft-police must be specified.

7.

Answer: A, B. A fail filter matches on packets that fail the RPF check. You could use this to accept packets
such as DHCP, which would always fail an RPF check, or to count or log packets that have passed an RPF
check.

8.

Answer: D. The facility interactive-commands will log any commands that were typed via any user

interface method, including the CLI.

9.

Answer: D. This is the directory for all syslog and trace-options files.10.

Answer: B. A community will act as a password for SNMP messages. This community value is sent in clear
text on the wire, which could easily be captured. The next version of SNMP corrects this issue.

11.

Answer: C. If the NTP server is reachable, set date ntp will restart the NTP update process without

having to reboot the router, thus eliminating the need for a boot-server configuration statement.

12.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

12.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 7. Introduction to JUNOS Services

Once the routing aspect of a network has been deployed, you'll want additional services to be added to fit your
network requirements. In the past, a separate device would have performed these types of services, but in
modern networking these tasks have been moved to the router itself. Service is a broad term that can include
tasks that are performed at Layer 2 (such as link bonding) or at Layer 3 (such as Network Address Translation
[NAT]). We will examine all of these services in this chapter, as well as provide additional detail regarding more
specific services throughout the book.

Because many of these services require intensive packet processing on the router, you may have to install
additional hardware to avoid any degradation in packet forwarding and throughput. Although this may seem to
be a slight nuisance at first, it does solve the problem of increased services causing decreased throughput, as is
observed in most other router implementations.

The service topics covered in this chapter include:

JUNOS services

Layer 2 services

Layer 3 services

Layer 3 service command-line interface (CLI) configuration

Additional service options

The information covered in this chapter, and in Chapter 8, is based on services that are implemented via ASP on
the M7i, or on the J-series through its emulation of ASP functionality. Starting with Release 8.5, Juniper
Networks has made available its JUNOS software with enhanced services. The reader should be aware that the
primary difference between JUNOS and JUNOS software with enhanced services relates to services. In the
JUNOS software with enhanced services release, these services are based on ScreenOS functionality. Along with
the improved services comes new configuration syntax.

Readers who are not deploying JUNOS software with enhanced services, or who will deploy both JUNOS software
and JUNOS software with enhanced services, will need to know the ASP-based service configuration, as covered
here and in Chapter 8. Readers who plan to deploy only JUNOS software with enhanced services should focus on
the material covered in Chapter 11. Note that at this writing the Juniper Networks Certified Internet Expert
(JNCIE-ER) examination is not based on JUNOS software with enhanced services, so readers interested in
passing the JNCIE-ER examination will need to be familiar with ASP-based service definitions.

7.1. JUNOS Services

A JUNOS software service consists of a variety of Layer 2 and Layer 3 services, including:

Multilink Point-to-Point Protocol (MLPPP)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Multilink Frame Relay (MLFR)

Compressed Real-Time Transport Protocol (CRTP)

Multiclass MLPPP

Stateful firewall

NAT

Intrusion detection service (IDS)

IPSec

Layer 2 Tunneling Protocol (L2TP)

Active monitoring (cflowd)

Tunnel services (Generic Routing Encapsulation [GRE], IP-IP, Physical Interface Module [PIM] register
encapsulation)

Data link switching (DLSw)

In an M-series router, enabling these services will require an additional piece of hardware: a Physical Interface
Card (PIC) for packet processing. A J-series router supports most of the features in the preceding list and
performs the packet processing within the software, so no additional hardware is necessary. Depending on the
type of service required and the size of the service, different PICs can be used. The current offerings include:

Link Services PIC

Provides simultaneous support for three separate capabilities: enhanced multilink bundling, tunneling,
and link fragmentation and interleaving (LFI)

Encryption Services PIC

Provides IPSec encryption for IPSec tunnels

Monitoring Services PIC

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Provides J-Flow accounting at high speeds and across millions of flows, using standards-based cflowd v5
and v8 records

Tunnel Services PIC

Provides tunnel services such as GRE, IP-IP, IPv6 in IPv4, and multicast tunnels

Adaptive Services PIC (ASP)

Supports all services at Layer 2 and Layer 3

Multiservices PIC

Offers all the same services as ASP with a higher capacity and throughput

Adaptive Services Module (ASM)

Internal module for the M7i only which supports all services at a reduced rate, as well as one of the PICs
that supports L2TP LTP Network Server (LNS) functionality

Which PIC to Use?

Deciding which PIC to use is a delicate balance of feature set versus price. For example, if all you
require are IPSec tunnels (which can be provided on an Encryption Services PIC 1), you may not
need to use the more expensive Multiservices PIC. However, you should also consider your need
for future services. So, if you require NAT, you would have to use a new PIC (an ASP, or a
Multiservices PIC); since the Multiservices PIC will do both NAT and IPSec, ideally this should be
your first choice.

The most common implementation of services will be to use a J-series, an ASM in an M7i, or a Monitoring
Services PIC in other M-series routers. Table 7-1 lists the performance and scaling values for these
deployments.

Table 7-1. Service scaling number

Feature Multiservices Type 1 ASP ASM J-series

Throughput 920 Mbps 800 Mbps 256 Mbps Varies

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Feature Multiservices Type 1 ASP ASM J-series

Service sets 2,000 2,000 500 10

Flows 1.6 million 1 million 400,000 8,000–64,000

MLPPP links 2,048 2,044 2,044 128

MLPPP bundles 1,023 255 255 16

IPSec throughput 950 Mbps 640 Mbps 200 Mbps Varies

IPSec tunnels 5,000 2,048 512 256

In addition to scaling differences in the various PICs and platforms, there are some minor configuration
differences when referencing the interface names for Layer 2 service, as shown in Table 7-2.

Table 7-2. Service interface naming

Service interface ASM ASP Multiservice Multilink service J-series

Layer 2 lsq lsq lsq ml ls

Layer 3 sp sp sp None sp

Most of the configuration captures used in this chapter are from a J-series router, so the
ls interface will be used. If you are using an M-series router, you still have to substitute

the interface name, but the rest of the configuration will be the same.

Service sets 2,000 2,000 500 10

Flows 1.6 million 1 million 400,000 8,000–64,000

MLPPP links 2,048 2,044 2,044 128

MLPPP bundles 1,023 255 255 16

IPSec throughput 950 Mbps 640 Mbps 200 Mbps Varies

IPSec tunnels 5,000 2,048 512 256

In addition to scaling differences in the various PICs and platforms, there are some minor configuration
differences when referencing the interface names for Layer 2 service, as shown in Table 7-2.

Table 7-2. Service interface naming

Service interface ASM ASP Multiservice Multilink service J-series

Layer 2 lsq lsq lsq ml ls

Layer 3 sp sp sp None sp

Most of the configuration captures used in this chapter are from a J-series router, so the
ls interface will be used. If you are using an M-series router, you still have to substitute

the interface name, but the rest of the configuration will be the same.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 7. Introduction to JUNOS Services

Once the routing aspect of a network has been deployed, you'll want additional services to be added to fit your
network requirements. In the past, a separate device would have performed these types of services, but in
modern networking these tasks have been moved to the router itself. Service is a broad term that can include
tasks that are performed at Layer 2 (such as link bonding) or at Layer 3 (such as Network Address Translation
[NAT]). We will examine all of these services in this chapter, as well as provide additional detail regarding more
specific services throughout the book.

Because many of these services require intensive packet processing on the router, you may have to install
additional hardware to avoid any degradation in packet forwarding and throughput. Although this may seem to
be a slight nuisance at first, it does solve the problem of increased services causing decreased throughput, as is
observed in most other router implementations.

The service topics covered in this chapter include:

JUNOS services

Layer 2 services

Layer 3 services

Layer 3 service command-line interface (CLI) configuration

Additional service options

The information covered in this chapter, and in Chapter 8, is based on services that are implemented via ASP on
the M7i, or on the J-series through its emulation of ASP functionality. Starting with Release 8.5, Juniper
Networks has made available its JUNOS software with enhanced services. The reader should be aware that the
primary difference between JUNOS and JUNOS software with enhanced services relates to services. In the
JUNOS software with enhanced services release, these services are based on ScreenOS functionality. Along with
the improved services comes new configuration syntax.

Readers who are not deploying JUNOS software with enhanced services, or who will deploy both JUNOS software
and JUNOS software with enhanced services, will need to know the ASP-based service configuration, as covered
here and in Chapter 8. Readers who plan to deploy only JUNOS software with enhanced services should focus on
the material covered in Chapter 11. Note that at this writing the Juniper Networks Certified Internet Expert
(JNCIE-ER) examination is not based on JUNOS software with enhanced services, so readers interested in
passing the JNCIE-ER examination will need to be familiar with ASP-based service definitions.

7.1. JUNOS Services

A JUNOS software service consists of a variety of Layer 2 and Layer 3 services, including:

Multilink Point-to-Point Protocol (MLPPP)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Multilink Frame Relay (MLFR)

Compressed Real-Time Transport Protocol (CRTP)

Multiclass MLPPP

Stateful firewall

NAT

Intrusion detection service (IDS)

IPSec

Layer 2 Tunneling Protocol (L2TP)

Active monitoring (cflowd)

Tunnel services (Generic Routing Encapsulation [GRE], IP-IP, Physical Interface Module [PIM] register
encapsulation)

Data link switching (DLSw)

In an M-series router, enabling these services will require an additional piece of hardware: a Physical Interface
Card (PIC) for packet processing. A J-series router supports most of the features in the preceding list and
performs the packet processing within the software, so no additional hardware is necessary. Depending on the
type of service required and the size of the service, different PICs can be used. The current offerings include:

Link Services PIC

Provides simultaneous support for three separate capabilities: enhanced multilink bundling, tunneling,
and link fragmentation and interleaving (LFI)

Encryption Services PIC

Provides IPSec encryption for IPSec tunnels

Monitoring Services PIC

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Provides J-Flow accounting at high speeds and across millions of flows, using standards-based cflowd v5
and v8 records

Tunnel Services PIC

Provides tunnel services such as GRE, IP-IP, IPv6 in IPv4, and multicast tunnels

Adaptive Services PIC (ASP)

Supports all services at Layer 2 and Layer 3

Multiservices PIC

Offers all the same services as ASP with a higher capacity and throughput

Adaptive Services Module (ASM)

Internal module for the M7i only which supports all services at a reduced rate, as well as one of the PICs
that supports L2TP LTP Network Server (LNS) functionality

Which PIC to Use?

Deciding which PIC to use is a delicate balance of feature set versus price. For example, if all you
require are IPSec tunnels (which can be provided on an Encryption Services PIC 1), you may not
need to use the more expensive Multiservices PIC. However, you should also consider your need
for future services. So, if you require NAT, you would have to use a new PIC (an ASP, or a
Multiservices PIC); since the Multiservices PIC will do both NAT and IPSec, ideally this should be
your first choice.

The most common implementation of services will be to use a J-series, an ASM in an M7i, or a Monitoring
Services PIC in other M-series routers. Table 7-1 lists the performance and scaling values for these
deployments.

Table 7-1. Service scaling number

Feature Multiservices Type 1 ASP ASM J-series

Throughput 920 Mbps 800 Mbps 256 Mbps Varies

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Feature Multiservices Type 1 ASP ASM J-series

Service sets 2,000 2,000 500 10

Flows 1.6 million 1 million 400,000 8,000–64,000

MLPPP links 2,048 2,044 2,044 128

MLPPP bundles 1,023 255 255 16

IPSec throughput 950 Mbps 640 Mbps 200 Mbps Varies

IPSec tunnels 5,000 2,048 512 256

In addition to scaling differences in the various PICs and platforms, there are some minor configuration
differences when referencing the interface names for Layer 2 service, as shown in Table 7-2.

Table 7-2. Service interface naming

Service interface ASM ASP Multiservice Multilink service J-series

Layer 2 lsq lsq lsq ml ls

Layer 3 sp sp sp None sp

Most of the configuration captures used in this chapter are from a J-series router, so the
ls interface will be used. If you are using an M-series router, you still have to substitute

the interface name, but the rest of the configuration will be the same.

Service sets 2,000 2,000 500 10

Flows 1.6 million 1 million 400,000 8,000–64,000

MLPPP links 2,048 2,044 2,044 128

MLPPP bundles 1,023 255 255 16

IPSec throughput 950 Mbps 640 Mbps 200 Mbps Varies

IPSec tunnels 5,000 2,048 512 256

In addition to scaling differences in the various PICs and platforms, there are some minor configuration
differences when referencing the interface names for Layer 2 service, as shown in Table 7-2.

Table 7-2. Service interface naming

Service interface ASM ASP Multiservice Multilink service J-series

Layer 2 lsq lsq lsq ml ls

Layer 3 sp sp sp None sp

Most of the configuration captures used in this chapter are from a J-series router, so the
ls interface will be used. If you are using an M-series router, you still have to substitute

the interface name, but the rest of the configuration will be the same.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.2. Layer 2 Services

Layer 2 services are essentially the services that are enabled on a physical interface such as LFI (FRF.12), MLFR
(FRF.15), user-to-network interface (UNI) NNI (FRF.16), MLPPP, and multiclass MLPPP.

7.2.1. Multilink PPP

MLPPP (RFC 1490) allows the router to combine multiple links together into one large logical bundle (as shown
in Figure 7-1). This was originally created to bond multiple Integrated Services Digital Network (ISDN) bearer
signals together, but it is now used for any two systems with multiple links between them. Multilink is
negotiated during the initial Link Control Protocol (LCP) option negotiation. When configuring MLPPP on a
Juniper router, you can combine into one bundle any eight PPP links of the same type on the chassis. To
configure MLPPP, first create a logical bundle link (lsq-/x/x on an ASP or ls-x/x/x on a J-series).

Figure 7-1. MLPPP bundle

lsq-0/0/0 {

 unit 0 {

 encapsulation multilink-ppp;

 family inet {

 address 166.8.67.30/30;

 }

 }

}

Next, configure the physical interfaces to link the newly created link service interface. In the following example,
interfaces t1-1/0/0 and t1-1/0/1 are linked to the logical bundle unit 0 on the lsq-0/0/0 interface:

t1-1/0/0 {

 unit 0 {

 family mlppp {

 bundle lsq-0/0/0.0;

 }

 }

}

t1-0/0/1 {

 unit 0 {

 family mlppp {

 bundle lsq-0/0/0.0;

 }

 }

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When there are multiple links in your bundle, packets above the minimum maximum transmission
unit/maximum received reconstructed unit (MTU/MRRU) size of all links in the bundle will be fragmented on a
packet-by-packet basis across all the physical links. MRRU is similar to an interface MTU except that it applies
only to multilink bundles. To avoid out-of-order issues, a sequence number is added to each packet. The
receiving end will then reassemble the fragments into the full packet size. The advantage of this approach is
that the high-bandwidth flows are able to use the full capacity of all the egress links. The disadvantage of this
per-packet approach is that smaller packets may have to "wait" for larger packets to be transmitted.

For example, imagine you have low delay-sensitive data packets traversing with a size of 1,250 bytes and high
delay-sensitive voice traffic with a size of 64 bytes. If the data packet arrives first on a link and the voice packet
arrives second, the voice packet will have to wait until the data packet is done before it can be sent. On low-
speed interfaces with a high serialization delay, this could greatly affect the high delay-sensitive traffic. To solve
this problem, you can configure LFI.

The first step is to fragment the larger-size packets to allow the router to balance the fragments across multiple
links, thus reducing the time it takes to transmit the packet:

root@P1R1# set interfaces ls-0/0/0 unit 0 fragment-threshold ?

Possible completions:

 <fragment-threshold> Fragmentation threshold in 64-byte steps (bytes)

[edit]

root@P1R1# set interfaces ls-0/0/0 unit 0 fragment-threshold 128

Now that the larger packets are fragmented, we want to place the nonfragmented packets on the link with the
fragmented packets. Otherwise, the voice traffic will have to wait for all fragments to transmit before being
sent. To turn on this behavior, configure the interleave-fragments command underneath the bundle

configuration:

root@P1R1# set interfaces ls-0/0/0 unit 0 interleave-fragments

It is also recommended when LFI is turned on that the member links turn on traffic
shaping to reduce jitter. Configure the shaping rate to be equal to the combined physical
interface bandwidth for the constituent links. To apply shaping rates to interfaces, you
must enable per-unit scheduling in the interfaces.

Since each egress link may not have the same delay, the packets that are not fragmented and are part of the
same traffic flow may arrive out of order at the far end. To avoid this scenario (which will increase delay and
jitter), each flow should take the same egress link.

By default, the JUNOS software chooses a single link for each unfragmented
Transmission Control Protocol/User Datagram Protocol (TCP/UDP) flow over MLPPP links
using a hash algorithm, based on the source and destination addresses, source and
destination port numbers, and protocol field. This default behavior ensures that flows
stay on the correct link and arrive in the correct order at the far end.

The final issue to think about is to enable the voice traffic to have a higher priority and thus be transmitted
before the data traffic. Although we will discuss class of service (CoS) in a later chapter, we will provide a high-
level discussion here.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To ensure that voice traffic is transmitted first, place it into a higher-priority queue. For CRTP traffic, this
mapping occurs automatically, whereas for other traffic, it will have to be configured. Note that the J-series and
M-series differ on this mapping. In a J-series router, high-priority traffic, including CRTP, should only be mapped
to queue 2 on an MLPPP link. When the router maps traffic to constituent links, traffic from queue 2 of the
bundle interface will be mapped to queue 2 on the constituent links, whereas traffic from all other queues on the
bundle interface will be mapped to a default queue of 0 (as shown in Figure 7-2). Traffic that is placed into other
queues on the bundle interface and that is mapped into queue 0 on a constituent link will be serviced according
to the relative priority. In other words, if traffic on the bundle interface is placed into queue 1 with a medium-
high priority and into queue 4 with a medium-low priority, queue 1 will be scheduled first and will be placed into
the constituent link's queue 0 first. In an M-series router using multiclass MLPPP, other queues besides queue 0
and queue 2 could be utilized.

Figure 7-2. J-series queuing and LFI

7.2.1.1. Multiclass MLPPP

Sometimes when using LFI, fragments from different classes cannot be interleaved. This means that all
fragments from a single packet must be sent before any fragments from another packet can be sent. Using LFI,
nonfragmented packets can be interleaved with fragmented packets to reduce the latency of the nonfragmented
packets. The nonfragmented packets can also be placed into a different queue to be transmitted first, which
basically enables two classes of packets: fragmented and nonfragmented. This model extends to scenarios in
which the delay-sensitive traffic comprises the nonfragmented packets, but fails if there is high-priority
fragmented traffic that must take precedence over the nonfragmented traffic. In this case, it would make sense
to be able to assign a higher priority for some fragmented traffic over nonfragmented traffic by placing some
fragmented traffic into a higher-priority queue. This mapping of fragments to different queues is referred to as
Multiclass Multilink PPP (MCML).

MCML is supported only on PICs with link services intelligent queuing (LSQ) interface
support-that is, ASPs, ASMs, and Multiservices PICs. It is not supported on a J-series
router.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Also, when using classic LFI on MLPPP, packets that are nonfragmented will be balanced across a link on a per-
flow basis. This can lead to the hot link scenario where a single flow will always take the same link and will not
fully utilize the full-bundle bandwidth. MCML can help with this problem by allowing packets that are not
fragmented to be load-balanced across multiple links.

Lastly, MCML can be used if you simply need more than two CoSs for either fragmented or nonfragmented
packets. In general, MCML needs to be deployed if any of these criteria has to be met:

Some fragmented traffic needs to be transmitted before nonfragmented traffic.

Nonfragmented traffic needs to be balanced across multiple links.

More than two queues (0 and 2) are required.

To configure MCML, you should configure a fragmentation map where a fragmentation threshold is configured
and a multilink class is assigned the forwarding class. The other option is to disable fragmentation on a per-
forwarding class basis using the no-fragmentation command. If the no-fragmnetation command is used, the

fragment-threshold and multilink-class statements cannot be configured:

[edit class-of-service fragmentation-maps sample forwarding-class

expedited-forwarding]

lab@PBR# set ?

Possible completions:

+ apply-groups Groups from which to inherit configuration

data

+ apply-groups-except Don't inherit configuration data from these

groups

 fragment-threshold Fragmentation threshold (64..9192 bytes)

 multilink-class Multilink-Class assigned to this FC (0..7)

 no-fragmentation Don't allow fragmentation

Lastly, the fragmentation map must be tied to the bundle interface under the class-of-service stanza:

class-of-service {

 interfaces {

 lsq-0/3/0 {

 unit 1 {

 fragmentation-map sample;

 }

 }

 }

}

7.2.2. CRTP

On lower-speed interfaces, serialization and queuing delay can be a factor for delays of sensitive traffic.
Serialization delay is the time it takes to move the packet out the network interface, and it depends on the clock
rate and the size of the packet. For instance, for a 512-byte packet on a T1, the serialization delay would be:

(512 * 8)bits/1,544,000 bits/sec = 2.65 ms

Queuing delay is the time it takes for the packet to be buffered in the router when other packets are being

http://lib.ommolketab.ir
http://lib.ommolketab.ir

transmitted. This delay is variable but is related to the serialization delay, as each packet has to wait for the
previous packet to be sent before it can be transmitted. So, if the buffer is three packets deep, the delay to
transmit the 512-byte packet is not 2.65 ms, but perhaps 8 ms to 19 ms.

The most common type of delay for sensitive traffic is voice traffic, which is often transported using the Real-
Time Transport Protocol (RTP). RTP is simply a standard packet format to transport voice or video over an IP
network, usually using UDP ports in the range of 384–32,767. It produces a header of 40 bytes-12 bytes for
RTP, 8 bytes for UDP, and 20 bytes for IP.

One quick way to reduce serialization and, potentially, queuing delay is to reduce the packet size. When using
RTP, you can compress the entire IP/UDP/RTP header to a 2- or 4-byte header. As explained earlier in this
chapter, this is referred to as Compressed RTP (CRTP) and is standardized in RFC 2508.

Juniper Networks routers can compress RTP traffic in MLPPP bundles. J-series routers can also compress RTP
traffic on standard PPP interfaces.

All CRTP voice traffic is automatically placed into queue 2 on a J-series router.

To enable CRTP on any interface, configure the compression parameters on the link services interface. The
router maps which traffic to compress by either matching on a range of UDP port numbers or matching on the
queue on which the packet was placed. You can configure both conditions, and the router treats the match as a
logical OR. In the following example, a standard PPP interface is using CRTP with a port range of 384–32,767:

ls-0/0/0 {

 unit 0 {

 compression {

 rtp {

 port minimum 384 maximum 32767;

 }

 }

 family inet {

 address 10.10.10.1/30;

 }

 }

}

You can then map the physical interface to the link services compression interface:

t1-0/0/2 {

 description Bock-to-porter;

 unit 0 {

 compression-device ls-0/0/0.0;

 }

}

If you are using CRTP with MLPPP, simply add the compression configuration to the
existing bundle.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To verify that CRTP is working, use the show services crtp command:

lab@Bock# run show services crtp ?

Possible completions:

 <[Enter]> Execute this command

 extensive Show CRTP extensive output

 flows Show CRTP flow table entries

 interface Name of link services interface

 | Pipe through a command

Use the show services crtp extensive command to verify correct configuration as well as track statistics for

packets exiting the interface:

[edit]

lab@Bock# run show services crtp extensive

Interface: ls-0/0/0.0

 Port minimum: 384, Port maximum: 32767

 Maximum UDP compressed sessions: 256

 CRTP maximum period: 256, CRTP maximum time: 5

 Compression ratio: 0, Decompression ratio: 0, Discards: 0

 CRTP stats Receive Transmit

 Sessions 0 0

 IP bytes 0 0

 Compressed bytes 0 0

 CRTP packets 0 0

 CUDP/CNTCP packets 0 0

 Full header packets 0 0

 Context state packets 0 0

 IP packets 0 0

 Compressed packets 0 0

7.2.3. Multilink Frame Relay

Similar to bonding multiple PPP sessions together, a router can also bond multiple Frame Relay circuits
together. These will have the same fragmentation and interleaving characteristics as previously discussed with
MLPPP. One bonding standard is FRF.15, which allows the router to bind multiple Frame Relay data-link
connection identifiers (DLCIs) together into a single logical interface, as shown in Figure 7-3. The DLCIs could
be on the same physical interface or on multiple physical interfaces, but the aggregate bandwidth cannot be
greater than a DS3. The advantage of FRF.15 is that the provider does not have any knowledge that link
bonding has occurred, but the disadvantage is that the each MLFR bundle can communicate with only a single
endpoint.

Figure 7-3. FRF.15

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FRF.15 on J-series routers is supported only on T1/E1 interfaces, as of JUNOS 8.0R2.

To configure FRF.15, first create a logical unit with the bundle IP address on the link services interface and
specify the desire for FRF.15 with encapsulation multilink-frame-relay-end-to-end:

ls-0/0/0 {

 unit 1 {

 encapsulation multilink-frame-relay-end-to-end;

 family inet {

 address 84.10.113.1/31;

 }

 }

}

Then bond the local DLCIs' values together to the newly created bundle interface. In this case, the DLCIs were
on the same physical interface but could have also been on different physical interfaces:

[edit interfaces t1-0/0/2]

lab@Yeast# show

description Yeast-to-hops2;

encapsulation frame-relay;

unit 101 {

 dlci 101;

 family mlfr-end-to-end {

 bundle ls-0/0/0.1;

 }

}

unit 102 {

 dlci 102;

 family mlfr-end-to-end {

 bundle ls-0/0/0.1;

 }

}

Verify that the links are bonded by viewing the bundle interface:

Code View:
lab@hops# run show interfaces ls-0/0/0.1

 Logical interface ls-0/0/0.1 (Index 70) (SNMP ifIndex 37)

 Flags: Point-To-Point SNMP-Traps 0x4000 Encapsulation: Multilink-FR

 Bandwidth: 3072kbps

 Statistics Frames fps Bytes bps

 Bundle:

 Fragments:

 Input : 71 0 5030 0

 Output: 3 0 264 0

 Packets:

 Input : 71 0 4604 0

 Output: 3 0 270 0

 Link:

 t1-0/0/2.101

 Input : 36 0 2540 0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Output: 2 0 176 0

 t1-0/0/2.102

 Input : 35 0 2490 0

 Output: 1 0 88 0

 Protocol inet, MTU: 1500

 Flags: None

 Addresses, Flags: Is-Preferred Is-Primary

 Destination: 84.10.113.0/31, Local: 84.10.113.1

Another type of Frame Relay bonding is called FRF.16, which allows the router to take multiple physical
connections from the provider and tie them into a single logical connection, as shown in Figure 7-4. Once this
connection is bonded together, one or more DLCIs could be configured over this single logical connection. This
allows for incremental and increased bandwidth Frame Relay connections, while also allowing the provider to
combine each bundle into multiple high-speed bundles in the network. The advantage over FRF.15 is that a
different endpoint in each bundle is supported, but the disadvantage is that the provider is no longer
transparent to bundling.

Figure 7-4. FRF.16

To configure FRF.16 on a Juniper router, the link services interface is configured and channelized. A channel is
designated, but the colon (:) represents the FRF.16 logical bundle. You can configure a single DLCI or multiple

DLCIs to different endpoints in this bundle.

First, to create a channelized bundle interface, set the mlfr-unu-nni-bundles statement under [edit

chassis]. Channels start counting at zero, so the following configuration will create an ls-/0/0/0:0:

chassis {

 fpc 0 {

 pic 0 {

 mlfr-uni-nni-bundles 1;

 }

 }

Here is a bundle specified as channel 1 with one DLCI specified:

ls-0/0/0:0{

 encapsulation multilink-frame-relay-uni-nni;

 unit 0 {

 dlci 101;

 family inet {

 address 101.88.77.1/30;

 }

 }

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A last point to understand in MLFR is that the physical interfaces, such as those with two Juniper T1s, will need
to be bonded together to the logical bundle ls-0/0/0:0 interface:

t1-0/0/2 {

 encapsulation multilink-frame-relay-uni-nni;

 unit 0 {

 family mlfr-uni-nni {

 bundle ls-0/0/0:0

 }

 }

}

t1-0/1/2 {

 encapsulation multilink-frame-relay-uni-nni;

 unit 0 {

 family mlfr-uni-nni {

 bundle ls-0/0/0:0

 }

 }

}

7.2.4. GRE

We already examined the configuration for a basic GRE tunnel in Chapter 2:

gr-0/0/0 {

 unit 0 {

 tunnel {

 source 10.20.1.38;

 destination 172.66.13.1;

 }

 family inet

 }

}

Although various PICs will allow a GRE tunnel to be created on an M-series router, using an ASP, a Multiservices
PIC, or a J-series router can enable a few additional features, namely key numbers (ASP, Monitoring Services
only), fragmentation, and tunnel MTU.

Although GRE tunnels are supported on an M-series router using an ASP in Layer 2 or
Layer 3 mode, fragmentation and GRE keys are supported only in Layer 3 mode.

The first feature is taken from RFC 2890 and is called "Key and Sequence Number Extensions to GRE." This RFC
adds two more optional fields that can be carried in the GRE header: a key field and a sequence number field.
The key field is inserted by the sender and is matched at the receiver to identify fields. If the key fields do not
match, the packet is dropped. Currently, only the ASP and Monitoring Services PIC support this feature, and
only one key is allowed per source and destination pair. To enable this feature, manually configure a key value
under the logical unit:

lab@Cider set interfaces gr-0/0/0 unit 0 tunnel key 123

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A concern when configuring any type of tunnel is making sure the maximum payload is no larger than the MTU
across the entire path. By default, the gr interface has an unlimited physical MTU and a protocol MTU that is

equivalent to the MTU of the next hop interface toward the tunnel destination. So, when an IP packet arrives at
the ingress router, the GRE header is added, with the do-not-fragment bit set, and the IP packet is sent to the
egress router. If a transit router had a smaller MTU than the ingress router, the packet would be dropped.

In JUNOS 8.0R2.8, path MTU is enabled by default. You can disable it for GRE tunnels.

A few tools in the router can solve this issue. For example, use path MTU discovery to determine the MTUs that
are along the path. In the current JUNOS release, path discovery is enabled by default. The following example
shows that the maximum IP protocol MTU can be 726:

 [edit]

lab@Water# run show interfaces gr-0/0/0.0 extensive | match mtu

 Type: GRE, Link-level type: GRE, MTU: Unlimited, Speed: 800mbps

 Protocol inet, MTU: 726, Generation: 141, Route table: 0

A problem can arise when traffic is coming into the router with an MTU that is too large and the do-not-
fragment bit is set. If you must send traffic with the do-not-fragment bit over the tunnel, you can override the
sender's wishes by having the router clear the do-not-fragment bit. In the following example, router Wheat is

trying to send traffic over the GRE tunnel that is too large, and Water is sending an Internet Control Message

Protocol (ICMP) error message indicating that the packet is being dropped:

[edit]

root@Wheat# run ping 5.5.5.5 size 700 do-not-fragment

PING 5.5.5.5 (5.5.5.5): 700 data bytes

36 bytes from 1.1.1.2: frag needed and DF set (MTU 726)

Vr HL TOS Len ID Flg off TTL Pro cks Src Dst

 4 5 00 02d8 3274 2 0000 40 01 f9a5 1.1.1.1 5.5.5.5

36 bytes from 1.1.1.2: frag needed and DF set (MTU 726)

Vr HL TOS Len ID Flg off TTL Pro cks Src Dst

 4 5 00 02d8 3275 2 0000 40^C

--- 5.5.5.5 ping statistics ---

2 packets transmitted, 0 packets received, 100% packet loss

On a J-series router or with the ASP, ASM, or Monitoring Services PIC, you can enable a clear-dont-fragment

command, which allows for ingress fragmentation as well as clearing the do-not-fragment bit on all packets that
transmit the tunnel. Note, however, that although the original packets have the do-not-fragment bit cleared, the
GRE packets still have the DF bit set. This command is set on Water:

[edit]

lab@Water# set interfaces gr-0/0/0 unit 0 clear-dont-fragment-bit

[edit]

lab@Water# commit

[edit interfaces gr-0/0/0]

 'unit 0'

 gr-0/0/0.0: Must configure INET family MTU

error: configuration check-out failed

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To use this command, you must also set the MTU value so that the ingress router knows which size packets to
begin fragmenting. This MTU value should be the smallest value along the entire path of the GRE tunnel.

lab@Water# set interfaces gr-0/0/0 unit 0 family inet mtu 726

Verify correct operation by reissuing the ping command from router Wheat:

[edit]

root@Wheat# run ping 5.5.5.5 size 1400 do-not-fragment

PING 5.5.5.5 (5.5.5.5): 700 data bytes

1408 bytes from 5.5.5.5: icmp_seq=0 ttl=63 time=18.449 ms

1408 bytes from 5.5.5.5: icmp_seq=1 ttl=63 time=120.600 ms

1408 bytes from 5.5.5.5: icmp_seq=2 ttl=63 time=30.325 ms

^C

7.2.5. Layer 2 Services Summary

This section examined many of the services that you can enable, such as multilink bonding compression and
GRE features. The rest of the chapter examines the Layer 3 services that you can also deploy in your network.
You may consider taking a brief break before diving into the next section, as it moves a layer up in the protocol
stack-because this one layer is Layer 3, the network layer, it will be a large jump!

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.3. Layer 3 Services

The JUNOS software services are not limited to just Layer 2 services, but can also include Layer 3 services.
These services include stateful firewall, NAT, IDS, and IPSec tunnels. We will give an overview of these services
here and will provide a detailed discussion of them in Chapter 8.

On the ASP or Multiservices-100 PIC, you must choose to enable either Layer 2 or Layer
3 services; the ASM on the M7i and the J-series router support both Layer 2 and Layer 3
concurrently.

7.3.1. Stateful Firewall

Usually when certain traffic needs to be blocked on a router, a simple stateless packet filter is applied to an
interface. On a Juniper router, these are called firewall filters (other vendors call these access lists). Regardless
of the name, all stateless filters function in the same manner-they look at a packet and operate on a series of
match rules. If the packet matches a rule, it can be either accepted or discarded.

The important point about a packet filter is that it works on a packet-by-packet basis and does not associate a
packet with a traffic flow or stream. In other words, it does not maintain any connection state. This type of filter
will work in many situations when applications are using well-known port numbers or TCP applications, where
the initiator is always in the same direction. Stateless packet filters become more difficult when the application
uses random port numbers-TCP initiators are not always the same-or when UDP input and output flows need
to be associated with each other. For example, if a Domain Name System (DNS) server was located outside
your network, you could easily write a packet filter that allows outbound access to UDP port 53, but you would
need to write a rule for the inbound packet as well. The source port would be port 53, but the destination port
could be any port from 1024–65534, depending on which random port the host chose. Allowing this large of a
UDP port opens up a large hole in your network.

A stateful firewall will track flows of traffic for a given application such as DNS, which will provide for much
stronger security. This means that if a packet hits the firewall rule and is accepted based on the match
conditions, the system will calculate the return packet, so no reverse rule will have to be created. A flow is
usually defined by parameters such as source and destination addresses, source and destination port numbers,
and protocol values. A bidirectional flow between the source and destination devices is often called a session or
a conversation. Once a session or conversation is created, it is stored in memory, so the firewall rules do not
need to process any additional packets that are part of that flow. These conversations will be stored until a
period of inactivity occurs, which is 30 seconds by default for most protocols. You can modify this globally under
the service interface:

lab@hops# set interfaces sp-0/0/0 services-options inactivity-timeout ?

Possible completions:

 <inactivity-timeout> Inactivity timeout period for established sessions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A flow is removed from the table under the following conditions:

If a TCP RESET or FIN packet is received. The flow is marked for deletion and is
removed in approximately five seconds.

If the TCP flow appears to be idle (no traffic). In this case, the router implements a
TCP tickle by sending an ACK message with the last seen sequence number, minus
one numeral, to the end host. This verifies whether the ports are open. If no
response is received, the flow is marked for deletion in approximately five
seconds.

If the forward flow of the UDP conversation reaches the inactivity timeout period.
Since the reverse flow will be created based on the forward flow, this flow will not
be tracked for inactivity.

The stateful firewall will also add a layer of protection by checking to make sure there are no strange protocol
anomalies that could indicate a denial of service (DoS) attack. Some examples of protocol anomalies that are
checked include the following:

The Time to Live (TTL) in the IP packet equals 0.

The source IP address equals the destination IP address.

An IP fragment is missed.

The TCP or UDP port is set to 0.

TCP flags are set to an invalid combination.

A SYN packet is received without a SYN-ACK response.

The first flow packet is not a SYN packet.

ICMP unreachable errors occur for SYN or UDP packets.

This is a small list of the possible anomalies; please consult the Juniper Technical
Documentation for a more complete list.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.3.1.1. Application Layer Gateways

Most of the time, the stateful firewall will easily be able to predict the packets that will be required for the return
flow of a conversation by simply reversing the source and destination port numbers, addresses, and so forth.
However, some applications, such as FTP, H.323, RTSP used by RealAudio, and SIP, are more difficult to predict
because the application may initiate separate connections for data and control flows or may generate new
protocol flows based on an open connection. In this case, special care must be taken to analyze the packets and
allow the new connections to be established. Each application may have a unique set of parameters that must
be examined, which are implemented as Application Later Gateways (ALGs).

The classic example of why an ALG is needed is when you look at an application such as an active outgoing FTP,
which uses both a control and a data channel. First, the TCP three-way handshake is established between the
client (84.10.113.0) and the server (84.10.113.1) using a destination port of 20:

02:21:00.500569 In IP 84.10.113.0.4290 > 84.10.113.1.20: Syn

02:21:00.500627 Out IP 84.10.113.1.20 > 84.10.113.0.4290: Syn Ack

02:21:00.510683 In IP 84.10.113.0.4290 > 84.10.113.1.20: . Ack

Then the server initiates a new connection for the data transfer using a new source port of 21 and a destination
port that the client gives to the server in the initial connection using a PORT command (56958, in this case):

02:26:28.024058 Out IP 84.10.113.1.21 > 84.10.113.0.56958: Syn

02:26:28.032298 In IP 84.10.113.0.56958 > 84.10.113.1.21: Syn Ack

02:26:28.032362 Out IP 84.10.113.1.21 > 84.10.113.0.56958: . Ack

So, the problem with the active mode FTP application and standard firewall rules is that the connections are
initiated by both the server and the client, and the connection initiated by the server to the client is using an
unpredictable port number.

The ALG solves this problem by looking deep into the packets during the initial connection phase for the PORT

command, indicating which port number the client will be expecting from the server during the data phase and
allowing the firewall to create a predictable pinhole for the server-to-client connection.

If passive FTP is used, all connections are initiated from the client to the server, but the
ALG must still monitor the PORT command from the server to open the data connection.

Another example in which ALG is needed is when you're using H.323, the umbrella specification for a family of
protocols for transporting voice and video over data networks. H.323 involves protocols that open control and
data channels similar to our FTP example. In a common setup and data flow, these steps occur:

First, an H.225 connection is created for call signaling, the media (audio and video), the stream
packetization, the media stream synchronization, and the control message formats.

1.

During the H.225 connection, information is exchanged to also establish an H.245 connection.2.

An H.245 connection is established to convey control information for the media flow, such as encryption
and flow control as well as port information for RTP/RTCP flows.

3.

4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.

RTP/RTCP data traffic flows begin.4.

The ALG that is used for H.323 is more complex than in the FTP example, but the general idea of watching one
conversation to open more flows is the same. The ALG watches the H.225 connection for information to open
the H.245 connection and then watches this connection to open the media connections.

Since these ALGs can be very complex, most of them are already created in the Juniper Networks router for
you, although you can create custom ALGs. You can view all the Juniper-defined ALGs by issuing the show

groups junos-defaults applications command from configuration mode. All default system applications will

begin with the junos keyword.

7.3.2. Network Address Translation

NAT is simply the changing of the IP address (source, destination, or both) of the packet as it traverses the
router. These translations are stored in a table to allow for traffic flows from the source to the destination
systems. Additionally, port numbers could also be translated (often referred to as Network Address Port
Translation [NAPT] or Port Address Translation [PAT]). Traditionally, NAT was used to hide private addresses
behind a public network or to try to conserve address space by mapping multiple port numbers to a single IP
address. When NAT is configured, you must answer the following questions:

Which IP address is going to be translated: the source IP (source-NAT), the destination IP (destination-
NAT), or both (bidirectional NAT)?

Does port translation need to occur?

Does the mapping need to be the same (static) or can a pool of addresses and ports be used (dynamic)?

Next, you must examine the type of NAT that must be configured. The NAT types available on a Juniper router
include the following:

Static source NAT

Maps a pool of private IP addresses to a pool of public addresses on a one-to-one basis. This means
traffic from a private address, such as 192.168.2.1, will always be mapped to the same public address,
such as 207.12.18.2.

Dynamic source NAT

Maps a pool of private IP addresses to a pool of public addresses. This mapping is dynamic, so
192.168.2.1 could be translated to the configured public address pool.

Source NAT with port translation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Maps a pool of private IP addresses to a single address or pool of public addresses, while also translating
the port numbers. This allows for one-to-many NAT, when many private IP addresses are translated to a
single public address.

Destination NAT

Behaves the same as source NAT, except it operates on the incoming flow of the destination address.
Destination NAT will translate an incoming public address to one or many private addresses. One use of
this is to allow the Internet to use a public address to contact a server on the internal network that is
configured with a private IP address.

Bidirectional NAT

A combination of a source NAT and destination NAT in which Host A can initiate a session with Host B and
Host B can also initiate a session with Host A. This is common when an email server is onsite.

Twice NAT

Defined in RFC 2663 and similar to bidirectional NAT. The major difference is that in twice NAT, the
source and destination addresses are translated within the same flow, whereas bidirectional NAT would
use different flows.

You can configure NAT on a Juniper Networks router as a standalone service or combine it with another service,
such as stateful firewall.

7.3.3. Intrusion Detection Services

Intrusion detection monitors traffic flows and looks for hostile patterns. If such a pattern exists, the event can
be logged. Intrusion detection and prevention (IDP) takes this one step further by stopping an attack once a
hostile pattern is recognized. The Juniper Networks router is limited in its IDP implementation, as it does not
match on any higher-layer signature attacks. Essentially, the IDP implantation can aid in protecting your
network from attacks such as the following:

Port scanning

When a hostile machine probes the network for open ports to attack.

SYN flood attacks

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When a high number of SYN packets are received in an attempt to flood the network.

IP fragmentation attacks

Protects against packets with the more fragments flag set, such as attacks like Teardrop and Boink.

Teardrop attacks exploit the reassembly of fragmented IP packets by offsetting the options in the IP
header. When the sum of the offset and size of one fragmented packet differ from that of the next
fragmented packet, the packets overlap, and the server attempting to reassemble the packet can crash.

ICMP floods

When ICMP echo requests overload its victim with so many requests that all its resources respond until it
can no longer process valid network traffic.

When any of these attacks occur, events are logged and are sent to a collector for analysis, or in the case of
flood attacks, are rate-limited. You also can prevent SYN floods by configuring SYN cookie protection that will
cause the router to operate as a SYN proxy. We will discuss this further in Chapter 8.

7.3.4. IPSec VPN

When securing data over a public network, often a tunnel is configured between the two networks. A tunnel
simply encapsulates your data into another packet or frame to transport it across the public network. For
instance, you can create a tunnel to connect Remote Office A to Corporate Office B over the public Internet, as
shown in Figure 7-5, to create a virtual private network (VPN).

Figure 7-5. Connecting a remote office to the corporate office

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The purpose of this book is not to teach IPSec theory; a number of books do that well,
such as IPSec: The New Security Standard for the Internet, Intranets, and Virtual
Private Networks (Prentice Hall).

You can use many tunneling protocols for this connection, but one of the most widely deployed protocols for
transporting IP traffic is IPSec. IPSec can provide the following security functions:

Source authentication

Ensures that the data is from the expected sender. This is accomplished by the ingress router of the
IPSec tunnel, creating a one-way hash value of certain parameters of the packet as well as a password
(preshared key) that is known by both endpoints. It will insert this hash value into the packet so that
when the receiving endpoint examines the packet, it can compare this value with the hash that will be
locally computed. If they are the same, the authentication passes; if they are different, the authentication
fails. Common algorithms to accomplish this are Message Digest 5 (MD5) and the Secure Hash Algorithm
(SHA-1).

A hash function is a predictable mathematical calculation that takes some variable-
size input and produces a fixed-size string called a hash. A key attribute of a hash
is that it is one-way operation-so, the hash value can be created based on the
input but the input cannot be recreated based on the hash value. Hash functions
are used in both authentication and data integrity.

Data integrity

Ensures that the data was not altered during packet transmission. A hash value is computed and is placed
into the packet based on packet fields. The receiving router will compute a hash based on the same fields
of the packet and then compare the computed hash value with the received hash value. If they are not
equivalent, the data was altered and the packet will be dropped. The hash algorithm that is used is
normally MD5 or SHA-1.

Confidentiality

Ensures that the data cannot be read over the public infrastructure. IPSec provides confidentiality by
encrypting the traffic using the Data Encryption Standard (DES), Triple DES (3DES), or Advanced
Encryption Standard (AES) algorithm.

Replay protection

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Even though data can be encrypted, a hostile device can intercept a packet, re-create it, and send a flood
of that packet to the endpoint to try to create a DoS attack. To protect against this, sequence numbers
are verified to avoid packet duplication.

When an IPSec tunnel is made, the tunnel endpoints create a security association (SA) with each VPN. An SA is
a list of the protocols, algorithms, and protected networks upon which both endpoints have agreed. These SAs
can be created manually on each side, or dynamically with the use of the Internet Key Exchange (IKE) protocol.
IKE consists of two phases: Phase 1 establishes the protocols and shared secrets needed to create a secure
channel; and Phase 2 uses this secure channel to exchange the protocols, algorithms, and other parameters
that will be used for the data exchange, thus creating the SAs. When Phase 2 has completed, data can flow
securely between the two endpoints, as shown in Figure 7-6.

Figure 7-6. IPSec VPN dynamic tunnel establishment

7.3.5. Layer 3 Services Summary

This section examined many Layer 3 services, including NAT, stateful firewall, IDP, and IPSec-based VPNs. In
the next section, we will put this theory into practice as we configure and operationally verify various network
layer services.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.4. Layer 3 Services Configuration

The first step when configuring Layer 3 services on your router is to enable the hardware for those services. If
the ASP or Multiservices PIC is used, you must specify the layer of service as either Layer 2 or Layer 3:

lab@sake# set chassis fpc 1 pic 2 adaptive-services service-package ?

Possible completions:

 layer-2 Layer 2 service package

 layer-3 Layer 3 service package

[edit]

lab@sake# show chassis hardware

Hardware inventory:

Item Version Part number Serial number Description

Chassis A1609 M7i

Midplane REV 04 710-008761 CR6773 M7i Midplane

Power Supply 1 Rev 06 740-008537 6039089 AC Power Supply

Routing Engine REV 01 740-011202 1000618737 RE-850

CFEB REV 08 750-010464 CR5380 Internet Processor II

FPC 0 E-FPC

 PIC 0 REV 11 750-002992 CT2202 4x F/E, 100 BASE-TX

 PIC 2 REV 08 750-005724 CR1650 2x OC-3 ATM-II IQ, MM

FPC 1 E-FPC

 PIC 2 REV 07 750-009487 CP5197 ASP - Integrated

 PIC 3 REV 10 750-009098 CR4858 2x F/E, 100 BASE-TX

The ASM and J-series routers do not contain this limitation and can support both types of services concurrently.
The main building block when configuring JUNOS software services is called a service set, which is a list of
service interfaces, service types, and service rules applied to either an interface or a routing next hop. A service
set can contain one type of Layer 3 service or a grouping of services such as NAT, IDS, and stateful firewall. If
an IPSec VPN is required, you must place it in its own unique service set.

To match which packet will be processed by each service set, you must write a set of rules with a match
condition and an action. These rules have a similar format to JUNOS software policies and stateless firewall filter
rules, containing a from statement for the match portion and a then statement for the action. But a major

difference is that service rules are always processed in a stateful manner, so the match clauses do not need to
account for return traffic. The match clauses will have a variety of options depending on the service configured,
and the actions will define which service to apply. You also can combine the rules for each service to form a rule
set, as shown in Figure 7-7.

Figure 7-7. CLI rule, rule set, and service set relationship

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When you create your service set, you'll need to decide whether it should be applied as an interface or a next
hop. An interface-style service set is applied directly to the interface affecting traffic as it leaves and enters the
interface.

An interface-style service set tracks session on a per-service-set basis. This means that
the same service set could be applied to multiple physical interfaces to design around
asymmetrical traffic flows.

A next hop-style service set makes use of two logical service interfaces, called the inside and outside interfaces.
Traffic is mapped to these interfaces as a result of a routing next hop lookup. The traffic can enter or exit either
the inside or the outside interface depending on the configuration, which depends primarily on the routing
configuration and stateful-firewall rules.

Both types of service styles use the service interface, named sp-, in the definition of the service set. This

interface is the software interface that the router will send traffic to if a Layer 3 service is required. The
interface-style service set requires a single logical unit to be configured with IPv4 support enabled:

lab@Porter# set interfaces sp-0/0/0 unit 0 family inet

lab@Porter# show interfaces

sp-0/0/0 {

 unit 0 {

 family inet;

When configuring the sp- interface, the system generally reserves unit 0 for service

logging and other communication from the service PIC; however, you can use it for an
interface-style service set not used in a virtual router. Next hop service sets cannot use
unit 0.

The next hop service set requires the service interface to be logically divided into an inside and outside
interface:

Code View:
[edit]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

lab@Porter# set interfaces sp-0/0/0 unit 1 service-domain inside family inet

[edit]

lab@Porter# set interfaces sp-0/0/0 unit 2 service-domain outside family inet

[edit]

lab@Porter# show interfaces sp-0/0/0

unit 0 {

 family inet;

}

unit 1 {

 family inet;

 service-domain inside;

}

unit 2 {

 family inet;

 service-domain outside;

}

After creating the service interfaces, you'll need to create the service rules and the service sets. When creating
the service rules, one item you must configure is a direction of either input or output, as shown in Figure 7-8.
The direction that is recorded for a packet must match for the service rule to match. This direction is
straightforward for an interface-style service set, as input is for incoming traffic to the physical interface, and
output is for traffic leaving the physical interface.

Figure 7-8. Directions for interface-style service sets

But when you look at a next hop-style service set, the direction is a bit more complex because now the next hop
could point to two possible logical interfaces. If the next hop points to the inside interface, the direction is input,
and if the next hop points to the outside interface, the direction is output. The direction for next hop-style
service sets is often misconfigured, which causes traffic to be serviced incorrectly. Figure 7-9 shows the proper
directions that you should use when creating service rules.

Figure 7-9. Directions for next hop-style service sets

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When configuring service rules for next hop-style service sets, you should consider traffic flow from the
perspective of the inside interface. Traffic that the router routes to the inside interface is considered input traffic
on the inside interface and is considered input traffic by the router when it evaluates service rules. Traffic that
the router receives on the outside interface, processes, and then transmits out the inside interface is considered
output traffic on the outside interface and is considered output traffic by the router when it evaluates service
rules. In general, it may be much less confusing to point traffic to the inside interface when possible, as the
directions seem to be as expected, while the outside interface appears to be opposite from what is expected.
Although traffic mapping to an inside interface may make more sense in the human mind, the router makes no
logical distinction, so mapping to either the inside or the outside configuration will work.

Since next hop-style service sets are a little more complex, it seems as though interface-style service sets
would be preferred. Each service set, however, has its own advantages and disadvantages, as detailed in Table
7-3.

For instance, an interface-style service set has the following limitations:

It cannot support multicast traffic matched through the service set (including IPSec tunnels).

It cannot have overlapping address spaces (such as RFC 1918) that need to be NATed.

It cannot run routing protocols over the service sets, such as IPSec tunnels.

Locally generated traffic will not match the rules.

So, to solve any of those four general limitations, you must use a next hop service set.

Interface-style service sets do have their place, though; they are much easier to configure for simple tasks, and
they are easier to apply to multiple interfaces. If the same service needs to be applied to multiple interfaces
with separate route tables for individual customers, a next hop service set would require multiple service sets,
whereas an interface-style service set might require only a single service set. Also, an interface-style service set
allows for the use of an external interface address for certain NAT circumstances that a next hop service set
cannot accomplish. Therefore, you should choose a service set based on which features need to be supported.
Table 7-3 can assist you as a general guideline for choosing your service style.

Table 7-3. Summary of service-style feature support

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Service
style

General
configuration
complexity

Multicast
support

Routing
protocols
over IPSec

Overlapping
NAT
addresses

PAT with
external
interface in
the NAT
pool

Treat
IPSec
tunnels
as a link

Number of
security
zones
supported

Interface Easy No No No Yes No One

Next hop Hard Yes Yes Yes No Yes Many

You will have to apply the service set for it to take effect. You can apply it directly to the interface unit (interface
style) or reference the service interface (next hop).

First, here is an example of a service set applied directly to interface t1-0/0/2:

lab@Porter# show interfaces t1-0/0/2

description Porter-to-Bock;

unit 0 {

 family inet {

 service {

 input {

 service-set test-rule;

 }

 output {

 service-set test-rule;

 }

 }

 address 10.10.10.2/30;

 }

}

The service set test-rule is applied to the interface at the logical unit level and is applied for family inet

(IPv4) traffic. The strange piece of this configuration is the fact that the service set must be applied as both an
input and an output service, and it must be the same service set. This means direction is never inferred when
applying a service set to an interface. Recall that the direction of a rule is decided in the service rule and not in
the direction in which the service set is applied to the interface!

Applying the service set to both the input and the output of an interface has no real
purpose in the current implementation; it was created as part of the original
specification outline. There was a thought that asymmetrical traffic with different service
sets would be supported, but it was decided later not to implement that function in
JUNOS software.

If a next hop service type is used, simply configure the router to forward packets to either the inside or the
outside service interface. This is usually done by creating a static route that points to the service interface,
which in turn creates another route table to point traffic to the service interface or runs a routing protocol over
the service interface. This example sends all 5.5.0/19 traffic to the sp-0/0/0.1 (inside) interface:

[edit]

lab@Porter# show routing-options

static {

 route 5.5.0.0/19 next-hop sp-0/0/0.1;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

This verifies that the route is active:

[edit]

lab@Porter# run show route protocol static

inet.0: 10 destinations, 10 routes (10 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

5.5.0.0/19 *[Static/5] 00:00:08

 > via sp-0/0/0.1

7.4.1. Simple Interface-Style Service Set

We will discuss Layer 3 services in more detail in the next chapter, but here let's examine a simple example of a
stateful-firewall rule to illustrate how the CLI pieces fit together using the topology shown in Figure 7-10. A
stateful firewall is going to be applied on Porter's t1-0/0/2 interface for traffic from Bock to Yeast's loopback

address of 10.30.1.1.

Figure 7-10. Topology for a simple interface-style stateful firewall

This firewall will allow traffic to be initiated from the Bock loopback to Yeast's loopback, but not initiated from

Yeast to Bock. To configure, first create a logical unit on the sp- interface with IPv4 support on Porter:

lab@Porter# show interfaces

sp-0/0/0 {

 unit 0 {

 family inet;

 }

Then configure a stateful rule to allow traffic from Bock to Yeast's loopback address. Since this is going to be

applied on Porter's t1-0/0/2 interface for traffic received from Bock, the direction should be input:

[edit services]

lab@Porter# show

stateful-firewall {

 rule simple-rule {

 match-direction input;

 term 1 {

 from {

 destination-address {

 10.30.1.1/32;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 }

 then {

 accept;

 }

 }

 }

}

Now create an interface-style service set and apply the rule and service interface:

[edit services]

lab@Porter# show service-set test-rule

stateful-firewall-rules simple-rule;

interface-service {

 service-interface sp-0/0/0.0;

}

Apply the service set to the t1-0/0/2 interface as both an input and an output:

[edit services]

lab@Porter# top show interfaces t1-0/0/2

description Porter-to-Bock;

unit 0 {

 family inet {

 service {

 input {

 service-set test-rule;

 }

 output {

 service-set test-rule;

 }

 }

 address 10.10.10.2/30;

 }

}

The last step is to test the stateful firewall on Porter, so a ping is issued from Bock to Yeast to test

connectivity; this example shows that it succeeds:

Code View:
[edit]

lab@Bock# run ping 10.30.1.1 count 100 rapid size 700

PING 10.30.1.1 (10.30.1.1): 700 data bytes

!!

!!!!!!!!!!!!!!!!!!!!!!!!

--- 10.30.1.1 ping statistics ---

100 packets transmitted, 100 packets received, 0% packet loss

round-trip min/avg/max/stddev = 17.787/23.982/125.399/14.994 ms

To verify that the packets are traversing the stateful firewall, several show services state-firewall

commands are issued. The first command is show services stateful-firewall flows, which displays the

active flows that are transiting the system. In this case, the ping from Bock to Yeast is observed with 100

http://lib.ommolketab.ir
http://lib.ommolketab.ir

packets (Frm count) sent in both directions:

[edit services]

lab@Porter# run show services stateful-firewall flows

Interface: sp-0/0/0, Service set: test-rule

Flow State Dir Frm count

ICMP 10.30.1.1:8471 -> 10.10.10.1 Watch O 100

ICMP 10.10.10.1:8471 -> 10.30.1.1 Watch I 100

When there is a related flow from input to output and output to input, it is called a conversation, and you can
view it with the show services stateful-firewall conversations command. A flow must exist in each

direction to be stored as a conversation that is not traffic-dependent, as the router will always create the return
flow after the initial communication is initiated. Once again, the test ping traffic is observed:

[edit services]

lab@Porter# run show services stateful-firewall conversations

Interface: sp-0/0/0, Service set: test-rule

Conversation: ALG protocol: icmp

 Number of initiators: 1, Number of responders: 1

Flow State Dir Frm count

ICMP 10.10.10.1:8471 -> 10.30.1.1 Watch I 100

ICMP 10.30.1.1:8471 -> 10.10.10.1 Watch O 100

Every flow is given a state of either Forward, Drop, or Watch. A Forward flow forwards
without looking at the payload, a Drop discards, and a Watch looks at the payload of the
packet to determine whether the packet should be forwarded. If a flow is part of an ALG,
it will always remain in the Watch state, but if it is part of a predicted flow, it may
transition to the Forward state.

A final, useful command, show services stateful-firewall statistics, is used to view the statistics for a

given service set rule. Notice in the following example that 200 packets have been accepted: 100 for the ICMP
echo, and 100 for the ICMP reply, created when we issued the ping command on Bock:

[edit services]

lab@Porter# run show services stateful-firewall statistics

Interface Service set Accept Discard Reject Errors

sp-0/0/0 test-rule 200 0 0 0

Lastly, verify that the stateful firewall is blocking traffic initiated from Yeast to Bock by pinging the loopback of

Bock and sourcing from Yeast's loopback address:

Code View:
lab@Yeast# run ping 10.10.12.3 source 10.30.1.1 rapid count 100

PING 10.10.12.3 (10.10.12.3): 56 data bytes

..

......................

--- 10.10.12.3 ping statistics ---

100 packets transmitted, 0 packets received, 100% packet loss

http://lib.ommolketab.ir
http://lib.ommolketab.ir

All packets are being lost, and you can verify this on Porter bylooking at the flow and the drop states, as well

as by viewing the stateful-firewall statistics and noting that the Discard counter is increasing:

[edit services]

lab@Porter# run show services stateful-firewall flows

Interface: sp-0/0/0, Service set: test-rule

Flow State Dir Frm count

ICMP 10.30.1.1:36119 -> 10.10.12.3 Drop O 3

[edit services]

lab@Porter# run show services stateful-firewall statistics

Interface Service set Accept Discard Reject Errors

sp-0/0/0 test-rule 200 100 0 0

7.4.2. Service Filters and Post-Service Filters

You can configure some additional configuration options on the interface where the service set is applied. For
instance, you can apply multiple service sets to a single logical interface:

t1-0/0/2 {

 description Porter-to-Bock;

 unit 0 {

 family inet {

 service {

 input {

 service-set new-service-set;

 service-set test-rule;

 }

 output {

 service-set new-service-set

 service-set test-rule;

 }

 }

 address 10.10.10.2/30;

 }

 }

}

However, if multiple service sets are applied to a single logical interface, traffic must be mapped to one service
set or another. You can accomplish this with service filters, as indicated when trying to issue a commit with the

preceding configuration:

Code View:
lab@Porter# commit

[edit interfaces t1-0/0/2 unit 0 family inet service input]

 'service-set new-service-set'

 Service will never be used without service filter on previous service-set

[edit]

 'interfaces'

 error parsing interfaces object

error: configuration check-out failed

A service filter is configured under the [edit firewall] level and has very similar match conditions as a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

standard JUNOS firewall filter. A major difference is that it must be configured under [edit firewall family

inet].

In this example, the goal will be to have traffic destined for 10.30.1.1 serviced by set new-service-set, and

all other traffic serviced by test-rule.

The service filter choose-service-set matches on all packets except for those with a destination IP of

10.30.1.1. So, any packet besides 10.30.1.1 will be serviced, and a packet with the destination address
10.30.1.1 will be skipped:

family inet {

 service-filter choose-service-set {

 term 1 {

 from {

 destination-address {

 0.0.0.0/0;

 10.30.1.1/32 except;

 }

 }

 then service;

 }

 }

Remember that the default behavior within a service filter is then skip. If no service

filter is applied, the default behavior is then service.

The router processes the service sets in the order of the list under the family inet service hierarchy. In our

example, test-rule is examined followed by and then new-service-set. Therefore, traffic with any destination

IP address other than 10.30.1.1 will be serviced by the test-rule service set, and traffic destined for 10.30.1.1

will be processed by new-service-set, since it is the service set listed next in the unit's [family inet service

input] stanza. All seems well, and the service filter is applied to the logical interface:

Code View:
t1-0/0/2 {

 description Porter-to-Bock;

 unit 0 {

 family inet {

 service {

 input {

 service-set test-rule service-filter choose-service-set;

 service-set new-service-set;

 }

 output {

 service-set test-rule;

 service-set new-service-set;

After issuing a commit, however, the router reports an error:

Code View:
[edit interfaces t1-0/0/2]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

lab@Porter# commit

[edit interfaces t1-0/0/2 unit 0 family inet service output]

 'service-set new-service-set'

 Service will never be used without service filter on previous service-set

[edit interfaces t1-0/0/2 unit 0 family inet]

 'service'

 Both input and output services must be configured

[edit]

 'interfaces'

 error parsing interfaces object

error: configuration check-out failed

You will also need to look at traffic in the return direction; otherwise, it will be serviced only by the first service
set in the output list. So, a second service filter will skip the traffic from 10.30.1.1 and will service all other
traffic:

 service-filter rest-of-traffic {

 term 1 {

 from {

 source-address {

 10.30.1.1/32;

 }

 }

 then skip;

 }

 term 2 {

 then service;

 }

 }

}

Finally, the service filter is applied to the service sets under the logical interface. This configuration will cause all
packets with the destination address 10.30.1.1 to be serviced by the new-service-set service set, and all other

traffic to be serviced by the test-rule service set:

Code View:
t1-0/0/2 {

 description Porter-to-Bock;

 unit 0 {

 family inet {

 service {

 input {

 service-set test-rule service-filter choose-service-set;

 service-set new-service-set;

 }

 output {

 service-set test-rule service-filter rest-of-traffic;

 service-set new-service-set; }

 }

 address 10.10.10.2/30;

 }

 }

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Pings are issued to verify that the proper flows are serviced by the correct service set:

lab@Porter# run show services stateful-firewall flows

Interface: sp-0/0/0, Service set: new-service-set

Flow State Dir Frm count

ICMP 10.20.131.2:27176 -> 10.30.1.1 Watch I 13

ICMP 10.30.1.1:27176 -> 10.20.131.2 Watch O 13

Interface: sp-0/0/0, Service set: test-rule

Flow State Dir Frm count

ICMP 10.20.131.2:27432 -> 10.10.8.2 Watch I 6

ICMP 10.10.8.2:27432 -> 10.20.131.2 Watch O 6

You also can use a service filter to exclude traffic from being serviced through all service sets applied to an
interface. Simply use the skip action to exclude certain traffic:

lab@Porter# set firewall family inet service-filter example term 1 then ?

Possible completions:

+ apply-groups Groups from which to inherit configuration data

+ apply-groups-except Don't inherit configuration data from these groups

 count Count the packet in the named counter

 log Log the packet

 port-mirror Port-mirror the packet

 sample Sample the packet

 service Forward packets to service processing

skip Skip service processing

You can apply one last type of filter to a service set: post-service-filter. This is a stateless packet filter that

is evaluated after the service set has processed the packet. This type of filter is available only on input, and it
applies only to non-IPSec-VPN packets. Lastly, and most importantly, it will apply only to packets that have
been processed by the service set, and it is applied after they have been processed (so, if addresses have been
changed by NAT rules, you would match on the post-NAT addresses).

In the following code snippet, a post-service filter called test is applied to the t1-0/0/2.0 interface:

Code View:
t1-0/0/2 {

 description Porter-to-Bock;

 unit 0 {

 family inet {

 service {

 input {

 service-set test-rule service-filter choose-service-set;

 service-set new-service-set;

 post-service-filter test;

 }

 output {

 service-set test-rule service-filter rest-of-traffic;

 service-set new-service-set; }

 }

 address 10.10.10.2/30;

 }

 }

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.4.3. Simple Next Hop-Style Service Set

In this section, we will again create a stateful firewall, but this time using a next hop-style service set. The
topology is slightly different, as shown in Figure 7-11, because PBR would like to limit all Telnet traffic coming

from Water with a source IP subnet of 64.8.12.0/27 and destined for the loopback of router Bock.

Figure 7-11. Simple next hop service set topology

First, create an inside and outside interface on the service interface using any unit except for unit 0:

lab@PBR# show interfaces sp-0/0/0

unit 1 {

 family inet;

 service-domain inside;

}

unit 2 {

 family inet;

 service-domain outside;

}

Then create the stateful-firewall rule to allow the Telnet traffic through PBR using an application of junos-

telnet, since this is the only traffic currently allowed in. The match direction in this case is specified at input, as

traffic is going to be directed into the inside interface.

stateful-firewall {

 rule restricted-telnet {

 match-direction input;

 term 1 {

 from {

 source-address {

 64.8.12.0/27;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 destination-address {

 10.10.12.3/32;

 }

 applications junos-telnet;

 }

 then {

 accept;

 }

 }

 }

}

This rule is very restrictive to illustrate an example. All routing protocols, ICMP traffic,
and so on would also be blocked by this stateful firewall, so in everyday practice, the
rule would be more complex.

Next, create the service set and link the rule and service interfaces together:

service-set telnet-set {

 stateful-firewall-rules restricted-telnet;

 next-hop-service {

 inside-service-interface sp-0/0/0.1;

 outside-service-interface sp-0/0/0.2;

 }

}

The last piece is to map the traffic to the service set. You can do this in a variety of ways, but in this case we
will create a static route that maps the 10.10.12.3 traffic to the service interface:

lab@PBR# set routing-options static route 10.10.12.3 next-hop sp-0/0/0.1

After applying the configuration, however, a telnet from Water fails:

lab@Water> telnet 10.10.12.3

Trying 10.10.12.3...

^C

Examining the flow, it appears that traffic is matching the rule and is traversing the router in the input direction,
but no return traffic is being counted despite the creation of the correct return flow:

lab@PBR# run show services stateful-firewall flows

Interface: sp-0/0/0, Service set: telnet-set

Flow State Dir Frm count

TCP 64.8.12.5:3827 -> 10.10.12.3:23 Forward I 8

TCP 10.10.12.3:23 -> 64.8.12.5:3827 Forward O 0

lab@PBR# run show services stateful-firewall conversations

Conversation: ALG protocol: tcp

 Number of initiators: 1, Number of responders: 1

Flow State Dir Frm count

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TCP 64.8.12.5:3827 -> 10.10.12.3:23 Forward I 8

TCP 10.10.12.3:23 -> 64.8.12.5:3827 Forward O 0

Examine the stateful-firewall statistics and identify whether any errors are incrementing. In this case, it appears
that they are:

[edit]

lab@PBR# run show services stateful-firewall statistics

Interface Service set Accept Discard Reject Errors

sp-0/0/0 telnet-set 48 6 0 59

When examined further, these errors seem to be SYN errors-multiple SYN packets are being seen from the
same flows:

lab@PBR# runs show services statful-firewall statistics extensive | find

 "TCP Errors"

 TCP errors:

 TCP header length inconsistencies: 0

 Source or destination port number is zero: 0

 Illegal sequence number and flags combinations: 0

 SYN attack (multiple SYN messages seen for the same flow): 132

 First packet not a SYN message: 13

 TCP port scan (TCP handshake, RST seen from server for SYN): 0

 Bad SYN cookie response: 0

 UDP errors:

Lastly, examine the log (we will discuss logs later in "Section 7.4.4") to ensure that the rule created is indeed
matching and correct. The first two log entries indicate that there is no issue with the stateful-firewall rule, but
the next entries indicate a SYN attack:

Code View:
Aug 10 02:57:01 (FPC Slot 0, PIC Slot 0) {telnet-set}[FWNAT]: ASP_SFW_RULE_ACCEPT:

proto 6 (TCP) application: any, fe-0/0/0.413:64.8.12.5:2250 -> 10.10.12.3:23, Match

SFW accept rule-set: , rule: restricted-telnet, term: 1

Aug 10 02:57:01 (FPC Slot 0, PIC Slot 0) {telnet-set}[FWNAT]: ASP_SFW_CREATE_ACCEPT_

FLOW: proto 6 (TCP) application: any, fe-0/0/0.413:64.8.12.5:2250 -> 10.10.12.3:23,

creating forward or watch flow

Aug 10 02:57:01 (FPC Slot 0, PIC Slot 0) {telnet-set}[FWNAT]: ASP_IDS_TCP_SYN_

ATTACK: proto 6 (TCP), sp-0/0/0.2:64.8.12.5:2250 -> 10.10.12.3:23, TCP SYN flood

attack

Aug 10 02:57:01 (FPC Slot 0, PIC Slot 0) {telnet-set}[FWNAT]: ASP_IDS_TCP_SYN_

ATTACK: proto 6 (TCP), sp-0/0/0.2:64.8.12.5:2250 -> 10.10.12.3:23, TCP SYN flood

attack

Aug 10 02:57:01 (FPC Slot 0, PIC Slot 0) {telnet-set}[FWNAT]: ASP_IDS_TCP_SYN_

ATTACK: proto 6 (TCP), sp-0/0/0.2:64.8.12.5:2250 -> 10.10.12.3:23, TCP SYN flood

attack

Aug 10 02:57:01 (FPC Slot 0, PIC Slot 0) {telnet-set}[FWNAT]: ASP_IDS_TCP_SYN_

ATTACK: proto 6 (TCP), sp-0/0/0.2:64.8.12.5:2250 -> 10.10.12.3:23, TCP SYN flood

attack

Aug 10 02:57:01 (FPC Slot 0, PIC Slot 0) {telnet-set}[FWNAT]: ASP_IDS_TCP_SYN_

ATTACK: proto 6 (TCP), sp-0/0/0.2:64.8.12.5:2250 -> 10.10.12.3:23, TCP SYN flood

attack

Aug 10 02:57:01 (FPC Slot 0, PIC Slot 0) {telnet-set}[FWNAT]: ASP_IDS_TCP_SYN_

ATTACK: proto 6 (TCP), sp-0/0/0.2:64.8.12.5:2250 -> 10.10.12.3:23, TCP SYN flood

attack

Aug 10 02:57:01 (FPC Slot 0, PIC Slot 0) {telnet-set}[FWNAT]: ASP_IDS_TCP_SYN_

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ATTACK: proto 6 (TCP), sp-0/0/0.2:64.8.12.5:2250 -> 1

The stateful firewall believes there is a SYN attack because of the two-service interface concept of a next hop
service set. Recall that traffic is sent from one service interface to another. In this case, traffic is arriving into
PBR's physical interface fe-0/0/0.413, and a route table lookup is performed:

lab@PBR> show route 10.10.12.3

inet.0: 18 destinations, 18 routes (18 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

10.10.12.3/32 *[Static/5] 00:24:47

 > via sp-0/0/0.1

This route points to the inside interface, so traffic is sent to be serviced. The problem is that after traffic is
serviced, it exits the outside interface and performs another route lookup. This route lookup points back to the
inside interface, and a service loop is created, as shown in Figure 7-12.

Figure 7-12. Next hop service set loop with single route table

You could also see this loop by viewing the service interface with a show interfaces sp-0/0/0.1 command

and noticing the ttl-exceeded flag. This flag indicates that it is OK to receive a packet with an expired TTL,

which the router would normally not do. Although this does not actually indicate a loop, since there is no
internal TTL method, it should throw a red flag. Remember that no loop actually occurred because the router
determined the loop was a SYN attack and dropped the packets:

Logical interface sp-0/0/0.1 (Index 64) (SNMP ifIndex 41)

 Flags: Point-To-Point SNMP-Traps Encapsulation: Adaptive-Services

 Input packets : 7

 Output packets: 0

 Protocol inet, MTU: 9192

 Flags: Receive-options, Receive-TTL-Exceeded

There are multiple ways to fix the loop, but typically each method will try to achieve the same goal: when the
packets are serviced and the second lookup is performed, the packet must point to a different route in a
different route table. One way to create a new route table is to create a virtual router (VR). With a VR, it is easy

http://lib.ommolketab.ir
http://lib.ommolketab.ir

in JUNOS to create a different route table and a forwarding table and then add routes in those tables. In a VR,
you can specify interfaces, create static routes, and even run routing protocols in their own instances. So, any
packet that arrives on an interface that is configured in the VR will perform a route lookup in the VR's route
table. In this way, traffic can be easily mapped to a new table without the need for filters or policies. Let's
create a VR to allow for the two lookups in two tables with the inside interface in the main instance and the
outside interface in the newly created VR, as shown in Figure 7-13.

Figure 7-13. VR setup

First, create a VR by naming the routing instance and specifying the instance type:

lab@PBR# set routing-instances SFW-VR instance-type virtual-router

Next, add the interfaces that should be linked to the VR. One interface will be the outgoing interface on PBR

toward Bock, and the other interface will be the outside service interface. Adding the outside service interface

allows the VR's table to be used for the second lookup:

lab@PBR# set routing-instances SFW-VR interface sp-0/0/0.2

[edit]

lab@PBR# set routing-instances SFW-VR interface fe-0/0/0.1241

Lastly, you need to configure routing for the return flow to succeed. When traffic is received on interface fe-

0/0/0.1241, it should be directed to the outside interface, serviced, and sent out the inside interface. Finally, a

route table lookup should be performed in the main inet.0 table. You can accomplish this just like you did

before by creating a static route, but this time pointing it to theoutside interface:

lab@PBR# set routing-instances SFW-VR routing options static route

0.0.0.0/0 next-hop sp-0/0/0.2

Here is the entire routing instance, with Open Shortest Path First (OSPF) also configured between PBR and Bock

for internal connectivity:

lab@PBR# show routing-instances

SFW-VR {

 instance-type virtual-router;

 interface sp-0/0/0.2;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 interface fe-0/0/0.1241;

 routing-options {

 static {

 route 0.0.0.0/0 next-hop sp-0/0/0.2;

 }

 }

 protocols {

 ospf {

 area 0.0.0.0 {

 interface fe-0/0/0.1241;

 }

 }

 }

}

A route table is automatically created with the form <routing-instance-name>.inet.0. Notice the static route

that was configured and the direct route that represents the links on the fe-0/0/0.1241 interface:

[edit]

lab@PBR# run show route table SFW-VR

SFW-VR.inet.0: 7 destinations, 7 routes (7 active, 0 holddown, 0

hidden) + = Active Route, - = Last Active, * = Both

0.0.0.0/0 *[Static/5] 03:27:05

 > via sp-0/0/0.2

10.10.10.0/30 *[OSPF/10] 03:24:23, metric 66

 > to 10.20.130.1 via fe-0/0/0.1241

10.10.12.2/32 *[OSPF/10] 03:24:23, metric 66

 > to 10.20.130.1 via fe-0/0/0.1241

10.10.12.3/32 *[OSPF/10] 03:24:23, metric 1

 > to 10.20.130.1 via fe-0/0/0.1241

10.20.130.0/24 *[Direct/0] 03:27:05

 > via fe-0/0/0.1241

10.20.130.2/32 *[Local/0] 03:27:05

 Local via fe-0/0/0.1241

224.0.0.5/32 *[OSPF/10] 03:24:43, metric 1

 MultiRecv

After committing the changes on PBR, the telnet now succeeds on Water:

lab@Water> telnet 10.10.12.3

Trying 10.10.12.3...

Connected to 10.10.12.3.

Escape character is '^]'.

Bock (ttyp1)

login:

The conversation is now complete, as shown in the session table on PBR:

lab@PBR# run show services stateful-firewall conversations

Interface: sp-0/0/0, Service set: telnet-set

Conversation: ALG protocol: tcp

 Number of initiators: 1, Number of responders: 1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Flow State Dir Frm count

TCP 64.8.12.5:1874 -> 10.10.12.3:23 Forward I 9

TCP 10.10.12.3:23 -> 64.8.12.5:1874 Forward O 7

7.4.4. Logging and Tracing

Since you can configure system logging and tracing in a variety of places in the configuration file, it can be
confusing which statement is actually doing the logging. The rule in JUNOS software is that the more specific
configuration will always override the more global configuration. The levels of logging possible, in order of global
to specific, are as follows:

Interface logging

lab@PBR# set sp-0/0/0 services-options syslog host 1.1.1.1 services ?

Possible completions:

 <[Enter]> Execute this command

 alert Conditions that should be corrected immediately

 any All levels

 critical Critical conditions

 emergency Panic conditions

 error Error conditions

 info Informational messages

 none No messages

 notice Conditions that should be handled specially

 warning Warning messages

 | Pipe through a command

Service set logging

Code View:
lab@PBR# set services service-set telnet-set syslog host 1.1.1.1 services ?

Possible completions:

 <[Enter]> Execute this command

 alert Conditions that should be corrected immediately

 any All levels

 critical Critical conditions

 emergency Panic conditions

 error Error conditions

 info Informational messages

 none No messages

 notice Conditions that should be handled specially

 warning Warning messages

 | Pipe through a command

Feature rule (stateful firewall, IPSec, etc.) logging

http://lib.ommolketab.ir
http://lib.ommolketab.ir

set stateful-firewall rule restricted-telnet term 1 then syslog

So, if logging was enabled at the service interface level and three service sets were configured, all three service
sets would inherit the service-level logging settings. If a single service set also enabled logging, those settings
would override the service-level logging for that service set. The remaining service sets would inherit the service
interface logging settings.

There are also different types of logging: standard syslog and traceoptions. Syslog will send a system log
message to a syslog server or the local router, and traceoptions will only send information to the local router.
When you are viewing services, traceoptions usually gives you a view of the actual software operations on the
Routing Engine (RE) and not the service PIC itself.

You can send syslog information to a remote syslog server by indicating a host, or send it to the local router by
specifying the keyword local:

sp-0/0/0 {

 services-options {

 syslog {

 host local {

 services any;

 }

 }

 }

If you specify that the syslog messages should be sent to the local router, you can send the messages to the
default system log of messages or to another designated file. Also, for those messages to actually appear, you
will have to configure the router to accept messages for the local2 facility. To place these syslog entries in the

messages file, you can use this configuration:

[edit]

lab@PBR# set system syslog file messages local2 any

An example of the types of syslog messages is messages that show which rules have been matched and
created. Here, router PBR is monitoring the messages file in real time, and you can see that a stateful-firewall

rule was matched and a flow was created based on that match:

Code View:
[edit]

lab@PBR# run monitor start messages

*** messages ***

Aug 10 06:45:50 (FPC Slot 0, PIC Slot 0) {telnet-set}[FWNAT]: ASP_SFW

_RULE_ACCEPT: proto 6 (TCP) application: any, fe-0/0/0.413:64.8.12.5:

10.10.12.3:23, Match SFW accept rule-set: , rule: restricted-telnet,

term: 1

Aug 10 06:45:50 (FPC Slot 0, PIC Slot 0) {telnet-set}[FWNAT]: ASP_SFW_CREATE_ACCEPT_

FLOW: proto 6 (TCP) application: any, fe-0/0/0.413:64.8.12.5:3225 -> 10.10.12.3:23,

creating forward or watch

flow

If you need to examine the service's software operation, you can configure traceoptions at the PIC level. If no
file is specified, the information will be placed into a file called spd:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

lab@PBR# set services adaptive-services-pics traceoptions flag ?

Possible completions:

 all Trace everything

 configuration Trace configuration events

 kernel-object Trace kernel object management

 routing-protocol Trace routing protocol events

 routing-socket Trace routing socket events

 snmp Trace SNMP operations

Here is an example of the types of messages you would see in spd. In this code snippet, software sockets have
been created and resources have been assigned when services were configured:

Code View:
lab@PBR# run show log spd

Aug 10 07:13:27 spd process starting, pid 12555

Aug 10 07:13:27 rpd session connected

Aug 10 07:13:27 registered async opaque handler for traps

Aug 10 07:13:27 Added sp-0/0/0 snmpindex 21 fpc_slot 0 pic_slot 0 to database

Aug 10 07:13:27 Loading initial state from kernel...

Aug 10 07:13:27 Processed ASP_CFG_GLOBAL_OPTIONS config object

Aug 10 07:13:27 Adding blob to set: id = 1, type = 16, size = 92, pic = sp-0/0/0 (0)

Aug 10 07:13:27 Blob id = 1, type = 16, size = 92 is new, adding

Aug 10 07:13:27 Imported config object (type 16, id 1)

Aug 10 07:13:27 Adding blob to set: id = 1, type = 16, size = 92, pic = sp-0/0/0 (0)

Aug 10 07:13:27 State initialization from kernel complete

Aug 10 07:13:27 ------ Finished with RTSOCK initialization ------

Aug 10 07:13:28 get_pic_index sp-0/0/0.1 pic index 0

Aug 10 07:13:28 get_pic_index sp-0/0/0.1 pic index 0

Aug 10 07:13:28 Adding blob to set: id = 2, type = 12, size = 912, pic = sp-0/0/0 (0)

Aug 10 07:13:28 get_pic_index sp-0/0/0 pic index 0

Aug 10 07:13:28 Adding blob to set: id = 1, type = 16, size = 92, pic = sp-0/0/0 (0)

Aug 10 07:13:28 Blob id = 1 is not changed, skipping

Aug 10 07:13:28 Blob id = 2, type = 12, size = 912 is new, adding

Aug 10 07:13:28 Added service set telnet-set (id 2, pic sp-0/0/0 (0))

Aug 10 07:13:28 Adding blob to set: id = 2, type = 12, size = 912, pic = sp-0/0/0 (0)

Aug 10 07:13:28 rpd session established

7.4.5. Layer 3 Services Configuration Summary

This section described the various Layer 3 service offerings as well as the CLI configuration steps that were
needed. We also discussed the option of interface-style or next hop-style service sets. In addition, we covered
some basic examples to illustrate the CLI options. We will cover more complex examples in the next chapter.

Now is a good time to take a break, perhaps to think about the points we covered in this section. The next
section will examine some additional features that are less common but could be deployed in your own network.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.5. Additional Service Options

You can enable many other services that are not as common but could play a large role in your network. We will
briefly discuss these services here, but you should consult the router or PIC documentation at
http://www.juniper.net/techpubs for more detailed configuration information.

7.5.1. Layer 2 Tunneling Protocol (L2TP)

L2TP is a tunneling protocol that tunnels PPP packets across a network, acting like a Layer 2 data link tunneling
protocol. L2TP headers and payload are actually sent in a UDP datagram, so maybe people claim it to be a Layer
5 or Layer 4.5 protocol. Each endpoint of the tunnel has its own designation, one being an LNS and the other an
LT2P Access Concentrator (LAC). A Juniper Networks router can act as an LNS.

Only M7i, M10i, and M120 routers support LT2P.

7.5.2. Real-Time Performance Monitoring (RPM)

RPM is a feature for tracking and monitoring your network by sending network probes to other devices. These
probes could be ICMP, UDP, or TCP,[4] depending on the configuration. You can use these probes to measure
packet round-trip times, jitter, delay, and packet (probe) loss. You also can use RPM to verify the path toward
Border Gateway Protocol (BGP) neighbors.

[4] UDP and TCP probes require a Juniper server.

RPM does not require an ASP or Multiservices PIC, unless you are configuring RPM
timestamping, which was released in JUNOS 8.1 for the sender and in JUNOS 8.3 for the
responder.

You can configure probes with a variety of parameters, such as the type or contents of the probe. Also, you can
set thresholds to trigger syslog messages and Simple Network Management Protocol (SNMP) TRAPs. In the
following example, router PBR has a probe to send an ICMP ping to Porter at 10.10.12.2. Seven probes should

be sent every three seconds:

[edit services rpm]

lab@PBR# show

 probe foo {

 test Porter {

 probe-type icmp-ping;

 target address 10.10.12.2;

 probe-count 7;

 probe-interval 3;

 }

}

http://www.juniper.net/techpubs
http://lib.ommolketab.ir
http://lib.ommolketab.ir

To verify that probes are being sent and data is being received, you can examine SNMP Management
Information Bases (MIBs) or use the local router sending the probes by issuing show services rpm commands.

The first command, history-results, should show the time at which the probes are sent and the round-trip

length of the probe:

lab@PBR# run show services rpm history-results

 Owner, Test Probe received Round trip time

 foo, Porter Wed Aug 8 07:02:54 2007 46097 usec

 foo, Porter Wed Aug 8 07:07:41 2007 33662 usec

 foo, Porter Wed Aug 8 07:07:44 2007 20133 usec

 foo, Porter Wed Aug 8 07:07:47 2007 20112 usec

 foo, Porter Wed Aug 8 07:07:50 2007 20112 usec

 foo, Porter Wed Aug 8 07:07:53 2007 20104 usec

 foo, Porter Wed Aug 8 07:07:56 2007 20092 usec

 foo, Porter Wed Aug 8 07:07:59 2007 20104 usec

Verify the actual probe results by issuing a show services rpm probe-results command:

Code View:
[edit services rpm]

lab@PBR# run show services rpm probe-results

 Owner: foo, Test: Porter

 Target address: 10.10.12.2, Probe type: icmp-ping, Test size: 7 probes

 Probe results:

 Response received, Wed Aug 8 07:07:59 2007

 Rtt: 20104 usec

 Results over current test:

 Probes sent: 7, Probes received: 7, Loss percentage: 0

 Measurement: Round trip time

 Minimum: 20092 usec, Maximum: 33662 usec, Average: 22046 usec,

 Jitter: 13570 usec, Stddev: 4742 usec

 Results over last test:

 Probes sent: 7, Probes received: 7, Loss percentage: 0

 Test completed on Wed Aug 8 07:07:59 2007

 Measurement: Round trip time

 Minimum: 20092 usec, Maximum: 33662 usec, Average: 22046 usec,

 Jitter: 13570 usec, Stddev: 4742 usec

 Results over all tests:

 Probes sent: 7, Probes received: 7, Loss percentage: 0

 Measurement: Round trip time

 Minimum: 20092 usec, Maximum: 33662 usec, Average: 22046 usec,

 Jitter: 13570 usec, Stddev: 4742 usec

You also can examine the paths to configured BGP peers by sending probes to configured peers. Once RPM is
configured, probes will be sent to neighbors configured for BGP automatically. In this example, router PBR has

one BGP neighbor to router Porter. The probes will be ICMP pings with five probes sent at an interval of one

second. They will be 255 bytes with ICMP data of hex 0123456789. The test will run every 60 seconds:

[edit services rpm]

lab@PBR# show

bgp {

 probe-type icmp-ping;

 probe-count 5;

 probe-interval 1;

 test-interval 60;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 history-size 10;

 data-size 255;

 data-fill 0123456789;

}

As previously mentioned, you can retrieve the results via show services rpm commands or via SNMP in MIBs

such as the following:

pingResultsTable

jnxPingResultsTable

jnxPingProbeHistoryTable

pingProbeHistoryTable

The following, final example details the show services rpm probe-results for PBR's BGP peer:

Code View:
[edit services rpm]

lab@PBR# run show services rpm probe-results

 Owner: Rpm-Bgp-Owner, Test: Rpm-Bgp-Test-0

 Target address: 10.10.12.2, Source address: 10.20.128.3,

 Probe type: icmp-ping, Test size: 5 probes

 Probe results:

 Response received, Wed Aug 8 07:20:37 2007

 Rtt: 20135 usec

 Results over current test:

 Probes sent: 5, Probes received: 5, Loss percentage: 0

 Measurement: Round trip time

 Minimum: 20102 usec, Maximum: 69744 usec, Average: 30049 usec,

 Jitter: 49642 usec, Stddev: 19847 usec

 Results over last test:

 Probes sent: 5, Probes received: 5, Loss percentage: 0

 Test completed on Wed Aug 8 07:20:37 2007

 Measurement: Round trip time

 Minimum: 20102 usec, Maximum: 69744 usec, Average: 30049 usec,

 Jitter: 49642 usec, Stddev: 19847 usec

 Results over all tests:

 Probes sent: 10, Probes received: 10, Loss percentage: 0

 Measurement: Round trip time

 Minimum: 20102 usec, Maximum: 69744 usec, Average: 25119 usec,

 Jitter: 49642 usec, Stddev: 14875 usec

7.5.3. Data Link Switching (DLSw)

DLSw is a protocol that offers IP routing support for unroutable, legacy protocols such as System Network
Architecture (SNA) and NETBUI/NetBIOS. Once configured, the routers set up connections with their local end
systems, as well as with other peer routers, and the traffic flow from one end system to another is transparent,
meaning the presence of the routed IP network is not known to the end stations. When DLSw is configured, TCP

http://lib.ommolketab.ir
http://lib.ommolketab.ir

sessions are established between peer routers and capabilities are negotiated. Then a circuit is established
between the end system and the router.

DLSw is supported only on J-series routers.

For example, in the SNA example shown in Figure 7-14, the sequence would be as follows:

An SNA device sends out an explorer frame looking for Mainframe 1.1.

The router receives this frame and sends a canureach frame to its peer DLSw routers.2.

The remote routers forward the canureach message to their attached Mainframes.3.

Mainframe 1 sends an icanreach response to its local router, which in turn forwards the frame toward the

DLSw peers.

4.

After the frames have been exchanged, a circuit is established between the SNA devices and the local
routers, as well as between the peer routers.

5.

Figure 7-14. DLSw example flow

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.5.4. Flow Monitoring

Juniper Networks routers give you the ability to take monitored traffic flows and export this data in cflowd
format or direct the flows in their native format to different packet analyzers. You can also encrypt the flows
when sending them.

One common type of monitoring that you can perform is called active monitoring, whereby the router takes the
inbound traffic, extracts the flow into a cflowd format, and sends the cflowd record of the matched traffic to a
flow collector device, as shown in Figure 7-15. The original packet is usually forwarded toward the destination,
but other options do exist, including discard accounting, whereby the cflowd record is sent to the flow collector
and the original packet is discarded, or port mirroring, whereby the entire packet is copied and sent to an
additional interface and the original packet is forwarded on to its intended destination.

Figure 7-15. Active flow monitoring

There are some restrictions on how many actions can be performed on a network flow in the router:

Sampling (cflowd) to a collector or port mirroring at one time

Forwarding the original packet or discard accounting at one time

And only certain combinations of configurations are allowed on the same set of traffic:

Port mirroring and forwarding

Port mirroring and discard accounting

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Sampling and forwarding

Sampling and discard accounting

Sampling (cflowd) and port mirroring can be performed at the same time only if they are on different sets of
traffic.

7.5.5. Tunnel Services

We have already discussed a variety of different tunnels, and even more can be configured. You can use these
tunnels for external connections or for connections with the same router. Any tunnel that is created will get an
internal interface created for it. These interfaces are as follows:

ip

For configuring an IP-IP tunnel that encapsulates one IP packet inside another. This type of tunnel is
often seen in mobile environments where the endpoint address changes, and is migrated to different
networks. This could also be useful in tunneling IPv6 packets over an IPv4 network.

lt

Creates internal tunnel connections between different logical routers or VRs in the same chassis. In a J-
series router, you also can use this interface to implement CoS on DLSw and RPM.

mt

Used to create multicast tunnels. These tunnels are automatically created when running multicast in a
Layer 3 BGP/Multiprotocol Label Switching (MPLS) VPN.

pd

Used to de-encapsulate PIM register messages sent from a designated router to a rendezvous point (RP)
in a multicast network.

pe

Used to encapsulate PIM register messages sent from a designated router to an RP in a multicast
network.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

vt

Used to loop a packet through the Packet Forwarding Engine (PFE) as an additional instance. This is
normally used in a VPN environment to concurrently perform both an MPLS lookup and an IP lookup. This
is supported only on M/T-series routers and not on J-series routers.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.6. Conclusion

JUNOS software offers a vast number of both Layer 2 and Layer 3 services that you can run on your network.
Not all of these services will likely be running on your network at the same time, but often you'll use them for
the features and security they offer. This chapter examined the basic building blocks of those services, and how
to deploy them on a single-service feature basis. The next chapter examines more complex scenarios with
multiple services running concurrently.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.7. Exam Topics

We examined the following Enterprise Exam Topics in this chapter:

Configure MLPPP.

Configure Layer 2 services to optimize voice traffic.

Configure and apply an interface-style service set.

Configure a next hop-style service set.

Identify the match direction given a network diagram.

Understand and implement various types of service sets.

Describe the differences between stateful firewalls and stateless packet filters.

Describe NAT and PAT.

Describe the functions of ALGs.

Configure a stateful firewall via the CLI.

Monitor a stateful firewall.

Explain the uses of IPSec VPNs.

Intrusion detection and prevention (IDP).

Virtual routers to segment secure services.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.8. Chapter Review Questions

Which type of service allows for multiple physical interfaces running Frame Relay to be bonded together
into a single logical bundle?

MLPPPa.

FRF.15b.

FRF.12c.

FRF.16d.

1.

Which type of service set would you choose if you wanted to service multicast traffic?

Interface-stylea.

Next hop-styleb.

2.

True or False: All Layer 2 services will always use the ls- interface.3.

Which CLI command displays a session for a stateful firewall?

show services stateful-firewall conversationsa.

show services stateful-firewall packetsb.

show services stateful-firewall sessionc.

show services stateful-firewall flows bidirectionald.

4.

Which feature of an IPSec VPN allows for confidentiality of data?

a.

5.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IKEa.

MD5 hashesb.

AES encryptionc.

Sequence numbersd.

5.

What type of load balancing is used across MLPPP links for fragmented traffic?

Per packeta.

Per flowb.

Per fragmentc.

Per portd.

6.

If fragmentation is turned on for MLPPP, what type of load balancing would occur for unfragmented
packets?

Per packeta.

Per flowb.

Per fragmentc.

Per portd.

7.

Which feature will help to lower latency of voice traffic on a point-to-point link?

CHAPa.

Codecsb.

c.

8.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

b.

RTPc.

CRTPd.

If traffic was arriving on the outside interface of a service set, for which direction would the rule be
configured?

inputa.

outputb.

bi-directionalc.

no-directiond.

9.

Which feature would allow traffic to be skipped in a service set?

Post-service filtera.

Firewall filterb.

Service filterc.

Service skippingd.

10.

Which type of service PIC can be integrated on an M7i?

ASMa.

ASPb.

Monitoring Servicesc.

Hardware accelerationd.

11.

12.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

d.

How is traffic chosen to be compressed when configuring CRTP? (Choose two.)

IP addressa.

Port numbersb.

Packet sizec.

Queued.

12.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.9. Chapter Review Answers

Answer: D. FRF.16 allows bonding of physical interfaces together, whereas FRF.15 bonds multiple DLCIs
together.

1.

Answer: B. The only way to service multicast traffic is to use a next hop service set. Interface-style service
sets ignore multicast traffic.

2.

Answer: False. Some PICs will use an lsq interface, and others will use an ls interface. lsq allows for

more CoS features than ls.

3.

Answer: A. In JUNOS software, a session is referred to as a conversation, which is a flow in each direction.4.

Answer: C. To achieve data confidentiality, you should encrypt the traffic. One algorithm you can use to
encrypt traffic is AES.

5.

Answer: C. When MLPPP is enabled, packets will be sent down each link on a per-fragment basis. Since
each packet fragment will have an MLPPP header with a sequence number, order will be maintained by the
end device.

6.

Answer: B. If fragmentation does not occur on an MLPPP link, the packets are balanced over a flow (source
IP, destination IP, protocol, etc.). Since nonfragmented packets will not contain an MLPPP header, per flow
is the only way to maintain packet order.

7.

Answer: D. Compressed RTP decreases the header size to a few bytes, which reduces serialization and
queuing delay.

8.

Answer: B. Traffic arriving on the outside service interface will be in the output direction. Traffic arriving
on the inside service interface will be in the input direction.

9.

Answer: C. You can apply a service filter to an interface with an action of skip to allow traffic to pass any

service rules.

10.

Answer: A. You can integrate ASM into an M7i router only. For other M-series routers, you must install a
physical PIC into a slot.

11.

Answer: B, D. Traffic can be classified for RTP compressed based on port numbers or based on which
queue a packet was placed into. If both match conditions are configured, a packet will be compressed if
either condition is met.

12.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 8. Advanced JUNOS Services

We discussed the framework for JUNOS services in Chapter 7. This chapter will dive into more advanced
scenarios and configurations. Often, you will need to use many Layer 3 services simultaneously, such as
Network Address Translation (NAT), stateful firewall, and IPSec virtual private networks (VPNs), so you must
plan properly to create transparent service additions.

The topics we will cover in this chapter include:

Route tables and next hop service sets

IPSec VPNs

NAT

Combined Layer 3 services

Packet flow

This chapter assumes that the reader grasps the concepts discussed in the preceding chapter; specifically, the
types of service sets and command-line interface (CLI) configurations. If these concepts are unfamiliar, please
review the preceding chapter.

8.1. Route Tables and Next Hop Service Sets

When using a next hop service set, remember that the packet must go through the "two-legged table" of the
inside and outside interfaces. Regardless of which interface the packet enters, two route table lookups will
always be performed. To avoid a routing loop, the pre- and post-service lookups must return different next hop
values. You can accomplish this in a few ways:

Implement virtual routers (VRs)

Use filter-based forwarding (FBF)

Perform destination NAT to change the destination address

VRs are the most preferred method, followed by FBF and destination NAT. VRs and FBF solve the double next
hop issue by using multiple route tables, whereas destination NAT attempts to use a single route table.

With destination NAT, the forward direction can be fairly cut and dried, as Figure 8-1 demonstrates; simply
perform a lookup on the original destination address, which causes the packet to be serviced, and then change
the destination address and perform a second lookup on the new destination address to be used for forwarding.
Issues arise in the reverse direction, where the destination address would normally stay the same. In this case,
you would have to use a method such as FBF to solve this problem.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 8-1. Destination NAT

FBF uses JUNOS software packet filters to redirect traffic to a new route table. These filters are applied to a
physical interface to match traffic that should be serviced. This traffic is then sent to a new route table
containing a route, which causes the traffic to be serviced (see Figure 8-2). The problem with FBF is that the
configuration can be complex and not as scalable or secure as VRs.

Figure 8-2. FBF

The first step when using FBF is to create a routing instance. A routing instance is simply a way to create a new
route table. The properties of the route table will depend on the instance type (forwarding, nonforwarding,
Virtual Route and Forwarding [VRF], VR, etc.). Instance types include:

Forwarding

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Used for FBF applications when a route table and forwarding table are required.

l2vpn

Used to create Kompella-based Border Gateway Protocol/Multiprotocol Label Switching (BGP/MPLS) VPNs.

Nonforwarding

Used when a separation of routing information is required. Sometimes it is used to monitor certain
prefixes by an NMS system.

VR

Used to create a local VPN, with local interfaces and protocols.

VRF

Used to create Layer 3 BGP/MPLS VPNs.

The instance is named, which creates the name of the route table with the format <instance name> .inet.0. In

this case, we create a forwarding instance of type forwarding, which creates a route and a forwarding table for

the instance:

lab@PBR# set routing-instances example instance-type forwarding

Next, create the filter to match which traffic should be serviced and sent to the new table. In this case, external
traffic destined for 128.3.3/24 will be sent to the instance example. It is vital not to forget about the default
behavior of a filter, which is to deny all traffic at the end of processing. This could cause major problems on the
interface for internal transit traffic, so make sure you always have additional terms that allow this traffic. The
filter match-outbound term 2 allows all other traffic through the interface for route lookups in the default

route table, inet.0:

lab@PBR# show firewall

family inet {

 filter match-outbound {

 term 1 {

 from {

 destination-address {

 128.3.3.0/24;

 }

 }

 then routing-instance example;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 term 2 {

 then accept;

 }

 }

Apply the filter to the interface where incoming traffic needs to be matched, such as a LAN interface:

lab@PBR# show interfaces fe-0/0/0 unit 1241

description PBR_to_Bock;

vlan-id 1241;

family inet {

 filter {

 input-list match-outbound;

 }

 address 10.20.130.2/24;

}

So far, we've covered the easy part, but now things get a bit trickier as we enable routing. When traffic enters
the new example.inet.0 table, it should be sent to an sp- service interface to be serviced. To do this, you

should add static routes to the routing instance. This could be in the form of a series of static routes or a
default, as needed:

[edit routing-instances example]

lab@PBR# show

instance-type forwarding;

routing-options {

 static {

 route 0.0.0.0/0 next-hop sp-0/0/0.1;

 }

}

If only the required configuration would end there-but it continues. For any static route to be active in a route
table, the next hop value must be reachable in that route table. Since the route points to the service interface
sp-0/0/0.1, we must ensure that the interface is in the example.inet.0 route table. To accomplish this, we

must copy the route from the inet.0 table to the example.inet.0 table, which is implemented in a concept

called rib-groups.

Over the years, many network engineers have struggled with the rib-group concept.
Rib-groups are often difficult to understand. They are even harder to explain even if you
think you actually understand the concept. In current JUNOS code, there are many ways
to avoid the use of rib-groups, such as using VRs, which is one of the reasons FBF is not
the preferred approach.

The first rule for a rib-group is the local logical grouping definition that defines which tables will be able to share
routes. These definitions are spelled out in the [edit routing-options] stanza. The rib-group will be named,

as it will need to be referenced later. In this case study, we define a rib-group called test to share the sp-

0/0/0.1 interface in inet.0 and example.inet.0. Here is the result:

[edit routing-options]

lab@PBR# show

http://lib.ommolketab.ir
http://lib.ommolketab.ir

rib-groups {

 test {

 import-rib [inet.0 example.inet.0];

 }

}

After the rib-group is defined, we must configure which information is actually placed into the rib-group. In
other words, we must decide whether Open Shortest Path First (OSPF), BGP, static routes, interface routes, and
so on are going to be shared. To have the sp- interface shared, we need to apply interface routes to the test

rib-group:

[edit routing-options]

lab@PBR# set interface-routes rib-group inet test

The issue that arises with this command is that all interface routes in inet.0 will be placed into

example.inet.0 when only the sp- interface is required. To allow only that interface to be copied from inet.0,

we must configure a policy and apply it to the rib-group. The policy should send the sp-0/0/0.1 interface to the

correct table and deny all other routes from being moved:

}

policy-statement inside-interface {

 term service {

 from interface sp-0/0/0.1;

 to rib example.inet.0;

 then accept;

 }

 term reject {

 then reject;

 }

}

Once we apply the policy to the rib-groups, the route table will contain one default route that points to the
service interface. Here is the final result after the policy is applied:

[edit routing-options]

lab@PBR# show

interface-routes {

 rib-group inet test;

}

rib-groups {

 test {

 import-policy inside-interface;

 import-rib [inet.0 example.inet.0];

 }

}

Using rib-groups and FBF usually results in a maximum use of brain-cell capacity. To reduce the number of brain
cells being used and reserve them to concentrate on other things, try the preferred method for next hop service
sets: VRs. VRs provide the cleanest, easiest, most scalable, and more secure solution. By using VRs, you can
align with the security zone concept, in which interfaces are placed within certain logical zones (we will outline
this zone concept in more detail in Chapter 11). In the case of a router, a zone is actually a new route table, so
when a packet hits an interface in a zone (VR), a table lookup is performed in that VR. The most basic case
would be two VRs-a trust VR for LAN interfaces and an untrust VR for WAN interfaces (see Figure 8-3).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Every router always contains one default VR called the default VR. In JUNOS software,
this is represented by the route table inet.0. When creating two VRs, you can either

create two new "trust" or "untrust" VRs or use the default VR as one of the VRs.

Figure 8-3. The VR concept

The VR concept can extend to as many VRs as needed. For example, some external servers may have special
services applied to them that don't fall into a trust or untrust category. This third category is often referred to as
the demilitarized zone (DMZ). Figure 8-4 illustrates the three-category setup.

Figure 8-4. Three-zone VRs

A large advantage of a VR is the fact that rib-groups and firewall filters are avoided since interfaces are now tied
to the routing instance and are placed in the instance's route table. As a result, traffic arriving over the applied
interface automatically has a route lookup performed in the instance's route table. VRs also allow routing
protocols to be configured to automatically populate the route table. This actually creates a new process or
instance of that protocol, so the standard show commands must be followed by the instance switch. More to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the point, if a VR called trust was configured with OSPF, a show ospf neighbor instance trust would be

issued in order to view the OSPF neighbors. As in Figure 8-3, a VR trust is going to be configured with LAN
interface fe-1/0/1 and inside service interfaces of sp-0/0/0.1 and lo0.1:

routing-instances {

 trust {

 instance-type virtual router

 interface sp-0/0/0.1;

 interface fe-1/0/1.0;

 interface lo0.1;

}

The lo0.1 interface is created for routing protocol use in a VR. When a new logical

interface is configured on the loopback interface, it must be applied to a routing instance
to avoid commit failures.

Next, routing is configured to send traffic to the service interface for servicing (the stateful firewall, NAT,
intrusion detection service [IDS], etc.). Similar to FBF, a static default route is used with a next hop value of the
service interface. Also, OSPF is enabled on the LAN Fast Ethernet interface. Here is the result of the entire VR
configuration:

routing-instances {

 trust {

 instance-type virtual router

 interface sp-0/0/0.1;

 interface fe-1/0/1.0;

 interface lo0.1;

 routing-options {

 static {

 route 0.0.0.0/0 next-hop sp-0/0/0.1;

 }

 }

 protocols {

 ospf {

 area 0.0.0.0 {

 interface fe-1/0/1.0;

 }

 }

 }

 }

The FBF and Virtual Router example shows traffic in only one direction. Additional routes
for return traffic may need to be created to the outside interface depending on the type
of service.

Compared to FBF, the VR configuration should let you sleep much easier at night due to its simplicity. The next
hop service set examples that follow utilize the preferred VR solution.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.1.1. Summary of Route Tables and Next Hop-Style Service Sets

When using the flexible next hop-style service set, you must consider multiple route table lookups. Due to the
multiple lookup requirement, a unique result must be present in each lookup iteration. You can accomplish this
by using destination NAT, FBF, or VRs. The recommended method, and the foundation for the remaining
chapters, is to use VRs.

In the next section, we will look at one of the common services used in enterprise networks today: IPSec VPNs.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 8. Advanced JUNOS Services

We discussed the framework for JUNOS services in Chapter 7. This chapter will dive into more advanced
scenarios and configurations. Often, you will need to use many Layer 3 services simultaneously, such as
Network Address Translation (NAT), stateful firewall, and IPSec virtual private networks (VPNs), so you must
plan properly to create transparent service additions.

The topics we will cover in this chapter include:

Route tables and next hop service sets

IPSec VPNs

NAT

Combined Layer 3 services

Packet flow

This chapter assumes that the reader grasps the concepts discussed in the preceding chapter; specifically, the
types of service sets and command-line interface (CLI) configurations. If these concepts are unfamiliar, please
review the preceding chapter.

8.1. Route Tables and Next Hop Service Sets

When using a next hop service set, remember that the packet must go through the "two-legged table" of the
inside and outside interfaces. Regardless of which interface the packet enters, two route table lookups will
always be performed. To avoid a routing loop, the pre- and post-service lookups must return different next hop
values. You can accomplish this in a few ways:

Implement virtual routers (VRs)

Use filter-based forwarding (FBF)

Perform destination NAT to change the destination address

VRs are the most preferred method, followed by FBF and destination NAT. VRs and FBF solve the double next
hop issue by using multiple route tables, whereas destination NAT attempts to use a single route table.

With destination NAT, the forward direction can be fairly cut and dried, as Figure 8-1 demonstrates; simply
perform a lookup on the original destination address, which causes the packet to be serviced, and then change
the destination address and perform a second lookup on the new destination address to be used for forwarding.
Issues arise in the reverse direction, where the destination address would normally stay the same. In this case,
you would have to use a method such as FBF to solve this problem.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 8-1. Destination NAT

FBF uses JUNOS software packet filters to redirect traffic to a new route table. These filters are applied to a
physical interface to match traffic that should be serviced. This traffic is then sent to a new route table
containing a route, which causes the traffic to be serviced (see Figure 8-2). The problem with FBF is that the
configuration can be complex and not as scalable or secure as VRs.

Figure 8-2. FBF

The first step when using FBF is to create a routing instance. A routing instance is simply a way to create a new
route table. The properties of the route table will depend on the instance type (forwarding, nonforwarding,
Virtual Route and Forwarding [VRF], VR, etc.). Instance types include:

Forwarding

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Used for FBF applications when a route table and forwarding table are required.

l2vpn

Used to create Kompella-based Border Gateway Protocol/Multiprotocol Label Switching (BGP/MPLS) VPNs.

Nonforwarding

Used when a separation of routing information is required. Sometimes it is used to monitor certain
prefixes by an NMS system.

VR

Used to create a local VPN, with local interfaces and protocols.

VRF

Used to create Layer 3 BGP/MPLS VPNs.

The instance is named, which creates the name of the route table with the format <instance name> .inet.0. In

this case, we create a forwarding instance of type forwarding, which creates a route and a forwarding table for

the instance:

lab@PBR# set routing-instances example instance-type forwarding

Next, create the filter to match which traffic should be serviced and sent to the new table. In this case, external
traffic destined for 128.3.3/24 will be sent to the instance example. It is vital not to forget about the default
behavior of a filter, which is to deny all traffic at the end of processing. This could cause major problems on the
interface for internal transit traffic, so make sure you always have additional terms that allow this traffic. The
filter match-outbound term 2 allows all other traffic through the interface for route lookups in the default

route table, inet.0:

lab@PBR# show firewall

family inet {

 filter match-outbound {

 term 1 {

 from {

 destination-address {

 128.3.3.0/24;

 }

 }

 then routing-instance example;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 term 2 {

 then accept;

 }

 }

Apply the filter to the interface where incoming traffic needs to be matched, such as a LAN interface:

lab@PBR# show interfaces fe-0/0/0 unit 1241

description PBR_to_Bock;

vlan-id 1241;

family inet {

 filter {

 input-list match-outbound;

 }

 address 10.20.130.2/24;

}

So far, we've covered the easy part, but now things get a bit trickier as we enable routing. When traffic enters
the new example.inet.0 table, it should be sent to an sp- service interface to be serviced. To do this, you

should add static routes to the routing instance. This could be in the form of a series of static routes or a
default, as needed:

[edit routing-instances example]

lab@PBR# show

instance-type forwarding;

routing-options {

 static {

 route 0.0.0.0/0 next-hop sp-0/0/0.1;

 }

}

If only the required configuration would end there-but it continues. For any static route to be active in a route
table, the next hop value must be reachable in that route table. Since the route points to the service interface
sp-0/0/0.1, we must ensure that the interface is in the example.inet.0 route table. To accomplish this, we

must copy the route from the inet.0 table to the example.inet.0 table, which is implemented in a concept

called rib-groups.

Over the years, many network engineers have struggled with the rib-group concept.
Rib-groups are often difficult to understand. They are even harder to explain even if you
think you actually understand the concept. In current JUNOS code, there are many ways
to avoid the use of rib-groups, such as using VRs, which is one of the reasons FBF is not
the preferred approach.

The first rule for a rib-group is the local logical grouping definition that defines which tables will be able to share
routes. These definitions are spelled out in the [edit routing-options] stanza. The rib-group will be named,

as it will need to be referenced later. In this case study, we define a rib-group called test to share the sp-

0/0/0.1 interface in inet.0 and example.inet.0. Here is the result:

[edit routing-options]

lab@PBR# show

http://lib.ommolketab.ir
http://lib.ommolketab.ir

rib-groups {

 test {

 import-rib [inet.0 example.inet.0];

 }

}

After the rib-group is defined, we must configure which information is actually placed into the rib-group. In
other words, we must decide whether Open Shortest Path First (OSPF), BGP, static routes, interface routes, and
so on are going to be shared. To have the sp- interface shared, we need to apply interface routes to the test

rib-group:

[edit routing-options]

lab@PBR# set interface-routes rib-group inet test

The issue that arises with this command is that all interface routes in inet.0 will be placed into

example.inet.0 when only the sp- interface is required. To allow only that interface to be copied from inet.0,

we must configure a policy and apply it to the rib-group. The policy should send the sp-0/0/0.1 interface to the

correct table and deny all other routes from being moved:

}

policy-statement inside-interface {

 term service {

 from interface sp-0/0/0.1;

 to rib example.inet.0;

 then accept;

 }

 term reject {

 then reject;

 }

}

Once we apply the policy to the rib-groups, the route table will contain one default route that points to the
service interface. Here is the final result after the policy is applied:

[edit routing-options]

lab@PBR# show

interface-routes {

 rib-group inet test;

}

rib-groups {

 test {

 import-policy inside-interface;

 import-rib [inet.0 example.inet.0];

 }

}

Using rib-groups and FBF usually results in a maximum use of brain-cell capacity. To reduce the number of brain
cells being used and reserve them to concentrate on other things, try the preferred method for next hop service
sets: VRs. VRs provide the cleanest, easiest, most scalable, and more secure solution. By using VRs, you can
align with the security zone concept, in which interfaces are placed within certain logical zones (we will outline
this zone concept in more detail in Chapter 11). In the case of a router, a zone is actually a new route table, so
when a packet hits an interface in a zone (VR), a table lookup is performed in that VR. The most basic case
would be two VRs-a trust VR for LAN interfaces and an untrust VR for WAN interfaces (see Figure 8-3).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Every router always contains one default VR called the default VR. In JUNOS software,
this is represented by the route table inet.0. When creating two VRs, you can either

create two new "trust" or "untrust" VRs or use the default VR as one of the VRs.

Figure 8-3. The VR concept

The VR concept can extend to as many VRs as needed. For example, some external servers may have special
services applied to them that don't fall into a trust or untrust category. This third category is often referred to as
the demilitarized zone (DMZ). Figure 8-4 illustrates the three-category setup.

Figure 8-4. Three-zone VRs

A large advantage of a VR is the fact that rib-groups and firewall filters are avoided since interfaces are now tied
to the routing instance and are placed in the instance's route table. As a result, traffic arriving over the applied
interface automatically has a route lookup performed in the instance's route table. VRs also allow routing
protocols to be configured to automatically populate the route table. This actually creates a new process or
instance of that protocol, so the standard show commands must be followed by the instance switch. More to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the point, if a VR called trust was configured with OSPF, a show ospf neighbor instance trust would be

issued in order to view the OSPF neighbors. As in Figure 8-3, a VR trust is going to be configured with LAN
interface fe-1/0/1 and inside service interfaces of sp-0/0/0.1 and lo0.1:

routing-instances {

 trust {

 instance-type virtual router

 interface sp-0/0/0.1;

 interface fe-1/0/1.0;

 interface lo0.1;

}

The lo0.1 interface is created for routing protocol use in a VR. When a new logical

interface is configured on the loopback interface, it must be applied to a routing instance
to avoid commit failures.

Next, routing is configured to send traffic to the service interface for servicing (the stateful firewall, NAT,
intrusion detection service [IDS], etc.). Similar to FBF, a static default route is used with a next hop value of the
service interface. Also, OSPF is enabled on the LAN Fast Ethernet interface. Here is the result of the entire VR
configuration:

routing-instances {

 trust {

 instance-type virtual router

 interface sp-0/0/0.1;

 interface fe-1/0/1.0;

 interface lo0.1;

 routing-options {

 static {

 route 0.0.0.0/0 next-hop sp-0/0/0.1;

 }

 }

 protocols {

 ospf {

 area 0.0.0.0 {

 interface fe-1/0/1.0;

 }

 }

 }

 }

The FBF and Virtual Router example shows traffic in only one direction. Additional routes
for return traffic may need to be created to the outside interface depending on the type
of service.

Compared to FBF, the VR configuration should let you sleep much easier at night due to its simplicity. The next
hop service set examples that follow utilize the preferred VR solution.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.1.1. Summary of Route Tables and Next Hop-Style Service Sets

When using the flexible next hop-style service set, you must consider multiple route table lookups. Due to the
multiple lookup requirement, a unique result must be present in each lookup iteration. You can accomplish this
by using destination NAT, FBF, or VRs. The recommended method, and the foundation for the remaining
chapters, is to use VRs.

In the next section, we will look at one of the common services used in enterprise networks today: IPSec VPNs.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.2. IPSec VPNs

IPSec VPNs, as discussed in Chapter 7, tunnel IP traffic across an IP network to provide security features such
as data privacy and integrity. When building an IPSec tunnel, you must decide on a few parameters:

Protocol (Encapsulating Security Payload [ESP], authentication header [AH], or Bundle)

Encryption algorithm (Advanced Encryption Standard [AES], Data Encryption Standard [DES], Triple DES
[3DES], or none)

Authentication algorithm (Message Digest 5 [MD5], Secure Hash Algorithm [SHA-1])

Perfect forward secrecy (on/off)

Anti-replay (on/off)

Together, these parameters form a proposal. The proposal must be equivalent on each side of the tunnel for the
tunnel to become established. These proposals can be statically configured or dynamically negotiated using the
Internet Key Exchange (IKE) protocol. Static proposals are rarely used, as they are cumbersome to manage,
prone to error, and difficult to change on the fly. IKE uses a method of key exchanges to exchange parameters
in a secure manner over two phases. Phase 1 establishes the parameters needed to exchange information to
form a secure IPSec tunnel. Phase 2 establishes the actual security parameters for that IPSec tunnel. When
viewing commands on the router, Phase 1 is seen as an IKE security association, and Phase 2 is seen as an
IPSec security association.

Since multiple tunnels can be established between two peers, there has to be some way to identify which
packets belong to each tunnel. To do this, a database is created with entries called security associations (SAs)
for each tunnel. An SA identifies each tunnel by the following parameters:

Destination IP address

Security protocol and parameters (protocol, encryption, and authentication)

Security Parameter Index (SPI)

Secret keys

IPSec theory is beyond the scope of this book; we focus instead on network
implementation and design. Please consult O'Reilly dedicated IPSec books for more
information on the specifics of ESP, AH, encryption, and IKE.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.2.1. Minimum IPSec Tunnel Configuration

When configuring an IPSec tunnel, as with all Layer 3 services, you will need a service set. These service sets
contain the rules for matching traffic that should transit the IPSec tunnel. The rules can include policies that link
the various proposals that the tunnel will use (see Figure 8-5). There can be separate policies and proposals for
the Phase 1 (IKE) and Phase 2 (IPSec) SAs.

Figure 8-5. IPSec rule, policy, and proposal relationships

PBR is going to form an IPSec tunnel with the extranet Cans for traffic to a 128.3.3/24 address block to secure

traffic (see Figure 8-6). The remote endpoint of the tunnel is 128.3.3.4 and the local address on PBR is

172.16.1.2. PBR is learning the 123.3.3/24 subnet via BGP with Wheat.

Figure 8-6. Sample topology

The tunnel will be set up with the default parameters shown in Table 8-1.

Table 8-1. Default parameters for tunnel

 IKE IPSec

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 IKE IPSec

Mode Main N/A

Protocol N/A ESP

Encryption 3DES-CBC (cipher block chaining) 3DES-CBC

Authentication SHA-1 Hashed Message Authentication Code (HMAC)-SHA-1-96

Lifetime 3,600 seconds 28,800 seconds

Additional options N/A Antireplay, no Perfect Forward Secrecy (PFS) protocol

8.2.1.1. Interface-style service set

First we will implement the tunnel as an interface-style service set and then as a next hop service set. Begin by
creating the service interface to use for the interface-style service set:

[edit interfaces]

lab@PBR# set sp-0/0/0 unit 0 family inet

Now create the rule to match traffic sent to the tunnel and, minimally, an IKE policy to be applied. An IKE policy
referencing either a preshared key or a certificate is required, and IPSec policies are optional. With this
configuration, the tunnel will inherit the default parameters listed in Table 8-1:

[edit services ipsec-vpn]

ike {

 policy min-policy {

 pre-shared-key ascii-text "9BSJ1RSdVYJUH8XGDHkPfIEh";

SECRET-DATA

 }

 }

Create the IPSec VPN rule to match on the required traffic and send it through the tunnel toward the endpoint.
The IKE policy will also need to be applied, along with a direction in which to encrypt traffic:

lab@PBRt# show services

ipsec-vpn {

 rule secure-extranet {

 term 1 {

 from {

 destination-address {

 128.3.3.0/24;

 }

 }

 then {

 remote-gateway 128.3.3.4;

 dynamic {

 ike-policy min-policy;

 }

 }

 }

 match-direction output;

}

Mode Main N/A

Protocol N/A ESP

Encryption 3DES-CBC (cipher block chaining) 3DES-CBC

Authentication SHA-1 Hashed Message Authentication Code (HMAC)-SHA-1-96

Lifetime 3,600 seconds 28,800 seconds

Additional options N/A Antireplay, no Perfect Forward Secrecy (PFS) protocol

8.2.1.1. Interface-style service set

First we will implement the tunnel as an interface-style service set and then as a next hop service set. Begin by
creating the service interface to use for the interface-style service set:

[edit interfaces]

lab@PBR# set sp-0/0/0 unit 0 family inet

Now create the rule to match traffic sent to the tunnel and, minimally, an IKE policy to be applied. An IKE policy
referencing either a preshared key or a certificate is required, and IPSec policies are optional. With this
configuration, the tunnel will inherit the default parameters listed in Table 8-1:

[edit services ipsec-vpn]

ike {

 policy min-policy {

 pre-shared-key ascii-text "9BSJ1RSdVYJUH8XGDHkPfIEh";

SECRET-DATA

 }

 }

Create the IPSec VPN rule to match on the required traffic and send it through the tunnel toward the endpoint.
The IKE policy will also need to be applied, along with a direction in which to encrypt traffic:

lab@PBRt# show services

ipsec-vpn {

 rule secure-extranet {

 term 1 {

 from {

 destination-address {

 128.3.3.0/24;

 }

 }

 then {

 remote-gateway 128.3.3.4;

 dynamic {

 ike-policy min-policy;

 }

 }

 }

 match-direction output;

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

The router automatically created bidirectional SAs, so when specifying traffic to be
secured in the outbound direction, the router automatically secures the inbound
direction. This means that when specifying an interface-style service set, the output
direction is generally used, whereas a next hop-style service set will use the input
direction.

Next, we need to create the service set that maps the IPSec rule and the service interface. Additionally, we
need to configure the local gateway for the IPSec tunnel. This will be the address used to source all IPSec
packets as well as the address to which the remote tunnels will connect. You can have only a single gateway
address in a service set, but you can configure multiple remote gateways in the IPSec rules.

[edit services]

lab@PBR# show service-set basic-vpn

interface-service {

 service-interface sp-0/0/0.0;

}

ipsec-vpn-options {

 local-gateway 172.16.1.2;

}

ipsec-vpn-rules secure-extranet;

Apply the service set to the tunnel's outbound interface:

lab@PBR# top show interfaces fe-0/0/0 unit 412

description PBR-to-Wheat;

vlan-id 412;

family inet {

 service {

 input {

 service-set basic-vpn;

 }

 output {

 service-set basic-vpn;

 }

 }

 address 172.16.1.2/24;

After committing the configuration, you can view the tunnel status with the show service ipsec command. In

this case, the tunnel appears to be down, as no Phase 2 SAs appear:

lab@PBR# run show services ipsec-vpn ipsec security-associations

Service set: basic-vpn

 Rule: secure-extranet, Term: 1, Tunnel index: 1

 Local gateway: 172.16.1.2, Remote gateway: 128.3.3.4

 Tunnel MTU: 1500

 --- No IPSec SA information available ---

Issuing a ping to the remote gateway address of 128.3.3.4 on PBR indicates the problem:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

lab@PBR# ping 128.3.3.4

PING 128.3.3.4 (128.3.3.4): 56 data bytes

ping: sendto: No route to host

ping: sendto: No route to host

ping: sendto: No route to host

ping: sendto: No route to host

^C

--- 128.3.3.4 ping statistics ---

4 packets transmitted, 0 packets received, 100% packet loss

n

Recall that the 128.3.3/24 network was learned via BGP. When viewing the BGP neighbor status toward Wheat,

the session appears to be down, as seen by the connect state:

Code View:
lab@PBR# run show bgp summary

Groups: 1 Peers: 1 Down peers: 1

Table Tot Paths Act Paths Suppressed History Damp State Pending

inet.0 0 0 0 0 0 0

Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn State|#Active/

Received/Damped...

172.16.1.1 420 198 184 0 7 6:30 Connect

The BGP session is down because the service set is applied to the session's interface. Remember that once a
service set is applied to an interface, any traffic that does not match the term is serviced by default. To avoid
this problem, you should apply a service filter to skip the procession of BGP traffic. The default action of a
service filter is skip, so make sure other traffic is serviced accordingly:

[edit firewall]

lab@PBR# show

family inet {

 service-filter allow-bgp {

 term 1 {

 from {

 protocol tcp;

 port bgp;

 }

 then skip;

 }

 }

 term 2 {

 then service;

 }

}

Apply the service filter to the interface in both directions:

lab@PBR# top show interfaces fe-0/0/0 unit 412

description PBR-to-Wheat;

vlan-id 412;

family inet {

 service {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 input {

 service-set basic-vpn service-filter allow-bgp;

 }

 output {

 service-set basic-vpn service-filter allow-bgp;

 }

 }

 address 172.16.1.2/24;

After the service filter has been applied, the BGP session and the IPSec tunnel will become established. Verify
the tunnel using the show services ipsec command. First, verify Phase 1, ensuring that the state is matured:

[edit firewall family inet service-filter allow-bgp]

lab@PBR# run show services ipsec-vpn ike security-associations

Remote Address State Initiator cookie Responder cookie

Exchange type

128.3.3.4 Matured 773036d8a2d22e7b ef23082150245a03

Main

Often, an operator will view the IKE SA, and when nothing appears, the operator will
assume that the IPSec tunnel is down. This is not always the case, as IKE associations
appear only on an "as needed" basis. So, if the IPSec SA has been established, the IKE
SA may time out. Using default parameters, the lifetime of an IKE SA is 3,600 seconds
and the lifetime of IPSec is 28,800 seconds, which means that a stable network may not
have an active IKE SA for up to 7 hours! Make sure that if any changes occur that could
prevent two-way IKE communication between the remote peers, the IPSec SA is cleared
to force a renegotiation of the IKE SA. Otherwise, a filter-blocking IKE message may not
been seen for several hours before the IPSec SA reaches its lifetime.

Now verify that Phase 2 has an inbound and outbound SA for bidirectional traffic flows:

[edit firewall family inet service-filter allow-bgp]

lab@PBR# run show services ipsec-vpn ipsec security-associations

Service set: basic-vpn

 Rule: secure-extranet, Term: 1, Tunnel index: 1

 Local gateway: 172.16.1.2, Remote gateway: 128.3.3.4

 Tunnel MTU: 1500

 Direction SPI AUX-SPI Mode Type Protocol

 inbound 2579118494 0 tunnel dynamic ESP

 outbound 247425684 0 tunnel dynamic ESP

By default, the establishment of an IPSec tunnel is data-driven. This means that the
tunnel is not established until a packet matches a rule that requires the tunnel. If you
want to change this behavior, use the establish-tunnels immediately command.

When IPSec is deployed on the router, the router must know how to direct traffic to the service Physical
Interface Card (PIC) or service module to authenticate, de-encrypt, and de-encapsulate the packet. The router

http://lib.ommolketab.ir
http://lib.ommolketab.ir

accomplishes this by creating forwarding table entries based on the source IP address, destination IP address,
and protocol tuple. These entries will be seen as /72s in the forwarding table with a next hop of service:

Code View:
[edit firewall family inet service-filter allow-bgp]

lab@PBR# run show route forwarding-table | find /72

172.16.1.2.128.3.3.4.50/72

 user 0 service 324 3

172.16.1.2.128.3.3.4.51/72 user 0 service 324 3

172.16.1.3/32 user 0 172.16.1.1 ucst 332 5 fe-0/0/0.412

172.16.1.255/32 dest 0 172.16.1.255 bcst 320 1 fe-0/0/0.412

224.0.0.0/4 perm 1 mdsc 13 1

224.0.0.1/32 perm 0 224.0.0.1 mcst 9 3

224.0.0.5/32 user 1 224.0.0.5 mcst 9 3

255.255.255.255/32 perm 0 bcst 10 1

Routing table: _ _juniper_private1_ _.inet

Internet:

Destination Type RtRef Next hop Type Index NhRef Netif

default perm 0 rjct 62 1

10.0.0.1/32 intf 1 10.0.0.1 locl 321 2

10.0.0.16/32 intf 0 10.0.0.16 locl 322 1

224.0.0.0/4 perm 0 mdsc 61 1

224.0.0.1/32 perm 0 224.0.0.1 mcst 57 1

255.255.255.255/32 perm 0 bcst 58 1

The consequence of these entries, if you are using an interface-style service set, is that traffic received on any
interface, regardless of where the service set is applied, will be serviced.

8.2.1.2. Next hop-style service set

The same IPSec VPN is now implemented using a next hop-style service set. As with every next hop-style
service set, you must configure the two "legs" of the inside and outside service sets:

sp-0/0/0 {

 unit 0 {

 family inet;

 }

 unit 1 {

 family inet;

 service-domain inside;

 }

 unit 2 {

 family inet;

 service-domain outside;

 }

}

Then you need to create the IPSec rules. These rules will look the same as they did in the previous example
using interface-style service sets, with one notable exception: rule direction. Since traffic is going to be mapped
to the inside interface for encryption, a match-direction of input should be used:

ipsec-vpn {

 rule secure-extranet {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 term 1 {

 from {

 destination-address {

 128.3.3.0/24;

 }

 }

 then {

 remote-gateway 128.3.3.4;

 dynamic {

 ike-policy min-policy;

 }

 }

 }

 match-direction input;

 }

Now traffic is mapped to the inside service interface to be encrypted in the IPSec tunnel. You can accomplish
this mapping in a variety of ways; the simplest is with a static route:

lan@PBR set routing-options static route 128.3.3/24 next-hop sp-0/0/0.1

After committing the configuration and sending traffic from Bock to the extranet 128.3.3/24 subnet, the IKE and

IPSec SAs are created:

[edit]

lab@PBR# run show services ipsec-vpn ike security-associations

Remote AddressState Initiator cookie Responder cookie Exchange type

128.3.3.4 Matured 833d31c69f915b75 4326d4b9c69e624f Main

lab@PBR# run show services ipsec-vpn ipsec security-associations

Service set: basic-vpn

 Rule: secure-extranet, Term: 1, Tunnel index: 1

 Local gateway: 172.16.1.2, Remote gateway: 128.3.3.4

 IPSec inside interface: sp-0/0/0.1, Tunnel MTU: 1500

 Direction SPI AUX-SPI Mode Type Protocol

 inbound 612210302 0 tunnel dynamic ESP

 outbound 1652494959 0 tunnel dynamic ESP

Also verify that the traffic from Bock to the extranet is actually being encrypted and decrypted by viewing the

IPSec statistics:

lab@PBR# run show services stateful-firewall ipsec-vpn ipsec statistics

PIC: sp-0/0/0, Service set: basic-vpn

ESP Statistics:

 Encrypted bytes: 4400

 Decrypted bytes: 5336

 Encrypted packets: 50

 Decrypted packets: 63

AH Statistics:

 Input bytes: 0

 Output bytes: 0

 Input packets: 0

 Output packets: 0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Errors:

 AH authentication failures: 0, Replay errors: 0

 ESP authentication failures: 0, ESP decryption failures: 0

 Bad headers: 0, Bad trailers: 0

The interface-style service set requires a service filter to allow the external BGP session
to be established; however, these filters do not exist in next hop-style service sets, nor
are they required. Simply ensure that only traffic that should be serviced is mapped to
the service interface.

Besides the usual show command to troubleshoot IPSec tunnels, you also can configure

IKE traceoptions via set services ipsec-vpn traceoptions flag ike. These

messages are automatically placed into a file called kmd.

8.2.2. Unique Proposals

You can create a variety of different proposals for both the IKE and IPSec negotiations. You can change these
values from the default values based on security constraints and objectives, or simply for interoperability with
other vendors. Recall from the beginning of the chapter that we mentioned the link between proposals and
policies: proposals link to policies, which link to IPSec rules. When viewing the default parameters, the keen
observer will notice that not all of the strongest authentication, encryption, and keys are being used. There are
two reasons for this: interoperability and memory usage. It makes sense to create default parameters that most
vendors and systems can support. Also, as the algorithms become more complex and the keys larger, the
memory and CPU required also increase. This creates a very delicate balance between desired algorithms and
performance. We must examine the memory usage when creating an IPSec tunnel with very minimal traffic
flow:

[edit services ipsec-vpn]

lab@PBR# run show services service-sets memory-usage

Interface Service Set Bytes Used

sp-0/0/0 basic-vpn 4310

[edit services ipsec-vpn]

lab@PBR# run show services service-sets summary

 Service sets CPU

Interface configured Bytes used Policy bytes used utilization

sp-0/0/0 1 4392 (0.03 %) 1764 (0.00 %) 0.00 %

Now create unique IKE and IPSec policies and see how they affect memory usage. The IKE proposal is going to
use the strongest values and the largest keys possible:

[edit services ipsec-vpn

lab@PBR# show ike

proposal unique-ike {

 authentication-method pre-shared-keys;

 dh-group group2;

 authentication-algorithm sha-256;

 encryption-algorithm aes-256-cbc;

}

Then the proposal is linked to the policy, and a preshared key is configured:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Code View:
[edit services]

lab@PBR show ike | find policy

 policy unique-ike-policy {

 proposals unique-ike;

 pre-shared-key ascii-text "9Tz9peK8N-wO17VbsJZz36ApBEclKWLREVw"; ##

 SECRET-DATA

 }

}

An IPSec proposal is also created with the strongest algorithms possible:

[edit services]

lab@PBR# show | find ipsec

ipsec {

 proposal unique-ipsec {

 authentication-algorithm hmac-sha1-96;

 encryption-algorithm aes-256-cbc;

 }

Then the proposals are linked to an IPSec policy. This policy also enables PFS:

 policy unique-ipsec-policy {

 perfect-forward-secrecy {

 keys group2;

 }

 proposals unique-ipsec;

 }

}

PFS is a method that creates new keys that are not mathematically related to each
other. This creates an additional level of security in case a security key is compromised.

Apply the new policies to an IPSec rule in the action statement:

lab@PBR# show rule secure-extranet

term 1 {

 from {

 destination-address {

 128.3.3.0/24;

 }

 }

 then {

 remote-gateway 128.3.3.4;

 dynamic {

 ike-policy unique-ike-policy;

 ipsec-policy unique-ipsec-policy;

 }

 }

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

match-direction input;

Once the tunnel is up, you can view the parameters when using the detailed or extensive switch on the SA

commands:

Code View:
[edit services ipsec-vpn]

lab@PBR# run show services ipsec-vpn ike security-associations detail

IKE peer 128.3.3.4

 Role: Initiator, State: Matured

 Initiator cookie: 38d4aa648ce7b6b5, Responder cookie: e39275d71141441d

 Exchange type: Main, Authentication method: Pre-shared-keys

 Local: 172.16.1.2:500, Remote: 128.3.3.4:500

 Lifetime: Expires in 3587 seconds

 Algorithms:

 Authentication : sha256

 Encryption : aes-cbc (256 bits) Pseudo random function: hmac-sha256

 Traffic statistics:

 Input bytes : 772

 Output bytes : 872

 Input packets: 4

 Output packets: 5

 Flags: Caller notification sent

 IPSec security associations: 1 created, 0 deleted

 Phase 2 negotiations in progress: 1

 Negotiation type: Quick mode, Role: Initiator, Message ID: 533813962

 Local: 172.16.1.2:500, Remote: 128.3.3.4:500

 Local identity: ipv4_subnet(any:0,0.0.0.0/0)

 Remote identity: ipv4_subnet(any:0,[0..7]=128.3.3.0/24)

 Flags: Caller notification sent, Waiting for done

[edit services ipsec-vpn]

lab@PBR# run sh services ipsec-vpn ipsec security-associations

 extensive Service set: basic-vpn

 Rule: secure-extranet, Term: 1, Tunnel index: 1

 Local gateway: 172.16.1.2, Remote gateway: 128.3.3.4

 IPSec inside interface: sp-0/0/0.1, Tunnel MTU: 1500

 Local identity: ipv4_subnet(any:0,0.0.0.0/0)

 Remote identity: ipv4_subnet(any:0,[0..7]=128.3.3.0/24)

 Direction: inbound, SPI: 1138084291, AUX-SPI: 0

 Mode: tunnel, Type: dynamic, State: Installed

 Protocol: ESP, Authentication: hmac-sha1-96, Encryption: aes-cbc (256 bits)

 Soft lifetime: Expires in 28640 seconds

 Hard lifetime: Expires in 28775 seconds

 Anti-replay service: Enabled, Replay window size: 64

 Direction: outbound, SPI: 795324419, AUX-SPI: 0

 Mode: tunnel, Type: dynamic, State: Installed

 Protocol: ESP, Authentication: hmac-sha1-96, Encryption: aes-cbc (256 bits)

 Soft lifetime: Expires in 28640 seconds

 Hard lifetime: Expires in 28775 seconds

 Anti-replay service: Enabled, Replay window size: 64

http://lib.ommolketab.ir
http://lib.ommolketab.ir

How much additional processing was actually used? Viewing the memory usage after the more labor-intensive
proposals were created shows a 4% increase from the default case. Adding a higher volume of traffic again
increases these values:

lab@PBR# run show services service-sets memory-usage

Interface Service Set Bytes Used

sp-0/0/0 basic-vpn 4454

[edit services ipsec-vpn]

lab@PBR# run show services service-sets summary

 Service sets CPU

Interface configured Bytes used Policy bytes used utilization

sp-0/0/0 1 4536 (0.03 %) 1764 (0.00 %) 0.00 %

8.2.3. Backup Tunnels

One application of an IPSec tunnel is for redundancy, if physical redundancy does not exist. You can establish a
tunnel over another private network or over a public network, such as the Internet. In the case study shown in
Figure 8-7, PBR, which is the WAN router for Internet connectivity, there is a single link to Stout. If that link

fails, an IPSec tunnel will be used between PBR and Stout. This tunnel will actually be established over the path

from the Water Internet service provider (ISP) to Hops.

Figure 8-7. Backup tunnel

http://lib.ommolketab.ir
http://lib.ommolketab.ir

First, you must configure the tunnel endpoints. They could be physical or loopback interfaces. For the purposes
of this example, the tunnel from PBR to Stout is going to be established from PBR's WAN interface to Water

(64.7.12.6) to Stout's loopback interface (10.20.128.4). PBR's physical interface was chosen for optimal path

redundancy (i.e., to avoid the tunnel establishment via ISP Wheat). A simple IPSec VPN is created using JUNOS

default parameters on Stout. You must use a next hop-style service set since OSPF will be running over the

IPSec tunnel:

Code View:
lab@stout> show configuration services

service-set Basic-ipsec {

 next-hop-service {

 inside-service-interface sp-0/0/0.2;

 outside-service-interface sp-0/0/0.1;

 }

 ipsec-vpn-options {

 local-gateway 10.20.128.4;

 }

 ipsec-vpn-rules simple-rule;

}

ipsec-vpn {

 rule simple-rule {

 term 1 {

 from {

 source-address {

 0.0.0.0/0;

 }

 destination-address {

 0.0.0.0/0;

 }

 }

 then {

 remote-gateway 64.8.12.6;

 dynamic {

 ike-policy basic-ike;

 }

 }

 }

 match-direction input;

 }

 ike {

 policy basic-ike {

 pre-shared-key ascii-text "9iqPQ/CuEclFnclKMN-Hqm";

SECRET-DATA

 }

 }

 establish-tunnels immediately;

}

}

lab@stout> show configuration interfaces sp-0/0/0

unit 1 {

 family inet;

 service-domain outside;

}

unit 2 {

 family inet;

 service-domain inside;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

The configuration is mirrored on router PBR with only the local gateway and remote gateway address-swapping.

Notice two differences from previous examples. One is the open IPSec rule set of any address configured, as
well as the establish-tunnels immediately keyword. These are used to speed up the failover process and

avoid having to wait for the IPSec tunnel establishment.

Code View:
lab@PBR# show services

service-set Basic-ipsec {

 next-hop-service {

 inside-service-interface sp-0/0/0.2;

 outside-service-interface sp-0/0/0.1;

 }

 ipsec-vpn-options {

 local-gateway 64.8.12.6;

 }

 ipsec-vpn-rules simple-rule;

}

ipsec-vpn {

 rule simple-rule {

 term 1 {

 from {

 source-address {

 0.0.0.0/0;

 }

 destination-address {

 0.0.0.0/0;

 }

 }

 then {

 remote-gateway 10.20.128.4;

 dynamic {

 ike-policy basic-ike;

 }

 }

 }

 match-direction input;

 }

 ike {

 policy basic-ike {

 pre-shared-key ascii-text "9iqPQ/CuEclFnclKMN-Hqm";

SECRET-DATA

 }

 }

 establish-tunnels immediately;

Also configure OSPF over the inside interface on Stout and PBR, in order to run OSPF over the IPSec tunnel:

[edit]

lab@stout# set protocols ospf area 0 interface sp-0/0/0.2

[edit]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

lab@stout# commit

commit complete

Verify that OSPF is running over the tunnel. The tunnel is treated as a standard point-to-point interface in OSPF:

lab@stout# run show ospf neighbor

 Address Interface State ID Pri Dead

10.20.129.2 fe-0/0/0.3141 Full 10.20.128.3 128 38

10.20.131.1 fe-0/0/1.1331 Full 10.10.12.2 128 31

10.20.128.3 sp-0/0/0.2 Full 10.20.128.3 128 32

Since the tunnel should be treated as a backup and not as an equal cost, increase the metric in the sp-0/0/0.2

interface to 1,000 on both Stout and PBR:

[edit]

lab@stout# set protocols ospf area 0 interface sp-0/0/0.2 metric 1000

8.2.3.1. Routing and verification for IPSec tunnels

Before you can test the IPSec tunnel, the proper routing has to be in place. First, the loopback address of Stout

on PBR must point over ISP Water to be used during a failover. Also, you must create an aggregate route for the

internal network and advertise it via BGP. Lastly, generate a default into OSPF if the link to Water is up.

[edit]

lab@PBR# show routing-options

static {

 route 10.20.128.4/32 next-hop 64.8.12.5;

}

aggregate {

 route 10.0.0.0/8;

}

generate {

 route 0.0.0.0/0 policy isp-routers;

}

autonomous-system 1282

Setting routes to the loopback of Bock may seem strange, so as an alternative you could

configure an additional loopback address (nonprimary) for tunnel establishment and
failover.

For completeness, the policy for the default generated route, the policy to export the generated route into
OSPF, and the policy to advertise the internal autonomous system (AS) 1282 address block (10/8) are shown:

Code View:
lab@PBR# show policy-options

policy-statement default-ospf {

 term 1 {

 from {

 protocol aggregate;

 route-filter 0.0.0.0/0 exact accept;

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

}

policy-statement isp-routers {

 term 1 {

 from {

 protocol bgp;

 neighbor 64.8.12.5;

 }

 then accept;

 }

 term 2 {

 then reject;

 }

}

policy-statement send-agg {

 from {

 route-filter 10.0.0.0/8 exact accept;

 }

 then accept;

}

Verify that the internal subnet is being advertised to Water via BGP:

[edit]

lab@PBR# run show route advertising-protocol bgp 64.8.12.5

inet.0: 701 destinations, 1389 routes (701 active, 0 holddown, 0

hidden)

 Prefix Nexthop MED Lclpref AS path

* 10.0.0.0/8 Self I

When the physical Ethernet interface is up, all the OSPF routes point to the fe-0/0/0.3141 interface since the

IPSec tunnel is eliminated in the Shortest Path First (SPF) calculation.

Code View:
lab#PBR> show route protocol ospf

inet.0: 701 destinations, 1389 routes (701 active, 0 holddown, 0

hidden)

+ = Active Route, - = Last Active, * = Both

10.10.8.0/27 *[OSPF/10] 00:12:32, metric 3

 > to 10.20.129.1 via fe-0/0/0.3141

10.10.12.2/32 *[OSPF/10] 00:12:32, metric 2

 > to 10.20.129.1 via fe-0/0/0.3141

10.10.128.1/32 *[OSPF/10] 01:59:30, metric 1

 > to 10.10.130.1 via fe-0/0/0.1141

10.20.128.4/32 [OSPF/10] 00:12:32, metric 1

 > to 10.20.129.1 via fe-0/0/0.3141

10.20.131.0/24 *[OSPF/10] 00:12:32, metric 2

 > to 10.20.129.1 via fe-0/0/0.3141

10.30.1.1/32 *[OSPF/10] 00:12:32, metric 3

 > to 10.20.129.1 via fe-0/0/0.3141

64.8.12.6/32 [OSPF/150] 00:12:32, metric 0, tag 0

 > to 10.20.129.1 via fe-0/0/0.3141

224.0.0.5/32 *[OSPF/10] 23:30:31, metric 1

 MultiRecv

http://lib.ommolketab.ir
http://lib.ommolketab.ir

_ _juniper_private1_ _.inet.0: 2 destinations, 2 routes (2 active, 0

holddown, 0 hidden)

As shown in Figure 8-7, router Yeast is connected to an ISP called Hops. Yeast is not running BGP, and instead

relies on static routes due to its single-homed nature. To reach the WAN interface of PBR (64.8.12.6), you need

to configure a static route pointing each T1 link toward the ISP:

lab@Yeast# show

static {

 route 64.8.12.6/32 next-hop [84.10.113.1 84.10.109.7];

}

autonomous-system 1282;

The problem is that if traffic is sourced from PBR's WAN IP address of 64.8.12.6, it resolves over the default

route redistributed in OSPF by PBR:

lab@stout# run show route 64.8.12.6

inet.0: 18 destinations, 18 routes (18 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

0.0.0.0/0 *[OSPF/150] 00:21:45, metric 0, tag 0

 > to 10.20.129.2 via fe-0/0/0.3141

This is OK when the physical link between PBR and Stout is up, but if the link goes down, Stout has no way to

send traffic back to PBR for tunnel establishment. There are multiple ways to solve this issue, but we decided to

redistribute the static route on Yeast into OSPF (policy send-static) instead of creating a static route on Stout

and Porter. We did this to try to avoid a blackhole issue and have some dynamism by sending the 64.8.12.6

when a link from Yeast to Hops is in the "up" state.

lab@Yeast# top show protocols ospf

export send-static;

area 0.0.0.0 {

 interface fe-0/0/1.2332;

[edit]

After this change, Stout has a specific /32 route pointing toward Porter:

[edit]

lab@stout# run show route 64.8.12.6

inet.0: 18 destinations, 18 routes (18 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

64.8.12.6/32 *[OSPF/150] 00:26:58, metric 0, tag 0

 > to 10.20.131.1 via fe-0/0/1.1331

Finally, verify that the correct routing is in place by sending some traceroutes from PBR. First verify that PBR can

reach Stout's loopback via ISP routing:

[edit]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

lab@PBR# run traceroute 10.20.128.4

traceroute to 10.20.128.4 (10.20.128.4), 30 hops max, 40 byte packets

 1 64.8.12.5 (64.8.12.5) 14.087 ms 9.459 ms 8.301 ms

 2 84.10.110.2 (84.10.110.2) 41.429 ms 29.842 ms 30.051 ms

 3 84.10.113.0 (84.10.113.0) 9.856 ms 9.521 ms 10.061 ms

 4 10.10.8.1 (10.10.8.1) 9.863 ms 12.269 ms 18.228 ms

 5 10.20.128.4 (10.20.128.4) 39.245 ms 99.785 ms 130.072 ms

Ensure that the traffic to other internal networks-in this case, Porter's loopback-takes the correct and

shortest path through the internal network:

[edit]

lab@PBR# run traceroute 10.10.12.2

traceroute to 10.10.12.2 (10.10.12.2), 30 hops max, 40 byte packets

 1 10.20.129.1 (10.20.129.1) 14.160 ms 17.784 ms 11.653 ms

 2 10.10.12.2 (10.10.12.2) 29.985 ms 29.766 ms 9.955 ms

In summary, you must meet these criteria for failover to work properly:

PBR must have a route to Stout's loopback over the ISP networks.

PBR must advertise its internal network subnet to the ISP.

Yeast must have a route to PBR's WAN address.

Stout must have a route to PBR's WAN address not pointing directly to PBR.

A default route must be generated by PBR as it is the preferred exit point for all Internet traffic.

8.2.3.2. Physical interface goes down!

Here is the big moment: interface failure on PBR and Stout. Was all the hard work and design worth it or was it

a fruitless effort? First, verify that OSPF is still enabled over the IPSec tunnel:

[edit]

lab@PBR# run show ospf neighbor

 Address Interface State ID Pri Dead

10.10.130.1 fe-0/0/0.1141 Full 10.10.128.1 128 31

10.20.128.4 sp-0/0/0.2 Full 10.20.128.4 128 36

[edit]

lab@PBR#

Next, verify that Stout has Internet connectivity by issuing a show route command on Water's link address to

PBR. Notice that Stout is learning a default route over the IPSec tunnel. All appears good so far!

[edit]

lab@stout# run show route 64.8.12.5

http://lib.ommolketab.ir
http://lib.ommolketab.ir

inet.0: 16 destinations, 16 routes (16 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

0.0.0.0/0 *[OSPF/150] 00:04:49, metric 0, tag 0

 > via sp-0/0/0.2

Test internal connectivity from PBR by seeing whether Porter's loopback address is reached via the tunnel:

[edit]

lab@PBR> ping 10.0.12.2

PING 10.0.15.2 (10.0.15.2): 56 data bytes

64 bytes from 10.0.12.2: icmp_seq=0 ttl=64 time=0.221 ms

64 bytes from 10.0.12.2: icmp_seq=1 ttl=64 time=0.165 ms

^C

--- 10.0.15.2 ping statistics ---

2 packets transmitted, 2 packets received, 0% packet loss

round-trip min/avg/max/stddev = 0.165/0.193/0.221/0.028 ms

Lastly, verify that encrypted traffic is being sent and received over the IPSec tunnel:

lab@PBR# run show services ipsec-vpn ipsec statistics

PIC: sp-0/0/0, Service set: Basic-ipsec

ESP Statistics:

 Encrypted bytes: 144400

 Decrypted bytes: 127520

 Encrypted packets: 1850

 Decrypted packets: 1621

AH Statistics:

 Input bytes: 0

 Output bytes: 0

 Input packets: 0

 Output packets: 0

Errors:

 AH authentication failures: 0, Replay errors: 0

 ESP authentication failures: 0, ESP decryption failures: 0

 Bad headers: 0, Bad trailers: 0

Pat yourself on the back; the failover worked to perfection! Time to grab a beer (PBR me ASAP) and celebrate!

8.2.4. Dynamic IPSec Tunnels

So far, every IPSec tunnel used in this chapter has had static IP addresses on each side. What happens if the
router is receiving requests from systems that have dynamic IPs? One such example would be a remote site
with a cable modem receiving an address from the ISP via the Dynamic Host Configuration Protocol (DHCP). In
this case, you could configure dynamic IPSec endpoints on the router with the static IP address (local router).
The amazing thing about these dynamic tunnels is that there seems to be a magic man behind the curtain: the
local router will automatically create the proper IPSec rules and static routes based on the incoming proxy
information from the remote peer. The process is as follows:

The remote site (dynamic IP) initiates a connection with the local site (static IP).1.

2.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.

The local router checks the incoming connection against the default proposals (see Table 8-2) or a list of
custom proposals for Phase 1 on the connection process.

2.

Phase 2 begins, and the local router verifies that the proxy ID (protected networks) of the remote system
matches the allowed list. The default (0.0.0.0/0) matches any proxy ID sent.

3.

After Phase 2 is completed, the kmd router process creates dynamic rules for encrypting traffic based on

the received proxy ID. These rules are created for inside service interfaces so that they will always have a
match direction of input.

4.

Reverse Route Insertion (RRI) is performed. These are static routes for the remote protected networks
and are automatically created to point to the inside interface. These routes are created only if the proxy
ID is nondefault (0.0.0.0/0).

5.

Table 8-2. Default IKE and IPSec proposals

Statement Values

IKE

Authentication method Preshared keys

DH Group Group 1 or Group 2

Authentication algorithm SHA-1, SHA-256, MD5

Encryption algorithm 3DES-CBC, DES-CBC, AES-128, AES-192, AES-256

Lifetime 3,600 seconds

IPSec

Protocol ESP, AH, or Bundle

Authentication algorithm HMAC-SHA-1-96, HMAC-MD5-96

Encryption algorithm 3DES-CBC, DES-CBC, AES-128, AES-192, AES-256

Lifetime 8 hours

To allow connection from dynamic peers, you need to configure an access profile and reference it in a service
set. In the profile-specific client address, ranges are allowed, as are particular proxy IDs, proposals, and
authentication using either preshared keys or RSA certificates. You also must configure the interface identifier,
which will be used to map the remote router to a logical service interface. In the following example, PBR is

configured to allow connections from any client (the * wildcard) using a preshared key for authentication and a

proxy ID of 10/8 for local networks and 77.7.7/24 for remote networks. Since no proposals are specified, the
default values are used. Lastly, an interface ID name of single-interface-id is tied to the profile.

Code View:
[edit]

lab@PBR# show access

profile dynamic-peer {

 client * {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ike {

 allowed-proxy-pair local 10.0.0.0/8 remote 77.7.7.0/24;

 pre-shared-key ascii-text "9Tz9peK8N-wO17VbsJZz36ApBEclKWLREVw"; ##

 SECRET-DATA

 interface-id single-interface-id;

 }

 }

}

As with any other next hop service set, you will need to configure an inside and outside interface; however, an
additional inside interface will also be used for the remote peer. This is the interface that the router will tie to
each remote client. This logical interface could either be shared by multiple tunnels or dedicated per tunnel. In
this case, unit 3 is defined for use with dynamic peers with the profile matching single-interface-id. This

logical interface can be used by only a single tunnel due to the dedicated knob:

[edit]

lab@PBR# show interfaces sp-0/0/0

unit 0 {

 family inet;

}

unit 1 {

 family inet;

 service-domain inside;

}

unit 2 {

 family inet;

 service-domain outside;

}

unit 3 {

 dial-options {

 IPSec-interface-id single-interface-id;

 dedicated;

 } family inet;

 service-domain inside;

}

Lastly, a next hop-style service set is created that references an inside and outside interface, a local gateway,
and the access profile. Note that no rules are applied to the service set since they are dynamically created after
Phase 2 of IPSec is completed:

[edit]

lab@PBR# show services

service-set basic-vpn {

 next-hop-service {

 inside-service-interface sp-0/0/0.1;

 outside-service-interface sp-0/0/0.2;

 }

 ipsec-vpn-options {

 local-gateway 172.16.1.2;

 ike-access-profile dynamic-peer;

 }

}

A remote connection is initiated to PBR with the correct proposals and preshared key:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

lab@PBR# run show services ipsec-vpn ike security-associations

detail

IKE peer 128.3.3.4

 Role: Responder, State: Matured

 Initiator cookie: 5f5d01b859c5500c, Responder cookie:

cbf493d41825e544

 Exchange type: Main, Authentication method: Pre-shared-keys

 Local: 172.16.1.2:500, Remote: 128.3.3.4:500

 Lifetime: Expires in 3130 seconds

 Algorithms:

 Authentication : sha256

 Encryption : aes-cbc (256 bits)

 Pseudo random function: hmac-sha256

 Traffic statistics:

 Input bytes : 1312

 Output bytes : 1320

 Input packets: 7

 Output packets: 7

 Flags: Caller notification sent

 IPSec security associations: 2 created, 0 deleted

 Phase 2 negotiations in progress: 0

After Phase 2, the proxy ID is verified, which is protecting the PBR local network of 10/8 and a remote network

of 77.7.7/24. The _junos_ rule was automatically created for logical interface sp-0/0/0.3:

lab@PBR# show service ipsec-vpn ipsec security-associations extensive

Service set: basic-vpn

 Rule: _junos_, Term: tunnel1, Tunnel index: 1

 Local gateway: 172.16.1.2, Remote gateway: 128.3.3.4

 IPSec inside interface: sp-0/0/0.3, Tunnel MTU: 1500

 Local identity: ipv4_subnet(any:0,[0..7]=10.0.0.0/8)

 Remote identity: ipv4_subnet(any:0,[0..7]=77.7.7.0/24)

 Direction: inbound, SPI: 3948527911, AUX-SPI: 0

 Mode: tunnel, Type: dynamic, State: Installed

 Protocol: ESP, Authentication: hmac-sha1-96, Encryption: aes-cbc

(256 bits)

 Soft lifetime: Expires in 28411 seconds

 Hard lifetime: Expires in 28501 seconds

 Anti-replay service: Enabled, Replay window size: 64

 Direction: outbound, SPI: 1740456130, AUX-SPI: 0

 Mode: tunnel, Type: dynamic, State: Installed

 Protocol: ESP, Authentication: hmac-sha1-96, Encryption: aes-cbc

(256 bits)

 Soft lifetime: Expires in 28411 seconds

 Hard lifetime: Expires in 28501 seconds

 Anti-replay service: Enabled, Replay window size: 64

Also, reverse routes are automatically created to the remote networks using the logical interface to the next hop
with the dialer applied. These static routes will have a preference of 1 to avoid any contention with other routes
on the system:

inet.0: 32 destinations, 37 routes (31 active, 0 holddown, 3 hidden)

+ = Active Route, - = Last Active, * = Both

http://lib.ommolketab.ir
http://lib.ommolketab.ir

77.7.7.0/24 *[Static/1] 00:05:44

 > via sp-0/0/0.3

_ _juniper_private1_ _.inet.0: 2 destinations, 2 routes (2 active, 0

holddown, 0 hidden)

8.2.5. IPSec over GRE

Sometimes the names for network features seem to be created out of thin air, with no rhyme or reason. This is
the case with an IPSec over GRE tunnel. The name does not accurately describe the feature, as it actually is a
Generic Routing Encapsulation (GRE) tunnel that is secured with IPSec. A better name would be GRE over IPSec,
but as we all know, network engineering can't be that logical. The most common usage of IPSec over GRE
tunnels is to interoperate with older Cisco IOS codes that do not support routing over IPSec tunnels. In these
cases, routing is configured over GRE and then IPSec is added. In JUNOS, routing over IPSec tunnels is
accomplished by using next hop-style service sets. However, when implementing IPSec over GRE, you can use
either service set type, with one exception. If the GRE endpoints are the same as the IPSec tunnel endpoints,
you should use interface-style service sets.

You could use a next hop-style service set if the tunnel endpoints are the same and FBF
was used to map the GRE packets to the IPSec tunnel, but this adds an additional level
of complexity that you should avoid if possible.

As in Figure 8-6, an IPSec over GRE tunnel will be configured between PBR and the Cans extranet. First, an

unnumbered GRE interface is created from PBR to Cans:

lab@PBR# show interfaces gr-0/0/0

unit 0 {

 tunnel {

 source 172.16.1.2;

 destination 128.3.3.4;

 }

 family inet;

}

To aid in troubleshooting, you could add an IP address to the GRE tunnel, but it is not
necessary.

Traffic to the extranet is mapped via a static route that points to the gr-0/0/0.0 interface:

[edit]

lab@PBR# show routing-options static route 128.3.3.0/24

next-hop gr-0/0/0.0;

Next, you need to configure unique proposals that map to Cisco defaults (for more information on custom
proposals, see "Section 8.2.2," earlier in this chapter):

Code View:
 ipsec {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 proposal cisco-interop {

 protocol esp;

 authentication-algorithm hmac-md5-96;

 encryption-algorithm des-cbc;

 }

 policy ipsecgre {

 perfect-forward-secrecy {

 keys group1;

 }

 proposals cisco-interop;

 }

 }

 ike {

 proposal cisco-interop-ike {

 authentication-method pre-shared-keys;

 dh-group group1;

 authentication-algorithm md5;

 encryption-algorithm des-cbc;

 }

 policy main_ike {

 proposals cisco-interop-ike;

 pre-shared-key ascii-text "9JhUi.QF/0BEP5BEcyW8ZUjHP5z

36AuO"; ## SECRET-DATA

 }

 }

Then, you need to create the rule to map the GRE packets to the IPSec tunnel. You can do this by matching on
the source IP address and destination IP address of the GRE tunnel, as well as by mapping the Cisco
interoperable proposals to the IPSec tunnels:

Code View:
lab@PBR# show services | find ipsec-vpn

ipsec-vpn {

 rule map-gre {

 term 1 {

 from {

 source-address {

 172.16.1.2/32;

 }

 destination-address {

 128.3.3.4/32;

 }

 }

 then {

 remote-gateway 128.3.3.4;

 dynamic {

 ike-policy main_ike;

 ipsec-policy ipsecgre;

 }

 }

 }

 match-direction output;

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A service set is then created and applied to the interface between PBR and Wheat:

Code View:
lab@PBR# show services

service-set ipsec-gre {

 interface-service {

 service-interface sp-0/0/0.0;

 }

 ipsec-vpn-options {

 local-gateway 172.16.1.2;

 }

 ipsec-vpn-rules map-gre;

}

lab@PBR# show interfaces

fe-0/0/0 {

 vlan-tagging;

 unit 412 {

 description PBR-to-Wheat;

 vlan-id 412;

 family inet {

 service {

 input {

 service-set ipsec-gre }

 output {

 service-set ipsec-gre

 }

 }

 address 172.16.1.2/24;

 }

 }

Two additional pieces of configuration should probably be added: IKE traceoptions and automatic tunnel
establishment. IKE traceoptions will be used to help troubleshoot if the IPSec tunnel does not come up, and
automatic tunnel establishment will be used to avoid lost packets that could result when GRE packets are sent
before the IPSec tunnel is fully established:

[edit]

lab@PBR# set services ipsec-vpn establish-tunnels immediately

[edit]

lab@PBR# set services ipsec-vpn traceoptions flag ike traceoptions {

After the configuration is committed, the tunnel is established:

[edit]

lab@PBR# run show services ipsec-vpn ipsec security-associations

Service set: ipsec-gre

 Rule: map-gre, Term: 1, Tunnel index: 1

 Local gateway: 172.16.1.2, Remote gateway: 128.3.3.4

 Tunnel MTU: 1500

 Direction SPI AUX-SPI Mode Type Protocol

 inbound 4232427354 0 tunnel dynamic ESP

 outbound 83055442 0 tunnel dynamic ESP

http://lib.ommolketab.ir
http://lib.ommolketab.ir

However, traffic does not flow across the tunnel, and the BGP session to Wheat is down. The solution to this

problem screams service filter!

[edit]

lab@PBR# run show bgp summary

Groups: 1 Peers: 1 Down peers: 1

Table Tot Paths Act Paths Suppressed History Damp State Pending

inet.0 0 0 0 0 0 0

Peer AS InPkt OutPkt OutQ Flaps Last

Up/Dwn State|#Active/Received/Damped...

172.16.1.1 420 11892 10737 0 4 11:53 Active

It is obvious that we need to build a service filter to skip the BGP traffic from being serviced, while also ensuring
that the GRE traffic gets sent down the IPSec tunnel. What might not be so obvious is that we need a service
filter in both directions, because when GRE packets are encapsulated inside the system and the packets are
circulated, the input interface becomes the next hop outgoing interface, as shown here and later in Figure 8-14
(we will examine this in detail in "Section 8.5," later in this chapter):

Code View:
lab@PBR> show configuration firewall

family inet {

 service-filter match-vpn-input {

 term service {

 from {

 source-address {

 128.3.3.4/32;

 }

 destination-address {

 172.16.1.2/32;

 }

 }

 then service;

 }

 term skip {

 then skip;

 }

 }

 service-filter match-vpn-output {

 term service {

 from {

 source-address {

 172.16.1.2/32;

 }

 destination-address {

 128.3.3.4/32;

 }

 }

 then service;

 }

 term skip {

 then skip;

 }

 }

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Apply the service filters to the WAN interface on PBR:

lab@PBR> show configuration interfaces fe-0/0/0 unit 412

description PBR-to-Wheat;

vlan-id 412;

family inet {

 service {

 input {

 service-set ipsec-gre service-filter match-vpn-input;

 }

 output {

 service-set ipsec-gre service-filter match-vpn-output;

 }

 }

 address 172.16.1.2/24;

Generate some test traffic to the extranet on the internal router Bock:

lab@Bock> ping 128.3.3.3 rapid count 100

PING 128.3.3.3 (128.3.3.3): 56 data bytes

!!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

--- 128.3.3.3 ping statistics ---

100 packets transmitted, 100 packets received, 0% packet loss

round-trip min/avg/max/stddev = 9.666/18.435/40.117/9.181 ms

Verify that the packets are both encrypted and decrypted to and from the Cans extranet:

lab@PBR# run show services ipsec-vpn ipsec statistics

PIC: sp-0/0/0, Service set: ipsec-gre

ESP Statistics:

 Encrypted bytes: 11200

 Decrypted bytes: 11200

 Encrypted packets: 100

 Decrypted packets: 100

AH Statistics:

 Input bytes: 0

 Output bytes: 0

 Input packets: 0

 Output packets: 0

Errors:

 AH authentication failures: 0, Replay errors: 0

 ESP authentication failures: 0, ESP decryption failures: 0

 Bad headers: 0, Bad trailers: 0

For reference purposes only, here is an example of what the configuration may look like on the Cisco side in the
extranet:

Code View:
crypto isakmp policy 1

 hash md5

 authentication pre-share

crypto isakmp key test address 172.16.1.2

crypto isakmp keepalive 10 2 periodic

http://lib.ommolketab.ir
http://lib.ommolketab.ir

!

!

crypto ipsec transform-set esp_des_set esp-des esp-md5-hmac

!

!

crypto map gre-to-ipsec 1 ipsec-isakmp

 set peer 172.16.1.2

 set transform-set esp_des_set

 set pfs group1

 match address 110

access-list 110 permit ip host 128.3.3.4 host 172.16.1.2

interface tunnel1

 tunnel mode gre ip

 tunnel destination 172.16.1.2

 tunnel source 128.3.3.4

interface fast0

 crypto map gre-to-ipsec

8.2.6. Summary of IPSec VPNs

IPSec VPNs provide a secure method for protecting data over a private or public network. These could be VPNs
with default proposals or VPNs with very specific authentication and encryption methods. Also, you can use
these VPNs for a variety of applications, including securing access to an extranet, providing remote office
connectivity, or providing a backup link for your internal network. Some of these VPNs may have dynamic
endpoints or require GRE tunnels for interoperability with other vendors. You can accomplish all of this using
JUNOS software and services.

The next section details another service that is offered: NAT.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.3. NAT

NAT is simply a way to change the source or destination IP address of a packet due to public address exhaustion
or a security mechanism to protect internal hosts. The internal hosts can be mapped to their own individual
public addresses, or a pool of addresses could be used. Also, many addresses could be mapped to a single
address utilizing different Transmission Control Protocol/User Datagram Protocol (TCP/UDP) port numbers for
the flow, referred to as Port Address Translation (PAT). The most common NAT scenarios are listed here (and
shown in Figure 8-8):

Figure 8-8. Common NAT deployments

Destination NAT without port mapping

The incoming public address is mapped to a private address. This is usually used to hide an internal
server's address from the outside world.

Destination NAT with port mapping

The incoming destination address and port are mapped to a private address. This allows for many
services to be tied to the same destination address differentiated by port numbers. This is normally used
when only a single external address is given that must map to multiple private connections.

NAT source without port translation

The outgoing private source IP address is mapped to a public IP address. This is used when inside hosts

http://lib.ommolketab.ir
http://lib.ommolketab.ir

want to reach external networks and the host information wants to remain hidden.

NAT source with port translation

The outgoing private IP address is mapped to a public IP and the port number is also changed. This is
used when multiple sources are mapped to a few public IP addresses.

Twice NAT

This is used when both the source IP and the destination IP need to be changed. This could be a mail
server that needs both inbound and outbound connections.

The translated address can be either specified in the NAT rule or created as a pool of addresses. If PAT is
required, you must use a pool. You can reuse a pool in multiple NAT rules. In the pool, you can specify a single
address, a prefix, or a range of addresses. You also can enable port translation in the pool to select a range of
port values or have the system automatically choose a value.

lab@PBR# set services nat pool example ?

Possible completions:

> address Address or address prefix for NAT

> address-range Range of addresses for NAT

+ apply-groups Groups from which to inherit configuration

data

+ apply-groups-except Don't inherit configuration data from these

groups

> port Specify ports for NAT

[edit]

The pool is then applied as a source or destination pool in the NAT rule.

You also can configure an overload pool if the primary pool becomes exhausted.

In addition, you can apply a prefix without using a pool of addresses:

[edit]lab@PBR# set services nat rule example term 1 then translated ?

Possible completions:

+ apply-groups Groups from which to inherit configuration data

+ apply-groups-except Don't inherit configuration data from these groups

 destination-pool NAT pool for destination translation

 destination-prefix NAT prefix for destination translation

 overload-pool NAT pool to be used when source pool is overloaded

 overload-prefix NAT prefix to be used when source pool is overloaded

 source-pool NAT pool for source translation

 source-prefix NAT prefix for source translation

> translation-type Type of translation to perform

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When deciding how to configure NAT, several questions drive the correct solutions:

Is the source IP address and/or destination IP address going to be translated?

Is port translation going to occur?

Are the addresses going to be statically mapped or dynamically mapped?

Should an address pool be used?

We will examine a few common scenarios in the following sections.

8.3.1. Source NAT with No PAT

A simple source NAT for all private addresses to an external address pool of 55.55.5/27 is implemented on PBR

using the preferred solution of a next hop service set, as shown in Figure 8-9.

Figure 8-9. Source NAT example

First, an address pool called ext-block is created without port translation. An address block is not necessary

but is used for future scalability:

lab@PBR# show services

nat {

 pool ext-block {

 address 55.55.5.0/27;

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Then a rule is created to translate all source addresses using this address block. This must be a dynamic
translation since there is no matching source subnet:

 rule basic-source {

 match-direction input;

 term 1 {

 then {

 translated {

 source-pool ext-block;

 translation-type source dynamic;

 }

 }

 }

 }

}

A next hop service set is created to map the NAT rule:

service-set Trust-Untrust {

 nat-rules basic-source;

 next-hop-service {

 inside-service-interface sp-0/0/0.1;

 outside-service-interface sp-0/0/0.2;

 }

}

The external address block must be reachable by the outside world. Since PBR already has a hazy BGP

relationship with AS 420, this address block is sent via BGP:

Code View:
[edit]

lab@PBR# show protocols bgp

export [send-agg send-ext-block];

group as_420 {

 type external;

 neighbor 172.16.1.1 {

 peer-as 420;

 }

}

lab@PBR# run show bgp summary

Groups: 1 Peers: 1 Down peers: 0

Table Tot Paths Act Paths Suppressed History Damp State Pending

inet.0 7 5 0 0 0 0

Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn State|#Active/

Received/Damped...

172.16.1.1 420 7852 7077 0 2 2d

7:07:42 5/7/0 0/0/0

^

unknown command.

lab@PBR# run show route advertising-protocol bgp 172.16.1.1 55/8

inet.0: 21 destinations, 26 routes (20 active, 0 holddown, 5 hidden)

 Prefix Nexthop MED Lclpref AS path

* 55.55.5.0/27 Self I

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Next, we create a VR to represent the internal trust (internal) portion of the network. The LAN interface of PBR

is added, as well as the inside service interface. Also, the OSPF configuration is moved over the VR. This
includes a policy called send-default (not shown) that sends a default route into OSPF for Internet

connectivity. Also, a loopback is added for use in OSPF. Lastly, a default route is created to send all noninternal
traffic to the inside service interface:

Code View:
[edit]

lab@PBR# show routing-instances

trust {

 instance-type virtual-router;

 interface fe-0/0/0.1241;

 interface sp-0/0/0.1;

 interface lo0.0;

 routing-options {

 static {

 route 0.0.0.0/0 next-hop sp-0/0/0.1;

 }

 }

 protocols {

 ospf {

 export send-default;

 area 0.0.0.0 {

 interface fe-0/0/0.1241;

 interface lo0.1;

 }

 }

 }

}

For completeness, the policies on PBR are shown here. Please refer to Chapter 3 for a policy discussion.

[edit]

lab@PBR# show policy-options

prefix-list internal-subnets {

 10.10.12.0/22;

 10.10.128.0/22;

 10.20.128.0/22;

}

policy-statement send-agg {

 from protocol aggregate;

 then accept;

}

policy-statement send-default {

 from {

 route-filter 0.0.0.0/0 exact accept;

 }

}

policy-statement send-ext-block {

 from {

 route-filter 55.55.5.0/27 exact accept;

 }

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Verify that all the static routes are active on the router in both the routing instance trust and the main route
table. The 55.55.5/27 static route in the main instance was automatically created due to the NAT rule with a
very low preference of 1, which points to the outside interface for return NAT traffic. The default route was
manually created during the VR configuration:

Code View:
lab@PBR# run show route protocol static

inet.0: 21 destinations, 26 routes (20 active, 0 holddown, 5 hidden)

+ = Active Route, - = Last Active, * = Both

55.55.5.0/27 *[Static/1] 00:14:38

 > via sp-0/0/0.2

_ _juniper_private1_ _.inet.0: 2 destinations, 2 routes (2 active, 0 holddown, 0

 hidden)

trust.inet.0: 16 destinations, 16 routes (16 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

0.0.0.0/0 *[Static/5] 00:19:31

 > via sp-0/0/0.1

Also, verify that all the internal routes are received via OSPF in the VR's route table, trust.inet.0:

Code View:
[edit]

lab@PBR# run show route table trust

trust.inet.0: 16 destinations, 16 routes (16 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

0.0.0.0/0 *[Static/5] 00:19:59

 > via sp-0/0/0.1

10.10.8.0/27 *[OSPF/10] 00:13:32, metric 67

 > to 10.20.130.1 via fe-0/0/0.1241

10.10.10.0/30 *[OSPF/10] 00:19:50, metric 66

 > to 10.20.130.1 via fe-0/0/0.1241

10.10.11.0/24 *[OSPF/10] 00:19:50, metric 2

 > to 10.20.130.1 via fe-0/0/0.1241

10.10.12.1/32 *[OSPF/10] 00:13:32, metric 2

 > to 10.20.130.1 via fe-0/0/0.1241

10.10.12.2/32 *[OSPF/10] 00:13:32, metric 66

 > to 10.20.130.1 via fe-0/0/0.1241

10.10.12.3/32 *[OSPF/10] 00:19:50, metric 1

 > to 10.20.130.1 via fe-0/0/0.1241

10.20.128.4/32 *[OSPF/10] 00:13:32, metric 67

 > to 10.20.130.1 via fe-0/0/0.1241

10.20.128.128/32 *[Direct/0] 00:19:59

 > via lo0.1

10.20.129.0/24 *[OSPF/10] 00:13:32, metric 68

 > to 10.20.130.1 via fe-0/0/0.1241

10.20.130.0/24 *[Direct/0] 00:19:59

 > via fe-0/0/0.1241

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.20.130.2/32 *[Local/0] 00:19:59

 Local via fe-0/0/0.1241

10.20.131.0/24 *[OSPF/10] 00:13:32, metric 67

 > to 10.20.130.1 via fe-0/0/0.1241

10.30.1.1/32 *[OSPF/10] 00:13:32, metric 67

 > to 10.20.130.1 via fe-0/0/0.1241

64.8.12.6/32 *[OSPF/150] 00:13:32, metric 0, tag 0

 > to 10.20.130.1 via fe-0/0/0.1241

224.0.0.5/32 *[OSPF/10] 00:20:00, metric 1

 MultiRecv

Now verify that the OSPF network is running correctly in the VR. Don't forget the instance switch!

[edit]

lab@PBR# run show ospf database instance trust

 OSPF link state database, Area 0.0.0.0

 Type ID Adv Rtr Seq Age Opt Cksum Len

Router 10.10.12.1 10.10.12.1 0x8000016d 817 0x22 0x30df 48

Router 10.10.12.2 10.10.12.2 0x8000022a 817 0x22 0x7889 84

Router 10.10.12.3 10.10.12.3 0x8000017b 739 0x22 0x3575 84

Router 10.20.128.4 10.20.128.4 0x800004fc 818 0x22 0xa79b 60

Router *10.20.128.128 10.20.128.128 0x8000000c 160 0x22 0x5f14 48

Router 10.30.1.1 10.30.1.1 0x80000227 818 0x22 0x4ef0 48

Network 10.10.8.1 10.10.12.2 0x800000a1 817 0x22 0x45e7 32

Network 10.10.11.1 10.10.12.3 0x80000003 816 0x22 0xbef1 32

Network *10.20.130.2 10.20.128.128 0x80000004 9 0x22 0x1320 32

Network 10.20.131.2 10.20.128.4 0x8000020b 818 0x22 0xf32f 32

 OSPF AS SCOPE link state database

 Type ID Adv Rtr Seq Age Opt Cksum Len

Extern *0.0.0.0 10.20.128.128 0x80000001 562 0x22 0x7f14 36

Extern 64.8.12.6 10.30.1.1 0x8000009b 818 0x22 0xf84 36

Traffic is sent to the Internet and verified by looking at the show services stateful-firewall flows output.

When a NAT service set is applied, a stateful firewall that accepts all traffic is actually also applied. Notice that
the source is being translated from 10.20.120.1 to 55.55.5.1 with no port translation, and the return flow is
automatically created. Also, the state is watch because an ICMP Application Later Gateway (ALG) is being used:

[edit]

lab@PBR# run show services stateful-firewall flows

Interface: sp-0/0/0, Service set: Trust-Untrust

Flow State Dir Frm count

ICMP 128.3.3.27:62239 -> 55.55.5.1 Watch O 188

 NAT dest 55.55.5.1:62239 -> 10.20.130.1:0

ICMP 10.20.130.1:62239 -> 128.3.3.27 Watch I 196

 NAT source 10.20.130.1:62239 -> 55.55.5.1:62239

You also can view the ALG by looking at the output of the conversations command, which is JUNOS

terminology for the transit and receive flow:

lab@PBR# run show services stateful-firewall conversations extensive

Interface: sp-0/0/0, Service set: Trust-Untrust

Conversation: ALG protocol: icmp

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Number of initiators: 1, Number of responders: 1

Flow State Dir Frm count

ICMP 10.20.130.1:62239 -> 128.3.3.27 Watch I 211

 NAT source 10.20.130.1:62239 -> 55.55.5.1:62239

 Byte count: 17724

 Flow role: Master, Timeout: 30, Protocol detail: echo request

ICMP 128.3.3.27:62239 -> 55.55.5.1 Watch O 203

 NAT dest 55.55.5.1:62239 -> 10.20.130.1:0

 Byte count: 17052

 Flow role: Responder, Timeout: 30, Protocol detail: echo reply

The NAT pool is also examined, and although a /27 is configured in the pool, only 30 addresses have been
allocated, excluding the 55.55.5.0 and 55.55.5.31 addresses:

lab@PBR# run show services nat pool

Interface: sp-0/0/0, Service set: Trust-Untrust

NAT pool Type Address Port Ports used

ext-block dynamic 55.55.5.1-55.55.5.30

8.3.2. Source NAT with PAT

Now we will add port translation; refer back to "Section 8.3.1" to see the VR, rules, service setup, and so on. To
enable PAT, simply add the port command in the address pool definition:

[edit]

lab@PBR# set services nat pool ext-block port automatic

After the change is committed, it still appears that the flows are not performing any port translation:

[edit]

lab@PBR# run show services stateful-firewall flows

Interface: sp-0/0/0, Service set: Trust-Untrust

Flow State Dir Frm count

ICMP 128.3.3.27:62239 -> 55.55.5.1 Watch O 188

 NAT dest 55.55.5.1:62239 -> 10.20.130.1:0

ICMP 10.20.130.1:62239 -> 128.3.3.27 Watch I 196

 NAT source 10.20.130.1:62239 -> 55.55.5.1:62239

You can verify this by looking at the NAT pool and seeing that no ports have been assigned:

lab@PBR# run show services nat pool

Interface: sp-0/0/0, Service set: Trust-Untrust

NAT pool Type Address Port Ports used

ext-block dynamic 55.55.5.1-55.55.5.30

The port translation is not occurring because the change was done on the fly and the session had not timed out.
To create a new session in the flow table, you must first clear the flows:

lab@PBR# run clear services stateful-firewall flows

Interface Service set Conv removed

sp-0/0/0 Trust-Untrust 1

Now the port number is being changed from 62239 to 1024, as expected:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[edit services nat pool ext-block]

lab@PBR# run show services stateful-firewall flows

Interface: sp-0/0/0, Service set: Trust-Untrust

Flow State Dir Frm count

ICMP 128.3.3.27:1024 -> 55.55.5.1 Watch O 8

 NAT dest 55.55.5.1:1024 -> 10.20.130.1:62239

ICMP 10.20.130.1:62239 -> 128.3.3.27 Watch I 8

 NAT source 10.20.130.1:62239 -> 55.55.5.1:1024

You can verify this by viewing the port range allowed (512–65535), and by the fact that a single port is shown
to be in use out of the pool:

[edit services nat pool ext-block]

lab@PBR# run show services nat pool

Interface: sp-0/0/0, Service set: Trust-Untrust

NAT pool Type Address Port Ports used

ext-block dynamic 55.55.5.1-55.55.5.30 512-65535 1

8.3.3. Destination NAT

Another common application is to change the incoming public IP address to a private IP address inside the
network. Often, this is done to open a particular service from the WAN interface, frequently referred to as a
pinhole for its hopefully diminutive access. In this case study, a custom application called slingbox is running
over TCP and is using a port range of 4000–4050. This will be coming into public IP address 55.55.5.27 and will
be mapped to internal address 10.10.12.3. Destination NAT must always be of type static, so the incoming
public address range must map to the outgoing private address range.

Since a unique application must be used for this pinhole, first you must define an application that will later be
referenced in the NAT rule. This application is called custom-app:

lab@PBR# show | find applications

applications {

 application custom-app {

 protocol tcp;

 destination-port 4000-4050;

 }

}

Create the NAT rule by referencing the incoming public destination address 55.55.5.27 and the custom-app, and

by translating this address to 10.10.12.3. Use a destination-prefix instead of a destination-pool as this is

a single address mapping. Since this is a destination NAT that is added to the previously created next hop
service set, specify a direction of output because traffic will be received and directed to the outside interface by
the already created 55.55.5/27 static route:

[edit services nat]

lab@PBR# show | find rule

 rule pin-hole {

 match-direction output;

 term 1 {

 from {

 destination-address {

 55.55.5.27/32;

 }

 applications custom-app;

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 then {

 translated {

 destination-prefix 10.10.12.3/32;

 translation-type destination static;

 }

 }

 }

 }

 }

Then add the rule to the previously created service set:

 service-set Trust-Untrust {

 nat-rules basic-source;

 nat-rules pin-hole;

 next-hop-service {

 inside-service-interface sp-0/0/0.1;

 outside-service-interface sp-0/0/0.2;

 }

 }

}

Remember that you can combine multiple rules into a rule set if desired.

Traffic is incoming to PBR's WAN interface and the destination NAT is verified. This flow happens to have an

incoming port number of 4020, which does fall into the custom application range:

lab@PBR# run show services stateful-firewall conversations

Interface: sp-0/0/0, Service set: Trust-Untrust

Conversation: ALG protocol: tcp

 Number of initiators: 1, Number of responders: 1

Flow State Dir Frm count

TCP 172.16.1.1:4216 -> 55.55.5.27:4020 Forward O 1

 NAT dest 55.55.5.27:4020 -> 10.10.12.3:4020

TCP 10.10.12.3:4020 -> 172.16.1.1:4216 Forward I 1

 NAT source 10.10.12.3:4020 -> 55.55.5.27:4020

8.3.3.1. NAT and the stateful firewall

By default, when NAT rules are exclusively applied in a service set, a stateful firewall is implicitly applied. This
default stateful firewall matches on all traffic with an action of accept and is created in both directions. If a

stateful-firewall rule is created later and applied to the service set, the default stateful-firewall rules are
removed. This means that to allow for NAT traffic, you may need to create new stateful-firewall rules if a
stateful-firewall rule is later applied to the service set. In a simple example, a stateful-firewall rule is created to
allow all JUNOS ALGs and other traffic outbound from the internal network to the Internet:

stateful-firewall {

 rule allow-outbound {

 match-direction input;

 term 1 {

 from {

 application-sets junos-algs-outbound;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 then {

 accept;

 }

 }

 term 2 {

 then {

 accept;

 }

 }

 }

}

Apply this stateful-firewall rule to the service set that already contains the NAT rules:

service-set Trust-Untrust {

 stateful-firewall-rules allow-outbound;

 nat-rules basic-source;

 nat-rules pin-hole;

 next-hop-service {

 inside-service-interface sp-0/0/0.1;

 outside-service-interface sp-0/0/0.2;

 }

}

Verify the source NAT and that all works as expected since the stateful firewall is allowing all outbound flows:

[edit]

lab@PBR# run show services stateful-firewall conversations

Interface: sp-0/0/0, Service set: Trust-Untrust

Conversation: ALG protocol: icmp

 Number of initiators: 1, Number of responders: 1

Flow State Dir Frm count

ICMP 10.20.130.1:11552 -> 128.3.3.27 Watch I 31

 NAT source 10.20.130.1:11552 -> 55.55.5.1:1024

ICMP 128.3.3.27:1024 -> 55.55.5.1 Watch O 31

 NAT dest 55.55.5.1:1024 -> 10.20.130.1:11552

Note that when test traffic is sent from ISP router Wheat to PBR for incoming destination NAT, the traffic is

dropped by the newly applied stateful firewall that allows only outbound flows to be initiated, not inbound flows:

lab@Wheat> telnet 55.55.5.27 port 4020

Trying 55.55.5.27...

lab@PBR# run show services stateful-firewall flows

Interface: sp-0/0/0, Service set: Trust-Untrust

Flow State Dir Frm count

TCP 172.16.1.1:3469 -> 55.55.5.27:4020 Drop O 0

So, to allow incoming NAT processing to occur in the output interface, the packet must be allowed through the
stateful firewall. The incoming service flow when multiple service rules are applied is:

Stateful firewall NAT

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You cannot set this order at this point, which means that the stateful firewall must match on the static NAT
address:

[edit servisce stateful-firewall]

lab@PBR# show | find rule allow-pin-hole

rule allow-pin-hole {

 match-direction output;

 term 1 {

 from {

 destination-address {

 55.55.5.27/32;

 }

 }

 then {

 accept;

 }

 }

}

Apply the new rule to the service set:

lab@PBR# show services service-set Trust-Untrust

stateful-firewall-rules allow-outbound;

stateful-firewall-rules allow-pin-hole;

nat-rules basic-source;

nat-rules pin-hole;

next-hop-service {

 inside-service-interface sp-0/0/0.1;

 outside-service-interface sp-0/0/0.2;

}

Now destination NAT works as expected, and TV can sling around the world with our special application:

lab@PBR# run show services stateful-firewall flows

Interface: sp-0/0/0, Service set: Trust-Untrust

Flow State Dir Frm count

TCP 10.10.12.3:4020 -> 172.16.1.1:1059 Forward I 1

 NAT source 10.10.12.3:4020 -> 55.55.5.27:4020

TCP 172.16.1.1:1059 -> =55.55.5.27:4020 Forward O 1

 NAT dest 55.55.5.27:4020 -> 10.10.12.3:4020

[edit]

Since multiple stateful-firewall rules are applied, this may be another place where a rule
set could be helpful:

service-set Trust-Untrust {

 stateful-firewall-rule-sets in-out;

 nat-rules basic-source;

 nat-rules pin-hole;

 next-hop-service {

 inside-service-interface sp-0/0/0.1;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 outside-service-interface sp-0/0/0.2;

 }

}

rule-set in-out {

 rule allow-outbound;

 rule allow-pin-hole;

}

8.3.4. Twice NAT

Lastly, you can configure twice NAT on the router, which involves changing the source IP address for outbound
flows and the destination address for inbound flows (see Figure 8-10). This is really no different from the
scenarios we've already discussed, except that you must configure a source and a destination address, as well
as a source prefix or pool and a destination prefix or pool. In the example that follows, traffic that matches
10.58.254.24 or 10.58.254.35 will be source-NAT'd using a static pool called src-pool.

Figure 8-10. Twice NAT example

Traffic destined for 41.41.41.41/32 will be destination-NAT'd using a NAT pool called dst_pool:

Code View:
[edit services nat]]

lab@Bock# show

rule twice-nat {

 match-direction input;

 term my-term1 {

 from {

 destination-address {

 41.41.41.41/32;

 }

 source-address-range {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 low 10.58.254.34 high 10.58.254.35;

 }

 }

 then {

 translated {

 source-pool src-pool;

 destination-pool dst_pool;

 translation-type source static destination static;

 }

 }

 }

}

At the time of this writing, you cannot configure ALGs when twice NAT is configured.

8.3.5. Summary of NAT

NAT has become a common language and requirement for networks in every facet of the world due to the
exhaustion of IPv4 addresses as well as a way to protect internal resources. Various types of NAT are defined,
including source IP translation, destination IP translation, and port translation. Which method you choose should
depend on a variety of factors, such as the number of public IPs that are assigned to the network, the number
of incoming Internet connections allowed, and the level of invisibility required. In fact, you can combine many of
these concepts into a newer standard called twice NAT.

The next section explains how to configure multiple services at the same time, and the configuration processing
that will occur during deployment.

8.3.6. IDS

JUNOS services support a limited set of IDSs to help detect attacks such as port scanning and anomalies in
traffic patterns. It also supports some attack prevention by limiting the number of flows, sessions, and rates. In
addition, it protects against SYN attacks by implementing a SYN cookie mechanism. Since the intrusion
detection and prevention (IDP) service does not support higher-layer application signatures, we must examine
another solution.

The IDP solution is really more of a monitoring tool than an actual prevention tool. So, how does Juniper make
the IDP claim? One response is that protection against a SYN attack can be configured. To prevent a SYN attack,
the router will operate as a type of SYN "proxy" and will utilize cookie values. Essentially, when this feature is
turned on, the router will respond to the initial SYN packet with a SYN-ACK packet that contains a unique cookie
value in the sequence number field. If the initiator responds with the same cookie in the sequence field, the TCP
flow is accepted; if the responder does not respond or if it responds with the wrong cookie, the flow is dropped.
To kick off this defense, we must configure a SYN cookie threshold.

To enable the SYN cookie defense, an IDS rule action must contain a threshold that indicates when the feature
should be enabled and an MSS value to avoid having the router manage segmented fragments when acting as a
SYN proxy:

[edit]

lab@PBR# set services ids rule simple-ids term 1 then syn-cookie ?

Possible completions:

+ apply-groups Groups from which to inherit configuration data

http://lib.ommolketab.ir
http://lib.ommolketab.ir

+ apply-groups-except Don't inherit configuration data from these

groups

 mss MSS value for TCP delayed binding (128..8192)

 threshold Threshold above which SYN cookies are enabled

[edit]

You would then apply this rule to a service set as you would any other service previously discussed.

Since IDP and stateful firewalls are processed in parallel, you should configure a
stateful-firewall rule alongside the IDS rule. If you forget a rule, the default stateful
firewall of allow all will be used.

Along with SYN cookie protection, the IDS is used to detect attacks and gather information to create rules to
stop these attacks. When looking at the possible IDS rule actions for detection of attacks, you can:

Set up thresholds to monitor certain sources, destinations, or source and destination pairs

Force "good" entries to the IDS table for tracking purposes

Log packets when they hit a certain threshold:

Code View:
lab@PBR# set services ids rule all term 1 then ?

Possible completions:

> aggregation Define aggregation parameters

+ apply-groups Groups from which to inherit configuration data

+ apply-groups-except Don't inherit configuration data from these groups

 force-entry Force entries in IDS tables for matching traffic

 ignore-entry Ignore IDS events for matching traffic

> logging Define system logging parameters

> session-limit Define IDS session limit parameters

> syn-cookie Define SYN cookie parameters

For example, here is a rule that logs packets as soon as an event happens (threshold 1), enables SYN cookie
protection at five SYN packets per second, and forces all entries to be recorded:

Code View:
[edit]

lab@PBR# show services

ids {

 rule all {

 match-direction input;

 term 1 {

 then {

 force-entry;

 logging {

 threshold 1;

 syslog;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 syn-cookie {

 threshold 5;

 mss 1500;

 }

 }

 }

 }

}

service-set Trust-Untrust {

 ids-rules all;

 next-hop-service {

 inside-service-interface sp-0/0/0.1;

 outside-service-interface sp-0/0/0.2;

 }

}

The IDS tables can then be matched by source, destination, or pair:

Code View:
[edit]

lab@PBR# run show services ids ?

Possible completions:

 destination-table Show attack destination address table

 pair-table Show attack source and destination address pair table

 source-table Show attack source address table

Here is some output (not from this example) that shows some of the different types of anomalies that can be
tracked:

user@underdogs> show services ids destination-table extensive

Interface: sp-1/3/0, Service set: null-sfw

Sorting order: Packets

Source address Dest address Time Flags Application

any -> 10.58.255.146 35m52s SYN cookie

 Bytes: 34.0 m, Packets: 798.0 k, Flows: 266.0 k, Anomalies: 2251.0 k

 Anomalies Count Rate(eps) Elapsed

 First packet of TCP session not SYN 160.0 k 0 14s

 TCP source or destination port zero 634.0 k 154.6 3m37s

 UDP source or destination port zero 633.0 k 170.0 3m37s

 ICMP header length check failed 2875 0.9 3m37s

 IP fragment assembly timeout 820.0 k 12.8 3m18s

 UDP header length check failed 385 0.5 3m53s

 TCP header length check failed 383 0.5 3m53s

Total IDS table entries:

87

Total failed IDS table entry insertions

0

Total number of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.4. Combining Services

When combining multiple services, the general path must be remembered in the forward and reverse directions
(see Figure 8-11). This is especially true when NAT is deployed to determine whether the pre- or post-NAT
address should be used to match a rule. In the forward path from a LAN interface to a WAN interface, IDS and
stateful firewall are performed first, then NAT, and finally IPSec. This means that the stateful firewall must
match on a pre-NAT address whereas the IPSec tunnel would match on the post-NAT address.

Figure 8-11. Service path

In the return path, the IPSec packet will be processed first, then NAT, and finally the stateful firewall. This still
allows IPSec to match a public address and the stateful firewall to match on a private address.

Everything becomes much more complicated when IPSec over GRE is implemented in the router with other
services turned on. This is because JUNOS treats GRE packets in a very peculiar fashion after GRE
encapsulation. After a packet is encapsulated in a GRE packet, it is marked with an input interface as the next
hop outgoing interface. This causes GRE packets to be blocked if any input filters or input services are allowed
that do not allow for this service.

In Figure 8-12, an IP packet comes into the fe-1/0/0.42 interface and a route lookup is performed that directs

the packet into a GRE tunnel, which has an egress interface of se-1/0/0. After the GRE encapsulation, the input

interface changes to the output interface. So, at the final stage, any stateful-firewall processing or stateless
filters are going to see the packet coming into interface se-1/0/0 and out of interface se-1/0/0, which is

unexpected!

Figure 8-12. GRE processing with services

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.4.1. Stateful Firewall, NAT, and IPSec over GRE Together

To illustrate the uniqueness of GRE encapsulation, we will again examine the IPSec over GRE tunnel. This is the
same tunnel we configured in "Section 8.2.5," earlier in this chapter. Just to recap, here is the complete IPSec
over GRE configuration rule set that is applied as an interface-style service set:

Code View:
service-set ipsec-gre {

 interface-service {

 service-interface sp-0/0/0.0;

 }

 ipsec-vpn-options {

 local-gateway 172.16.1.2;

 }

 ipsec-vpn-rules map-gre;

}

ipsec-vpn {

 rule map-gre {

 term 1 {

 from {

 source-address {

 172.16.1.2/32;

 }

 destination-address {

 128.3.3.4/32;

 }

 }

 then {

 remote-gateway 128.3.3.4;

 dynamic {

 ike-policy main_ike;

 ipsec-policy ipsecgre;

 }

 }

 }

 match-direction output;

 }

 ipsec {

 proposal cisco-interop {

 protocol esp;

 authentication-algorithm hmac-md5-96;

 encryption-algorithm des-cbc;

 }

 policy ipsecgre {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 perfect-forward-secrecy {

 keys group1;

 }

 proposals cisco-interop;

 }

 }

 ike {

 proposal cisco-interop-ike {

 authentication-method pre-shared-keys;

 dh-group group1;

 authentication-algorithm md5;

 encryption-algorithm des-cbc;

 }

 policy main_ike {

 proposals cisco-interop-ike;

 pre-shared-key ascii-text "9JhUi.QF/0BEP5BEcyW8ZUjHP5z

36AuO"; ## SECRET-DATA

 }

 }

 traceoptions {

 flag ike;

 }

 establish-tunnels immediately;

}

Stateful-firewall and NAT rules are to be configured from the LAN side of router PBR to the WAN side of the

router for all internally sourced traffic. Since IPSec requires its own service set, a new service set called trust-

untrust will be created that references the same service interface and a single NAT and stateful-firewall rule:

[edit services]

service-set trust-untrust {

 stateful-firewall-rules allow-outbound;

 nat-rules basic-source;

 interface-service {

 service-interface sp-0/0/0.0;

 }

}

A stateful-firewall rule is created to match on traffic that is sourced from the internal network. Notice that only
ALGs are allowed from the internal subnet, whereas the second term contains no condition. The second term
does not contain this condition in order to allow some management traffic and BGP traffic to flow between the
172.16.1/24 network between PBR and Wheat (see Figure 8-6):

stateful-firewall {

 rule allow-outbound {

 match-direction output;

 term alg {

 from {

 source-address {

 10.0.0.0/8;

 }

 application-sets junos-algs-outbound;

 }

 then {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 accept;

 }

 }

 term other {

 then {

 accept;

 }

 }

 }

}

Also, a source NAT rule is applied for all internal traffic using port translation:

Code View:
nat {

 pool ext-block {

 address 55.55.5.0/27;

 port automatic;

 }

 rule basic-source {

 match-direction output;

 term 1 {

 from {

 source-address {

 10.0.0.0/8;

 }

 }

 then {

 translated {

 source-pool ext-block;

 translation-type source dynamic;

 }

 }

 }

 }

}

The new service set is applied to the WAN interface on PBR. Take a look at the previous example to view the

service filters match-vpn-input and match-vpn-output:

[edit interfaces fe-0/0/0 unit 412]

lab@PBR# show

description PBR-to-Wheat;

vlan-id 412;

family inet {

 service {

 input {

 service-set ipsec-gre service-filter match-vpn-input;

 service-set trust-untrust;

 }

 output {

 service-set ipsec-gre service-filter match-vpn-output;

 service-set trust-untrust;

 }

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 address 172.16.1.2/24;

After the configuration is committed, observe the flows through the stateful firewall. GRE packets are being
dropped that were destined to 128.3.3.4. Notice that the direction is input, since after GRE encapsulation, the
packet appears to be coming into the outgoing WAN interface. Because the stateful-firewall rules are now
written to allow incoming GRE packets, the packets are dropped:

[edit services stateful-firewall rule allow-outbound]

lab@PBR# run show services stateful-firewall flows

Interface: sp-0/0/0, Service set: trust-untrust

Flow State Dir Frm count

TCP 172.16.1.1:179 -> 172.16.1.2:2439 Forward I 11

TCP 172.16.1.2:2439 -> 172.16.1.1:179 Forward O 12

GRE 172.16.1.2:0 -> 128.3.3.4:0 Drop I 0

Since the packets are being dropped by the stateful firewall, they are not even reaching the IPSec tunnel. You
can see this by observing the 0 packet counts on the IPSec statistics:

[edit services service-set trust-untrust]

lab@PBR# run show services ipsec-vpn ipsec statistics

PIC: sp-0/0/0, Service set: ipsec-gre

ESP Statistics:

 Encrypted bytes: 0

 Decrypted bytes: 0

 Encrypted packets: 0

 Decrypted packets: 0

AH Statistics:

 Input bytes: 0

 Output bytes: 0

 Input packets: 0

 Output packets: 0

Errors:

 AH authentication failures: 0, Replay errors: 0

 ESP authentication failures: 0, ESP decryption failures: 0

 Bad headers: 0, Bad trailers: 0

We must now create a service filter to allow the GRE packets to bypass the stateful firewall and be encapsulated
into the IPSec packet. This service filter must match on the source and destination IP addresses of the tunnel,
as seen from the discard flows. Don't forget to service all other packets besides the GRE packets:

 [edit firewall]

lab@PBR# show | find allow-gre

 service-filter allow-gre {

 term gre {

 from {

 source-address {

 172.16.1.2/32;

 }

 destination-address {

 128.3.3.4/32;

 }

 }

 then skip;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 term all {

 then service;

 }

 }

}

Apply the service filter as an input service filter for the stateful firewall containing the service set:

[edit interfaces fe-0/0/0 unit 412]

lab@PBR# set family inet input service-set trust-untrust service-

filter allow-gre

[edit interfaces fe-0/0/0 unit 412]

lab@PBR# show

description PBR-to-Wheat;

vlan-id 412;

family inet {

 service {

 input {

 service-set ipsec-gre service-filter match-vpn-input;

 service-set trust-untrust service-filter allow-gre;

 }

 output {

 service-set ipsec-gre service-filter match-vpn-output;

 service-set trust-untrust;

 }

 }

 address 172.16.1.2/24;

}

After the filter has been applied, the service filter packets are encrypted and decrypted in the IPSec tunnel:

lab@PBR> show services ipsec-vpn ipsec statistics

PIC: sp-0/0/0, Service set: ipsec-gre

ESP Statistics:

 Encrypted bytes: 51408

 Decrypted bytes: 51408

 Encrypted packets: 459

 Decrypted packets: 459

AH Statistics:

 Input bytes: 0

 Output bytes: 0

 Input packets: 0

 Output packets: 0

Errors:

 AH authentication failures: 0, Replay errors: 0

 ESP authentication failures: 0, ESP decryption failures: 0

 Bad headers: 0, Bad trailers: 0

In addition, other internal flows are source-NAT'd as expected:

lab@PBR> show services stateful-firewall conversations

Interface: sp-0/0/0, Service set: trust-untrust

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Conversation: ALG protocol: icmp

 Number of initiators: 1, Number of responders: 1

Flow State Dir Frm count

IC 10.20.130.1:30242 -> 77.7.7.7 Watch O 3

 NAT source 10.20.130.1:30242 -> 55.55.5.1:1033

ICMP 77.7.7.7:1033 -> 55.55.5.1 Watch I 3

 NAT dest 55.55.5.1:1033 -> 10.20.130.1:30242

Conversation: ALG protocol: tcp

 Number of initiators: 1, Number of responders: 1

Flow State Dir Frm count

TCP 172.16.1.2:1075 -> 172.16.1.1:179 Forward O 77

TCP 172.16.1.1:179 -> 172.16.1.2:1075 Forward I 76

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.5. The Life of a Packet

When you've decided which services you need in your network, implementing them can seem like a daunting
task. Which configuration do you apply first? Which addresses do you apply to a given service when applying a
rule? How about if you have a class of service (CoS) applied? Where do packet filters fit into the packet flow?

Figure 8-13 and Figure 8-14 should help you sort through this mystery and decide where configuration
processes occur. These diagrams are not meant to represent every possible scenario, but rather to give you a
general feel for the complex processing that could be involved. The exact processing will depend on whether a
next hop- or an interface-style service set is applied (for more on CoS concepts, refer to Chapter 9).

Figure 8-13. Incoming packet processing

The steps outlined in Figure 8-13 are as follows:

The packet enters the incoming interface.1.

The packet is classified by a behavior aggregate (BA) classifier.2.

The packet is processed by an input filter and policer (and may be reclassified).3.

The packet enters a service filter, and it is either serviced or skipped; if it is skipped, jump to step 7.4.

The input service is performed.5.

A post-service filter is applied.6.

7.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.

The route lookup occurs.7.

If the result of the route lookup is a GRE packet, go to step 9; if not, send on for output processing.8.

De-encapsulate the GRE packet and go back to step 1.9.

After the packet is done with the input processing, it moves toward output processing (see Figure 8-14).

Figure 8-14. Outbound packet processing

The steps outlined in Figure 8-14 are as follows:

The packet is received from input processing and enters the output policer or filter.1.

The packet then goes through an output service filter to determine whether the packet will be marked for
service. If the packet matches the service filter, the output interface is set to the service interface; if there
is no match, the output interface is the outgoing physical interface.

2.

The packet is sent to an output scheduler.3.

A write of the Type of Service (ToS) byte could occur. If the output interface is a service interface, go back
to step 3; otherwise, go to step 5.

4.

If the packet needs to be GRE-encapsulated, go to step 6; otherwise, go to step 7.5.

6.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.

GRE encapsulation occurs, and the packet is sent back to the input processing stage where it is sent to
step 1 of Figure 8-13 (input filters); after the GRE encapsulation, the input interface is the next hop
outgoing interface of the GRE tunnel.

6.

The packet is sent out the physical output interface.7.

8.5.1. Considerations Regarding Order of Operations

The packet processing order just discussed can be practically applied when designing the branch office
connectivity for your network (see Figure 8-15). If connectivity is provided via IPSec VPNs and CoS is applied,
where should the packet be classified? If an IPSec packet enters a router, the packet can be classified by setting
the CoS value in the outer IP header using a BA classifier. However, after the packet is de-encapsulated, it
enters the input filtering stage and is not sent through another BA classifier. That means that if packet
classification is required on the de-encapsulated packet, you must use a multifield classifier (a firewall filter).

Figure 8-15. Branch office connectivity

In comparison, if remote connectivity is provided by GRE tunnels, similar to IPSec tunnels, the incoming GRE
packet could be classified using a BA classifier. The difference, however, is that once the GRE packet is de-
encapsulated, it sends the inner packet through another BA classifier. This means you should apply the same
classifier to the incoming interface and the gr- interface to avoid reclassification. Also, don't forget that when a

GRE packet is encapsulated, it is reprocessed through all input filters and services on the output interface.

The possible scenarios could fill an entire book, so be sure to consult Figure 8-13 and Figure 8-14 for application
to your network.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.6. Conclusion

IP networks have changed drastically since they were first deployed 25 years ago, when addresses were
plentiful and simple filters sufficed. In today's modern data networks, the concepts of yesteryear won't float for
long. Packet filters will always have their place, but without tracking state, they will always have limitations;
thus, the need for stateful firewalls. With IPv4 exhaustion coming to fruition, NAT has taken a front seat in
network design and is now almost a requirement.

You can deploy these services individually or as a combined security design. When combining these services, be
sure to verify each step along the way to avoid a broken configuration that is a bear to troubleshoot.

Although configuration may seem a bit daunting at first, the power and scalability of JUNOS are evident in the
services code. For additional service examples to accompany this chapter, please consult
http://www.cubednetworks.com.

http://www.cubednetworks.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.7. Exam Topics

We examined the following Enterprise Exam Topics in this chapter:

Configure and apply an interface-style service set.

Configure a next hop-style service set.

Identify the match direction given a network diagram.

Understand and implement various types of service sets.

Describe NAT and PAT.

Configure a stateful firewall via the CLI.

Monitor a stateful firewall.

Configure NAT and PAT via the CLI.

Monitor NAT and PAT via the CLI.

Explain IPSec VPN processing on M-series and J-series routers.

Configure an IPSec VPN via the CLI.

Configure a route-based GRE tunnel (over IPSec) via the CLI.

Monitor IPSec VPNs.

IPSec tunnels as backup links.

Routing over an IPSec or GRE tunnel.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.8. Chapter Review Questions

Why are VRs the preferred implementation choice when deploying next hop-style service sets? (Choose
two.)

Added security benefitsa.

More features can be implementedb.

Simplicity in configurationc.

Automatic rulesd.

1.

Which match direction should be specified when creating an IPSec tunnel?

De-encapsulation directiona.

Both directionsb.

Encapsulation directionc.

No directiond.

2.

True or False: A single proposal can be applied to an IPSec tunnel.

Which type of service set would allow for OSPF routing over an IPSec tunnel?a.

Next hopb.

Interfacec.

Virtual routerd.

e.

3.

4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

d.

Route sete.

After an IP packet is encapsulated by a GRE header, what is the incoming interface of the packet set to?

service interfacea.

gre interfaceb.

outgoing interfacec.

loopback interfaced.

4.

Which type of NAT would be used to hide all local PCs' addresses as they connect to the Internet?

Destinationa.

Half-Coneb.

Twice NATc.

Source NATd.

5.

The following source NAT rule is applied to a next hop service set but doesn't seem to be working:

rule basic-source {

 match-direction output;

 term 1 {

 then {

 translated {

 source-pool ext-block;

 translation-type source dynamic;

 }

 }

 }

 }

}

What is the possible issue?

a.

b.

6.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Missing a from statementa.

Can't use dynamic translation for source NATb.

The match direction is incorrectc.

Missing the accept actiond.

True or False: IPSec VPNs must have their own service set.7.

If packets need to be skipped in an interface-style service set, what should be configured?

A service rule allowing traffic to be skippeda.

A post-service filter allowing traffic to be skippedb.

A service filter allowing traffic to be skippedc.

A firewall filter allowing traffic to be skippedd.

8.

Which NAT type is not supported on a Juniper router?

Dynamic sourcea.

Static sourceb.

Dynamic destinationc.

Static destinationd.

9.

What are the advantages of using a NAT pool? (Choose two.)

Can reuse pool in other rulesa.

Can implement discontinuous addressesb.

c.

10.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

b.

Doesn't have to reference in a rulec.

Can enable port translationd.

Why might there not be an active IKE SA for a configured and operational VPN?

SA is no longer neededa.

VPN has yet to time outb.

IKE SA was never establishedc.

GRE tunnel was used insteadd.

11.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.9. Chapter Review Answers

Answer: A, C. VRs add a security benefit over other solutions since the interfaces and route tables are
separated from the main table. Also, VRs avoid the complexity of rib-groups that plague other solutions.

1.

Answer: C. The direction that encapsulates the packet into the IPSec tunnel should be used. In an
interface-style service set, this is normally set to output whereas a next hop service set usually uses

input.

2.

Answer: False. You can apply multiple proposals to the IPSec tunnel; only one proposal has to match on
each side for tunnel establishment.

3.

Answer: A. You must use a next hop-style service set to support routing protocols.4.

Answer: C. Strangely enough, after a packet gets GRE encapsulation, the incoming interface is set to the
next hop outgoing interface. This causes the GRE packet to be subject to input filters and services on the
outgoing interface.

5.

Answer: D. If a PC wants to be hidden from the outside world, you should deploy source NAT. This
changes the "private" source IP to one or more "public" IP addresses.

6.

Answer: C. One of the most common configuration errors when making service rules is not specifying the
correct direction, especially when using next hop-style service sets, and match directions often seem
backward when compared to interface-style service sets. Remember that traffic mapped to the inside
interface is input traffic and traffic mapped to the outside interface is output traffic.

7.

Answer: True. At the time of this writing, IPSec VPNs are always a unique service set, and no other service
rules can be combined in the set. If you need to implement other services on top of IPSec, they must have
their own unique service set.

8.

Answer: C. Service filters allow for some traffic to be skipped through a service set. They also allow
certain services to be selected.

9.

Answer: C. At the time of this writing, dynamic destination NAT is not supported. All destination NAT must
be statically mapped to the same IP address.

10.

Answer: A, D. NAT pools provide greater scalability, as they can be reused in multiple terms and in
multiple rules. Also, a pool is required if port translation needs to be enabled.

11.

Answer: A. The IKE SA is needed only during the initial tunnel establishment to negotiate the IPSec tunnel
parameters. After the IPSec tunnel is established, the IKE SA will time out and will reestablish only on an
as-needed basis.

12.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

12.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 9. Class of Service

This chapter details M7i and J-series class of service (CoS) capabilities while also demonstrating typical CoS
configuration and verification steps under JUNOS software. A detailed comparison between the ASIC-based M7i
and the software-based J-series platform is provided to clarify their operational differences, which is a common
source of confusion given that they have so many similarities. The topics covered include:

What IP CoS is and why it is needed

IP differentiated services primer

M7i and J-series CoS capabilities

DiffServ-based CoS deployment and verification

J-series virtual channels

Juniper Networks routers offer extensive support for IP CoS. As of this writing, the list of supported standards
includes:

RFC 2474, "Definition of the Differentiated Services Field in the IPv4 and IPv6 Headers"

RFC 2597, "Assured Forwarding PHB Group"

RFC 2598, "An Expedited Forwarding PHB"

RFC 2698, "A Two Rate Three Color Marker"

9.1. What Is IP CoS, and Why Do I Need It?

Simply put, CoS provides a mechanism by which certain packets are afforded preferred treatment in an effort to
provide the associated application with a level of performance required for proper operation. Although the
preceding sentence seems simple enough, it implies support for several capabilities that must work together
within each node-and in a consistent manner network-wide-for an IP CoS deployment to be successful.

9.1.1. Why IP Networks Need CoS

IP networks are based on the principal of statistical multiplexing (stat MUX), which is a resource-sharing
technique that allocates resources on an as-needed basis. A stat MUX provides efficiency gains by playing the
odds that a given application or user will not be active at its peak rate 100% of the time. By allocating
bandwidth resources only when needed, a large number of bursty applications can be supported over a network
with an aggregate capacity that is significantly less than the potential aggregate rate of its user base.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To make all this work, some degree of buffering is needed to accommodate the occasional synchronized bursts.
Because no network has infinite buffers, flow control (typically supported by a virtual circuit [VC] technology) or
simple discard in the case of datagram operation (connectionless) is needed during chronic periods of
congestion. Throwing more buffers at the problem only changes the symptom from one of discard to one of
delay and delay variance, which is known as jitter. Although non-real-time applications such as an order-entry
system can tolerate loss and lengthy/variable delays, the user will generally have a degraded experience and
productivity can suffer. More demanding real-time applications such as Voice over IP rapidly become unusable
when loss and delay/jitter are not kept within relatively stringent bounds.

IP networks are based on statistical multiplexing, and there is an increasing trend to converge all
communications, be it data, voice, video, real-time simulation, and so on over a single IP infrastructure to
maximize return on investment and economy of scale. Put differently, a single network is far less expensive to
deploy and maintain, and much to the chagrin of Integrated Services Digital Network (ISDN) and Asynchronous
Transfer Mode (ATM), that single network technology is shaping up to be IP. Saving money always looks good
on paper, but these gains quickly disappear if the result is unproductive, angered workers who can no longer
perform their jobs due to intermittent application performance.

Historically, network technologies were circuit-based and were designed to support toll-quality voice. Although
there is little to find sexy in "toll-quality voice," these telephone network architects did not realize what they
were dealing with: what would become the panacea of IP network quality of service (QoS)-namely, a service
that provides (once connected) minimal and fixed delays, freedom from congestion, guaranteed bandwidth, in-
sequence delivery, and low loss. Legacy circuit-switched networks are not without their drawbacks, and all
indications are that the future of voice, data, and video transport will be packet- rather than circuit-based.

Overbuilding an IP network with excess bandwidth is a viable way to ensure that all applications work properly,
even during periods of peak usage or network outages. The fact that costs associated with bandwidth are
constantly dropping, and new ways are always being found to drive existing fiber to increasingly higher rates
allows the "overbuild it and they will be happy" network design philosophy to pass the giggle test, which is to
say that there are cases where adding bandwidth is more expedient, and potentially less costly, than deploying
an IP CoS solution. This is especially true if existing IP infrastructure requires hardware upgrades to support
CoS, which is often the case with legacy gear that may already be struggling in the basic IP routing role and
that simply does not have the capability or resources to provide additional CoS processing.

When simply throwing bandwidth at the problem is not seen as feasible, due to either economic impact or
equipment limitations, deploying IP CoS is the key to successfully converging services and applications onto an
IP-based infrastructure.

Although there are CoS processing variances across the product line, all current Juniper Networks routing
platforms provide IP CoS capabilities that you can deploy in a production network without negatively impacting
basic IP packet forwarding performance.

9.1.1.1. Circuit-switching inefficiencies

Although legacy circuit-switched networks offered some mighty fine CoS, circuit-switched technologies are
inefficient or poorly suited as a convergent technology in numerous areas. The root cause of this inefficiency is
the lack of statistical multiplexing in circuit-switched networks, which prevents the sharing of resources during
naturally occurring idle periods in communication streams. The issues with circuit switching and network
efficiency are outlined in the following list, and they hold true whether using an analog or newer digital (ISDN)
type of circuit switch:

Blocking during congestion

Establishment of new circuits is blocked when the network reaches capacity through a call admission
control (CAC) function (fast busy). This behavior helps to preserve the CoS of existing users, but lack of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

priority/preemption capabilities means that routine calls can lock out new users, even when their
communication needs are high priority.

Dedicated resources

Allocating guaranteed bandwidth in fixed chunks (64 Kbps DSO) is inefficient, even for voice, given that
most communication is bursty-the simple fact that voice communication is inherently bursty, that it is
half-duplex, and that speech waveforms are predictable and consist of idle periods is behind most speech
compression algorithms.

Fixed bandwidth allocation

The fixed allocation of bandwidth can be too coarse, given that it is based on multiples of a 3 KHz voice
band coded into a 64 Kbps channel with standard Pulse Code Modulation (PCM). For some applications,
this is too much bandwidth, and for others, it is not enough. Bonding multiple voice channels together to
form a higher-speed link is possible, but you are still forced to deal with complete channels-one channel
may not be enough and two might be too much.

Poor survivability

In most cases, the failure of any link or node along a circuit-switched connection's path results in the loss
of that connection. The user normally has to reestablish his connection to resume communications, which
can take time. Furthermore, due to blocking, perhaps due to diminished capacity after equipment failure,
the call may not succeed.

To date, most IP networks are not CoS-enabled. This is simply because the historic application of IP as an
internetworking protocol for LAN and WAN interconnection simply did not warrant the added complexity, both in
equipment design and in the network-wide configuration needed for a working CoS solution. In fact, with some
early (non-Juniper) router architectures, enabling CoS services consumed so many resources that forwarding
performance was actually better with CoS disabled.

In other cases, when some level of performance was actually required, engineers simply overbuilt the network
from a capacity and bandwidth perspective. When all is said and done, the simple truth is that all of the world's
most sophisticated CoS processing does no good for a packet that encounters a router with relatively empty
queues anyway; CoS matters only when link utilization begins to exceed 80%; otherwise, packets are
dispatched virtually as soon as they arrive, as there is no appreciable queue fill in such conditions. Put
differently, enabling CoS on an underutilized network is akin to buying a low-emissions vehicle just so that you
can use a carpool lane, and then finding your commute hours occur at 2:00 a.m. when the roadways are empty
anyway.

Even though bandwidth prices continue to trend downward while the raw forwarding rates of routers continue to
rise, there are practical limits to the "overbuild and they will be happy" philosophy of network design. In
addition, the increasing trend toward the use of IP as a mission-critical infrastructure supporting many, if not
all, of an enterprise's data, voice, and automation/manufacturing needs makes the prioritization of critical traffic
a prudent decision. In the most basic sense, consider the outbreak of a fire that significantly reduces your
network's capacity. With the "overbuild it" safeguard now up in smoke (pun intended), you reach for the last
unmelted IP phone handset to summon emergency help. This is not the time that you should have to ask
yourself whether you feel lucky; with IP CoS, you know that your critical voice signaling and related media

http://lib.ommolketab.ir
http://lib.ommolketab.ir

packets will be the first to be routed, assuming, of course, that any routing is still possible.

The use of IP-based statistical multiplexing combined with a sound CoS deployment provides the best of all
worlds-the efficiency gains of statistical multiplexing and easily extended IP-based signaling protocols that
provide CAC (RFC 2205 RSVP) and/or preemption and priority (draft-ietf-tsvwg-mlpp-that-works), combined
with the ability to support virtually all known application types over a single, future-proof network
infrastructure.[5]

[5] Although the future of IP may well rest with IPv6, version 4 has shown a remarkable degree of resiliency and has quietly supported the

world's internetworking needs while rival after rival has come and gone, leaving only obsolete certifications in their wake. There are numerous

migration strategies to move from IPv4 to IPv6, and the CoS models are the same, which allows direct application of this material to an IPv6

infrastructure when needed.

9.1.2. CoS Terms and Concepts

This section defines common IP network CoS terms and operational concepts in the context of JUNOS software,
and the terminology used in the Internet QoS working group's survey titled "Network QoS Needs of Advanced
Internet Applications." The reader is encouraged to consult this document for a detailed description of
application-specific characteristics and typical CoS needs; the focus here is strictly on those QoS parameters
and concepts associated with IP layer network operation and packet handling.

It should also be noted that the actual measurement of IP performance, including the effects of CoS, is defined
in RFC 2544, "Benchmarking Methodology for Network Interconnect Devices."

This section explores the following terms and concepts:

Network QoS parameters

Classification

Packet marking

Forwarding classes, queues, and schedulers

Congestion management

Policing and shaping

Typical CoS processing stages in a Juniper router

9.1.2.1. Network QoS parameters

In common vernacular, the terms CoS and QoS are used interchangeably. To help keep things clear, this
chapter reserves the term QoS for individual network parameters such as delay or loss probability, and uses
CoS to describe the combined effect of applying specific QoS parameters to a packet stream, which should
result in a service differentiation among the supported traffic classes in your network.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

By way of analogy, consider commercial aviation and the typical coach versus first-class traveling experience.
First, if there were no differences between these service classes, the airline would have a hard time charging so
much more for a first-class seat. It can be said that the service associated with these classes of travel is in turn
a function of various QoS parameters, such as the maximum time to get a drink after being seated (delay), the
likelihood of having your luggage make it to your destination (loss), and being treated to proper flatware and
real food, as opposed to the experience of using a plastic spork (a combined spoon/fork) to choke down a bag
lunch. The combined effects of these airline-based QoS parameters yield a particular CoS, and each such service
class is differentiated so as to leave little ambiguity as to which class one happens to be traveling in at any
given time.

To get maximum benefit of network QoS, the user's application should be QoS-aware so that it can request the
appropriate resources during CAC (when supported) and correctly mark its traffic to ensure that it maps to the
desired service class or classes.

The primary network QoS parameters are defined as follows:

Bandwidth

Bandwidth is a measure of each link's information-carrying capacity. It is limited by the lesser of the
bandwidth supported by each link crossed between two endpoints.

Delay

Delay is a measure of the time taken to move a packet from one point to another. End-to-end delay is a
cumulative function of serialization delays, propagation delays, and any queuing delays (buffering) that
the packet may experience.

Delay variation (jitter)

Delay variation, often called jitter, is a measure of the variance in transfer delays between packets that
make up a stream. Jitter is significant to real-time applications because the receiver must dimension its
jitter buffer based on maximum jitter, which adds delays for all packets and causes eventual loss when
jitter values exceed buffer capacity.

Loss

Loss measures the percentage of packets not delivered. Loss can stem from transmission errors or
discard stemming from congestion in packet-based networks.

Loss pattern

The loss pattern defines the nature of a loss event as either bursty (short duration) or chronic, which is
sometimes called a dribble error.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.1.2.2. Classification

Classification is the act of associating received packets with a defined forwarding class, which in turn maps to a
queue. Classification is a critical aspect of IP CoS, given that the underlying principle of CoS is to enforce
different forwarding behavior on one packet versus another, based on the associated set of QoS parameters
defined for each forwarding class. Errors in classification result in incorrect handling of the associated packet
stream, which may negate CoS benefits by treating all traffic the same or by causing congestion in one or more
forwarding classes, which in turn leads to loss and delay-related problems for that forwarding class. Figure 9-1
shows how incoming packets are subjected to a classifier function that in turn maps each packet to a defined
forwarding class.

Figure 9-1. Classification

At egress, the forwarding class is used to link the packet to the correct output queue/scheduler profile.
Classification can be a resource drain on a router, because it adds processing steps to each received packet.
Modern IP routers support two types of classification to help mitigate resource consumption concerns:

Multifield classification

Multifield classifiers are the most flexible and therefore the most computationally burdensome type of
classifier. As the name suggests, a multifield classifier is based on matches against multiple fields with
the IP packet, including source and destination addresses, protocol type, ports, and so on.

Behavior aggregate (BA)

A BA classifier uses a fixed field in the packet header to make classification decisions. This is highly
efficient because of the fixed position, length, and meaning of the bits used in the BA classification field.
Classifications based on IP precedence or Differentiated Services code points (DSCPs) are examples of BA
classification.

Normally you deploy multifield classifiers at the network's edges, as close to the traffic source as possible-that
is, in the access layer. Once correctly classified, the packets are typically remarked to permit the more efficient
BA type of classification in the aggregation and core layers. Juniper routers use firewall filters to perform
multifield classification and support various types of BA classifiers, as detailed in "Section 9.3.1.1," later in this
chapter. The highly efficient manner in which JUNOS software firewall filters are compiled and optimized allows

http://lib.ommolketab.ir
http://lib.ommolketab.ir

large-scale use of multifield classification without incurring a significant reduction in forwarding capacity. With
that said, you should use BA type classification wherever possible to keep things streamlined.

9.1.2.2.1. Loss priority

Many CoS models expect that loss will be lower in some classes than in others, or that loss will be lower for
traffic within a class when it conforms to the class's associated rate limit, versus a higher loss probability for
nonconformant traffic. Technologies such as ATM and Frame Relay achieve this functionality with the cell loss
priority (CLP) and discard-eligible (DE) bits, respectively.

The IP packet header does not have a mechanism for signaling a packet's loss priority. As a result, the loss
priority status for an IP packet is an internal flag that is set based on classification or policing actions. Once a
packet is flagged at ingress as having a low or high loss priority, other nodes are expected to make the same
determination-policing is done at the edge, and the resultant loss status should not be altered once set. This is
normally accomplished by rewriting the BA field. Downstream nodes then use the altered BA value during
classification to determine that packet's loss priority.

9.1.2.3. Packet marking/rewriting

Once mapped to a forwarding class, a packet can be subjected to one or more rewrite rules. Rewrite rules are
used to mark the packet to facilitate BA classification in downstream nodes. Figure 9-2 shows packet marking in
action.

Figure 9-2. Packet marking

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Step 1 of Figure 9-2 shows an incoming packet with a default IP precedence field that is subjected to a
multifield classifier. In this example, the packet matches against the source address, protocol, and port range
criteria associated with the Expedited Forwarding (EF) class, which results in a mapping to forwarding class 2.
At egress, the packet is subjected to an IP precedence rewrite rule that is indexed according to each packet's
assigned forwarding class and drop priority. In this example, packets belonging to forwarding class 2 (EF) have
their IP precedence field rewritten to a binary 010-the altered IP precedence field can now be used for BA-
based classification in downstream nodes (steps 2 and 3, respectively). Though not shown, the packet's local
packet loss priority (PLP) can also be factored into a rewrite pattern that enabled downstream nodes, which
typically do not perfom policing actions, to make the same discard priority determination.

Generally speaking, you cannot rely upon user applications to correctly mark the BA fields of their traffic
streams; doing so can easily lead to service abuse by savvy users who know how to alter their operating
system's protocol stack to alter the default marking of their packets. The current best practice is to perform
multifield classification and re-marking to the appropriate forwarding class at the networked edges to ensure
that BA tags used in the core meet your organization's acceptable use CoS policy. If desired, you can rewrite the
BA field to a default value at network egress, perhaps to meet the receiving application's expectations or simply
to hide the markings used for classification in the core.

9.1.2.4. Forwarding classes, queues, and schedulers

It's been established that packet classification results in the mapping of each packet to a forwarding class. So,
what is a forwarding class? In Juniper parlance, a forwarding class essentially maps to a queue. Typically, there
is a one-to-one mapping of forwarding class to queue number, but a many-to-one mapping is also possible. For
example, the default CoS configuration defines only two forwarding classes-Best Effort (BE) and Network
Control (NC)-and the default IP precedence classifier maps the eight possible precedence values into these two
forwarding classes (queues) in a 6:1 and 2:1 ratio, respectively. Forwarding classes are referenced by symbolic
names, which you can redefine if desired. Table 9-1 shows the default mappings.

Table 9-1. Default forwarding class names and queue mappings

Forwarding class Symbolic name Queue number

0 Best-effort 0

1 Expedited-forwarding 1

2 Assured-forwarding 2

3 Network-control 3

In IP DiffServ terminology, a forwarding class maps to a DS behavior aggregate, or in the newer terminology, an
ordered aggregate. The term ordered here refers to the fact that packets classified as part of the same micro
flow should not be resequenced, and therefore the associated BA is expected to preserve sequencing. These
terms describe the externally visible behavior of a DiffServ-compliant node for a given BA, which is a stream of
packets with the same DSCP marking crossing a link in a particular direction. Stating this differently, and in
English, a forwarding class is a stream of packets that, as a result of classification, are placed into the same
egress queue and are therefore serviced by a common set of dequeuing parameters, resulting in consistent, and
therefore predictable, handling of packets within that node.

9.1.2.4.1. Schedulers

Packets placed into an egress queue are serviced by a scheduler. The scheduler algorithm determines how often
a queue is serviced, and in which order, based on an associated priority and transmit rate percentage. Packet
scheduling combined with rate limiting and policing are an important aspect of IP CoS because together they
provide the necessary isolation between forwarding classes. This isolation ensures that one misbehaving or
nonconformant forwarding class does not degrade the service of other (compliant) forwarding classes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The scheduler essentially controls how packets are dequeued for transmission, and it is therefore a critical
component of the JUNOS software CoS model. Figure 9-3 illustrates the high-level operation of a scheduler.

Figure 9-3. Scheduler operation

Figure 9-3 shows how packet notifications arriving from the switch fabric are placed into notification queues,
based on their ingress classification. Recall that in the Juniper architecture, the packets themselves are placed
into shared memory once, and only a notification that points to the packet's shared memory address is actually
queued on the egress Flexible PIC Concentrator/Physical Interface Card (FPC/PIC). The scheduler selects the
next packet to dequeue based on a function on transmission credit and associated priority.

The basic algorithm (for M-series routers) is to service all high-priority queues with positive credit before
moving on to service low-priority queues with positive credit. When no queues with positive credit remain, the
scheduler divides any remaining bandwidth among those nonempty queues, typically using a simple round-robin
algorithm (this can vary by platform, as detailed in "Section 9.3.2.3" later in this chapter). The net result is that
all queues are guaranteed to receive at least their configured transmission rate, and high-priority queues will
exhibit less delay because the associated queue is serviced before low-priority queues as long as it remains
within its configured transmit rate.

Figure 9-3 shows the scheduler state for each forwarding class as either positive (+) or negative (-) and also
indicates the associated priority setting. In this example, queue 3 is set to high priority, but it is currently in
negative credit-this means the queue has sent more traffic than its configured transmit percentage and must
now wait to accumulate credit to go positive again. Queue 1 has no packets pending, so it is skipped-a work-
conserving scheduler does not service empty queues. The result is that the high-priority queue (#2) with
positive credit is serviced first, which results in the dequeuing of its two packets. Because there are no
remaining high-priority queues with positive credit and pending notifications, the low-priority queues can be
serviced, and queue 0, having pending traffic and positive credit, is serviced next.

Queue 0 is emptied after its two packets are serviced, leaving only queue 3 with traffic pending. Unless this
queue is rate-limited, it will be serviced, despite its negative credit status, as long as no positive credit queues
become active. However, servicing a queue with negative credit results in an increase in the queue's negative
credit, up to some maximum value, which, while allowing a queue to send more than its configured transmit
weight, ensures that other queues will be the first to be serviced as soon as they have a notification pending.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.1.2.5. Congestion management

Statistically multiplexed networks are subject to congestion. This can be chronic as a function of design or
transient due to equipment or circuit failures or because of synchronized bursts from users. In any of these
events, a method is needed to deal with congestion gracefully, and in a manner that is fair to all users. Because
datagram networks do not support flow control, discard is the only mechanism a router has to prevent total
buffer meltdown during a congestion event.

Modern IP routers implement some form of Active Queue Management (AQM), which is intended to optimize
discard actions to obtain maximum benefit and to ensure fairness. AQM for IP networks is defined in RFC 2309,
"Recommendations on Queue Management and Congestion Avoidance in the Internet."

Put simply, when a queue is filling faster than it can be emptied, a router has two choices as to where to drop.
It can wait until the queue can hold no more, and then simply drop all packets as they arrive (which is called tail
dropping). Or it can detect incipient congestion and proactively begin to drop packets based on a probability
function that is in turn tied to average queue depth. The latter technique is known as random early detection
(RED) and has many advantages over simple tail dropping.

Tail dropping can allow hyperactive applications to lock out less busy users, and it tends to result in queues
operating at near capacity. A queue is really useful only when it is able to absorb packet burst, and any queue,
no matter how large, that is near its fill capacity becomes useless for absorbing burst (it's already full), and
therefore serves only to add delay. RED acts before the queue is full, and works on the principle that
Transmission Control Protocol (TCP) sources assume that lost segments stem from congestion, and lower their
window advertisements as a result. This ultimately results in less traffic from the related TCP source.

RED seeks to maintain an average queue fill by taking more aggressive drop actions as the queue fill increases.
Using the queue's average fill level allows tolerance for receiving packet burst, because discards are probable
only when the average queue level rises above configured thresholds. RED begins to perform tail drops once the
queue reaches 100% full, in which case no new notifications can be queued and they are dropped upon receipt.
The random nature of RED discards avoids the potential of queue lockout of certain users, as can occur with
simple tail drops. In fact, because RED makes a discard decision upon receipt of each packet, the busiest users
experience the most RED-induced drops, which is more than fair.

Figure 9-4 shows a sample RED configuration block and a graphical depiction of the resultant profile.

Figure 9-4. RED configuration and profile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.1.2.5.1. Weighted RED

Weighted RED (WRED) is simply a RED algorithm that maintains different drop probability profiles based upon
traffic type. In the Juniper implementation, you can index one of as many as four RED profiles, based on traffic
type of TCP versus User Datagram Protocol (UDP) with a loss priority of high or low. The result is a weighting of
RED drop actions, based on traffic type.

9.1.2.6. Policing and shaping

Packet-based networks are capable of interconnecting devices and links that operate at variable speeds. Packet
buffers are critical when supporting mixed-link speeds because they provide an elastic coupling between the
high- and low-speed links. As noted previously, a packet buffer is most useful when it operates at a low fill level.
Any packet network that constantly operates near buffer capacity should be redesigned, because a full buffer
has lost its ability to provide additional buffering and leads only to increased delays.

The inherent support of mismatched device and link speeds, combined with the many-to-one nature of
datagram networks, can result in a chronic condition in which more traffic arrives at a device than can be

http://lib.ommolketab.ir
http://lib.ommolketab.ir

transmitted downstream. If left unchecked, this condition can lead to indiscriminate tail dropping-WRED tends
to have little effect on UDP-based applications, so cannot be relied on to prevent congestion.

To resolve this type of problem, a mechanism is needed to limit, or cap, the amount of traffic that a device is
able to send. Such a mechanism is called policing or rate limiting, and serves to limit the overall amount of
traffic that can be sent over a given unit of time by placing limits on maximum packet rate and burst size.

9.1.2.6.1. Isolation is needed to preserve CoS

Isolation between forwarding classes is a critical aspect of IP CoS. Class-based isolation is provided by the
scheduler via its priority and transmit weight settings. However, isolation between classes is not sufficient to
ensure fair service for users that share the same class. Although policing can be used on a forwarding class
basis, it's commonly used at the individual device, or even at a micro-flow level, to limit the amount of traffic
that is accepted into the network. Policing provides the necessary isolation between users or applications in the
same forwarding class to prevent one user from dominating the resources associated with that class.

9.1.2.6.2. Policing versus shaping

Users are often confused about the differences between policing and shaping. Figure 9-5 shows the operational
differences.

Figure 9-5. Policing versus shaping

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The lefthand side of Figure 9-5 shows a typical token-rate-based policer. The size of the token bucket limits the
total number of tokens that can accumulate, which in turn limits the maximum burst size. The rate at which new
tokens are added limits the average transmission rate. Policers do not smooth traffic bursts, and they either
mark or discard traffic that exceeds the configured burst size or average rate of token accumulation. A policer
does not buffer the actual user traffic, and therefore does not add appreciable delays.

On the righthand side of the figure, the same input traffic is subjected to a leaky bucket-based shaper. The
shaper buffers the actual user data (not tokens, as in the case of a policer), and the related output is spread
over time to eliminate bursts-the shaper smoothes the peaks and valleys by buffering traffic and letting it leak
out at a specified rate. The upside to shaping is that packet-buffering requirements are reduced in downstream
nodes, given the lack of bursting. The downside is the need for buffering within the shaper, which adds delay
and cost.

Generally speaking, on a macro level there is no difference in the amount of traffic transmitted (or
marked/discarded) by a policer versus a shaper when they are configured with compatible parameters. At
increasingly smaller time scales, the difference is manifest by the absence, or presence, of clumped packets
(bursts) that instantaneously exceed the configured average rate. As long as downstream devices are not
operating near buffer capacity, policing is generally preferred to shaping, given that it is less complex and less
costly (buffers are not free), and does not induce any additional buffering delays. Stated differently, you
perform shaping at an upstream device to condition traffic only when needed to meet the requirements of an
attached device with limited buffering capabilities. If the downstream device is not buffer/capacity-challenged,
it's far more efficient to quickly move traffic from point A to point B by sending bursts rather than artificially
delaying each subsequent packet to eliminate clumping (bursts).

9.1.2.7. Summary of CoS processing steps

Figure 9-6 provides a big-picture view of the CoS processing stages associated with Juniper M- and J-series
routers. Although useful in its own right, due to its detailed depiction of JUNOS CoS capabilities, the intent here
is to tie the various terms and concepts discussed in this section into a single example to show how the various
CoS process stages work together.

Figure 9-6. Big-picture CoS walkthrough

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The discussion begins with a packet arriving at the ingress interface. The operation and general capabilities of
each CoS stage encountered as a packet travels from ingress to egress are described as follows:

Ingress CoS processing

BA classification

Packets arriving at the router are first subjected to the BA classification stage. This stage
sets the forwarding class and packet loss priority (PLP) using any of the supported BA
classifier types, including IP precedence, DiffServ DSCP, IEEE 802.1P, and so on.

Multifield classification

The next processing stage is multifield classification. Here a firewall filter can be defined to
match against numerous packet fields, incoming interfaces, and so on, in order to set the
forwarding class or PLP or to override the values set during previous BA classification.

Ingress policing

When desired, a firewall or interface-level policer can be applied to limit matching traffic, by
discard, by reclassification, or by marking excess traffic with a loss priority of high. This
means that in the event of congestion, a RED profile can be used to more aggressively drop
PLP high traffic.

Forwarding policy

The last ingress processing stage is forwarding policy. This policy can alter the existing
forwarding class or PLP setting, and it can be used to select a forwarding next hop based on
a forwarding class, a feature called Class-Based Forwarding (CBF).

Egress CoS processing

Egress policing

After encountering the switching fabric, a packet begins its journey toward the selected
egress interface. The first egress CoS processing state is output policing, which is again

http://lib.ommolketab.ir
http://lib.ommolketab.ir

based on either a firewall or an interface-level policer. Once again, excess traffic can be
discarded or marked with a loss priority for later discard in the event of congestion.

Rewrite marker

The rewrite marker stage allows you to alter one, or in some cases multiple packet fields, as
the packet is transmitted to downstream nodes. Normally, you rewrite packet fields to
accommodate downstream BA-based classification. Rewrite markers are indexed by protocol
family and by forwarding class-for example, writing a 001 pattern into the precedence field
of all family inet packets that are classified as BE.

Queuing and scheduling

The queuing stage involves placing packet notifications into the corresponding forwarding
class queue, where they are serviced by a scheduler that factors priority and configured
weight to determine when a packet should be dequeued from a given queue.

RED/congestion control

The final CoS processing stage involves a WRED drop decision, based on protocol, loss
priority, and average queue fill level. Recall that RED tends to operate at the head of the
queue, and a RED decision is made against each packet selected for transmission by the
scheduler stage.

At this stage, it should be clear that Juniper Networks enterprise routers offer a rich set of IP CoS capabilities
that provide numerous points where a packet can be touched for CoS actions or manipulations. In most cases, a
single router would not be configured to use all of these capabilities at the same time, but the Juniper design
means that all CoS features can be deployed with minimal impact to the control and forwarding planes. As a
point of fact, the default out-of-the-box configuration includes IP CoS, albeit in a relatively simplified manner.
Details regarding the default CoS configuration are provided in "Section 9.3.6," later in this chapter.

A scalable CoS design strives to distribute the load-for example, by placing the relatively computationally
intensive multifield classification function at the edges of the access layer only. Once classified, packets can be
re-marked to accommodate streamlined BA-based classification in the core and distribution layers, where
packet rates tend to be higher and more cycles need to be dedicated to forwarding traffic, rather than on
complex classification tasks.

Figure 9-7 illustrates the CoS divide and conquer approach. It shows the CoS-enabled subset of the Beer-Co
network, which has been divided into access and distribution/core layers. Generally speaking, CoS functionality
is most complex at the edges of your network. This is because the network's edge has to deal with individual
devices/micro-flows, whereas the core acts on traffic aggregates. Core devices are normally not burdened with
CPU-intensive operations such as multifield classification, thus allowing these devices to focus their actions on
actual packet forwarding. By policing at the network's edge, you throttle each user/application at ingress,
making additional policing within the distribution and core layers unnecessary. Policing aggregate stream rates
in the core is possible, but it has the serious drawback of allowing one or more hyperactive users to dominate
the resources of that forwarding class. By performing rate limiting and related discard at the edges, as traffic

http://lib.ommolketab.ir
http://lib.ommolketab.ir

initially ingresses the network, you can fairly limit all users to their assigned rate; when combined with a
properly dimensioned core, additional policing actions are unnecessary.

Figure 9-7. The CoS divide and conquer approach

The core CoS functionality of classification and resulting queuing/congestion control is performed by all nodes in
the network to provide the consistent node-by-node, and therefore end-to-end, packet-handling behavior
needed for a successful IP CoS deployment.

9.1.3. IP CoS Summary

This section described IP CoS and why it's becoming increasingly important with the trends toward IP
convergence. We defined basic network CoS/QoS terminology, and we walked through the typical CoS
processing stages of a modern IP router.

Although likely not too earth shattering, there was a fair bit of information to digest here. You might consider
taking a brief break before diving into the next section, which provides a primer on IP Differentiated Services
(DiffServ).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 9. Class of Service

This chapter details M7i and J-series class of service (CoS) capabilities while also demonstrating typical CoS
configuration and verification steps under JUNOS software. A detailed comparison between the ASIC-based M7i
and the software-based J-series platform is provided to clarify their operational differences, which is a common
source of confusion given that they have so many similarities. The topics covered include:

What IP CoS is and why it is needed

IP differentiated services primer

M7i and J-series CoS capabilities

DiffServ-based CoS deployment and verification

J-series virtual channels

Juniper Networks routers offer extensive support for IP CoS. As of this writing, the list of supported standards
includes:

RFC 2474, "Definition of the Differentiated Services Field in the IPv4 and IPv6 Headers"

RFC 2597, "Assured Forwarding PHB Group"

RFC 2598, "An Expedited Forwarding PHB"

RFC 2698, "A Two Rate Three Color Marker"

9.1. What Is IP CoS, and Why Do I Need It?

Simply put, CoS provides a mechanism by which certain packets are afforded preferred treatment in an effort to
provide the associated application with a level of performance required for proper operation. Although the
preceding sentence seems simple enough, it implies support for several capabilities that must work together
within each node-and in a consistent manner network-wide-for an IP CoS deployment to be successful.

9.1.1. Why IP Networks Need CoS

IP networks are based on the principal of statistical multiplexing (stat MUX), which is a resource-sharing
technique that allocates resources on an as-needed basis. A stat MUX provides efficiency gains by playing the
odds that a given application or user will not be active at its peak rate 100% of the time. By allocating
bandwidth resources only when needed, a large number of bursty applications can be supported over a network
with an aggregate capacity that is significantly less than the potential aggregate rate of its user base.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To make all this work, some degree of buffering is needed to accommodate the occasional synchronized bursts.
Because no network has infinite buffers, flow control (typically supported by a virtual circuit [VC] technology) or
simple discard in the case of datagram operation (connectionless) is needed during chronic periods of
congestion. Throwing more buffers at the problem only changes the symptom from one of discard to one of
delay and delay variance, which is known as jitter. Although non-real-time applications such as an order-entry
system can tolerate loss and lengthy/variable delays, the user will generally have a degraded experience and
productivity can suffer. More demanding real-time applications such as Voice over IP rapidly become unusable
when loss and delay/jitter are not kept within relatively stringent bounds.

IP networks are based on statistical multiplexing, and there is an increasing trend to converge all
communications, be it data, voice, video, real-time simulation, and so on over a single IP infrastructure to
maximize return on investment and economy of scale. Put differently, a single network is far less expensive to
deploy and maintain, and much to the chagrin of Integrated Services Digital Network (ISDN) and Asynchronous
Transfer Mode (ATM), that single network technology is shaping up to be IP. Saving money always looks good
on paper, but these gains quickly disappear if the result is unproductive, angered workers who can no longer
perform their jobs due to intermittent application performance.

Historically, network technologies were circuit-based and were designed to support toll-quality voice. Although
there is little to find sexy in "toll-quality voice," these telephone network architects did not realize what they
were dealing with: what would become the panacea of IP network quality of service (QoS)-namely, a service
that provides (once connected) minimal and fixed delays, freedom from congestion, guaranteed bandwidth, in-
sequence delivery, and low loss. Legacy circuit-switched networks are not without their drawbacks, and all
indications are that the future of voice, data, and video transport will be packet- rather than circuit-based.

Overbuilding an IP network with excess bandwidth is a viable way to ensure that all applications work properly,
even during periods of peak usage or network outages. The fact that costs associated with bandwidth are
constantly dropping, and new ways are always being found to drive existing fiber to increasingly higher rates
allows the "overbuild it and they will be happy" network design philosophy to pass the giggle test, which is to
say that there are cases where adding bandwidth is more expedient, and potentially less costly, than deploying
an IP CoS solution. This is especially true if existing IP infrastructure requires hardware upgrades to support
CoS, which is often the case with legacy gear that may already be struggling in the basic IP routing role and
that simply does not have the capability or resources to provide additional CoS processing.

When simply throwing bandwidth at the problem is not seen as feasible, due to either economic impact or
equipment limitations, deploying IP CoS is the key to successfully converging services and applications onto an
IP-based infrastructure.

Although there are CoS processing variances across the product line, all current Juniper Networks routing
platforms provide IP CoS capabilities that you can deploy in a production network without negatively impacting
basic IP packet forwarding performance.

9.1.1.1. Circuit-switching inefficiencies

Although legacy circuit-switched networks offered some mighty fine CoS, circuit-switched technologies are
inefficient or poorly suited as a convergent technology in numerous areas. The root cause of this inefficiency is
the lack of statistical multiplexing in circuit-switched networks, which prevents the sharing of resources during
naturally occurring idle periods in communication streams. The issues with circuit switching and network
efficiency are outlined in the following list, and they hold true whether using an analog or newer digital (ISDN)
type of circuit switch:

Blocking during congestion

Establishment of new circuits is blocked when the network reaches capacity through a call admission
control (CAC) function (fast busy). This behavior helps to preserve the CoS of existing users, but lack of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

priority/preemption capabilities means that routine calls can lock out new users, even when their
communication needs are high priority.

Dedicated resources

Allocating guaranteed bandwidth in fixed chunks (64 Kbps DSO) is inefficient, even for voice, given that
most communication is bursty-the simple fact that voice communication is inherently bursty, that it is
half-duplex, and that speech waveforms are predictable and consist of idle periods is behind most speech
compression algorithms.

Fixed bandwidth allocation

The fixed allocation of bandwidth can be too coarse, given that it is based on multiples of a 3 KHz voice
band coded into a 64 Kbps channel with standard Pulse Code Modulation (PCM). For some applications,
this is too much bandwidth, and for others, it is not enough. Bonding multiple voice channels together to
form a higher-speed link is possible, but you are still forced to deal with complete channels-one channel
may not be enough and two might be too much.

Poor survivability

In most cases, the failure of any link or node along a circuit-switched connection's path results in the loss
of that connection. The user normally has to reestablish his connection to resume communications, which
can take time. Furthermore, due to blocking, perhaps due to diminished capacity after equipment failure,
the call may not succeed.

To date, most IP networks are not CoS-enabled. This is simply because the historic application of IP as an
internetworking protocol for LAN and WAN interconnection simply did not warrant the added complexity, both in
equipment design and in the network-wide configuration needed for a working CoS solution. In fact, with some
early (non-Juniper) router architectures, enabling CoS services consumed so many resources that forwarding
performance was actually better with CoS disabled.

In other cases, when some level of performance was actually required, engineers simply overbuilt the network
from a capacity and bandwidth perspective. When all is said and done, the simple truth is that all of the world's
most sophisticated CoS processing does no good for a packet that encounters a router with relatively empty
queues anyway; CoS matters only when link utilization begins to exceed 80%; otherwise, packets are
dispatched virtually as soon as they arrive, as there is no appreciable queue fill in such conditions. Put
differently, enabling CoS on an underutilized network is akin to buying a low-emissions vehicle just so that you
can use a carpool lane, and then finding your commute hours occur at 2:00 a.m. when the roadways are empty
anyway.

Even though bandwidth prices continue to trend downward while the raw forwarding rates of routers continue to
rise, there are practical limits to the "overbuild and they will be happy" philosophy of network design. In
addition, the increasing trend toward the use of IP as a mission-critical infrastructure supporting many, if not
all, of an enterprise's data, voice, and automation/manufacturing needs makes the prioritization of critical traffic
a prudent decision. In the most basic sense, consider the outbreak of a fire that significantly reduces your
network's capacity. With the "overbuild it" safeguard now up in smoke (pun intended), you reach for the last
unmelted IP phone handset to summon emergency help. This is not the time that you should have to ask
yourself whether you feel lucky; with IP CoS, you know that your critical voice signaling and related media

http://lib.ommolketab.ir
http://lib.ommolketab.ir

packets will be the first to be routed, assuming, of course, that any routing is still possible.

The use of IP-based statistical multiplexing combined with a sound CoS deployment provides the best of all
worlds-the efficiency gains of statistical multiplexing and easily extended IP-based signaling protocols that
provide CAC (RFC 2205 RSVP) and/or preemption and priority (draft-ietf-tsvwg-mlpp-that-works), combined
with the ability to support virtually all known application types over a single, future-proof network
infrastructure.[5]

[5] Although the future of IP may well rest with IPv6, version 4 has shown a remarkable degree of resiliency and has quietly supported the

world's internetworking needs while rival after rival has come and gone, leaving only obsolete certifications in their wake. There are numerous

migration strategies to move from IPv4 to IPv6, and the CoS models are the same, which allows direct application of this material to an IPv6

infrastructure when needed.

9.1.2. CoS Terms and Concepts

This section defines common IP network CoS terms and operational concepts in the context of JUNOS software,
and the terminology used in the Internet QoS working group's survey titled "Network QoS Needs of Advanced
Internet Applications." The reader is encouraged to consult this document for a detailed description of
application-specific characteristics and typical CoS needs; the focus here is strictly on those QoS parameters
and concepts associated with IP layer network operation and packet handling.

It should also be noted that the actual measurement of IP performance, including the effects of CoS, is defined
in RFC 2544, "Benchmarking Methodology for Network Interconnect Devices."

This section explores the following terms and concepts:

Network QoS parameters

Classification

Packet marking

Forwarding classes, queues, and schedulers

Congestion management

Policing and shaping

Typical CoS processing stages in a Juniper router

9.1.2.1. Network QoS parameters

In common vernacular, the terms CoS and QoS are used interchangeably. To help keep things clear, this
chapter reserves the term QoS for individual network parameters such as delay or loss probability, and uses
CoS to describe the combined effect of applying specific QoS parameters to a packet stream, which should
result in a service differentiation among the supported traffic classes in your network.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

By way of analogy, consider commercial aviation and the typical coach versus first-class traveling experience.
First, if there were no differences between these service classes, the airline would have a hard time charging so
much more for a first-class seat. It can be said that the service associated with these classes of travel is in turn
a function of various QoS parameters, such as the maximum time to get a drink after being seated (delay), the
likelihood of having your luggage make it to your destination (loss), and being treated to proper flatware and
real food, as opposed to the experience of using a plastic spork (a combined spoon/fork) to choke down a bag
lunch. The combined effects of these airline-based QoS parameters yield a particular CoS, and each such service
class is differentiated so as to leave little ambiguity as to which class one happens to be traveling in at any
given time.

To get maximum benefit of network QoS, the user's application should be QoS-aware so that it can request the
appropriate resources during CAC (when supported) and correctly mark its traffic to ensure that it maps to the
desired service class or classes.

The primary network QoS parameters are defined as follows:

Bandwidth

Bandwidth is a measure of each link's information-carrying capacity. It is limited by the lesser of the
bandwidth supported by each link crossed between two endpoints.

Delay

Delay is a measure of the time taken to move a packet from one point to another. End-to-end delay is a
cumulative function of serialization delays, propagation delays, and any queuing delays (buffering) that
the packet may experience.

Delay variation (jitter)

Delay variation, often called jitter, is a measure of the variance in transfer delays between packets that
make up a stream. Jitter is significant to real-time applications because the receiver must dimension its
jitter buffer based on maximum jitter, which adds delays for all packets and causes eventual loss when
jitter values exceed buffer capacity.

Loss

Loss measures the percentage of packets not delivered. Loss can stem from transmission errors or
discard stemming from congestion in packet-based networks.

Loss pattern

The loss pattern defines the nature of a loss event as either bursty (short duration) or chronic, which is
sometimes called a dribble error.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.1.2.2. Classification

Classification is the act of associating received packets with a defined forwarding class, which in turn maps to a
queue. Classification is a critical aspect of IP CoS, given that the underlying principle of CoS is to enforce
different forwarding behavior on one packet versus another, based on the associated set of QoS parameters
defined for each forwarding class. Errors in classification result in incorrect handling of the associated packet
stream, which may negate CoS benefits by treating all traffic the same or by causing congestion in one or more
forwarding classes, which in turn leads to loss and delay-related problems for that forwarding class. Figure 9-1
shows how incoming packets are subjected to a classifier function that in turn maps each packet to a defined
forwarding class.

Figure 9-1. Classification

At egress, the forwarding class is used to link the packet to the correct output queue/scheduler profile.
Classification can be a resource drain on a router, because it adds processing steps to each received packet.
Modern IP routers support two types of classification to help mitigate resource consumption concerns:

Multifield classification

Multifield classifiers are the most flexible and therefore the most computationally burdensome type of
classifier. As the name suggests, a multifield classifier is based on matches against multiple fields with
the IP packet, including source and destination addresses, protocol type, ports, and so on.

Behavior aggregate (BA)

A BA classifier uses a fixed field in the packet header to make classification decisions. This is highly
efficient because of the fixed position, length, and meaning of the bits used in the BA classification field.
Classifications based on IP precedence or Differentiated Services code points (DSCPs) are examples of BA
classification.

Normally you deploy multifield classifiers at the network's edges, as close to the traffic source as possible-that
is, in the access layer. Once correctly classified, the packets are typically remarked to permit the more efficient
BA type of classification in the aggregation and core layers. Juniper routers use firewall filters to perform
multifield classification and support various types of BA classifiers, as detailed in "Section 9.3.1.1," later in this
chapter. The highly efficient manner in which JUNOS software firewall filters are compiled and optimized allows

http://lib.ommolketab.ir
http://lib.ommolketab.ir

large-scale use of multifield classification without incurring a significant reduction in forwarding capacity. With
that said, you should use BA type classification wherever possible to keep things streamlined.

9.1.2.2.1. Loss priority

Many CoS models expect that loss will be lower in some classes than in others, or that loss will be lower for
traffic within a class when it conforms to the class's associated rate limit, versus a higher loss probability for
nonconformant traffic. Technologies such as ATM and Frame Relay achieve this functionality with the cell loss
priority (CLP) and discard-eligible (DE) bits, respectively.

The IP packet header does not have a mechanism for signaling a packet's loss priority. As a result, the loss
priority status for an IP packet is an internal flag that is set based on classification or policing actions. Once a
packet is flagged at ingress as having a low or high loss priority, other nodes are expected to make the same
determination-policing is done at the edge, and the resultant loss status should not be altered once set. This is
normally accomplished by rewriting the BA field. Downstream nodes then use the altered BA value during
classification to determine that packet's loss priority.

9.1.2.3. Packet marking/rewriting

Once mapped to a forwarding class, a packet can be subjected to one or more rewrite rules. Rewrite rules are
used to mark the packet to facilitate BA classification in downstream nodes. Figure 9-2 shows packet marking in
action.

Figure 9-2. Packet marking

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Step 1 of Figure 9-2 shows an incoming packet with a default IP precedence field that is subjected to a
multifield classifier. In this example, the packet matches against the source address, protocol, and port range
criteria associated with the Expedited Forwarding (EF) class, which results in a mapping to forwarding class 2.
At egress, the packet is subjected to an IP precedence rewrite rule that is indexed according to each packet's
assigned forwarding class and drop priority. In this example, packets belonging to forwarding class 2 (EF) have
their IP precedence field rewritten to a binary 010-the altered IP precedence field can now be used for BA-
based classification in downstream nodes (steps 2 and 3, respectively). Though not shown, the packet's local
packet loss priority (PLP) can also be factored into a rewrite pattern that enabled downstream nodes, which
typically do not perfom policing actions, to make the same discard priority determination.

Generally speaking, you cannot rely upon user applications to correctly mark the BA fields of their traffic
streams; doing so can easily lead to service abuse by savvy users who know how to alter their operating
system's protocol stack to alter the default marking of their packets. The current best practice is to perform
multifield classification and re-marking to the appropriate forwarding class at the networked edges to ensure
that BA tags used in the core meet your organization's acceptable use CoS policy. If desired, you can rewrite the
BA field to a default value at network egress, perhaps to meet the receiving application's expectations or simply
to hide the markings used for classification in the core.

9.1.2.4. Forwarding classes, queues, and schedulers

It's been established that packet classification results in the mapping of each packet to a forwarding class. So,
what is a forwarding class? In Juniper parlance, a forwarding class essentially maps to a queue. Typically, there
is a one-to-one mapping of forwarding class to queue number, but a many-to-one mapping is also possible. For
example, the default CoS configuration defines only two forwarding classes-Best Effort (BE) and Network
Control (NC)-and the default IP precedence classifier maps the eight possible precedence values into these two
forwarding classes (queues) in a 6:1 and 2:1 ratio, respectively. Forwarding classes are referenced by symbolic
names, which you can redefine if desired. Table 9-1 shows the default mappings.

Table 9-1. Default forwarding class names and queue mappings

Forwarding class Symbolic name Queue number

0 Best-effort 0

1 Expedited-forwarding 1

2 Assured-forwarding 2

3 Network-control 3

In IP DiffServ terminology, a forwarding class maps to a DS behavior aggregate, or in the newer terminology, an
ordered aggregate. The term ordered here refers to the fact that packets classified as part of the same micro
flow should not be resequenced, and therefore the associated BA is expected to preserve sequencing. These
terms describe the externally visible behavior of a DiffServ-compliant node for a given BA, which is a stream of
packets with the same DSCP marking crossing a link in a particular direction. Stating this differently, and in
English, a forwarding class is a stream of packets that, as a result of classification, are placed into the same
egress queue and are therefore serviced by a common set of dequeuing parameters, resulting in consistent, and
therefore predictable, handling of packets within that node.

9.1.2.4.1. Schedulers

Packets placed into an egress queue are serviced by a scheduler. The scheduler algorithm determines how often
a queue is serviced, and in which order, based on an associated priority and transmit rate percentage. Packet
scheduling combined with rate limiting and policing are an important aspect of IP CoS because together they
provide the necessary isolation between forwarding classes. This isolation ensures that one misbehaving or
nonconformant forwarding class does not degrade the service of other (compliant) forwarding classes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The scheduler essentially controls how packets are dequeued for transmission, and it is therefore a critical
component of the JUNOS software CoS model. Figure 9-3 illustrates the high-level operation of a scheduler.

Figure 9-3. Scheduler operation

Figure 9-3 shows how packet notifications arriving from the switch fabric are placed into notification queues,
based on their ingress classification. Recall that in the Juniper architecture, the packets themselves are placed
into shared memory once, and only a notification that points to the packet's shared memory address is actually
queued on the egress Flexible PIC Concentrator/Physical Interface Card (FPC/PIC). The scheduler selects the
next packet to dequeue based on a function on transmission credit and associated priority.

The basic algorithm (for M-series routers) is to service all high-priority queues with positive credit before
moving on to service low-priority queues with positive credit. When no queues with positive credit remain, the
scheduler divides any remaining bandwidth among those nonempty queues, typically using a simple round-robin
algorithm (this can vary by platform, as detailed in "Section 9.3.2.3" later in this chapter). The net result is that
all queues are guaranteed to receive at least their configured transmission rate, and high-priority queues will
exhibit less delay because the associated queue is serviced before low-priority queues as long as it remains
within its configured transmit rate.

Figure 9-3 shows the scheduler state for each forwarding class as either positive (+) or negative (-) and also
indicates the associated priority setting. In this example, queue 3 is set to high priority, but it is currently in
negative credit-this means the queue has sent more traffic than its configured transmit percentage and must
now wait to accumulate credit to go positive again. Queue 1 has no packets pending, so it is skipped-a work-
conserving scheduler does not service empty queues. The result is that the high-priority queue (#2) with
positive credit is serviced first, which results in the dequeuing of its two packets. Because there are no
remaining high-priority queues with positive credit and pending notifications, the low-priority queues can be
serviced, and queue 0, having pending traffic and positive credit, is serviced next.

Queue 0 is emptied after its two packets are serviced, leaving only queue 3 with traffic pending. Unless this
queue is rate-limited, it will be serviced, despite its negative credit status, as long as no positive credit queues
become active. However, servicing a queue with negative credit results in an increase in the queue's negative
credit, up to some maximum value, which, while allowing a queue to send more than its configured transmit
weight, ensures that other queues will be the first to be serviced as soon as they have a notification pending.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.1.2.5. Congestion management

Statistically multiplexed networks are subject to congestion. This can be chronic as a function of design or
transient due to equipment or circuit failures or because of synchronized bursts from users. In any of these
events, a method is needed to deal with congestion gracefully, and in a manner that is fair to all users. Because
datagram networks do not support flow control, discard is the only mechanism a router has to prevent total
buffer meltdown during a congestion event.

Modern IP routers implement some form of Active Queue Management (AQM), which is intended to optimize
discard actions to obtain maximum benefit and to ensure fairness. AQM for IP networks is defined in RFC 2309,
"Recommendations on Queue Management and Congestion Avoidance in the Internet."

Put simply, when a queue is filling faster than it can be emptied, a router has two choices as to where to drop.
It can wait until the queue can hold no more, and then simply drop all packets as they arrive (which is called tail
dropping). Or it can detect incipient congestion and proactively begin to drop packets based on a probability
function that is in turn tied to average queue depth. The latter technique is known as random early detection
(RED) and has many advantages over simple tail dropping.

Tail dropping can allow hyperactive applications to lock out less busy users, and it tends to result in queues
operating at near capacity. A queue is really useful only when it is able to absorb packet burst, and any queue,
no matter how large, that is near its fill capacity becomes useless for absorbing burst (it's already full), and
therefore serves only to add delay. RED acts before the queue is full, and works on the principle that
Transmission Control Protocol (TCP) sources assume that lost segments stem from congestion, and lower their
window advertisements as a result. This ultimately results in less traffic from the related TCP source.

RED seeks to maintain an average queue fill by taking more aggressive drop actions as the queue fill increases.
Using the queue's average fill level allows tolerance for receiving packet burst, because discards are probable
only when the average queue level rises above configured thresholds. RED begins to perform tail drops once the
queue reaches 100% full, in which case no new notifications can be queued and they are dropped upon receipt.
The random nature of RED discards avoids the potential of queue lockout of certain users, as can occur with
simple tail drops. In fact, because RED makes a discard decision upon receipt of each packet, the busiest users
experience the most RED-induced drops, which is more than fair.

Figure 9-4 shows a sample RED configuration block and a graphical depiction of the resultant profile.

Figure 9-4. RED configuration and profile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.1.2.5.1. Weighted RED

Weighted RED (WRED) is simply a RED algorithm that maintains different drop probability profiles based upon
traffic type. In the Juniper implementation, you can index one of as many as four RED profiles, based on traffic
type of TCP versus User Datagram Protocol (UDP) with a loss priority of high or low. The result is a weighting of
RED drop actions, based on traffic type.

9.1.2.6. Policing and shaping

Packet-based networks are capable of interconnecting devices and links that operate at variable speeds. Packet
buffers are critical when supporting mixed-link speeds because they provide an elastic coupling between the
high- and low-speed links. As noted previously, a packet buffer is most useful when it operates at a low fill level.
Any packet network that constantly operates near buffer capacity should be redesigned, because a full buffer
has lost its ability to provide additional buffering and leads only to increased delays.

The inherent support of mismatched device and link speeds, combined with the many-to-one nature of
datagram networks, can result in a chronic condition in which more traffic arrives at a device than can be

http://lib.ommolketab.ir
http://lib.ommolketab.ir

transmitted downstream. If left unchecked, this condition can lead to indiscriminate tail dropping-WRED tends
to have little effect on UDP-based applications, so cannot be relied on to prevent congestion.

To resolve this type of problem, a mechanism is needed to limit, or cap, the amount of traffic that a device is
able to send. Such a mechanism is called policing or rate limiting, and serves to limit the overall amount of
traffic that can be sent over a given unit of time by placing limits on maximum packet rate and burst size.

9.1.2.6.1. Isolation is needed to preserve CoS

Isolation between forwarding classes is a critical aspect of IP CoS. Class-based isolation is provided by the
scheduler via its priority and transmit weight settings. However, isolation between classes is not sufficient to
ensure fair service for users that share the same class. Although policing can be used on a forwarding class
basis, it's commonly used at the individual device, or even at a micro-flow level, to limit the amount of traffic
that is accepted into the network. Policing provides the necessary isolation between users or applications in the
same forwarding class to prevent one user from dominating the resources associated with that class.

9.1.2.6.2. Policing versus shaping

Users are often confused about the differences between policing and shaping. Figure 9-5 shows the operational
differences.

Figure 9-5. Policing versus shaping

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The lefthand side of Figure 9-5 shows a typical token-rate-based policer. The size of the token bucket limits the
total number of tokens that can accumulate, which in turn limits the maximum burst size. The rate at which new
tokens are added limits the average transmission rate. Policers do not smooth traffic bursts, and they either
mark or discard traffic that exceeds the configured burst size or average rate of token accumulation. A policer
does not buffer the actual user traffic, and therefore does not add appreciable delays.

On the righthand side of the figure, the same input traffic is subjected to a leaky bucket-based shaper. The
shaper buffers the actual user data (not tokens, as in the case of a policer), and the related output is spread
over time to eliminate bursts-the shaper smoothes the peaks and valleys by buffering traffic and letting it leak
out at a specified rate. The upside to shaping is that packet-buffering requirements are reduced in downstream
nodes, given the lack of bursting. The downside is the need for buffering within the shaper, which adds delay
and cost.

Generally speaking, on a macro level there is no difference in the amount of traffic transmitted (or
marked/discarded) by a policer versus a shaper when they are configured with compatible parameters. At
increasingly smaller time scales, the difference is manifest by the absence, or presence, of clumped packets
(bursts) that instantaneously exceed the configured average rate. As long as downstream devices are not
operating near buffer capacity, policing is generally preferred to shaping, given that it is less complex and less
costly (buffers are not free), and does not induce any additional buffering delays. Stated differently, you
perform shaping at an upstream device to condition traffic only when needed to meet the requirements of an
attached device with limited buffering capabilities. If the downstream device is not buffer/capacity-challenged,
it's far more efficient to quickly move traffic from point A to point B by sending bursts rather than artificially
delaying each subsequent packet to eliminate clumping (bursts).

9.1.2.7. Summary of CoS processing steps

Figure 9-6 provides a big-picture view of the CoS processing stages associated with Juniper M- and J-series
routers. Although useful in its own right, due to its detailed depiction of JUNOS CoS capabilities, the intent here
is to tie the various terms and concepts discussed in this section into a single example to show how the various
CoS process stages work together.

Figure 9-6. Big-picture CoS walkthrough

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The discussion begins with a packet arriving at the ingress interface. The operation and general capabilities of
each CoS stage encountered as a packet travels from ingress to egress are described as follows:

Ingress CoS processing

BA classification

Packets arriving at the router are first subjected to the BA classification stage. This stage
sets the forwarding class and packet loss priority (PLP) using any of the supported BA
classifier types, including IP precedence, DiffServ DSCP, IEEE 802.1P, and so on.

Multifield classification

The next processing stage is multifield classification. Here a firewall filter can be defined to
match against numerous packet fields, incoming interfaces, and so on, in order to set the
forwarding class or PLP or to override the values set during previous BA classification.

Ingress policing

When desired, a firewall or interface-level policer can be applied to limit matching traffic, by
discard, by reclassification, or by marking excess traffic with a loss priority of high. This
means that in the event of congestion, a RED profile can be used to more aggressively drop
PLP high traffic.

Forwarding policy

The last ingress processing stage is forwarding policy. This policy can alter the existing
forwarding class or PLP setting, and it can be used to select a forwarding next hop based on
a forwarding class, a feature called Class-Based Forwarding (CBF).

Egress CoS processing

Egress policing

After encountering the switching fabric, a packet begins its journey toward the selected
egress interface. The first egress CoS processing state is output policing, which is again

http://lib.ommolketab.ir
http://lib.ommolketab.ir

based on either a firewall or an interface-level policer. Once again, excess traffic can be
discarded or marked with a loss priority for later discard in the event of congestion.

Rewrite marker

The rewrite marker stage allows you to alter one, or in some cases multiple packet fields, as
the packet is transmitted to downstream nodes. Normally, you rewrite packet fields to
accommodate downstream BA-based classification. Rewrite markers are indexed by protocol
family and by forwarding class-for example, writing a 001 pattern into the precedence field
of all family inet packets that are classified as BE.

Queuing and scheduling

The queuing stage involves placing packet notifications into the corresponding forwarding
class queue, where they are serviced by a scheduler that factors priority and configured
weight to determine when a packet should be dequeued from a given queue.

RED/congestion control

The final CoS processing stage involves a WRED drop decision, based on protocol, loss
priority, and average queue fill level. Recall that RED tends to operate at the head of the
queue, and a RED decision is made against each packet selected for transmission by the
scheduler stage.

At this stage, it should be clear that Juniper Networks enterprise routers offer a rich set of IP CoS capabilities
that provide numerous points where a packet can be touched for CoS actions or manipulations. In most cases, a
single router would not be configured to use all of these capabilities at the same time, but the Juniper design
means that all CoS features can be deployed with minimal impact to the control and forwarding planes. As a
point of fact, the default out-of-the-box configuration includes IP CoS, albeit in a relatively simplified manner.
Details regarding the default CoS configuration are provided in "Section 9.3.6," later in this chapter.

A scalable CoS design strives to distribute the load-for example, by placing the relatively computationally
intensive multifield classification function at the edges of the access layer only. Once classified, packets can be
re-marked to accommodate streamlined BA-based classification in the core and distribution layers, where
packet rates tend to be higher and more cycles need to be dedicated to forwarding traffic, rather than on
complex classification tasks.

Figure 9-7 illustrates the CoS divide and conquer approach. It shows the CoS-enabled subset of the Beer-Co
network, which has been divided into access and distribution/core layers. Generally speaking, CoS functionality
is most complex at the edges of your network. This is because the network's edge has to deal with individual
devices/micro-flows, whereas the core acts on traffic aggregates. Core devices are normally not burdened with
CPU-intensive operations such as multifield classification, thus allowing these devices to focus their actions on
actual packet forwarding. By policing at the network's edge, you throttle each user/application at ingress,
making additional policing within the distribution and core layers unnecessary. Policing aggregate stream rates
in the core is possible, but it has the serious drawback of allowing one or more hyperactive users to dominate
the resources of that forwarding class. By performing rate limiting and related discard at the edges, as traffic

http://lib.ommolketab.ir
http://lib.ommolketab.ir

initially ingresses the network, you can fairly limit all users to their assigned rate; when combined with a
properly dimensioned core, additional policing actions are unnecessary.

Figure 9-7. The CoS divide and conquer approach

The core CoS functionality of classification and resulting queuing/congestion control is performed by all nodes in
the network to provide the consistent node-by-node, and therefore end-to-end, packet-handling behavior
needed for a successful IP CoS deployment.

9.1.3. IP CoS Summary

This section described IP CoS and why it's becoming increasingly important with the trends toward IP
convergence. We defined basic network CoS/QoS terminology, and we walked through the typical CoS
processing stages of a modern IP router.

Although likely not too earth shattering, there was a fair bit of information to digest here. You might consider
taking a brief break before diving into the next section, which provides a primer on IP Differentiated Services
(DiffServ).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.2. IP Differentiated Services

Over the years, there have been several false starts to a standardized IP CoS solution. This section summarizes
the history of IP CoS, and it provides a primer on the current solution known as IP Differentiated Services
(DiffServ).

The original use of IP networks was to support robust communications in the face of battlefield conditions, an
application to which datagram (connectionless) operation is well suited. This discussion is tempered with the
knowledge that the concept of integrating services over IP internetworks was not considered by the protocol's
architects, and wide-scale adoption of IP CoS has yet to occur. However, recent advancements in router
platforms have enabled the high-bandwidth forwarding rates required to make IP-based convergence a
commercial reality. With high-capacity forwarding in place, the final piece of the IP CoS puzzle is the intelligent
handling of packets to effectively prioritize certain packets during times of reduced capacity or link congestion.

9.2.1. IP ToS

RFC 791 is the original RFC specification of the Internet Protocol (IP) and was published in 1981. The RFC
defined an 8-bit field in the IP header as a Type of Service (ToS) field. Figure 9-8 shows the IP header and
details the structure of the ToS field itself.

Figure 9-8. The IP ToS byte

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The original IP ToS field is structured into a 3-bit precedence field, a 3-bit ToS indication field, and two reserved
bits. The ToS bits were intended to provide a clue to the router as to which type of link metric (e.g., delay,
throughput, or reliability) should be considered when handling the packet. This capability presumes a ToS-
capable routing protocol, one that builds a routing information base (RIB) based on specific link metrics. Such a
protocol has never seen use in commercial networks (Open Shortest Path First [OSPF] has this capability, but it
never saw actual deployment).

Lack of ToS-capable Interior Gateway Protocols (IGPs) meant that the ToS bits have gone historically unused by
routers. Many applications set these bits; for example, Telnet often sets the D bit to indicate low delay, but
routers generally take no specific action upon any ToS combinations.

With bits 6 and 7 reserved, this left only the precedence field, which at 3 bits in length is able to code eight
possible precedence levels (23). IP precedence is supposed to influence packet loss-generally speaking, each
increase from the default value, which is 0, was expected to result in a reduced probability for discard. Unlike
the ToS bits, IP precedence processing has been supported in routers for some time, but usually in a rather
coarse, binary manner that results in two discard probabilities-a low probability for precedence values 6 and 7,
which are associated with NC, and a higher probability for all other levels. In the Juniper implementation, the
default behavior results in a maximum of four drop probabilities, two for non-NC classes and two for the NC
class, based on a WRED profile set to act differently on high- versus low-loss probability traffic.

Most routing protocol stacks do in fact set the precedence bits of their control packets, as shown in the following
monitor traffic sample, which explains how JUNOS software transmits an OSPF packet:

[edit]

lab@Bock# run monitor traffic interface fe-0/0/1.100 detail

Listening on fe-0/0/1.100, capture size 96 bytes

. . .

02:12:44.430326 Out IP (tos 0xc0 , ttl 1, id 3867, offset 0, flags

[none], proto: OSPF (89), length: 68) 10.10.11.3 > 224.0.0.5: OSPFv2,=

Hello, length: 48

 Router-ID: 10.10.12.1, Backbone Area, Authentication Type:

none (0)

 Options: [External] [|ospf]

The hexadecimal value shown for the ToS field (0xc0) breaks down to a binary 1100 0000, which in turn codes

IP precedence level 6 with the D, T, and R ToS bits cleared (not set). The default Juniper behavior is to classify
based on IP precedence, such that NC messages are placed into queue 3, which is the default queue for the NC
class, as shown here:

lab@PBR> show class-of-service classifiers type precedence name

 ipprec-compatibility | match network-control

 110 network-control low

 111 network-control high

A breakdown of IP precedence to binary, along with the decimal equivalent, is provided. This can be useful when
testing CoS using utilities such as ping or traceroute, because when you include the tos switch, the resultant

values are specified in decimal, not binary or hexadecimal. Note that only IP ToS bits are supported with the CLI
tos switch-you cannot specify a DSCP value. Table 9-2 provides a complete breakdown of IP precedence to
binary and the resultant decimal equivalents.

Table 9-2. IP ToS to binary and decimal equivalents

Precedence Binary Powers of 10 Decimal

Precedence 7 1110 00xx 128+64+32+0+0+0+x+x 224

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Precedence Binary Powers of 10 Decimal

Precedence 6 1100 00xx 128+64+0+0+0+0+x+x 192

Precedence 5 1010 00xx 128+0+32+0+0+0+x+x 160

Precedence 4 1000 00xx 128+0+0+0+0+0+x+x 128

Precedence 3 0110 00xx 0+64+32+0+0+0+x+x 96

Precedence 2 0100 00xx 0+64+0+0+0+0+x+x 64

Precedence 1 0010 00xx 0+0+32+0+0+0+x+x 32

Precedence 0 0000 00xx 0+0+0+0+0+0+x+x 0

9.2.2. Enter IP Integrated Services

Recognizing an increasing need for functional IP CoS, the Internet Engineering Task Force (IETF) began work on
an Integrated Services (IS, or IntServ) model that was first published in 1994 in RFC 1633, "Integrated Services
in the Internet Architecture: An Overview." The authors felt that simple packet classification and scheduling was
not enough to guarantee real-time services over the Internet, and specifically felt that some form of admission
control and resultant resource reservation was needed. Figure 9-9 shows the IntServ concept.

Figure 9-9. IP Integrated Services

Precedence 6 1100 00xx 128+64+0+0+0+0+x+x 192

Precedence 5 1010 00xx 128+0+32+0+0+0+x+x 160

Precedence 4 1000 00xx 128+0+0+0+0+0+x+x 128

Precedence 3 0110 00xx 0+64+32+0+0+0+x+x 96

Precedence 2 0100 00xx 0+64+0+0+0+0+x+x 64

Precedence 1 0010 00xx 0+0+32+0+0+0+x+x 32

Precedence 0 0000 00xx 0+0+0+0+0+0+x+x 0

9.2.2. Enter IP Integrated Services

Recognizing an increasing need for functional IP CoS, the Internet Engineering Task Force (IETF) began work on
an Integrated Services (IS, or IntServ) model that was first published in 1994 in RFC 1633, "Integrated Services
in the Internet Architecture: An Overview." The authors felt that simple packet classification and scheduling was
not enough to guarantee real-time services over the Internet, and specifically felt that some form of admission
control and resultant resource reservation was needed. Figure 9-9 shows the IntServ concept.

Figure 9-9. IP Integrated Services

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The added functionality needed to support IntServ is shown in the upper-right portion of the router's control
plane in Figure 9-9-specifically, the addition of the CAC and the reservation control entities, along with the
related resource reservation database and related hooks into the router's management plane.

Put simply, the IntServ plan was to include the Resource Reservation Protocol (RSVP), as defined in RFC 2205,
to routers and hosts, adding what amounts to a call establishment phase (for non-BE traffic). Here, the user
specifically requests resources from the network, while also characterizing the nature of the related traffic with
parameters such as average and peak rates, maximum transmission unit (MTU), and so on.

Each network node then either accepts or rejects the reservation request based on its local CAC function, which
is run against that node's current resource availability, as shown at the bottom of the figure. When all nodes
along the path accept the reservation, soft state is established for the duration of the reservation and is used to
create the data plane state needed to support the new reservations. Specifically, a classifier is instantiated to
match traffic belonging to that reservation using the details contained in the RSVP filter spec object. The
reservation is torn down when it is no longer needed. This results in removal of the related data plane state and
the freeing of allocated resources to accommodate the next reservation request. When a node is encountered
that cannot meet the reservation's requirements, the session fails with the appropriate reason given-in theory,
the user application will either keep trying, give up, or reduce its resource request to improve its chances of
success.

Although all this sounds great, many practical issues resulted in little to no real deployment of IntServ.
Ironically, the RSVP signaling protocol has seen significant commercial success as a Multiprotocol Label
Switching (MPLS) signaling protocol within service provider networks, rather than in its original QoS signaling
role.

The biggest nail in the IntServ coffin was the need to establish and maintain control plane state for every non-
BE flow in the network. Even today the development of a large-scale, flow-based router remains a daunting
task, at least at the scale needed for a modern Internet core router. Perhaps when the plan was IP at the edge
supported by an ATM circuit-switched core, such a model could fly, but IntServ simply cannot scale to today's
Internet needs. It is noted that RFC 3175, "Aggregation of RSVP for IPv4 and IPv6 Reservations," offers a
scalable model in which individual RSVP micro-flows can be aggregated into fewer, larger flows. Although
promising, as of this writing, neither Juniper nor Cisco offers support for Aggregated RSVP in its shipping
products.

IntServ results in network blocking when the network approaches capacity, meaning that no new reservations
can be placed. Although not a problem for those users lucky enough to already hold a reservation, the total
absence of (integrated) service for the remaining users was seen by many as a serious violation of the historical
Internet paradigm of providing the same level of (degraded) service to all users in the same class. With IntServ,
users at the same service level can be locked out by existing reservations, and the real rub is that this is true
even when those existing reservations are not transporting traffic due to bursty sources. Many still have a
hostile view toward the idea of blocking users in the control plane (putting aside the scaling issues of a control
plane that has to interact on an end-user micro-flow basis), when at that very moment the data plane may well
be idle, leading to wasted resources.

The commercial failure of IntServ prompted the development of a data-plane-only solution known as
Differentiated Services.

9.2.3. IP Differentiated Services

IP Differentiated Services (DiffServ) was originally defined in RFCs 2474 and 2475 in 1998. Since that time,
several RFCs have updated the original definition of the DSCP. RFC 3168 added explicit congestion notification
(ECN) support, and RFC 3260 clarified the terminology to support MPLS traffic engineering, but the essence of
the original DiffServ architecture remains.

DiffServ is scalable because it is a data-plane-only solution; there is no signaling component to DiffServ.
DiffServ redefines the original IP ToS byte to support a 6-bit field, which, as noted previously, is called the
DiffServ code point (DSCP). This provides for up to 64 levels of BA classification. Figure 9-10 shows the DiffServ

http://lib.ommolketab.ir
http://lib.ommolketab.ir

definition of the IP ToS field. Related RFCs define the current set of per-hop behaviors (PHBs), which are
described later, and essentially define the externally visible handling characteristics associated with a given
forwarding class, or BA in DiffServ terminology.

Figure 9-10. The DiffServ code point

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 9-10 also shows a table of the recommended DSCP mappings, most of which have yet to be defined. The
Class Selector (CS) code points are designed to mimic the functionality of IP precedence, and they provide
backward compatibility for non-DiffServ-aware routers, assuming any still exist. All of the CS code points have
zeros where the original ToS definition placed the Delay, Throughput, and Reliability (DTR) flags. The 6-bit
DSCP field leaves the original two least-significant bits (LSBs) of the original IP ToS field untouched, where they
can be used for ECN signaling as per RFC 3168, "The Addition of Explicit Congestion Notification (ECN) to IP."

9.2.4. DiffServ Terminology

This section defines key DiffServ terms and operational concepts. Refer to Figure 9-11 to match the terms to
their functional location in a DiffServ network.

Figure 9-11. DiffServ terminology and concepts

BA

This is a classification based on DSCP packets with a common DSCP belonging to the same BA.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DiffServ field

This is the original IPv4 ToS byte. DSCPs occupy the six most significant bits of the DS field.

PHB

This is the externally visible forwarding treatment associated with a given BA. Within a DiffServ domain,
the set of PHBs should be consistent across all nodes, resulting in a consistent end-to-end handling of
traffic.

PHB group

This is a set of one or more PHBs that can only be meaningfully specified and implemented
simultaneously, due to a common constraint applying to all PHBs in the set, such as a queue servicing or
queue management policy. Currently, the only standardized group behavior relates to the Assured
Forwarding (AF) PHB.

DiffServ domain

This is a contiguous collection of nodes under a common policy with a common set of PHBs:

Edge/boundary devices classify, meter, shape, police, mark, and queue traffic.

Core devices classify and queue traffic.

DiffServ region

This is a contiguous set of interconnected DiffServ domains.

9.2.4.1. DiffServ PHBs

Currently, four PHBs are standardized within DiffServ: the default PHB and the CS, EF, and AF groups:

The default PHB

The default PHB must be present in each DiffServ-compliant node, and it defines a BE delivery service.
Any packets that are not explicitly classified into one of the other PHBs are considered to belong to the
default group. Although the default group should not be starved, BE is generally serviced only after all
other active PHBs have been given their share of bandwidth.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The CS PHB

The CS PHB is designed to subsume the historic drop behavior associated with the original IP precedence
field definition. The PHB behavior set for the CS PHB is left somewhat vague, in keeping with the fact that
IP precedence was used only to control drop probability and not to provide any delay, delay jitter, or
minimum through guarantees. To be compliant, a DiffServ node supporting the CS PHB must
demonstrate at least two different forwarding behaviors, and a packet with a CS value of 000xxx should
be dropped in preference of a packet with a CS code point of 111xxx. Put simply, there are no throughput
or delay guarantees in the CS PHB, and at a minimum, a node is expected to favor CS code points
mapping to IP precedence 6 and 7 over all other CS values from a drop perspective.

The EF PHB

The EF PHB is associated with a low-latency, low-jitter, low-loss, end-to-end service. This type of service
is suitable for circuit emulation, or the support of voice, video, or other real-time services. EF support is
not mandated, but when offered, the EF PHB requires two independent functions: that each node is
configured with a minimum departure rate that is independent of the activity levels of other PHBs within
that node; and that the EF BA be conditioned through policing or shaping to ensure that the EF arrival
rate at any node is always less than that node's configured minimum departure rate. The first behavior is
defined within the EF PHB itself, and the second is a function of general traffic conditioning.

The AF PHB

The AF PHB is a family of PHBs, called a PHB group, which is used to classify packets into various drop
precedence levels. The drop precedence assigned to a packet determines the relative importance of a
packet within the AF class and generally also indicates whether that packet was within, or above, some
guaranteed rate. Packets within the associated AF PHB group's minimum rate have the lowest drop
probability and are expected to be delivered, whereas packets above the minimum rate have an
increasing probability of loss.

The AF PHB can be used to implement a multitiered model consisting of three classes-bronze, silver, and
gold-and is associated with loss-sensitive, nonreal-time applications. A minimal AF PHB implementation
is required to recognize all three drop priorities within each supported AF group, but it has to offer only a
minimum two-drop precedence within each AF group.

9.2.4.1.1. Recommended/default DHCPs

Each administrator of a DiffServ region is free to choose the specific DSCPs that map to supported PHBs. It's
critical that any such mapping be consistent across all nodes in the DiffServ domain/region. Packet re-marking
can be used to map between two regions that are part of the same domain, but this process is prone to error.
The various IETF documents describing DiffServ PHBs provide recommended DSCP mappings, which were shown
in Figure 9-10.

9.2.5. DiffServ Summary

This section provided a brief history of IP CoS, from the original ToS definition to the not-quite-successful
IntServ model on up to the current approach known as IP Differentiated Services. The data-plane-centric

http://lib.ommolketab.ir
http://lib.ommolketab.ir

approach defined in DiffServ provides a scalable solution that is known to work.

DiffServ is based on the principle of isolation between forwarding classes (BAs) and a consistent classification
and resultant per-hop behavior across the routers in a DiffServ domain, such that predictable end-to-end CoS
can be provided.

The next section provides a detailed description of M7i and J-series CoS capabilities and their differences. There
is a lot to cover, so perhaps another break is in order before you dive back in.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.3. M7i and J-Series CoS Capabilities

With a thorough grounding of IP CoS concepts and terminology now under your belt, it's time to get down to the
particular CoS capabilities of Juniper's enterprise routing products, specifically the M7i and J-series service
routers.

Although both the M7i and the J-series run pretty much the same JUNOS software, the ASIC-based HW design
of the M7i versus the software-based J-series does lead to some operational differences and capabilities.
Fortunately, the vast majority of CoS functionality is shared between the two platforms, and this section is
structured accordingly-the common capabilities are covered first, followed by details regarding any specific
exceptions or differences.

The discussion of CoS capabilities and default settings is presented in the context of the CoS packet processing
steps available for transit traffic. This is done to provide structure and to reinforce your understanding of CoS
processing stages within a Juniper router. You should refer back to Figure 9-6 as each CoS processing stage is
discussed.

You configure CoS at the [edit class-of-service] hierarchy, which has quite a few options under it. The

primary CoS configuration options are displayed:

Code View:
[edit]

lab@Bock# edit class-of-service

[edit class-of-service]

lab@Bock# set ?

Possible completions:

> adaptive-shapers Define the list of trigger types and associated rates

+ apply-groups Groups from which to inherit configuration data

+ apply-groups-except Don't inherit configuration data from these groups

> classifiers Classify incoming packets based on code point value

> code-point-aliases Mapping of code point aliases to bit strings

> drop-profiles Random Early Drop (RED) data point map

> forwarding-classes One or more mappings of forwarding class to queue number

> forwarding-policy Class-of-service forwarding policy

> fragmentation-maps Mapping of forwarding class to fragmentation options

> interfaces Apply class-of-service options to interfaces

> loss-priority-maps Map loss priority of incoming packets based on code point value

> rewrite-rules Write code point value of outgoing packets

> scheduler-maps Mapping of forwarding classes to packet schedulers

> schedulers Packet schedulers

> traceoptions Trace options for class-of-service process

> virtual-channel-groups Define list of virtual channel groups

> virtual-channels Define the list of virtual channels

9.3.1. Input Processing

Input processing stages include BA classification, multifield classification, policing, and forwarding policy actions.
Each is discussed separately.

9.3.1.1. BA classification capabilities

The BA classification stage supports classification based on the following Layer 3 and Layer 2 fields:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DSCP (Layer 3, 64 levels in updated ToS byte)

IP precedence (Layer 3, eight levels in ToS byte)

MPLS EXP (Layer 2, four levels via experimental [EXP] bits in MPLS tag)

IEEE 802.1p (Layer 2, eight priority levels in 802.1Q virtual LAN [VLAN] tag)

If you apply an IEEE 802.1p to a logical interface, you cannot apply any other classifier types to other logical
interfaces on the same PIC port unless you are configuring an intelligent queuing (IQ)/IQ2 PIC (J-series routers
emulate IQ/IQ2 PIC functionality). Some combinations of BA classifiers simply make no sense and are mutually
exclusive; for example, you cannot apply both an IP precedence and a DSCP classifier to the same logical
interface at the same time. You configure a BA classifier at the [edit class-of-service classifiers]

hierarchy:

[edit class-of-service classifiers]

lab@Bock# set ?

Possible completions:

+ apply-groups Groups from which to inherit configuration data

+ apply-groups-except Don't inherit configuration data from these groups

> dscp Differentiated Services code point classifier

> dscp-ipv6 Differentiated Services code point classifier IPv6

> exp MPLS EXP classifier

> ieee-802.1 IEEE-802.1 classifier

> inet-precedence IPv4 precedence classifier

The following example shows a user-defined IP precedence type classifier named test, with a defined code

point that maps to the BE forwarding class with a low-loss priority:

[edit class-of-service classifiers inet-precedence test]

lab@Bock# show

forwarding-class best-effort {

 loss-priority low code-points 000;

}

When desired, you can populate a classifier table with default values, which is useful when your goal is to
modify only some code points. The best practice is to always have complete classification tables, even when all
possible code point values are not expected. Even though unmatched code points map to the BE class by
default, explicitly stating this with a complete code point mapping can reduce confusion down the road.

[edit class-of-service classifiers inet-precedence test]

lab@Bock# set import ?

Possible completions:

 <import> Include this classifier in this definition

 default Default classifier for this code point type

 test

[edit class-of-service classifiers inet-precedence test]

lab@Bock# set import default

[edit class-of-service classifiers inet-precedence]

lab@Bock# show

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import default;

forwarding-class best-effort {

 loss-priority low code-points 000;

The BA classifier is placed into service when you apply it to one or more logical interfaces:

[edit class-of-service interfaces]

lab@Bock# set fe-0/0/0 unit 0 classifiers inet-precedence test

[edit class-of-service interfaces]

lab@Bock# show

fe-0/0/0 {

 unit 0 {

 classifiers {

 inet-precedence test;

 }

 }

}

Note that a BA classifier is applied to an interface at the [edit class-of-service

interfaces <interface-name> unit <unit-number>] hierarchy, whereas multifield

classifiers are applied to an interface at the [edit interfaces <interface-name> unit

<unit-number>] hierarchy. Keep this distinction in mind to avoid confusion down the

road.

9.3.1.2. Multifield classification

In the Juniper architecture, multifield classification is implemented via firewall filters, using a variety of Layer 2
or Layer 3 match criteria. We discuss general firewall filter configuration and capabilities in Chapter 6.

Suffice it to say that you use a filter to perform multifield classification by associating a set of match criteria to a
then forwarding-class action. To activate multifield classification, the filter is applied as an input filter on an

ingress interface. Because BA classification is always performed first, you can always apply a multifield classifier
in combination with any BA classifier. In case of conflict, the forwarding class associated with the BA match is
overwritten by the multifield classifier's choice of forwarding class.

This example shows a simple multifield classifier that classifies a specific UDP protocol and port combination to
the BE class with high-loss priority, while all other traffic is classified as BE with the default low-loss priority:

[edit firewall filter mf_class]

lab@Bock# show

term udp_port_5555 {

 from {

 protocol udp;

 port 5555;

 }

 then {

 loss-priority high;

 forwarding-class best-effort;

 accept;

 }

}

term default {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 then {

 loss-priority low;

 forwarding-class best-effort;

 accept;

 }

}

9.3.1.3. Policing

Policers are generally considered to be part of the JUNOS software firewall architecture, in that you normally
link to a policer as a result of a multifield classification match. Juniper also supports policers that are applied
directly to protocol families, on a per-logical-interface basis. From a CoS perspective, interface-level policers are
really useful only when you classify based on the incoming interface-that is, all traffic received on interface
<name> is forwarding class x, which is a somewhat corner case, given that most interfaces are assumed to carry

a mix of forwarding classes.

Ingress policing is a key component of the traffic conditioning that is needed in the DiffServ model to ensure
independence between forwarding classes and the associated PHBs, and between users in the same class. You
should deploy policing on the network's edges, as close to the traffic sources as possible. The goal is to limit the
aggregate rate of all non-BE traffic to constrain it to a value less than the aggregate rate of the transmission
resources associated with all non-BE classes. This ensures that the non-BE PHBs can be met locally and by
subsequent core nodes, which generally are not burdened by any CoS-related policing.

Where possible, you should police on a per-class basis for each user-JUNOS software features such as highly
scalable firewall filters, combined with ease-of-use features such as per-prefix counting and policing, generally
make such a fine-grained level of policing practical. This policing ensures that a few dominant users are not able
to monopolize all the resources of a given forwarding class by providing per-user isolation within the same class.

Traffic that exceeds the policer's profile can be discarded, reclassified into a different class, or marked for
increased discard probability by altering the internal PLP. The latter approach provides a minimum level of
service with the potential for increased delivery during periods of low network utilization. In contrast, immediate
discard caps the user at ingress, which helps to prevent network congestion from occurring in the first place.

Here is an example of a firewall filter that both classifies and polices on a per-forwarding class basis:

Code View:
[edit firewall]

lab@Bock# show

policer EF_policer {

 if-exceeding {

 bandwidth-limit 128k;

 burst-size-limit 2k;

 }

 then discard;

}

filter mf_class_and_police {

 interface-specific;

 term EF_classify {

 from {

 protocol udp;

 port 6000-6100;

 }

 then {

 policer EF_policer;

 forwarding-class expedited-forwarding;

 }

 }

 term other {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 then forwarding-class best-effort;

 }

}

In this example, UDP packets with a matching port range (either source or destination ports) are directed to a
policer named EF_policer. Traffic within the policer profile is handed back to the calling term, where it's

classified as EF and accepted. In this case, any excess traffic is summarily dropped. The final term in the filter
classifies all remaining traffic as BE, which is not policed in this example.

It may seem odd that the EF class is policed-with a rather Draconian discard action, no less-while the BE
class, which appears to be less important, is left to run unchecked. The reason for this seemingly backward
policer application is due to the related scheduling priority, which for the EF class is often strict, or strict-high,
and can lead to the starvation of lower-priority forwarding classes when there is an abundance of this traffic.
Ingress policing with associated discard ensures an aggregate limit on the EF class, which prevents this
problem. Ironically, it's relatively safe to accept all the BE traffic users care to generate, because BE is generally
assigned a low priority (other classes cannot be starved) and a low transmit percentage (so that it does not
significantly impact other classes), thus excess BE is sent only when one or more of the other forwarding classes
are not using their full bandwidth allocation anyway.

The addition of the interface-specific statement allows the same filter to be applied to multiple interfaces,

with each such application resulting in instantiation of a unique policer instance. The end result is that each
interface to which this filter is applied will be limited to a maximum average EF rate of 128 Kbps. The aggregate
EF class rate becomes a simple function of policer rate multiplied by the number of interfaces to which the filter
is applied. Note that omitting the interface-specific statement and applying the same filter to multiple

interfaces results in a shared policer, which in this example would cap the aggregate EF class rate to 128 Kbps.

9.3.1.4. CoS policy

CoS policy is used in one of two ways: to provide CBF or to perform classification override. CBF allows you to
specify one or more next hops based on a packet CoS classification. CBF is not demonstrated in this chapter,
but a good configuration example is provided in the user manual, located at
http://www.juniper.net/techpubs/software/junos/junos80/swconfig80-cos/html/cos-based-
forwarding4.html#1171479.

Classification override does just what its name implies. This capability can be useful when performing CoS-
related testing, or it can mitigate negative impacts that can result from an upstream device that is suspected of
generating improperly marked traffic. The configuration example performs an override of any previous
classification including overriding any loss-priority setting, and it resets all matching traffic to the BE class:

[edit]

lab@Bock# show policy-options

policy-statement AF_override {

 term 1 {

 from interface fe-0/0/0.0;

 then class reset_to_be;

 }

 term 2 {

 then accept;

 }

}

The AF_override policy is used to identify what traffic is subjected to classification override; in this example, all

traffic received over interface fe-0/0/0 is marked as belonging to a CoS-related policy class named

reset_to_be:

http://www.juniper.net/techpubs/software/junos/junos80/swconfig80-cos/html/cos-based-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[edit]

lab@Bock# show class-of-service

forwarding-policy {

 class reset_to_be {

 classification-override {

 forwarding-class best-effort;

 }

 }

}

[edit]

lab@Bock# show routing-options forwarding-table

export AF_override;

A forwarding-policy is created at the [edit class-of-service] hierarchy that identifies the policy class that

is subject to classification override. In this example, packets marked as belonging to the reset_to_be policy

class have their initial classification, whatever that might be, reset to the BE class. The forwarding policy must
be applied at the [edit routing-options forwarding-table export] hierarchy to take effect. Such a policy

configuration might temporarily work around issues with an upstream device that incorrectly marks all traffic as
EF, resulting in EF class congestion and violation of the related service level agreements (SLAs). The group
managing the upstream device will quickly find the motivation needed to correct the configuration error when its
users begin to complain about poor performance stemming from suddenly getting nothing but BE treatment.

9.3.2. Output Processing

Output CoS processing stages include egress policing, rewrite marking, queuing/scheduling, and active queue
management through RED-based congestion control.

9.3.2.1. Egress policing

Policers are, well, policers, and there is really nothing unique about an output policer versus an input one, other
than the simple fact that the policing action now occurs after the route lookup, rather than before. To an
external observer, there is no difference between the use of input versus output policers. Consider an input
policer, unless you must police based on the result of route lookup-that is, based on the forwarding next hop.

9.3.2.2. Rewrite marking

The rewrite marking stage is a critical component of a scalable CoS design because it's one-half of the BA
classification story. For scalability, multifield classification should be used only at the network's access layer,
where the function can be distributed among the largest set of routers with the smallest average packet
forwarding requirements. Packet rates near the core typically dictate the more efficient BA type classification;
Juniper routers are capable of wire-rate BA classification in all scenarios, whereas heavy use of firewall filters
can degrade forwarding performance.

You should think of your input BA classifiers as a mirror image of the corresponding rewrite marker. This is to
say that for each entry in a given BA table, there should be a corresponding entry in the associated rewrite
marker table, and that entry is normally set to the same value-this ensures that the node downstream makes
the same classification decision as did the local node. The consistent classification at each node between
endpoints is a critical component of the DiffServ model, which presumes a consistent PHB among all nodes in a
DS region. Figure 9-12 shows the interaction between multifield classification, marker rewrite, and resultant BA
classification.

Figure 9-12. Multifield at the edge, BA in the core

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The sequence numbers in Figure 9-12 take you from initial ingress processing (where a multifield classification
is used at step 1), on to step 2 (where the ingress node uses a DSCP rewrite table to write a specific DSCP
pattern, based on its ingress classification). In this example, we assume EF with low PLP, so the packet's DSCP
field is written to binary 101110. At step 3, the downstream node (which is in the distribution or core layer)
performs only DSCP-based BA classification. Note that Bock's DSCP classifier entry for the EF class with low PLP

matches the same value as that used in PBR's DSCP rewrite table. The result, shown in steps 4–7, is a

consistent classification, and therefore there is a resulting consistency in the PHB across each node in the path.

The configuration example shown creates an IP precedence rewrite marker table that matches the example
provided in "Section 9.3.1.1," earlier in this chapter.

[edit class-of-service rewrite-rules inet-precedence test]

lab@Bock# show

import default;

forwarding-class best-effort {

 loss-priority low code-point 000;

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As in the case of BA classifiers, a rewrite table can be fully populated by importing any entries not explicitly
defined by the user from the default set associated with that classifier type.

9.3.2.3. Scheduling and queuing

The scheduling stage determines when a given queue is serviced, in which order, and how much traffic can be
drained at each servicing. Schedulers and queues are closely linked in the Juniper architecture. When you
configure a scheduler, you can also control certain queue parameters such as maximum queue depth, and you
also link that queue to one or more WRED profiles. You typically alter a queue's default size, which is based on
the associated transmit weight, to control delay-larger buffer sizes favor less loss at the cost of increased
latency.

9.3.2.3.1. Scheduling discipline

Both the M7i and J-series platforms implement a modified deficit round-robin (MDRR) scheduler. Because
different transmit weights can be assigned to each queue, the algorithm is technically a modified weighted
deficit round-robin (MWDRR) approach.

Scheduling is one area where the M-series and J-series implementation significantly differs. The M-series
scheduling behavior is described here, along with general scheduling capabilities and concepts. "Section 9.3.5,"
later in this chapter, specifically calls out where the two platforms differ in scheduling behavior.

MDRR extends the basic deficit round-robin (DRR) mechanism by adding support for a priority queue that
exhibits minimal delay. The deficit part of the algorithm's name stems from the allowance of a small amount of
negative credit in an attempt to keep queues empty. The resultant negative balance from one servicing interval
is carried over to the next quantum's credit allocation, keeping the average dequeuing rate near the configured
transmit value.

An MDRR scheduler is defined by four variables:

Buffer size

This is the delay buffer for the queue that allows it to accommodate traffic bursts. You can configure a
buffer size as a percentage of the output interface's total buffer capacity or as a temporal value from
1–200,000 microseconds, which simply represents buffer size as a function of delay, rather than bytes.

The quantum

The quantum is the number of credits added to a queue every unit of time and is a function of the
queue's transmit weighting. In Juniper's implementation, a quantum is added 5,000 times per second (or
once every 200 microseconds). The queue's transmit rate specifies the amount of bandwidth allocated to
the queue and can be set based on bits per second or as a percentage of egress interface bandwidth. By
default, a queue can be serviced when in negative credit, as long as no other queues have traffic pending.
When desired, you can rate-limit a queue to its configured transmit rate with inclusion of the exact

keyword.

Priority

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The priority can be low, high, or strict-high, and it determines the sequence in which queues are serviced.
The scheduler services high-priority queues with positive credit before it addresses any low-priority
queues.

A strict-high priority queue is a special case of high priority, where the effective transmit weight is set to
equal egress interface capacity. This means that a strict-high queue can never go negative, and therefore
is serviced before any low-priority queue anytime it has traffic waiting. The result is a type of low-latency
queuing (LLQ). Care should be used when a queue is set to strict-high to ensure that the queue does not
starve low-priority traffic; a strict-high queue does not support shaping via the exact keyword. Normally,

though, ingress policing/rate limiting is used to control the aggregate rate of traffic that can be placed
into the strict-high queue. When you have two or more queues set to high priority (two high, or one high
and one strict-high), the MDRR scheduler simply round-robins between them until they both go negative,
or until the queue is empty in the case of strict-high, at which time the low-priority queues can be
serviced.

Deficit counter

MDRR uses the deficit counter to determine whether a queue has enough credits to transmit a packet. It
is initialized to the queue's quantum, which is a function of its transmit rate, and it is the number of
credits that are added to the queue every quantum.

The Juniper implementation of MDRR scheduling on the M-series supports a basic deficit weighted round-robin
(DWRR) scheduling discipline, or a combination of strict-priority queuing (SPQ) and DWRR scheduling when a
high-priority queue is configured.

9.3.2.3.2. Scheduler configuration

You configure the scheduling and queuing stage by first defining a scheduler for each forwarding class used in
your network. Schedulers are defined at the [edit class-of-service schedulers] hierarchy, and they

indicate a forwarding class's priority, transmit weight, and buffer size.

Code View:
[edit class-of-service]

lab@Bock# show schedulers

be_sched {

 transmit-rate percent 30;

 priority low;

 drop-profile-map loss-priority high protocol any drop-profile be_high_drop;

 drop-profile-map loss-priority low protocol any drop-profile be_low_drop;

}

ef_sched {

 buffer-size temporal 50k;

 transmit-rate percent 60 exact;

 priority high;

 drop-profile-map loss-priority high protocol any drop-profile ef_high_drop;

 drop-profile-map loss-priority low protocol any drop-profile ef_low_drop;

}

nc_sched {

 transmit-rate percent 10;

 priority low;

 drop-profile-map loss-priority high protocol any drop-profile nc_high_drop;

 drop-profile-map loss-priority low protocol any drop-profile nc_low_drop;

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This example supports three forwarding classes-BE, EF, and NC-and each forwarding class's scheduler block is
associated with a priority and a transmit rate. Priority support varies by platform and takes the form of strict-
high, high, and low, with the J-series also supporting medium-high and medium-low priorities.

The differences in scheduler priorities and behavior between M-series and J-series
routers are discussed in "Section 9.3.5," later in this chapter. For example, although
both platforms support a strict-priority scheduler setting, the effect is platform-

dependent and significantly different.

The transmit rate can be entered as a percentage of interface bandwidth or as an absolute value. You can rate-
limit (sometimes called shape) a queue with the exact keyword, which prevents a queue from getting any

unused bandwidth, effectively capping the queue at its configured rate.

In this example, the EF scheduler is set to high priority and is rate-limited to 60% of the interface speed, even
when all other schedulers are idle, through the addition of the exact keyword. Using exact is a common

method of providing the necessary forwarding class isolation when a high-priority queue is defined, because it
caps the total amount of EF that can leave each interface to which the scheduler is applied. Rate-limiting helps
to ensure that the aggregate rate of EF traffic arriving at downstream nodes is not excessive, whereas ingress
policing should limit the arriving EF to an aggregate rate that is less than the EF scheduler's transmit rate to
ensure that the local node meets the associated PHB.

With the configuration shown, each of the three forwarding classes are guaranteed to get at least their
configured transmit percentage. The EF class is limited to no more than 60%, while during idle periods both the
BE and NC classes can use 100% of egress bandwidth. When it has traffic pending, the high-priority EF queue is
serviced as soon as possible-that is, as soon as the BE or NC packet currently being serviced has been
completely dequeued.

Assuming a somewhat worst-case T1 link speed (1.544 Mbps) and a default MTU of 1,504 bytes, the longest
time the EF queue should have to wait to be serviced is only about 7.7 milliseconds (1/1.5446 * (1504 * 8)).
With higher speeds (or smaller packets), the servicing delay becomes increasingly smaller. Given that the
typical rule of thumb for the one-way delay budget of a Voice over IP application is 150 milliseconds, this PHB
can accommodate numerous hops before voice quality begins to suffer.

9.3.3. Delay Buffer Size

Notifications for packets pending transmission are stored in a delay bandwidth buffer that is sized according to
the interface's speed and the platform's maximum delay buffer time. Both the M7i and J-series routers support
at least 100,000 microseconds (or 100 milliseconds) of delay buffer time.

When using low-speed interfaces, such as DSOs within a channelized T1/E1, you may
want to enable IQ/IQ2 PIC large buffer support. With the q-pic-large-buffer knob in

conjunction with supported IQ/IQ2 PIC hardware on the M7i, or with the channelized
E1/T1 Physical Interface Modules (PIMs) for the J-series, you can increase delay buffer
time to as much as 4 million microseconds (four seconds). The larger delay buffer can
be useful on slow-speed interfaces due to the resultant increase in serialization delay,
which is a function of link speed and MTU.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In this example, the delay buffer size for the BE and NC classes is left at the default remainder setting. This

means that each is allocated a percentage of the 100-millisecond delay buffer based on its configured transmit
weighting, and is allowed to grow into any unallocated buffer space, such as can occur when the sum of
configured weights does not add up to 100%.

The formula to compute the actual delay buffer size is:

interface speed (bps) * delay buffer size (microseconds) = delay buffer size (bytes)

If we assume a J-series platform with a 100 Mbps Fast Ethernet interface in this example, the total scheduler
delay buffer size is 1006 * 100-3 = 1.25 MB. By default, the BE and NC classes are assigned 30% and 10% of
the scheduler's delay buffer, respectively.

In contrast, the EF queue has its buffer set to permit no more than 50,000 microseconds (50 milliseconds).
When using a temporal setting, the maximum delay buffer size is computed by multiplying the interface speed
by the configured temporal value.

Because the EF class has been assigned 60% of the transmit bandwidth, the default behavior would allocate
60% (60,000 microseconds) of delay buffer; by reducing the size of the delay buffer, as shown in the case of
the EF class, you keep the higher transmit percentage while forcing a smaller buffer size. Setting a delay buffer
that is smaller than the default results in a trade-off between the resultant increased probabilities of congestion-
related loss versus a reduction in maximum delay and delay variance (jitter).

The scheduler block for each forwarding class also references WRED drop profiles, which provide active queue
management to control congestion. Generally, you will have a different WRED profile for each forwarding
class-for example, one aggressive profile that begins to drop at a lower fill, with a greater drop probability for
the BE class, and another that waits until a higher queue fill before less-aggressive drops begin for the NC class.
We will discuss drop profiles in "Section 9.3.4.2," later in this chapter.

9.3.4. Scheduler Maps

Once you have defined your schedulers, you must link them to one or more egress interfaces using a
scheduler-map. Scheduler maps are defined at the [edit class-of-service scheduler-maps] hierarchy.

[edit class-of-service]

lab@Bock# show scheduler-maps

three_FC_sched {

 forwarding-class best-effort scheduler be_sched;

 forwarding-class expedited-forwarding scheduler ef_sched;

 forwarding-class network-control scheduler nc_sched;

}

Applying a scheduler-map to an interface places the related set of schedulers and drop profiles into effect:

[edit class-of-service]

lab@Bock# show interfaces

fe-0/0/0 {

 scheduler-map three_FC_sched;

}

Defining scheduler blocks that are based on a transmit percentage rather than an absolute value, such as in this
example, makes it possible to apply the same scheduler-map to all interfaces without worrying whether the

sum of the transmit rates exceeds interface capacity, which results in a committed, but effectively ignored, CoS
configuration that can be a real pleasure to debug. An example of this condition is shown for Bock, whose T1

interface cannot handle the 100 Mbps required when the rate is substituted for the same numeric value, but in
Mbps!

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Code View:
lab@Bock# show class-of-service schedulers ef_sched

transmit-rate 35m exact;

buffer-size temporal 30k;

priority high;

[edit]

lab@Bock# run monitor list

monitor start "messages" (Last changed Oct 29 05:21:00)

[edit]

lab@Bock# commit

Oct 30 05:39:11 Bock mgd[2982]: UI_COMMIT: User 'lab' performed commit: no comment

Oct 30 05:39:15 Bock /kernel: RT_COS: COS IPC op 5 (SCHED POLICY DEF) failed, err 5

(Invalid)

Oct 30 05:39:15 Bock /kernel: RT_COS: COS IPC op 5 (SCHED POLICY DEF) failed, err 5

(Invalid)

Oct 30 05:39:15 Bock fwdd[2791]: COSMAN: queue 0 got tx_rate = 50000 kbps which is

 too high for t1-0/0/2

Oct 30 05:39:15 Bock fwdd[2791]: COSMAN: policy update failed

Oct 30 05:39:15 Bock fwdd[2791]: COSMAN: queue 0 got tx_rate = 50000 kbps which is

 too high for t1-0/0/2

Oct 30 05:39:15 Bock fwdd[2791]: COSMAN: policy update failed

. . .

9.3.4.1. A word on per-unit scheduling

By default, when you apply a scheduler to an interface, it takes effect at the port, or interface device (ifd)

level. This is fine when the port in question is configured with a single logical interface (ifl), such as would be

the case when running Cisco High-Level Data Link Control (HDLC) or the Point-to-Point Protocol (PPP). However,
when the interface is partitioned into multiple logical units-for example, as the result of adding VLAN
tagging-you need to apply a per-unit scheduler. A per-unit scheduler provides fine-grained queuing by creating
a set of queues and an associated scheduler for each logical interface. M-series platforms require special IQ/IQ2
PIC hardware to support per-unit scheduling whereas the J-series achieves this via software, with no specific
hardware needs.

You configure per-unit scheduling by adding the per-unit-scheduler statement at the interface level. Because

some hardware combinations do not support fine-grained queuing, you should monitor the messages log when
committing a per-unit scheduling configuration to make sure the configuration is compatible with installed
hardware.

[edit interfaces fe-0/0/0]

lab@Bock# show

per-unit-scheduler;

vlan-tagging;

unit 0 {

 vlan-id 1241;

 family inet {

 address 10.20.130.1/30;

 }

}

9.3.4.2. Congestion control

The final CoS processing stage in the output direction is the WRED congestion control function. We described

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the reasoning behind active queue management previously-we'll reiterate that the general goal is to avoid the
indiscriminate tail drops that occur when a queue reaches capacity, by sensing a queue that is beginning to fill
and then randomly discarding packets from the head of the queue. The chance of actual discard rises from the
first fill level and discard probability point until it reaches 100% at 100% fill. Configuring a discard profile with a
fill/discard probability of 100/100 effectively disables RED on that queue. This is the default setting.

9.3.4.3. Configure WRED drop profiles

You configure a WRED drop profile at the [edit class-of-service drop-profiles] hierarchy. RED drop

profiles are placed into effect on an egress interface via application of a scheduler-map. Recall that, as shown

earlier, the scheduler-map references a set of schedulers, and each scheduler definition links to one or more

drop profiles. It is an indirect process, to be sure, but it quickly begins to make sense once you have seen it in
action.

Here are some examples of drop profiles, as referenced in the preceding scheduler-map example:

Code View:
[edit class-of-service drop-profiles]

lab@Bock# show

be_high_drop {

 fill-level 40 drop-probability 0;

 fill-level 50 drop-probability 10;

 fill-level 70 drop-probability 20;

}

be_low_drop {

 fill-level 70 drop-probability 0;

 fill-level 80 drop-probability 10;

}

ef_high_drop {

 fill-level 80 drop-probability 0;

 fill-level 85 drop-probability 10;

}

ef_low_drop {

 fill-level 90 drop-probability 0;

 fill-level 95 drop-probability 30;

}

nc_high_drop {

 fill-level 40 drop-probability 0;

 fill-level 50 drop-probability 10;

 fill-level 70 drop-probability 20;

}

nc_low_drop {

 fill-level 70 drop-probability 0;

 fill-level 80 drop-probability 10;

}

In this example, the drop profiles for the BE and NC classes are configured the same, so technically a single-
drop profile could be shared between these two classes. It's a best practice to have per-class profiles because
ongoing CoS tuning may determine that a particular class will perform better with a slightly tweaked RED
threshold setting.

Both the BE and NC queues begin to drop 10% of high-loss priority packets once the respective queues average
a 50% fill level. You can specify as many as 64 discrete points between the 0% and 100% loss points, or use
the interpolate option to have all 64 points automatically calculated around any user-supplied thresholds. In

this example, only three points are specified. At 50% fill, 10% of PLP 1 BE and NC traffic is dropped; when the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

queue fill crosses 70%, the next discard threshold is activated and 20% of the packets are discarded. The 20%
discard rate is maintained during an average queue fill of 70% to 99%. At 100% fill, tail drop begins, as the
queue can no longer hold incoming notifications. The weighted aspect of the RED algorithm is shown with the
configuration of a less-aggressive drop profile for BE/NC traffic with a low-loss priority.

A similar approach is taken for the EF class, except it uses a less aggressive profile for both loss priorities, with
discards starting at 80% and 90% fill for high- and low-loss priorities, respectively. Some CoS deployments
disable RED (100/100) for real-time classes such as EF because these sources are normally UDP-based and do
not react to loss in the same way that TCP-based applications do. M-series platforms support WRED profiles
based on TCP versus UDP, in addition to loss priority, which allows you to adopt a less aggressive RED profile for
those application types that do not react to RED drop anyway. J-series platforms support WRED indexing based
on loss priority only, but the J-series supports four drop priorities, so you can still index up to four RE profiles
per queue. The examples shown are from a J-series, which forces the protocol to any.

Here's the be_high drop profile:

[edit]

lab@Bock# run show class-of-service drop-profile be_high_drop

Drop profile: be_high_drop, Type: discrete, Index: 27549

 Fill level Drop probability

 40 0

 50 10

 70 20

To provide contrast, the be_high profile is altered to use interpolate, which fills in all 64 points between 0%

and 100% loss, as constrained by any user-specified fill/drop probability points:

Code View:
edit]

lab@Bock# show class-of-service drop-profiles be_high_drop

interpolate {

 fill-level [40 50 70];

 drop-probability [0 10 20];

}

[edit]

lab@Bock# run show class-of-service drop-profile be_high_drop

Drop profile: be_high_drop, Type: interpolated, Index: 27549

 Fill level Drop probability

 0 0

 1 0

 2 0

 4 0

 5 0

 . . .

 38 0

 40 0

 42 2

 44 4

 45 5

 46 6

 48 8

 49 9

 51 10

 52 11

 54 12

 . . .

 78 41

 80 46

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 82 52

 84 57

 85 60

 . . .

 99 97

 100 100

9.3.5. Differences Between J-Series and M7i CoS

The preceding section detailed the general CoS capabilities of the M7i and J-series routers, which for the most
part are supported across all JUNOS-based routing platforms. This section calls out areas where the CoS
capabilities differ. With so many similarities, the differences are easy to lose track of, but no matter how similar,
they can have a pronounced operational impact if you do not understand and design for them.

Table 9-3 summarizes the differences between M7i and J-series CoS behavior.

Table 9-3. M7i versus J-series CoS behavior and capabilities

M7i J-series

Per-unit scheduling only with IQ/IQ2 PIC hardware. Per-unit scheduling on all interfaces.

DWRR scheduling to provide at least configured
weight. Leftover bandwidth shared using priority-
based round-robin. No scheduler-based shaping.

Strict priority scheduling with DWRR among queues of
the same priority. Leftover bandwidth shared according
to priority, and within a priority according to transmit
weight. Supports scheduler-based shapers.

Two scheduling priorities: high and low. No support
for LLQ.

Five scheduling priorities: strict-high, high, medium-
high, medium-low, and low. LLQ support via strict-high
(in 8.1).

Hierarchical shaping and shared schedulers with
supported IQ/IQ2 PICs.

No hierarchical shaping. Shared scheduler via virtual
channel construct.

No support for virtual channel CoS construct or
adaptive shaping.

Supports scheduling into virtual channel, group to share
a scheduler among a set of data-link connection
identifier (DLCI)-based logical interfaces. Adaptive
shaping based on forward explicit congestion notification
(FECN).

WRED based on TCP, UDP, and PLP. Head-drop-
based, acts on packets as they are dequeued.
Sixteen WRED drop profiles per Enhanced FPC (E-
FPC), two with original FPC.

WRED based on PLP only-no TCP versus UDP indexes.
Tail-drop-based, acts on packets as they are enqueued.
Thirty-two WRED drop profiles per PIM.

Supports four queues. Supports eight queues on all interfaces.

PLP based on classification/policer action only, no
mapping of DE to PLP. Two loss priorities: high and
low.

PLP based on classification, policer action, or in response
to Frame Relay DE mapping. Four loss priorities: high,
medium-high, medium-low, and low.

Maximum number of rewrite markers is not
specified.

A total of 64 rewrite markers can be defined per PIM.

Table 9-3 makes it clear that there are quite a few operational differences between the ASIC-based M7i and the
software-based J-series product line. We will examine the functional differences in detail in the following

http://lib.ommolketab.ir
http://lib.ommolketab.ir

sections.

9.3.5.1. Per-unit scheduling

M-series platforms do not support per-unit scheduling unless the platform is equipped with an IQ-style PIC, in
which case the actual queuing is moved from the chassis level onto to the PIC itself when you enable per-unit
scheduling.

J-series platforms support fine-grained, per-unit scheduling on all interfaces through emulation of the on-PIC
queuing capabilities of a Q-PIC.

In addition to logical unit-based queuing, per-unit scheduling also enables use of the shaping-rate command at

the logical unit level to shape output traffic on all interfaces.

9.3.5.2. Weight- versus priority-based scheduling

One of the most pronounced differences between the M-series and J-series CoS functionality is the way in which
the MDRR algorithm is implemented. The differences are so pronounced that you will typically find that an
existing M-series scheduler configuration cannot be copied over and applied to a J-series, at least not if you
expect similar CoS behavior!

9.3.5.2.1. The M-series weight-based scheduler

On M-series routers, the MDRR scheduler is based on guaranteed transmit weight with any leftover (unused)
bandwidth divided on a prioritized, round-robin basis, which empties high-priority queues in negative credit
before moving on to low-priority queues with negative credit. Figure 9-13 illustrates the operational
characteristics of the M-series scheduler implementation.

Figure 9-13. The M-series scheduler

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 9-13 shows a scheduler configuration supporting two priorities and three forwarding classes/queues. The
scheduler first services all high-priority queues with positive credit, and then moves on to service low-priority
queues with positive credit. Once all queues have been given at least their assigned weights, the queues go
negative and the scheduler begins to allocate unused bandwidth. Because the dispatch of unused bandwidth is
affected by numerous factors, including the number of priorities, number of queues, and average packet size, it
is safe to say that the M-series algorithm for the allocation of unused bandwidth among negative credit queues
is, practically speaking, nondeterministic. This does not mean the process is random, just that it is extremely
difficult to predict how much extra bandwidth a given queue will end up getting.

The top half of the figure shows the scheduler's DWRR operation when queues are in positive credit. The
scheduler services the high-priority queue until its transmit weight is satisfied, resulting in four forwarding class
2 packets, or 40% utilization in this example. Once the priority queue is in negative credit, the scheduler moves
on to the low-priority level, which has two queues in this example. The scheduler services both of the low-
priority queues according to their weight, resulting in one FC0 and five FC2 packets being transmitted.

The lower half of Figure 9-13 continues the example by showing M-series scheduler behavior among queues
with negative credit. The leftover bandwidth is not allocated according to configured weight, but rather using a
priority-based round-robin approach that empties one packet per queue, first emptying all high-priority queues
and then moving on to round-robin between negative low-priority queues.

This approach can lead to some unexpected results, especially when queues are chronically overdriven and
therefore tend to remain in negative credit, and when the average packet size differs within each queue. The
lack of granularity in the per-packet round-robin handling of negative queues tends to favor the queue with the
larger packet size. This can be most pronounced when that queue is also given the lowest weight, because it will
be able to send the same number of packets as other negative queues at the same priority level. When
combined with a larger packet size, such a queue winds up getting a larger percentage of the leftover bandwidth
than you might first assume.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The M7i supports two priority levels: high and low. On the M-series, the strict-high priority is the same as

high priority-the strict-high setting simply provides that queue with a 100% transmit weight, thus ensuring

that it is always in positive credit and able to send. You cannot rate-limit a strict-high queue with the exact

keyword because it always gets 100% of the interface transmit weight, and you can include only one strict-

high queue in a given scheduler-map.

9.3.5.2.2. The J-series priority scheduler

The J-series scheduler is based on strict priority. In this context, the word strict means that each priority level
at value n is considered a higher priority than level n - 1, and that the scheduler always services higher-priority
queues before lower-priority queues, even if the higher-priority queue is negative while the lower-priority queue
is in positive credit. This is a critical point, so it's restated differently, a few times:

On the J-series, WRR/configured weight is honored only for queues at the same priority level.

On the J-series, a high-priority queue can starve all other priorities unless it is rate-limited. The same
goes for medium-high and medium, medium-low and low, and so on down the priority chain.

On a J-series, the strict-high setting is an actual priority level, making it, pardon the pun, higher than high.

The strict-high setting is specifically offered to back up the LLQ feature, which is an 8.1 feature specific to the

J-series.

A J-series strict-high queue cannot be rate-limited with the exact keyword. Instead, a policer is used to mark

traffic above a configured limit as excess. Excess LLQ traffic is permitted only when all other queues have been
emptied, meaning there is no interface congestion. The result is a queue that is always serviced as soon as
possible, whenever it has traffic pending (the highest of all priorities, and only one strict-high queue is

permitted per scheduler map), with a guarantee of at least the configured rate, while still permitting excess LLQ
traffic when no other queues are congested.

If these differences were not enough to confuse the innocent, the J-series scheduler differs from the M-series by
honoring configured weight when servicing negative credit queues at the same priority. As a side effect, you can
configure shaping within a J-series scheduler. This shaping-rate can be less than the default 100%, but more

than the configured transmit rate, which shapes the queue's output to the specified value while allowing limited
used of unused bandwidth, as determined by the differences between the transmit and shaping rates.

Figure 9-14 shows the J-series scheduler behavior.

Figure 9-14. The J-series scheduler

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The upper portion of Figure 9-14 shows the priority-based scheduling behavior, which results in the complete
emptying of all queues at priority n before it moves to the next set of queues at priority n - 1. On the J-series,
the configured transmit rate is significant only between classes at the same priority level. In this case, the
higher-priority traffic associated with queue 1 is shown starving the two lower-priority queues. To resolve this
issue, you need to either rate-limit the high-priority traffic or assign all queues to the same priority level.

The lower half of Figure 9-14 shows how the J-series scheduler honors weight among negative credit queues at
the same priority. Since no additional priority packets are pending in this example, the scheduler continues to
serve the low-priority queues according to their weight, rather than using a simple round-robin scheme, as is
the case with the M-series.

Although it's likely obvious, we are nonetheless explicitly stating here that, because of the differences in
scheduler behavior, you cannot simply copy an existing M-series CoS configuration over to a J-series and just
expect it to work the same way. Successful translation between the two scheduler models requires a complete
understanding of the operational differences. The upcoming lab scenario provides an example of both an M-
series and J-series scheduler that meet the same requirements, and therefore provide similar operational
behavior.

9.3.5.3. Scheduler-based shaping to limit excess bandwidth usage

M-series routers do not support the shaping-rate statement under a scheduler. The only way to cap a

forwarding class's usage of excess bandwidth is to use exact, which allows no excess bandwidth, or to use a

policer to control the total rate of traffic in that class, which indirectly controls how much extra bandwidth it will
use. In contrast, the J-series scheduler supports shaping above the configured transmit weight but below the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

line rate, which provides a guarantee of a minimum weight and a cap on some amount of excess bandwidth. By
default, all schedulers are allowed to use all excess bandwidth, up to the line rate, unless limited by shaping-

rate (J-series) or exact.

9.3.5.4. Scheduler priority levels

The M7i supports two scheduler priority levels: high and low. The strict-high setting on the M-series is no

different from high, from a priority perspective. If you configure both a strict-high and a high priority queue,

the scheduler serves each in round-robin manner until one or both go negative. The strict-high setting here

simply prevents that queue from ever going negative by internally setting its transmit rate to 100%. As of this
writing, the options for medium-high and medium-low are hidden in the M7i command-line interface (CLI), but
you can configure and commit such a setting without any warnings. Note that even though the CLI displays the
associated scheduler as having medium priority, in reality there are only two priority levels, with low and
medium-low treated the same, as are medium-high, high, and strict-high.

In contrast, the J-series supports five distinct priority levels, with strict-high being an actual priority, not just

an assumption of 100% transmit rate, as is the case with the M-series. On the J-series, you can define strict-
high, high, medium-high, medium-low, and low priority values.

9.3.5.5. Hierarchical shaping and shared scheduling

M-series platforms with supported IQ-PICs (GE IQ2 PICs) can support both hierarchical shaping and shared
scheduling resources. A hierarchical shaper is normally associated with the support of oversubscription and
involves applying a shaper via the input-shaping-map statement at both the port and logical interface levels.

The result is the ability to limit the input port rate to a value less than the port speed, and at the same time
shape the individual logical interfaces based on transmit weights that are oversubscribed with respect to the
(shaped) port speed.

A shared scheduler (or shaper) is a set of scheduling resources that is shared among multiple logical interfaces.
This feature is designed to scale the platform by supporting large numbers of subscribers, on a per-VLAN basis,
with a limited set of resources.

J-series platforms do not emulate IQ2 functionality, and therefore do not offer hierarchical shaping and
scheduling in the same way as the M-series with an IQ2. Instead, the J-series use a virtual channel construct,
which provides a close approximation of a shared scheduler or shaper. We describe J-series virtual channels in
the next section.

9.3.5.6. J-series virtual channels

J-series routers support the notion of a virtual channel, which in the context of CoS is not a logical connection
such as an ATM permanent virtual circuit (PVC), but instead a grouping of logical channels that share a common
scheduler. We provide a virtual channel configuration example in "Section 9.5.2," later in this chapter, so a
detailed discussion is held until that time. For now, it is sufficient to say that virtual channels are designed to
accommodate Frame Relay hub and spoke topologies by allowing a central site with a high-speed attachment
the ability to schedule traffic into each DLCI based on some maximum rate, which is typically matched to the
remote site's access rate.

9.3.5.7. RED behavioral differences

The M7i WRED implementation is head-of-line-based, which is to say that a RED decision is made at the time of
packet servicing. This approach has the advantage of notifying senders of congestion sooner, but comes at the
cost of allocating queue resources for a packet that is ultimately doomed. The M-series platform supports RED
profiles that are indexed via protocol (TCP versus UDP) and loss status, for a total of four possible WRED profiles
per queue.

The M7i can support up to 16 WRED profiles per enhanced (current) FPC.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The J-series WRED algorithm operates at the tail of the queue, as the notifications arrive rather than as the
scheduler visits the next notification at the head of each queue. From a practical perspective, there is little
operational impact to the different WRED approaches-we mention them here largely for the sake of
completeness. As of this writing, J-series platforms support only a packet-loss-priority-based WRED index,
supporting as many as four WRED profiles per queue. The trade-off in simplicity comes at the cost of not
allowing a more aggressive drop profile for TCP-based traffic, which is sometimes desired as this type of traffic
reacts best to implicit congestion notification, is normally not real-time-based, and has retransmission to
recover from the loss, so no one is the wiser.

The J-series supports up to 32 WRED profiles per PIM.

9.3.5.8. Number of queues/forwarding classes

The M7i supports a maximum of four queues per logical interface. Note that on the M320 and T-series
platforms, you can configure up to eight queues with certain IQ-type PICs.

J-series routers support eight queues on all interfaces. This obviously accommodates a finer-grained queuing
model, but given the strict priority scheduler you will sometimes want to allocate additional queues to hold
overflow traffic from other queues at various priority levels. These overflow queues are typically set to the same
(low) priority level, and packets that wind up in one of these overflow queues are serviced according to the
queue's assigned weight, but only when all higher-priority queues are empty.

9.3.5.9. PLP and adaptive shaping

M-series platforms support two PLPs: high and low. You can set the PLP using a policer, a multifield classifier, or
a BA classifier. Adaptive shaping based on Frame Relay congestion notification is not supported, nor is setting
the local PLP based on received DE bit status.

J-series routers support four PLP levels: high, medium-high, medium-low, and low. PLP can be set using a
policer, a filter action, or a BA classifier as in the case of the M-series. J-series boxes can also map received
Frame Relay DE indication into a loss priority using a loss-priority-maps statement. The following example

shows a custom frame-relay-de map that happens to match the default, which is to say that received frames

with DE = 1 are classified as having high PLP:

[edit class-of-service]

lab@PBR# show loss-priority-maps

frame-relay-de map_de_to_plp {

 loss-priority high code-points 1;

 loss-priority low code-points 0;

}

You can also apply a BA classifier to further classify traffic. The BA classifier occurs after any loss priority map
and can overwrite the PLP, but only to a higher-loss priority value. The priority map supports only the high- and
low-loss priorities, whereas the subsequent BA classifier stage supports all four priorities.

9.3.5.9.1. Adaptive shaping

Adaptive shaping is a J-series-specific feature that allows the use of two output shapers, based on the current
congestion state of a Frame Relay network. Figure 9-15 shows the adaptive shaping feature in action.

Figure 9-15. Adaptive shaping in response to network congestion

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 9-15 shows a pair of routers connected via Frame Relay. R1 is attached via a T1 interface and has a
committed information rate (CIR) of 50% of T1 capacity, or 778 Kbps. The Frame service offers an extended
burst through the excess information rate (EIR). EIR is not guaranteed, especially when the network
experiences congestion, which is indicated in the forward direction by the receipt of frames with a set FECN bit,
and in the backward direction with a set backward explicit congestion notification (BECN) bit.

The shaper for the BE class is set to 30% of the interface bandwidth. It is guaranteed only 30% of capacity,
which equates to the 460.8 Kbps of throughput in this case. When other classes are not active, the BE class can
burst to its shaped rate of 80%. The shaped rate matches the EIR parameter, which is good, because traffic in
excess of the EIR can be discarded upon ingress by the network-the shaping configuration prevents immediate
discard by limiting how much unused bandwidth the BE class can use. The maximum (EIR) rate is shown in the
top throughput line and represents 80% of a T1's usable throughput.

An adaptive shaper is also configured and applied to the T1 interface. The adaptive shaper takes effect when the
last frame received (assuming there is transmit traffic from R2 to R1) has a set BECN bit. When activated, the
adaptive shaper enforces the CIR to prevent congestion-related discards within the network. When a frame is
received with a cleared BECN bit, the adaptive shaper is removed and R1 is again able to send at the EIR,
assuming that no other classes are active.

9.3.5.10. Number of rewrite markers

M-series platforms with E-FPCs do not have a known limit on the number of rewrite marker tables that can be
defined.

J-series platforms are limited to 64 rewrite markers per PIM.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.3.6. JUNOS Software CoS Defaults

JUNOS software comes with a set of default CoS settings that are designed to ensure that both transit and
control plane traffic is properly classified and forwarded. The default CoS setting supports two forwarding
classes (BE and NC) and implements an IP precedence-style BA classifier that maps network control into queue
3 while all other traffic is placed into queue 0 as BE. A scheduler is placed into effect on all interfaces that
allocates 95% of the bandwidth to queue 0 and the remaining 5% to queue 3. Both of the queues are low
priority, which guarantees no starvation in either platform.

A default WRED profile with a single loss point is placed into effect. The 100% drop at 100% fill setting
effectively disables WRED.

No IP packet rewrite is performed with a default CoS configuration. Packets are sent with the same markers as
when they were received.

9.3.6.1. Four forwarding classes, but only two queues

The default CoS configuration defines four forwarding classes: BE, EF, AF, and NC, which are mapped to queues
0, 1, 2, and 3, respectively. However, as noted earlier, there is no default IP classification that will result in any
traffic being mapped to either the AF or the EF class. This is good, because as also noted earlier, no scheduling
resources are allocated to queue 1 or 2 in a default CoS configuration. It's worth noting that the default MPLS
EXP classifier table is capable of directing traffic into all four queues, but MPLS is not being deployed in this lab.
Some very interesting and difficult-to-solve problems occur if you begin to classify AF or EF traffic without first
defining and applying schedulers for those classes. Doing so typically results in intermittent communications
(some small trickle credit is given to 0% queues to prevent total starvation) for the AF/EF classes; this
intermittency is tied to the loading levels of the BE and NC queues, given that when there is no BE or NC traffic,
more AF/EF can be sent, despite the 0% default weighting.

9.3.6.2. BA and rewrite marker templates

JUNOS creates a complete set of BA classifier and rewrite marker tables for each supported protocol family and
type, but most of these tables are not used in a default CoS configuration. For example, there is both a default
IP precedence (two actually) and a default DSCP classifier and rewrite table. You can view default and custom
tables with the show class-of-service classifier or show class-of-service rewrite-rule command.

The default values in the various BA classifier and rewrite tables are chosen to represent the most
common/standardized usage. In many cases, you will be able to simply apply the default tables. Because you
cannot alter the default tables, it is suggested that you always create custom tables, even if they end up
containing the same values as the default table. This does not involve much work, given that you can copy the
contents of the default tables into a customer table, and in the future, you will be able to alter the customer
tables as requirements change.

In a default configuration, input BA classification is performed by the ipprec-compatibility table and IP

rewrite is in effect, meaning the ToS marking of packets at egress match those at ingress. The only rewrite table
in effect in a default configuration is for MPLS using the exp-default table.

9.3.7. M-Series and J-Series CoS Summary

This section detailed the many common CoS capabilities of the M7i and J-series platforms, and it highlighted the
few areas where their operation or capabilities differ. For example, the J-series has built-in per-unit scheduling
capabilities, for which the M-series platforms require special IQ PICs. Also, the J-series scheduler is priority-
based, which can be a common source of confusion for technicians who are familiar with the M-series scheduler
behavior. Despite these differences, the use of a common code base and CLI, combined with relatively
consistent CoS handling, means that the same set of commands are used to configure and monitor CoS
operation.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The next section applies the knowledge gained thus far in a practical CoS deployment and verification scenario.
Despite the fact that the lab sections are such fun, you should consider taking another break to think about the
material covered to this point and to review any areas with which you are not comfortable.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.4. DiffServ CoS Deployment and Verification

It was a long time getting here, but you have arrived, and you are now ready to rush headlong into a JUNOS
software-based CoS configuration and verification lab. Figure 9-16 provides the network topology for the IP
DiffServ CoS deployment scenario.

Figure 9-16. DiffServ CoS deployment topology

There are a few things to note in Figure 9-16. The test topology is somewhat simplified, and the test bed lacks
the external test equipment needed to accurately measure and verify data plane performance. The first issue is
not really a problem, because a workable CoS configuration is somewhat repetitive, basically involving the need
to put the same configuration bits, consistently, in lots of places. As such, any network with a clearly marked
edge and distribution/core devices services as a workable model with which to demonstrate CoS configuration
and operational verification.

The subset of routers selected for the CoS topology was chosen in large part because of the (relatively) low-
speed T1 interface interconnecting Bock and Porter. We noted previously that CoS matters only when link

http://lib.ommolketab.ir
http://lib.ommolketab.ir

utilization begins to approach 80%. Obviously, with a given offered load, a slower link will exhibit higher
utilization than a faster one-considering the lack of external traffic generators, it will be hard enough to
congest a T1 link, let alone a 100 Mbps Fast Ethernet. In fact, to help stack the odds against a successful CoS
demonstration, the T1 link between Bock and Porter is shaped to 500 Kbps. Although considerably less than

the full T1 rate of 1536 Kbps, the shaped rate still qualifies as a broadband connection, which maintains a fair
degree of realism.

9.4.1. Why Not Test CoS with Control-Plane-Generated Traffic?

The only true way to measure the impact of any CoS configuration is through data plane stimulation using a
reputable external traffic generator. We stress the term reputable here because any device that is used to
diagnose problems that might relate to a few extra milliseconds of queuing delay has to be spot-on accurate
and believable; otherwise, you are likely to find that folks blame unexpected results on the test methodology
and tools rather than on the router's CoS performance. Software-based traffic generators exist, and they are
certainly better than trying to generate test traffic from a router's control plane, but a real router tester, one
that is hardware-based, can easily cost tens of thousands of dollars.

The Juniper Networks architecture separates the control and data planes, and various rate-limiting and
prioritization functions within the PFE and routing engine conspire against any attempt to generate either large
volumes of traffic or test traffic with a high degree of time-based accuracy. To expand, internal RE-based rate
limits control how much traffic the RE can generate using rapid or flood pings. The PFE also has a rate limit as to
how many such Internet Control Message Protocol (ICMP) echo request packets it will even try to pass up to the
host RE. If that were not enough, handling ICMP messages is considered a low priority within JUNOS software.
Given the choice of replying to a ping or processing a Border Gateway Protocol (BGP) route update, a Juniper
router always chooses the latter. This is not to say that the router will not reply to the ping; quite the
opposite-it most certainly will reply, but only when it's good and ready. Although exceedingly reasonable, this
behavior results in significant variance in ping response, even in a network that is largely idle in the control
plane and is transporting very little data.

Putting issues with time-based inaccuracies aside for the moment, the JUNOS software control plane simply
does not generate enough traffic to congest most modern network links. With no congestion, there is no way to
consistently demonstrate any benefit to a CoS configuration.

Consider the output taken between PBR and Bock, when the only traffic in the network is periodic OSPF hellos

and the ICMP test traffic itself:

[edit]

lab@PBR# run traceroute 10.10.12.3

traceroute to 10.10.12.3 (10.10.12.3), 30 hops max, 40 byte packets

 1 10.10.12.3 (10.10.12.3) 24.981 ms 6.937 ms 32.217 ms

The traceroute confirms that the direct 100 Mbps link is used between PBR and Bock, yet notice the large

variance in ping response times, which is normal and expected given the Juniper design:

[edit]

lab@PBR# run ping 10.10.12.3 count 20

PING 10.10.12.3 (10.10.12.3): 56 data bytes

64 bytes from 10.10.12.3: icmp_seq=0 ttl=64 time=26.263 ms

64 bytes from 10.10.12.3: icmp_seq=1 ttl=64 time=10.116 ms

64 bytes from 10.10.12.3: icmp_seq=2 ttl=64 time=20.121 ms

64 bytes from 10.10.12.3: icmp_seq=3 ttl=64 time=10.126 ms

64 bytes from 10.10.12.3: icmp_seq=4 ttl=64 time=10.130 ms

64 bytes from 10.10.12.3: icmp_seq=5 ttl=64 time=44.755 ms

. . .

64 bytes from 10.10.12.3: icmp_seq=15 ttl=64 time=69.799 ms

64 bytes from 10.10.12.3: icmp_seq=16 ttl=64 time=10.124 ms

64 bytes from 10.10.12.3: icmp_seq=17 ttl=64 time=10.129 ms

http://lib.ommolketab.ir
http://lib.ommolketab.ir

64 bytes from 10.10.12.3: icmp_seq=18 ttl=64 time=10.162 ms

64 bytes from 10.10.12.3: icmp_seq=19 ttl=64 time=9.868 ms

--- 10.10.12.3 ping statistics ---

20 packets transmitted, 20 packets received, 0% packet loss

round-trip min/avg/max/stddev = 9.868/16.122/69.799/14.835 ms

The highlighted entries show the degree of response time variance considered par for the course in the Juniper
design. Clearly, trying to validate CoS using rapid pings is simply not workable in JUNOS software, because you
will not be able to generate enough traffic to reliably congest most links. Also, the test results will be all over
the map, whether or not your CoS configuration is working, simply because the endpoints generating the test
traffic treat it as a low-priority process, thereby breaking the CoS chain at its first link.

9.4.1.1. Cannot control classification of locally generated traffic

Generally speaking, unless you are running JUNOS software Release 9.0 or later, you have virtually no control
over what egress queue locally generated traffic is placed into. The basic issue here is that when the RE injects
traffic into the PFE, it bypasses ingress multifield and BA classification and simply does what it feels is best.

For example, a BGP transmission is normally placed into the BE queue (0), unless it is a retransmission, in which
case it goes into the NC queue (3). As another example, you can generate a ping with any arbitrary ToS
pattern, but this ping will be locally classified as BE and placed into queue 0. Downstream nodes can be
expected to correctly recognize the packet's ToS field, because they see the traffic as transit.

The inability to apply your transit CoS actions to locally generated traffic is yet another reason why you cannot
test a local nodes PHB with traffic sourced or received by that same node.

9.4.1.2. Enter resource performance monitoring

Juniper routers support an SLA monitoring feature that uses Real-Time Performance Monitoring (RPM) probes to
measure performance, and if desired, to generate Simple Network Management Protocol (SNMP) alarms when
performance falls below a configurable threshold. In the initial implementation, the RPM daemon ran as a user
process in the RE-unfortunately, this resulted in inaccuracies when the RE CPU happened to be busy doing
something else. Starting with Release 8.3, J-series routers can move the timestamp function into the real-time
thread for significantly improved accuracy. Similar hardware timestamping functionality on the M-series requires
use of the M7i's built-in services interface or an Adaptive Services PIC (ASP) on the M10i. The use of hardware
timestamps does not cause the actual generation or processing of the RPM probes to be any more accurate, as
the RE will still schedule the processing as it sees fit, but when the RE does get around to looking at the probe,
the timestamp, already added at the hardware layer, allows for accurate performance measurements.

Although not nearly as definitive as a real traffic generator, the RPM service automatically tracks loss and
summarizes one-way and round-trip delays, including jitter measurements, which beats the heck out of using
pings and a pad of paper. Also, because the RPM service is instantiated on a pair of routers that are external to
the CoS test bed, maximum accuracy can be expected. By external, we mean that Wheat and Hops simulate

attached CE devices and are not taxed with any packet forwarding (other than the locally generated RP probes
themselves) or any other processing task that could lead to large variances in RPM test probe results-these
routers are not running any other services, are not running any routing protocols, and are not involved in the
FTP transfer used to produce congestion. In this lab topology, Wheat and Hops function strictly as SLA

monitoring devices-which is actually a realistic scenario, as some service providers deploy J-series routers in
just such a capacity.

9.4.2. Configure DiffServ-Based CoS

Refer back to Figure 9-16 for the topology details of the IP DiffServ CoS scenario. You can assume that the
network infrastructure is already configured with the interface addressing and single-area OSPF topology shown.
A passive OSPF instance is enabled on the customer-facing interfaces at PBR and Yeast in order to provide

http://lib.ommolketab.ir
http://lib.ommolketab.ir

reachability between their respective interface addresses. Your goal is to enable CoS in accordance with these
criteria:

Perform the following multifield classification:

Classify ICMP timestamp messages received over customer-facing interfaces as EF to support RPM-
based SLA monitoring for the EF class.

Classify Telnet traffic received over customer-facing interfaces as bronze (BR).

Classify OSPF in the core as NC.

Classify all other traffic as BE.

1.

Perform DSCP-based BA classification at all other nodes, supporting the following forwarding classes and
queue assignments:

BE, mapped to queue 0

EF, mapped to queue 1

BR, mapped to queue 2

NC, mapped to queue 3

2.

Shape traffic on the Frame Relay link to 500 Kbps, in accordance with a 0 CIR service terminating in a 500
Kbps switch port.

3.

Define and apply the following scheduler policy:

Provide BE at least 50% and allow use of excess bandwidth. Configure a PLP = 0 RED profile with
5% drop probability at 50%, and 20% drop probability at 80%, and a PLP = 1 RED profile with 20%
drop probability at 50%, and 70% drop probability at 80%.

Limit BR to 10%; accept up to 1 Mbps/200 KB burst of BR from customers. Excess traffic must be
treated as BE with high PLP by all nodes.

Provide EF at least 35% and ensure that it's serviced quickly to support low-latency applications.
Traffic must not experience more than 30 milliseconds of buffering per hop.

4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Provide NC with at least 5% and ensure that it cannot be starved. The NC class must be able to use
excess bandwidth.

At first glance, the long list of CoS requirements may seem daunting, but when tackled in small parts, the
overall task becomes much easier to manage. CoS-related configurations tend to have a lot of common
elements, which allows you to save time by configuring one node and then using that configuration as a
template to bootstrap the configuration of the remaining routers.

Because the default CoS configuration offers scheduling support for the BE and NC classes only, it's a good idea
to get as much of the CoS infrastructure up and running before you apply any classification that could result in
traffic being mapped into queues other than 0 and 3. This avoids potential disruption resulting from traffic being
assigned to a queue with no scheduling resources assigned.

This scenario calls for the use of DSCP classification. Previous sections detailed how the original IP precedence
functionality is subsumed by the CS code point grouping. The default DSCP rewrite and classifier tables support
the CS DSCPs. This means you can use the default IP precedence classifier at the network's edges while the rest
of CoS is configured, including the DSCP BA classification and rewrite in the distribution and core layers. Stated
differently, the goal is to enable CoS for all four forwarding classes, while maintaining the pre-CoS classification
of only two forwarding classes in an attempt to minimize disruptions stemming from a network with partial CoS
configuration. When all nodes are CoS-aware, MF classification is activated at the edge to enable use of all four
forwarding classes.

9.4.2.1. Multifield classification and policing (task 1)

The first set of CoS functions to be configured are the multifield classifiers used at the edges to perform initial
classification actions on the traffic received from customers. This is accomplished with firewall filters, which also
provide a hook into the policing needed for the EF class in this example. Because the customer devices do not
run any routing protocol, there is no need to support NC classification at ingress. If NC support is needed, it's a
good idea to define explicit multifield classifier support, because the results of ingress BA classification can be
overwritten by a multifield classifier, which could lead to NC being placed into the BE queue.

A multifield classifier and associated policer meeting the requirements of this example are configured at PBR:

Code View:
lab@PBR# show

policer police_bronze {

 if-exceeding {

 bandwidth-limit 1m;

 burst-size-limit 200k;

 }

 then {

 loss-priority high;

 forwarding-class best-effort;

 }

}

filter mf_classify {

 term classify_ef {

 from {

 protocol icmp;

 icmp-type [timestamp timestamp-reply];

 }

 then {

 count ef_in;

 forwarding-class expedited-forwarding;

 accept;

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 term classify_bronze {

 from {

 protocol tcp;

 port telnet;

 }

 then {

 policer police_bronze;

 count bronze_in;

 forwarding-class bronze;

 }

 }

 term else_be {

 then {

 forwarding-class best-effort;

 accept;

 }

 }

}

The classify_ef term matches on ICMP timestamp-related messages, which are then classified as EF. This

term supports the ICMP-based RPM probe request that is generated at Wheat, along with the probe replies

generated at Hops. The classify_bronze term performs a similar function for matching Telnet traffic, except it

also evokes a policer to limit traffic in this class. The associated bronze_policer is set with a traffic profile in

accordance with the provided criteria for rate and burst size. Conforming traffic is handed back to the calling
classify_bronze term, where it is classified as BR, while out-of-profile traffic is classified as BE with a high-loss

priority. Both the EF- and BR-related terms evoke a counter action that can be used later when confirming that
CoS handling and classification are working as expected. The final term matches on everything else for
classification into the BE bin.

Although not shown, the same multifield classifier and policer configuration is also added to Yeast. Also, for

reasons cited earlier, the multifield classifier is not yet placed into effect given that resources have not yet been
defined for the EF or BR class.

9.4.2.2. BA classification and rewriting (task 2)

With multifield classification ready to be placed into effect, you move on to create the DSCP-based BA tables
used by distribution and core layer devices for efficient packet classification. This example creates custom tables
that are then populated with the defaults. This ensures full table population, which is a good housekeeping
practice, given the required behavior of dispatching unmatched traffic into the BE queue. Note that unlike the
default IP precedence classifier (which is actually in effect by default), the default DSCP tables support four
forwarding classes: BE, AF, EF, and NC. This example replaces the AF class with a custom-defined class called
bronze (BR). Once you define a forwarding class called BR and map it to queue 2, the classification and rewrite

tables automatically associate any code point mapping to that queue as belonging to the BR class.

The default DSCP table entries do not support a high- and low-loss priority for BE traffic. To convey an ingress
setting of PLP to other nodes, as required in this case study, you need to define an entry for BE traffic with high-
loss priority. It is customary to use the least significant bit of a given BA field to denote loss priority, which is
the approach taken here, such that the binary pattern 000000 is interpreted as BE with a low-loss priority, and
binary 000001 indicates BE with a high-loss priority. Note how each entry in a BA classification should have a
matching entry in the related rewrite table for consistent handling in downstream nodes.

The custom forwarding class definition and BA classification/rewrite configuration is shown at Bock:

[edit class-of-service]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

lab@Bock# show forwarding-classes

queue 2 bronze;

[edit class-of-service]

lab@PBR# show classifiers

dscp dscp_classify {

 import default;

 forwarding-class best-effort {

 loss-priority high code-points 000001;

 }

}

[edit class-of-service]

lab@PBR# show rewrite-rules

dscp dscp_rewrite {

 import default;

 forwarding-class best-effort {

 loss-priority high code-point 000001;

 }

}

The forwarding-classes statement is used to define a new forwarding class alias called bronze, and to bind

that alias to a queue number. In this case, only one nondefault forwarding class alias is needed, and it is
correctly mapped to queue 2; in a default configuration, this queue number is associated with the AF alias.

The user-defined DSCP BA classifier and rewrite tables are assigned names that denote their function and are
initially populated with the code point defaults. A single modified entry is added to support the conveyance of
loss priority for the BE class to downstream nodes.

The custom forwarding class definition and DSCP classification/rewrite tables are placed into effect on all
noncustomer-facing interfaces at all nodes. There is no harm in applying these tables to the customer-facing
interfaces; but there isn't much gain either. The multifield classification that will be used at the edge makes any
BA classifier superfluous, given that the mf_classify filter is written to classify all traffic that is received and

overrides the results of any BA classification anyway. A rewrite marker at the customer edge is generally used
only when you wish to reset packet markings to some agreed upon default, or to help obfuscate the markings
that are significant in the core, which could be used as ammunition in a CoS-centered denial of service (DoS)
attack. In this example, packets are handed to the egress customer device, with whatever marking they were
received with on the core-facing interface.

Here is the application of the user-defined DSCP classifier and rewrite tables, again at Bock:

Code View:
[edit class-of-service]

lab@Bock# show interfaces

fe-0/0/0 {

 unit 1241 {

 classifiers {

 dscp dscp_classify;

 }

 rewrite-rules {

 dscp dscp_rewrite;

 }

 }

}

t1-0/0/2 {

 unit 0 {

 classifiers {

 dscp dscp_classify;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 rewrite-rules {

 dscp dscp_rewrite;

 }

 }

}

At this stage, the custom forwarding class definition and DSCP BA configuration is replicated to all nodes. The
DSCP classifier and rewrite tables are then applied on all interfaces in the CoS topology, with the exception of
the customer-facing interfaces, which do not use a BA classifier or rewrite table.

Completing the aforementioned steps at all routers has accomplished a large portion of the needed CoS
configuration. To recap, you now have a multifield classifier with policing on the network's edges (not yet
activated, however), you have defined a custom forwarding class call bronze, and you created and applied

custom DSCP classifiers and rewrite rules to support loss priority for the BE class on all noncustomer-facing
interfaces.

The DSCP tables currently use default values for any entry not explicitly specified by the user because the
import default statement is included. The default code points inherently support the IP precedence-based

classification that is still in effect at the network's edges. The use of the default IP precedence classifier,
combined with the inherent compatibility of IP precedence via the CS DSCPs, results in all traffic being classified
into either the BE or the NC class at ingress, just as it was before you began the CoS configuration. Importantly,
the ingress classification is maintained end to end even though downstream devices classify based on DSCP. It's
noted again that the default scheduler configuration, which is still in effect, allocates resources only to the BE
and NC classes, meaning that actions to this point should have had no operational effect on the network. It
could be said that for the average core node, the only changes are a newly defined but still unused forwarding
class and the use of DSCP rather than default IP precedence ingress classification. However, the compatibility
between the precedence and DSCP tables means that the packets are classified into BE or NC with both the
original and modified configurations.

9.4.2.3. CoS shaping (task 3)

Shaping, which reduces the maximum speed of an interface to some lesser value, is useful for a variety of
reasons. You can rate-limit an interface using a policer, but this is problematic from a CoS perspective because
the CoS components do not see the policed rate, but rather the rate of the interface itself. As a result, policing a
100 Mbps interface to 1 Mbps, and then configuring a scheduler with a 10% transmit rate, leads the scheduler
to allocate 10% of 100 Mbps, not the policed rate of 1 Mbps. Shaping performed at the [edit class-of-

service] hierarchy works around this issue, but is supported on only M-series routers when using IQ/IQ2 PICs.

J-series routers support shaping on all interfaces because of their built-in support for per-unit scheduling.

It is fortunate that we used shaping in this example. During testing, it was determined
that a bug affecting buffer allocation (PR 236548) for IXP-based T1/E1 interfaces
resulted in minimal benefit to CoS over the T1 interface, just where it was needed the
most. The presence of the shaping statement corrects the buffer allocation issue, even

when set to 95% of the line rate, and is a reasonable workaround for users on affected
code. In addition to fixing bugs, Juniper is constantly enhancing the CoS capabilities of
the J-series platform. Where possible, users should upgrade to 8.5 or later to get
maximum CoS performance.

In this example, Bock and Porter are interconnected via a Frame Relay service provisioned with a 0 CIR, which

terminates in a 500 Kbps port. Traffic sent in excess of the port speed results in immediate discard, so the T1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

interfaces at Bock and Porter are shaped to a 500 Kbps rate. Later, when you apply a scheduler to these

interfaces, the scheduler will allocate resources based on the shaped rate of 500 Kbps rather than the 1.536
Mbps physical rate. What follows are the Frame Relay interface configuration and related CoS shaping settings
for Bock:

Code View:
[edit]

lab@Bock# show interfaces t1-0/0/2

description Bock-to-porter;

per-unit-scheduler;

dce;

encapsulation frame-relay;

unit 100 {

 dlci 100;

 family inet {

 address 10.10.10.1/30;

 }

}

[edit]

lab@Bock# show class-of-service interfaces t1-0/0/2

unit 100 {

 shaping-rate 500k;

 classifiers {

 dscp dscp_classify;

 }

 rewrite-rules {

 dscp dscp_rewrite;

 }

}

The code highlights show the per-unit-scheduler statement, which is specified at the interface device level to

back up the shaping-rate configuration at the [edit class-of-service interfaces interface-name unit

unit-number] hierarchy. Also highlighted is the related Frame Relay configuration; in this case, Bock is set to a

data circuit-terminating equipment (DCE) device to enable use of ANSI Annex D link integrity (keepalive) and
PVC status polling from (default) data terminal equipment (DTE) Porter.

With shaping in place, the only CoS functionality yet to be configured is the scheduler definition and application
to CoS-enabled interfaces.

9.4.2.4. Scheduler definition and application (task 4)

Up until this stage, the CoS configuration examples and steps shown are the same whether you are dealing with
an M7i (equipped with IQ PICs) or a J-series platform. The differences in scheduler behavior between these
platforms demand careful consideration-you will generally need different scheduler configurations for a J-series
versus an M-series to produce similar scheduling effects.

The scheduling requirements of this scenario were decided upon in equal parts because they are typical, and
because they help to demonstrate the differences in scheduling behavior. Table 9-4 summarizes the scheduling
requirements.

Table 9-4. Summary of scheduling behavior for the DiffServ scenario

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class Guaranteed
rate

Priority; AQM; buffer Excess bandwidth

BE 50% Low; WRED based on PLP;
N/A

Yes

BR 10% Low; N/A; N/A No/Yes, ingress policing sets excess as BE with PLP =
1

EF 35% High; N/A; 30 msec No

NC 5% High; N/A; N/A Yes

9.4.2.4.1. M-series scheduler definition

Table 9-4 shows that two priority levels are required to help expedite EF and NC traffic over BR and BE, and also
details each queue's settings with regard to transmit weight, AQM (WRED)-enabled, buffer size restriction, and
ability to use leftover bandwidth above its configured weight.

The following output shows an M-series scheduler definition that meets all of the specified requirements:

[edit class-of-service]

lab@M-Series# show schedulers

be_sched {

 transmit-rate percent 50;

 priority low;

}

ef_sched {

 transmit-rate percent 35 exact;

 priority high;

 buffer-size temporal 30k;

}

nc_sched {

 transmit-rate percent 5;

 priority high;

}

bronze_sched {

 transmit-rate percent 10 exact;

 priority low;

}

The EF class does not require use of excess bandwidth and is rate-limited through the use of the exact

keyword. This limits EF traffic to its configured weight, which helps to ensure that the class is not
oversubscribed in downstream nodes. Because both the EF and NC classes are set to high priority, you can
guarantee that neither can starve the other. By not specifying strict-high, you also ensure that no starvation

among low-priority queues should the nonpoliced NC class become overactive. This is because the M-series
scheduler round-robins between high-priority queues until their transmit weight has been satisfied, and then
moves on to service low-priority queues with positive credit.

The EF scheduler has its buffer depth manually set to 30 milliseconds of delay bandwidth (30,000
microseconds). This queue's relative high transmit weight combined with its high priority means it should
maintain a low fill level anyway. The reduced buffer size and rate limiting leads to drops in the EF queue during
periods of excessive EF traffic, even when all other classes are idle. In most cases, trying to accept overflow EF
traffic-for example, by reclassifying the excess into another class or by configuring ever-larger buffer
depths-results in more harm than good. This is because although you may reduce the overall number of EF
drops, the resultant increase in delay and delay variance is often more disruptive to a real-time application than
the outright loss such actions aimed to prevent. Worse yet, troubleshooting this type of problem is difficult when

http://lib.ommolketab.ir
http://lib.ommolketab.ir

compared to the relatively straightforward task of correlating service complaints to excessive EF queue drops.

You cannot use the exact keyword for NC scheduling due to the requirement that it be able to use any excess

bandwidth. Without some form of policing/rate limiting, it is possible that excess NC traffic could capitalize on all
unused bandwidth, preventing both the BE and BR classes from being able to send traffic above their configured
weights. Although it's easy enough to police NC traffic, this is seen as unnecessary here because:

There is no requirement that the BE and BR classes must actually get excess bandwidth, just that they
should be able to use it when it's available. Because M-series scheduling is not strict-priority-based, you
need to worry about having high-priority queues affecting a low-priority queue's ability to get at least its
configured weight.

You are not accepting any NC traffic from customer/end devices, which means the only source of NC traffic
is within the network, and you trust your network not to launch an NC-based DoS attack. The only source
of NC in this network is OSPF, which unlike a full BGP table feed, does not generate appreciable volumes
of NC. This is especially true for a small- to medium-scale network that is mostly stable.

The BR scheduler is also shaped to its transmit rate via the exact keyword; recall that ingress policing classifies

excess BR as BE, so the BR class gets its excess bandwidth indirectly via the BE class.

9.4.2.4.2. J-series scheduler definition

Here is an example of a J-series scheduler that closely approximates the M-series example just described:

be_sched {

 transmit-rate percent 50;

 priority low;

}

ef_sched {

 transmit-rate percent 35 exact;

 priority high;

 buffer-size temporal 30k;

}

nc_sched {

 transmit-rate percent 5;

 shaping-rate percent 20;

 priority high;

}

bronze_sched {

 transmit-rate percent 10 exact;

 priority medium-high;

}

Because of the strict priority nature of a J-series scheduler, your first concern should be how to ensure that
higher-priority classes do not prevent lower-priority classes from at least getting their configured weight. This is
accomplished in a number of ways.

First the EF and NC classes are set to the same priority, which is the highest priority configured. This ensures
that the EF and NC classes cannot be starved, and that they cannot starve each other. The EF class is again
capped to its configured weight using exact. In this example, the NC class is shaped, rather than rate-limited,

allowing it to use up to 20% of interface bandwidth.

Although not able to send at line rate, technically this meets the requirement given because the NC class is able
to use excess bandwidth beyond its configured weight. This behavior differs from the M-series scheduler

http://lib.ommolketab.ir
http://lib.ommolketab.ir

example, where the NC class could use up to 100% of available bandwidth when no other classes are active, but
again, the behavior still meets all criteria specified.

Second, the shaped rate of 20% for the NC class, combined with the maximum 35% rate for the EF class,
accounts for only 55% of transmit bandwidth. This leaves a guarantee that at least 45% of the bandwidth
remains for use by the BE and BR classes. The BR class is serviced after the high-priority queues have reached
their limits, but before the BE class due to its higher priority setting. Because the BR class is limited to a
maximum of 10%, you can guarantee that the BE class will get at least 35% of interface bandwidth, using the
following formula:

BE avail% = 100 - (EF max + NC max + BR max)
BE avail% = 100 - (35 + 20 + 10)
BE avail% = 100 - 65

The net result of all this interaction is that the BE class is actually guaranteed to get 35% of transmit
bandwidth, despite its configured 50% weight. However, this reduction in BE capacity occurs only during periods
of excessive NC activity, an event that should be both rare and transient. Besides, any negative impacts of the
design are relegated to the BE class where folks are used to being treated poorly, so who will complain?

This book is written to the 8.0 code base. Starting with Release 8.1, J-series platforms
offer support for an LLQ feature that offers a fifth priority level called strict-high. You

can define only one strict-high queue (well, technically, only the first one defined is

actually considered strict-high). The exact command does not apply because a

strict-high scheduler is automatically given 100% transmit. To prevent starvation

when using the strict-high priority, you must define a policer (or as many as two) that

limits how much traffic is guaranteed, that is dropped only when the egress interface is
congested, or that is dropped regardless of egress congestion.

Refer to the JUNOS software documentation for Release 8.1 and later for additional
details on the LLQ feature.

9.4.3. An Alternative J-Series Scheduler Approach

Although not demonstrated here, you can more closely approximate M-series scheduler behavior by defining
additional forwarding classes that are used to support overflow traffic from higher-priority classes, and that are
serviced only when no other real class has traffic pending. This approach is quite workable on the J-series, given
the support of eight queues/forwarding classes.

Here is an example of the alternative scheduler approach:

be_sched {

 transmit-rate percent 49;

 priority low;

}

ef_sched {

 transmit-rate percent 35 exact;

 priority high;

 buffer-size temporal 30k;

}

nc_sched {

 transmit-rate percent 5 exact;

 priority high;

}

bronze_sched {

 transmit-rate percent 10 exact;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 priority medium-high;

}

nc_overflow_sched {

 transmit-rate percent 1;

 priority low;

}

Note that the scheduler now supports five classes. The new forwarding class is defined as nc_overflow, and the

related scheduler is assigned a low priority, as well as a minimal transmit rate designed to minimize impact on
the BE class. The NC scheduler is now configured with an exact transmit rate of 5%. The support of excess NC is
now backed up by a policer (not shown) that limits NC to 5% of the interface speed, which for Fast Ethernet
would be 5 Mbps.

To configure a policer that is based on a percentage of interface bandwidth, you must
add the interface-specific keyword to the firewall filter that calls the policer.

Traffic exceeding the policer profile is classified as nc_overflow. Because the nc-overflow and BE classes are

assigned the same priority, you ensure that excessive amounts of BE traffic cannot starve the NC overflow
queue. This is a matter of choice here, as the requirements do not mandate that the NC class always be able to
send more than its weight, just that it be able to when excess bandwidth is available.

With the alternative configuration, the NC class gets a guaranteed 5% as NC, and an additional 1% BE transmit
rate, and can burst up to 100% when no other classes are active (95% of which will be treated as BE). At the
same time, the BE class is now guaranteed to get at least 49% when all other classes are active and can burst
to line rate when they are not. This configuration meets all requirements, and offers the additional benefit of
allowing the NC scheduler to operate at 100% when other classes are idle.

9.4.4. Define RED Profiles

To complete the definition of the BE scheduler, you must define two drop profiles-one for PLP 0 and another for
PLP 1 traffic-and link them to the be_sched scheduler. The drop profiles are shown, and the BE scheduler is

updated to incorporate them. The same WRED configuration applies to both M- and J-series routers because the
requirements do not expect drop behavior that is tied to TCP versus UDP, which is not supported on the J-series
anyway. This is an example of WRED because two drop profiles are defined; in this case, the weighting is toward
the internal loss-priority status of each packet in the BE queue.

[edit class-of-service]

lab@PBR# show drop-profiles

be_low_plp {

 fill-level 50 drop-probability 5;

 fill-level 80 drop-probability 50;

}

be_high_plp {

 fill-level 50 drop-probability 50;

 fill-level 80 drop-probability 70;

}

[edit class-of-service]

lab@PBR# show schedulers be_sched

transmit-rate percent 50;

priority low;

drop-profile-map loss-priority low protocol any drop-profile be_low_plp;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

drop-profile-map loss-priority high protocol any drop-profile be_high_plp;

The remaining forwarding classes use the default RED profile, which effectively disables RED given that the only
drop point specified is 100% drop at 100% fill.

9.4.4.1. Scheduler application

The J-series version of the scheduler definition is used in this example, in keeping with the J-series makeup of
the enterprise routing lab. You apply a scheduler to an interface through a scheduler-map statement. Here is a

working scheduler map and its application to all CoS-enabled interfaces, shown at node PBR:

Code View:
[edit class-of-service]

lab@PBR# show scheduler-maps

er_cos_scheduler {

 forwarding-class best-effort scheduler be_sched;

 forwarding-class expedited-forwarding scheduler ef_sched;

 forwarding-class network-control scheduler nc_sched;

 forwarding-class bronze scheduler bronze_sched;

}

[edit class-of-service]

lab@PBR# show interfaces

fe-0/0/0 {

 unit 412 {

 scheduler-map er_cos_scheduler;

 }

 unit 1241 {

 scheduler-map er_cos_scheduler;

 classifiers {

 dscp dscp_classify;

 }

 rewrite-rules {

 dscp dscp_rewrite;

 }

 }

}

The scheduler-map links each defined forwarding class to a scheduling policy. When applied to an interface, a

scheduler is instantiated according to the combined policy of the statements in the scheduler-map. Note that in

this example the use of VLAN tagging warrants the need for per-unit scheduling, which enables scheduling at
the logical interface-that is, at the VLAN level. By default, a per-unit scheduler assumes the full physical
interface bandwidth, unless it is shaped to a lesser value. The scheduler map shown will fail to commit unless
per-unit-scheduling is also set at the [edit interfaces interface-name] hierarchy, as shown:

[edit]

lab@PBR# show interfaces fe-0/0/0

per-unit-scheduler;

vlan-tagging;

unit 412 {

 description PBR-to-Wheat;

 vlan-id 412;

 family inet {

 address 172.16.1.2/24;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

}

unit 1241 {

 description PBR-to-Bock;

 vlan-id 1241;

 family inet {

 address 10.20.130.2/24;

 }

}

9.4.4.2. Activate multifield classification

Now that all forwarding classes have been defined with scheduling resources and you have a consistent BA
classification scheme deployed throughout the network, it is safe to activate the previously defined multifield
classification filter at edge nodes PBR and Yeast. The filter and related policer were defined in a previous step;

all that is left now is to apply the filter in the input direction on all customer-facing interfaces:

[edit]

lab@PBR# show interfaces fe-0/0/0 unit 412

description PBR-to-Bock;

vlan-id 412;

family inet {

 filter {

 input mf_classify;

 }

 address 172.16.1.2/24;

}

9.4.4.3. The complete configuration

The various parts of the CoS configuration have been shown and discussed individually. Here is the complete
CoS configuration at ingress node PBR, to give you a better perspective of the big picture:

Code View:
[edit]

lab@PBR# show class-of-service | no-more

classifiers {

 dscp dscp_classify {

 import default;

 }

}

drop-profiles {

 be_low_plp {

 fill-level 50 drop-probability 5;

 fill-level 80 drop-probability 50;

 }

 be_high_plp {

 fill-level 50 drop-probability 50;

 fill-level 80 drop-probability 70;

 }

}

forwarding-classes {

 queue 2 bronze;

}

interfaces {

 fe-0/0/0 {

 unit 412 {

 scheduler-map er_cos_scheduler;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 unit 1241 {

 scheduler-map er_cos_scheduler;

 classifiers {

 dscp dscp_classify;

 }

 rewrite-rules {

 dscp dscp_rewrite;

 }

 }

 }

}

rewrite-rules {

 dscp dscp_rewrite {

 import default;

 }

}

scheduler-maps {

 er_cos_scheduler {

 forwarding-class best-effort scheduler be_sched;

 forwarding-class expedited-forwarding scheduler ef_sched;

 forwarding-class network-control scheduler nc_sched;

 forwarding-class bronze scheduler bronze_sched;

 }

}

schedulers {

 be_sched {

 transmit-rate percent 50;

 priority low;

 drop-profile-map loss-priority low protocol any drop-profile be_low_plp;

 drop-profile-map loss-priority high protocol any drop-profile be_high_plp;

 }

 ef_sched {

 transmit-rate percent 35 exact;

 buffer-size temporal 30k;

 priority high;

 }

 nc_sched {

 transmit-rate percent 5;

 shaping-rate percent 20;

 priority high;

 }

 bronze_sched {

 transmit-rate percent 10 exact;

 priority medium-high;

 }

}

[edit]

lab@PBR# show interfaces fe-0/0/0

per-unit-scheduler;

vlan-tagging;

unit 412 {

 description PBR-to-Wheat;

 vlan-id 412;

 family inet {

 filter {

 input mf_classify;

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 address 172.16.1.2/24;

 }

}

unit 1241 {

 description PBR-to-Bock;

 vlan-id 1241;

 family inet {

 address 10.20.130.2/24;

 }

}

[edit]

lab@PBR# show firewall

policer police_bronze {

 if-exceeding {

 bandwidth-limit 1m;

 burst-size-limit 200k;

 }

 then {

 loss-priority high;

 forwarding-class best-effort;

 }

}

filter mf_classify {

 term classify_ef {

 from {

 protocol icmp;

 icmp-type [timestamp timestamp-reply];

 }

 then {

 count ef_in;

 forwarding-class expedited-forwarding;

 accept;

 }

 }

 term classify_bronze {

 from {

 protocol tcp;

 port telnet;

 }

 then {

 policer police_bronze;

 count bronze_in;

 forwarding-class bronze;

 }

 }

 term else_be {

 then {

 forwarding-class best-effort;

 accept;

 }

 }

}

Most of the CoS configuration is common to all nodes, with the exception of interface names and the presence
of multifield versus BA classification at customer-facing interfaces. Recall that T1 interface shaping is also in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

effect at nodes Bock and Porter. The t1-0/0/2 CoS configuration is displayed to show the shaping

configuration, and the interface is set for DSCP-based BA classification and DSCP rewrite:

[edit]

lab@Bock# show class-of-service interfaces t1-0/0/2

unit 100 {

 scheduler-map er_cos_scheduler;

 shaping-rate 500k;

 classifiers {

 dscp dscp_classify;

 }

 rewrite-rules {

 dscp dscp_rewrite;

 }

}

9.4.5. Verify DiffServ-Based CoS

With the routers configured, it's time to verify that all this CoS mumbo jumbo actually amounts to a hill of
beans, and better yet, happy end users.

Whenever you feel that a CoS-related configuration is not doing what you expected, it is
a good idea to monitor the system's messages and cosd logfiles while you perform a

commit. Some misconfigurations, or a configuration that requires some bit of missing
hardware to function correctly, often pass the commit check while generating a log
message, indicating that some aspect of the configuration is being ignored and for what
reason.

A number of operational mode commands display CoS configuration, and more important, operational status.
Most you can access with the show class-of-service command:

Code View:
lab@PBR> show class-of-service ?

Possible completions:

 <[Enter]> Execute this command

 adaptive-shaper Show trigger types and associated rate for adaptive shaper

 classifier Show mapping of code point to forwarding class/loss priority

 code-point-aliases Show mapping of symbolic name to code point bit pattern

 drop-profile Show interpolated data points of named drop profile

 forwarding-class Show mapping of forwarding class names to queue numbers

 forwarding-table Show forwarding table information

 fragmentation-map Show mapping of forwarding classes to fragmentation options

 interface Show mapping of CoS objects to interfaces

 loss-priority-map Show mapping of code point to loss priority

 rewrite-rule Show mapping of forwarding class/loss priority to code point

 scheduler-map Show mapping of forwarding classes to schedulers

 traffic-control-profile Show traffic control profiles

 virtual-channel Show virtual channel names

virtual-channel-group Show virtual channel group information

To save space, we will call upon the various commands when actually needed to verify CoS in the test network;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

we will cover the virtual channel and adaptive shaper-related commands in the next section.

You will also find that general firewall and the show interface queue commands come in particularly handy

when checking CoS behavior-the former because firewall filters are used for multifield classification and to help
debug CoS through match and count operations, and the latter because the resultant per-queue packet and
drop counts provide critical information needed to verify classification-general queuing behavior. To display the
queue statistics with show interface queue, you need an M-series platform equipped with an E-FPC, or any J-

series platform.

Also note that you have the relative luxury of a test bed that, aside from OSPF, is completely quiescent unless
stimulated in some way by user traffic, which is under your control. This makes it quite easy to confirm packet
classification and general queuing behavior and to test the overall effects of CoS. This luxury is rarely afforded
on a production network, and it is why it is always a good idea to stage a new CoS rollout in a proof-of-concept
test bed where it is easy to validate and debug the results.

9.4.5.1. Confirm general CoS configuration

Things start at edge node PBR, where confirmation of the required forwarding classes is performed:

lab@PBR> show class-of-service forwarding-class

Forwarding class ID Queue

 best-effort 0 0

 expedited-forwarding 1 1

 bronze 2 2

 network-control 3 3

All four forwarding classes are present, including the custom bronze class. Good. You next verify CoS-related

interface parameters for the core-facing Fast Ethernet interface at PBR with the show class-of-service

interface command:

lab@PBR> show class-of-service interface fe-0/0/0.1241

 Logical interface: fe-0/0/0.1241, Index: 70

 Object Name Type Index

 Scheduler-map er_cos_scheduler Output 21207

 Rewrite dscp_rewrite dscp 26780

 Classifier dscp_classify dscp 25819

The output confirms that the er_cos_scheduler map is in effect, and shows that the custom dscp_classify

classifier and dscp_rewrite rewrite tables have been applied. The index numbers are used internally when

referencing the various tables or scheduler map instances. The makeup of the er_cos_scheduler is now

confirmed:

Code View:
lab@PBR> show class-of-service scheduler-map er_cos_scheduler

Scheduler map: er_cos_scheduler, Index: 21207

 Scheduler: be_sched, Forwarding class: best-effort, Index: 54989

 Transmit rate: 50 percent, Rate Limit: none, Buffer size: remainder,

 Priority: low

 Drop profiles:

 Loss priority Protocol Index Name

 Low any 45889 be_low_plp

 Medium low any 1 <default-drop-profile>

 Medium high any 1 <default-drop-profile>

 High any 14464 be_high_plp

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Scheduler: ef_sched, Forwarding class: expedited-forwarding, Index: 5877

 Transmit rate: 35 percent, Rate Limit: exact, Buffer size: 30000 us,

 Priority: high

 Drop profiles:

 Loss priority Protocol Index Name

 Low any 1 <default-drop-profile>

 Medium low any 1 <default-drop-profile>

 Medium high any 1 <default-drop-profile>

 High any 1 <default-drop-profile>

 Scheduler: bronze_sched, Forwarding class: bronze, Index: 26824

 Transmit rate: 10 percent, Rate Limit: exact, Buffer size: remainder,

 Priority: medium-high

 Drop profiles:

 Loss priority Protocol Index Name

 Low any 1 <default-drop-profile>

 Medium low any 1 <default-drop-profile>

 Medium high any 1 <default-drop-profile>

 High any 1 <default-drop-profile>

 Scheduler: nc_sched, Forwarding class: network-control, Index: 22188

 Transmit rate: 5 percent, Rate Limit: none, Buffer size: remainder,

 Priority: high, Shaping rate: 20 percent,

 Drop profiles:

 Loss priority Protocol Index Name

 Low any 1 <default-drop-profile>

 Medium low any 1 <default-drop-profile>

 Medium high any 1 <default-drop-profile>

 High any 1 <default-drop-profile>

The output of the show class-of-service scheduler-map command contains a lot of gold. The various

highlights call out key differences in the scheduler behavior for each forwarding class. For example, the BE class
is associated with the two RED drop profiles that are indexed against packet loss priority. All other forwarding
classes link to the default RED profile. The EF scheduler's high priority is called out, as is the time-based
constraint on its buffer size.

The BR scheduler is called out for its medium-high priority, and its rate-limiting through use of exact. Excess

traffic in this BR class is reclassified as high-loss BE, affording this class an indirect way of getting unused
bandwidth. The NC scheduler has a 20% shaping rate, which caps that queue at 20% of the transmit bandwidth,
even when all other forwarding classes are idle.

It's critical to note that in this example, the only mechanism that prevents higher-priority schedulers from
starving lower-priority schedulers is the rate limiting achieved through use of either the exact or the shaping-

rate keyword. As an alternative, you could also use a firewall-based policer to provide the isolation needed

between traffic classes for a successful DiffServ deployment.

The RED profiles associated with the BE class are displayed:

ab@PBR> show class-of-service drop-profile

Drop profile: <default-drop-profile>, Type: discrete, Index: 1

 Fill level Drop probability

 100 100

Drop profile: be_high_plp, Type: discrete, Index: 14464

 Fill level Drop probability

 50 50

 80 70

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Drop profile: be_low_plp, Type: discrete, Index: 45889

 Fill level Drop probability

 50 5

 80 50

The output confirms the 100%/100% setting for the default drop profile, and the two custom RED profiles
reflect the required drop points, which differ for high versus low-loss priority BE traffic. You now confirm the
DSCP BA and rewrite tables. For brevity's sake, we show only a portion of the classification table:

lab@PBR> show class-of-service classifier type dscp name dscp_classify

Classifier: dscp_classify, Code point type: dscp, Index: 25819

 Code point Forwarding class Loss priority

 000000 best-effort low

 000001 best-effort high

 000010 best-effort low

 000011 best-effort low

. . .

The highlighted code calls out the custom portion of the table, which defines a high-loss priority BE class code
point. With the basic components of CoS configuration confirmed, it's time to move on to confirm data plane
behavior.

Verifying Control and Data Plane Consistency

Most of the operational-mode CoS commands shown in this chapter have a forwarding table
counterpart. Generally speaking, the output of control plane versus data plane forwarding table-
related commands should agree. In some cases, a configuration may be rejected, and as a result
the changes are not pushed into the forwarding table. When troubleshooting a CoS problem, it's
always a good idea to look for CoS-related log messages when you commit, and to confirm that
the forwarding table state matches the configuration and related control plane displays. The
following code sample taken from PBR shows that the forwarding table's view of the DSCP rewrite

function does in fact match the configuration:

Code View:
[edit]

lab@PBR# run show class-of-service forwarding-table rewrite-rule

Rewrite table index: 26780, # entries: 4, Table type: DSCP

FC# Low bits State High bits State Medium State Medium State

 Low bits High bits

0 000000 Enabled 000001 Enabled

1 101110 Enabled 101110 Enabled

2 001010 Enabled 001100 Enabled

3 110000 Enabled 111000 Enabled

The output confirms that packets placed into queue 0, the BE queue, will have their DSCP
rewritten to binary 000000 when classified as low loss, or 000001 when classified as high loss. The
default DSCP classifier supports loss priority for the AF (now called bronze) and NC classes. User

customization was required for BE loss priority support. The default settings for queue 1 (EF)
result in the same marker regardless of PLP status.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.4.5.2. Confirm classification and queuing

Displayed here for reference is the RPM-related configuration for the SLA monitoring client Wheat. We will

display and analyze the actual RPM probe status later in this section.

[edit]

lab@Wheat# show services

rpm {

 probe test_cos {

 test icmp_timestamp_cos {

 probe-type icmp-ping-timestamp;

 target address 84.10.109.7;

 probe-count 2;

 probe-interval 1;

 test-interval 1;

 history-size 15;

 data-size 574;

 hardware-timestamp;

 }

 }

 probe-limit 100;

}

The RPM configuration defines a test called icmp_timestamp_cos that is owned by the test_cos entity. The

target address specifies Hops's fe-0/0/0.3233 interface address. Various other parameters are specified to

control probe frequency, test count, and test repetition rate. In this case, we expect to see one probe generated
each second, with two such probes constituting a test group and a new test beginning one second later. The
service is configured to retain 15 history samples, which given these settings, represents approximately 15
seconds' worth of performance data.

The SLA probe routers are loaded with an 8.3 release to support timestamping within the real-time forwarding
thread, which is enabled with the hardware-timestamp keyword. This significantly decouples general control

plane activity from the processing of the probe message timestamps, thereby offering significantly improved
accuracy.

No specific configuration is needed at the probe server because ICMP messages are replied to by default; the
use of a TCP or UDP test probe requires a server configuration to ensure that a matching process is created to
listen for incoming probe requests.

9.4.5.2.1. Multifield classification

CoS is configured in the test network in a symmetric, bidirectional manner. Still, it sometimes helps to think in a
simplex manner when verifying CoS. Once proper behavior is verified in the Wheat-to-Hops direction, you

simply perform the same steps, but now in the opposite direction to obtain full confirmation of CoS operation.

You begin confirmation of multifield classification at PBR because Wheat is the source of EF test probes. To

ensure a clean slate, you clear all firewall and interface counters at PBR, and the interface counters at all other

nodes; here are the commands issued on PBR:

lab@PBR> clear firewall all

lab@PBR> clear interfaces statistics all

After a few moments, you display the firewall counters associated with the mf_classify filter:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

lab@PBR> show firewall filter mf_classify

Filter: mf_classify

Counters:

Name Bytes Packets

ef_in 56488 92

bronze_in 0 0

Policers:

Name Packets

police_bronze-classify_bronze 0

The firewall counter and related policer output is a good indication that PBR is correctly classifying EF traffic. The

presence of ICMP test probes is registering as EF traffic, and the lack of a Telnet session keeps the bronze class

at zero. The police_bronze policer, which is called from the classify_bronze term, has a 0 count, indicating

that no out-of-profile BR traffic has been reclassified as BE. Given that there is currently no traffic in the BR
class, this too is in keeping with expectations.

To test the BR classification, a Telnet session is opened and subsequently closed, between Wheat and Hops:

lab@Wheat# run telnet 84.10.109.7

Trying 84.10.109.7...

Connected to 84.10.109.7.

Escape character is '^]'.

hops (ttyp0)

login: lab

Password:

--- JUNOS 8.3R3.2 built 2007-10-13 04:50:17 UTC

lab@hops> exit

Connection closed by foreign host.

[edit]

Correct multifield classification for the BR class is confirmed by redisplaying the counters associated with the
multifield classifier:

lab@PBR> show firewall | match bronze

bronze_in 1986 35

police_bronze-classify_bronze 0

The bronze_in counter correctly reflects the generated Telnet traffic, which confirms multifield classification for

BR traffic.

9.4.5.2.2. BA classification

There is no firewall counter for the BE class in this example. To verify correct BE classification, and for that
matter general BA classification among all nodes in the forwarding path between Wheat and Hops, you examine

egress queue statistics using the show interfaces queue command. In this example, the command is run on

the customer-facing interface of egress node Yeast. Observing the expected queue statistics here goes a long

way toward confirming that network-wide BA classification is working correctly.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The 8.0R1 release used to develop this material was affected by a bug that incorrectly
lumps the queue statistics for all locally generated network control traffic (OSPF) into a
single logical interface for each physical interface device. Transit network control traffic
(e.g., Internal BGP [IBGP]) is not affected. As a result of this issue, no NC count is
observed on the core-facing interface at PBR, because the NC count was erroneously

tallied against the customer-facing fe-0/0/0.412 interface, which is running a passive

OSPF instance and should therefore reflect a 0 count for NC. PR 258580 is tracking this
issue.

Before looking at the queue stats, we stimulate the BE class with some regular (not timestamp related) pings
from Wheat to Hops. Recall that except for the background OSPF, this network is otherwise completely idle,

which makes it easier to correlate test traffic to queuing statistics:

[edit]

lab@Wheat# run ping 84.10.109.7 rapid count 10

PING 84.10.109.7 (84.10.109.7): 56 data bytes

!!!!!!!!!!

--- 84.10.109.7 ping statistics ---

10 packets transmitted, 10 packets received, 0% packet loss

round-trip min/avg/max/stddev = 9.972/20.469/32.392/7.602 ms

Here are the egress queuing statistics for the customer-facing interface at router Yeast:

Code View:
lab@Yeast# run show interfaces queue fe-0/0/0.3233

 Logical interface fe-0/0/0.3233 (Index 69) (SNMP ifIndex 41)

Forwarding classes: 8 supported, 8 in use

Egress queues: 8 supported, 8 in use

Burst size: 0

Queue: 0, Forwarding classes: best-effort

 Queued:

 Packets : 10 0 pps

 Bytes : 1020 0 bps

 Transmitted:

Packets : 10 0 pps

 Bytes : 1020 0 bps

 Tail-dropped packets : 0 0 pps

 RED-dropped packets : 0 0 pps

 Low : 0 0 pps

 Medium-low : 0 0 pps

 Medium-high : 0 0 pps

 High : 0 0 pps

 RED-dropped bytes : 0 0 bps

 Low : 0 0 bps

 Medium-low : 0 0 bps

 Medium-high : 0 0 bps

 High : 0 0 bps

Queue: 1, Forwarding classes: expedited-forwarding

 Queued:

 Packets : 130 0 pps

 Bytes : 82160 5000 bps

 Transmitted:

 Packets : 130 0 pps

 Bytes : 82160 5000 bps

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Tail-dropped packets : 0 0 pps

 RED-dropped packets : 0 0 pps

 Low : 0 0 pps

 Medium-low : 0 0 pps

 Medium-high : 0 0 pps

 High : 0 0 pps

 RED-dropped bytes : 0 0 bps

 Low : 0 0 bps

 Medium-low : 0 0 bps

 Medium-high : 0 0 bps

 High : 0 0 bps

Queue: 2, Forwarding classes: bronze

 Queued:

Packets : 36 0 pps

 Bytes : 2686 0 bps

 Transmitted:

 Packets : 36 0 pps

 Bytes : 2686 0 bps

 Tail-dropped packets : 0 0 pps

 RED-dropped packets : 0 0 pps

 Low : 0 0 pps

 Medium-low : 0 0 pps

 Medium-high : 0 0 pps

 High : 0 0 pps

 RED-dropped bytes : 0 0 bps

 Low : 0 0 bps

 Medium-low : 0 0 bps

 Medium-high : 0 0 bps

 High : 0 0 bps

Queue: 3, Forwarding classes: network-control

 Queued:

 Packets : 0 0 pps

 Bytes : 0 0 bps

 Transmitted:

 Packets : 0 0 pps

 Bytes : 0 0 bps

 Tail-dropped packets : 0 0 pps

 RED-dropped packets : 0 0 pps

 Low : 0 0 pps

 Medium-low : 0 0 pps

 Medium-high : 0 0 pps

 High : 0 0 pps

 RED-dropped bytes : 0 0 bps

 Low : 0 0 bps

 Medium-low : 0 0 bps

 Medium-high : 0 0 bps

 High : 0 0 bps

The display is long, but mostly repetitive in that the same information is repeated for each defined forwarding
class. The command output displays the number of bytes/packets queued and transmitted-any differences in
these counts indicate some type of drop. Tail and RED-induced drops are each counted, allowing you to
determine the nature of any drops that happen to occur.

The sample output shows that no drops have occurred, and reflects that the 10 ordinary ICMP packets
(nontimestamp-related) were classified as BE, that ongoing traffic is being tallied as EF (the RPM probes), and
that 36 BR packets have been classified (the Telnet session). The NC queue is shown at zero, which is expected

http://lib.ommolketab.ir
http://lib.ommolketab.ir

given that OSPF is not actively sending hellos on the Hops-facing interface. These results show that initial

multifield classification at the edge is correctly conveyed among all nodes in the path via BA classification.

9.4.5.3. Confirm that all this CoS stuff actually does something

To this point the various operational mode commands have returned expected results, which imply that CoS is
correctly configured and is up and doing its thing. But how can you really prove the benefit, especially when
lacking external packet generation equipment?

The use of highly accurate RPM timestamp probes, combined with the relatively low-speed link (the 500 Kbps
[shaped] between Bock and Porter), should allow a repeatable demonstration of IP CoS benefits.

9.4.5.4. No CoS benchmark

You begin by obtaining a no CoS network baseline. Later, when CoS is reenabled, the before and after results
allow you to accurately gauge what effects CoS has in the current test bed. You remove CoS by stripping down
the class-of-service stanza at Bock and Porter to leave only the 500 Kbps shaping rate. Remember, a CoS

chain is only as strong as the weakest link, so removing CoS-aware packet handling at the 500 Kbps choke
point should fatally weaken the entire chain. This actually provides an interesting demonstration of how a
consistent PHB in all nodes is critical to overall CoS success-a single misconfigured router can ruin CoS
performance on an end-to-end basis.

The modified CoS configuration is displayed at Bock:

[edit]

lab@Bock# show class-of-service

interfaces {

 t1-0/0/2 {

 unit 100 {

 shaping-rate 500k;

 }

 }

}

Meanwhile, back at Wheat, connectivity is confirmed and the RPM service is temporarily deactivated to ensure

that a fresh history is created:

[edit]

lab@Wheat# run ping 84.10.109.7 rapid count 10

PING 84.10.109.7 (84.10.109.7): 56 data bytes

!!!!!!!!!!

--- 84.10.109.7 ping statistics ---

10 packets transmitted, 10 packets received, 0% packet loss

round-trip min/avg/max/stddev = 9.884/22.581/39.944/9.170 ms

[edit]

lab@Wheat# deactivate services

[edit]

lab@Wheat# commit

An FTP transfer is started between Porter and Bock. Once the transfer begins, the RPM service is activated at

Wheat:

Code View:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[edit]

lab@Porter# run ftp 10.10.12.3

Connected to 10.10.12.3.

220 Bock FTP server (Version 6.00LS) ready.

Name (10.10.12.3:lab): lab

331 Password required for lab.

Password:

230 User lab logged in.

Remote system type is UNIX.

Using binary mode to transfer files.

ftp> mget ju*

mget junos-jseries-8.0R2.8-domestic.tgz? y

200 PORT command successful.

150 Opening BINARY mode data connection for 'junos-jseries-8.0R2.8-domestic.tgz'

 (38563456 bytes).

0% 44888 14:19 ETA

With the transfer underway, the RPM service is reactivated:

[edit]

lab@Wheat# activate services

[edit]

lab@Wheat# commit

The probes are allowed to run for 15-30 seconds to get some statistical accuracy. The RPM history is displayed
at Wheat:

[edit]

lab@Wheat# run show services rpm history-results

 Owner, Test Probe received Round trip time

 test_cos, icmp_timestamp_cos Mon Oct 29 00:58:53 2007 266417 usec

 test_cos, icmp_timestamp_cos Mon Oct 29 00:58:54 2007 265010 usec

 test_cos, icmp_timestamp_cos Mon Oct 29 00:58:55 2007 237000 usec

 . . .

 test_cos, icmp_timestamp_cos Mon Oct 29 00:59:08 2007 268167 usec

 test_cos, icmp_timestamp_cos Mon Oct 29 00:59:09 2007 171237 usec

The display confirms some pretty long round-trip times, some as long as 265 milliseconds. Given that the one-
way target delay for Voice over IP is only 150 milliseconds, it's safe to say there is no joy for IP telephony users
in the current network.

You can display details about each probe, along with an average for all completed tests, using the show

services rpm probe-results command:

Code View:
[edit]

lab@Wheat# run show services rpm probe-results

 Owner: test_cos, Test: icmp_timestamp_cos

 Target address: 84.10.109.7, Probe type: icmp-ping-timestamp,

 Test size: 2 probes

 Probe results:

 Response received, Mon Oct 29 00:59:17 2007,

 Client and server hardware timestamps

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Rtt: 300236 usec, Round trip jitter: 283526 usec,

 Round trip interarrival jitter: 95059 usec

 Results over current test:

 Probes sent: 1, Probes received: 0, Loss percentage: 100

 . . .

 Results over all tests:

Probes sent: 53, Probes received: 49, Loss percentage: 7

 Measurement: Round trip time

 Samples: 49, Minimum: 16710 usec, Maximum: 300236 usec,

 Average: 199529 usec, Peak to peak: 283526 usec, Stddev: 81768 usec

 Measurement: Positive round trip jitter

 Samples: 25, Minimum: 421 usec, Maximum: 283526 usec,

 Average: 82333 usec, Peak to peak: 283105 usec, Stddev: 75539 usec

 Measurement: Negative round trip jitter

 Samples: 23, Minimum: 1407 usec, Maximum: 280411 usec,

 Average: 88507 usec, Peak to peak: 279004 usec, Stddev: 71908 usec

The highlights call out that some probes are being lost, and that the average round-trip delay is more than 199
milliseconds. Note that average one-way jitter is rather large at some 82 milliseconds.

9.4.5.5. The CoS benchmark

OK, drum roll please.... A lot of work has led up to this point, and now it is time for the CoS rubber to meet the
road, as it were. You restore the CoS configuration at Bock and Porter, and again deactivate the RPM service at

Wheat to reset for a new test.

A new FTP session is started between Porter and Bock:

Code View:
[edit]

lab@Porter# run ftp 10.10.12.3

Connected to 10.10.12.3.

220 Bock FTP server (Version 6.00LS) ready.

. . .

mget junos-jseries-8.0R2.8-domestic.tgz? y

200 PORT command successful.

150 Opening BINARY mode data connection for 'junos-jseries-8.0R2.8-domestic.tgz'

 (38563456 bytes).

 0% 31856 40:12 ETA

With the new FTP session underway, the RPM service is again activated at Wheat:

[edit]

lab@Wheat# activate services

[edit]

lab@Wheat# commit

As before, we again wait 30 seconds or so to allow some RPM statistics to accumulate. After a long 30 seconds,
the results are displayed:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[edit]

lab@Wheat# run show services rpm history-results

 Owner, Test Probe received Round trip time

 test_cos, icmp_timestamp_cos Mon Oct 29 01:08:52 2007 17236 usec

 test_cos, icmp_timestamp_cos Mon Oct 29 01:08:53 2007 20896 usec

 . . .

 test_cos, icmp_timestamp_cos Mon Oct 29 01:09:06 2007 17769 usec

 test_cos, icmp_timestamp_cos Mon Oct 29 01:09:07 2007 18294 usec

 test_cos, icmp_timestamp_cos Mon Oct 29 01:09:08 2007 19068 usec

Well, the history results are far, far better than observed in the no-CoS benchmark. The round-trip delays now
average only 18 milliseconds, as opposed to the 200+ result observed with no CoS. Once again, probe details
are displayed:

Code View:
[edit]

lab@Wheat# run show services rpm probe-results

 Owner: test_cos, Test: icmp_timestamp_cos

 Target address: 84.10.109.7, Probe type: icmp-ping-timestamp,

 Test size: 2 probes

 Probe results:

 Response received, Mon Oct 29 01:09:12 2007,

 Client and server hardware timestamps

 Rtt: 24557 usec, Round trip jitter: -13326 usec,

 Round trip interarrival jitter: 8125 usec

 Results over current test:

 Probes sent: 2, Probes received: 2, Loss percentage: 0

 Measurement: Round trip time

 Samples: 2, Minimum: 24557 usec, Maximum: 37883 usec,

 Average: 31220 usec, Peak to peak: 13326 usec, Stddev: 6663 usec

 . . .

 Results over all tests:

 Probes sent: 58, Probes received: 58, Loss percentage: 0

 Measurement: Round trip time

 Samples: 58, Minimum: 16455 usec, Maximum: 44654 usec,

 Average: 22455

 usec, Peak to peak: 28199 usec, Stddev: 7167 usec

 Measurement: Positive round trip jitter

 Samples: 28, Minimum: 506 usec, Maximum: 26628 usec, Average: 8293 usec,

 Peak to peak: 26122 usec, Stddev: 8134 usec

 Measurement: Negative round trip jitter

 Samples: 29, Minimum: 7 usec, Maximum: 25318 usec, Average: 7781 usec,

 Peak to peak: 25311 usec, Stddev: 6889 usec

The probe details confirm that CoS has made a dramatic impact on network performance, at least when
congestion is present and you are a member of the EF class! The average round-trip time is 22 milliseconds and
the average one-way jitter is now only 8 milliseconds. A quick look at Bock's T1 interface stats confirms that all

drops are confined to the BE class, and that the drops stem from the low-loss priority RED profile:

lab@Bock# run show interfaces queue t1-0/0/2.100

 Logical interface t1-0/0/2.100 (Index 69) (SNMP ifIndex 39)

Forwarding classes: 8 supported, 8 in use

Egress queues: 8 supported, 8 in use

Burst size: 0

Queue: 0, Forwarding classes: best-effort

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Queued:

 Packets : 32519 0 pps

 Bytes : 48570458 0 bps

 Transmitted:

 Packets : 30047 0 pps

 Bytes : 44852756 0 bps

 Tail-dropped packets : 0 0 pps

 RED-dropped packets : 2472 0 pps

 Low : 2472 0 pps

 Medium-low : 0 0 pps

 Medium-high : 0 0 pps

 High 0 0 pps

Note that the total queued versus transmitted packet counters for the BE class differ by the same number as
displayed under RED drops. This confirms that RED is kicking in when the BE queue begins to fill. The lack of tail
drops implies that the TCP-based FTP source correctly sensed the loss as an indication of congestion, and began
to slow down the rate of traffic by reducing the window size.

Comparing pre- and post-CoS results leaves little doubt that JUNOS software CoS works. The only question that
remains is "Why are you still here, reading this, when you should be adding CoS to your network, now?"

9.4.6. DiffServ Deployment Summary

This section demonstrated how Juniper Networks routers are configured to provide end-to-end CoS based on
the DiffServ model. This involves the use of multifield classification at the network's edges, and custom BA
classification in the core to convey loss priority for the BE class.

The scenario also demonstrated three different approaches to scheduling, two of which were based on the use
of the M-series or J-series platform, and the third simply an alternative J-series approach that made use of an
extra queue for handling overflow traffic.

We demonstrated the use of shaping, policing, and rate limiting to preserve class isolation, as well as the
operational mode commands that allow you to confirm proper CoS behavior and operation. We proved that the
JUNOS software CoS solution works through the use of external LSA monitoring probes that show a clear benefit
to the CoS configuration when link congestion occurred.

The next section details specific J-series CoS capabilities that are designed to enhance interworking with Frame
Relay. You should make sure you are comfortable with the configuration and confirmation examples used in this
section before proceeding.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Displaying J-Series Tail Drops

Currently, the CoS statistics obtained via the CLI show interfaces queue command on a J-series

router tally both RED and tail drops under the RED-dropped packets counter, which results in a

constant 0 value for tail drops. This issue was tracked under PR 230928 and has been fixed,
starting with the 8.2R4 release. The only way to view tail drops in previous code releases is to
connect to the fwdd daemon to issue the show outq statistics command. The output displays

the cumulative tail drops for all enabled interfaces:

Code View:
[edit]

lab@Bock# run start shell

% su

Password:

root@Bock% vty fwdd

BSD platform (Pentium processor, 84MB memory, 8192KB flash)

FWDD(Bock vty)# show outq statistics

Number of packets queued in outq queues: 70412

Number of txdone callbacks: 176652

Red drops: 0

 Tail drops: 0

Error counters:

 Invalid vctable base in packet enqueue: 0

 Bad result buffers: 0

 Queue not ready: 0

 Empty queue schedule: 0

 Transmit errors: 0

 Result stats increment errors: 0

 Invalid outq ifl index errors: 0

 Invalid txdone callbacks: 0

 Invalid requests for vctable base: 1

Ifl Pkts In Bytes In Pkts Tx Bytes Tx

--- ------- -------- ------- --------

fe-0/0/0.1241 79672 45260412 79672 45260412

t1-0/0/2.100 96980 45119122 96980 45119122

t1-0/0/2.100 0 0 0 0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.5. J-Series Adaptive Shapers and Virtual Channels

This section focuses on J-series-specific CoS capabilities that are designed to work with Frame Relay. The virtual
channel and adaptive shaping features help to optimize Frame Relay-based transport. Note that currently you
cannot combine the functionality of an adaptive shaper with that of a virtual channel.

9.5.1. Configure Adaptive Shaping

Recall that Bock and Porter are connected via a 0 CIR Frame Relay service terminating in a 500 Kbps port.

With the newly added DiffServ-based CoS infrastructure now in place, the idea of a 0 CIR service has been
revisited. The result is a decision to pay extra for a guaranteed CIR of 256 Kbps, with the ability to burst to port
speed via an EIR of 244 Kbps (CIR + EIR = port speed).

Simply configuring a scheduler or shaper that allows the router to send at maximum speed, all the time, is
problematic because during network congestion only the CIR traffic is guaranteed for delivery. Ideally, you want
to send at the EIR rate only when the network is not congested, and then fall back to the CIR when congestion
is detected, in an effort to ensure that congestion-induced discards do not negate your CoS SLAs. This capability
is exactly what adaptive shaping on J-series routers provides.

The configurations at Bock and Porter are updated to support adaptive shaping. The modified configuration at

Bock is shown:

[edit class-of-service]

lab@Bock# show adaptive-shapers

becn_shaper {

 trigger becn shaping-rate 256k;

}

[edit class-of-service]

lab@Bock# show interfaces t1-0/0/2

unit 100 {

 scheduler-map er_cos_scheduler;

 adaptive-shaper becn_shaper;

 shaping-rate 500k;

 classifiers {

 dscp dscp_classify;

 }

 rewrite-rules {

 dscp dscp_rewrite;

 }

}

The changes to the configuration are highlighted, and they show the definition of an adaptive shaper called
becn_shaper. The adaptive shaper is set to trigger on receipt of a set BECN bit, at which point the scheduler

begins to shape to 256 Kbps. This rate matches the service's CIR, which prevents discards and the resulting
impact to your CoS SLA. When the last frame received has a cleared BECN, the interface begins to schedule
back into the 500 Kbps rate.

Here, use the show class-of-service interface and show class-of-service adaptive-shaper commands

to verify adaptive shaping:

[edit class-of-service]

lab@Bock# run show class-of-service adaptive-shaper

Adaptive shaper: becn_shaper, Index: 44416

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Trigger type Shaping rate

 BECN 256000 bps

[edit class-of-service]

lab@Bock# run show class-of-service interface t1-0/0/2.100

 Logical interface: t1-0/0/2.100, Index: 69

 Shaping rate: 500000

 Object Name Type Index

 Scheduler-map er_cos_scheduler Output 21207

 Adaptive-shaper becn_shaper 44416

 Rewrite dscp_rewrite dscp 26780

 Classifier dscp_classify dscp 25819

The displays confirm that the adaptive shaper is correctly programmed and placed into effect on Bock's Frame

Relay interface.

9.5.2. Virtual Channels

Virtual channels are used to ensure that a central site with a high bandwidth connection does not overrun
remote sites that access the network at slower rates. Figure 9-17 illustrates a typical hub and spoke Frame
Relay topology. The headquarters site has a significantly higher access rate when compared to the branch office
spokes.

Figure 9-17. J-series virtual channels

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The key point of Figure 9-17 is that the central site terminates at a T1 switch port in the service provider's
network, while the remote sites are terminated at significantly lower speeds. In a Frame Relay service, the
absolute limit on data transfer rate is the logical port speed, which can be lower than the transmission link's
physical bit rate; for example, Site 1 is using a Fractional T1 (FT1) circuit to access the provider, but pays for
only 128 Kbps of port speed and can use only 128 Kbps of the T1's capacity. Regardless of CIR rate or the state
of network congestion, Site 1 and Site 2 are physically limited to the reception of no more that 128/256 Kbps of
traffic, respectively.

The problem, if not already obvious, is that the central site can easily burst to full T1 rates, and if these bursts
are of any appreciable duration, there will be massive loss due to buffer overflow in the network. This causes
TCP-based sources to sense congestion and throttle back. If not corrected, this can lead to an ongoing
boom/bust cycle as the sources ramp up, sense loss, and then ramp back down, resulting in diminished
throughput and higher latency due to buffering within the network. This is more than a simple issue of not
knowing each virtual channel's CIR, as the topology shown in Figure 9-17 may well be based on a 0 CIR service.
The issue is simply one of mismatched port speed over a network that does offer extensive buffering.

A virtual channel group is a collection of virtual channels that are applied to a logical interface. Each virtual
channel within the group has its own queues and scheduler-map, and each can be shaped to a rate that is less

than the physical interface speed. In some cases, you may choose to shape a virtual channel based on CIR, but
in most cases the shaping rate is set to the lesser of the two port speeds. When not shaped, each virtual
channel can burst to full interface speed, and when multiple unshaped virtual channels are active, they each get
a round-robin fair share of the total physical interface bandwidth. There is no priority scheduling between virtual
channels.

Firewall filters are used to direct traffic to the correct virtual channel based on some match condition-for
example, the destination address. Unmatched traffic is sent to a default virtual channel. This requires that one
virtual channel be designated as the default within each virtual channel group.

9.5.2.1. Configure virtual channels

The lack of logical router support for the J-series in the 8.0R1 code used in this lab, combined with the lack of
Frame Relay switching, results in the need to use Porter twice-once as Site 1 using DLCI 100 and again as

Site 2 with DLCI 200. This is why Figure 9-17 shows the same lo0 address for both Sites 1 and 2. Because

there is no virtual channel configuration at remote sites, this example focuses on Bock, the central site router.

In this example, we do not bother with a virtual router (VR) instance for the second connection from Porter to

Bock; instead, a new logical unit is added to the t1-0/0/2 interface with a unique host ID, and the original IP

address is reassigned under unit 100 to match the addressing shown in Figure 9-17:

[edit]

lab@Porter# show interfaces t1-0/0/2

description Porter-to-Bock;

per-unit-scheduler;

encapsulation frame-relay;

unit 100 {

 dlci 100;

 family inet {

 address 10.10.10.1/24;

 }

}

unit 200 {

 dlci 200;

 family inet {

 address 10.10.10.2/24;

 }

}

The addressing results in a duplicate subnet shared between units 100 and 200, but this is not a problem here:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Code View:
[edit]

lab@Porter# run show ospf neighbor

 Address Interface State ID Pri Dead

10.10.8.2 fe-0/0/1.2332 Full 10.30.1.1 128 31

10.10.10.1 t1-0/0/2.100 Full 10.10.12.3 128 31

10.10.10.1 t1-0/0/2.200 Full 10.10.12.3 128 30

[edit]

lab@Porter# run show route 10.10.10/24

inet.0: 14 destinations, 16 routes (14 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

10.10.10.0/24 *[Direct/0] 00:01:46

 > via t1-0/0/2.200

 [Direct/0] 00:01:46

 > via t1-0/0/2.100

 [OSPF/10] 00:01:45, metric 65

 > via t1-0/0/2.100

10.10.10.1/32 *[OSPF/10] 00:01:45, metric 65

 > via t1-0/0/2.200

 via t1-0/0/2.100

10.10.10.2/32 *[Local/0] 00:01:46

 Local via t1-0/0/2.100

10.10.10.3/32 *[Local/0] 00:01:46

 Local via t1-0/0/2.200

The result is OSPF adjacencies over both the 100 and 200 logical units and two equal cost routes to Bock's IP

address. Things are more interesting at Bock, where a multipoint Frame Relay interface is defined to create the

logical connectivity shown in Figure 9-17:

[edit]

lab@Bock# show interfaces t1-0/0/2

description Bock-to-porter;

per-unit-scheduler;

dce;

encapsulation frame-relay;

unit 100 {

 multipoint;

 family inet {

 address 10.10.10.3/24 {

 multipoint-destination 10.10.10.1 dlci 100;

 multipoint-destination 10.10.10.2 dlci 200;

 }

 }

}

The modified configuration maps two locally defined DLCIs on the same logical interface to each associated IP
address; DLCI 100 leads to Site 1's 10.10.10.1 address and DLCI 200 maps to the address of Site 2 and the
10.10.10.2 address. Per-unit scheduling must be enabled on the physical interface to support scheduling into
each virtual channel.

At first glance, the show route command at Bock indicates that all traffic for the 10.10.10/24 subnet will use

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the same link, as indicated by the absence of logical unit 200:

[edit]

lab@Bock# run show route 10.10.10.2

inet.0: 12 destinations, 13 routes (12 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

10.10.10.0/24 *[Direct/0] 00:13:24

 > via t1-0/0/2.100

 [OSPF/10] 00:13:12, metric 130

 > to 10.10.10.2 via t1-0/0/2.100

The route to 10.10.10.2 seems to indicate that Bock plans to use the wrong DLCI, given that DLCI 200 maps to

Site 2, not Site 3. The forwarding table, however, correctly reflects the correct IP-to-DLCI mapping as
configured under the multipoint Frame Relay interface:

[edit]

lab@Bock# run show route forwarding-table destination 10.10.10.1

Routing table: inet

Internet:

Destination Type RtRef Next hop Type Index NhRef Netif

10.10.10.1/32 dest 0 dlci: 100 ucst 334 5 t1-0/0/2.100

[edit]

lab@Bock# run show route forwarding-table destination 10.10.10.2

Routing table: inet

Internet:

Destination Type RtRef Next hop Type Index NhRef Netif

10.10.10.2/32 dest 0 dlci: 200 ucst 336 1 t1-0/0/2.100

With the Frame Relay aspects confirmed, you move on to the virtual channel configuration:

[edit class-of-service]

lab@Bock# show virtual-channels

site1_default;

site2;

Two virtual channels are defined, one for each remote site. Here, Site 1 is set as the default virtual channel.
Traffic that is routed out the logical interface to which the virtual channel group is applied will default to the
virtual channel for Site 1, unless directed via a firewall filter to Site 2. The virtual channel group configuration is
displayed:

[edit class-of-service]

lab@Bock# show virtual-channel-groups

er_vc_group {

 site1_default {

 scheduler-map er_cos_scheduler;

 shaping-rate 128k;

 default;

 }

 site2 {

 scheduler-map er_cos_scheduler;

 shaping-rate 256k;

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

A virtual channel group configuration links multiple virtual channel definitions together for application to a
logical interface. Here, the er_vc_group configuration links the site1 and site2 definitions, much like a

scheduler-map links multiple scheduler policies. When applied to a logical interface, eight queues are created

for each virtual channel associated with the group, and a scheduler-map is used to control scheduling into each

set of per-virtual-channel queues. This example shapes each virtual channel to the remote site's port speed, but
if desired, some virtual channels can be left unshaped to allow bursting up to physical interface speed.

The virtual channel group is applied to an interface, at the logical unit level. You will not be able to commit the
configuration unless you remove any adaptive shaping, shaping, or scheduler-map configuration on the same

logical unit:

[edit class-of-service]

lab@Bock# show interfaces t1-0/0/2

unit 100 {

 virtual-channel-group er_vc_group;

 classifiers {

 dscp dscp_classify;

 }

 rewrite-rules {

 dscp dscp_rewrite;

 }

}

The final step in the virtual channel configuration is the definition of the filter that directs traffic to the correct
virtual channel, where it is in turn shaped according to the remote site's port speed. Recall that one virtual
channel in each group must be designated the default virtual channel, which means it's used when no explicit
virtual channel mapping is found. A working virtual channel mapping filter is shown at Bock:

[edit]

lab@Bock# show firewall

filter er_vc_select {

 term select_site2 {

 from {

 destination-address {

 10.10.10.2/32;

 }

 }

 then {

 virtual-channel site2;

 accept;

 }

 }

 term default_to_site1 {

 then {

 virtual-channel site1_default;

 accept;

 }

 }

}

The er_vc_select filter matches on packets addressed to Site 2 and directs them to the scheduler/shaper

associated with the site2 virtual channel. Any traffic not matched by the select_site2 term is matched by the

default_to_site1 term, which results in a mapping to the default virtual channel. The er_vc_select filter is

placed into service in the output direction:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[edit]

lab@Bock# show interfaces t1-0/0/2 unit 100 family inet filter

output er_vc_select;

To confirm that your virtual channel configuration is active on a given interface, use the show class-of-

service interface command:

[edit]

lab@Bock# run show class-of-service interface t1-0/0/2.100

 Logical interface: t1-0/0/2.100, Index: 70

 Object Name Type Index

 Virtual-channel-group er_vc_group 55210

 Rewrite dscp_rewrite dscp 26780

 Classifier dscp_classify dscp 25819

The show class-of-service virtual-channel-group command confirms the details of er_vc_group:

[edit]

lab@Bock# run show class-of-service virtual-channel-group

 Virtual channel group: er_vc_group, Index: 55210

 Virtual channel: site1_default

 Scheduler map: er_cos_scheduler

Shaping rate : 128000 bps

 Virtual channel: site2

 Scheduler map: er_cos_scheduler

 Shaping rate : 256000 bps

Currently, you cannot obtain per-virtual-channel queuing statistics from the CLI. The output of the show

interfaces queue t1-0/0/2.100 command displays the aggregate packet counts for all virtual channels in

effect on the interface.

9.5.3. J-Series Adaptive Shaping and Virtual Channel Summary

This section demonstrated the configuration and operational analysis of the J-series-specific adaptive shaper
and virtual channel features. The former allows dynamic switching between two shapers, one based on the
service's CIR and another on the EIR, based on the congestion state of the network, as signaled by received
BECN bits. By sending at or below the CIR during periods of network congestion, you avoid loss, and when the
congestion clears, you are able to send at the EIR rate with a high probability of delivery, given the lack of
congestion.

The virtual channel feature is designed to allow a central site route with a high-speed attachment to shape into
individual virtual channels, with each such virtual channel dimensioned according to the remote site's port speed
(or CIR). The goal of this feature is to prevent buffer overrun and loss that can occur when a site with a high-
speed access rate sends to a remote site that is attached at a much slower speed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.6. Conclusion

IP CoS is an enabling factor for many value-added services, or a cost-effective convergence onto a single
network infrastructure. Even though bandwidth may be relatively cheap and links always seem to get faster, you
can still deploy CoS to ensure that you get the most of whatever bandwidth your network has to work with. All
Juniper Networks routers support a robust and practical set of CoS capabilities that, given the general design of
Juniper products, can be enabled in any production network without concerns of performance degradation or
unpredictable behavior.

The future is IP-based, and more and more services are being adapted to IP transport each day. By deploying
an effective CoS solution early, you gain a competitive advantage, now and in the future, because you will find
you can confidently roll out new and ever-more-demanding applications, knowing that your network will make
the most of its resources to deliver the goods that matter most.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.7. Exam Topics

We examined the following Enterprise Exam Topics in this chapter:

Describe the uses of CoS.

Explain CoS processing on M-series and J-series routers.

Identify the ways traffic can be classified.

Explain the purpose of BAs.

Explain the use of policers.

Describe how traffic is mapped to queues.

Configure the mapping of forwarding classes to queues.

Explain the role of a scheduler and how M-series versus J-series behavior differs.

Configure a scheduler to service queues based on a CoS design.

Monitor a CoS implementation.

Configure BA and multifield classification.

Congestion management and avoidance.

Code point rewriting.

Rate-limiting with shaping, policing, or both.

J-series adaptive shapers and virtual channels.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.8. Chapter Review Questions

Which IP CoS approach requires signaling to reserve resources?

IP ToSa.

IntServb.

DiffServc.

ATMd.

1.

In the DiffServ architecture, what is a BA?

A sequence of packets with a shared marking, crossing a given linka.

The collective behavior of all nodes in the domainb.

The act of aggregating multiple reservations into a single, larger one, for scalabilityc.

None of the aboved.

2.

With regard to J-series versus M-series CoS capabilities, which is true?

The M-series can support only four queues; the J-series supports eighta.

The M-series does not support per-unit schedulingb.

The J-series WRED cannot be protocol-based, whereas the M-series WRED can bec.

The M-series offers LLQ support, whereas the J-series does notd.

3.

How do you convey packet loss priority to a downstream node?

a.

4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

By implementing the same multifield classifiers as used originally at the ingressa.

This is not possible because the IP header does not support a loss-priority flagb.

You must reclassify all packets with high loss priority into a forwarding class reserved for that
purpose

c.

Use a BA rewrite table with a matching BA classifierd.

4.

What is the actual scheduling priority when used on an M7i?

lab@PBR# show schedulers

. . .

bronze_sched {

 transmit-rate 10m exact;

 priority medium-high;

}

Lowa.

Highb.

Strict-highc.

This will not commit because the M7i supports only two priority levelsd.

5.

Which of the following is true?

On the J-series, strict-high and high are the same prioritya.

On the M-series, strict-high is a separate priorityb.

You must use the exact option with a strict-high queue to prevent starvationc.

Policing should be used when strict-high is set, especially on the J-seriesd.

6.

What is the purpose of the shaping-rate statement in the following code snippet?7.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

d.

 test_sched {

 transmit-rate percent 5;

 shaping-rate percent 20;

 priority high;

 }

It ensures that this queue cannot starve other queues of their configured weighta.

It limits how much traffic this queue can send, even when all other queues are idleb.

It shapes the traffic allowed by the transmit rate so that at least 20% of the packets are not
clumped

c.

This is used in adaptive shaping, in order to set the maximum transmit rate when the
network is not congested

d.

7.

When committing a CoS configuration, you notice the following log message. What does it mean?

Code View:
Nov 3 00:25:25 PBR /kernel: RT_COS: COS IPC op 5 (SCHED POLICY DEF) failed, err 5

 (Invalid)

Nov 3 00:25:25 PBR fwdd[2780]: COSMAN_FWDD: Wrr underflow, for fe-0/0/0

Nov 3 00:25:25 PBR fwdd[2780]: COSMAN: policy update failed

There is a problem in the configuration and the default settings are in effecta.

There is a problem in the configuration, causing it to fail commitb.

There is a problem in the configuration; the software adapts the configuration to meet the
underlying capability

c.

The error indicates that the sum of the assigned weights in the scheduler-map did not equal

100%

d.

8.

Consider the CoS configuration at PBR in the DiffServ scenario, as shown in Figure 9-16, and select the

best option:

Each logical interface on fe-0/0/0 can send up to 100 Mbpsa.

b.

9.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

a.

When both logical interfaces are active, each gets only 50 Mbpsb.

Both A and Bc.

None of the aboved.

Refer to the output provided and select the best answer:

[edit class-of-service drop-profiles test]

lab@PBR# show

fill-level 50 drop-probability 0;

fill-level 70 drop-probability 10;

fill-level 80 drop-probability 20;

fill-level 90 drop-probability 30;

Between 70% and 80% fill, there is 10% drop probabilitya.

Between 75% and 80% fill, there is 15% drop probabilityb.

Between 70% and 80% fill, there is 10% drop probability for PLP = 1c.

Between 70% and 80% fill, there is 10% drop probability for PLP = 0d.

10.

Which of the following is true?

BA overrides multifield classificationa.

Multifield overrides BA classificationb.

You cannot combine BA and multifield classification; a packet is classified only oncec.

You should perform BA and multifield classification on all nodes for consistencyd.

11.

How can the PLP status be set?

With multifield classificationa.

b.

12.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

a.

With BA classificationb.

With a policerc.

Using policyd.

All of the abovee.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.9. Chapter Review Answers

Answer: B. Only the Integrated Services (IntServ) model made use of control plane signaling for resource
allocation.

1.

Answer: A. In the DiffServ model, a BA is a collection of packets with a shared code point. It is expected
that each node will have the same PHB for a given BA, and therefore end-to-end performance can be
modeled.

2.

Answer: C. J-series WRED has four drop priority levels, but no TCP/UDP index. The M-series can support
eight queues and per-unit scheduling with IQ PICs. Only the J-series offers true LLQ.

3.

Answer: D. Although you could use multifield classification everywhere, this approach does not scale. Use
a BA classifier and associated rewrite to convey PLP status between nodes.

4.

Answer: B. The M7i has two hardware priority levels, and medium-high, high, and strict-high all map to
the same value, which is high.

5.

Answer: D. Because strict-high is given 100% of transmit weight, it should be used with a policer to
ensure that other classes are not starved, especially on the J-series, where strict-high is an actual priority.
You cannot use exact with a strict-high queue, but on the J-series you can use the shaping rate to cap

total usage. However, a policer is preferred, as this allows excess bandwidth only when other queues are
empty.

6.

Answer: B. Supported on the J-series only, the shaping-rate limits the total amount of bandwidth

available to the queue, regardless of activity in other queues. This in itself does not prevent starvation of
lesser-priority queues, but it can help.

7.

Answer: A. Many CoS configuration errors allow a commit, but they generate a log warning indicating that
the configured values can be programmed. This means the default values are in effect.

8.

Answer: C. Unless you shape at the logical interface level, each IFL can send up to line rate, and when
multiple IFLs are active, they share available bandwidth. This is another benefit to using schedulers based
on transmit percentage, rather than absolute values. The latter would result in one IFL getting 100 Mbps
while the other receives a default scheduler configuration with 95%/5% assigned to queue 0 and 3,
respectively.

9.

Answer: A. The profile defines a 10% drop probability for fill levels between 70% and 80%. You cannot
tell from the drop profile itself whether it affects PLP 0 or 1 (or UDP versus TCP), because the function of
WRED against some criteria is performed via a scheduler-map, which was not shown.

10.

Answer: B. Multifield overrides BA classification and generally is used only at network edges.11.

12.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.

Answer: E. All of the methods listed can impact the PLP status of a given packet.12.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 10. IP Multicast in the Enterprise

This chapter explores typical enterprise deployment scenarios for IPv4 multicast. Focus is placed on the design
and configuration of a scalable, fault-tolerant, multicast infrastructure using JUNOS software. Operational
analysis and fault isolation are also demonstrated. The topics covered include:

Multicast terminology and concepts

Multicast protocols: group management and routing

Protocol Independent Multicast (PIM) sparse mode using static rendezvous points (RPs)

PIM sparse mode with bootstrap-based RP election

PIM and Multicast Source Discovery Protocol (MSDP)-based Anycast-RP

Juniper Networks routers offer extensive support for IPv4 multicast. Consult the multicast overview in the
JUNOS software documentation to confirm the list of supported RFC and drafts for your software release.

10.1. What Is Multicast?

Multicast defines the concept of a one-to-many communications stream. To a casual observer, multicast is
similar to broadcast in that a single copy of a packet can be received by multiple nodes-however, multicast is
not dependent on an underlying multiaccess medium. It can operate network-wide (unlike broadcast traffic that
is not forwarded by routers), and is associated with protocols that attempt to automatically tune the network to
eliminate unnecessary transport and delivery of multicast traffic.

Routers use multicast routing protocols to control the forwarding of multicast traffic to prevent loops and avoid
inefficiencies associated with having multiple copies of a given packet transmitted over the same link multiple
times. Multicast group membership protocols are used by hosts to express interest in one or more multicast
groups-multicast traffic is not forwarded over an interface with attached hosts unless at least one host has
explicitly requested the receipt of multicast traffic.

When all goes to plan, the presence of multicast traffic is noted only by those nodes that have expressed
interest in that particular stream, which is in marked contrast to a link-level broadcast that forces reception of
the packet by all nodes on that link. In summary, broadcast is one-to-all with a link-level scope, whereas
multicast is one-to-many, network-wide, but only when there is express interest in receiving multicast.

The sources and destinations of multicast content are generally hosts, not routers. The role of a multicast router
entails locating multicast sources, replicating packets for transmission over multiple interfaces, preventing
routing loops, and connecting interested destinations with the proper source, all while keeping the flow of
unwanted packets to a minimum.

10.1.1. Multicast Applications

There are numerous applications for IP multicast. In many cases, a given application is capable of operating in
either unicast or multicast mode, depending on user settings and overall scaling needs. Network applications

http://lib.ommolketab.ir
http://lib.ommolketab.ir

that can function with unicast but are better suited for multicast include collaborative groupware,
teleconferencing, and distributed applications such as multiplayer gaming or virtual reality. Any IP network
concerned with reducing network resource consumption for one-to-many or many-to-many applications, to
include multimedia streams with multiple receivers such as IP-TV, benefits from multicast.

Multicast-enabled networks and applications provide significant scaling benefits. When unicast is employed by
an Internet radio or news ticker service, for example, each recipient requires a separate traffic session. The
processing load at the server and network bandwidth consumed increase linearly as each new receiver attaches
to the server. This is extremely inefficient, whether dealing with the global scale of the Internet or a modest
enterprise-scale network.

In a broadcast model, the source needs to generate only a single stream using a broadcast destination address.
Ignoring for the moment that the link-level scope of broadcast makes this model unusable in a routed network,
a broadcast model is extremely inefficient because it consumes maximum bandwidth and places the burden of
packet rejection on each host.

Multicast provides the most efficient and effective solution for most one-to-many or many-to-many applications,
with none of the drawbacks and all of the advantages of the unicast or broadcast model. With multicast, a single
multicast packet stream finds its way to every interested receiver, and replication is performed in a distributed
manner within each router as needed, allowing large-scale deployment because no one device is forced to
replicate or handle all traffic associated with the application. With IP multicast, a sending host generates a
single IP packet stream, whether there is one receiver or 1 million receivers, and links that connect to subnets
consisting of entirely uninterested receivers carry no multicast traffic at all.

10.1.1.1. Locating content

Once you have enabled multicast in your network, the first question becomes "What new services and
applications can I enable with it, and how will users know?" In other words, for maximum benefit, there needs
to be a TV Guide-like function available to the end user. The Session Directory tool (known as SDR) is an end-
user application that uses multicast protocols to locate and list available sessions in the network. Figure 10-1
shows the user interface for the SDR application.

Figure 10-1. The Session Directory tool

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The transport protocol used by the Session Directory tool is the Session Announcement Protocol (SAP). SAP
messages are transmitted to the well-known multicast group address of 224.2.127.254, and they contain
descriptions of currently available sessions formatted using the Session Description Protocol (SDP). You can
download the SDR application and get additional information at http://www-
mice.cs.ucl.ac.uk/multimedia/software/sdr/.

http://www-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.1.2. Multicast Terminology and Concepts

To the uninitiated, multicast can seem to be a jumble of confusing terms and concepts. It helps to keep in mind
that multicast is largely state-driven, which is to say that things may or may not happen, based on the presence
or absence or some other event. For example, a join message is generated when a router wishes to receive
multicast traffic for a given group. As a result of this join, a multicast distribution tree is instantiated, or
modified, which adds the interface on which the join was received in the outgoing interface list (OIL) for that
group. After some period of time, lack of continued join activity results in this state timing out, the removal of
the interface from the OIL, and the cessation of multicast forwarding for that group over that interface. This
"now you see it, now you don't" aspect of multicast often leads to confusion, at least when compared to the
more or less steady-state nature of unicast routing protocols. In Open Shortest Path First (OSPF), the absence
or presence of a route is not a function of an actual desire or need to use the route. In contrast, a multicast
"route" is actually a dynamic entry that is based on the presence of an active sender and, to some degree, the
presence of at least one interested receiver.

10.1.2.1. Routing turned upside down

If the dynamic state of multicast is not reason enough for confusion, consider that multicast forwarding is
actually a type of reverse routing. Unicast routing is based on longest-matching against the packet's destination
address, with the overall goal being the forwarding of a packet toward its destination. In contrast, multicast
forwarding is performed based on the source address, with the goal being the forwarding of the packet away
from the source, as opposed to toward any particular destination. This behavior is known as reverse path
forwarding (RPF) and is detailed in a later section.

10.1.2.2. Multicast terms

The reader should be familiar with the following terms and concepts before delving any further into multicast.
Refer to Figure 10-2 to see how the terms relate to an IP multicast network.

Figure 10-2. Multicast terms

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 10-2 looks complicated, so let's tackle each part individually:

Multicast sources

The multicast sources for groups 1 and 2 are shown at the top of Figure 10-2. A multicast source is the
entity that generates a stream of packets addressed to one or more multicast groups. The set of
addresses from 224.0.0.0–239.255.255.255 (224/4) are reserved for IP multicast use. Any device that
sends one or more packets to a destination address in this range is a multicast sender. No multicast-
specific routing or group management protocol is required by a multicast sender; in fact, the sender does
not even need to be able to receive multicast traffic. The sender is the root of a shortest-path tree (SPT).

Multicast receivers

Several multicast receivers are shown at the bottom of Figure 10-2. The receivers form the leaves of a
multicast distribution tree. Multicast receivers run the Internet Group Management Protocol (IGMP), to
inform attached routers what multicast groups they are interested in. A node becomes a leaf on the
distribution tree when it joins a given group. A branch is pruned from the multicast tree when no
interested hosts remain; that is, when all of its leaves have fallen off. This condition is shown for LAN 3,
where the sole receiver has indicated a desire to leave both multicast groups. Note how the group
management protocol's leaves become a multicast routing protocol prune message, assuming that the
first hop router has no other interested receivers (leaves) for the related branch.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Multicast protocols

Multicast protocols control the flow of multicast traffic between sources and receivers. For now, it's
sufficient to note that receivers use a group management protocol to inform their routers which groups
they are interested in; receivers are not aware of the actual multicast topology. Routers run a group
management protocol to communicate with attached receivers, and a multicast routing protocol when
communicating with other multicast-aware routers. A multicast routing protocol such as PIM is
significantly more complex than the group management protocols used by receivers, and it is responsible
for ensuring loop-free forwarding and management of the distribution tree based on the absence or
presence of interested receivers.

Upstream/downstream

Many operations in multicast are directionally oriented. The multicast tree is rooted at each source and
terminates at the various leaves. Traffic flows downstream, along the distribution tree, from the source to
each receiver. In contrast, control messages that establish a prune/join state are sent upstream, in the
direction of the receiver to the source. Figure 10-2 shows the multicast traffic from groups 1 and 2
flowing downstream toward interested receivers while the related control messages flow upstream.

Distribution trees, branches, and leaves (oh, my)

A distribution tree is the interconnection of nodes that lie between a sender and interested receivers.
Figure 10-2 shows two senders, and each is associated with its own distribution tree. The tree is rooted at
the sender in an SPT, or at the RP in a shared tree. The example in the figure consists of two SPTs. Traffic
flows downstream on the tree while control messages flow upstream to influence multicast flow. Between
the root and each leaf lies one or more branches. A router must replicate packets to each branch that
leads to a leaf, noting, however, that the same effort is required whether there is one or 1,000 leaves on
that branch. A leaf is a multicast receiver with interest in a given group. A branch is pruned from the tree
when it has no remaining leaves. The figure shows R3 and R5 pruning branches from the tree in response
to the receipt of leave messages that indicate no remaining leaves.

Dense and sparse modes

There are two primary strategies when it comes to forming the initial distribution tree. There is the flood
first, prune later philosophy known as dense mode, and there is the prune first and flood only when asked
for method known as sparse mode. Stated differently, dense mode is like a push model that assumes
that all receivers want all multicast, and sparse mode functions in a client pull manner, where it is
assumed that most receivers do not want any multicast. In both methods, the distribution tree is
ultimately pruned of any leafless branches, but in the former, the expiration of state results in resumed
dense mode flooding, whereas in the latter, an expiration of join state results in a return to the default
pruned mode. Generally speaking, older multicast routing protocols such as the Distance Vector Multicast
Routing Protocol (DVMRP) support only dense mode, whereas newer protocols such as PIM support both
modes. In some cases, the same protocol can operate in a sparse-dense mode, whereby certain groups
are handled in dense fashion while others are treated as sparse. Dense mode operation is best suited for
use over LANs because its flood-first nature tends to consume more bandwidth. On the upside, dense
mode does not require the complexities of an RP. Recall that in dense mode, any active source results in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

flooding down all branches, which are then pruned if not needed; this means that routers have no
problems learning about active sources and groups. In contrast, sparse mode operation creates
somewhat of a chicken-before-the-egg problem, in that a router must send an explicit join before it can
receive traffic for a given group, but before it can send the join it has to know which groups and sources
are active! This problem is resolved with the introduction of a shared tree and an RP, which we will detail
in a subsequent section.

10.1.2.3. Additional multicast building blocks

This section discusses IP multicast concepts that are independent of any specific multicast routing protocol or
mode of operation. Understanding these concepts prepares the reader for the upcoming IP multicast
configuration and operational mode analysis examples.

10.1.2.3.1. Multicast addressing

Multicast uses the Class D IP address range, from 224.0.0.0–239.255.255.255. In modern vernacular, the
concept of classful addresses has lost favor, so addresses in this range are commonly referred to as simply
multicast addresses. A multicast address can be used only as the destination address of an IP packet-the
source address must always be of the unicast form. A multicast address normally has a /32 prefix length,
although other prefix lengths are allowed. Recall that a multicast address represents a logical grouping of
devices rather than a physical collection of devices. Multicast addresses can still be described in terms of prefix
length using traditional notation. For example, the entire multicast address range can be written as 224/8. The
base address 224.0.0.0 is reserved and cannot be assigned to any group, addresses in the
224.0.0.1–224.0.0.255 range are reserved for local wire use, and the 239.0.0.0–239.255.255.255 range is
reserved for administratively scoped addresses.

Internet numbering authorities normally do not allocate multicast addresses to their customers. This is because
multicast addresses are concerned more with content than with a given physical device. Receivers do not
require a multicast address, but they need to know the multicast address associated with the multicast content
they are interested in. Multicast sources need an assigned multicast address only to produce the content, not to
identify their place in the network. Every source, receiver, and numbered router interface still needs an
ordinary, unicast IP address.

Many applications have been assigned a range of multicast addresses, either by the Internet Engineering Task
Force (IETF) or by the applications' developers. Although statically assigned multicast addressing is certainly
possible, in most cases you can simply use the application's defaults. Table 10-1 shows some application-to-
multicast address mappings, as defined by the Internet Assigned Numbers Authority (IANA) at
http://www.iana.org/assignments/multicast-addresses.

Table 10-1. IANA application-to-multicast address mappings (select examples)

Address Application

224.2.0.0–224.2.127.253 Multimedia conference calls

224.4.0.0–224.4.0.254 London Stock Exchange

224.0.1.141 Dynamic Host Configuration Protocol (DHCP) servers

224.0.1.39 cisco-rp-announce

10.1.3. Mapping IP Multicast to Link Layer Multicast

On multiaccess networks such as LANs, using the broadcast address to forward IP multicast results in disruption
to all nodes on that LAN segment, whether they are interested in multicast or not. Using a unicast address
negates the one-to-many efficiency benefit of multicast. The solution is to map a Layer 3 IP multicast address,
which is 32 bits in length, into a corresponding 48-bit media access control (MAC) layer multicast address.

http://www.iana.org/assignments/multicast-addresses
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 10-3 shows a sample of this mapping.

Figure 10-3. Layer 3 to Layer 2 multicast mapping

Given the different address lengths, a direct 1:1 mapping between Layer 2 and Layer 3 addresses is not
possible. One-half of the IANA-owned block of Ethernet MAC addresses, the first 24 bits starting with 0x
01:00:5E, are reserved for multicast, yielding the usable range of 0100.5e00.0000–0100.5e7f.ffff inclusive. This
allocation results in a 24-bit field, but because the first bit is always set to 0, only 23 bits remain to be
populated with the IP multicast address. The mapping process strips the 4-bit class D identifier as well as the 5
high-order bits from the group ID, which leaves 23 bits remaining to be mapped into the multicast MAC
address. Because 5 high-order bits are stripped from the group ID, there is a resulting loss of granularity in the
Layer 3 to Layer 2 address mapping resulting in 32(25) different group addresses mapping to the same
multicast MAC address, as shown at the bottom of Figure 10-3.

In a Layer 2 network, the sharing of a MAC address among as many as 32 IP multicast groups results in a loss

http://lib.ommolketab.ir
http://lib.ommolketab.ir

of efficiency, because traffic sent to one multicast group will be received by all hosts using the same shared MAC
layer multicast address, even though they do not subscribe to that particular group. Wherever possible, you
should be careful when selecting IP multicast addresses to ensure that they map to a unique MAC layer
multicast address; otherwise, host systems will have to expend cycles receiving, and then discarding, multicast
traffic for groups that have no local applications listening.

10.1.3.1. Multicast addressing and administrative scoping

Multicast addresses are categorized according to their scope. Scoping is designed to limit the extent to which a
multicast packet can travel. Scoping is used for both performance and administrative reasons. Table 10-2
details currently defined IPv4 multicast address scopes.

Table 10-2. IPv4 multicast address scopes

Address Scope Comment

224.0.0.0/24 Link local Confined to a single link, often used for unicast routing
protocols; allows same multicast address on each link

239.0.0.0–239.255.255.255 Administratively
scoped

Further subdivided into site-local (239.255.0.0/16) and
organizational (239.192.0.0/14) scopes

224.0.1.0–238.255.255.255 Global Addresses with global scope, of which several static
assignments exist:

224.1.0.0-224.1.255.255: shared tree multicast
groups

224.2.0.0-224.2.127.253: multimedia conference calls

224.2.127.254: SAPv1 announcements

224.2.127.255: SAPv0 announcements

224.2.128.0-224.2.255.255: SAP dynamic
assignments

224.252.0.0-224.255.255.255: DIS transient groups

232.0.0.0-232.255.255.255: VMTP transient groups

Modern IP networks use address-based scoping rather than IP Time to Live (TTL)-based scoping. This is because
TTL-based techniques are prone to problems in terms of being able to accurately predict TTL values network-
wide, especially in the face of changes in forwarding topology during failover scenarios. Addresses in the link-
local scope cannot be forwarded beyond the boundaries of a single link. These addresses tend to be used by
unicast routing protocols such as Routing Information Protocol version 2 (RIPv2) and OSPF. The administratively
scoped address range is broken into site-local and organizational boundaries. An enterprise might consist of a
single site, the exact definition of which is left to the administrators of the routing domain, or it may consist of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

multiple sites. Generally, the organizational scope is defined as the extent of a routing domain. Administrators
configure site or global scoping on the appropriate interfaces to block related traffic from leaving that interface.
Figure 10-4 illustrates a scoping example.

Figure 10-4. Multicast scoping

The approach shown in Figure 10-4 is address-based, but JUNOS software also supports scoping based on a
scope-policy. Unlike address scoping, which is applied per interface, a scope-policy applies to all interfaces,

and you cannot use it in conjunction with interface-level scoping. You confirm address scoping using the show

multicast scope command. The remaining IP multicast address space is considered to have a global scope.

Some addresses within the global range are statically assigned by the IANA, as shown in Table 10-2.

It is common to see scoping used to block the multicast addresses associated with the auto-RP discovery
mechanism (224.0.1.39 and 224.0.1.40) at administrative boundaries to prevent the use of the local domain's
RP by routers outside of local administrative control.

You cannot use scoping to block RP discovery via the bootstrap protocol because the
bootstrap mechanism operates hop by hop and uses the 224.0.0.13 ALL-PIM-Routers
multicast address, which, if scoped, would break other aspects of PIM operation.
Normally, bootstrap messages are "scoped" by configuring interdomain interfaces to run
PIMv1, which does not support bootstrap, or through definition of bootstrap
import/export policy that blocks reception or transmission of bootstrap router (BSR)
messages, respectively.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.1.3.2. Interface lists

Multicast routers maintain state to determine which multicast packets should be forwarded, and over which
interfaces copies of a packet should be sent. Part of this state is in the form of incoming and outgoing interface
lists (IILs/OILs) for each active multicast source in the network. Maintaining accurate interface lists is critical for
loop avoidance.

Loops in any IP network are a bad thing. A multicast loop can be particularly nasty given
the replication action of routers, which serves to provide an amplification effect for any
looping packets.

The interface that lies on the shortest path back to the source is the upstream (incoming) interface, and packets
are never allowed to be forwarded toward the multicast source. All remaining interfaces could become a
downstream (outgoing) interface, depending upon join state.

A router with multicast forwarding state for a particular multicast group is "switched on" for that group's
content. Interfaces on the router's outgoing interface list send copies of the group's packets received on the IIL
for that group. Figure 10-5 shows this condition.

Figure 10-5. Interface lists

The router state that controls multicast forwarding is referred to as (S,G) or (*,G). In (S,G), the S refers to the
unicast IP address of the source for the multicast traffic, and the G refers to the particular multicast group IP

http://lib.ommolketab.ir
http://lib.ommolketab.ir

address for which S is the source. All multicast packets sent from this source have S as the source address and
G as the destination address. The asterisk (*) in the (*,G) notation is a wildcard indicating that the state applies
to any multicast source sending to group G. So, if two sources are originating content for multicast group
224.1.1.2, a router could use (*, 224.1.1.2) to represent the state of a router forwarding traffic from both
sources to members of that group, as is done in the case of a shared tree.

An incoming and outgoing interface list is maintained for each active source to group tuple. When you consider
that group membership is itself often dynamic, and that this volatility leads to a need for ongoing maintenance
of the related interface list, it becomes clear that a router handling large numbers of multicast groups can
consume significant control plane resources maintaining multicast forwarding state. All Juniper Networks router
architectures are well suited to hardware/real-time thread-based multicast replication and can forward multicast
at the same (near-line-rate) performance level as unicast. A typical control plane scaling guideline for a router
with 1 GB of memory is no more than 120,000 PIM entries [sum of (*,G) and (S,G)], 1,000 PIM neighbors, and
1,000 dynamic IGMP groups per interface.

10.1.3.3. Reverse path forwarding

Conventional routing is based on a longest match against the destination address of a packet. The unicast route
table is maintained by unicast routing protocols such as the Routing Information Protocol (RIP) and OSPF, and it
is used when forwarding unicast packets toward their destinations. As noted previously, multicast is like routing
turned upside down, in that now the router actually forwards packets away from the source, based on the
source rather than the destination address. A multicast router's forwarding state is thus organized based on a
reverse path paradigm. As noted earlier, this process is known as reverse path forwarding (RPF) and is shown in
Figure 10-6.

Figure 10-6. The multicast RPF check

http://lib.ommolketab.ir
http://lib.ommolketab.ir

An RPF check simply makes sure that a packet arrives on the same interface that would be used for egress by
the local router when routing back to that multicast source using the Interior Gateway Protocol's (IGP's)
shortest path-in effect, a multicast packet is routed twice, once based on the source address and, if that
passes, again based on the group address, this time against the OIL for that group. It's important to note that
RPF checks occur both in the control plane when processing joins, and in the data plane when deciding whether
a packet should be forwarded. Multicast packets that fail the RPF check are dropped because the incoming
interface is not on the shortest path back to the source. Figure 10-6 shows how router R4 drops a multicast
packet from source 10.0.1.1 when it is received on an interface that would not be used when routing a unicast
packet to address 10.0.1.1. The figure also shows that routers generate joins over the RPF interface back to the
source.

In some cases, the multicast routing protocol maintains its own RPF table, which is used specifically for the
purpose of forwarding multicast. DVMRP is an example of such a protocol. PIM, on the other hand, makes use of
the existing unicast route table to perform its RPF checks. This capability is why PIM is considered to be
protocol-independent; it can use any route source for its RPF checks, including static, IGP, and even Border
Gateway Protocol (BGP) routes. JUNOS software supports extensions to unicast routing protocols to
accommodate the building of a separate RPF table. Examples include the Multiprotocol Border Gateway Protocol
(MBGP) and multitopology routing in Intermediate System-to-Intermediate System (IS-IS), or M-IS-IS.

Using the main unicast route table for RPF checks provides simplicity; using a dedicated route table for RPF
checks allows a network administrator to set up separate paths and routing policies for unicast and multicast
traffic. This allows the multicast network to function more independently of the unicast network.

10.1.3.4. Distribution trees

Previous discussions have indicated that multicast traffic is distributed via a tree that is rooted at the source and
branches as needed to pick up all interested leaves. Several different types of distribution trees exist, and in
many cases multiple tree types are used (over time) for the same multicast stream.

10.1.3.4.1. SPT

SPT is a distribution tree that is rooted at the source. This is sometimes called a source tree. An SPT is formed
by sending the appropriate join messages over the RPF path to the desired source. Figure 10-7 shows this
process.

Figure 10-7. An SPT

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Things begin when the receiver sends an IGMP join for source 10.0.1.1 and group 225.0.0.1. R7, the first hop
(and, in this case, designated) router, generates the appropriate join message out the RPF interface for that
source. This is referred to as an (S,G) join, because in this case both S and G are known. Router R4 receives the
(S,G) join, which triggers the addition of the receiving interface to its OIL for the 10.0.1.1, 225.0.0.1 tuple. R4
now performs its own RPF check on the source address, and as a result R4 sends its (S,G) join message out its
RPF interface for 10.0.1.1, causing reception of the (S,G) join at R1. The process stops when the join message
reaches the router directly connected to the source or when it reaches a router that already has multicast
forwarding state for this (S,G) tuple. The key point is that RPF handling of (S,G) join messages results in an
SPT.

10.1.3.4.2. Shared trees and RPs

A shared multicast tree is rooted at an intermediate router, rather than at a specific source. The use of a shared
tree can offer the benefit of less overall state, in that a single (*,G) entry can now represent state for numerous
sources that may be sending to this group. In the most common multicast protocol in use today, PIM, the
shared tree is short-lived and used only to make initial contact between senders and receivers, however. Once
this initial contact is made, an SPT is established and the shared tree is no longer used for that (S,G) tuple. In
PIM, the root of the shared tree is the RP, which functions to support sparse mode operation. Recall that in
sparse mode, multicast is forwarded only as a result of an explicit join for the related group. Without prior
knowledge of which senders are active for what groups, a router cannot generate an (S,G) join toward the
source, because the source is not yet known.

Source-specific multicast (SSM) describes a condition in which the receiver has
preexisting knowledge of what source it wishes to join. This allows the generation of an
SPT without the need for an RP. The use of receiver joins that do not specify a particular
source is known as Any Source Multicast (ASM).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In a sparse mode Any Source Multicast (ASM) operation, the router generates an (*,G) join toward the RP,
which results in joining a tree that is shared among all senders associated with that group. Figure 10-8 shows
this process.

Figure 10-8. An RP tree

In the example in Figure 10-8, the receiver generates an IGMP join for group 225.0.0.1 that does not specify a
particular source; hence, the any in the term Any Source Multicast and the use of a wildcard metacharacter to
represent the resulting state (*,G). The last hop router, which functions as a designated router, performs an
RPF check for the RP that handles this group, and the join is sent toward the RP rather than toward any
particular source.

Figure 10-8 calls out how the source generates native multicast to the first hop router, R1 (which also functions
as a designated router), which in turn encapsulates the traffic into a unicast datagram addressed to the RP.
Upon receipt, the RP strips the register message encapsulation and sends the now native multicast down the
shared tree associated with that group.

The purpose of register encapsulation is to eliminate the need for multicast-enabled routers between sources
and the RP. The downside is that the first hop routers (those attached directly to multicast sources) and the RP
require tunneling hardware/software support. On M-series platforms, this normally requires the presence of a
Tunnel Services PIC-note that the M7i has a built-in Tunnel Services PIC whereas the M10i does not. J-series
platforms perform multicast register message encapsulation in software, using the internal services interface,
making additional hardware unnecessary.

10.1.3.4.3. Switching from a shared tree to an SPT

In PIM sparse mode operation, the shared RP tree (RPT) is used only for discovery of active sources. The receipt

http://lib.ommolketab.ir
http://lib.ommolketab.ir

of traffic on the RPT initiates a switchover to an SPT by the last hop router (the router attached to the receiver),
for each active source that is discovered. Once the SPT is formed, the last hop router begins to receive native
multicast directly from the source, so an (S,G) prune is sent up the shared tree, toward the RP, to prevent
reception of traffic over both the SPT and the RPT for that source. In some PIM implementations, a user-
configurable threshold can be set to control when the switch to an SPT is instigated. This capability is designed
to prevent cutover to an SPT for short-lived sessions, where the traffic may no longer even be present by the
time the SPT is established. In the JUNOS software PIM implementation, you can alter the default behavior of
immediately switching to an SPT in favor of never switching to an SPT. You can do this with the spt-threshold

infinity statement, in conjunction with a policy that specifies one or more (S,G) pairs that are subject to the

modified behavior. The last hop router will never attempt to switch from the RPT to an SPT for matching (S,G)
traffic. This behavior is desired for applications that send very low levels of multicast traffic, where the default
behavior could result in undesired oscillation between SPT establishment, a timeout, and a resultant switch back
to the RPT.

PIM sparse mode operation requires tunnel services hardware (or software emulation)
to perform the register encapsulation and decapsulation functions. J-series platforms
can use the internal services interface for this functionality, as can the M7i with its built-
in ASM hardware. The M10i requires the installation of tunnel services hardware to
support register encapsulation. If your router lacks tunnel services, you can still commit
a PIM sparse mode configuration, but things will simply not work if that router is the
first hop attached to a source or when it functions as a (remote) RP, as both of these
roles require processing of register messages. A Tunnel Services PIC is not required for
dense or SSM modes of operation. You can also eliminate the need for register
encapsulation and related tunnel PICs with the corner-case scenario of always having
the first hop router also function as the RP.

10.1.4. Multicast Terminology Summary

This section defined the key terms and concepts associated with IP multicast. The next section explores
multicast routing and group management protocols.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 10. IP Multicast in the Enterprise

This chapter explores typical enterprise deployment scenarios for IPv4 multicast. Focus is placed on the design
and configuration of a scalable, fault-tolerant, multicast infrastructure using JUNOS software. Operational
analysis and fault isolation are also demonstrated. The topics covered include:

Multicast terminology and concepts

Multicast protocols: group management and routing

Protocol Independent Multicast (PIM) sparse mode using static rendezvous points (RPs)

PIM sparse mode with bootstrap-based RP election

PIM and Multicast Source Discovery Protocol (MSDP)-based Anycast-RP

Juniper Networks routers offer extensive support for IPv4 multicast. Consult the multicast overview in the
JUNOS software documentation to confirm the list of supported RFC and drafts for your software release.

10.1. What Is Multicast?

Multicast defines the concept of a one-to-many communications stream. To a casual observer, multicast is
similar to broadcast in that a single copy of a packet can be received by multiple nodes-however, multicast is
not dependent on an underlying multiaccess medium. It can operate network-wide (unlike broadcast traffic that
is not forwarded by routers), and is associated with protocols that attempt to automatically tune the network to
eliminate unnecessary transport and delivery of multicast traffic.

Routers use multicast routing protocols to control the forwarding of multicast traffic to prevent loops and avoid
inefficiencies associated with having multiple copies of a given packet transmitted over the same link multiple
times. Multicast group membership protocols are used by hosts to express interest in one or more multicast
groups-multicast traffic is not forwarded over an interface with attached hosts unless at least one host has
explicitly requested the receipt of multicast traffic.

When all goes to plan, the presence of multicast traffic is noted only by those nodes that have expressed
interest in that particular stream, which is in marked contrast to a link-level broadcast that forces reception of
the packet by all nodes on that link. In summary, broadcast is one-to-all with a link-level scope, whereas
multicast is one-to-many, network-wide, but only when there is express interest in receiving multicast.

The sources and destinations of multicast content are generally hosts, not routers. The role of a multicast router
entails locating multicast sources, replicating packets for transmission over multiple interfaces, preventing
routing loops, and connecting interested destinations with the proper source, all while keeping the flow of
unwanted packets to a minimum.

10.1.1. Multicast Applications

There are numerous applications for IP multicast. In many cases, a given application is capable of operating in
either unicast or multicast mode, depending on user settings and overall scaling needs. Network applications

http://lib.ommolketab.ir
http://lib.ommolketab.ir

that can function with unicast but are better suited for multicast include collaborative groupware,
teleconferencing, and distributed applications such as multiplayer gaming or virtual reality. Any IP network
concerned with reducing network resource consumption for one-to-many or many-to-many applications, to
include multimedia streams with multiple receivers such as IP-TV, benefits from multicast.

Multicast-enabled networks and applications provide significant scaling benefits. When unicast is employed by
an Internet radio or news ticker service, for example, each recipient requires a separate traffic session. The
processing load at the server and network bandwidth consumed increase linearly as each new receiver attaches
to the server. This is extremely inefficient, whether dealing with the global scale of the Internet or a modest
enterprise-scale network.

In a broadcast model, the source needs to generate only a single stream using a broadcast destination address.
Ignoring for the moment that the link-level scope of broadcast makes this model unusable in a routed network,
a broadcast model is extremely inefficient because it consumes maximum bandwidth and places the burden of
packet rejection on each host.

Multicast provides the most efficient and effective solution for most one-to-many or many-to-many applications,
with none of the drawbacks and all of the advantages of the unicast or broadcast model. With multicast, a single
multicast packet stream finds its way to every interested receiver, and replication is performed in a distributed
manner within each router as needed, allowing large-scale deployment because no one device is forced to
replicate or handle all traffic associated with the application. With IP multicast, a sending host generates a
single IP packet stream, whether there is one receiver or 1 million receivers, and links that connect to subnets
consisting of entirely uninterested receivers carry no multicast traffic at all.

10.1.1.1. Locating content

Once you have enabled multicast in your network, the first question becomes "What new services and
applications can I enable with it, and how will users know?" In other words, for maximum benefit, there needs
to be a TV Guide-like function available to the end user. The Session Directory tool (known as SDR) is an end-
user application that uses multicast protocols to locate and list available sessions in the network. Figure 10-1
shows the user interface for the SDR application.

Figure 10-1. The Session Directory tool

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The transport protocol used by the Session Directory tool is the Session Announcement Protocol (SAP). SAP
messages are transmitted to the well-known multicast group address of 224.2.127.254, and they contain
descriptions of currently available sessions formatted using the Session Description Protocol (SDP). You can
download the SDR application and get additional information at http://www-
mice.cs.ucl.ac.uk/multimedia/software/sdr/.

http://www-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.1.2. Multicast Terminology and Concepts

To the uninitiated, multicast can seem to be a jumble of confusing terms and concepts. It helps to keep in mind
that multicast is largely state-driven, which is to say that things may or may not happen, based on the presence
or absence or some other event. For example, a join message is generated when a router wishes to receive
multicast traffic for a given group. As a result of this join, a multicast distribution tree is instantiated, or
modified, which adds the interface on which the join was received in the outgoing interface list (OIL) for that
group. After some period of time, lack of continued join activity results in this state timing out, the removal of
the interface from the OIL, and the cessation of multicast forwarding for that group over that interface. This
"now you see it, now you don't" aspect of multicast often leads to confusion, at least when compared to the
more or less steady-state nature of unicast routing protocols. In Open Shortest Path First (OSPF), the absence
or presence of a route is not a function of an actual desire or need to use the route. In contrast, a multicast
"route" is actually a dynamic entry that is based on the presence of an active sender and, to some degree, the
presence of at least one interested receiver.

10.1.2.1. Routing turned upside down

If the dynamic state of multicast is not reason enough for confusion, consider that multicast forwarding is
actually a type of reverse routing. Unicast routing is based on longest-matching against the packet's destination
address, with the overall goal being the forwarding of a packet toward its destination. In contrast, multicast
forwarding is performed based on the source address, with the goal being the forwarding of the packet away
from the source, as opposed to toward any particular destination. This behavior is known as reverse path
forwarding (RPF) and is detailed in a later section.

10.1.2.2. Multicast terms

The reader should be familiar with the following terms and concepts before delving any further into multicast.
Refer to Figure 10-2 to see how the terms relate to an IP multicast network.

Figure 10-2. Multicast terms

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 10-2 looks complicated, so let's tackle each part individually:

Multicast sources

The multicast sources for groups 1 and 2 are shown at the top of Figure 10-2. A multicast source is the
entity that generates a stream of packets addressed to one or more multicast groups. The set of
addresses from 224.0.0.0–239.255.255.255 (224/4) are reserved for IP multicast use. Any device that
sends one or more packets to a destination address in this range is a multicast sender. No multicast-
specific routing or group management protocol is required by a multicast sender; in fact, the sender does
not even need to be able to receive multicast traffic. The sender is the root of a shortest-path tree (SPT).

Multicast receivers

Several multicast receivers are shown at the bottom of Figure 10-2. The receivers form the leaves of a
multicast distribution tree. Multicast receivers run the Internet Group Management Protocol (IGMP), to
inform attached routers what multicast groups they are interested in. A node becomes a leaf on the
distribution tree when it joins a given group. A branch is pruned from the multicast tree when no
interested hosts remain; that is, when all of its leaves have fallen off. This condition is shown for LAN 3,
where the sole receiver has indicated a desire to leave both multicast groups. Note how the group
management protocol's leaves become a multicast routing protocol prune message, assuming that the
first hop router has no other interested receivers (leaves) for the related branch.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Multicast protocols

Multicast protocols control the flow of multicast traffic between sources and receivers. For now, it's
sufficient to note that receivers use a group management protocol to inform their routers which groups
they are interested in; receivers are not aware of the actual multicast topology. Routers run a group
management protocol to communicate with attached receivers, and a multicast routing protocol when
communicating with other multicast-aware routers. A multicast routing protocol such as PIM is
significantly more complex than the group management protocols used by receivers, and it is responsible
for ensuring loop-free forwarding and management of the distribution tree based on the absence or
presence of interested receivers.

Upstream/downstream

Many operations in multicast are directionally oriented. The multicast tree is rooted at each source and
terminates at the various leaves. Traffic flows downstream, along the distribution tree, from the source to
each receiver. In contrast, control messages that establish a prune/join state are sent upstream, in the
direction of the receiver to the source. Figure 10-2 shows the multicast traffic from groups 1 and 2
flowing downstream toward interested receivers while the related control messages flow upstream.

Distribution trees, branches, and leaves (oh, my)

A distribution tree is the interconnection of nodes that lie between a sender and interested receivers.
Figure 10-2 shows two senders, and each is associated with its own distribution tree. The tree is rooted at
the sender in an SPT, or at the RP in a shared tree. The example in the figure consists of two SPTs. Traffic
flows downstream on the tree while control messages flow upstream to influence multicast flow. Between
the root and each leaf lies one or more branches. A router must replicate packets to each branch that
leads to a leaf, noting, however, that the same effort is required whether there is one or 1,000 leaves on
that branch. A leaf is a multicast receiver with interest in a given group. A branch is pruned from the tree
when it has no remaining leaves. The figure shows R3 and R5 pruning branches from the tree in response
to the receipt of leave messages that indicate no remaining leaves.

Dense and sparse modes

There are two primary strategies when it comes to forming the initial distribution tree. There is the flood
first, prune later philosophy known as dense mode, and there is the prune first and flood only when asked
for method known as sparse mode. Stated differently, dense mode is like a push model that assumes
that all receivers want all multicast, and sparse mode functions in a client pull manner, where it is
assumed that most receivers do not want any multicast. In both methods, the distribution tree is
ultimately pruned of any leafless branches, but in the former, the expiration of state results in resumed
dense mode flooding, whereas in the latter, an expiration of join state results in a return to the default
pruned mode. Generally speaking, older multicast routing protocols such as the Distance Vector Multicast
Routing Protocol (DVMRP) support only dense mode, whereas newer protocols such as PIM support both
modes. In some cases, the same protocol can operate in a sparse-dense mode, whereby certain groups
are handled in dense fashion while others are treated as sparse. Dense mode operation is best suited for
use over LANs because its flood-first nature tends to consume more bandwidth. On the upside, dense
mode does not require the complexities of an RP. Recall that in dense mode, any active source results in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

flooding down all branches, which are then pruned if not needed; this means that routers have no
problems learning about active sources and groups. In contrast, sparse mode operation creates
somewhat of a chicken-before-the-egg problem, in that a router must send an explicit join before it can
receive traffic for a given group, but before it can send the join it has to know which groups and sources
are active! This problem is resolved with the introduction of a shared tree and an RP, which we will detail
in a subsequent section.

10.1.2.3. Additional multicast building blocks

This section discusses IP multicast concepts that are independent of any specific multicast routing protocol or
mode of operation. Understanding these concepts prepares the reader for the upcoming IP multicast
configuration and operational mode analysis examples.

10.1.2.3.1. Multicast addressing

Multicast uses the Class D IP address range, from 224.0.0.0–239.255.255.255. In modern vernacular, the
concept of classful addresses has lost favor, so addresses in this range are commonly referred to as simply
multicast addresses. A multicast address can be used only as the destination address of an IP packet-the
source address must always be of the unicast form. A multicast address normally has a /32 prefix length,
although other prefix lengths are allowed. Recall that a multicast address represents a logical grouping of
devices rather than a physical collection of devices. Multicast addresses can still be described in terms of prefix
length using traditional notation. For example, the entire multicast address range can be written as 224/8. The
base address 224.0.0.0 is reserved and cannot be assigned to any group, addresses in the
224.0.0.1–224.0.0.255 range are reserved for local wire use, and the 239.0.0.0–239.255.255.255 range is
reserved for administratively scoped addresses.

Internet numbering authorities normally do not allocate multicast addresses to their customers. This is because
multicast addresses are concerned more with content than with a given physical device. Receivers do not
require a multicast address, but they need to know the multicast address associated with the multicast content
they are interested in. Multicast sources need an assigned multicast address only to produce the content, not to
identify their place in the network. Every source, receiver, and numbered router interface still needs an
ordinary, unicast IP address.

Many applications have been assigned a range of multicast addresses, either by the Internet Engineering Task
Force (IETF) or by the applications' developers. Although statically assigned multicast addressing is certainly
possible, in most cases you can simply use the application's defaults. Table 10-1 shows some application-to-
multicast address mappings, as defined by the Internet Assigned Numbers Authority (IANA) at
http://www.iana.org/assignments/multicast-addresses.

Table 10-1. IANA application-to-multicast address mappings (select examples)

Address Application

224.2.0.0–224.2.127.253 Multimedia conference calls

224.4.0.0–224.4.0.254 London Stock Exchange

224.0.1.141 Dynamic Host Configuration Protocol (DHCP) servers

224.0.1.39 cisco-rp-announce

10.1.3. Mapping IP Multicast to Link Layer Multicast

On multiaccess networks such as LANs, using the broadcast address to forward IP multicast results in disruption
to all nodes on that LAN segment, whether they are interested in multicast or not. Using a unicast address
negates the one-to-many efficiency benefit of multicast. The solution is to map a Layer 3 IP multicast address,
which is 32 bits in length, into a corresponding 48-bit media access control (MAC) layer multicast address.

http://www.iana.org/assignments/multicast-addresses
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 10-3 shows a sample of this mapping.

Figure 10-3. Layer 3 to Layer 2 multicast mapping

Given the different address lengths, a direct 1:1 mapping between Layer 2 and Layer 3 addresses is not
possible. One-half of the IANA-owned block of Ethernet MAC addresses, the first 24 bits starting with 0x
01:00:5E, are reserved for multicast, yielding the usable range of 0100.5e00.0000–0100.5e7f.ffff inclusive. This
allocation results in a 24-bit field, but because the first bit is always set to 0, only 23 bits remain to be
populated with the IP multicast address. The mapping process strips the 4-bit class D identifier as well as the 5
high-order bits from the group ID, which leaves 23 bits remaining to be mapped into the multicast MAC
address. Because 5 high-order bits are stripped from the group ID, there is a resulting loss of granularity in the
Layer 3 to Layer 2 address mapping resulting in 32(25) different group addresses mapping to the same
multicast MAC address, as shown at the bottom of Figure 10-3.

In a Layer 2 network, the sharing of a MAC address among as many as 32 IP multicast groups results in a loss

http://lib.ommolketab.ir
http://lib.ommolketab.ir

of efficiency, because traffic sent to one multicast group will be received by all hosts using the same shared MAC
layer multicast address, even though they do not subscribe to that particular group. Wherever possible, you
should be careful when selecting IP multicast addresses to ensure that they map to a unique MAC layer
multicast address; otherwise, host systems will have to expend cycles receiving, and then discarding, multicast
traffic for groups that have no local applications listening.

10.1.3.1. Multicast addressing and administrative scoping

Multicast addresses are categorized according to their scope. Scoping is designed to limit the extent to which a
multicast packet can travel. Scoping is used for both performance and administrative reasons. Table 10-2
details currently defined IPv4 multicast address scopes.

Table 10-2. IPv4 multicast address scopes

Address Scope Comment

224.0.0.0/24 Link local Confined to a single link, often used for unicast routing
protocols; allows same multicast address on each link

239.0.0.0–239.255.255.255 Administratively
scoped

Further subdivided into site-local (239.255.0.0/16) and
organizational (239.192.0.0/14) scopes

224.0.1.0–238.255.255.255 Global Addresses with global scope, of which several static
assignments exist:

224.1.0.0-224.1.255.255: shared tree multicast
groups

224.2.0.0-224.2.127.253: multimedia conference calls

224.2.127.254: SAPv1 announcements

224.2.127.255: SAPv0 announcements

224.2.128.0-224.2.255.255: SAP dynamic
assignments

224.252.0.0-224.255.255.255: DIS transient groups

232.0.0.0-232.255.255.255: VMTP transient groups

Modern IP networks use address-based scoping rather than IP Time to Live (TTL)-based scoping. This is because
TTL-based techniques are prone to problems in terms of being able to accurately predict TTL values network-
wide, especially in the face of changes in forwarding topology during failover scenarios. Addresses in the link-
local scope cannot be forwarded beyond the boundaries of a single link. These addresses tend to be used by
unicast routing protocols such as Routing Information Protocol version 2 (RIPv2) and OSPF. The administratively
scoped address range is broken into site-local and organizational boundaries. An enterprise might consist of a
single site, the exact definition of which is left to the administrators of the routing domain, or it may consist of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

multiple sites. Generally, the organizational scope is defined as the extent of a routing domain. Administrators
configure site or global scoping on the appropriate interfaces to block related traffic from leaving that interface.
Figure 10-4 illustrates a scoping example.

Figure 10-4. Multicast scoping

The approach shown in Figure 10-4 is address-based, but JUNOS software also supports scoping based on a
scope-policy. Unlike address scoping, which is applied per interface, a scope-policy applies to all interfaces,

and you cannot use it in conjunction with interface-level scoping. You confirm address scoping using the show

multicast scope command. The remaining IP multicast address space is considered to have a global scope.

Some addresses within the global range are statically assigned by the IANA, as shown in Table 10-2.

It is common to see scoping used to block the multicast addresses associated with the auto-RP discovery
mechanism (224.0.1.39 and 224.0.1.40) at administrative boundaries to prevent the use of the local domain's
RP by routers outside of local administrative control.

You cannot use scoping to block RP discovery via the bootstrap protocol because the
bootstrap mechanism operates hop by hop and uses the 224.0.0.13 ALL-PIM-Routers
multicast address, which, if scoped, would break other aspects of PIM operation.
Normally, bootstrap messages are "scoped" by configuring interdomain interfaces to run
PIMv1, which does not support bootstrap, or through definition of bootstrap
import/export policy that blocks reception or transmission of bootstrap router (BSR)
messages, respectively.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.1.3.2. Interface lists

Multicast routers maintain state to determine which multicast packets should be forwarded, and over which
interfaces copies of a packet should be sent. Part of this state is in the form of incoming and outgoing interface
lists (IILs/OILs) for each active multicast source in the network. Maintaining accurate interface lists is critical for
loop avoidance.

Loops in any IP network are a bad thing. A multicast loop can be particularly nasty given
the replication action of routers, which serves to provide an amplification effect for any
looping packets.

The interface that lies on the shortest path back to the source is the upstream (incoming) interface, and packets
are never allowed to be forwarded toward the multicast source. All remaining interfaces could become a
downstream (outgoing) interface, depending upon join state.

A router with multicast forwarding state for a particular multicast group is "switched on" for that group's
content. Interfaces on the router's outgoing interface list send copies of the group's packets received on the IIL
for that group. Figure 10-5 shows this condition.

Figure 10-5. Interface lists

The router state that controls multicast forwarding is referred to as (S,G) or (*,G). In (S,G), the S refers to the
unicast IP address of the source for the multicast traffic, and the G refers to the particular multicast group IP

http://lib.ommolketab.ir
http://lib.ommolketab.ir

address for which S is the source. All multicast packets sent from this source have S as the source address and
G as the destination address. The asterisk (*) in the (*,G) notation is a wildcard indicating that the state applies
to any multicast source sending to group G. So, if two sources are originating content for multicast group
224.1.1.2, a router could use (*, 224.1.1.2) to represent the state of a router forwarding traffic from both
sources to members of that group, as is done in the case of a shared tree.

An incoming and outgoing interface list is maintained for each active source to group tuple. When you consider
that group membership is itself often dynamic, and that this volatility leads to a need for ongoing maintenance
of the related interface list, it becomes clear that a router handling large numbers of multicast groups can
consume significant control plane resources maintaining multicast forwarding state. All Juniper Networks router
architectures are well suited to hardware/real-time thread-based multicast replication and can forward multicast
at the same (near-line-rate) performance level as unicast. A typical control plane scaling guideline for a router
with 1 GB of memory is no more than 120,000 PIM entries [sum of (*,G) and (S,G)], 1,000 PIM neighbors, and
1,000 dynamic IGMP groups per interface.

10.1.3.3. Reverse path forwarding

Conventional routing is based on a longest match against the destination address of a packet. The unicast route
table is maintained by unicast routing protocols such as the Routing Information Protocol (RIP) and OSPF, and it
is used when forwarding unicast packets toward their destinations. As noted previously, multicast is like routing
turned upside down, in that now the router actually forwards packets away from the source, based on the
source rather than the destination address. A multicast router's forwarding state is thus organized based on a
reverse path paradigm. As noted earlier, this process is known as reverse path forwarding (RPF) and is shown in
Figure 10-6.

Figure 10-6. The multicast RPF check

http://lib.ommolketab.ir
http://lib.ommolketab.ir

An RPF check simply makes sure that a packet arrives on the same interface that would be used for egress by
the local router when routing back to that multicast source using the Interior Gateway Protocol's (IGP's)
shortest path-in effect, a multicast packet is routed twice, once based on the source address and, if that
passes, again based on the group address, this time against the OIL for that group. It's important to note that
RPF checks occur both in the control plane when processing joins, and in the data plane when deciding whether
a packet should be forwarded. Multicast packets that fail the RPF check are dropped because the incoming
interface is not on the shortest path back to the source. Figure 10-6 shows how router R4 drops a multicast
packet from source 10.0.1.1 when it is received on an interface that would not be used when routing a unicast
packet to address 10.0.1.1. The figure also shows that routers generate joins over the RPF interface back to the
source.

In some cases, the multicast routing protocol maintains its own RPF table, which is used specifically for the
purpose of forwarding multicast. DVMRP is an example of such a protocol. PIM, on the other hand, makes use of
the existing unicast route table to perform its RPF checks. This capability is why PIM is considered to be
protocol-independent; it can use any route source for its RPF checks, including static, IGP, and even Border
Gateway Protocol (BGP) routes. JUNOS software supports extensions to unicast routing protocols to
accommodate the building of a separate RPF table. Examples include the Multiprotocol Border Gateway Protocol
(MBGP) and multitopology routing in Intermediate System-to-Intermediate System (IS-IS), or M-IS-IS.

Using the main unicast route table for RPF checks provides simplicity; using a dedicated route table for RPF
checks allows a network administrator to set up separate paths and routing policies for unicast and multicast
traffic. This allows the multicast network to function more independently of the unicast network.

10.1.3.4. Distribution trees

Previous discussions have indicated that multicast traffic is distributed via a tree that is rooted at the source and
branches as needed to pick up all interested leaves. Several different types of distribution trees exist, and in
many cases multiple tree types are used (over time) for the same multicast stream.

10.1.3.4.1. SPT

SPT is a distribution tree that is rooted at the source. This is sometimes called a source tree. An SPT is formed
by sending the appropriate join messages over the RPF path to the desired source. Figure 10-7 shows this
process.

Figure 10-7. An SPT

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Things begin when the receiver sends an IGMP join for source 10.0.1.1 and group 225.0.0.1. R7, the first hop
(and, in this case, designated) router, generates the appropriate join message out the RPF interface for that
source. This is referred to as an (S,G) join, because in this case both S and G are known. Router R4 receives the
(S,G) join, which triggers the addition of the receiving interface to its OIL for the 10.0.1.1, 225.0.0.1 tuple. R4
now performs its own RPF check on the source address, and as a result R4 sends its (S,G) join message out its
RPF interface for 10.0.1.1, causing reception of the (S,G) join at R1. The process stops when the join message
reaches the router directly connected to the source or when it reaches a router that already has multicast
forwarding state for this (S,G) tuple. The key point is that RPF handling of (S,G) join messages results in an
SPT.

10.1.3.4.2. Shared trees and RPs

A shared multicast tree is rooted at an intermediate router, rather than at a specific source. The use of a shared
tree can offer the benefit of less overall state, in that a single (*,G) entry can now represent state for numerous
sources that may be sending to this group. In the most common multicast protocol in use today, PIM, the
shared tree is short-lived and used only to make initial contact between senders and receivers, however. Once
this initial contact is made, an SPT is established and the shared tree is no longer used for that (S,G) tuple. In
PIM, the root of the shared tree is the RP, which functions to support sparse mode operation. Recall that in
sparse mode, multicast is forwarded only as a result of an explicit join for the related group. Without prior
knowledge of which senders are active for what groups, a router cannot generate an (S,G) join toward the
source, because the source is not yet known.

Source-specific multicast (SSM) describes a condition in which the receiver has
preexisting knowledge of what source it wishes to join. This allows the generation of an
SPT without the need for an RP. The use of receiver joins that do not specify a particular
source is known as Any Source Multicast (ASM).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In a sparse mode Any Source Multicast (ASM) operation, the router generates an (*,G) join toward the RP,
which results in joining a tree that is shared among all senders associated with that group. Figure 10-8 shows
this process.

Figure 10-8. An RP tree

In the example in Figure 10-8, the receiver generates an IGMP join for group 225.0.0.1 that does not specify a
particular source; hence, the any in the term Any Source Multicast and the use of a wildcard metacharacter to
represent the resulting state (*,G). The last hop router, which functions as a designated router, performs an
RPF check for the RP that handles this group, and the join is sent toward the RP rather than toward any
particular source.

Figure 10-8 calls out how the source generates native multicast to the first hop router, R1 (which also functions
as a designated router), which in turn encapsulates the traffic into a unicast datagram addressed to the RP.
Upon receipt, the RP strips the register message encapsulation and sends the now native multicast down the
shared tree associated with that group.

The purpose of register encapsulation is to eliminate the need for multicast-enabled routers between sources
and the RP. The downside is that the first hop routers (those attached directly to multicast sources) and the RP
require tunneling hardware/software support. On M-series platforms, this normally requires the presence of a
Tunnel Services PIC-note that the M7i has a built-in Tunnel Services PIC whereas the M10i does not. J-series
platforms perform multicast register message encapsulation in software, using the internal services interface,
making additional hardware unnecessary.

10.1.3.4.3. Switching from a shared tree to an SPT

In PIM sparse mode operation, the shared RP tree (RPT) is used only for discovery of active sources. The receipt

http://lib.ommolketab.ir
http://lib.ommolketab.ir

of traffic on the RPT initiates a switchover to an SPT by the last hop router (the router attached to the receiver),
for each active source that is discovered. Once the SPT is formed, the last hop router begins to receive native
multicast directly from the source, so an (S,G) prune is sent up the shared tree, toward the RP, to prevent
reception of traffic over both the SPT and the RPT for that source. In some PIM implementations, a user-
configurable threshold can be set to control when the switch to an SPT is instigated. This capability is designed
to prevent cutover to an SPT for short-lived sessions, where the traffic may no longer even be present by the
time the SPT is established. In the JUNOS software PIM implementation, you can alter the default behavior of
immediately switching to an SPT in favor of never switching to an SPT. You can do this with the spt-threshold

infinity statement, in conjunction with a policy that specifies one or more (S,G) pairs that are subject to the

modified behavior. The last hop router will never attempt to switch from the RPT to an SPT for matching (S,G)
traffic. This behavior is desired for applications that send very low levels of multicast traffic, where the default
behavior could result in undesired oscillation between SPT establishment, a timeout, and a resultant switch back
to the RPT.

PIM sparse mode operation requires tunnel services hardware (or software emulation)
to perform the register encapsulation and decapsulation functions. J-series platforms
can use the internal services interface for this functionality, as can the M7i with its built-
in ASM hardware. The M10i requires the installation of tunnel services hardware to
support register encapsulation. If your router lacks tunnel services, you can still commit
a PIM sparse mode configuration, but things will simply not work if that router is the
first hop attached to a source or when it functions as a (remote) RP, as both of these
roles require processing of register messages. A Tunnel Services PIC is not required for
dense or SSM modes of operation. You can also eliminate the need for register
encapsulation and related tunnel PICs with the corner-case scenario of always having
the first hop router also function as the RP.

10.1.4. Multicast Terminology Summary

This section defined the key terms and concepts associated with IP multicast. The next section explores
multicast routing and group management protocols.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.2. Multicast Protocols

This section describes the operation of group management and multicast routing protocols. We will focus on PIM
sparse mode because it's the predominate form of multicast routing protocol in modern IP multicast networks.
Simply stated, group management protocols are run by hosts to inform local routers of a host's interest, or lack
thereof, in a particular multicast group. Multicast routing protocols are run only on routers and are concerned
with RPF checks and the establishment and maintenance of (*,G) and (S,G) forwarding state.

10.2.1. Group Management Protocols

IGMP performs multicast group management and is run on hosts and on routers that attach to host segments.
IGMP versions 1, 2, and 3 are currently defined in RFCs 1112, 2236, and 3376, respectively. The basic
mechanics of IGMP operation center on hosts generating report messages to inform attached routers what
groups the host is interested in, and to inform routers generating query messages to determine whether any
active listeners still remain for a particular group.

There are three versions of IGMP-Juniper routers default to version 2, but you can configure them for version 1
or version 3 as needed. Although the various versions of IGMP are backward-compatible, this compatibility is
achieved at the cost of having to drop back to the lowest common denominator. For example, if one host is
running IGMPv1, any router attached to the LAN running IGMPv2 drops back to IGMPv1 operation, effectively
eliminating the advantages of IGMPv2. Where possible, you should ensure that all multicast receivers run the
highest version of IGMP that is supported and configured on the routers serving that network segment.

Table 10-3 identifies the key differences among IGMP versions.

Table 10-3. ICMP version comparison

Version Characteristics Comment

IGMPv1 Periodic generation of queries to the all-routers multicast
address (224.0.0.1); hosts reply with list of interested groups;
querier function performed by routing protocol

Join and leave latency stemming
from periodic (60-second) nature
of queries

IGMPv2 Lowest IP becomes querier for LAN; group-specific query and
leave-group message

Routing protocol no longer
performs the querier function;
improved join/leave latency

IGMPv3 Support for group-source report messages Supports SSM by allowing
receivers to specify (S,G) tuples

Figure 10-9 details key aspects of IGMPv2 report and query behavior.

Figure 10-9. IGMPv2 operation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Things begin in Figure 10-9 when the receiver generates an IGMPv2 report, expressing interest in becoming a
member of the 225.0.0.1 group. Note that the report is sent to the multicast address equating to the group
being joined. Both multicast routers see this report. The router with the lowest IP address is elected the querier
and periodically generates general queries to update its knowledge of host-to-group bindings on this LAN, as
shown in step 2. All multicast-capable hosts receive the general query, and after a randomized delay, one of the
interested hosts will reaffirm the group binding by generating a corresponding report message, which is shown
in step 3. Other interested hosts suppress their reports upon seeing a matching report sent by any other node
on the segment-the same level of multicast replication and forwarding is needed, be there one or 1,000
interested hosts on a given segment-therefore, only one report is needed to keep the group binding active.

Figure 10-10 goes on to show an IGMPv2 leave process.

Figure 10-10. IGMPv2 leave process

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Later on, the receiving host no longer desires content from group 225.0.0.1. It generates an IGMPv2 group-
leave message, which is addressed to 224.0.0.2, the all-routers multicast address. The querier router now
generates a group-specific query, which is addressed to the multicast address of the related group, in order to
determine whether any interested listeners remain. If so, one will be the first to generate a group report, which
keeps the binding active. Otherwise, after a small delay, the group join state is removed from the associated
interface. The support of group leaves and general queries can greatly reduce join and leave latency. For
example, in IGMPv1, the routing protocol must generate three queries before removing join state-with the
default 60-second timer, this equates to 180 seconds of continued multicast delivery after the last interested
host has left the group.

10.2.1.1. IGMPv3

IGMPv3 adds the concept of a source-specific join, which in turn enables SSM. The new capability allows a host
to filter multicast content by group, as well as by source. With IGMPv1 or IGMPv2, a host simply has no way to
express interest in a particular source, and therefore has to receive traffic from all active senders to that group.
Because a source-specific join explicitly identifies the desired source, an SPT can be instantiated without the
services of an RP. Figure 10-11 shows IGMPv3 SSM operation.

Figure 10-11. IGMPv3 SSM operation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In Figure 10-11, our trusty receiver (which is now IGMPv3-enabled) is told by its multicast application to
subscribe to the multicast channel identified by the tuple 10.0.2.1,225.0.0.1. At the same time, the application
instructs the machine to unsubscribe from the 10.0.10.2.225.0.0.1 channel. SSM uses the term channel in a
manner analogous to the word group in ASM. Similarly, the terms subscribe and unsubscribe describe what in
ASM is called join and leave. Note that the same protocol fields and values are used; the modified terminology
simply helps to disambiguate which mode is being discussed, and more correctly describes ASM operation.
Subscribing to an (S,G) is somewhat like tuning into a specific media channel when compared to IGMPv2's
behavior of drawing traffic from all sources in the group. Note that IGMPv3 group report messages are sent to
all IGMPv3-capable multicast routers with a multicast address of 224.0.0.22, rather than to the multicast
address of the group specified in the group address of the report message itself, as is done in versions 1 and 2.

The result, shown at step 1, is the receiver generating an IGMPv3 report that specifically lists the sources (and
groups) for which content is desired. The same message can also be used to remove any previously subscribed-
to sources. The LAN's designated router translates the IGMP report into the appropriate PIM join and prune
messages, which in this context are referred to as subscribe and unsubscribe, respectively.

10.2.2. PIM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Several multicast routing protocols are still in use, but by far the most widely deployed is PIM. PIM was
designed to avoid the dense-mode scaling issues of DVMRP and the potential performance problems of Core-
Based Tree (CBT) at the same time. PIM supports dense mode, sparse mode, and sparse-dense modes of
operation, and it has been in production use for several years.

PIM is a rapidly evolving Internet specification. PIM has seen two major revisions to its protocol operation (and
packet structure)-PIM version 1 and PIM version 2-three major RFCs (RFC 4601 obsoleted RFC 2362, which in
turn obsoleted RFC 2117), and numerous drafts describing major components of PIM. Work continues on PIM in
a number of areas, such as bidirectional trees, and the rapid pace of development generates numerous PIM-
related Internet drafts.

10.2.2.1. PIM versions

PIMv1 and PIMv2 can coexist on the same router, but not on the same interface. The main difference between
PIMv1 and PIMv2 is the packet format. PIMv1 messages use IGMP packets, whereas PIMv2 has its own IP
protocol number (103) and packet structure. All routers connecting to a shared IP subnet must use the same
PIM version. Because the difference between PIMv1 and PIMv2 simply involves the message format, not the
semantics or message processing rules, a router can easily support a mix of PIMv1- and PIMv2-enabled
interfaces.

In this chapter, we are focusing on PIMv2 operating in sparse mode because this represents the most common
usage of PIM in modern IP internetworks.

10.2.2.2. PIM components

The components needed to run PIM vary depending on operational mode. PIM dense mode requires only
multicast sources and receivers and a series of interconnected PIM dense mode routers to allow receivers to
obtain multicast content.

PIM sparse mode is more complicated because it requires the services of an RP in the network core. The RP is
the root of a shared tree and is the point where upstream join messages from interested receivers meet
downstream traffic from multicast sources. If there is only one RP in a routing domain, the RP and adjacent links
might become congested and form a single point of failure for all multicast traffic. As a result, it is common to
see multiple RPs deployed within a multicast network, for both performance and reliability reasons.

You can view PIM SSM as a subset of a special case of PIM sparse mode, and it requires no specialized
equipment other than that used for PIM sparse mode (and IGMP version 3). When a host sends an IGMPv3 join
for (S,G) the receiving designated router initiates creation of the SPT by sending an (S,G) join to its RPF
neighbor for that source.

10.2.2.2.1. RP discovery

Having one or more routers configured as RPs is one thing, but how do the various sources and receivers come
to learn which routers are acting as RPs, and for which multicast groups? You can take several approaches to
propagate knowledge of the routing domain's RPs to client routers. They include:

Static

The simplest RP discovery mechanism is a static definition of the RP's address and group ranges on each
client. This approach does not require any dynamic discovery protocols, but it is prone to reliability issues
in the event that the statically defined RP fails, unless Anycast-RP is being used. PIM versions 1 and 2
support static RP assignments.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Auto-RP

The auto-RP mechanism is a nonstandard approach (developed by Cisco Systems) for the dissemination
of RP information. Despite the lack of standards, auto-RP is supported in JUNOS software. The main
drawback to auto-RP, aside from its nonstandard status, is the need for dense-mode handling of the two
group addresses associated with auto-RP itself. This requirement forces sparse-dense mode operation on
the network. The two auto-RP groups are 224.0.1.39 (announce), which is used to learn which routers in
the network are possible candidate RPs, and 224.0.1.40 (discovery), which allows PIM routers to learn
about the active group-to-RP mapping information. In operation, one or more routers are configured to
perform the mapping function, which takes as input the set of candidate RPs learned in discovery
messages and generates as output the chosen RP-to-group mappings that all routers should use. Auto-RP
does support failover to backup RPs, but auto-RP does not support the ability to load-balance among
multiple RPs for the same group range. Auto-RP is supported in PIM versions 1 and 2.

Bootstrap

The BSR mechanism is the standardized way to dynamically communicate a domain's RP to group
address bindings. Unlike auto-RP, BSR does not require any dense-mode flooding. This is because
bootstrap messages are propagated hop by hop rather than flooded via multicast, which thereby
eliminates the cart-before-the-horse issues of auto-RP needing a working dense-mode multicast
infrastructure before an RP can be communicated. The bootstrap mechanism is supported in PIM version
2 only. You can configure multiple candidate BSRs for redundancy-it is common to have the same
routers configured as candidate RPs to be set as candidate BSRs also.

Once the BSR is elected (the router with the highest BSR priority), each candidate RP advertises its
configured group ranges. The BSR processes the received advertisements, based in part on factors such
as local policy, group range specificity, configured RP priority, and so on. The resulting RP set is
communicated to all PIM routers, at which point each router is required to run its own hash to determine
the RP for a given group. It is important to note that the hash algorithm ensures that all routers select
the same RP-to-group mappings from the information in the domain's RP set, and when multiple
candidate RPs are present, the algorithm automatically load-balances between those RPs. Stated
differently, if two RPs both announce the default 224/4 range, bootstrap operation results in each RP
handling one-half of the active groups. The failure of one RP results in all groups being shifted to the
remaining RP-however, at no one time can multiple RPs be active for the same group when using
bootstrap.

Anycast-RP

PIM supports the notion of Anycast-RPs, which bypasses the restriction of having one active RP per
multicast group. With Anycast-RP, you can deploy multiple RPs for the same group range. Anycast-RP
provides redundancy and load balancing, but unlike bootstrap, Anycast-RP can balance traffic from
sources within the same group. With Anycast-RP, the various RPs share a common unicast IP address,
such that clients simply choose the metrically closest route to the shared RP address. In the event of RP
failure, the IGP simply reroutes to the next best path to the shared IP address, thus preserving
connectivity. For proper operation, is it critical that each Anycast-RP be aware of active sources using
other Anycast-RPs. This RP-to-RP communication can be performed using MSDP, as defined in RFC 3446,
or using the newer, PIM-only approach defined in RFC 4610. Both methods are supported in JUNOS
software.

10.2.2.3. PIM modes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PIM can operate in dense, sparse, sparse-dense, or SSM mode. Although in this chapter we are emphasizing PIM
sparse mode in support of ASM, for completeness we will expand on the various modes here.

10.2.2.3.1. Dense mode

PIM dense mode is useful for multicast LAN applications, the main environment for all dense mode protocols.
PIM dense mode uses the same flood first, prune later approach associated with DVMRP. The main difference
between DVMRP and PIM dense mode is that PIM provides protocol independence and can use the route table
populated by any underlying unicast routing protocol to perform RPF checks. PIM dense mode supports the ASM
model.

10.2.2.3.2. Sparse mode

PIM sparse mode is the most common way to deploy PIM. Sparse mode operation is considerably more complex
than dense mode, but sparse mode offers the benefit of bandwidth conservation, which often more than justifies
the added complexity. The various configuration examples shown in this chapter are based on PIM sparse mode.
The key aspect of sparse mode operation is the need for an RP to serve as a liaison between active senders and
any receivers that wish to obtain their content.

A PIM sparse mode router joins the RP-based shared tree upon receipt of an IGMP join from attached receivers.
This is known as an (*,G) join because it matches any source sending to that group. If any sources are active
for that group, their packets are sent down the shared tree until they reach the last hop router (the router
directly attached to the receiver) and are delivered to the receiver(s) on that network segment. Receipt of
traffic over the shared tree allows the last hop router to learn the address of active sources, at which point it
initiates an SPT by sending an (S,G) over the RPF path toward each source. Once the SPT is established, the last
hop router prunes that source from the shared tree by sending an (S,G) prune. This transitional aspect of PIM
sparse mode from shared to source-based tree is one of the major attractions of PIM. This feature prevents
overloading the RP or surrounding core links, which was the Achilles' heel of the CBT approach-which has yet to
see commercial deployment.

PIM sparse mode supports the ASM and SSM models.

10.2.2.3.3. Source-specific multicast

The original multicast RFCs specify both many-to-many and one-to-many models. These modes are now known
as ASM because ASM supports one or many sources for a multicast group's traffic. However, ASM operation
requires that receivers be able to determine the locations of all sources for a particular multicast group, no
matter where the sources might be located in the network. In ASM, source discovery is a critical and complex
function within the network.

ASM makes sense in a highly dynamic environment where sources often come and go, as, for example, in a
videoconferencing service. However, several promising multicast applications, such as IP-based television, are
being brought to commercial realization quickly and efficiently through an assumption that there is a longer-
lived single source for some particular content. PIM SSM is simpler than PIM sparse mode because only the one-
to-many model is supported. PIM SSM therefore forms a subset of PIM sparse mode. It builds only SPTs, and an
RP is no longer necessary, given that the user specifies the source address as part of his IGMPv3 report
message.

PIM SSM can coexist with ASM by confining the SSM model to a subset of the IP multicast group address range.
The IANA has reserved the address range 232.0.0.0-232.255.255.255 for SSM operation. JUNOS software
allows SSM configuration for the entire range of IP multicast addresses (224.0.0.0-239.255.255.255). When a
custom SSM range is defined, legacy IP multicast applications cannot receive any traffic for groups in that SSM
range, unless the application is modified to support SSM (S,G) channel subscription.

10.2.2.4. PIM messages

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PIM uses a variety of message types to do its job. The reader is encouraged to consult the appropriate RFC for
an exhaustive description of each field found in the various PIM messages. Our purpose here is to describe how
these PIM messages operate to establish SSM operation:

Join/prune

PIM state is established and withdrawn using join/prune messages. An individual message may contain
both join and prune information, join information (a join message) only, or prune information (a prune
message) only. A single join/prune message can list multiple senders/groups to join or prune.

Register

Routers connected to a multicast source encapsulate the multicast data stream into unicast packets that
are addressed to the RP that serves that group range. A PIM register message contains an encapsulated
multicast packet, which can be sent to the RP without the need for multicast transport between the
sender and the RP. Once received by the RP, the register encapsulation is stripped and the RP forwards
native multicast packets down the shared RPT.

Register stop

The RP may wish to stop receiving the encapsulated multicast traffic from the first hop router, and the
register-stop message is used to accomplish this goal. An RP may wish to stop receiving register-
encapsulated messages for several reasons:

The RP has no join state for the group address of the traffic (there are no interested listeners on the
RPT).

The RP may have received a prune message from the network for a group being forwarded along
the RPT, perhaps as the result of SPT establishment leaving no interested receivers.

The RP itself might be receiving the multicast traffic natively from the network along an SPT.

10.2.2.5. The designated router

PIM defines specific functions for the first and last hop routers, which are known as designated routers. The
designated router sends register and join/prune messages on behalf of directly connected senders and
receivers, respectively. The designated router may or may not be the same router as the IGMP querier.

On multiaccess networks, a designated router is elected to ensure that packets and PIM control state are not
duplicated. In operation, PIM neighbors on a shared LAN periodically send PIM Hello messages to each other.
The sender with the highest IP address becomes the designated router for that LAN segment.

10.2.2.5.1. PIM assert

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PIM supports an assert mechanism that prevents ongoing packet duplication, which can occur when there are
parallel paths to a source or the RP. Figure 10-12 shows the PIM assert process in action.

Figure 10-12. The PIM assert process

The figure shows three routers, R1-R3, connected to a shared LAN, along with an RP and a source for group
225.0.0.1. The figure also shows the IGP metrics to reach the source, as seen by routers R1 and R2. In this
example, both R1 and R2 have added the multicast source to their OIL for their LAN attached interface. As a
result, a packet sent from the source is replicated and forwarded by both R1 and R2, resulting in an extra copy
of the packet on the LAN segment. To prevent ongoing occurrences, the PIM assert process is started, by which
the upstream PIM routers assert their right to be the designated forwarder by sending assert messages to the
224.0.0.13 (ALL-PIM-ROUTERS) group multicast address. Each router places its IGP preference and
corresponding metric to the source in its assert message. The router with the best preference, or lowest metric,
wins (metrics are compared only in the event of a preference tie). In the event of a tie, the router with the
highest IP address wins. Figure 10-12 also shows that R1 has a better metric and therefore becomes the
forwarder for the LAN segment. Meanwhile, downstream router R3 has eavesdropped on the assert battle and
takes note of the victor because this is the router to which R3 will subsequently send joins for that source.

PIM asserts are also needed for (*,G) entries. This is because the RPT and SPT for a given group may transit a
shared media link such as a LAN. In these cases, the assert mechanism determines which of the two trees will
carry the packet on the shared links, again to avoid unneeded packet duplication. According to the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

specifications, an SPT is always preferred over an RPT. When there are multiple paths to the RP through the
LAN, the designated router may lose the (*,G) assert process to another router on the LAN. As a result, that
router ceases to be the designated router for local receivers on that LAN, and the victor becomes the last hop
router and is therefore responsible for sending (*,G) join messages to the RP.

10.2.3. Multicast Protocol Summary

This section detailed the function of group management protocols, which allow routers to determine which
interfaces have attached listeners, and allow multicast routing protocols that provide for RPF checking and
manage join and prune states.

We also discussed the use of shared and source-specific trees, as well as the role of the RP in supporting ASM
and SSM.

In the next section, we will put multicast theory to the test with a PIM sparse mode deployment scenario using a
static RP.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.3. PIM Sparse Mode: Static RP

At this stage, you should have an extensive grounding in IP multicast theory in general, and in PIM sparse mode
operation in particular. This knowledge is soon to bear fruit as you configure and validate the operation of PIM
sparse mode using a statically defined RP with Juniper Networks' routers.

The initial PIM sparse mode deployment goals are as follows:

Configure router PBR as an RP for the entire multicast address range.

Configure all other routers to use PBR as the domain's RP without using BSR or auto-RP.

Configure Cider to function as a multicast receiver for group 225.1.1.1.

Use Ale as a multicast source to generate traffic to group 225.1.1.1.

Verify RPT join and subsequent traffic-driven switches to SPT.

Figure 10-13 details the portion of Beer-Co's network that is to be enabled for multicast support. The figure also
highlights key aspects of the IGP routing infrastructure now in place.

Figure 10-13. Beer-Co's multicast topology

Details to note in Figure 10-13 include the following:

The default OSPF bandwidth scaling factor is in effect with the exception of PBR's end of the PBR- Lager

link (asymmetric) and the PBR- Bock link. The metric for these links has been altered in an effort to favor

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the Lager- Stout- Porter path for communications between Ale and Cider.

Router Ale is configured to emulate a host sending to a multicast group. Ale uses a default route pointing

to the virtual IP (VIP) address associated with the PBR- Lager Virtual Router Redundancy Protocol (VRRP)

group. No routing or multicast protocols are enabled at Ale.

Cider is used to simulate a PIM-enabled router with a directly attached multicast receiver.

10.3.1. Validate the Baseline IGP Forwarding Path

Before starting any multicast configuration, a quick confirmation of IGP connectivity and the resulting forwarding
paths through the network is performed. The use of a default route is confirmed at Ale, as is the use of the

Lager, Stout, and Porter forwarding paths for communications between Ale and Cider:

[edit]

lab@Ale# run show route 10.10.12.1

inet.0: 4 destinations, 4 routes (4 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

 0.0.0.0/0 *[Static/5] 00:00:04

 > to 10.10.111.10 via fe-0/0/0.111

[edit]

lab@Ale# run traceroute 10.10.12.1 no-resolve

traceroute to 10.10.12.1 (10.10.12.1), 30 hops max, 40 byte packets

 1 10.10.111.3 11.837 ms 9.735 ms 10.115 ms

 2 10.10.131.2 19.716 ms 20.203 ms 9.681 ms

 3 10.20.131.1 10.109 ms 10.395 ms 9.298 ms

 4 10.10.12.1 20.214 ms 9.747 ms 19.893 ms

Symmetrical forwarding in the return path from Cider to Ale is also confirmed, as is the use of OSPF routing at

Cider; recall that unlike Ale, which is running no routing protocols, Cider simulates a PIM/OSPF-enabled router

with an attached receiver:

[edit]

lab@Cider# run traceroute 10.10.128.1 no-resolve

traceroute to 10.10.128.1 (10.10.128.1), 30 hops max, 40 byte packets

 1 10.10.11.2 9.945 ms 9.711 ms 9.856 ms

 2 10.20.131.2 20.054 ms 39.955 ms 19.863 ms

 3 10.10.131.1 19.854 ms 18.125 ms 31.839 ms

 4 10.10.128.1 19.792 ms 19.949 ms 20.214 ms

[edit]

lab@Cider# run show route 10.10.128.1

inet.0: 19 destinations, 19 routes (19 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

10.10.128.1/32 *[OSPF/150]

 00:20:10, metric 0, tag 0

 > to 10.10.11.2 via fe-0/0/1.100

The OSPF route to the loopback address of Ale is seen as an OSPF external by router Cider. This is because a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

static route representing Ale's lo0 address is redistributed into OSPF at routers PBR and Lager, which is

necessary here given that Ale does not participate in OSPF routing. The 111 VRRP group shared by PBR and

Lager is configured to make Lager the VRRP master when its fe-0/0/0.111 interface is operational via the

preempt keyword and a priority of 100-the accept-data option is added to permit diagnostic ping testing to

the VIP. According to the VRRP RFC, the VIP is allowed to respond only to Address Resolution Protocol (ARP)
requests, meaning that unlike Cisco's HSRP, by default you cannot ping the VIP associated with a VRRP group.

Lager's static route, related redistribution policy, and VRRP configuration are shown. PBR has a similar

configuration, except that its VRRP priority is set to 50.

Code View:
[edit]

lab@Lager# show routing-options

static {

 route 10.10.128.1/32 next-hop 10.10.111.1;

}

[edit]

lab@Lager# show policy-options

policy-statement Ale_lo0 {

 term 1 {

 from {

 protocol static;

 route-filter 10.10.128.1/32 exact;

 }

 then accept;

 }

}

[edit]

lab@Lager# show interfaces fe-0/0/0 unit 111

description Lager_PBR_Ale;

vlan-id 111;

family inet {

 address 10.10.111.3/24 {

 vrrp-group 69 {

 virtual-address 10.10.111.10;

 priority 100;

 preempt;

 accept-data;

 }

 }

}

10.3.2. Configure PIM Sparse Mode with Static RP

With the underlying IGP's operation confirmed, you move on to PIM configuration on the routers making up the
multicast test bed. In the JUNOS software implementation, enabling PIM on an interface automatically enables
IGMPv2, making explicit configuration of IGMP unnecessary unless you need to modify default settings. IGMP is
not required on links that connect only routers-hosts use IGMP to inform routers of their group membership.
Leaving IGMP enabled on these links does not lead to appreciable resource consumption and ensures that things
will work as expected if hosts are added at a later time.

PIM configuration begins at router PBR because it's been designated as the RP in the initial multicast topology;

without an RP, PIM sparse mode cannot begin to operate. PIM is configured at the [edit protocols pim]

hierarchy. The configuration options for PIM are displayed:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[edit protocols pim]

lab@PBR# set ?

Possible completions:

+ apply-groups Groups from which to inherit configuration data

+ apply-groups-except Don't inherit configuration data from these groups

 assert-timeout Set assert timeout (5..210)

> dense-groups Dense mode groups for sparse-dense mode

 disable Disable PIM

> graceful-restart Configure graceful restart attributes

+ import PIM sparse import join policy

> interface PIM interface options

> mdt Configure multicast data tunnel parameters

> rib-group Routing table group

> rp Router's rendezvous point properties

> spt-threshold Set shortest-path-tree threshold policy

> traceoptions Trace options for PIM

vpn-group-address Group address for the VPN in provider space

The assert-timeout setting determines how often the forwarding router reasserts its right to do so, based on

its belief that it has the lowest SPF RPF cost for a given source or RP; the router always generates an assert
message when a multicast packet is received on an interface that is in the outgoing interface list for a given
group. Internal rate-limiting of these event-driven assert messages (as with all control plane messaging in
JUNOS software) ensures that the network and local processing resources are not overrun in the event of a
packet loop or broken multicast forwarding state in an adjacent node.

The dense-groups configuration identifies any groups that are flooded in dense mode over interfaces set for

sparse-dense mode operation. This setting is used when you operate in sparse mode but you still want dense
mode flooding on a group-by-group basis, and is typically used to support auto-RP's need for dense mode
flooding of its announce (224.0.1.39) and discovery (224.0.1.40) messages.

The graceful-restart settings control the graceful restart duration and can be used to specifically disable

graceful restart for PIM when graceful restart is globally enabled under the [edit routing-options] stanza.

The import keyword links to one or more policies that allow filtering of join messages, which prevents the

resulting (*,G) or (S,G) state, therefore blocking the extent of multicast traffic distribution by preventing
installation of related forwarding state in the control plane. In contrast, multicast scoping operates in the data
plane to provide a similar effect. Generally speaking, the use of scoping is preferred over join filtering because
the former scales better, and it prevents the transport of multicast traffic that could result from the use of dense
mode flooding or a packet generation tool.

The spt-threshold determines whether the local router attempts a switch to an SPT after the first packet

(default), or never when set to infinity. The use of multicast distribution tree (MDT) tunnels and routing
information base (RIB) groups is beyond the scope of this book. Suffice it to say that MDT tunnels are used to
support PIM sparse mode in a Layer 3 virtual private network (VPN) environment, and that use of RIB groups
allows a PIM multicast forwarding topology that is independent of the unicast RPF table.

The interface keyword allows specification of which interfaces should run PIM, along with interface-level

parameters such as PIM version, hello time, and so on. The options available at the [edit protocols pim

interface interface-name] hierarchy are:

[edit protocols pim]

lab@PBR# set interface fe-0/0/0.111 ?

Possible completions:

 <[Enter]> Execute this command

+ apply-groups Groups from which to inherit configuration data

+ apply-groups-except Don't inherit configuration data from these groups

 disable Disable PIM on this interface

 hello-interval Hello interval (0..255 seconds)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 mode Mode of interface

 priority Hello option DR priority (0..4294967295)

 version Force PIM version (1..2)

Most interface-level options are self-explanatory. The priority setting specified under an interface controls the
router's likelihood of being elected the PIM designated router on that network segment; the default setting is 1,
making the router least likely to be the designated router. The mode keyword determines whether the

associated PIM interface operates in sparse, dense, or sparse-dense mode. When an interface is in sparse-dense
mode, the list of groups specified with the dense-groups keyword is flooded in dense mode, and all other

groups are handled as sparse.

You configure a router to be an RP, or to learn about other RPs using either the static, bootstrap, auto-RP or
Anycast-RP mechanism under the [edit protocol pim rp] hierarchy. The configuration options available at

this hierarchy are:

[edit protocols pim]

lab@PBR# set rp ?

Possible completions:

+ apply-groups Groups from which to inherit configuration data

+ apply-groups-except Don't inherit configuration data from these groups

> Auto-RP Set Auto-RP mode (IPv4 only)

> bootstrap Bootstrap properties

+ bootstrap-export Bootstrap export policy (IPv4 only)

+ bootstrap-import Bootstrap import policy (IPv4 only)

 bootstrap-priority Eligibility to be the bootstrap router (IPv4 only)

+ dr-register-policy DR policy applied to outgoing register messages

> embedded-rp Set embedded-RP mode (IPv6 only)

> local Router's local RP properties

+ rp-register-policy RP policy applied to incoming register messages

> static Configure static PIM RPs

As you would expect, the properties that control auto-RP-based RP election are configured under the Auto-RP

hierarchy. Auto-RP is not demonstrated here because it has lost favor to BSR-based election for reasons that
were cited previously. Several bootstrap-related configuration keywords are used in bootstrap-based RP
election-we will skip these knobs for now because we will explore them in a subsequent BSR configuration
example.

The dr-register-policy and rp-register-policy keywords link to policy statements that filter register

messages sent by the designated router or filter register messages received by the RP, respectively. This
feature allows you to control the number of sources that a given RP can know about, and that might be used for
performance or security-related reasons. The embedded-rp hierarchy controls the number of embedded RPs, as

well as groups that can contain an embedded RP address. Embedded RP is used for interdomain IPv6 multicast
and is beyond the scope of this book. Note, however, that IPv4 interdomain multicast is normally associated
with MSDP.

Static definition of an RP is performed with the static keyword. A statically configured RP eliminates the need

for dynamic RP election, but this simplicity can come at the cost of reduced reliability because routers may
continue to use an RP that has ceased functioning. However, the use of a statically defined RP, in conjunction
with Anycast-RP, alleviates many of these concerns, and we discuss it in detail in "Section 10.5.2," later in this
chapter.

10.3.2.1. Configure PIM on the RP

Local RP characteristics are defined under the [edit protocols pim local] hierarchy, and are used when the

local router functions as an RP. Because PBR is the PIM domain's RP in this example, your configuration begins

at PBR with the specification of its local RP properties. The command-line interface's (CLI's) ? function displays

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the configuration mode set options available at the [edit protocols pim rp local] hierarchy:

Code View:
[edit protocols pim rp local]

lab@PBR# lab@PBR# set ?

Possible completions:

 address Local RP address (IPv4 only)

+ apply-groups Groups from which to inherit configuration data

+ apply-groups-except Don't inherit configuration data from these groups

 disable Disable this RP (IPv4 only)

> family Local RP address family

> group-ranges Group address range for which this router can be an RP

 (IPv4 only)

 hold-time How long neighbor considers this router to be up, in seconds

 (IPv4 only)

priority Router's priority for becoming an RP (IPv4 only) (0..255)

Use the address keyword to define the local RP address for IPv4 operation. Normally, this will be a globally

routable address (i.e., a non-127.x.x.x address) assigned to the router's lo0 interface for maximum reliability,

given that the virtual nature of a loopback interface tends to make it the last to fail. The family keyword is

used to configure an IPv6-based RP under the inet6 family. You may wish to divide the multicast address space

among multiple RPs using the group-ranges keyword to help spread processing load or to improve overall

robustness by eliminating a potential single point of failure for all multicast groups in the domain.

The configured hold-time value is included in candidate RP messages (sent to a domain's bootstrap router

when using BSR), and determines how long the BSR includes that RP in the candidate RP set before the entry
needs to be refreshed by receipt of a new candidate RP advertisement for that same RP. The priority value is

used in the hash function that chooses a particular RP for a given group range from the set of candidate RPs. A
numerically smaller priority value is preferred-the range is from 0–255, with 1 being the default. Note that a
setting of 0 indicates that the BSR can override the received RP-to-group mappings in the candidate RP set that
it advertises.

Because you are configuring a static RP environment, only the address keyword is of concern in the current

configuration. "Section 10.4," later in this chapter, demonstrates BSR-based RP election. PBR is configured to

use its globally routable loopback address as the domain's RP:

[edit protocols pim rp local]

lab@PBR# set address 10.20.128.3

The interfaces that should run PIM are configured next; there is no need or benefit to running PIM on the lo0

interface, so transit interfaces only are enabled for PIM. The completed PIM stanza at PBR is displayed:

[edit protocols pim]

lab@PBR# show

rp {

 local {

 address 10.20.128.3;

 }

}

interface fe-0/0/0.3141;

interface fe-0/0/0.1241;

interface fe-0/0/0.111;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

After committing the changes to the local RP, status is confirmed:

lab@PBR# run show pim rps

Instance: PIM.master

Address family INET

RP address Type Holdtime Timeout Groups Group prefixes

10.20.128.3 static 0 None 0 224.0.0.0/4

The output of the show pim rps command shows that PBR is functioning as a statically defined RP for the entire

multicast address 224/4 group range. You next verify that PIM is enabled on all transit interfaces used in the
multicast test bed with a show pim interfaces command:

[edit protocols pim]

lab@PBR# run show pim interfaces

Instance: PIM.master

Name Stat Mode IP V State Count DR address

fe-0/0/0.111 Up Sparse 4 2 DR 0 10.10.111.2

fe-0/0/0.1241 Up Sparse 4 2 DR 0 10.20.130.2

fe-0/0/0.3141 Up Sparse 4 2 DR 0 10.20.129.2

pd-0/0/0.32769 Up Sparse 4 2 P2P 0

The command output confirms that PIM is now running on all three of PBR's network interfaces used in the

multicast test bed, and that sparse is the default mode of operation. Because PBR is the first, and so far the

only, PIM-enabled router, it has won the designated router election on all of its multiaccess interfaces; a
designated router is not required on point-to-point interfaces. The 0 count value indicates that no PIM neighbors
have been detected, which is expected until other routers are enabled for PIM. The show pim neighbors

command returns an empty list at this time (not shown).

The highlighted code in the output calls out that the router has automatically instantiated a PIM decapsulation
(pd) interface using the J-series built-in services interface functionality. Recall that in sparse mode, the first hop

router encapsulates multicast into a unicast register message (using a PIM encapsulate [pe] interface), which is

then decapsulated back to native multicast at the RP for distribution down the shared tree. No explicit
configuration is needed for these pd and pe interfaces; they are created automatically when PIM sparse mode is

configured and the required tunnel support is present. On some platforms, such as the M10i, you must order
and install tunnel hardware to support PIM sparse mode register message encapsulation.

As noted previously, in JUNOS software, enabling PIM automatically enables IGMP on that interface. The output
of the show igmp interface command confirms that this is the case:

lab@PBR# run show igmp interface

Interface: fe-0/0/0.111

 Querier: 10.10.111.2

 State: Up Timeout: None Version: 2 Groups: 5

Interface: fe-0/0/0.1241

 Querier: 10.20.130.1

 State: Up Timeout: 156 Version: 2 Groups: 0

Interface: fe-0/0/0.3141

 Querier: 10.20.129.1

 State: Up Timeout: 154 Version: 2 Groups: 0

Configured Parameters:

IGMP Query Interval: 125.0

IGMP Query Response Interval: 10.0

IGMP Last Member Query Interval: 1.0

IGMP Robustness Count: 2

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Derived Parameters:

IGMP Membership Timeout: 260.0

IGMP Other Querier Present Timeout: 255.

10.3.2.2. Configure PIM on remaining routers

With the domain's RP up and running, you move on to add PIM to the remaining routers. Aside from specifying
PIM-enabled interfaces, you must also specify the domain's RP explicitly, given that this is a static RP scenario.
The PIM configuration added to Stout is shown. All remaining routers have a similar PIM configuration.

[edit protocols pim]

lab@stout# show

rp {

 static {

 address 10.20.128.3;

 }

}

interface fe-0/0/0.2131;

interface fe-0/0/0.3141;

interface fe-0/0/1.1331;

The key to this PIM sparse mode configuration is the static definition of the domain's RP, which in this example
is PBR's lo0 address. When desired, you can further define a static RP's group range and PIM version:

[edit protocols pim]

lab@stout# set rp static address 10.20.128.3 ?

Possible completions:

 <[Enter]> Execute this command

+ apply-groups Groups from which to inherit configuration data

+ apply-groups-except Don't inherit configuration data from these groups

> group-ranges Group address range of RP

version PIM version of RP (1..2)

In this example, the default version 2 and 224/4 group range are desired, so no further changes are needed.
After the changes are committed, you confirm the presence of PIM neighbors at router Stout:

[edit protocols pim]

lab@stout# run show pim interfaces

Instance: PIM.master

Name Stat Mode IP V State Count DR address

fe-0/0/0.2131 Up Sparse 4 2 DR 1 10.10.131.2

fe-0/0/0.3141 Up Sparse 4 2 NotDR 1 10.20.129.2

fe-0/0/1.1331 Up Sparse 4 2 DR 1 10.20.131.2

pe-0/0/0.32769 Up Sparse 4 2 P2P 0

The display shows that Stout has detected one PIM neighbor on all but its pe encapsulation interface, which is

expected given this setup. The output also shows that the local router is the designated router for two of its
three network interfaces. To display neighbor information, issue a show pim neighbors command:

lab@stout# run show pim neighbors

Instance: PIM.master

Interface IP V Mode Option Uptime Neighbor addr

fe-0/0/0.2131 4 2 HPLG 00:18:12 10.10.131.1

fe-0/0/0.3141 4 2 HPLG 00:18:12 10.20.129.2

http://lib.ommolketab.ir
http://lib.ommolketab.ir

fe-0/0/1.1331 4 2 HPLG 00:18:12 10.20.131.1

The display shows the IP address of each detected PIM neighbor, the associated interface, and the supported
IP/PIM version. The Mode column is expected to be empty when configured for PIMv2 because v2 supports
dense, sparse, and sparse-dense modes. The Option column displays a coded list of each neighbor's supported
PIM options. The codes are interpreted as follows:

B

Bidirectional-capable

H

Hello option hold time

G

Generation identifier

P

Hello option designated router priority

L

Hello option LAN prune delay

Add the detail switch to view the specific timers and parameters associated with each neighbor:

[edit protocols pim]

lab@stout# run show pim neighbors detail

Instance: PIM.master

Interface: fe-0/0/0.2131

 Address: 10.10.131.1, IPv4, PIM v2

 Hello Option Holdtime: 105 seconds 95 remaining

 Hello Option DR Priority: 1

 Hello Option Generation ID: 532624463

 Hello Option LAN Prune Delay: delay 500 ms override 2000 ms

 Address: 10.10.131.2, IPv4, PIM v2, Mode: Sparse

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Hello Option Holdtime: 65535 seconds

 Hello Option DR Priority: 1

 Hello Option Generation ID: 756451044

 Hello Option LAN Prune Delay: delay 500 ms override 2000 ms

The PIM neighbor state is as expected at Stout. RP information is displayed with the show pim rps command:

[edit protocols pim]

lab@stout# run show pim rps

Instance: PIM.master

Address family INET

RP address Type Holdtime Timeout Groups Group prefixes

10.20.128.3 static 0 None 0 224.0.0.0/4

Address family INET6

The output displays the loopback address associated with router PBR, which is functioning as the Beer-Co

domain's RP. Further, the display confirms that the RP was learned via static configuration (hence, no timeout),
and that currently no multicast groups are mapped to this RP, as indicated by the 0 in the Groups column. Given
that there are no active groups (or sources, for that matter) in the current network, the lack of any group-to-RP
mappings is expected at this time. As further confirmation, PIM join state is displayed at Stout:

[edit protocols pim]

lab@stout# run show pim join

Instance: PIM.master Family: INET

Instance: PIM.master Family: INET6

The join list is empty, which indicates that no SPT or RPT joins have been instigated by the local router. This
display confirms that no groups are currently mapped to the domain's RP. The lack of join state means there
should be no multicast forwarding state, which is easily verified with a show multicast route command:

[edit protocols pim]

lab@stout# run show multicast route

Family: INET

Family: INET6

As expected, there are no active multicast routes, which is in keeping with no RPT or SPT join state. At this
stage, the PIM network is awaiting an active source and an interested receiver.

10.3.2.3. Verify RPF

Before you activate any senders or multicast receivers, the RPF state of the current network is analyzed. Recall
that multicast forwarding and control plane operations tend to center on the RPF function. An RPF check is, in
essence, nothing more than a route lookup on a packet source, and then verification that the packet arrives on
the same interface that would be used when routing packets addressed to that source.

Referring back to Figure 10-13, it is restated that IGP metrics are altered to prefer the lower forwarding path
consisting of routers Lager, Stout, and Porter. The network's RPF state should reflect the IGP's preferred

forwarding path, which is confirmed with a show multicast rpf command issued at router Bock for the prefix

associated with the domain's RP:

[edit]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

lab@Bock# run show multicast rpf 10.20.128.3

Multicast RPF table: inet.0 , 21 entries

10.20.128.3/32

 Protocol: OSPF

 Interface: fe-0/0/1.100

 Neighbor: 10.10.11.2

The output shows that Bock expects to receive packets sent from the 10.20.128.3 loopback address of PBR, via

its fe-0/0/1.100 interface. Based on this RPF state, any packets from source 10.20.128.3 received on any

other interface fail the RPF check, resulting in discard. The OSPF route to 10.20.128.3 is displayed at Bock to

confirm that the shortest path route from Bock to PBR's loopback does in fact egress on its fe-0/0/1.100

interface.

[edit]

lab@Bock# run show route 10.20.128.3

inet.0: 21 destinations, 22 routes (21 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

10.20.128.3/32 *[OSPF/10] 01:18:05, metric 4

 > to 10.10.11.2 via fe-0/0/1.100

10.3.2.4. Configure the simulated receiver

The test bed used to develop this book did not have external multicast senders or receivers. Although
unfortunate from an overall reality perspective, the upside is that their absence forces the use of JUNOS
software to simulate their functionality, and these little-known techniques often prove useful when
troubleshooting multicast issues because they allow you to isolate potential problems with attached hosts and
their multicast applications/protocol stack.

10.3.3. A Word on Multicast Client Options

Multicast is a somewhat dry subject, and it is always nice to use some media content, such as a multiplayer
game or cool streaming DVD video, to validate multicast operation and performance. If your test bed contains
multicast-capable hosts, we suggest that you investigate programs such as VideoLAN, which supports streaming
video over unicast or multicast, on a variety of platforms to include Windows and various flavors of Unix. For
more information, see the VideoLAN development web site at http://www.videolan.org.

Unix platforms can use the mgen/mrec utilities, which respectively stand for multigenerator and dynamic-
receiver. These utilities are available for download at http://downloads.pf.itd.nrl.navy.mil/mgen/mgen3/. The
command line used to evoke drec to function as a receiver for group 225.1.1.1 in this scenario is similar to the

example shown, but local interface names will vary:

%./drec -b 225.1.1.1 -n 1 -p 5000 -i em1 -S NOW /dev/null

DREC: Version 3.1a3

DREC: Loading event queue ...

DREC: Listening for packets ...

 (Hit <CTRL-C> to stop)

As for the command-line switches, the -b value specifies the base group address to join, and the -n value

determines how many groups, starting at the base, are to be joined. The -p value specifies a User Datagram

Protocol (UDP) port (5000 is the default), and the -i switch indicates the local interface that should be joined.

The -S value determines test start time; test duration can also be specified. Once drec is launched, you would

expect to see a join for the associated group, and would then fire up mgen with compatible settings to generate
multicast traffic to that group. The command example uses the -t switch to set the desired TTL and the -r

http://www.videolan.org
http://downloads.pf.itd.nrl.navy.mil/mgen/mgen3/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

switch to set a rate of 10 packets per second:

%./ mgen -b 225.0.0.1:5000 -n 1 -i em1 -p 5000 -t 32 -r 10

MGEN: Version 3.1a3

MGEN: Loading event queue ...

MGEN: Seeding random number generator ...

MGEN: Beginning packet generation ...

 (Hit <CTRL-C> to stop)

A number of multicast test utilities are available for Windows platforms, but generally speaking, these tend to
be somewhat crude when compared to the myriad options supported on Unix systems. The WSend and WListen
utilities are popular options, and an Internet search will likely reveal several download locations; there no longer
appears to be an official source for these applications. Figure 10-14 shows how the WListen utility is configured
to support the role of the multicast receiver for group 225.1.1.1 in this lab.

Figure 10-14. Configuration of the Windows-based WListen utility

10.3.3.1.

10.3.3.1.1. Static IGMP membership

The simplest way to simulate an attached multicast receiver in JUNOS software is to configure a static IGMP
join. The problem with a simple static join is that the local router does not join the group, and as such it does
not receive any test traffic, which means that without an actual external receiver on the associated interface,
there can be no hope of replies to generated multicast test traffic. With no such external receiver in this lab, the
only way to confirm multicast forwarding is to monitor interface traffic stats on the receiver interface while
trying to correlate the received packet count to the generated multicast test traffic. In a quiescent lab setup,
this may be workable, but in any type of production network, there will likely be enough background traffic to
make accurate matching of transmitted traffic to received multicast packets all but impossible. The syntax for a
static IGMP join is shown, but this approach is not used because a different technique is planned for simulating a
multicast receiver at router Cider:

[edit]

lab@Cider# show protocols igmp

interface fe-0/0/0.0 {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 static {

 group 225.1.1.1;

 }

}

Before moving on, it's noted that the lack of multicast hosts means there will be no IGMP activity to monitor in
the lab. With the static join in place, you can view IGMP group status to familiarize yourself with the display.
Things begin with the clearing of any IGMP membership to ensure that no stale state is displayed:

Code View:
[edit]

lab@Cider# run clear igmp membership

Clearing Group Membership Info for fe-0/0/1.100

Clearing Group Membership Info for fe-0/0/0.0

[edit]

lab@Cider# run show igmp group

Interface: fe-0/0/0.0

 Group: 225.1.1.1

 Source: 0.0.0.0

 Last reported by: Local

 Timeout: 0 Type: Static

Interface: local

 Group: 224.0.0.2

 Source: 0.0.0.0

 Last reported by: Local

 Timeout: 0 Type: Dynamic

 Group: 224.0.0.5

 Source: 0.0.0.0

 Last reported by: Local

 Timeout: 0 Type: Dynamic

 Group: 224.0.0.6

 Source: 0.0.0.0

 Last reported by: Local

 Timeout: 0 Type: Dynamic

 Group: 224.0.0.22

 Source: 0.0.0.0

 Last reported by: Local

 Timeout: 0 Type: Dynamic

As noted previously, multicast forwarding is all about dynamic state, and this state can
seem to persist for an annoyingly long period of time if it's not cleared out manually.
When testing any multicast environment, it is wise to let things cook for at least five
minutes in all operational modes to ensure that things are really working the way you
expect. Although bogus multicast state will generally not cause any negative impact to
the router or network, it can affect communications for several minutes if left to age out
using its own means.

The output of the show igmp membership command confirms the statically configured membership on interface

fe-0/0/0 for the 225.1.1.1 group. The lack of a specific source address shows that this is an (*,G), or shared

tree join. When IGMPv3 is enabled, you can specify a source address when configuring static membership to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

generate (S,G) state and a resulting SPT. Dynamic entries are associated with a timeout value indicating when
the entry will age out if it is not refreshed as a result of a host membership report for that group. The local
entries represent multicast addresses associated with local processes that need to listen to multicast traffic. The
225.0.0.5 and 225.0.0.6 addresses represent all OSPF routers and all OSPF designated router groups, 225.0.0.1
is the all hosts group, 225.0.0.2 is the all routers group, and 225.0.0.22 is the multicast group associated with
IGMP reports.

10.3.3.2. Create a listening multicast process

Many multicast applications operate in a simplex fashion, meaning that a reply is not technically needed for the
application to work. However, in this lab the goal is to use Internet Control Message Protocol (ICMP) echo
packets sent to a multicast group address, with success being determined by the receipt of a unicast reply,
because this is the most expedient way to confirm that multicast test traffic is successfully forwarded all the way
to the multicast receiver.

You can disable response generation to multicast-targeted pings by including the no-

multicast-echo statement at the [edit system] hierarchy level, in JUNOS software

releases 8.1 and later. This does not alter behavior for unicast-targeted pings.

The trick to making a Juniper router initiate a PIM join, while also creating a process that listens to the
associated group in contrast to a static IGMP join, is to enable the SAP process on the group in question. SAP
always operates on the well-known group address 224.2.127.254, using port 9875, but you can configure SAP
to operate on other groups (and ports) as well. This is the approach we're taking for the test bed's 225.1.1.1
group.

Active multicast sources transmit SDP messages infrequently, often on the order of
minutes. This long delay between messages can cause problems in a PIM sparse mode
network. The receipt of the SAP message by the RP causes it to examine its current join
state for the 224.2.127.254 multicast group. If no state is enabled, the SAP message is
not forwarded into the network. The end result is that the SDP message delay makes it
extremely hard to get the SDP messages from the multicast source to the interested
clients when operating in sparse mode. To reduce this delay, you can configure a SAP
process on each router directly attached to receivers. This causes the router to generate
a PIM join for the SAP group address of 224.2.127.254. The router refreshes this join
state such that the RP maintains a constant forwarding tree for the SAP group. This
allows the infrequent SDP messages to be forwarded to the interested clients and to
populate the Session Directory tool. Frankly, it's hard to imagine something this good
still being legal.

Before altering the configuration at Cider, a show pim join command is issued to confirm that no join state

currently exists:

lab@Cider# run show pim join

Instance: PIM.master Family: INET

Instance: PIM.master Family: INET6

Cider's configuration is altered to instantiate a SAP process that will listen on 225.1.1.1, port 5000:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

lab@Cider# show sap

listen 225.1.1.1 port 5000;

After the change is committed, PIM join state is again displayed. This time the extensive switch is added to

view all possible details:

[edit protocols]

lab@Cider# run show pim join extensive

Instance: PIM.master Family: INET

Group: 224.2.127.254

 Source: *

 RP: 10.20.128.3

 Flags: sparse,rptree,wildcard

 Upstream interface: fe-0/0/1.100

 Upstream neighbor: 10.10.11.2

 Upstream state: Join to RP

 Downstream neighbors:

 Interface: Local

Group: 225.1.1.1

 Source: *

 RP: 10.20.128.3

 Flags: sparse,rptree,wildcard

 Upstream interface: fe-0/0/1.100

 Upstream neighbor: 10.10.11.2

 Upstream state: Join to RP

 Downstream neighbors:

 Interface: Local

The output indicates that the newly created SAP process has issued an RPT (shared tree, or [*,G]) join for both
the well-known and user-configured SAP groups. The upstream (incoming) interface is the RPF interface leading
toward the domain's RP, and the downstream (outgoing) interface list is empty because this join is the result of
a local process rather than a received PIM join or IGMP membership report. The presence of a listening UDP
process on both SAP-associated ports is now verified. Here the command makes use of CLI matching and logical
OR functionality to make quick work of the task:

[edit protocols]

lab@Cider# run show system connections | match "(5000|9875)"

udp4 0 0 *.5000 *.*

udp4 0 0 *.9875 *.*

The output confirms the two expected UDP-based listening processes on the well-known and user-specified SAP
ports. The lack of data activity on the 225.1.1.1 group results in no cached forwarding state, as evidenced by
the lack of a multicast route for the 225.1.1.1 group at transit node Porter:

[edit]

lab@Porter# run show multicast route

Family: INET

Family: INET6

Before generating traffic, the network's RPT join state is again analyzed. Recall that PIM joins are sent using RPF
toward the source, and that for an (*,G) join, that source is the RP. Given the metric adjustments in effect in
the multicast topology, the RPF path from Cider to PBR (the RP) should consist of the path Porter, Stout, PBR.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The presumed forwarding path is first confirmed:

[edit protocols]

lab@Cider# run traceroute 10.20.128.3

traceroute to 10.20.128.3 (10.20.128.3), 30 hops max, 40 byte packets

 1 10.10.11.2 (10.10.11.2) 9.235 ms 8.720 ms 9.706 ms

 2 10.20.131.2 (10.20.131.2) 10.190 ms 9.147 ms 7.321 ms

 3 10.20.128.3 (10.20.128.3) 12.943 ms 38.945 ms 9.847 ms

The traceroute results show that the unicast forwarding path from Cider to PBR's loopback address is as

anticipated-therefore, an RPT join initiated at Cider should take this same path. Shared tree join state is

displayed at Porter:

[edit]

lab@Porter# run show pim join 225.1.1.1

Instance: PIM.master Family: INET

Group: 225.1.1.1

 Source: *

 RP: 10.20.128.3

 Flags: sparse,rptree,wildcard

 Upstream interface: fe-0/0/1.1331

The RPT join state at Porter is as expected, in that the upstream interface is pointing toward Stout. The join

state for 225.1.1.1 is displayed at Stout:

[edit]

lab@stout# run show pim join 225.1.1.1

Instance: PIM.master Family: INET

Group: 225.1.1.1

 Source: *

 RP: 10.20.128.3

 Flags: sparse,rptree,wildcard

 Upstream interface: fe-0/0/0.3141

As expected, RPF forwarding of the shared tree join at Stout results in an upstream interface of fe-

0/0/0.3141, which is the metrically closest way for Stout to reach PBR's 10.20.128.3 address.

The current state of the network correctly represents PIM sparse mode state for a receiver interested in a group
with no active senders. In the next section, we will generate multicast traffic and examine the impact on
network state.

10.3.3.3. Generate multicast traffic

With the receiver join state and resulting PIM sparse mode RP-rooted shared tree verified, it is time to shake
things up by actually generating some multicast traffic! In this example, a Juniper router is used to simulate a
multicast source with the ping command, in conjunction with the bypass-routing, ttl, and interface

switches. The bypass-routing switch is needed to avoid the fact that the inet.1 table does not have multicast

forwarding state for the 225.0.0.1 group; remember, Ale is a router, not a host. Because there is no routing

entry to rely on, you must identify the egress interface for the test traffic using the interface switch. By

default, locally generated multicast ping traffic uses a TTL of 1, which is done to limit the scope of the traffic to
the local link. This is because in a real-world scenario, numerous receivers could be listening to the related
group, and this in turn can result in significant packet replication and a resulting avalanche of replies. The test
bed has only one receiver for the test traffic, making this a nonissue. A TTL value of at least 5 is recommended

http://lib.ommolketab.ir
http://lib.ommolketab.ir

to ensure that the test traffic can make it all the way from Ale to Cider.

A TTL value of 4 results in the test traffic being handed to Cider with a TTL of 1.

Although adequate for unicast, in some cases multicast TTL may be decremented upon
receipt, which can lead to intermittent replies for packets received with a TTL = 1. By
setting the TTL higher than strictly necessary, you guarantee that you will not encounter
this issue.

We have spent a lot of effort leading to this point, and several things are about to happen in rapid succession
once the sender is fired up; specifically:

The first hop router, Lager, encapsulates the native multicast into a unicast packet sent to 10.20.128.3,

the domain's RP.

The RP decapsulates the traffic based on join state for the associated group, and then sends the native
multicast down the shared tree. Given the current join state, the traffic should be sent from the RP to
Stout and Porter, and then to receiver Cider.

The presence of multicast traffic results in the creation of a multicast route in transit routers. This route is
placed into the inet.1 table, and you can think of it as a data-driven forwarding plane reaction to the

control plane's join state. Note that without the control plane join, the data plane cannot establish these
dynamic multicast forwarding states.

Upon receipt of traffic from source 10.10.111.1 over the shared tree, router Cider initiates an SPT join

toward the source. Once the SPT is established, multicast from 10.10.111.1 is transported directly over
the SPT. To prevent duplicated packets, the first router in the data path that is on both the SPT and RPT
(Stout in this case) sends an (S,G) prune toward the RP to prevent receipt of packets over both the SPT

and the RPT.

When there are no interested receivers on the RPT, the RP sends a register stop message to the source.

Once the source is no longer active, the SPT state will eventually age out, resulting in a return to the RPT
for group 225.1.1.1.

To help catch some of this behavior, PIM register message tracing is added to Lager:

[edit protocols pim]

lab@Lager# show traceoptions

file pim;

flag register detail;

Multicast pings are now initiated at Lager:

[edit]

lab@Ale# run ping ttl 5 225.1.1.1 interface fe-0/0/0.111 bypass-routing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PING 225.1.1.1 (225.1.1.1): 56 data bytes

64 bytes from 10.10.11.3: icmp_seq=0 ttl=61 time=16.776 ms

64 bytes from 10.10.11.3: icmp_seq=1 ttl=61 time=20.144 ms

. . .

The output confirms that responses are being received from 10.10.11.3, the address of Cider's fe-0/0/1.100

interface. The presence of replies is a most auspicious beginning, to be sure. Meanwhile, back at Lager, the

following trace output is observed:

Code View:
Sep 27 00:55:10.983201 PIM SENT 10.10.128.2 -> 10.20.128.3 V2 Register Flags:

0x40000000 Border: 0 Null: 1 Source 10.10.111.1 Group 225.1.1.1 sum 0x43f1 len 28

Sep 27 00:55:10.993582 PIM fe-0/0/0.2131 RECV 10.20.128.3 -> 10.10.128.2 V2

RegisterStop Source 10.10.111.1 Group 225.1.1.1 sum 0x80d1 len 18

The trace confirms that, as predicted, the first hop router sent a register message to the RP for source
10.10.111.1 and group 225.1.1.1, and the RP later generated a register stop for this (S,G) pair, thus indicating
that no more listeners are present on the shared tree. This is a good indication that the SPT cutover was
successful. Next, the resulting (S,G) join state is examined at Cider:

[edit protocols]

lab@Cider# run show pim join 225.1.1.1 extensive

Instance: PIM.master Family: INET

Group: 225.1.1.1

 Source: *

 RP: 10.20.128.3

 Flags: sparse,rptree,wildcard

 Upstream interface: fe-0/0/1.100

 Upstream neighbor: 10.10.11.2

 Upstream state: Join to RP

 Downstream neighbors:

 Interface: Local

Group: 225.1.1.1

 Source: 10.10.111.1

 Flags: sparse,spt

 Upstream interface: fe-0/0/1.100

 Upstream neighbor: 10.10.11.2

 Upstream state: Join to Source

 Keepalive timeout: 355

 Downstream neighbors:

 Interface: Local

Cider's display confirms that SPT join state is now also present for the 225.1.1.1 group. Cider remains on the

RPT via its (*,G) join in case any other sender becomes active for the 225.1.1.1 group-this is an ASM example,
after all. The join state at Stout also shows an SPT and RPT, but the RPT has been pruned for this (S,G) pair,

given the presence of an SPT between the sender and receiver:

Code View:
[edit]

lab@stout# run show pim join 225.1.1.1 extensive

Instance: PIM.master Family: INET

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Group: 225.1.1.1

 Source: *

 RP: 10.20.128.3

 Flags: sparse,rptree,wildcard

 Upstream interface: fe-0/0/0.3141

 Upstream neighbor: 10.20.129.2

 Upstream state: Join to RP

 Downstream neighbors:

 Interface: fe-0/0/1.1331

 10.20.131.1 State: Join Flags: SRW Timeout: 179

Group: 225.1.1.1

 Source: 10.10.111.1

 Flags: sparse,spt

 Upstream interface: fe-0/0/0.2131

 Upstream neighbor: 10.10.131.1

 Upstream state: Join to Source, Prune to RP

 Keepalive timeout: 303

 Downstream neighbors:

 Interface: fe-0/0/1.1331

 10.20.131.1 State: Join Flags: S Timeout: 179

The join state at Stout is as expected. It too remains on the shared tree for group 225.1.1.1, in case any

additional sources become active, and it too has generated an SPT join directly toward the source, as a result of
receiving an (S,G) join on its downstream interface, as sent by Porter. The highlights call out the topology

difference between the shared and source trees, with the shared tree at Stout pointing toward the RP while the

source tree points toward the source. Stout has pruned source 10.10.111.1 from the shared tree, a state that is

reflected at the RP:

Code View:
[edit]

lab@PBR# run show pim join 225.1.1.1 extensive

Instance: PIM.master Family: INET

Group: 225.1.1.1

 Source: *

 RP: 10.20.128.3

 Flags: sparse,rptree,wildcard

 Upstream interface: Local

 Upstream neighbor: Local

 Upstream state: Local RP

 Downstream neighbors:

 Interface: fe-0/0/0.3141

 10.20.129.1 State: Join Flags: SRW Timeout: 156

Group: 225.1.1.1

 Source: 10.10.111.1

 Flags: sparse,spt

 Upstream interface: fe-0/0/0.111

 Upstream neighbor: Direct

 Upstream state: Local Source, Local RP

 Keepalive timeout: 337

 Downstream neighbors:

 Interface: fe-0/0/0.3141 (pruned)

 10.20.129.1 State: Prune Flags: SR Timeout: 156

http://lib.ommolketab.ir
http://lib.ommolketab.ir

With the PIM sparse mode control plane looking good, you examine the data plane state as it relates to the
(S,G) flow currently active in the network:

[edit]

lab@stout# run show multicast route detail

Family: INET

Group: 225.1.1.1

 Source: 10.10.111.1/32

 Upstream interface: fe-0/0/0.2131

 Downstream interface list:

 fe-0/0/1.1331

 Session description: MALLOC

 Statistics: 0 kBps, 1 pps, 1966 packets

 Next-hop ID: 348

 Upstream protocol: PIM

The highlights call out the expected upstream and downstream (incoming/outgoing) interfaces. Including the
detail switch displays current traffic stats for each forwarding cache entry. When a well-known group address

is detected, the session description reflects the associated application. In this case, no application is associated
with 225.0.0.1, so the display simply indicates that the session belongs to the multicast allocation address
space (MALLOC). The next hop ID field is used to tie this route into a forwarding table entry in the Packet
Forwarding Engine (PFE). You can display the multicast forwarding table to confirm that this next hop ID is
associated with the 10.10.111.1, 225.1.1.1 tuple:

[edit]

lab@stout# run show route forwarding-table multicast destination

225.1.1.1

Routing table: inet

Internet:

Destination Type RtRef Next hop Type Index NhRef Netif

225.1.1.1.10.10.111.1/64

 user 0 mcrt 348 1

To actually display what the forwarding table does with the next hop index of 348, you have to access the PFE
directly. The following commands are performed for illustrative purposes, and they use unsupported shell
commands. Remember: you should use hidden and shell commands only under direct guidance of JTAC.

[edit]

lab@stout# run start shell

% su

Password:

root@stout% vty 1

BSD platform (Pentium processor, 84MB memory, 8192KB flash)

A shell is started and the user becomes root, because only the root user has access to the vty command used

to attach to the forwarding devices daemon (fwdd) process. You connect to the software-based PFE, which on a
J-series router is called fwdd, by connecting to tnp address 1. Once connected to the PFE, information is

displayed for the next hop value of 348:

FWDD(stout vty)# show nhdb id 348

Nexthop Info:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ID Type Interface Next Hop Addr Protocol Encap MTU

---- ------- ------------- --------------- -------- --------- ----

 348 MultiRT - - IPv4 - 0

 fe-0/0/1.1331 IPv4 Ethernet

The PFE output confirms that currently, a single outgoing interface is associated with next hop ID 348. A
multicast route entry can have numerous next hop interfaces when the topology requires such replication. You
now exit out of the vty connection and the shell to return to the CLI:

FWDD(stout vty)# exit

root@stout% exit

% exit

[edit]

lab@stout#

Multicast routes in a forwarding state are placed into the inet.1 route table. Unlike a learned route, information

in inet.1 is a cache entry that is driven by the actual flow of traffic-the entry ages out a short while after

traffic cessation.

[edit]

lab@stout# run show route table inet.1 detail

inet.1: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)

225.1.1.1.10.10.111.1/64 (1 entry, 1 announced)

 *PIM Preference: 105

 Next hop type: Multicast (IPv4)

 Next-hop reference count: 2

 State: <Active Int>

 Age: 39:25

 Task: PIM.master

 Announcement bits (1): 0-KRT

 AS path: I

The show multicast usage command is also handy when you want to determine the number and relative

activity level of the various sources in your network:

[edit]

lab@stout# run show multicast usage

Group Sources Packets Bytes

225.1.1.1 1 2516 211344

Prefix /len Groups Packets Bytes

10.10.111.1 /32 1 2516 211344

Note that multicast usage information is displayed both by group and by (S,G) pairing. Multicast traffic
generation is stopped at Ale:

64 bytes from 10.10.11.3: icmp_seq=7227 ttl=61 time=10.564 ms

^C

--- 225.1.1.1 ping statistics ---

7228 packets transmitted, 7228 packets received, 0% packet loss

round-trip min/avg/max/stddev = 8.079/21.507/201.323/10.705 ms

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The lack of data plane activity results in aging out of the forwarding state. Because the receiver is still
interested in group 225.1.1.1, the control plane join state is refreshed and remains:

Code View:
[edit]

lab@stout# run show multicast route extensive source-prefix 10.10.111.1

Family: INET

Group: 225.1.1.1

 Source: 10.10.111.1/32

 Upstream interface: fe-0/0/0.2131

 Downstream interface list:

 fe-0/0/1.1331

 Session description: MALLOC

 Statistics: 0 kBps, 0 pps, 7306 packets

 Next-hop ID: 348

 Upstream protocol: PIM

 Route state: Active

 Forwarding state: Forwarding

 Cache lifetime/timeout: 171 seconds

 Wrong incoming interface notifications: 1

[edit]

lab@stout# run show pim join extensive 225.1.1.1

Instance: PIM.master Family: INET

Group: 225.1.1.1

 Source: *

 RP: 10.20.128.3

 Flags: sparse,rptree,wildcard

 Upstream interface: fe-0/0/0.3141

 Upstream neighbor: 10.20.129.2

 Upstream state: Join to RP

 Downstream neighbors:

 Interface: fe-0/0/1.1331

 10.20.131.1 State: Join Flags: SRW Timeout: 178

Group: 225.1.1.1

 Source: 10.10.111.1

 Flags: sparse,spt

 Upstream interface: fe-0/0/0.2131

 Upstream neighbor: 10.10.131.1

 Upstream state: Join to Source, Prune to RP

 Keepalive timeout: 169

 Downstream neighbors:

 Interface: fe-0/0/1.1331

 10.20.131.1 State: Join Flags: S Timeout: 178

After a few minutes, the (S,G) forwarding state is flushed from the network:

[edit]

lab@stout# run show multicast route extensive source-prefix

10.10.111.1

Family: INET

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This result confirms expected PIM sparse mode control and data plane state and delivery of the multicast test
traffic to the receiver by the returned echo replies. These results complete the PIM sparse mode with static RP
configuration scenario.

10.3.4. PIM Sparse Mode with Static RP Summary

This section demonstrated the configuration and operational verification of a PIM-based IP multicast network
that used a statically defined RP. In the next section, we will build on this experience by adding dynamic RP
electing using the bootstrap protocol.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.4. Configure PIM Sparse Mode with Bootstrap RP

In this section, we will convert the existing multicast topology from a statically defined RP to a bootstrap
learned RP. As part of this conversion, the network is being redesigned to add a second RP for redundancy. The
configuration objectives are as follows:

Remove the static RP definition from all routers.

Configure Stout as a second RP for the 224/4 group range.

Use bootstrap-based RP election, and make sure that PBR is the BSR when operational.

Ensure that there is no single point of RP/BSR failure in the network.

The new redundancy requirements make it clear that the network will need two RPs and two candidate BSRs.
Further, the bootstrap priority will need to be higher (more preferred) at PBR to ensure that it is the BSR when

operational. Figure 10-15 shows the updated topology.

Figure 10-15. Bootstrap RP election

The figure shows that both PBR and Stout are configured to function as candidate RPs and candidate BSRs (C-

RP and C-BSR). Although not technically necessary, currently it is a best practice to make the C-RP and C-BSR
functionality collocated, given that the loss of either function kills PIM sparse mode operation and negates any
benefits associated with distributing C-BSR and C-RP functionality among different nodes. The higher BSR
priority setting at PBR results in its election as the domain's BSR when operational; otherwise, Stout steps in to

take over.

When both RPs are operational, the BSR advertises a candidate RP set that lists both of the domain's RPs. Each
PIM router hashes against this set to choose which of the two RPs to use for a specific group range. The hashing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

function ensures that all routers choose the same candidate RP for the same groups, and that a consecutive set
of four groups always map to the same RP. The latter functionality is designed to accommodate applications
that use consecutive groups for various elements that make up a single session-for example, an audio channel
and the corresponding video stream-by helping to ensure similar latency among the session's component
streams.

The static RP definition is removed from routers Lager, Stout, Bock, Porter, and Cider (not shown), and

attention is focused on the need to configure candidate BSR functionality at PBR. The configuration is rather

straightforward-all that is required is a single statement to enable BSR and assign a priority:

[edit protocols pim]

lab@PBR# show

rp {

 bootstrap-priority 100;

 local {

 address 10.20.128.3;

 }

}

interface fe-0/0/0.3141;

interface fe-0/0/0.1241;

interface fe-0/0/0.111;

The priority setting of 100 makes PBR a candidate BSR-note that a value of 0 does not disable BSR

functionality, but such a setting does make it less likely that candidate PBR will become the BSR. Once a lower

priority is set in the soon-to-be-configured Stout, you ensure that PBR is the domain's BSR when operational. In

this example, the bootstrap statement is configured directly at the [edit protocols pim rp] hierarchy. The

same set of options is available on a per-family basis using the family keyword:

[edit protocols pim]

lab@PBR# set rp bootstrap family inet ?

Possible completions:

+ apply-groups Groups from which to inherit configuration data

+ apply-groups-except Don't inherit configuration data from these groups

+ export Bootstrap export policy

+ import Bootstrap import policy

 priority Eligibility to be the bootstrap router (0..255)

The import and export keywords link to one or more policy statements that filter bootstrap messages from

being received or transmitted, respectively. Normally, you use such policy at the edges of a PIM domain to
prevent routers in a remote domain from using the domain's local BSR, and vice versa.

After committing the change, BSR election begins and PBR starts a countdown timer intended to reduce

thrashing by allowing time for any C-BSR messages to propagate through the domain before a decision is made
as to which C-BSR should win to become the BSR. Use the show pim bootstrap command to display

information about the domain's candidate BSRs:

[edit protocols pim]

lab@PBR# commit

commit complete

[edit protocols pim]

lab@PBR# run show pim bootstrap

Instance: PIM.master

BSR Pri Local address Pri State Timeout

None 0 10.20.128.3 100 Candidate 54

http://lib.ommolketab.ir
http://lib.ommolketab.ir

None 0 (null) 0 InEligible 0

PBR is the only router now configured to be a C-BSR, and therefore it easily wins the election to become the

domain's BSR:

[edit protocols pim]

lab@PBR# run show pim bootstrap

Instance: PIM.master

BSR Pri Local address Pri State Timeout

10.20.128.3 100 10.20.128.3 100 Elected 37

None 0 (null) 0 InEligible 0

In the display, each router shows a null entry, as well as an entry for its loopback address and local C-BSR
priority. C-BSR information that is learned is displayed on the lefthand side. The output from PBR makes it clear

that the local router is also the BSR, and that it has a priority of 100.

For proper BSR operation, a candidate BSR must have a routable address assigned to its
lo0 interface. This is true even when a different address, perhaps one assigned to a

physical interface, is configured as the BSR address. This requirement stems from an
implementation decision that forces C-BSR messages to be sourced from the local
router's lo0 address-C-BSR messages cannot be sent if no lo0 address is configured or

if the only address configured is a 127.x.x.x loopback. You can commit such a
configuration, and the result is not particularly easy to troubleshoot given that the
symptom is simply a lack of generated C-BSR messages.

A few moments later, proper bootstrap operation is confirmed when all other routers have chosen the same C-
BSR, as shown for Cider:

[edit]

lab@Cider# run show pim bootstrap

Instance: PIM.master

BSR Pri Local address Pri State Timeout

10.20.128.3 100 10.10.12.1 0 InEligible 112

None 0 (null) 0 InEligible 0

The show pim bootstrap display at Cider confirms that it has received the C-BSR message that originated at

PBR and was propagated via hop-by-hop multicast to all BSR-enabled routers. The presence of a single C-BSR

with priority 100 is confirmed, as is election of PBR as the BSR:

[edit]

lab@Cider# run show pim rps

Instance: PIM.master

Address family INET

RP address Type Holdtime Timeout Groups Group prefixes

10.20.128.3 bootstrap 150 125 2 224.0.0.0/4

Address family INET6

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The show pim rps display further confirms that an RP has been learned for the 224/4 range via the bootstrap

protocol. With things working properly at the first C-BSR/C-RP, it's time to bring up the domain's backup C-
BSR/C-RP. The configuration of Stout is modified and displayed:

[edit protocols pim]

lab@stout# show | compare

[edit protocols pim rp]

+ bootstrap-priority 50;

+ local {

+ address 10.20.128.4;

+ }

- static {

- address 10.20.128.3;

- }

After waiting a minute or two for things to settle down, verification starts at Stout. The expectation is that

Stout confirms PBR as the elected BSR while also listing itself as a viable contender:

BSR Pri Local address Pri State Timeout

10.20.128.3 100 10.20.128.4 50 Candidate 123

None 0 (null) 0 InEligible 0

The output confirms those expectations and shows that BSR is operating as desired between the domain's two
candidate BSRs. RP set information is displayed next:

[edit protocols pim]

lab@stout# run show pim rps

Instance: PIM.master

Address family INET

RP address Type Holdtime Timeout Groups Group prefixes

10.20.128.3 bootstrap 150 137 1 224.0.0.0/4

10.20.128.4 bootstrap 150 137 1 224.0.0.0/4

10.20.128.4 static 0 None 1 224.0.0.0/4

The show pim rps command output lists both of the domain's RPs as having been learned via bootstrap; the

local RP definition at Stout is also listed as learned statically. Back at the last hop router, Cider, the state of

RPs is also as expected:

edit]

lab@Cider# run show pim rps

Instance: PIM.master

Address family INET

RP address Type Holdtime Timeout Groups Group prefixes

10.20.128.3 bootstrap 150 101 1 224.0.0.0/4

10.20.128.4 bootstrap 150 101 1 224.0.0.0/4

Awesome! And some folks think this multicast stuff is hard to understand. PIM join state is displayed at Cider.

The display illustrates the bootstrap RP hashing function, in that the two joins associated with the listening SAP
process hashed to a different RP:

[edit]

lab@Cider# run show pim join

Instance: PIM.master Family: INET

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Group: 224.2.127.254

 Source: *

 RP: 10.20.128.3

 Flags: sparse,rptree,wildcard

 Upstream interface: fe-0/0/1.100

Group: 225.1.1.1

 Source: *

 RP: 10.20.128.4

 Flags: sparse,rptree,wildcard

 Upstream interface: fe-0/0/1.100

Once again, connectivity is verified at the sender:

[edit]

lab@Ale# run ping ttl 5 225.1.1.1 interface fe-0/0/0.111 bypass-routing

PING 225.1.1.1 (225.1.1.1): 56 data bytes

64 bytes from 10.10.11.3: icmp_seq=0 ttl=61 time=87.388 ms

. . .

So is the data-driven switch to an SPT at the last hop router:

[edit]

lab@Cider# run show pim join 225.1.1.1 detail

Instance: PIM.master Family: INET

Group: 225.1.1.1

 Source: *

 RP: 10.20.128.4

 Flags: sparse,rptree,wildcard

 Upstream interface: fe-0/0/1.100

Group: 225.1.1.1

 Source: 10.10.111.1

 Flags: sparse,spt

 Upstream interface: fe-0/0/1.100

Before calling it quits, redundancy is verified by deactivating the RP and BSR functionality at PBR. The

confirmed option is added to the commit to evoke automatic restoration of the previous (and currently active)

configuration to save some keystrokes:

[edit protocols pim]

lab@PBR# deactivate rp

[edit protocols pim]

lab@PBR# show

inactive: rp {

 bootstrap-priority 100;

 local {

 address 10.20.128.3;

 }

}

interface fe-0/0/0.3141;

interface fe-0/0/0.1241;

interface fe-0/0/0.111;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[edit protocols pim]

lab@PBR# commit confirmed 3

commit confirmed will be automatically rolled back in 3 minutes

 unless confirmed

commit complete

commit confirmed will be rolled back in 3 minutes

[edit protocols pim]

Failover behavior is confirmed back at Cider:

[edit]

lab@Cider# run show pim bootstrap

Instance: PIM.master

BSR Pri Local address Pri State Timeout

10.20.128.4 50 10.10.12.1 0 InEligible 103

None 0 (null) 0 InEligible 0

The display confirms the removal of PBR as a candidate RP and the election of the remaining C-BSR (Stout),

which is now the best choice. The join state takes a little while to catch up, but after a short while all joins are
pointing to the remaining RP:

 [edit]

lab@Cider# run show pim join

Instance: PIM.master Family: INET

Group: 224.2.127.254

 Source: *

 RP: 10.20.128.4

 Flags: sparse,rptree,wildcard

 Upstream interface: fe-0/0/1.100

Group: 225.1.1.1

 Source: *

 RP: 10.20.128.4

 Flags: sparse,rptree,wildcard

 Upstream interface: fe-0/0/1.100

Group: 225.1.1.1

 Source: 10.10.111.1

 Flags: sparse,spt

 Upstream interface: fe-0/0/1.100

Once the automatic rollback occurs at PBR, things return to the expected state, which completes verification of

the PIM sparse mode with bootstrap protocol scenario:

[edit]

lab@Cider# run show pim bootstrap

Instance: PIM.master

BSR Pri Local address Pri State Timeout

10.20.128.3 100 10.10.12.1 0 InEligible 88

None 0 (null) 0 InEligible 0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.4.1. Troubleshoot a Bootstrap Problem

The Beer-Co topology has been altered to interface to another routing domain, as shown in Figure 10-16.

Figure 10-16. PIM BSR troubleshooting topology

Figure 10-16 details how PIMv1 has been configured on the now external interfaces at Bock and Porter to

prevent the leaking of bootstrap protocol messages to and from the other routing domain. Recall that PIMv1
does not support bootstrap, making this a common approach to scoping BSR messages. The problem is that
Bock does not display any learned BSRs, and therefore there is no bootstrap learned RP at Bock:

[edit]

lab@Bock# show protocols pim

interface fe-0/0/0.1241;

interface fe-0/0/1.100 {

 version 1;

}

interface t1-0/0/2.0;

[edit]

lab@Bock# run show pim bootstrap

Instance: PIM.master

BSR Pri Local address Pri State Timeout

None 0 10.10.12.3 0 InEligible 0

None 0 (null) 0 InEligible 0

[edit]

lab@Bock# run show pim rps

Instance: PIM.master

All other routers display the expected BSR and RP set information. Bock was working properly prior to the shift

to PIMv1, and connectivity over all of its interfaces has been verified with successful pings to direct neighbors.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Lacking any better suggestions, PIM bootstrap tracing is added to the configuration, and after a short while
trace output is observed:

Code View:
[edit protocols pim]

lab@Bock# show traceoptions

file pim;

flag bootstrap detail;

[edit protocols pim]

lab@Bock# run monitor start pim

*** pim ***

Sep 28 02:27:19.848100 PIM fe-0/0/0.1241 RECV 10.20.130.2 ->

224.0.0.13 V2 Bootstrap sum 0x6ab2 len 46

Sep 28 02:27:19.848182 tag 52078 masklen 30 priority 100 bootstrap

router 10.20.128.3

Sep 28 02:27:19.848208 group 224.0.0.0 count 2 fragcount 2

Sep 28 02:27:19.848230 rp address 10.20.128.3 holdtime 150

priority 1

Sep 28 02:27:19.848247 rp address 10.20.128.4 holdtime 150

priority 1

Sep 28 02:27:19.857917 PIM t1-0/0/2.0 RECV 10.10.10.2 -> 224.0.0.13

V2 Bootstrap sum 0x0cba len 46

Sep 28 02:27:19.858018 tag 10599 masklen 30 priority 100 bootstrap

router 10.20.128.3

Sep 28 02:27:19.858042 group 224.0.0.0 count 2 fragcount 2

Sep 28 02:27:19.858060 rp address 10.20.128.3 holdtime 150

priority 1

Sep 28 02:27:19.858073 rp address 10.20.128.4 holdtime 150

priority 1

The trace output is at once good and bad; good because it shows that valid bootstrap messages are being
received on both of Bock's PIMv2-enabled interfaces, and bad because no obvious error or reason is displayed

as to why the messages do not result in election of a BSR at Bock. Given that things worked until the shift to

PIMv1 on fe-0/0/1.100, you decide to temporarily deactivate the fe-0/0/1 interface:

[edit]

lab@Bock# deactivate interfaces fe-0/0/1

[edit]

lab@Bock# commit

commit complete

[edit]

lab@Bock# run show pim bootstrap

Instance: PIM.master

BSR Pri Local address Pri State Timeout

10.20.128.3 100 10.10.12.3 0 InEligible 100

None 0 (null) 0 InEligible 0

Quite interesting; the output confirms proper BSR election as long as the PIMv1 interface is deactivated-which
makes little sense given that PIMv1 does not even support the BSR protocol! The change is rolled back to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

reactivate the fe-0/0/1.100 interface.

Strange; very strange indeed-recalling that RPF checks are critical to multicast operation, you display the RPF
route to 10.20.128.3 from Bock:

[edit]

lab@Bock# run show multicast rpf 10.20.128.3

Multicast RPF table: inet.0 , 21 entries

10.20.128.3/32

 Protocol: OSPF

 Interface: fe-0/0/1.100

 Neighbor: 10.10.11.2

The display shows that Bock considers 10.10.11.2 as the RFP neighbor for the 10.20.128.3 route, which is

reachable over the 10.10.11.0/24 subnet. Interestingly, this is also the interface that was set to PIMv1, and this
explains the problem: PIM control messages generally have to be received on the RPF interface to their source;
otherwise, they are ignored. For the specific behavior discussed here, Section 3.6.3 of RFC 2362 states:

When a router receives a Bootstrap message sent to 'ALL-PIM-ROUTERS' group, it performs the following:

If the message was not sent by the RPF neighbor towards the BSR address, the message is dropped.1.

The problem now becomes clear-given the OSPF metrics in effect, Bock expects to receive BSR messages on its

fe-0.0/1/100 interface and is dropping BSR messages received on those interfaces that are not on the RPF

path back to the BSR. Several solutions present themselves:

Alter IGP metrics so that Bock no longer sees its fe-0/0/1.100 interface as the RPF interface back to the

BSR-that is, either increase the 10.10.11.0 subnet metric or reduce the 10.20.130.0 or 10.10.10.0
subnet metric.

Reconfigure the network to move BSR functionality to a node whose RPF check does not point to Bock's

fe-0/0/1.100 interface. This option is not really viable in the sample topology unless a new router is

added.

Add a new link, or add PIM to a previously nonmulticast-enabled link, in order to affect a new RPF
topology, again with the intent of removing fe-0/0/1.100 from the RPF check back to PBR.

Policy-based filtering of bootstrap messages is not considered here because in this scenario, it relies on the
administration of the remote autonomous system (AS) to apply import policy to filter bootstrap messages
exchanged over the shared LAN between Bock and Porter; egress filtering at Bock and Porter does not work

because this filters all bootstrap messages from the LAN-currently Bock needs to receive the bootstrap

messages from Porter over the shared LAN.

10.4.1.1. Extra points for creativity?

The solution demonstrated here is based on the "add another link" option discussed earlier, except the new link

http://lib.ommolketab.ir
http://lib.ommolketab.ir

is instantiated as a Generic Routing Encapsulation (GRE) tunnel, meaning no new equipment or facilities are
needed! No routing protocol operates over the tunnel-Bock uses two /32 static routes to direct traffic destined

to the lo0 address of PBR and Stout over the GRE tunnel. This ensures that the only traffic subjected to the

tunnel is that associated with the loopback addresses of PBR and Stout. All other traffic continues to follow the

IGP's shortest path, thereby causing minimal impact to existing traffic patterns. If all this were not enough, the
tunnel is instantiated between the loopback address of Bock and PBR and is routed between these addresses

according to the IGP's shortest path. This means the GRE tunnel and associated static routing are not affected
by the failures of individual links or interfaces, and that no policy/static routes are needed to advertise
reachability to the tunnel endpoints given that the lo0s of Bock and Porter are already carried in OSPF.

Because the static routes are preferred over any OSPF learned route (due to preference), the problems of
receiving BSR messages on the wrong RPF interface are forever eliminated once PIM is enabled over the GRE
tunnel.

The changes to Bock's configuration are shown. The changes at Porter are limited to GRE interface definition

and enabling PIM on the resulting GRE interface. No static routes are needed at Porter because the

10.20.128.3 and 10.20.128.4 OSPF routes at Porter already lie on the RPF path back to PBR and Stout,

respectively.

Code View:
[edit]

lab@Bock# show interfaces gr-0/0/0

unit 0 {

 tunnel {

 source 10.10.12.3;

 destination 10.10.12.2;

 }

 family inet;

}

[edit]

lab@Bock# show routing-options

static {

 route 10.20.128.3/32 next-hop gr-0/0/0.0;

 route 10.20.128.4/32 next-hop gr-0/0/0.0;

}

[edit]

lab@Bock# show protocols pim

traceoptions {

 file pim;

 flag bootstrap detail;

}

interface fe-0/0/0.1241;

interface fe-0/0/1.100 {

 version 1;

}

interface t1-0/0/2.0;

interface gr-0/0/0.0;

Note that an unnumbered GRE tunnel is defined, which eliminates the need to advertise reachability to the
tunnel endpoints; local tunnel traffic is based on the lo0 addresses of Bock and Porter, which are already

advertised by OSPF. Verification begins by examining Bock's route to the lo0 addresses of PBR and Stout:

Code View:
[edit]

lab@Bock# run show route 10.20.128/29

http://lib.ommolketab.ir
http://lib.ommolketab.ir

inet.0: 21 destinations, 24 routes (21 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

10.20.128.3/32 *[Static/5] 00:04:39

 > via gr-0/0/0.0

 [OSPF/10] 00:16:27, metric 3

 > to 10.10.11.2 via fe-0/0/1.100

10.20.128.4/32 *[Static/5] 00:04:39

 > via gr-0/0/0.0

 [OSPF/10] 00:16:27, metric 2

 > to 10.10.11.2 via fe-0/0/1.100

[edit]

lab@Bock# run show multicast rpf 10.20.128/29

Multicast RPF table: inet.0 , 21 entries

10.20.128.3/32

 Protocol: Static

 Interface: gr-0/0/0.0

 Neighbor: (null)

10.20.128.4/32

 Protocol: Static

 Interface: gr-0/0/0.0

 Neighbor: (null)

The command output confirms the presence of active static routes at Bock and that the RPF interface to these

lo0 addresses now points to the GRE tunnel. Note that there is no RPF neighbor (listed as null) because the

tunnel is unnumbered in this example.

PIMv2 is confirmed operational on the new GRE interface, and a PIM neighbor has been detected:

[edit]

lab@Bock# run show pim interfaces

Instance: PIM.master

Name Stat Mode IP V State Count DR address

fe-0/0/0.1241 Up Sparse 4 2 NotDR 1 10.20.130.2

fe-0/0/1.100 Up Sparse 4 1 NotDR 2 10.10.11.3

gr-0/0/0.0 Up Sparse 4 2 P2P 1

pe-0/0/0.32769 Up Sparse 4 2 P2P 0

pe-0/0/0.32770 Up Sparse 4 2 P2P 0

t1-0/0/2.0 Up Sparse 4 2 P2P 1

The RPF issue with received bootstrap messages is resolved, thus allowing Bock to learn the domain's C-BSRs.

With knowledge of the domain's BSR, Bock goes on to learn the domains RPs:

[edit]

lab@Bock# run show pim bootstrap

Instance: PIM.master

BSR Pri Local address Pri State Timeout

10.20.128.3 100 10.10.12.3 0 InEligible 125

None 0 (null) 0 InEligible 0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[edit]

lab@Bock# run show pim rps

Instance: PIM.master

Address family INET

RP address Type Holdtime Timeout Groups Group prefixes

10.20.128.3 bootstrap 150 139 1 224.0.0.0/4

10.20.128.4 bootstrap 150 139 1 224.0.0.0/4

IGP connectivity is confirmed from Bock to the loopback address of PBR:

 [edit]

lab@Bock# run traceroute 10.20.128.3

traceroute to 10.20.128.3 (10.20.128.3), 30 hops max, 40 byte packets

 1 10.10.12.2 (10.10.12.2) 105.258 ms 71.311 ms 11.741 ms

 2 10.20.131.2 (10.20.131.2) 9.808 ms 9.401 ms 9.677 ms

 3 10.20.128.3 (10.20.128.3) 10.100 ms 29.484 ms 9.734 ms

And the use of PIMv1 on the 10.10.11/24 subnet prevents learning of the BSR at router Cider. This completes

the PIM bootstrap troubleshooting exercise.

lab@Cider# run show pim bootstrap

Instance: PIM.master

BSR Pri Local address Pri State Timeout

None 0 10.10.12.1 0 InEligible 26

None 0 (null) 0 InEligible 0

10.4.2. PIM Sparse Mode with Bootstrap RP Summary

In this section, you configured the bootstrap protocol to dynamically communicate RP to group mappings. The
bootstrap protocol allows all routers to select the same RP for a given group, thereby spreading the multicast
load among the set of RPs, with the hashing function determining which groups are handled by which RP. This
section also showed how RPF checks can cause control plane messages to be ignored, and it provided a creative
solution using a GRE tunnel that required no additional hardware.

In the next section, you will deploy Anycast-RP to support dynamic RP election and load balancing with this
same multicast group.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.5. PIM-Based Anycast-RP

The final multicast configuration exercise in this chapter involves deployment of Anycast-RP, with emphasis on a
PIM-only solution. An alternative configuration using MSDP is also provided.

With both auto-RP and BSR, only one RP is permitted to be active for any given group at any one time. Anycast-
RP relaxes this restriction and allows multiple RPs to be active for the same group at the same time. Anycast-RP
requires a mechanism by which the multiple RPs share information about active sources. This inter-RP
communication has historically been performed by MSDP, but JUNOS software also supports the PIM-only
Anycast-RP solution, as specified in RFC 4610. The PIM-based solution is attractive because it eliminates all
need for MSDP within an organization, allowing MSDP deployment as needed, and then only for its original
purpose of interdomain multicast support.

Because of the common RP address that is shared among all the RPs, receivers simply send their joins to the
metrically closest Anycast-RP, and they are unaware of the presence of multiple RPs.

The configuration objectives are as follows:

Stout and Bock remain RPs, but both must now use 10.255.255.1 for RP functionality.

Do not use BSR or auto-RP.

Ensure no single points of failure.

The requirement that no dynamic RP discovery mechanisms be used may strike you as a bit odd, especially in
light of the need for network resiliency to single points of failure. Recall that with Anycast-RP, all of the RPs for a
given group range use the same RP address. Therefore, as long as at least one Anycast-RP remains operational,
the statically defined RP address in non-RP routers continues to provide the needed connectivity. In an Anycast-
RP environment, the use of a dynamic protocol to propagate knowledge of the single RP address is a bit overkill,
but certainly not illegal.

Figure 10-17 provides a high-level walkthrough of an Anycast-RP operation.

Figure 10-17. PIM Anycast-RP operation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To start, note how the domain's RPs are said to belong to an Anycast-RP set. Each RP within this set must have
a unique, routable loopback address that is used for RP-RP (and other) communications, as well as a shared RP
address that, in effect, represents all RPs in the set. Further, each RP in the set must have an explicit list of all
other RPs, using their unique, not shared, IP address. Figure 10-17 shows how R1 and R4 have a configuration
that identifies each other by their unique lo0 IP address.

Step 1 shows Sender 1 (S1) generating native multicast to group G1. The designated router for S1 encapsulates
the multicast into a register message and sends it to the Anycast-RP address at step 2. Because all RPs in the
set use the same RP address, the register message is routed by the IGP to the metrically closest RP, which is R1
in this example. Note that the register message received by R1 is sourced by R2. Step 3 shows R1 sending the
now native multicast (register encapsulation has been stripped) down its shared tree toward Receiver 1. At step
4, R1 creates its own register message with a copy of the original multicast packet, which is sent to all RPs in
the Anycast-RP set, which in this case means that R4 receives a register message with R1 as a source. R4
behaves as any other designated router by stripping the register encapsulation and sending the native multicast
down its shared tree, thus allowing R2 to obtain a copy.

10.5.1. Configure Anycast-RP

Figure 10-18 shows the Anycast-RP topology. It details how the domain's two RPs, PBR and Stout, share an

Anycast-RP address of 10.255.255.1, in addition to maintaining their unique loopback addresses. Configuration
begins with removal of any existing RP and BSR functionality at PBR and Stout (the commit is not shown):

[edit]

lab@PBR# delete protocols pim rp

Figure 10-18. The Anycast-RP topology

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This action leaves the domain with no RPs-recall that RP information was being disseminated via bootstrap,
and the previous command removed all C-RP and C-BSR functionality from the domain.

10.5.1.1. Configure static RP on non-RP routers

The non-RP routers are a snap to configure; a single statement is needed to statically define the Anycast-RP
address at all routers. The configuration of Lager is shown and is similar to all other non-RP nodes:

[edit]

lab@Lager# show protocols pim

rp {

 static {

 address 10.255.255.1;

 }

}

interface fe-0/0/0.2131;

interface fe-0/0/0.111;

After committing the changes, static RP operation is confirmed at Cider:

[edit]

lab@Cider# run show pim rps

Instance: PIM.master

Address family INET

RP address Type Holdtime Timeout Groups Group prefixes

10.255.255.1 static 0 None 2 224.0.0.0/4

. . .

[edit]

lab@Cider# run show pim join

Instance: PIM.master Family: INET

Group: 224.2.127.254

 Source: *

 RP: 10.255.255.1

 Flags: sparse,rptree,wildcard

 Upstream interface: unknown (no route)

Group: 225.1.1.1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Source: *

 RP: 10.255.255.1

 Flags: sparse,rptree,wildcard

 Upstream interface: unknown (no route)

The output shows that the Anycast-RP address is correctly configured, but there is currently no route to the
Anycast-RP address, which is expected given that the Anycast-RPs have not yet been configured.

10.5.1.2. Configure the Anycast-RPs

Configuration of the Anycast-RP begins with the addition of the shared Anycast-RP address to the lo0 interface.

The existing (unique) address is flagged as primary to ensure no disruption to the IGP/BGP control plane

through continued use of the unique lo0 address for non-PIM-related functions, such as OSPF/BGP router ID

(RID) selection. Recall that when not explicitly set under routing-options, the RID is obtained from the

primary address on the system's default interface, which is the lowest non-127.0.0.x address assigned to the
lo0 interface.

[edit interfaces lo0 unit 0 family inet]

lab@PBR# set address 10.20.128.3/32 primary

[edit interfaces lo0 unit 0 family inet]

lab@PBR# set address 10.255.255.1

By default, the numerically lowest local IP address is considered the interface's primary
address, and the lo0 interface is the default interface when a non-127.0.0.x address is

configured. The specifics of this example happened to use a numerically higher address
for the Anycast-RP function, making declaration of the existing lo0 address as primary

technically unnecessary. However, making a mistake here can lead to the difficult
problem of troubleshooting missing routes due to duplicate RIDs, making the extra
configuration step insurance that is well worth having.

The modified lo0 configuration is shown:

[edit interfaces lo0 unit 0 family inet]

lab@PBR# show

address 10.20.128.3/32 {

 primary;

}

address 10.255.255.1/32;

Similar changes are also made to Stout's lo0 configuration. PIM-based Anycast-RP is configured at the [edit

protocols pim rp local family inet] hierarchy. The updated configuration and related set commands are

shown for PBR:

[edit protocols pim rp local family inet]

lab@PBR# show

address 10.255.255.1;

anycast-pim {

 rp-set {

 address 10.20.128.4;

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

[edit protocols pim rp local family inet]

lab@PBR# show | display set

set protocols pim rp local family inet address 10.255.255.1

set protocols pim rp local family inet anycast-pim rp-set address

10.20.128.4

Once again, a similar configuration is added and committed at Stout, whose configuration correctly specifies

PBR's unique lo0 address under its rp-set stanza.

10.5.1.3. Verify the Anycast-RPs

After a few minutes, PIM join state is examined at Cider:

[edit]

lab@Cider# run show pim join 225.1.1.1

Instance: PIM.master Family: INET

Group: 225.1.1.1

 Source: *

 RP: 10.255.255.1

 Flags: sparse,rptree,wildcard

 Upstream interface: unknown (no route)

The display indicates that Cider still does not know how to route to the Anycast-RP address. This is quickly

confirmed with a show route command:

[edit]

lab@Cider# run show route 10.255.255.1

Going back to one of the Anycast-RPs, the problem is quickly uncovered:

[edit]

lab@PBR# run show ospf interface

Interface State Area DR ID BDR ID Nbrs

fe-0/0/0.111 BDR 0.0.0.0 10.10.128.2 10.20.128.3 1

fe-0/0/0.1241 BDR 0.0.0.0 10.10.12.3 10.20.128.3 1

fe-0/0/0.3141 BDR 0.0.0.0 10.20.128.4 10.20.128.3 1

OSPF is not running on the lo0 interface, which prevents the newly added 10.255.255.1 Anycast-RP address

from being advertised into OSPF. Recall that the JUNOS software default is to advertise a stub route to the
interface from which the router obtains its RID. The router uses the primary address on the default
interface-which is normally the lo0 interface by default-as the RID; this is why the 10.20.128.3 lo0 address

at PBR has been advertised into OSPF despite OSPF not being enabled on that interface previously.

They automatically advertise the source of the RID behavior changed in release 8.5 due
to PR 229200. In affected releases, you should run a passive OSPF instance on the
router's lo0 to ensure the route is advertised into OSPF, which is needed for proper PIM
functioning.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A passive OSPF instance is configured to run on the lo0 interface of both Anycast-RPs to get both of the

assigned lo0 addresses advertised into OSPF:

[edit]

lab@PBR# set protocols ospf area 0 interface lo0 passive

The OSPF database confirms that PBR is now advertising the 10.255.255.1 address:

[edit]

lab@PBR# show ospf database advertising-router 10.20.128.3 router

detail

 OSPF link state database, Area 0.0.0.0

 Type ID Adv Rtr Seq Age Opt Cksum Len

Router *10.20.128.3 10.20.128.3 0x800000b4 41 0x22 0xff76 84

 bits 0x2, link count 5

 id 10.10.111.3, data 10.10.111.2, Type Transit (2)

 TOS count 0, TOS 0 metric 2

 id 10.20.130.1, data 10.20.130.2, Type Transit (2)

 TOS count 0, TOS 0 metric 68

 id 10.20.129.1, data 10.20.129.2, Type Transit (2)

 TOS count 0, TOS 0 metric 1

 id 10.20.128.3, data 255.255.255.255, Type Stub (3)

 TOS count 0, TOS 0 metric 0

 id 10.255.255.1, data 255.255.255.255, Type Stub (3)

TOS count 0, TOS 0 metric 0

The change allows Cider to route toward the Anycast-RP address, which in turn permits it to join the shared

tree for 225.1.1.1:

[edit]

lab@Cider# run show pim join

Instance: PIM.master Family: INET

Group: 224.2.127.254

 Source: *

 RP: 10.255.255.1

 Flags: sparse,rptree,wildcard

 Upstream interface: fe-0/0/1.100

Group: 225.1.1.1

 Source: *

 RP: 10.255.255.1

 Flags: sparse,rptree,wildcard

 Upstream interface: fe-0/0/1.100

The current route to the Anycast-RP is displayed at Cider:

[edit]

lab@Cider# run show route 10.255.255.1

inet.0: 20 destinations, 20 routes (20 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

10.255.255.1/32 *[OSPF/10] 00:03:53, metric 2

 > to 10.10.11.2

http://lib.ommolketab.ir
http://lib.ommolketab.ir

via fe-0/0/1.100

[edit]

lab@Cider# run traceroute 10.255.255.1

traceroute to 10.255.255.1 (10.255.255.1), 30 hops max, 40 byte packets

 1 10.10.11.2 (10.10.11.2) 79.285 ms

 98.810 ms 99.739 ms

 2 10.255.255.1 (10.255.255.1) 10.293 ms 9.213 ms 29.762 ms

The output shows that Stout is the RP currently used by Cider. Failover to metrically closest Anycast-RP is

tested by increasing the path metric on the Porter- Stout link to 300:

lab@Porter# set protocols ospf area 0 interface fe-0/0/1.1331 metric 300

And the change is verified back at Cider, which still thinks it is using the same RP, but in reality, its join now

goes to PBR via Bock:

[edit]

lab@Cider# run show pim join 225.1.1.1

Instance: PIM.master Family: INET

Group: 225.1.1.1

 Source: *

 RP: 10.255.255.1

 Flags: sparse,rptree,wildcard

 Upstream interface: fe-0/0/1.100

[edit]

lab@Cider# run show route 10.255.255.1

inet.0: 20 destinations, 20 routes (20 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

10.255.255.1/32 *[OSPF/10] 00:19:02, metric 69

 > to 10.10.11.1

 via fe-0/0/1.100

[edit]

lab@Cider# run traceroute 10.255.255.1

traceroute to 10.255.255.1 (10.255.255.1), 30 hops max, 40 byte packets

 1 10.10.11.1 (10.10.11.1) 19.018 ms

 12.334 ms 16.235 ms

 2 10.255.255.1 (10.255.255.1) 9.630 ms 29.665 ms 10.108 ms

The final PIM configuration is shown for Anycast-RP node Stout:

[edit]

lab@stout# show protocols pim

rp {

 local {

 family inet {

 address 10.255.255.1;

 anycast-pim {

 rp-set {

 address 10.20.128.3;

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 }

 }

}

interface fe-0/0/0.2131;

interface fe-0/0/0.3141;

interface fe-0/0/1.1331;

The asymmetric metrics (which is hard to say) in effect cause first hop router Lager to send its register

message to PBR, while receiver Cider sends its join toward Stout. When PBR receives the register message

from Lager, it generates a copy, sourced from its unique lo0 address, and sends it to Anycast-RP set member

Stout. This allows Stout to delivery a copy of the multicast packet to Cider over the shared tree, which in turn

generates an (S,G) join to establish an SPT. Register message tracing is added to Lager and Stout to illustrate

Anycast-RP interaction:

[edit]

lab@Lager# run traceroute 10.255.255.1

traceroute to 10.255.255.1 (10.255.255.1), 30 hops max, 40 byte

packets

 1 10.255.255.1 (10.255.255.1) 29.511 ms 38.646 ms 10.129 ms

The traceroute confirms that Lager sees PBR as the metrically closest RP. The multicast source is started, and

register tracing is observed at Lager. Note that the register is sourced from Lager and sent to the shared

Anycast-RP address:

[edit]

Sep 29 06:08:13.825061 PIM SENT 10.10.128.2 -> 10.255.255.1 V2

Register Flags: 0x40000000 Border: 0 Null: 1 Source 10.10.111.1

Group 225.1.1.1 sum 0x43f1 len 28

The register stop back from the Anycast-RP indicates that an SPT has been established or that no more
interested receivers are left on the shared tree:

lab@Lager# Sep 29 06:06:13.774885 PIM fe-0/0/0.2131 RECV 10.255.255.1

-> 10.10.128.2 V2 RegisterStop Source 10.10.111.1 Group 225.1.1.1 sum

0x80d1 len 18

The register message trace output is observed at Stout:

[edit]

lab@stout# Sep 29 06:45:28.549924 PIM fe-0/0/0.3141 RECV 10.20.128.3

-> 10.20.128.4 V2 Register Flags: 0x00000000

 Border: 0 Null: 0 Source

 10.10.111.1 Group 225.1.1.1 sum 0xdeff len 92

Sep 29 06:45:28.553631 PIM SENT 10.20.128.4 -> 10.20.128.3 V2

RegisterStop Source 10.10.111.1 Group 225.1.1.1 sum 0x80d1 len 18

Stout's trace shows that it receives a register from PBR-note how the register message is sent from/to the

unique lo0 addresses of PBR and Stout, respectively. This mechanism differentiates registers received from first

hop routers, which are sent to the Anycast-RP address, from those received from other RPs. The former are
echoed to all other RPs in the RP set, whereas the latter are absorbed and acted upon locally. Lastly, the show

pim source command is executed at Stout to confirm the learning of active group 225.1.1.1 via an Anycast-RP

http://lib.ommolketab.ir
http://lib.ommolketab.ir

source, as indicated by the 10.255.255.1 address:

[edit]

lab@stout# run show pim source detail

Instance: PIM.master Family: INET

Source 10.10.111.1

 Prefix 10.10.111.0/24

 Upstream interface fe-0/0/0.2131

 Upstream neighbor 10.10.131.1

 Active groups:225.1.1.1

Source 10.255.255.1

 Prefix 10.255.255.1/32

 Upstream interface Local

 Upstream neighbor Local

 Active groups:225.1.1.1

 224.2.127.254

10.5.1.4. What about MSDP?

Anycast-RP using native PIM is somewhat new, and you may find that some of the routers in your network do
not support this method. In this case, you will need to deploy Anycast-RP using MSDP peering between all the
RPs in the domain. MSDP conveys information about active sources between the domain's RPs. A working MSDP
configuration for the current Anycast-RP topology is added to PBR and Stout. The configuration of MSDP is

similar to that of PIM-based Anycast-RP, and it involves listing the unique neighbor addresses of all Anycast-RPs
in the domain. The shared and unique IP addresses assigned to the lo0 interface are reused from the previous

PIM-based Anycast-RP example. The modified configuration at PBR is as follows:

[edit]

lab@PBR# show protocols pim

rp {

 local {

 address 10.255.255.1;

 }

}

interface fe-0/0/0.3141;

interface fe-0/0/0.1241;

interface fe-0/0/0.111;

[edit]

lab@PBR# show protocols msdp

peer 10.20.128.4 {

 local-address 10.20.128.3;

}

The local-address statement ensures that the remote MSDP peer recognizes the connection as coming from

one of its defined peers. As with loopback-based BGP peering, one end's local-address should match the other

end's peer definition. You can use a similar statement with PIM-based anycast, but we omitted it because by
default, PIM messages are sourced from the primary address on the lo0 interface.

After starting up the multicast source, the MSDP session state and listing of learned sources is displayed at
Stout:

[edit]

lab@stout# run show msdp

Peer address Local address State Last up/down Peer-Group SA Count

10.20.128.3 10.20.128.4 Established 00:07:56 1/1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[edit]

lab@stout# run show msdp source-active

Group address Source address Peer address Originator Flags

225.1.1.1 10.10.111.1 10.20.128.3 10.20.128.3 Accept

These results complete the PIM sparse mode Anycast-RP configuration and verification example.

10.5.2. PIM Sparse Mode with Anycast-RP Summary

This section demonstrated a PIM-based solution to Anycast-RP and showed a working example that is based on
MSDP. Because Anycast-RP has inherent fault tolerance, it's common to use a static RP definition on client
routers to avoid the complexities of a dynamic RP election protocol such as the bootstrap or auto-RP protocol.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.6. Conclusion

IP multicast offers the best of all worlds when supporting one-to-many or many-to-many applications. Using a
unicast model for these applications quickly stresses processing power at the source due to replication load, and
maximum network bandwidth is consumed. Using broadcast is expensive for all hosts and is confined to a single
segment or bridging domain. Only IP multicast offers a scalable, standardized way to handle multipoint streams
in a manner that distributes replication load and conserves network bandwidth when branches have no
interested listeners. Many network operators are unfamiliar with IP multicast, which limits its widespread use.
Multicast should be looked at anytime a network is designed or redesigned as a potentially powerful
optimization tool that can also enable the rollout of emerging virtual simulation or multiplayer applications.

PIM sparse mode has become the predominant multicast routing protocol given its support of dense, sparse,
and sparse-dense modes of operation and the variety of mechanisms that can be used to dynamically distribute
RP information in a fault-tolerant manner. This chapter demonstrated typical PIM sparse mode deployment
scenarios using static and bootstrap-based RP dissemination, and it showed PIM- and MSDP-based examples of
Anycast-RP. JUNOS software supports a wide range of IP multicast standards and makes multicast configuration
and verification relatively straightforward.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.7. Exam Topics

We examined the following Enterprise Exam Topics in this chapter:

Distance Vector Multicast Routing Protocol (DVMRP)

Protocol Independent Multicast dense mode (PIM-DM)

Protocol Independent Multicast sparse mode (PIM-SM)

Bootstrap, auto-RP, anycast

Source-specific multicast (SSM)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.8. Chapter Review Questions

Which RP dissemination mechanism supports load balancing within the same group?

Auto-RPa.

Anycast-RPb.

Bootstrapc.

Staticd.

1.

Which RP dissemination mechanism supports load balancing on a group-by-group basis?

Auto-RPa.

Anycast-RPb.

Bootstrapc.

Staticd.

2.

Which methods can you use to scope bootstrap messages?

This is not possible given the hop-by-hop forwarding using the All PIM Routers addressa.

By configuring bootstrap import or export policyb.

By configuring RP register policyc.

By configuring PIMv2 on external interfacesd.

3.

Which correctly describes sparse-dense mode operation?

a.

4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Flooding all traffic until a prune is received, then switching to sparse modea.

Operating in sparse mode until a join is received, then switching to dense modeb.

Operating in sparse mode, with the exception of specific groups that are treated as densec.

Sparse-dense mode is needed to support Anycast-RPd.

4.

Which correctly describes PIM register policy?

It allows you to filter register messages to control RP usagea.

It controls which C-RPs can register with the BSR for inclusion in the RP setb.

It supports Anycast-RP by allowing inter-RP communication regarding active sourcesc.

It controls when the last hop router decides to join an SPTd.

5.

Which correctly describes the default JUNOS software PIM sparse mode behavior?

The first hop routers initiates an SPT join as soon as the first packet is senta.

The last hop router initiates an SPT join as soon as the first packet is receivedb.

The first hop router initiates an RPT join before the source becomes activec.

The last hop router initiates an RPT join as soon as traffic is received over the SPTd.

6.

What command displays dynamic multicast forwarding state in the data plane?

show pim routea.

show multicast routeb.

c.

7.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

b.

show muticast rpfc.

show route table inet.2d.

Which of the following best describes an RPF check?

It discards packets that are received on an interface that is not used when routing back to
that source

a.

It never sends a multicast packet out the interface used to reach the sourceb.

It sends an SPT join out the interface used when routing to that sourcec.

All of the aboved.

8.

Which is true regarding Anycast-RP?

A shared 127.0.0.1 address is added to the lo0 interfacea.

The Anycast-RPs must communicate with each other using the Anycast-RP addressb.

Anycast-RP messages are flooded using sparse-dense modec.

The Anycast-RPs must communicate with each other using their unique lo0 addressesd.

9.

Refer to the output provided and select the best answer:

lab@Porter> show multicast route

Family: INET

Group: 225.1.1.1

 Source: 10.10.111.1/32

 Upstream interface: fe-0/0/1.1331

 Downstream interface list:

 fe-0/0/1.100

This is an (S,G) entry on the RPTa.

b.

10.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

a.

This is an (*,G) entry on the RPTb.

This entry is pruned because only one interface exists in the outgoing listc.

This entry exists in the control plane as a result of an (*,G) joind.

This entry exists in the data plane as a result of multicast traffice.

Which of the following is true?

IGMPv1 supports group leavesa.

IGMPv3 supports group leaves and SSM joinsb.

IGMPv2 relied on the routing protocol to perform the querier functionc.

IGMP must be explicitly configured to run on PIM-enabled interfacesd.

11.

The querier router sends a query for group 225.1.1.1. What address is the query sent to?

The All PIM Routers multicast addressa.

The All Hosts multicast addressb.

The unicast address of the host that sent the membershipc.

The address associated with the group being queriedd.

12.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.9. Chapter Review Answers

Answer: B. Only Anycast-RP allows multiple RPs to be active at the same time for the same group.1.

Answer: C. The BSR mechanism automatically balances, on a group-range basis, among a set of C-RPs
using a distributed hash function.

2.

Answer: B. PIM bootstrap policy can be used to filter BSR messages being sent or received. Using PIMv1
also blocks BSR, as it is not supported in that version.

3.

Answer: C. Sparse-dense operation defaults to sparse mode, except for groups explicitly designated as
dense.

4.

Answer: A. PIM register policy allows filtering of registers at the first hop, or at the RP, which controls the
number of sessions on the RP.

5.

Answer: B. The last hop router is in charge of making the switch from RPT to SPT, and in JUNOS software
this occurs upon receipt of the first packet.

6.

Answer: B. The show multicast route command displays dynamic data plane state that results from

multicast traffic. Join-related commands show control plane state.

7.

Answer: D. All of the operations described are based on an RPF check.8.

Answer: D. Anycast-RP requires a shared, and unique, lo0 address; the unique address is used for RP-RP

communication.

9.

Answer: E. This is a multicast route, in the data plane, which is created when allowed by join state and
when data activity occurs. This is an (S,G) entry, and therefore it is not on the RPT.

10.

Answer: B. IGMPv3 supports v2's group leave as well as SSM.11.

Answer: D. A group query is sent to the multicast address of the group itself.12.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 11. JUNOS Software with Enhanced Services

The release of JUNOS software with enhanced services represents a significant step forward in solving the needs
of enterprise networks. This chapter is not intended to provide complete coverage of the new capabilities
associated with JUNOS software with enhanced services. The goal is to prepare the reader for what is coming by
providing a high-level overview of what JUNOS software with enhanced services is, detailed information on how
to migrate from JUNOS to JUNOS software with enhanced services, and a before-and-after case study showing
an Adaptive Services PIC (ASP)-based service set that is migrated to the new enhanced services format, along
with the steps needed to validate their operation.

The JUNOS software with enhanced services topics include:

An overview of JUNOS software with enhanced services

Migrating from JUNOS to JUNOS software with enhanced services

An enhanced services case study

11.1. JUNOS Software with Enhanced Services Overview

Starting with Release 8.5, you have the option of deploying JUNOS software with enhanced services on
supported platforms to take advantage of significant security and service enhancements. It's important to note
that even when running JUNOS software with enhanced services, JUNOS is JUNOS, and therefore, the majority
of the platform concepts, command-line interface (CLI) commands, operational troubleshooting, and so on
remain as covered throughout this book. This is especially true of routing protocol configuration and operational
verification, which remains as before and is "classic" JUNOS all the way.

This is not a security-focused book, and therefore, comprehensive coverage of the JUNOS enhanced security
and services feature set is not possible. This chapter covers migration of a production router from JUNOS to
JUNOS software with enhanced services, and gets you familiar with what is different in the new set of enhanced
services. It is expected that JUNOS software with enhanced services will continue to evolve, resulting in ongoing
updates and additions to the enhanced services portfolio.

For the reader of this book, the changes related to JUNOS software with enhanced services impact those
services that were handled by the J-series-for example, stateful firewalls, Network Address Translation (NAT),
and IPSec virtual private networks (VPNs). With JUNOS software with enhanced services, these features are no
longer ASP-based; instead, they are now based on capabilities born out of ScreenOS security solutions. Aside
from the changes to security and services, as far as both configuration and general capabilities, the rest of the
JUNOS configuration and operation remains unchanged. The coverage of ASP-based service sets continues to
hold true for users of M- and T-series platforms, which do not support JUNOS software with enhanced services.

11.1.1. Supported Platforms

As of this writing, you can load JUNOS software with enhanced services on the following hardware platforms,
most of which support digital signal level 3 (DS3) or T3, T1, Gigabit Ethernet, Fast Ethernet, E3, E1, serial,
Asynchronous Transfer Mode over asymmetrical digital subscriber line (ATM over ADSL), ATM over symmetric
high-speed digital subscriber line (ATM over SHDSL), channelized T1/E1/Integrated Services Digital Network
(ISDN) Primary Rate Interface (PRI), and ISDN Basic Rate Interface (BRI) interfaces:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

J2320 and J2350 (DS3 and E3 interfaces are not supported)

J4350

J6350

SSG320m and SSG350m (requires conversion kit)

SSG520m and SSG550m (requires conversion kit)

In the future, additional platforms may offer JUNOS software with enhanced services support, so be sure to
check the Juniper Networks web site for the latest platform support.

Users who purchased NetScreen Secure Security gateway (SSGm) 300 or 500 series devices can convert the
machine to a J-series enhanced services router with the appropriate conversion kit. The conversion kit provides
a new compact flash with JUNOS software with enhanced services and instructions on how to convert. You can
also convert from a supported J-series router running JUNOS software with enhanced services to the equivalent
Juniper SSGm firewall running ScreenOS, as shown in Table 11-1, using a similar process, but that is beyond
the scope of our discussion.

Table 11-1 shows the mapping between SSGm and J-series router platforms.

Table 11-1. J-series to SSGm platform mapping

J-series model SSGm model

J6350 SSG550m

J4350 SSG520m

J2350 SSG350m

J2320 SSG320m

Once you perform a conversion, you must update your support contract with the new
device information in order to ensure uninterrupted access to technical acceptance and
customer support. Instructions for this procedure are provided in the conversion kits or
JUNOS software with enhanced services conversion guides.

11.1.2. Packet Versus Flow-Based Processing

Historically, Juniper Networks routers use a packet-based forwarding model, in which each packet is individually
processed and routed. In contrast, the Juniper SSG security devices are based on a flow model. Handling traffic
as flows offers significant benefits for stateful services. In the flow model, the initial packets of a communication
are typically processed in software and are subjected to various levels of packet security inspections and validity
checks, in addition to a single route lookup. Once the packet is deemed permissible, a corresponding session
state is installed into the forwarding plane to facilitate expedited forwarding for subsequent packets belonging
to the same flow. In effect, the first packets are deeply scrutinized before being routed, and the remaining

http://lib.ommolketab.ir
http://lib.ommolketab.ir

packets are switched according to the session table.

A flow is a unidirectional sequence of packets, when combined, for a sequential set of application data for the
process that generated the flow. The matching flow in the return direction is grouped to form a session, which is
therefore composed of two unidirectional flows.

11.1.2.1. Security zones

To understand and appreciate JUNOS software with enhanced services operation and capabilities, you must first
be familiar with the concept of security zones. The Juniper ScreenOS Integrated Security Gateway (ISG) and
Secure Services Gateway (SSG) appliances are based on the concept of zones. Figure 11-1 illustrates the
concept of trust and untrust zones.

Figure 11-1. Zones and the tree of trust

In a default configuration, there is a trust zone and an untrust zone. A security zone is a collection of one or
more network segments that regulate inbound and outbound traffic via policies; policies are optional for traffic
that originates and terminates in the same zone (intrazone). The result is that devices attached to interfaces
belonging to the same zone are able to communicate freely, whereas explicit policy is needed to permit
communication between zones, and additional checks are leveled against traffic flowing between the trust and
untrust zones.

Figure 11-1 shows a network composed of three zones and illustrates how intrazone traffic is permitted by
default among all interfaces grouped into the trust zone, whereas interzone traffic must be explicitly allowed by
a policy and may be subjected to deep packet inspection and other types of security services. In contrast,
intrazone blocking is enabled by default for interfaces that share the same untrust zone, requiring a policy to
permit communication among devices attached to different segments belonging to the same untrust zone. By
grouping interfaces into zones and then managing interzone policies, you easily restrict and control interzone
communications. The zone concept is also used to optimize firewall matching, as only rules that apply to the
source and destination zones need to be checked.

11.1.3. Do I Need a Router or a Security Device?

In the past, users were expected to make some tough decisions when building out a new or existing network.
Specifically, they often had to choose a device based on what was more important: world-class routing or world-

http://lib.ommolketab.ir
http://lib.ommolketab.ir

class services. When both were equally important, a two-box, best-of-breed solution was often proposed. In this
model, you had services/security devices that were deployed in parallel with a router infrastructure. In a divide-
and-conquer model such as this, each device was left to do what it did best, with the combined effect being the
best of both worlds.

Although the two-box solution was workable, and in fact is often the recommended solution today, such a
design suffers from several drawbacks: two boxes are more expensive than one; there is a greater chance of
failure due to more components; and generally, each new box added to the network increases overall
operational costs.

11.1.3.1. Best-of-breed routing and security services

The release of JUNOS software with enhanced services holds the very real promise of eliminating the need for a
two-box solution. By combining the power and proven performance of JUNOS software and its routing protocols
with enhanced security and services from the best-in-class ScreenOS, users are able to get the best of both
worlds, all in a single box.

The service updates in the initial release of JUNOS software with enhanced services primarily impact the
security arena, and therefore, the changes in security-related services are the focus of this chapter. As noted
previously, later updates may add nonsecurity-related services to the JUNOS software with enhanced services
portfolio.

11.1.4. Architecture Changes

JUNOS software with enhanced services represents some significant changes in control plane capabilities
through the introduction of new service daemons, and in packet forwarding behavior with the addition of flow-
based processing. This section provides a high-level overview of the changes associated with the JUNOS
software with enhanced services release.

11.1.4.1. Adding flow-based forwarding

One of the primary changes in JUNOS software with enhanced services is the addition of flow-based processing.
This is along with to existing packet-based processing capabilities such as stateless firewall filters. The changes
in JUNOS software with enhanced services result in a combination of packet- and flow-based treatment, as
shown in Figure 11-2.

Figure 11-2. Combined packet- and flow-based processing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 11-2 shows how the original packet-based forwarding process known as fwdd has been replaced with a
flow-based process called flowd, which denotes the change from a packet- to a flow-based model. At the top of
Figure 11-2, you can see that with JUNOS software, a packet can be directed into service processing as a result
of an input or output filter or as a result of route lookup. In this model, forwarding is the prime concern and
services were "tacked on to packets" as needed. The JUNOS software with enhanced services data plane is more
service- and security-focused. All flows are inspected and passed through policy to determine whether they are
allowed, at which point a single route lookup is performed. The differences can be summarized as a "route first,
services maybe" philosophy in JUNOS versus a "services first, route if permitted" behavior in JUNOS software
with enhanced services.

Packets are processed as flows after per-packet ingress handling and before per-packet egress handling. A flow
is a stream of related packets that meet the same matching criteria and share the same characteristics. JUNOS
software with enhanced services treats packets belonging to the same flow in the same manner. Specifically,
configuration settings that determine the fate of a packet-such as the security policy that applies to it, whether
the packet is sent through an IPSec tunnel, or whether NAT is applied-are assessed for the first packet of a
flow. The resultant set of actions and services is applied to the rest of the packets in the flow. The following
criteria are used to determine whether a packet matches an existing flow:

Source address

Destination address

Source port

Destination port

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Protocol

Session token

The session token is an internal index number that is set based on the packet's ingress zone. Packets that
match an existing flow are treated according to the established flow state. Packets that do not match are
treated as the first packets in a new flow and are used to create matching flow state for the related flow.

11.1.4.1.1. Flows and sessions

The stateful handling of flows requires the creation of a session. A session is created based on the
characteristics of the first packet in a flow. Sessions are used for:

Storing security measures to be applied to the packets of the flow

Caching information about the state of the flow-that is, logging and counting data for a flow is cached in
its session

Allocating required resources for features such as NAT and IPSec tunnels

Providing a framework for features such as Application Layer Gateways (ALGs) and firewall features

The combined effects of flow and session state bring together the following features and events that affect a
packet as it undergoes flow-based processing:

Flow-based forwarding

Session management, including session aging and changes in routes, policy, and interfaces

Management of VPNs, ALGs, and authentication

Management of policies, NAT, zones, and screens

Each session resulting from a flow is associated with a timeout value. For example, the default timeout for the
Transmission Control Protocol (TCP) is 30 minutes; the default timeout for the User Datagram Protocol (UDP) is
1 minute. When a flow is terminated, it is marked as invalid, and its timeout is reduced to 10 seconds. You can
change the idle timeout value; it is designed to ensure that system resources are not tied up indefinitely on an
otherwise defunct flow.

11.1.4.2. JUNOS software with enhanced services packet walk

In this section, we will follow a packet as it traverses the JUNOS software with enhanced services data plane,
where it encounters a mix of packet- and flow-based handling steps. Figure 11-3 shows where the numbered
events tie into the packet-handling steps described in the following text.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 11-3. JUNOS software with enhanced services packet walk

The steps shown for the initial path represent the full set of checks and service instantiations that you can
perform against the initial packets of a communications flow. In contrast, the fast path represents the
streamlined steps executed for previously processed (and accepted) flows. The two-stage approach provides the
ability to deeply inspect initial packets, which is computationally expensive but needed for true security, while at
the same time offering high throughput by switching permitted flows based on established flow state. It should
be noted that not all packets need to be touched at all possible processing points. For example, NAT is optional,
and when not configured, NAT processing is not evoked. The packet processing steps are as follows:

Pull the packet from the queue, perform class of service (CoS) behavior aggregate (BA) classification, and
note the ingress interface's zone for later policy lookup.

1.

Ingress the policer/shaper.2.

Ingress the firewall filter; evoke the policer of multifield CoS classification.3.

Perform a lookup session; if no match, follow the initial path:

Conduct a firewall screen check. When enabled, screen checks log or filter out packets with
anomalous characteristics such as an attach signature.

a.

Perform a route lookup to determine the egress interface.b.

Locate the destination (outgoing) zone, based on the route lookup result.c.

d.

4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

c.

Look up and execute policy based on incoming and outgoing zones; results include permit,
deny, and reject.

d.

Allocate the NAT address based on the destination, source, or destination/source NAT policy
directive.

e.

Set up ALGs as needed to support identified applications when NAT is active.f.

Install a session tuple for fast path processing of related packets.g.

If a session is matched, follow the fast path:

Perform TCP checks to look for connection anomalies and match responses.a.

Conduct NAT translation when evoked by policy.b.

Perform ALG processing as needed by NAT.c.

Whether initial or fast path, perform forwarding services on the packet.5.

Perform egress firewall filtering, which can evoke a policer action.6.

Perform egress shaping or interface level policing; schedule and transmit the packet.7.

11.1.5. JUNOS Software with Enhanced Services Summary

The release of JUNOS software with enhanced services is a significant milestone in JUNOS software evolution.
Looking back at Figure 11-3, you can appreciate the combined one-two punch of JUNOS software with enhanced
services. You can now have the best of all worlds: the familiar JUNOS software CLI, its proven modular design
that separates the control and data planes, the two-stage commit process, commit and operational scripts, and
world-class routing protocol implementations. On top of this, you also get significant security and service
features and enhancements. In the initial release, these enhancements are largely security-based and are
derived from features available in ScreenOS. Later JUNOS software with enhanced services releases may
contain additional, nonsecurity-focused features; given the modular design, just about anything is possible.

The combined packet- and flow-based processing means that packet-based features relating to firewall filters,
policers, and shapers, packet classification, queuing, and CoS continue to operate as before. Likewise, ASP-
based platforms such as the M10i and M7i will continue to use the service configurations and modes described in
Chapter 6 and Chapter 7, which cover the introduction to services and advanced services, respectively.

For users initially deploying JUNOS software with enhanced services, the reverse stance on denying versus
accepting packet flows by default may take a bit of getting used to. The choice of router versus secure operating

http://lib.ommolketab.ir
http://lib.ommolketab.ir

contexts helps to mitigate this issue and allows you to deploy JUNOS software with enhanced services so that it
operates like a traditional router or as an integrated firewall router, as required by the needs of your network.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 11. JUNOS Software with Enhanced Services

The release of JUNOS software with enhanced services represents a significant step forward in solving the needs
of enterprise networks. This chapter is not intended to provide complete coverage of the new capabilities
associated with JUNOS software with enhanced services. The goal is to prepare the reader for what is coming by
providing a high-level overview of what JUNOS software with enhanced services is, detailed information on how
to migrate from JUNOS to JUNOS software with enhanced services, and a before-and-after case study showing
an Adaptive Services PIC (ASP)-based service set that is migrated to the new enhanced services format, along
with the steps needed to validate their operation.

The JUNOS software with enhanced services topics include:

An overview of JUNOS software with enhanced services

Migrating from JUNOS to JUNOS software with enhanced services

An enhanced services case study

11.1. JUNOS Software with Enhanced Services Overview

Starting with Release 8.5, you have the option of deploying JUNOS software with enhanced services on
supported platforms to take advantage of significant security and service enhancements. It's important to note
that even when running JUNOS software with enhanced services, JUNOS is JUNOS, and therefore, the majority
of the platform concepts, command-line interface (CLI) commands, operational troubleshooting, and so on
remain as covered throughout this book. This is especially true of routing protocol configuration and operational
verification, which remains as before and is "classic" JUNOS all the way.

This is not a security-focused book, and therefore, comprehensive coverage of the JUNOS enhanced security
and services feature set is not possible. This chapter covers migration of a production router from JUNOS to
JUNOS software with enhanced services, and gets you familiar with what is different in the new set of enhanced
services. It is expected that JUNOS software with enhanced services will continue to evolve, resulting in ongoing
updates and additions to the enhanced services portfolio.

For the reader of this book, the changes related to JUNOS software with enhanced services impact those
services that were handled by the J-series-for example, stateful firewalls, Network Address Translation (NAT),
and IPSec virtual private networks (VPNs). With JUNOS software with enhanced services, these features are no
longer ASP-based; instead, they are now based on capabilities born out of ScreenOS security solutions. Aside
from the changes to security and services, as far as both configuration and general capabilities, the rest of the
JUNOS configuration and operation remains unchanged. The coverage of ASP-based service sets continues to
hold true for users of M- and T-series platforms, which do not support JUNOS software with enhanced services.

11.1.1. Supported Platforms

As of this writing, you can load JUNOS software with enhanced services on the following hardware platforms,
most of which support digital signal level 3 (DS3) or T3, T1, Gigabit Ethernet, Fast Ethernet, E3, E1, serial,
Asynchronous Transfer Mode over asymmetrical digital subscriber line (ATM over ADSL), ATM over symmetric
high-speed digital subscriber line (ATM over SHDSL), channelized T1/E1/Integrated Services Digital Network
(ISDN) Primary Rate Interface (PRI), and ISDN Basic Rate Interface (BRI) interfaces:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

J2320 and J2350 (DS3 and E3 interfaces are not supported)

J4350

J6350

SSG320m and SSG350m (requires conversion kit)

SSG520m and SSG550m (requires conversion kit)

In the future, additional platforms may offer JUNOS software with enhanced services support, so be sure to
check the Juniper Networks web site for the latest platform support.

Users who purchased NetScreen Secure Security gateway (SSGm) 300 or 500 series devices can convert the
machine to a J-series enhanced services router with the appropriate conversion kit. The conversion kit provides
a new compact flash with JUNOS software with enhanced services and instructions on how to convert. You can
also convert from a supported J-series router running JUNOS software with enhanced services to the equivalent
Juniper SSGm firewall running ScreenOS, as shown in Table 11-1, using a similar process, but that is beyond
the scope of our discussion.

Table 11-1 shows the mapping between SSGm and J-series router platforms.

Table 11-1. J-series to SSGm platform mapping

J-series model SSGm model

J6350 SSG550m

J4350 SSG520m

J2350 SSG350m

J2320 SSG320m

Once you perform a conversion, you must update your support contract with the new
device information in order to ensure uninterrupted access to technical acceptance and
customer support. Instructions for this procedure are provided in the conversion kits or
JUNOS software with enhanced services conversion guides.

11.1.2. Packet Versus Flow-Based Processing

Historically, Juniper Networks routers use a packet-based forwarding model, in which each packet is individually
processed and routed. In contrast, the Juniper SSG security devices are based on a flow model. Handling traffic
as flows offers significant benefits for stateful services. In the flow model, the initial packets of a communication
are typically processed in software and are subjected to various levels of packet security inspections and validity
checks, in addition to a single route lookup. Once the packet is deemed permissible, a corresponding session
state is installed into the forwarding plane to facilitate expedited forwarding for subsequent packets belonging
to the same flow. In effect, the first packets are deeply scrutinized before being routed, and the remaining

http://lib.ommolketab.ir
http://lib.ommolketab.ir

packets are switched according to the session table.

A flow is a unidirectional sequence of packets, when combined, for a sequential set of application data for the
process that generated the flow. The matching flow in the return direction is grouped to form a session, which is
therefore composed of two unidirectional flows.

11.1.2.1. Security zones

To understand and appreciate JUNOS software with enhanced services operation and capabilities, you must first
be familiar with the concept of security zones. The Juniper ScreenOS Integrated Security Gateway (ISG) and
Secure Services Gateway (SSG) appliances are based on the concept of zones. Figure 11-1 illustrates the
concept of trust and untrust zones.

Figure 11-1. Zones and the tree of trust

In a default configuration, there is a trust zone and an untrust zone. A security zone is a collection of one or
more network segments that regulate inbound and outbound traffic via policies; policies are optional for traffic
that originates and terminates in the same zone (intrazone). The result is that devices attached to interfaces
belonging to the same zone are able to communicate freely, whereas explicit policy is needed to permit
communication between zones, and additional checks are leveled against traffic flowing between the trust and
untrust zones.

Figure 11-1 shows a network composed of three zones and illustrates how intrazone traffic is permitted by
default among all interfaces grouped into the trust zone, whereas interzone traffic must be explicitly allowed by
a policy and may be subjected to deep packet inspection and other types of security services. In contrast,
intrazone blocking is enabled by default for interfaces that share the same untrust zone, requiring a policy to
permit communication among devices attached to different segments belonging to the same untrust zone. By
grouping interfaces into zones and then managing interzone policies, you easily restrict and control interzone
communications. The zone concept is also used to optimize firewall matching, as only rules that apply to the
source and destination zones need to be checked.

11.1.3. Do I Need a Router or a Security Device?

In the past, users were expected to make some tough decisions when building out a new or existing network.
Specifically, they often had to choose a device based on what was more important: world-class routing or world-

http://lib.ommolketab.ir
http://lib.ommolketab.ir

class services. When both were equally important, a two-box, best-of-breed solution was often proposed. In this
model, you had services/security devices that were deployed in parallel with a router infrastructure. In a divide-
and-conquer model such as this, each device was left to do what it did best, with the combined effect being the
best of both worlds.

Although the two-box solution was workable, and in fact is often the recommended solution today, such a
design suffers from several drawbacks: two boxes are more expensive than one; there is a greater chance of
failure due to more components; and generally, each new box added to the network increases overall
operational costs.

11.1.3.1. Best-of-breed routing and security services

The release of JUNOS software with enhanced services holds the very real promise of eliminating the need for a
two-box solution. By combining the power and proven performance of JUNOS software and its routing protocols
with enhanced security and services from the best-in-class ScreenOS, users are able to get the best of both
worlds, all in a single box.

The service updates in the initial release of JUNOS software with enhanced services primarily impact the
security arena, and therefore, the changes in security-related services are the focus of this chapter. As noted
previously, later updates may add nonsecurity-related services to the JUNOS software with enhanced services
portfolio.

11.1.4. Architecture Changes

JUNOS software with enhanced services represents some significant changes in control plane capabilities
through the introduction of new service daemons, and in packet forwarding behavior with the addition of flow-
based processing. This section provides a high-level overview of the changes associated with the JUNOS
software with enhanced services release.

11.1.4.1. Adding flow-based forwarding

One of the primary changes in JUNOS software with enhanced services is the addition of flow-based processing.
This is along with to existing packet-based processing capabilities such as stateless firewall filters. The changes
in JUNOS software with enhanced services result in a combination of packet- and flow-based treatment, as
shown in Figure 11-2.

Figure 11-2. Combined packet- and flow-based processing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 11-2 shows how the original packet-based forwarding process known as fwdd has been replaced with a
flow-based process called flowd, which denotes the change from a packet- to a flow-based model. At the top of
Figure 11-2, you can see that with JUNOS software, a packet can be directed into service processing as a result
of an input or output filter or as a result of route lookup. In this model, forwarding is the prime concern and
services were "tacked on to packets" as needed. The JUNOS software with enhanced services data plane is more
service- and security-focused. All flows are inspected and passed through policy to determine whether they are
allowed, at which point a single route lookup is performed. The differences can be summarized as a "route first,
services maybe" philosophy in JUNOS versus a "services first, route if permitted" behavior in JUNOS software
with enhanced services.

Packets are processed as flows after per-packet ingress handling and before per-packet egress handling. A flow
is a stream of related packets that meet the same matching criteria and share the same characteristics. JUNOS
software with enhanced services treats packets belonging to the same flow in the same manner. Specifically,
configuration settings that determine the fate of a packet-such as the security policy that applies to it, whether
the packet is sent through an IPSec tunnel, or whether NAT is applied-are assessed for the first packet of a
flow. The resultant set of actions and services is applied to the rest of the packets in the flow. The following
criteria are used to determine whether a packet matches an existing flow:

Source address

Destination address

Source port

Destination port

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Protocol

Session token

The session token is an internal index number that is set based on the packet's ingress zone. Packets that
match an existing flow are treated according to the established flow state. Packets that do not match are
treated as the first packets in a new flow and are used to create matching flow state for the related flow.

11.1.4.1.1. Flows and sessions

The stateful handling of flows requires the creation of a session. A session is created based on the
characteristics of the first packet in a flow. Sessions are used for:

Storing security measures to be applied to the packets of the flow

Caching information about the state of the flow-that is, logging and counting data for a flow is cached in
its session

Allocating required resources for features such as NAT and IPSec tunnels

Providing a framework for features such as Application Layer Gateways (ALGs) and firewall features

The combined effects of flow and session state bring together the following features and events that affect a
packet as it undergoes flow-based processing:

Flow-based forwarding

Session management, including session aging and changes in routes, policy, and interfaces

Management of VPNs, ALGs, and authentication

Management of policies, NAT, zones, and screens

Each session resulting from a flow is associated with a timeout value. For example, the default timeout for the
Transmission Control Protocol (TCP) is 30 minutes; the default timeout for the User Datagram Protocol (UDP) is
1 minute. When a flow is terminated, it is marked as invalid, and its timeout is reduced to 10 seconds. You can
change the idle timeout value; it is designed to ensure that system resources are not tied up indefinitely on an
otherwise defunct flow.

11.1.4.2. JUNOS software with enhanced services packet walk

In this section, we will follow a packet as it traverses the JUNOS software with enhanced services data plane,
where it encounters a mix of packet- and flow-based handling steps. Figure 11-3 shows where the numbered
events tie into the packet-handling steps described in the following text.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 11-3. JUNOS software with enhanced services packet walk

The steps shown for the initial path represent the full set of checks and service instantiations that you can
perform against the initial packets of a communications flow. In contrast, the fast path represents the
streamlined steps executed for previously processed (and accepted) flows. The two-stage approach provides the
ability to deeply inspect initial packets, which is computationally expensive but needed for true security, while at
the same time offering high throughput by switching permitted flows based on established flow state. It should
be noted that not all packets need to be touched at all possible processing points. For example, NAT is optional,
and when not configured, NAT processing is not evoked. The packet processing steps are as follows:

Pull the packet from the queue, perform class of service (CoS) behavior aggregate (BA) classification, and
note the ingress interface's zone for later policy lookup.

1.

Ingress the policer/shaper.2.

Ingress the firewall filter; evoke the policer of multifield CoS classification.3.

Perform a lookup session; if no match, follow the initial path:

Conduct a firewall screen check. When enabled, screen checks log or filter out packets with
anomalous characteristics such as an attach signature.

a.

Perform a route lookup to determine the egress interface.b.

Locate the destination (outgoing) zone, based on the route lookup result.c.

d.

4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

c.

Look up and execute policy based on incoming and outgoing zones; results include permit,
deny, and reject.

d.

Allocate the NAT address based on the destination, source, or destination/source NAT policy
directive.

e.

Set up ALGs as needed to support identified applications when NAT is active.f.

Install a session tuple for fast path processing of related packets.g.

If a session is matched, follow the fast path:

Perform TCP checks to look for connection anomalies and match responses.a.

Conduct NAT translation when evoked by policy.b.

Perform ALG processing as needed by NAT.c.

Whether initial or fast path, perform forwarding services on the packet.5.

Perform egress firewall filtering, which can evoke a policer action.6.

Perform egress shaping or interface level policing; schedule and transmit the packet.7.

11.1.5. JUNOS Software with Enhanced Services Summary

The release of JUNOS software with enhanced services is a significant milestone in JUNOS software evolution.
Looking back at Figure 11-3, you can appreciate the combined one-two punch of JUNOS software with enhanced
services. You can now have the best of all worlds: the familiar JUNOS software CLI, its proven modular design
that separates the control and data planes, the two-stage commit process, commit and operational scripts, and
world-class routing protocol implementations. On top of this, you also get significant security and service
features and enhancements. In the initial release, these enhancements are largely security-based and are
derived from features available in ScreenOS. Later JUNOS software with enhanced services releases may
contain additional, nonsecurity-focused features; given the modular design, just about anything is possible.

The combined packet- and flow-based processing means that packet-based features relating to firewall filters,
policers, and shapers, packet classification, queuing, and CoS continue to operate as before. Likewise, ASP-
based platforms such as the M10i and M7i will continue to use the service configurations and modes described in
Chapter 6 and Chapter 7, which cover the introduction to services and advanced services, respectively.

For users initially deploying JUNOS software with enhanced services, the reverse stance on denying versus
accepting packet flows by default may take a bit of getting used to. The choice of router versus secure operating

http://lib.ommolketab.ir
http://lib.ommolketab.ir

contexts helps to mitigate this issue and allows you to deploy JUNOS software with enhanced services so that it
operates like a traditional router or as an integrated firewall router, as required by the needs of your network.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.2. Migrating from JUNOS to JUNOS Software with Enhanced
Services

This section details the steps you need to follow to migrate a J-series router running JUNOS to run JUNOS
software with enhanced services remotely, without losing network connectivity. Much of this information is
summarized from the "JUNOS Enhanced Services Migration Guide," available at
http://www.juniper.net/techpubs/software/junos-es/junos-es85/junos-es-migration/junos-es-migration.pdf.
Users are encouraged to consult the documentation for particulars about their hardware before performing any
migrations.

Not having enough free compact flash space available to perform an upgrade is common, especially on routers
that have large logs, trace files, or old software packages lying about in users' home directories. The migration
guide provides detailed instructions on how to free up compact flash space to enhance the chances of being able
to upgrade to JUNOS software with enhanced services on systems with 256 MB compact flash chips. The
instructions have you delete various temporary and unneeded files using combinations of CLI and root shell
mode commands, some of which are demonstrated on the following pages.

11.2.1. Understanding JUNOS Software with Enhanced Services Operational
Modes

A J-series Services Router running JUNOS software with enhanced services can operate as either a stateful
firewall or a router, depending on whether it is in the secure or router context:

Secure context

This mode allows a Services Router to act as a stateful firewall with only management access. To allow
traffic to pass through a Services Router, you must explicitly configure a security policy for that purpose.
In secure context, a Services Router forwards packets only if a security policy permits it; this is true even
for traffic within the same zone (intrazone). The default intrazone block behavior in JUNOS software with
enhanced services differs from that of ScreenOS, where intrazone blocking is disabled within the trust
zone.

A J-series Services Router loaded with JUNOS software with enhanced services is shipped from the
factory in a secure context.

Router context

This mode allows a Services Router to act as a router in which all management and transit traffic is
allowed. In router context, an accept-all security policy is placed into effect and all interfaces are placed
into the trust zone. To deny specific traffic, you must configure a security policy to do so.

11.2.1.1. Switching between secure and router contexts

Switching between secure and router contexts is not a binary function; that is, there is no single configuration
statement that switches modes. Instead, the two modes are associated with a restrictive versus a permissive
security policy that is configured at the [edit security] hierarchy. Switching between contexts does not affect

the rest of the router's configuration; for example, its IP addressing and Border Gateway Protocol (BGP) session

http://www.juniper.net/techpubs/software/junos-es/junos-es85/junos-es-migration/junos-es-migration.pdf
http://lib.ommolketab.ir
http://lib.ommolketab.ir

definitions remain unchanged. However, in a secure context, all communications, both between and within a
given zone, must be permitted by policy. The accept-all policy associated with router context ensures that this
condition is met to allow free communication among all interfaces listed in the common zone.

You can switch from router to secure context by loading the factory default configuration with a load factory-

default command. The following settings are defined in the factory default secure context configuration:

The built-in Gigabit Ethernet interface, ge-/0/0/0, is bound to a preconfigured zone called trust. All other

interfaces are bound to a preconfigured zone named untrust.

The ge-0/0/0 interface is configured to allow management access with Secure Shell (SSH) and Hypertext

Transfer Protocol (HTTP) services enabled. The following host-inbound services are configured for the ge-

0/0/0 interface in the trust zone:

HTTP

HTTPS

SSH

Dynamic Host Configuration Protocol (DHCP)

TCP reset is enabled in the trust zone, and the default policy for the trust zone allows transmission of
traffic from the trust zone to the untrust zone.

All traffic within the trust zone is allowed.

A screen is applied to a zone to protect against attacks launched from within the zone. The following
screens are enabled for the untrust zone:

Internet Control Message Protocol (ICMP) Ping of Death

IP source route options

IP Teardrop

TCP Land attack

TCP SYN flood

The default policy for the untrust zone is to deny all traffic.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The following commands load the factory default settings for JUNOS software with enhanced services Release
8.5, which places the router into a secure context. There is no root password in the default configuration, so you
must assign one using the set system root-authentication command before you can commit.

Code View:
[edit]

regress@propane# load factory-default

warning: activating factory configuration

[edit]

regress@propane# show | no-more

Last changed: 2007-11-28 15:44:55 PST

system {

 autoinstallation {

 delete-upon-commit; ## Deletes [system autoinstallation] upon change/commit

 traceoptions {

 level verbose;

 flag {

 all;

 }

 }

 }

 services {

 ssh;

 web-management {

 http {

 interface ge-0/0/0.0;

 }

 }

 }

 syslog {

 user * {

 any emergency;

 }

 file messages {

 any any;

 authorization info;

 }

 file interactive-commands {

 interactive-commands any;

 }

 }

 ## Warning: missing mandatory statement(s): 'root-authentication'

}

interfaces {

 ge-0/0/0 {

 unit 0;

 }

}

security {

 screen {

 ids-option untrust-screen {

 icmp {

 ping-death;

 }

 ip {

 source-route-option;

 tear-drop;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 tcp {

 syn-flood {

 alarm-threshold 1024;

 attack-threshold 200;

 source-threshold 1024;

 destination-threshold 2048;

 queue-size 2000;

 timeout 20;

 }

 land;

 }

 }

 }

 zones {

 security-zone trust {

 tcp-rst;

 interfaces {

 ge-0/0/0.0 {

 host-inbound-traffic {

 system-services {

 http;

 https;

 ssh;

 telnet;

 dhcp;

 }

 }

 }

 }

 }

 security-zone untrust {

 screen untrust-screen;

 }

 }

 policies {

 from-zone trust to-zone trust {

 policy default-permit {

 match {

 source-address any;

 destination-address any;

 application any;

 }

 then {

 permit;

 }

 }

 }

 from-zone trust to-zone untrust {

 policy default-permit {

 match {

 source-address any;

 destination-address any;

 application any;

 }

 then {

 permit;

 }

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 from-zone untrust to-zone trust {

 policy default-deny {

 match {

 source-address any;

 destination-address any;

 application any;

 }

 then {

 deny;

 }

 }

 }

 }

}

Note the presence of the from-zone trust to-zone trust policy that is required to permit open

communication among all interfaces belonging to the trust zone. Recall that intrazone blocking is enabled in
JUNOS software with enhanced services!

You can switch from secure to router context by loading the jsr-series-routermode-factory.conf file, which is
stored in /etc/config. The following configuration settings are defined for router context:

A trust zone is created and all interfaces are placed into this zone.

Flow security checks are disabled (no SYN or TCP Seq number checking).

All host-bound services (ping, Telnet, etc.) and protocols are enabled.

IPv6 traffic is forwarded.

Screen options are disabled in the trust zone.

ALG processing is not performed.

The following steps load the default router context and display the results. As with the default secure context, a
root password must be assigned before you can commit:

Code View:
[edit]

regress@propane# load override terminal /etc/config/jsr-series-routermode-

factory.conf

load complete

[edit]

regress@propane# show | no-more

Last changed: 2007-11-28 15:54:14 PST

system {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 services {

 ssh;

 telnet;

 web-management {

 http {

 interface ge-0/0/0.0;

 }

 }

 }

 syslog {

 file messages {

 any any;

 }

 }

Warning: missing mandatory statement(s): 'root-authentication'

}

interfaces {

 ge-0/0/0 {

 unit 0 {

 family inet {

 address 192.168.1.1/24;

 }

 }

 }

}

security {

 zones {

 security-zone trust {

 tcp-rst;

 host-inbound-traffic {

 system-services {

 any-service;

 }

 protocols {

 all;

 }

 }

 interfaces {

 all;

 }

 }

 }

 policies {

 default-policy {

 permit-all;

 }

 }

 alg {

 dns disable;

 ftp disable;

 h323 disable;

 mgcp disable;

 real disable;

 rsh disable;

 rtsp disable;

 sccp disable;

 sip disable;

 sql disable;

 talk disable;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 tftp disable;

 pptp disable;

 }

 forwarding-options {

 family {

 inet {

 mode flow-based;

 }

 inet6 {

 mode packet-based;

 }

 mpls {

 mode packet-based;

 }

 }

 }

 flow {

 allow-dns-reply;

 tcp-session {

 no-syn-check;

 no-syn-check-in-tunnel;

 no-sequence-check;

 }

 }

}

11.2.2. Migration Steps

To migrate to JUNOS software with enhanced services, the J-series Services Router must already be running
JUNOS software Release 8.3 or later, and it must have a compact flash card with at least 256 MB of storage. To
use the Juniper Networks migration tools, you need a web support account, which you can obtain by completing
the registration form for your product at the Juniper Networks web site.

Overall, migrating from JUNOS software to JUNOS software with enhanced services is similar to upgrading
JUNOS software, except that you must first convert your JUNOS configuration file to a JUNOS software with
enhanced services configuration file, and then place it in a location where it is used at the next boot. You then
download the JUNOS software with enhanced services package, install the image on the router, and reboot the
router so that the software and configuration take effect.

You must migrate the original configuration file and correctly copy it to /var/config
before you load JUNOS software with enhanced services, or you will lose network
connectivity after JUNOS software with enhanced services loads. Console access is
unaffected.

The minimum steps needed to migrate from the J-series running JUNOS to the J-series running JUNOS software
with enhanced services are as follows:

Obtain a copy of the current JUNOS configuration file.1.

2.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.

Migrate the JUNOS configuration to a JUNOS software with enhanced services configuration, and confirm
its accuracy.

2.

Copy the migrated JUNOS software with enhanced services configuration file for use when the new
software is loaded.

3.

Download and install the JUNOS software with enhanced services package from Juniper Networks' support
site. You need a support account to obtain software packages. JUNOS software with enhanced services
packages have jsr in the name; for example, junos-jsr-8.5R1.1-domestic.tgz.

4.

It's important that you follow the specific sequence of tasks outlined here. If you install
JUNOS software with enhanced services code on the router before uploading a migrated
configuration file, you will lose IP-based remote management access and must use the
console port for access to the router.

You will need root access to perform the steps detailed in the migration example. Shell and root account access
is needed to copy the migrated configuration to a location where it will load after JUNOS software with enhanced
services is installed, and to make space available on the compact flash for the upgrade as needed. Also, the
router being migrated needs network connectivity to facilitate copying JUNOS software with enhanced services
onto the router for installation.

Before performing the migration, it's a good idea to back up your current software and
configuration environment by backing up your primary boot device and configuration
onto a secondary storage device (such as a USB storage drive) using the request

system snapshot command. This way, you can easily recover the previous environment

if something goes wrong with the migration, as might happen in the event of a power
failure, which can corrupt the process, leaving the primary flash in an unusable state.

During a successful migration, the software package completely reinstalls the system base software and the
JUNOS software components. The process tries to retain configuration files, logfiles, SSH keys, and similar
information from the previous version, but you should move any files you cannot stand to lose to a remote
storage device for safekeeping.

11.2.2.1. Migration example

The following steps demonstrate a JUNOS to JUNOS software with enhanced services migration. The router used
in the demonstration is not part of the earlier topology, because as J2300s, they do not support JUNOS software
with enhanced services. To help tie things back to this example in the book, the migration router is loaded with
the CoS configuration used at PBR from Chapter 9. The only change made to the configuration file was to

replace interface fe-0/0/0 with ge-0/0/2 in order to accommodate the new router's interface hardware. The

new PBR supports JUNOS software with enhanced services migration because as a J4350, it's a supported

platform, it has a 256 MB flash, and it is running JUNOS software Release 8.5 (a minimum of Release 8.3 is
needed). Here are the relevant details of this router's hardware configuration:

[edit]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

lab@PBR# run show chassis hardware detail

Hardware inventory:

Item Version Part number Serial number Description

Chassis JN1093EBXXXX J4350

Midplane REV 01 710-014594 NJ7284

System IO REV 01 710-016210 NH9941 JX350 System IO

Crypto Module Crypto Acceleration

Routing Engine REV 05 710-015273 HY8015 RE-J4350-2540

 ad0 244 MB 256 MB CRR 2466J7C50A62760004 Compact Flash

FPC 0 FPC

 PIC 0 4x GE Base PIC

Power Supply 0

[edit]

lab@PBR# run show version

Hostname: PBR

Model: j4350

JUNOS Software Release [8.5R1.8]

11.2.2.2. Step 1: Copy the current configuration file

You can copy (and back up) the current JUNOS software configuration using a variety of approaches. The file
should be stored off of the router that is being migrated for safekeeping, and to allow it to be run through the
migration tool as described later.

Options here include saving the configuration and then transferring the file using FTP or SCP, or using the copy
and paste function of a terminal emulator program. If you are particularly nerdy, you can follow the steps
outlined in the migration guide, which give you access to a root shell to deal with the juniper.conf.gz
configuration file directly. Note that this is a compressed file (gunzip), and you have to decompress it before
you can work with its contents. The command gunzip juniper.conf.gz accomplishes this task and results in a

juniper.conf text file.

The specific approach you take really does not matter, as long as you obtain the entire configuration file. In this
example, the user saves the complete configuration to a local file, and then displays the configuration for
copying into a terminal buffer. You also could use a single show configuration command to copy into a

terminal buffer, but the file save operation makes it easy to FTP a copy of the configuration to a new location.
Once in the terminal buffer, the contents are pasted into a text editor and saved as plain text (not shown).
When you save the file, make sure the text editor preserves Unix-style line breaks and does not wrap text.

It's critical that you issue the save command at the root of the configuration hierarchy to avoid missing any

parts of the configuration, as shown:

Code View:
[edit]

lab@PBR# run file show old_junos_config | no-more

version 8.5R1.8;

system {

 host-name PBR;

 ports {

 console type vt100;

 }

 root-authentication {

 encrypted-password "1snnzRpPx$3Qj3oNJ9VjdCY95kRrM/T/"; ## SECRET-DATA

 }

 login {

 user lab {

 uid 2003;

. . .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

At this point, it's also a good idea to perform a system snapshot command with a supported USB media stick in
the secondary flash slot. This way, if something should go wrong in the upgrade process, you can reboot from
the secondary media with a request system reboot media usb command; if the router is not able to boot

from primary flash, it automatically tries the USB device. Once booted from USB, you then perform another
snapshot, this time to copy from the USB to the primary compact flash to restore the original environment.

11.2.2.3. Step 2: Migrate the existing configuration to a JUNOS software with enhanced
services configuration

Juniper Networks has made a migration tool available to automate the configuration changes involved in
migration from JUNOS to JUNOS software with enhanced services. To use the tool, you need a support account,
which you also need in order to download JUNOS software with enhanced services. You can access the migration
tool via a supported web browser at http://migration-tools.juniper.net.

JUNOS configurations without stateful-firewall, services nat, or services ipsec-vpn configuration

statements are converted into router context so that an explicit security policy is not required to forward
packets.

In contrast, JUNOS configurations that do contain these service types are converted to a secure context mode,
along with the security policies needed for communication.

As with any conversion tool, it is the user's responsibility to pay attention to any warning or error messages,
which may indicate an incomplete conversion or the presence of an unsupported feature. Most of the changes in
JUNOS software with enhanced services relate to services, so configurations with autonomous system (AS)
Physical Interface Card (PIC)-based security or NAT-related services require more adaptation.

The migration support tool is web-based, and it supports file upload or the simple pasting of your original
configuration into the web page. Cut and paste tends to be better for smaller configurations or when you wish to
perform migration on only a portion of a configuration. Figure 11-4 provides an example of the JUNOS software
with enhanced services migration tool's user interface.

Figure 11-4. The JUNOS software with enhanced services migration tool

http://migration-tools.juniper.net
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The settings shown in Figure 11-4 confirm that all warnings and errors are enabled, which is suggested to
ensure that you are alerted to any possible issue with the conversion process. After uploading or pasting the
configuration, simply click the Migrate button to convert the configuration. Figure 11-5 shows the result with the
sample CoS configuration from PBR.

Figure 11-5. Viewing migration results

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The key thing to note in Figure 11-5 is that no informational, error, or warning messages were generated. This
pretty much confirms that all went well with the conversion, but it's still suggested that you closely inspect the
results before loading the configuration onto the router. You can either copy the migrated configuration back
into a terminal buffer or use the download option to save a local copy of the file. Given the small size of the file,
this example makes use of copying the results into the terminal buffer (again, not shown).

11.2.2.4. Step 3: Copy the migrated configuration for use when JUNOS software with
enhanced services loads

To accomplish this step, you will require root shell access. You need this so that you can copy the migrated
configuration file to a location where it will become active when the router later reboots with the new JUNOS
software with enhanced services code. This process is required because the changes added to maintain existing
network connectivity after the conversion to JUNOS software with enhanced services are not compatible with the
JUNOS software now running on the router. Therefore, simply trying to paste the configuration using a load

override terminal command results in load errors and the resulting loss of the JUNOS software with enhanced

services-specific parts of the configuration that were added by the migration tool-and committing such a
configuration will result in loss of network connectivity, requiring console access to recover.

To begin, you must get a copy of the migrated configuration file onto the router. Restating what we discussed
earlier, you cannot use the load merge or override function at this time, because of the JUNOS software with
enhanced services-specific components of the migrated configuration file. The router needs to have network
connectivity so that JUNOS software with enhanced services can later be copied and installed, which means you
can use file transfer protocols to accomplish this task. You can also access a shell to evoke the vi editor, paste
the terminal buffer contents in insert mode, and then save the file. Because vi can be a bit frustrating to folks
who are not familiar with its use, this process is demonstrated:

[edit]

lab@PBR# run start shell

http://lib.ommolketab.ir
http://lib.ommolketab.ir

% vi es_migrated_conf

You should now have a vi editor window open, which appears as shown:

Code View:
~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

es_migrated_conf: new file: line 1

You now press Esc-i to switch to insert mode-nothing obvious will happen, but you may hear a keyboard beep
when you press the Esc key. You can now perform a paste operation from your terminal emulation program to
paste the migrated configuration file into the vi editor:

Code View:
system {

 host-name PBR;

 ports {

 console type vt100;

 }

 root-authentication {

 encrypted-password "$1$85xXcov4$fLHtgMlqxRSg24zO8Kbe81"; ## SECRET-DATA

 }

 login {

 user lab {

 uid 2003;

 class superuser;

 authentication {

 encrypted-password "1ocs3AXkS$JdlQW7z4ZIJblfFZD.fqH/"; ## SECR

. . .

Once the paste is complete, you exit the vi editor while saving changes by pressing Esc-Z-Z-vi is case-

http://lib.ommolketab.ir
http://lib.ommolketab.ir

sensitive, and those are uppercase Zs. You should see a line such as the following confirming the size of the file
written to the media:

es_migrated_conf: new file: 40 211 lines, 4975 characters

%

Once stored on the router, go to a shell and rename the file to juniper.conf, as shown:

% ls -la

total 34

drwxr-xr-x 3 lab staff 512 Nov 28 13:16 .

drwxr-xr-x 217 root wheel 4096 Nov 28 12:21 ..

drwxr-xr-x 2 lab staff 512 Nov 28 12:21 .ssh

-rw-r--r-- 1 lab staff 5032 Nov 28 12:46 old_junos_config

-rw-r--r-- 1 lab staff 5725 Nov 28 13:16 es_migrated.conf

% mv es_migrated.conf juniper.conf

% ls -la

total 34

drwxr-xr-x 3 lab staff 512 Nov 28 13:16 .

drwxr-xr-x 217 root wheel 4096 Nov 28 12:21 ..

drwxr-xr-x 2 lab staff 512 Nov 28 12:21 .ssh

-rw-r--r-- 1 lab staff 5032 Nov 28 12:46 old_junos_config

-rw-r--r-- 1 lab staff 5725 Nov 28 13:16 juniper.conf

You must now su to root to execute commands that back up the existing juniper.conf to a new directory; this is

done for safekeeping. You then copy the new juniper.conf into the location of the original juniper.conf file:

% su

Password:

After successfully switching to the root user, change to the /config directory:

root@propane% cd /config

A new directory is created to store a copy of the current configuration:

root@propane% mkdir backup

And the current configuration environment is moved into the backup directory:

root@propane% mv /juniper.conf* backup/

root@PBR% ls backup/

juniper.conf.1.gz juniper.conf.3.gz

juniper.conf.2.gz juniper.conf.gz

With the original configuration safely backed up, the migration configuration file is copied to the /config
directory, where it will be evoked at the next boot:

root@propane% cp /var/home/lab/juniper.conf ./

The results are confirmed:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

root@PBR% pwd

/config

root@PBR% ls

backup juniper.conf

It is good to take one last look at the final juniper.conf file with vi or by dumping its contents to screen using
the cat command in order to confirm that no corruption has occurred during the file transfer or editing and

renaming processes, such as could happen with incorrect FTP transfer mode (ASCII should be used when
working with the plain-text, uncompressed format file), or more likely because a Windows text editor inserted
incompatible line breaks (also called end-of-line characters). In this example, things seem all right with the file:

Code View:
root@PBR% cat juniper.conf | more

 system {

 host-name PBR;

 ports {

 console type vt100;

 }

 root-authentication {

 encrypted-password "$1$85xXcov4$fLHtgMlqxRSg24zO8Kbe81"; ## SECRET-DATA

 }

 login {

 user lab {

 uid 2003;

 class superuser;

 authentication {

 encrypted-password "1ocs3AXkS$JdlQW7z4ZIJblfFZD.fqH/"; ##

 SECRET-DATA

 }

 }

 }

 services {

 ftp;

 ssh;

 telnet;

. . .

Note that a commit is not performed at this time because the new portions of the configuration file will not be
understood by the JUNOS software now running. The new configuration is used later when you reboot as part of
loading JUNOS software with enhanced services.

11.2.2.5. Step 4: Copy and install JUNOS software with enhanced services

With the original configuration migrated to be compatible with JUNOS software with enhanced services and now
placed where it will take effect at the next reboot, it is time to obtain and load the desired JUNOS software with
enhanced services package. Before attempting to load the new package, it is a good idea to first free up as
much space as possible

11.2.2.5.1. Free up space

The limited compact flash storage space, combined with the lack of a hard drive for storing images that are
being unpacked for installation, can create problems when you attempt to upgrade or downgrade JUNOS
versions on any J-series router, regardless of whether they are JUNOS software with enhanced services

http://lib.ommolketab.ir
http://lib.ommolketab.ir

packages or not. The following steps are general approaches to freeing up compact flash space. You will need
root access to delete any files that are owned by root.

First, we use the CLI cleanup utility to rid ourselves of the easy, low-hanging fruit:

lab@propane> request system storage cleanup

List of files to delete:

 Size Date Name

 449B Nov 26 23:03 /cf/var/log/install.0.gz

 7581B Nov 28 13:49 /cf/var/log/messages.0.gz

 6383B Nov 28 13:49 /cf/var/log/security.0.gz

Delete these files ? [yes,no] (no) yes

Next, delete the backup software package, if present. This package is used after an upgrade to revert back to
the previous version using a request system software rollback command. The rollback image is no longer

needed as the current software environment is being upgraded.

lab@propane> request system software delete-backup

Delete backup system software package [yes,no] (no) yes

lab@propane>

11.2.2.5.2. Confirm that you have enough compact flash space

The release notes for JUNOS software with enhanced services software Release 8.5R1 provide the following
compact flash space guidelines:

To copy the software image to the router and install using that image, you need at least 130 MB of
available space on the compact flash.

To install the software without copying the software image to the router you need at least 68 MB. You use
the no-copy and unlink options with the request system software add command to prevent copying

the package on the router during installation.

The show system storage command displays used and free space on the compact flash:

lab@propane> show system storage

Filesystem Size Used Avail Capacity Mounted on

/dev/ad0s1a 213M 113M 98M 54% /

devfs 1.0K 1.0K 0B 100% /dev

devfs 1.0K 1.0K 0B 100% /dev/

. . .

In this case, 98 MB of space is available on the flash, which is more than sufficient when the no-copy and

unlink switches are added.

11.2.2.5.3. Install JUNOS software with enhanced services

You are now ready to upgrade the router to run JUNOS software with enhanced services. It is assumed that you
have obtained the desired package from the Juniper support web site, and that the image is in place on the
router being migrated. Good housekeeping says the package should be stored in the /var/tmp directory, but this

http://lib.ommolketab.ir
http://lib.ommolketab.ir

requires root access.

Tips for Freeing More Space

Large files left in user directories or in nonstandard places may consume so much space that you
are not able to load a new software package. If you have shell access, try this handy command:

lab@propane> start shell

% find -x /cf -type f -exec du {} \; | sort -n

find: /cf/var/cron/tabs: Permission denied

. . .

0 /cf/etc/namedb/resolver.cache

. . .

448 /cf/var/log/dcd

1024 /cf/var/log/chassisd

1440 /cf/var/log/httpd

107776 /cf/var/tmp/junos-jsr-8.5R1.8-domestic.tgz

114512 /cf/packages/junos-8.5R1.8-domestic

The output is sorted from smallest to largest files found, so you want to focus on the entries near
the end of the display. Once you know where the large files are, it is a simple matter to delete or
move them off the router as desired. In this example, the largest files on the systems are the
soon-to-be-installed JUNOS software with enhanced services in /var/tmp and the currently
installed JUNOS version in /var/cf. Any other large files in user directories or in the /tmp or
/var/tmp directory are good candidates for deletion. Note that symbolic links result in /var/home
being mapped to /cf/var/home; therefore, you can use either path:

root@PBR% cd /var/home/

root@PBR% pwd

/cf/var/home

To perform the upgrade, issue the request system software add command followed by the path and name of

the JUNOS software with enhanced services package to be installed-in this example, you must use include the
no-copy and unlink switches because of space issues described previously, and you should also add the no-

validate switch.

The no-validate option is used here to avoid validation of the active configuration, which is the previous,

nonmigrated version, against the new software that is being installed. After installation, the migrated JUNOS
software with enhanced services-compatible configuration file will be read by the new software, and all will be
well.

lab@propane> request system software add jsr-8.5R1.8-domestic.tgz no-

copy unlink no-validate

WARNING: Unpacking package junos-8.5R1.8.tgz in /var/tmp/pkg_instmp

6287/junos-8.5R1.8

Installing package '/var/tmp/pkg_instmp6287/junos-8.5R1.8' ...

Verified junos-boot-jsr-8.5R1.8.tgz signed by PackageProduction_8_5_0

Verified junos-jsr-8.5R1.8-domestic signed by PackageProduction_8_5_0

Available space: 92264 require: 2405

WARNING: junos-8.5R1.8-domestic is already installed,

WARNING: moving it aside.

ls: junos.old: No such file or directory

JUNOS 8.5R1.8 will become active at next reboot

http://lib.ommolketab.ir
http://lib.ommolketab.ir

WARNING: A reboot is required to load this software correctly

WARNING: Use the 'request system reboot' command

WARNING: when software installation is complete

Saving state for rollback ...

Removing /var/tmp/pkg_instmp6287/junos-8.5R1.8

If desired, you can add the reboot switch to the request system software command to avoid having to reboot

the router to complete installation. In this case, we can reboot at our leisure, but the suspense is getting heavy,
so it's time to get it on, so to speak:

lab@propane> request system reboot

Reboot the system ? [yes,no] (no) yes

After a few minutes, the installation completes and your old router is back, except now it's capable of taking
advantage of JUNOS software with enhanced services features:

Local package initialization:.

starting local daemons:.

kern.securelevel: -1 -> 1

Wed Nov 28 22:18:53 UTC 2007

PBR (ttyd0)

login: lab

Password:

--- JUNOS 8.5R1.8 built 2007-11-05 18:58:07 UTC

lab@PBR> show version

Hostname: PBR

Model: j4350

JUNOS Software Release [8.5R1.8] Enhanced Services

11.2.2.6. So, what changed?

The migrated configuration file-which as you may recall was based on the CoS configuration used at PBR in

Chapter 9-is displayed. The only JUNOS software with enhanced services-specific addition is the new security

stanza, displayed here:

Code View:
regress@hay_PBR_r1> configure

Entering configuration mode

[edit]

regress@hay_PBR_r1# show services security

 {

 zones {

 security-zone Trust {

 host-inbound-traffic {

 system-services {

 all;

 }

 protocols {

 all;

 }

 }

 interfaces {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 all;

 }

 }

 }

 policies {

 default-policy {

 permit-all;

 }

 }

}

The effect of this stanza is to place JUNOS software with enhanced services into router context with resultant
permissive connectivity for all interfaces and protocols. This is expected because the migrated configuration did
not contain any security-related services. You can still use stateless filters to protect the router's control plane.
This mode of operation is as close as you can get to having JUNOS software with enhanced services operate like
standard JUNOS software.

Recall that router context is indicated by a default security policy that permits all communications. However, it's
impossible to configure such a policy in a manner that will block communication of new interfaces or
services/protocols unless you also update the security stanza to accommodate the additions. Consider this
permissive security stanza:

Code View:
[edit]

lab@PBR# show security

zones {

 security-zone Trust {

 host-inbound-traffic {

 system-services {

 ftp;

 http;

 https;

 ping;

 ssh;

 telnet;

 traceroute;

 }

 }

 interfaces {

 fe-0/0/0.1241 {

 host-inbound-traffic {

 protocols {

 ospf;

 }

 }

 }

 fe-0/0/0.412 {

 host-inbound-traffic {

 protocols {

 ospf;

 }

 }

 }

 lo0.0;

 }

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

policies {

default-policy {

permit-all;

 }

}

Even though there is a single trust zone and permissive accept-all policy, the lack of interface all, protocols

all, or services all statements means that each new interface or service/protocol needs to be explicitly

added. The point of all this is that there can be various levels of router context. A true router context uses the
all keyword to accommodate future changes without the need for security modifications, just like regular

JUNOS software.

11.2.2.6.1. A note on IPv6 and MPLS

IPv4 traffic is always handled as a flow in JUNOS software with enhanced services. In the initial release, flow-
based forwarding for IPv6 and Multiprotocol Label Switching (MPLS) is not available. To prevent summary
dropping of this traffic, you must add the following to the [edit security] stanza:

forwarding-options {

 family {

 inet6 {

 mode packet-based;

 }

 mpls {

 mode packet-based;

 }

 }

}

The set commands used to create router context are provided:

[edit]

lab@PBR# show security | display set

set security zones security-zone HOST host-inbound-traffic system-

services any-

service

set security zones security-zone HOST host-inbound-traffic protocols

all

set security zones security-zone HOST interfaces all

set security policies default-policy permit-all

set security forwarding-options family inet6 mode packet-based

set security forwarding-options family mpls mode packet-based

11.2.3. JUNOS Software with Enhanced Services Migration Summary

The migration from JUNOS software to JUNOS software with enhanced services is possible on many J-series and
SSGm platforms. The migration steps are similar to performing a regular JUNOS upgrade, except there is a
configuration conversion and a need to place the converted file in a location that is used when booting with the
new software.

The web-based migration tool requires a support account, but it makes the ASP-based service's migration set to
the ScreenOS service relatively straightforward. Before attempting to migrate, consult the web site for platform

http://lib.ommolketab.ir
http://lib.ommolketab.ir

requirements, compact flash size, and available space. Having console access is always best when performing
this type of process, but it is possible to perform the upgrade without losing network access.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.3. Service Migration Case Study: JUNOS to JUNOS Software with
Enhanced Services

This section focuses on a JUNOS configuration with ASP-based services that is migrated to JUNOS with JUNOS
software with enhanced services, and therefore demonstrates much of the new configuration syntax for NAT and
stateful-firewall services. The point of this exercise is to provide an example of the same set of services, in the
same network context, along with the operational mode commands that are used to display and debug flow
state.

Figure 11-6 shows the network topology for the services migration case study.

Figure 11-6. Services migration topology

As called out in the diagram, router PBR is the services-enabled router, and therefore the focus of the example.

The particulars of this topology vary slightly from the example used in other chapters. These changes result
from use of a different test bed with J-series routers that support JUNOS software with enhanced services. The
primary change in the topology is the shift to J4350s that use GE interfaces. The link between Wheat and PBR no

longer uses virtual LAN (VLAN) tagging, in order to accommodate a switch. Also, the routers are using their ge-

0/0/0 interfaces for Out of Band (OoB) management purposes, providing Telnet, FTP, and other system

services. The OoB network is not shown in Figure 11-6, but evidence of its presence can be noted in some of the
captures that are provided. A represented set of services have been enabled on PBR. Specifically, it is configured

to:

Perform stateful-firewall services on all outbound traffic, except traffic in rule 2.1.

2.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.

Allow incoming SSH connections, but only to interfaces within the trust zone.2.

Perform source NAT (SNAT) on all traffic transiting PBR; locally originated BGP traffic is not subjected to

NAT.

3.

Perform destination NAT (DNAT) on TCP packets sent to destination address 55.5.5.100, port 5767; this
traffic is forwarded to 10.10.12.3.

4.

11.3.1. The Original JUNOS Software ASP-Based Service Set

The key aspects of PBR's configuration are shown, before the configuration is migrated to a JUNOS software with

enhanced services-compatible configuration:

Code View:
. . .

interfaces {

 sp-0/0/0 {

 unit 0 {

 family inet;

 }

 }

ge-0/0/0 {

 unit 0 {

 description out_of_Band_management;

 family inet {

 address 192.168.14.96/24;

 }

 }

 }

 ge-0/0/1 {

 unit 0 {

 description PBR-to-Wheat;

 family inet {

 service {

 input {

 service-set wan-services;

 }

 output {

 service-set wan-services;

 }

 }

 address 172.16.1.2/24;

 }

 }

 }

 ge-0/0/2 {

 vlan-tagging;

 unit 1241 {

 description PBR_to_Bock;

 vlan-id 1241;

 family inet {

 address 10.20.130.2/24;

 }

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 lo0 {

 unit 0 {

 family inet {

 address 10.20.128.3/32;

 address 55.5.5.1/32;

 }

 }

 }

}

The interfaces stanza matches the topology shown in Figure 11-6. Note the definition of a services interface

based on an ASP service set, as indicated by the sp-0/0/0 interface. The ge-0/0/0 interface provides OoB

network management.

routing-options {

 aggregate {

 route 10.0.0.0/8;

 route 55.5.5.0/24;

 }

 autonomous-system 1282;

}

There is not much to note here, other than two aggregate routes that end up being advertised to BGP peering
AS Borgnet. Because SNAT is in effect, the 10.0.0.0/8 is not technically needed. Note that the lo0 interface has

a 55.5.5.1/32 address, which activates the aggregate for the 55.5.5.0/24 prefix, which represents the SNAT
pool of addresses that are presented to the rest of the world.

protocols {

 bgp {

 export send-agg;

 group as_420 {

 type external;

 neighbor 172.16.1.1 {

 peer-as 420;

 }

 }

 }

 ospf {

 export send-borgnet;

 area 0.0.0.0 {

 interface ge-0/0/2.1241;

 interface ge-0/0/1.0;

 interface lo0.0 {

 passive;

 }

 }

 }

}

The protocol configuration sets up the External BGP (EBGP) peering to Borgnet and Open Shortest Path First
(OSPF) area 0 operation to Bock. Note that export policies are in place for both protocols. And speaking of

policies, here they are:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

policy-options {

 policy-statement send-agg {

 from protocol aggregate;

 then accept;

 }

 policy-statement send-borgnet {

 from {

 route-filter 172.16.1.0/24 orlonger;

 route-filter 128.3.0.0/16 orlonger;

 }

 then accept;

 }

}

The two policies result in the advertisement of the 10.0.0.0/8 and 55.5.5.0/24 aggregates to Borgnet and the
redistribution of the Borgnet BGP peering and loopback addresses through advertisement of the directly
connected 172.16.1.0/24 route into OSPF:

Code View:
services {

 stateful-firewall {

 rule all-algs {

 match-direction output;

 term 1 {

 from {

 application-sets junos-algs-outbound;

 }

 then {

 accept;

 }

 }

 term 2 {

 then {

 accept;

 }

 }

 }

 rule all-ssh {

 match-direction input;

 term 1 {

 from {

 applications [junos-ssh junos-bgp];

 }

 then {

 accept;

 }

 }

 term 2 {

 from {

 destination-address {

 55.5.5.100/32;

 }

 }

 then {

 accept;

 }

 }

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 nat {

 pool ext-block {

 address-range low 55.5.5.2 high 55.5.5.30;

 port automatic;

 }

 rule translate-all {

 match-direction output;

 term 1 {

 from {

 source-address {

 10.0.0.0/8;

 }

 }

 then {

 translated {

 source-pool ext-block;

 translation-type {

 source dynamic;

 }

 }

 }

 }

 }

 rule pin-hole {

 match-direction input;

 term 1 {

 from {

 destination-address {

 55.5.5.100/32;

 }

 applications special-port-map;

 }

 then {

 translated {

 destination-prefix 10.10.12.3/32;

 translation-type {

 destination static;

 }

 }

 }

 }

 }

 }

 service-set wan-services {

 stateful-firewall-rules all-algs;

 stateful-firewall-rules all-ssh;

 nat-rules translate-all;

 nat-rules pin-hole;

 interface-service {

 service-interface sp-0/0/0.0;

 }

 }

}

applications {

 application special-port-map {

 protocol tcp;

 destination-port 5767;

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

The services configuration sets up a service set called wan-services, which provides a stateful firewall for all

incoming traffic, except BGP, SSH, and a pinhole that is opened for TCP traffic sent to port 5767 and destination
address 55.5.5.100. In the latter case, matching traffic has the destination address changed to 10.10.12.3,
which is the loopback address of Bock. All traffic from the 10.0.0.0/8 space undergoes SNAT using a pool of

addresses ranging from 55.5.5.2–55.5.5.30. Note that the 55.5.5.1 address assigned to the lo0 interface is left

outside the NAT pool, as is the 55.5.5.100 destination address associated with pinhole traffic.

11.3.1.1. Original ASP-based service set: Operational analysis

Confirmation begins with the verification of BGP and OSPF at PBR:

Code View:
[edit]

regress@hay_PBR_r1# run show bgp summary

Groups: 1 Peers: 1 Down peers: 0

Table Tot Paths Act Paths Suppressed History Damp State Pending

inet.0 1 1 0 0 0 0

Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn State|#Active/

Received/Damped...

172.16.1.1 420 69 74 0 0

30:35 1/1/0

 0/0/0

[edit]

regress@hay_PBR_r1# run show ospf neighbor

Address Interface State ID Pri Dead

10.20.130.1 ge-0/0/2.1241 Full 10.255.14.97 128 33

To test the services, a Telnet session to 55.5.5.100, port 5767, is generated at Wheat, while pings are

generated from Bock to Wheat's loopback address. The pings succeed (not shown), but the Telnet session that

originated at Wheat to port 5767 is expected to fail. This is because there is no TCP process listening at port

5767 on Bock. Despite the connection failure, there are ways to confirm that DNAT is working.

The flow session table is displayed at PBR. Note that the current JUNOS ASP-based services are displayed using

a show services command:

[edit]

regress@hay_PBR_r1# run show services stateful-firewall flows

Interface: sp-0/0/0, Service set: wan-services

Flow State Dir Frm count

TCP 172.16.1.3:62162 -> 55.5.5.100:5767 Forward I 1

NAT dest 55.5.5.100:5767 -> 10.10.12.3:5767

TCP 10.10.12.3:5767 -> 172.16.1.3:62162 Forward O 0

 NAT source 10.10.12.3:5767 -> 55.5.5.100:5767

The first pair of session entries reflects the DNAT pinhole traffic. Note the 5767 port number and TCP protocol,
and that the destination address is translated to 10.10.12.3. The next entry is the return traffic that is the TCP
reset that results because there is no process listening at Bock. The I and O flags indicate input versus output.

ICMP 172.16.1.3:1044 -> 55.5.5.2 Watch I 2

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 NAT dest 55.5.5.2:1044 -> 10.20.130.1:20783

ICMP 10.20.130.1:20783 -> 172.16.1.3 Watch O 2

 NAT source 10.20.130.1:20783 -> 55.5.5.2:1044

This pair of entries represents the ping traffic generated at Bock. Note that the outgoing flow is undergoing

SNAT, having the 10.20.13.1 address translated to a 55.5.5.5.2 address in this example.

TCP 172.16.1.2:64827 -> 172.16.1.1:179

 Forward O 146

TCP 172.16.1.1:179 -> 172.16.1.2:64827 Forward I 144

The final pair of entries represents the BGP session (port 179), which is not subjected to SNAT due to the
172.16.1.2 address from which the BGP session originates. DNAT forwarding behavior (despite actual inability to
form a Telnet connection) is confirmed by monitoring traffic at Bock's ge-0/0/2 interface:

Code View:
21:01:38.368620 In IP 172.16.1.3.62269 > 10.10.12.3.5767: S 2699291864:2699291864

(0) win 65535 <mss 1460,nop,wscale 1,nop,nop,

timestamp 1790573405 0,sackOK,eol>

21:01:38.368639 Out IP 10.10.12.3.5767 > 172.16.1.3.62269: R 0:0(0)

ack 1 win 0

The traffic shows an incoming TCP connection request (SYN and ACK flags set) sent to destination port 5767,
from 172.16.1.3. Note that Bock resets the connection, which is expected behavior here. DNAT port-forwarding

success is not contingent on the device that receives the data actually wanting the traffic-the receipt alone is
enough to confirm DNAT.

You can assume that an SSH session originated at Wheat to any of the 10.0.0.0/8 addresses within Beer-Co is

successful (not shown). The same connection request using Telnet fails, due to the stateful firewall that is in
effect.

11.3.2. The Migrated JUNOS Software with Enhanced Services Configuration

The original, ASP-based configuration shown earlier is run through the migration tool, for use with JUNOS
software with enhanced services. The file is then copied and renamed on the router, and JUNOS software with
enhanced services is loaded, as per the procedure detailed in "Section 11.2," earlier in this chapter. The altered
portions of the migrated configuration are shown, and are commented on as appropriate. The first change to
note is that the ASP-based sp-0/0/0 services interface has been removed. Note that a services interface is not

present in the migrated configuration. In JUNOS software with enhanced services, a services interface is used to
support route-based VPNs; it's called an st0 (secure tunnel) interface. This interface does not exist in the

migrated configuration because no VPNs were defined.

The first section in the new stanza at the [edit security] hierarchy defines the NAT pool used in both DNAT

and SNAT. The NAT pool names are the choice of the migration tool, and you can change them if desired.

[edit]

regress@hay_PBR_r1# show security

nat {

 destination-nat pool_10_10_12_3 address 10.10.12.3;

 interface ge-0/0/1.0 {

 source-nat {

 pool ext-block {

 address-range {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 low 55.5.5.2 high 55.5.5.30;

 }

 }

 }

 }

}

. . .

The next section of the security stanza defines the security zones:

Code View:
 . . .

zones {

 security-zone external_wan-services {

 host-inbound-traffic {

 system-services {

 ftp;

 ssh;

 telnet;

 }

 }

 interfaces {

 ge-0/0/1.0;

 }

 }

 security-zone internal_wan-services {

 address-book {

 address address_55_5_5_100_32 55.5.5.100/32;

 address address_10_0_0_0_8 10.0.0.0/8;

 }

 host-inbound-traffic {

 system-services {

 ftp;

 ssh;

 telnet;

 }

 }

 interfaces {

 ge-0/0/2.1241 {

 host-inbound-traffic {

 protocols {

 ospf;

 }

 }

 }

 ge-0/0/0.0 {

 host-inbound-traffic {

 protocols {

 ospf;

 }

 }

 }

 lo0.0 {

 host-inbound-traffic {

 protocols {

 ospf;

 }

 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 }

 }

 }

. . .

The zones configuration defines two security zones: an external-wan-services zone that is associated with the

EBGP peering interface and an internal-wan-services zone housing the internal and OoB interfaces. Figure

11-7 shows the resultant zone configuration.

Figure 11-7. The migrated zone configuration

The external-wan-services zone is set to support a limited subset of host services. Note that some of these

services were not reachable from external hosts in the original, ASP-based configuration. The presence of
additional host services helps in fault isolation, and you can remove it later if desired-for example, to prevent
Telnet access to the local router over the 172.16.1.0/24 subnet. BGP does not have to be explicitly allowed on
the ge-0/0/1 interface because, as you will soon see, the stateful firewall is configured to allow incoming BGP

(and SSH).

The internal-wan-services zone includes the router's lo0 interface, the ge-0/0/0 OoB interface, and the ge-

0/0/2 interface that connects to Bock. This zone allows a wider range of system services, which is in keeping

with the higher level of trust for this internal zone and which explicitly allows OSPF on the lo0 and ge-0/0/2

interfaces. It seems that ping was not added to the list of supported services during the migration, which means
that internal ping testing is not possible until the list of supported host services is modified, a behavior that
differs from the premigration environment. Also worth noting here is that the list of supported services or
protocols always takes the most specific application. This means that when an interface has no explicit list of
services, as in this example, the interface inherits the services specified under inbound host traffic. However, if
you add a specific service to an interface, that interface no longer inherits the values of the inbound host
services settings. The same is true for protocols. To provide an example, if you added BGP to inbound host

http://lib.ommolketab.ir
http://lib.ommolketab.ir

traffic, you would expect to see that BGP traffic is not accepted by any of the interfaces. This is because as
configured, each interface has its own protocol stanza and therefore ignores the protocols specified under
inbound host traffic.

Adding a new interface, or adding a new protocol such as Internal BGP (IBGP) to the ge-0/0/2 interface,

requires updates to the internal-wan-services zone to permit communications, given the secure context that

resulted from migration of a configuration that used ASP-based stateful services.

The two address book entries create symbolic name-to-prefix mappings that are later used in NAT-related policy
actions. The policy portion of the security stanza is examined:

Code View:
 . . .

policies {

 from-zone internal_wan-services to-zone external_wan-services {

 policy all-algs_1 {

 match {

 source-address any;

 destination-address any;

 application cjunos-algs-outbound;

 }

 then {

 permit;

 }

 }

 policy translate-all_1 {

 match {

 source-address address_10_0_0_0_8;

 destination-address any;

 application any;

 }

 then {

 permit {

 source-nat {

 pool ext-block;

 }

 }

 }

 }

 }

 from-zone external_wan-services to-zone internal_wan-services {

 policy all-ssh_1 {

 match {

 source-address any;

 destination-address any;

 application [junos-ssh junos-bgp];

 }

 then {

 permit;

 }

 }

 policy pin-hole_1 {

 match {

 source-address any;

 destination-address address_55_5_5_100_32;

 application special-port-map;

 }

 then {

 permit {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 destination-nat {

 pool_10_10_12_3;

 }

 }

 }

 }

 }

 }

}

The internal_wan-services to-zone external_wan-services policy chain controls communications from the

internal to external WAN services zones. Therefore, it evokes ALGs, and then SNAT for source addresses that
fall in the 10.0.0.0/8 range.

The external_wan-services to-zone internal_wan-services policy chain is used for flows that enter the

external WAN services zone and egress on the internal WAN services zone. Here we see the explicit acceptance
of both BGP and SSH via the all-ssh_1 policy. The pin-hole_1 policy then matches on an address book entry

for 55.5.5.100, along with an application port map, to evoke DNAT based on the 10.10.12.3 address pool. All
other incoming traffic must have matching state, or the stateful-firewall function discards the traffic, preventing
it from entering the internal WAN services zone.

It's worth noting that the migration tool did not provide a policy to permit communications between interfaces
belonging to the internal-wan-services zone. Recall that unlike ScreenOS, which has intrazone blocking

disabled for the trust zone, the 8.5 version of JUNOS software with enhanced services has intrazone blocking
enabled, for all zones-in effect, there is no differentiation between a zone named "trust" and one named
"untrust" from a security policy perspective. As a result, you can expect that Bock will be able to ping the

10.20.130.2 interface address of PBR, which is accepted by the self-traffic policy (described shortly), whereas a

ping or Telnet request to PBR's loopback address fails. The following policy can be added (but is not in this

example) to allow unfettered communications among all interfaces in the internal zone:

 from-zone internal_wan-services to-zone internal_wan-services {

 policy default-permit {

 match {

 source-address any;

 destination-address any;

 application any;

 }

 then {

 permit;

 }

 }

 }

The remaining area of change in the migration is the [edit applications] stanza, as shown:

Code View:
[edit]

regress@hay_PBR_r1# show applications

applications {

 application special-port-map {

 protocol tcp;

 destination-port 5767;

 }

 /* Applications not listed are not supported */

 application-set cjunos-algs-outbound {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 application junos-ftp;

 application junos-tftp;

 application junos-rpc-portmap-tcp;

 application junos-rpc-portmap-udp;

 application junos-rsh;

 application junos-rtsp;

 application junos-sqlnet-v1;

 application junos-sqlnet-v2;

 application junos-h323;

 application junos-realaudio;

 application junos-dce-rpc-portmap;

 application junos-sip;

 }

}

The applications group lists the custom port map used in the pinhole/DNAT and displays the currently supported
ALGs.

11.3.2.1. Confirm JUNOS software with enhanced services operation

The confirmation of JUNOS software with enhanced services operation follows the same functional lines.
However, now you use a show security command to monitor NAT, the stateful firewall, and other security-

related services.

To ensure clean flow state, begin by clearing all flows. This is a disruptive operation and results in loss of
management Telnet/SSH sessions, when used with the all keyword. Note that at this time, the OoB

management session is cleared and console access is used to keep session state to a minimum.

regress@hay_PBR_r1> clear security flow session all

This command will terminate the current session too.

Continue? [yes,no] (no)yes

Once again, OSPF and BGP operation is confirmed:

Code View:
regress@hay_PBR_r1> show ospf neighbor

Address Interface State ID Pri Dead

10.20.130.1 ge-0/0/2.1241 Full 10.255.14.97 128 35

regress@hay_PBR_r1> show bgp summary

Groups: 1 Peers: 1 Down peers: 0

Table Tot Paths Act Paths Suppressed History Damp State Pending

inet.0 1 1 0 0 0 0

Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn State|#Active/

Received/Damped...

172.16.1.1 420 2931 2966 0 6 6:33:21 1/1/0

0/0/0

The output confirms that both OSPF and BGP are operational: good. Once again, Bock generates pings toward

Wheat, but this time rapid pings are used, and Wheat opens an SSH session to the loopback address of PBR. Both

the pings and SSH connection are successful (not shown). The rapid pings are necessary because the stateful-

http://lib.ommolketab.ir
http://lib.ommolketab.ir

firewall state ages out quickly for ICMP, so a higher volume of traffic ensures that the ICMP session state is
present when the CLI command is executed.

The flow session state is displayed at PBR using the show security flow session command:

regress@hay_PBR_r1> show security flow session

Session ID: 1284, Policy name: self-traffic-policy/1, Timeout: 58

 In: 10.20.130.1/1 --> 224.0.0.5/1;ospf, If: ge-0/0/2.1241

 Out: 224.0.0.5/1 --> 10.20.130.1/1;ospf, If: .local..0

The first session represents OSPF traffic to and from the ge-0/0/2 interface, and is expected. Note that this

traffic is accepted because OSPF is listed as a supported protocol under the ge-0/0/2.1241 interface. This

results in acceptance of the traffic via a nonuser-configurable self-traffic policy. The self-traffic policy is evoked
when traffic is addressed to the ingress interface itself, as opposed to being addressed to the loopback or other
interface address.

Session ID: 1285, Policy name: self-traffic-policy/1, Timeout: 1788

 In: 172.16.1.2/59024 --> 172.16.1.1/179; tcp, If: .local..0

Out: 172.16.1.1/179 --> 172.16.1.2/59024;tcp, If: ge-0/0/1.0

The next flow represents the EBGP session to Wheat, as indicated by the TCP protocol and 179 port values. As

the EBGP peering session is interface-based, you again see acceptance via the self-traffic policy.

Session ID: 1539, Policy name: all-ssh_1/9, Timeout: 1780

 In: 172.16.1.1/58495 --> 10.10.12.3/22;tcp, If: ge-0/0/1.0

 Out: 10.10.12.3/22 --> 172.16.1.1/58495;tcp, If: ge-0/0/2.1241

The next flow is for the SSH test traffic originated at Wheat, which terminates at Bock's lo0 interface in this

example. Note that SNAT is not performed for flows that are initiated from the untrust to internal-wan-

services zone, as doing so would break the communications. Wheat in this case expects a response from the

SSH session's target address, not from a SNAT pool address.

Session ID: 11748, Policy name: translate-all_1/8, Timeout: 60

 In: 10.20.130.1/10091 --> 172.16.1.3/14391;icmp, If: ge-0/0/2.1241

 Out: 172.16.1.3/14391 --> 55.5.5.26/1394;icmp, If: ge-0/0/1.0

4 sessions displayed

The final flow entry represents the ICMP test traffic from Bock to Wheat. Once again, SNAT operation is

confirmed by the presence of a 55.5.5.x address in the outbound direction.

The destination and source NAT pools are also verified:

[edit security]

regress@hay_PBR_r1# run show security nat destination-nat summary

Pool name Address range Port

pool_10_10_12_3 10.10.12.3

[edit security]

regress@hay_PBR_r1# run show security nat source-nat summary

Pool name Address low Address high Interface PAT

ext-block 55.5.5.2 55.5.5.30 ge-0/0/1.0 yes

The command output confirms that both DNAT and SNAT are correctly configured.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Though not shown, ping and Telnet traffic generated at Bock to PBR's 10.20.130.2 ge-

0/0/2.1241 interface address succeeds, as expected. The same traffic fails when

addressed to its 10.20.128.3 lo0 address due to lack of a policy that permits intrazone

traffic in the internal-wan-services zone, as described previously.

11.3.2.2. Troubleshoot a flow problem

With the stateful-firewall and NAT aspects of the services configuration confirmed, it's time to move on to the
DNAT function for TCP traffic sent to 55.5.5.100:5767. The connection is expected to fail again, but this time,
rather than timing out as before, it is now observed to fail immediately:

regress@best_Wheat_r0> telnet 55.5.5.100 port 5767

Trying 55.5.5.100...

telnet: connect to address 55.5.5.100: Connection refused

telnet: Unable to connect to remote host

Also, a monitor interface traffic ge-0/0/2 command at Bock does not confirm the receipt of the DNAT

traffic (not shown). In addition, upon examining the flow session table at PBR, there is no evidence of session

state for the DNAT traffic.

Although complete coverage of the new services tracing and debug tools is outside the context of this chapter,
the lack of DNAT operation affords a chance to demonstrate a typical flow-based troubleshooting scenario. You
begin by configuring flow packet drop tracing. Note that most of the main hierarchies at the [edit security]

stanza have their own tracing capability. For example, to trace and debug firewall authentication, configure
tracing at the [edit security firewall-authentication] hierarchy.

A Word on Session Timeouts

The flow-based nature of JUNOS software with enhanced services results in a need to age out
inactive flows to ensure that flow state does not grow without bounds. The default settings result
in TCP-based session timeouts of 1,800 seconds, or 30 minutes. Additionally, the default settings
do not reset (clear) TCP sessions upon age out. This can result in the sensation of a "hung
terminal" session, where you find the terminal session unresponsive-as though the router had
crashed. This behavior differs from that of JUNOS software, which has no such session timeouts
given its packet-based forwarding paradigm.

There are a few ways to minimize these issues. First, you can add the tcp-rst option to the

management traffic's ingress zone. This results in the TCP session clearing upon timeout, which
leaves no doubt as to the connection status, thus minimizing the sensation of a hung terminal
session. Another option is to configure longer session timeouts for local host management traffic,
which is practical only when you have a specific policy for this management traffic; that is, you are
not in router context with an accept-all policy. The code example shown matches on the junos-

ssh ALG permitted by the all-ssh_1 policy and sets the TCP session timeout to a value of 3,600

seconds, or one hour (24 hours/86,400 seconds is the maximum). Note that a strict security policy
favors the timely closing of idle management sessions, and that the following code also affects the
timeout of transit SSH sessions, which can lead to excessive resource consumption should you
encounter a large number of SSH sessions:

application junos-ssh {

 protocol tcp;

 inactivity-timeout 3600;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

regress@hay_PBR_r1> show security flow session

. .

Session ID: 206256, Policy name: all-ssh_1/9, Timeout: 3590

 In: 172.16.1.1/50327 --> 10.20.128.3/22;tcp, If: ge-0/0/1.0

 Out: 10.20.128.3/22 --> 172.16.1.1/50327;tcp, If: .local..0

First, the list of security hierarchies is shown, and then the trace configuration for flows:

Code View:
[edit security]

regress@hay_PBR_r1# set ?

Possible completions:

> alg Configure ALG security options

+ apply-groups Groups from which to inherit configuration

data

+ apply-groups-except Don't inherit configuration data from these

groups

> authentication-key-chains Authentication key chain configuration

> certificates X.509 certificate configuration

> firewall-authentication Firewall authentication parameters

> flow FLOW configuration

> forwarding-options Security-forwarding-options configuration

> ike IKE configuration

> ipsec IPSec configuration

> nat Configure Network Address Translation

> pki PKI service configuration

> policies Configure Network Security Policies

> rtlog-options

> screen Configure screen feature

> ssh-known-hosts SSH known host list

> traceoptions Network security daemon tracing options

> zones Zone configuration

[edit security]

regress@hay_PBR_r1# show flow

traceoptions {

 file flow;

 flag packet-drops;

}

With the flow tracing configuration in effect, the DNAT traffic is again generated at Wheat. A flow trace can be

rather chatty, so you can use the CLI match function to quickly find interesting data. In this example, the
following trace output is observed:

*** flow ***

. . .

Dec 6 20:28:47 20:28:47.475440:CID-0:RT:55.5.5.100/5767,6

Dec 6 20:28:47 20:28:47.475446:CID-0:RT:<Root VSYS(I)>

Dec 6 20:28:47 20:28:47.475449:CID-0:RT:flow_first_routing: DEST

route-lookup failed, dropping pkt and not creating session nh:

4294967295

http://lib.ommolketab.ir
http://lib.ommolketab.ir

. . .

The trace output shows that a matching flow was in fact dropped by the root virtual system, with the cause
being a lack of destination route. This behavior strikes a bell with regard to ScreenOS behavior for DNAT. When
performing DNAT, ScreenOS requires a static route to the DNAT destination address-55.5.5.100 in this
case-in order to determine the egress interface, and therefore the egress zone. This is needed because the
security policy chain is a function of ingress zone to egress zone. This theory is confirmed with a show route at

PBR:

[edit]

regress@hay_PBR_r1# run show route 55.5.5.100

inet.0: 31 destinations, 31 routes (30 active, 0 holddown, 1 hidden)

+ = Active Route, - = Last Active, * = Both

55.5.5.0/24 *[Aggregate/130] 23:07:08

 Reject

It would appear that a reject next hop does not identify the egress zone, unless you consider /dev/null a zone.

A quick static route hack is added:

[edit]

regress@hay_PBR_r1# show routing-options static

route 55.5.5.100/32 next-hop 10.20.130.1;

The DNAT test traffic is again generated. Note that the session is observed to time out, rather than being
immediately closed:

regress@best_Wheat_r0> telnet 55.5.5.100 port 5767

Trying 55.5.5.100...

Matching flow state is now found in the session table:

[edit]

regress@hay_PBR_r1# run show security flow session

Session ID: 201676, Policy name: pin-hole_1/11, Timeout: 14

 In: 172.16.1.1/59547 --> 55.5.5.100/5767;tcp, If: ge-0/0/1.0

 Out: 10.10.12.3/5767 --> 172.16.1.1/59547;tcp, If: ge-0/0/2.1241

. . . .

Although not shown, a monitor traffic interface ge-0/0/2 command at Bock also confirms receipt of the

DNAT forwarded traffic. This completes the verification of stateful services and confirms that the formally ASP-
based services have been successfully migrated to operate in the JUNOS software with enhanced services
environment.

11.3.2.3. Some other interesting commands

In this section, we will run a few interesting commands to demonstrate various commands that are useful when
monitoring or troubleshooting JUNOS software with enhanced services. The show security zones command

displays interface-to-zone mapping information. Recall that policy is not needed for communication among
interfaces in the same zone:

Code View:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[edit security]

regress@hay_PBR_r1# run show security zones

Security zone: Untrust

 Send reset for non-SYN session TCP packets: Off

 Policy configurable: Yes

 Interfaces bound: 1

 Interfaces:

st0.0

Security zone: external_wan-services

 Send reset for non-SYN session TCP packets: Off

 Policy configurable: Yes

 Interfaces bound: 1

 Interfaces:

ge-0/0/1.0

Security zone: internal_wan-services

 Send reset for non-SYN session TCP packets: Off

 Policy configurable: Yes

 Interfaces bound: 3

 Interfaces:

ge-0/0/0.0

ge-0/0/2.1241

lo0.0

Security zone: junos-global

 Send reset for non-SYN session TCP packets: Off

 Policy configurable: Yes

 Interfaces bound: 0

Interfaces:

To display policy information, as needed for communication among zones, use the show security policies

command:

[edit]

regress@hay_PBR_r1# run show security policies

Default policy: deny-all

From zone: Trust, To zone: Untrust

 Policy: allow-all, State: enabled, Index: 4, Sequence number: 1

 Source addresses: any

 Destination addresses: any

 Applications: any

 Action: permit, source nat

From zone: Untrust, To zone: Trust

 Policy: all-ssh, State: enabled, Index: 5, Sequence number: 1

 Source addresses: any

 Destination addresses: any

 Applications: junos-ssh

 Action: permit

 Policy: pin-hole, State: enabled, Index: 6, Sequence number: 2

 Source addresses: any

 Destination addresses: address_55_5_5_100_32

 Applications: special-port-map

 Action: permit, destination nat

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The default deny-all policy confirms a secure context. For both interzone and intrazone communications to
succeed, the traffic must be explicitly accepted by a user policy.

11.3.3. JUNOS Software with Enhanced Services Summary

It's true, the services syntax has changed in JUNOS software with enhanced services. This is a change made
necessary by the shift from ASP-based service sets to enhanced functionality made available by leveraging the
world-class security features of ScreenOS.

Putting the functionality enhancements aside, many find the new syntax to be intuitive, especially if they have
experience with ScreenOS and the associated NetScreen security devices.

Juniper Networks has made migration tools available to help ease the transition in services syntax, making the
shift to JUNOS software with enhanced services something that should be considered, especially by enterprises
that now deploy a two-box solution for their security and routing needs.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.4. Conclusion

JUNOS software with enhanced services represents a significant increase in security, and in general services
capabilities for supported platforms. With JUNOS software with enhanced services, users are no longer forced to
compromise either services or routing when they opt for a single-box solution. Formerly, this required a
multiple-chassis, best-of-breed approach, which added cost and complexity to the network.

In addition to the one-box benefits, that one box is found to run JUNOS software, albeit with enhanced services
enabled. This means that all the benefits and advantages of JUNOS are still available, and the majority of
operational experience carries directly over, allowing you to immediately feel at home when using JUNOS
software with enhanced services.

It is expected that JUNOS software with enhanced services will continue to be expanded, meaning that new
services and capabilities will be added. Consult the Juniper Networks web site for the latest information on
JUNOS software with enhanced services features and capabilities.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.5. Exam Topics

Currently, the Juniper Networks Certified Internet Expert (JNCIE-ER) examination is based on ASP service sets.
As with all exam topics, this is subject to change. Candidates should consult the Juniper Networks web site for
up-to-date information on certification examination tracks and topics.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.6. Chapter Review Questions

What is the difference between secure and router context?

There is no real difference; both modes support firewall and routinga.

In secure context, you get the stateful firewall; in router context, you get routingb.

Secure context has a default deny-all policy whereas router context has an accept-all policyc.

Both modes have a default deny-all policy, but in router context, all interfaces are in the
same zone

d.

1.

What is true regarding zones?

You are limited to no more than fivea.

Each zone is restricted to a single interfaceb.

Policy is needed to communicate between zones, unless in router contextc.

Policy is needed to communicate between zonesd.

2.

What is the result of loading a JUNOS software configuration into a JUNOS software with enhanced
services router?

Nothing, they are compatiblea.

You lose all connectivity, including consoleb.

You retain console access, but all network connectivity is lostc.

None of the above; the different hardware platforms make this impossibled.

3.

4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

d.

What is the name of the services interface in JUNOS software with enhanced services?

sp-0/0/0a.

st-0/0/0b.

es-0/0/0c.

The zone-based nature means that a services interfaces is not requiredd.

4.

Looking back at Figure 11-6, does the following session entry, as taken from PBR, indicate that NAT has

been performed?

Session ID: 1285, Policy name: self-traffic-policy/1, Timeout: 1784

 In: 172.16.1.2/59024 --> 172.16.1.1/179;tcp, If: .local..0

 Out: 172.16.1.1/179 --> 172.16.1.2/59024;tcp, If: ge-0/0/1.0

No, NAT is not being performeda.

Yes, NAT is being performedb.

Only SNAT is being performedc.

Only DNAT is being performedd.

5.

To the person who configures a J-series router, what has changed when running JUNOS software with
enhanced services?

ASP-based services such as IPSec, the stateful firewall, and NATa.

ASP services and routing protocol configurationb.

The entire CLI has changed to accommodate new servicesc.

Nothing; the new services are configured the same way as befored.

6.

Which platform supports JUNOS software with enhanced services?7.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

M7ia.

M10i and m7ib.

Only J-seriesc.

Certain J-series platforms and SSG 320m/350m platforms with a conversion kitd.

7.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.7. Chapter Review Answers

Answer: C. In secure mode, an implicit deny-all policy is in effect. In router context, an explicit accept-all
policy is used. Even so, interfaces and their protocols have to be listed in a zone for communication to
occur.

1.

Answer: D. Policy is always needed to permit traffic between zones.2.

Answer: C. The lack of a security stanza in the original JUNOS configuration results in no interfaces, in any
zones, preventing network connectivity.

3.

Answer: B. A services interface is still required, to be placed in the untrust zone, for example. In this way,
policy can evaluate traffic that is flowing across the services interface.

4.

Answer: A. The use of 172.16.1.0/24 addressing indicates that no NAT has been performed. SNAT would
involve 55.5.5.0/27, and DNAT was using 10.10.12.3 in this example. Note that self-generated traffic does
not go through the NAT/policy engine.

5.

Answer: A. Rest assured that the majority of JUNOS software and the CLI are the same. Only services
configuration has changed.

6.

Answer: D. ASIC-based platforms such as the M7i and M10i do not support enhanced services. Certain J-
series and SSG platforms can be loaded/converted to operate with enhanced services.

7.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Glossary
AAL

Asynchronous Transfer Mode (ATM) adaptation layer. A series of protocols enabling various types of
traffic, including voice, data, image, and video, to run over an ATM network.

AAL5 mode

Asynchronous Transfer Mode (ATM) adaptation Layer 5. One of four ATM adaptation layers (AALs)
recommended by the ITU-T. AAL5 is used predominantly for the transfer of classical IP over ATM. AAL5 is
the least complex of the current AAL recommdations. It offers low-bandwidth overhead and simpler
processing requirements in exchange for reduced bandwidth capacity and error-recovery capability. It is a
Layer 2 circuit transport mode that allows you to send ATM cells between ATM2 intelligent queuing (IQ)
interfaces across a Layer 2 circuit-enabled network. You use Layer 2 circuit AAL5 transport mode to
tunnel a stream of AAL5-encoded ATM segmentation and reassembly protocol data units (SAR-PDUs) over
a Multiprotocol Label Switching (MPLS) or IP backbone. See also cell-relay mode, Layer 2 circuits,
standard AAL5 mode, trunk mode.

ABR

Area border router. Router that belongs to more than one area. Used in Open Shortest Path First (OSPF).
See also OSPF.

access concentrator

Router that acts as a server in a Point-to-Point Protocol over Ethernet (PPPoE) session-for example, an
E-series router.

accounting services

Method of collecting network data related to resource usage.

ACFC

Address and Control Field Compression. Enables routers to transmit packets without the two 1-byte
address and control fields (0xff and 0x03) (which are normal for Point-to-Point Protocol [PPP]-
encapsulated packets), thus transmitting less data and conserving bandwidth. ACFC is defined in RFC
1661, "The Point-to-Point Protocol (PPP)." See also PFC.

active route

Route chosen from all routes in the route table to reach a destination. Active routes are installed into the
forwarding table.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

adaptive services

Set of services or applications that you can configure on an Adaptive Services PIC (ASP). The services
and applications include stateful firewall, Network Address Translation (NAT), intrusion detection services
(IDSs), Internet Protocol Security (IPSec), Layer 2 Tunneling Protocol (L2TP), and voice services. See
also tunneling protocol.

address match conditions

Use of an IP address as a match criterion in a routing policy or a firewall filter.

adjacency

Portion of the local routing information that pertains to the reachability of a single neighbor over a single
circuit or interface.

Adjacency-RIB-In

Logical software table that contains Border Gateway Protocol (BGP) routes received from a specific
neighbor.

Adjacency-RIB-Out

Logical software table that contains Border Gateway Protocol (BGP) routes to be sent to a specific
neighbor.

ADM

Add/drop multiplexer. SONET functionality that allows lower-level signals to be dropped from a high-
speed optical connection.

ADSL

Asymmetrical digital subscriber line. A technology that allows more data to be sent over existing copper
telephone lines, using the public switched telephone network (PSTN). ADSL supports data rates from 1.5
Mbps to 9 Mbps when receiving data (downstream rate), and from 16 Kbps to 640 Kbps when sending
data (upstream rate).

ADSL interface

Asymmetrical digital subscriber line interface. Physical WAN interface that connects a router to a digital
subscriber line access multiplexer (DSLAM). An ADSL interface allocates line bandwidth asymmetrically.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Downstream (provider-to-customer) data rates can be up to 8 Mbps for ADSL, 12 Mbps for ADSL2, and
25 Mbps for ADSL2+. Upstream (customer-to-provider) rates can be up to 800 Kbps for ADSL and 1 Mbps
for ADSL2 and ADSL2+, depending on the implementation.

ADSL2 interface

ADSL interface that supports ITU-T Standard G.992.3 and ITU-T Standard G.992.4. ADSL2 allocates
downstream (provider-to-customer) data rates of up to 12 Mbps and upstream (customer-to-provider)
rates of up to 1 Mbps.

ADSL2+ interface

ADSL interface that supports ITU-T Standard G.992.5. ADSL2+ allocates downstream (provider-to-
customer) data rates of up to 25 Mbps and upstream (customer-to-provider) rates of up to 1 Mbps.

AES

Advanced Encryption Standard. Defined in FIPS PUB 197. The AES algorithm uses keys of 128, 192, or
256 bits to encrypt and decrypt data in blocks of 128 bits.

aggregate route

Combination of groups of routes that have common addresses into a single entry in a route table.

aggregated interface

Logical bundle of physical interfaces. The aggregated interface is managed as a single interface with one
IP address. Network traffic is dynamically distributed across ports, so administration of data flowing
across a given port is done automatically within the aggregated link. Using multiple ports in parallel
provides redundancy and increases the link speed beyond the limits of any single port.

AH

Authentication header. A component of the IPSec protocol used to verify that the contents of a packet
have not changed, and to validate the identity of the sender.

ALI

ATM line interface. Interface between Asynchronous Transfer Mode (ATM) and 3G systems. See also ATM.

ANSI

http://lib.ommolketab.ir
http://lib.ommolketab.ir

American National Standards Institute. The U.S. representative to the ISO.

APN

Access point name. When mobile stations connect to IP networks over a wireless network, the GGSN uses
the APN to distinguish among the connected IP networks (known as APN networks). In addition to
identifying these connected networks, an APN is also a configured entity that hosts the wireless sessions,
which are called Packet Data Protocol (PDP) contexts.

APQ

Alternate priority queuing. Dequeuing method that has a special queue, similar to strict-priority queuing
(SPQ), which is visited only 50% of the time. The packets in the special queue still have a predictable
latency, although the upper limit of the delay is higher than that with SPQ. Since the other configured
queues share the remaining 50% of the service time, queue starvation is usually avoided. See also SPQ.

APS

Automatic Protection Switching. Technology used by SONET add/drop multiplexers (ADMs) to protect
against circuit faults between the ADM and a router and to protect against failing routers.

area

1.Routing subdomain that maintains detailed routing information about its own internal composition as
well as routing information that allows it to reach other routing subdomains. In Intermediate System-to-
Intermediate System Level 1 (IS-IS), an area corresponds to a Level 1 subdomain. 2. In IS-IS and Open
Shortest Path First (OSPF), a set of contiguous networks and hosts within an autonomous system (AS)
that have been administratively grouped together.

ARP

Address Resolution Protocol. Protocol used for mapping IPv4 addresses to media access control (MAC)
addresses. See also NDP.

AS

Autonomous system. Set of routers under a single technical administration. Each AS normally uses a
single Interior Gateway Protocol (IGP) and metrics to propagate routing information within the set of
routers. Also called a routing domain.

ASBR

Autonomous system boundary router. In Open Shortest Path First (OSPF), a router that exchanges
routing information with routers in other autonomous systems (ASs).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ASBR Summary LSA

OSPF link-state advertisement (LSA) sent by an area border router (ABR) to advertise the router ID of an
autonomous system boundary router (ASBR) across an area boundary. See also ASBR.

AS external link advertisement

OSPF link-state advertisement (LSA) sent by autonomous system boundary routers (ASBRs) to describe
external routes that they have detected. These LSAs are flooded throughout the autonomous system (AS)
(except for stub areas).

ASIC

Application-specific integrated circuit. Specialized processors that perform specific functions on the
router.

ASM

1. Adaptive Services Module. On a Juniper Networks M7i router, provides the same functionality as the
Adaptive Services PIC (ASP). 2. Any Source Multicast. A network that supports both one-to-many and
many-to-many communication models. An ASM network must determine all the sources of a group and
deliver all of them to interested subscribers.

ASP

Adaptive Services PIC. See adaptive services.

AS path

In the Border Gateway Protocol (BGP), the route to a destination. The path consists of the autonomous
system (AS) numbers of all routers that a packet must go through to reach a destination.

ATM

Asynchronous Transfer Mode. A high-speed multiplexing and switching method utilizing fixed-length cells
of 53 octets to support multiple types of traffic.

ATM-over-ADSL interface

Asynchronous Transfer Mode (ATM) interface used to send network traffic through a point-to-point
connection to a DSL access multiplexer (DSLAM). ATM-over-ADSL interfaces are intended for
asymmetrical digital subscriber line (ADSL) connections only, not for direct ATM connections.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

atomic

Smallest possible operation. An atomic operation is performed either entirely or not at all. For example, if
machine failure prevents a transaction from completing, the system is rolled back to the start of the
transaction, with no changes taking place.

AUC

Authentication center. Part of the Home Location Register (HLR) in third-generation (3G) systems;
performs computations to verify and authenticate a mobile phone user.

automatic policing

Policer that allows you to provide strict service guarantees for network traffic. Such guarantees are
especially useful in the context of differentiated services for traffic-engineered label-switched paths
(LSPs), providing better emulation for Asynchronous Transfer Mode (ATM) wires over a Multiprotocol
Label Switching (MPLS) network.

auto-negotiation

Used by Ethernet devices to configure interfaces automatically. If interfaces support different speeds or
different link modes (half duplex or full duplex), the devices attempt to settle on the lowest common
denominator.

autonomous system external link advertisement

OSPF link-state advertisement (LSA) sent by autonomous system boundary routers (ASBRs) to describe
external routes that they have detected. These LSAs are flooded throughout the autonomous system (AS)
(except for stub areas).

autonomous system path

In the Border Gateway Protocol (BGP), the route to a destination. The path consists of the autonomous
system (AS) numbers of all the routers a packet must pass through to reach a destination.

auto-RP

Method of electing and announcing the rendezvous point-to-group address mapping in a multicast
network. JUNOS software supports this vendor-proprietary specification. See also RP.

backbone area

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In Open Shortest Path First (OSPF), an area that consists of all networks in area ID 0.0.0.0, their
attached routers, and all area border routers (ABRs).

backbone router

Open Shortest Path First (OSPF) router with all operational interfaces within area 0.0.0.0.

backplane

See midplane.

backup designated router

Open Shortest Path First (OSPF) router on a broadcast segment that monitors the operation of the
designated router and takes over its functions if the designated router fails.

BA classifier

Behavior aggregate classifier. A method of classification that operates on a packet as it enters the router.
The packet header contents are examined, and this single field determines the class-of-service (CoS)
settings applied to the packet. See also multifield classifier.

bandwidth

Range of transmission frequencies that a network can use, expressed as the difference between the
highest and lowest frequencies of a transmission channel. In computer networks, greater bandwidth
indicates a faster data transfer rate capacity.

bandwidth model

In Differentiated-Services-aware traffic engineering, determines the value of the available bandwidth
advertised by the Interior Gateway Protocols (IGPs).

bandwidth on demand

1. A technique to temporarily provide additional capacity on a link to handle bursts in data,
videoconferencing, or other variable bit rate applications. Also called flexible bandwidth allocation. 2. On
a Services Router, an Integrated Services Digital Network (ISDN) cost-control feature defining the
bandwidth threshold that must be reached on links before a Services Router initiates additional ISDN data
connections to provide more bandwidth.

BBFD

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Bidirectional Forwarding Detection. A simple hello mechanism that detects failures in a network. Used
with routing protocols to speed up failure detection.

B-channel

Bearer channel. A 64 Kbps channel used for voice or data transfer on an Integrated Services Digital
Network (ISDN) interface. See also D-channel.

BECN

Backward explicit congestion notification. In a Frame Relay network, a header bit transmitted by the
destination device requesting that the source device send data more slowly. BECN minimizes the
possibility that packets will be discarded when more packets arrive than can be handled. See also FECN.

Bellman-Ford algorithm

Algorithm used in distance-vector routing protocols to determine the best path to all routes in the
network.

BERT

Bit error rate test. A test that can be run on the following interfaces to determine whether they are
operating properly: E1, E3, T1, T3, and channelized (DS3, OC3, OC12, and STM1) interfaces.

BGP

Border Gateway Protocol. Exterior gateway protocol used to exchange routing information among routers
in different autonomous systems (ASs).

bit field match conditions

Use of fields in the header of an IP packet as match criteria in a firewall filter.

bit rate

Number of bits transmitted per second.

BITS

Building Integrated Timing Source. Dedicated timing source that synchronizes all equipment in a
particular building.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Blowfish

Unpatented, symmetric cryptographic method developed by Bruce Schneier and used in many
commercial and freeware software applications. Blowfish uses variable-length keys of up to 448 bits.

BOOTP

Bootstrap protocol. A User Datagram Protocol (UDP)/IP-based protocol that allows a booting host to
configure itself dynamically and without user supervision. BOOTP provides a means to notify a host of its
assigned IP address, the IP address of a boot server host, and the name of a file to be loaded into
memory and executed. Other configuration information, such as the local subnet mask, the local time
offset, the addresses of default routers, and the addresses of various Internet servers, can also be
communicated to a host using BOOTP.

bootstrap router

Single router in a multicast network responsible for distributing candidate rendezvous point (RP)
information to all Physical Interface Module (PIM)-enabled routers.

BPDU

Bridge protocol data unit. A Spanning Tree Protocol hello packet that is sent out at intervals to exchange
information across bridges and detect loops in a network topology.

BRI

Basic Rate Interface. Integrated Services Digital Network (ISDN) interface intended for home and small
enterprise applications. BRI consists of two 64 Kbps B-channels to carry voice or data, and one 16 Kbps
D-channel for control and signaling. See also B-channel; D-channel.

bridge

Device that uses the same communications protocol to connect and pass packets between two network
segments. A bridge operates at Layer 2 of the Open Systems Interconnection (OSI) reference model.

broadcast

Operation of sending network traffic from one network node to all other network nodes.

BSC

Base station controller. Key network node in third-generation (3G) systems that supervises the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

functioning and control of multiple base transceiver stations.

BSS

Base station subsystem. Composed of the base transceiver station (BTS) and base station controller
(BSC).

BSSGP

Base Station System GPRS Protocol. Processes routing and quality-of-service (QoS) information for the
base station subsystem (BSS).

BTS

Base transceiver station. Mobile telephony equipment housed in cabinets and collocated with antennas.
(Also known as a radio base station.)

buffers

Memory space for handling data in transit. Buffers compensate for differences in processing speed
between network devices and handle bursts of data until they can be processed by slower devices.

bundle

1. Multiple physical links of the same type, such as multiple asynchronous lines, or physical links of
different types, such as leased synchronous lines and dial-up asynchronous lines. 2. Collection of software
that makes up a JUNOS software release.

bypass LSP

Carries traffic for a label-switched path (LSP) whose link-protected interface has failed. A bypass LSP uses
a different interface and path to reach the same destination.

CA

Certificate authority. A trusted third-party organization that creates, enrolls, validates, and revokes
digital certificates. The CA guarantees a user's identity and issues public and private keys for message
encryption and decryption (coding and decoding).

CAC

Call admission control. In Differentiated-Services-aware traffic engineering, checks for adequate

http://lib.ommolketab.ir
http://lib.ommolketab.ir

bandwidth on the path before the label-switched path (LSP) is established. If the bandwidth is
insufficient, the LSP is not established and an error is reported.

CAIDA

Cooperative Association for Internet Data Analysis. An association that provides tools and analyses
promoting the engineering and maintenance of a robust, scalable Internet infrastructure. One tool,
cflowd, allows you to collect an aggregate of sampled flows and send the aggregate to a specified host
that runs the cflowd application available from CAIDA.

callback

Alternative feature to dial-in that enables a J-series Services Router to call back the caller from the
remote end of a backup Integrated Services Digital Network (ISDN) connection. Instead of accepting a
call from the remote end of the connection, the router rejects the call, waits a configured period of time,
and calls a number configured on the router's dialer interface. See also dial-in.

caller ID

Telephone number of the caller on the remote end of a backup Integrated Services Digital Network
(ISDN) connection, used to dial in and to identify the caller. Multiple caller IDs can be configured on an
ISDN dialer interface. During dial-in, the router matches the incoming call's caller ID against the caller
IDs configured on its dialer interfaces. Each dialer interface accepts calls only from callers whose caller
IDs are configured on it.

CAMEL

Customized Applications of Mobile Enhanced Logic. An ETSI standard for GSM networks that enhances the
provision of Intelligent Network services.

candidate configuration

File maintained by the JUNOS software containing changes to the router's active configuration. This file
becomes the active configuration when a user issues the commit command.

candidate RP advertisements

Information sent by routers in a multicast network when they are configured as a local rendezvous point
(RP). This information is unicast to the bootstrap router (BSR) for the multicast domain.

carrier-of-carriers VPN

Virtual private network (VPN) service supplied to a network service provider that is supplying either
Internet service or VPN service to an end customer. For a carrier-of-carriers VPN, the customer's sites are

http://lib.ommolketab.ir
http://lib.ommolketab.ir

configured within the same autonomous system (AS).

CB

Control Board. On a T640 routing node, part of the host subsystem that provides control and monitoring
functions for router components.

CBC

Cipher block chaining. A mode of encryption using 64 or 128 bits of fixed-length blocks in which each
block of plain text is XORed with the previous cipher text block before being encrypted. See also XOR.

CBR

Constant bit rate. For ATM1 and ATM2 intelligent queuing (IQ) interfaces, data that is serviced at a
constant, repetitive rate. CBR is used for traffic that does not need to periodically burst to a higher rate,
such as nonpacketized voice and audio.

CCC

Circuit cross-connect. A JUNOS software feature that allows you to configure transparent connections
between two circuits. A circuit can be a Frame Relay data-link connection identifier (DLCI), an
Asynchronous Transfer Mode (ATM) virtual channel (VC), a Point-to-Point Protocol (PPP) interface, a Cisco
High-Level Data Link Control (HDLC) interface, or a Multiprotocol Label Switching (MPLS) label-switched
path (LSP).

CDMA

Code Division Multiple Access. Technology for digital transmission of radio signals between, for example,
a mobile telephone and a base transceiver station (BTS).

CDMA2000

Radio transmission and backbone technology for the evolution to third-generation (3G) mobile networks.

CDR

Call Detail Record. A record containing data (such as origination, termination, length, and time of day)
unique to a specific call.

CE device

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Customer edge device. Router or switch in the customer's network that is connected to a service
provider's provider edge (PE) router and participates in a Layer 3 virtual private network (VPN).

cell relay

Data transmission technology based on the use of small, fixed-size packets (cells) that can be processed
and switched in hardware at high speeds. Cell relay is the basis for many high-speed network protocols,
including Asynchronous Transfer Mode (ATM) and IEEE 802.6.

cell-relay mode

Layer 2 circuit transport mode that sends Asynchronous Transfer Mode (ATM) cells between ATM2
intelligent queuing (IQ) interfaces over a Multiprotocol Label Switching (MPLS) core network. You use
Layer 2 circuit cell-relay transport mode to tunnel a stream of ATM cells over an MPLS or IP backbone.
See also AAL5 mode; Layer 2 circuits; standard AAL5 mode; trunk mode.

cell tax

Physical transmission capacity used by header information when sending data packets in an
Asynchronous Transfer Mode (ATM) network. Each ATM cell uses a 5-byte header.

CFEB

Compact Forwarding Engine Board. In M7i and M10i routers, provides route lookup, filtering, and
switching to the destination port.

cflowd

Application available from CAIDA that collects an aggregate of sampled flows and sends the aggregate to
a specified host running the cflowd application.

CFM

Cubic feet per minute. Measure of air flow in volume per minute.

channel

Communication circuit linking two or more devices. A channel provides an input/output interface between
a processor and a peripheral device, or between two systems. A single physical circuit can consist of one
or many channels, or two systems carried on a physical wire or wireless medium. For example, the
dedicated channel between a telephone and the central office (CO) is a twisted-pair copper wire. See also
frequency-division multiplexed channel; time-division multiplexed channel.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

channel group

Combination of DS0 interfaces partitioned from a channelized interface into a single logical bundle.

channelized E1

A 2.048 Mbps interface that can be configured as a single clear-channel E1 interface or channelized into
as many as 31 discrete DS0 interfaces. On most channelized E1 interfaces, time slots are numbered from
1 through 32, and time slot 1 is reserved for framing. On some legacy channelized E1 interfaces, time
slots are numbered from 0 through 31, and time slot 0 is reserved for framing.

channelized interface

Interface that is a subdivision of a larger interface, minimizing the number of Physical Interface Cards
(PICs) or Physical Interface Modules (PIMs) that an installation requires. On a channelized PIC or PIM,
each port can be configured as a single clear channel or partitioned into multiple discrete T3, T1, E1, and
DS0 interfaces, depending on the size of the channelized PIC or PIM.

channelized T1

A 1.544 Mbps interface that can be configured as a single clear-channel T1 interface or channelized into
as many as 24 discrete DS0 interfaces. Time slots are numbered from 1 through 24.

CHAP

Challenge Handshake Authentication Protocol. A protocol that authenticates remote users. CHAP is a
server-driven, three-step authentication mechanism that depends on a shared secret password that
resides on both the server and the client.

chassisd

Chassis daemon. A JUNOS software process responsible for managing the interaction of the router's
physical components.

CIDR

Classless interdomain routing. A method of specifying Internet addresses in which you explicitly specify
the bits of the address to represent the network address instead of determining this information from the
first octet of the address.

CIP

Connector Interface Panel. On an M160 router, the panel that contains connectors for the Routing Engines

http://lib.ommolketab.ir
http://lib.ommolketab.ir

(REs), BITS interfaces, and alarm relay contacts.

CIR

Committed information rate. The CIR specifies the average rate at which packets are admitted to the
network. As each packet enters the network, it is counted. Packets that do not exceed the CIR are
marked green, which corresponds to low-loss priority. Packets that exceed the CIR but are below the
peak information rate (PIR) are marked yellow, which corresponds to medium loss priority. See also
trTCM; PIR.

Cisco-RP-Announce

Message advertised into a multicast network by a router configured as a local rendezvous point (RP) in an
auto-RP network. A Cisco-RP-Announce message is advertised in a dense-mode Physical Interface Module
(PIM) to the 224.0.1.39 multicast group address.

Cisco-RP-Discovery

Message advertised by the mapping agent in an auto-RP network. A Cisco-RP-Discovery message
contains the rendezvous point (RP) to multicast group address assignments for the domain. It is
advertised in a dense-mode Physical Interface Module (PIM) to the 224.0.1.40 multicast group address.

classification

In class of service (CoS), the examination of an incoming packet that associates the packet with a
particular CoS servicing level. There are two kinds of classifiers: behavior aggregate (BA) and multifield.
See also BA classifier; multifield classifier.

classifier

Method of reading a sequence of bits in a packet header or label and determining how the packet should
be forwarded internally and scheduled (queued) for output.

class type

In Differentiated-Services-aware traffic engineering, a collection of traffic flows which are treated equally
in a Differentiated Services domain. A class type maps to a queue and is much like a class-of-service
(CoS) forwarding class in concept. It is also known as a traffic class.

clear channel

Interface configured on a channelized Physical Interface Card (PIC) or Physical Interface Module (PIM)
that operates as a single channel, does not carry signaling, and uses the entire port bandwidth.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CLEC

(Pronounced "see-lek".) Competitive local exchange carrier. Company that competes with the already
established local telecommunications business by providing its own network and switching.

CLEI

Common Language Equipment Identifier. Inventory code used to identify and track telecommunications
equipment.

CLI

Command-line interface. Interface provided for configuring and monitoring the routing protocol software.

client peer

In a Border Gateway Protocol (BGP) route reflection, a member of a cluster that is not the route reflector.
See also nonclient peer.

CLNP

Connectionless Network Protocol. An ISO-developed protocol for an Open Systems Interconnection (OSI)
connectionless network service. CLNP is the OSI equivalent of IP.

CLNS

Connectionless Network Service. A Layer 3 protocol, similar to Internet Protocol version 4 (IPv4). CLNS
uses network service access points (NSAPs) instead of the prefix addresses found in IPv4 to specify end
systems and intermediate systems.

cluster

In the Border Gateway Protocol (BGP), a set of routers that have been grouped together. A cluster
consists of one system that acts as a route reflector, along with any number of client peers. The client
peers receive their route information only from the route reflector system. Routers in a cluster do not
need to be fully meshed.

CO

Central office. The local telephone company building that houses circuit-switching equipment used for
subscriber lines in a given area.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

code-point alias

Name assigned to a pattern of code-point bits. This name is used, instead of the bit pattern, in the
configuration of other class-of-service (CoS) components such as classifiers, drop-profile maps, and
rewrite rules.

command completion

Function of a router's command-line interface (CLI) that allows a user to enter only the first few
characters in any command. Users access this function through the Space bar or Tab key.

commit

JUNOS software command-line interface (CLI) configuration-mode command that saves changes made to
a router configuration, verifies the syntax, applies the changes to the configuration currently running on
the router, and identifies the resultant file as the current operational configuration.

commit script

Script that enforces custom configuration rules. A script runs each time a new candidate configuration is
committed and inspects the configuration. If a configuration breaks your custom rules, the script can
generate actions for the JUNOS software.

commit script macro

Sequence of commands that allow you to create custom configuration syntax to simplify the task of
configuring a routing platform. By itself, your custom syntax has no operational impact on the routing
platform. A corresponding commit script macro uses your custom syntax as input data for generating
standard JUNOS configuration statements that execute your intended operation.

community

1. In the Border Gateway Protocol (BGP), a group of destinations that share a common property.
Community information is included as one of the path attributes in BGP update messages. 2. In the
Simple Network Management Protocol (SNMP), an authentication scheme that authorizes SNMP clients
based on the source IP address of incoming SNMP packets, defines which Management Information Base
(MIB) objects are available, and specifies the operations (read-only or read-write) allowed on those
objects.

confederation

In the Border Gateway Protocol (BGP), a group of systems that appears to external autonomous systems
(ASs) as a single AS.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

configuration mode

JUNOS software mode that allows a user to alter the router's current configuration.

Connect

Border Gateway Protocol (BGP) neighbor state in which the local router has initiated the Transmission
Control Protocol (TCP) session and is waiting for the remote peer to complete the TCP connection.

constrained path

In traffic engineering, a path determined using the CSPF algorithm. The ERO carried in the Resource
Reservation Protocol (RSVP) packets contains the constrained path information. See also ERO.

context node

Node that the Extensible Stylesheet Language for Transformations (XSLT) processor is currently
examining. XSLT changes the context as it traverses the XML document's hierarchy. See also XSLT.

context-sensitive help

Function of the router's command-line interface (CLI) that allows a user to request information on the
JUNOS software hierarchy. You can access context-sensitive help in both operational and configuration
modes.

contributing routes

Active IP routes in the route table that share the same most-significant bits and are more specific than an
aggregate or generated route.

control plane

Virtual network path used to set up, maintain, and terminate data plane connections. See also data
plane.

core

Central backbone of the network.

CoS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class of service. Method of classifying traffic on a packet-by-packet basis using information in the type-
of-service (ToS) byte to provide different service levels to different traffic.

cosd

Class-of-service (CoS) process that enables the routing platform to provide different levels of service to
applications based on packet classifications.

CPE

Customer premises equipment. Telephone, modem, router, or other service provider equipment located
at a customer site.

craft interface

Mechanisms used by a Communication Workers of America craftsperson to operate, administer, and
maintain equipment or provision data communications. On a Juniper Networks router, the craft interface
allows you to view status and troubleshooting information and perform system control functions.

CRL

Certificate revocation list. A list of digital certificates that have been invalidated, including the reasons for
revocation and the names of the entities that issued them. A CRL prevents usage of digital certificates
and signatures that have been compromised.

CRTP

Compressed Real-Time Transport Protocol. Protocol that decreases the size of the IP, User Datagram
Protocol (UDP), and Real-Time Transport Protocol (RTP) headers and works with reliable and fast point-
to-point links for Voice over IP traffic. CRTP is defined in RFC 2508.

Crypto Accelerator Module

Processor card that speeds up certain cryptographic IP Security (IPSec) services on some J-series
Services Routers. For the supported cryptographic algorithms, see the J-series documentation.

Crypto Officer

Superuser responsible for the proper operation of a router running JUNOS-FIPS software.

CSCP

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class Selector code point. Eight Differentiated-Services code point (DSCP) values of the form xxx000
(where x can be 0 or 1). Defined in RFC 2474.

CSNP

Complete sequence number PDU. Packet that contains a complete list of all the label-switched paths
(LSPs) in the Intermediate System-to-Intermediate System Level 1 (IS-IS) database.

CSP

Critical Security Parameter. On routers running JUNOS-FIPS software, a collection of cryptographic keys
and passwords that must be protected at all times.

CSPF

Constrained Shortest Path First. A Multiprotocol Label Switching (MPLS) algorithm that has been modified
to take into account specific restrictions when calculating the shortest path across the network.

CSU/DSU

Channel service unit/data service unit. A channel service unit connects a digital phone line to a
multiplexer or other digital signal device. A data service unit connects a data terminal equipment (DTE)
device to a digital phone line.

CVS

Concurrent Versions System. A widely used version control system for software development or data
archives.

daemon

Background process that performs operations for the system software and hardware. Daemons normally
start when the system software is booted, and they run as long as the software is running. In JUNOS
software, daemons are also referred to as processes.

damping

Method of reducing the number of update messages sent between Border Gateway Protocol (BGP) peers,
thereby reducing the load on these peers without adversely affecting the route convergence time for
stable routes.

database description packet

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Open Shortest Path First (OSPF) packet type used in the formation of an adjacency. The packet sends
summary information about the local router's database to the neighboring router.

data-MDT

Data-driven multicast distribution tree (MDT) tunnel. A multicast tunnel created and deleted based on
defined traffic loads and designed to ease loading on the default MDT tunnel.

data packet

Chunk of data transiting the router from the source to a destination.

data plane

Virtual network path used to distribute data between nodes. See also control plane.

dcd

Device control process. A JUNOS software interface process (daemon).

DCE

Data circuit-terminating equipment. An RS-232-C device, typically used for a modem or printer, or a
network access and packet switching node.

D-channel

Delta channel. A circuit-switched channel that carries signaling and control for B-channels. In Basic Rate
Interface (BRI) applications, it can also support customer packet data traffic at speeds up to 9.6 Kbps.
See also B-channel; BRI.

DCU

Destination class usage. A means of tracking traffic originating from specific prefixes on the customer
edge router and destined for specific prefixes on the provider core router, based on the IP source and
destination addresses.

DE

Discard-eligible bit. In a Frame Relay network, a header bit notifying devices on the network that traffic
can be dropped during congestion to ensure the delivery of higher-priority traffic.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

deactivate

Method of modifying the router's active configuration. Portions of the hierarchy marked as inactive using
this command are ignored during the router's commit process as though they were not configured at all.

dead interval

Amount of time that an Open Shortest Path First (OSPF) router maintains a neighbor relationship before
declaring that neighbor as no longer operational. The JUNOS software uses a default value of 40 seconds
for this timer.

dead peer detection

See DPD.

default address

Router address that is used as the source address on unnumbered interfaces.

default route

Route used to forward IP packets when a more specific route is not present in the route table. Often
represented as 0.0.0.0/0, the default route is sometimes referred to as the route of last resort.

demand circuit

Network segment whose cost varies with usage, according to a service level agreement (SLA) with a
service provider. Demand circuits limit traffic based on either bandwidth (bits or packets transmitted) or
access time. See also multicast.

dense mode

Method of forwarding multicast traffic to interested listeners. Dense mode forwarding assumes that most
of the hosts on the network will receive the multicast data. Routers flood packets and prune unwanted
traffic every three minutes.

DES

Data Encryption Standard. A method for encrypting information using a 56-bit key. Considered to be a
legacy method and insecure for many applications.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

designated router

In Open Shortest Path First (OSPF), a router selected by other routers that is responsible for sending link-
state advertisements (LSAs) that describe the network, thereby reducing the amount of network traffic
and the size of the routers' topological databases.

destination prefix length

Number of bits of the network address used for the host portion of a classless interdomain routing (CIDR)
IP address.

DFC

Dynamic flow capture. Process of collecting packet flows that match a particular filter list to one or more
content destinations using an on-demand control protocol that relays requests from one or more control
sources.

DHCP

Dynamic Host Configuration Protocol. Allocates IP addresses dynamically so that they can be reused when
no longer needed.

dial backup

Feature that reestablishes network connectivity through one or more backup Integrated Services Digital
Network (ISDN) dialer interfaces after a primary interface fails. When the primary interface is
reestablished, the ISDN interface is disconnected.

dialer filter

Stateless firewall filter that enables dial-on-demand routing backup when applied to a physical Integrated
Services Digital Network (ISDN) interface and its dialer interface configured as a passive static route. The
passive static route has a lower priority than dynamic routes. If all dynamic routes to an address are lost
from the route table and the router receives a packet for that address, the dialer interface initiates an
ISDN backup connection and sends the packet over it. See also dial-on-demand routing (DDR) backup;
floating static route.

dialer interface (dl)

Logical interface for configuring dialing properties and the control interface for a backup Integrated
Services Digital Network (ISDN) connection.

dialer profile

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Set of characteristics configured for the Integrated Services Digital Network (ISDN) dialer interface.
Dialer profiles allow the configuration of physical interfaces to be separated from the logical configuration
of dialer interfaces required for ISDN connectivity. This feature also allows physical and logical interfaces
to be bound together dynamically on a per- connection basis.

dialer watch

Dial-on-demand routing (DDR) backup feature that provides reliable connectivity without relying on a
dialer filter to activate the Integrated Services Digital Network (ISDN) interface. The ISDN dialer interface
monitors the existence of each route on a watch list. If all routes on the watch list are lost from the route
table, dialer watch initiates the ISDN interface for failover connectivity. See also dial-on-demand routing
(DDR) backup.

dial-in

Feature that enables J-series Services Routers to receive calls from the remote end of a backup
Integrated Services Digital Network (ISDN) connection. The remote end of the ISDN call might be a
service provider, a corporate central location, or a customer premises equipment (CPE) branch office. All
incoming calls can be verified against caller IDs configured on the router's dialer interface. See also
callback.

dial-on-demand routing (DDR) backup

Feature that provides a J-series Services Router with full-time connectivity across an Integrated Services
Digital Network (ISDN) line. When routes on a primary serial T1, E1, T3, E3, Fast Ethernet, or Point-to-
Point Protocol over Ethernet (PPPoE) interface are lost, an ISDN dialer interface establishes a backup
connection. To save connection time costs, the Services Router drops the ISDN connection after a
configured period of inactivity. Services Routers with ISDN interfaces support two types of DDR backup:
on-demand routing with a dialer filter and with a dialer watch. See also dialer filter; dialer watch.

Differentiated-Services-aware traffic engineering

Type of constraint-based routing that can enforce different bandwidth constraints for different classes of
traffic. It can also perform call admission control (CAC) on each traffic engineering class when a label-
switched path (LSP) is established.

Differentiated Services domain

Routers in a network that have Differentiated Services enabled.

Diffie-Hellman

Method of key exchange across a nonsecure environment, such as the Internet. The Diffie-Hellman
algorithm negotiates a session key without sending the key itself across the network by allowing each
party to pick a partial key independently and send part of it to each other. Each side then calculates a
common key value. This is a symmetrical method, and keys are typically used for only a short time, then

http://lib.ommolketab.ir
http://lib.ommolketab.ir

discarded and regenerated.

DiffServ

Differentiated Services (based on RFC 2474). DiffServ uses the type-of-service (ToS) byte to identify
different packet flows on a packet-by-packet basis. DiffServ adds a Class Selector code point (CSCP) and
a Differentiated Services code point (DSCP).

DiffServ-aware

Paradigm that gives different treatment to traffic based on the experimental (EXP) bits in the
Multiprotocol Label Switching (MPLS) label header and allows you to provide multiple classes of service
(CoS).

digital certificate

Electronic file based on private and public key technology that verifies the identity of the certificate's
holder to protect data exchanged online. Digital certificates are issued by a certificate authority (CA).

Dijkstra algorithm

See SPF.

DIMM

Dual inline memory module. A 168-pin memory module that supports 64-bit data transfer.

direct routes

See interface routes.

disable

Method of modifying the router's active configuration. When portions of the hierarchy are marked as
disabled (mainly router interfaces), the router uses the configuration but ignores the disabled portions.

discard

JUNOS software syntax command used in a routing policy or a firewall filter. The command halts the
logical processing of the policy or filter when a set of match conditions is met. The specific route or IP
packet is dropped from the network silently. It can also be a next hop attribute assigned to a route in the
route table.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

distance-vector

Method used in Bellman-Ford routing protocols to determine the best path to all routers in the network.
Each router determines the distance (metric) to the destination and the vector (next hop) to follow.

Distributed Buffer Manager ASIC

Juniper Networks ASIC responsible for managing the router's packet storage memory.

DLCI

Data-link connection identifier. Identifier for a Frame Relay virtual connection (also called a logical
interface).

DLSw

Data link switching. Method of tunneling IBM System Network Architecture (SNA) and NetBIOS traffic
over an IP network. (The JUNOS software does not support NetBIOS.) See also tunneling protocol.

DLSw circuit

Path formed by establishing data link control (DLC) connections between an end system and a local
router configured for DLSw. Each DLSw circuit is identified by the circuit ID that includes the end system
method authenticity check address, local service access point (LSAP), and DLC port ID. Multiple DLSw
circuits can operate over the same DLSw connection.

DLSw connection

Set of Transmission Control Protocol (TCP) connections between two data link switching (DLSw) peers
that is established after the initial handshake and successful capabilities exchange.

DNS

Domain Name System. A system that stores information about hostnames and domain names. DNS
provides an IP address for each hostname and lists the email exchange servers accepting email addresses
for each domain.

DoS

Denial of service. A system security breach in which network services become unavailable to users.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DPD

Dead peer detection. Protocol that recognizes the loss of the primary IPSec Internet Key Exchange (IKE)
peer and establishes a secondary IPSec tunnel to a backup peer.

DRAM

Dynamic random access memory. Storage source on the router that can be accessed quickly by a
process.

drop probability

Percentage value that expresses the likelihood that an individual packet will be dropped from the
network. See also drop profile.

drop profile

Mechanism of random early detection (RED) that defines parameters that allow packets to be dropped
from the network. When you configure drop profiles, there are two important values: the queue fullness
and the drop probability. See also drop probability; queue fullness; RED.

DSAP

Destination service access point. Service access point (SAP) that identifies the destination for which a
logical link control protocol data unit (LPDU) is intended.

DS0

Digital signal level 0. In T-carrier systems, a basic digital signaling rate of 64 Kbps. The DS0 rate forms
the basis for the North American digital multiplex transmission hierarchy.

DS1

Digital signal level 1. In T-carrier systems, a digital signaling rate of 1.544 Mbps. A standard used in
telecommunications to transmit voice and data among devices. Also known as T1. See also T1.

DS3

Digital signal level 3. In T-carrier systems, a digital signaling rate of 44.736 Mbps. This level of carrier
can transport 28 DS1-level signals and 672 DS0-level channels within its payload. Also known as T3. See
also T3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DSCP

Differentiated Services code point or DiffServ code point. Values for a 6-bit field defined for IPv4 and IPv6
packet headers that can be used to enforce class-of-service (CoS) distinctions in routers.

DSU

Data service unit. A device used to connect data terminal equipment (DTE) to a digital phone line. DSU
converts digital data from a router to voltages and encoding required by the phone line. See also
CSU/DSU.

DTCP

Dynamic Tasking Control Protocol. A means of communicating filter requests and acknowledgments
between one or more clients and a monitoring platform, used in dynamic flow capture (DFC) and flow-tap
configurations. The protocol is defined in Internet draft draft-cavuto-dtcp-00.txt.

DTD

Document type definition. Defines the elements and structure of an Extensible Markup Language (XML)
document or data set.

DTE

Data terminal equipment. An RS-232-C interface that a computer uses to exchange information with a
serial device.

DVMRP

Distance Vector Multicast Routing Protocol. Distributed multicast routing protocol that dynamically
generates IP multicast delivery trees using a technique called reverse-path multicasting (RPM) to forward
multicast traffic to downstream interfaces.

DWDM

Dense wavelength-division multiplexing. Technology that enables data from different sources to be
carried together on an optical fiber, with each signal carried on its own separate wavelength.

dynamic label-switched path

Multiprotocol Label Switching (MPLS) network path established by signaling protocols such as the
Resource Reservation Protocol (RSVP) and Label Distribution Protocol (LDP).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

E1

High-speed WAN digital communications protocol that operates at a rate of 2.048 Mbps.

E3

High-speed WAN digital communications protocol that operates at a rate of 34.368 Mbps and uses time-
division multiplexing to carry 16 E1 circuits.

EAL3

Common Criteria Evaluation Assurance Level 3. Evaluation Assurance Level is an assurance and
compliance requirement defined by Common Criteria. Higher levels have more stringent requirements.

EBGP

External BGP. A Border Gateway Protocol (BGP) configuration in which sessions are established between
routers in different autonomous systems (ASs).

E-carrier

E stands for European. Standards that form part of the Synchronous Digital Hierarchy (SDH), in which
groups of E1 circuits are bundled onto higher-capacity E3 links between telephone exchanges or
countries. E-carrier standards are used just about everywhere in the world except North America and
Japan, and are incompatible with the T-carrier standards.

ECC

Error checking and correction. The process of detecting errors during the transmission or storage of
digital data and correcting them automatically. This usually involves sending or storing extra bits of data
according to specified algorithms.

ECSA

Exchange Carriers Standards Association. A standards organization created after the divestiture of the
Bell System to represent the interests of interexchange carriers.

edge router

In Multiprotocol Label Switching (MPLS), a router located at the beginning or end of a label-switching
tunnel. An edge router at the beginning of a tunnel applies labels to new packets entering the tunnel. An
edge route at the end of a tunnel removes labels from packets exiting the tunnel. See also MPLS.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

editor macros (Emacs)

Shortcut keystrokes used within the router's command-line interface (CLI). These macros move the
cursor and delete characters based on the sequence you specify.

EGP

Exterior Gateway Protocol. An example is the Border Gateway Protocol (BGP).

egress router

In Multiprotocol Label Switching (MPLS), the last router in a label-switched path (LSP). See also ingress
router.

EIA

Electronic Industries Association. A U.S. trade group that represents manufacturers of electronic devices
and sets standards and specifications.

EIA-530

Serial interface that employs the EIA-530 standard for the interconnection of data terminal equipment
(DTE) and data circuit-terminating equipment (DCE).

EIR

Equipment identity register. A mobile network database that contains information about devices using the
network.

embedded OS software

Software used by a Juniper Networks router to operate the physical router components.

EMI

Electromagnetic interference. Any electromagnetic disturbance that interrupts, obstructs, or otherwise
degrades or limits the effective performance of electronics or electrical equipment.

end system

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In Intermediate System-to-Intermediate System Level 1 (IS-IS), a network entity that sends and
receives packets.

EPD

Early packet discard. For ATM2 interfaces only, a limit on the number of transmit packets that can be
queued. Packets that exceed the limit are dropped. See also queue length.

ERO

Explicit Route Object. An extension to the Resource Reservation Protocol (RSVP) that allows an RSVP
PATH message to traverse an explicit sequence of routers that is independent of conventional shortest-
path IP routing.

ESD

Electrostatic discharge. Stored static electricity that can damage electronic equipment and impair
electrical circuitry when released.

ES-IS

End System-to-Intermediate System. Protocol that resolves Layer 3 ISO network service access points
(NSAPs) to Layer 2 addresses. ES-IS resolution is similar to the way the Address Resolution Protocol
(ARP) resolves Layer 2 addresses for IPv4.

ESP

Encapsulating Security Payload. A protocol for securing packet flows for IPSec using encryption, data
integrity checks, and sender authentication, which are added as a header to an IP packet. If an ESP
packet is successfully decrypted, and no other party knows the secret key the peers share, the packet
was not wiretapped in transit. See also AH.

Established

Border Gateway Protocol (BGP) neighbor state that represents a fully functional BGP peering session.

Ethernet

Local area network (LAN) technology used for transporting information from one location to another,
formalized in the IEEE standard 802.3. Ethernet uses either coaxial cable or twisted-pair cable.
Transmission speeds for data transfer range from the original 10 Mbps, to Fast Ethernet at 100 Mbps, to
Gigabit Ethernet at 1000 Mbps.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ETSI

European Telecommunications Standardization Institute. A nonprofit organization that produces voluntary
telecommunications standards used throughout Europe.

eventd

Event policy process that performs configured actions in response to events on a routing platform that
trigger system log messages.

exact

JUNOS software routing policy match type that represents only the route specified in a route filter.

exception packet

IP packet that is not processed by the normal packet flow through the Packet Forwarding Engine (PFE).
Exception packets include local delivery information, expired Time to Live (TTL) packets, and packets with
an IP option specified.

Exchange

Open Shortest Path First (OSPF) adjacency state in which two neighboring routers are actively sending
database description packets to each other to exchange their database contents.

EXP bits

Experimental bits, also known as the class-of-service (CoS) bits, located in each Multiprotocol Label
Switching (MPLS) label and used to encode the CoS value of a packet as it traverses a label-switched
path (LSP).

export

Placing of routes from the route table into a routing protocol.

ExStart

Open Shortest Path First (OSPF) adjacency state in which the neighboring routers negotiate to determine
which router is in charge of the synchronization process.

Extensible Markup Language

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See XML.

external metric

Cost included in a route when Open Shortest Path First (OSPF) exports route information from external
autonomous systems (ASs). There are two types of external metrics: Type 1 and Type 2. Type 1 external
metrics are equivalent to the link-state metric; that is, the cost of the route, used in the internal AS. Type
2 external metrics are greater than the cost of any path internal to the AS.

FA

Forwarding adjacency. Resource Reservation Protocol (RSVP) label-switched path (LSP) tunnel through
which one or more other RSVP LSPs can be tunneled.

fabric schedulers

Identify a packet as high or low priority based on its forwarding class, and associate schedulers with the
fabric priorities.

failover

Process by which a standby or secondary system component automatically takes over the functions of an
active or primary component when the primary component fails or is temporarily shut down or removed
for servicing. During failover, the system continues to perform normal operations with little or no
interruption in service. See also GRES.

Fast Ethernet

Term encompassing a number of Ethernet standards that carry traffic at the nominal rate of 100 Mbps,
instead of the original Ethernet speed of 10 Mbps. See also Ethernet; Gigabit Ethernet.

fast port

Fast Ethernet port on a J4300 Services Router, and either a Fast Ethernet port or DS3 port on a J6300
Services Router. Only enabled ports are counted. A two-port Fast Ethernet Physical Interface Module
(PIM) with one enabled port counts as one fast port. The same PIM with both ports enabled counts as two
fast ports.

fast reroute

Mechanism for automatically rerouting traffic on a label-switched path (LSP) if a node or link in an LSP
fails, thus reducing the loss of packets traveling over the LSP.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FBF

Filter-based forwarding. A filter that classifies packets to determine their forwarding path within a router.
FBF is used to redirect traffic for analysis.

FCS

Frame check sequence. A calculation that is added to a frame for error control. FCS is used in High-Level
Data Link Control (HDLC), Frame Relay, and other data-link layer protocols.

FDDI

Fiber Distributed Data Interface. A set of ANSI protocols for sending digital data over fiber-optic cable.
FDDI networks are token-passing networks and support data rates of up to 100 Mbps (100 million bits).
FDDI networks are typically used as backbones for WANs.

FEAC

Far-end alarm and control. A T3 signal used to send alarm or status information from the far-end
terminal back to the near-end terminal, and to initiate T3 loopbacks at the far-end terminal from the
near-end terminal.

FEB

Forwarding Engine Board. In M5 and M10 routers, provides route lookup, filtering, and switching to the
destination port.

FEC

Forwarding equivalence class. Criterion used to forward a set of packets, with similar or identical
characteristics, using the same Multiprotocol Label Switching (MPLS) label. Forwarding equivalence
classes are defined in the base Label Distribution Protocol (LDP) specification and can be extended
through the use of additional parameters. FECs are also represented in other LDPs.

FECN

Forward explicit congestion notification. In a Frame Relay network, a header bit transmitted by the source
device requesting that the destination device slow down its requests for data. FECN and backward explicit
congestion notification (BECN) minimize the possibility that packets will be discarded when more packets
arrive than can be handled. See also BECN.

FIFO

http://lib.ommolketab.ir
http://lib.ommolketab.ir

First in, first out. Scheduling method in which the first data packet stored in the queue is the first data
packet removed from the queue. All JUNOS software interface queues operate in this mode by default.

filter

Process or device that screens packets based on certain characteristics, such as source address,
destination address, or protocol, and forwards or discards packets that match the filter. Filters are used
to control data packets or local packets. See also packet.

FIPS

Federal Information Processing Standards. Defines, among other things, security levels for computer and
networking equipment. FIPS is usually applied to military environments.

firewall

Security gateway positioned between two networks, usually between a trusted network and the Internet.
A firewall ensures that all traffic that crosses it conforms to the organization's security policy. Firewalls
track and control communications, deciding whether to pass, reject, discard, encrypt, or log them.
Firewalls also can be used to secure sensitive portions of a local network.

firewall filter

See stateful firewall filter; stateless firewall filter.

firmware

Instructions and data programmed directly into the circuitry of a hardware device for the purpose of
controlling the device. Firmware is used for vital programs that must not be lost when the device is
powered off.

first in, first out

See FIFO.

flap damping

See damping.

flapping

See route flapping.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

flash drive

Nonvolatile memory card in Juniper Networks M-series and T-series routing platforms used for storing a
copy of the JUNOS software and the current and most recent router configurations. It also typically acts
as the primary boot device.

Flexible PIC Concentrator

See FPC.

floating static route

Route with an administrative distance greater than the administrative distance of the dynamically learned
versions of the same route. The static route is used only when the dynamic routes are no longer
available. When a floating static route is configured on an interface with a dialer filter, the interface can
be used for backup.

flood and prune

Method of forwarding multicast data packets in a dense-mode network. Flooding and pruning occur every
three minutes.

flow

Stream of routing information and packets, which are handled by the Routing Engine (RE) and the Packet
Forwarding Engine (PFE). The RE handles the flow of routing information between the routing protocols
and the route tables and between the route tables and the forwarding tables, as well as the flow of local
packets from the router physical interfaces to the RE. The PFE handles the flow of data packets into and
out of the router's physical interfaces.

flow collection interface

Interface that combines multiple cflowd records into a compressed ASCII data file and exports the file to
an FTP server for storage and analysis, allowing users to manipulate the output from traffic monitoring
operations.

flow control action

JUNOS software syntax used in a routing policy or firewall filter. It alters the default logical processing of
the policy or filter when a set of match conditions is met.

flow monitoring

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Application that monitors the flow of traffic and enables lawful interception of packets transiting between
two routers. Traffic flows can be passively monitored by an offline router or actively monitored by a
router participating in the network.

flow-tap application

Application that uses Dynamic Tasking Control Protocol (DTCP) requests to intercept IPv4 packets in an
active monitoring router and send a copy of packets that match filter criteria to one or more content
destinations. Flow-tap configurations can be used in flexible trend analysis for detecting new security
threats and lawfully intercepting data.

forwarding classes

Affect the forwarding, scheduling, and marking policies applied to packets as they transit a routing
platform. The forwarding class plus the loss priority define the per-hop behavior. Also known as ordered
aggregates in the IETF Differentiated Services architecture.

forwarding table

JUNOS software forwarding information base. The JUNOS routing protocol process installs active routes
from its route tables into the Routing Engine (RE) forwarding table. The kernel copies this forwarding
table into the Packet Forwarding Engine (PFE), which determines which interface transmits the packets.

FPC

Flexible PIC Concentrator. An interface concentrator on which Physical Interface Cards (PICs) are
mounted. An FPC is inserted into a slot in a Juniper Networks router. See also PIC.

fractional E1

Interface that contains one or more of the 32 DS0 time slots that can be reserved from an E1 interface.
(The first time slot is reserved for framing.)

fractional interface

Interface that contains one or more DS0 time slots reserved from an E1 or T1 interface. Fractional
interfaces allow service providers to provision part of one E1 or T1 interface to one customer and the
other part to another customer. The individual fractional interfaces connect to different destinations, and
customers pay for only the bandwidth fraction used and not for the entire E1 or T1 interface.

Fractional interfaces can be configured on both channelized Physical Interface Cards (PICs) and Physical
Interface Modules (PIMs) and unchannelized, regular E1 and T1 PICs and PIMs.

fractional T1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Interface that contains one or more of the 24 DS0 time slots that can be reserved from a T1 interface.

fragmentation

In the Transmission Control Protocol/Internet Protocol (TCP/IP), the process of breaking packets into the
smallest maximum size packet data unit (PDU) supported by any of the underlying networks. In the OSI
reference model, this process is known as segmentation. For JUNOS applications, split Layer 3 packets
can then be encapsulated in Multilink Frame Relay (MLFR) or the Multilink Point-to-Point Protocol (MLPPP)
for transport.

Frame Relay

Efficient replacement for the older X.25 protocol that does not require explicit acknowledgment of each
frame of data. Frame Relay allows private networks to reduce costs by using shared facilities between the
endpoint switches of a network managed by a Frame Relay service provider. Individual data-link
connection identifiers (DLCIs) are assigned to ensure that each customer receives only its own traffic.

frequency-division multiplexed channel

Signals carried at different frequencies and transmitted over a single wire or wireless medium.

FRF

Frame Relay Forum. A technical committee that promotes Frame Relay by negotiating agreements and
developing standards.

FRF.15

End-to-end Frame Relay Implementation Agreement. An implementation of Multilink Frame Relay (MLFR)
using multiple virtual connections to aggregate logical bandwidth for end-to-end Frame Relay. Released
by the Frame Relay Forum.

FRF.16

Multilink Frame Relay Implementation Agreement. An implementation of Multilink Frame Relay (MLFR) in
which a single logical connection is provided by multiplexing multiple physical interfaces for user-to-
network interface and network-to-network interface (UNI/NNI) connections. Released by the Frame Relay
Forum.

FRU

Field-replaceable unit. A router component that customers can replace onsite.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FTP

File Transfer Protocol. Application protocol that is part of the Transmission Control Protocol/Internet
Protocol (TCP/IP) protocol stack. Used for transferring files among network nodes. FTP is defined in RFC
959.

Full

Open Shortest Path First (OSPF) adjacency state that represents a fully functional neighbor relationship.

fxp0

See management Ethernet interface.

fxp1

JUNOS software permanent interface used for communications between the Routing Engine (RE) and the
Packet Forwarding Engine (PFE). This interface is not present in all routers.

fxp2

JUNOS software permanent interface used for communications between the Routing Engine (RE) and the
Packet Forwarding Engine (PFE). This interface is not present in all routers.

Garbage Collection Timer

Timer used in a distance-vector network that represents the time remaining before a route is removed
from the route table.

G-CDR

GGSN call detail record. Collection of charges in ASN.1 format that is eventually billed to a mobile station
user.

generated route

Summary route that uses an IP address next hop to forward packets in an IP network. A generated route
is functionally similar to an aggregated route.

GGSN

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Gateway GPRS support node. A router that serves as a gateway between mobile networks and packet
data networks.

Gigabit Ethernet

Term describing various technologies for implementing Ethernet networking at a nominal speed of one
gigabit per second. Gigabit Ethernet is supported over both optical fiber and twisted-pair cable. Physical
layer standards include 1000Base-T, 1Gbps over CAT-5e copper cabling, and 1000Base-SX for short to
medium distances over fiber. See also Ethernet; Fast Ethernet.

GMPLS

Generalized Multiprotocol Label Switching. A protocol that extends the functionality of Multiprotocol Label
Switching (MPLS) to include a wider range of label-switched path (LSP) options for a variety of network
devices.

GPRS General Packet Radio System

A packet-switched service that allows full mobility and wide-area coverage as information is sent and
received across a mobile network.

graceful restart

Process that allows a router whose control plane is undergoing a restart to continue to forward traffic
while recovering its state from neighboring routers. Without graceful restart, a control plane restart
disrupts services provided by the router.

graceful switchover

JUNOS software feature that allows a change from the primary device, such as a Routing Engine (RE), to
the backup device without interruption of packet forwarding.

gratuitous

ARP broadcast request for a router's own IP address to check whether that address is being used by
another node. Primarily used to detect IP address duplication.

GRE

Generic Routing Encapsulation. A general tunneling protocol that can encapsulate many types of packets
to enable data transmission through a tunnel. GRE is used with IP to create a virtual point-to-point link to
routers at remote points in a network. See also tunneling protocol.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

GRES

Graceful Routing Engine switchover. In a router that contains a master and a backup Routing Engine
(RE), allows the backup RE to assume mastership automatically, with no disruption of packet forwarding.

group

Collection of related Border Gateway Protocol (BGP) peers.

group address

IP address used as the destination address in a multicast IP packet. The group address functionally
represents the senders and interested receivers for a particular multicast data stream.

G.SHDSL

Symmetric high-speed digital subscriber line (SHDSL). Standard published in 2001 by the ITU-T with
recommendation ITU G.991.2 G.SHDSL. G.SHDSL incorporates features of other DSL technologies such
as asymmetrical DSL (ADSL). See also SHDSL; ADSL.

GSM

Global System for Mobile Communications. A second-generation (2G) mobile wireless networking
standard defined by ETSI that uses TDMA technology and operates in the 900 MHz radio band. See also
TDMA.

GTP

GPRS tunneling protocol. A protocol that transports IP packets between an SGSN and a GGSN. See also
tunneling protocol.

GTP-C

GGSN tunneling protocol, control. A protocol that allows an SGSN to establish packet data network access
for a mobile station. See also tunneling protocol.

GTP-U

GGSN tunneling protocol, user plane. A protocol that carries mobile station user data packets. See also
tunneling protocol.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

hashing

Cryptographic technique applied over and over (iteratively) to a message of arbitrary length to produce a
hash "message digest" or "signature" of fixed length that is appended to the message when it is sent. In
security, used to validate that the contents of a message have not been altered in transit. The Secure
Hash Algorithm (SHA-1) and Message Digest 5 (MD5) are commonly used hashes. See also SHA-1; MD5.

HDLC

High-Level Data Link Control. An International Telecommunication Union (ITU) standard for a bit-oriented
data-link layer protocol on which most other bit-oriented protocols are based.

health monitor

JUNOS software extension to the RMON alarm system that provides predefined monitoring for filesystem,
CPU, and memory usage. The health monitor also supports unknown or dynamic object instances such as
JUNOS processes.

hello interval

Amount of time an Open Shortest Path First (OSPF) router continues to send a hello packet to each
adjacent neighbor.

hello mechanism

Process used by a Resource Reservation Protocol (RSVP) router to enhance the detection of network
outages in a Multiprotocol Label Switching (MPLS) network.

HLR

Home Location Register. Database containing information about a subscriber and the current location of a
subscriber's mobile station.

HMAC

Hashed Message Authentication Code. A mechanism for message authentication that uses cryptographic
hash functions. HMAC can be used with any iterative cryptographic hash function-for example, Message
Digest 5 (MD5) or Secure Hash Algorithm (SHA-1)-in combination with a secret shared key. The
cryptographic strength of HMAC depends on the properties of the underlying hash function. Defined in
RFC 2104, "HMAC: Keyed-Hashing for Message Authentication."

hold down

Timer used by distance-vector protocols to prevent the propagation of incorrect routing knowledge to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

other routers in the network.

hold time

Maximum number of seconds allowed to elapse between successive keepalive or update messages that a
Border Gateway Protocol (BGP) system receives from a peer.

host membership query

Internet Group Management Protocol (IGMP) packet sent by a router to determine whether interested
receivers exist on a broadcast network for multicast traffic.

host membership report

Internet Group Management Protocol (IGMP) packet sent by an interested receiver for a particular
multicast group address. Hosts send report messages when they first join a group or in response to a
query packet from the local router.

host module

On an M160 router, provides the routing and system management functions of the router. Consists of the
Routing Engine (RE) and Miscellaneous Control Subsystem (MCS).

host subsystem

On a T640 routing node, provides the routing and system management functions of the router. Consists
of a Routing Engine (RE) and an adjacent Control Board (CB).

hot standby

In JUNOS, method used with link services intelligent queuing interfaces (LSQs) to enable rapid switchover
between primary and secondary (backup) Physical Interface Cards (PICs). See also warm standby.

HSCSD

High-Speed Circuit Switched Data. Circuit-switched wireless data transmission for mobile users, at data
rates up to 38.4 Kbps.

HTTP

Hypertext Transfer Protocol. Method used to publish and receive information on the Web, such as text
and graphics files.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HTTPS

Hypertext Transfer Protocol over Secure Sockets Layer. Similar to HTTP, with an added encryption layer
that encrypts and decrypts user page requests and pages that are returned by a web server. Used for
secure communication, such as payment transactions.

IANA

Internet Assigned Numbers Authority. A regulatory group that maintains all assigned and registered
Internet numbers, such as IP and multicast addresses.

IBGP

Internal BGP. A Border Gateway Protocol (BGP) configuration in which sessions are established between
routers in the same autonomous system (AS).

ICMP

Internet Control Message Protocol. Used in router discovery, ICMP allows router advertisements that
enable a host to discover addresses of operating routers on the subnet.

IDE

Integrated Drive Electronics. Type of hard disk on a Routing Engine (RE).

IDEA

International Data Encryption Algorithm. An algorithm that uses a 128-bit key and is one of the methods
at the heart of Pretty Good Privacy (PGP). IDEA is patented by Ascom Tech AG and is popular in Europe.

Idle

Initial Border Gateway Protocol (BGP) neighbor state in which the local router refuses all incoming session
requests.

IDS

Intrusion detection service. A service that inspects all inbound and outbound network activity and
identifies suspicious patterns that may indicate a network or system attack from someone attempting to
break into or compromise a system.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IEC

International Electrotechnical Commission. See ISO.

IEEE

Institute of Electrical and Electronics Engineers. An international professional society for electrical
engineers.

IETF

Internet Engineering Task Force. An international community of network designers, operators, vendors,
and researchers concerned with the evolution of Internet architecture and the smooth operation of the
Internet.

I-frame

Information frame used to transfer data in sequentially numbered logical link control protocol data units
(LPDUs) between link stations.

IGMP

Internet Group Management Protocol. Used with multicast protocols to determine whether group
members are present.

IGP

Interior Gateway Protocol, such as Intermediate System-to-Intermediate System Level 1 (IS-IS), Open
Shortest Path First (OSPF), and the Routing Information Protocol (RIP).

IKE

Internet Key Exchange. Part of IPSec that provides ways to securely negotiate the shared private keys
that the authentication header (AH) and Encapsulating Security Payload (ESP) portions of IPSec needed
to function properly. IKE employs Diffie-Hellman methods and is optional in IPSec (the shared keys can
be entered manually at the endpoints).

ILMI

Integrated Local Management Interface. A specification developed by the ATM Forum that incorporates
network management capabilities into the Asynchronous Transfer Mode (ATM) user-to-network interface
(UNI) and provides bidirectional exchange of management information between UNI management entities
(UMEs).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IMEI

International Mobile Station Equipment Identity. A unique code used to identify an individual mobile
station to a GSM network.

import

Installation of routes from the routing protocols into a route table.

IMSI

International Mobile Subscriber Identity. Information that identifies a particular subscriber to a GSM
network.

IMT-2000

International Mobile Telecommunications 2000. Global standard for third-generation (3G) wireless
communications, defined by a set of interdependent ITU recommendations. IMT-2000 provides a
framework for worldwide wireless access by linking the diverse systems of terrestrial and satellite-based
networks.

inet.0

Default JUNOS software route table for IPv4 unicast routers.

inet.1

Default JUNOS software route table for storing the multicast cache for active data streams in the
network.

inet.2

Default JUNOS software route table for storing unicast IPv4 routes specifically used to prevent forwarding
loops in a multicast network.

inet.3

Default JUNOS software route table for storing the egress IP address of a Multiprotocol Label Switching
(MPLS) label-switched path.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

inet.4

Default JUNOS software route table for storing information generated by the Multicast Source Discovery
Protocol (MSDP).

inet6.0

Default JUNOS software route table for storing unicast IPv6 routes.

infinity metric

Metric value used in distance-vector protocols to represent an unusable route. For the Routing
Information Protocol (RIP), the infinity metric is 16.

ingress router

In Multiprotocol Label Switching (MPLS), the first router in a label-switched path (LSP). See also egress
router.

Init

Open Shortest Path First (OSPF) adjacency state in which the local router has received a hello packet but
bidirectional communication is not yet established.

insert

JUNOS software command that allows a user to reorder terms in a routing policy or a firewall filter, or to
change the order of a policy chain.

instance.inetflow.0

Route table that shows route flows through the Border Gateway Protocol (BGP).

inter-AS routing

Routing of packets among different autonomous systems (ASs). See also EBGP.

intercluster reflection

In a Border Gateway Protocol (BGP) route reflection, the redistribution of routing information by a route
reflector system to all nonclient peers (BGP peers not in the cluster). See also route reflection.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

interface cost

Value added to all received routes in a distance-vector network before they are placed into the route
table. The JUNOS software uses a cost of 1 for this value.

interface preservation

See link state replication.

interface routes

Routes that are in the route table because an interface has been configured with an IP address. Also
called direct routes.

intermediate system

In Intermediate System-to-Intermediate System Level 1 (IS-IS), the network entity that sends and
receives packets and can also route packets.

Internet Processor ASIC

Juniper Networks ASIC responsible for using the forwarding table to make routing decisions within the
Packet Forwarding Engine (PFE). The Internet Processor ASIC also implements firewall filters.

interprovider VPN

Virtual private network (VPN) that provides connectivity between separate autonomous systems (ASs)
with separate border edge routers. It is used by VPN customers who have connections to several different
Internet service providers (ISPs), or different connections to the same ISP in different geographic
regions, each of which has a different AS.

intra-AS routing

Routing of packets within a single autonomous system (AS). See also IBGP.

I/O Manager ASIC

Juniper Networks ASIC responsible for segmenting data packets into 64-byte J-cells and for queuing
resultant cells before transmission.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IP

Internet Protocol. The protocol used for sending data from one point to another on the Internet.

IPCP

IP Control Protocol. The protocol that establishes and configures IP over the Point-to-Point Protocol (PPP).

IPSec

IP Security. A standard way to add security to Internet communications. The secure aspects of IPSec are
usually implemented in three parts: the authentication header (AH), the Encapsulating Security Payload
(ESP), and the Internet Key Exchange (IKE).

IQ

Intelligent queuing. M-series and T-series routing platform interfaces that offer granular quality-of-service
(QoS) capabilities; extensive statistics on packets and bytes that are transmitted, received, or dropped;
and embedded diagnostic tools.

IRDP

ICMP Router Discovery Protocol. A protocol that enables a host to determine the address of a router that
it can use as a default gateway.

ISAKMP

Internet Security Association and Key Management Protocol. A protocol that allows the receiver of a
message to obtain a public key and use digital certificates to authenticate the sender's identity. ISAKMP
is key-exchange-independent; that is, it supports many different key exchanges. See also IKE; Oakley.

ISDN

Integrated Services Digital Network. A set of digital communications standards, which enable the
transmission of information over existing twisted-pair telephone lines at higher speeds than standard
analog telephone service. An ISDN interface provides multiple B-channels (bearer channels) for data and
one D-channel for control and signaling information. See also B-channel; D-channel.

IS-IS

Intermediate System-to-Intermediate System. A link-state, interior gateway routing protocol for IP
networks that also uses the Shortest Path First (SPF) algorithm to determine routes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ISO

International Organization for Standardization. A worldwide federation of standards bodies that promotes
international standardization and publishes international agreements as International Standards.

ISP

Internet service provider. A company that provides access to the Internet and related services.

ITU-T

International Telecommunication Union Telecommunication Standardization (formerly known as the
CCITT). Group supported by the United Nations that makes recommendations and coordinates the
development of telecommunications standards for the entire world.

ITU-T Rec. G.992.1

International standard that defines the asymmetrical digital subscriber line (ADSL). Annex A defines how
ADSL works over twisted-pair copper (POTS) lines. Annex B defines how ADSL works over Integrated
Services Digital Network (ISDN) lines.

jbase

JUNOS software package containing updates to the kernel.

jbundle

JUNOS software package containing all possible software package files.

J-cell

A 64-byte data unit used within the Packet Forwarding Engine (PFE). All IP packets processed by a
Juniper Networks router are segmented into J-cells.

jdocs

JUNOS software package containing the documentation set.

jitter

Small random variation introduced into the value of a timer to prevent multiple timer expirations from

http://lib.ommolketab.ir
http://lib.ommolketab.ir

becoming synchronized. In real-time applications such as Voice over IP and video, variation in the rate at
which packets in a stream are received that can cause quality degradation.

jkernel

JUNOS software package containing the basic components of the software.

Join message

Physical Interface Module (PIM) message sent hop by hop upstream toward a multicast source or the
rendezvous point (RP) of the domain. It requests that multicast traffic be sent downstream to the router
originating the message.

jpfe

JUNOS software package containing the embedded OS software for operating the Packet Forwarding
Engine (PFE).

jroute

JUNOS software package containing the software used by the Routing Engine (RE).

J-Web

Graphical web browser interface to the JUNOS Internet software on routing platforms. With the J-Web
interface, you can monitor, configure, diagnose, and manage the routing platform from a PC or laptop
that has Hypertext Transfer Protocol (HTTP) or HTTP over Secure Sockets Layer (HTTPS) enabled.

keepalive message

Message sent between network devices to inform each other that they are still active.

kernel

Basic software component of the JUNOS software. The kernel operates the various processes used to
control the router's operations.

kernel forwarding table

See forwarding table.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

kmd

Key management process that provides IPSec authentication services for encryption Physical Interface
Cards (PICs).

L2TP

Layer 2 Tunneling Protocol. A procedure for secure communication of data across a Layer 2 network that
enables users to establish Point-to-Point Protocol (PPP) sessions between tunnel endpoints. L2TP uses
profiles for individual user and group access to ensure secure communication that is as transparent as
possible to both end users and applications. See also tunneling protocol.

label

In Multiprotocol Label Switching (MPLS), a 20-bit unsigned integer from 0 through 1,048,575, used to
identify a packet traveling along a label-switched path (LSP).

Label Distribution Protocol

See LDP.

label object

Resource Reservation Protocol (RSVP) message object that contains the label value allocated to the next
downstream router.

label pop operation

Function performed by a Multiprotocol Label Switching (MPLS) router in which the top label in a label
stack is removed from the data packet.

label push operation

Function performed by a Multiprotocol Label Switching (MPLS) router in which a new label is added to the
top of the data packet.

label request object

Resource Reservation Protocol (RSVP) message object that requests each router along the path of a
label-switched path (LSP) to allocate a label for forwarding.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

label swap operation

Function performed by a Multiprotocol Label Switching (MPLS) router in which the top label in a label
stack is replaced with a new label before the data packet is forwarded to the next hop router.

label values

A 20-bit field in a Multiprotocol Label Switching (MPLS) header used by routers to forward data traffic
along an MPLS label-switched path (LSP).

LAN PHY

Local Area Network Physical Layer Device. A physical layer device that allows 10-Gigabit Ethernet wide
area links to use existing Ethernet applications. See also PHY; WAN PHY.

Layer 2 circuits

Collection of transport modes that accept a stream of Asynchronous Transfer Mode (ATM) cells, convert
them to an encapsulated Layer 2 format, and then tunnel them over a Multiprotocol Label Switching
(MPLS) or IP backbone, where a similarly configured routing platform segments these packets back into a
stream of ATM cells, to be forwarded to the virtual circuit configured for the far-end routing platform.
Layer 2 circuits are designed to transport Layer 2 frames between provider edge (PE) routing platforms
across a Label Distribution Protocol (LDP)-signaled MPLS backbone. See also AAL5 mode; cell-relay
mode; standard AAL5 mode; trunk mode.

Layer 2 VPN

Provides a private network service among a set of customer sites using a service provider's existing
Multiprotocol Label Switching (MPLS) and IP network. A customer's data is separated from other data
using software rather than hardware. In a Layer 2 VPN, the Layer 3 routing of customer traffic occurs
within the customer's network.

Layer 3 VPN

Provides a private network service among a set of customer sites using a service provider's existing
Multiprotocol Label Switching (MPLS) and IP network. A customer's routes and data are separated from
other routes and data using software rather than hardware. In a Layer 3 VPN, the Layer 3 routing of
customer traffic occurs within the service provider's network.

LCC

Line-card chassis. Term used by the JUNOS command-line interface (CLI) to refer to a T640 routing node
in a routing matrix.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

LCP

Link Control Protocol. A traffic controller used to establish, configure, and test data-link connections for
the Point-to-Point Protocol (PPP).

LDAP

Lightweight Directory Access Protocol. Software protocol used for locating resources on a public or private
network.

LDP

Label Distribution Protocol. A protocol for distributing labels in nontraffic-engineered applications. LDP
allows routers to establish label-switched paths (LSPs) through a network by mapping network-layer
routing information directly to data-link layer switched paths.

leaf node

Terminating node of a multicast distribution tree. A router that is a leaf node only has receivers and does
not forward multicast packets to other routers.

LFI

Link fragmentation and interleaving. A method that reduces excessive delays by fragmenting long
packets into smaller packets and interleaving them with real-time frames. For example, short delay-
sensitive packets, such as packetized voice, can race ahead of larger delay-insensitive packets, such as
common data packets.

liblicense

Library that includes messages generated for routines for software license management.

libpcap

Implementation of the pcap application programming interface. libpcap is used by a program to capture
packets traveling over a network. See also pcap.

limited operational environment

Term used to describe the restrictions placed on FIPS-certified equipment. See FIPS.

line loopback

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Method of troubleshooting a problem with physical transmission media in which a transmission device in
the network sends the data signal back to the originating router.

link

Communication path between two neighbors. A link is up when communication is possible between the
two endpoints.

link protection

Method of establishing bypass label-switched paths (LSPs) to ensure that traffic going over a specific
interface to a neighboring router can continue to reach the router if that interface fails. The bypass LSP
uses a different interface and path to reach the same destination.

link services intelligent queuing interfaces

See LSQ.

link-state acknowledgment

Open Shortest Path First (OSPF) data packet used to inform a neighbor that a link-state update packet
has been successfully received.

link-state database

All routing knowledge in a link-state network is contained in this database. Each router runs the Shortest
Path First (SPF) algorithm against this database to locate the best network path to each destination in the
network.

link-state PDU

Packet that contains information about the state of adjacencies to neighboring systems.

link-state replication

Addition to the SONET Automatic Protection Switching (APS) functionality that helps to promote
redundancy of the link Physical Interface Cards (PICs) used in LSQ configurations. If the active SONET
PIC fails, links from the standby PIC are used without causing a link renegotiation. Also called interface
preservation.

link-state request list

http://lib.ommolketab.ir
http://lib.ommolketab.ir

List generated by an Open Shortest Path First (OSPF) router during the exchange of database information
while forming an adjacency. Advertised information by a neighbor that the local router does not contain is
placed in this list.

link-state request packet

Open Shortest Path First (OSPF) data packet used by a router to request database information from a
neighboring router.

link-state update

Open Shortest Path First (OSPF) data packet that contains one of multiple link-state advertisements
(LSAs). It is used to advertise routing knowledge into the network.

LLC

Logical link control. Data-link layer protocol used on a LAN. LLC1 provides connectionless data transfer,
and LLC2 provides connection-oriented data transfer.

LLC frame

Unit of data that contains specific information about the LLC layer and identifies line protocols associated
with the layer. See also LLC.

LMI

Local management interface. Enhancements to the basic Frame Relay specifications provide support for
the following:

A keepalive mechanism that verifies the flow of data

A multicast mechanism that provides a network server with a local data-link connection identifier
(DLCI) and multicast DLCI

In Frame Relay networks, global addressing that gives DLCIs global instead of local significance

A status mechanism that provides a switch with ongoing status reports on known DLCIs

LMP

Link Management Protocol. Part of GMPLS, a protocol used to define a forwarding adjacency between

http://lib.ommolketab.ir
http://lib.ommolketab.ir

peers and to maintain and allocate resources on the traffic engineering links.

load balancing

Process that installs all next hop destinations for an active route in the forwarding table. You can use load
balancing across multiple paths between routers. The behavior of load balancing depends on the version
of the Internet Processor ASIC in the router. Also called per-packet load balancing.

loading

Open Shortest Path First (OSPF) adjacency state in which the local router sends link-state request
packets to its neighbor and waits for the appropriate link-state updates from that neighbor.

local packet

Chunk of data destined for or sent by the Routing Engine (RE).

local preference

Optional Border Gateway Protocol (BGP) path attribute carried in internal BGP update packets that
indicate the degree of preference for an external route.

local RIB

Logical software table that contains Border Gateway Protocol (BGP) routes used by the local router to
forward data packets.

local significance

Concept used in a Multiprotocol Label Switching (MPLS) network where the label values are unique only
between two neighbor routers.

logical interface

On a physical interface, the configuration of one or more units that include all addressing, protocol
information, and other logical interface properties that enable the physical interface to function.

logical operator

Characters used in a firewall filter to represent a Boolean AND or OR operation.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

logical router

Logical routing device that is partitioned from an M-series or T-series routing platform. Each logical router
independently performs a subset of the tasks performed by the main router and has a unique route table,
interfaces, policies, and routing instances.

longer

JUNOS software routing policy match type that represents all routes more specific than the given subnet,
but not the given subnet itself. It is similar to a mathematical greater-than operation.

loopback interface (lo0)

Interface that is always available because it is independent of any physical interfaces. When configured
with an address, the loopback interface is the default address for the routing platform and any
unnumbered interfaces. See also unnumbered interface.

loose hop

In the context of traffic engineering, a path that can use any router or any number of other intermediate
(transit) points to reach the next address in the path. (Definition from RFC 791, modified to fit LSPs.)

loss-priority map

Maps the loss priority of incoming packets based on code point values.

lower-speed IQ interfaces

E1, NxDS0, and T1 interfaces configured on an intelligent queuing (IQ) Physical Interface Card (PIC).

LPDU

LLC protocol data unit. LLC frame on a data link switching (DLSw) network. See LLC frame.

LSA

Link-state advertisement. Open Shortest Path First (OSPF) data structure that is advertised in a link-state
update packet. Each LSA uniquely describes a portion of the OSPF network.

LSI

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Label-switched interface. A logical interface supported by the JUNOS software that provides virtual
private network (VPN) services (such as VPLS and Layer 3 VPNs) normally provided by a Tunnel Services
PIC.

LSP

1. Label-switched path. Sequence of routers that cooperatively perform Multiprotocol Label Switching
(MPLS) operations for a packet stream. The first router in an LSP is called the ingress router, and the last
router in the path is called the egress router. An LSP is a point-to-point, half-duplex connection from the
ingress router to the egress router. (The ingress and egress routers cannot be the same router.) 2. See
link-state PDU.

LSQ

Link services intelligent queuing interfaces. Interfaces configured on the Adaptive Services PIC (ASP) or
Adaptive Services Module (ASM) that support Multilink Point-to-Point Protocol (MLPPP) and Multilink
Frame Relay (MLFR) traffic and also fully support JUNOS class-of-service (CoS) components.

LSR

Label-switching router. A router on which Multiprotocol Label Switching (MPLS) is enabled and that can
process label-switched packets.

MAC

Media access control. In the OSI seven-layer networking model defined by the IEEE, MAC is the lower
sublayer of the data link layer. The MAC sublayer governs protocol access to the physical network
medium. By using the MAC addresses that are assigned to all ports on a router, multiple devices on the
same physical link can uniquely identify one another at the data link layer. See also MAC address.

MAC address

Serial number permanently stored in a device adapter to uniquely identify the device. See also MAC.

MAM

Maximum allocation bandwidth constraints model. In Differentiated-Services-aware traffic engineering, a
constraint model that divides the available bandwidth among the different classes. Sharing of bandwidth
among the class types is not allowed.

management Ethernet interface

Permanent interface that provides an out-of-band method, such as Secure Shell (SSH) and Telnet, to
connect to the routing platform. The Simple Network Management Protocol (SNMP) can use the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

management interface to gather statistics from the routing platform. Called fxp0 on some routing
platforms. See also permanent interface.

mapping agent

Router used in an auto-RP multicast network to select the rendezvous point (RP) for all multicast group
addresses. The RP is then advertised to all other routers in the domain.

martian address

Network address about which all information is ignored.

martian route

Network routes about which all information is ignored. The JUNOS software does not allow martian routes
in the inet.0 route table.

MAS

Mobile network access subsystem. A GSN application subsystem that contains the access server.

master

Router in control of the Open Shortest Path First (OSPF) database exchange during an adjacency
formation.

match

Logical concept used in a routing policy or firewall filter. A match denotes the criteria used to find a route
or IP packet before an action is performed.

match type

JUNOS software syntax used in a route filter to better describe the routes that should match the policy
term.

MBGP

Multiprotocol Border Gateway Protocol. An extension to the Border Gateway Protocol (BGP) that allows
you to connect multicast topologies within and between BGP autonomous systems (ASs).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MBone

Multicast Backbone. An interconnected set of subnetworks and routers that support the delivery of IP
multicast traffic. The MBone is a virtual network that is layered on top of sections of the physical Internet.

MCS

Miscellaneous Control Subsystem. On the M40e and M160 routers, provides control and monitoring
functions for router components and SONET clocking for the router.

MD5

Message Digest 5. A one-way hashing algorithm that produces a 128-bit hash used for generating
message authentication signatures. MD5 is used in authentication header (AH) and Encapsulating
Security Payload (ESP). See also hashing; SHA-1.

MDRR

Modified deficit round-robin. A method for selecting queues to be serviced. See queue.

MDT

Multicast distribution tree. The path between the sender (host) and the multicast group (receiver or
listener).

mean time between failures

See MTBF.

MED

Multiple exit discriminator. An optional Border Gateway Protocol (BGP) path attribute consisting of a
metric value that is used to determine the exit point to a destination when all other factors determining
the exit point are equal.

mesh

Network topology in which devices are organized in a manageable, segmented manner with many, often
redundant, interconnections between network nodes.

message aggregation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Extension to the Resource Reservation Protocol (RSVP) specification that allows neighboring routers to
bundle up to 30 RSVP messages into a single protocol packet.

mgd

Management daemon. JUNOS software process responsible for managing all user access to the router.

MIB

Management Information Base. Definition of an object that can be managed by the Simple Network
Management Protocol (SNMP).

midplane

Physically separates front and rear cavities inside the chassis, distributes power from the power supplies,
and transfers packets and signals between router components, which plug into it.

MLD

Multicast listener discovery. A protocol that manages the membership of hosts and routers in multicast
groups. IPv6 multicast routers use MLD to learn, for each of their attached physical networks, which
groups have interested listeners.

MLFR

Multilink Frame Relay. Logically ties together individual circuits, creating a bundle. The logical equivalent
of the Multilink Point-to-Point Protocol (MLPPP), MLFR is used for Frame Relay traffic instead of Point-to-
Point Protocol (PPP) traffic. FRF.15 and FRF.16 are two implementations of MLFR.

MLPPP

Multilink Point-to-Point Protocol. Enables you to bundle multiple Point-to-Point Protocol (PPP) links into a
single logical link between two network devices to provide an aggregate amount of bandwidth. The
technique is often called bonding or link aggregation. Defined in RFC 1990. See also PPP.

MMF

Multimode fiber. Optical fiber supporting the propagation of multiple frequencies of light. MMF is used for
relatively short distances because the modes tend to disperse over longer lengths (called modal
dispersion). For longer distances, single-mode fiber (sometimes called monomode) is used. See also
single-mode fiber.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

mobile station

Mobile device, such as a cellular phone or a mobile personal digital assistant (PDA).

mobile transport subsystem

See MTS.

MPLS

Multiprotocol Label Switching. Mechanism for engineering network traffic patterns that functions by
assigning to network packets short labels that describe how to forward them through the network. Also
called label switching. See also traffic engineering.

MPLS EXP classifier

Class-of-service (CoS) behavior classifier for classifying packets based on the Multiprotocol Label
Switching (MPLS) experimental bit. See also EXP bits.

MPS

Mobile point-to-point control subsystem. A GSN application subsystem that controls all functionality
associated with a particular connection.

MRRU

Maximum received reconstructed unit. Similar to the maximum transmission unit (MTU), but is specific to
link services interfaces. See also MTU.

MSA

Multisource Agreement. The definition of a fiber-optic transceiver module that conforms to the 10-Gigabit
Ethernet standard. See also XENPAK module.

MSC

Mobile Switching Center. Provides origination and termination functions to calls from a mobile station
user.

MSDP

Multicast Source Discovery Protocol. A protocol used to connect multicast routing domains to allow the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

domains to discover multicast sources from other domains. It typically runs on the same router as the
Physical Interface Module (PIM) sparse mode rendezvous point (RP).

MSISDN

Mobile Station Integrated Services Digital Network Number. A number that callers use to reach a mobile
services subscriber.

MTBF

Mean time between failures. Measure of hardware component reliability.

MTS

Mobile transport subsystem. A GSN application subsystem that implements all the protocols used by the
GSN.

MTU

Maximum transmission unit. Limit on the data size for a network.

multicast

Operation of sending network traffic from one network node to multiple network nodes.

multicast-scope number

Number used for configuring the multicast scope. Configuring a scope number constrains the scope of a
multicast session. The number value can be any hexadecimal number from 0 through F. The multicast-
scope value is a number from 0 through 15, or a specified keyword with an associated prefix range. For
example, link-local (value = 2), corresponding prefix 224.0.0.0/24.

multiclass LSP

In Differentiated-Services-aware traffic engineering, a multiclass label-switched path (LSP) functions like
a standard LSP, but also allows you to reserve bandwidth for multiple class types. The experimental (EXP)
bits of the Multiprotocol Label Switching (MPLS) header are used to distinguish among class types.

multiclass MLPPP

Enables multiple classes of service while using the Multilink Point-to-Point Protocol (MLPPP). Defined in
RFC 2686, "The Multi-Class Extension to Multi-Link PPP."

http://lib.ommolketab.ir
http://lib.ommolketab.ir

multifield classifier

Method for classifying traffic flows. Unlike a behavior aggregate (BA) classifier, a multifield classifier
examines multiple fields in the packet to apply class-of-service (CoS) settings. Examples of fields that a
multifield classifier examines include the source and destination addresses of the packet, as well as the
source and destination port numbers of the packet. See also BA classifier; classification.

multihoming

Network topology that uses multiple connections between customer and provider devices to provide
redundancy.

MVS

Mobile visitor register subsystem.

named path

JUNOS software syntax that specifies a portion of or the entire network path that should be used as a
constraint in signaling a Multiprotocol Label Switching (MPLS) label-switched path (LSP).

NAPT

Network Address Port Translation. A method that translates the addresses and transport identifiers of
many private hosts into a few external addresses and transport identifiers to make efficient use of
globally registered IP addresses. NAPT extends the level of translation beyond that of basic Network
Address Translation (NAT). See also NAT.

NAT

Network Address Translation. A method of concealing a set of host addresses on a private network behind
a pool of public addresses. It can be used as a security measure to protect the host addresses from direct
targeting in network attacks.

NCP

Network Control Protocol. A traffic controller used to establish and configure different network layer
protocols for the Point-to-Point Protocol (PPP).

NDP

Neighbor Discovery Protocol. A protocol used by IPv6 nodes on the same link to discover each other's

http://lib.ommolketab.ir
http://lib.ommolketab.ir

presence, determine each other's link-layer addresses, find routers, and maintain reachability information
about the paths to active neighbors. NDP is defined in RFC 2461 and is equivalent to the Address
Resolution Protocol (ARP) used with IPv4. See also ARP.

neighbor

Adjacent system reachable by traversing a single subnetwork. An immediately adjacent router. Also
called a peer.

NET

Network entity title. Network address defined by the ISO network architecture and used in CLNS-based
networks.

NetBIOS

Network basic input/output system. An application programming interface used by programs on a LAN.
NetBIOS provides a uniform set of commands for requesting the lower-level services required to manage
names, conduct sessions, and send datagrams between nodes on a network.

network interface

Interface, such as an Ethernet or SONET/SDH interface, which primarily provides traffic connectivity. See
also PIC; services interface.

network link advertisement

Open Shortest Path First (OSPF) link-state advertisement (LSA) flooded throughout a single area by
designated routers to describe all routers attached to the network.

network LSA

Open Shortest Path First (OSPF) link-state advertisement (LSA) sent by the designated router on a
broadcast or NBMA segment. It advertises the subnet associated with the designated router's segment.

network summary LSA

Open Shortest Path First (OSPF) link-state advertisement (LSA) sent by an area border router (ABR) to
advertise internal OSPF routing knowledge across an area boundary. See also ABR.

NIC

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Network Information Center. Internet authority responsible for assigning Internet-related numbers, such
as IP addresses and autonomous system (AS) numbers. See also IANA.

NIST

National Institute of Standards and Technology. A nonregulatory U.S. federal agency whose mission is to
develop and promote measurement, standards, and technology.

NLRI

Network layer reachability information. Information carried in Border Gateway Protocol (BGP) packets and
used by the Multiprotocol Border Gateway Protocol (MBGP).

nonclient peer

In a Border Gateway Protocol (BGP) route reflection, a BGP peer that is not a member of a cluster. See
also client peer.

notification cell

JUNOS software data structure generated by the Distribution Buffer Manager ASIC that represents the
header contents of an IP packet. The Internet Processor ASIC uses the notification cell to perform a
forwarding table lookup.

Notification message

A Border Gateway Protocol (BGP) message that informs a neighbor about an error condition, and then in
some cases terminates the BGP peering session.

not-so-stubby area

See NSSA.

NSAP

Network service access point. Connection to a network that is identified by a network address.

n-selector

Last byte of a nonclient peer address.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

NSR

Nonstop routing. A high-availability feature that allows a routing platform with redundant Routing Engines
(REs) to preserve routing information on the backup RE and switch over from the primary RE to the
backup RE without alerting peer nodes that a change has occurred. NSR uses the graceful RE switchover
(GRES) infrastructure to preserve interface, kernel, and routing information.

NSSA

Not-so-stubby area. In Open Shortest Path First (OSPF), a type of stub area in which external routes can
be flooded.

NTP

Network Time Protocol. A protocol used to synchronize computer clock times on a network.

Null Register message

Physical Interface Module (PIM) message sent by the first hop router to the rendezvous point (RP). The
message informs the RP that the local source is still actively sending multicast packets into the network.
See also RP.

numeric range match conditions

Use of numeric values (protocol and port numbers) in the header of an IP packet to match criteria in a
firewall filter.

Oakley

Key determination protocol based on the Diffie-Hellman algorithm that provides added security, including
authentication. Oakley was the key-exchange algorithm mandated for use with the initial version of
ISAKMP, although other algorithms can be used. Oakley describes a series of key exchanges called modes
and details the services provided by each; for example, Perfect Forward Secrecy for keys, identity
protection, and authentication. See also ISAKMP.

OAM

Operation, Administration, and Maintenance. An ATM Forum specification for monitoring Asynchronous
Transfer Mode (ATM) virtual connections. OAM performs standard loopback, fault detection and
notification, and remote defect identification for each connection, verifying that the connection is up and
the router is operational.

OC

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Optical carrier. In SONET, the OC level indicates the transmission rate of digital signals on optical fiber.

OC3

SONET line with a transmission speed of 155.52 Mbps (payload of 150.336 Mbps) using fiber-optic
cables. For SDH interfaces, OC3 is also known as STM1.

OC12

SONET line with a transmission speed of 622 Mbps using fiber-optic cables.

Open message

Border Gateway Protocol (BGP) message that allows two neighbors to negotiate the parameters of the
peering session.

OpenConfirm

Border Gateway Protocol (BGP) neighbor state that shows that a valid Open message was received from
the remote peer.

OpenSent

Border Gateway Protocol (BGP) neighbor state that shows that an Open message was sent to the remote
peer and the local router is waiting for an Open message to be returned.

operational mode

JUNOS software mode that allows a user to view statistics and information about the router's current
operating status.

op script

Operational script. Extensible Stylesheet Language for Transformations (XSLT) script written to automate
network troubleshooting and network management. Op scripts can perform any function available
through JUNOScript remote procedure calls (RPCs).

origin

In the Border Gateway Protocol (BGP), an attribute that describes the source of the route.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

orlonger

JUNOS software routing policy match type that represents all routes more specific than the given subnet,
including the given subnet itself. It is similar to a mathematical greater-than-or-equal-to operation.

OSI

Open Systems Interconnection. Standard reference model for how messages are transmitted between
two points on a network.

OSPF

Open Shortest Path First. A link-state Interior Gateway Protocol (IGP) that makes routing decisions based
on the Shortest Path First (SPF) algorithm (also referred to as the Dijkstra algorithm).

OSPF hello packet

Message sent by each Open Shortest Path First (OSPF) router to each adjacent router. It is used to
establish and maintain the router's neighbor relationships.

overlay network

Network design in which a logical Layer 3 topology (IP subnets) is operating over a logical Layer 2
topology (Asynchronous Transfer Mode permanent virtual circuits [ATM PVCs]). Layers in the network do
not have knowledge of each other, and each layer requires separate management and operation.

oversubscription

Method that allows provisioning of more bandwidth than the line rate of the physical interface.

P2MP LSP

See point-to-multipoint LSP.

package

Collection of files that make up a JUNOS software component.

packet

Fundamental unit of information (message or fragment of a message) carried in a packet-switched

http://lib.ommolketab.ir
http://lib.ommolketab.ir

network; for example, the Internet. See also PSN.

packet aging

Occurs when packets in the output buffer are overwritten by newly arriving packets. This happens
because the available buffer size is greater than the available transmission bandwidth.

packet capture

1. Packet sampling method, in which entire IPv4 packets flowing through a router are captured for
analysis. Packets are captured in the Routing Engine (RE) and stored as libpcap-formatted files on the
router. Packet capture files can be opened and analyzed offline with packet analyzers such as tcpdump
and Ethereal. See also traffic sampling. 2. J-Web packet sampling method for quickly analyzing router
control traffic destined for or originating from the RE. You can either decode and view the captured
packets in the J-Web interface as they are captured, or save the packets to a file and analyze them offline
with packet analyzers such as Ethereal. J-Web packet capture does not capture transient traffic.

Packet Forwarding Engine

Portion of the router that processes packets by forwarding them between input and output interfaces.

packet or cell switching

Transmission of packets from many sources over a switched network.

PADI

PPPoE Active Discovery Initiation packet. A Point-to-Point Protocol over Ethernet (PPPoE) initiation packet
that is broadcast by the client to start the discovery process.

PADO

PPPoE Active Discovery Offer packet. A Point-to-Point Protocol over Ethernet (PPPoE) offer packet that is
sent to the client by one or more access concentrators in reply to a PPPoE Active Discovery Initiation
(PADI) packet.

PADR

PPPoE Active Discovery Request packet. A Point-to-Point Protocol over Ethernet (PPPoE) packet sent by
the client to one selected access concentrator to request a session.

PADS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PPPoE Active Discovery Session Confirmation packet. A Point-to-Point Protocol over Ethernet (PPPoE)
packet sent by the selected access concentrator to confirm the session.

PADT

PPPoE Active Discovery Termination packet. A Point-to-Point Protocol over Ethernet (PPPoE) packet sent
by either the client or the access concentrator to terminate a session.

passive flow monitoring

Technique to intercept and observe specified data network traffic by using a routing platform such as a
monitoring station that is not participating in the network.

path attribute

Information about a Border Gateway Protocol (BGP) route, such as the route origin, autonomous system
(AS) path, and next hop router.

PathErr message

Resource Reservation Protocol (RSVP) message indicating that an error has occurred along an established
path label-switched path (LSP). The message is advertised upstream toward the ingress router and does
not remove any RSVP soft state from the network.

PathTear message

Resource Reservation Protocol (RSVP) message indicating that the established label-switched path (LSP)
and its associated soft state should be removed by the network. The message is advertised downstream
hop by hop toward the egress router.

pcap

Software library for packet capturing. See also libpcap.

PC Card

(Previously known as a PCMCIA Card.) The removable storage media that ships with each router that
contains a copy of the JUNOS software. The PC Card is based on standards published by the Personal
Computer Memory Card International Association (PCMCIA).

PCI

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Peripheral Component Interconnect. Standard, high-speed bus for connecting computer peripherals. Used
on the Routing Engine (RE).

PCI Express

Peripheral Component Interconnect Express. Next-generation, higher-bandwidth bus for connecting
computer peripherals. A PCI Express bus uses point-to-point bus topology with a shared switch rather
than the shared bus topology of a standard PCI bus. The shared switch on a PCI Express bus provides
centralized traffic routing and management and can prioritize traffic. On some J-series Services Routers,
PCI Express slots are backward-compatible with PCI and can accept Physical Interface Modules (PIMs)
intended for either PCI Express or PCI slots.

PCMCIA

Personal Computer Memory Card International Association. Industry group that promotes standards for
credit-card-size memory and I/O devices.

PDH

Plesiochronous Digital Hierarchy. Developed to carry digitized voice more efficiently. Evolved into the
North American, European, and Japanese Digital Hierarchies, in which only a discrete set of fixed rates is
available; namely, NxDS0 (DS0 is a 64 Kbps rate).

PDP

Packet data protocol. Network protocol, such as IP, used by packet data networks connected to a GPRS
network.

PDU

Protocol data unit. A packet of data passed across a network. The term refers to a specific layer of the
OSI seven-layer model and a specific protocol.

PEC

Policing equivalence classes. In traffic policing, a set of packets that are treated the same way by the
packet classifier.

peer

Immediately adjacent router with which a protocol relationship has been established. Also called a
neighbor.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

peering

Practice of exchanging Internet traffic with directly connected peers according to commercial and
contractual agreements.

PEM

1. Privacy Enhanced Mail. A technique for securely exchanging electronic mail over a public medium. 2.
Power Entry Module. Distributes DC power within the router chassis. Supported on M40e, M160, M320,
and T-series routing platforms.

penultimate router

Last transit router before the egress router in a Multiprotocol Label Switching (MPLS) label-switched path
(LSP).

permanent interface

Interface that is always present in the routing platform. See also management Ethernet interface;
transient interface.

persistent change

Commit script-generated configuration change that is copied to the candidate configuration. Persistent
changes remain in the candidate configuration unless you explicitly delete them. See also transient
change.

PE router

Provider edge router. A router in the service provider's network that is connected to a customer edge
(CE) device and participates in a virtual private network (VPN).

PFC

Protocol Field Compression. Normally, Point-to-Point Protocol (PPP)-encapsulated packets are transmitted
with a 2-byte protocol field. For example, IPv4 packets are transmitted with the protocol field set to 0 x
0021, and Multiprotocol Label Switching (MPLS) packets are transmitted with the protocol field set to 0 x
0281. For all protocols with identifiers from 0 x 0000 through 0 x 00ff, PFC enables routers to compress
the protocol field to one byte, as defined in RFC 1661, "The Point-to-Point Protocol (PPP)." PFC allows you
to conserve bandwidth by transmitting less data. See also ACFC.

PFS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Perfect Forward Secrecy protocol. A protocol derived from an encryption system that changes encryption
keys often and ensures that no two sets of keys have any relationship to each other. If one set of keys is
compromised, only communications using those keys are at risk. An example of a system that uses PFS is
Diffie-Hellman.

PGM

Pragmatic General Multicast. A protocol layer that can be used between the IP layer and the multicast
application on sources, receivers, and routers to add reliability, scalability, and efficiency to multicast
networks.

PGP

Pretty Good Privacy. A strong cryptographic technique invented by Philip Zimmerman in 1991.

PHP

Penultimate hop popping. A mechanism used in a Multiprotocol Label Switching (MPLS) network that
allows the transit router before the egress router to perform a label pop operation and forward the
remaining data (often an IPv4 packet) to the egress router.

PHY

1. Special electronic integrated circuit or functional block of a circuit that performs encoding and decoding
between a pure digital domain (on-off) and a modulation in the analog domain. See also LAN PHY; WAN
PHY. 2. Open Systems Interconnection (OSI) physical layer. Layer 1 of the OSI model that defines the
physical link between devices.

physical interface

Port on a Physical Interface Card (PIC) or Physical Interface Module (PIM).

Physical Interface Module

A network interface card installed in a J-series Services Router to provide physical connections to a LAN
or WAN. PIMs can be fixed or removable and interchangeable. The PIM receives incoming packets from
the network and transmits outgoing packets to the network. Each PIM is equipped with a dedicated
network processor that forwards incoming data packets to and receives outgoing data packets from the
Routing Engine (RE). During this process, the PIM performs framing and line-speed signaling for its
medium type-for example, E1, serial, Fast Ethernet, or Integrated Services Digital Network (ISDN).

PIC

Physical Interface Card. A network interface-specific card that can be installed on a Flexible PIC

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Concentrator (FPC) in the router.

PIC I/O Manager

Juniper Networks ASIC responsible for receiving and transmitting information on the physical media. It
performs media-specific tasks within the Packet Forwarding Engine (PFE).

PIR

Peak information rate. The PIR must be equal to or greater than the committed information rate (CIR),
and both must be configured to be greater than 0. Packets that exceed the PIR are marked red, which
corresponds to high loss priority. See also CIR; trTCM.

PKI

Public key infrastructure. A hierarchy of trust that enables users of a public network to securely and
privately exchange data through the use of public and private cryptographic key pairs that are obtained
and shared with peers through a trusted authority.

PLMN

Public Land Mobile Network. A telecommunications network for mobile stations.

PLP

Packet loss priority. Used to determine the random early detection (RED) drop profile when a packet is
queued. You can set it by configuring a classifier or policer. The system supports two PLP designations:
low and high.

PLP bit

Packet loss priority bit. Used to identify packets that have experienced congestion or are from a
transmission that exceeded a service provider's customer service license agreement. This bit can be used
as part of a router's congestion control mechanism and can be set by the interface or by a filter.

PLR

Point of local repair. The ingress router of a backup tunnel or a detour label-switched path (LSP).

point-to-multipoint connection

Unidirectional connection in which a single source system transmits data to multiple destination end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

systems. Point-to-multipoint is one of two fundamental connection types. See also point-to-point
connection.

point-to-multipoint LSP

Resource Reservation Protocol (RSVP)-signaled label-switched path (LSP) with a single source and
multiple destinations.

point-to-point connection

Unidirectional or bidirectional connection between two end systems. Point-to-point is one of two
fundamental connection types. See also point-to-multipoint connection.

poison reverse

Method used in distance-vector networks to avoid routing loops. Each router advertises routes back to
the neighbor it received them from with an infinity metric assigned.

policer

Filter that limits traffic of a certain class to a specified bandwidth or burst size. Packets exceeding the
policer limits are discarded, or are assigned to a different forwarding class, a different loss priority, or
both.

policing

Method of applying rate limits on bandwidth and burst size for traffic on a particular interface.

policy chain

Application of multiple routing policies in a single location. The policies are evaluated in a predefined
manner and are always followed by the default policy for the specific application location.

pop

Removal of the last label, by a router, from a packet as it exits a Multiprotocol Label Switching (MPLS)
domain.

port mirroring

Method in which a copy of an IPv4 packet is sent from the routing platform to an external host address or
a packet analyzer for analysis.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PPP

Point-to-Point Protocol. A link-layer protocol that provides multiprotocol encapsulation. PPP is used for
link-layer and network-layer configuration. Provides a standard method for transporting multiprotocol
datagrams over point-to-point links. Defined in RFC 1661.

pppd

Point-to-Point Protocol daemon that processes packets that use the Point-to-Point Protocol (PPP).

PPPoE

Point-to-Point Protocol over Ethernet. Network protocol that encapsulates Point-to-Point Protocol (PPP)
frames in Ethernet frames and connects multiple hosts over a simple bridging access device to a remote
access concentrator.

PPPoE over ATM

Point-to-Point Protocol over Ethernet frames in Asynchronous Transfer Mode. Network protocol that
encapsulates Point-to-Point Protocol over Ethernet (PPPoE) frames in Asynchronous Transfer Mode (ATM)
frames for digital subscriber line (DSL) transmission, and connects multiple hosts over a simple bridging
access device to a remote access concentrator.

precedence bits

First three bits in the type-of-service (ToS) byte. On a Juniper Networks router, these bits are used to
sort or classify individual packets as they arrive at an interface. The classification determines the queue
to which the packet is directed upon transmission.

preference

Desirability of a route to become the active route. A route with a lower preference value is more likely to
become the active route. The preference is an arbitrary value from 0 through 255 that the routing
protocol process uses to rank routes received from different protocols, interfaces, or remote systems.

preferred address

On an interface, the default local address used for packets sourced by the local router to destinations on
the subnet.

prefix-length-range

http://lib.ommolketab.ir
http://lib.ommolketab.ir

JUNOS software routing policy match type representing all routes that share the same most-significant
bits. The prefix length of the route must also lie between the two supplied lengths in the route filter.

primary address

On an interface, the address used by default as the local address for broadcast and multicast packets
sourced locally and sent out the interface.

primary contributing route

Contributing route with the numerically smallest prefix and smallest JUNOS software preference value.
This route is the default next hop used for a generated route.

primary interface

Router interface that packets go out on when no interface name is specified and when the destination
address does not specify a particular outgoing interface.

promiscuous mode

Used with Asynchronous Transfer Mode (ATM) CCC Cell Relay encapsulation, enables mapping of all
incoming cells from an interface port or from a virtual path (VP) to a single label-switched path (LSP)
without restricting the VCI number.

protocol address

Logical Layer 3 address assigned to an interface within the JUNOS software.

protocol families

Grouping of logical properties within an interface configuration; for example, the inet, inet4, and

Multiprotocol Label Switching (MPLS) families.

Protocol Independent Multicast

A protocol-independent multicast routing protocol. PIM dense mode is a flood-and-prune protocol. PIM
sparse mode routes to multicast groups that use join messages to receive traffic. PIM sparse-dense mode
allows some multicast groups to be dense groups (flood and prune) and some groups to be sparse groups
(join and leave).

protocol preference

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A 32-bit value assigned to all routes placed into the route table. The protocol preference is used as a tie
breaker when multiple exact routes are placed into the table by different protocols.

provider router

Router in the service provider's network that is not connected to a customer edge (CE) device.

Prune message

Physical Interface Module (PIM) message sent upstream to a multicast source or the rendezvous point
(RP) of the domain. The message requests that multicast traffic stop being transmitted to the router
originating the message.

PSN

Packet-switched network. Network in which messages or fragments of messages (packets) are sent to
their destinations through the most expedient route, as determined by a routing algorithm. Packet
switching optimizes bandwidth in a network and minimizes latency.

PSNP

Partial sequence number PDU. A packet that contains only a partial list of the label-switched paths (LSPs)
in the Intermediate System-to-Intermediate System Level 1 (IS-IS) link-state database.

public key infrastructure

See PKI.

push

Addition of a label or stack of labels, by a router, to a packet as it enters a Multiprotocol Label Switching
(MPLS) domain.

PVC

Permanent virtual circuit. A software-defined logical connection in a network. See also SVC.

QoS

Quality of service. Performance, such as transmission rates and error rates, of a communications channel
or system.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

quad-wide

Type of Physical Interface Card (PIC) that combines the PIC and Flexible PIC Concentrator (FPC) within a
single FPC slot.

qualified next hop

Next hop for a static route that allows a second next hop for the same static route to have different
metric and preference properties from the original next hop.

querier router

Physical Interface Module (PIM) router on a broadcast subnet responsible for generating Internet Group
Management Protocol (IGMP) query messages for the segment.

queue

First-in, first-out (FIFO) number of packets waiting to be forwarded over a router interface. You can
configure the minimum and maximum sizes of the packet queue, queue admission policies, and other
parameters to manage the flow of packets through the router.

queue fullness

For random early detection (RED), the memory used to store packets expressed as a percentage of the
total memory allocated for that specific queue. See also drop profile.

queue length

For ATM1 interfaces only, a limit on the number of transmit packets that can be queued. Packets that
exceed the limit are dropped. See also EPD.

queuing

In routing, the arrangement of packets waiting to be forwarded. Packets are organized into queues
according to their priority, time of arrival, or other characteristics, and are processed one at a time. After
a packet is sent to the outgoing interface on a router, it is queued for transmission on the physical media.
The amount of time a packet is queued on the router is determined by the availability of the outgoing
physical media, bandwidth, and amount of traffic using the interface.

RA

Registration authority. A trusted third-party organization that acts on behalf of a certificate authority (CA)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

to verify the identity of a digital certificate user.

radio frequency interference

See RFI.

RADIUS

Remote Authentication Dial-In User Service. An authentication method for validating users who attempt
to access the router using Telnet.

RBOC

(Pronounced "are-bock".) Regional Bell operating company. Regional telephone companies formed as a
result of the divestiture of the Bell System.

RC2, RC4, RC5

RSA codes. A family of proprietary (RSA Data Security, Inc.) encryption schemes often used in web
browsers and servers. These codes use variable-length keys up to 2,048 bits.

RDBMS

Relational database management system. A system that presents data in a tabular form with a means of
manipulating the tabular data with relational operators.

RDM

Russian-dolls bandwidth allocation model. An allocation model that makes efficient use of bandwidth by
allowing the class types to share bandwidth. RDM is defined in the Internet draft draft-ietf-tewg-diff-te-
russian-03.txt, "Russian Dolls Bandwidth Constraints Model for Diff-Serv-aware MPLS Traffic Engineering."

receive

Next hop for a static route that allows all matching packets to be sent to the Routing Engine (RE) for
processing.

recursive lookup

Method of consulting the route table to locate the actual physical next hop for a route when the supplied
next hop is not directly connected.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RED

Random early detection. Gradual drop profile for a given class that is used for congestion avoidance. RED
tries to anticipate incipient congestion by dropping a small percentage of packets from the head of the
queue to ensure that a queue never actually becomes congested.

refresh reduction

In the Resource Reservation Protocol (RSVP), an extension that addresses the problems of scaling,
reliability, and latency when Refresh messages are used to cover message loss.

Register message

Physical Interface Module (PIM) message unicast by the first hop router to the rendezvous point (RP) that
contains the multicast packets from the source encapsulated within its data field.

Register Stop message

Physical Interface Module (PIM) message sent by the rendezvous point (RP) to the first hop router to halt
the sending of encapsulated multicast packets.

registration authority

See RA.

reject

Next hop for a configured route that drops all matching packets from the network and returns an Internet
Control Message Protocol (ICMP) message to the source IP address. Also used as an action in a routing
policy or firewall filter.

rename

JUNOS software command that allows a user to change the name of a routing policy, firewall filter, or any
other variable character string defined in the router configuration.

Request message

Routing Information Protocol (RIP) message used by a router to ask for all or part of the route table from
a neighbor.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

resolve

Next hop for a static route that allows the router to perform a recursive lookup to locate the physical next
hop for the route.

Response message

Routing Information Protocol (RIP) message used to advertise routing information into a network.

result cell

JUNOS software data structure generated by the Internet Processor ASIC after performing a forwarding
table lookup.

ResvConf message

Resource Reservation Protocol (RSVP) message that allows the egress router to receive an explicit
confirmation message from a neighbor that its Resv message was received.

ResvErr message

Resource Reservation Protocol (RSVP) message indicating that an error has occurred along an established
label-switched path (LSP). The message is advertised downstream toward the egress router and it does
not remove any RSVP soft state from the network.

ResvTear message

Resource Reservation Protocol (RSVP) message indicating that the established label-switched path (LSP)
and its associated soft state should be removed by the network. The message is advertised upstream
toward the ingress router.

revert timer

For SONET Automatic Protection Switching (APS), a timer that specifies the amount of time (in seconds)
to wait after the working circuit has become functional before making the working circuit active again.

rewrite rules

Set the appropriate class-of-service (CoS) bits in an outgoing packet. This allows the next downstream
router to classify the packet into the appropriate service group.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RFC

Request for Comments. Internet standard specifications published by the Internet Engineering Task Force
(IETF).

RFI

Radio frequency interface. Interference from high-frequency electromagnetic waves emanating from
electronic devices.

RIB

Routing information base. A logical data structure used by the Border Gateway Protocol (BGP) to store
routing information. See also route table.

RID

Router ID. An IP address used by a router to uniquely identify itself to a routing protocol. This address
may not be equal to a configured interface address.

RIP

Routing Information Protocol. Used in IPv4 networks, a distance-vector interior gateway protocol that
makes routing decisions based on hop count.

RIPng

Routing Information Protocol next generation. Used in IPv6 networks, a distance-vector interior gateway
protocol that makes routing decisions based on hop count.

RMON

Remote monitoring. A standard Management Information Base (MIB) that defines current and historical
media access control (MAC)-layer statistics and control objects, allowing you to capture real-time
information across the entire network. This allows you to detect, isolate, diagnose, and report potential
and actual network problems.

RNC

Radio network controller. Manages the radio part of the network in UMTS.

route distinguisher

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A 6-byte value identifying a virtual private network (VPN) that is prefixed to an IPv4 address to create a
unique IPv4 address. The new address is part of the VPN IPv4 address family, which is a Border Gateway
Protocol (BGP) address family added as an extension to BGP. It allows you to configure private addresses
within the VPN by preventing overlap with the private addresses in other VPNs.

route filter

JUNOS software syntax used in a routing policy to match an individual route or a group of routes.

route flapping

Condition of network instability whereby a route is announced and withdrawn repeatedly, often as a result
of an intermittently failing link.

route identifier

IP address of the router from which a Border Gateway Protocol (BGP), Interior Gateway Protocol (IGP), or
Open Shortest Path First (OSPF) packet originated.

route redistribution

Method of placing learned routes from one protocol into another protocol operating on the same router.
The JUNOS software accomplishes this with a routing policy.

route reflection

In the Border Gateway Protocol (BGP), the configuration of a group of routers into a cluster in which one
system acts as a route reflector, redistributing routes from outside the cluster to all routers in the cluster.
Routers in a cluster do not need to be fully meshed.

router ID

See RID.

router-link advertisement

Open Shortest Path First (OSPF) link-state advertisement (LSA) flooded throughout a single area by all
routers to describe the state and cost of the router's links to the area.

router LSA

Open Shortest Path First (OSPF) link-state advertisement (LSA) sent by each router in the network. It

http://lib.ommolketab.ir
http://lib.ommolketab.ir

describes the local router's connected subnets and their metric values.

router priority

Numerical value assigned to an Open Shortest Path First (OPSF) or Intermediate System-to-Intermediate
System Level 1 (IS-IS) interface that is used as the first criterion in electing the designated router or
designated intermediate system, respectively.

Routing Engine

Portion of the router that handles all routing protocol processes, as well as other software processes that
control the router's interfaces, some of the chassis components, system management, and user access to
the router.

routing instance

Collection of route tables, interfaces, and routing protocol parameters. The set of interfaces is contained
in the route tables, and the routing protocol parameters control the information in the route tables.

routing matrix

Terabit routing system interconnecting up to four T640 routing nodes and a TX Matrix platform to deliver
up to 2.56 terabits per second (Tbps) of subscriber switching capacity.

route table

Common database of routes learned from one or more routing protocols. All routes are maintained by the
JUNOS routing protocol process.

RP

Rendezvous point. For Physical Interface Module (PIM) sparse mode, a core router acting as the root of
the distribution tree in a shared tree.

RPC

Remote procedure call. A type of protocol that allows a computer program running on one computer to
cause a function on another computer to be executed without explicitly coding the details for this
interaction.

rpd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

JUNOS software routing protocol process (daemon). A user-level background process responsible for
starting, managing, and stopping the routing protocols on a Juniper Networks router.

RPF

Reverse path forwarding. An algorithm that checks the unicast route table to determine whether there is
a shortest path back to the source address of the incoming multicast packet. Unicast RPF helps to
determine the source of denial-of-service (DoS) attacks and rejects packets from unexpected source
addresses.

RPM

1. Reverse-path multicasting. Routing algorithm used by the Distance Vector Multicast Routing Protocol
(DVMRP) to forward multicast traffic. 2. Real-Time Performance Monitoring. A tool for creating active
probes to track and monitor traffic.

RRO

Record route object. A Resource Reservation Protocol (RSVP) message object that notes the IP address of
each router along the path of a label-switched path (LSP).

RSVP

Resource Reservation Protocol. A signaling protocol that establishes a session between two routers to
transport a specific traffic flow.

RSVP Path message

Resource Reservation Protocol (RSVP) message sent by the ingress router downstream toward the egress
router. It begins the establishment of a soft state database for a particular label-switched path (LSP).

RSVP Resv message

Resource Reservation Protocol (RSVP) message sent by the egress router upstream toward the ingress
router. It completes the establishment of the soft state database for a particular label-switched path
(LSP).

RSVP signaled LSP

Label-switched path (LSP) that is dynamically established using Resource Reservation Protocol (RSVP)
Path and Resv messages.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RSVP-TE

RSVP-traffic engineering; Resource Reservation Protocol (RSVP) with traffic engineering extensions as
defined by RFC 3209. These extensions allow RSVP to establish label-switched paths (LSPs) in
Multiprotocol Label Switching (MPLS) networks. See also MPLS; RSVP.

RTP

Real-Time Transport Protocol. An Internet protocol that provides mechanisms for the transmission of
real-time data, such as audio, video, or voice, over IP networks. Compressed RTP is used for Voice over
IP traffic.

RTVBR

Real-time variable bit rate. For ATM2 intelligent queuing (IQ) interfaces, data that is serviced at a higher
priority rate than other VBR data. RTVBR is suitable for carrying packetized video and audio. RTVBR
provides better congestion control and latency guarantees than non-real-time VBR.

SA

Security association. An IPSec term that describes an agreement between two parties about what rules to
use for authentication and encryption algorithms, key exchange mechanisms, and secure
communications.

sampling

Method whereby the sampling key based on the IPv4 header is sent to the Routing Engine (RE). There,
the key is placed in a file, or cflowd packets based on the key are sent to a cflowd server.

SAP

1. Session Announcement Protocol. Used with multicast protocols to handle session conference
announcements. 2. Service access point. Device that identifies routing protocols and provides the
connection between the network interface card and the rest of the network.

SAR

Segmentation and reassembly. Buffering used with Asynchronous Transfer Mode (ATM).

SCB

System Control Board. On an M40 router, the part of the Packet Forwarding Engine (PFE) that performs
route lookups, monitors system components, and controls Flexible PIC Concentrator (FPC) resets.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SCC

Switch-card chassis. Term used by the JUNOS command-line interface (CLI) to refer to the TX Matrix
platform in a routing matrix.

SCEP

Simple Certificate Enrollment Protocol. A protocol for digital certificates that supports certificate authority
(CA) and registration authority (RA) public key distribution, certificate enrollment, certificate revocation,
certificate queries, and certificate revocation list (CRL) queries.

SCG

SONET Clock Generator. On a T640 routing node, provides the Stratum 3 clock signal for the SONET/SDH
interfaces. Also provides external clock inputs.

scheduler maps

In class of service (CoS), associate schedulers with forwarding classes. See also schedulers; forwarding
classes.

schedulers

Define the priority, bandwidth, delay buffer size, rate control status, and random early detection (RED)
drop profiles to be applied to a particular forwarding class for packet transmission. See also scheduler
maps.

scheduling

Method of determining which type of packet or queue is transmitted before another. An individual router
interface can have multiple queues assigned to store packets. The router then determines which queue to
service based on a particular method of scheduling. This process often involves a determination of which
type of packet should be transmitted before another; for example, first in, first out (FIFO). See also FIFO.

SCP

Secure copy. Means of securely transferring computer files between a local and remote host or between
two remote hosts, using the Secure Shell (SSH) protocol.

SCU

Source class usage. A means of tracking traffic originating from specific prefixes on the provider core

http://lib.ommolketab.ir
http://lib.ommolketab.ir

router and destined for specific prefixes on the customer edge router, based on the IP source and
destination addresses.

SDH

Synchronous Digital Hierarchy. A CCITT variation of the SONET standard.

SDP

Session Description Protocol. Used with multicast protocols to handle session conference announcements.

SDRAM

Synchronous dynamic random access memory. An electronic standard in which the inputs and outputs of
SDRAM data are synchronized to an externally supplied clock, allowing for extremely fast consecutive
read and write capacity.

SDX software

Service Deployment System software. A customizable Juniper Networks product with which service
providers can rapidly deploy IP services-such as video on demand (VoD), IP television, stateful firewalls,
Layer 3 virtual private networks (VPNs), and bandwidth on demand (BoD)-to hundreds of thousands of
subscribers over a variety of broadband access technologies.

services interface

Interface that provides specific capabilities for manipulating traffic before it is delivered to its destination;
for example, the adaptive services interface and the tunnel services interface. See also network interface.

session attribute object

Resource Reservation Protocol (RSVP) message object used to control the priority, preemption, affinity
class, and local rerouting of the label-switched path (LSP).

SFM

Switching and Forwarding Module. On an M160 router, a component of the Packet Forwarding Engine
(PFE) that provides route lookup, filtering, and switching to Flexible PIC Concentrators (FPCs).

SFP

Small form-factor pluggable transceiver. A transceiver that provides support for optical or copper cables.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SFPs are hot-insertable and hot-removable. See also XFP.

SGSN

Serving GPRS Support Node. Device in the mobile network that requests PDP contexts with a GGSN.

SHA-1

Secure Hash Algorithm 1. A secure hash algorithm standard defined in FIPS PUB 180–1 (SHA-1).
Developed by the National Institute of Standards and Technology (NIST), SHA-1 (which effectively
replaces SHA-0) produces a 160-bit hash for message authentication. Longer-hash variants include SHA-
224, SHA-256, SHA-384, and SHA-512 (sometimes grouped under the name "SHA-2"). SHA-1 is more
secure than Message Digest 5 (MD5). See also hashing; MD5.

sham link

Unnumbered point-to-point intra-area link advertised by a type 1 link-state advertisement (LSA).

shaping rate

In class of service (CoS), controls the maximum rate of traffic transmitted on an interface. See also traffic
shaping.

shared scheduling and shaping

Allocation of separate pools of shared resources to subsets of logical interfaces belonging to the same
physical port.

shared tree

Multicast forwarding tree established from the rendezvous point (RP) to the last hop router for a
particular group address.

SHDSL

Symmetric high-speed digital subscriber line. A standardized multirate symmetric DSL that transports
rate-adaptive symmetrical data across a single copper pair at data rates from 192 Kbps to 2.3 Mbps, or
from 384 Kbps to 4.6 Mbps over two pairs, covering applications served by HDSL, SDSL, T1, E1, and
services beyond E1. SHDSL conforms to the following recommendations: ITU G.991.2 G.SHDSL, ETSI TS
101-524 SDSL, and the T1E1.4/2001-174 G.SHDSL. See also G.SHDSL.

shim header

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Location of the Multiprotocol Label Switching (MPLS) header in a data packet. The JUNOS software always
places (shims) the header between the existing Layer 2 and Layer 3 headers.

Shortest Path First

See SPF.

shortest-path tree

See SPT.

SIB

Switch Interface Board. On a T640 routing node, provides the switching function to the destination Packet
Forwarding Engine (PFE).

signaled path

In traffic engineering, an explicit path; that is, a path determined using Resource Reservation Protocol
(RSVP) signaling. The ERO carried in the packets contains the explicit path information.

Simple Network Management Protocol

See SNMP.

simplex interface

Interface that treats packets it receives from itself as the result of a software loopback process. The
interface does not consider these packets when determining whether the interface is functional.

single-mode fiber

Optical fiber designed for transmission of a single ray or mode of light as a carrier and used for long-
distance signal transmission. For short distances, multimode fiber is used. See also MMF.

SIP

Session Initiation Protocol. An Adaptive Services application protocol option used for setting up sessions
between endpoints on the Internet. Examples include telephony, fax, videoconferencing, file exchange,
and person-to-person sessions.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SNA

System Network Architecture. IBM proprietary networking architecture consisting of a protocol stack that
is used primarily in banks and other financial transaction networks.

SNMP

Simple Network Management Protocol. A protocol governing network management and the monitoring of
network devices and their functions.

soft state

In Resource Reservation Protocol (RSVP), controls state in hosts and routers that expires if not refreshed
within a specified amount of time.

SONET

Synchronous Optical Network. A high-speed (up to 2.5 Gbps) synchronous network specification
developed by Bellcore and designed to run on optical fiber. STS1 is the basic building block of SONET.
Approved as an international standard in 1988. See also SDH.

source-based tree

Multicast forwarding tree established from the source of traffic to all interested receivers for a particular
group address. It is often used in a dense-mode forwarding environment.

sparse mode

Method of operating a multicast domain where sources of traffic and interested receivers meet at a
central rendezvous point (RP). A sparse-mode network assumes that there are very few receivers for
each group address.

SPF

Shortest Path First. An algorithm used by Intermediate System-to-Intermediate System Level 1 (IS-IS)
and Open Shortest Path First (OSPF) to make routing decisions based on the state of network links. Also
called the Dijkstra algorithm.

SPI

Security Parameter Index. In IPSec, a numeric identifier used with the destination address and security
protocol to identify a security association (SA). When Internet Key Exchange (IKE) is used to establish an
SA, the SPI is randomly derived. When manual configuration is used for an SA, the SPI must be entered

http://lib.ommolketab.ir
http://lib.ommolketab.ir

as a parameter.

SPID

Service Profile Identifier. Used only in Basic Rate Interface (BRI) implementations of the Integrated
Services Digital Network (ISDN). The SPID specifies the services available on the service provider switch
and defines the feature set ordered when the ISDN service is provisioned.

split horizon

Method used in distance-vector networks to avoid routing loops. Each router does not advertise routes
back to the neighbor from which it received them.

SPQ

Strict-priority queuing. A dequeuing method that provides a special queue that is serviced until it is
empty. The traffic sent to this queue tends to maintain a lower latency and more consistent latency
numbers than traffic sent to other queues. See also APQ.

SPT

Shortest-path tree. An algorithm that builds a network topology that attempts to minimize the path from
one router (the root) to other routers in a routing area.

SQL

Structured Query Language. International standard language used to create, modify, and select data
from relational databases.

src port

Transmission Control Protocol (TCP) or User Datagram Protocol (UDP) port for the source IP address in a
packet.

SS7

Signaling System 7. A protocol used in telecommunications for delivering calls and services.

SSAP

Source service access point. Device that identifies the origin of an LPDU on a data link switching (DLSw)
network.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SSB

System and Switch Board. On an M20 router, a Packet Forwarding Engine (PFE) component that performs
route lookups and component monitoring and monitors Flexible PIC Concentrator (FPC) operation.

SSH

Secure Shell. A protocol that uses strong authentication and encryption for remote access across a
nonsecure network. SSH provides remote login, remote program execution, file copy, and other
functions. In a Unix environment, SSH is intended as a secure replacement for rlogin, rsh, and rcp.

SSH/TLS

Secure Shell with Transport Layer Security. A combination of two standard methods used to secure
communications over the Internet. TLS is the name of a standard protocol based on SSL 3.0 and is
defined in RFC 2246. In combination, SSH/TLS is also known as SSHv2 and uses FIPS-restricted cipher
sets in a FIPS environment.

SSL

Secure Sockets Layer. A protocol that encrypts security information using public-private key technology,
which requires a paired private key and authentication certificate, before transmitting data across a
network.

SSM

Source-specific multicast. A service that allows a client to receive multicast traffic directly from the
source. Typically, SSM uses a subset of the Physical Interface Module (PIM) sparse-mode functionality
along with a subset of IGMPv3 to create a shortest-path tree (SPT) between the client and the source, but
it builds the SPT without the help of a rendezvous point (RP).

SSP

Switch-to-Switch Protocol. Protocol implemented between two data link switching (DLSw) routers that
establishes connections, locates resources, forwards data, and handles error recovery and flow control.

SSRAM

Synchronous static random access memory. Used for storing route tables, packet pointers, and other
data such as route lookups, policer counters, and other statistics to which the microprocessor needs quick
access.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

standard AAL5 mode

Transport mode that allows multiple applications to tunnel the protocol data units of their Layer 2
protocols over an Asynchronous Transfer Mode (ATM) virtual circuit. You use this transport mode to
tunnel IP packets over an ATM backbone. See also AAL5 mode; cell-relay mode; Layer 2 circuits; trunk
mode.

starvation

Problem that occurs when lower-priority traffic, such as data and protocol packets, is locked out (starved)
because a higher-priority queue uses all of the available transmission bandwidth.

stateful firewall filter

Type of firewall filter that evaluates the context of connections, permits or denies traffic based on the
context, and updates this information dynamically. Context includes IP source and destination addresses,
port numbers, Transmission Control Protocol (TCP) sequencing information, and TCP connection flags.
The context established in the first packet of a TCP session must match the context contained in all
subsequent packets if a session is to remain active. See also stateless firewall filter.

stateful firewall recovery

Recovery strategy that preserves parameters concerning the history of connections, sessions, or
application status before failure. See also stateless firewall recovery.

stateless firewall filter

Type of firewall filter that statically evaluates the contents of packets transiting the router and packets
originating from or destined for the Routing Engine (RE). Packets are accepted, rejected, forwarded, or
discarded and collected, logged, sampled, or subjected to classification according to a wide variety of
packet characteristics. Sometimes called access control lists (ACLs) or simply firewall filters, stateless
firewall filters protect the processes and resources owned by the RE. A stateless firewall filter can
evaluate every packet, including fragmented packets. In contrast to a stateful firewall filter, a stateless
firewall filter does not maintain information about connection states. See also stateful firewall filter.

stateless firewall recovery

Recovery strategy that does not attempt to preserve the history of connections, sessions, or application
status before failure. See also stateful firewall recovery.

static LSP

See static path.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

static path

In the context of traffic engineering, a static route that requires hop-by-hop manual configuration. No
signaling is used to create or maintain the path. Also called a static LSP.

static route

Explicitly configured route that is entered into the route table. Static routes have precedence over routes
chosen by dynamic routing protocols.

static RP

One of three methods of learning the rendezvous point (RP) to group address mapping in a multicast
network. Each router in the domain must be configured with the required RP information.

S/T interface

System reference point/terminal reference point interface. A four-pair connection between the Integrated
Services Digital Network (ISDN) provider service and the customer terminal equipment.

STM

Synchronous transport module. CCITT specification for SONET at 155.52 Mbps.

strict

In the context of traffic engineering, a route that must go directly to the next address in the path.
(Definition from RFC 791, modified to fit LSPs.)

strict hop

Routers in a Multiprotocol Label Switching (MPLS) named path that must be directly connected to the
previous router in the configured path.

STS

Synchronous transport signal. Synchronous transport signal level 1 is the basic building block signal of
SONET, operating at 51.84 Mbps. Faster SONET rates are defined as STS-n, where n is an integer by
which the basic rate of 51.84 Mbps is multiplied. See also SONET.

stub area

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In Open Shortest Path First (OSPF), an area through which, or into which, autonomous system (AS)
external advertisements are not flooded.

STU-C

Symmetric high-speed digital subscriber line (SHDSL) transceiver unit-central office. Equipment at the
telephone company central office that provides SHDSL connections to remote user terminals.

STU-R

Symmetric high-speed digital subscriber line (SHDSL) transceiver unit-remote. Equipment at the
customer premises that provides SHDSL connections to remote user terminals.

sub-LSP

Part of a point-to-multipoint label-switched path (LSP). A sub-LSP carries traffic from the main LSP to one
of the egress Provide Edge (PE) routers. Each point-to-multipoint LSP has multiple sub-LSPs. See also
point-to-multipoint LSP.

subnet mask

Number of bits of the network address used for the host portion of a Class A, Class B, or Class C IP
address.

subrate value

Value that reduces the maximum allowable peak rate by limiting the High-Level Data Link Control
(HDLC)-encapsulated payload. The subrate value must exactly match that of the remote channel service
unit (CSU).

summary link advertisement

Open Shortest Path First (OSPF) link-statement advertisement (LSA) flooded throughout the
advertisement's associated areas by area border routers (ABRs) to describe the routes that they know
about in other areas.

SVC

Switched virtual connection. A dynamically established, software-defined logical connection that stays up
as long as data is being transmitted. When transmission is complete, the software tears down the SVC.
See also PVC.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

sysid

System identifier. Portion of the ISO nonclient peer. The system ID can be any six bytes that are unique
throughout a domain.

syslog

System log. A method for storing messages to a file for troubleshooting or recordkeeping. It can also be
used as an action within a firewall filter to store information to the messages file.

T1

Basic physical layer protocol used by the Digital Signal level 1 (DS1) multiplexing method in North
America. A T1 interface operates at a bit rate of 1.544 Mbps and can support 24 DS0 channels.

T3

Physical layer protocol used by the Digital Signal level 3 (DS3) multiplexing method in North America. A
T3 interface operates at a bit rate of 44.736 Mbps.

TACACS+

Terminal Access Controller Access Control System Plus. Authentication method for validating users who
attempt to access the router using Telnet.

tail drop

Queue management algorithm for dropping packets from the input end (tail) of the queue when the
length of the queue exceeds a configured threshold. See also RED.

T-carrier

Generic designator for any of several digitally multiplexed telecommunications carrier systems originally
developed by Bell Labs and used in North America and Japan.

TCM

Tricolor marking. Traffic policing mechanism that extends the functionality of class-of-service (CoS) traffic
policing by providing three levels of drop precedence (loss priority or PLP) instead of two. There are two
types of TCM: single-rate and two-rate. The JUNOS software currently supports two-rate TCM only. See
also trTCM.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TCP

Transmission Control Protocol. Works in conjunction with IP to send data over the Internet. Divides a
message into packets and tracks the packets from point of origin to destination.

tcpdump

Unix packet monitoring utility used by the JUNOS software to view information about packets sent or
received by the Routing Engine (RE).

TCP port 179

Well-known port number used by the Border Gateway Protocol (BGP) to establish a peering session with a
neighbor.

TDMA

Time-Division Multiplex Access. A type of multiplexing in which two or more channels of information are
transmitted over the same link, where the channels take turns to use the link. Each link is allocated a
different time interval ("slot" or "slice") for the transmission of each channel. For the receiver to
distinguish one channel from the other, some kind of periodic synchronizing signal or distinguishing
identifier is required. See also GSM.

TEI

Terminal Endpoint Identifier. A terminal endpoint can be any Integrated Services Digital Network (ISDN)-
capable device attached to an ISDN network. The TEI is a number between 0 and 127, where 0 through
63 are used for static TEI assignment, 64 through 126 are used for dynamic assignment, and 127 is used
for group assignment.

terminating action

Action in a routing policy or firewall filter that halts the logical software processing of a policy or filter.

terms

Used in a routing policy or firewall filter to segment the policy or filter into small match and action pairs.

through

JUNOS software routing policy match type representing all routes that fall between the two supplied
prefixes in the route filter.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Time-Division Multiplex Access

See TDMA.

time-division multiplexed channel

Channel derived from a given frequency and transmitted over a single wire or wireless medium. The
channel is preassigned a time slot whether or not there is data to transmit.

timeout timer

Used in a distance-vector protocol to ensure that the current route is still usable for forwarding traffic.

TNP

Trivial Network Protocol. A Juniper Networks proprietary protocol automatically configured on an internal
interface by the JUNOS software. TNP is used to communicate between the Routing Engine (RE) and
components of the Packet Forwarding Engine (PFE), and is critical to the operation of the router.

token-bucket algorithm

Used in a rate-policing application to enforce an average bandwidth while allowing bursts of traffic up to a
configured maximum value.

ToS

Type of service. The method of handling traffic using information extracted from the fields in the ToS byte
to differentiate packet flows.

totally stubby area

Open Shortest Path First (OSPF) area type that prevents Type 3, 4, and 5 link-state advertisements
(LSAs) from entering the nonbackbone area.

traffic engineering

Process of selecting the paths chosen by data traffic to balance the traffic load on the various links,
routers, and switches in the network. (Definition from http://www.ietf.org/internet-drafts/draft-ietf-mpls-
framework-04.txt.) See also MPLS.

traffic engineering class

http://www.ietf.org/internet-drafts/draft-ietf-mpls-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

In Differentiated-Services-aware traffic engineering, a paired class type and priority.

traffic engineering class map

In Differentiated-Services-aware traffic engineering, a map among the class types, priorities, and traffic
engineering classes. The traffic engineering class mapping must be consistent across the Differentiated
Services domain.

traffic policing

Examines traffic flows and discards or marks packets that exceed service-level agreements (SLAs).

traffic sampling

Method used to capture individual packet information of traffic flow at a specified time period. The
sampled traffic information is placed in a file and stored on a server for various types of analysis. See
also packet capture.

traffic shaping

Reduces the potential for network congestion by placing packets in a queue with a shaper at the head of
the queue. Traffic shaping tools regulate the rate and volume of traffic admitted to the network. See also
shaping rate.

transient change

Commit script-generated configuration change that is loaded into the checkout configuration, but not into
the candidate configuration. Transient changes are not saved in the configuration if the associated
commit script is deleted or deactivated. See also persistent change.

transient interface

Interface that can be configured on a routing platform depending on your network needs. Unlike a
permanent interface that is required for router operation, a transient interface can be disabled or
removed without affecting the basic operation of the router. See also FPC; PIC; permanent interface.

transit area

In Open Shortest Path First (OSPF), an area used to pass traffic from one adjacent area to the backbone
or to another area if the backbone is more than two hops away from an area.

transit router

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In Multiprotocol Label Switching (MPLS), any intermediate router in the label-switched path (LSP)
between the ingress router and the egress router.

transport mode

IPSec mode of operation in which the data payload is encrypted, but the original IP header is left
untouched. The IP addresses of the source or destination can be modified if the packet is intercepted.
Because of its construction, transport mode can be used only when the communication endpoint and
cryptographic endpoint are the same. Virtual private network (VPN) gateways that provide encryption and
decryption services for protected hosts cannot use transport mode for protected VPN communications.
See also tunnel mode.

transport plane

See data plane.

TRAP

Reports significant events occurring on a network device, most often errors or failures. Simple Network
Management Protocol (SNMP) TRAPs are defined in either standard or enterprise-specific Management
Information Bases (MIBs).

triggered updates

Used in a distance-vector protocol to reduce the time for the network to converge. When a router has a
topology change, it immediately sends the information to its neighbors instead of waiting for a timer to
expire.

trTCM

Two-rate TCM polices traffic according to the color classification (loss priority) of each packet. Traffic
policing is based on two rates: the committed information rate (CIR) and the peak information rate (PIR).
Two-rate TCM is defined in RFC 2698, "A Two Rate Three Color Marker." See also CIR; PIR.

trunk mode

Layer 2 circuit cell-relay transport mode that allows you to send Asynchronous Transfer Mode (ATM) cells
between ATM2 intelligent queuing (IQ) interfaces over a Multiprotocol Label Switching (MPLS) core
network. You use Layer 2 circuit trunk mode (as opposed to standard Layer 2 circuit cell-relay mode) to
transport ATM cells over an MPLS core network that is implemented between other vendors' switches or
routers. The multiple connections associated with a trunk increase bandwidth and provide failover
redundancy. See also AAL5 mode, cell-relay mode, Layer 2 circuits, standard AAL5 mode.

Tspec object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Resource Reservation Protocol (RSVP) message object that contains information such as the bandwidth
request of the label-switched path (LSP) as well as the minimum and maximum packets supported.

tunnel

Private, secure path through an otherwise public network.

tunnel endpoint

Last node of a tunnel where the tunnel-related headers are removed from the packet, which is then
passed on to the destination network.

tunneling protocol

Network protocol that encapsulates one protocol or session inside another. When protocol A is
encapsulated within protocol B, A treats B as though it were a data-link layer. Tunneling can be used to
transport a network protocol through a network that would not otherwise support it. Tunneling can also
be used to provide various types of virtual private network (VPN) functionality such as private addressing.

tunnel mode

IPSec mode of operation in which the entire IP packet, including the header, is encrypted and
authenticated and a new virtual private network (VPN) header is added, protecting the entire original
packet. This mode can be used by both VPN clients and VPN gateways, and it protects communications
that come from or go to non-IPSec systems. See also transport mode.

tunnel services interface

Provides the capability of a Tunnel Services PIC on an Adaptive Services PIC (ASP). See Tunnel Services
PIC.

Tunnel Services PIC

Physical interface card (PIC) that allows the router to perform the encapsulation and de-encapsulation of
IP datagrams. The Tunnel Services PIC supports IP-IP, Generic Routing Encapsulation (GRE), and Physical
Interface Module (PIM) register encapsulation and de-encapsulation. When the Tunnel Services PIC is
installed, the router can be a PIM rendezvous point (RP) or a PIM first hop router for a source that is
directly connected to the router.

TX Matrix platform

Routing platform that provides the centralized switching fabric of the routing matrix.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

UDP

User Datagram Protocol. In Transmission Control Protocol/Internet Protocol (TCP/IP), a connectionless
transport layer protocol that exchanges datagrams without acknowledgments or guaranteed delivery,
requiring that error processing and retransmission be handled by other protocols.

U interface

User reference point interface. A single-pair connection between the local Integrated Services Digital
Network (ISDN) provider and the customer premises equipment.

UME

UNI management entity. The code residing in the Asynchronous Transfer Mode (ATM) devices at each end
of a UNI (user-to-network interface) circuit that functions as a Simple Network Management Protocol
(SNMP) agent, maintaining network and connection information specified in a Management Information
Base (MIB).

UMTS

Universal mobile telecommunications system. Provides third-generation (3G), packet-based transmission
of text, digitized voice, video, and multimedia, at data rates up to 2 Mbps.

UNI

User-to-network interface. ATM Forum specification that defines an interoperability standard for the
interface between a router or an Asynchronous Transfer Mode (ATM) switch located in a private network
and the ATM switches located within the public carrier networks. Also used to describe similar connections
in Frame Relay networks.

unicast

Operation of sending network traffic from one network node to another individual network node.

unit

JUNOS software syntax that represents the logical properties of an interface.

unnumbered interface

Logical interface that is configured without an IP address.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Update message

Border Gateway Protocol (BGP) message that advertises path attributes and routing knowledge to an
established neighbor.

update timer

Used in a distance-vector protocol to advertise routes to a neighbor on a regular basis.

UPS

Uninterruptible power supply. A device that sits between a power supply and a router or other device and
prevents power-source events, such as outages and surges, from affecting or damaging the device.

upto

JUNOS software routing policy match type representing all routes that share the same most-significant
bits and whose prefix length is smaller than the supplied subnet in the route filter.

UTC

Coordinated Universal Time. Historically referred to as Greenwich Mean Time (GMT), a high-precision
atomic time standard that tracks Universal Time (UT) and is the basis for legal civil time all over the
world. Time zones around the world are expressed as positive and negative offsets from UTC.

UTRAN

UMTS Terrestrial Radio Access Network. The WCDMA radio network in UMTS.

VBR

Variable bit rate. For ATM1 and ATM2 intelligent queuing (IQ) interfaces, data that is serviced at a varied
rate within defined limits. VBR traffic adds the ability to statistically oversubscribe user traffic.

VC

Virtual circuit. A software-defined logical connection between two network devices that is not a dedicated
connection but acts as though it is. It can be either permanent (PVC) or switched (SVC). VCs are used in
Asynchronous Transfer Mode (ATM), Frame Relay, and X.25. See also VPI, VCI, PVC, SVC.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

VCI

1. Vapor corrosion inhibitor. Small cylinder packed with the router that prevents corrosion of the chassis
and components during shipment. 2. Virtual circuit identifier. A 16-bit field in the header of an
Asynchronous Transfer Mode (ATM) cell that indicates the particular virtual circuit the cell takes through a
virtual path. Also called a logical interface. See also VPI.

virtual channel

Enables queuing, packet scheduling, and accounting rules to be applied to one or more logical interfaces.
See also virtual channel group.

virtual channel group

Combines virtual channels into a group and then applies the group to one or more logical interfaces. See
also virtual channel.

virtual circuit

Represents a logical connection between two Layer 2 devices in a network.

virtual link

In Open Shortest Path First (OSPF), a link created between two routers that are part of the backbone but
are not physically contiguous.

virtual loopback tunnel interface

See VT.

virtual path

Combination of multiple virtual circuits between two devices in an Asynchronous Transfer Mode (ATM)
network.

VLAN

Virtual LAN. A logical group of network devices that appear to be on the same LAN, regardless of their
physical location. VLANs are configured with management software, and are extremely flexible because
they are based on logical, rather than physical, connections.

VLAN-tagged frame

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Tagged frame whose tag header carries both virtual LAN (VLAN) identification and priority information.

VPI

Virtual path identifier. An 8-bit field in the header of an Asynchronous Transfer Mode (ATM) cell that
indicates the virtual path the cell takes. See also VCI.

VPLS

Virtual private LAN service. An Ethernet-based multipoint-to-multipoint Layer 2 virtual private network
(VPN) service used for interconnecting multiple Ethernet LANs across a Multiprotocol Label Switching
(MPLS) backbone. VPLS is specified in the IETF draft "Virtual Private LAN Service."

VPN

Virtual private network. A private data network that uses a public Transmission Control Protocol/Internet
Protocol (TCP/IP) network, typically the Internet, while maintaining privacy with a tunneling protocol,
encryption, and security procedures. See also tunneling protocol.

VRF instance

Virtual private network (VPN) routing and forwarding instance. A Virtual Route and Forwarding (VRF)
instance for a Layer 3 VPN implementation consists of one or more route tables, a derived forwarding
table, a set of interfaces that use the forwarding table, and a set of policies and routing protocols that
determine what goes into the forwarding table.

VRF table

Routing instance table that stores Virtual Route and Forwarding (VRF) routing information. See also VRF
instance.

VRRP

Virtual Router Redundancy Protocol. On Fast Ethernet and Gigabit Ethernet interfaces, allows you to
configure virtual default routers.

VT

Virtual loopback tunnel interface. A VT interface that loops packets back to the Packet Forwarding Engine
(PFE) for further processing, such as looking up a route in a Virtual Route and Forwarding (VRF) route
table or looking up an Ethernet media access control (MAC) address. A virtual loopback tunnel interface
can be associated with a variety of Multiprotocol Label Switching (MPLS) and virtual private network
(VPN)-related applications, including VRF routing instances, VPLS routing instances, and point-to-
multipoint label-switched paths (LSPs).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

warm standby

Method that enables one backup Adaptive Services PIC (ASP) to support multiple active ASPs, without
providing guaranteed recovery times.

WAN PHY

Wide Area Network Physical Layer Device. A physical layer device that allows 10-Gigabit Ethernet wide-
area links to use fiber-optic cables and other devices intended for SONET/SDH. See also LAN PHY; PHY.

WAP

Wireless Application Protocol. A standard protocol that enables mobile users to access the Internet in a
limited fashion if WAP is supported and enabled on the mobile device, server, and wireless network. WAP
users can send and receive email and access web sites in text format only (WAP does not support
graphics).

WCDMA

Wideband Code Division Multiple Access. Radio interface technology used in most third-generation (3G)
systems.

WDM

Wavelength-division multiplexing. Technique for transmitting a mix of voice, data, and video over various
wavelengths (colors) of light.

WINS

Windows Internet Name Service. A Windows name resolution service for network basic input/output
system (NetBIOS) names. WINS is used by hosts running NetBIOS over TCP/IP (NetBT) to register
NetBIOS names and resolve NetBIOS names to IP addresses.

WRR

Weighted round-robin. Scheme used to decide the queue from which the next packet should be
transmitted.

XENPAK

Standard that defines a type of pluggable fiber-optic transceiver module that is compatible with the 10-
Gigabit Ethernet (10 GbE) standard.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

XENPAK module

10-Gigabit Ethernet fiber-optic transceiver. XENPAK modules are hot-insertable and hot-removable. See
also MSA.

XENPAK Multisource Agreement

See MSA.

XENPAK-SR 10BASE-SR XENPAK

Media type that supports a link length of 26 meters on standard Fiber Distributed Data Interface (FDDI)
grade multimode fiber (MMF). Up to 300-meter link lengths are possible with 2000 MHz/km MMF (OM3).

XENPAK-ZR 10GBASE-ZR XENPAK

Media type used for long-reach, single-mode (80–120 km) 10-Gigabit Ethernet metro applications.

XFP

10-Gigabit small form-factor pluggable transceiver. A transceiver that provides support for fiber-optic
cables. XFPs are hot-insertable and hot-removable. See also SFP.

XML

Extensible Markup Language. Language used for defining a set of markers, called tags, which define the
function and hierarchical relationships of the parts of a document or data set.

XML schema

Definition of the elements and structure of one or more Extensible Markup Language (XML) documents.
Similar to a document type definition (DTD), but with additional information and written in XML.

XOR

Exclusive or. A logical operator (exclusive disjunction) in which the operation yields the result of true
when one, and only one, of its operands is true.

XPath

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Standard used in Extensible Stylesheet Language for Transformations (XSLT) to specify and locate
elements in the input document's Extensible Markup Language (XML) hierarchy. XPath is fully described
in the World Wide Web Consortium (W3C) specification at http://w3c.org/TR/xpath.

XSLT

Extensible Stylesheet Language for Transformations. A standard for processing Extensible Markup
Language (XML) data developed by the World Wide Web Consortium (W3C). XSLT performs XML-to-XML
transformations, turning an input XML hierarchy into an output XML hierarchy. The XSLT specification is
on the W3C web site at http://www.w3c.org/TR/xslt.

zeroize

Process of removing all sensitive information, such as cryptographic keys and user passwords, from a
router running JUNOS-FIPS.

http://w3c.org/TR/xpath
http://www.w3c.org/TR/xslt
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Appendix. Colophon

The animal on the cover of JUNOS Enterprise Routing is Tengmalm's owl (Aegolius funereus), also known in
North America as the Boreal owl. The owl's distinguishing features include pale or bright yellow eyes and a
brown body spotted with white flecks (its belly is usually off-white).

This solitary, largely unsociable owl lives in thick forests throughout North America and in various mountain
ranges throughout Eurasia. They often nest in the old homes of woodpeckers. Although the creatures are
unfriendly, they may show loyalty to their families by raising their young generation after generation in the
same home.

The bird's namesake is Swedish naturalist Peter Gustaf Tengmalm, who improved upon a previous classification
system for the owl. Occasionally the bird's cry will sound like the peal of a funeral bell, hence the funereus in its
species name. In North America, scientists named the owl after the Greek god of the north wind, Boreas,
referring not to the owl's voice, but to its northern habitats.

While it is known for it funereal cries, the owl's voice does carry a range of notes. A commonly heard song from
the owl is its territorial call, which sounds as if the bird is singing the word "poop" several times in rapid
succession. When wooing a female, the male sings a series of stutters that eventually crescendos in a long trill
of up to 350 notes.

The cover image is from Dover's Animals. The cover font is Adobe ITC Garamond. The text font is Linotype
Birka; the heading font is Adobe Myriad Condensed; and the code font is LucasFont's TheSans Mono Condensed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

[edit applications] directory
[edit chassis] directory
[edit class-of-service classifiers] directory
[edit class-of-service drop-profiles] directory
[edit class-of-service interfaces] directory 2nd
[edit class-of-service scheduler-maps] directory
[edit class-of-service schedulers] directory
[edit class-of-service] directory 2nd
[edit firewall family inet] directory
[edit firewall] directory 2nd
[edit interfaces] directory 2nd
[edit policy-options] directory
[edit protocol ospf] directory
[edit protocol pim rp] directory
[edit protocols pim interface] directory
[edit protocols pim local] directory
[edit protocols pim rp local family inet] directory
[edit protocols pim rp local] directory
[edit protocols pim rp] directory
[edit protocols pim] directory
[edit routing-options] directory 2nd 3rd 4th 5th
[edit security firewall-authentication] directory
[edit security] directory 2nd 3rd
[edit system ntp] directory
[edit system password] directory
[edit system services] directory
[edit system] directory
[edit] directory

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

AAL (ATM adaptation layer)
AAL5 mode (ATM Layer 5)
ABR (area border router)
 OSPF 2nd
accept action, firewall filters
accept-data command
access concentrator
access security
 remote access
 user authentication
accounting services
ACFC (Address and Control Field Compression)
action modifiers, firewall filters
active monitoring
active route
AD (administrative distance) 2nd
adaptive services
adaptive shaping, CoS 2nd
address match conditions, firewall filters 2nd
addressing, multicast
 mapping to link layer
 scoping of
adjacency
Adjacency-RIB-In
Adjacency-RIB-Out
ADM (add/drop multiplexer)
ADSL (asymmetrical digital subscriber line) 2nd
ADSL interface
ADSL2 interface
ADSL2+ interface
adverse-inactive option, for global route preference
ae media type
AES (Advanced Encryption Standard)
AF (Assured Forwarding) class
AF PHB
aggregate routes 2nd
 compared to generated routes 2nd
 compared to static routes 2nd
 next hop types for
aggregated interface
AH (authentication header)
ALG (Application Layer Gateway)
ALI (ATM line interface)
allow command
ANSI (American National Standards Institute)
Anycast-RP discovery, PIM
 configuring
 verifying
 with MSDP
APN (access point name)
apply-path command
APQ (alternate priority queuing)
APS (Automatic Protection Switching)
AQM (Active Queue Management)
area (contiguous networks and hosts) 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

area (routing subdomain)
area types, OSPF
area-range command
ARP (Address Resolution Protocol)
AS (autonomous system) 2nd
AS external link advertisement
AS number, for BGP 2nd 3rd
AS path
AS path attribute, BGP 2nd 3rd
AS path regex matching
ASBR (autonomous system boundary router) 2nd
ASBR Summary LSA
ASIC (application-specific integrated circuit)
ASM (Adaptive Services Module) 2nd
ASM (Any Source Multicast) 2nd 3rd
ASP (Adaptive Services PIC) 2nd 3rd
Assured Forwarding (AF) class
* (asterisk), in regular expression
asterisk (*), in regular expression
asymmetric link speeds, with BGP
asymmetric load balancing, with BGP
 baseline configuration, validating
 configurating generated default route for
 configuring BGP peering for
 export policy for 2nd
 import policy for 2nd
 multipath option for 2nd
 per-packet load-balancing algorithm for 2nd
 requirements for
at media type
ATM (Asynchronous Transfer Mode)
ATM-over-ADSL interface
atomic operation
AUC (authentication center)
authentication
 of users
 RIP deployment
Authentication TRAPs, SNMP
authentication-order command
auto-negotiation
auto-RP discovery, PIM 2nd
automatic policing
autonomous system external link advertisement
autonomous system path
availability of data
avian-based transport technology

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

B-channel
BA (behavior aggregate) classification 2nd
 in ingress processing 2nd
 in rewrite marking 2nd 3rd
 with DiffServ 2nd
backbone area, OSPF 2nd
backbone router, OSPF 2nd
backup tunnels, IPSec VPN
bandwidth
 adding to IP networks
 as QoS parameter
bandwidth community support, BGP
bandwidth model
bandwidth on demand (on a link)
bandwidth on demand (on a Services Router)
base tranceiver station (BTS)
BDR (backup designated router), OSPF 2nd
BE (Best Effort) forwarding class
BECN (backward explicit congestion notification)
Bellman-Ford algorithm
BERT (bit error rate test)
Best Effort (BE) forwarding class
BFD (Bidirectional Forwarding Detection) 2nd 3rd
BGP (Border Gateway Protocol) 2nd 3rd
 AS number for 2nd
 asymmetric link speeds with
 asymmetric load balancing with
 baseline configuration, validating
 configuring BGP peering for
 configuring generated default route for
 export policy for 2nd
 import policy for 2nd
 multipath option for 2nd
 per-packet load-balancing algorithm for 2nd
 requirements for
 bandwidth community support
 compared to IGP
 External (EBGP) 2nd 3rd
 for dual-homed network 2nd
 for enterprise
 requirements for
 when to use
 Internal (IBGP) 2nd 3rd 4th 5th
 multihoming
 aggregate route for
 attributes affecting 2nd
 EBGP peering for
 IBGP peering for
 inbound (export) policy for
 outbound (import) policy for 2nd
 requirements for
 route reflection for 2nd
 path selection
 route attributes
 routing loops, preventing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 routing policy for 2nd 3rd
 transit services, not providing
bgp.12vpn.0 route table
bgp.13vpn.0 route table
bidirectional NAT
binary trees, and route filters
bit field match conditions, firewall filters 2nd 3rd
bit rate
BITS (Building Integrated Timing Source)
Blowfish method
books and documentation
 IPSec: The New Security Standard for the Internet, Intranets, and Virtual Private Networks (Doraswamy; Harkins)
 JUNOS Cookbook (Garrett)
 "JUNOS Enhanced Services Migration Guide"
 JUNOS software documentation
 "Network QoS Needs of Advanced Internet Applications" (survey by Internet QoS working group)
BOOTP (bootstrap protocol)
bootstrap router
bootstrap RP discovery, PIM
 configuring
 troubleshooting
 verifying
BPDU (bridge protocol data unit)
br media type
branches, distribution tree
BRI (Basic Rate Interface)
bridge
broadcast
Broadcast mode, NTP
BSC (base station controller)
BSR (bootstrap router) 2nd
BSS (base station subsystem)
BSSGP (Base Station System GPRS Protocol)
BTS (base tranceiver station)
buffer size, MDDR scheduler
buffers
bundle (physical links) 2nd
bundle (software)
burst size, setting 2nd
bypass LSP

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

CA (certificate authority)
CAC (call admission control)
CAIDA (Cooperative Association for Internet Data Analysis)
call establishment phase
callback
caller ID
CAMEL (Customized Applications of Mobile Enhanced Logic)
candidate configuration
candidate RP advertisements
^ (caret), in regular expression
caret (^), in regular expression
carrier-of-carriers VPN
CB (Control Board)
CBC (cipher block chaining)
CBF (Class-Based Forwarding) 2nd
CBR (constant bit rate)
CCC (circuit cross-connect)
CDMA (Code Division Multiple Access)
CDMA2000
CDR (Call Detail Record)
CE (customer edge) device
cell relay
cell tax
cell-relay mode
cFEB (compact Forwarding Engine Board) 2nd
cflowd application
CFM (cubic feet per minute)
channel
channel group
channel number, for interfaces
channelized E1
channelized interface
channelized T1
CHAP (Challenge Handshake Authentication)
chassis slot number, for interfaces
Chassis TRAPs, SNMP
chassisd (chassis daemon)
> (chevron), CLI operational mode prompt
chevron (>), CLI operational mode prompt
CIDR (classless interdomain routing)
CIP (Connector Interface Panel)
CIR (committed information rate)
circuit-switched networks, inefficiencies of
Cisco HDLC encapsulation
Cisco-RP-Announce message
Cisco-RP-Discovery message
class type
classful addressing
classification override, CoS
classification, CoS 2nd 3rd
 confirming
 in ingress processing
 multifield classification
classifier
cleanup utility, CLI

http://lib.ommolketab.ir
http://lib.ommolketab.ir

clear bgp neighbor command
clear channel
clear command
clear-dont-fragment command
CLEC (competitive local exchange carrier)
CLEI (Common Language Equipment Identifier)
CLI (command-line interface), xviii 2nd
 command completion feature 2nd 3rd
 configuration mode 2nd 3rd 4th 5th
 EMACs-style keystrokes in
 help in
 hidden commands 2nd
 operational mode
 pipe commands in
Client mode, NTP
client peer
CLNP (Connectionless Network Protocol)
CLNS (Connectionless Network Service)
clock strata, NTP
clocking properties, of interface 2nd
CLP (cell loss priority) bits
cluster
CO (central office)
code-point alias
: (colon), in interface name
colon (:), in interface name
command completion, CLI 2nd 3rd
commit command 2nd 3rd
commit script
commit script macro
Communities attribute, BGP
community (BGP)
community (SNMP)
community attribute, BGP 2nd
community regex matching
compact flash
 determining free space on
 freeing space on 2nd
compare command
confederations, with IBGP 2nd
confidentiality of data 2nd
configuration mode, CLI 2nd 3rd
 adding configurations
 changing strings in configurations
 committing configurations 2nd
 comparing configurations
 directories in
 loading configurations
 maintenance windows for
 multiple users of
 operational mode commands run from
 removing configurations 2nd
 rolling back configurations
 saving configurations
 viewing configurations
Configuration TRAPs, SNMP
configure command
congestion management, CoS 2nd 3rd
Connect state
consistency of data
constrained path
context node
context-sensitive help
contributing routes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

control plane 2nd
 separation from forwarding plane
conversation (session), with stateful firewall
core
cosd process
count action, firewall filters
count command
CPE (customer premises equipment)
craft interface
CRL (certificate revocation list)
CRTP (Compressed Real-Time Transport Protocol) 2nd
Crypto Accelerator Module
Crypto Officer
CS PHB
CSCP (Class Selector code point) 2nd
CSNP (complete sequence number PDU)
CSP (Critical Security Parameter)
CSPF (Constrained Shortest Path First)
CSU/DSU (channel service unit/data service unit) 2nd
ct1 media type
Ctrl keystrokes (EMACs)
CVS (Concurrent Versions System)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

D-channel
daemon
damping
data integrity 2nd
data packet
data plane 2nd
data plane stimulation, for CoS
data-MDT
database description packet
dcd (device control process)
DCE (data circuit-terminating equipment) 2nd
DCU (destination class usage)
DDR (dial-on-demand routing) backup
DE (discard-eligible) bits 2nd
deactivate command
dead interval
default address
default route
default-information originate command
deficit counter, MDDR scheduler
delay
 as QoS parameter
 in IP networks
delay buffer size, CoS
delete command 2nd
demand circuit
dense mode, multicast 2nd 3rd 4th
deny command
DES (Data Encryption Standard)
destination NAT 2nd 3rd
 preventing routing loops using
 stateful firewall and
destination prefix length
DFC (dynamic flow capture)
DHCP (Dynamic Host Configuration Protocol) 2nd
dial backup
dial-in
dial-on-demand routing (DDR) backup
dialer filter
dialer interface
dialer profile
dialer watch
Differentiated Services domain
Differentiated-Services-aware traffic engineering
Diffie-Hellman method
DiffServ (Differentiated Services) 2nd 3rd
DiffServ domain
DiffServ field
DiffServ region
DiffServ-aware
digital certificate
DIMM (dual inline memory module)
disable (router configuration)
discard accounting
discard action, firewall filters

http://lib.ommolketab.ir
http://lib.ommolketab.ir

discard command
discard next hop, static and aggregate routes
display command
distance-vector method
Distributed Buffer Manager ASIC
distribution tree, multicast 2nd
DLCI (data-link connection identifier) 2nd
DLSw (Data Link Switching) 2nd
DLSw circuit
DLSw connection
DMZ (demilitarized zone)
DNS (Domain Name System)
$ (dollar sign), in regular expression
dollar sign ($), in regular expression
Doraswamy, Naganand (IPSec: The New Security Standard for the Internet, Intranets, and Virtual Private Networks)
DoS (denial of service)
downstream traffic, multicast
DPD (dead peer detection)
DR (designated router) 2nd
DRAM (dynamic random access memory)
dribble error
drop probability
drop profile
DS behavior aggregate
DS0 (digital signal level 0)
DS1 (digital signal level 1)
DS3 (digital signal level 3)
DSAP (destination service access point)
dsc interface
DSCP (DiffServ code point) 2nd 3rd
DSU (data service unit)
DTCP (Dynamic Tasking Control Protocol)
DTD (document type definition)
DTE (data terminal equipment) 2nd
DUAL (Diffusing Update Algorithm)
dual-homed network 2nd
DV (Distance Vector) routing protocol
DVMRP (Distance Vector Multicast Routing Protocol) 2nd 3rd
DWDM (dense wavelength-division multiplexing)
dynamic label-switched path
dynamic source NAT
dynamic tunnels, IPSec VPN

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

E-carrier
e1 media type
E1 protocol
e3 media type
E3 protocol
EAL3 (Common Criteria Evaluation Assurance Level 3)
EBGP (External BGP) 2nd
 peering
 where to run
ECC (error checking and correction)
ECN (explicit congestion notification)
ECSA (Exchange Carriers Standards Association)
edge router
edit command
editor macros (Emacs)
EF (Expedited Forwarding) class
EF PHB
EGP (Exterior Gateway Protocol)
egress router
EIA (Electronic Industries Association)
EIA-530
EIGRP (Enhanced Interior Gateway Routing Protocol) 2nd
 closed nature of, as disadvantage
 metrics used by
 migrating to OSPF
 confirming redistribution
 IOS configuration for
 JUNOS configuration for
 route preferences for 2nd
 route redistribution for 2nd
EIR (equipment identity register)
EMACs-style keystrokes, CLI
embedded OS software
EMI (electromagnetic interference)
encapsulation mismatches, troubleshooting
encapsulation properties, of interface
Encryption Services PIC
end system
enhanced services, JUNOS software 2nd
 configuration file for 2nd
 devices needed for
 flow-based forwarding model used by 2nd
 IPv6 support
 migrating from JUNOS ASP-based services to
 migrating from JUNOS to 2nd
 MPLS support
 platforms supported by
 router context mode
 secure context mode 2nd
 security zones
 session timeouts
 sessions
 tracing
 troubleshooting flow problem
 verifying operation of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

EPD (early packet discard)
EPIM (Enhanced Physical Interface Module)
equipment identity register (see EIR)
ERO (Explicit Route Object)
ES-IS (End System-to-Intermediate System)
ESD (electrostatic discharge)
ESP (Encapsulating Security Payload)
Established state
Ethernet, xviii
ETSI (European Telecommunications Standardization Institute)
eventd process
exact match type, route filter 2nd
except command
exception packet
Exchange state
EXP (experimental) bits
Expedited Forwarding (EF) class
export (inbound) routing policy 2nd 3rd 4th
 asymmetric load balancing 2nd
 multihoming, with BGP
export (routes)
ExStart state
external metric

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

FA (forwarding agency)
fabric schedulers
facility level, syslog messages
failover
Fast Ethernet 2nd 3rd 4th
fast port
fast reroute
FBF (filter-based forwarding) 2nd
FCS (frame check sequence)
FDDI (Fiber Distributed Data Interface)
fe media type
FEAC (far-end alarm and control)
FEB (Forwarding Engine Board)
FEC (forwarding equivalence class)
FECN (forward explicit congestion notification)
field-relaceable unit (see FRU)
FIFO (first in, first out)
file copy command
filters
find command
Finger protocol
FIPS (Federal Information Processing Standards)
firewall
firewall filters 2nd
 actions for
 applying
 compared to routing policy
 loopback filters
 match conditions for
 policers 2nd
 processing of
 stateful
 stateless
 terminating actions for
 transit filters 2nd
firmware
flash drive
floating static route 2nd 3rd
flood and prune
flooding
 ICMP floods
 LSA flooding 2nd
 SYN flood attacks 2nd
flow 2nd 3rd
flow collection interface
flow control action
flow monitoring 2nd
flow-based forwarding model 2nd
 combined with packet model 2nd
 troubleshooting
flow-tap application
flowd process
for IPSec tunnel
forwarding classes, CoS 2nd 3rd
forwarding next hop, static and aggregate routes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

forwarding plane
forwarding policy, CoS 2nd
forwarding table 2nd 3rd
forwarding-class action, firewall filters
FPC (Flexible PIC Concentrator)
FPC/PIC (Flexible PIC Concentrator/Physical Interface Card)
fractional E1
fractional interface
fractional T1
fragment-offset command
fragmentation
Frame Relay 2nd
freeing space on J-series router 2nd
frequency-division multiplexed channel
FRF (Frame Relay Forum)
FRF.15 standard 2nd
FRF.16 standard 2nd
from statement, routing policy
FRU (field-replaceable unit)
FTP (File Transfer Protocol) 2nd
Full state
fwdd process 2nd
fxp0 interface
fxp1 interface 2nd
fxp2 interface

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

G-CDR (GGSN call detail record)
G.SHDSL
Garbage Collection Timer
Garrett, Aviva (JUNOS Cookbook)
ge media type
generated routes 2nd
 compared to aggregate routes 2nd
 compared to static routes 2nd
GETs, SNMP
GGSN (Gateway GPRS support node)
Gigabit Ethernet 2nd
global route preference 2nd
GMPLS (Generalized Multiprotocol Label Switching)
GPRS (General Packet Radio System)
graceful restart
graceful switchover
gratuitous request
GRE (Generic Routing Encapsulation) 2nd 3rd 4th
GRES (Graceful Routing Engine switchover)
group
group address
groups, RIP 2nd
GSM (Global System for Mobile Communications)
GTP (GPRS tunneling protocol)
GTP-C (GGSN tunneling protocol, control)
GTP-U (GGSN tunneling protocol, user plane)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

hard policing
Harkins, Dan (IPSec: The New Security Standard for the Internet, Intranets, and Virtual Private Networks)
hash function
hashing
HDLC (High-Level Data Link Control) 2nd
health monitor
hello interval
hello mechanism
help command
hidden commands, CLI 2nd
HLR (Home Location Register)
HMAC (Hashed Message Authentication Code)
hold command
hold down timer
hold downs, for RIP
hold time
host membership query
host membership report
host module
host subsystem
hot standby
HSCSD (High-Speed Circuit Switched Data)
HTTP (Hypertext Transfer Protocol)
HTTPS (Hypertext Transfer Protocol over Secure Sockets Layer)
- (hyphen), in interface name
hyphen (-), in interface name

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

I-frame
I/O Manager ASIC
IANA (Internet Assigned Numbers Authority)
IBGP (Internal BGP) 2nd
 peering
 scaling with route reflection
 scaling, confederations and
 where to run 2nd 3rd
ICMP (Internet Control Message Protocol), xviii
ICMP floods
icmp_timestamp_cos test
IDE (Integrated Drive Electronics)
IDEA (International Data Encryption Algorithm)
Idle state
IDS (intrusion detection services) 2nd 3rd
IEEE (Institute of Electrical and Electronics Engineers)
IETF (Internet Engineering Task Force)
IGMP (Internet Group Management Protocol) 2nd 3rd
IGP (Interior Gateway Protocol) 2nd 3rd
 compared to BGP
 migration to new version of
 concurrent operation with old version
 global route preferences and
 integration model for
 network cleanup during
 overlay model for
 redistribution model for
 route redistribution and
 protocols supported by
IGRP (Interior Gateway Routing Protocol)
IKE (Internet Key Exchange) 2nd 3rd 4th
ILMI (Integrated Local Management Interface)
IMEI (International Mobile Station Equipment Identity)
import (outbound) routing policy 2nd 3rd 4th 5th
 asymmetric load balancing 2nd
 multihoming, with BGP
import (routes)
import-rib statement
IMSI (International Mobile Subscriber Identity)
IMT-2000 (International Mobile Telecommunications 2000)
inbound (export) routing policy 2nd 3rd 4th
inet.0 route table 2nd
inet.1 route table 2nd
inet.2 route table 2nd
inet.3 route table 2nd
inet.4 route table
inet6.0 route table 2nd
infinity metric
ingress router
Init state
insert command
instance.inetflow.0 route table
instance_name.inet.0 route table
integration model for IGP migration
integrity of data

http://lib.ommolketab.ir
http://lib.ommolketab.ir

inter-AS routing
intercluster reflection
interface cost
interface lists, multicast
interface routes
interface-style service set 2nd
 for IPSec tunnel 2nd
 limitations of
interfaces
 configuration of
 ADSL using PPPoE over ATM
 Fast Ethernet 2nd
 Fast Ethernet with VLAN tagging
 GRE 2nd
 ISDN
 MLPPP 2nd
 serial interface with Frame Relay
 serial interface with PPP
 T1 interface with HDLC encapsulation
 VRRP
 disabling administratively
 permanent interface 2nd
 properties of
 transient interface 2nd
 troubleshooting
 address configuration
 encapsulation mismatches
 path MTUs
 with looped interfaces
interleave-fragments command
intermediate system
internal router, OSPF
Internet Processor ASIC
interprovider VPN
intra-AS routing
IOS, compared to JUNOS software OSPF timers
IP (Internet Protocol)
IP addresses, xviii
 configuration of, troubleshooting
IP CoS (Class of Service) 2nd 3rd
 benchmark for
 classification 2nd 3rd
 confirming
 in ingress processing
 multifield classification
 compared to QoS
 configuration 2nd 3rd
 congestion management 2nd 3rd
 default settings for
 delay buffer size
 forwarding classes 2nd 3rd
 forwarding policy 2nd
 history of
 input (ingress) processing 2nd
 IP DiffServ for 2nd 3rd
 loss priority
 output (egress) processing 2nd
 policing 2nd 3rd
 egress 2nd
 ingress
 QoS parameters for
 queues 2nd 3rd 4th
 confirming
 number of 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 reasons to use
 rewrite marking 2nd 3rd 4th
 BA classification and
 markers, number of
 not enabled by default
 router differences for
 scalability of
 scheduler maps 2nd
 schedulers 2nd 3rd
 defaults for
 defining
 queues and 2nd
 shaping 2nd
 standards supported for
 testing
 verification of
 virtual channels 2nd 3rd
IP fragmentation attacks
ip interface 2nd
IP IS (Integrated Services)
IP rip authentication statement
IP-IP tunnel
IPCP (IP Control Protocol)
IPSec (IP Security)
IPSec over GRE 2nd
IPSec VPN 2nd
 backup tunnels for
 dynamic tunnels for
 IPSec over GRE tunnels for
 proposal for 2nd
 service set for
IPSec: The New Security Standard for the Internet, Intranets, and Virtual Private Networks (Doraswamy; Harkins)
IPv6, enhanced services support for
IQ (intelligent queuing)
IRDP (ICMP Router Discovery Protocol)
IS-IS (Intermediate System-to-Intermediate System) 2nd 3rd
ISAKMP (Internet Security Association and Key Management Protocol)
ISDN (Integrated Services Digital Network) 2nd
ISO (International Organization for Standardization)
iso.0 route table
ISP (Internet service provider)
ITU-T (International Telecommunication Union Telecommunication Standardization)
ITU-T Rec. G.992.1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

J-cell data unit
J-series routers
 adaptive shaping 2nd
 chassis slot numbers on
 converting SSGm device to
 CoS behavior for
 differences with enhanced services
 freeing space on 2nd
 fwdd process for
 GRE features supported 2nd
 PFE in 2nd 3rd
 PIMs or EPIMs in
 PLP levels
 port numbers for
 queues, number of
 rewrite markers, number of
 scheduler-based shaping
 scheduling for 2nd
 separation of control and forwarding planes
 services deployment on
 virtual channels 2nd
 WRED implementation
J-Tree (binary tree)
J-Web interface
jbase software package
jbundle software package
jdocs software package
jitter
 as QoS parameter
 in IP networks
jkernel software package
join messages, PIM 2nd
jpfe software package
jroute software package
jsr-series-routermode-factory.conf file
juniper.conf.gz file
juniper_private route table
JUNOS Cookbook (Garrett)
"JUNOS Enhanced Services Migration Guide"
JUNOS, overview of
JUNOScript server 2nd
Jweb GUI

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

keepalive message
keepalives, of interface
kernel
key chain configuration
kmd process

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

L2TP (Layer 2 Tunneling Protocol) 2nd
label (MPLS)
label object
label pop operation
label push operation
label request object
label swap operation
label values
LAN PHY (Local Area Network Physical Layer Device)
Layer 1/2 options, for interface
Layer 2 circuits
Layer 2 services
 CRTP 2nd
 GRE 2nd 3rd
 interface naming for
 MLFR 2nd
 MLPPP 2nd 3rd
Layer 2 VPN
Layer 3 services
 combining
 configuring
 intrusion detection services 2nd 3rd
 IPSec VPN 2nd
 backup tunnels for
 dynamic tunnels for
 IPSec over GRE tunnels for
 proposal for 2nd
 service set for
 logging for
 service and post-service filters
 tracing for
Layer 3 VPN
LCC (line-card chassis)
LCP (Link Control Protocol)
LDAP (Lightweight Directory Access Protocol)
LDP (Label Distribution Protocol)
leaf node
leaves, distribution tree
LFI (link fragmentation and interleaving) 2nd 3rd
liblicense library
libpcap application
limited operational environment
line loopback
link
link layer, mapping IP multicast address to
link protection
Link Services PIC
Link TRAPs, SNMP
link-state acknowledgment
link-state PDU
link-state replication
link-state request list
link-state request packet
link-state update
LLC (logical link control)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

LLC frame
LMI (local management interface)
LMP (Link Management Protocol)
lo0 interface
load balancing
load command
load factory-default command
load override terminal command
load set command
load-sharing routing policy
loading
local loop, interface
local packet
local preference attribute, BGP 2nd
local RIB
local significance
log action, firewall filters
logging, Layer 3 services
logical interface
logical operator
logical properties, of interface
logical router
logical unit, for interfaces 2nd
login class
longer match type, route filter 2nd
looking glass
loopback filters
loopback interface
looped interfaces
loose command
loose hop
loss pattern, as QoS parameter
loss priority, CoS
loss, as QoS parameter
loss-priority map
lower-speed IQ interfaces
LPDU (LLC protocol data unit)
LS (link state) protocols 2nd
LSA (link-state advertisement) 2nd
 areas and
 filtering
 flooding 2nd
 types of
LSA messages, OSPF
LSDB (link-state database) 2nd 3rd
LSI (label-switched interface)
LSP (label-switched path)
LSQ (link services intelligent queuing interfaces)
LSR (label-switching router)
lt interface

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

M-series routers
 chassis slot numbers on
 GRE features supported
 interface naming examples for
 PFE in
 PIC in
 PIC slot numbers on
 PLP levels
 port numbers for
 rewrite markers, number of
 scheduler-based shaping
 scheduling for 2nd 3rd 4th
 separation of planes
 services deployment on
 services, additional hardware for
M/T-series router
M7i routers
 CoS behavior for
 queues, number of
 services deployment on
 WRED implementation
MAC (media access control) layer
MAC address 2nd
maintenance windows
MAM (maximum allocation bandwidth constraints model)
management Ethernet interface 2nd
management interface
mapping agent
martian address
martian routes 2nd
MAS (mobile network access subsystem)
master forwarding table
master router
match command
match criteria, routing policy 2nd
match types, route filters 2nd
MBGP (Multiprotocol Border Gateway Protocol)
MBone (Multicast Backbone)
MCML (Multiclass Multilink PPP)
MCS (Miscellaneous Control Subsystem)
MD5 (Message Digest 5)
MDRR (modified deficit round robin) scheduler 2nd 3rd
MDT (multicast distribution tree)
MED (multiple exit discriminator) attribute, BGP 2nd 3rd
media types, for interfaces
mesh topology
message aggregation
mgd process
mgen/mrec utilities
MIB (Management Information Base) 2nd
midplane
minimum-links number command
MLD (multicast listener discovery)
MLFR (Multilink Frame Relay) 2nd
MLPPP (Multilink Point-to-Point Protocol) 2nd 3rd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MMF (multimode fiber)
mobile station
monitor interface command
monitor interface traffic command
monitor list command
monitor start command 2nd
monitor stop command
monitor traffic command
monitor traffic interface command
monitoring of router
 active monitoring
 flow monitoring 2nd
 with NTP
 with SNMP
 with syslog
Monitoring Services PIC
MPLS (Multiprotocol Label Switching) 2nd
MPLS EXP classifier
mpls.0 route table
MPS (mobile point-to-point control subsystem)
MRRU (maximum received reconstructed unit)
MSA (Multisource Agreement)
MSDP (Multicast Source Discovery Protocol) 2nd
MSISDN (Mobile Station Integrated Services Digital Network Number)
mt interface
MTBF (mean time between failures)
MTS (mobile transport subsystem)
MTU (maximum transmission unit) 2nd
MTU properties, of interface
multicast
 addressing
 mapping to link layer
 scoping of
 applications of
 dense mode 2nd 3rd 4th
 distribution tree 2nd
 downstream traffic
 interface lists
 loops, avoiding
 protocols 2nd
 IGMP 2nd 3rd
 receivers
 RPF (reverse path forwarding) 2nd 3rd
 sources
 sparse mode 2nd 3rd 4th 5th 6th
 sparse-dense mode
 upstream traffic
 users locating content from
multicast distribution tree (see MDT)
multicast operation
multicast tunnels
multicast-scope number
multiclass LSP
multiclass MLPPP 2nd
multifield classification 2nd 3rd 4th 5th
multifield classifier
multihoming, with BGP
 aggregate route for
 attributes affecting 2nd
 EBGP peering for
 IBGP peering for
 inbound (export) policy for
 outbound (import) policy for 2nd
 requirements for

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 route reflection for 2nd
multimode fiber (MMF)
multipath option, asymmetric load balancing 2nd
Multiservices PIC 2nd 3rd
MVS (mobile visitor register subsystem)
MWDRR (modified weighted deficit round robin) scheduler

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

n-selector
named path
NAPT (Network Address Port Translation) 2nd
NAT (Network Address Translation) 2nd 3rd
 bidirectional NAT
 combining with stateful firewall and IPSec over GRE
 destination NAT 2nd 3rd
 preventing routing loops using
 stateful firewall and
 dynamic source NAT
 source NAT
 with port translation 2nd 3rd
 without port translation 2nd
 static source NAT
 twice NAT 2nd 3rd
NC (Network Control) forwarding class
NCP (Network Control Protocol)
NDP (Neighbor Discovery Protocol)
negotiate-address command
neighbor (peer) 2nd 3rd 4th
neighbor statement
nested policy (routing)
NET (network entity title)
NetBIOS (network basic input/output system)
Netconf (Network Configuration protocol)
Network Control (NC) forwarding class
network interface
network link advertisement
network LSA
"Network QoS Needs of Advanced Internet Applications" (survey by Internet QoS working group)
network statement
network summary LSA
next hop attribute, BGP
next hop types, static and aggregate routes
next hop-style service set 2nd 3rd
 for IPSec tunnel
 multiple route table lookups and
next term action, firewall filters
NIC (Network Information Center)
NIST (National Institute of Standards and Technology)
NLRI (network layer reachability information) 2nd
no-advertise flag, static routes
no-auto-summary statement
no-fragmentation command
no-more command
no-preempt command
nonclient peer
nontransit interface
notification cell
Notification message
NSAP (network service access point)
NSR (nonstop routing)
NSSA (not-so-stubby area), OSPF 2nd
NTP (Network Time Protocol) 2nd
Null Register message

http://lib.ommolketab.ir
http://lib.ommolketab.ir

numeric match conditions, firewall filters
numeric range match conditions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Oakley protocol
OAM (Operation, Administration, and Maintenance)
OC (optical carrier)
OC12
OC3
(octothorpe), CLI configuration mode prompt
octothorpe (#), CLI configuration mode prompt
OIL (outgoing interface list)
op (operational) script
Open message
OpenConfirm state
OpenSent state
operational mode, CLI 2nd 3rd
operator login class
optional nontransitive attribute, BGP
optional transitive attribute, BGP
or-longer match type, route filter 2nd
ordered aggregate
origin attribute, BGP 2nd 3rd
OSI (Open Systems Interconnection) model, xvii
OSPF (Open Shortest Path First) 2nd
 adjacencies formed by
 area types
 areas used by
 designated router for
 IOS software timers corresponding to
 LSA flooding 2nd
 LSA types
 migrating to, from EIGRP
 confirming redistribution
 IOS configuration for
 JUNOS configuration for
 route preferences for 2nd
 route redistribution for 2nd
 migrating to, from RIP
 adding stub area to
 configuring Cisco routers
 configuring Juniper routers
 cutover to OSPF
 neighbor discovery by 2nd
 performance of
 router types for
 routing policy for 2nd
 stability of
OSPF hello packet
outbound (import) routing policy 2nd 3rd 4th 5th
overlay model for IGP migration
overlay model for RIP to OSPF migration
overlay network
oversubscription

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

package
packet aging
packet capture
packet rewrite marking, CoS 2nd 3rd 4th 5th
packet switching
packet-based forwarding model
 combined with flow model 2nd
 compared to flow model
packets 2nd
PADI (PPPoE Active Discovery Initiation packet)
PADO (PPPoE Active Discovery Offer packet)
PADR (PPPoE Active Discovery Request packet)
PADS (PPPoE Active Discovery Session Confirmation packet)
PADT (PPPoE Active Discovery Termination packet)
passive flow monitoring
password
 of server
 requirements for
 root password
PAT (Port Address Translation) 2nd 3rd
path attribute
PathErr message
PathTear message
PC Card
pcap library
PCI (Peripheral Component Interconnect)
PCI Express
PCMCIA (Personal Computer Memory Card International Association)
pd interface 2nd
PDH (Plesiochronous Digital Hierarchy)
PDP (packet data protocol)
PDU (protocol data unit)
pe interface 2nd
PE router (provider edge router)
PEC (policing equivalence classes)
peer (neighbor) 2nd 3rd 4th
peering
 BGP
 EBGP
 IBGP
PEM (Power Entry Module)
PEM (Privacy Enhanced Mail)
penultimate router
per-packet load-balancing algorithm 2nd
per-unit scheduling, CoS 2nd
% (percent sign), shell prompt
percent sign (%), shell prompt
performance
 of OSPF
 of RIP 2nd
. (period)
 in interface name
 in regular expression
period (.)
 in interface name

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 in regular expression
permanent interface 2nd
permanent virtual circuit (PVC)
permissions
permit statement
persistent change
PFC (Protocol Field Compression)
PFE (Packet Forwarding Engine) 2nd
 applying filters to
 looping packets through
PFS (Perfect Forward Secrecy) protocol
PGM (Pragmatic General Multicast)
PGP (Pretty Good Privacy)
PHB (per-hop behavior) 2nd 3rd
PHB group
PHP (penultimate hop popping)
PHY (circuit)
PHY (Layer 1, physical layer)
physical interface
physical properties, of interface
PIC (Physical Interface Card) 2nd 3rd
PIC I/O Manager
PIC slot number, for interfaces
PIM (Physical Interface Module) 2nd 3rd 4th 5th
 Anycast-RP discovery
 configuring
 verifying
 with MSDP
 assert mechanism
 dense mode 2nd
 designated router
 messages used by
 RP discovery
 sparse mode 2nd 3rd
 sparse mode with bootstrap RP
 configuring
 troubleshooting
 verifying
 sparse mode with static RP
 IGP connectivity, validating
 listening multicast process for
 multicast traffic, generating
 routers, configuring
 RPF, verifying
 simulated receiver, configuring
 versions of
PIM register messages
ping command 2nd 3rd
pinhole
pipe commands, CLI
PIPs (Protocol Independent Properties)
 aggregate routes
 AS number
 generated routes
 global route preference
 martian routes
 RIB 2nd 3rd
 RID 2nd
PIR (peak information rate)
PKI (public key infrastructure)
PLMN (Public Land Mobile Network)
PLP (packet loss priority) 2nd
PLP bit
PLR (point of local repair)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

point-to-multipoint connection
point-to-multipoint LSP
point-to-point connection
poison reverse
policer action, firewall filters
policers 2nd
 actions for
 configuring and applying
 example of
policing, CoS 2nd 3rd
 egress 2nd
 ingress
policy chain
pop (label)
port command
port mirroring 2nd
port number, for interfaces
port scanning attacks
post-service filters
ppmd process
PPP (Point-to-Point Protocol) 2nd
pppd process
PPPoE (Point-to-Point Protocol over Ethernet)
PPPoE over ATM 2nd
precedence hits
preemption, with VRRP
preferred address
prefix-length-range match type, route filter
prefix-length-range policy
primary address
primary contributing route
primary interface
primary route table, in group
primary/secondary routing policy
priority, MDDR scheduler
priority-based scheduling, CoS 2nd
processes, listing for router
promiscuous mode
properties, of interface
proposal, IPSec tunnel 2nd
protocol address
protocol address properties, of interface
protocol families
protocol family properties, of interface
protocol independence
Protocol Independent Multicast
protocol preference
provider router
prune messages, PIM 2nd
pseudointerface, software
PSN (packet-switched network)
PSNP (partial sequence number PDU)
push (label)
PVC (permanent virtual circuit)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

QoS (quality of service) 2nd 3rd
quad-wide card
qualified next hop
qualified-next-hop keyword
quantum, MDDR scheduler
querier router
? (question mark)
 command completion
 in regular expression
question mark (?)
 command completion
 in regular expression
queue fullness
queue length
queues 2nd 3rd 4th
 confirming
 number of 2nd
queuing
queuing delay

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

RA (registration authority)
RADIUS (Remote Authentication Dial-In User Service)
RBOC (regional Bell operating company)
RC2 code
RC4 code
RC5 code
RD (routing domain)
RDBMS (relational database management system)
RDM (Russian-dolls bandwidth)
RE (Routing Engine) 2nd
read-only login class
receive (hop)
receivers, multicast
recursive lookup
RED (random early detection) 2nd 3rd 4th
redistribute command
redistribute connected statement
redistribute static statement
redistribution model for IGP migration
refresh reduction
regex matching, in routing policy
Regional Internet Registry, AS numbers assigned by
register messages, PIM 2nd
register-stop messages, PIM 2nd
regular expression operators
reject (hop)
reject action, firewall filters
reject next hop, static and aggregate routes
reliability of data
remote access
Remote login (Rlogin) protocol
remote loop, interface
Remote operations TRAPs, SNMP
rename command 2nd
replace command
replay protection
request command
Request message
request system reboot media usb command
request system snapshot command
request system software add command 2nd
request system software command
request system software rollback command
resolve (hop)
resolve keyword, for forwarding next hop
Response message
restart command
result cell
ResvConf message
ResvErr message
ResvTear message
revert timer
rewrite marking, CoS 2nd 3rd 4th
 BA classification and
 markers, number of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 not enabled by default
rewrite rules
RFC (Request for Comments)
RFC 1058 (RIP)
RFC 1112 (IGMPv1)
RFC 1149 (avian-based transport technology)
RFC 1388 (RIPv2)
RFC 1490 (MLPPP) 2nd
RFC 1633, "Integrated Services in the Internet Architecture: An Overview"
RFC 1654 (BGP)
RFC 1771 (BGP)
RFC 1918, "Address Allocation for Private Internets"
RFC 1990 (MLPPP)
RFC 2117 (PIM)
RFC 2205 (RSVP)
RFC 2236 (IGMPv2)
RFC 2309, "Recommendations on Queue Management and Congestion Avoidance in the Internet"
RFC 2328 (OSPF)
RFC 2362 (PIM) 2nd
RFC 2453 (RIPv2)
RFC 2474 (IP DiffServ)
RFC 2474, "Definition of the Differentiated Services Field in the IPv4 and IPv6 Headers"
RFC 2475 (IP DiffServ)
RFC 2508 (Compressed RTP)
RFC 2544, "Benchmarking Methodology for Network Interconnect Devices"
RFC 2597, "Assured Forwarding PHB Group"
RFC 2598, "An Expedited Forwarding PHB"
RFC 2663 (Twice NAT)
RFC 2698, "A Two Rate Three Color Marker"
RFC 2890 (GRE)
RFC 3065, "Autonomous System Confederations for BGP"
RFC 3101 (NSSAs)
RFC 3164, "The BSD Syslog Protocol"
RFC 3168 (IP DiffServ)
RFC 3168, "The Addition of Explicit Congestion Notification (ECN) to IP"
RFC 3175, "Aggregation of RSVP for IPv4 and IPv6 Reservations"
RFC 3260 (IP DiffServ)
RFC 3376 (IGMPv3)
RFC 3446 (RP-to-RP communication)
RFC 3623 (MPLS TE)
RFC 3630 (MPLS TE)
RFC 3768 (VRRP router, forwarding by)
RFC 4271 (BGP)
RFC 4456 (route reflection)
RFC 4601 (PIM)
RFC 4610 (PIM-only Anycast-RP) 2nd
RFC 4741 (Network Configuration protocol)
RFC 791 (Internet Protocol (IP))
RFI (radio frequency interface)
RIB (routing information base)
 grouping
 routing policy for
 user-defined
rib keyword
rib-group keyword
RID (router ID) 2nd
RIP (Routing Information Protocol) 2nd
 deployment of
 baseline operation for
 configuration for
 confirming operation
 existing configuration, evaluating
 static routes for
 migrating to OSPF

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 adding stub area to
 configuring Cisco routers
 configuring Juniper routers
 cutover to OSPF
 performance of 2nd
 routing policy for 2nd
 stability of
 troubleshooting
RIPng (Routing Information Protocol next generation)
RIPv2 (Routing Information Protocol, version 2)
Rlogin (Remote login) protocol
RMON (remote monitoring)
Rmon-alarm TRAPs, SNMP
RNC (radio network controller)
rollback command
root password
route attributes, BGP
route distinguisher
route filters 2nd
route flapping
route identifier
route metric
route preferences
 for EIGRP 2nd
 global route preference 2nd
route redistribution 2nd
 for EIGRP to OSPF migration 2nd
 IGP migration considerations for
route reflection, with IBGP 2nd 3rd 4th
route table group
route table size, router's ability to handle
route tables 2nd 3rd
 default, list of
 defining
 martian routes excluded from
 multiple lookups with next hop-style service sets
 viewing 2nd
router context mode, enhanced services
router LSA
router priority
router, xviii
 configuring
 adding configurations
 by multiple users
 changing strings in configurations
 committing configurations 2nd
 comparing configurations
 directories for
 loading configurations
 maintenance windows for
 removing configurations 2nd
 rolling back configurations
 saving configurations
 viewing configurations
 enhanced services operating as
 securing access to
router-link advertisement
routing instance 2nd
routing loops, preventing
 multicast loops
 with BGP
 with next hop-style service set
routing matrix
routing policy 2nd 3rd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 applying
 Boolean grouping in
 chaining
 compared to firewall filters
 components of
 default policies
 design criteria for
 export (inbound) policy 2nd 3rd 4th
 asymmetric load balancing 2nd
 multihoming with BGP
 import (outbound) policy 2nd 3rd 4th 5th
 asymmetric load balancing 2nd
 multihoming with BGP
 ISP policies regarding
 match criteria and actions for
 multiple applications of
 regex matching in
 route filters in
 subroutines (nesting)
 testing
 when to use
routing source, global preference for
Routing TRAPs, SNMP
RP (rendezvous point) 2nd 3rd
RPC (remote procedure call)
rpd process
RPF (reverse path forwarding), multicast 2nd 3rd
rpf-check command
RPM (Real-Time Performance Monitoring) 2nd 3rd
RPM (reverse-path multicasting)
RRO (record route object)
RSVP (Resource Reservation Protocol)
RSVP Path message
RSVP Resv message
RSVP signaled LSP
RSVP-TE (RSVP-traffic engineering)
RTP (Real-Time Transport Protocol)
RTVBR (real-time variable bit rate)
run keyword, before commands

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

S/T interface
SA (security association) 2nd 3rd
sample action, firewall filters
sampling
SAP (service access point)
SAP (Session Announcement Protocol) 2nd
SAR (segmentation and reassembly)
save command 2nd 3rd
SCB (System Control Board)
SCC (switch-card chassis)
SCEP (Simple Certificate Enrollment Protocol)
SCG (SONET Clock Generator)
scheduler maps, CoS 2nd
schedulers, CoS 2nd 3rd
 defaults for
 defining
 queues and 2nd
scheduling
SCP (secure copy)
SCU (source class usage)
SDH (Synchronous Digital Hierarchy)
SDP (Session Description Protocol) 2nd
SDR (Session Directory tool)
SDRAM (synchronous dynamic random access memory)
SDX software
se media type
secondary route tables, in group
secure context mode, enhanced services 2nd
Secure Security gateway (SSGm) device, converting to J-series router
security
 access security
 remote access
 user authentication
 availability of data
 confidentiality of data
 IDS (intrusion detection services) 2nd 3rd
 integrity of data
 spoof prevention
security devices, need for
security zones
self-traffic policy
send multicast statement
serial interface
 with Frame Relay
 with PPP
serialization delay
service filters
service rules
service set
 for IPSec tunnel
 interface-style service set 2nd 3rd
 for IPSec tunnel
 limitations of
 next hop-style service set 2nd 3rd
 for IPSec tunnel

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 multiple route table lookups and
services
 combining
 DLSw 2nd
 flow monitoring 2nd
 L2TP 2nd
 Layer 2 services
 CRTP 2nd
 GRE 2nd 3rd
 interface naming for
 MLFR 2nd
 MLPPP 2nd 3rd
 Layer 3 services
 configuring
 intrusion detection services 2nd 3rd
 logging for
 service and post-service filters
 tracing for
 list of
 migrating to enhanced services
 packet considerations for
 RPM 2nd 3rd
 scaling of various deployments
 tunnel services
services interface
Services TRAPs, SNMP
session (conversation), with stateful firewall
session attribute object
session timeouts
session token
sessions
set command
set date command
set date ntp command 2nd
set interfaces command
set protocols command
set system root-authentication command 2nd
set system services ssh root-login allow command
set system time-zone command
set task accounting command 2nd
severity level, syslog messages
SFM (Switching and Forwarding Module)
SFP (small form-factor pluggable transceiver)
SGSN (Serving GPRS Support Node)
SHA-1 (Secure Hash Algorithm 1)
sham link
shaping rate
shaping, CoS 2nd
shaping-rate command
shared distribution tree, multicast
shared scheduling and shaping
shared tree
SHDSL (symmetric high-speed digital subscriber line)
shim header
show bgp neighbor command
show bgp summary command 2nd
show chassis routing-engine command
show class-of-service adaptive-shaper command
show class-of-service classifier command
show class-of-service command
show class-of-service interface command 2nd 3rd
show class-of-service rewrite-rule command
show class-of-service scheduler-map command
show class-of-service virtual-channel-group command

http://lib.ommolketab.ir
http://lib.ommolketab.ir

show cli authorization command
show command
show configuration command 2nd
show dialer command
show firewall command 2nd
show firewall log command
show groups junos-defaults applications command
show igmp interface command
show igmp membership command
show interface queue command
show interfaces command 2nd 3rd
show interfaces policers command
show interfaces queue command 2nd 3rd
show interfaces terse command
show ip ospf database command
show ip ospf interface command
show ip ospf neighbor command
show isdn command
show log messages command
show multicast route command
show multicast rpf command
show multicast scope command
show multicast usage command
show ntp associations command 2nd
show ospf interface command
show ospf interface detail command
show ospf neighbor command 2nd
show outq statistics command
show pim bootstrap command
show pim interfaces command
show pim join command
show pim neighbors command 2nd
show pim rps command 2nd 3rd
show pim source command
show policer command
show pppoe interfaces
show rip neighbor command
show route advertising-protocol command 2nd
show route aspath-regex command
show route command 2nd
show route community command
show route detail command
show route hidden detail command
show route martians command
show route receive-protocol command 2nd
show route receiving-protocol command 2nd
show route resolution unresolved detail command
show route table command 2nd
show route-advertising protocol command
show route-advertising protocol rip command
show route-receiving protocol rip command
show security command
show security flow session command
show security policies command
show security zones command
show service ipsec command
show services command
show services crtp command
show services rpm command
show services rpm probe-results command
show services state-firewall command
show snmp mib command
show system processes command
show system storage command

http://lib.ommolketab.ir
http://lib.ommolketab.ir

show task memory command
show vrrp summary command
show vrrp track command
SIB (Switch Interface Board)
signaled path
simplex interface
single-mode fiber
SIP (Session Initiation Protocol)
/ (slash), in interface name
slash (/), in interface name
"slow count to infinity" condition
slow network convergence, with DV protocols
SNA (System Network Architecture)
SNMP (Simple Network Management Protocol) 2nd
soft policing
soft state
software pseudointerface
SONET (Synchronous Optical Network)
Sonet-alarm TRAPs, SNMP
source authentication
source NAT
 with port translation 2nd 3rd
 without port translation 2nd
source tree, multicast
source-based tree
sources, multicast
sp interface
Space bar, for command completion
sparse mode, multicast 2nd 3rd 4th 5th 6th
 with bootstrap RP
 configuring
 troubleshooting
 verifying
 with static RP
 IGP connectivity, validating
 listening multicast process for
 multicast traffic, generating
 routers, configuring
 simulated receiver, configuring
sparse-dense mode, multicast
SPF (Shortest Path First)
SPI (Security Parameter Index)
SPID (Service Profile Identifier)
split horizon, for RIP 2nd
spoof prevention
SPQ (strict-priority queuing)
SPT (shortest-path tree) 2nd 3rd
SQL (Structured Query Language)
src point
SS7 (Signaling System 7)
SSAP (source service access point)
SSB (System and Switch Board)
SSGm (Secure Security gateway) device, converting to J-series router
SSH (Secure Shell) 2nd
SSH/TLS (Secure Shell with Transport Layer Security)
SSL (Secure Sockets Layer)
SSM (source-specific multicast) 2nd 3rd 4th
SSP (Switch-to-Switch Protocol)
SSRAM (synchronous static random access memory)
standard AAL5 mode
Start-up TRAPs, SNMP
starvation
stat MUX (statistical multiplexing)
stateful firewall

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 combining with NAT and IPSec over GRE
 enhanced services operating as
 with interface-style service set
 with NAT
 with next hop-style service set
stateful firewall filter
stateful firewall recovery
stateless firewall filter
stateless firewall recovery
static IGMP membership
static path
static routes 2nd
 attributes for
 compared to aggregate routes 2nd
 compared to generated routes 2nd
 flags for
 floating static route
 next hop types for
static RP discovery, PIM 2nd
 IGP connectivity, validating
 listening multicast process for
 multicast traffic, generating
 routers, configuring
 RPF, verifying
 simulated receiver, configuring
 with sparse mode
static source NAT
statistical multiplexing (stat MUX)
STM (synchronous transport module)
strict
strict hop
STS (synchronous transport signal)
STU-C (SHDSL transceiver unit-central office)
STU-R (SHDSL transceiver unit-remote)
stub area, OSPF 2nd 3rd
sub-LSP
subnet mask
subnets
subrate value
subroutine, routing policy
summary link advertisement
super-nets
superuser (super-user) login class
SVC (switched virtual connection)
Symmetric active mode, NTP
SYN flood attacks 2nd
sysid (system identifier)
syslog (system log) 2nd
syslog action, firewall filters
syslog logging

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

T-carrier
T1 interface
t1 media type
T1 protocol
t3 media type
T3 protocol
Tab key, for command completion
TACACS+ (Terminal Access Controller Access Control System Plus)
tail dropping 2nd
tap interface
TCM (tricolor marking)
TCP (Transmission Control Protocol), xviii 2nd
TCP port 179
TCP/UDP (Transmission Control Protocol/User Datagram Protocol)
tcpdump utility
TDMA (Time-Division Multiplex Access)
TEI (Terminal Endpoint Identifier)
Telnet
terminal command
terminating actions, firewall filters 2nd
terms, in routing policy 2nd
test command 2nd
test policy command
text synonyms, firewall filters
then statement, routing policy
through match type, route filter 2nd
time-division multiplexed channel
timeout timer
TLV (tag length value)
TNP (Trivial Network Protocol)
token-bucket algorithm
top command
topology-driving routing policy
ToS (type of service) 2nd
totally stubby area, OSPF 2nd
traceoptions logging
traceroute command
tracing 2nd
 in enhanced services
 PIM sparse mode with bootstrap RP
tracing, Layer 3 services
traffic engineering
traffic engineering class
traffic engineering class type
traffic policing
traffic sampling
traffic shaping
transient change
transient interface 2nd
 channel number for
 chassis slot number for
 logical unit for
 media type of
 naming
 PIC slot number for

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 port number for
transit area type, OSPF 2nd
transit router
transit services, with BGP
transit traffic, applying filters to 2nd
transport mode
TRAPs, SNMP 2nd
triggered updates, for RIP 2nd
troubleshooting
 BGP next hop reachability
 flow problem
 IBGP peering
 interfaces
 address configuration
 encapsulation mismatches
 path MTUs
 with looped interfaces
 PIM sparse mode with bootstrap RP
 protocol tracing for 2nd
 RIP deployment
 route preferences for EIGRP to OSPF migration
 routing loops, preventing
 multicast loops
 with BGP
 with next hop-style service set
 show route commands for
trTCM (two-rate TCM)
trunk mode
trust zone
Tspec object
tunnel
tunnel endpoint
tunnel mode
tunnel services
tunnel services interface
Tunnel Services PIC 2nd
tunneling protocol
twice NAT 2nd 3rd
TX Matrix platform

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

U interface
UDP (User Datagram Protocol), xviii
UMTS (universal mobile telecommunications system)
unauthorized login class
UNI (user-to-network interface)
unicast
unit
unnumbered interface
untrust zone
up command
Update message
update timer
UPS (uninterruptible power supply)
upstream traffic, multicast
upto match type, route filter 2nd
uRPF (unicast Reverse Path Forwarding)
user template
users
 authentication of
 configuring
 login class of
 permissions for
UTC (Coordinated Universal Time)
UTRAN (UMTS Terrestrial Radio Access Network)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

VBR (variable bit rate)
VC (virtual circuit)
VCI (vapor corrosion inhibitor)
VCI (virtual circuit identifier)
VideoLAN program
virtual channel group
virtual channels, CoS 2nd 3rd
virtual circuit address properties, of interface
virtual link
virtual path
VLAN (virtual LAN)
VLAN tagging
VLAN-tagged frame
VLSM/CIDR (Variable Length Subnet Masking/classless interdomain routing)
voice traffic delay
VPI (virtual path identifier)
VPLS (virtual private LAN service)
VPN (virtual private network)
VR (virtual router)
 default VR
 preventing routing loops using 2nd
VRF instance (VPN routing and forwarding instance)
VRF table
VRRP (Virtual Router Redundancy Protocol) 2nd
VRRP events TRAPs, SNMP
VT (virtual loopback tunnel interface)
vt interface

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

WAN PHY (Wide Area Network Physical Layer Device)
WAP (Wireless Application Protocol)
warm standby
WCDMA (Wideband Code Division Multiple Access)
WDM (wavelength-division multiplexing)
Web management
web site resources
 Boolean grouping in routing policy
 "JUNOS Enhanced Services Migration Guide"
 JUNOS software documentation
 mgen/mrec utilities
 regex matching
 VideoLAN
 Wireshark analysis program
weight-based scheduling, CoS
well-known discretionary attribute, BGP
well-known mandatory attribute, BGP
WINS (Windows Internet Name Service)
Wireshark analysis program, EIGRP supported by
WRED (weighted RED) 2nd 3rd 4th 5th
WRR (weighted round-robin)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

XENPAK
XENPAK module
XENPAK-SR 10BASE-SR XENPAK
XENPAK-ZR 10GBASE-ZR XENPAK
XFP transceiver
XML (Extensible Markup Language)
XML schema
XML tags, used by JUNOScript
XOR (exclusive or)
XPath
XSLT (Extensible Stylesheet Language for Transformations)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

zeroize

http://lib.ommolketab.ir
http://lib.ommolketab.ir

	JUNOS Enterprise Routing
	Table of Contents
	
	Foreword
	Credits
	Preface
	Chapter 1. Introduction to JUNOS Enterprise Routing
	Section 1.1. JUNOS Overview
	Section 1.2. CLI Review
	Section 1.3. Advanced CLI and Other Cool Stuff
	Section 1.4. Conclusion
	Section 1.5. Exam Topics
	Section 1.6. Chapter Review Questions
	Section 1.7. Chapter Review Answers

	Chapter 2. Interfaces
	Section 2.1. Permanent Interfaces
	Section 2.2. Transient Interfaces
	Section 2.3. Interface Properties
	Section 2.4. Interface Configuration Examples
	Section 2.5. Interface Troubleshooting
	Section 2.6. Conclusion
	Section 2.7. Exam Topics
	Section 2.8. Chapter Review Questions
	Section 2.9. Chapter Review Answers

	Chapter 3. Protocol Independent Properties and Routing Policy
	Section 3.1. Protocol Independent Properties
	Section 3.2. Routing Policy
	Section 3.3. Conclusion
	Section 3.4. Exam Topics
	Section 3.5. Chapter Review Questions
	Section 3.6. Chapter Review Answers

	Chapter 4. Interior Gateway Protocols and Migration Strategies
	Section 4.1. IGP Overview
	Section 4.2. RIP Deployment Scenario
	Section 4.3. IGP Migration
	Section 4.4. Overlay Migration Scenario: RIP to OSPF
	Section 4.5. EIGRP-to-OSPF Migration
	Section 4.6. Conclusion
	Section 4.7. Exam Topics
	Section 4.8. Chapter Review Questions
	Section 4.9. Chapter Review Answers

	Chapter 5. Border Gateway Protocol and Enterprise Routing Policy
	Section 5.1. What Is BGP?
	Section 5.2. Internal and External BGP
	Section 5.3. BGP and the Enterprise
	Section 5.4. Asymmetric Link Speed Support
	Section 5.5. BGP Deployment: Asymmetric Load Balancing
	Section 5.6. Enterprise Routing Policy
	Section 5.7. Multihome Beer-Co
	Section 5.8. Inbound Policy
	Section 5.9. Conclusion
	Section 5.10. Exam Topics
	Section 5.11. Chapter Review Questions
	Section 5.12. Chapter Review Answers

	Chapter 6. Access Security
	Section 6.1. Security Concepts
	Section 6.2. Securing Access to the Router
	Section 6.3. Firewall Filters
	Section 6.4. Spoof Prevention (uRPF)
	Section 6.5. Monitoring the Router
	Section 6.6. Conclusion
	Section 6.7. Exam Topics
	Section 6.8. Chapter Review Questions
	Section 6.9. Chapter Review Answers

	Chapter 7. Introduction to JUNOS Services
	Section 7.1. JUNOS Services
	Section 7.2. Layer 2 Services
	Section 7.3. Layer 3 Services
	Section 7.4. Layer 3 Services Configuration
	Section 7.5. Additional Service Options
	Section 7.6. Conclusion
	Section 7.7. Exam Topics
	Section 7.8. Chapter Review Questions
	Section 7.9. Chapter Review Answers

	Chapter 8. Advanced JUNOS Services
	Section 8.1. Route Tables and Next Hop Service Sets
	Section 8.2. IPSec VPNs
	Section 8.3. NAT
	Section 8.4. Combining Services
	Section 8.5. The Life of a Packet
	Section 8.6. Conclusion
	Section 8.7. Exam Topics
	Section 8.8. Chapter Review Questions
	Section 8.9. Chapter Review Answers

	Chapter 9. Class of Service
	Section 9.1. What Is IP CoS, and Why Do I Need It?
	Section 9.2. IP Differentiated Services
	Section 9.3. M7i and J-Series CoS Capabilities
	Section 9.4. DiffServ CoS Deployment and Verification
	Section 9.5. J-Series Adaptive Shapers and Virtual Channels
	Section 9.6. Conclusion
	Section 9.7. Exam Topics
	Section 9.8. Chapter Review Questions
	Section 9.9. Chapter Review Answers

	Chapter 10. IP Multicast in the Enterprise
	Section 10.1. What Is Multicast?
	Section 10.2. Multicast Protocols
	Section 10.3. PIM Sparse Mode: Static RP
	Section 10.4. Configure PIM Sparse Mode with Bootstrap RP
	Section 10.5. PIM-Based Anycast-RP
	Section 10.6. Conclusion
	Section 10.7. Exam Topics
	Section 10.8. Chapter Review Questions
	Section 10.9. Chapter Review Answers

	Chapter 11. JUNOS Software with Enhanced Services
	Section 11.1. JUNOS Software with Enhanced Services Overview
	Section 11.2. Migrating from JUNOS to JUNOS Software with Enhanced Services
	Section 11.3. Service Migration Case Study: JUNOS to JUNOS Software with Enhanced Services
	Section 11.4. Conclusion
	Section 11.5. Exam Topics
	Section 11.6. Chapter Review Questions
	Section 11.7. Chapter Review Answers

	Glossary
	Colophon
	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

